WorldWideScience

Sample records for antibiotic-resistant gram negative

  1. Antibiotic Resistance Pattern of Gram-Negative Bacteria in Gorgan

    Directory of Open Access Journals (Sweden)

    Golsha, R. (MD

    2014-06-01

    Full Text Available Background and Objective: The excessive use of broad-spectrum antibiotics will lead to drug resistance of microorganism and specially nosocomial organisms. Because of high incidence of antibiotic resistance in hospitals, we aimed to study antibiotic resistance to gram negative bacteria. Material and Methods: This cross-sectional study was conducted on the data of biological samples (2006-2008, with positive culture result. Using antibiogram, microbial resistance to isolated microorganism was determined, and after culturing the samples, bacteria were identified by using differential media and antiserum. Then, antibiotic resistance was performed by disk diffusion. Results: The most common gram-negative microorganism obtained from all cultures was E.coli with the lowest drug resistance to Nitrofurantoin. Conclusion: Based on the results, antimicrobial resistance pattern is not the same in different places and furthermore it is ever changing. Therefore, further research is needed to be done to have an accurate pattern of antibiotic resistance to provide effective treatment regimens. Key words: Antibiotic Resistance; Disk Diffusion; Gram Negative Bacteria; Gorgan

  2. Antibiotic-Resistant Gram Negative Bacilli in Meals Delivered at a General Hospital, Italy

    OpenAIRE

    Maria Rosa Anna Plano; Anna Maria Di Noto; Alberto Firenze; Sonia Sciortino; Caterina Mammina

    2009-01-01

    This study aimed at detecting the presence of antibiotic-resistant Gram-negatives in samples of meals delivered at the University General Hospital of Palermo, Italy. Antibiotic resistant Gram negatives were isolated in July—September 2007 ffrom cold dishes and food contact surfaces and utensils. Bacterial strains were submitted to susceptibility test and subtyped by random amplification of polymorphic DNA (RAPD). Forty-six of 55 (83.6%) food samples and 14 of 17 (82.3%) environmental swabs ...

  3. [Emerging and important antibiotic resistance in Gram negative bacteria: epidemiology, theory and practice].

    Science.gov (United States)

    Nordmann, P; Poirel, L

    2014-04-23

    Emerging and clinically-relevant antibiotic resistance mechanisms among Gram-negative rods are the extended-spectrum beta-lactamases (ESBL), carbapenemases, and 16S RNA methylases conferring resistance to aminoglycosides. Those resistance determinants do confer multiresistance to antibiotics. They are found in Enterobacteriaceae (especially community-acquired isolates, Pseudomonas aeruginosa and Acinetobacter baumannii). Detection of ESBL-producing and carbapenemase-producing isolates rely on the use of rapid diagnostic techniques that have to be performed when a reduced susceptibility to 3rd/4th generation cephalosporins or to carbapenems is observed, respectively. Only an early detection of those emerging resistance traits may contribute to limit their nosocomial spread and to optimize the antibiotic stewardship.

  4. Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens.

    Science.gov (United States)

    Domínguez-Gil, Teresa; Molina, Rafael; Alcorlo, Martín; Hermoso, Juan A

    2016-09-01

    Antimicrobial resistance is one of the most serious health threats. Cell-wall remodeling processes are tightly regulated to warrant bacterial survival and in some cases are directly linked to antibiotic resistance. Remodeling produces cell-wall fragments that are recycled but can also act as messengers for bacterial communication, as effector molecules in immune response and as signaling molecules triggering antibiotic resistance. This review is intended to provide state-of-the-art information about the molecular mechanisms governing this process and gather structural information of the different macromolecular machineries involved in peptidoglycan recycling in Gram-negative bacteria. The growing body of literature on the 3D structures of the corresponding macromolecules reveals an extraordinary complexity. Considering the increasing incidence and widespread emergence of Gram-negative multidrug-resistant pathogens in clinics, structural information on the main actors of the recycling process paves the way for designing novel antibiotics disrupting cellular communication in the recycling-resistance pathway. PMID:27620957

  5. Effect of Oxytetracycline-Medicated Feed on Antibiotic Resistance of Gram-Negative Bacteria in Catfish Ponds

    OpenAIRE

    DePaola, A.; Peller, J. T.; Rodrick, G E

    1995-01-01

    The effect of oxytetracycline-medicated feeds on antibiotic resistance in gram-negative bacteria from fish intestines and water in catfish ponds was investigated. In experiments in the fall and spring, using ponds with no previous history of antibiotic usage, percentages of tetracycline-resistant bacteria in catfish intestines obtained from medicated ponds increased significantly after 10 days of treatment. In the fall, resistance of the intestinal and aquatic bacteria returned to pretreatmen...

  6. A 980nm driven photothermal ablation of virulent and antibiotic resistant Gram-positive and Gram-negative bacteria strains using Prussian blue nanoparticles.

    Science.gov (United States)

    Maaoui, Houcem; Jijie, Roxana; Pan, Guo-Hui; Drider, Djamel; Caly, Delphine; Bouckaert, Julie; Dumitrascu, Nicoleta; Chtourou, Radouane; Szunerits, Sabine; Boukherroub, Rabah

    2016-10-15

    A 980nm laser-driven antimicrobial photothermal therapy using poly(vinylpyrrolidone) -coated Prussian Blue nanoparticles (PVP/PB NPs) is demonstrated. This approach allows an efficient eradication of a virulent strain of Gram-negative Escherichia coli (E. coli) associated with urinary tract infection as well as for the ablation of antibiotic resistant pathogens such as methicillin resistant Staphylococcus aureus (MRSA) and extended spectrum β-lactamase (ESBL) E. coli. Interestingly the 980nm irradiation exhibits minimal effect on mammalian cells up to a PVP/PB NPs concentration of 50μgmL(-1), while at this concentration bacteria are completely eradicated. This feature is certainly very promising for the selective targeting of bacteria over mammalian cells. PMID:27405072

  7. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria.

    Science.gov (United States)

    El Salabi, Allaaeddin; Walsh, Timothey R; Chouchani, Chedly

    2013-05-01

    Infectious diseases due to Gram-negative bacteria are a leading cause of morbidity and mortality worldwide. Antimicrobial agents represent one major therapeutic tools implicated to treat these infections. The misuse of antimicrobial agents has resulted in the emergence of resistant strains of Gram-negatives in particular Enterobacteriaceae and non-fermenters; they have an effect not only on a human but on the public health when bacteria use the resistance mechanisms to spread in the hospital environment and to the community outside the hospitals by means of mobile genetic elements. Gram-negative bacteria have become increasingly resistant to antimicrobial agents. They have developed several mechanisms by which they can withstand to antimicrobials, these mechanisms include the production of Extended-spectrum β-lactamases (ESBLs) and carbapenemases, furthermore, Gram-negative bacteria are now capable of spreading such resistance between members of the family Enterobacteriaceae and non-fermenters using mobile genetic elements as vehicles for such resistance mechanisms rendering antibiotics useless. Therefore, addressing the issue of mechanisms of antimicrobial resistance is considered one of most urgent priorities. This review will help to illustrate different resistance mechanisms; ESBLs, carbapenemases encoded by genes carried by mobile genetic elements, which are used by Gram-negative bacteria to escape antimicrobial effect.

  8. The role of the outer membrane of Gram-negative bacteria in antibiotic resistance: Ajax' shield or Achilles' heel?

    Science.gov (United States)

    Page, Malcolm G P

    2012-01-01

    There has been an enormous increase in our knowledge of the fundamental steps in the biosynthesis and assembly of the outer membrane of Gram-negative bacteria. Lipopolysaccharide is a major component of the outer membrane of Gram-negative bacteria as is peptidoglycan. Porins, efflux pumps and other transport proteins of the outer membrane are also present. It is clear that there are numerous essential proteins that have the potential to be targets for novel antimicrobial agents. Progress, however, has been slow. Much of the emphasis has been on cytoplasmic processes that were better understood earlier on, but have the drawback that two penetration barriers, with different permeability properties, have to be crossed. With the increased understanding of the late-stage events occurring in the periplasm, it may be possible to shift focus to these more accessible targets. Nevertheless, getting drugs across the outer membrane will remain a challenge to the ingenuity of the medicinal chemist. PMID:23090596

  9. Tackling antibiotic resistance in febrile neutropenia: current challenges with and recommendations for managing infections with resistant Gram-negative organisms.

    Science.gov (United States)

    Nouér, Simone A; Nucci, Marcio; Anaissie, Elias

    2015-10-01

    Multidrug resistant (MDR) Gram-negative bacteria (GNB) have emerged as important pathogens and a serious challenge in the management of neutropenic patients worldwide. The great majority of infections are caused by the Enterobacteriaceae (especially Escherichia coli and Klebsiella spp.) and Pseudomonas aeruginosa, and less frequently Acinetobacter spp. and Stenotrophomonas maltophilia. A broader-spectrum empiric antibiotic regimen is usually recommended in patients with a history of prior bloodstream infection caused by a MDR GNB, in those colonized by a MDR GNB, and if MDR GNBs are frequently isolated in the initial blood cultures. In any situation, de-escalation to standard empiric regimen is advised if infection with MDR GNB is not documented.

  10. Antibiotic Resistance and Heavy Metals Tolerance in Gram-Negative Bacteria from Diseased American Bullfrog (Rana catesbeiana) Cultured in Malaysia

    Institute of Scientific and Technical Information of China (English)

    M Na-jian; S W Lee; W Wendy; L W Tee; M Nadirah; S H Faizah

    2009-01-01

    A total of 140 bacterial isolates have been successfully isolated from various organs of diseased American bullfrog (Rana catesbeiana) cultured in Malaysia. The most frequently isolated bacteria was Edwardsiella spp. (46 isolates) followed by Aeromonas spp. (33 isolates), Flavobacterium spp. (31 isolates), and Vibrio spp. (30 isolates). Majority of the bacterial isolates were found sensitive to furazolidone (85.0%), chloramphenicol (85.0%), oxolinic acid (90.0%), florfenicol (95.0%), and flumequine (97.5%). On the other hand, most of the bacterial isolates were resistant to oleandomycin (77.5%) and lincomycin (87.5%). Nitrofurantoin and flumequine can be inhibited the growth of all of Vibrio spp. whereas all isolates of Edwardsiella spp. were found sensitive to florfenicol and flumequine. Multiple antibiotic resistance (MAR) index were in range of 0.30-0.40, indicating that bacterial isolates from cultured bullfrogs may have received high risk exposure to the tested antibiotics. In addition, 90-100% of the isolates were resistant to copper, cadmium, and chromium. These results provided insight information on tolerance level of bacterial isolates from cultured bullfrogs to 21 antibiotics as well as heavy metals.

  11. Prevalence and Antibiotic Resistance of Gram-Negative Pathogenic Bacteria Species Isolated from Periplaneta americana and Blattella germanica in Varanasi, India.

    Directory of Open Access Journals (Sweden)

    D Leshan Wannigama

    2014-06-01

    Full Text Available Cockroaches are among the medically important pests found within the human habitations that cause serious public health problems. They may harbor a number of pathogenic bacteria on the external surface with antibiotic resistance. Hence, they are regarded as major microbial vectors. This study investigates the prevalence and antibiotic resistance of Gram-negative pathogenic bacteria species isolated from Periplaneta americana and Blattella germanica in Varanasi, India.Totally, 203 adult cockroaches were collected form 44 households and 52 food-handling establishments by trapping. Bacteriological examination of external surfaces of Pe. americana and Bl. germanica were carried out using standard method and antibiotics susceptibility profiles of the isolates were determined using Kirby-Bauer disc diffusion methods.Among the places, we found that 54% had cockroache infestation in households and 77% in food- handling establishments. There was no significant different between the overall bacteria load of the external surface in Pe. americana (64.04% and Bl. germanica (35.96%. However the predominant bacteria on cockroaches were Klebsiella pneumonia, Escherichia coli, Enterobacter aerogenes, and Pseudomonas aeruginosa. However, Kl. pneumoniae and Ps. aeruginosa were the most prevalent, drug-resistant strains were isolated from the cockroaches with 100% resistance to sulfamethoxazole/trimethoprim and ampicillin. For individual strains of bacteria, Escherichia coli was found to have multi-resistance to four antibiotic tested, Citrobacter freundii four, Enterobacter aerogenes and Proteus mirabilis to three.Cockroaches are uniformly distributed in domestic environment, which can be a possible vector for transmission of drug-resistant bacteria and food-borne diseases.

  12. Antibiotic resistance monitoring among 1939 Gram-negative bacilli strains%1939株革兰阴性杆菌的耐药监测分析

    Institute of Scientific and Technical Information of China (English)

    陈凤平; 余广超; 刘菊珍; 付强; 温旺荣

    2011-01-01

    Proteus mirabilis were 54.8%,43.9% and 37.5%, respectively. ESBLs non-producing strains showed lower resistance rates to sulbactam/cefoperazone,trimethoprim/sulfamethoxazole, aminoglycosides, quinolones, penicillin/enzyme inhibitor, and the third and fourth generation cephalosporin than the ESBLs producing strains. Nonfermentative gram negative bacilli were very highly resistant to most antibiotics (31.0% ~74.0% ), while sensitive to sulbactam/cefoperazone and carbapenem. And multidrug resistant strains were detected. Conclusion The antibiotic resistance of the 1 939 gram negative bacilli is critical, with ESBLs producing strains and multidrug resistant strains having been detected. It is very important to select antibiotics correctly according to the results of susceptibility test, which can offer first-hand epidenaiology information and dynamic changes of antibiotic resistance for clinical practice.

  13. Antibiotic Resistance in Multidrug-Resistant Gram-Negative Bacteria from Burn Wards%烧伤病房革兰阴性多重耐药菌耐药性分析

    Institute of Scientific and Technical Information of China (English)

    庞宗超; 李惠斌

    2015-01-01

    目的:分析烧伤病房革兰阴性多重耐药菌的病原菌分布及耐药性,为临床合理应用抗生素提供依据,并探讨多重耐药菌的防控策略。方法应用 VITEK2-compact全自动微生物鉴定及药敏分析系统对临沂市人民医院烧伤整形科2012年1月至2014年1月送检标本分离的菌株进行菌种鉴定,采用 K-B纸片扩散法进行药敏试验,统计分析革兰阴性多重耐药菌的分布情况及其对抗菌药物的耐药情况。结果共检出130株革兰阴性多重耐药菌,创面分泌物为其主要标本来源,占81.54%,其次为痰液,占12.30%。菌株分布以鲍曼不动杆菌和大肠埃希菌为主,分别占38.46%(50/130)、29.23%(38/130)。大肠埃希菌和肺炎克雷伯菌产超广谱β-内酰胺酶(ESBLs)菌株分离率为89.47%(34/38)、87.50%(14/16)。耐碳青霉烯类抗生素鲍曼不动杆菌(CR-AB)对除替加环素、左氧氟沙星之外的所有测试抗菌药物均呈现高度耐药,耐药率在90%~100%之间;肺炎克雷伯菌和大肠埃希菌对碳青霉烯类抗生素、含酶抑制剂的复合制剂、替加环素耐药率均小于20%,而对氨基糖苷类、第三代头孢菌素类、喹诺酮类抗生素耐药率较高。铜绿假单胞菌和阴沟肠杆菌仅对丁胺卡那霉素有较高敏感性。结论革兰阴性多重耐药菌对常用抗菌药物表现出较高耐药性,应及时制定防控策略,缓解细菌耐药性。%Objective To analyze the distribution and antibiotic resistance of multidrug-resist-ant gram-negative bacteria from burn wards,and to provide a basis for rational use of antibiotics and prevention and control of multidrug-resistant bacteria.Methods VITEK2-compact automatic microorganism system and drug sensitivity analyzer were used to identify the pathogens isolated from specimens from patients hospitalized in Department of Burn and Plastic Surgery of Linyi

  14. 院内感染常见革兰氏阴性杆菌耐药监测分析%Analysis on Antibiotics Resistance of Common Gram-negative Bacilli in Nosocomial Infection

    Institute of Scientific and Technical Information of China (English)

    毕爱芬; 裴德翠

    2013-01-01

    Objective:To investigate the incidence of the clinical isolates gram-negative bacilli and monitor the drug resistance surveillance.Methods:Collecting a total of 5548 non-duplicate clinical isolates of Gram-negative bacteria in 2011-2012.The identification of bacteria and susceptibility test were performed using VITEK2 automatic bacteria idenificator.Results:Pseudomonas aeruginosa(32.7%),escherichia coli(23.6%),acinetobacter baumannii(23.0%),pneumonia gramsReber bacteria (6.9%),proteus mirabilis(5.3%) were most frequently isolated.Escherichia coli,klebsiella pneumoniae,proteus mirabilis in ESBLs positive rate were 48.4%,31.8%and 13.4%,ESBLs producing strains were the important pathogens of nosocomial infection;Imipenem and meropenem resistant strains were not found.The susceptibility rates of pseudomonas aeruginosa to meropenem,imipenem,cefoperazone-sulbactam,amikacin,tobramycin,piperacillin-tazobactam respectively were 81.3%,79.3%,77.0%,67.2%,63.9%,60.9%.The susceptibility rate of Baumanil to minocycline,and cefoperazone-sulbactam were 30.4%and 48.2%.The other antibiotics resistance rate were above 80.0%.Conclusion:Compared to 2010,acinetobacter baumannii is increased,amomn these isolation strains and mostly came from ICU,the sensitive rates of acinetobacter baumannii to imine-south and meropenem is decline,pan-resistant strains account for about 80.0%and drug resistance is serious,a growing trend of the clinical isolates Gram-negative bacilli to common biotics was showed.The detection rate of ESBLs,CRPA and CRAB is increasing significantly.It is the most important and valuable to strength the rational selection of antimicrobial agents and control the nosocomial infections.%  目的:了解医院临床分离革兰氏阴性杆菌的发生率,并进行耐药监测。方法:收集2011-2012年笔者所在医院非重复临床分离革兰阴性菌5548株,VITEK2全自动细菌鉴定仪进行菌株鉴定和药敏试验。结果:医院院内

  15. ANALYSIS OF THE DISTRIBUTION AND ANTIBIOTIC RESISTANCE OF GRAM-NEGATIVE BACILLI IN INTENSIVE CARE UNIT%重症监护病房革兰阴性杆菌流行状况及耐药性分析

    Institute of Scientific and Technical Information of China (English)

    郑轩; 曲彦; 胡丹; 施永新

    2012-01-01

    Objective To investigate the distribution and drug resistance of common gram-negative bacilli isolated in ICU,and provide reference for clinical anti-infective therapy. Methods A retrospective review was done for gram-negative bacilli isolated from samples of 198 patients, treated in ICU from Jun 2008 to Jun 2011, in terms of their distribution and drug resistance. Results A total of 491 strains of gram-negative bacilli were isolated, which were mainly consisted of enteric bacilli and non-fermentative gram-negative bacilli. Of the 491 strains isolated, the first five detection rates were in order of Acinetobacter bau-mannii 143 strains (29. 12%), Escherichia coli, 98 (19. 96%), Pseudomonas aeruginosa 95 (19. 35%), Klebsiella pneumonia 75 (15. 27%), and Proteus mirabilis 22 (4. 48%). Of the strains isolated, more than 50% were from respiratory tract, which were generally resistant to commonly used antibiotics, 40 strains were pan-resistant, of which, 40 strains were Acinetobacter baumannii and three were Pseudomonas aeruginosa. Conclusion Gram-negative bacillus is a strain that commonly infects patients in ICU, which has a higher drug resistance to frequently used antibiotics, more with multidrug resistance, a monitoring of the resistance should be enhanced.%目的 了解我院重症监护病房(ICU)常见革兰阴性杆菌的分布状况及其耐药特点,为临床抗感染治疗提供依据.方法 对2008年6月-2011年6月我院ICU治疗198例病人标本中分离出的革兰阴性杆菌分布状况及其耐药情况进行回顾性分析.结果 共检出革兰阴性杆菌491株,以肠杆菌科细菌和非发酵革兰阴性杆菌为主,检出率居前5位的菌株依次为鲍曼不动杆菌143株(29.12%),大肠埃希菌98株(19.96%),铜绿假单胞菌95株(19.35%),肺炎克雷伯菌75株(15.27%),奇异变形杆菌22株(4.48%).491株分离菌株主要来自呼吸道,占总分离数的50%以上.491株病原菌对临床常用抗菌药物耐药较为

  16. 革兰氏阴性细菌外膜蛋白耐药功能及其抑菌策略研究进展%An review on the antibiotics resistance function of outer membrane protein in gram-negative bacterial and related antimicrobial strategies

    Institute of Scientific and Technical Information of China (English)

    李碗芯; 孙莉娜; 林向民

    2015-01-01

    The emergence of bacterial resistance to drug use has posed serious problem worldwide. Generally, the drug resistance ca-pability of gram-negative bacteria is stronger than that of gram-positive, which is partially attributed to the antibiotics resistance of the outer membrane proteins ( OMPs) . It is well known that the specific OMPs efflux antibiotics out or inhibits uptakes of antibiot-ics, while the regulation mechanism remains uncertain. With the development of modern science and technology, especially the ap-plication of structure biology, molecular biology and proteomics, many progressive studies have unveiled the mechanisms underlying the antibiotic resistance of OMPs. This review focuses on the recent advances in the structure and antibiotic resistance mechanisms of OMP, which provides helpful insight into manufacture of new OMPs-targeting antimicrobial drug.%当前细菌耐药的形势日益严峻,已引起全世界的广泛关注.革兰氏阴性细菌的耐药性普遍比革兰氏阳性细菌强,这与镶嵌或锚定在革兰氏阴性细菌外膜上的蛋白耐药功能密切相关.目前已知外膜蛋白能够阻碍抗生素通过外膜以及将抗生素排出胞外等方式使细菌产生耐药性,但具体的耐药与调控机制还有待进一步研究.近年来,随着现代科学技术的不断发展,特别是结构生物学、分子生物学与蛋白质组学在该领域的充分运用,有关外膜蛋白功能的研究和技术取得了很大的进步.本文对近年来国内外在细菌外膜蛋白的结构与耐药机理、耐药新功能及新机制等方面的研究进展进行了概述,为揭示革兰氏阴性菌耐药形成机制奠定基础.

  17. Appraising Contemporary Strategies to Combat Multidrug Resistant Gram-Negative Bacterial Infections–Proceedings and Data From the Gram-Negative Resistance Summit

    OpenAIRE

    Kollef, Marin H; Golan, Yoav; Micek, Scott T.; Shorr, Andrew F.; Marcos I. Restrepo

    2011-01-01

    The emerging problem of antibiotic resistance, especially among Gram-negative bacteria (GNB), has become a serious threat to global public health. Very few new antibacterial classes with activity against antibiotic-resistant GNB have been brought to market. Renewed and growing attention to the development of novel compounds targeting antibiotic-resistant GNB, as well as a better understanding of strategies aimed at preventing the spread of resistant bacterial strains and preserving the effica...

  18. Antibiotic Resistance

    Science.gov (United States)

    ... lives. But there is a growing problem of antibiotic resistance. It happens when bacteria change and become able ... resistant to several common antibiotics. To help prevent antibiotic resistance Don't use antibiotics for viruses like colds ...

  19. Trends in antibiotic resistance in coagulase-negative staphylococci in the United States, 1999 to 2012.

    Science.gov (United States)

    May, Larissa; Klein, Eili Y; Rothman, Richard E; Laxminarayan, Ramanan

    2014-01-01

    Coagulase-negative staphylococci (CoNS) are important bloodstream pathogens that are typically resistant to multiple antibiotics. Despite the concern about increasing resistance, there have been no recent studies describing the national prevalence of CoNS pathogens. We used national resistance data over a period of 13 years (1999 to 2012) from The Surveillance Network (TSN) to determine the prevalence of and assess the trends in resistance for Staphylococcus epidermidis, the most common CoNS pathogen, and all other CoNS pathogens. Over the course of the study period, S. epidermidis resistance to ciprofloxacin and clindamycin increased steadily from 58.3% to 68.4% and from 43.4% to 48.5%, respectively. Resistance to levofloxacin increased rapidly from 57.1% in 1999 to a high of 78.6% in 2005, followed by a decrease to 68.1% in 2012. Multidrug resistance for CoNS followed a similar pattern, and this rise and small decline in resistance were found to be strongly correlated with levofloxacin prescribing patterns. The resistance patterns were similar for the aggregate of CoNS pathogens. The results from our study demonstrate that the antibiotic resistance in CoNS pathogens has increased significantly over the past 13 years. These results are important, as CoNS can serve as sentinels for monitoring resistance, and they play a role as reservoirs of resistance genes that can be transmitted to other pathogens. The link between the levofloxacin prescription rate and resistance levels suggests a critical role for reducing the inappropriate use of fluoroquinolones and other broad-spectrum antibiotics in health care settings and in the community to help curb the reservoir of resistance in these colonizing pathogens.

  20. Plasmid Mediated Antibiotic Resistance in Isolated Bacteria From Burned Patients

    OpenAIRE

    Beige, Fahimeh; Baseri Salehi, Majid; Bahador, Nima; Mobasherzadeh, Sina

    2014-01-01

    Background: Nowadays, the treatment of burned patients is difficult because of the high frequency of infection with antibiotic resistance bacteria. Objectives: This study was conducted to evaluate the level of antibiotic resistance in Gram-negative bacteria and its relation with the existence of plasmid. Materials and Methods: The samples were collected from two hundred twenty hospitalized burned patients in Isfahan burn hospital during a three-month period (March 2012 to June 2012). The samp...

  1. Highly active modulators of indole signaling alter pathogenic behaviors in Gram-negative and Gram-positive bacteria.

    Science.gov (United States)

    Minvielle, Marine J; Eguren, Kristen; Melander, Christian

    2013-12-16

    Indole is a universal signal that regulates various bacterial behaviors, such as biofilm formation and antibiotic resistance. To generate mechanistic probes of indole signaling and control indole-mediated pathogenic phenotypes in both Gram-positive and Gram-negative bacteria, we have investigated the use of desformylflustrabromine (dFBr) derivatives to generate highly active indole mimetics. We have developed non-microbicidal dFBr derivatives that are 27-2000 times more active than indole in modulating biofilm formation, motility, acid resistance, and antibiotic resistance. The activity of these analogues parallels indole, because they are dependent on temperature, the enzyme tryptophanase TnaA, and the transcriptional regulator SdiA. This investigation demonstrates that molecules based on the dFBr scaffold can alter pathogenic behaviors by mimicking indole-signaling pathways.

  2. Antibiotic resistance in Burkholderia species.

    Science.gov (United States)

    Rhodes, Katherine A; Schweizer, Herbert P

    2016-09-01

    The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation β-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several β-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. PMID:27620956

  3. Integron involvement in environmental spread of antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Thibault eStalder

    2012-04-01

    Full Text Available The spread of antibiotic-resistant bacteria is a growing problem and a public health issue. In recent decades, various genetic mechanisms involved in the spread of resistance genes among bacteria have been identified. Integrons -- genetic elements that acquire, exchange and express genes embedded within gene cassettes (GC -- are one of these mechanisms. Integrons are widely distributed, especially in Gram-negative bacteria; they are carried by mobile genetic elements, plasmids and transposons, which promote their spread within bacterial communities. Initially studied mainly in the clinical setting for their involvement in antibiotic resistance, their role in the environment is now an increasing focus of attention. The aim of this review is to provide an in-depth analysis of recent studies of antibiotic-resistance integrons in the environment, highlighting their potential involvement in antibiotic resistance outside the clinical context. We will focus particularly on the impact of human activities (agriculture, industries, wastewater treatment, etc..

  4. Antibiotic Resistance

    DEFF Research Database (Denmark)

    Munck, Christian

    morbidity and mortality as well as an increase in the cost of treatment. Understanding how bacteria respond to antibiotic exposure gives the foundations for a rational approach to counteract antimicrobial resistance. In the work presented in this thesis, I explore the two fundamental sources...... of antimicrobial resistance: (1) adaptive mutations and (2) horizontal acquisition of resistance genes from antibiotic gene reservoirs. By studying the geno- and phenotypic changes of E. coli in response to single and drug-pair exposures, I uncover the evolutionary trajectories leading to adaptive resistance. I...... to rationally design drug combinations that limit the evolution of antibiotic resistance due to counteracting evolutionary trajectories. My results highlight that an in-depth knowledge about the genetic responses to the individual antimicrobial compounds enables the prediction of responses to drug combinations...

  5. Broad Specificity Efflux pumps and Their Role in Multidrug Resistance of Gram Negative Bacteria

    OpenAIRE

    Nikaido, Hiroshi; Pagès, Jean-Marie

    2011-01-01

    Antibiotic resistance mechanisms reported in Gram-negative bacteria are producing a worldwide health problem. The continuous dissemination of «multi-drug resistant» (MDR) bacteria drastically reduces the efficacy of our antibiotic “arsenal” and consequently increases the frequency of therapeutic failure. In MDR bacteria, the over-expression of efflux pumps that expel structurally-unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibio...

  6. ANTIBIOTIC RESISTANT BACTERIA FROM HALIOTIS TUBERCULATA AND MYTILUS GALLOPROVINCIALIS

    Directory of Open Access Journals (Sweden)

    F. Conte

    2009-12-01

    Full Text Available The antibiotic resistance (AR of Gram negative bacteria from Haliotis tuberculata (Ht and Mytilus galloprovincialis (Mg was assessed. Essential differences between R profiles of Pseudomonas spp and of other strains was not observed. Strains AR from Ht and Mg was similar.

  7. Antibiotic Resistance Related to Biofilm Formation in Klebsiella pneumoniae.

    Science.gov (United States)

    Vuotto, Claudia; Longo, Francesca; Balice, Maria Pia; Donelli, Gianfranco; Varaldo, Pietro E

    2014-01-01

    The Gram-negative opportunistic pathogen, Klebsiella pneumoniae, is responsible for causing a spectrum of community-acquired and nosocomial infections and typically infects patients with indwelling medical devices, especially urinary catheters, on which this microorganism is able to grow as a biofilm. The increasingly frequent acquisition of antibiotic resistance by K. pneumoniae strains has given rise to a global spread of this multidrug-resistant pathogen, mostly at the hospital level. This scenario is exacerbated when it is noted that intrinsic resistance to antimicrobial agents dramatically increases when K. pneumoniae strains grow as a biofilm. This review will summarize the findings about the antibiotic resistance related to biofilm formation in K. pneumoniae.

  8. Synergistic interaction of eugenol with antibiotics against Gram negative bacteria.

    Science.gov (United States)

    Hemaiswarya, S; Doble, M

    2009-11-01

    Eugenol, the principal chemical component of clove oil from Eugenia aromatica has been long known for its analgesic, local anesthetic, anti-inflammatory, and antibacterial effects. The interaction of the eugenol with ten different hydrophobic and hydrophilic antibiotics was studied against five different Gram negative bacteria. The MIC of the combination was found to decrease by a factor of 5-1000 with respect to their individual MIC. This synergy is because of the membrane damaging nature of eugenol, where 1mM of its concentration is able to damage nearly 50% of the bacterial membrane. Eugenol was also able to enhance the activities of lysozyme, Triton X-100 and SDS in damaging the bacterial cell membrane. The hydrophilic antibiotics such as vancomycin and beta-lactam antibiotics which have a marginal activity on these gram negative bacteria exhibit an enhanced antibacterial activity when pretreated with eugenol. Reduced usage of antibiotics could be employed as a treatment strategy to slow down the onset of antibiotic resistance as well as decrease its toxicity. Experiments performed with human blood cells indicated that the concentration of eugenol used for the combination studies were below its cytotoxic values. Pharmacodynamic studies of the combinations need to be performed to decide on the effective dosage. PMID:19540744

  9. Gramicidin A Mutants with Antibiotic Activity against Both Gram-Positive and Gram-Negative Bacteria.

    Science.gov (United States)

    Zerfas, Breanna L; Joo, Yechaan; Gao, Jianmin

    2016-03-17

    Antimicrobial peptides (AMPs) have shown potential as alternatives to traditional antibiotics for fighting infections caused by antibiotic-resistant bacteria. One promising example of this is gramicidin A (gA). In its wild-type sequence, gA is active by permeating the plasma membrane of Gram-positive bacteria. However, gA is toxic to human red blood cells at similar concentrations to those required for it to exert its antimicrobial effects. Installing cationic side chains into gA has been shown to lower its hemolytic activity while maintaining the antimicrobial potency. In this study, we present the synthesis and the antibiotic activity of a new series of gA mutants that display cationic side chains. Specifically, by synthesizing alkylated lysine derivatives through reductive amination, we were able to create a broad selection of structures with varied activities towards Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). Importantly, some of the new mutants were observed to have an unprecedented activity towards important Gram-negative pathogens, including Escherichia coli, Klebsiella pneumoniae and Psuedomonas aeruginosa. PMID:26918268

  10. Study of antibiotic resistance of staph aureus and coagulase negative staphylococci isolated from patient samples

    Directory of Open Access Journals (Sweden)

    M Anvary

    2006-04-01

    Full Text Available Introduction: Drug resistant Staphylococci are the most important agents of nosocomial infections. In this survey, effect of different antibiotics on these bacteria and their drug resistance was investigated. Methods: The study included 500 strains of Staphylococci. Minimum Inhibitory Concentrations of all antibiotics was determined by the broth macro dilution technique and standard methods from the National Committee for Clinical Laboratory Standards. Result : Oxacillin resistance of S. aureus was 14.2% and that of coagulase-negative staphylococci was 53.4%. The activity of different antibiotics is presented in detail. Conclusion: Surveillance of strains resistant to methicillin is necessary.

  11. Antibiotic Resistance in Staphylococcus aureus and Coagulase Negative Staphylococci Isolated from Goats with Subclinical Mastitis

    OpenAIRE

    Salvatore Virdis; Christian Scarano; Francesca Cossu; Vincenzo Spanu; Carlo Spanu; Enrico Pietro Luigi De Santis

    2010-01-01

    Antimicrobial resistance patterns and gene coding for methicillin resistance (mecA) were determined in 25 S. aureus and 75 Coagulase Negative Staphylococci (CNS) strains isolates from half-udder milk samples collected from goats with subclinical mastitis. Fourteen (56.0%) S. aureus and thirty-one (41.3%) CNS isolates were resistant to one or more antimicrobial agents. S. aureus showed the highest resistance rate against kanamycin (28.0%), oxytetracycline (16.0%), and ampicillin (12.0%). The C...

  12. Antibiotic Resistance in Staphylococcus aureus and Coagulase Negative Staphylococci Isolated from Goats with Subclinical Mastitis

    Directory of Open Access Journals (Sweden)

    Salvatore Virdis

    2010-01-01

    Full Text Available Antimicrobial resistance patterns and gene coding for methicillin resistance (mecA were determined in 25 S. aureus and 75 Coagulase Negative Staphylococci (CNS strains isolates from half-udder milk samples collected from goats with subclinical mastitis. Fourteen (56.0% S. aureus and thirty-one (41.3% CNS isolates were resistant to one or more antimicrobial agents. S. aureus showed the highest resistance rate against kanamycin (28.0%, oxytetracycline (16.0%, and ampicillin (12.0%. The CNS tested were more frequently resistant to ampicillin (36.0% and kanamycin (6.7%. Multiple antimicrobial resistance was observed in eight isolates, and one Staphylococcus epidermidis was found to be resistant to six antibiotics. The mecA gene was not found in any of the tested isolates. Single resistance against β-lactamics or aminoglicosides is the most common trait observed while multiresistance is less frequent.

  13. Antibiotic resistance in Gram-negative bacteria affecting children from León, Nicaragua

    OpenAIRE

    Amaya, Erick José

    2010-01-01

    ABSTRACT Annual child mortality has declined in the world from 12.5 million in 1990 to 8.8 million in 2008. Yet, infectious diseases are still the major cause of death in this group (6.97 million); with diarrhoea responsible for the death of 1.3 million and neonatal septicaemia for 0.5 million. On the positive side, Latin America/Caribbean is among the regions with the highest progress in reduction of child mortality. In Nicaragua, nearly 4000 children under 5 years of ag...

  14. Multidrug-resistant Gram-negative bacteria: a product of globalization.

    Science.gov (United States)

    Hawkey, P M

    2015-04-01

    Global trade and mobility of people has increased rapidly over the last 20 years. This has had profound consequences for the evolution and the movement of antibiotic resistance genes. There is increasing exposure of populations all around the world to resistant bacteria arising in the emerging economies. Arguably the most important development of the last two decades in the field of antibiotic resistance is the emergence and spread of extended-spectrum β-lactamases (ESBLs) of the CTX-M group. A consequence of the very high rates of ESBL production among Enterobacteriaceae in Asian countries is that there is a substantial use of carbapenem antibiotics, resulting in the emergence of plasmid-mediated resistance to carbapenems. This article reviews the emergence and spread of multidrug-resistant Gram-negative bacteria, focuses on three particular carbapenemases--imipenem carbapenemases, Klebsiella pneumoniae carbapenemase, and New Delhi metallo-β-lactamase--and highlights the importance of control of antibiotic use.

  15. Revisiting the Gram-Negative Lipoprotein Paradigm

    OpenAIRE

    LoVullo, Eric D.; Wright, Lori F.; Isabella, Vincent; Huntley, Jason F.; Pavelka, Martin S.

    2015-01-01

    The processing of lipoproteins (Lpps) in Gram-negative bacteria is generally considered an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein N-acyltransferase. The mature lipoproteins are then sorted by the Lol system, with most Lpps inserted into the outer membrane (OM). We demonstrate here that the lnt gene is not essential to the Gram-negative pathogen Francisella tularensis subsp. tularensis str...

  16. Antibiotic resistance and mecA characterization of coagulase-negative staphylococci isolated from three hotels in London, UK

    Directory of Open Access Journals (Sweden)

    Zhen eXu

    2015-09-01

    Full Text Available Antibiotic resistance in bacteria isolated from non–healthcare environments, is a potential problem to public health. In our survey a total of 71 coagulase negative staphylococci belonging to 11 different species were isolated from 3 large hotels in London, UK. The most prevalent species was Staphylococcus haemolyticus, with S. hominis, S. warneri, S.cohnii and S. epidermidis commonly detected. Antimicrobial susceptibilities and carriage of the mecA gene were determined for all of these isolates. Most (85.9% staphylococci were resistant to multiple antibiotics with all displaying increased susceptibility towards penicillin, fusidic acid, erythromycin and cefepime. 21 (29.5% of the isolates were mecA positive, however MIC values to oxacillin, normally associated with the carriage of mecA, varied widely in this group (from 0.06 mg/L to 256 mg/L. 15 of the 21 mecA positive isolates carried SCCmec of these 7 were type V, 1 type I, 1 type II and 1 type IV. Additionally, five of these 15 isolates carried a previously unreported type, 1A, which involves an association between class A mec complex and ccr type 1. The remaining 6 of the 21 isolates were non-typeable and carried a combination of class A mec complex and ccrC. In addition to this, we also report on new MLST types which were assigned for 5 Staphylococcus epidermidis isolates. 4 out of these 5 isolates had MICs between 0.06 to 256 mg/L to oxacillin and would be regarded as clinically susceptible but one isolate had a high oxacillin MIC of 256 mg/L. We demonstrated widespread multiple drug resistance among different staphylococcal species isolated from non-healthcare environments highlighting the potential for these species to act as a reservoir for methicillin and other forms of drug resistance.

  17. Antibiotic resistance and mecA characterization of coagulase-negative staphylococci isolated from three hotels in London, UK.

    Science.gov (United States)

    Xu, Zhen; Mkrtchyan, Hermine V; Cutler, Ronald R

    2015-01-01

    Antibiotic resistance in bacteria isolated from non-healthcare environments, is a potential problem to public health. In our survey a total of 71 coagulase negative staphylococci (CNS) belonging to 11 different species were isolated from three large hotels in London, UK. The most prevalent species was Staphylococcus haemolyticus, with S. hominis, S. warneri, S. cohnii, and Staphylococcus epidermidis commonly detected. Antimicrobial susceptibilities and carriage of the mecA gene were determined for all of these isolates. Most (85.9%) staphylococci were resistant to multiple antibiotics with all displaying increased susceptibility toward penicillin, fusidic acid, erythromycin, and cefepime. Twenty-one (29.5%) of the isolates were mecA positive, however MIC values to oxacillin, normally associated with the carriage of mecA, varied widely in this group (from 0.06 to 256 mg/L). Fifteen of the twenty-one mecA positive isolates carried SCCmec of these seven were type V, one type I, one type II, and one type IV. Additionally, five of these 15 isolates carried a previously unreported type, 1A, which involves an association between class A mec complex and ccr type 1. The remaining six of the 21 isolates were non-typeable and carried a combination of class A mec complex and ccrC. In addition to this, we also report on new MLST types which were assigned for five S. epidermidis isolates. Four out of these five isolates had MICs between 0.06 and 256 mg/L to oxacillin and would be regarded as clinically susceptible but one isolate had a high oxacillin MIC of 256 mg/L. We demonstrated widespread multiple drug resistance among different staphylococcal species isolated from non-healthcare environments highlighting the potential for these species to act as a reservoir for methicillin and other forms of drug resistance.

  18. Antibiotic resistance and mecA characterization of coagulase-negative staphylococci isolated from three hotels in London, UK.

    Science.gov (United States)

    Xu, Zhen; Mkrtchyan, Hermine V; Cutler, Ronald R

    2015-01-01

    Antibiotic resistance in bacteria isolated from non-healthcare environments, is a potential problem to public health. In our survey a total of 71 coagulase negative staphylococci (CNS) belonging to 11 different species were isolated from three large hotels in London, UK. The most prevalent species was Staphylococcus haemolyticus, with S. hominis, S. warneri, S. cohnii, and Staphylococcus epidermidis commonly detected. Antimicrobial susceptibilities and carriage of the mecA gene were determined for all of these isolates. Most (85.9%) staphylococci were resistant to multiple antibiotics with all displaying increased susceptibility toward penicillin, fusidic acid, erythromycin, and cefepime. Twenty-one (29.5%) of the isolates were mecA positive, however MIC values to oxacillin, normally associated with the carriage of mecA, varied widely in this group (from 0.06 to 256 mg/L). Fifteen of the twenty-one mecA positive isolates carried SCCmec of these seven were type V, one type I, one type II, and one type IV. Additionally, five of these 15 isolates carried a previously unreported type, 1A, which involves an association between class A mec complex and ccr type 1. The remaining six of the 21 isolates were non-typeable and carried a combination of class A mec complex and ccrC. In addition to this, we also report on new MLST types which were assigned for five S. epidermidis isolates. Four out of these five isolates had MICs between 0.06 and 256 mg/L to oxacillin and would be regarded as clinically susceptible but one isolate had a high oxacillin MIC of 256 mg/L. We demonstrated widespread multiple drug resistance among different staphylococcal species isolated from non-healthcare environments highlighting the potential for these species to act as a reservoir for methicillin and other forms of drug resistance. PMID:26441881

  19. Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes.

    Science.gov (United States)

    Henriques, Isabel; Tacão, Marta; Leite, Laura; Fidalgo, Cátia; Araújo, Susana; Oliveira, Cláudia; Alves, Artur

    2016-08-15

    The goal of this study was to investigate co-selection of antibiotic resistance in gram-negative epiphytic bacteria. Halimione portulacoides samples were collected from metal(loid)-contaminated and non-contaminated salt marshes. Bacterial isolates (n=137) affiliated with Vibrio, Pseudomonas, Shewanella, Comamonas, Aeromonas and with Enterobacteriaceae. Vibrio isolates were more frequent in control site while Pseudomonas was common in contaminated sites. Metal(loid) and antibiotic resistance phenotypes varied significantly according to site contamination, and multiresistance was more frequent in contaminated sites. However, differences among sites were not observed in terms of prevalence or diversity of acquired antibiotic resistance genes, integrons and plasmids. Gene merA, encoding mercury resistance, was only detected in isolates from contaminated sites, most of which were multiresistant to antibiotics. Results indicate that metal(loid) contamination selects for antibiotic resistance in plant surfaces. In salt marshes, antibiotic resistance may be subsequently transferred to other environmental compartments, such as estuarine water or animals, with potential human health risks. PMID:27210560

  20. Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes.

    Science.gov (United States)

    Henriques, Isabel; Tacão, Marta; Leite, Laura; Fidalgo, Cátia; Araújo, Susana; Oliveira, Cláudia; Alves, Artur

    2016-08-15

    The goal of this study was to investigate co-selection of antibiotic resistance in gram-negative epiphytic bacteria. Halimione portulacoides samples were collected from metal(loid)-contaminated and non-contaminated salt marshes. Bacterial isolates (n=137) affiliated with Vibrio, Pseudomonas, Shewanella, Comamonas, Aeromonas and with Enterobacteriaceae. Vibrio isolates were more frequent in control site while Pseudomonas was common in contaminated sites. Metal(loid) and antibiotic resistance phenotypes varied significantly according to site contamination, and multiresistance was more frequent in contaminated sites. However, differences among sites were not observed in terms of prevalence or diversity of acquired antibiotic resistance genes, integrons and plasmids. Gene merA, encoding mercury resistance, was only detected in isolates from contaminated sites, most of which were multiresistant to antibiotics. Results indicate that metal(loid) contamination selects for antibiotic resistance in plant surfaces. In salt marshes, antibiotic resistance may be subsequently transferred to other environmental compartments, such as estuarine water or animals, with potential human health risks.

  1. Photodynamic inactivation of antibiotic-resistant bacteria and biofilms by hematoporphyrin monomethyl ether.

    Science.gov (United States)

    Liu, Chengcheng; Hu, Min; Ma, Dandan; Lei, Jin'e; Xu, Jiru

    2016-02-01

    The worldwide increase in bacterial antibiotic resistance has led to a search for alternative antibacterial therapies. A promising approach to killing antibiotic-resistant bacteria is photodynamic antimicrobial chemotherapy, which uses light in combination with a photosensitizer to induce a phototoxic reaction. We evaluated the photodynamic inactivation (PDI) efficiency of hematoporphyrin monomethyl ether (HMME) on antibiotic-resistant bacteria and biofilms. HMME exhibited no significant dark toxicity and provided dose-dependent inactivation of antibiotic-resistant bacteria and biofilms. After incubation with 100-μM HMME and irradiation with 72-J cm(-2) white light, 4.19-7.59 log10 reductions in survival were achieved in planktonic suspension. Antibiotic-resistant strains were as susceptible to PDI in biofilms as in planktonic suspensions, but the inactivation of bacterial cells in biofilms was attenuated. In addition, gram-positive bacterial strains and biofilms were more susceptible than gram-negative strains and biofilms to the PDI effect of HMME. Thus, HMME is a promising photosensitizer for the treatment of infectious diseases caused by antibiotic-resistant bacteria, especially gram-positive bacteria.

  2. Quorum sensing in gram-negative bacteria

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.J.; Høiby, N.;

    2004-01-01

    molecules. Among Gram-negative bacteria N-acyl-L-homoserine lactone (acyl-HSL)-dependent quorum sensing systems are particularly widespread. These systems are used to coordinate expression of phenotypes that are fundamental to the interaction of bacteria with each other and with their environment...

  3. Revisiting the gram-negative lipoprotein paradigm

    Science.gov (United States)

    The processing of lipoproteins (lpps) in Gram-negative bacteria is generally considered to be an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein n-acyltransferase. The mature lipoproteins are then sorted...

  4. Efficient photodynamic therapy against gram-positive and gram-negative bacteria using THPTS, a cationic photosensitizer excited by infrared wavelength.

    Directory of Open Access Journals (Sweden)

    Stanislaw Schastak

    Full Text Available The worldwide rise in the rates of antibiotic resistance of bacteria underlines the need for alternative antibacterial agents. A promising approach to kill antibiotic-resistant bacteria uses light in combination with a photosensitizer to induce a phototoxic reaction. Concentrations of 1, 10 and 100microM of tetrahydroporphyrin-tetratosylat (THPTS and different incubation times (30, 90 and 180min were used to measure photodynamic efficiency against two Gram-positive strains of S.aureus (MSSA and MRSA, and two Gram-negative strains of E.coli and P.aeruginosa. We found that phototoxicity of the drug is independent of the antibiotic resistance pattern when incubated in PBS for the investigated strains. Also, an incubation with 100microM THPTS followed by illumination, yielded a 6lg (> or =99.999% decrease in the viable numbers of all bacteria strains tested, indicating that the THPTS drug has a high degree of photodynamic inactivation. We then modulated incubation time, photosensitizer concentration and monitored the effect of serum on the THPTS activity. In doing so, we established the conditions to obtain the strongest bactericidal effect. Our results suggest that this new and highly pure synthetic compound should improve the efficiency of photodynamic therapy against multiresistant bacteria and has a significant potential for clinical applications in the treatment of nosocomial infections.

  5. Facts about Antibiotic Resistance

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  6. Assessing antibiotic resistance of microorganisms in sanitary sewage.

    Science.gov (United States)

    Kaeseberg, Thomas; Blumensaat, Frank; Zhang, Jin; Krebs, Peter

    2015-01-01

    The release of antimicrobial substances into surface waters is of growing concern due to direct toxic effects on all trophic levels and the promotion of antibiotic resistance through sub-inhibitory concentration levels. This study showcases (1) the variation of antibiotics in sanitary sewage depending on different timescales and (2) a method to assess the antibiotic resistance based on an inhibition test. The test is based on the measurement of the oxygen uptake rate (OUR) in wastewater samples with increasing concentrations of the selected antibiotic agents. The following antibiotics were analysed in the present study: clarithromycin (CLA) was selected due to its high toxicity to many microorganisms (low EC50), ciprofloxacin (CIP) which is used to generally fight all bacteria concerning interstitial infections and doxycyclin (DOX) having a broad spectrum efficacy. Results show that CLA inhibited the OUR by approximately 50% at a concentration of about 10 mg L⁻¹, because Gram-negative bacteria such as Escherichia coli are resistant, whereas CIP inhibited about 90% of the OUR at a concentration equal to or greater than 10 mg L⁻¹. In the case of DOX, a moderate inhibition of about 38% at a concentration of 10 mg L⁻¹ was identified, indicating a significant antibiotic resistance. The results are consistent with the corresponding findings from the Clinical and Laboratory Standards Institute. Thus, the presented inhibition test provides a simple but robust alternative method to assess antibiotic resistance in biofilms instead of more complex clinical tests. PMID:25633938

  7. Extended-spectrum ß-lactamases in gram negative bacteria

    Directory of Open Access Journals (Sweden)

    Deepti Rawat

    2010-01-01

    Full Text Available Extended-spectrum ß-lactamases (ESBLs are a group of plasmid-mediated, diverse, complex and rapidly evolving enzymes that are posing a major therapeutic challenge today in the treatment of hospitalized and community-based patients. Infections due to ESBL producers range from uncomplicated urinary tract infections to life-threatening sepsis. Derived from the older TEM is derived from Temoniera, a patient from whom the strain was first isolated in Greece. ß-lactamases, these enzymes share the ability to hydrolyze third-generation cephalosporins and aztreonam and yet are inhibited by clavulanic acid. In addition, ESBL-producing organisms exhibit co-resistance to many other classes of antibiotics, resulting in limitation of therapeutic option. Because of inoculum effect and substrate specificity, their detection is also a major challenge. At present, however, organizations such as the Clinical and Laboratory Standards Institute (formerly the National Committee for Clinical Laboratory Standards provide guidelines for the detection of ESBLs in Klebsiella pneumoniae, K. oxytoca, Escherichia coli and Proteus mirabilis. In common to all ESBL-detection methods is the general principle that the activity of extended-spectrum cephalosporins against ESBL-producing organisms will be enhanced by the presence of clavulanic acid. Carbapenems are the treatment of choice for serious infections due to ESBL-producing organisms, yet carbapenem-resistant isolates have recently been reported. ESBLs represent an impressive example of the ability of gram-negative bacteria to develop new antibiotic-resistance mechanisms in the face of the introduction of new antimicrobial agents. Thus there is need for efficient infection-control practices for containment of outbreaks; and intervention strategies, e.g., antibiotic rotation to reduce further selection and spread of these increasingly resistant pathogens.

  8. Surveillance and Control of Antibiotic Resistance in the Mediterranean Region.

    Science.gov (United States)

    Ricciardi, Walter; Giubbini, Gabriele; Laurenti, Patrizia

    2016-01-01

    Antibiotic resistance is one of the most relevant problems in the healthcare: the growth of resistant microorganisms in healthcare settings is a worrisome threat, raising length to stay (LOS), morbidity and mortality in those patients. The importance of the antibiotic resistance and its spread around the world, gave rise to the activation of several surveillance systems, based especially on the collection of laboratory data to local or national level. The objective of this work is to carry out a review of the scientific literature existing on the topic and scientific activities related to surveillance of antibiotic resistance in the countries bordering the Mediterranean Sea. Recent Data from European Centre for Disease Prevention and Control (November 2015) show, for different combinations bacterium-drug, an increase of resistance from North to South and from West to East of Europe. It is of particular concern the phenomenon of resistance carried out by some gram-negative, specifically Klebsiella pneumoniae and Escherichia coli to third-generation cephalosporin, often combined in opposition to fluoroquinolones and aminoglycosides. Is particularly high the incidence of resistance to carbapenems by strains of Enterobacteriaceae (Klebsiella included). The resistance exerted by MRSA (Methicillin-resistant Staphylococcus aureus) continues to be relevant, albeit showing some decline in recent years. The incidence of resistance carried on by Streptococcus pneumoniae is stable and is mainly relevant to macrolides. Finally, a significant increase in recording relatively exercised by Enterococcus faecium to Vancomycin. Detecting, preventing, and controlling antibiotic resistance requires strategic, coordinated, and sustained efforts. It also depends on the engagement of governments, academia, industry, healthcare providers, the general public, and the agricultural community, as well as international partners. Committing to combating antibiotic-resistant microbes does support

  9. SURVEILLANCE AND CONTROL OF ANTIBIOTIC RESISTANCE IN THE MEDITERRANEAN REGION

    Directory of Open Access Journals (Sweden)

    Walter Ricciardi

    2016-07-01

    Full Text Available Antibiotic resistance is one of the most relevant problems in the healthcare: the growth of resistant micro-organisms in healthcare settings is a worrisome threat, raising length to stay (LOS, morbidity and mortality in those patients. The importance of the antibiotic resistance and its spread around the world, gave rise to the activation of several surveillance systems, based especially on the collection of laboratory data to local or national level. The objective of this work is to carry out a review of the scientific literature existing on the topic and scientific activities related to surveillance on antibiotic resistance in countries bordering the Mediterranean Sea. Recent Data from European Centre for Disease Prevention and Control (November 2015 show, for different combinations bacterium-drug, an increase of resistance from North to South and from West to East of Europe; it is particularly worrying the phenomenon of resistance carried out by some gram negative, specifically Klebsiella pneumoniae and Escherichia coli to third-generation cephalosporin, often combined in opposition to fluoroquinolones and amino glycosides. Is particularly relevant the incidence of resistance to carbapenems by strains of Enterobacteriaceae (Klebsiella included. The resistance exerted by MRSA (Methicillin-resistant Staphylococcus aureus continues to be relevant, albeit showing some decline in recent years. The incidence of resistance carried on by Streptococcus pneumoniae is stable and is mainly relevant to macrolides. Finally, a significant increase in recording relatively exercised by Enterococcus faecium to Vancomycin. Detecting, preventing, and controlling antibiotic resistance requires strategic, coordinated, and sustained efforts. It also depends on the engagement of governments, academia, industry, healthcare providers, the general public, and the agricultural community, as well as international partners. Committing to combating antibiotic-resistant

  10. Antibiotic Exposure in a Low-Income Country: Screening Urine Samples for Presence of Antibiotics and Antibiotic Resistance in Coagulase Negative Staphylococcal Contaminants

    DEFF Research Database (Denmark)

    Lerbeck, Anne Mette; Tersbøl, Britt Pinkowski; Styrishave, Bjarne

    2014-01-01

    Development of antimicrobial resistance has been assigned to excess and misuse of antimicrobial agents. Staphylococci are part of the normal flora but are also potential pathogens that have become essentially resistant to many known antibiotics. Resistances in coagulase negative staphylococci (Co......NS) are suggested to evolve due to positive selective pressure following antibiotic treatment. This study investigated the presence of the nine most commonly used antimicrobial agents in human urine from outpatients in two hospitals in Ghana in relation to CoNS resistance. Urine and CoNS were sampled (n5246 and n...... was the most common isolate (75%), followed by S. epidermidis (13%) and S. hominis (6%). S. haemolyticus was also the species displaying the highest resistance prevalence (82%). 69% of the isolated CoNS were multiple drug resistant (§4 antibiotics) and 45% of the CoNS were methicillin resistant. Antimicrobial...

  11. Coagulase-negative staphylococci (CoNS) isolated from ready-to-eat food of animal origin--phenotypic and genotypic antibiotic resistance.

    Science.gov (United States)

    Chajęcka-Wierzchowska, Wioleta; Zadernowska, Anna; Nalepa, Beata; Sierpińska, Magda; Łaniewska-Trokenheim, Łucja

    2015-04-01

    The aim of this work was to study the pheno- and genotypical antimicrobial resistance profile of coagulase negative staphylococci (CoNS) isolated from 146 ready-to-eat food of animal origin (cheeses, cured meats, sausages, smoked fishes). 58 strains were isolated, they were classified as Staphylococcus xylosus (n = 29), Staphylococcus epidermidis (n = 16); Staphylococcus lentus (n = 7); Staphylococcus saprophyticus (n = 4); Staphylococcus hyicus (n = 1) and Staphylococcus simulans (n = 1) by phenotypic and genotypic methods. Isolates were tested for resistance to erythromycin, clindamycin, gentamicin, cefoxitin, norfloxacin, ciprofloxacin, tetracycline, tigecycline, rifampicin, nitrofurantoin, linezolid, trimetoprim, sulphamethoxazole/trimethoprim, chloramphenicol, quinupristin/dalfopristin by the disk diffusion method. PCR was used for the detection of antibiotic resistance genes encoding: methicillin resistance--mecA; macrolide resistance--erm(A), erm(B), erm(C), mrs(A/B); efflux proteins tet(K) and tet(L) and ribosomal protection proteins tet(M). For all the tet(M)-positive isolates the presence of conjugative transposons of the Tn916-Tn1545 family was determined. Most of the isolates were resistant to cefoxitin (41.3%) followed by clindamycin (36.2%), tigecycline (24.1%), rifampicin (17.2%) and erythromycin (13.8%). 32.2% staphylococcal isolates were multidrug resistant (MDR). All methicillin resistant staphylococci harboured mecA gene. Isolates, phenotypic resistant to tetracycline, harboured at least one tetracycline resistance determinant on which tet(M) was most frequent. All of the isolates positive for tet(M) genes were positive for the Tn916-Tn1545 -like integrase family gene. In the erythromycin-resistant isolates, the macrolide resistance genes erm(C) or msr(A/B) were present. Although coagulase-negative staphylococci are not classical food poisoning bacteria, its presence in food could be of public health significance due to the possible spread of

  12. Quorum sensing in Gram-negative bacteria

    Institute of Scientific and Technical Information of China (English)

    WU Hong; SONG Zhijun; Niels HФIBY; Michael GIVSKOV

    2004-01-01

    Bacteria can communicate with each other by means of signal molecules to coordinate the behavior of the entire community,and the mechanism is referred to as quorum sensing (QS).Signal systems enable bacteria to sense the size of their densities by monitoring the concentration of the signal molecules.Among Gram-negative bacteria N-acyl-L-homoserine lactone (acyl-HSL)-dependent quorum sensing systems are particularly widespread.These systems are used to coordinate expression of phenotypes that are fundamental to the interaction of bacteria with each other and with their environment and particularly higher organisms,covering a variety of functions ranging from pathogenic to symbiotic interactions.The detailed knowledge of these bacterial communication systems has opened completely new perspectives for controlling undesired microbial activities.

  13. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater.

    Science.gov (United States)

    McKinney, Chad W; Pruden, Amy

    2012-12-18

    Disinfection of wastewater treatment plant effluent may be an important barrier for limiting the spread of antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs). While ideally disinfection should destroy ARGs, to prevent horizontal gene transfer to downstream bacteria, little is known about the effect of conventional water disinfection technologies on ARGs. This study examined the potential of UV disinfection to damage four ARGs, mec(A), van(A), tet(A), and amp(C), both in extracellular form and present within a host ARBs: methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), Escherichia coli SMS-3-5, and Pseudomonas aeruginosa 01, respectively. An extended amplicon-length quantitative polymerase chain reaction assay was developed to enhance capture of ARG damage events and also to normalize to an equivalent length of target DNA (∼1000 bp) for comparison. It was found that the two Gram-positive ARBs (MRSA and VRE) were more resistant to UV disinfection than the two Gram-negative ARBs (E. coli and P. aeruginosa). The two Gram-positive organisms also possessed smaller total genome sizes, which could also have reduced their susceptibility to UV because of fewer potential pyrimidine dimer targets. An effect of cell type on damage to ARGs was only observed in VRE and P. aeruginosa, the latter potentially because of extracellular polymeric substances. In general, damage of ARGs required much greater UV doses (200-400 mJ/cm² for 3- to 4-log reduction) than ARB inactivation (10-20 mJ/cm² for 4- to 5-log reduction). The proportion of amplifiable ARGs following UV treatment exhibited a strong negative correlation with the number of adjacent thymines (Pearson r 0.85; p disinfection technologies should be explored.

  14. Nationwide German Multicenter Study on Prevalence of Antibiotic Resistance in Staphylococcal Bloodstream Isolates and Comparative In Vitro Activities of Quinupristin-Dalfopristin

    OpenAIRE

    von Eiff, Christof; Reinert, Ralf René; Kresken, Michael; Brauers, Johannes; Hafner, Dieter; Peters, Georg

    2000-01-01

    Antibiotic-resistant gram-positive bacteria have become an increasing problem in the last two decades. In order to evaluate the prevalence of antibiotic resistance in staphylococcal bloodstream isolates in Germany, 2,042 staphylococci collected in 21 tertiary-care hospitals were investigated during a 3-year period (March 1996 to March 1999). Altogether, 1,448 S. aureus isolates and 594 coagulase-negative staphylococci (CoNS) that comprised 13 different species were included. Furthermore, the ...

  15. Correlation between clinical data and antibiotic resistance in coagulase-negative Staphylococcus species isolated from 68 patients with acute post-cataract endophthalmitis.

    Science.gov (United States)

    Chiquet, C; Maurin, M; Altayrac, J; Aptel, F; Boisset, S; Vandenesch, F; Cornut, P L; Romanet, J P; Gain, P; Carricajo, A

    2015-06-01

    Coagulase-negative staphylococci (CNS) cause the majority of post-cataract endophthalmitis, which can lead to anatomical and/or functional loss of the eye. This study reports the antibiotic susceptibilities of CNS isolates associated with acute post-cataract endophthalmitis cases and correlates antibiotic resistance with severity and outcome of infection in these patients. Clinical data (initial ocular examination, final prognosis, antibiotic treatment) and the antibiotic susceptibilities of the isolated CNS strains were obtained from 68 patients with post-surgical endophthalmitis recruited during a 7-year period by the FRench Institutional ENDophthalmitis Study (FRIENDS) group. The CNS strains displayed 100% susceptibility to vancomycin, 70% to fluoroquinolones, 83% to fosfomycin, 46% to imipenem and 18% to piperacillin. The most effective antibiotic combinations were fosfomycin plus a fluoroquinolone and imipenem plus a fluoroquinolone, which were considered adequate in 80% and 58% of patients, respectively. Methicillin resistance was significantly associated with older age (p 0.001), diabetes mellitus (p 0.004), absence of fundus visibility (p 0.06), and poor visual prognosis (p 0.03). Resistance to fluoroquinolones was significantly associated with absence of fundus visibility (p 0.05) and diabetes mellitus (p 0.02). This large prospective study demonstrates that methicillin resistance and, to a lesser extent, fluoroquinolone resistance in CNS strains causing postoperative endophthalmitis are both prevalent in France and associated with a poorer visual prognosis. These results emphasize the need for an effective surveillance of this antibiotic resistance and the development of new diagnostic tools for rapid detection for early optimization of antibiotic therapy in endophthalmitis patients.

  16. NANOTECHNOLOGICAL SOLUTION FOR IMPROVING THE ANTIBIOTIC EFFICIENCY AGAINST BIOFILMS DEVELOPED BY GRAM-NEGATIVE BACTERIAL STRAINS

    Directory of Open Access Journals (Sweden)

    Keng-Shiang Huang

    2013-03-01

    Full Text Available At present bacteria involved in biofilm associated infections display the highest rates of antibiotic resistance among pathogenic bacteria, which made that treatment options to be limited, and determined the researchers to find out alternative treatments to antibiotics. In the recent years nanomaterials gained much attention in medicine, particularly in the fight to bacteria resistant to antibiotics by acting as drug delivery devices. Magnetic iron oxide nanoparticles (MNPs have raised much interest during the recent years due to their potential applications in medicine. In the present study we synthesized MNPd functionalized with antibiotics for the study of their antimicrobial and anti-biofilm properties against Escherichia coli and Pseudomonas aeruginosa, two Gram-negative bacteria, frequently resistant to antibiotics, involved in biofilm infections in order to investigate their capacity to serve as potential drug delivery systems in the fight to these important opportunist pathogens.

  17. The global problem of antibiotic resistance.

    Science.gov (United States)

    Gootz, Thomas D

    2010-01-01

    Amid the recent attention justly focused on the potential problem of microbial sources for weapons of bioterrorism, it is also apparent that human pathogens frequently isolated from infections in patients from community and hospital sources have been growing more resistant to commonly used antibiotics. Much of the growth of multiple-drug-resistant (MDR) bacterial pathogens can be contributed to the overuse of broad-spectrum antimicrobial products. However, an equally troubling and often overlooked component of the problem involves the elegant ways in which pathogenic bacteria continually evolve complex genetic systems for acquiring and regulating an endless array of antibiotic-resistance mechanisms. Efforts to develop new antimicrobials have over the past two decades been woefully behind the rapid evolution of resistance genes developing among both gram-positive and gram-negative pathogens. Several new agents that are best suited for use in the hospital environment have been developed to combat staphylococci resistant to beta-lactam antimicrobials following acquisition of the mecA gene. However, the dramatic spread in the US of the now common community strain of Staphylococcus aureus USA300 has shifted the therapeutic need for new antibiotics useful against MRSA to the community. As the pharmaceutical industry focused on discovering new agents for use against MRSA, hospitals in many parts of the world have seen the emergence of gram-negative pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae that are clinically resistant to almost all available antimicrobials. Such MDR isolates usually contain multiple-resistance determinants, including loss of outer membrane porins via gene inactivation by chromosomally encoded insertion sequences, up-regulation of inate efflux pumps, as well as acquisition of drug-inactivating enzymes whose genes are encoded on self-transmissible plasmids, integrons, and complex transposable elements

  18. Methods for distinguishing gram-positive from gram-negative bacteria.

    OpenAIRE

    Carlone, G M; Valadez, M J; Pickett, M. J.

    1982-01-01

    Lysis by KOH and hydrolysis of L-alanine-4-nitroanilide were compared with the Gram reaction of aerobic, microaerophilic, and anaerobic bacteria. Both tests correlated well with the Gram reaction with nonfermentative bacilli and Bacillus species, whereas they did not correlate with nonsporulating anaerobes. Only campylobacteria were KOH positive and L-alanine-4-nitroanilide and gram negative.

  19. Architecture of Class 1, 2, and 3 Integrons from Gram Negative Bacteria Recovered among Fruits and Vegetables

    Science.gov (United States)

    Jones-Dias, Daniela; Manageiro, Vera; Ferreira, Eugénia; Barreiro, Paula; Vieira, Luís; Moura, Inês B.; Caniça, Manuela

    2016-01-01

    The spread of antibiotic resistant bacteria throughout the food chain constitutes a public health concern. To understand the contribution of fresh produce in shaping antibiotic resistance bacteria and integron prevalence in the food chain, 333 antibiotic resistance Gram negative isolates were collected from organic and conventionally produced fruits (pears, apples, and strawberries) and vegetables (lettuces, tomatoes, and carrots). Although low levels of resistance have been detected, the bacterial genera identified in the assessed fresh produce are often described not only as environmental, but mostly as commensals and opportunistic pathogens. The genomic characterization of integron-harboring isolates revealed a high number of mobile genetic elements and clinically relevant antibiotic resistance genes, of which we highlight the presence of as mcr-1, qnrA1, blaGES−11, mphA, and oqxAB. The study of class 1 (n = 8), class 2 (n = 3) and class 3 (n = 1) integrons, harbored by species such as Morganella morganii, Escherichia coli, Klebsiella pneumoniae, led to the identification of different integron promoters (PcW, PcH1, PcS, and PcWTNG−10) and cassette arrays (containing drfA, aadA, cmlA, estX, sat, and blaGES). In fact, the diverse integron backbones were associated with transposable elements (e.g., Tn402, Tn7, ISCR1, Tn2*, IS26, IS1326, and IS3) that conferred greater mobility. This is also the first appearance of In1258, In1259, and In3-13, which should be monitored to prevent their establishment as successfully dispersed mobile resistance integrons. These results underscore the growing concern about the dissemination of acquired resistance genes by mobile elements in the food chain. PMID:27679611

  20. Architecture of Class 1, 2, and 3 Integrons from Gram Negative Bacteria Recovered among Fruits and Vegetables.

    Science.gov (United States)

    Jones-Dias, Daniela; Manageiro, Vera; Ferreira, Eugénia; Barreiro, Paula; Vieira, Luís; Moura, Inês B; Caniça, Manuela

    2016-01-01

    The spread of antibiotic resistant bacteria throughout the food chain constitutes a public health concern. To understand the contribution of fresh produce in shaping antibiotic resistance bacteria and integron prevalence in the food chain, 333 antibiotic resistance Gram negative isolates were collected from organic and conventionally produced fruits (pears, apples, and strawberries) and vegetables (lettuces, tomatoes, and carrots). Although low levels of resistance have been detected, the bacterial genera identified in the assessed fresh produce are often described not only as environmental, but mostly as commensals and opportunistic pathogens. The genomic characterization of integron-harboring isolates revealed a high number of mobile genetic elements and clinically relevant antibiotic resistance genes, of which we highlight the presence of as mcr-1, qnrA1, bla GES-11, mphA, and oqxAB. The study of class 1 (n = 8), class 2 (n = 3) and class 3 (n = 1) integrons, harbored by species such as Morganella morganii, Escherichia coli, Klebsiella pneumoniae, led to the identification of different integron promoters (PcW, PcH1, PcS, and PcWTNG-10) and cassette arrays (containing drfA, aadA, cmlA, estX, sat, and bla GES). In fact, the diverse integron backbones were associated with transposable elements (e.g., Tn402, Tn7, ISCR1, Tn2 (*), IS26, IS1326, and IS3) that conferred greater mobility. This is also the first appearance of In1258, In1259, and In3-13, which should be monitored to prevent their establishment as successfully dispersed mobile resistance integrons. These results underscore the growing concern about the dissemination of acquired resistance genes by mobile elements in the food chain. PMID:27679611

  1. Veillonella, Firmicutes: Microbes disguised as Gram negatives

    DEFF Research Database (Denmark)

    Vesth, Tammi Camilla; Ozen, Asli; Andersen, Sandra Christine;

    2013-01-01

    The Firmicutes represent a major component of the intestinal microflora. The intestinal Firmicutes are a large, diverse group of organisms, many of which are poorly characterized due to their anaerobic growth requirements. Although most Firmicutes are Gram positive, members of the class Negativic...

  2. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field

    DEFF Research Database (Denmark)

    Berg, J.; Tom-Petersen, A.; Nybroe, O.

    2005-01-01

    Aims: The objective of this study was to determine whether Cu-amendment of field plots affects the frequency of Cu resistance, and antibiotic resistance patterns in indigenous soil bacteria. Methods and Results: Soil bacteria were isolated from untreated and Cu-amended field plots. Cu......-amendment significantly increased the frequency of Cu-resistant isolates. A panel of isolates were characterized by Gram-reaction, amplified ribosomal DNA restriction analysis and resistance profiling against seven antibiotics. More than 95% of the Cu-resistant isolates were Gram-negative. Cu-resistant Gram......-negative isolates had significantly higher incidence of resistance to ampicillin, sulphanilamide and multiple (greater than or equal to3) antibiotics than Cu-sensitive Gram-negative isolates. Furthermore, Cu-resistant Gram-negative isolates from Cu-contaminated plots had significantly higher incidence of resistance...

  3. Effects of reducing beta-lactam antibiotic pressure on intestinal colonization of antibiotic-resistant gram-negative bacteria

    NARCIS (Netherlands)

    S. Nijssen (Saskia); A.C. Fluit (Ad); D.A.M.C. van de Vijver (David); J. Top (Janetta); R.J.L. Willems (Rob); M.J.M. Bonten (Marc)

    2010-01-01

    textabstractBackground: We determined the effects of two antibiotic policies (predominance of either β-lactam antibiotics or fluroquinolones) on acquisition with third-generation cephalosporin-resistant Enterobacteriaceae (CRE) and fluoroquinolone-resistant CRE (FCRE) in two ICUs, with monitoring of

  4. A study of 2 rapid tests to differentiate Gram positive and Gram negative aerobic bacteria

    Directory of Open Access Journals (Sweden)

    P. Subha Mani

    2011-07-01

    Full Text Available 293 aerobic bacterial pathogens were isolated from various clinical samples. All the isolates were subjected to Gram stain (GS, potassium hydroxide (KOH string test, and Vancomycin susceptibility test. All Gram negative bacilli i.e. 100%, showed resistance to Vancomycin and KOH string test positivity (p=0.000. 97.8% of gram positive bacteria were sensitive to Vancomycin and 100% were KOH string test negative (p=0.000. As KOH string test and Vancomycin tests are simple and inexpensive, these can be used in addition to Gram staining, for rapid identification of bacterial isolates.

  5. Evolutionary Trajectories of Beta-Lactamase CTX-M-1 Cluster Enzymes: Predicting Antibiotic Resistance

    OpenAIRE

    Angela Novais; Iñaki Comas; Fernando Baquero; Rafael Cantón; Coque, Teresa M.; Andrés Moya; Fernando González-Candelas; Juan-Carlos Galán

    2010-01-01

    Extended-spectrum beta-lactamases (ESBL) constitute a key antibiotic-resistance mechanism affecting Gram-negative bacteria, and also an excellent model for studying evolution in real time. A shift in the epidemiology of ESBLs is being observed, which is characterized by the explosive diversification and increase in frequency of the CTX-M-type beta-lactamases in different settings. This provides a unique opportunity for studying a protein evolutionary radiation by the sequential acquisition of...

  6. Correction: Membrane-active macromolecules resensitize NDM-1 gram-negative clinical isolates to tetracycline antibiotics.

    Directory of Open Access Journals (Sweden)

    Divakara S S M Uppu

    Full Text Available Gram-negative 'superbugs' such as New Delhi metallo-beta-lactamase-1 (blaNDM-1 producing pathogens have become world's major public health threats. Development of molecular strategies that can rehabilitate the 'old antibiotics' and halt the antibiotic resistance is a promising approach to target them. We report membrane-active macromolecules (MAMsthat restore the antibacterial efficacy (enhancement by >80-1250 fold of tetracycline antibiotics towards blaNDM-1 Klebsiella pneumonia and blaNDM-1 Escherichia coli clinical isolates.Organismic studies showed that bacteria had an increased and faster uptake of tetracyclinein the presence of MAMs which is attributed to the mechanism of re-sensitization. Moreover,bacteria did not develop resistance to MAMs and MAMs stalled the development of bacterial resistance to tetracycline. MAMs displayed membrane-active properties such as dissipation of membrane potential and membrane-permeabilization that enabled higher uptake of tetracycline in bacteria. In-vivo toxicity studies displayed good safety profiles and preliminary in-vivo antibacterial efficacy studies showed that mice treated with MAMs in combination with antibiotics had significantly decreased bacterial burden compared to the untreated mice. This report of re-instating the efficacy of the antibiotics towards blaNDM-1 pathogens using membrane-active molecules advocates their potential for synergistic co-delivery of antibiotics to combat Gram-negative superbugs.

  7. Membrane-active macromolecules resensitize NDM-1 gram-negative clinical isolates to tetracycline antibiotics.

    Directory of Open Access Journals (Sweden)

    Divakara S S M Uppu

    Full Text Available Gram-negative 'superbugs' such as New Delhi metallo-beta-lactamase-1 (blaNDM-1 producing pathogens have become world's major public health threats. Development of molecular strategies that can rehabilitate the 'old antibiotics' and halt the antibiotic resistance is a promising approach to target them. We report membrane-active macromolecules (MAMs that restore the antibacterial efficacy (enhancement by >80-1250 fold of tetracycline antibiotics towards blaNDM-1 Klebsiella pneumonia and blaNDM-1 Escherichia coli clinical isolates. Organismic studies showed that bacteria had an increased and faster uptake of tetracycline in the presence of MAMs which is attributed to the mechanism of re-sensitization. Moreover, bacteria did not develop resistance to MAMs and MAMs stalled the development of bacterial resistance to tetracycline. MAMs displayed membrane-active properties such as dissipation of membrane potential and membrane-permeabilization that enabled higher uptake of tetracycline in bacteria. In-vivo toxicity studies displayed good safety profiles and preliminary in-vivo antibacterial efficacy studies showed that mice treated with MAMs in combination with antibiotics had significantly decreased bacterial burden compared to the untreated mice. This report of re-instating the efficacy of the antibiotics towards blaNDM-1 pathogens using membrane-active molecules advocates their potential for synergistic co-delivery of antibiotics to combat Gram-negative superbugs.

  8. Membrane-Active Macromolecules Resensitize NDM-1 Gram-Negative Clinical Isolates to Tetracycline Antibiotics

    Science.gov (United States)

    Uppu, Divakara S. S. M.; Manjunath, Goutham B.; Yarlagadda, Venkateswarlu; Kaviyil, Jyothi E.; Ravikumar, Raju; Paramanandham, Krishnamoorthy; Shome, Bibek R.; Haldar, Jayanta

    2015-01-01

    Gram-negative ‘superbugs’ such as New Delhi metallo-beta-lactamase-1 (blaNDM-1) producing pathogens have become world’s major public health threats. Development of molecular strategies that can rehabilitate the ‘old antibiotics’ and halt the antibiotic resistance is a promising approach to target them. We report membrane-active macromolecules (MAMs) that restore the antibacterial efficacy (enhancement by >80-1250 fold) of tetracycline antibiotics towards blaNDM-1 Klebsiella pneumonia and blaNDM-1 Escherichia coli clinical isolates. Organismic studies showed that bacteria had an increased and faster uptake of tetracycline in the presence of MAMs which is attributed to the mechanism of re-sensitization. Moreover, bacteria did not develop resistance to MAMs and MAMs stalled the development of bacterial resistance to tetracycline. MAMs displayed membrane-active properties such as dissipation of membrane potential and membrane-permeabilization that enabled higher uptake of tetracycline in bacteria. In-vivo toxicity studies displayed good safety profiles and preliminary in-vivo antibacterial efficacy studies showed that mice treated with MAMs in combination with antibiotics had significantly decreased bacterial burden compared to the untreated mice. This report of re-instating the efficacy of the antibiotics towards blaNDM-1 pathogens using membrane-active molecules advocates their potential for synergistic co-delivery of antibiotics to combat Gram-negative superbugs. PMID:25789871

  9. Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Ximin eZeng

    2013-05-01

    Full Text Available Production of beta-lactamases, the enzymes that degrade beta-lactam antibiotics, is the most widespread and threatening mechanism of antibiotic resistance. In the past, extensive research has focused on the structure, function, and ecology of beta-lactamases while limited efforts were placed on the regulatory mechanisms of beta-lactamases. Recently, increasing evidence demonstrate a direct link between beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Specifically, expression of beta-lactamase could be induced by the liberated murein fragments, such as muropeptides. This article summarizes current knowledge on cell wall metabolism, beta-lactam, and beta lactamases. In particular, we comprehensively reviewed recent studies on the beta-lactamase induction by muropeptides via two major molecular mechanisms (the AmpG-AmpR-AmpC pathway and BlrAB-like two-component regulatory system in Gram-negative bacteria. The signaling pathways for beta-lactamase induction offer a broad array of promising targets for the discovery of new antibacterial drugs used for combination therapies. Therefore, to develop effective mitigation strategies against the widespread beta-lactam resistance, examination of the molecular basis of beta-lactamase induction by cell wall fragment is highly warranted.

  10. Prediction of lipoprotein signal peptides in Gram-negative bacteria

    DEFF Research Database (Denmark)

    Juncker, Agnieszka; Willenbrock, Hanni; Von Heijne, G.;

    2003-01-01

    from Gram-negatives, the HMM was able to identify 92.9% of the lipoproteins included in a Gram-positive test set. A genome search was carried out for 12 Gram-negative genomes and one Gram-positive genome. The results for Escherichia coli K12 were compared with new experimental data, and the predictions...... by the HMM agree well with the experimentally verified lipoproteins. A neural network-based predictor was developed for comparison, and it gave very similar results. LipoP is available as a Web server at www.cbs.dtu.dk/services/LipoP/....

  11. Protamine-induced permeabilization of cell envelopes of gram-positive and gram-negative bacteria

    DEFF Research Database (Denmark)

    Johansen, Charlotte; Verheul, A.; Gram, Lone;

    1997-01-01

    carboxyfluorescein and ATP after 2 to 5 min. Maximum antibacterial activity was reached at alkaline pH and in the absence of divalent cations. The efficient permeabilization of cell envelopes of both gram-positive and gram-negative bacteria suggests that protamine causes a general disruption of the cell envelope...

  12. Antibiotic resistance of microbial contaminations isolated from husbandry animals and foodstuffs

    Directory of Open Access Journals (Sweden)

    Lukáš Hleba

    2014-05-01

    Full Text Available In this paper the antibiotic resistance of microbial contaminations isolated from husbandry animals and foodstuffs were investigated. Microorganisms isolated from animals and foodstuffs were contaminations of selective media as MacConkey agar for Enterobacteriaceae genera and MRS agar for lactobacilli strains. Microorganisms were isolated and puryfied by agar four ways streak plate method. Identification of isolated microorganisms was done by mass-spectrometry method in MALDI-TOF MS Biotyper. For investigation of antibiotic resistance disc diffusion method by EUCAST was used. In this study Gram-negative and Gram-positive bacteria were identified. The most resistant or multi-resistant bacteria as Pseudomonas aeruginosa, Acinetobacter lwoffi, Lysinibacillus sphaericus, Staphylococcus aureus and Staphylococcus epidermis were determined. Other identified microorganisms were resistant to one antibiotic or not at all.

  13. In Vitro Antibacterial Activity of Several Plant Extracts and Oils against Some Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Ayman Al-Mariri

    2014-01-01

    Full Text Available Background: Medicinal plants are considered new resources for producing agents that could act as alternatives to antibiotics in the treatment of antibiotic-resistant bacteria. The aim of this study was to evaluate the antibacterial activity of 28 plant extracts and oils against four Gram-negative bacterial species. Methods: Experimental, in vitro, evaluation of the activities of 28 plant extracts and oils as well as some antibiotics against E. coli O157:H7, Yersinia enterocolitica O9, Proteus spp., and Klebsiella pneumoniae was performed. The activity against 15 isolates of each bacterium was determined by disc diffusion method at a concentration of 5%. Microdilution susceptibility assay was used in order to determine the minimal inhibitory concentrations (MICs of the plant extracts, oils, and antibiotics. Results: Among the evaluated herbs, only Origanum syriacum L., Thymus syriacus Boiss., Syzygium aromaticum L., Juniperus foetidissima Wild, Allium sativum L., Myristica fragrans Houtt, and Cinnamomum zeylanicum L. essential oils and Laurus nobilis L. plant extract showed anti-bacterial activity. The MIC50 values of these products against the Gram-negative organisms varied from 1.5 (Proteus spp. and K. pneumoniae( and 6.25 µl/ml (Yersinia enterocolitica O9 to 12.5 µl/ml (E. coli O:157. Conclusion: Among the studied essential oils, O. syriacum L., T. syriacus Boiss., C. zeylanicum L., and S. aromaticum L. essential oils were the most effective. Moreover, Cephalosporin and Ciprofloxacin were the most effective antibiotics against almost all the studied bacteria. Therefore, O. syriacum L., T. syriacus Boiss., C. zeylanicum L., and S. aromaticum L. could act as bactericidal agents against Gram-negative bacteria.

  14. Recent changes in bacteremia in patients with cancer: a systematic review of epidemiology and antibiotic resistance.

    Science.gov (United States)

    Montassier, E; Batard, E; Gastinne, T; Potel, G; de La Cochetière, M F

    2013-07-01

    Bacteremia remains a major cause of life-threatening complication in patients with cancer. Significant changes in the spectrum of microorganisms isolated from blood culture have been reported in cancer patients over the past years. The aim of our systematic review was to inventory the recent trends in epidemiology and antibiotic resistance of microorganisms causing bacteremia in cancer patients. Data for this review was identified by searches of Medline, Scopus and Cochrane Library for indexed articles and abstracts published in English since 2008. The principal search terms were: "antimicrobial resistance", "bacteremia", "bacterial epidemiology", "bloodstream infection", "cancer patients", "carbapenem resistance", "Escherichia coli resistance", "extended-spectrum β-lactamase producing E. coli", "febrile neutropenia", "fluoroquinolone resistance", "neutropenic cancer patient", "vancomycin-resistant Enterococcus", and "multidrug resistance". Boolean operators (NOT, AND, OR) were also used in succession to narrow and widen the search. Altogether, 27 articles were selected to be analyzed in the review. We found that Gram-negative bacteria were the most frequent pathogen isolated, particularly in studies with minimal use of antibiotic prophylaxis. Another important trend is the extensive emergence of antimicrobial-resistant strains associated with increased risk of morbidity, mortality and cost. This increasing incidence of antibiotic resistance has been reported in Gram-negative bacteria as well as in Gram-positive bacteria. This exhaustive review, reporting the recent findings in epidemiology and antibiotic resistance of bacteremia in cancer patients, highlights the necessity of local continuous surveillance of bacteremia and stringent enforcement of antibiotic stewardship programs in cancer patients. PMID:23354675

  15. Volatile metabolites from some gram-negative bacteria

    DEFF Research Database (Denmark)

    Schöller, Charlotte; Molin, Søren; Wilkins, Ken

    1997-01-01

    A survey of volatile organic compounds (VOCs) excreted from various Gram-negative bacteria (Pseudomonas spp., Serratia spp. and Enterobacter spp.) was carried out. Compounds were identified by gas chromatography-mass spectrometry. VOCs identified included dimethyl disulphide, dimethyl trisulphide...

  16. Investigating the Antibiotic Resistance Problem.

    Science.gov (United States)

    Lawson, Michael; Lawson, Amy L.

    1998-01-01

    Seeks to give teachers useful information on the extent of the problem of antibiotic-resistant bacteria, mechanisms bacteria use to resist antibiotics, the causes of the emergence of antibiotic-resistant organisms, and practices that can prevent or reverse this trend. Contains 19 references. (DDR)

  17. Selection of antibiotic-resistant standard plate count bacteria during water treatment.

    Science.gov (United States)

    Armstrong, J L; Calomiris, J J; Seidler, R J

    1982-08-01

    Standard plate count (SPC) bacteria were isolated from a drinking-water treatment facility and from the river supplying the facility. All isolates were identified and tested for their resistance to six antibiotics to determine if drug-resistant bacteria were selected for as a consequence of water treatment. Among the isolates surviving our test procedures, there was a significant selection (P less than 0.05) of gram-negative SPC organisms resistant to two or more of the test antibiotics. These bacteria were isolated from the flash mix tank, where chlorine, alum, and lime are added to the water. Streptomycin resistance in particular was more frequent in this population as compared with bacteria in the untreated river water (P less than 0.01). SPC bacteria from the clear well, which is a tank holding the finished drinking water at the treatment facility, were also more frequently antibiotic resistant than were the respective river water populations. When 15.8 and 18.2% of the river water bacteria were multiply antibiotic resistant, 57.1 and 43.5%, respectively, of the SPC bacteria in the clear well were multiply antibiotic resistant. Selection for bacteria exhibiting resistance to streptomycin was achieved by chlorinating river water in the laboratory. We concluded that the selective factors operating in the aquatic environment of a water treatment facility can act to increase the proportion of antibiotic-resistant members of the SPC bacterial population in treated drinking water.

  18. Identification and molecular phylogeny of coagulase-negative staphylococci isolates from Minas Frescal cheese in southeastern Brazil: Superantigenic toxin production and antibiotic resistance.

    Science.gov (United States)

    Casaes Nunes, Raquel Soares; Pires de Souza, Camilla; Pereira, Karen Signori; Del Aguila, Eduardo Mere; Flosi Paschoalin, Vânia Margaret

    2016-04-01

    linezolid, which have therapeutic importance in both human and veterinarian medicines. The risk of staphylococci food poisoning by the consumption of improperly manufactured Minas Frescal was emphasized, in addition to the possibility of these food matrices being a reservoir for antibiotic resistance. More effective control measures concerning the presence and typing of staphylococci in raw milk and dairy derivatives should be included to prevent the spread of pathogenic strains. PMID:26830747

  19. Short communication: The role of autoinducer 2 (AI-2) on antibiotic resistance regulation in an Escherichia coli strain isolated from a dairy cow with mastitis.

    Science.gov (United States)

    Xue, Ting; Yu, Lumin; Shang, Fei; Li, Wenchang; Zhang, Ming; Ni, Jingtian; Chen, Xiaolin

    2016-06-01

    Extended spectrum β-lactamase (ESBL)-positive Escherichia coli is a major etiological organism responsible for bovine mastitis. The autoinducer 2 (AI-2) quorum sensing system is widely present in many species of gram-negative and gram-positive bacteria and has been proposed to be involved in interspecies communication. In E. coli model strains, the functional mechanisms of AI-2 have been well studied; however, in clinical antibiotic-resistant E. coli strains, whether AI-2 affects the expression of antibiotic resistance genes has not been reported. In this study, we report that exogenous AI-2 increased the antibiotic resistance of a clinical E. coli strain isolated from a dairy cow with mastitis by upregulating the expression of TEM-type enzyme in an LsrR (LuxS regulated repressor)-dependent manner.

  20. Short communication: The role of autoinducer 2 (AI-2) on antibiotic resistance regulation in an Escherichia coli strain isolated from a dairy cow with mastitis.

    Science.gov (United States)

    Xue, Ting; Yu, Lumin; Shang, Fei; Li, Wenchang; Zhang, Ming; Ni, Jingtian; Chen, Xiaolin

    2016-06-01

    Extended spectrum β-lactamase (ESBL)-positive Escherichia coli is a major etiological organism responsible for bovine mastitis. The autoinducer 2 (AI-2) quorum sensing system is widely present in many species of gram-negative and gram-positive bacteria and has been proposed to be involved in interspecies communication. In E. coli model strains, the functional mechanisms of AI-2 have been well studied; however, in clinical antibiotic-resistant E. coli strains, whether AI-2 affects the expression of antibiotic resistance genes has not been reported. In this study, we report that exogenous AI-2 increased the antibiotic resistance of a clinical E. coli strain isolated from a dairy cow with mastitis by upregulating the expression of TEM-type enzyme in an LsrR (LuxS regulated repressor)-dependent manner. PMID:27060825

  1. Antibiotic resistance in wild birds.

    Science.gov (United States)

    Bonnedahl, Jonas; Järhult, Josef D

    2014-05-01

    Wild birds have been postulated as sentinels, reservoirs, and potential spreaders of antibiotic resistance. Antibiotic-resistant bacteria have been isolated from a multitude of wild bird species. Several studies strongly indicate transmission of resistant bacteria from human rest products to wild birds. There is evidence suggesting that wild birds can spread resistant bacteria through migration and that resistant bacteria can be transmitted from birds to humans and vice versa. Through further studies of the spatial and temporal distribution of resistant bacteria in wild birds, we can better assess their role and thereby help to mitigate the increasing global problem of antibiotic resistance. PMID:24697355

  2. New Transposon Tools Tailored for Metabolic Engineering of Gram-Negative Microbial Cell Factories

    Science.gov (United States)

    Martínez-García, Esteban; Aparicio, Tomás; de Lorenzo, Víctor; Nikel, Pablo I.

    2014-01-01

    Re-programming microorganisms to modify their existing functions and/or to bestow bacteria with entirely new-to-Nature tasks have largely relied so far on specialized molecular biology tools. Such endeavors are not only relevant in the burgeoning metabolic engineering arena but also instrumental to explore the functioning of complex regulatory networks from a fundamental point of view. À la carte modification of bacterial genomes thus calls for novel tools to make genetic manipulations easier. We propose the use of a series of new broad-host-range mini-Tn5-vectors, termed pBAMDs, for the delivery of gene(s) into the chromosome of Gram-negative bacteria and for generating saturated mutagenesis libraries in gene function studies. These delivery vectors endow the user with the possibility of easy cloning and subsequent insertion of functional cargoes with three different antibiotic-resistance markers (kanamycin, streptomycin, and gentamicin). After validating the pBAMD vectors in the environmental bacterium Pseudomonas putida KT2440, their use was also illustrated by inserting the entire poly(3-hydroxybutyrate) (PHB) synthesis pathway from Cupriavidus necator in the chromosome of a phosphotransacetylase mutant of Escherichia coli. PHB is a completely biodegradable polyester with a number of industrial applications that make it attractive as a potential replacement of oil-based plastics. The non-selective nature of chromosomal insertions of the biosynthetic genes was evidenced by a large landscape of PHB synthesis levels in independent clones. One clone was selected and further characterized as a microbial cell factory for PHB accumulation, and it achieved polymer accumulation levels comparable to those of a plasmid-bearing recombinant. Taken together, our results demonstrate that the new mini-Tn5-vectors can be used to confer interesting phenotypes in Gram-negative bacteria that would be very difficult to engineer through direct manipulation of the structural genes

  3. New transposon tools tailored for metabolic engineering of Gram-negative microbial cell factories

    Directory of Open Access Journals (Sweden)

    Esteban eMartínez-García

    2014-10-01

    Full Text Available Re-programming microorganisms to modify their existing functions and/or to bestow bacteria with entirely new-to-Nature tasks have largely relied so far on specialized molecular biology tools. Such endeavors are not only relevant in the burgeoning metabolic engineering arena, but also instrumental to explore the functioning of complex regulatory networks from a fundamental point of view. À la carte modification of bacterial genomes thus calls for novel tools to make genetic manipulations easier. We propose the use of a series of new broad-host-range mini-Tn5 vectors, termed pBAMDs, for the delivery of gene(s into the chromosome of Gram-negative bacteria and for generating saturated mutagenesis libraries in gene function studies. These delivery vectors endow the user with the possibility of easy cloning and subsequent insertion of functional cargoes with three different antibiotic resistance markers (kanamycin, streptomycin, and gentamicin. After validating the pBAMD vectors in the environmental bacterium Pseudomonas putida KT2440, their use was also illustrated by inserting the entire poly(3-hydroxybutyrate (PHB synthesis pathway from Cupriavidus necator in the chromosome of a phosphotransacetylase mutant of Escherichia coli. PHB is a completely biodegradable polyester with a number of industrial applications that make it attractive as a potential replacement of oil-based plastics. The non-selective nature of chromosomal insertions of the biosynthetic genes was evidenced by a large landscape of PHB synthesis levels in independent clones. One clone was selected and further characterized as a microbial cell factory for PHB accumulation, and it achieved polymer accumulation levels comparable to those of a plasmid-bearing recombinant. Taken together, our results demonstrate that the new mini-Tn5 vectors can be used to confer interesting phenotypes in Gram-negative bacteria that would be very difficult to engineer through direct manipulation of the

  4. Prognostic factors and monomicrobial necrotizing fasciitis: gram-positive versus gram-negative pathogens

    Directory of Open Access Journals (Sweden)

    Hsu Wei-Hsiu

    2011-01-01

    Full Text Available Abstract Background Monomicrobial necrotizing fasciitis is rapidly progressive and life-threatening. This study was undertaken to ascertain whether the clinical presentation and outcome for patients with this disease differ for those infected with a gram-positive as compared to gram-negative pathogen. Methods Forty-six patients with monomicrobial necrotizing fasciitis were examined retrospectively from November 2002 to January 2008. All patients received adequate broad-spectrum antibiotic therapy, aggressive resuscitation, prompt radical debridement and adjuvant hyperbaric oxygen therapy. Eleven patients were infected with a gram-positive pathogen (Group 1 and 35 patients with a gram-negative pathogen (Group 2. Results Group 2 was characterized by a higher incidence of hemorrhagic bullae and septic shock, higher APACHE II scores at 24 h post-admission, a higher rate of thrombocytopenia, and a higher prevalence of chronic liver dysfunction. Gouty arthritis was more prevalent in Group 1. For non-survivors, the incidences of chronic liver dysfunction, chronic renal failure and thrombocytopenia were higher in comparison with those for survivors. Lower level of serum albumin was also demonstrated in the non-survivors as compared to those in survivors. Conclusions Pre-existing chronic liver dysfunction, chronic renal failure, thrombocytopenia and hypoalbuminemia, and post-operative dependence on mechanical ventilation represent poor prognostic factors in monomicrobial necrotizing fasciitis. Patients with gram-negative monobacterial necrotizing fasciitis present with more fulminant sepsis.

  5. Antibiotic susceptibility testing of the Gram-negative bacteria based on flow cytometry

    Directory of Open Access Journals (Sweden)

    Claude Saint-Ruf

    2016-07-01

    Full Text Available Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH, which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: β-lactams, aminoglycosides and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3, which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility.

  6. Detection of AmpC β lactamases in gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Gunjan Gupta

    2014-01-01

    Full Text Available Amp C β-lactamases are clinically important cephalosporinases encoded on the chromosomes of many Enterobacteriaceae and a few other organisms, where they mediate resistance to cephalothin, cefazolin, cefoxitin, most penicillins, and β-lactamase inhibitor/β-lactam combinations. The increase in antibiotic resistance among Gram-negative bacteria is a notable example of how bacteria can procure, maintain and express new genetic information that can confer resistance to one or several antibiotics. Detection of organisms producing these enzymes can be difficult, because their presence does not always produce a resistant phenotype on conventional disc diffusion or automated susceptibility testing methods. These enzymes are often associated with potentially fatal laboratory reports of false susceptibility to β-lactams phenotypically. With the world-wide increase in the occurrence, types and rate of dissemination of these enzymes, their early detection is critical. AmpC β-lactamases show tremendous variation in geographic distribution. Thus, their accurate detection and characterization are important from epidemiological, clinical, laboratory, and infection control point of view. This document describes the methods for detection for AmpC β-lactamases, which can be adopted by routine diagnostic laboratories.

  7. Antibiotic Susceptibility Testing of the Gram-Negative Bacteria Based on Flow Cytometry.

    Science.gov (United States)

    Saint-Ruf, Claude; Crussard, Steve; Franceschi, Christine; Orenga, Sylvain; Ouattara, Jasmine; Ramjeet, Mahendrasingh; Surre, Jérémy; Matic, Ivan

    2016-01-01

    Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH), which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: β-lactams, aminoglycosides, and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3), which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility.

  8. Resistance to antibiotics in Gram-negative bacteria isolated from broiler carcasses

    Directory of Open Access Journals (Sweden)

    Moreira M.A.S.

    2002-01-01

    Full Text Available One hundred and ninety-seven isolates of Gram-negative bacteria, comprising 10 genera, were isolated from poultry carcasses at a processing plant in order to investigate resistance to low levels of antibiotics. The samples were taken just after evisceration and before inspection. Most of the isolates were of Samonella and Escherichia. Other genera present were Enterobacter, Serratia, Klebsiella, Kluyvera, Erwinia, Citrobacter, Pseudomonas and Aeromonas. Distinct profiles of antibiotic resistance were detected. Resistance to more than two antibiotics predominated and spanned several classes of antibiotics. Salmonellae and escherichiae were mainly resistant to the aminoglycosides, followed by tetracycline, nitrofuran, sulpha, macrolide, chloramphenicol, quinolones and beta-lactams. Most isolates were sensitive to 30mug/ml olaquindox, the growth promoter in use at the time of sampling. However, many were resistant to a level of 10mug/ml and 13mug/ml olaquindox, levels present in the gut due to the dilution in the feed. The results suggest a possible role of low level administration of antibiotics to broilers in selecting multi-resistant bacteria in vivo.

  9. Antibiotic Susceptibility Testing of the Gram-Negative Bacteria Based on Flow Cytometry.

    Science.gov (United States)

    Saint-Ruf, Claude; Crussard, Steve; Franceschi, Christine; Orenga, Sylvain; Ouattara, Jasmine; Ramjeet, Mahendrasingh; Surre, Jérémy; Matic, Ivan

    2016-01-01

    Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH), which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: β-lactams, aminoglycosides, and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3), which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility. PMID:27507962

  10. Regulatory mechanisms differ in UMP kinases from gram-negative and gram-positive bacteria.

    Science.gov (United States)

    Evrin, Cécile; Straut, Monica; Slavova-Azmanova, Neli; Bucurenci, Nadia; Onu, Adrian; Assairi, Liliane; Ionescu, Mihaela; Palibroda, Nicolae; Bârzu, Octavian; Gilles, Anne-Marie

    2007-03-01

    In this work, we examined the regulation by GTP and UTP of the UMP kinases from eight bacterial species. The enzyme from Gram-positive organisms exhibited cooperative kinetics with ATP as substrate. GTP decreased this cooperativity and increased the affinity for ATP. UTP had the opposite effect, as it decreased the enzyme affinity for ATP. The nucleotide analogs 5-bromo-UTP and 5-iodo-UTP were 5-10 times stronger inhibitors than the parent compound. On the other hand, UMP kinases from the Gram-negative organisms did not show cooperativity in substrate binding and catalysis. Activation by GTP resulted mainly from the reversal of inhibition caused by excess UMP, and inhibition by UTP was accompanied by a strong increase in the apparent K(m) for UMP. Altogether, these results indicate that, depending on the bacteria considered, GTP and UTP interact with different enzyme recognition sites. In Gram-positive bacteria, GTP and UTP bind to a single site or largely overlapping sites, shifting the T R equilibrium to either the R or T form, a scenario corresponding to almost all regulatory proteins, commonly called K systems. In Gram-negative organisms, the GTP-binding site corresponds to the unique allosteric site of the Gram-positive bacteria. In contrast, UTP interacts cooperatively with a site that overlaps the catalytic center, i.e. the UMP-binding site and part of the ATP-binding site. These characteristics make UTP an original regulator of UMP kinases from Gram-negative organisms, beyond the common scheme of allosteric control.

  11. Genome Sequences of Nine Gram-Negative Vaginal Bacterial Isolates

    Science.gov (United States)

    Deitzler, Grace E.; Ruiz, Maria J.; Lu, Wendy; Weimer, Cory; Park, SoEun; Robinson, Lloyd S.; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka

    2016-01-01

    The vagina is home to a wide variety of bacteria that have great potential to impact human health. Here, we announce reference strains (now available through BEI Resources) and draft genome sequences for 9 Gram-negative vaginal isolates from the taxa Citrobacter, Klebsiella, Fusobacterium, Proteus, and Prevotella. PMID:27688330

  12. Kinase Activity Profiling of Gram-Negative Pneumonia

    NARCIS (Netherlands)

    Hoogendijk, Arie J.; Diks, Sander H.; Peppelenbosch, Maikel P.; van der Poll, Tom; Wieland, Catharina W.

    2011-01-01

    Pneumonia is a severe disease with high morbidity and mortality. A major causative pathogen is the Gram-negative bacterium Klebsiella (K.) pneumoniae Kinases play an integral role in the transduction of intracellular signaling cascades and regulate a diverse array of biological processes essential t

  13. Kinase activity profiling of gram-negative pneumonia

    NARCIS (Netherlands)

    A.J. Hoogendijk (Arie); S.H. Diks (Sander); M.P. Peppelenbosch (Maikel); T. van der Poll (Tom); C.W. Wieland (Catharina )

    2011-01-01

    textabstractPneumonia is a severe disease with high morbidity and mortality. A major causative pathogen is the Gram-negative bacterium Klebsiella (K.) pneumoniae. Kinases play an integral role in the transduction of intracellular signaling cascades and regulate a diverse array of biological processe

  14. Kinase activity profiling of gram-negative pneumonia

    NARCIS (Netherlands)

    A.J. Hoogendijk; S.H. Diks; M.P. Peppelenbosch; T. van der Poll; C.W. Wieland

    2011-01-01

    Pneumonia is a severe disease with high morbidity and mortality. A major causative pathogen is the Gram-negative bacterium Klebsiella (K.) pneumoniae. Kinases play an integral role in the transduction of intracellular signaling cascades and regulate a diverse array of biological processes essential

  15. Genome Sequences of Nine Gram-Negative Vaginal Bacterial Isolates.

    Science.gov (United States)

    Deitzler, Grace E; Ruiz, Maria J; Lu, Wendy; Weimer, Cory; Park, SoEun; Robinson, Lloyd S; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka; Lewis, Warren G; Lewis, Amanda L

    2016-01-01

    The vagina is home to a wide variety of bacteria that have great potential to impact human health. Here, we announce reference strains (now available through BEI Resources) and draft genome sequences for 9 Gram-negative vaginal isolates from the taxa Citrobacter, Klebsiella, Fusobacterium, Proteus, and Prevotella. PMID:27688330

  16. Raman Spectroscopy of Xylitol Uptake and Metabolism in Gram-Positive and Gram-Negative Bacteria▿

    OpenAIRE

    Palchaudhuri, Sunil; Rehse, Steven J.; Hamasha, Khozima; Syed, Talha; Kurtovic, Eldar; Kurtovic, Emir; Stenger, James

    2010-01-01

    Visible-wavelength Raman spectroscopy was used to investigate the uptake and metabolism of the five-carbon sugar alcohol xylitol by Gram-positive viridans group streptococcus and the two extensively used strains of Gram-negative Escherichia coli, E. coli C and E. coli K-12. E. coli C, but not E. coli K-12, contains a complete xylitol operon, and the viridans group streptococcus contains an incomplete xylitol operon used to metabolize the xylitol. Raman spectra from xylitol-exposed viridans gr...

  17. DNA Is Packaged within Membrane-Derived Vesicles of Gram-Negative but Not Gram-Positive Bacteria

    OpenAIRE

    Dorward, David W.; Garon, Claude F.

    1990-01-01

    Recently, DNA packaged within nuclease-resistant membrane vesicles of Neisseria gonorrhoeae and Borrelia burgdorferi was described. This study assayed 18 species of gram-negative and gram-positive eubacteria for nuclease-protected DNA associated with extracellular membrane vesicles. Vesicles from only the gram-negative bacteria contained nuclease-protected linear or supercoiled DNAs or both.

  18. Bioengineered nisin A derivatives with enhanced activity against both Gram positive and Gram negative pathogens.

    Directory of Open Access Journals (Sweden)

    Des Field

    Full Text Available Nisin is a bacteriocin widely utilized in more than 50 countries as a safe and natural antibacterial food preservative. It is the most extensively studied bacteriocin, having undergone decades of bioengineering with a view to improving function and physicochemical properties. The discovery of novel nisin variants with enhanced activity against clinical and foodborne pathogens has recently been described. We screened a randomized bank of nisin A producers and identified a variant with a serine to glycine change at position 29 (S29G, with enhanced efficacy against S. aureus SA113. Using a site-saturation mutagenesis approach we generated three more derivatives (S29A, S29D and S29E with enhanced activity against a range of Gram positive drug resistant clinical, veterinary and food pathogens. In addition, a number of the nisin S29 derivatives displayed superior antimicrobial activity to nisin A when assessed against a range of Gram negative food-associated pathogens, including E. coli, Salmonella enterica serovar Typhimurium and Cronobacter sakazakii. This is the first report of derivatives of nisin, or indeed any lantibiotic, with enhanced antimicrobial activity against both Gram positive and Gram negative bacteria.

  19. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tamboli, Dhawal P.; Lee, Dae Sung, E-mail: daesung@knu.ac.kr

    2013-09-15

    Highlights: • Bacterial extracelluar enzymes stabilized the silver nanoparticles (AgNPs). • AgNPs formation was characterized by analytical techniques such as UV–vis, TEM, and FTIR. • AgNPs showed obvious antimicrobial activity against both gram positive and gram negative microorganisms. • A mechanism of AgNPs’ antimicrobial activity was proposed. -- Abstract: The development of eco-friendly and reliable processes for the synthesis of nanoparticles has attracted considerable interest in nanotechnology. In this study, an extracellular enzyme system of a newly isolated microorganism, Exiguobacterium sp. KNU1, was used for the reduction of AgNO{sub 3} solutions to silver nanoparticles (AgNPs). The extracellularly biosynthesized AgNPs were characterized by UV–vis spectroscopy, Fourier transform infra-red spectroscopy and transmission electron microscopy. The AgNPs were approximately 30 nm (range 5–50 nm) in size, well-dispersed and spherical. The AgNPs were evaluated for their antimicrobial effects on different gram negative and gram positive bacteria using the minimum inhibitory concentration method. Reasonable antimicrobial activity against Salmonella typhimurium, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus was observed. The morphological changes occurred in all the microorganisms tested. In particular, E. coli exhibited DNA fragmentation after being treated with the AgNPs. Finally, the mechanism for their bactericidal activity was proposed according to the results of scanning electron microscopy and single cell gel electrophoresis.

  20. ENZYMATIC ACTIVITY AND ANTIBIOTIC RESISTANCE PROFILE OF LACTOBACILLUS PARACASEI SSP. PARACASEI-1 ISOLATED FROM REGIONAL YOGURTS OF BANGLADESH

    Directory of Open Access Journals (Sweden)

    Ummay Honi

    2013-12-01

    Full Text Available Lactobacillus paracasei ssp. paracasei-1 was identified from traditional yogurts of Khulna region, Bangladesh and its enzyme and antibiotic resistance profiles were determined. A commercially available API Zym kit was employed to determine the activities of 19 different enzymes. We found that L. paracasei ssp. paracasei-1 showed strong activities for several enzymes, viz. leucine arylamidase, valine arylamidase, napthol-AS-BI-phosphohydrolase, β-galactosidase, α –Glucosidase, N-Acetyl- β- glucosaminidase while activities for other enzymes were absent. Antibiotic resistance profile was assessed by minimum inhibitory concentration (MIC test for 61 major antibiotics and 4 antifungal agents obtained from commercial sources in MRS Agar media. The strain generally showed resistance to gram negative spectrum antibiotic while it showed susceptibility towards β-lactam antibiotic to gram positive spectrum antibiotic. The findings provide the therapeutic basis of using L. paracasei ssp. paracasei-1 in finished food products.

  1. Gram-negative bacteraemia; a multi-centre prospective evaluation of empiric antibiotic therapy and outcome in English acute hospitals.

    Science.gov (United States)

    Fitzpatrick, J M; Biswas, J S; Edgeworth, J D; Islam, J; Jenkins, N; Judge, R; Lavery, A J; Melzer, M; Morris-Jones, S; Nsutebu, E F; Peters, J; Pillay, D G; Pink, F; Price, J R; Scarborough, M; Thwaites, G E; Tilley, R; Walker, A S; Llewelyn, M J

    2016-03-01

    Increasing antibiotic resistance makes choosing antibiotics for suspected Gram-negative infection challenging. This study set out to identify key determinants of mortality among patients with Gram-negative bacteraemia, focusing particularly on the importance of appropriate empiric antibiotic treatment. We conducted a prospective observational study of 679 unselected adults with Gram-negative bacteraemia at ten acute english hospitals between October 2013 and March 2014. Appropriate empiric antibiotic treatment was defined as intravenous treatment on the day of blood culture collection with an antibiotic to which the cultured organism was sensitive in vitro. Mortality analyses were adjusted for patient demographics, co-morbidities and illness severity. The majority of bacteraemias were community-onset (70%); most were caused by Escherichia coli (65%), Klebsiella spp. (15%) or Pseudomonas spp. (7%). Main foci of infection were urinary tract (51%), abdomen/biliary tract (20%) and lower respiratory tract (14%). The main antibiotics used were co-amoxiclav (32%) and piperacillin-tazobactam (30%) with 34% receiving combination therapy (predominantly aminoglycosides). Empiric treatment was inappropriate in 34%. All-cause mortality was 8% at 7 days and 15% at 30 days. Independent predictors of mortality (p older age, greater burden of co-morbid disease, severity of illness at presentation and inflammatory response. Inappropriate empiric antibiotic therapy was not associated with mortality at either time-point (adjusted OR 0.82; 95% CI 0.35-1.94 and adjusted OR 0.92; 95% CI 0.50-1.66, respectively). Although our study does not exclude an impact of empiric antibiotic choice on survival in Gram-negative bacteraemia, outcome is determined primarily by patient and disease factors. PMID:26577143

  2. Evaluation of post-antibiotic effect in Gram-negative and Gram-positive bacteria

    Directory of Open Access Journals (Sweden)

    Elisa Tavella

    2008-03-01

    Full Text Available Although the postantibiotic effect (PAE is a well recognized phenomenon, the mechanism by which it is induced has not fully elucidated yet. It has been suggested that PAE is the time required by bacteria to synthesize proteins or mRNA characterized by a short half-life that are consumed during antibiotic treatment.This phenomenon is widely studied on Gram-positive cocci and Gram-negative rods, while information about Gram-positive rods and Gram-negative cocci are scanty.To gain new insights on the PAE, this study was addressed to evaluated the time required by Moraxella catarrhalis and Lactobacillus planctarum to resume their physiological growth rate after exposure to various antibiotics. Methods PAE was estimated in accordance with the method of Craig and Gudmundsson using the following drugs: penicillin, piperacillin-tazobactam, cefalotin, ceftazidime, imipenem, ciprofloxacin, gentamycin and azithromycin. Log-phase bacteria were exposed to drug at a concentration corresponding to 4 times the MIC value for 1h.The drug was inactivated by 1:1000 dilution. Bacterial counts were determined at time zero, immediately after drug dilution, and at each hour after removal for 6 - 7h by a pour-plate technique. The PAE was defined as the difference in time required by test and control cultures to increase by 1 log in CFU number. Results All drugs tested induced a PAE on the strains studied. M. catarrhalis registered PAE values ranging between 0,5 (gentamycin and 2 (ceftazidime, imipenem and azithromycin.With respect to L. plantarum a PAE between 0,8 (cefalotin and 3 hours (ciprofloxacin were detected. Conclusion. These findings demonstrated that all the drugs tested were able to induce a PAE on the strains tested.This observation differs from that observed on Gram-negative rods characterised by negative PAE values induced by penicillins and cephalosporins.This results might reflect the different target of these compounds on these Gram-positive rods or the

  3. Strategies to Minimize Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Sang Hee Lee

    2013-09-01

    Full Text Available Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs and various data such as pharmacokinetic (PK and pharmacodynamic (PD properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST, clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care, the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing. The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics.

  4. Bovine mastitis caused by gram negative bacteria in Mosul

    Directory of Open Access Journals (Sweden)

    S. Y. A. Al-Dabbagh

    2012-01-01

    Full Text Available A total of 90 milk samples were collected from cows with clinical and subclinical mastitis from different areas in Mosul city, in a period from October 2009 to June 2010, for the detection of gram negative bacteriological causative agents. The bacteria were identified using morphological, cultural and biochemical characteristics. thirty tow (35.3% gram negative bacterial isolates were obtained from the total count which included 14 isolates (15.5% for Escherichia coli, 7 isolates (7.7% for Klebsiella spp, 4 isolates (4.4% for Pseudomonas aeruginosa, 3 isolates (3.3% for Enterobacter aerogenes ,2 isolates for Serratia marcescens and one isolates (1.1% for each of Aeromonas hydrophila and Pasteurella multocida. Results of antibiotic sensitivity test indicated that most of these isolates were sensitive to Ciprofloxacin following by Gentamycin and Cotrimoxazole, while most of these organisms were resistant to Ampicillin, the isolates showed different percentages of sensitivity to Doxycycline, Tetracycline, Neomycin and Chloramphenicol.

  5. Treatment of Gram-negative pneumonia in the critical care setting: is the beta-lactam antibiotic backbone broken beyond repair?

    Science.gov (United States)

    Bassetti, Matteo; Welte, Tobias; Wunderink, Richard G

    2016-01-01

    Beta-lactam antibiotics form the backbone of treatment for Gram-negative pneumonia in mechanically ventilated patients in the intensive care unit. However, this beta-lactam antibiotic backbone is increasingly under pressure from emerging resistance across all geographical regions, and health-care professionals in many countries are rapidly running out of effective treatment options. Even in regions that currently have only low levels of resistance, the effects of globalization are likely to increase local pressures on the beta-lactam antibiotic backbone in the near future. Therefore, clinicians are increasingly faced with a difficult balancing act: the need to prescribe adequate and appropriate antibiotic therapy while reducing the emergence of resistance and the overuse of antibiotics. In this review, we explore the burden of Gram-negative pneumonia in the critical care setting and the pressure that antibiotic resistance places on current empiric therapy regimens (and the beta-lactam antibiotic backbone) in this patient population. New treatment approaches, such as systemic and inhaled antibiotic alternatives, are on the horizon and are likely to help tackle the rising levels of beta-lactam antibiotic resistance. In the meantime, it is imperative that the beta-lactam antibiotic backbone of currently available antibiotics be supported through stringent antibiotic stewardship programs. PMID:26821535

  6. Poplar Lignin Decomposition by Gram-Negative Aerobic Bacteria

    OpenAIRE

    Odier, E.; Janin, G.; Monties, B

    1981-01-01

    Eleven gram-negative aerobic bacteria (Pseudomonadaceae and Neisseriaceae) out of 122 soil isolates were selected for their ability to assimilate poplar dioxane lignin without a cosubstrate. Dioxane lignin and milled wood lignin degradation rates ranged between 20 and 40% of initial content after 7 days in mineral medium, as determined by a loss of absorbance at 280 nm; 10 strains could degrade in situ lignin, as evidenced by the decrease of the acetyl bromide lignin content of microtome wood...

  7. The talking language in some major Gram-negative bacteria.

    Science.gov (United States)

    Banerjee, Goutam; Ray, Arun Kumar

    2016-08-01

    Cell-cell interaction or quorum sensing (QS) is a vital biochemical/physiological process in bacteria that is required for various physiological functions, including nutrient uptake, competence development, biofilm formation, sporulation, as well as for toxin secretion. In natural environment, bacteria live in close association with other bacteria and interaction among them is crucial for survival. The QS-regulated gene expression in bacteria is a cell density-dependent process and the initiation process depends on the threshold level of the signaling molecule, N-acyl-homoserine lactone (AHL). The present review summarizes the QS signal and its respective circuit in Gram-negative bacteria. Most of the human pathogens belong to Gram-negative group, and only a few of them cause disease through QS system. Thus, inhibition of pathogenic bacteria is important. Use of antibiotics creates a selective pressure (antibiotics act as natural selection factor to promote one group of bacteria over another group) for emerging multidrug-resistant bacteria and will not be suitable for long-term use. The alternative process of inhibition of QS in bacteria using different natural and synthetic molecules is called quorum quenching. However, in the long run, QS inhibitors or blockers may also develop resistance, but obviously it will solve some sort of problems. In this review, we also have stated the mode of action of quorum-quenching molecule. The understanding of QS network in pathogenic Gram-negative bacteria will help us to solve many health-related problems in future. PMID:27062655

  8. In vitro activity of tigecycline against 313 Gram-positive and Gram-negative clinical isolates

    Directory of Open Access Journals (Sweden)

    Elisabetta Maioli

    2010-03-01

    Full Text Available Objectives. In this study the in vitro activity of tigecycline, member of a new class of antimicrobial agents, the glycylcyclines, was evaluated against clinical isolates collected in Italy. Study Design. A total of 313 clinical pathogens were collected and identified in our Institution during 2007-2008. Minimum inhibitory concentrations (MICs of the antimicrobial agents were determined by the CLSI (2007 recommended broth microdilution method. Results. Globally 205 Gram-negative and 108 Gram-positive pathogens were evaluated.Tigecycline demonstrated excellent inhibitory activity against Acinetobacter spp., H. influenzae, E. coli, Enterococcus spp., S. aureus, S. agalactiae and S. pneumoniae with MIC90 ≤1mg/l. Conclusion. Tigecycline exhibited potent in vitro antibacterial activity (comparable to or greater than most commonly employed antimicrobials against both Gram-positive and negative clinical pathogens.These data suggest that tigecycline, with an expanded broad-spectrum antimicrobial activity, may be an effective empiric therapeutic option for the treatment of serious infections caused by clinically relevant pathogens.

  9. An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue

    OpenAIRE

    Becerra, Sandra C.; Roy, Daniel C.; Sanchez, Carlos J.; Christy, Robert J.; Burmeister, David M.

    2016-01-01

    Background Bacterial infections are a common clinical problem in both acute and chronic wounds. With growing concerns over antibiotic resistance, treatment of bacterial infections should only occur after positive diagnosis. Currently, diagnosis is delayed due to lengthy culturing methods which may also fail to identify the presence of bacteria. While newer costly bacterial identification methods are being explored, a simple and inexpensive diagnostic tool would aid in immediate and accurate t...

  10. Liposomal nanoformulations of rhodamine for targeted photodynamic inactivation of multidrug resistant gram negative bacteria in sewage treatment plant.

    Science.gov (United States)

    Vimaladevi, Mohan; Divya, Kurunchi Chellapathi; Girigoswami, Agnishwar

    2016-09-01

    The antimicrobial photodynamic therapy is an alternative method for killing bacterial cells in view of the rising problem of antibiotic resistance microorganisms. The present study examined the effect of a water soluble photosensitizer, Rhodamine 6G (R6G) in stealth liposomes on multidrug resistant Pseudomonas aeruginosa in the presence of visible light. Liposomes were prepared with cholesterol and phospholipids that extracted from hen eggs in a cost effective way and characterized by light microscopy, particle size analyzer, electron microscopy, steady state spectrophotometry and spectrofluorometry. The photoefficacies of R6G in polymer encapsulated liposomes and positively charged liposomes are much higher compared to the free R6G (R6G in water) in terms of singlet oxygen quantum yield. This high potential of producing more reactive oxygen species (ROS) by liposomal nanoformulated R6G leads to efficient photodynamic inactivation of multidrug resistant gram negative bacteria in waste water. Though the singlet oxygen quantum yield of polymer coated liposomal R6G was higher than the cationic liposomal formulation, a faster decrease in bacterial survival was observed for positively charged liposomal R6G treated bacteria due to electrostatic charge interactions. Therefore, it can be concluded that the positively charged liposomal nanoformulations of laser dyes are efficient for photodynamic inactivation of multiple drug resistant gram negative microorganisms. PMID:27371913

  11. Rapid method for the differentiation of gram-positive and gram-negative bacteria on membrane filters.

    OpenAIRE

    Romero, S.; Schell, R F; Pennell, D R

    1988-01-01

    Microfiltration has become a popular procedure for the concentration and enumeration of bacteria. We developed a rapid and sensitive method for the differentiation of gram-positive and gram-negative bacteria, utilizing a polycarbonate membrane filter, crystal violet, iodine, 95% ethanol, and 6% carbol fuchsin, that can be completed in 60 to 90 s. Gram reactions of 49 species belonging to 30 genera of bacteria were correctly determined by the filter-Gram stain. The sensitivities of the filter-...

  12. Raman Spectroscopy of Xylitol Uptake and Metabolism in Gram-Positive and Gram-Negative Bacteria▿

    Science.gov (United States)

    Palchaudhuri, Sunil; Rehse, Steven J.; Hamasha, Khozima; Syed, Talha; Kurtovic, Eldar; Kurtovic, Emir; Stenger, James

    2011-01-01

    Visible-wavelength Raman spectroscopy was used to investigate the uptake and metabolism of the five-carbon sugar alcohol xylitol by Gram-positive viridans group streptococcus and the two extensively used strains of Gram-negative Escherichia coli, E. coli C and E. coli K-12. E. coli C, but not E. coli K-12, contains a complete xylitol operon, and the viridans group streptococcus contains an incomplete xylitol operon used to metabolize the xylitol. Raman spectra from xylitol-exposed viridans group streptococcus exhibited significant changes that persisted even in progeny grown from the xylitol-exposed mother cells in a xylitol-free medium for 24 h. This behavior was not observed in the E. coli K-12. In both viridans group streptococcus and the E. coli C derivative HF4714, the metabolic intermediates are stably formed to create an anomaly in bacterial normal survival. The uptake of xylitol by Gram-positive and Gram-negative pathogens occurs even in the presence of other high-calorie sugars, and its stable integration within the bacterial cell wall may discontinue bacterial multiplication. This could be a contributing factor for the known efficacy of xylitol when taken as a prophylactic measure to prevent or reduce occurrences of persistent infection. Specifically, these bacteria are causative agents for several important diseases of children such as pneumonia, otitis media, meningitis, and dental caries. If properly explored, such an inexpensive and harmless sugar-alcohol, alone or used in conjunction with fluoride, would pave the way to an alternative preventive therapy for these childhood diseases when the causative pathogens have become resistant to modern medicines such as antibiotics and vaccine immunotherapy. PMID:21037297

  13. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    Science.gov (United States)

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-05-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.

  14. Antibiotic Resistance in Childhood with Pneumococcal Infection

    Directory of Open Access Journals (Sweden)

    Ali Gunes

    2013-10-01

    Full Text Available Aim: Resistance to antibiotics is better. Between should not be in capitals. Antibiotics resistant has been increasing in pneumococci that cause serious diseases such as pneumonia, meningitis in recent years. The resistance rates vary between geographic regions. In this study, we aimed to determine antibiotic resistance rates in pneumococcal infections in our region. Material and Method: This study included 31 pneumococcal strains isolated from blood, CSF and urine samples of patients with meningitis, sepsis and urinary tract infections who admitted Dicle University Medicine School Children Clinic and Diyarbakir Pediatric Hospital Between December 2004-April 2007. Reproducing clinical specimens with alpha-hemolysis, optochin-sensitive, bile soluble and gram-positive diplococci morphology was defined as S. pneumoniae. The antimicrobial susceptibilities of strains were measured by the E-test method. MIC values of penicillin against pneumococci was accepted as <0.06 mg / ml value of the sensitive, 0.12-1μg/ml mid-level resistance, ≥ 2 mg / ml value of the high-level resistance. Results: It was found 16% mid-level penicillin resistance and 3.2% high-level penicillin resistance by E-test method. 80.7% of Strains were percent of the penicillin-sensitive. Seftiriakson resistance was found as 3.2%. there was not Vancomycin resistance. Discussion: We think penicillin therapy is enough effective for pneumococcal infections except serious conditions such as meningitis and sepsis. Also we think it should be supported by multicenter studies.

  15. The etiology of neonatal sepsis and patterns of antibiotic resistance

    International Nuclear Information System (INIS)

    Objective: To study the patterns of causative bacteria and antibiotic resistance in neonatal sepsis. Results: Among 228 cases included in the study, the male to female ratio was 2.1 to 1. The gestational age was less than 36 weeks in 68 (30%) cases and low birth weight babies were 143 (62.6%). History of birth asphyxia was present in 103 (45%) cases. There were 142 (62.3%) cases of early onset (7 days). Out of 233 positive blood cultures Escherichia coli was found to be commonest (47.8%, n =111, p<0.05) both in early onset (47.8%, n=68, p <0.05) and late onset sepsis (47.3%,n=43, p<0.05). Staphylococcus aureus was the most common among gram positive organism. Resistance to cefotaxime, ceftazidime and amikacin was 34% to 80% and to ciprofloxacin 13% to 72%. A total of 64 cases (28%) died. Mortality was four times higher in early onset sespis. Conclusion: Gram negative bacteria are the commenst cause of neonatal sepsis. The resistance to the commonly used antibiotics is alarmingly high. Mortality is four times higher in early one set sepsis. (author)

  16. Antimicrobial Activity of Carbon Nanoparticles Isolated from Natural Sources against Pathogenic Gram-Negative and Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Sheena Varghese

    2013-01-01

    Full Text Available This paper describes the isolation of carbon nanoparticles (CNPs from kitchen soot, characterization of the CNPs by UV/visible spectroscopy, SEM and XRD, and their antimicrobial action. The antibacterial activity of the isolated carbon nanoparticles was tested against various pathogenic bacterial strains such as Gram-negative Proteus refrigere and Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus and Streptococcus haemolyticus. The inhibition zones were measured, and it was found that the carbon nanoparticles isolated from natural sources are active against these Gram-negative and Gram-positive bacterial strains.

  17. Activity of the antiseptic polyhexanide against gram-negative bacteria.

    Science.gov (United States)

    Fabry, Werner Hugo Karl; Kock, Hans-Jürgen; Vahlensieck, Winfried

    2014-04-01

    The activity of the antiseptic polyhexanide was tested against 250 gram-negative clinical isolates, that is, 50 isolates each of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Moraxella catarrhalis, and Haemophilus influenzae. Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) were determined by using a serial broth microdilution technique according to DIN 58940. Time-kill studies were performed for reference stains E. coli ATCC 25922, K. pneumoniae ATCC 4352, P. aeruginosa ATCC 15442, M. catarrhalis ATCC 43617, and H. influenzae ATCC 49247. All tested isolates had MICs and MBCs within a range of 1-32 mg/L and were regarded as susceptible to polyhexanide. The highest values were found for P. aeruginosa and H. influenzae with MICs and MBCs of 32 mg/L. Addition of up to 4% albumin to the test medium did not change MICs and MBCs. Time-kill studies of the reference strains showed reduction rates from 3 log10 colony forming units (CFU)/ml to more than 5 log10 CFU/ml for 200 and 400 mg/L polyhexanide within 5-30 min. Testing of polyhexanide in combination with antibiotics showed indifference with amoxicillin, cefotaxime, imipenem, gentamicin, and ciprofloxacin; no antagonism was found. As no resistance and no antagonism with antibiotics were detected, polyhexanide is regarded as suitable agent for topical eradication of gram-negative bacteria.

  18. Antibiotic resistance in probiotic bacteria

    Directory of Open Access Journals (Sweden)

    Miguel eGueimonde

    2013-07-01

    Full Text Available Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The main probiotic bacteria are strains belonging to the genera Lactobacillus and Bifidobacterium, although other representatives, such as Bacillus or Escherichia coli strains, have also been used. Lactobacillus and Bifidobacterium are two common inhabitants of the human intestinal microbiota. Also, some species are used in food fermentation processes as starters, or as adjunct cultures in the food industry. With some exceptions, antibiotic resistance in these beneficial microbes does not constitute a safety concern in itself, when mutations or intrinsic resistance mechanisms are responsible for the resistance phenotype. In fact, some probiotic strains with intrinsic antibiotic resistance could be useful for restoring the gut microbiota after antibiotic treatment. However, specific antibiotic resistance determinants carried on mobile genetic elements, such as tetracycline resistance genes, are often detected in the typical probiotic genera, and constitute a reservoir of resistance for potential food or gut pathogens, thus representing a serious safety issue.

  19. Dustborne and airborne gram-positive and gram-negative bacteria in high versus low ERMI homes

    Science.gov (United States)

    The study aimed at investigating Gram-positive and Gram-negative bacteria in moldy and non-moldy homes, as defined by the home's Environmental Relative Moldiness Index (ERMI) value. The ERMI values were determined from floor dust samples in 2010 and 2011 and homes were classified...

  20. Presence of exoY, exoS, exoU and exoT genes, antibiotic resistance and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran

    OpenAIRE

    Azimi, Somayeh; Kafil, Hossein Samadi; Baghi, Hossein Bannazadeh; Shokrian, Saeed; Najaf, Khadijeh; ASGHARZADEH, Mohammad; Yousefi, Mehdi; Shahrivar, Firooz; Aghazadeh, Mohammad

    2016-01-01

    Background: Pseudomonas aeruginosa, as Gram-negative rod bacilli, has an important role in human infection. In the present study we aimed to investigate the presence of exo genes and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran. Material and methods: 160 isolates of P. aeruginosa were collected and identified by biochemical tests and were characterized for antibiotic resistance. Biofilm production was evaluated by microtiter plate assay and the presence of exo ge...

  1. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection.

    Science.gov (United States)

    Maldonado, Rita F; Sá-Correia, Isabel; Valvano, Miguel A

    2016-07-01

    The Gram-negative bacterial lipopolysaccharide (LPS) is a major component of the outer membrane that plays a key role in host-pathogen interactions with the innate immune system. During infection, bacteria are exposed to a host environment that is typically dominated by inflammatory cells and soluble factors, including antibiotics, which provide cues about regulation of gene expression. Bacterial adaptive changes including modulation of LPS synthesis and structure are a conserved theme in infections, irrespective of the type or bacteria or the site of infection. In general, these changes result in immune system evasion, persisting inflammation and increased antimicrobial resistance. Here, we review the modifications of LPS structure and biosynthetic pathways that occur upon adaptation of model opportunistic pathogens (Pseudomonas aeruginosa, Burkholderia cepacia complex bacteria, Helicobacter pylori and Salmonella enterica) to chronic infection in respiratory and gastrointestinal sites. We also discuss the molecular mechanisms of these variations and their role in the host-pathogen interaction. PMID:27075488

  2. Detection of pathogenic gram negative bacteria using infrared thermography

    Science.gov (United States)

    Lahiri, B. B.; Divya, M. P.; Bagavathiappan, S.; Thomas, Sabu; Philip, John

    2012-11-01

    Detection of viable bacteria is of prime importance in all fields of microbiology and biotechnology. Conventional methods of enumerating bacteria are often time consuming and labor-intensive. All living organisms generate heat due to metabolic activities and hence, measurement of heat energy is a viable tool for detection and quantification of bacteria. In this article, we employ a non-contact and real time method - infrared thermography (IRT) for measurement of temperature variations in four clinically significant gram negative pathogenic bacteria, viz. Vibrio cholerae, Vibrio mimicus, Proteus mirabilis and Pseudomonas aeruginosa. We observe that, the energy content, defined as the ratio of heat generated by bacterial metabolic activities to the heat lost from the liquid medium to the surrounding, vary linearly with the bacterial concentration in all the four pathogenic bacteria. The amount of energy content observed in different species is attributed to their metabolisms and morphologies that affect the convection velocity and hence heat transport in the medium.

  3. Marine Compounds with Therapeutic Potential in Gram-Negative Sepsis

    Directory of Open Access Journals (Sweden)

    Irina Yermak

    2013-06-01

    Full Text Available This paper concerns the potential use of compounds, including lipid A, chitosan, and carrageenan, from marine sources as agents for treating endotoxemic complications from Gram-negative infections, such as sepsis and endotoxic shock. Lipid A, which can be isolated from various species of marine bacteria, is a potential antagonist of bacterial endotoxins (lipopolysaccharide (LPSs. Chitosan is a widespread marine polysaccharide that is derived from chitin, the major component of crustacean shells. The potential of chitosan as an LPS-binding and endotoxin-neutralizing agent is also examined in this paper, including a discussion on the generation of hydrophobic chitosan derivatives to increase the binding affinity of chitosan to LPS. In addition, the ability of carrageenan, which is the polysaccharide of red alga, to decrease the toxicity of LPS is discussed. We also review data obtained using animal models that demonstrate the potency of carrageenan and chitosan as antiendotoxin agents.

  4. Antibiotic concentration and antibiotic-resistant bacteria in two shallow urban lakes after stormwater event.

    Science.gov (United States)

    Zhang, Songhe; Pang, Si; Wang, PeiFang; Wang, Chao; Han, Nini; Liu, Bin; Han, Bing; Li, Yi; Anim-Larbi, Kwaku

    2016-05-01

    Stormwater runoff is generally characterized as non-point source pollution. In the present study, antibiotic concentration and antibiotic susceptibilities of cultivable heterotrophic bacteria were investigated in two small shallow urban lakes before and after strong storm event. Several antibiotics, lactose-fermenting bacteria and cultivable heterotrophic bacteria concentrations increased in surface water and/or surface sediment of two small urban lakes (Lake Xuanwu and Wulongtan) after strong storm event. In general, the frequencies of bacteria showing resistance to nine antibiotics increased after storm event. Based on the 16S rRNA genes of 50 randomly selected isolates from each water sample of two lakes, Aeromonas and Bacillus were dominant genera in samples from two lakes, while genera Proteus and Lysinibacillus were the third abundant genera in Lake Xuanwu and Wulongtu, respectively. Presences of nine antibiotic resistance genes (ARGs) in the 100 isolates were detected and most of these isolates harbored at least two ARGs with different functions. The detection frequency of ARGs in Gram-negative isolates was higher than that in Gram-positive isolates. The most prevalent integron in 100 isolates was int(II) (n = 28), followed by int(I) (n = 17) and int(III) (n = 17). Our results indicate that strong storm events potentially contribute to the transfer of ARGs and antibiotic-resistant bacteria from land-sewer system to the urban Lakes. PMID:26865482

  5. Distribution of Gram Negative Bacteria and Evaluation of Resistance Profiles

    Directory of Open Access Journals (Sweden)

    Serap Pamukcuoglu

    2014-03-01

    Full Text Available Aim: In this study, we aimed to examine the distributon of Gram negative bacteria isolated from urine cultures of out-patients in Afyonkarahisar State Hospital and evaluate the antimicrobial resistance rates of these pathogens. Material and Method: Urine samples of out-patients which were sent to microbiology laboratory between 2012-2013 were retrospectively evaluated. The isolates were identified using conventional methods and/or automated Vitec 2.0 system. Antibiogram sensitivities were determined by Kirby-Bauer disc diffusion method or automated system and interpreted on the basis of Clinical and Laboratory Standards Institute (CSI criteria. Double disc sinergy test (DDST or Vitec 2.0 system was used to detect extended spectrum beta-lactamase (ESBL.When conventional methods could%u2019t be clarified according to their colony morphologies, gram staining patterns, biochemical test; automated system has been used. Results: A total of 671 isolates acquired from urine samples were studied. 427 Escherichia coli (63.6 %, 165 Klebsiella spp. (24.6 %, 22 Pseudomonas spp. (3.3 %, nine Acinetobacter spp. (1.3 %, 41 Proteus spp. (6.1 % and seven Serratia (1.0 % strains were identified among isolates. 97 E.coli (22.8 % and 41 Klebsiella (24.8 % isolates were ESBL positive. Most common bacteria were E.coli, 31.1 % of which were resistant to trimethoprim-sulfamethoxazole, 16 % to ciprofloxacin and 3.6 % to nitrofurantoin. Among Enterobacteriaceae, no resistance aganist carbapenems were detected. Moreover, aminoglicoside sensitivity rate was significantly high in this group. Discussion: Microorganisms that have progressively increasing antimicrobial resistance should be considered in the treatment of urinary tract infections. It is also important to use the most appropriate antibiotics to avoid unnecessary usage of these drugs in order to decrease drug resistance rates and ESBL production which may effect the success of the treatment.

  6. French regional surveillance program of carbapenemase-producing Gram-negative bacilli: results from a 2-year period.

    Science.gov (United States)

    Pantel, A; Boutet-Dubois, A; Jean-Pierre, H; Marchandin, H; Sotto, A; Lavigne, J-P

    2014-12-01

    In February 2011, the CARB-LR group was created as a sentinel laboratory-based surveillance network to control the emergence of carbapenem-resistant Gram-negative bacilli (CR GNB) in a French Southern Region. We report the epidemiological results of a 2-year study. All the Gram-negative bacilli isolates detected in the different labs (hospital and community settings) of a French Southern Region and with reduced susceptibility to ertapenem and/or imipenem were characterised with regard to antibiotic resistance, bla genes content, repetitive sequence-based polymerase chain reaction (rep-PCR) profiles and multilocus sequence typing (MLST). A total of 221 strains were analysed. Acinetobacter baumannii was the most prevalent carbapenemase-producing bacteria, with a majority of OXA-23 producers (n = 37). One isolate co-produced OXA-23 and OXA-58 enzymes. Klebsiella pneumoniae was the most frequent carbapenemase-producing Enterobacteriaceae (CPE) (OXA-48 producer: n = 29, KPC producer: n = 1), followed by Escherichia coli (OXA-48 producer: n = 8, KPC producer: n = 1) and Enterobacter cloacae (OXA-48 producer, n = 1). One isolate of Pseudomonas aeruginosa produced a VIM-1 carbapenemase. A clonal diversity of carbapenemase-producing K. pneumoniae and E. coli was noted with different MLSTs. On the other hand, almost all OXA-23-producing A. baumannii strains belonged to the widespread ST2/international clone II. The link between the detection of CR GNB and a foreign country was less obvious, suggesting the beginning of a local cross-transmission. The number of CR GNB cases in our French Southern Region has sharply increased very recently due to the diffusion of OXA-48 producers. PMID:25037867

  7. MULTIDRUG RESISTANT GRAM NEGATIVE PATHOGENS ANTIBIOTIC PROFILE AND ITS EFFECTIVE CONTROL US ING SECONDARY METABOLITES FROM MARINE ACTINOBACTERIA

    Directory of Open Access Journals (Sweden)

    Shanthi J

    2012-05-01

    Full Text Available Aim:To screen the spread ofresistance in ESBLs producer’s particularly non lactose fermenting gram negative Acinetobacter spp. andPseudomonas spp.and study antimicrobial activity with crude extract from novel marine actinomycetes in India. Methods:Fifty clinical isolates in a period of one year were processed and the antibiotic susceptibility was determined by double disk approximation test, the ESBLs production was screened with phenotypic confirmatory methodsusing disks of amikacin, meropenem, netilimicin, ciprofloxacin, gentamicin, tigecycline and piperacillinalong with cephalosporin disks. Antimicrobial activity of the crude extract was determined by agar plug method. Results:The isolates collected from different samples were found resistant to third and fourth generation cephalosporins. ESBL production was detected in 56 % to 66 % of the isolates, amikacin and netilmicin showed 50% to 60% resistance they were also found resistant to carbapenems,86% resistance wasobserved in Acinetobacter spp. Two strains PM21 and PM27selected from 24 actinobacterial isolates had zone of inhibition >21mm. Conclusion:A high level of antibiotic resistance was found in Acinetobacter spp.in our study and may reflect the scenario in India. Earlier detection and reporting of ESBL producers will help in treating individual cases and also in controlling the spread of these resistant genes to othersensitive nosocomial isolates. The medical need for new agents is most acute and the future of this work aims to identify one such novel compound from marine actinobacteria.

  8. Clinical, economic and societal impact of antibiotic resistance.

    Science.gov (United States)

    Barriere, Steven L

    2015-02-01

    The concern over antibiotic resistance has been voiced since the discovery of modern antibiotics > 75 years ago. The concerns have only increased with time, with efforts to control resistance caused by widespread overuse of antibiotics in human medicine and far more than appreciated use in the feeding of animals for human consumption to promote growth. The problem is worldwide, but certain regions and selected health care institutions report far more resistance, including strains of Gram-negative bacteria that are susceptible only to the once discarded drugs polymyxin B or colistin, and pan-resistant strains are on the rise. One of the central efforts to control resistance, apart from antimicrobial stewardship, is the development of new antimicrobial agents. This has lagged significantly over the past 10 - 15 years, for a variety of reasons; but promising new agents are being developed, unfortunately none thus far addressing all potentially resistant strains. There is the unlikely, but not unreal, possibility that we could return to a pre-antibiotic era, where morbidity and mortality rates have risen dramatically and routine surgical procedures are not performed for fear of post-operative infections. The onus of control of resistance is a moral imperative that falls on the shoulders of all.

  9. Gram-negative osteomyelitis: clinical and microbiological profile

    Directory of Open Access Journals (Sweden)

    Vladimir Cordeiro de Carvalho

    2012-02-01

    Full Text Available INTRODUCTION: Despite the growing interest in the study of Gram-negative bacilli (GNB infections, very little information on osteomyelitis caused by GNB is available in the medical literature. OBJECTIVES AND METHODS: To assess clinical and microbiological features of 101 cases of osteomyelitis caused by GNB alone, between January 2007 and January 2009, in a reference center for the treatment of high complexity traumas in the city of São Paulo. RESULTS: Most patients were men (63%, with median age of 42 years, affected by chronic osteomyelitis (43% or acute osteomyelitis associated to open fractures (32%, the majority on the lower limbs (71%. The patients were treated with antibiotics as inpatients for 40 days (median and for 99 days (median in outpatient settings. After 6 months follow-up, the clinical remission rate was around 60%, relapse 19%, amputation 7%, and death 5%. Nine percent of cases were lost to follow-up. A total of 121 GNB was isolated from 101 clinical samples. The most frequently isolated pathogens were Enterobacter sp. (25%, Acinetobacter baumannii (21% e Pseudomonas aeruginosa (20%. Susceptibility to carbapenems was about 100% for Enterobacter sp., 75% for Pseudomonas aeruginosa and 60% for Acinetobacter baumannii. CONCLUSION: Osteomyelitis caused by GNB remains a serious therapeutic challenge, especially when associated to nonfermenting bacteria. We emphasize the need to consider these agents in diagnosed cases of osteomyelitis, so that an ideal antimicrobial treatment can be administered since the very beginning of the therapy.

  10. Biogenesis of outer membranes in Gram-negative bacteria.

    Science.gov (United States)

    Tokuda, Hajime

    2009-03-23

    The outer membrane, an essential organelle of Gram-negative bacteria, is composed of four major components: lipopolysaccharide, phospholipids, beta-barrel proteins, and lipoproteins. The mechanisms underlying the transport of these components to outer membranes are currently under extensive examination. Among them, the sorting of lipoproteins to the outer membrane of Escherichia coli has been clarified in detail. The Lol system, composed of five proteins, catalyzes outer membrane sorting of lipoproteins. Various Lpt proteins have recently been identified as factors involved in the transport of lipopolysaccharide to the outer membrane, although the mechanism remains largely unknown. Proteins with alpha-helical membrane spanning segments are found in the inner membrane, whereas amphipathic beta-barrel proteins span the outer membrane. These beta-barrel proteins are inserted into the outer membranes through a central core protein BamA (YaeT) with the help of four outer membrane lipoproteins. In contrast, little is known about how phospholipids are transported to the outer membrane. PMID:19270402

  11. Resistance to antimicrobial peptides in Gram-negative bacteria.

    Science.gov (United States)

    Gruenheid, Samantha; Le Moual, Hervé

    2012-05-01

    Antimicrobial peptides (AMPs) are present in virtually all organisms and are an ancient and critical component of innate immunity. In mammals, AMPs are present in phagocytic cells, on body surfaces such as skin and mucosa, and in secretions and body fluids such as sweat, saliva, urine, and breast milk, consistent with their role as part of the first line of defense against a wide range of pathogenic microorganisms including bacteria, viruses, and fungi. AMPs are microbicidal and have also been shown to act as immunomodulators with chemoattractant and signaling activities. During the co-evolution of hosts and bacterial pathogens, bacteria have developed the ability to sense and initiate an adaptive response to AMPs to resist their bactericidal activity. Here, we review the various mechanisms used by Gram-negative bacteria to sense and resist AMP-mediated killing. These mechanisms play an important role in bacterial resistance to host-derived AMPs that are encountered during the course of infection. Bacterial resistance to AMPs should also be taken into consideration in the development and use of AMPs as anti-infective agents, for which there is currently a great deal of academic and commercial interest.

  12. MetaLocGramN: A meta-predictor of protein subcellular localization for Gram-negative bacteria.

    Science.gov (United States)

    Magnus, Marcin; Pawlowski, Marcin; Bujnicki, Janusz M

    2012-12-01

    Subcellular localization is a key functional characteristic of proteins. It is determined by signals encoded in the protein sequence. The experimental determination of subcellular localization is laborious. Thus, a number of computational methods have been developed to predict the protein location from sequence. However predictions made by different methods often disagree with each other and it is not always clear which algorithm performs best for the given cellular compartment. We benchmarked primary subcellular localization predictors for proteins from Gram-negative bacteria, PSORTb3, PSLpred, CELLO, and SOSUI-GramN, on a common dataset that included 1056 proteins. We found that PSORTb3 performs best on the average, but is outperformed by other methods in predictions of extracellular proteins. This motivated us to develop a meta-predictor, which combines the primary methods by using the logistic regression models, to take advantage of their combined strengths, and to eliminate their individual weaknesses. MetaLocGramN runs the primary methods, and based on their output classifies protein sequences into one of five major localizations of the Gram-negative bacterial cell: cytoplasm, plasma membrane, periplasm, outer membrane, and extracellular space. MetaLocGramN achieves the average Matthews correlation coefficient of 0.806, i.e. 12% better than the best individual primary method. MetaLocGramN is a meta-predictor specialized in predicting subcellular localization for proteins from Gram-negative bacteria. According to our benchmark, it performs better than all other tools run independently. MetaLocGramN is a web and SOAP server available for free use by all academic users at the URL http://iimcb.genesilico.pl/MetaLocGramN. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction. PMID:22705560

  13. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria

    OpenAIRE

    Bipul Biswas; Kimberly Rogers; Fredrick McLaughlin; Dwayne Daniels; Anand Yadav

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well...

  14. Antibiotic resistance: An ethical challenge.

    Science.gov (United States)

    Littmann, Jasper; Buyx, Alena; Cars, Otto

    2015-10-01

    In this paper, we argue that antibiotic resistance (ABR) raises a number of ethical problems that have not yet been sufficiently addressed. We outline four areas in which ethical issues that arise in relation to ABR are particularly pressing. First, the emergence of multidrug-resistant and extensively drug-resistant infections exacerbates traditional ethical challenges of infectious disease control, such as the restriction of individual liberty for the protection of the public's health. Second, ABR raises issues of global distributive justice, both with regard to the overuse and lack of access to antibiotics. Third, the use of antibiotics in veterinary medicine raises serious concerns for animal welfare and sustainable farming practices. Finally, the diminishing effectiveness of antibiotics leads to questions about intergenerational justice and our responsibility for the wellbeing of future generations. We suggest that current policy discussions should take ethical conflicts into account and engage openly with the challenges that we outline in this paper.

  15. Simple Method for Detection of Metallo – β–Lactamase Among Gram Negative Isolates

    OpenAIRE

    Agrawal R; Sumana MN; Kishore A; Kulkarni M

    2015-01-01

    Background: Carbapenem resistance due to the production of metallo-β -lactamase (MBL) in Gram-negative organism is an increasing public health problem. Aim: The purpose of this study is to detectMBL in Gram Negative bacterial isolates among Ventilator Associated Pneumonia patients. Materials and Methods: Phenotypic detection of MBL was done by three methods: 1.Modified Hodge Test (MHT) 2.Combined disc test (CDT) 3.Double Disc Synergy Test (DDST). Results: Out of 126 gram negative bacterial is...

  16. General principles of antibiotic resistance in bacteria.

    Science.gov (United States)

    Martinez, Jose L

    2014-03-01

    Given the impact of antibiotic resistance on human health, its study is of great interest from a clinical view- point. In addition, antibiotic resistance is one of the few examples of evolution that can be studied in real time. Knowing the general principles involved in the acquisition of antibiotic resistance is therefore of interest to clinicians, evolutionary biologists and ecologists. The origin of antibiotic resistance genes now possessed by human pathogens can be traced back to environmental microorganisms. Consequently, a full understanding of the evolution of antibiotic resistance requires the study of natural environments as well as clinical ecosystems. Updated information on the evolutionary mechanisms behind resistance, indicates that ecological connectivity, founder effect and fitness costs are important bottle- necks that modulate the transfer of resistance from environmental microorganisms to pathogens. PMID:24847651

  17. 革兰阴性细菌耐药特性的双聚类分析%Biclustering analysis of antibiotic resistance of Gram-negative bacteria

    Institute of Scientific and Technical Information of China (English)

    赵亚楠; 韦珍; 武晓琳; 郭育奇; 孙超; 钟姝凝; 赵春燕

    2015-01-01

    目的 通过双聚类分析了解临床分离的革兰阴性菌的耐药特征.方法 采用K-B法对临床分离的113株细菌进行药物敏感试验,用软件WHONET 5.6和MATLAB对药敏试验结果进行统计分析.结果 传统耐药分析方法表明1 13株细菌总体耐药率较低,其中大肠埃希菌、铜绿假单胞菌和鲍曼不动杆菌的耐药率则较高,而肺炎克雷伯菌耐药率较低.通过双聚类分析,所有菌株被聚为三大类,Ⅰ类菌株占23.0%,耐药率最高,几乎对18种药物都耐药,细菌种类以肺炎克雷伯菌、铜绿假单胞菌、鲍曼不动杆菌为主;Ⅱ类菌株占56.6%,耐药率普遍较低,以肺炎克雷伯菌为主;Ⅲ类菌株占20.4%,菌株的耐药率介于Ⅰ和Ⅱ类之间,包括肺炎克雷伯菌、铜绿假单胞菌和大肠埃希菌.其中Ⅱ大类,根据所耐抗生素的不同又分为Ⅱ-A、Ⅱ-B、Ⅱ-C三个亚类,每一亚类都具有相似的耐药特点.结论 本实验收集的革兰阴性菌株根据耐药特征被聚为Ⅰ、Ⅱ、Ⅲ类,耐药程度为Ⅰ>Ⅲ>Ⅱ,双聚类分析法有利于快速找到具有相同耐药特征的菌株以及不同菌株之间的耐药差别.

  18. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes.

    Directory of Open Access Journals (Sweden)

    Aimée M Moore

    antibiotic pressure in the human host, and that cryptic gut microbes are an important resistance reservoir. The observed transferability of gut-associated resistance genes to a gram-negative (E. coli host also suggests that the potential for gut-associated resistomes to threaten human health by mediating antibiotic resistance in pathogens warrants further investigation.

  19. Carriage of antibiotic-resistant bacteria by healthy children.

    Science.gov (United States)

    Millar, M R; Walsh, T R; Linton, C J; Zhang, S; Leeming, J P; Bennett, P M

    2001-05-01

    The frequency of carriage of antibiotic-resistant bacteria in healthy 7- and 8-year-old children in Bristol was studied. Children born in Avon between 1 April 1991 and 31 December 1992, attending the Avon Longitudinal Study of Pregnancy and Childhood (ALSPAC) 7 year follow-up clinic, formed the study population. Carriage was estimated using mouth and stool samples. None of 105 children on whom information was available had received tetracycline, chloramphenicol, ciprofloxacin or an extended-spectrum cephalosporin in the previous year. Staphylococcus aureus was isolated from mouthwashes from 200 (37.1%) of 539 children sampled. Six (3%) of the isolates were resistant to chloramphenicol or tetracycline and four (2%) were methicillin resistant. Haemophilus spp. were isolated from 369 (72%) of 513 samples and 63 (17%) were ampicillin resistant, 49 (13.3%) were erythromycin resistant and seven (1.9%) were tetracycline resistant. Branhamella catarrhalis was isolated from 333 (74%) of 450 samples. Twenty-eight (8.4%) were erythromycin resistant and 14 (4.2%) strains were tetracycline resistant. Group A beta-haemolytic streptococci were isolated from 17 of 507 children sampled. One (5.9%) was tetracycline resistant. Stool samples were returned from 335 (62%) of 539 children from whom they were requested. Eleven per cent of samples yielded Gram-negative bacilli with high-level resistance to chloramphenicol, which was frequently linked to resistance to ampicillin, spectinomycin and streptomycin. Isolates demonstrating resistance to the third-generation cephalosporin ceftazidime were recovered from 17 subjects (3.2%). Six (35%) of 17 isolates possessed extended-spectrum beta-lactamases. Healthy children carry bacteria resistant to antibiotics to which children are not usually exposed. Resistance to ceftazidime, chloramphenicol and tetracycline may be co-selected by exposure to other antibiotics used in children or may be acquired from family members, pets, other children or

  20. Prevalence of antibiotic-resistant bacteria in three different aquatic environments over three seasons.

    Science.gov (United States)

    Mohanta, Tandra; Goel, Sudha

    2014-08-01

    The objective of this study was to evaluate the impact of urbanization and seasonal changes on the prevalence of antibiotic-resistant bacteria in different aqueous environments. To this end, bacteria were isolated from three different water sources: the River Hooghly in Kolkata, River Kangsabati and groundwater from Kharagpur, West Bengal over three seasons: post-monsoon, winter and summer in 2012-2013. A total of 163 Gram-negative bacteria were isolated from the River Hooghly (n = 138), River Kangsabati (n = 13) and groundwater (n = 12). Antibiotic susceptibility testing was done using 12 antibiotic discs. The percentages of multiple antibiotic-resistant (MAR) bacteria at the three sampling locations were found to be 71.01 % (98/138) for River Hooghly, 15.38 % (2/13) for River Kangsabati and 8.33 % (1/12) for groundwater. Prevalence of MAR bacteria with respect to the three seasons were the following: 73.58 % in post-monsoon, 59.26 % in winter and 53.57 % in summer. Antibiotic resistance index (ARI) was calculated for each location and each season. In general, ARI values for all the River Hooghly samples were >0.2 while those for the River Kangsabati and groundwater in Kharagpur were always resistance in bacteria from the River Hooghly compared to the other two locations. In addition, percentage of MAR and ARI values followed the trend: post-monsoon > winter > summer. This may be due to the additional terrestrial resistants that get swept along with surface runoff during the monsoons.

  1. Is screening patients for antibiotic-resistant bacteria justified in the Indian context?

    Directory of Open Access Journals (Sweden)

    S Bhattacharya

    2011-01-01

    Full Text Available Infection with multi-antibiotic-resistant bacteria is a common clinical problem in India. In some countries and centres, screening patients to detect colonisation by these organisms is used to determine specific interventions such as decolonisation treatment, prophylactic antibiotics prior to surgical interventions or for selection of empirical antibiotic therapy, and to isolate patients so that transmission of these difficult to treat organisms to other patients could be prevented. In India, there is no national guideline or recommendation for screening patients for multi-drug-resistant (MDR bacteria such as MRSA (methicillin-resistant Staphylococcus aureus, VRE (vancomycin-resistant enterococcus, ESBL (extended spectrum beta-lactamase or MBL (metallo-beta-lactamase producers. The present article discusses the relevance of screening patients for multi-antibiotic-resistant bacteria in the Indian context. Literature has been reviewed about antibiotic resistance in India, screening methodology, economic debate about screening. The percentages of strains from various hospitals in India which were reported to be MRSA was between 8 and 71%, those for ESBL between 19 and 60% and carbapenem-resistant Gram-negative bacilli between 5.3 and 59%. There exists culture-based technology for the detection of these resistant organisms from patient samples. For some pathogens, such as MRSA and VRE Polymerase chain reaction-based tests are also becoming available. Screening for MDR bacteria is an option which may be used after appraisal of the resources available, and after exploring possibility of implementing the interventions that may be required after a positive screening test result.

  2. Neither Single nor a Combination of Routine Laboratory Parameters can Discriminate between Gram-positive and Gram-negative Bacteremia.

    Science.gov (United States)

    Ratzinger, Franz; Dedeyan, Michel; Rammerstorfer, Matthias; Perkmann, Thomas; Burgmann, Heinz; Makristathis, Athanasios; Dorffner, Georg; Loetsch, Felix; Blacky, Alexander; Ramharter, Michael

    2015-01-01

    Adequate early empiric antibiotic therapy is pivotal for the outcome of patients with bloodstream infections. In clinical practice the use of surrogate laboratory parameters is frequently proposed to predict underlying bacterial pathogens; however there is no clear evidence for this assumption. In this study, we investigated the discriminatory capacity of predictive models consisting of routinely available laboratory parameters to predict the presence of Gram-positive or Gram-negative bacteremia. Major machine learning algorithms were screened for their capacity to maximize the area under the receiver operating characteristic curve (ROC-AUC) for discriminating between Gram-positive and Gram-negative cases. Data from 23,765 patients with clinically suspected bacteremia were screened and 1,180 bacteremic patients were included in the study. A relative predominance of Gram-negative bacteremia (54.0%), which was more pronounced in females (59.1%), was observed. The final model achieved 0.675 ROC-AUC resulting in 44.57% sensitivity and 79.75% specificity. Various parameters presented a significant difference between both genders. In gender-specific models, the discriminatory potency was slightly improved. The results of this study do not support the use of surrogate laboratory parameters for predicting classes of causative pathogens. In this patient cohort, gender-specific differences in various laboratory parameters were observed, indicating differences in the host response between genders.

  3. Delays in Appropriate Antibiotic Therapy for Gram-Negative Bloodstream Infections: A Multicenter, Community Hospital Study

    OpenAIRE

    Moehring, Rebekah W.; Richard Sloane; Chen, Luke F.; Smathers, Emily C.; Schmader, Kenneth E.; Fowler, Vance G.; Weber, David J.; Sexton, Daniel J.; Anderson, Deverick J.

    2013-01-01

    BACKGROUND: Gram-negative bacterial bloodstream infection (BSI) is a serious condition with estimated 30% mortality. Clinical outcomes for patients with severe infections improve when antibiotics are appropriately chosen and given early. The objective of this study was to estimate the association of prior healthcare exposure on time to appropriate antibiotic therapy in patients with gram-negative BSI. METHOD: We performed a multicenter cohort study of adult, hospitalized patients with gram-ne...

  4. Does the empiric use of vancomycin in pediatrics increase the risk for Gram-negative bacteremia?

    NARCIS (Netherlands)

    Cuno, SPMU; Heesen, GJM; Arends, JP; Kimpen, JLL; van Houten, M.A.

    2001-01-01

    Background, Gram-negative bacteremia in children, a major cause of morbidity and mortality, may in part be induced by intensive treatment procedures and nonspecific use of antibiotics. Our primary objective was to study the causal relationship between the use of vancomycin and Gram-negative bacterem

  5. Probing interaction of Gram-positive and Gram-negative bacterial cells with ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Aanchal; Bhargava, Richa; Poddar, Pankaj, E-mail: p.poddar@ncl.res.in

    2013-04-01

    In the present work, the physiological effects of the ZnO nanorods on the Gram positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Aerobacter aerogenes) bacterial cells have been studied. The analysis of bacterial growth curves for various concentrations of ZnO nanorods indicates that Gram positive and Gram negative bacterial cells show inhibition at concentrations of ∼ 64 and ∼ 256 μg/mL respectively. The marked difference in susceptibility towards nanorods was also validated by spread plate and disk diffusion methods. In addition, the scanning electron micrographs show a clear damage to the cells via changed morphology of the cells from rod to coccoid etc. The confocal optical microscopy images of these cells also demonstrate the reduction in live cell count in the presence of ZnO nanorods. These, results clearly indicate that the antibacterial activity of ZnO nanorods is higher towards Gram positive bacterium than Gram negative bacterium which indicates that the structure of the cell wall might play a major role in the interaction with nanostructured materials and shows high sensitivity to the particle concentration. Highlights: ► Effect of ZnO nanorods on the growth cycles of four bacterial strains. ► A relation has been established between growth rate of bacteria and concentration. ► Serious damage in the morphology of bacterial cells in the presence of ZnO nanorods. ► Microscopic studies to see the time dependent effect on bacterial cells.

  6. Identification of Gram-Negative Bacteria and Genetic Resistance Determinants from Positive Blood Culture Broths by Use of the Verigene Gram-Negative Blood Culture Multiplex Microarray-Based Molecular Assay.

    Science.gov (United States)

    Ledeboer, Nathan A; Lopansri, Bert K; Dhiman, Neelam; Cavagnolo, Robert; Carroll, Karen C; Granato, Paul; Thomson, Richard; Butler-Wu, Susan M; Berger, Heather; Samuel, Linoj; Pancholi, Preeti; Swyers, Lettie; Hansen, Glen T; Tran, Nam K; Polage, Christopher R; Thomson, Kenneth S; Hanson, Nancy D; Winegar, Richard; Buchan, Blake W

    2015-08-01

    Bloodstream infection is a serious condition associated with significant morbidity and mortality. The outcome of these infections can be positively affected by the early implementation of effective antibiotic therapy based on the identification of the infecting organism and genetic markers associated with antibiotic resistance. In this study, we evaluated the microarray-based Verigene Gram-negative blood culture (BC-GN) assay in the identification of 8 genus or species targets and 6 genetic resistance determinants in positive blood culture broths. A total of 1,847 blood cultures containing Gram-negative organisms were tested using the BC-GN assay. This comprised 729 prospective fresh, 781 prospective or retrospective frozen, and 337 simulated cultures representing 7 types of aerobic culture media. The results were compared to those with standard bacterial culture and biochemical identification with nucleic acid sequence confirmation of the resistance determinants. Among monomicrobial cultures, the positive percent agreement (PPA) of the BC-GN assay with the reference method was as follows; Escherichia coli, 100%; Klebsiella pneumoniae, 92.9%; Klebsiella oxytoca, 95.5%; Enterobacter spp., 99.3%; Pseudomonas aeruginosa, 98.9%; Proteus spp., 100%; Acinetobacter spp., 98.4%; and Citrobacter spp., 100%. All organism identification targets demonstrated >99.5% negative percent agreement (NPA) with the reference method. Of note, 25/26 cultures containing K. pneumoniae that were reported as not detected by the BC-GN assay were subsequently identified as Klebsiella variicola. The PPA for identification of resistance determinants was as follows; blaCTX-M, 98.9%; blaKPC, 100%; blaNDM, 96.2%; blaOXA, 94.3%; blaVIM, 100%; and blaIMP, 100%. All resistance determinant targets demonstrated >99.9% NPA. Among polymicrobial specimens, the BC-GN assay correctly identified at least one organism in 95.4% of the broths and correctly identified all organisms present in 54.5% of the broths

  7. Controlling antibiotic resistance in the ICU

    NARCIS (Netherlands)

    Derde, L.P.G.

    2013-01-01

    Patients admitted to intensive care units (ICUs) are frequently colonized with (antibiotic-resistant) bacteria, which may lead to healthcare associated infections. Antimicrobial-resistant bacteria (AMRB), such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (V

  8. Metagenomic exploration of antibiotic resistance in soil.

    Science.gov (United States)

    Monier, Jean-Michel; Demanèche, Sandrine; Delmont, Tom O; Mathieu, Alban; Vogel, Timothy M; Simonet, Pascal

    2011-06-01

    The ongoing development of metagenomic approaches is providing the means to explore antibiotic resistance in nature and address questions that could not be answered previously with conventional culture-based strategies. The number of available environmental metagenomic sequence datasets is rapidly expanding and henceforth offer the ability to gain a more comprehensive understanding of antibiotic resistance at the global scale. Although there is now evidence that the environment constitutes a vast reservoir of antibiotic resistance gene determinants (ARGDs) and that the majority of ARGDs acquired by human pathogens may have an environmental origin, a better understanding of their diversity, prevalence and ecological significance may help predict the emergence and spreading of newly acquired resistances. Recent applications of metagenomic approaches to the study of ARGDs in natural environments such as soil should help overcome challenges concerning expanding antibiotic resistances. PMID:21601510

  9. Priorities for antibiotic resistance surveillance in Europe

    DEFF Research Database (Denmark)

    Fluit, A. C.; van der Bruggen, J. T.; Aarestrup, Frank Møller;

    2006-01-01

    Antibiotic resistance is an increasing global problem. Surveillance studies are needed to monitor resistance development, to guide local empirical therapy, and to implement timely and adequate countermeasures. To achieve this, surveillance studies must have standardised methodologies, be longitud......Antibiotic resistance is an increasing global problem. Surveillance studies are needed to monitor resistance development, to guide local empirical therapy, and to implement timely and adequate countermeasures. To achieve this, surveillance studies must have standardised methodologies...... to the various reservoirs of antibiotic-resistant bacteria, such as hospitalised patients, nursing homes, the community, animals and food. Two studies that could serve as examples of tailored programmes are the European Antimicrobial Resistance Surveillance System (EARSS), which collects resistance data during...... of antibiotic resistance....

  10. Incidence, microbiological profile of nosocomial infections, and their antibiotic resistance patterns in a high volume Cardiac Surgical Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Sahu

    2016-01-01

    Full Text Available Background: Nosocomial infections (NIs in the postoperative period not only increase morbidity and mortality, but also impose a significant economic burden on the health care infrastructure. This retrospective study was undertaken to (a evaluate the incidence, characteristics, risk factors and outcomes of NIs and (b identify common microorganisms responsible for infection and their antibiotic resistance profile in our Cardiac Surgical Intensive Care Unit (CSICU. Patients and Methods: After ethics committee approval, the CSICU records of all patients who underwent cardiovascular surgery between January 2013 and December 2014 were reviewed retrospectively. The incidence of NI, distribution of NI sites, types of microorganisms and their antibiotic resistance, length of CSICU stay, and patient-outcome were determined. Results: Three hundred and nineteen of 6864 patients (4.6% developed NI after cardiac surgery. Lower respiratory tract infections (LRTIs accounted for most of the infections (44.2% followed by surgical-site infection (SSI, 11.6%, bloodstream infection (BSI, 7.5%, urinary tract infection (UTI, 6.9% and infections from combined sources (29.8%. Acinetobacter, Klebsiella, Escherichia coli, and Staphylococcus were the most frequent pathogens isolated in patients with LRTI, BSI, UTI, and SSI, respectively. The Gram-negative bacteria isolated from different sources were found to be highly resistant to commonly used antibiotics. Conclusion: The incidence of NI and sepsis-related mortality, in our CSICU, was 4.6% and 1.9%, respectively. Lower respiratory tract was the most common site of infection and Gram-negative bacilli, the most common pathogens after cardiac surgery. Antibiotic resistance was maximum with Acinetobacter spp.

  11. Antibiotic Resistance in Childhood with Pneumococcal Infection

    OpenAIRE

    Ali Gunes

    2013-01-01

    Aim: Resistance to antibiotics is better. Between should not be in capitals. Antibiotics resistant has been increasing in pneumococci that cause serious diseases such as pneumonia, meningitis in recent years. The resistance rates vary between geographic regions. In this study, we aimed to determine antibiotic resistance rates in pneumococcal infections in our region. Material and Method: This study included 31 pneumococcal strains isolated from blood, CSF and urine samples of patients with me...

  12. Coping with antibiotic resistance: contributions from genomics

    OpenAIRE

    Rossolini, Gian Maria; Thaller, Maria Cristina

    2010-01-01

    Antibiotic resistance is a public health issue of global dimensions with a significant impact on morbidity, mortality and healthcare-associated costs. The problem has recently been worsened by the steady increase in multiresistant strains and by the restriction of antibiotic discovery and development programs. Recent advances in the field of bacterial genomics will further current knowledge on antibiotic resistance and help to tackle the problem. Bacterial genomics and transcriptomics can inf...

  13. A study on device-related infections with special reference to biofilm production and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Monil Singhai

    2012-01-01

    Full Text Available Background: Indwelling medical devices (IMDs in critical patients are vulnerable to colonization by biofilm producing bacteria. Complex characteristics of bacterial biofilms promote antibiotic resistance, leading to the emergence of resistant device-related infections (DRI, which pose new challenges in their management. Materials and Methods : The study was done on 135 hospitalized (Intensive care units pediatric patients with IMDs (intravascular catheter, urinary catheter, and endotracheal tube to determine the device-specific infection rates. Biofilm formations were demonstrated by the tube method and by scanning electron microscopy (SEM. Bacteria in biofilms were identified by the standard conventional methods and tested for antibiotic resistance. We also detected the presence of extended spectrum β-lactamases (ESβLs, particularly, blaCTX-M, in gram-negative isolates. Results: The rates of biofilm-based catheter-related blood stream infections (CRBSI, catheter-associated urinary tract infections (CAUTI, and Ventilator Associated Pneumonia (VAP, in our study, were 10.4, 26.6, and 20%. Biofilm formation by the tube method correlated well with the SEM findings. A majority of infections were caused by Klebsiella pneumoniae followed by Staphylococcal biofilms. A high percentage (85.7%, 95% confidence interval 64.5 to 95.8% of biofilm producing bacterial isolates, causing infection, were multidrug resistant. Many biofilm producing gram-negative isolates were ESβLs producers, and a majority particularly harbored blaCTX-M, among the ESβLs genotypes. Conclusion: The incidence of resistant device-related infections, predominantly caused by biofilm producing bacteria, is rising. The tube method is an effective screening method to test biofilm production, where sophisticated microscopy facilities are not available. The varying resistance pattern of organisms isolated in our setup, emphasizes the importance of studying the pattern of infection in

  14. Assessing Antibiotic Resistance of Staphyloccocus: Students Use Their Own Microbial Flora To Explore Antibiotic Resistance.

    Science.gov (United States)

    Omoto, Charlotte K.; Malm, Kirstin

    2003-01-01

    Describes a microbiology laboratory experiment in which students test their own microbial flora of Staphylococcus for antibiotic resistance. Provides directions on how to conduct the experiment. (YDS)

  15. Gram-negative folliculitis. A rare problem or is it underdiagnosed? Case report and literature review

    Directory of Open Access Journals (Sweden)

    Sierra-Téllez Daniela, Ponce-Olivera Rosa María, Tirado-Sánchez Andrés

    2011-07-01

    Full Text Available AbstractGram-negative folliculitis may be the result of prolonged antibacterial treatments in patients with acne and rosacea. It is caused by alteration of facial skin flora and the nasal mucous, a decrease of Gram-positive bacteria and a proliferation of Gram-negative bacteria (for example Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens, Klebsiella sp. and Proteus mirabilis. It should be considered in patients with acne who have not had a clinical improvement after 3-6 months of treatment with tetracyclines. The disease is underestimated, probably because bacteriological studies are rarely requested and the increased use of oral isotretinoin for acne management. One of the most effective treatments for Gram-negative folliculitis is oral isotretinoin (0.5-1 mg / kg / day for 4-5 months. We report the case of Gram negative folliculitis successfully treated with oral isotretinoin.

  16. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria.

    Science.gov (United States)

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Daniels, Dwayne; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50  μ L leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties.

  17. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L. on Two Gram-Negative and Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Bipul Biswas

    2013-01-01

    Full Text Available Aim. To determine the antimicrobial potential of guava (Psidium guajava leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water. The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties.

  18. Nanoemulsion Therapy for Burn Wounds Is Effective as a Topical Antimicrobial Against Gram-Negative and Gram-Positive Bacteria.

    Science.gov (United States)

    Dolgachev, Vladislav A; Ciotti, Susan M; Eisma, Rone; Gracon, Stephen; Wilkinson, J Erby; Baker, James R; Hemmila, Mark R

    2016-01-01

    The aim of this study is to investigate the antimicrobial efficacy of two different nanoemulsion (NE) formulations against Gram-positive and Gram-negative bacteria in an in vivo rodent scald burn model. Male Sprague-Dawley rats were anesthetized and received a partial-thickness scald burn. Eight hours after burn injury, the wound was inoculated with 1 × 10(8) colony-forming units of Pseudomonas aeruginosa or Staphylococcus aureus. Treatment groups consisted of two different NE formulations (NB-201 and NB-402), NE vehicle, or saline. Topical application of the treatment was performed at 16 and 24 hours after burn injury. Animals were killed 32 hours after burn injury, and skin samples were obtained for quantitative wound culture and determination of dermal inflammation markers. In a separate set of experiments, burn wound progression was measured histologically after 72 hours of treatment. Both NE formulations (NB-201 and NB-402) significantly reduced burn wound infections with either P. aeruginosa or S. aureus and decreased median bacterial counts at least three logs when compared with animals with saline applications (p wound as measured by myeloperoxidase (MPO) assay and histopathology (p wound progression 72 hours after injury. Topically applied NB-201 and NB-402 are effective in decreasing Gram-positive and Gram-negative bacteria growth in burn wounds, reducing inflammation, and abrogating burn wound progression. PMID:26182074

  19. GRAPHENE OXIDE AS ANTIMICROBIAL AGAINST TWO GRAM-POSITIVE AND TWO GRAM-NEGATIVE BACTERIA IN ADDITION TO ONE FUNGUS

    Directory of Open Access Journals (Sweden)

    Roda F. Al-Thani

    2014-01-01

    Full Text Available Graphene based materials have wide potential applications in biology, biomedical, agriculture environmental and biotechnology. Graphene Oxide (GO is one of those materials and has a promising substance as antimicrobial agents. GO in this study was prepared by a modified Hummers method and was characterized by different techniques for confirmation of formation of GO. To study the antimicrobial activities of GO, it was tested against these microorganisms, one eukaryotic fungus (Candida albicans, C. albicans two Gram negative bacteria (Escherichia coli (E. coli ATCC 41570 and Pseudomonas aeruginosa (P. aeruginosa ATCC 25619 and two Gram positive bacteria (Streptococcus faecalis (S. faecalis ATCC 19433 and Staphylococcus aureus (S. aureus ATCC 11632. Anti-microbial activity of GO was detected by spectrophotometer as indirect method to measure the growth and viable cell count as direct method. Readings were taken at successive incubated times. Results revealed that GO has antibacterial and anti-fungal activity against microorganisms used in this study. In conculosion the developed GO exhibit excellent antimicrobial property and GO affects more on Gram positive bacteria than Gram negative bacteria and fungi.

  20. Prevalence and risk factors of Gram-negative bacilli causing blood stream infection in patients with malignancy

    Science.gov (United States)

    Al-Otaibi, Fawzia E.; Bukhari, Elham E.; Badr, Mona; Alrabiaa, Abdulkarim A.

    2016-01-01

    Objectives: To evaluate the epidemiology, risk factors, and antibiotic resistance of Gram negative bacteria (GNB) in patients with hematologic or solid organ malignancies. Methods: This is a retrospective study of 61 episodes of GNB bacteremia occurring in 56 patients with malignancy admitted to the Oncology Units in King Khalid University Hospital, Riyadh. Kingdom of Saudi Arabia during the period from January 2013 to October 2015. Data were retrieved from the computerized database of the microbiology laboratory and the patient’s medical records. Results: Hematological malignancies accounted for 30 (54%) and solid tumors accounted for 26 (46%). The most common hematological malignancies were leukemia 23 (77%), followed by lymphoma 6 (20%). Among solid tumors, colorectal cancer 9 (34.6) and breast cancer 6 (23%) were the most common. The most predominant pathogen was Escherichia coli (E. coli) (29.5%) followed by Acinetobacter baumannii (A. baumannii) (18%). The extended-spectrum beta-lactamases producers rate of E. coli and Klebsiella pneumonia was (34.6%). Imipenem resistance among Pseudomonas aeruginosa/A. baumannii was high (52.4%). The multi-resistant organisms rate was (43.5%). Risk factors associated with the bacteremia were ICU admission (32.1%), post-surgery (23.2%), and placement of central line (21.4%). The overall 30-day mortality rate of the studied population was high (32.1%). Conclusion: In light of the high resistant rate among the GNB isolated from malignancy patients from our institution, careful selection of antimicrobial treatment based on antimicrobial susceptibility testing is recommended. PMID:27570854

  1. Enhanced uptake of antibiotic resistance genes in the presence of nanoalumina.

    Science.gov (United States)

    Ding, Chengshi; Pan, Jie; Jin, Min; Yang, Dong; Shen, Zhiqiang; Wang, Jingfeng; Zhang, Bin; Liu, Weili; Fu, Jialun; Guo, Xuan; Wang, Daning; Chen, Zhaoli; Yin, Jing; Qiu, Zhigang; Li, Junwen

    2016-10-01

    Nanomaterial pollution and the spread of antibiotic resistance genes (ARGs) are global public health and environmental concerns. Whether nanomaterials could aid the transfer of ARGs released from dead bacteria into live bacteria to cause spread of ARGs is still unknown. Here, we demonstrated that nano-Al2O3 could significantly promote plasmid-mediated ARGs transformation into Gram-negative Escherichia coli strains and into Gram-positive Staphylococcus aureus; however, bulk Al2O3 did not have this effect. Under suitable conditions, 7.4 × 10(6) transformants of E. coli and 2.9 × 10(5) transformants of S. aureus were obtained from 100 ng of a pBR322-based plasmid when bacteria were treated with nano-Al2O3. Nanoparticles concentrations, plasmid concentrations, bacterial concentrations, interaction time between the nanomaterial and bacterial cells and the vortexing time affected the transformation efficiency. We also explored the mechanisms underlying this phenomenon. Using fluorescence in situ hybridization and scanning electron microscopy, we found that nano-Al2O3 damaged the cell membrane to produce pores, through which plasmid could enter bacterial cells. Results from reactive oxygen species (ROS) assays, genome-wide expression microarray profiling and quantitative real-time polymerase chain reactions suggested that intracellular ROS damaged the cell membrane, and that an SOS response promoted plasmid transformation. Our results indicated the environmental and health risk resulting from nanomaterials helping sensitive bacteria to obtain antibiotic resistance. PMID:26946995

  2. Bacteriophage therapy for membrane biofouling in membrane bioreactors and antibiotic-resistant bacterial biofilms.

    Science.gov (United States)

    Bhattacharjee, Ananda Shankar; Choi, Jeongdong; Motlagh, Amir Mohaghegh; Mukherji, Sachiyo T; Goel, Ramesh

    2015-08-01

    To demonstrate elimination of bacterial biofilm on membranes to represent wastewater treatment as well as biofilm formed by antibiotic-resistant bacterial (ARB) to signify medical application, an antibiotic-resistant bacterium and its lytic bacteriophage were isolated from a full-scale wastewater treatment plant. Based on gram staining and complete 16 S rDNA sequencing, the isolated bacterium showed a more than 99% homology with Delftia tsuruhatensis, a gram-negative bacterium belonging to β-proteobacteria. The Delftia lytic phage's draft genome revealed the phage to be an N4-like phage with 59.7% G + C content. No transfer RNAs were detected for the phage suggesting that the phage is highly adapted to its host Delftia tsuruhatensis ARB-1 with regard to codon usage, and does not require additional tRNAs of its own. The gene annotation of the Delftia lytic phage found three different components of RNA polymerase (RNAP) in the genome, which is a typical characteristic of N4-like phages. The lytic phage specific to D. tsuruhatensis ARB-1 could successfully remove the biofilm formed by it on a glass slide. The water flux through the membrane of a prototype lab-scale membrane bioreactor decreased from 47 L/h m(2) to ∼15 L/h m(2) over 4 days due to a biofilm formed by D. tsuruhatensis ARB-1. However, the flux increased to 70% of the original after the lytic phage application. Overall, this research demonstrated phage therapy's great potential to solve the problem of membrane biofouling, as well as the problems posed by pathogenic biofilms in external wounds and on medical instruments.

  3. Multi-antibiotic resistant bacteria in frozen food (ready to cook food) of animal origin sold in Dhaka, Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Fouzia Sultana; Kamrunnahar; Hafsa Afroz; Afroz Jahan; Md Fakruddin; Suvamoy Datta

    2014-01-01

    Objective: To investigate the bacterial load and antibiotic resistance pattern of bacterial isolates obtained from (ready to cook) frozen food samples of animal origin in Dhaka, Bangladesh. Methods: A total of 20 samples of frozen ready to cook food of animal origin were purchased from different separate grocery stores in Dhaka, Bangladesh. Bacteria were isolated and identified based on the basis of biochemical properties. Results: A total of 57 isolates has been isolated from 20 samples, of them 35.08% were Gram positive and 64.92% were Gram negative organisms. Highest percentages of isolated organisms were Staphylococcocus spp. (24.56%), Alcaligene spp. (17.54%), Klebshiella spp. (12.28%) and the lowest percentages of organisms were Enterococcus spp., Actinobacillus spp. and Proteus spp. Antibiogram results clearly showed that levofloxacin and imipenem were the most effective drug against the isolates. The less effective antibiotics were chloramphenicol and nalidixic acid and resistance was highest against ciprofloxacin. The most contaminated food was chicken nuggets. Conclusions: This type of frozen food contaminated with multi-antibiotic resistant microorganisms can be potential vehicles for transmitting food-borne diseases.

  4. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study

    Directory of Open Access Journals (Sweden)

    Azam A

    2012-12-01

    Full Text Available Ameer Azam,1,2 Arham S Ahmed,2 Mohammad Oves,3 Mohammad S Khan,3 Sami S Habib,1 Adnan Memic11Centre of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia; 2Centre of Excellence in Materials Science (Nanomaterials, 3Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, IndiaBackground: Nanomaterials have unique properties compared to their bulk counterparts. For this reason, nanotechnology has attracted a great deal of attention from the scientific community. Metal oxide nanomaterials like ZnO and CuO have been used industrially for several purposes, including cosmetics, paints, plastics, and textiles. A common feature that these nanoparticles exhibit is their antimicrobial behavior against pathogenic bacteria. In this report, we demonstrate the antimicrobial activity of ZnO, CuO, and Fe2O3 nanoparticles against Gram-positive and Gram-negative bacteria.Methods and results: Nanosized particles of three metal oxides (ZnO, CuO, and Fe2O3 were synthesized by a sol–gel combustion route and characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and transmission electron microscopy techniques. X-ray diffraction results confirmed the single-phase formation of all three nanomaterials. The particle sizes were observed to be 18, 22, and 28 nm for ZnO, CuO, and Fe2O3, respectively. We used these nanomaterials to evaluate their antibacterial activity against both Gram-negative (Escherichia coli and Pseudomonas aeruginosa and Gram-positive (Staphylococcus aureus and Bacillus subtilis bacteria.Conclusion: Among the three metal oxide nanomaterials, ZnO showed greatest antimicrobial activity against both Gram-positive and Gram-negative bacteria used in this study. It was observed that ZnO nanoparticles have excellent bactericidal potential, while Fe2O3 nanoparticles exhibited the least bactericidal activity. The order of antibacterial activity was demonstrated to be the following: ZnO > CuO > Fe2O3

  5. Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria

    NARCIS (Netherlands)

    Gottenbos, B; Grijpma, DW; van der Mei, HC; Feijen, J; Busscher, HJ

    2001-01-01

    The infection of biomaterials is determined by an interplay of adhesion and surface growth of the infecting organisms. In this study, the antimicrobial effects on adhering bacteria of a positively charged poly(methacrylate) surface ( potential +12 mV) were compared with those of negatively charged p

  6. Rapid diagnosis of gram negative pneumonia by assay of endotoxin in bronchoalveolar lavage fluid.

    Science.gov (United States)

    Pugin, J; Auckenthaler, R; Delaspre, O; van Gessel, E; Suter, P M

    1992-01-01

    BACKGROUND: Diagnosis of ventilator associated pneumonia can be made by quantitative cultures of bronchoalveolar lavage fluid or of protected specimen brushings, though cultures require 24-48 hours to provide results. In 80% of cases aerobic Gram negative bacteria are the cause. METHODS: A rapid diagnostic method of assessing the endotoxin content of lavage fluid by Limulus assay is described. Forty samples of lavage fluid were obtained from patients with multiple trauma requiring mechanical ventilation for a prolonged period. Pneumonia was diagnosed on the basis of clinical, radiological, and bacteriological findings, including quantitative cultures of lavage fluid. RESULTS: A relation was observed between the concentration of endotoxin in lavage fluid and the quantity of Gram negative bacteria. The median endotoxin content of lavage fluid in Gram negative bacterial pneumonia was 15 endotoxin units (EU)/ml; the range observed in individual patients was 6 to > 150 EU/ml. In patients with pneumonia due to Gram positive cocci and in non-infected patients the median endotoxin level was 0.17 (range < or = 0.06 to 2) EU/ml. An endotoxin level greater than or equal to 6 EU/ml distinguished patients with Gram negative bacterial pneumonia from colonised patients and from those with pneumonia due to Gram positive cocci. CONCLUSION: The measurement of endotoxin in lavage fluid is a rapid (less than two hours) and accurate diagnostic method. It should allow specific and early treatment of Gram negative bacterial pneumonia. PMID:1412100

  7. Nosocomial Gram-negative bacteremia in intensive care: epidemiology, antimicrobial susceptibilities, and outcomes

    Directory of Open Access Journals (Sweden)

    Wendy Irene Sligl

    2015-08-01

    Conclusions: ICU-acquired Gram-negative bacteremia is associated with high mortality. Resistance to ciprofloxacin, piperacillin/tazobactam, and carbapenems was common. Coronary artery disease, immune suppression, and inadequate empiric antimicrobial therapy were independently associated with increased mortality.

  8. Epidemiology and molecular characterization of multidrug-resistant Gram-negative bacteria in Southeast Asia

    OpenAIRE

    Suwantarat, Nuntra; Carroll, Karen C.

    2016-01-01

    Background Multidrug-resistant Gram-negative bacteria (MDRGN), including extended-spectrum β-lactamases (ESBLs) and multidrug-resistant glucose-nonfermenting Gram-negative bacilli (nonfermenters), have emerged and spread throughout Southeast Asia. Methods We reviewed and summarized current critical knowledge on the epidemiology and molecular characterization of MDRGN in Southeast Asia by PubMed searches for publications prior to 10 March 2016 with the term related to “MDRGN definition” combin...

  9. Effects of Food Additives on Susceptibility of Gram Negative Bacteria Derived from Dry-Fermented Sausage

    OpenAIRE

    DORJ, Serjmyadag; SHIMADA, Kenichiro; SEKIKAWA, Mitsuo; 島田, 謙一郎; 関川, 三男

    2009-01-01

    This study examined the effects of food additives on gram-negative bacteria. The food additives used included synthetic antioxidants (butylated hydroxyanisole, BHA, and butylated hydroxytoluene, BHT), a curing agent and lactic acid with or without a cell-free supernatant (CFS) containing antimicrobial compounds of Lactobacillus sakei D-1001. The gram-negative bacteria were selected from dry-fermented sausages and cultured with different food additives for 18 h in nutrient broth, and then anot...

  10. Rational design of a plasmid origin that replicates efficiently in both gram-positive and gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Anton V Bryksin

    Full Text Available BACKGROUND: Most plasmids replicate only within a particular genus or family. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe an engineered high copy number expression vector, pBAV1K-T5, that produces varying quantities of active reporter proteins in Escherichia coli, Acinetobacter baylyi ADP1, Agrobacterium tumefaciens, (all gram-negative, Streptococcus pneumoniae, Leifsonia shinshuensis, Peanibacillus sp. S18-36 and Bacillus subtilis (gram-positive. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate the efficiency of pBAV1K-T5 replication in different bacterial species, thereby facilitating the study of proteins that don't fold well in E. coli and pathogens not amenable to existing genetic tools.

  11. Antibiotic resistance genes in the environment

    Directory of Open Access Journals (Sweden)

    Jianqiang Su

    2013-07-01

    Full Text Available Antibiotic resistance and its spread in bacteria are topics of great importance in global research. In this paper, we review recent progress in understanding sources, dissemination, distribution and discovery of novel antibiotics resistance genes (ARGs in the environment. Bacteria exhibiting intrinsic resistance and antibiotic resistant bacteria in feces from humans and animals are the major sources of ARGs occurring in the environment. A variety of novel ARGs have been discovered using functional metagenomics. Recently, the long-term overuse of antibotics in drug therapy and animal husbandry has led to an increase in diversity and abundance of ARGs, causing the environmental dissemination of ARGs in aquatic water, sewage treatmentplants, rivers, sediment and soil. Future research should focus on dissemination mechanisms of ARGs, the discovery of novel ARGs and their resistant mechanisms, and the establishment of environmental risk assessment systems for ARGs.

  12. Bacteriophages Carrying Antibiotic Resistance Genes in Fecal Waste from Cattle, Pigs, and Poultry▿

    Science.gov (United States)

    Colomer-Lluch, Marta; Imamovic, Lejla; Jofre, Juan; Muniesa, Maite

    2011-01-01

    This study evaluates the occurrence of bacteriophages carrying antibiotic resistance genes in animal environments. blaTEM, blaCTX-M (clusters 1 and 9), and mecA were quantified by quantitative PCR in 71 phage DNA samples from pigs, poultry, and cattle fecal wastes. Densities of 3 to 4 log10 gene copies (GC) of blaTEM, 2 to 3 log10 GC of blaCTX-M, and 1 to 3 log10 GC of mecA per milliliter or gram of sample were detected, suggesting that bacteriophages can be environmental vectors for the horizontal transfer of antibiotic resistance genes. PMID:21807968

  13. Prevalence of Gram Negative Bacteria in Diabetic Foot -A Clinico-Microbiological Study

    Directory of Open Access Journals (Sweden)

    G.S.Banashankari

    2012-07-01

    Full Text Available Aim and Objective: To determine the bacterial spectrum in diabetic foot lesions and analyze the antibiotic susceptibility pattern of the isolated bacteria. Methods and Methodology: Tissue samples/discharge/pus/ were cultured from 202 patients admitted for the treatment of diabetic foot infections. Specimens were tested by gram stain, culture and antibiotic sensitivity. Results: A total of 202 specimens were cultured, yielding 246 bacteria at the end of 18-24hrs. Gram negative aerobes were the most frequently isolated bacteria constituting 162 isolates (66%, followed by gram- positive aerobes 78 isolates (32%. Enterobacteriaceae group and P. aeruginosa strains were largely susceptible to imipenem (100%, piperacillin-tazobactam, ceftazidime, aminoglycosides, and ciprofloxacin. More than 70% of staphylococcus aureus was sensitive to methicillin. Cefoperazone + sulbactum showed about 67% sensitivity, while ciprofloxacin and amikacin were only 23% and 44% sensitive. MRSA was isolated in 20 cases (47% of S.aureus and Methicillin resistant coagulase negative staphylococcus in 2 cases (15% of coagulase negative staphylococcus. Methicillin resistant organisms were sensitive to vancomycin (95%. Conclusion: Diabetic foot infections are predominantly due to gram positive bacteria like Staphylococcus aureus or polymicrobial. There is a growing trend of isolating gram negative bacteria in these naïve lesions of the diabetic foot. The need for adequate gram negative antibacterial coverage at the commencement of diabetic foot therapy is essential to prevent and treat limb/life threatening infections.

  14. [Modification of antibiotic resistance in microbial symbiosis].

    Science.gov (United States)

    Aznabaeva, L M; Usviatsov, B Ia; Bukharin, O V

    2010-01-01

    In antibiotic therapy it is necessary to use drugs active against the pathogen in its association with the host normal microflora. The aim of the study was to investigate modification of antibiotic resistance under conditions of the pathogen association with the representatives of the host normal microflora and to develop the microbiological criteria for determining effectiveness of antibacterials. Modification of microbial antibiotic resistance was investigated in 408 associations. Various changes in the antibiotic resistance of the strains were revealed: synergism, antagonism and indifference. On the basis of the results it was concluded that in the choice of the antibiotic active against Staphylococcus aureus and Streptococcus pyogenes the preference should be given to oxacillin, gentamicin and levomycetin, since the resistance of the pathogens to these antibiotics under the association conditions did not increase, which could contribute to their destruction, whereas the resistance of the normoflora increased or did not change, which was important for its retention in the biocenosis. The data on changeability of the antibiotic resistance of the microbial strains under the association conditions made it possible to develop microbiological criteria for determining effectiveness of antibiotics in the treatment of inflammatory diseases of microbial etiology (RF Patent No. 2231554). PMID:21033469

  15. Influence of population density on antibiotic resistance

    NARCIS (Netherlands)

    Bruinsma, N; Hutchinson, JM; van den Bogaard, AE; Giamarellou, H; Degener, J; Stobberingh, EE

    2003-01-01

    Antibiotic consumption and population density as a measure of crowding in the community were related to the prevalence of antibiotic resistance of three cities in three different countries: St Johns in Newfoundland (Canada), Athens in Greece and Groningen in The Netherlands. Antibiotic consumption w

  16. Antibiotic resistance: a physicist’s view

    Science.gov (United States)

    Allen, Rosalind; Waclaw, Bartłomiej

    2016-08-01

    The problem of antibiotic resistance poses challenges across many disciplines. One such challenge is to understand the fundamental science of how antibiotics work, and how resistance to them can emerge. This is an area where physicists can make important contributions. Here, we highlight cases where this is already happening, and suggest directions for further physics involvement in antimicrobial research.

  17. A genomic update on clostridial phylogeny: Gram-negative spore-formers and other misplaced clostridia

    OpenAIRE

    Yutin, Natalya; Michael Y. Galperin

    2013-01-01

    The class Clostridia in the phylum Firmicutes (formerly low-G+C Gram-positive bacteria) includes diverse bacteria of medical, environmental, and biotechnological importance. The Selenomonas-Megasphaera-Sporomusa branch, which unifies members of the Firmicutes with Gram-negative-type cell envelopes, was recently moved from Clostridia to a separate class Negativicutes. However, draft genome sequences of the spore-forming members of the Negativicutes revealed typically clostridial sets of sporul...

  18. Rapid discrimination of Gram-positive and Gram-negative bacteria in liquid samples by using NaOH-sodium dodecyl sulfate solution and flow cytometry.

    Directory of Open Access Journals (Sweden)

    Atsushi Wada

    Full Text Available BACKGROUND: For precise diagnosis of urinary tract infections (UTI, and selection of the appropriate prescriptions for their treatment, we explored a simple and rapid method of discriminating gram-positive and gram-negative bacteria in liquid samples. METHODOLOGY/PRINCIPAL FINDINGS: We employed the NaOH-sodium dodecyl sulfate (SDS solution conventionally used for plasmid extraction from Escherichia coli and the automated urine particle analyzer UF-1000i (Sysmex Corporation for our novel method. The NaOH-SDS solution was used to determine differences in the cell wall structures between gram-positive and gram-negative bacteria, since the tolerance to such chemicals reflects the thickness and structural differences of bacterial cell walls. The UF-1000i instrument was used as a quantitative bacterial counter. We found that gram-negative bacteria, including E. coli, in liquid culture could easily be lysed by direct addition of equal volumes of NaOH-SDS solution. In contrast, Enterococcus faecalis, which is a gram-positive bacterium, could not be completely lysed by the solution. We then optimized the reaction time of the NaOH-SDS treatment at room temperature by using 3 gram-positive and 4 gram-negative bacterial strains and determined that the optimum reaction time was 5 min. Finally, in order to evaluate the generalizability of this method, we treated 8 gram-positive strains and 8 gram-negative strains, or 4 gram-positive and 4 gram-negative strains incubated in voluntary urine from healthy volunteers in the same way and demonstrated that all the gram-positive bacteria were discriminated quantitatively from gram negative bacteria using this method. CONCLUSIONS/SIGNIFICANCE: Using our new method, we could easily discriminate gram-positive and gram-negative bacteria in liquid culture media within 10 min. This simple and rapid method may be useful for determining the treatment course of patients with UTIs, especially for those without a prior history

  19. Antimicrobial activity of cationic gemini surfactant containing an oxycarbonyl group in the lipophilic portion against gram-positive and gram-negative microorganisms.

    Science.gov (United States)

    Tatsumi, Taiga; Imai, Yoshitane; Kawaguchi, Kakuhiro; Miyano, Naoko; Ikeda, Isao

    2014-01-01

    We evaluated the antimicrobial activities of a cationic Gemini surfactant, trans-1,4-bis[2-(alkanoyloxy)ethyldimethylammonio]-2-butene dichloride [II-m-2(t-butene)] and its derivatives against Gram-positive and Gram-negative microorganisms. The II-m-2(t-butene) compound was previously shown to have good surface activity and biodegradability. A dodecanoyloxy derivative (m = 12) of II-m-2(t-butene) showed excellent antimicrobial activity against Gram-positive Streptococcus aureus [minimum inhibitory concentration (MIC): 7.8 μg/mL] and Gram-negative Escherichia coli (MIC: 31.2 μg/mL). PMID:24420061

  20. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers.

    Science.gov (United States)

    Lam, Shu J; O'Brien-Simpson, Neil M; Pantarat, Namfon; Sulistio, Adrian; Wong, Edgar H H; Chen, Yu-Yen; Lenzo, Jason C; Holden, James A; Blencowe, Anton; Reynolds, Eric C; Qiao, Greg G

    2016-01-01

    With the recent emergence of reports on resistant Gram-negative 'superbugs', infections caused by multidrug-resistant (MDR) Gram-negative bacteria have been named as one of the most urgent global health threats due to the lack of effective and biocompatible drugs. Here, we show that a class of antimicrobial agents, termed 'structurally nanoengineered antimicrobial peptide polymers' (SNAPPs) exhibit sub-μM activity against all Gram-negative bacteria tested, including ESKAPE and colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. SNAPPs are highly effective in combating CMDR Acinetobacter baumannii infections in vivo, the first example of a synthetic antimicrobial polymer with CMDR Gram-negative pathogen efficacy. Furthermore, we did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. Comprehensive analyses using a range of microscopy and (bio)assay techniques revealed that the antimicrobial activity of SNAPPs proceeds via a multimodal mechanism of bacterial cell death by outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane and induction of the apoptotic-like death pathway, possibly accounting for why we did not observe resistance to SNAPPs in CMDR bacteria. Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria. PMID:27617798

  1. Growth ability of Gram negative bacteria in free-living amoebae.

    Science.gov (United States)

    Zeybek, Zuhal; Binay, Ali Rıza

    2014-11-01

    When bacteria and free-living amoebae (FLAs) live both in natural waters and man-made aquatic systems, they constantly interact with each other. Some bacteria can survive and grow within FLAs. Therefore, it has recently been thought that FLAs play an important role in spreading pathogenic bacteria in aquatic systems. In this study we investigated the intracellular growing ability of 7 different Gram-negative bacteria (Pseudomonas fluorescens, Pseudomonas putida, Pasteurella pneumotropica, Aeromonas salmonicida, Legionella pneumophila serogroup 1, L. pneumophila serogroup 3, L. pneumophila serogroup 6) in four different FLA isolates (A1-A4). Among these, four bacterial isolates (P. fluorescens, P.putida, P.pneumotropica, A.salmonicida) and two free-living amoebae isolates (A3, A4) were isolated from the tap water in our city (Istanbul). It was found that 4 different Gram-negative bacteria could grow in A1, 2 different Gram-negative bacteria could grow in A2, 4 different Gram-negative bacteria could grow in A3, 1 Gram-negative bacterium could grow in A4. In conclusion, we think that this ability of growth could vary according to the characteristics of both bacteria and FLA isolates. Also, other factors such as environmental temperature, bacterial concentration, and extended incubation period may play a role in these interactions. This situation can be clarified with future studies.

  2. Outcome of infections due to pandrug-resistant (PDR Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Bliziotis Ioannis A

    2005-04-01

    Full Text Available Abstract Background The increasing problem of infections due to multidrug-resistant Gram-negative bacteria has led to re-use of polymyxins in several countries. However, there are already clinical isolates of Gram-negative bacteria that are resistant to all available antibiotics, including polymyxins. Methods We present a case series of patients with infections due to pathogens resistant to all antimicrobial agents tested, including polymyxins. An isolate was defined as pandrug-resistant (PDR if it exhibited resistance to all 7 anti-pseudomonal antimicrobial agents, i.e. antipseudomonal penicillins, cephalosporins, carbapenems, monobactams, quinolones, aminoglycosides, and polymyxins. Results Clinical cure of the infection due to pandrug-resistant (PDR Gram-negative bacteria, namely Pseudomonas aeruginosa or Klebsiella pneumoniae was observed in 4 out of 6 patients with combination of colistin and beta lactam antibiotics. Conclusion Colistin, in combination with beta lactam antibiotics, may be a useful agent for the management of pandrug-resistant Gram-negative bacterial infections. The re-use of polymyxins, an old class of antibiotics, should be done with caution in an attempt to delay the rate of development of pandrug-resistant Gram-negative bacterial infections.

  3. Design, synthesis and biological evaluation of monobactams as antibacterial agents against gram-negative bacteria.

    Science.gov (United States)

    Fu, Hai-Gen; Hu, Xin-Xin; Li, Cong-Ran; Li, Ying-Hong; Wang, Yan-Xiang; Jiang, Jian-Dong; Bi, Chong-Wen; Tang, Sheng; You, Xue-Fu; Song, Dan-Qing

    2016-03-01

    A series of monobactam derivatives were prepared and evaluated for their antibacterial activities against susceptible and resistant Gram-negative strains, taking Aztreonam and BAL30072 as the leads. Six conjugates (12a-f) bearing PIH-like siderophore moieties were created to enhance the bactericidal activities against Gram-negative bacteria based on Trojan Horse strategy, and all of them displayed potencies against susceptible Gram-negative strains with MIC ≤ 8 μg/mL. SAR revealed that the polar substituents on the oxime side chain were beneficial for activities against resistant Gram-negative bacteria. Compounds 19c and 33a-b exhibited the promising potencies against ESBLs-producing E. coli and Klebsiella pneumoniae with MICs ranging from 2 μg/mL to 8 μg/mL. These results offered powerful information for further strategic optimization in search of the antibacterial candidates against MDR Gram-negative bacteria. PMID:26827160

  4. Distribution of multiple antibiotic resistant Vibrio spp across Palk Bay

    Digital Repository Service at National Institute of Oceanography (India)

    Sneha, K.G.; Anas, A.; Jayalakshmy, K.V.; Jasmin, C.; VipinDas, P.V.; Pai, S.S.; Pappu, S.; Nair, M.; Muraleedharan, K.R.; Sudheesh, K.; Nair, S.

    Presence of multiple antibiotic resistant microorganisms in marine systems is increasingly a focus of concern as they pose potential health risk to humans and animals. The present study reports the distribution, diversity, antibiotic resistance...

  5. Antibiotic-Resistant Bacteria Detected in Sewage Spill

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_160031.html Antibiotic-Resistant Bacteria Detected in Sewage Spill 'People need to be ... News) -- Sewer line breaks can release antibiotic-resistant bacteria that pose a public health threat, a new ...

  6. [Antimicrobial therapy in severe infections with multidrug-resistant Gram-negative bacterias].

    Science.gov (United States)

    Duszyńska, Wiesława

    2010-01-01

    Multidrug-resistant Gram-negative bacteria pose a serious and rapidly emerging threat to patients in healthcare settings, and are especially prevalent and problematic in intensive therapy units. Recently, the emergence of pandrug-resistance in Gram-negative bacteria poses additional concerns. This review examines the clinical impact and epidemiology of multidrug-resistant Gram-negative bacteria as a cause of increased morbidity and mortality among ITU patients. Beta-lactamases, cephalosporinases and carbapenemases play the most important role in resistance to antibiotics. Despite the tendency to increased resistance, carbapenems administered by continuous infusion remain the most effective drugs in severe sepsis. Drug concentration monitoring, albeit rarely used in practice, is necessary to ensure an effective therapeutic effect.

  7. STUDY ON SURGICAL SITE INFECTIONS CAUSED BY ESBL PRODUCING GRAM NEGATIVE BACTERIA

    Directory of Open Access Journals (Sweden)

    Rambabu

    2015-09-01

    Full Text Available Surgical site infections have been a major problem, because of the emergence of drug resistant bacteria, in particular B - lactamase producing bacteria. Extended spectrum beta lactamase producing gram negative organisms pose a great challenge in treatment o f SSI present study is aimed at determining multiple drug resistance in gram negative bacteria & to find out ESBL producers, in correlation with treatment outcome. A total of 120 wound infected cases were studied. Staphylococcus aureus was predominant bact erium - 20.Among gram negative bacteria, Pseudomonas species is predominant (14 followed by Escherichia coli (13 , Klebsiella species (12 , Proteus (9 Citrobacter (4 Providencia (2 & Acinetobacter species (2 . Out of 56 gramnegative bacteria isolated, 20 were i dentified as ESBL producers, which was statistically significant. Delay in wound healing correlated with infection by ESBL producers, which alarms the need of abstinence from antibiotic abuse

  8. [Antimicrobial therapy in severe infections with multidrug-resistant Gram-negative bacterias].

    Science.gov (United States)

    Duszyńska, Wiesława

    2010-01-01

    Multidrug-resistant Gram-negative bacteria pose a serious and rapidly emerging threat to patients in healthcare settings, and are especially prevalent and problematic in intensive therapy units. Recently, the emergence of pandrug-resistance in Gram-negative bacteria poses additional concerns. This review examines the clinical impact and epidemiology of multidrug-resistant Gram-negative bacteria as a cause of increased morbidity and mortality among ITU patients. Beta-lactamases, cephalosporinases and carbapenemases play the most important role in resistance to antibiotics. Despite the tendency to increased resistance, carbapenems administered by continuous infusion remain the most effective drugs in severe sepsis. Drug concentration monitoring, albeit rarely used in practice, is necessary to ensure an effective therapeutic effect. PMID:21413423

  9. Detection of the common resistance genes in Gram-negative bacteria using gene chip technology

    Directory of Open Access Journals (Sweden)

    C Ting

    2013-01-01

    Full Text Available Objective: To design a resistance gene detection chip that could, in parallel, detect common clinical drug resistance genes of Gram-negative bacteria. Materials and Methods: Seventy clinically significant Gram-negative bacilli (Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, Pseudomonas aeruginosa, Acinetobacter baumannii were collected. According to the known resistance gene sequences, we designed and synthesized primers and probes, which were used to prepare resistance gene detection chips, and finally we hybridized and scanned the gene detection chips. Results: The results between the gene chip and polymerase chain reaction (PCR were compared. The rate was consistently 100% in the eight kinds of resistance genes tested (TEM, SHV, CTX-M, DHA, CIT, VIM, KPC, OXA-23. One strain of Pseudomonas aeruginosa had the IMP, but it was not found by gene chip. Conclusion: The design of Gram-negative bacteria-resistant gene detection chip had better application value.

  10. Silver-doped manganese dioxide and trioxide nanoparticles inhibit both gram positive and gram negative pathogenic bacteria.

    Science.gov (United States)

    Kunkalekar, R K; Prabhu, M S; Naik, M M; Salker, A V

    2014-01-01

    Palladium, ruthenium and silver-doped MnO2 and silver doped Mn2O3 nanoparticles were synthesized by simple co-precipitation technique. SEM-TEM analysis revealed the nano-size of these synthesized samples. XPS data illustrates that Mn is present in 4+ and 3+ oxidation states in MnO2 and Mn2O3 respectively. Thermal analysis gave significant evidence for the phase changes with increasing temperature. Antibacterial activity of these synthesized nanoparticles on three Gram positive bacterial cultures (Staphylococcus aureus ATCC 6538, Streptococcus epidermis ATCC 12228, Bacillus subtilis ATCC 6633) and three Gram negative cultures (Escherichia coli ATCC 8739, Salmonella abony NCTC 6017 and Klebsiella pneumoniae ATCC 1003) was investigated using a disc diffusion method and live/dead assay. Only Ag-doped MnO2 and Ag-doped Mn2O3 nanoparticles showed antibacterial property against all six-test bacteria but Ag-doped MnO2 was found to be more effective than Ag-doped Mn2O3. PMID:24140741

  11. Platelets augment respiratory burst in neutrophils activated by selected species of gram-positive or gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Kamila Pytel

    2008-12-01

    Full Text Available Neutrophils and platelets circulate in blood system and play important physiological roles as part of immunological system. Neutrophils are the first line of host defense against various intruders, and platelets are satellite cells cooperating with other components of defense system. Recent studies report about the cooperation among these types of cells. We analyzed the effect of platelets on oxygen burst in neutrophils triggered by Staphylococcus aureus and Escherichia coli bacteria in vitro. The effect of platelets on oxygen burst in neutrophils was measured by luminol enhanced chemiluminescence. Opsonized and non-opsonized bacteria were used as activators. Activation of neutrophils with live non-opsonized and opsonized bacteria in the presence of platelets increased the oxygen burst as compared to the same system without platelets. The gram-positive bacteria (Staphylococcus aureus were causing higher activation than gram-negative bacteria (Escherichia coli. This work demonstrate that platelets potentate the response of neutrophils augmenting their respiratory burst in vitro when triggered by bacteria.

  12. Biocompatible Fe3O4 Increases the Efficacy of Amoxicillin Delivery against Gram-Positive and Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Alexandru Mihai Grumezescu

    2014-04-01

    Full Text Available This paper reports the synthesis and characterization of amoxicillin- functionalized magnetite nanostructures (Fe3O4@AMO, revealing and discussing several biomedical applications of these nanomaterials. Our results proved that 10 nm Fe3O4@AMO nanoparticles does not alter the normal cell cycle progression of cultured diploid cells, and an in vivo murine model confirms that the nanostructures disperse through the host body and tend to localize in particular sites and organs. The nanoparticles were found clustered especially in the lungs, kidneys and spleen, next to the blood vessels at this level, while being totally absent in the brain and liver, suggesting that they are circulated through the blood flow and have low toxicity. Fe3O4@AMO has the ability to be easily circulated through the body and optimizations may be done so these nanostructures cluster to a specific target region. Functionalized magnetite nanostructures proved a great antimicrobial effect, being active against both the Gram positive pathogen S. aureus and the Gram negative pathogen E. coli. The fabricated nanostructures significantly reduced the minimum inhibitory concentration (MIC of the active drug. This result has a great practical relevance, since the functionalized nanostructures may be used for decreasing the therapeutic doses which usually manifest great severe side effects, when administrated in high doses. Fe3O4@AMO represents also a suitable approach for the development of new alternative strategies for improving the activity of therapeutic agents by targeted delivery and controlled release.

  13. Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Matyar, Fatih [Cukurova University, Faculty of Education, Department of Science and Technology Education, 01330 Balcali, Adana (Turkey)], E-mail: fmatyar@cu.edu.tr; Kaya, Aysenur; Dincer, Sadik [Cukurova University, Faculty of Science and Letters, Department of Biology, 01330 Balcali, Adana (Turkey)

    2008-12-15

    The aim of the present study was to determine the level of antibiotic resistance patterns and distribution of heavy metal resistance of bacterial isolates from seawater, sediment and shrimps, and to determine if there is a relationship between antibiotic and heavy metal resistance. We undertook studies in 2007 in the industrially polluted Iskenderun Bay, on the south coast of Turkey. The resistance of 236 Gram-negative bacterial isolates (49 from seawater, 90 from sediment and 97 from shrimp) to 16 different antibiotics, and to 5 heavy metals, was investigated by agar diffusion and agar dilution methods, respectively. A total of 31 species of bacteria were isolated: the most common strains isolated from all samples were Escherichia coli (11.4%), Aeromonas hydrophila (9.7%) and Stenotrophomonas maltophilia (9.3%). There was a high incidence of resistance to ampicillin (93.2%), streptomycin (90.2%) and cefazolin (81.3%), and a low incidence of resistance to imipenem (16.5%), meropenem (13.9%) and cefepime (8.0%). Some 56.8% of all bacteria isolated from seawater, sediment and shrimp were resistant to 7 or more antibiotics. Most isolates showed tolerance to different concentrations of heavy metals, and minimal inhibition concentrations ranged from 12.5 {mu}g/ml to > 3200 {mu}g/ml. The bacteria from seawater, sediment and shrimp showed high resistance to cadmium of 69.4%, 88.9%, and 81.1% respectively, and low resistance to manganese of 2%, 6.7% and 11.3% respectively. The seawater and sediment isolates which were metal resistant also showed a high resistance to three antibiotics: streptomycin, ampicillin and trimethoprim-sulphamethoxazole. In contrast, the shrimp isolates which were metal resistant were resistant to four antibiotics: cefazolin, nitrofurantoin, cefuroxime and ampicillin. Our results show that Iskenderun Bay has a significant proportion of antibiotic and heavy metal resistant Gram-negative bacteria, and these bacteria constitute a potential risk for

  14. Multidrug resistant Gram-negative bacilli in lower respiratory tract infections.

    Directory of Open Access Journals (Sweden)

    Shashidhar Vishwanath

    2013-12-01

    Full Text Available Lower respiratory tract infections are among important causes of morbidity and mortality for all age groups. The emergence of multidrug resistant Gram-negative bacilli is an issue of increasing concern.A retrospective study including respiratory specimens (sputum and BAL was conducted in our tertiary care centre. Samples were processed for microscopy, culture and susceptibility testing following standard methods. Multidrug resistant Gram-negative bacilli causing lower respiratory tract infections were studied for their causation of disease. The effect of appropriate treatment on clinical outcome was observed.A total of 472 Gram-negative pathogens were isolated from sputum and broncho-alveolar lavage fluid specimens during the study period. Among these Gram-negative pathogens 175 (37% were found to be multidrug resistant. Klebsiella pneumoniae 85 (48.6% and Acinetobacter spp. 59 (33.7% were the predominant multidrug resistant Gram-negative bacilli isolated. Based on clinico-microbiological correlation, 138 (78.9% multidrug resistant isolates were found to be pathogenic and the rest 37 (21.1% were considered as colonizers. After initiating appropriate antibiotic therapy, clinical improvement was seen in 110 (79.7% patients. In the patients who showed improvement, amikacin (34.3% and cefoperazone-sulbactum (21.8% were found to be the most effective drugs.A large majority of the isolated multidrug resistant Gram-negative bacilli were found to be pathogenic. Regular surveillance which directs appropriate empirical therapy; and good clinic-microbiological workup of each case of lower respiratory tract infection can reduce the morbidity and mortality associated with multidrug resistant organisms.

  15. Prevalence of Multidrug Resistant Extended-Spectrum Beta-Lactamase Producing Gram-Negative Bacteria in Neonatal Sepsis

    Directory of Open Access Journals (Sweden)

    Ali Peirovifar

    2014-02-01

    Full Text Available Objectives: Neonatal sepsis with extended-spectrum beta-lactamase (ESBL producing microorganisms is recognized increasingly in recent years. ESBL can be produced by various bacterial strains. This study was conducted to determine the prevalence of ESBL producing pathogens in neonatal sepsis and its impact on clinical outcome. Materials and Methods: A study was carried out from Jan 2012 to Jan 2013 in a referral university hospital. All neonates who had diagnosed as sepsis were enrolled in this study. Blood cultures were processed using the automated BACTEC 9120 system. Antibiotic resistance and beta-lactamase production of bacterial isolates was tested. All patients were followed till discharge. Results: One hundred three neonates with gestation age 36.7±3.2 weeks were enrolled in this study and 56 cases (54% were boys. The most common isolated gram negative pathogens were Klebsiella pneumoniae, Acinetobacter species, and Pseudomonas aeruginosa. The rate for beta-lactamase production were 97.7% in Klebsiella pneumoniae , 81.3% in Acinetobacter, 85.7% in E. coli, 53.3% in Pseudomonas aeruginosa and 100% in Serratia. Thirty eight (35.9% neonates were dead, that 34 of them were beta-lactamase producers. The mean duration of hospitalization were longer in patients infected with beta-lactamase producers (30.2±20.5 vs. 22.8±16.6 days P=0.05 and ESBL producing strains (29.13±20.39 vs. 19±9.84 P=0.05. ESBL production rate were determined 95.5% and 86.7% in Klebsiella pneumoniae by combined disk test (CDT and double disk synergy test (DDST method, respectively. These methods were positive for ESBL production in 78.6% and 64.3% of E. coli isolates, respectively. Conclusion: in our study, the high rate of beta-lactamase and ESBL production were determined for common isolated organisms in neonatal sepsis. Infection with ESBL producing pathogens was associated with longer hospital stay. CDT method was detected more ESBL producing pathogens than DDST

  16. Resistance in gram-negative bacilli in a cardiac intensive care unit in India: Risk factors and outcome

    Directory of Open Access Journals (Sweden)

    Pawar Mandakini

    2008-01-01

    Full Text Available The objective of this study was to compare the risk factors and outcome of patients with preexisting resistant gram-negative bacilli (GNB with those who develop sensitive GNB in the cardiac intensive care unit (ICU. Of the 3161 patients ( n = 3,161 admitted to the ICU during the study period, 130 (4.11% developed health care-associated infections (HAIs with GNB and were included in the cohort study. Pseudomonas aeruginosa (37.8% was the most common organism isolated followed by Klebsiella species (24.2%, E. coli (22.0%, Enterobacter species (6.1%, Stenotrophomonas maltophilia (5.7%, Acinetobacter species (1.3%, Serratia marcescens (0.8%, Weeksella virosa (0.4% and Burkholderia cepacia (0.4%. Univariate analysis revealed that the following variables were significantly associated with the antibiotic-resistant GNB: females ( P = 0.018, re-exploration ( P = 0.004, valve surgery ( P = 0.003, duration of central venous catheter ( P < 0.001, duration of mechanical ventilation ( P < 0.001, duration of intra-aortic balloon counter-pulsation ( P = 0.018, duration of urinary catheter ( P < 0.001, total number of antibiotic exposures prior to the development of resistance ( P < 0.001, duration of antibiotic use prior to the development of resistance ( P = 0.014, acute physiology and age chronic health evaluation score (APACHE II, receipt of anti-pseudomonal penicillins (piperacillin-tazobactam ( P = 0.002 and carbapenems ( P < 0.001. On multivariate analysis, valve surgery (adjusted OR = 2.033; 95% CI = 1.052-3.928; P = 0.035, duration of mechanical ventilation (adjusted OR = 1.265; 95% CI = 1.055-1.517; P = 0.011 and total number of antibiotic exposure prior to the development of resistance (adjusted OR = 1.381; 95% CI = 1.030-1.853; P = 0.031 were identified as independent risk factors for HAIs in resistant GNB. The mortality rate in patients with resistant GNB was significantly higher than those with sensitive GNB (13.9% vs. 1.8%; P = 0.03. HAI with

  17. Azithromycin Synergizes with Cationic Antimicrobial Peptides to Exert Bactericidal and Therapeutic Activity Against Highly Multidrug-Resistant Gram-Negative Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Leo Lin

    2015-07-01

    Full Text Available Antibiotic resistance poses an increasingly grave threat to the public health. Of pressing concern, rapid spread of carbapenem-resistance among multidrug-resistant (MDR Gram-negative rods (GNR is associated with few treatment options and high mortality rates. Current antibiotic susceptibility testing guiding patient management is performed in a standardized manner, identifying minimum inhibitory concentrations (MIC in bacteriologic media, but ignoring host immune factors. Lacking activity in standard MIC testing, azithromycin (AZM, the most commonly prescribed antibiotic in the U.S., is never recommended for MDR GNR infection. Here we report a potent bactericidal action of AZM against MDR carbapenem-resistant isolates of Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. This pharmaceutical activity is associated with enhanced AZM cell penetration in eukaryotic tissue culture media and striking multi-log-fold synergies with host cathelicidin antimicrobial peptide LL-37 or the last line antibiotic colistin. Finally, AZM monotherapy exerts clear therapeutic effects in murine models of MDR GNR infection. Our results suggest that AZM, currently ignored as a treatment option, could benefit patients with MDR GNR infections, especially in combination with colistin.

  18. Epidemiology of antibiotic resistance in Burkina Faso

    Institute of Scientific and Technical Information of China (English)

    Simpore J; Zeba B; Karou D; Ilboudo D; Pignatelli S; Nacoulma OG; Musumeci S

    2008-01-01

    Burkina Faso (West Africa)is a tropical country with a high incidence of infectious diseases.The uncontrolled use of antibiotics against bacterial pathogens has given rise to the emergence of antibiotic resistance in this country.The aims of this study were.i)to determine the prevalences of the most important pathogenic bacteri-a,isolated in the town of Ouagadougou.ii)to identify the bacterial species which have acquired resistance as a result of antibiotic selection.iii)to compare antibiotic-resistances ofEscherichia coli isolated from stool cul-ture in the present study,with results obtained in 2002 from strains collected in the same structure in Burkina Faso.iv)to determine the trend of antibiotic resistance in Burkina Faso in order to give local advice on the most appropriate empiric antibiotic therapy.Six thousand two hundred and sixty four samples of blood,stools, urine,sputum,pus and vaginal secretion were collected and analyzed in Saint Camille Medical Center (SC-MC)laboratory from May 2001 to May 2006.Out of the 6264 samples tested no pathogen was identified in 1583 (25.31%),whilst 4681 (74.73%)were positive,with the incidence of the microrganisms isolated be-ing as follows:Escherichia coli 1291 (27.6%),Staphylococcus aureus 922 (19.7%),Salmonella spp 561 (12.0%),Streptococcus spp 499 (10.7%),Klebsiella spp 359 (7.7%),Shigella spp (6.3%),Acineto-bacter spp 266 (5.7%)and others 783 (16.7%).Among the isolated pathogens,the highest resistance was found to Amoxycillin:Proteus spp 95.6%,Escherichia coli 78.2%,Salmonella spp 62.2%,Shigella spp 73. 4% and Klebsiella spp 89.9%,followed by resistance to Ampicillin and cotrimoxazole.Comparing the preva-lence of antibiotic resistance of Escherichia coli from stool cultures isolated during 1999-2000 to that of 2001-2006,a significant reduction was found,which could be due to the improved use of antibiotics in recent years. The reduced antibiotic-resistance observed in pathogens isolated in Burkina Faso during this

  19. Quorum sensing signal-response systems in Gram-negative bacteria.

    Science.gov (United States)

    Papenfort, Kai; Bassler, Bonnie L

    2016-08-11

    Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal-response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host-microbial associations and antibacterial therapy. PMID:27510864

  20. Susceptibility of Multidrug-Resistant Gram-Negative Urine Isolates to Oral Antibiotics.

    Science.gov (United States)

    Hirsch, Elizabeth B; Zucchi, Paola C; Chen, Alice; Raux, Brian R; Kirby, James E; McCoy, Christopher; Eliopoulos, George M

    2016-05-01

    Increasing resistance among Gram-negative uropathogens limits treatment options, and susceptibility data for multidrug-resistant isolates are limited. We assessed the activity of five oral agents against 91 multidrug-resistant Gram-negative urine isolates that were collected from emergency department/hospitalized patients. Fosfomycin and nitrofurantoin were most active (>75% susceptibility). Susceptibilities to sulfamethoxazole-trimethoprim, ciprofloxacin, and ampicillin were ≤40%; empirical use of these agents likely provides inadequate coverage in areas with a high prevalence of multidrug-resistant uropathogens. PMID:26883704

  1. Quorum sensing signal-response systems in Gram-negative bacteria.

    Science.gov (United States)

    Papenfort, Kai; Bassler, Bonnie L

    2016-08-11

    Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal-response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host-microbial associations and antibacterial therapy.

  2. Genomic Microbial Epidemiology Is Needed to Comprehend the Global Problem of Antibiotic Resistance and to Improve Pathogen Diagnosis

    Science.gov (United States)

    Wyrsch, Ethan R.; Roy Chowdhury, Piklu; Chapman, Toni A.; Charles, Ian G.; Hammond, Jeffrey M.; Djordjevic, Steven P.

    2016-01-01

    Contamination of waste effluent from hospitals and intensive food animal production with antimicrobial residues is an immense global problem. Antimicrobial residues exert selection pressures that influence the acquisition of antimicrobial resistance and virulence genes in diverse microbial populations. Despite these concerns there is only a limited understanding of how antimicrobial residues contribute to the global problem of antimicrobial resistance. Furthermore, rapid detection of emerging bacterial pathogens and strains with resistance to more than one antibiotic class remains a challenge. A comprehensive, sequence-based genomic epidemiological surveillance model that captures essential microbial metadata is needed, both to improve surveillance for antimicrobial resistance and to monitor pathogen evolution. Escherichia coli is an important pathogen causing both intestinal [intestinal pathogenic E. coli (IPEC)] and extraintestinal [extraintestinal pathogenic E. coli (ExPEC)] disease in humans and food animals. ExPEC are the most frequently isolated Gram negative pathogen affecting human health, linked to food production practices and are often resistant to multiple antibiotics. Cattle are a known reservoir of IPEC but they are not recognized as a source of ExPEC that impact human or animal health. In contrast, poultry are a recognized source of multiple antibiotic resistant ExPEC, while swine have received comparatively less attention in this regard. Here, we review what is known about ExPEC in swine and how pig production contributes to the problem of antibiotic resistance. PMID:27379026

  3. Comparative activity of tigecycline and tetracycline on Gram-negative and Gram-positive bacteria revealed by a multicentre study in four North European countries

    DEFF Research Database (Denmark)

    Nilsson, Lennart E; Frimodt-Møller, Niels; Vaara, Martti;

    2011-01-01

    This study involves a multicentre surveillance of tigecycline and tetracycline activity against Gram-negative and Gram-positive bacteria from primary care centres (PCCs), general hospital wards (GHWs) and intensive care units (ICUs) in Denmark (n = 9), Finland (n = 10), Norway (n = 7) and Sweden (n...

  4. Higher order structure in the 3'-minor domain of small subunit ribosomal RNAs from a gram negative bacterium, a gram positive bacterium and a eukaryote

    DEFF Research Database (Denmark)

    Douthwaite, S; Christensen, A; Garrett, R A

    1983-01-01

    of additional higher order structure in the renatured free RNA. It can be concluded that a high level of conservation of higher order structure has occurred during the evolution of the gram negative and gram positive eubacteria and the eukaryote in both the double helical regions and the "unstructured" regions...

  5. Strategies for the use of bacteriocins in Gram-negative bacteria: relevance in food microbiology.

    Science.gov (United States)

    Prudêncio, Cláudia Vieira; Dos Santos, Miriam Teresinha; Vanetti, Maria Cristina Dantas

    2015-09-01

    Bacteriocins are ribosomally synthesized peptides that have bacteriostatic or bactericidal effects on other bacteria. The use of bacteriocins has emerged as an important strategy to increase food security and to minimize the incidence of foodborne diseases, due to its minimal impact on the nutritional and sensory properties of food products. Gram-negative bacteria are naturally resistant to the action of bacteriocins produced by Gram-positive bacteria, which are widely explored in foods. However, these microorganisms can be sensitized by mild treatments, such as the use of chelating agents, by treatment with plant essential oils or by physical treatments such as heating, freezing or high pressure processing. This sensitization is important in food microbiology, because most pathogens that cause foodborne diseases are Gram-negative bacteria. However, the effectiveness of these treatments is influenced by several factors, such as pH, temperature, the composition of the food and target microbiota. In this review, we comment on the main methods used for the sensitization of Gram-negative bacteria, especially Salmonella, to improve the action of bacteriocins produced by Gram-positive bacteria.

  6. Photodynamic inactivation of antibiotic-resistant pathogens

    International Nuclear Information System (INIS)

    Nowadays methicillin-resistant strain Staphylococcus aureus (MRSA) is one of the most widespread multiresistant bacteria. Photodynamic inactivation (PDI) of microorganisms by photosensitizers (PS) may be an effective and alternative therapeutic option against antibiotic resistant bacteria. The effectiveness of new PS cationic porphyrin Zn-TBut4PyP was tested on two strains of S. aureus (MRSA and methicillin-sensitive S. aureus). It is shown that Zn-TBut4PyP has high photodynamic activity against both strains

  7. Bacterial urinary tract infection in renal transplant recipients and their antibiotic resistance pattern: A four-year study.

    Directory of Open Access Journals (Sweden)

    Azar Dokht Khosravi

    2014-04-01

    Full Text Available Urinary tract infections (UTIs are the most common infections in renal transplant recipients and are considered a potential cause of bacteremia, sepsis, and affects graft outcomes. The aim of the present study was to determine the incidence of UTI among renal transplant recipients and investigation of antimicrobial susceptibility pattern of causative agents.In total, 1165 patients from March 2009 to December 2012, in transplant center of Golestan Hospital, Ahvaz, Iran, were investigated. Qualitative urine cultures were performed for all cases, causative microorganisms were identified and colony count was performed according to the standard protocol. Antibiotic susceptibility testing was then performed to determine the susceptibility pattern of recovered bacteria from confirmed UTIs.UTI was diagnosed in 391 patients(33.56%. Gram-negative bacteria were the most prevalent isolated microorganisms with E. coli (43.53%, followed by Enterobacter spp. (35.37% as the major organisms. Among Gram positives, Coagulase-negative Staphylococci was isolated from 6.8% of cases. The rate of resistance to all tested antibiotics was highest in Enterobacter spp., however the most common resistance were seen against cefixime, cephalotin, and cotrimoxazole in all tested gram negatives.the rate of UTIs among renal transplant recipients was noticeable in this study with high antibiotic resistance. Multi-resistant bacterial infections are potentially life-threatening emerging problem in renal transplantation. Prophylactic measures must be applied to patients at greater risk.

  8. Emergence and dissemination of antibiotic resistance: a global problem.

    Science.gov (United States)

    Choudhury, R; Panda, S; Singh, D V

    2012-01-01

    Antibiotic resistance is a major problem in clinical health settings. Interestingly the origin of many of antibiotic resistance mechanisms can be traced back to non-pathogenic environmental organisms. Important factors leading to the emergence and spread of antibiotic resistance include absence of regulation in the use of antibiotics, improper waste disposal and associated transmission of antibiotic resistance genes in the community through commensals. In this review, we discussed the impact of globalisation on the transmission of antibiotic resistance genes in bacteria through immigration and export/import of foodstuff. The significance of surveillance to define appropriate use of antibiotics in the clinic has been included as an important preventive measure. PMID:23183460

  9. Assessment of anaerobic bacterial diversity and its effects on anaerobic system stability and the occurrence of antibiotic resistance genes.

    Science.gov (United States)

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2016-05-01

    This study evaluated the link between anaerobic bacterial diversity and, the biodegradation of antibiotic combinations and assessed how amending antibiotic combination and increasing concentration of antibiotics in a stepwise fashion influences the development of resistance genes in anaerobic reactors. The biodegradation, sorption and occurrence of the known antibiotic resistance genes (ARGs) of erythromycin and tetracycline were investigated using the processes of UV-HPLC and qPCR analysis respectively. Ion Torrent sequencing was used to detect microbial community changes in response to the addition of antibiotics. The overall results indicated that changes in the structure of a microbial community lead to changes in biodegradation capacity, sorption of antibiotics combinations and occurrence of ARGs. The enhanced biodegradation efficiency appeared to generate variations in the structure of the bacterial community. The results suggested that controlling the ultimate Gram-negative bacterial community, especially Acinetobacter-related populations, may promote the successful biodegradation of antibiotic combinations and reduce the occurrence of ARGs. PMID:26897411

  10. Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action

    Directory of Open Access Journals (Sweden)

    Carlet Jean

    2012-02-01

    Full Text Available Abstract Resistance to antibiotics has increased dramatically over the past few years and has now reached a level that places future patients in real danger. Microorganisms such as Escherichia coli and Klebsiella pneumoniae, which are commensals and pathogens for humans and animals, have become increasingly resistant to third-generation cephalosporins. Moreover, in certain countries, they are also resistant to carbapenems and therefore susceptible only to tigecycline and colistin. Resistance is primarily attributed to the production of beta-lactamase genes located on mobile genetic elements, which facilitate their transfer between different species. In some rare cases, Gram-negative rods are resistant to virtually all known antibiotics. The causes are numerous, but the role of the overuse of antibiotics in both humans and animals is essential, as well as the transmission of these bacteria in both the hospital and the community, notably via the food chain, contaminated hands, and between animals and humans. In addition, there are very few new antibiotics in the pipeline, particularly for Gram-negative bacilli. The situation is slightly better for Gram-positive cocci as some potent and novel antibiotics have been made available in recent years. A strong and coordinated international programme is urgently needed. To meet this challenge, 70 internationally recognized experts met for a two-day meeting in June 2011 in Annecy (France and endorsed a global call to action ("The Pensières Antibiotic Resistance Call to Action". Bundles of measures that must be implemented simultaneously and worldwide are presented in this document. In particular, antibiotics, which represent a treasure for humanity, must be protected and considered as a special class of drugs.

  11. Colonization and resistance dynamics of gram-negative bacteria in patients during and after hospitalization.

    NARCIS (Netherlands)

    P.M.G. Filius (Margreet); I.C. Gyssens (Inge); I.M. Kershof (Irma); P.J. Roovers (Patty); A. Ott (Alewijn); A.G. Vulto (Arnold); H.A. Verbrugh (Henri); H.P. Endtz (Hubert)

    2005-01-01

    textabstractThe colonization and resistance dynamics of aerobic gram-negative bacteria in the intestinal and oropharyngeal microfloras of patients admitted to intensive care units (ICU) and general wards were investigated during and after hospitalization. A total of 3,316 specimens were obtained fro

  12. Pyridone Methylsulfone Hydroxamate LpxC Inhibitors for the Treatment of Serious Gram-Negative Infections

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Justin I.; Brown, Matthew F.; Reilly, Usa; Price, Loren M.; Abramite, Joseph A.; Arcari, Joel; Barham, Rose; Che, Ye; Chen, Jinshan Michael; Chung, Seung Won; Collantes, Elizabeth M.; Desbonnet, Charlene; Doroski, Matthew; Doty, Jonathan; Engtrakul, Juntyma J.; Harris, Thomas M.; Huband, Michael; Knafels, John D.; Leach, Karen L.; Liu, Shenping; Marfat, Anthony; McAllister, Laura; McElroy, Eric; Menard, Carol A.; Mitton-Fry, Mark; Mullins, Lisa; Noe, Mark C.; O’Donnell, John; Oliver, Robert; Penzien, Joseph; Plummer, Mark; Shanmugasundaram, Veerabahu; Thoma, Christy; Tomaras, Andrew P.; Uccello, Daniel P.; Vaz, Alfin; Wishka, Donn G. (Pfizer)

    2012-11-09

    The synthesis and biological activity of a new series of LpxC inhibitors represented by pyridone methylsulfone hydroxamate 2a is presented. Members of this series have improved solubility and free fraction when compared to compounds in the previously described biphenyl methylsulfone hydroxamate series, and they maintain superior Gram-negative antibacterial activity to comparator agents.

  13. Patterns of Ciprofloxacin-Resistant Gram-Negative Bacteria Colonization in Nursing Home Residents

    OpenAIRE

    Dommeti, Parimala; WANG, Linda; Flannery, Erika L; Symons, Kathleen; Mody, Lona

    2011-01-01

    We evaluated the prevalence of colonization with all gram-negative bacilli (GNB) and with ciprofloxacin-resistant GNB among nursing home residents with and without indwelling devices. We found that device presence increases the risk of colonization with all GNB and with ciprofloxacin-resistant GNB. Colonization with ciprofloxacin-resistant GNB increases with decreasing functional status.

  14. Antimicrobial resistance of fecal aerobic gram-negative bacilli in different age groups in a community.

    OpenAIRE

    Leistevuo, T; Leistevuo, J; Osterblad, M; Arvola, T. (Timo); Toivonen, P; Klaukka, T; Lehtonen, A; Huovinen, P.

    1996-01-01

    We measured the occurrence of antimicrobial resistance in fecal aerobic gram-negative bacilli by age in community subjects. For none of the eight antimicrobial agents studied were there any statistically significant differences in the carriage rates of resistance in different age groups. Bacterial resistance was common in all age groups, including the children, and occurred for all antimicrobial agents tested.

  15. IS26-Mediated Formation of Transposons Carrying Antibiotic Resistance Genes.

    Science.gov (United States)

    Harmer, Christopher J; Hall, Ruth M

    2016-01-01

    The IS26 transposase, Tnp26, catalyzes IS26 movement to a new site and deletion or inversion of adjacent DNA via a replicative route. The intramolecular deletion reaction produces a circular molecule consisting of a DNA segment and a single IS26, which we call a translocatable unit or TU. Recently, Tnp26 was shown to catalyze an additional intermolecular, conservative reaction between two preexisting copies of IS26 in different plasmids. Here, we have investigated the relative contributions of homologous recombination and Tnp26-catalyzed reactions to the generation of a transposon from a TU. Circular TUs containing the aphA1a kanamycin and neomycin resistance gene or the tet(D) tetracycline resistance determinant were generated in vitro and transformed into Escherichia coli recA cells carrying R388::IS26. The TU incorporated next to the IS26 in R388::IS26 forms a transposon with the insertion sequence (IS) in direct orientation. Introduction of a second TU produced regions containing both the aphA1a gene and the tet(D) determinant in either order but with only three copies of IS26. The integration reaction, which required a preexisting IS26, was precise and conservative and was 50-fold more efficient when both IS26 copies could produce an active Tnp26. When both ISs were inactivated by a frameshift in tnp26, TU incorporation was not detected in E. coli recA cells, but it did occur in E. coli recA (+) cells. However, the Tnp-catalyzed reaction was 100-fold more efficient than RecA-dependent homologous recombination. The ability of Tnp26 to function in either a replicative or conservative mode is likely to explain the prominence of IS26-bounded transposons in the resistance regions found in Gram-negative bacteria. IMPORTANCE In Gram-negative bacteria, IS26 recruits antibiotic resistance genes into the mobile gene pool by forming transposons carrying many different resistance genes. In addition to replicative transposition, IS26 was recently shown to use a novel

  16. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria.

    Science.gov (United States)

    Bennett, P M

    2008-03-01

    Bacteria have existed on Earth for three billion years or so and have become adept at protecting themselves against toxic chemicals. Antibiotics have been in clinical use for a little more than 6 decades. That antibiotic resistance is now a major clinical problem all over the world attests to the success and speed of bacterial adaptation. Mechanisms of antibiotic resistance in bacteria are varied and include target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Acquisition of genes needed to elaborate the various mechanisms is greatly aided by a variety of promiscuous gene transfer systems, such as bacterial conjugative plasmids, transposable elements and integron systems, that move genes from one DNA system to another and from one bacterial cell to another, not necessarily one related to the gene donor. Bacterial plasmids serve as the scaffold on which are assembled arrays of antibiotic resistance genes, by transposition (transposable elements and ISCR mediated transposition) and site-specific recombination mechanisms (integron gene cassettes).The evidence suggests that antibiotic resistance genes in human bacterial pathogens originate from a multitude of bacterial sources, indicating that the genomes of all bacteria can be considered as a single global gene pool into which most, if not all, bacteria can dip for genes necessary for survival. In terms of antibiotic resistance, plasmids serve a central role, as the vehicles for resistance gene capture and their subsequent dissemination. These various aspects of bacterial resistance to antibiotics will be explored in this presentation. PMID:18193080

  17. Inhibition of various gram-positive and gram-negative bacteria growth on selenium nanoparticle coated paper towels

    Directory of Open Access Journals (Sweden)

    Wang Q

    2015-04-01

    Full Text Available Qi Wang,1 Philip Larese-Casanova,2 Thomas J Webster3,41Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, USA; 2Department of Civil and Environmental Engineering, College of Engineering, Northeastern University, Boston, MA, USA; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA; 4Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi ArabiaAbstract: There are wide spread bacterial contamination issues on various paper products, such as paper towels hanging in sink splash zones or those used to clean surfaces, filter papers used in water and air purifying systems, and wrappings used in the food industry; such contamination may lead to the potential spread of bacteria and consequent severe health concerns. In this study, selenium nanoparticles were coated on normal paper towel surfaces through a quick precipitation method, introducing antibacterial properties to the paper towels in a healthy way. Their effectiveness at preventing biofilm formation was tested in bacterial assays involving Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus epidermidis. The results showed significant and continuous bacteria inhibition with about a 90% reduction from 24 to 72 hours for gram-positive bacteria including S. aureus and S. epidermidis. The selenium coated paper towels also showed significant inhibition of gram-negative bacteria like P. aeruginosa and E. coli growth at about 57% and 84%, respectively, after 72 hours of treatment. Therefore, this study established a promising selenium-based antibacterial strategy to prevent bacterial growth on paper products, which may lead to the avoidance of bacteria spreading and consequent severe health concerns.Keywords: selenium nanoparticles, paper towels, antibacterial

  18. Flow cytometric evaluation of physico-chemical impact on Gram-positive and Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Antje eFröhling

    2015-09-01

    Full Text Available Since heat sensitivity of fruits and vegetables limits the application of thermal inactivation processes, new emerging inactivation technologies have to be established to fulfil the requirements of food safety without affecting the produce quality. The efficiency of inactivation treatments has to be ensured and monitored. Monitoring of inactivation effects is commonly performed using traditional cultivation methods which have the disadvantage of the time span needed to obtain results.The aim of this study was to compare the inactivation effects of peracetic acid (PAA, ozonated water (O3 and cold atmospheric pressure plasma (CAPP on Gram-positive and Gram-negative bacteria using flow cytometric methods. E. coli cells were completely depolarized after treatment (15 s with 0.25 % PAA at 10 °C, and after treatment (10 s with 3.8 mg l-1 O3 at 12°C. The membrane potential of CAPP treated cells remained almost constant at an operating power of 20 W over a time period of 3 min, and subsequently decreased within 30 s of further treatment. Complete membrane permeabilization was observed after 10 s O3 treatment, but treatment with PAA and CAPP did not completely permeabilize the cells within 2 min and 4 min, respectively. Similar results were obtained for esterase activity. O3 inactivates cellular esterase but esterase activity was detected after 4 min CAPP treatment and 2 min PAA treatment. L. innocua cells and P. carotovorum cells were also permeabilized instantaneously by O3 treatment at concentrations of 3.8 ± 1 mg l-1. However, higher membrane permeabilization of L. innocua and P. carotovorum than of E. coli was observed at CAPP treatment of 20 W. The degree of bacterial damage due to the inactivation processes is highly dependent on treatment parameters as well as on treated bacteria. Important information regarding the inactivation mechanisms can be obtained by flow cytometric measurements and this enables the definition of critical process

  19. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Kwon, Deug-Nam; Kim, Jin-Hoi

    2014-07-01

    Silver nanoparticles (AgNPs) have been used as antibacterial, antifungal, antiviral, anti-inflammtory, and antiangiogenic due to its unique properties such as physical, chemical, and biological properties. The present study was aimed to investigate antibacterial and anti-biofilm activities of silver nanoparticles alone and in combination with conventional antibiotics against various human pathogenic bacteria. Here, we show that a simple, reliable, cost effective and green method for the synthesis of AgNPs by treating silver ions with leaf extract of Allophylus cobbe. The A. cobbe-mediated synthesis of AgNPs (AgNPs) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the antibacterial and anti-biofilm activity of antibiotics or AgNPs, or combinations of AgNPs with an antibiotic was evaluated using a series of assays: such as in vitro killing assay, disc diffusion assay, biofilm inhibition, and reactive oxygen species generation in Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus, and Streptococcus pneumonia. The results suggest that, in combination with antibiotics, there were significant antimicrobial and anti-biofilm effects at lowest concentration of AgNPs using a novel plant extract of A. cobbe, otherwise sublethal concentrations of the antibiotics. The significant enhancing effects were observed for ampicillin and vancomycin against Gram-negative and Gram-positive bacteria, respectively. These data suggest that combining antibiotics and biogenic AgNPs can be used therapeutically for the treatment of infectious diseases caused by bacteria. This study presented evidence of antibacterial and anti-biofilm effects of A. cobbe-mediated synthesis of AgNPs and their enhanced capacity against various human pathogenic bacteria. These results

  20. Intravenous colistin in the treatment of sepsis from multiresistant Gram-negative bacilli in critically ill patients

    OpenAIRE

    Markou, Nikolaos; Apostolakos, Haralampos; Koumoudiou, Christiana; Athanasiou, Maria; Koutsoukou, Alexandra; Alamanos, Ioannis; Gregorakos, Leonidas

    2003-01-01

    Introduction The increasing prevalence of multiresistant Gram-negative strains in intensive care units (ICUs) has recently rekindled interest in colistin, a bactericidal antibiotic that was used in the 1960s for treatment of infections caused by Gram-negative bacilli. We conducted the present observational study to evaluate the efficacy of intravenous colistin in the treatment of critically ill patients with sepsis caused by Gram-negative bacilli resistant to all other antibiotics. Patients a...

  1. Antimicrobial compounds targeting Gram-negative bacteria in food: Their mode of action and combinational effects

    DEFF Research Database (Denmark)

    Hyldgaard, Morten

    2015-01-01

    compromising food shelf-life or safety. Natural antimicrobial compounds have therefore gained increased interest as a label-friendly alternative that can be added directly to food products. Although natural antimicrobials constitute an interesting source of compounds, it is often not understood how...... projects concerning the efficiency of combining natural antimicrobial agents in vitro or in a food matrix. In the first project, the action mechanism behind the natural antimicrobial cationic biopolymer ε-poly-L-lysine was studied against the Gram-positive Listeria innocua and the Gram-negative Escherichia...

  2. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Roderick I. Mackie

    2013-07-01

    Full Text Available Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  3. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  4. COMPARATIVE ACTIVITY OF DORIPENEM, IMIPENEM AND MEROPENEM AGAINST GRAM NEGATIVE PATHOGENS: A PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Vipin Sam

    2016-06-01

    Full Text Available BACKGROUND AND OBJECTIVE Doripenem is a new parenteral carbapenems, which has beta-lactamase stability and is not inactivated by renal dehydropeptidases. Doripenem has a spectrum of activity similar to imipenem and ertapenem against Gram-positive cocci and similar to meropenem against Gram-negative pathogens. In this study, we summarize the activity of doripenem against Gram negative bacilli in comparison with other carbapenems (Imipenem, meropenem and select group of antimicrobial drugs by disk diffusion. SETTINGS AND DESIGN A retrospective study was conducted over a period of 3 months (December 2013 to February 2014 in the Department of Microbiology of a tertiary care hospital in Northern India. METHODS AND MATERIAL Gram negative bacillary isolates were subjected to antimicrobial susceptibility with the following antibiotics: imipenem, meropenem, doripenem, ceftazidime, ceftriaxone, amikacin, ciprofloxacin, piperacillin/tazobactam, and trimethoprimsulphamethoxazole by employing the Kirby-Bauer disk diffusion method. The results were interpreted as per CLSI guidelines. RESULTS A total of 498 isolates obtained from urine, skin and soft tissue specimens and lower respiratory specimens were included in the study. The most frequent Gram-negative bacilli isolated were E. coli (31.5%, Acinetobacter spp. (20.1%, Klebsiella spp. (19.5%, P. aeruginosa (16.7%, Enterobacter spp. (8.2%, Proteus spp. (3% and Citrobacter spp. (1%. The isolates showed highest rates of susceptibility to meropenem (65.5% followed by imipenem (63.7%, doripenem (55.8%, amikacin (53.4%, piperacillin/tazobactam (48.7%, trimethoprim-sulphamethoxazole (38.3%, ceftazidime (26.9%, ceftriaxone (23.9% and ciprofloxacin (25.3%. CONCLUSIONS In this study, the activity of doripenem was found to be lower than meropenem and imipenem against all the isolates tested. Further detailed evaluation of doripenem is required with in-vitro MIC studies and their correlation with clinical outcomes.

  5. Nosocomial Infections: Multicenter surveillance of antimicrobial resistance profile of Staphylococcus aureus and Gram negative rods isolated from blood and other sterile body fluids in Iran

    Directory of Open Access Journals (Sweden)

    Bahman Poorabbas

    2015-11-01

    Full Text Available Background and Objective: Antibiotic resistance is increasing, especially in healthcare-associated infections causing significant public health concerns worldwide. National information is required to make appropriate policies, update list of essential drugs for treatment, and evaluate the effects of intervention strategies. A nationwide surveillance of antimicrobial resistant bacteria in nosocomial infections was established in Iran in 2008, so that the data obtained through the surveillance would enable us to construct a database.Materials and Methods: Seven major teaching hospitals in Shiraz, Tabriz, Sari, Mashhad, Sanandaj, Ahwaz and Isfahan participated in this study. A total of 858 strains isolated from blood and other sterile body fluids were tested. Identification at the species level was performed with conventional biochemical methods and the API system. Susceptibility tests were done using disk diffusion method. The methicillin-resistance in S. aureus (MRSA was determined by the oxacillin agar screen plate and respective MIC values were assessed using the E-test strips. The confirmatory disk diffusion methods were applied for phenotypic identification of extended-spectrum β- lactamase (ESBL production for E. coli and K. pneumoniae, according to CLSI guidelines.Results: Cultivation and re-identification of the strains yielded 858 isolates, consisting of 224 S. aureus, 148 Klebsiellaspp., 105 Serratia spp., 146 E. coli, 67 Acinetobacter spp., 38 Enterobacter spp., 95 Pseudomonas spp., 71 P.aeruginosa.35 Stenotrophomonas sp., and 8 other organisms. MRSA was detected in 37.5% of the isolates. No vancomycin-resistant or vancomycin-intermediate resistant S. aureus was detected. With the exception of Acinetobacter and Stenotrophomonas, 85% of the Gram-negative isolates were found to be susceptible in vitro to imipenem. Overall, about 61% of K. pneumoniae and 35% of E. coli isolates were ESBL producing.Conclusion: Multidrug resistant isolates

  6. Bacteriophage biosensors for antibiotic-resistant bacteria.

    Science.gov (United States)

    Sorokulova, Irina; Olsen, Eric; Vodyanoy, Vitaly

    2014-03-01

    An increasing number of disease-causing bacteria are resistant to one or more anti-bacterial drugs utilized for therapy. Early and speedy detection of these pathogens is therefore very important. Traditional pathogen detection techniques, that include microbiological and biochemical assays are long and labor-intensive, while antibody or DNA-based methods require substantial sample preparation and purification. Biosensors based on bacteriophages have demonstrated remarkable potential to surmount these restrictions and to offer rapid, efficient and sensitive detection technique for antibiotic-resistant bacteria.

  7. NDM-1 (New Delhi metallo beta lactamase-1 producing Gram-negative bacilli: Emergence & clinical implications

    Directory of Open Access Journals (Sweden)

    Bashir Ahmad Fomda

    2014-01-01

    Full Text Available Backgound & objectives: Resistance to carbapenems in Gram-negative bacteria conferred by NDM-1 is a global health problem. We investigated the occurrence of NDM-1 in clinical isolates of Gram-negative bacilli in a tertiary care hospital in Kashmir valley, India. Methods: Gram-negative bacilli from different clinical isolates were included in the study. Antimicrobial susceptibility was performed by Kirby Bauer disk diffusion method and interpreted using Clinical Laboratory Standards Institute (CLSI guidelines. Isolates resistant to carbapenems were subjected to different phenotypic test such as modified Hodge test (MHT, boronic acid and oxacillin based MHT ( BA-MHT and OXA-MHT, combined disk test and minimum inhibitory concentration (MIC with imipenem and imipenem -EDTA for determination of class B metallo enzymes. Presence of blaNDM-1 gene was established by PCR and confirmed by sequencing. Results: Of the total 1625 Gram-negative isolates received, 100 were resistant to imipenem. Of the 100 isolates, 55 (55% were positive by modified Hodge test indicating carbapenemase production. Of the 100 isolates tested by MHT, BA-MHT and OXA-MHT, 29 (29% isolates belonged to Class A and 15 (15% to Class B, while 56 (56% isolates were negative. Of the 15 class B metallo beta lactamase producers, nine carried the blaNDM-1 gene. NDM-1 was found among Escherichia coli (2 isolates, Klebsiella pneumoniae (2 isolates, Citrobacter freundii (3 isolates, Acinetobacter spp (1 isolate, and one isolate of Pseudomonas aeruginosa. Isolates were resistant to all antibiotic tested except polymyxin B and tigecycline. Interpretation & conclusions: Our study showed the presence of clinical isolates expressing NDM-1 in Srinagar, Jammu & Kashmir, India. These isolates harbour plasmid mediated multiple drug resistant determinants and can disseminate easily across several unrelated genera. To halt their spread, early identification of these isolates is mandatory.

  8. LiF Reduces MICs of Antibiotics against Clinical Isolates of Gram-Positive and Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    H. C. Syed

    2012-01-01

    Full Text Available Antibiotic resistance is an ever-growing problem yet the development of new antibiotics has slowed to a trickle, giving rise to the use of combination therapy to eradicate infections. The purpose of this study was to evaluate the combined inhibitory effect of lithium fluoride (LiF and commonly used antimicrobials on the growth of the following bacteria: Enterococcus faecalis, Staphyloccoccus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, and Streptococcus pneumoniae. The in vitro activities of ceftazidime, sulfamethoxazole-trimethoprim, streptomycin, erythromycin, amoxicillin, and ciprofloxacin, doxycycline, alone or combined with LiF were performed by microdilution method. MICs were determined visually following 18–20 h of incubation at 37°C. We observed reduced MICs of antibiotics associated with LiF ranging from two-fold to sixteen-fold. The strongest decreases of MICs observed were for streptomycin and erythromycin associated with LiF against Acinetobacter baumannii and Streptococcus pneumoniae. An eight-fold reduction was recorded for streptomycin against S. pneumoniae whereas an eight-fold and a sixteen-fold reduction were obtained for erythromycin against A. baumannii and S. pneumoniae. This suggests that LiF exhibits a synergistic effect with a wide range of antibiotics and is indicative of its potential as an adjuvant in antibiotic therapy.

  9. Circulating Inflammatory Mediators during Start of Fever in Differential Diagnosis of Gram-Negative and Gram-Positive Infections in Leukopenic Rats

    OpenAIRE

    Tavares, Eva; Maldonado, Rosario; Ojeda, Maria L.; Francisco J Miñano

    2005-01-01

    Gram-negative and gram-positive infections have been considered the most important causes of morbidity and mortality in patients with leukopenia following chemotherapy. However, discrimination between bacterial infections and harmless fever episodes is difficult. Because classical inflammatory signs of infection are often absent and fever is frequently the only sign of infection, the aim of this study was to assess the significance of serum interleukin-6 (IL-6), IL-10, macrophage inflammatory...

  10. DMPD: Gram-negative endotoxin: an extraordinary lipid with profound effects oneukaryotic signal transduction. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1916089 Gram-negative endotoxin: an extraordinary lipid with profound effects oneuk...ep;5(12):2652-60. (.png) (.svg) (.html) (.csml) Show Gram-negative endotoxin: an extraordinary lipid with profound effects...tive endotoxin: an extraordinary lipid with profound effects oneukaryotic signal transduction. Authors Raetz

  11. Chlorhexidine resistance in a Gram-negative bacterium isolated from an aquatic source

    OpenAIRE

    Sekavec, Jeffrey G.; Moore, William T.; Gillock, Eric T.

    2013-01-01

    Aeromonas hydrophila is a Gram-negative bacterium of considerable importance in both clinical, especially nosocomial infections, and zoonotic respects, both aquatic and terrestrial infections. In addition to the ability to thrive in a wide range of conditions, A. hydrophila is resistant to numerous antibiotics and antimicrobials. In conjunction with Kansas State University and the Kansas Water Office, water samples from various locations within Kansas were screened for organisms resistant to ...

  12. Immunomodulatory role of leptin treatment in experimental sepsis caused by gram negative bacteria

    OpenAIRE

    Koca, Cemile; KAVAKLI, Havva ŞAHİN; ALICI, Özlem

    2011-01-01

    To investigate the effect of leptin treatment on circulating inflammatory cytokines and on tissue damage in experimental rat model of gram-negative sepsis. Materials and methods: Adult male Wistar rats, 28 in total, were randomly divided into 4 groups (n = 7): sham, leptin, sepsis, and sepsis group treated with leptin (sepsis+leptin). Sepsis was induced by intraperitoneal (ip) injection of 2 × 1010 CFU of Escherichia coli ATCC 25922. Leptin and sepsis+leptin groups received a single dose ip ...

  13. Prevalence of multiresistant gram-negative organisms in a tertiary hospital in Mwanza, Tanzania

    Directory of Open Access Journals (Sweden)

    Chakraborty Trinad

    2009-03-01

    Full Text Available Abstract Background Antimicrobial resistance is fast becoming a global concern with rapid increases in multidrug-resistant Gram negative organisms. The prevalence of extended spectrum beta-lactamase (ESBL-producing clinical isolates increases the burden on implementing infectious disease management in low socio-economic regions. As incidence can vary widely between regions, this study was done to determine resistance patterns of Gram-negative organisms at Bugando Medical Center, a tertiary hospital in Mwanza, Tanzania. Methods A total of 800 clinical samples (urine, wound swab, pus, blood, aspirate, sputum etc were processed over a period of 6 months. Gram-negative bacteria were identified using conventional in-house biochemical tests and susceptibility to common antibiotics done using disc diffusion methods. The disc approximation method was used to identify ESBL producers. Results A total of 377 Gram-negative bacteria (GNB recovered from 377 clinical specimens were analyzed of which 76.9% were Enterobacteriaceae. Among all GNB, 110/377 (29.2% were found to be ESBL producers. Species specific ESBLs rate among Klebsiella pneumoniae, Escherichia coli, Acinetobacter spp, Proteus spp and other enterobacteria were 63.7%, 24.4%, 17.7%, 6.4% and 27.9% respectively. A statistically significant higher number of inpatients 100/283 (35.3% compared to 10/94 (10.6% of outpatients had ESBL-producing organisms (p = 0.000023. Rates of resistances to gentamicin, tetracycline, sulphamethaxazole/trimethoprim and ciprofloxacin were significantly higher among ESBLs isolates than non-ESBL isolates (p = 0.000001. Conclusion ESBL producing organisms are common at BMC (Bugando Medical Center and pose a challenge to antibiotic therapy. Successful implementation of a routine detection of ESBL production is essential in designing appropriate antibiotic prescribing policies and infection control intervention programmes.

  14. Transformation of Actinomyces spp. by a gram-negative broad-host-range plasmid.

    OpenAIRE

    Yeung, M K; Kozelsky, C S

    1994-01-01

    The gram-negative broad-host-range vector pJRD215 was transferred by electroporation into strains of Actinomyces viscosus or Actinomyces naeslundii at efficiencies which ranged from 10(2) to 10(7) transformants per microgram of plasmid DNA. The Actinomyces transformants expressed pJRD215-encoded resistance to kanamycin and streptomycin. Moreover, the transforming plasmid DNA had not undergone any deletions or rearrangements, nor had it integrated into the genomes of these strains.

  15. In vitro activity of ciprofloxacin against aerobic gram-negative bacteria.

    OpenAIRE

    Rudin, J E; Norden, C W; Shinners, E M

    1984-01-01

    For 177 gram-negative isolates, the MICs for ciprofloxacin ranged from 0.02 microgram/ml (Escherichia coli) to 0.31 microgram/ml (Pseudomonas aeruginosa). In time-kill curves, ciprofloxacin at 8 X the MIC almost completely killed 10(6) CFU of P. aeruginosa by 24 h. Ciprofloxacin at 4 X the MIC allowed bacterial regrowth by 24 h, with development of partial resistance to ciprofloxacin.

  16. Antibiotic susceptibility patterns among respiratory isolates of Gram-negative bacilli in a Turkish university hospital

    OpenAIRE

    Gonlugur Ugur; Bakici Mustafa; Akkurt Ibrahim; Efeoglu Tanseli

    2004-01-01

    Abstract Background Gram-negative bacteria cause most nosocomial respiratory infections. At the University of Cumhuriyet, we examined 328 respiratory isolates of Enterobacteriaceae and Acinetobacter baumanii organisms in Sivas, Turkey over 3 years. We used disk diffusion or standardized microdilution to test the isolates against 18 antibiotics. Results We cultured organisms from sputum (54%), tracheal aspirate (25%), and bronchial lavage fluid (21%). The most common organisms were Klebsiella ...

  17. Small-Molecule Inhibitors of Gram-Negative Lipoprotein Trafficking Discovered by Phenotypic Screening

    OpenAIRE

    McLeod, Sarah M.; Fleming, Paul R.; MacCormack, Kathleen; McLaughlin, Robert E.; Whiteaker, James D.; Narita, Shin-ichiro; Mori, Makiko; Tokuda, Hajime; Miller, Alita A.

    2015-01-01

    In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Esch...

  18. A Novel Fluorescent Protein-Based Biosensor for Gram-Negative Bacteria

    OpenAIRE

    Goh, Yan Y.; Ho, Bow; Ding, Jeak L.

    2002-01-01

    Site-directed mutagenesis of enhanced green fluorescent protein (EGFP) based on rational computational design was performed to create a fluorescence-based biosensor for endotoxin and gram-negative bacteria. EGFP mutants (EGFPi) bearing one (G10) or two (G12) strands of endotoxin binding motifs were constructed and expressed in an Escherichia coli host. The EGFPi proteins were purified and tested for their efficacy as a novel fluorescent biosensor. After efficient removal of lipopolysaccharide...

  19. Antibiotic resistance: are we all doomed?

    Science.gov (United States)

    Collignon, P

    2015-11-01

    Antibiotic resistance is a growing and worrying problem associated with increased deaths and suffering for people. Overall, there are only two factors that drive antimicrobial resistance, and both can be controlled. These factors are the volumes of antimicrobials used and the spread of resistant micro-organisms and/or the genes encoding for resistance. The One Health concept is important if we want to understand better and control antimicrobial resistance. There are many things we can do to better control antimicrobial resistance. We need to prevent infections. We need to have better surveillance with good data on usage patterns and resistance patterns available across all sectors, both human and agriculture, locally and internationally. We need to act on these results when we see either inappropriate usage or resistance levels rising in bacteria that are of concern for people. We need to ensure that food and water sources do not spread multi-resistant micro-organisms or resistance genes. We need better approaches to restrict successfully what and how antibiotics are used in people. We need to restrict the use of 'critically important' antibiotics in food animals and the entry of these drugs into the environment. We need to ensure that 'One Health' concept is not just a buzz word but implemented. We need to look at all sectors and control not only antibiotic use but also the spread and development of antibiotic resistant bacteria - both locally and internationally. PMID:26563691

  20. Functional metagenomics for the investigation of antibiotic resistance

    OpenAIRE

    Mullany, Peter

    2014-01-01

    Antibiotic resistance is a major threat to human health and well-being. To effectively combat this problem we need to understand the range of different resistance genes that allow bacteria to resist antibiotics. To do this the whole microbiota needs to be investigated. As most bacteria cannot be cultivated in the laboratory, the reservoir of antibiotic resistance genes in the non-cultivatable majority remains relatively unexplored. Currently the only way to study antibiotic resistance in thes...

  1. Detection and Antibiotic Susceptibility Pattern of Biofilm Producing Gram Positive and Gram Negative Bacteria Isolated From a Tertiary Care Hospital of Pakistan

    Directory of Open Access Journals (Sweden)

    Iqbal, M.

    2011-01-01

    Full Text Available Microorganisms adhere to non-living material or living tissue, and form biofilms made up of extracellular polymers/slime. Biofilm-associated microorganisms behave differently from free-floating bacteria with respect to growth rates and ability to resist antimicrobial treatments and therefore pose a public health problem. The objective of this study is to detect the prevalence of biofilm producers among Gram positive and Gram negative bacteria isolated from clinical specimens, and to study their antimicrobial susceptibility pattern. The study was carried out from October 2009 to March 2010, at the Department of Microbiology, Army Medical College/ National University of Sciences and Technology (NUST, Rawalpindi, Pakistan. Clinical specimens were received from various wards of a tertiary care hospital. These were dealt by standard microbiological procedures. Gram positive and Gram negative bacteria isolated were subjected to biofilm detection by congo red agar method (CRA. Antimicrobial susceptibility testing of those isolates, which showed positive results (slime production, was done according to the Kirby-Bauer disc diffusion technique. A total of 150 isolates were tested for the production of biofilm/slime. Among them, 81 isolates showed positive results. From these 81, 51 were Gram positive and 30 were Gram negative. All the 81(54% slime producers showed reduced susceptibility to majority of antibiotics. Bacterial biofilms are an important virulence factor associated with chronic nosocomial infection. Detection of biofilm forming organisms can help in appropriate antibiotic choice.

  2. Risk factors for nosocomial bloodstream infection caused by multidrug resistant gram-negative bacilli in pediatrics

    Directory of Open Access Journals (Sweden)

    Mariana V. Arnoni

    2007-04-01

    Full Text Available The aim of this study was to identify the risk factors for nosocomial bloodstream infections by multidrug resistant Gram-negative bacilli. From November 2001 to December 2003, in the Pediatric Department of the Santa Casa de São Paulo, a retrospective case-control study was developed concerning patients who had nosocomial bloodstream infection caused by Gram-negative bacilli. Patients with multidrug resistant infections were designated as case patients, and control patients were those with an infection that did not meet the criteria for multidrug resistance. Previous use of central venous catheter and previous use of vancomycin plus third generation cephalosporins were associated to a higher chance of infections by multidrug resistant Gram-negative bacilli (Odds ratio - 5.8 and 5.2, respectively. Regarding sensitivity of the isolated agents, 47.8% were multidrug resistant, 54.2% were Klebsiella spp. ESBL producers and 36.4% were imipenem resistant Pseudomonas aeruginosa. The lethality rate was 36.9% in the studied cases and this rate was significantly higher in the group of patients with multidrug resistant infections (p=0.013. Risk factor identification as well as the knowledge of the susceptibility of the nosocomial infectious agents gave us the possibility to perform preventive and control strategies to reduce the costs and mortality related to these infections.

  3. Emergence of Pan-drug resistance amongst gram negative bacteria! The First case series from India

    Directory of Open Access Journals (Sweden)

    Abdul Ghafur

    2014-09-01

    Full Text Available Objective: Increasing prevalence of carbapenem resistant Gram negative bacteria is a serious clinical and public health challenge. Bacteria resistant to all available antibiotics (Pan Drug Resistance herald the onset of post antibiotics era. We hereby report clinical profile of 13 patients with pan drug resistant gram negative isolates. Methods:Retrospective analysis of 13 patients with pan drug resistant gram negative isolates over the last 18 months was done by medical records review. Identification of the isolates and susceptibility testing was done using VITEK auto analyzer in concordance with the corresponding CLSI guidelines. Results:Out of four patients with bacteremic isolates, three patients received colistin based combination therapy. Though two of these patients had microbiologic clearance, all the three died. Out of the 9 patients with non bacteremic isolates, 4 had infection and 5 had colonization. Three (out of four were treated with combination therapy including colistin and one patient received colistin monotherapy. All four patients had microbiological clearance. Three patients had clinical cure and were discharged. One patient later developed bacteremia and died. Conclusion:Infections, particularly blood stream with pan drug resistant organisms has a higher mortality. Urgent studies to reevaluate existing therapeutic options and research into new antibiotic molecules are the need of the hour. J Microbiol Infect Dis 2014; 4(3: 86-91

  4. Simple Method for Detection of Metallo – β–Lactamase Among Gram Negative Isolates

    Directory of Open Access Journals (Sweden)

    Agrawal R

    2015-10-01

    Full Text Available Background: Carbapenem resistance due to the production of metallo-β -lactamase (MBL in Gram-negative organism is an increasing public health problem. Aim: The purpose of this study is to detectMBL in Gram Negative bacterial isolates among Ventilator Associated Pneumonia patients. Materials and Methods: Phenotypic detection of MBL was done by three methods: 1.Modified Hodge Test (MHT 2.Combined disc test (CDT 3.Double Disc Synergy Test (DDST. Results: Out of 126 gram negative bacterial isolates, 80 (63.49% showed resistance to carbapenem group of drugs. Among them maximum resistance was shown by Acinetobacter baumanii (90.32%, followed by Klebseilla pneumoniae (45.7%, Pseudomonas aeruginosa (26%. Out of 80 isolates, 66 were positive for MBL by MHT, 64 by CDT and 61 were detected positive for MBL by DDST. Conclusion: MHT and CDT were found equally efficient method to detect MBL. Maximum MBL production was detected in Acinetobacter baumanii. Simple and accurate screening test is required to prevent the spread of nosocomial strain in hospitals.

  5. Gram-Negative Infections in Adult Intensive Care Units of Latin America and the Caribbean

    Directory of Open Access Journals (Sweden)

    Carlos M. Luna

    2014-01-01

    Full Text Available This review summarizes recent epidemiology of Gram-negative infections in selected countries from Latin American and Caribbean adult intensive care units (ICUs. A systematic search of the biomedical literature (PubMed was performed to identify articles published over the last decade. Where appropriate, data also were collected from the reference list of published articles, health departments of specific countries, and registries. Independent cohort data from all countries (Argentina, Brazil, Chile, Colombia, Cuba, Mexico, Trinidad and Tobago, and Venezuela signified a high rate of ICU infections (prevalence: Argentina, 24%; Brazil, 57%. Gram-negative pathogens, predominantly Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli, accounted for >50% of ICU infections, which were often complicated by the presence of multidrug-resistant strains and clonal outbreaks. Empirical use of antimicrobial agents was identified as a strong risk factor for resistance development and excessive mortality. Infection control strategies utilizing hygiene measures and antimicrobial stewardship programs reduced the rate of device-associated infections. To mitigate the poor health outcomes associated with infections by multidrug-resistant Gram-negative bacteria, urgent focus must be placed on infection control strategies and local surveillance programs.

  6. The growing threat of multidrug-resistant Gram-negative infections in patients with hematologic malignancies.

    Science.gov (United States)

    Baker, Thomas M; Satlin, Michael J

    2016-10-01

    Prolonged neutropenia and chemotherapy-induced mucositis render patients with hematologic malignancies highly vulnerable to Gram-negative bacteremia. Unfortunately, multidrug-resistant (MDR) Gram-negative bacteria are increasingly encountered globally, and current guidelines for empirical antibiotic coverage in these patients may not adequately treat these bacteria. This expansion of resistance, coupled with traditional culturing techniques requiring 2-4 days for bacterial identification and antimicrobial susceptibility results, have grave implications for these immunocompromised hosts. This review characterizes the epidemiology, risk factors, resistance mechanisms, recommended treatments, and outcomes of the MDR Gram-negative bacteria that commonly cause infections in patients with hematologic malignancies. We also examine the infection prevention strategies in hematology patients, such as infection control practices, antimicrobial stewardship, and targeted decolonization. Finally, we assess the strategies to improve outcomes of the infected patients, including gastrointestinal screening to guide empirical antibiotic therapy, new rapid diagnostic tools for expeditious identification of MDR pathogens, and use of two new antimicrobial agents, ceftolozane/tazobactam and ceftazidime/avibactam. PMID:27339405

  7. Gram-negative intestinal indigenous microbiota from two Siluriform fishes in a tropical reservoir.

    Science.gov (United States)

    Duarte, Silvana; e Silva, Flávia Cristina de Paula; Zauli, Danielle Alves Gomes; Nicoli, Jacques Robert; Araújo, Francisco Gerson

    2014-01-01

    The Gram-negative intestinal microbiota of Hypostomus auroguttatus and Pimelodus maculatus, a detritivorous and an omnivorous fish species, respectively, were compared between fishes from the reservoir and the stretch of the river below the dam of the Funil hydroelectric plant, Rio de Janeiro, Brazil. Four selective culture media were used under aerobic and two under anaerobic conditions. The omnivorous species had microbiota with higher population levels compared to the detritivorous species. The number of morphotypes and population levels of total bacteria, vibrio and Bacteroides tended to be higher in summer and autumn in the reservoir, and not different in the river. The number of morphotypes of enterobacteria and total bacteria were higher in the lotic environment compared with the lentic one. The bacteria Aeromonas hydrophila and Plesiomonas shigelloides and the obligate anaerobic Fusobacterium mortiferum were the most frequently identified microorganisms in the intestine of both H. auroguttatus and P. maculatus. Both season and habitat influenced the Gram-negative intestinal microbiota of H. auroguttatus and P. maculatus. Environmental factors influenced the Gram-negative intestinal microbiota of both species with possible impact on the interrelationship between the fishes and their digestive ecosystem, although the gut microbiota composition of fishes may result from host-specific selective pressures within the gut.

  8. Fighting antibiotic resistance in the intensive care unit using antibiotics.

    Science.gov (United States)

    Plantinga, Nienke L; Wittekamp, Bastiaan H J; van Duijn, Pleun J; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to classical infection prevention protocols and surveillance programs, counterintuitive interventions, such as selective decontamination with antibiotics and antibiotic rotation have been applied and investigated to control the emergence of antibiotic resistance. This review provides an overview of selective oropharyngeal and digestive tract decontamination, decolonization of methicillin-resistant Staphylococcus aureus and antibiotic rotation as strategies to modulate antibiotic resistance in the intensive care unit.

  9. Quorum sensing in Acinetobacter: with special emphasis on antibiotic resistance, biofilm formation and quorum quenching

    Directory of Open Access Journals (Sweden)

    Bindu Subhadra

    2016-02-01

    Full Text Available Acinetobacter is an important nosocomial, opportunistic human pathogen that is gradually gaining more attention as a major health threat worldwide. Quorum sensing (QS is a cell-cell communication system in which specific signaling molecules called autoinducers accumulate in the medium as the population density grows and control various physiological processes including production of virulence factors, biofilm and development of antibiotic resistance. The complex QS machinery in Acinetobacter is mediated by a two-component system which is homologous to the typical LuxI/LuxR system found in Gram-negative bacteria. This cell signaling system comprises of a sensor protein that functions as autoinducer synthase and a receptor protein which binds to the signal molecules, acyl homoserine lactones inducing a cascade of reactions. Lately, disruption of QS has emerged as an anti-virulence strategy with great therapeutic potential. Here, we depict the current understanding of the existing QS network in Acinetobacter and describe important anti-virulent strategies developed in order to effectively tackle this pathogen. In addition, the prospects of quorum quenching to control Acinetobacter infections is also been discussed.

  10. Antibiotic resistance and microbial composition along the manufacturing process of Mozzarella di Bufala Campana.

    Science.gov (United States)

    Devirgiliis, Chiara; Caravelli, Antonella; Coppola, Doriana; Barile, Simona; Perozzi, Giuditta

    2008-12-10

    The use of antibiotics as growth promoters in livestock, banned in all EU member states in January 2006, has led to selection of antibiotic resistant strains within environmental bacteria, including gram-positive, non pathogenic bacteria that colonize the GI tract of humans and animals. In Italy and in other Mediterranean countries, fermented foods employing environmental bacteria pre-existing in the raw substrates, rather than industrial starters of defined genotype, represent a significant proportion of cheese and meat products carrying the official PDO designation (Protected Designation of Origin). Our study focused on the microbiological and molecular analysis of lactobacilli and of other lactic acid bacteria (LABs) isolated from the Italian PDO product water buffalo Mozzarella cheese, with the aim of identifying genes responsible for tetracycline, erythromycin and kanamycin resistance. We isolated over 500 LAB colonies from retail products, as well as from raw milk and natural whey starters employed in their production. Microbiological analysis showed that about 50% of these isolates were represented by lactobacilli, which were further characterized in terms of species and strain composition, as well as by determining phenotypic and genotypic antibiotic resistance. To overcome the limits of culture-dependent approaches that select only cultivable species, we have also extracted total DNA from the whole microbiome present in the cheese and investigated the presence of specific antibiotic resistance genes with molecular approaches. Genetic determinants of antibiotic resistance were identified almost exclusively in bacteria isolated from the raw, unprocessed substrates, while the final, marketed products did not contain phenotypically resistant lactobacilli, i.e. displaying MIC values above the microbiological breakpoint. Overall, our results suggest that the traditional procedures necessary for manufacturing of this typical cheese, such as high temperature

  11. Orthologous and Paralogous AmpD Peptidoglycan Amidases from Gram-Negative Bacteria

    Science.gov (United States)

    Rivera, Ivanna; Molina, Rafael; Lee, Mijoon; Mobashery, Shahriar

    2016-01-01

    Cell wall recycling and β-lactam antibiotic resistance are linked in Enterobacteriaceae and in Pseudomonas aeruginosa. This process involves a large number of murolytic enzymes, among them a cytoplasmic peptidoglycan amidase AmpD, which plays an essential role by cleaving the peptide stem from key intermediates en route to the β-lactamase production (a resistance mechanism) and cell wall recycling. Uniquely, P. aeruginosa has two additional paralogues of AmpD, designated AmpDh2 and AmpDh3, which are periplasmic enzymes. Despite the fact that AmpDh2 and AmpDh3 share a common motif for their respective catalytic domains, they are each comprised of multidomain architectures and exhibit distinct oligomerization properties. We review herein the structural and biochemical properties of orthologous and paralogous AmpD proteins and discuss their implication in cell wall recycling and antibiotic resistance processes. PMID:27326855

  12. Pleural effusion adenosine deaminase: a candidate biomarker to discriminate between Gram-negative and Gram-positive bacterial infections of the pleural space

    Directory of Open Access Journals (Sweden)

    Ruolin Li

    2016-05-01

    Full Text Available OBJECTIVES: Delay in the treatment of pleural infection may contribute to its high mortality. In this retrospective study, we aimed to evaluate the diagnostic accuracy of pleural adenosine deaminase in discrimination between Gram-negative and Gram-positive bacterial infections of the pleural space prior to selecting antibiotics. METHODS: A total of 76 patients were enrolled and grouped into subgroups according to Gram staining: 1 patients with Gram-negative bacterial infections, aged 53.2±18.6 years old, of whom 44.7% had empyemas and 2 patients with Gram-positive bacterial infections, aged 53.5±21.5 years old, of whom 63.1% had empyemas. The pleural effusion was sampled by thoracocentesis and then sent for adenosine deaminase testing, biochemical testing and microbiological culture. The Mann-Whitney U test was used to examine the differences in adenosine deaminase levels between the groups. Correlations between adenosine deaminase and specified variables were also quantified using Spearman’s correlation coefficient. Moreover, receiver operator characteristic analysis was performed to evaluate the diagnostic accuracy of pleural effusion adenosine deaminase. RESULTS: Mean pleural adenosine deaminase levels differed significantly between Gram-negative and Gram-positive bacterial infections of the pleural space (191.8±32.1 U/L vs 81.0±16.9 U/L, p<0.01. The area under the receiver operator characteristic curve was 0.689 (95% confidence interval: 0.570, 0.792, p<0.01 at the cutoff value of 86 U/L. Additionally, pleural adenosine deaminase had a sensitivity of 63.2% (46.0-78.2%; a specificity of 73.7% (56.9-86.6%; positive and negative likelihood ratios of 2.18 and 0.50, respectively; and positive and negative predictive values of 70.6% and 66.7%, respectively. CONCLUSIONS: Pleural effusion adenosine deaminase is a helpful alternative biomarker for early and quick discrimination of Gram-negative from Gram-positive bacterial infections of the

  13. Prevalence of Device-associated Nosocomial Infections Caused By Gram-negative Bacteria in a Trauma Intensive Care Unit in Libya

    Directory of Open Access Journals (Sweden)

    Abdulaziz Zorgani

    2015-07-01

    Full Text Available Objectives: Device-associated nosocomial infections (DANIs have a major impact on patient morbidity and mortality. Our study aimed to determine the distribution rate of DANIs and causative agents and patterns of antibiotic resistance in the trauma-surgical intensive care unit (ICU. Methods: Our study was conducted at Abusalim Trauma Hospital in Tripoli, Libya. All devices associated with nosocomial infections, including central venous catheters (CVC, endotracheal tubes (ETT, Foley’s urinary catheters, chest tubes, nasogastric tubes (NGT, and tracheostomy tubes, were removed aseptically and examined for Gram-negative bacteria (GNB. Results: During a one-year study period, 363 patients were hospitalized; the overall mortality rate was 29%. A total of 79 DANIs were identified, the most common site of infection was ETT (39.2%, followed by urinary catheters (19%, NGTs (18%, tracheostomy tubes (11%, CVCs (10%, and chest tubes (3%. The most frequently isolated organisms were Klebsiella pneumonia, Acinetobacter baumannii, and Pseudomonas aeruginosa (30%, 20%, and 14%, respectively. Extremely high resistance rates were observed among GNB to ampicillin (99%, cefuroxime (95%, amoxicillin-clavulante (92%, and nitrofurantoin (91%. Lower levels of resistance were exhibited to amikacin (38%, imipenem (38%, and colistin (29%. About 39% of the isolates were defined as multi-drug resistant (MDR. Overall, extended spectrum β-lactmase producers were expressed in 39% of isolates mainly among K. pneumonia (88%. A. baumannii isolates exhibited extremely high levels of resistance to all antibiotics except colistin (100% sensitive. In addition, 56.3% of A. baumannii isolates were found to be MDR. P. aeruginosa isolates showed 46%–55% effectiveness to anti-pseudomonas antibiotics. Conclusion: High rates of DANI’s and the emergence of MDR organisms poses a serious threat to patients. There is a need to strengthen infection control within the ICU environment

  14. SHV-12, SHV-5, SHV-2a and VEB-1 extended-spectrum beta-lactamases in Gram-negative bacteria isolated in a university hospital in Thailand.

    Science.gov (United States)

    Chanawong, A; M'Zali, F H; Heritage, J; Lulitanond, A; Hawkey, P M

    2001-12-01

    Sixty-one extended-spectrum beta-lactamase (ESBL)-producing isolates were collected from Srinagarind Hospital, Thailand. These included 43 Enterobacteriaceae and 18 Pseudomonadaceae. The 43 Enterobacteriaceae were found to produce the following ESBLs: 26 (60.5%) SHV-12, 13 (30.2%) SHV-5, two (4.7%) SHV-2a, one (2.3%) VEB-1 and one (2.3%) unidentified. Twenty-four isolates (55.8%) also carried bla(TEM-1B), as well as bla(SHV) or bla(VEB-1). Plasmid DNA from transconjugants carrying the bla(SHV-12) gene showed various restriction patterns, indicating the distribution of the bla(SHV-12) gene among different antibiotic resistance plasmids. In contrast, bla(SHV-5) in 13 isolates was found on a single plasmid of c. 130 kb. Pulsed-field gel electrophoresis (PFGE) analysis of genomic DNA from these isolates revealed that nine of 11 Klebsiella pneumoniae gave the same pattern, indicating clonal spread of the strain within the hospital, together with the occasional spread of the plasmid to other strains. Among the pseudomonad isolates, 16 Pseudomonas aeruginosa and one Pseudomonas putida had bla(VEB-like) and one P. aeruginosa had bla(SHV-12). Nine of the 16 isolates carrying bla(VEB-like) (56.3%) had identical PFGE patterns, suggesting the dissemination of this gene, also by clonal spread. At least six different bla(VEB-like-)containing integrons were found among the 18 isolates. This is the first report of bacteria producing SHV-12 and SHV-2a in Thailand and the first report of SHV-12 in P. aeruginosa, of VEB-1 in Citrobacter freundii and a VEB-1-like beta-lactamase in P. putida. These findings indicate that ESBL genes in the Far East are part of a gene pool capable of broad horizontal gene transfer, in that these genes can transfer between different families of Gram-negative bacilli. PMID:11733468

  15. Antibiotic-Resistant Vibrios in Farmed Shrimp

    Directory of Open Access Journals (Sweden)

    Renata Albuquerque Costa

    2015-01-01

    Full Text Available Antimicrobial susceptibility pattern was determined in 100 strains of Vibrio isolated from the Litopenaeus vannamei shrimp and identified phenotypically. A high antibiotic-resistance index (75% was observed, with the following phenotypic profiles: monoresistance (n=42, cross-resistance to β-lactams (n=20 and multiple resistance (n=13. Plasmid resistance was characterized for penicillin (n=11, penicillin + ampicillin (n = 1, penicillin + aztreonam (n = 1, and ampicillin (n = 1. Resistance to antimicrobial drugs by the other strains (n=86 was possibly mediated by chromosomal genes. The findings of this study support the conclusion that the cultured shrimps can be vehicles of vibrios resistant to β-lactam and tetracycline.

  16. Helicobacter pylori antibiotic resistance in Iran

    Institute of Scientific and Technical Information of China (English)

    Marjan Mohammadi; Delaram Doroud; Nazanin Mohajerani; Sadegh Massarrat

    2005-01-01

    AIM: To examine the frequency of antibiotic resistance in Iranian Helicobacter pylori(H pylori) strains isolated from two major hospitals in Tehran.METHODS: Examination of antibiotic resistance was performed on 120 strains by modified disc diffusion test and PCR-RFLP methods. In addition, in order to identify the possible causes of the therapeutic failure in Iran, we also determined the resistance of these strains to the most commonly used antibiotics (metronidazole, amoxicillin,and tetracycline) by modified disc diffusion test.RESULTS: According to modified disc diffusion test, 1.6% of the studied strains were resistant to amoxicillin, 16.7% to clarithromycin, 57.5% to metronidazole, and there was no resistance to tetracycline. Of the clarithromycin resistant strains, 73.68% had the A2143G mutation in the 23S rRNA gene, 21.05% A2142C, and 5.26% A2142G.None of the sensitive strains were positive for any of the three point mutations. Of the metronidazole resistant strains, deletion in rdxA gene was studied and detected in only 6 (5%) of the antibiogram-based resistant strains.None of the metronidazole sensitive strains possessed rdxA gene deletion.CONCLUSION: These data show that despite the fact that clarithromycin has not yet been introduced to the Iranian drug market as a generic drug, nearly 20% rate of resistance alerts toward the frequency of macrolide resistance strains, which may be due to the widespread prescription of erythromycin in Iran. rdxA gene inactivation,if present in Iranian H pylori strains, may be due to other genetic defects rather than gene deletion.

  17. The ability of electrochemical oxidation with a BDD anode to inactivate Gram-negative and Gram-positive bacteria in low conductivity sulfate medium.

    Science.gov (United States)

    Bruguera-Casamada, Carmina; Sirés, Ignasi; Prieto, María J; Brillas, Enric; Araujo, Rosa M

    2016-11-01

    The disinfection of 100 mL of synthetic water containing 7 mM Na2SO4 with 10(6) CFU mL(-1) of either Gram-negative or Gram-positive bacteria has been studied by electrochemical oxidation. The electrolytic cell was a stirred tank reactor equipped with a boron-doped diamond (BDD) anode and a stainless steel cathode and the trials were performed at acidic and neutral pH, at 33.3 mA cm(-2) and 25 °C. Reactive oxygen species, pre-eminently hydroxyl radicals, were efficiently produced in both media from water oxidation at the BDD anode and the bacteria concentration was reduced by ≥ 5 log units after 60 min of electrolysis, thus constituting a good chlorine-free disinfection treatment. All the inactivation kinetics were described by a logistic model, with no significant statistical differences between acidic and neutral suspensions. The electrochemical disinfection with BDD was very effective for Gram-negative bacilli like Escherichia coli and Pseudomonas aeruginosa and Gram-positive ones like Bacillus atrophaeus, whereas the Gram-positive cocci Staphylococcus aureus and Enterococcus hirae were more resistant. Thus, the latter organisms are a better choice than E. coli as process indicators. Scanning electron microscopy highlighted a transition from initial cells with standard morphology supported on clean filters to inactivated cells with a highly altered morphology lying on dirty filters with plenty of cellular debris. Larger damage was observed for Gram-negative cells compared to Gram-positive ones. The inactivation effect could then be related to the chemical composition of the outer layers of the cell structure along with the modification of the transmembrane potentials upon current passage. PMID:27567151

  18. Influences of graphene on microbial community and antibiotic resistance genes in mouse gut as determined by high-throughput sequencing.

    Science.gov (United States)

    Xie, Yongchao; Wu, Bing; Zhang, Xu-Xiang; Yin, Jinbao; Mao, Liang; Hu, Maojie

    2016-02-01

    Graphene is a promising candidate as an antibacterial material owning to its bacterial toxicity. However, little information on influence of graphene on gut microbiota is available. In this study, mice were exposed to graphene for 4 weeks, and high-throughput sequencing was applied to characterize the changes in microbial community and antibiotic resistance genes (ARGs) in mouse gut. The results showed that graphene exposure increased biodiversity of gut microbiota, and changed their community. The 1 μg/d graphene exposure had higher influences on the gut microbiota than 10 μg/d and 100 μg/d graphene exposures, which might be due to higher aggregation of high-level graphene. The influence of graphene on gut microbiota might attribute to that graphene could induce oxidative stress and damage of cell membrane integrity. The results were verified by the increase of ratio of Gram-negative bacteria. Outer membrane of Gram-negative bacteria could reduce the membrane damage induced by graphene and make them more tolerance to graphene. Further, we found that graphene exposure significantly increased the abundance and types of ARGs, indicating a potential health risk of graphene. This study firstly provides new insight to the health effects of graphene on gut microbiota.

  19. Disruption of the Gut Microbiome: Clostridium difficile Infection and the Threat of Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Priscilla A. Johanesen

    2015-12-01

    Full Text Available Clostridium difficile is well recognized as the leading cause of antibiotic-associated diarrhea, having a significant impact in both health-care and community settings. Central to predisposition to C. difficile infection is disruption of the gut microbiome by antibiotics. Being a Gram-positive anaerobe, C. difficile is intrinsically resistant to a number of antibiotics. Mobile elements encoding antibiotic resistance determinants have also been characterized in this pathogen. While resistance to antibiotics currently used to treat C. difficile infection has not yet been detected, it may be only a matter of time before this occurs, as has been seen with other bacterial pathogens. This review will discuss C. difficile disease pathogenesis, the impact of antibiotic use on inducing disease susceptibility, and the role of antibiotic resistance and mobile elements in C. difficile epidemiology.

  20. Transmission of antibiotic resistance from animals to humans

    NARCIS (Netherlands)

    Huijbers, P.M.C.

    2016-01-01

    Huijbers, P.M.C. (2016). Transmission of antibiotic resistance from animals to humans: Broilers as a reservoir of ESBL-producing bacteria. PhD thesis, Wageningen University, Wageningen, the Netherlands. Antibiotic resistance in animals becomes a public health issue when there is transmission of anti

  1. Fighting antibiotic resistance in the intensive care unit using antibiotics

    NARCIS (Netherlands)

    Plantinga, Nienke L.; Wittekamp, Bastiaan H J; Van Duijn, Pleun J.; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to cl

  2. Metagenomics and other Methods for Measuring Antibiotic Resistance in Agroecosystems

    Science.gov (United States)

    Background: There is broad concern regarding antibiotic resistance on farms and in fields, however there is no standard method for defining or measuring antibiotic resistance in environmental samples. Methods: We used metagenomic, culture-based, and molecular methods to characterize the amount, t...

  3. Emergence and dissemination of antibiotic resistance: A global problem

    Directory of Open Access Journals (Sweden)

    R Choudhury

    2012-01-01

    Full Text Available Antibiotic resistance is a major problem in clinical health settings. Interestingly the origin of many of antibiotic resistance mechanisms can be traced back to non-pathogenic environmental organisms. Important factors leading to the emergence and spread of antibiotic resistance include absence of regulation in the use of antibiotics, improper waste disposal and associated transmission of antibiotic resistance genes in the community through commensals. In this review, we discussed the impact of globalisation on the transmission of antibiotic resistance genes in bacteria through immigration and export/import of foodstuff. The significance of surveillance to define appropriate use of antibiotics in the clinic has been included as an important preventive measure.

  4. Prevalence of Gram-negative Pathogens and their antimicrobial susceptibility in bacterial meningitis in pediatric cases

    Directory of Open Access Journals (Sweden)

    Yash Pal Chugh

    2012-07-01

    Full Text Available The present study was conducted to find out the prevalence and spectrum of Gram negative pathogens causing bacterial meningitis and their antimicrobial susceptibility pattern in a tertiary care hospital. The cerebrospinal fluid (CSF (3-5 ml was collected from 638 admitted children clinically suspected of septic meningitis. Bacterial isolates were identified and antimicrobial susceptibility was assessed by the Kirby-Bauer disk diffusion method. Of the 638 samples tested 102 (15.99% were culture positive. Male to female (M:F ratio was 1.62:1. The maximum incidence of 45 (44.12% cases was found in children (1-12 yrs; in institutional deliveries the incidence was 58 (56.86% cases. Further, the incidence of 51 cases was found from May to August. Escherichia coli (E. coli were commonest, seen in 9 (25% cases followed by Acinetobacter spp., Citrobacter spp. and Klebsiella spp. with 6 (16.67% cases each. Enterobacter spp., Neisseria spp. and Pseudomonas aeruginosa were isolated in 3 (8.33% cases each. E. coli, Acinetobacter spp, Citrobacter spp and Klebsiella spp isolates were 100% susceptible to meropenem, piperacillin-tazobactam and cefoperazone-sulbactam and 100% resistant to cotrimoxazole and tetracycline. All strains of Neisseria spp, Enterobacter spp and Pseudomonas spp. were 100% susceptible to meropenem followed by gatifloxacin. These were 100% resistant to tetracycline and cotrimoxazole. Neisseria spp. were also 100% susceptible to pristinamycin. In septic meningitis Gram negative organisms are less common (35.29%. Of the isolates, more common Gram negative isolates included E. coli, Acinetobacter Spp., Citrobacter Spp., and Klebsiella spp. and these isolates were 100% susceptible to meropenem, piperacillin-tazobacatam and cefoperazone-sulbactam. Hence, empirical therapy should be formulated according to antimicrobial susceptibility patterns.

  5. Extended spectrum beta-lactamase detection in gram-negative bacilli of nosocomial origin

    Directory of Open Access Journals (Sweden)

    Dechen C Tsering

    2009-01-01

    Full Text Available Background: Resistance to third generation cephalosporins by acquisition and expression of extended spectrum beta lactamase (ESBL enzymes among gram-negative bacilli is on a rise. The presence of ESBL producing organisms significantly affects the course and outcome of an infection and poses a challenge to infection management worldwide. Materials and Methods: In the period from June 2007 to 2008, we collected 1489 samples from patients suspected of nosocomial infection. The isolates were identified based on colony morphology and biochemical reaction. Gram negative bacilli resistant to third generation cephalosporins were tested for ESBL by double disc synergy test (DDST- a screening test and then phenotypic confirmatory test. Antimicrobial susceptibility testing was done by modified Kirby Bauer disc diffusion method. Results: From the sample of 238 gram-negative bacilli, we isolated Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Citrobacter freundii, Proteus mirabilis, Morganella morganii and Enterobacter cloacae. Following both methods, 34% isolates were ESBL-positive. The ESBL producing isolates were significantly resistant (p < 0.01 to ampicillin, piperacillin, piperacillin/tazobactam, trimethoprim/sulfamethoxazole, tetracycline, ciprofloxacin and gentamicin as compared to non-ESBL producers. Multidrug resistance was significantly (p < 0.01 higher (69.14% in ESBL positive isolates than non-ESBL isolates (21.66%. Conclusion: High prevalence of ESBL in our hospital cannot be ignored. ESBL producers can be detected by DDST and phenotypic confirmatory test with equal efficacy. The sensitivity of screening test improved with the use of more than one antibiotic and addition of one or two antibiotics would not increase cost and labor. We recommend DDST using multiple antibiotics in all microbiology units as a routine screening test.

  6. Occurrence of gram-negative bacteria in hens' eggs depending on their source and storage conditions.

    Science.gov (United States)

    Stepień-Pyśniak, D

    2010-01-01

    The aim of this study was to analyse the qualitative composition of Gram-negative microbes, mainly of the family Enterobacteriaceae, including pathogenic bacteria such as Salmonella, in the albumens and yolks and on the shells of hens' eggs, depending on their source and on the temperature and duration of their storage. A total of 375 table eggs were studied, from a large-scale poultry farm, a small-scale poultry farm and a supermarket. Each group was divided into 5 subgroups according to the temperature and duration of their storage during the study. Two serotypes of bacteria of the genus Salmonella were identified: S. Enteritidis and S. Arizonae. Strains of Salmonella spp. were also isolated. Apart from Salmonella and Escherichia coli, among the most frequently isolated bacteria of the family Enterobacteriaceae were Enterobacter spp., Klebsiella spp. and Citrobacter freundii. Qualitative analysis of the bacterial microflora of the eggs also showed the presence of other Gram negative bacteria, including Acinetobacter spp., Pseudomonas spp., Tatumella ptyseos, Providencia stuartii, Serratia liquefaciens, Flavimonas oryzihabitans, Vibrio metschnikovii, Leclercia adecarboxylata, Kluyvera spp., Rahnella aquatilis, Proteus mirabilis, and Achromobacter spp. The study demonstrated that the conditions applied, i.e., the temperature and duration of storage, did not significantly influence the prevalence of particular species of Gram-negative bacteria in the eggs. However, based on the analysis of contamination of eggs with Salmonella depending on their source, it can be concluded that the system in which the hens are housed affects the risk of contamination of eggs with these pathogens. PMID:21033566

  7. Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium.

    OpenAIRE

    Lobos, J. H.; Leib, T K; Su, T. M.

    1992-01-01

    A novel bacterium designated strain MV1 was isolated from a sludge enrichment taken from the wastewater treatment plant at a plastics manufacturing facility and shown to degrade 2,2-bis(4-hydroxyphenyl)propane (4,4'-isopropylidenediphenol or bisphenol A). Strain MV1 is a gram-negative, aerobic bacillus that grows on bisphenol A as a sole source of carbon and energy. Total carbon analysis for bisphenol A degradation demonstrated that 60% of the carbon was mineralized to CO2, 20% was associated...

  8. Fluoroquinolones Protective against Cephalosporin Resistance in Gram-Negative Nosocomial Pathogens

    OpenAIRE

    Schwaber, Mitchell J.; Cosgrove, Sara E.; Kaye, Keith S; Gold, Howard Seth; Carmeli, Yehuda

    2004-01-01

    In a matched case-control study, we studied the effect of prior receipt of fluoroquinolones on isolation of three third-generation cephalosporin-resistant gram-negative nosocomial pathogens. Two hundred eighty-two cases with a third-generation cephalosporin-resistant pathogen (203 with Enterobacter spp., 50 with Pseudomonas aeruginosa, and 29 with Klebsiella pneumoniae) were matched on length of stay to controls in a 1:2 ratio. Case-patients and controls were similar in age (mean 62 years) an...

  9. Antibacterial activity of crude extract of Punica granatum pericarp on pathogenic Gram-negative bacilli.

    OpenAIRE

    Voravuthikunchai, S.; Supavita, T.; Sirirak, T.; Panthong, K.

    2005-01-01

    The objective of this study was to investigate the effect of crude extracts of Punica granatum Linn. pericarp with 3 different solvents against pathogenic Gram-negative bacilli. Ethanolic extracts showed the antibacterial activity against all strains tested including enterohaemorrhagic Escherichia coli 4 strains (E. coli O157: H7, E. coli O26: H11, E. coli O111: NM, E. coli O22), Pseudomonas aeruginosa, Shigella boydii and Salmonella london. Inhibition zones ranged from 10.02 to 19.15 mm. Min...

  10. BacPP: a web-based tool for Gram-negative bacterial promoter prediction.

    Science.gov (United States)

    de Avila E Silva, S; Notari, D L; Neis, F A; Ribeiro, H G; Echeverrigaray, S

    2016-01-01

    Bacterial Promoter Prediction (BacPP) is a tool used to predict given sequences as promoters of Gram-negative bacteria according to the σ factor that recognizes it. The first version of BacPP was implemented in Python language in a desktop version without a friendly interface. For this reason, a web version of BacPP is now available with the purpose of improving its usability and availability. The present paper describes the implementation of the web version of this tool, focusing on its software architecture and user functionalities. The software is available at www.bacpp.bioinfoucs.com/home. PMID:27173187

  11. Zoo Animals as Reservoirs of Gram-Negative Bacteria Harboring Integrons and Antimicrobial Resistance Genes▿

    OpenAIRE

    Ahmed, Ashraf M.; Motoi, Yusuke; Sato, Maiko; Maruyama, Akito; Watanabe, Hitoshi; Fukumoto, Yukio; Shimamoto, Tadashi

    2007-01-01

    A total of 232 isolates of gram-negative bacteria were recovered from mammals, reptiles, and birds housed at Asa Zoological Park, Hiroshima prefecture, Japan. Forty-nine isolates (21.1%) showed multidrug resistance phenotypes and harbored at least one antimicrobial resistance gene. PCR and DNA sequencing identified class 1 and class 2 integrons and many β-lactamase-encoding genes, in addition to a novel AmpC β-lactamase gene, blaCMY-26. Furthermore, the plasmid-mediated quinolone resistance g...

  12. O-antigen protects gram-negative bacteria from histone killing.

    Directory of Open Access Journals (Sweden)

    Catherine Chaput

    Full Text Available Beyond their traditional role of wrapping DNA, histones display antibacterial activity to Gram-negative and -positive bacteria. To identify bacterial components that allow survival to a histone challenge, we selected resistant bacteria from homologous Escherichia coli libraries that harbor plasmids carrying pieces of the chromosome in different sizes. We identified genes required for exopolysaccharide production and for the synthesis of the polysaccharide domain of the lipopolysaccharide, called O-antigen. Indeed, O-antigen and exopolysaccharide conferred further resistance to histones. Notably, O-antigen also conferred resistance to histones in the pathogens Shigella flexneri and Klebsiella pneumoniae.

  13. Evaluation of the in vitro growth of urinary tract infection-causing gram-negative and gram-positive bacteria in a proposed synthetic human urine (SHU) medium.

    Science.gov (United States)

    Ipe, Deepak S; Ulett, Glen C

    2016-08-01

    Bacteriuria is a hallmark of urinary tract infection (UTI) and asymptomatic bacteriuria (ABU), which are among the most frequent infections in humans. A variety of gram-negative and gram-positive bacteria are associated with these infections but Escherichia coli contributes up to 80% of cases. Multiple bacterial species including E. coli can grow in human urine as a means to maintain colonization during infections. In vitro bacteriuria studies aimed at modeling microbial growth in urine have utilized various compositions of synthetic human urine (SHU) and a Composite SHU formulation was recently proposed. In this study, we sought to validate the recently proposed Composite SHU as a medium that supports the growth of several bacterial species that are known to grow in normal human urine and/or artificial urine. Comparative growth assays of gram-negative and gram-positive bacteria E. coli, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus agalactiae, Staphylococcus saprophyticus and Enterococcus faecalis were undertaken using viable bacterial count and optical density measurements over a 48h culture period. Three different SHU formulations were tested in various culture vessels, shaking conditions and volumes and showed that Composite SHU can support the robust growth of gram-negative bacteria but requires supplementation with 0.2% yeast extract to support the growth of gram-positive bacteria. Experiments are also presented that show an unexpected but major influence of P. mirabilis towards the ability to measure bacterial growth in generally accepted multiwell assays using absorbance readings, predicted to have a basis in the release of volatile organic compound(s) from P. mirabilis during growth in Composite SHU medium. This study represents an essential methodological validation of a more chemically defined type of synthetic urine that can be applied to study mechanisms of bacteriuria and we conclude will offer a useful in vitro model to investigate the

  14. Evaluation of the in vitro growth of urinary tract infection-causing gram-negative and gram-positive bacteria in a proposed synthetic human urine (SHU) medium.

    Science.gov (United States)

    Ipe, Deepak S; Ulett, Glen C

    2016-08-01

    Bacteriuria is a hallmark of urinary tract infection (UTI) and asymptomatic bacteriuria (ABU), which are among the most frequent infections in humans. A variety of gram-negative and gram-positive bacteria are associated with these infections but Escherichia coli contributes up to 80% of cases. Multiple bacterial species including E. coli can grow in human urine as a means to maintain colonization during infections. In vitro bacteriuria studies aimed at modeling microbial growth in urine have utilized various compositions of synthetic human urine (SHU) and a Composite SHU formulation was recently proposed. In this study, we sought to validate the recently proposed Composite SHU as a medium that supports the growth of several bacterial species that are known to grow in normal human urine and/or artificial urine. Comparative growth assays of gram-negative and gram-positive bacteria E. coli, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus agalactiae, Staphylococcus saprophyticus and Enterococcus faecalis were undertaken using viable bacterial count and optical density measurements over a 48h culture period. Three different SHU formulations were tested in various culture vessels, shaking conditions and volumes and showed that Composite SHU can support the robust growth of gram-negative bacteria but requires supplementation with 0.2% yeast extract to support the growth of gram-positive bacteria. Experiments are also presented that show an unexpected but major influence of P. mirabilis towards the ability to measure bacterial growth in generally accepted multiwell assays using absorbance readings, predicted to have a basis in the release of volatile organic compound(s) from P. mirabilis during growth in Composite SHU medium. This study represents an essential methodological validation of a more chemically defined type of synthetic urine that can be applied to study mechanisms of bacteriuria and we conclude will offer a useful in vitro model to investigate the

  15. Assessing the interactions of a natural antibacterial clay with model Gram-positive and Gram-negative human pathogens

    Science.gov (United States)

    Londono, S. C.; Williams, L. B.

    2013-12-01

    The emergence of antibiotic resistant bacteria and increasing accumulations of antibiotics in reclaimed water, drive the quest for new natural antimicrobials. We are studying the antibacterial mechanism(s) of clays that have shown an ability to destroy bacteria or significantly inhibit their growth. One possible mode of action is from soluble transition metal species, particularly reduced Fe, capable of generating deleterious oxygen radical species. Yet another possibility is related to membrane damage as a consequence of physical or electrostatic interaction between clay and bacteria. Both mechanisms could combine to produce cell death. This study addresses a natural antibacterial clay from the NW Amazon basin, South America (AMZ clay). Clay mineralogy is composed of disordered kaolinite (28.9%), halloysite (17.8%) illite (12%) and smectite (16.7%). Mean particle size is 1.6μm and total and specific surface area 278.82 and 51.23 m2/g respectively. The pH of a suspension (200mg/ml) is 4.1 and its Eh is 361mV after 24h of equilibration. The ionic strength of the water in equilibrium with the clay after 24 h. is 6 x10-4M. These conditions, affect the element solubility, speciation, and interactions between clay and bacteria. Standard microbiological methods were used to assess the viability of two model bacteria (Escherichia coli and Bacillus subtilis) after incubation with clay at 37 degC for 24 hrs. A threefold reduction in bacterial viability was observed upon treatment with AMZ clay. We separated the cells from the clay using Nycodenz gradient media and observed the mounts under the TEM and SEM. Results showed several membrane anomalies and structural changes that were not observed in the control cells. Additionally, clay minerals appeared in some places attached to cell walls. Experiments showed that exchanging AMZ clay with KCl caused loss of antibacterial property. Among the exchangeable -and potentially toxic- ions we measured Al+3, Cu+2, Zn+2, Ba+2 and Co+2

  16. Physico-Chemical-Managed Killing of Penicillin-Resistant Static and Growing Gram-Positive and Gram-Negative Vegetative Bacteria

    Science.gov (United States)

    Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor); Farris, III, Alex F. (Inventor)

    2012-01-01

    Systems and methods for the use of compounds from the Hofmeister series coupled with specific pH and temperature to provide rapid physico-chemical-managed killing of penicillin-resistant static and growing Gram-positive and Gram-negative vegetative bacteria. The systems and methods represent the more general physico-chemical enhancement of susceptibility for a wide range of pathological macromolecular targets to clinical management by establishing the reactivity of those targets to topically applied drugs or anti-toxins.

  17. Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Venturi Vittorio

    2009-09-01

    Full Text Available Abstract Background Burkholderia cenocepacia are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND efflux pumps in the genome of B. cenocepacia J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear. Results To investigate the contribution of efflux pumps to intrinsic drug resistance of B. cenocepacia J2315, we deleted 3 operons encoding the putative RND transporters RND-1, RND-3, and RND-4 containing the genes BCAS0591-BCAS0593, BCAL1674-BCAL1676, and BCAL2822-BCAL2820. Each deletion included the genes encoding the RND transporter itself and those encoding predicted periplasmic proteins and outer membrane pores. In addition, the deletion of rnd-3 also included BCAL1672, encoding a putative TetR regulator. The B. cenocepacia rnd-3 and rnd-4 mutants demonstrated increased sensitivity to inhibitory compounds, suggesting an involvement of these proteins in drug resistance. Moreover, the rnd-3 and rnd-4 mutants demonstrated reduced accumulation of N-acyl homoserine lactones in the growth medium. In contrast, deletion of the rnd-1 operon had no detectable phenotypes under the conditions assayed. Conclusion Two of the three inactivated RND efflux pumps in B. cenocepacia J2315 contribute to the high level of intrinsic resistance of this strain to some antibiotics and other inhibitory compounds. Furthermore, these efflux systems also mediate accumulation in the growth medium of quorum sensing molecules that have been shown to contribute to infection. A systematic study of RND efflux systems in B. cenocepacia is required to provide a full picture of intrinsic antibiotic resistance in this opportunistic

  18. Optimizing Antibiotic Dosing Strategies for the Treatment of Gram-negative Infections in the Era of Resistance.

    Science.gov (United States)

    Monogue, Marguerite L; Kuti, Joseph L; Nicolau, David P

    2016-01-01

    Gram-negative organisms are an increasing source of concern within the healthcare setting due to their common presence as a cause of infection and emerging resistance to current therapies. However, current antimicrobial dosing recommendations may be insufficient for the treatment of gram-negative infections. Applying knowledge of an antibiotic's pharmacokinetic/pharmacodynamic profile when designing a dosing regimen leads to a greater likelihood of achieving optimal exposure, including against gram-negative pathogens with higher MICs. Additionally, administering antibiotics directly to the site of infection, such as via aerosolization for pneumonia, is another method to achieve optimized drug exposure at the site of infection. Incorporating these treatment strategies into clinical practice will assist antimicrobial stewardship programs in successfully treating gram-negative infections.

  19. A General System for Studying Protein-Protein Interactions in Gram-Negative Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, Dale A [ORNL; Auberry, Deanna L [ORNL; Buchanan, Michelle V [ORNL; Cannon, Bill [Pacific Northwest National Laboratory (PNNL); Daly, Don S. [Pacific Northwest National Laboratory (PNNL); Doktycz, Mitchel John [ORNL; Foote, Linda J [ORNL; Hervey, IV, William Judson [ORNL; Hooker, Brian [Pacific Northwest National Laboratory (PNNL); Hurst, Gregory {Greg} B [ORNL; Kennel, Steve J [ORNL; Lankford, Patricia K [ORNL; Larimer, Frank W [ORNL; Lu, Tse-Yuan S [ORNL; McDonald, W Hayes [ORNL; McKeown, Catherine K [ORNL; Morrell-Falvey, Jennifer L [ORNL; Owens, Elizabeth T [ORNL; Schmoyer, Denise D [ORNL; Shah, Manesh B [ORNL; Wiley, Steven [Pacific Northwest National Laboratory (PNNL); Wang, Yisong [ORNL; Gilmore, Jason [Pacific Northwest National Laboratory (PNNL)

    2008-01-01

    Abstract One of the most promising methods for large-scale studies of protein interactions is isolation of an affinity-tagged protein with its in vivo interaction partners, followed by mass spectrometric identification of the copurified proteins. Previous studies have generated affinity-tagged proteins using genetic tools or cloning systems that are specific to a particular organism. To enable protein-protein interaction studies across a wider range of Gram-negative bacteria, we have developed a methodology based on expression of affinity-tagged bait proteins from a medium copy-number plasmid. This construct is based on a broad-host-range vector backbone (pBBR1MCS5). The vector has been modified to incorporate the Gateway DEST vector recombination region, to facilitate cloning and expression of fusion proteins bearing a variety of affinity, fluorescent, or other tags. We demonstrate this methodology by characterizing interactions among subunits of the DNA-dependent RNA polymerase complex in two metabolically versatile Gram-negative microbial species of environmental interest, Rhodopseudomonas palustris CGA010 and Shewanella oneidensis MR-1. Results compared favorably with those for both plasmid and chromosomally encoded affinity-tagged fusion proteins expressed in a model organism, Escherichia coli.

  20. A general system for studying protein-protein interactions in gram-negative bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, Dale A.; Hurst, G. B.; Foote, Linda J.; Lankford, Patricia K.; McKeown, Cathy K.; Lu, Tse-Yuan S.; Schmoyer, Denise D.; Shah, Manesh B.; Hervey IV, W. J.; McDonald, W. Hayes; Hooker, Brian S.; Cannon, William R.; Daly, Don S.; Gilmore, Jason M.; Wiley, H. S.; Auberry, Deanna L.; Wang, Yisong; Larimer, Frank; Kennel, S. J.; Doktycz, M. J.; Morrell-Falvey, Jennifer; Owens, Elizabeth T.; Buchanan, M. V.

    2008-08-01

    One of the most promising of the emerging methods for large-scale studies of interactions among proteins is co-isolation of an affinity-tagged protein and its interaction partners, followed by mass spectrometric identification of the co-purifying proteins. We describe a methodology for systematically identifying the proteins that interact with affinity-tagged “bait” proteins expressed from a medium copy plasmid, which are based on a broad host range (pBBR1MCS5) vector backbone that has been modified to incorporate the Gateway DEST plasmid multiple cloning region. This construct was designed to facilitate expression of fusion proteins bearing an affinity tag, across a range of Gram negative bacterial hosts. We demonstrate the performance of this methodology by characterizing interactions among subunits of the DNA-dependent RNA polymerase complex in two metabolically versatile Gram negative microbial species of environmental interest, Rhodopseudomonas palustris CGA010 and Shewanella oneidensis MR-1. Results from the RNA polymerase complex from these two species compared favorably with those for both plasmid- and chromosomally-encoded affinity-tagged fusion proteins expressed in a model organism, E. coli.

  1. Antimicrobial peptides targeting Gram-negative pathogens, produced and delivered by lactic acid bacteria.

    Science.gov (United States)

    Volzing, Katherine; Borrero, Juan; Sadowsky, Michael J; Kaznessis, Yiannis N

    2013-11-15

    We present results of tests with recombinant Lactococcus lactis that produce and secrete heterologous antimicrobial peptides with activity against Gram-negative pathogenic Escherichia coli and Salmonella . In an initial screening, the activities of numerous candidate antimicrobial peptides, made by solid state synthesis, were assessed against several indicator pathogenic E. coli and Salmonella strains. Peptides A3APO and Alyteserin were selected as top performers based on high antimicrobial activity against the pathogens tested and on significantly lower antimicrobial activity against L. lactis . Expression cassettes containing the signal peptide of the protein Usp45 fused to the codon-optimized sequence of mature A3APO and Alyteserin were cloned under the control of a nisin-inducible promoter PnisA and transformed into L. lactis IL1403. The resulting recombinant strains were induced to express and secrete both peptides. A3APO- and Alyteserin-containing supernatants from these recombinant L. lactis inhibited the growth of pathogenic E. coli and Salmonella by up to 20-fold, while maintaining the host's viability. This system may serve as a model for the production and delivery of antimicrobial peptides by lactic acid bacteria to target Gram-negative pathogenic bacteria populations.

  2. Antibacterial activity of crude extract of Punica granatum pericarp on pathogenic Gram-negative bacilli.

    Directory of Open Access Journals (Sweden)

    Voravuthikunchai, S.

    2005-08-01

    Full Text Available The objective of this study was to investigate the effect of crude extracts of Punica granatum Linn. pericarp with 3 different solvents against pathogenic Gram-negative bacilli. Ethanolic extracts showed the antibacterial activity against all strains tested including enterohaemorrhagic Escherichia coli 4 strains (E. coli O157: H7, E. coli O26: H11, E. coli O111: NM, E. coli O22, Pseudomonas aeruginosa, Shigella boydii and Salmonella london. Inhibition zones ranged from 10.02 to 19.15 mm. Minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC ranged from 0.09 to 3.13 mg/ml and 3.13 to 25 mg/ml, respectively. Aqueous extract had low antibacterial activity while crude chloroform extracts had no effect on the growth of these strains. Ethyl acetate and n-butanol fractions of P. granatum pericarp demonstrated high activity with the best MIC and MBC values of 0.02 to 0.78 mg/ml and 0.19 to 6.25 mg/ml, respectively. As ethanolic extract of P. granatum was very effective against these pathogenic bacteria, further investigation on this plant species may provide alternative, but bioactive, medicines for the treatment of Gram-negative bacterial infection.

  3. Managing and preventing outbreaks of Gram-negative infections in UK neonatal units.

    Science.gov (United States)

    Anthony, Mark; Bedford-Russell, Alison; Cooper, Tracey; Fry, Carole; Heath, Paul T; Kennea, Nigel; McCartney, Maureen; Patel, Bharat; Pollard, Tina; Sharland, Mike; Wilson, Peter

    2013-11-01

    De novo guidance on the management of Gram-negative bacteria outbreaks in UK neonatal units was developed in 2012 by a Department of Health, England Antimicrobial Resistance and Healthcare Associated Infection working group. The recommendations included activation of an organisational response and establishing a control team when an outbreak is suspected; screening for the specific organism only during an outbreak; undertaking multidisciplinary reviews of cleaning routines, hand hygiene and Gram-negative bacteria transmission risks; considering deep-cleaning; cohorting colonised and infected babies preferably but not necessarily in isolation cubicles; and considering reducing beds or closing a unit to new admissions as a way of improving spacing and staff:patient ratios until the outbreak is under control. The group advised establishing mechanisms to communicate effectively across the network; informing parents of the outbreak as early as possible, and providing prewritten 'infection outbreak' information sheets. For prevention of outbreaks, the group advised meeting national staffing and cot-spacing requirements; following a Water Action Plan; using infection reduction care bundles and benchmarking; and introducing breast milk early and limiting antibiotic use. PMID:23792354

  4. Glycopeptide Antibiotic To Overcome the Intrinsic Resistance of Gram-Negative Bacteria.

    Science.gov (United States)

    Yarlagadda, Venkateswarlu; Manjunath, Goutham B; Sarkar, Paramita; Akkapeddi, Padma; Paramanandham, Krishnamoorthy; Shome, Bibek R; Ravikumar, Raju; Haldar, Jayanta

    2016-02-12

    The emergence of drug resistance along with a declining pipeline of clinically useful antibiotics has made it vital to develop more effective antimicrobial therapeutics, particularly against difficult-to-treat Gram-negative pathogens (GNPs). Many antibacterial agents, including glycopeptide antibiotics such as vancomycin, are inherently inactive toward GNPs because of their inability to cross the outer membrane of these pathogens. Here, we demonstrate, for the first time, lipophilic cationic (permanent positive charge) vancomycin analogues were able to permeabilize the outer membrane of GNPs and overcome the inherent resistance of GNPs toward glycopeptides. Unlike vancomycin, these analogues were shown to have a high activity against a variety of multidrug-resistant clinical isolates such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. In the murine model of carbapenem-resistant A. baumannii infection, the optimized compound showed potent activity with no observed toxicity. The notable activity of these compounds is attributed to the incorporation of new membrane disruption mechanisms (cytoplasmic membrane depolarization along with outer and inner (cytoplasmic) membrane permeabilization) into vancomycin. Therefore, our results indicate the potential of the present vancomycin analogues to be used against drug-resistant GNPs, thus strengthening the antibiotic arsenal for combating Gram-negative bacterial infections. PMID:27624964

  5. ABC transporters involved in the biogenesis of the outer membrane in gram-negative bacteria.

    Science.gov (United States)

    Narita, Shin-ichiro

    2011-01-01

    The outer membrane of gram-negative bacteria is an asymmetric lipid bilayer with phospholipids and lipopolysaccharides (LPSs). β-Barreled outer membrane proteins and lipoproteins are embedded in the outer membrane. All of these constituents are essential to the function of the outer membrane. The transport systems for lipoproteins have been characterized in detail. An ATP-binding cassette (ABC) transporter, LolCDE, initiates sorting by mediating the detachment of lipoproteins from the inner membrane to form a water-soluble lipoprotein-LolA complex in the periplasm. Lipoproteins are then transferred to LolB at the outer membrane and are incorporated into the lipid bilayer. A model analogous to the Lol system has been suggested for the transport of LPS, where an ABC transporter, LptBFG, mediates the detachment of LPS from the inner membrane. Recent developments in the functional characterization of ABC transporters involved in the biogenesis of the outer membrane in gram-negative bacteria are discussed. PMID:21670534

  6. Early antipyretic exposure does not increase mortality in patients with gram-negative severe sepsis: a retrospective cohort study

    OpenAIRE

    Mohr, Nicholas; Skrupky, Lee; Fuller, Brian; Moy, Hawnwan; Alunday, Robert; Wallendorf, Michael; Micek, Scott; Fagley, Richard

    2012-01-01

    Existing data suggest that antipyretic medications may have deleterious effects on immune function and may increase mortality in human infection. This study was designed to evaluate the impact of antipyretic therapy on 28-day in-hospital mortality when administered early in the course of gram-negative severe sepsis or septic shock. This study was a single-center retrospective cohort study at a 1,111-bed academic medical center of all febrile patients with gram-negative bacteremia hospitalized...

  7. Isolation and molecular characterization of multidrug-resistant Gram-negative bacteria from imported flamingos in Japan

    OpenAIRE

    Fukumoto Yukio; Watanabe Hitoshi; Noda Ayako; Ahmed Ashraf M; Sato Maiko; Shimamoto Tadashi

    2009-01-01

    Abstract Imported animals, especially those from developing countries, may constitute a potential hazard to native animals and to public health. In this study, a new flock of lesser flamingos imported from Tanzania to Hiroshima Zoological Park were screened for multidrug-resistant Gram-negative bacteria, integrons and antimicrobial resistance genes. Thirty-seven Gram-negative bacterial isolates were obtained from the flamingos. Seven isolates (18.9%) showed multidrug resistance phenotypes, th...

  8. REDUCTION OF ANTIBIOTIC RESISTANCE IN BACTERIA: A REVIEW

    Directory of Open Access Journals (Sweden)

    Suresh Jaiswal et al.

    2012-03-01

    Full Text Available Drug resistant bacteria have been posing a major challenge to the effective control of bacterial infections for quite some time. One of the main causes of antibiotics drug resistance is antibiotic overuse, abuse, and in some cases, misuse, due to incorrect diagnosis. Bacterial antibiotic resistance is a significant issues faced by various industries, including the food and agricultural industries, the medical and veterinary profession and others. The potential for transfer of antibiotics resistance, or of potentially lethal antibiotic resistant bacteria, for example from a food animal to human consumer, is of particular concern. A method of controlling development and spread of antibiotic-resistant bacteria include changes in antibiotic usage and pattern of usage of different antibiotics. However, the ability of bacteria to adapt to antibiotic usage and to acquire resistance to existing and new antibiotics usage overcomes such conventional measures, and requires the continued development of alternative means of control of antibiotic resistance bacteria. Alternative means for overcoming the tendency of bacteria to acquire resistance to antibiotic control measures have taken various forms. This article explains one method evaluated for control, that is reducing or removing antibiotic resistance is so called “curing” of antibiotic resistance. Antibiotic resistance is formed in the chromosomal elements. Thus elimination of such drug-resistance plasmids results in loss of antibiotics resistance by the bacterial cell. “Curing” of a microorganism refers to the ability of the organism to spontaneously lose a resistance plasmid under the effect of particular compounds and environmental conditions, thus recovering the antibiotic sensitive state.

  9. Antibiotic resistance in ocular bacterial pathogens

    Directory of Open Access Journals (Sweden)

    S Sharma

    2011-01-01

    Full Text Available Bacterial infections of the eye are common and ophthalmologists are spoilt for choice with a variety of antibiotics available in the market. Antibiotics can be administered in the eye by a number of routes; topical, subconjunctival, subtenon and intraocular. Apart from a gamut of eye drops available, ophthalmologists also have the option of preparing fortified eye drops from parenteral formulations, thereby, achieving high concentrations; often much above the minimum inhibitory concentration (MIC, of antibiotics in ocular tissues during therapy. Antibiotic resistance among ocular pathogens is increasing in parallel with the increase seen over the years in bacteria associated with systemic infections. Although it is believed that the rise in resistant ocular bacterial isolates is linked to the rise in resistant systemic pathogens, recent evidence has correlated the emergence of resistant bacteria in the eye to prior topical antibiotic therapy. One would like to believe that either of these contributes to the emergence of resistance to antibiotics among ocular pathogens. Until recently, ocular pathogens resistant to fluoroquinolones have been minimal but the pattern is currently alarming. The new 8-fluoroquinolone on the scene-besifloxacin, is developed exclusively for ophthalmic use and it is hoped that it will escape the selective pressure for resistance because of lack of systemic use. In addition to development of new antibacterial agents, the strategies to halt or control further development of resistant ocular pathogens should always include judicious use of antibiotics in the treatment of human, animal or plant diseases.

  10. Involvement of both Type I and Type II mechanisms in Gram-positive and Gram-negative bacteria photosensitization by a meso-substituted cationic porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Ergaieg, Karim; Seux, Rene [Laboratoire d' Etude et de Recherche en Environnement et Sante, National School of Public Health, Av. Pr. Leon Bernard, CS 74312, Rennes 35043 (France); Chevanne, Martine; Cillard, Josiane [Laboratoire de Biologie Cellulaire et Vegetale, UPRES 3891, UFR des Sciences Pharmaceutiques et Biologiques, University of Rennes 1, 2 Av. Pr. Leon Bernard, CS 34317, Rennes 35043 (France)

    2008-12-15

    A meso-substituted cationic porphyrin (TMPyP) showed a photocytotoxicity against Gram-positive and Gram-negative bacteria. In order to determine the mechanism involved in the phototoxicity of this photosensitizer, electron paramagnetic resonance (EPR) experiments with 2,2,6,6-tetramethyl-4-piperidone (TEMP), a specific probe for singlet oxygen, and the spin-trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were carried out with illuminated TMPyP. An EPR signal characteristic of TEMP-singlet oxygen (TEMPO) adduct formation was observed, which could be ascribed to singlet oxygen ({sup 1}O{sub 2}) generated by TMPyP photosensitization. The signal for the DMPO spin adduct of superoxide anion (DMPO-OOH) was observed in DMSO solution but not in aqueous conditions. However, an EPR spectrum characteristic of the DMPO-hydroxyl radical spin adduct (DMPO-OH) was observed in aqueous conditions. The obtained results testify a primary hydroxyl radical ({sup .}OH) generation probably from superoxide anion (O{sub 2} {sup x} {sup -})via the Fenton reaction and/or via Haber-Weiss reaction. Gram-positive and Gram-negative bacteria inactivation by TMPyP photosensitization predominantly involved Type II reactions mediated by the formation of {sup 1}O{sub 2}, as demonstrated by the effect of quenchers for {sup 1}O{sub 2} and scavengers for {sup .}OH (sodium azide, thiourea, and dimethylsulphoxide). Participation of other active oxygen species cannot however be neglected since Type I reactions also had a significant effect, particularly for Gram-negative bacteria. For Gram-negative bacteria the photoinactivation rate was lower in the presence of superoxide dismutase, a specific O{sub 2} {sup x} {sup -} scavenger, and/or catalase, an enzyme which specifically eliminates H{sub 2}O{sub 2}, but was unchanged for Gram-positive bacteria. The generation of {sup 1}O{sub 2}, O{sub 2} {sup x} {sup -} and {sup .}OH by TMPyP photosensitization indicated that TMPyP maintained a photodynamic activity in

  11. Ciprofloxacin residue and antibiotic-resistant biofilm bacteria in hospital effluent.

    Science.gov (United States)

    Ory, Jérôme; Bricheux, Geneviève; Togola, Anne; Bonnet, Jean Louis; Donnadieu-Bernard, Florence; Nakusi, Laurence; Forestier, Christiane; Traore, Ousmane

    2016-07-01

    Discharge of antimicrobial residues and resistant bacteria in hospital effluents is supposed to have strong impacts on the spread of antibiotic resistant bacteria in the environment. This study aimed to characterize the effluents of the Gabriel Montpied teaching hospital, Clermont-Ferrand, France, by simultaneously measuring the concentration of ciprofloxacin and of biological indicators resistant to this molecule in biofilms formed in the hospital effluent and by comparing these data to ciprofloxacin consumption and resistant bacterial isolates of the hospital. Determination of the measured environmental concentration of ciprofloxacin by spot sampling and polar organic chemical integrative (POCIS) sampling over 2 weeks, and comparison with predicted environmental concentrations produced a hazard quotient >1, indicating a potential ecotoxicological risk. A negative impact was also observed with whole hospital effluent samples using the Tetrahymena pyriformis biological model. During the same period, biofilms were formed within the hospital effluent, and analysis of ciprofloxacin-resistant isolates indicated that Gamma-Proteobacteria were numerous, predominantly Aeromonadaceae (69.56%) and Enterobacteriaceae (22.61%). Among the 115 isolates collected, plasmid-mediated fluoroquinolone-resistant genes were detected, with mostly aac(6')-lb-cr and qnrS. In addition, 60% of the isolates were resistant to up to six antibiotics, including molecules mostly used in the hospital (aminosides and third-generation cephalosporins). In parallel, 1247 bacteria isolated from hospitalized patients and resistant to at least one of the fluoroquinolones were collected. Only 5 of the 14 species identified in the effluent biofilm were also found in the clinical isolates, but PFGE typing of the Gram-negative isolates found in both compartments showed there was no clonality among the strains. Altogether, these data confirm the role of hospital loads as sources of pollution for wastewater

  12. Antibiotic resistance gene discovery in food-producing animals.

    Science.gov (United States)

    Allen, Heather K

    2014-06-01

    Numerous environmental reservoirs contribute to the widespread antibiotic resistance problem in human pathogens. One environmental reservoir of particular importance is the intestinal bacteria of food-producing animals. In this review I examine recent discoveries of antibiotic resistance genes in agricultural animals. Two types of antibiotic resistance gene discoveries will be discussed: the use of classic microbiological and molecular techniques, such as culturing and PCR, to identify known genes not previously reported in animals; and the application of high-throughput technologies, such as metagenomics, to identify novel genes and gene transfer mechanisms. These discoveries confirm that antibiotics should be limited to prudent uses.

  13. DMPD: Lipopolysaccharide sensing an important factor in the innate immune response toGram-negative bacterial infections: benefits and hazards of LPShypersensitivity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available se toGram-negative bacterial infections: benefits and hazards of LPShypersensitivity. Freudenberg MA, Tchapt...portant factor in the innate immune response toGram-negative bacterial infections: benefits and hazards of L...une response toGram-negative bacterial infections: benefits and hazards of LPShyp

  14. Structural engineering of a phage lysin that targets Gram-negative pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Lukacik, Petra; Barnard, Travis J.; Keller, Paul W.; Chaturvedi, Kaveri S.; Seddiki, Nadir; Fairman, James W.; Noinaj, Nicholas; Kirby, Tara L.; Henderson, Jeffrey P.; Steven, Alasdair C.; Hinnebusch, B. Joseph; Buchanan, Susan K. (NIH); (WU-MED)

    2012-11-13

    Bacterial pathogens are becoming increasingly resistant to antibiotics. As an alternative therapeutic strategy, phage therapy reagents containing purified viral lysins have been developed against Gram-positive organisms but not against Gram-negative organisms due to the inability of these types of drugs to cross the bacterial outer membrane. We solved the crystal structures of a Yersinia pestis outer membrane transporter called FyuA and a bacterial toxin called pesticin that targets this transporter. FyuA is a {beta}-barrel membrane protein belonging to the family of TonB dependent transporters, whereas pesticin is a soluble protein with two domains, one that binds to FyuA and another that is structurally similar to phage T4 lysozyme. The structure of pesticin allowed us to design a phage therapy reagent comprised of the FyuA binding domain of pesticin fused to the N-terminus of T4 lysozyme. This hybrid toxin kills specific Yersinia and pathogenic E. coli strains and, importantly, can evade the pesticin immunity protein (Pim) giving it a distinct advantage over pesticin. Furthermore, because FyuA is required for virulence and is more common in pathogenic bacteria, the hybrid toxin also has the advantage of targeting primarily disease-causing bacteria rather than indiscriminately eliminating natural gut flora.

  15. Short-term starvation of immune deficient Drosophila improves survival to gram-negative bacterial infections.

    Directory of Open Access Journals (Sweden)

    Anthony E Brown

    Full Text Available BACKGROUND: Primary immunodeficiencies are inborn errors of immunity that lead to life threatening conditions. These predispositions describe human immunity in natura and highlight the important function of components of the Toll-IL-1- receptor-nuclear factor kappa B (TIR-NF-kappaB pathway. Since the TIR-NF-kappaB circuit is a conserved component of the host defence in higher animals, genetically tractable models may contribute ideas for clinical interventions. METHODOLOGY/PRINCIPAL FINDINGS: We used immunodeficient fruit flies (Drosophila melanogaster to address questions pertaining to survival following bacterial infection. We describe here that flies lacking the NF-kappaB protein Relish, indispensable for countering Gram-negative bacteria, had a greatly improved survival to such infections when subject to dietary short-term starvation (STS prior to immune challenge. STS induced the release of Nitric Oxide (NO, a potent molecule against pathogens in flies, mice and humans. Administering the NO Synthase-inhibitory arginine analog N-Nitro-L-Arginine-Methyl-Ester (L-NAME but not its inactive enantiomer D-NAME increased once again sensitivity to infection to levels expected for relish mutants. Surprisingly, NO signalling required the NF-kappaB protein Dif, usually needed for responses against Gram-positive bacteria. CONCLUSIONS/SIGNIFICANCE: Our results show that NO release through STS may reflect an evolutionary conserved process. Moreover, STS could be explored to address immune phenotypes related to infection and may offer ways to boost natural immunity.

  16. The bovine acute phase response to endotoxin and Gram-negative bacteria

    DEFF Research Database (Denmark)

    Jacobsen, Stine

    Eight non-lactating, non-pregnant dairy cows each received three intravenous injections of LPS with three-week intervals (doses: 10, 100 and 1000 ng LPS/kg, consecutively). All three LPS doses induced clinical, haematological and APP responses as well as changes in serum levels of microminerals......-induced anorexia and ruminal hypomotility may be detrimental for lactating dairy cows, since these cows are highly dependent on continuous feed intake to avoid severe metabolic disturbances. Furthermore, depression of the cytokine-producing capacity of circulating PBMCs may result in aberrant innate immune...... may suggest that cows attain a cytokine profile after LPS exposure that for some period of time allows them to react more promptly when re-exposed to LPS or Gram-negative bacteria. Whether this constitutes tolerance is not known. In conclusion, the work presented in this thesis advances our...

  17. The structures of lipopolysaccharides from plant-associated gram-negative bacteria

    DEFF Research Database (Denmark)

    Molinaro, Antonio; Newman, Mari-Anne; Lanzetta, Rosa;

    2009-01-01

    Gram-negative bacterial lipopolysaccharides (LPSs) have multiple roles in plant-microbe interactions. LPSs contribute to the low permeabilities of bacterial outer membranes, which act as barriers to protect bacteria from plant-derived antimicrobial substances. Conversely, perception of LPSs...... by plant cells can lead to the triggering of defence responses or to the priming of the plant to respond more rapidly and/or to a greater degree to subsequent pathogen challenge. LPSs are thus key molecules in the interactions between bacteria and plants, either in symbiosis or pathogenesis. Since LPSs...... are glycoconjugates genetically and chemically consisting of three different molecular regions, their detailed structure elucidation is a very topical and major scientific task for chemists, and is achieved by a combination of state-of-art chemical and spectroscopic techniques. Knowledge of LPSs' chemical structures...

  18. Antibiotic susceptibility patterns among respiratory isolates of Gram-negative bacilli in a Turkish university hospital

    Directory of Open Access Journals (Sweden)

    Gonlugur Ugur

    2004-08-01

    Full Text Available Abstract Background Gram-negative bacteria cause most nosocomial respiratory infections. At the University of Cumhuriyet, we examined 328 respiratory isolates of Enterobacteriaceae and Acinetobacter baumanii organisms in Sivas, Turkey over 3 years. We used disk diffusion or standardized microdilution to test the isolates against 18 antibiotics. Results We cultured organisms from sputum (54%, tracheal aspirate (25%, and bronchial lavage fluid (21%. The most common organisms were Klebsiella spp (35%, A. baumanii (27%, and Escherichia coli (15%. Imipenem was the most active agent, inhibiting 90% of Enterobacteriaceae and A. baumanii organisms. We considered approximately 12% of Klebsiella pneumoniae and 21% of E. coli isolates to be possible producers of extended-spectrum beta-lactamase. K. pneumoniae isolates of the extended-spectrum beta-lactamase phenotype were more resistant to imipenem, ciprofloxacin, and tetracycline in our study than they are in other regions of the world. Conclusions Our results suggest that imipenem resistance in our region is growing.

  19. Coexpression of ESBL, Amp C and MBL in gram negative bacilli

    Directory of Open Access Journals (Sweden)

    Ruturaj M. Kolhapure

    2015-10-01

    Conclusions: Klebsiella was the commonest isolate (28.47% followed by E coli (26.48%, Pseudomonas aeruginosa (19.54%, Enterobacter (8.92%, Acinetobacter (8.92% and Citrobacter (7.64%. A total of 272 out of 706 gram negative isolates were ESBL producers. ESBL production was seen more in E. coli followed by Klebsiella and P. aeruginosa. A total of 73 out of 706 isolates were inducible Amp C producers. AmpC production was seen more in Acinetobacter. A total of 65 out of 706 isolates were MBL producers. MBL Production was seen more in E. coli. [Int J Res Med Sci 2015; 3(10.000: 2698-2703

  20. DNA/Ag Nanoparticles as Antibacterial Agents against Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Tomomi Takeshima

    2015-03-01

    Full Text Available Silver (Ag nanoparticles were produced using DNA extracted from salmon milt as templates. Particles spherical in shape with an average diameter smaller than 10 nm were obtained. The nanoparticles consisted of Ag as the core with an outermost thin layer of DNA. The DNA/Ag hybrid nanoparticles were immobilized over the surface of cotton based fabrics and their antibacterial efficiency was evaluated using E. coli as the typical Gram-negative bacteria. The antibacterial experiments were performed according to the Antibacterial Standard of Japanese Association for the Functional Evaluation of Textiles. The fabrics modified with DNA/Ag nanoparticles showed a high enough inhibitory and killing efficiency against E. coli at a concentration of Ag ≥ 10 ppm.

  1. 革兰阴性菌耐药%Drug resistance of Gram-negative bacterias

    Institute of Scientific and Technical Information of China (English)

    赵长安

    2016-01-01

    随着抗生素滥用状况的日趋严峻、使用监管的日渐复杂和发现新的尤其是针对革兰阴性菌(GNB)抗生素技术难度的日益增加,GNB 的耐药问题日趋严峻。现主要讨论临床上常见的 GNB 耐药的相关问题。%Along with the condition of antibiotic abuse,the regulatory hurdles to new antibiotics which have be-come increasingly complex and the technical difficulty of discovering new antibiotics,especially those able to penetrate Gram -negative bacteria(GNB),drug -resistant of GNB has become increasingly serious.This review focuses on com-mon clinical GNB drug resistance related issues.

  2. The HlyB/HlyD-dependent secretion of toxins by gram-negative bacteria.

    Science.gov (United States)

    Koronakis, V; Stanley, P; Koronakis, E; Hughes, C

    1992-09-01

    Hemolysin (HlyA) and related toxins are secreted across both the cytoplasmic and outer membranes of Escherichia coli and other pathogenic Gram-negative bacteria in a remarkable process which proceeds without a periplasmic intermediate. It is directed by an uncleaved C-terminal targetting signal and the HlyD and HlyB translocator proteins, the latter of which are members of a transporter superfamily central to import and export of a wide range of substrates by prokaryotic and eukaryotic cells. Our mutational analyses of the HlyA targetting signal and definition for the first time of stages and intermediates in the HlyB/HlyD-dependent translocation allow a discussion of the hemolysin export process in the wider context of protein translocation. PMID:1419114

  3. Data on the standardization of a cyclohexanone-responsive expression system for Gram-negative bacteria.

    Science.gov (United States)

    Benedetti, Ilaria; Nikel, Pablo I; de Lorenzo, Víctor

    2016-03-01

    Engineering of robust microbial cell factories requires the use of dedicated genetic tools somewhat different from those traditionally used for laboratory-adapted microorganisms. We have edited and formatted the ChnR/P chnB regulatory node of Acinetobacter johnsonii to ease the targeted engineering of ectopic gene expression in Gram-negative bacteria. The proposed compositional standard was thoroughly verified with a monomeric and superfolder green fluorescent protein (msf•GFP) in Escherichia coli. The expression data presented reflect a tightly controlled transcription initiation signal in response to cyclohexanone. Data in this article are related to the research paper "Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes" [1].

  4. Detection of Quorum Sensing Signals in Gram-Negative Bacteria by Using Reporter Strain CV026

    Directory of Open Access Journals (Sweden)

    Ahmad Humayan KABIR

    2010-12-01

    Full Text Available Quorum sensing signals are referred to as acylated homoserine lactones (AHL that are mainly found in Gram-negative bacteria. It implies the ability of certain bacteria of producing different AHL molecules. The bacteria Pseudomonas aureofaciens and Xenorhabdus nematophila were cultured in Luria-Bertani (LB10 media and CV026 was used as a reporter strain to detect the presence of AHLs produced by the cultured bacteria. In this study, the reporter strain has revealed the quorum sensing ability of P. aureofaciens and X. nematophila by producing the purple pigment violacein in the supply of external AHLs molecules. Thin layer chromatography (TLC bioassay having four controls was conducted to detect specific AHL molecule supplied by P. aureofaciens and X. nematophila. The specific AHL molecule was observed to be migrated according to their polarity on the TLC plate.

  5. Predation and selection for antibiotic resistance in natural environments

    DEFF Research Database (Denmark)

    Leisner, Jørgen; Jørgensen, Niels O. G.; Middelboe, Mathias

    2016-01-01

    Genes encoding resistance to antibiotics appear, like the antibiotics themselves, to be ancient, originating long before the rise of the era of anthropogenic antibiotics. However, detailed understanding of the specific biological advantages of antibiotic resistance in natural environments is still...... lacking, thus limiting our efforts to prevent environmental influx of resistance genes. Here, we propose that antibiotic-resistant cells not only evade predation from antibiotic producers but also take advantage of nutrients released from cells that are killed by the antibiotic-producing bacteria. Thus......, predation is potentially an important mechanism for driving antibiotic resistance during slow or stationary phase of growth when nutrients are deprived. This adds to explain the ancient nature and widespread occurrence of antibiotic resistance in natural environments unaffected by anthropogenic antibiotics...

  6. CURRENT ISSUES REGARDING ENDOCRINE DISRUPTING CHEMICALS AND ANTIBIOTIC RESISTANCE

    Science.gov (United States)

    Recently public concern has increased regarding industrial and environmental substances that may have adverse hormonal effects in human and wildlife populations. This concern has also been expanded to include antibiotic-resistant bacteria and the presence of various antibiotics a...

  7. Antibiotic resistance: from Darwin to Lederberg to Keynes.

    Science.gov (United States)

    Amábile-Cuevas, Carlos F

    2013-04-01

    The emergence and spread of antibiotic-resistant bacteria reflects both, a gradual, completely Darwinian evolution, which mostly yields slight decreases in antibiotic susceptibility, along with phenotypes that are not precisely characterized as "resistance"; and sudden changes, from full susceptibility to full resistance, which are driven by a vast array of horizontal gene transfer mechanisms. Antibiotics select for more than just antibiotic resistance (i.e., increased virulence and enhanced gene exchange abilities); and many non-antibiotic agents or conditions select for or maintain antibiotic resistance traits as a result of a complex network of underlying and often overlapping mechanisms. Thus, the development of new antibiotics and thoughtful, integrated anti-infective strategies is needed to address the immediate and long-term threat of antibiotic resistance. Since the biology of resistance is complex, these new drugs and strategies will not come from free-market forces, or from "incentives" for pharmaceutical companies.

  8. Functional metagenomics for the investigation of antibiotic resistance.

    Science.gov (United States)

    Mullany, Peter

    2014-04-01

    Antibiotic resistance is a major threat to human health and well-being. To effectively combat this problem we need to understand the range of different resistance genes that allow bacteria to resist antibiotics. To do this the whole microbiota needs to be investigated. As most bacteria cannot be cultivated in the laboratory, the reservoir of antibiotic resistance genes in the non-cultivatable majority remains relatively unexplored. Currently the only way to study antibiotic resistance in these organisms is to use metagenomic approaches. Furthermore, the only method that does not require any prior knowledge about the resistance genes is functional metagenomics, which involves expressing genes from metagenomic clones in surrogate hosts. In this review the methods and limitations of functional metagenomics to isolate new antibiotic resistance genes and the mobile genetic elements that mediate their spread are explored.

  9. A new family of lysozyme inhibitors contributing to lysozyme tolerance in gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Lien Callewaert

    2008-03-01

    Full Text Available Lysozymes are ancient and important components of the innate immune system of animals that hydrolyze peptidoglycan, the major bacterial cell wall polymer. Bacteria engaging in commensal or pathogenic interactions with an animal host have evolved various strategies to evade this bactericidal enzyme, one recently proposed strategy being the production of lysozyme inhibitors. We here report the discovery of a novel family of bacterial lysozyme inhibitors with widespread homologs in gram-negative bacteria. First, a lysozyme inhibitor was isolated by affinity chromatography from a periplasmic extract of Salmonella Enteritidis, identified by mass spectrometry and correspondingly designated as PliC (periplasmic lysozyme inhibitor of c-type lysozyme. A pliC knock-out mutant no longer produced lysozyme inhibitory activity and showed increased lysozyme sensitivity in the presence of the outer membrane permeabilizing protein lactoferrin. PliC lacks similarity with the previously described Escherichia coli lysozyme inhibitor Ivy, but is related to a group of proteins with a common conserved COG3895 domain, some of them predicted to be lipoproteins. No function has yet been assigned to these proteins, although they are widely spread among the Proteobacteria. We demonstrate that at least two representatives of this group, MliC (membrane bound lysozyme inhibitor of c-type lysozyme of E. coli and Pseudomonas aeruginosa, also possess lysozyme inhibitory activity and confer increased lysozyme tolerance upon expression in E. coli. Interestingly, mliC of Salmonella Typhi was picked up earlier in a screen for genes induced during residence in macrophages, and knockout of mliC was shown to reduce macrophage survival of S. Typhi. Based on these observations, we suggest that the COG3895 domain is a common feature of a novel and widespread family of bacterial lysozyme inhibitors in gram-negative bacteria that may function as colonization or virulence factors in bacteria

  10. Structural modifications of bacterial lipopolysaccharide that facilitate Gram-negative bacteria evasion of host innate immunity

    Directory of Open Access Journals (Sweden)

    Motohiro eMatsuura

    2013-05-01

    Full Text Available Bacterial lipopolysaccharide (LPS, a cell wall component characteristic of Gram-negative bacteria, is a representative pathogen-associated molecular pattern that allows mammalian cells to recognize bacterial invasion and trigger innate immune responses. The polysaccharide moiety of LPS primary plays protective roles for bacteria such as prevention from complement attacks or camouflage with common host carbohydrate residues. The lipid moiety, termed lipid A, is recognized by the Toll-like receptor 4 (TLR4/MD-2 complex, which transduces signals for activation of host innate immunity. The basic structure of lipid A is a glucosamine disaccharide substituted by phosphate groups and acyl groups. Lipid A with 6 acyl groups (hexa-acylated form has been indicated to be a strong stimulator of the TLR4/MD-2 complex. This type of lipid A is conserved among a wide variety of Gram-negative bacteria, and those bacteria are easily recognized by host cells for activation of defensive innate immune responses. Modifications of the lipid A structure to less-acylated forms have been observed in some bacterial species, and those forms are poor stimulators of the TLR4/MD-2 complex. Such modifications are thought to facilitate bacterial evasion of host innate immunity, thereby enhancing pathogenicity. This hypothesis is supported by studies of Yersinia pestis LPS, which contains hexa-acylated lipid A when the bacterium grows at 27ºC (the temperature of the vector flea, and shifts to contain less-acylated forms when grown at the human body temperature of 37ºC. This alteration of lipid A forms following transmission of Y. pestis from fleas to humans contributes predominantly to the virulence of this bacterium over other virulence factors. A similar role for less-acylated lipid A forms has been indicated in some other bacterial species, such as Francisella tularensis, Helicobacter pylori, and Porphyromonas gingivalis, and further studies to explore this concept are

  11. High Prevalence of Antimicrobial-resistant Gram-negative Colonization in Hospitalized Cambodian Infants

    Science.gov (United States)

    Pol, Sreymom; Soeng, Sona; Sar, Poda; Neou, Leakhena; Chea, Phal; Day, Nicholas PJ; Cooper, Ben S.; Turner, Claudia

    2016-01-01

    Background: Antimicrobial-resistant Gram-negative infections are a significant cause of mortality in young infants. We aimed to determine characteristics of, and risk factors for, colonization and invasive infection caused by 3rd generation cephalosporin (3GC) or carbapenem-resistant organisms in outborn infants admitted to a neonatal unit (NU) in Cambodia. Methods: During the first year of operation, patients admitted to the Angkor Hospital for Children NU, Siem Reap, Cambodia, underwent rectal swabbing on admission and twice weekly until discharge. Swabs were taken also from 7 environmental sites. Swabs were cultured to identify 3GC or carbapenem-resistant Acinetobacter sp., Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Results: The study included 333 infants with a median age at NU admission of 10 days (range, 0–43). Colonization by ≥1 3GC-resistant organism was detected in 85.9% (286/333). Admission swabs were collected in 289 infants: 61.9% were colonized by a 3GC-resistant organism at the time of admission, and a further 23.2% were colonized during hospitalization, at a median of 4 days [95% confidence interval: 3–5]. Probiotic treatment (hazard ratio: 0.58; 95% confidence interval: 0.35–0.98) was associated with delayed colonization. Colonization by a carbapenem-resistant organism occurred in 25 (7.5%) infants. Six infants had NU-associated K. pneumoniae bacteremia; phenotypically identical colonizing strains were found in 3 infants. Environmental colonization occurred early. Conclusions: Colonization by antimicrobial-resistant Gram-negative organisms occurred early in hospitalized Cambodian infants and was associated with subsequent invasive infection. Trials of potential interventions such as probiotics are needed. PMID:27124686

  12. Understanding Gram-negative Central Line-Associated Blood Stream Infection in a Surgical Trauma ICU.

    Science.gov (United States)

    Duane, Therese M; Kikhia, Rashid M; Wolfe, Luke G; Ober, Janis; Tessier, Jeffrey M

    2015-08-01

    The purpose of this study was to review central line-associated blood stream infection (CLABSI) data from a surgical trauma intensive care unit to better understand patient risk factors, pathogens, and treatment interventions. We performed a retrospective review of all surgical ICU patients who met the Centers for Disease Control definition for Gram-negative CLABSI from 2006 through 2013. Demographics, pathogens, interventions, and outcomes were evaluated. A total of 40 patients were included with an average age of 49.9 ± 19 years and 72.5 per cent male. The average length of central venous line (CVL) was 11 ± 5.9 days with average time from line placement to positive culture 9.4 ± 6.8 days. Most common organisms were Enterobacter species (37.5%) with 17.8 per cent of all cultured organisms considered multidrug resistant. Piperacillin-tazobactam (67.5%) was the most commonly used antibiotic. Overall mortality rate was 22.5 per cent. A total of 11 patients who developed a recurrence did so at 10.7 ± 8 days and were similar to those without recurrence. Predominant pathogens associated with surgical trauma intensive care unit CLABSI in this study are different from those Gram-negative bacteria associated with published studies in the general hospital population. Further investigation into risk factors for infection and relapse is important to minimize such consequences. Understanding appropriate line placement and use as well as clarifying optimal duration of therapy is integral in improving outcomes. PMID:26215246

  13. Intrathecal or intraventricular therapy for post-neurosurgical Gram-negative meningitis: matched cohort study.

    Science.gov (United States)

    Shofty, B; Neuberger, A; Naffaa, M E; Binawi, T; Babitch, T; Rappaport, Z H; Zaaroor, M; Sviri, G; Paul, M

    2016-01-01

    Gram-negative post-operative meningitis due to carbapenem-resistant bacteria (CR-GNPOM) is a dire complication of neurosurgical procedures. We performed a nested propensity-matched historical cohort study aimed at examining the possible benefit of intrathecal or intraventricular (IT/IV) antibiotic treatment for CR-GNPOM. We included consecutive adults with GNPOM in two centres between 2005 and 2014. Patients receiving combined systemic and IT/IV treatment were matched to patients receiving systemic treatment only. Matching was done based on the propensity of the patients to receive IT/IV treatment. We compared patient groups with 30-day mortality defined as the primary outcome. The cohort included 95 patients with GNPOM. Of them, 37 received IT/IV therapy in addition to systemic treatment (22 with colistin and 15 with amikacin), mostly as initial therapy, through indwelling cerebrospinal fluid drains. Variables associated with IT/IV therapy in the propensity score included no previous neurosurgery, time from admission to meningitis, presence of a urinary catheter and GNPOM caused by carbapenem-resistant Gram-negative bacteria. Following propensity matching, 23 patients given IT/IV therapy and 27 controls were analysed. Mortality was significantly lower with IT/IV therapy: 2/23 (8.7%) versus 9/27 (33.3%), propensity-adjusted OR 0.19, 95% CI 0.04-0.99. Death or neurological deterioration at 30 days, 14-day and in-hospital mortality were lower with IT/IV therapy (OR <0.4 for all) without statistically significant differences. Among patients discharged alive, those receiving IT/IV therapy did not experience more neurological deterioration. Serious adverse events with IT/IV therapy were not documented. Our results support the early use of IT antibiotic treatment for CR-GNPOM when a delivery method is available.

  14. Combined activity of sulfamethoxazole, trimethoprim, and polymyxin B against gram-negative bacilli.

    Science.gov (United States)

    Rosenblatt, J E; Stewart, P R

    1974-07-01

    The activity of the three two-drug combinations of sulfamethoxazole (SMX), trimethoprim (TMP), and polymyxin B (PB) against 52 clinical isolates of gram-negative bacilli was studied by a "checkerboard" agar dilution method. The organisms studied included strains of Enterobacter spp., Klebsiella pneumoniae, Serratia marcescens, Providence, Proteus, and Pseudomonas aeruginosa. The majority of these isolates were resistant to at least two of the three agents used in the combined studies and to the most commonly used antimicrobials. The TMP-PB combination demonstrated enhanced activity more frequently than the other two-drug combinations, showing synergism or addition in 85% of the combined studies; indifference or antagonism was also observed least frequently with TMP-PB. The great majority (83%) of Enterobacter-Klebsiella-Serratia isolates were susceptible to enhanced activity of all combinations. Proteus-Providence isolates were frequently susceptible (63%), but combined activity was indifferent or antagonistic against 60% of P. aeruginosa. Twelve isolates were selected for "killing-curve" assays in which an inoculum was incubated with SMX, TMP, and PB individually and in various two- and three-drug combinations. Surviving bacteria were counted at timed intervals over 24 h of incubation. The triple combination (SMX-TMP-PB) was synergistic against 9 of 12 isolates, whereas TMP-PB and SMX-PB showed synergism against 5 and 3 isolates, respectively. These data suggest that, although TMP-PB will often show enhanced activity against the gram-negative bacilli studied here, optimal antibacterial activity will be demonstrated when the three-drug combination is used.

  15. Epidemiology of meningitis with a negative CSF Gram stain: under-utilization of available diagnostic tests.

    Science.gov (United States)

    Nesher, L; Hadi, C M; Salazar, L; Wootton, S H; Garey, K W; Lasco, T; Luce, A M; Hasbun, R

    2016-01-01

    Meningitis with a negative cerebrospinal fluid Gram stain (CSF-GS) poses a diagnostic challenge as more than 50% of patients remain without an aetiology. The introduction of polymerase chain reaction (PCR) and arboviral serologies have increased diagnostic capabilities, yet large scale epidemiological studies evaluating their use in clinical practice are lacking. We conducted a prospective observational study in New Orleans between November 1999 and September 2008 (early era) when PCR was not widely available, and in Houston between November 2008 and June 2013 (modern era), when PCR was commonly used. Patients presenting with meningitis and negative CSF-GS were followed for 4 weeks. All investigations, PCR used, and results were recorded as they became available. In 323 patients enrolled, PCR provided the highest diagnostic yield (24·2%) but was ordered for 128 (39·6%) patients; followed by serology for arboviruses (15%) that was ordered for 100 (31%) of all patients. The yield of blood cultures was (10·3%) and that of CSF cultures was 4%; the yield for all other tests was viral pathogens, 8·3% and 26·3% (P meningitis and a negative CSF-GS, but both tests are being under-utilized.

  16. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes.

    Science.gov (United States)

    Sharma, Virender K; Johnson, Natalie; Cizmas, Leslie; McDonald, Thomas J; Kim, Hyunook

    2016-05-01

    Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental systems such as natural environments and drinking water resources. For example, ARG or ARB with resistance to ciprofloxacin, sulfamethoxazole, trimethoprim, quinolone, vancomycin, or tetracycline (e.g., tet(A), tet(B), tet(C), tet(G), tet(O), tet(M), tet(W), sul I, and sul II) have been detected in the environment. The development of resistance may be intrinsic, may be acquired through spontaneous mutations (de novo), or may occur due to horizontal gene transfer from donor bacteria, phages, or free DNA to recipient bacteria. An overview is also provided of the current knowledge regarding inactivation of ARB and ARG, and the mechanism of the effects of different disinfection processes in water and wastewater (chlorination, UV irradiation, Fenton reaction, ozonation, and photocatalytic oxidation). The effects of constructed wetlands and nanotechnology on ARB and ARG are also summarized. PMID:26775188

  17. Probing minority population of antibiotic-resistant bacteria.

    Science.gov (United States)

    Huang, Tianxun; Zheng, Yan; Yan, Ya; Yang, Lingling; Yao, Yihui; Zheng, Jiaxin; Wu, Lina; Wang, Xu; Chen, Yuqing; Xing, Jinchun; Yan, Xiaomei

    2016-06-15

    The evolution and spread of antibiotic-resistant pathogens has become a major threat to public health. Advanced tools are urgently needed to quickly diagnose antibiotic-resistant infections to initiate appropriate treatment. Here we report the development of a highly sensitive flow cytometric method to probe minority population of antibiotic-resistant bacteria via single cell detection. Monoclonal antibody against TEM-1 β-lactamase and Alexa Fluor 488-conjugated secondary antibody were used to selectively label resistant bacteria green, and nucleic acid dye SYTO 62 was used to stain all the bacteria red. A laboratory-built high sensitivity flow cytometer (HSFCM) was applied to simultaneously detect the side scatter and dual-color fluorescence signals of single bacteria. By using E. coli JM109/pUC19 and E. coli JM109 as the model systems for antibiotic-resistant and antibiotic-susceptible bacteria, respectively, as low as 0.1% of antibiotic-resistant bacteria were accurately quantified. By monitoring the dynamic population change of a bacterial culture with the administration of antibiotics, we confirmed that under the antimicrobial pressure, the original low population of antibiotic-resistant bacteria outcompeted susceptible strains and became the dominant population after 5hours of growth. Detection of antibiotic-resistant infection in clinical urine samples was achieved without cultivation, and the bacterial load of susceptible and resistant strains can be faithfully quantified. Overall, the HSFCM-based quantitative method provides a powerful tool for the fundamental studies of antibiotic resistance and holds the potential to provide rapid and precise guidance in clinical therapies. PMID:26852201

  18. Widespread antibiotic resistance of diarrheagenic Escherichia coli and Shigella species

    OpenAIRE

    Azam Fatahi Sadeghabadi; Ali Ajami; Reza Fadaei; Masoud Zandieh; Elham Heidari; Mahmoud Sadeghi; Behrooz Ataei; Shervin Ghaffari Hoseini

    2014-01-01

    Background: Antibiotic resistance of enteric pathogens particularly Shigella species, is a critical world-wide problem and monitoring their resistant pattern is essential, because the choice of antibiotics is absolutely dependent on regional antibiotic susceptibility patterns. During summer 2013, an unusual increase in number of diarrheal diseases was noticed in Isfahan, a central province of Iran. Therefore, the antibiotic resistance of diarrheagenic Escherichia coli and Shigella species iso...

  19. Messages about Antibiotic Resistance in Different Newspaper Genres

    OpenAIRE

    Marwa Nasr; Krina Amin; Rachel Virgo; Sochima Okafor; Parastou Donyai

    2013-01-01

    Poorer people are more likely to use antibiotics; inappropriate antibiotic use causes resistance, and health campaigns attempt to change behaviour through education. However, fuelled by the media, the public think antibiotic resistance is outside their control. Differences in the attribution of blame for antibiotic resistance in two genres of UK newspapers, targeting distinct socioeconomic groups, were examined using a mixed methods approach. Firstly, depiction of blame was categorised as eit...

  20. Antibiotic Resistance of Diverse Bacteria from Aquaculture in Borneo

    Science.gov (United States)

    Kathleen, M. M.; Felecia, C.; Reagan, E. L.; Kasing, A.; Lesley, M.; Toh, S. C.

    2016-01-01

    The administration of antimicrobials in aquaculture provides a selective pressure creating a reservoir of multiple resistant bacteria in the cultured fish and shrimps as well as the aquaculture environment. The objective of this study was to determine the extent of antibiotic resistance in aquaculture products and aquaculture's surrounding environment in Sarawak, Malaysian Borneo. Ninety-four identified bacterial isolates constituted of 17 genera were isolated from sediment, water, and cultured organisms (fish and shrimp) in selected aquaculture farms. These isolates were tested for their antibiotic resistance against 22 antibiotics from several groups using the disk diffusion method. The results show that the highest resistance was observed towards streptomycin (85%, n = 20), while the lowest resistance was towards gentamicin (1.1%, n = 90). The multiple antibiotic resistant (MAR) index of the isolates tested ranged between 0 and 0.63. It was suggested that isolates with MAR index > 0.2 were recovered from sources with high risk of antibiotic resistant contamination. This study revealed low level of antibiotic resistance in the aquaculture bacterial isolates except for streptomycin and ampicillin (>50% resistance, n = 94) which have been used in the aquaculture industry for several decades. Antibiotic resistant patterns should be continuously monitored to predict the emergence and widespread of MAR. Effective action is needed to keep the new resistance from further developing and spreading.

  1. The role of active efflux in antibiotic - resistance of clinical isolates of Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Falsafi T

    2009-01-01

    Full Text Available Purpose: In gram-negative bacteria, active efflux pumps that excrete drugs can confer resistance to antibiotics however, in Helicobacter pylori this role is not well established. The purpose of this study is to evaluate the role of active efflux in resistance of H. pylori isolates to antibiotics. Materials and Methods: Twelve multiple antibiotic resistant (MAR isolates resistant to at least four antibiotics, including β-lactams, metronidazole, tetracycline, erythromycin, and ciprofloxacin; three resistant to only β-lactams, and two hyper-susceptible isolates, were obtained from screening of 96 clinical isolates of H. pylori . Their minimal inhibitory concentrations (MICs for antibiotics and ethidium-bromide (EtBr were compared in the presence- and absence of a proton-conductor, carbonyl cyanide-m chlorophenyl-hydrazone (CCCP using agar-dilution and disc diffusion. Drug accumulation studies for EtBr and antibiotics were assessed in the presence and absence of CCCP using spectrofluorometry. Results: MIC of EtBr for eight MAR-isolates was decreased two- to four-folds in the presence of CCCP, of which five showed reduced MICs for β-lactam, metronidazole, tetracycline, and ciprofloxacin with CCCP. Accumulation of EtBr by the MAR-isolates was rapid and not dependant on the pattern of multiple resistance. Antibiotic accumulation assay confirmed the presence of energy-dependant efflux of β-lactam, metronidazole, tetracycline, and ciprofloxacin, but no erythromycin in five MAR isolates. Energy-dependant efflux of EtBr or antibiotics was not observed for four MAR-isolates, and three isolates were resistant only to β-lactams. Conclusion: Energy-dependant efflux plays a role in the resistance of H. pylori clinical isolates to structurally unrelated antibiotics in a broadly specific multidrug efflux manner. Difference in the efflux potential of MAR isolates may be related to the presence or absence of functional efflux-pumps in diverse H. pylori

  2. ANTIBIOTIC RESISTANCE PATTERN IN PSEUDOMONAS AERUGINOSA SPECIES ISOLATED AT INDORE (M.P.

    Directory of Open Access Journals (Sweden)

    Prafulla

    2014-01-01

    Full Text Available INTRODUCTION : Pseudomonas aeruginosa is an aerobic , motile , gram negative rod that belongs to the family , pseudomonadaceae 2 . Its general resistance is due to a combination of factors 3 .Regional variations in the antibiotic resistance exist for different organisms , including P. aeruginosa and this may be related to the difference in the antibiotic prescribing habits. So , we a imed in the present study , to determine the status of antimicrobial resistance to anti - pseudomonadal agents and the magnitude of the multidrug r esistance in these organisms. MATERIALS AND METHODS : This study was conducted during 1 st January 2013 to 30 th September 2013. During this period total of 5877 samples were tested , out of 5877 samples , 1693 samples showed growth on culture and out of 1693 sa mples , 152 Pseudomonas aeruginosa were isolated. Identification & sensitivity of all isolates were done by BD Phoenix TM Automated Microbiological System. The antibiotics which were include d in the panel were ciprofloxacin , levofloxacin , gentamicin , amikaci n , tobramycin , aztreonam , ceftazidime , cefepime , piperacillin , piperacillin/tazobactam , ticarcillin/tazobactam , imipenem , meropenem and colistin according to CLSIs guidelines. RESULT : In the present study , the highest number s of Pseudomonas infections was found in pus followed by urine and Endotracheal secretion. Pseudomonas aeruginosa isolated from various samples were resistant to aztreonam , ciprofloxacin followed by levofloxacin , ceftazidime , cefepime , amikacin , imipenem & colistin. CONCLUSION : To preven t the spread of the resistant bacteria , it is critically important to have strict antibiotic policies wherein surveillance programmes for multidrug resistant organisms and infection control procedures need to be implemented

  3. Genome mining reveals unlocked bioactive potential of marine Gram-negative bacteria

    DEFF Research Database (Denmark)

    Machado, Henrique; Sonnenschein, Eva; Melchiorsen, Jette;

    2015-01-01

    Background: Antibiotic resistance in bacteria spreads quickly, overtaking the pace at which new compounds are discovered and this emphasizes the immediate need to discover new compounds for control of infectious diseases. Terrestrial bacteria have for decades been investigated as a source......- and Gammaproteobacteria collected during the Galathea 3 expedition were sequenced and mined for natural product encoding gene clusters. Results: Independently of genome size, bacteria of all tested genera carried a large number of clusters encoding different potential bioactivities, especially within the Vibrionaceae...... of bioactive compounds leading to successful applications in pharmaceutical and biotech industries. Marine bacteria have so far not been exploited to the same extent; however, they are believed to harbor a multitude of novel bioactive chemistry. To explore this potential, genomes of 21 marine Alpha...

  4. False-Negative Rate of Gram-Stain Microscopy for Diagnosis of Septic Arthritis: Suggestions for Improvement

    Directory of Open Access Journals (Sweden)

    Paul Stirling

    2014-01-01

    Full Text Available We quantify the false-negative diagnostic rate of septic arthritis using Gram-stain microscopy of synovial fluid and compare this to values reported in the peer-reviewed literature. We propose a method of improving the diagnostic value of Gram-stain microscopy using Lithium Heparin containers that prevent synovial fluid coagulation. Retrospective study of the Manchester Royal Infirmary microbiology database of patients undergoing synovial fluid Gram-stain and culture between December 2003 and March 2012 was undertaken. The initial cohort of 1896 synovial fluid analyses for suspected septic arthritis was reduced to 143 after exclusion criteria were applied. Analysis of our Gram-stain microscopy yielded 111 false-negative results from a cohort size of 143 positive synovial fluid cultures, giving a false-negative rate of 78%. We report a false-negative rate of Gram-stain microscopy for septic arthritis of 78%. Clinicians should therefore avoid the investigation until a statistically significant data set confirms its efficacy. The investigation's value could be improved by using Lithium Heparin containers to collect homogenous synovial fluid samples. Ongoing research aims to establish how much this could reduce the false-negative rate.

  5. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species

    Directory of Open Access Journals (Sweden)

    Chiara eDevirgiliis

    2013-10-01

    Full Text Available Lactobacilli represent a major Lactic Acid Bacteria (LAB component within the complex microbiota of fermented foods obtained from meat, dairy and vegetable sources. Lactococci, on the other hand, are typical of milk and fermented dairy products, which in turn represent the vast majority of fermented products. As is the case for all species originating from the environment, foodborne lactobacilli and lactococci consist of natural, uncharacterized strains, whose biodiversity depends on geographical origin, seasonality, animal feeding/plant growth conditions. Although a few species of opportunistic pathogens have been described in lactobacilli and lactococci, they are mostly non-pathogenic, Gram-positive bacteria displaying probiotic features. Since antibiotic resistant (AR strains do not constitute an immediate threat to human health, scientific interest for detailed studies on AR genes in these species has been greatly hindered. However, increasing evidence points at a crucial role for foodborne LAB as reservoir of potentially transmissible AR genes, underlining the need for further, more detailed studies aimed at identifying possible strategies to avoid AR spread to pathogens through fermented food consumption. The availability of a growing number of sequenced bacterial genomes has been very helpful in identifying the presence/distribution of mobile elements associated with AR genes, but open questions and knowledge gaps still need to be filled, underlining the need for systematic and datasharing approaches to implement both surveillance and mechanistic studies on transferability of AR genes. In the present review we report an update of the recent literature on AR in lactobacilli and lactococci following the 2006 EU-wide ban of the use of antibiotics as feed additives in animal farming, and we discuss the limits of the present knowledge in evaluating possible risks for human health.

  6. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species.

    Science.gov (United States)

    Devirgiliis, Chiara; Zinno, Paola; Perozzi, Giuditta

    2013-01-01

    Lactobacilli represent a major Lactic Acid Bacteria (LAB) component within the complex microbiota of fermented foods obtained from meat, dairy, and vegetable sources. Lactococci, on the other hand, are typical of milk and fermented dairy products, which in turn represent the vast majority of fermented foods. As is the case for all species originating from the environment, foodborne lactobacilli and lactococci consist of natural, uncharacterized strains, whose biodiversity depends on geographical origin, seasonality, animal feeding/plant growth conditions. Although a few species of opportunistic pathogens have been described, lactobacilli and lactococci are mostly non-pathogenic, Gram-positive bacteria displaying probiotic features. Since antibiotic resistant (AR) strains do not constitute an immediate threat to human health, scientific interest for detailed studies on AR genes in these species has been greatly hindered. However, increasing evidence points at a crucial role for foodborne LAB as reservoir of potentially transmissible AR genes, underlining the need for further, more detailed studies aimed at identifying possible strategies to avoid AR spread to pathogens through fermented food consumption. The availability of a growing number of sequenced bacterial genomes has been very helpful in identifying the presence/distribution of mobile elements associated with AR genes, but open questions and knowledge gaps still need to be filled, highlighting the need for systematic and datasharing approaches to implement both surveillance and mechanistic studies on transferability of AR genes. In the present review we report an update of the recent literature on AR in lactobacilli and lactococci following the 2006 EU-wide ban of the use of antibiotics as feed additives in animal farming, and we discuss the limits of the present knowledge in evaluating possible risks for human health. PMID:24115946

  7. Comparative analysis of bacterial viruses Bam35, infecting a gram-positive host, and PRD1, infecting gram-negative hosts, demonstrates a viral lineage

    International Nuclear Information System (INIS)

    Extra- and intracellular viruses in the biosphere outnumber their cellular hosts by at least one order of magnitude. How is this enormous domain of viruses organized? Sampling of the virosphere has been scarce and focused on viruses infecting humans, cultivated plants, and animals as well as those infecting well-studied bacteria. It has been relatively easy to cluster closely related viruses based on their genome sequences. However, it has been impossible to establish long-range evolutionary relationships as sequence homology diminishes. Recent advances in the evaluation of virus architecture by high-resolution structural analysis and elucidation of viral functions have allowed new opportunities for establishment of possible long-range phylogenic relationships--virus lineages. Here, we use a genomic approach to investigate a proposed virus lineage formed by bacteriophage PRD1, infecting gram-negative bacteria, and human adenovirus. The new member of this proposed lineage, bacteriophage Bam35, is morphologically indistinguishable from PRD1. It infects gram-positive hosts that evolutionarily separated from gram-negative bacteria more than one billion years ago. For example, it can be inferred from structural analysis of the coat protein sequence that the fold is very similar to that of PRD1. This and other observations made here support the idea that a common early ancestor for Bam35, PRD1, and adenoviruses existed

  8. Draft Genome Sequence of an Antibiotic-Resistant Propionibacterium acnes Strain, PRP-38, from the Novel Type IC Cluster

    OpenAIRE

    McDowell, Andrew; Hunyadkürti, Judit; Horváth, Balázs; Vörös, Andrea; Barnard, Emma; Patrick, Sheila; Nagy, István

    2012-01-01

    Propionibacterium acnes, a non-spore-forming, anaerobic Gram-positive bacterium, is most notably recognized for its association with acne vulgaris (I. Kurokawa et al., Exp. Dermatol. 18:821–832, 2009). We now present the draft genome sequence of an antibiotic-resistant P. acnes strain, PRP-38, isolated from an acne patient in the United Kingdom and belonging to the novel type IC cluster.

  9. Coagulase-negative staphylococcus and enterococcus as predominant pathogens in liver transplant recipients with Gram-positive coccal bacteremia

    Institute of Scientific and Technical Information of China (English)

    SHI Shao-hua; KONG Hai-shen; JIA Chang-ku; XU Jian; ZHANG Wen-jin; WANG Wei-lin; SHEN Yan; ZHANG Min; ZHENG Shu-sen

    2010-01-01

    Background Gram-positive bacteria such as Staphylococcus aureus have been a common cause of infection among liver transplant (LT) recipients in recent decades. The understanding of local epidemiology and its evolving trends with regard to pathogenic spectra and antibiotic susceptibility is beneficial to prophylactic and empiric treatment for LT recipients. This study aimed to investigate etiology, timing, antibiotic susceptibility and risk factors for multidrug resistant (MDR) Gram-positive coccal bacteremia after LT.Methods A cohort analysis of prospectively recorded data was performed to investigate etiologies, timing, antibiotic susceptibility and risk factors for MDR Gram-positive coccal bacteremia in 475 LT recipients.Results In 475 LT recipients in the first six months after LT, there were a total of 98 episodes of bacteremia caused by Gram-positive cocci in 82 (17%) patients. Seventy-five (77%) bacteremic episodes occurred in the first post-LT month.The most frequent Gram-positive cocci were methicillin-resistant coagulase-negative staphylococcus (CoNS, 46 isolates),methicillin-resistant Staphylococcus aureus (MRSA, 13) and enterococcus (34, E. faecium 30, E. faecalis 4). In all Gram-positive bacteremic isolates, 59 of 98 (60%) were MDR. Gram-positive coccal bacteremia and MDR Gram-positive coccal bacteremia predominantly occurred in patients with acute severe exacerbation of chronic hepatitis B and with fulminant/subfulminant hepatitis. Four independent risk factors for development of bacteremia caused by MDR Gram-positive coccus were: LT candidates with encephalopathy grades Ⅱ-Ⅳ (P=0.013, OR: 16.253, 95% CI:1.822-144.995), pre-LT use of empirical antibiotics (P=0.018, OR: 1.029, 95% CI: 1.002-1.057), post-LT urinary tract infections (P <0.001, OR: 20.340, 95% CI: 4.135-100.048) and abdominal infection (P=0.004, OR: 2.820, 95% CI:1.122-10.114). The main infectious manifestations were coinfections due to gram-positive cocci and gram-negative bacilli

  10. [Investigation of Antibiotic Resistance Genes (ARGs) in Landfill].

    Science.gov (United States)

    Li, Lei; Xu, Jing; Zhao, You-cai; Song, Li-yan

    2015-05-01

    Antibiotic resistant genes (ARGs), an emerging contaminant, have been detected worldwide in various environments such as sediments and river. However, little is known about ARGs distribution in landfill. In this study, we investigated five ARGs [sulfonamides resistant genes (sulI and sulII), chloramphenicols resistant gene (cat), β-lactams resistant gene (bla-SHV), and tetracyclines resistant gene (tetW)] in refuse samples collected from jiangeungou landfill (Xi'an, China) by real-time PCR. We then correlated the ARGs and physiochemical properties of refuse to examine the link between them. Results showed that all tested ARGs have been detected in all samples, suggesting that landfill served as ARGs reservoir. The highest copies numbers of sulII, sulI, tetW, bla-SHV, and cat were (3.70 ± 0.06) x 10(8) copies · g(-1) ( dry refuse), (9.33 · 0.06) x 10(6) copies · g(-1) (dry refuse), (2.27 0.08) x 10(5) copies · g(-1) (dry refuse), (3.68 ± 0.09) x 10(4) copies · g(-1) (dry refuse), and (1.39 ± 0.10) x 10(4) copies · g(-1) (dry refuse), respectively. Further, sulI, sulII, and cat positively correlated to moisture and sulI and cat negatively correlated to pH. PMID:26314129

  11. Relative uptake of technetium 99m stannous colloid by neutrophils and monocytes is altered by gram-negative infection

    International Nuclear Information System (INIS)

    Gram-negative infection alters phagocytic cell function; hence, it could affect phagocytic uptake of inorganic colloids by these cells. Neutrophil and monocyte uptake of technetium 99m stannous colloid (99mTc SnC) in whole blood was measured in 10 patients with gram-negative infection (Burkholderia pseudomallei) and 7 controls. Mean uptake per individual neutrophil was reduced in infection. Uptake per monocyte was not significantly different. Blood from six normal individuals was incubated with lysed B. pseudomallei and colloid, which showed reduced neutrophil uptake, but increased monocyte uptake. These results indicate that uptake of 99mTc SnC stannous colloid can be used to measure alteration in phagocytic cell function. They suggest that infection with B. pseudomallei is associated with reduced phagocytosis by individual neutrophils, possibly through toxic effects of bacterial products. This could have immunopathogenic consequences for this gram-negative infection and may explain why it responds to granulocyte colony-stimulating factor

  12. Third generation cephalosporin resistant Enterobacteriaceae and multidrug resistant gram-negative bacteria causing bacteremia in febrile neutropenia adult cancer patients in Lebanon, broad spectrum antibiotics use as a major risk factor, and correlation with poor prognosis

    Directory of Open Access Journals (Sweden)

    Rima eMoghnieh

    2015-02-01

    Full Text Available Bacteremia remains a major cause of life-threatening complications in patients receiving anticancer chemotherapy. The spectrum and susceptibility profiles of causative microorganisms differ with time and place. Data from Lebanon are scarce. We aim at evaluating the epidemiology of bacteremia in cancer patients in a university hospital in Lebanon, emphasizing antibiotic resistance and risk factors of multi-drug resistant organism (MDRO-associated bacteremia.This is a retrospective study of 75 episodes of bacteremia occurring in febrile neutropenic patients admitted to the hematology-oncology unit at Makassed General Hospital, Lebanon, from October 2009-January 2012.It corresponds to epidemiological data on bacteremia episodes in febrile neutropenic cancer patients including antimicrobial resistance and identification of risk factors associated with third generation cephalosporin resistance (3GCR and MDRO-associated bacteremia. Out of 75 bacteremias, 42.7% were gram-positive (GP, and 57.3% were gram-negative (GN. GP bacteremias were mostly due to methicillin-resistant coagulase negative staphylococci (28% of total bacteremias and 66% of GP bacteremias. Among the GN bacteremias, Escherichia coli (22.7% of total, 39.5% of GN organisms and Klebsiellapneumoniae(13.3% of total, 23.3% of GN organisms were the most important causative agents. GN bacteremia due to 3GC sensitive (3GCS bacteria represented 28% of total bacteremias, while 29% were due to 3GCR bacteria and 9% were due to carbapenem-resistant organisms. There was a significant correlation between bacteremia with MDRO and subsequent intubation, sepsis and mortality. Among potential risk factors, only broad spectrum antibiotic intake >4 days before bacteremia was found to be statistically significant for acquisition of 3GCR bacteria. Using carbapenems or piperacillin/ tazobactam>4 days before bacteremia was significantly associated with the emergence of MDRO (p value<0.05.

  13. Prevention of biofilm colonization by Gram-negative bacteria on minocycline-rifampin-impregnated catheters sequentially coated with chlorhexidine.

    Science.gov (United States)

    Jamal, Mohamed A; Rosenblatt, Joel S; Hachem, Ray Y; Ying, Jiang; Pravinkumar, Egbert; Nates, Joseph L; Chaftari, Anne-Marie P; Raad, Issam I

    2014-01-01

    Resistant Gram-negative bacteria are increasing central-line-associated bloodstream infection threats. To better combat this, chlorhexidine (CHX) was added to minocycline-rifampin (M/R) catheters. The in vitro antimicrobial activity of CHX-M/R catheters against multidrug resistant, Gram-negative Acinetobacter baumannii, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia was tested. M/R and CHX-silver sulfadiazine (CHX/SS) catheters were used as comparators. The novel CHX-M/R catheters were significantly more effective (P catheters in preventing biofilm colonization and showed better antimicrobial durability.

  14. [Advances in the research of LuxR family protein in quorum-sensing system of gram-negative bacteria].

    Science.gov (United States)

    Chen, Z; Xiang, J

    2016-09-20

    Quorum sensing (QS) is a cell-density-dependent method for information transmission among bacteria, as well as a mechanism for the bacteria to adapt to environment. LuxR family protein plays a key role in gram-negative bacterial QS system as a kind of transcription regulators and participates in a variety of biological behaviors with LuxI protein and signal molecules, such as bioluminescence, biofilm formation, virulence factors production, and so on. The advances in the research of LuxR family protein in QS system of gram-negative bacteria were summarized in this review. PMID:27647069

  15. The major sigma factor (RpoD) from Helicobacter pylori and other gram-negative bacteria shows an enhanced rate of divergence.

    OpenAIRE

    Solnick, J. V.; Hansen, L M; Syvanen, M

    1997-01-01

    Sequence analysis of the Helicobacter pylori major sigma factor (RpoD) shows that it is highly divergent, which may be related to the marked diversity of the H. pylori chromosome. Furthermore, the rate of divergence of RpoD among other gram-negative bacteria is much greater than that among gram-positive bacteria. This suggests that RpoD from gram-negative bacteria is functionally less constrained than that from gram-positive bacteria.

  16. Enhancement of Antibacterial Activity of Capped Silver Nanoparticles in Combination with Antibiotics, on Model Gram-Negative and Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Aruna Jyothi Kora

    2013-01-01

    Full Text Available The nanoparticles used in this study were prepared from AgNO3 using NaBH4 in the presence of capping agents such as citrate, sodium dodecyl sulfate, and polyvinylpyrrolidone. The formed nanoparticles were characterized with UV-Vis, TEM, and XRD. The generation of silver nanoparticles was confirmed from the appearance of yellow colour and an absorption maximum between 399 and 404 nm. The produced nanoparticles were found to be spherical in shape and polydisperse. For citrate, SDS, and PVP capped nanoparticles, the average particle sizes were 38.3±13.5, 19.3±6.0, and 16.0±4.8 nm, respectively. The crystallinity of the nanoparticles in FCC structure is confirmed from the SAED and XRD patterns. Also, the combined antibacterial activity of these differently capped nanoparticles with selected antibiotics (streptomycin, ampicillin, and tetracycline was evaluated on model Gram-negative and Gram-positive bacteria, employing disc diffusion assay. The activity of the tested antibiotics was enhanced in combination with all the stabilized nanoparticles, against both the Gram classes of bacteria. The combined effects of silver nanoparticles and antibiotics were more prominent with PVP capped nanoparticles as compared to citrate and SDS capped ones. The results of this study demonstrate potential therapeutic applications of silver nanoparticles in combination with antibiotics.

  17. Emerging antibiotic resistance in bacteria with special reference to India

    Indian Academy of Sciences (India)

    D Raghunath

    2008-11-01

    The antibiotic era started in the 1940s and changed the profile of infectious diseases and human demography. The burgeoning classes and numbers promised much and elimination of this major cause of human (and animal) morbidity appeared possible. Bacterial antibiotic resistance which was observed soon after antibiotic introduction has been studied extensively. Diverse mechanisms have been demonstrated and the genetic basis elucidated. The resilience of the prokaryote ecosystems to antibiotic stress has been realized. The paper presents these subjects briefly to afford an overview. The epidemiology of antibiotic resistance is dealt with and community practices in different countries are described. The role of high antibiotic usage environments is indicated. The implication of the wide use of antibiotics in animals has been pointed out. Steadily increasing antibiotic resistance and decreasing numbers of newer antibiotics appear to point to a post-antibiotic period during which treatment of infections would become increasingly difficult. This article attempts to review the global antimicrobial resistance scene and juxtaposes it to the Indian experience. The prevalence in India of antibiotic resistance among major groups of pathogens is described. The factors that determine the prevalent high antibiotic resistance rates have been highlighted. The future research activity to ensure continued utility of antibiotics in the control of infections has been indicated.

  18. The role of biofilms as environmental reservoirs of antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Jose Luis eBalcazar

    2015-10-01

    Full Text Available Antibiotic resistance has become a significant and growing threat to public and environmental health. To face this problem both at local and global scales, a better understanding of the sources and mechanisms that contribute to the emergence and spread of antibiotic resistance is required. Recent studies demonstrate that aquatic ecosystems are reservoirs of resistant bacteria and antibiotic resistance genes as well as potential conduits for their transmission to human pathogens. Despite the wealth of information about antibiotic pollution and its effect on the aquatic microbial resistome, the contribution of environmental biofilms to the acquisition and spread of antibiotic resistance has not been fully explored in aquatic systems. Biofilms are structured multicellular communities embedded in a self-produced extracellular matrix that acts as a barrier to antibiotic diffusion. High population densities and proximity of cells in biofilms also increases the chances for genetic exchange among bacterial species converting biofilms in hot spots of antibiotic resistance. This review focuses on the potential effect of antibiotic pollution on biofilm microbial communities, with special emphasis on ecological and evolutionary processes underlying acquired resistance to these compounds.

  19. Resistant gram-negative infections in the outpatient setting in Latin America.

    Science.gov (United States)

    Salles, M J C; Zurita, J; Mejía, C; Villegas, M V

    2013-12-01

    Latin America has a high rate of community-associated infections caused by multidrug-resistant Enterobacteriaceae relative to other world regions. A review of the literature over the last 10 years indicates that urinary tract infections (UTIs) by Escherichia coli, and intra-abdominal infections (IAIs) by E. coli and Klebsiella pneumoniae, were characterized by high rates of resistance to trimethoprim/sulfamethoxazole, quinolones, and second-generation cephalosporins, and by low levels of resistance to aminoglycosides, nitrofurantoin, and fosfomycin. In addition, preliminary data indicate an increase in IAIs by Enterobacteriaceae producing extended-spectrum β-lactamases, with reduced susceptibilities to third- and fourth-generation cephalosporins. Primary-care physicians in Latin America should recognize the public health threat associated with UTIs and IAIs by resistant Gram-negative bacteria. As the number of therapeutic options become limited, we recommend that antimicrobial prescribing be guided by infection severity, established patient risk factors for multidrug-resistant infections, acquaintance with local antimicrobial susceptibility data, and culture collection.

  20. Exploiting Quorum Sensing Interfering Strategies in Gram-Negative Bacteria for the Enhancement of Environmental Applications.

    Science.gov (United States)

    Zhang, Weiwei; Li, Chenghua

    2015-01-01

    Quorum sensing (QS) is a widespread intercellular form of communication to coordinate physiological processes and cooperative activities of bacteria at the population level, and it depends on the production, secretion, and detection of small diffusible autoinducers, such as acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2. In this review, the function of QS autoinducers of gram-negative bacteria in different aspects of wastewater treatment systems is examined. Based on research primarily performed over the past 10 years, QS involvement in the formation of biofilm and aerobic granules and changes of the microbial community and degradation/transformation pathways is discussed. In particular, the QS pathway in the role of bacterial infections and disease prevention in aquaculture is addressed. Interference of QS autoinducer-regulated pathways is considered potential treatment for a variety of environmentally related problems. This review is expected to serve as a stepping stone for further study and development strategies based on the mediation of QS-regulated pathways to enhance applications in both wastewater treatment systems and aquaculture. PMID:26779175

  1. Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era?

    Science.gov (United States)

    Falagas, Matthew E; Bliziotis, Ioannis A

    2007-06-01

    The evolving problem of antimicrobial resistance in Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae has led to the emergence of clinical isolates susceptible to only one class of antimicrobial agents and eventually to pandrug-resistant (PDR) isolates, i.e. resistant to all available antibiotics. We reviewed the available evidence from laboratory and clinical studies that reported on polymyxin-resistant and/or PDR P. aeruginosa, A. baumannii or K. pneumoniae clinical isolates. Eleven laboratory studies reported on isolates with resistance to polymyxins, three of which (including two surveillance studies) also included data regarding PDR isolates. In addition, two clinical studies (from Central and Southern Europe) reported on the clinical characteristics and outcomes of patients infected with PDR isolates. These data suggest that polymyxin-resistant or PDR P. aeruginosa, A. baumannii and K. pneumoniae clinical isolates are currently relatively rare. However, they have important global public health implications because of the therapeutic problems they pose. The fears for the dawn of a post-antibiotic era appear to be justified, at least for these three Gram-negative bacteria. We must increase our efforts to preserve the activity of available antibiotics, or at least expand as much as possible the period of their use, whilst intense research efforts should be focused on the development and introduction into clinical practice of new antimicrobial agents. PMID:17306965

  2. Toll-like receptor 4 decoy, TOY, attenuates gram-negative bacterial sepsis.

    Directory of Open Access Journals (Sweden)

    Keehoon Jung

    Full Text Available Lipopolysaccharide (LPS, the Gram-negative bacterial outer membrane glycolipid, induces sepsis through its interaction with myeloid differentiation protein-2 (MD-2 and Toll-like receptor 4 (TLR4. To block interaction between LPS/MD-2 complex and TLR4, we designed and generated soluble fusion proteins capable of binding MD-2, dubbed TLR4 decoy receptor (TOY using 'the Hybrid leucine-rich repeats (LRR technique'. TOY contains the MD-2 binding ectodomain of TLR4, the LRR motif of hagfish variable lymphocyte receptor (VLR, and the Fc domain of IgG1 to make it soluble, productive, and functional. TOY exhibited strong binding to MD-2, but not to the extracellular matrix (ECM, resulting in a favorable pharmacokinetic profile in vivo. TOY significantly extended the lifespan, when administered in either preventive or therapeutic manners, in both the LPS- and cecal ligation/puncture-induced sepsis models in mice. TOY markedly attenuated LPS-triggered NF-kappaB activation, secretion of proinflammatory cytokines, and thrombus formation in multiple organs. Taken together, the targeting strategy for sequestration of LPS/MD-2 complex using the decoy receptor TOY is effective in treating LPS- and bacteria-induced sepsis; furthermore, the strategy used in TOY development can be applied to the generation of other novel decoy receptor proteins.

  3. Altered glucose kinetics in diabetic rats during Gram-negative infection

    International Nuclear Information System (INIS)

    The present study examined the purported exacerbating effect of sepsis on glucose metabolism in diabetes. Diabetes was induced in rats by an intravenous injection of 70 or 45 mg/kg streptozotocin. The higher dose produced severe diabetes, whereas the lower dose of streptozotocin produced a miler, latent diabetes. After a chronic diabetic state had developed for 4 wk, rats had catheters implanted and sepsis induced by intraperitoneal injections of live Escherichia coli. After 24 h of sepsis the blood glucose concentration was unchanged in nondiabetics and latent diabetics, but glucose decreased from 15 to 8 mM in the septic severe diabetic group. This decrease in blood glucose was not accompanied by alterations in the plasma insulin concentration. Glucose turnover, assessed by the constant intravenous infusion of [6-3H]- and [U-14C]glucose, was elevated in the severe diabetic group, compared with either latent diabetics or nondiabetics. Sepsis increased the rate of glucose disappearance in nondiabetic rats but had no effect in either group of diabetic animals. Sepsis also failed to alter the insulinogenic index, used to estimate the insulin secretory capacity, in diabetic rats. Thus the present study suggests that the imposition of nonlethal Gram-negative sepsis on severe diabetic animals does not further impair glucose homeostasis and that the milder latent diabetes was not converted to a more severe diabetic state by the septic challenge

  4. Outer Membrane Vesicle Biosynthesis in Salmonella: Is There More to Gram-Negative Bacteria?

    Science.gov (United States)

    Reidl, Joachim

    2016-01-01

    Recent research has focused on the biological role of outer membrane vesicles (OMVs), which are derived from the outer membranes (OMs) of Gram-negative bacteria, and their potential exploitation as therapeutics. OMVs have been characterized in many ways and functions. Until recently, research focused on hypothetical and empirical models that addressed the molecular mechanisms of OMV biogenesis, such as vesicles bulging from the OM in various ways. The recently reported study by Elhenawy et al. (mBio 7:e00940-16, 2016, http://dx.doi.org/10.1128/mBio.00940-16) provided further insights into OMV biogenesis of Salmonella enterica serovar Typhimurium. That study showed that deacylation of lipopolysaccharides (LPS) influences the level of OMV production and, furthermore, determines a sorting of high versus low acylated LPS in OMs and OMVs, respectively. Interestingly, deacylation may inversely correlate with other LPS modifications, suggesting some synergy toward optimized host resistance via best OM compositions for S Typhimurium. PMID:27531914

  5. Antibacterial action of a novel functionalized chitosan-arginine against Gram-negative bacteria.

    Science.gov (United States)

    Tang, Hong; Zhang, Peng; Kieft, Thomas L; Ryan, Shannon J; Baker, Shenda M; Wiesmann, William P; Rogelj, Snezna

    2010-07-01

    The antimicrobial activity of chitosan and chitosan derivatives has been well established. However, although several mechanisms have been proposed, the exact mode of action is still unclear. Here we report on the investigation of antibacterial activity and the antibacterial mode of action of a novel water-soluble chitosan derivative, arginine-functionalized chitosan, on the Gram-negative bacteria Pseudomonas fluorescens and Escherichia coli. Two different arginine-functionalized chitosans (6% arginine-substituted and 30% arginine-substituted) each strongly inhibited P. fluorescens and E. coli growth. Time-dependent killing efficacy experiments showed that 5000 mg l(-1) of 6%- and 30%-substituted chitosan-arginine killed 2.7 logs and 4.5 logs of P. fluorescens, and 4.8 logs and 4.6 logs of E. coli in 4h, respectively. At low concentrations, the 6%-substituted chitosan-arginine was more effective in inhibiting cell growth even though the 30%-substituted chitosan-arginine appeared to be more effective in permeabilizing the cell membranes of both P. fluorescens and E. coli. Studies using fluorescent probes, 1-N-phenyl-naphthylamine (NPN), nile red (NR) and propidium iodide (PI), and field emission scanning electron microscopy (FESEM) suggest that chitosan-arginine's antibacterial activity is, at least in part, due to its interaction with the cell membrane, in which it increases membrane permeability. PMID:20060936

  6. COMPARISON OF SCREENING TESTS FOR METALLO - BETA - LACTAMASE P RODUCING GRAM NEGATIVE BACTERIA

    Directory of Open Access Journals (Sweden)

    Niranjan

    2012-04-01

    Full Text Available ABSTRACT : BACKGROUND: The wide spread dissemination of metallo - beta - lactamase (MBL resistance to carbapenem antibiotics, such as Imipenem (IMP and other antibiotics, a mong gram negative pathogens have become a global concern. The present study is to evaluate various screening tests to determine Metallobetalactamase production. OBJECTIVES: 1To determine the frequency of metallo - beta - lactamases among Imipenem and ceftazi dime resistant isolates 2To evaluate four phenotypic tests for detection of metallo - beta - lactamase. MATERIALS AND METHODS: A total of 48 clinical isolates from various samples showing resistance to imepenem and ceftazidime were screened for MBL production by 4 different methods 1Imepenem with Ethylene - D iamine - T etra - A cetic acid ( EDTA combined disc test,2EDTA disc potentiation test with imepenem,3 EDTA disc potentiation test with ceftazidime and 4ceftazidime with EDTA combined disc test, and compared . RESULTS: In the present study, Of the 48 isolates tested , 34 (70.83% were positive for MBL production by at least one of the methods used. Pseudomonas aeruginosa was the predominant organism producing MBL 18 (52.94% followed by Klebsiella pneumoniae 4( 11.76%.EDTA disc potentiation test with imepenem was the most sensitive method 28(82.35%. CONCLUSION: In the present study, Imepenem with EDTA, both combined and double disc potentiation tests were more effective than ceftazidime with EDTA. Though there are several screening methods recommended for detection of MBL production, no single test when used alone is specific for these enzymes.

  7. Antibacterial effect of ultrafine nanodiamond against gram-negative bacteria Escherichia coli

    Science.gov (United States)

    Chatterjee, Anindita; Perevedentseva, Elena; Jani, Mona; Cheng, Chih-Yuan; Ye, Ying-Siou; Chung, Pei-Hua; Cheng, Chia-Liang

    2015-05-01

    We investigate the antibacterial effect of ultrafine nanodiamond particles with an average size of 5 nm against the gram-negative bacteria Escherichia coli (E. coli). UV-visible, Raman spectroscopy, and scanning electron microscopy (SEM) have been employed to elucidate the nature of the interaction. The influence on bacterial growth was monitored by measuring optical densities of E. coli at 600 nm as a function of time in the presence of carboxylated nanodiamond (cND) particles (100 μg/ml) in highly nutritious liquid Luria-Bertani medium. The SEM images prove that cND particles are attached to the bacterial cell wall surface and some portion of the bacterial cell wall undergoes destruction. Due to the change of the protein structure on the bacterial wall, a small Raman shift in the region of 1400 to 1700 cm-1 was observed when E. coli interacted with cNDs. Raman mapping images show strong evidence of cND attachment at the bacterial cell wall surface. Electrotransformation of E. coli with a fluorescent protein markers experiment demonstrated that the interaction mechanisms are different for E. coli treated with cND particles, E. coli by lysozyme treatment, and E. coli that suffer lysis.

  8. Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria

    Science.gov (United States)

    Rahnamaeian, Mohammad; Cytryńska, Małgorzata; Zdybicka-Barabas, Agnieszka; Dobslaff, Kristin; Wiesner, Jochen; Twyman, Richard M.; Zuchner, Thole; Sadd, Ben M.; Regoes, Roland R.; Schmid-Hempel, Paul; Vilcinskas, Andreas

    2015-01-01

    Antimicrobial peptides (AMPs) and proteins are important components of innate immunity against pathogens in insects. The production of AMPs is costly owing to resource-based trade-offs, and strategies maximizing the efficacy of AMPs at low concentrations are therefore likely to be advantageous. Here, we show the potentiating functional interaction of co-occurring insect AMPs (the bumblebee linear peptides hymenoptaecin and abaecin) resulting in more potent antimicrobial effects at low concentrations. Abaecin displayed no detectable activity against Escherichia coli when tested alone at concentrations of up to 200 μM, whereas hymenoptaecin affected bacterial cell growth and viability but only at concentrations greater than 2 μM. In combination, as little as 1.25 μM abaecin enhanced the bactericidal effects of hymenoptaecin. To understand these potentiating functional interactions, we investigated their mechanisms of action using atomic force microscopy and fluorescence resonance energy transfer-based quenching assays. Abaecin was found to reduce the minimal inhibitory concentration of hymenoptaecin and to interact with the bacterial chaperone DnaK (an evolutionarily conserved central organizer of the bacterial chaperone network) when the membrane was compromised by hymenoptaecin. These naturally occurring potentiating interactions suggest that combinations of AMPs could be used therapeutically against Gram-negative bacterial pathogens that have acquired resistance to common antibiotics. PMID:25833860

  9. Use of DNA probes to study tetracycline resistance determinants in gram-negative bacteria from swine

    International Nuclear Information System (INIS)

    Specific 32P-labeled DNA probes were prepared and used to evaluate the distribution of tetracycline resistance determinants carried by gram-negative enteric bacteria isolated from pigs in 3 swine herds with different histories of antibiotic exposure. Plasmid DNA, ranging in size from 2.1 to 186 Kb, was observed in over 84% of 114 isolates studied. Two of 78 tetracycline resistant strains did not harbor plasmids. The DNA probes were isolated from plasmids pSL18, pRT29/Tn10, pBR322 and pSL106, respectively, and they represented class A, B, C and D tetracycline resistance determinants. Hybridization conditions using 0.5X SSPE at 65 degrees C minimize cross-hybridization between the different class of tetracycline resistance genes. Cross-hybridization between class A and class C determinants could be distinguished by simultaneous comparison of the intensity of their hybridization signals. Plasmids from over 44% of the tetracycline resistant isolates did not hybridize to DNA probes for the determinants tested. Class B determinant occurred more frequently than class A or C. None of the isolates hybridized with the class D probe

  10. The attenuation effect of UVc radiation doses in gram-negative bacteria (Brucella, Yersinia, Escherichia coli)

    International Nuclear Information System (INIS)

    The gram-negative bacteria Yersinia enterocolitica sero group O:3 and O:9, and Brucella (Melitensis and abortus) together with Escherichia coli (O:157, DH5α-pEt15b), were investigated to evaluate their susceptibility to UV radiation at 254 nm. If the dose of UVc was 18.7 mW/cm2, the time required for inactivation of Y. enterocolitica and E. coli DH5α-pEt15b and O:157 was 240s and 360s in the dark and light respectively; where if the dose was 19.5 mW/cm2, the time required was 60s in the dark and 120s in light respectively. The time required for inactivation of Brucella strains (melitensis and abortus) if the dose was 18.7 mW/cm2 was 240s in both dark and light, whereas it was 120s(dark) and 240s (light) respectively, when the dose was 19.5 mW/cm2. Using E. coli O:157 as control, it appears that Y. enterocolitica sero group O:3 and O:9 and vaccinal strains of Brucella (Rev. 1 and S19) are more sensitive to UV than wild Brucella strains. No relation was found between the sensitivity of Y. enterocolitica to UV and the presence or absence of a pYV+ virulence plasmid. (author)

  11. Enteric Gram-negative bacilli suppress Candida biofilms on Foley urinary catheters.

    Science.gov (United States)

    Samaranayake, Y H; Bandara, H M H N; Cheung, B P K; Yau, J Y Y; Yeung, S K W; Samaranayake, L P

    2014-01-01

    Mixed Candida-bacterial biofilms in urinary catheters are common in hospitalized patients. (i) The aims of this study were to evaluate, quantitatively and qualitatively, the in vitro development of mono- and dual-species biofilms (MSBs and DSBs) of Candida albicans and two enteric gram-negative bacilli (EGNB; Pseudomonas aeruginosa or Escherichia coli) on Foley catheter (FC) discs, (ii) to determine the biofilm growth in tryptic soy broth or glucose supplemented artificial urine (AU) and (iii) to assess the inhibitory effects of EGNB and their lipopolysaccharides (LPS) on Candida biofilm growth. The growth of MSBs and DSBs on FC discs was monitored by cell counts and SEM. The metabolic activity of LPS-treated Candida biofilms was determined by the XTT reduction assay. Candida albicans and EGNB demonstrated significant inter- and intra-species differences in biofilm growth on FC discs (p Candida albicans significantly (p Candida biofilm growth, compared with Pseudomonas aeruginosa and its LPS (p Candida albicans and EGNB colonization in FC is significantly increased in AU with glucose, and variably modified by Escherichia coli, Pseudomonas aeruginosa and their corresponding LPS.

  12. The TFPI-2 derived peptide EDC34 improves outcome of gram-negative sepsis.

    Directory of Open Access Journals (Sweden)

    Praveen Papareddy

    Full Text Available Sepsis is characterized by a dysregulated host-pathogen response, leading to high cytokine levels, excessive coagulation and failure to eradicate invasive bacteria. Novel therapeutic strategies that address crucial pathogenetic steps during infection are urgently needed. Here, we describe novel bioactive roles and therapeutic anti-infective potential of the peptide EDC34, derived from the C-terminus of tissue factor pathway inhibitor-2 (TFPI-2. This peptide exerted direct bactericidal effects and boosted activation of the classical complement pathway including formation of antimicrobial C3a, but inhibited bacteria-induced activation of the contact system. Correspondingly, in mouse models of severe Escherichia coli and Pseudomonas aeruginosa infection, treatment with EDC34 reduced bacterial levels and lung damage. In combination with the antibiotic ceftazidime, the peptide significantly prolonged survival and reduced mortality in mice. The peptide's boosting effect on bacterial clearance paired with its inhibiting effect on excessive coagulation makes it a promising therapeutic candidate for invasive Gram-negative infections.

  13. Membrane permeabilization of colistin toward pan-drug resistant Gram-negative isolates

    Directory of Open Access Journals (Sweden)

    Yasmine Fathy Mohamed

    2016-06-01

    Full Text Available Abstract Pan-drug resistant Gram-negative bacteria, being resistant to most available antibiotics, represent a huge threat to the medical community. Colistin is considered the last therapeutic option for patients in hospital settings. Thus, we were concerned in this study to demonstrate the membrane permeabilizing activity of colistin focusing on investigating its efficiency toward those pan-drug resistant isolates which represent a critical situation. We determined the killing dynamics of colistin against pan-drug resistant isolates. The permeability alteration was confirmed by different techniques as: leakage, electron microscopy and construction of an artificial membrane model; liposomes. Moreover, selectivity of colistin against microbial cells was also elucidated. Colistin was proved to be rapid bactericidal against pan-drug resistant isolates. It interacts with the outer bacterial membrane leading to deformation of its outline, pore formation, leakage of internal contents, cell lysis and finally death. Furthermore, variations in membrane composition of eukaryotic and microbial cells provide a key for colistin selectivity toward bacterial cells. Colistin selectively alters membrane permeability of pan-drug resistant isolates which leads to cell lysis. Colistin was proved to be an efficient last line treatment for pan-drug resistant infections which are hard to treat.

  14. Trends of 9,416 multidrug-resistant Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Viviane Decicera Colombo Oliveira

    2015-06-01

    Full Text Available Summary Objective: a resistance of hospital-acquired bacteria to multiple antibiotics is a major concern worldwide. The objective of this study was to investigate multidrugresistant (MDR bacteria, clinical specimens, origin of specimen and trends, and correlate these with bacterial sensitivity and consumption of antimicrobials. Methods: 9,416 bacteria of nosocomial origin were evaluated in a tertiary hospital, from 1999 to 2008. MDR was defined for Gram-negative bacteria (GNB as resistance to two or more classes/groups of antibiotics. Results: GNB MDR increased by 3.7 times over the study period (p<0.001. Acinetobacter baumannii was the most prevalent (36.2%. Over the study period, there were significant 4.8-fold and 14.6-fold increases for A. baumannii and K. pneumoniae (p<0.001, respectively. Sixty-seven percent of isolates of MDR GNB were isolated in intensive care units. The resistance of A. baumannii to carbapenems increased from 7.4 to 57.5% during the study period and concomitant with an increased consumption. Conclusion: that decade showed prevalence of GNB and a gradual increase in MDR GNB. There was an increase in carbapenem resistance of 50.1% during the study.

  15. Small-molecule inhibitors of gram-negative lipoprotein trafficking discovered by phenotypic screening.

    Science.gov (United States)

    McLeod, Sarah M; Fleming, Paul R; MacCormack, Kathleen; McLaughlin, Robert E; Whiteaker, James D; Narita, Shin-Ichiro; Mori, Makiko; Tokuda, Hajime; Miller, Alita A

    2015-03-01

    In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy. PMID:25583975

  16. Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria.

    Science.gov (United States)

    Rahnamaeian, Mohammad; Cytryńska, Małgorzata; Zdybicka-Barabas, Agnieszka; Dobslaff, Kristin; Wiesner, Jochen; Twyman, Richard M; Zuchner, Thole; Sadd, Ben M; Regoes, Roland R; Schmid-Hempel, Paul; Vilcinskas, Andreas

    2015-05-01

    Antimicrobial peptides (AMPs) and proteins are important components of innate immunity against pathogens in insects. The production of AMPs is costly owing to resource-based trade-offs, and strategies maximizing the efficacy of AMPs at low concentrations are therefore likely to be advantageous. Here, we show the potentiating functional interaction of co-occurring insect AMPs (the bumblebee linear peptides hymenoptaecin and abaecin) resulting in more potent antimicrobial effects at low concentrations. Abaecin displayed no detectable activity against Escherichia coli when tested alone at concentrations of up to 200 μM, whereas hymenoptaecin affected bacterial cell growth and viability but only at concentrations greater than 2 μM. In combination, as little as 1.25 μM abaecin enhanced the bactericidal effects of hymenoptaecin. To understand these potentiating functional interactions, we investigated their mechanisms of action using atomic force microscopy and fluorescence resonance energy transfer-based quenching assays. Abaecin was found to reduce the minimal inhibitory concentration of hymenoptaecin and to interact with the bacterial chaperone DnaK (an evolutionarily conserved central organizer of the bacterial chaperone network) when the membrane was compromised by hymenoptaecin. These naturally occurring potentiating interactions suggest that combinations of AMPs could be used therapeutically against Gram-negative bacterial pathogens that have acquired resistance to common antibiotics.

  17. Antibiotic resistance of Vibrio parahaemolyticus isolated from pond-reared Litopenaeus vannamei marketed in Natal, Brazil

    Directory of Open Access Journals (Sweden)

    Ligia Maria Rodrigues de Melo

    2011-12-01

    Full Text Available Ten out of fifty fresh and refrigerated samples of shrimp (Litopenaeus vannamei collected from retailers in Natal (Rio Grande do Norte, Northeastern Brazil tested positive for Vibrio parahaemolyticus. The Kanagawa test and multiplex PCR assays were used to detect TDH and TRH hemolysins and the tdh, trh and tlh genes, respectively. All strains were Kanagawa-negative and tlh-positive. Antibiotic susceptibility testing was done for seven antibiotics by the agar diffusion technique. Five strains (50% presented multiple antibiotic resistance to ampicillin (90% and amikacin (60%, while two strains (20% displayed intermediate-level resistance to amikacin. All strains were sensitive to chloramphenicol. Intermediate-level susceptibility and/or resistance to other antibiotics ranged from 10 to 90%, with emphasis on the observed growing intermediate-level resistance to ciprofloxacin. Half our isolates yielded a multiple antibiotic resistance index above 0.2 (range: 0.14-0.29, indicating a considerable risk of propagation of antibiotic resistance throughout the food chain.

  18. Serum procalcitonin elevation in critically ill patients at the onset of bacteremia caused by either gram negative or gram positive bacteria

    Directory of Open Access Journals (Sweden)

    Prin Sébastien

    2008-03-01

    Full Text Available Abstract Background In the ICU, bacteremia is a life-threatening infection whose prognosis is highly dependent on early recognition and treatment with appropriate antibiotics. Procalcitonin levels have been shown to distinguish between bacteremia and noninfectious inflammatory states accurately and quickly in critically ill patients. However, we still do not know to what extent the magnitude of PCT elevation at the onset of bacteremia varies according to the Gram stain result. Methods Review of the medical records of every patient treated between May, 2004 and December, 2006 who had bacteremia caused by either Gram positive (GP or Gram negative (GN bacteria, and whose PCT dosage at the onset of infection was available. Results 97 episodes of either GN bacteremia (n = 52 or GP bacteremia (n = 45 were included. Procalcitonin levels were found to be markedly higher in patients with GN bacteremia than in those with GP bacteremia, whereas the SOFA score value in the two groups was similar. Moreover, in the study population, a high PCT value was found to be independently associated with GN bacteremia. A PCT level of 16.0 ng/mL yielded an 83.0% positive predictive value and a 74.0% negative predictive value for GN-related bacteremia in the study cohort (AUROCC = 0.79; 95% CI, 0.71–0.88. Conclusion In a critically ill patient with clinical sepsis, GN bacteremia could be associated with higher PCT values than those found in GP bacteremia, regardless of the severity of the disease.

  19. Antibiotic Resistance: The Need For a Global Strategy.

    Science.gov (United States)

    Elder, David P; Kuentz, Martin; Holm, René

    2016-08-01

    The development of antibiotic resistance is a major problem for mankind and results in fatal consequences on a daily basis across the globe. There are a number of reasons for this situation including increasing globalization with worldwide travel, health tourism, over use and ineffective use (both in man and animals), and counterfeiting of the antimicrobial drug products we have available currently. Although there are huge economical, demographic, legal and logistic differences among the global communities, there are also differences regarding the best approach to dealing with antibiotic resistance. However, as resistant bacteria do not respect international borders, there is clearly a need for a global strategy to minimize the spread of antibiotic resistance, to optimize the use of antibiotics, and to facilitate the development of new and effective medications. This commentary provides an insight into the issues and some of the ongoing programs to ensure an effective treatment for the future. PMID:27397433

  20. Mechanisms of Helicobacter pylori antibiotic resistance and molecular testing

    Directory of Open Access Journals (Sweden)

    Toshihiro eNishizawa

    2014-10-01

    Full Text Available Antibiotic resistance in Helicobacter pylori (H. pylori is the main factor affecting the efficacy of current treatment methods against infection caused by this organism. The traditional culture methods for testing bacterial susceptibility to antibiotics are expensive and require 10 to 14 days. Since resistance to clarithromycin, fluoroquinolone, and tetracycline seems to be exclusively caused by specific mutations in a small region of the responsible gene, molecular methods offer an attractive alternative to the above-mentioned techniques. The technique of polymerase chain reaction (PCR is an accurate and rapid method for the detection of mutations that confer antibiotic resistance. This review highlights the mechanisms of antibiotic resistance in H. pylori and the molecular methods for antibiotic susceptibility testing.

  1. Serum amyloid P component bound to gram-negative bacteria prevents lipopolysaccharide-mediated classical pathway complement activation

    NARCIS (Netherlands)

    de Haas, CJC; van Leeuwen, EMM; van Bommel, T; Verhoef, J; van Kessel, KPM; van Strijp, JAG

    2000-01-01

    Although serum amyloid P component (SAP) is known to bind many ligands, its biological function is not yet clear. Recently, it was demonstrated that SAP binds to lipopolysaccharide (LPS), In the present study, SAP was shown to bind to gram-negative bacteria expressing short types of LPS or lipo-olig

  2. In vitro Efficacy of Meropenem, Colistin and Tigecycline Against the Extended Spectrum Beta-Lactamase Producing Gram Negative Bacilli

    International Nuclear Information System (INIS)

    Objective:To compare the in vitroefficacy of meropenem, colistin and tigecycline against extended spectrum Betalactamase producing Gram negative bacilli by minimal inhibitory concentration. Study Design:Cross-sectional descriptive study. Place and Duration of Study: Department of Microbiology, Army Medical College, National University of Sciences and Technology, Rawalpindi, from June to December 2010. Methodology: Routine clinical specimens were subjected to standard microbiological procedures and the isolates were identified to species level. Extended spectrum beta-lactamase producing Gram negative bacilli were detected by Jarlier disc synergy method and confirmed by ceftazidime and ceftazidime-clavulanate Etest. Minimum Inhibitory Concentration (MIC90) of meropenem, colistin and tigecycline was determined by Etest (AB BIOMERIUX) and the results were interpreted according to the manufacturer's instructions and Clinical and Laboratory Standards Institute guidelines and Food and Drug Authority recommendations. Results were analyzed by using Statistical Package for the Social Sciences version 20. Results: A total of 52 non-duplicate extended spectrum Beta-lactamase-producing Gram negative bacilli were included in the study. The MIC90 of tigecycline (0.75 micro g/ml) was lowest as compared to the meropenem (2 micro g/ml) and colistin (3 micro g/ml). Conclusion: Tigecycline is superior in efficacy against the extended spectrum Beta-lactamase producing Gram negative bacilli as compared to colistin and meropenem. (author)

  3. Epidemiology of Gram Negative Antimicrobial Resistance in a Multi-State Network of Long Term Care Facilities

    Science.gov (United States)

    Lautenbach, Ebbing; Marsicano, Roseann; Tolomeo, Pam; Heard, Michael; Serrano, Steve; Stieritz, Donald D.

    2009-01-01

    We identified 1,805 gram-negative organisms in urine cultures from residents of 63 long-term care facilities (LTCFs) over 10 months. Fluoroquinolone resistance was 51% among E. coli, while 26% and 6% of Klebsiella were resistant to ceftazidime and imipenem, respectively. Resistance varied significantly by type of LTCF, LTCF size, and geographic region. PMID:19566445

  4. Genomics of pyrrolnitrin biosynthetic loci : evidence for conservation and whole-operon mobility within Gram-negative bacteria

    NARCIS (Netherlands)

    Costa, Rodrigo; van Aarle, Ingrid M.; Mendes, Rodrigo; van Elsas, Jan Dirk

    2009-01-01

    Pyrrolnitrin (PRN) is a tryptophan-derived secondary metabolite produced by a narrow range of Gram-negative bacteria. The PRN biosynthesis by rhizobacteria presumably has a key role in their life strategies and in the biocontrol of plant diseases. The biosynthetic operon that encodes the pathway tha

  5. [Utility of pyrrolidonyl-arylamidase detection for typing Enterobacteriaceae and non-fermenting Gram-negative bacteria].

    Science.gov (United States)

    Nicola, F; Centorbi, H; Bantar, C; Smayevsky, J; Bianchini, H

    1995-01-01

    Detection of pyrrolidonyl-aryl-amidase activity (PYR) is an important tool to identify gram-positive cocci, such as staphylococci, enterococci, streptococci, and other related genera. However, only few studies evaluating its usefulness with gram-negative rods have been published. Thus, a prospective study including 542 and 215 unique clinical isolates of Enterobacteriaceae and non-fermentative gram-negative rods, respectively, was undertaken. Strains were identified by conventional methods. PYR test was performed using a commercial kit, according to the manufacturer recommendations. Positive results were uniformly obtained for the PYR test with the following species: Citrobacter spp, Klebsiella spp, Enterobacter aerogenes, Enterobacter agglomerans group, Serratia marcescens and S. odorifera. On the other hand, negative results were uniformly displayed by E. coli (including inactive E. coli), Protease group, Salmonellia spp, Shigella spp, Acinetobacter spp, Burkholderia (Pseudomonas) cepacia and Flavobacterium spp. Variable results were shown in Pseudomonas aeruginosa, Stenotrophomonas (xanthomonas) malthophilia, Kluyvera cryocrescens, and Enterobacter cloacae. PYR test proved to be a reliable and simple tool to rapidly distinguish certain species belonging to Enterobacteriaceae (ie. Citrobacter freundii from Salmonella spp, and inactive E. coli from K. ozaenae). Further studies, including a wide diversity of species, are required to assess usefulness of the PYR test for the identification of non-fermentative gram-negative rods. PMID:8850133

  6. Prevalence, risk factors and molecular epidemiology of highly resistant gram negative rods in hospitalized patients in the Dutch region Kennemerland

    NARCIS (Netherlands)

    Souverein, Dennis; Euser, Sjoerd M.; Herpers, Bjorn L.; Diederen, Bram; Houtman, Patricia; van Seventer, Marina; van Ess, Ingeborg; Kluytmans, Jan; Rossen, John W. A.; Den Boer, Jeroen W.

    2016-01-01

    Background: This paper describes (1) the Highly Resistant Gram Negative Rod (HR-GNR) prevalence rate, (2) their genotypes, acquired resistance genes and (3) associated risk factors of HR-GNR colonization among the hospitalized population in the Dutch region Kennemerland. Methods: Between 1 October 2

  7. Potential role of non-antibiotics (helper compounds) in the treatment of multidrug-resistant Gram-negative infections

    DEFF Research Database (Denmark)

    Martins, Marta; Dastidar, Sujata G; Fanning, Seamus;

    2008-01-01

    Multidrug resistance in Gram-negative bacteria is now known to be primarily caused by overexpression of efflux pumps that extrude unrelated antibiotics from the periplasm or cytoplasm of the bacterium prior to their reaching their intended target. This review focuses on a variety of agents...

  8. The multifaceted roles of antibiotics and antibiotic resistance in nature

    Directory of Open Access Journals (Sweden)

    Saswati eSengupta

    2013-03-01

    Full Text Available Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic-resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic-resistance in pathogens. In the natural milieu, antibiotics are often found to be present in subinhibitory concentrations acting as signalling molecules supporting quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host-parasite interactions (e.g., phagocytosis, adherence to the target cell and so on. The evolutionary and ecological aspects of antibiotics and antibiotic-resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behaviour of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and genes that confer resistance to antibiotics in

  9. Determination of the Antibiotic Resistance Profile of Student Cell Phones

    Directory of Open Access Journals (Sweden)

    Lisa Ann Blankinship

    2012-08-01

    Full Text Available Sampling of common use items (e.g., student cell phones for bacterial presence, identification, and antibiotic resistance profiling helps students to recognize the need for routine cleaning of personal items and encourages thoughtful use of currently available medications. This multilab period project can be used to teach or reinforce several methods from general microbiology including aseptic technique, isolation streak, serial dilution, spread plating, Kirby Bauer testing, unknown identification, and media production. The data generated can be saved and added to each semester, thus providing a data set that reflects a local trend of antibiotic resistance.      

  10. Comparison of the Quantum II Bacterial Identification System and the AutoMicrobic System for the identification of gram-negative bacilli.

    OpenAIRE

    Pfaller, M A; Bale, M J; Schulte, K R; Koontz, F P

    1986-01-01

    The Quantum II Bacterial Identification System (BID; Abbott Laboratories) is a microprocessor-based spectrophotometric system for identification within 4 to 5 h of both enteric and nonenteric gram-negative bacilli. We compared the BID with the AutoMicrobic System (AMS; Vitek Systems, Inc.), using the most recent gram-negative identification card and software (AMS-GNI), for the identification of 501 clinical isolates of gram-negative bacilli, including 382 belonging to the Enterobacteriaceae a...

  11. Bioenergetics and the Role of Soluble Cytochromes c for Alkaline Adaptation in Gram-Negative Alkaliphilic Pseudomonas

    Directory of Open Access Journals (Sweden)

    T. Matsuno

    2015-01-01

    Full Text Available Very few studies have been conducted on alkaline adaptation of Gram-negative alkaliphiles. The reversed difference of H+ concentration across the membrane will make energy production considerably difficult for Gram-negative as well as Gram-positive bacteria. Cells of the alkaliphilic Gram-negative bacterium Pseudomonas alcaliphila AL15-21T grown at pH 10 under low-aeration intensity have a soluble cytochrome c content that is 3.6-fold higher than that of the cells grown at pH 7 under high-aeration intensity. Cytochrome c-552 content was higher (64% in all soluble cytochromes c than those of cytochrome c-554 and cytochrome c-551. In the cytochrome c-552-dificient mutant grown at pH 10 under low-aeration intensity showed a marked decrease in μmax⁡ [h−1] (40% and maximum cell turbidity (25% relative to those of the wild type. Considering the high electron-retaining abilities of the three soluble cytochromes c, the deteriorations in the growth of the cytochrome c-552-deficient mutant could be caused by the soluble cytochromes c acting as electron storages in the periplasmic space of the bacterium. These electron-retaining cytochromes c may play a role as electron and H+ condenser, which facilitate terminal oxidation at high pH under air-limited conditions, which is difficult to respire owing to less oxygen and less H+.

  12. Bacteriophages as potential treatment option for antibiotic resistant bacteria.

    Science.gov (United States)

    Bragg, Robert; van der Westhuizen, Wouter; Lee, Ji-Yun; Coetsee, Elke; Boucher, Charlotte

    2014-01-01

    The world is facing an ever-increasing problem with antibiotic resistant bacteria and we are rapidly heading for a post-antibiotic era. There is an urgent need to investigate alterative treatment options while there are still a few antibiotics left. Bacteriophages are viruses that specifically target bacteria. Before the development of antibiotics, some efforts were made to use bacteriophages as a treatment option, but most of this research stopped soon after the discovery of antibiotics. There are two different replication options which bacteriophages employ. These are the lytic and lysogenic life cycles. Both these life cycles have potential as treatment options. There are various advantages and disadvantages to the use of bacteriophages as treatment options. The main advantage is the specificity of bacteriophages and treatments can be designed to specifically target pathogenic bacteria while not negatively affecting the normal microbiota. There are various advantages to this. However, the high level of specificity also creates potential problems, the main being the requirement of highly specific diagnostic procedures. Another potential problem with phage therapy includes the development of immunity and limitations with the registration of phage therapy options. The latter is driving research toward the expression of phage genes which break the bacterial cell wall, which could then be used as a treatment option. Various aspects of phage therapy have been investigated in studies undertaken by our research group. We have investigated specificity of phages to various avian pathogenic E. coli isolates. Furthermore, the exciting NanoSAM technology has been employed to investigate bacteriophage replication and aspects of this will be discussed.

  13. Bacteriophages as potential treatment option for antibiotic resistant bacteria.

    Science.gov (United States)

    Bragg, Robert; van der Westhuizen, Wouter; Lee, Ji-Yun; Coetsee, Elke; Boucher, Charlotte

    2014-01-01

    The world is facing an ever-increasing problem with antibiotic resistant bacteria and we are rapidly heading for a post-antibiotic era. There is an urgent need to investigate alterative treatment options while there are still a few antibiotics left. Bacteriophages are viruses that specifically target bacteria. Before the development of antibiotics, some efforts were made to use bacteriophages as a treatment option, but most of this research stopped soon after the discovery of antibiotics. There are two different replication options which bacteriophages employ. These are the lytic and lysogenic life cycles. Both these life cycles have potential as treatment options. There are various advantages and disadvantages to the use of bacteriophages as treatment options. The main advantage is the specificity of bacteriophages and treatments can be designed to specifically target pathogenic bacteria while not negatively affecting the normal microbiota. There are various advantages to this. However, the high level of specificity also creates potential problems, the main being the requirement of highly specific diagnostic procedures. Another potential problem with phage therapy includes the development of immunity and limitations with the registration of phage therapy options. The latter is driving research toward the expression of phage genes which break the bacterial cell wall, which could then be used as a treatment option. Various aspects of phage therapy have been investigated in studies undertaken by our research group. We have investigated specificity of phages to various avian pathogenic E. coli isolates. Furthermore, the exciting NanoSAM technology has been employed to investigate bacteriophage replication and aspects of this will be discussed. PMID:24619620

  14. Design, synthesis, and antibacterial activities of neomycin-lipid conjugates: polycationic lipids with potent gram-positive activity.

    Science.gov (United States)

    Bera, Smritilekha; Zhanel, George G; Schweizer, Frank

    2008-10-01

    Aminoglycoside antibiotics and cationic detergents constitute two classes of clinically important drugs and antiseptics. Their bacteriological and clinical efficacy, however, has decreased recently due to antibiotic resistance. We have synthesized aminoglycoside-lipid conjugates in which the aminoglycoside neomycin forms the cationic headgroup of a polycationic detergent. Our results show that neomycin-C16 and neomycin-C20 conjugates exhibit strong Gram-positive activity but reduced Gram-negative activity. The MIC of neomycin-C16 (C20) conjugates against methicillin-resistant Staphylococcus aureus (MRSA) is comparable to clinically used antiseptics.

  15. Comparison of the Antimicrobial Effects of Silver Nanoparticles Alone and In Combination with Zataria Multiflora Extract On Some Gram-Positive and Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Shirin Sheikholeslami (MSc

    2016-02-01

    Full Text Available Background and Objective: The spread of drug resistance in bacteria have prompted researchers to seek suitable alternative for antimicrobial drugs among various medicinal plants and nanoparticles. The aim of this study was to evaluate the effect of silver nanoparticles alone and in combination with methanol extract of Zataria multiflora on five Gram-positive and Gram-negative bacteria. Methods: Different concentrations of the nanoparticles and extract alone or in combination with each other were tested against the bacteria, using well diffusion method. Three concentration levels (lowest, average and highest were prepared form the nanoparticles and the extract for the combination, and finally nine different combinations were prepared. Results: The extract and nanoparticles showed inhibitory effects against all the tested bacteria. The maximum diameter of growth inhibition zone in the presence of the extract and nanoparticles were observed in Streptococcus pyogenes (35.6mm and methicillin-resistant Staphylococcus aureus (20.6mm, respectively. The maximum diameter of growth inhibition zone for the combination was measured in S. pyogenes (31mm. Conclusion: The combination of low concentrations of the plant extract and nanoparticles are more effective against bacteria, but the combination of their high concentrations reduce the antibacterial effects in some cases.

  16. Growth of Ag-nanoparticles in an aqueous solution and their antimicrobial activities against Gram positive, Gram negative bacterial strains and Candida fungus.

    Science.gov (United States)

    Aazam, Elham Shafik; Zaheer, Zoya

    2016-04-01

    Silver nanoparticles (AgNPs) were synthesized using Ocimum sanctum (Tulsi) leaves aqueous extract as reducing as well as a capping agent in absence and presence of cetyltrimethylammonium bromide (CTAB). The resulting nanomaterials were characterized by UV-visible spectrophotometer, and transmission electron microscope. The UV-Vis spectroscopy revealed the formation of AgNPs at 400-450 nm. TEM photographs indicate that the truncated triangular silver nanoplates and/or spherical morphology of the AgNPs with an average diameter of 25 nm have been distorted markedly in presence of CTAB. The AgNPs were almost mono disperse in nature. Antimicrobial activities of AgNPs were determined by using two bacteria (Gram positive Staphylococcus aureus MTCC-3160), Gram negative Escherichia coli MTCC-450) and one species of Candida fungus (Candida albicans ATCC 90030) with Kirby-Bauer or disc diffusion method. The zone of inhibition seems extremely good showing a relatively large zone of inhibition in both Staphylococcus aureus, Escherichia coli, and Candida albicans strains. PMID:26796584

  17. Bactericidal activity of ciprofloxacin against amikacin- and cefotaxime-resistant gram-negative bacilli and methicillin-resistant staphylococci.

    OpenAIRE

    Simberkoff, M S; Rahal, J J

    1986-01-01

    The MICs and MBCs of ciprofloxacin were determined for clinical isolates of antibiotic-resistant aerobic bacteria. Decreased susceptibility to ciprofloxacin of cefotaxime- and amikacin-resistant Serratia marcescens and amikacin-resistant Pseudomonas aeruginosa strains were noted. The data suggest that ciprofloxacin susceptibility should be carefully monitored in treating patients with hospital-acquired bacterial infections.

  18. Metagenomic Insights into Transferable Antibiotic Resistance in Oral Bacteria.

    Science.gov (United States)

    Sukumar, S; Roberts, A P; Martin, F E; Adler, C J

    2016-08-01

    Antibiotic resistance is considered one of the greatest threats to global public health. Resistance is often conferred by the presence of antibiotic resistance genes (ARGs), which are readily found in the oral microbiome. In-depth genetic analyses of the oral microbiome through metagenomic techniques reveal a broad distribution of ARGs (including novel ARGs) in individuals not recently exposed to antibiotics, including humans in isolated indigenous populations. This has resulted in a paradigm shift from focusing on the carriage of antibiotic resistance in pathogenic bacteria to a broader concept of an oral resistome, which includes all resistance genes in the microbiome. Metagenomics is beginning to demonstrate the role of the oral resistome and horizontal gene transfer within and between commensals in the absence of selective pressure, such as an antibiotic. At the chairside, metagenomic data reinforce our need to adhere to current antibiotic guidelines to minimize the spread of resistance, as such data reveal the extent of ARGs without exposure to antimicrobials and the ecologic changes created in the oral microbiome by even a single dose of antibiotics. The aim of this review is to discuss the role of metagenomics in the investigation of the oral resistome, including the transmission of antibiotic resistance in the oral microbiome. Future perspectives, including clinical implications of the findings from metagenomic investigations of oral ARGs, are also considered. PMID:27183895

  19. [Effect of Three Typical Disinfection Byproducts on Bacterial Antibiotic Resistance].

    Science.gov (United States)

    Lü, Lu; Zhang, Meng-lu; Wang, Chun-ming; Lin, Hui-rong; Yu, Xin

    2015-07-01

    The effect of typical disinfection byproducts (DBPs) on bacterial antibiotic resistance was investigated in this study. chlorodibromomethane (CDBM), iodoacetic acid (IAA) and chloral hydrate (CH) were selected, which belong to trihalomethanes (THMs), haloacetic acids (HAAs) and aldehydes, respectively. After exposure to the selected DBPs, the resistance change of the tested strains to antibiotics was determined. As a result, all of the three DBPs induced Pseudomonas aeruginosa PAO1 to gain increased resistance to the five antibiotics tested, and the DBPs ranked as IAA > CH > CDBM according to their enhancement effects. Multidrug resistance could also be enhanced by treatment with IAA. The same result was observed in Escherichia coli K12, suggesting that the effect of DBPs on antibiotic resistance was a common phenomenon. The mechanism was probably that DBPs stimulated oxidative stress, which induced mutagenesis. And the antibiotic resistance mutation frequency could be increased along with mutagenesis. This study revealed that the acquisition of bacterial antibiotic resistance might be related to DBPs in drinking water systems. Besides the genotoxicological risks, the epidemiological risks of DBPs should not be overlooked.

  20. Molecular Mechanisms of Antibiotic Resistance in Helicobacter pylori

    NARCIS (Netherlands)

    M.M. Gerrits (Monique)

    2004-01-01

    textabstractAn estimated 4 to 5 million individuals in the Netherlands are actively infected with Helicobacter pylori. Eradication of this bacterium becomes more difficult as the prevalence of antibiotic resistance is increasing worldwide. Most H. pylori infections are now diagnosed by non-invasi

  1. Risk of antibiotic resistance from metal contaminated soils

    Science.gov (United States)

    Knapp, Charles

    2013-04-01

    It is known that contaminated soils can lead to increased incidence of illness and disease, but it may also prevent our ability to fight disease. Many antibiotic resistant genes (ARG) acquired by bacteria originate from the environment. It is important to understand factors that influence levels of ARG in the environment, which could affect us clinically and agriculturally. The presence of elevated metal content in soils often promotes antibiotic resistance in exposed microorganisms. Using qPCR, the abundances of ARG to compare levels with geochemical conditions in randomly selected soils from several countries. Many ARG positively correlated with soil metal content, especially copper, chromium, nickel, lead, and iron. Results suggest that geochemical metal conditions influence the potential for antibiotic resistance in soil, which might be used to estimate baseline gene presence on various landscape scales and may translate to epidemiological risk of antibiotic-resistance transmission from the environment. This suggests that we may have to reconsider tolerances of metal pollution in the environment.

  2. Antibiotic resistance in urban aquatic environments: can it be controlled?

    OpenAIRE

    Manaia, Célia; Macedo, Gonçalo; Fatta-Kassinos, Despo; Nunes, Olga

    2016-01-01

    Over the last decade, numerous evidences have contributed to establish a link between the natural and humanimpacted environments and the growing public health threat that is the antimicrobial resistance. In the environment, in particular in areas subjected to strong anthropogenic pressures, water plays a major role on the transformation and transport of contaminants including antibiotic residues, antibioticresistant bacteria, and antibiotic resistance genes. Therefore, ...

  3. Antibiotic resistance in urban aquatic environments: can it be controlled?

    Science.gov (United States)

    Manaia, Célia M; Macedo, Gonçalo; Fatta-Kassinos, Despo; Nunes, Olga C

    2016-02-01

    Over the last decade, numerous evidences have contributed to establish a link between the natural and human-impacted environments and the growing public health threat that is the antimicrobial resistance. In the environment, in particular in areas subjected to strong anthropogenic pressures, water plays a major role on the transformation and transport of contaminants including antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes. Therefore, the urban water cycle, comprising water abstraction, disinfection, and distribution for human consumption, and the collection, treatment, and delivery of wastewater to the environment, is a particularly interesting loop to track the fate of antibiotic resistance in the environment and to assess the risks of its transmission back to humans. In this article, the relevance of different transepts of the urban water cycle on the potential enrichment and spread of antibiotic resistance is reviewed. According to this analysis, some gaps of knowledge, research needs, and control measures are suggested. The critical rationale behind the measures suggested and the desirable involvement of some key action players is also discussed. PMID:26649735

  4. Suppression of antibiotic resistance acquisition by combined use of antibiotics.

    Science.gov (United States)

    Suzuki, Shingo; Horinouchi, Takaaki; Furusawa, Chikara

    2015-10-01

    We analyzed the effect of combinatorial use of antibiotics with a trade-off relationship of resistance, i.e., resistance acquisition to one drug causes susceptibility to the other drug, and vice versa, on the evolution of antibiotic resistance. We demonstrated that this combinatorial use of antibiotics significantly suppressed the acquisition of resistance.

  5. A framework for global surveillance of antibiotic resistance

    NARCIS (Netherlands)

    Grundmann, Hajo; Klugman, Keith P.; Walsh, Timothy; Ramon-Pardo, Pilar; Sigauque, Betuel; Khan, Wasif; Laxminarayan, Ramanan; Heddini, Andreas; Stelling, John

    2011-01-01

    The foreseen decline in antibiotic effectiveness explains the needs for data to inform the global public health agenda about the magnitude and evolution of antibiotic resistance as a serious threat to human health and development. Opportunistic bacterial pathogens are the cause of the majority of co

  6. Consolidating and Exploring Antibiotic Resistance Gene Data Resources

    DEFF Research Database (Denmark)

    Xavier, Basil Britto; Das, Anupam J.; Cochrane, Guy;

    2016-01-01

    The unrestricted use of antibiotics has resulted in rapid acquisition of antibiotic resistance (AR) and spread of multidrug-resistant (MDR) bacterial pathogens. With the advent of next-generation sequencing technologies and their application in understanding MDR pathogen dynamics, it has become...

  7. Evaluating antibiotic resistance genes in soils with applied manures

    Science.gov (United States)

    Antibiotics are commonly used in livestock production to promote growth and combat disease. Recent studies have shown the potential for spread of antibiotic resistance genes (ARG) to the environment following application of livestock manures. In this study, concentrations of bacteria with ARG in soi...

  8. The ABC of Ribosome-Related Antibiotic Resistance

    Science.gov (United States)

    Wilson, Daniel N.

    2016-01-01

    ABSTRACT The increase in multidrug-resistant pathogenic bacteria is limiting the utility of our current arsenal of antimicrobial agents. Mechanistically understanding how bacteria obtain antibiotic resistance is a critical first step to the development of improved inhibitors. One common mechanism for bacteria to obtain antibiotic resistance is by employing ATP-binding cassette (ABC) transporters to actively pump the drug from the cell. The ABC-F family includes proteins conferring resistance to a variety of clinically important ribosome-targeting antibiotics; however, controversy remains as to whether resistance is conferred via efflux like other ABC transporters or whether another mechanism, such as ribosome protection, is at play. A recent study by Sharkey and coworkers (L. K. Sharkey, T. A. Edwards, and A. J. O’Neill, mBio 7:e01975-15, 2016, http://dx.doi.org/10.1128/mBio.01975-15) provides strong evidence that ABC-F proteins conferring antibiotic resistance utilize ribosome protection mechanisms, namely, by interacting with the ribosome and displacing the drug from its binding site, thus revealing a novel role for ABC-F proteins in antibiotic resistance. PMID:27143393

  9. Occurrence and reservoirs of antibiotic resistance genes in the environment

    NARCIS (Netherlands)

    Seveno, N.; Kallifidas, D.; Smalla, K.; Elsas, van J.D.; Collard, J.M.; Karagouni, A.; Wellington, E.M.H.

    2002-01-01

    Antibiotic resistance genes have become highly mobile since the development of antibiotic chemotherapy. A considerable body of evidence exists proving the link between antibiotic use and the significant increase in drug-resistant human bacterial pathogens. The application of molecular detection and

  10. Occurrence and prevalence of antibiotic resistance in landfill leachate.

    Science.gov (United States)

    Wang, Yangqing; Tang, Wei; Qiao, Jing; Song, Liyan

    2015-08-01

    Antibiotic resistance (AR) is extensively present in various environments, posing emerging threat to public and environmental health. Landfill receives unused and unwanted antibiotics through household waste and AR within waste (e.g., activated sludge and illegal clinical waste) and is supposed to serve as an important AR reservoir. In this study, we used culture-dependent methods and quantitative molecular techniques to detect and quantify antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in 12 landfill leachate samples from six geographic different landfills, China. Five tested ARGs (tetO, tetW, bla(TEM), sulI, and sulII) and seven kinds of antibiotic-resistant heterotrophic ARB were extensively detected in all samples, demonstrating their occurrence in landfill. The detected high ratio (10(-2) to 10(-5)) of ARGs to 16S ribosomal RNA (rRNA) gene copies implied that ARGs are prevalent in landfill. Correlation analysis showed that ARGs (tetO, tetW, sulI, and sulII) significantly correlated to ambient bacterial 16S rRNA gene copies, suggesting that the abundance of bacteria in landfill leachate may play an important role in the horizontal spread of ARGs.

  11. Serum procalcitonin elevation in elderly patients with coronary heart disease at the onset of septic shock caused by either Gram negative or Gram positive bacteremia

    Institute of Scientific and Technical Information of China (English)

    HUANG Dao-zheng; MA Huan; WANG Shou-hong; WU Yan; QIN Tie-he; TAN Ning

    2016-01-01

    Background Septic shock caused by bacteremia is a life-threatening infection whose prognosis is highly dependent on early recognition and appropriate treatment.Procalcitonin (PCT) has been shown to accurately and quickly distinguish bacteremia from noninfectious inflammatory states in critically severe patients.However,the extent of PCT magnitude elevation according to the Gram stain result in elderly patients with coronary heart disease (CHD) at the onset of septic shock caused by bacteremia varies,and has not been clearly elucidated.Methods The medical records of advanced age (non-neutropenic) patient with CHD and septic shock between Mar 2013 and Jun 2015 who had bacteremia caused by either Gram-positive (GP) bacteria or Gram-negative (GN) bacteria were reviewed,and the levels of PCT,C-reactive (CRP) protein and white blood cells count (WBC) in both groups were analyzed.Results 75 episodes of either GN bacteremia (n =40) or GP bacteremia (n =35) were enrolled.PCT levels were found to be markedly higher in patients with GN bacteremia than in those with GP bacteremia [(8.93 ± 17.58) vs.(64.42 ± 58.56) ng/L (P < 0.001)],whereas there was no significant difference in CRP and WBC (P > 0.05).Moreover,a high PCT level was found to be independently associated with GN bacteremia in this study population.A PCT level of 19.69 ng/mL yielded a 72.5% sensitivity,a 91.4% specificity,an 8.43 positive likelihood ratio and a 0.30 negative likelihood ratio for GN-related bacteremia in the study cohort [AUROCC =0.870 (0.041),95% CI (0.790-0.949)].Conclusion In an elderly patient (non-neutropenic)with CHD and septic shock,GN bacteremia could be associated with higher PCT values than those found in GP bacteremia (PCT > 19.69 ng/mL).

  12. Food Safety Hazards Related to Emerging Antibiotic Resistant Bacteria in Cultured Freshwater Fishes of Kolkata, India

    Directory of Open Access Journals (Sweden)

    T. Jawahar Abraham

    2011-02-01

    Full Text Available Association of opportunistic human bacterial pathogens in cultured freshwater fishes of Kolkata, India and their sensitivity to broad spectrum antibiotics was investigated. Both indigenous and non-indigenous human bacterial pathogens such as Aeromonas hydrophila, A. caviae, Edwardsiella tarda, Escherichia coli, Pseudomonas spp. and Vibrio parahaemolyticus were isolated from freshwater fishes of Kolkata. These strains were highly resistant to oxytetracycline (62% and nitrofurantoin (46%, and sensitive to ciprofloxacin (91% and chloramphenicol (89%. Multiple Antibiotic Resistance (MAR was high in catfishes (76% followed by miscellaneous fishes (66% and sewage-fed farm grown carps (55%. Among the bacterial species, the MAR was high in Ed. tarda (86%. More than 50% of the strains of A. hydrophila, A. caviae, E. coli, Pseudomonas spp., V. parahaemolyticus and unidentified Gram positive rods exhibited MAR. The results suggested that there is added risk of antibacterial resistance developing in the emerging human bacterial pathogens from freshwater aquaculture and of such antibiotic resistant bacterial pathogens entering the food chain.

  13. Functional metagenomics reveals previously unrecognized diversity of antibiotic resistance genes in gulls

    Directory of Open Access Journals (Sweden)

    Adam Camillo Martiny

    2011-11-01

    Full Text Available Wildlife may facilitate the spread of antibiotic resistance (AR between human-dominated habitats and the surrounding environment. Here, we use functional metagenomics to survey the diversity and genomic context of AR genes in gulls. Using this approach, we found a variety of AR genes not previously detected in gulls and wildlife, including class A and C beta-lactamases as well as six tetracycline resistance gene types. An analysis of the flanking sequences indicates that most of these genes are present in Enterobacteraceae and various gram positive bacteria. In addition to finding known gene types, we detected thirty-one previously undescribed AR genes. These undescribed genes include one most similar to an uncharacterized gene in Verrucomicrobium and another to a putative DNA repair protein in Lactobacillus. Overall, the study more than doubled the number of clinically relevant AR gene types known to be carried by gulls or by wildlife in general. Together with the propensity of gulls to visit human-dominated habitats, this high diversity of AR gene types suggests that gulls could facilitate the spread of antibiotic resistance.

  14. Management Options For Reducing The Release Of Antibiotics And Antibiotic Resistance Genes To The Environment

    Science.gov (United States)

    Background: There is growing concern worldwide about the role of polluted soil and water - 77 environments in the development and dissemination of antibiotic resistance. 78 Objective: To identify management options for reducing the spread of antibiotics and 79 antibiotic resist...

  15. Background antibiotic resistance patterns in antibiotic-free pastured poultry production

    Science.gov (United States)

    Antibiotic resistance (AR) is a significant public health issue, and agroecosystems are often viewed as major environmental sources of antibiotic resistant foodborne pathogens. While the use of antibiotics in agroecosystems can potentially increase AR, appropriate background resistance levels in th...

  16. CASE-CONTROL STUDY FOR HOSPITAL INFECTIONS CAUSED BY GRAM-NEGATIVE BACILLI IN EMERGENCY INTENSIVE CARE UNIT

    Institute of Scientific and Technical Information of China (English)

    伍育旗; 余旻; 单红卫; 钱民; 张新黎; 吕晓玲; 程群霞; 杨兴易

    2013-01-01

    <正>Objective To evaluate the potential patient factors associated with hospital infections caused by gram-negative bacilli in Emergency Intensive Care Unit(EICU).Methods A total of 146 patients with hospital infections were investigated.The method of retrospective case-control study and multivariable logistic regression analysis were adopted.Results Univariate analysis revealed relationship among numerous patient factors,and multivariate analysis revealed four factors to be associated independently with hospital infections caused by gram-negative bacilli:mechanical ventilation,corticoid use, length of stay,and coma.Conclusion The comprehensive preventive measures should be taken to deal with the risk factor of hospital infections in EICU.

  17. Isolation and molecular characterization of multidrug-resistant Gram-negative bacteria from imported flamingos in Japan

    Directory of Open Access Journals (Sweden)

    Fukumoto Yukio

    2009-11-01

    Full Text Available Abstract Imported animals, especially those from developing countries, may constitute a potential hazard to native animals and to public health. In this study, a new flock of lesser flamingos imported from Tanzania to Hiroshima Zoological Park were screened for multidrug-resistant Gram-negative bacteria, integrons and antimicrobial resistance genes. Thirty-seven Gram-negative bacterial isolates were obtained from the flamingos. Seven isolates (18.9% showed multidrug resistance phenotypes, the most common being against: ampicillin, streptomycin, tetracycline, trimethoprim/sulfamethoxazole and nalidixic acid. Molecular analyses identified class 1 and class 2 integrons, β-lactamase-encoding genes, blaTEM-1 and blaCTX-M-2 and the plasmid-mediated quinolone resistance genes, qnrS and qnrB. This study highlights the role of animal importation in the dissemination of multidrug-resistant bacteria, integrons and antimicrobial resistance genes from one country to another.

  18. Vitreous System Ag2O –ZnO–B2O3 Action Against Gram Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Razvan Stefan

    2010-05-01

    Full Text Available In this work the ability of the system xAg2O  (100-x [45ZnO55B2O3] oxide glasses to inhibit the growth of bacteria Eschierchia coli, Pseudomonas and Salmonella was investigated. Using the diffusimetric method there were measured the diameters of inhibition, in order to classify the sensitivity of gram negative bacteria to oxide compounds containing silver, for their use as filters. Vitreous samples were processed as powders with grain between 45 and 75 m and less than 45 m for a large of contact area with the microorgansms and to make possible the study of biological effect of grain addiction. Action of the investigated oxide system against the gram negative bacteria is strictly related to the presence of silver oxide in glass composition.

  19. Isolation of Coralmycins A and B, Potent Anti-Gram Negative Compounds from the Myxobacteria Corallococcus coralloides M23.

    Science.gov (United States)

    Kim, Yu Jin; Kim, Hyun-Ju; Kim, Geon-Woo; Cho, Kyungyun; Takahashi, Shunya; Koshino, Hiroyuki; Kim, Won-Gon

    2016-09-23

    Two new potent anti-Gram negative compounds, coralmycins A (1) and B (2), were isolated from cultures of the myxobacteria Corallococcus coralloides M23, together with another derivative (3) that was identified as the very recently reported cystobactamid 919-2. Their structures including the relative stereochemistry were elucidated by interpretation of spectroscopic, optical rotation, and CD data. The relative stereochemistry of 3 was revised to "S*R*" by NMR analysis. The antibacterial activity of 1 was most potent against Gram-negative pathogens, including Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumanii, and Klebsiella pneumoniae, with MICs of 0.1-4 μg/mL; these MICs were 4-10 and 40-100 times stronger than the antibacterial activities of 3 and 2, respectively. Thus, these data indicated that the β-methoxyasparagine unit and the hydroxy group of the benzoic acid unit were critical for antibacterial activity. PMID:27598688

  20. A peptide derived from human bactericidal/permeability-increasing protein (BPI) exerts bactericidal activity against Gram-negative bacterial isolates obtained from clinical cases of bovine mastitis

    Science.gov (United States)

    Gram-negative bacteria are responsible for approximately one-third of the clinical cases of bovine mastitis and can elicit a life-threatening, systemic inflammatory response. Lipopolysaccharide (LPS) is a membrane component of all Gram-negative bacteria and is largely responsible for evoking the de...

  1. Synthesis of the cell surface during the division cycle of rod-shaped, gram-negative bacteria.

    OpenAIRE

    Cooper, S

    1991-01-01

    When the growth of the gram-negative bacterial cell wall is considered in relation to the synthesis of the other components of the cell, a new understanding of the pattern of wall synthesis emerges. Rather than a switch in synthesis between the side wall and pole, there is a partitioning of synthesis such that the volume of the cell increases exponentially and thus perfectly encloses the exponentially increasing cytoplasm. This allows the density of the cell to remain constant during the divi...

  2. Sensitivity of surveillance testing for multidrug-resistant Gram-negative bacteria in the intensive care unit.

    Science.gov (United States)

    Ridgway, Jessica P; Peterson, Lance R; Thomson, Richard B; Miller, Becky A; Wright, Marc-Oliver; Schora, Donna M; Robicsek, Ari

    2014-11-01

    We tested intensive care unit patients for colonization with multidrug-resistant Gram-negative bacilli (MDR GNB) and compared the results with those of concurrent clinical cultures. The sensitivity of the surveillance test for detecting MDR GNB was 58.8% (95% confidence interval, 48.6 to 68.5%). Among 133 patients with positive surveillance tests, 61% had no prior clinical culture with MDR GNB.

  3. Characterization of selected Gram-negative non-fermenting bacteria isolated from honey bees (Apis mellifera carnica)

    OpenAIRE

    Loncaric, Igor; Ruppitsch, Werner; Licek, Elisabeth; Moosbeckhofer, Rudolf; Busse, Hans-Jürgen; Rosengarten, Renate

    2011-01-01

    International audience This study was conducted to improve the knowledge about bacteria associated with honey bees, Apis mellifera carnica. In this survey, the diversity of Gram-negative non-fermenting bacteria isolated and cultivated from pollen loads, honey sac, freshly stored nectar, and honey was investigated. Bacteria were characterized by a polyphasic approach. Based on morphological and physiological characteristics and comparison of isolates protein patterns after sodium dodecyl su...

  4. Evaluation of Gram Negative Bacterial Contamination in Dental Unit Water Supplies in a University Clinic in Tabriz, Iran

    OpenAIRE

    Pouralibaba, Firoz; Balaei, Esrafil; Kashefimehr, Atabak

    2011-01-01

    Background and aims Bacterial contamination of dental unit water supplies (DUWS) has attracted a lot of attention in recent years due to the emergence of serious infectionsin susceptible dental patients. The aim of the present study was to evaluate the presence of gram-negative bacterial contamination in DUWS at Tabriz University of Medical Sciences Faculty of Dentistry. Materials and methods This descriptive study was carried out on 51 active dental units in different departments. Con-tamina...

  5. Impact of Antimicrobial Stewardship Programme on Carbapenem Resistance in Gram Negative Isolates in an Indian Tertiary Care Hospital

    Directory of Open Access Journals (Sweden)

    Namita Jaggi

    2012-01-01

    Full Text Available Problem statement: Increasing Antimicrobial resistance in the World is constantly becoming a Global threat and there is an urgent need to prevent its spread. Various studies of last decade have shown reduced trends of antimicrobial resistance in the pathogens as an outcome of the Antimicrobial Stewardship Programs. In view of this, the present four years’ study was carried out to analyse the impact of Antimicrobial Stewardship Programs on carbapenem resistance in Gram negative isolates in a Tertiary care hospital in India. It involved a retrospective analysis of carbapenem resistance in Gram negatives for one year (July 2007 to June 2008, followed by prospective evaluation of the impact of stewardship interventions on resistance patterns (July 2008 to Jun 2011. Approach: Our study was staged into four parts: (1 July 2007 to June 2008: Resistance patterns of Gram negative isolates-E.coli, Klebsiella, Pseudomonas and Acinetobacter baumannii towards carbapenems were studied. (2 July 2008: Phase I intervention programme Implementation of an antibiotic policy in the hospital. (3 July 2008 to June 2010: The Impact of Phase I intervention programme was assessed subsequently. (4 July 2010 to June 2011: Phase II intervention programme: Formation and effective functioning of the antimicrobial stewardship committee. Results: The percentage resistance towards carbapenems in E.coli, Klebsiella, Pseudomonas and A. baumannii from July 2007-June 2008 was 1.07, 13.1, 21.3 and 12.5% respectively. Phase I intervention programme was initiated in July 2008 and Phase II in July 2010 and a subsequent reduction of 4.03% was observed in the carbapenem resistant Pseudomonas in the last stage of study period following the interventions. However the resistance in the other Gram negatives (E. coli, Klebsiella and A. baumannii rose and then stabilized. Conclusion: An antimicrobial stewardship programme with sustained and multifaceted efforts is essential to control the

  6. Discovery of new Gram-negative antivirulence drugs: structure and properties of novel E. coli WaaC inhibitors.

    Science.gov (United States)

    Moreau, F; Desroy, N; Genevard, J M; Vongsouthi, V; Gerusz, V; Le Fralliec, G; Oliveira, C; Floquet, S; Denis, A; Escaich, S; Wolf, K; Busemann, M; Aschenbrenner, A

    2008-07-15

    Heptosyltransferases such as WaaC represent promising and attractive targets for the discovery of new Gram-negative antibacterial drugs based on antivirulence mechanisms. We report herein our approach to the identification of the first micromolar inhibitors of WaaC and the preliminary SAR generated from this family of 2-aryl-5-methyl-4-(5-aryl-furan-2-yl-methylene)-2,4-dihydro-pyrazol-3-ones identified by virtual screening.

  7. Multidrug-resistant gram-negative bacteria colonization of healthy US military personnel in the US and Afghanistan

    OpenAIRE

    Vento, Todd J.; Cole, David W; Mende, Katrin; Calvano, Tatjana P.; Rini, Elizabeth A.; Tully, Charla C; Zera, Wendy C.; Guymon, Charles H; Yu, Xin; Cheatle, Kristelle A; Akers, Kevin S.; Beckius, Miriam L.; Landrum, Michael L.; Murray, Clinton K.

    2013-01-01

    Background The US military has seen steady increases in multidrug-resistant (MDR) gram-negative bacteria (GNB) infections in casualties from Iraq and Afghanistan. This study evaluates the prevalence of MDR GNB colonization in US military personnel. Methods GNB colonization surveillance of healthy, asymptomatic military personnel (101 in the US and 100 in Afghanistan) was performed by swabbing 7 anatomical sites. US-based personnel had received no antibiotics within 30 days of specimen collect...

  8. Sensitivity pattern of Gram negative bacteria to the new β-lactam/ β-lactamase inhibitor combination: Cefepime/tazobactam

    Directory of Open Access Journals (Sweden)

    Abdul Ghafur

    2012-03-01

    Full Text Available Objectives: Increasing prevalence of carbapenem-resistant Gram negative bacteria has prompted researchers to explorealternative antibiotic options. Different ß-lactam/ß-lactamase inhibitor (BL/BLI combinations are used in manycountries, as a carbapenem saving strategy. The purpose of our study was to evaluate the sensitivity pattern of cefepime/tazobactam combination in comparison to piperacillin/tazobactam, cefoperazone/sulbactam, cefepime andcarbapenem agents.Materials and methods: We conducted retrospective analysis of the sensitivity pattern of Gram negative bacterialisolates in Apollo Speciality Hospital; a 300 bedded, tertiary care Oncology, Neurosurgical and Orthopaedic Centre inSouth India.Results: Out of the 1003 Gram negative, non-repetitive isolates collected over a period of one year; 60.5% were sensitiveto piperacillin-tazobactam, 46.2% to cefepime, 80.4% to cefepime/tazobactam, 71.3% to cefoperazone-sulbactam,79.1% to imipenem and 78.2% to meropenem. Addition of tazobactam increased the susceptibility of cefepime from46.2% to 80.4% in gram negative isolates in general; from 34.4 to 87.9% in E. coli, from 42.3 to 81.0% to Klebsiella, from72.0 to 81.4% in Pseudomonas and 17.2-54.5% to Acinetobacter.Conclusion: Cefepime/tazobactam provided a better invitro sensitivity profile than other BL-BLI combinations studied.This in vitro data needs to be confirmed by clinical studies. J Microbiol Infect Dis 2012; 2(1: 5-8

  9. Epidemiology of multi-resistance Gram negative pathogen circulating in Liguria and molecular characterization of different carbapenemases

    Directory of Open Access Journals (Sweden)

    Erika Coppo

    2011-06-01

    Full Text Available This study was conducted during January-April 2010 with the collaboration of 7 clinical microbiology laboratories evenly distributed across the Ligurian area to identify the most frequent Gram negative species and to evaluate their antibiotic susceptibility patterns Overall, 110 consecutive multi-resistant non duplicate Gram negative isolates,were collected and sent to the coordinating laboratory (Sezione di Microbiologia del DISC, University of Genoa, Italy together with susceptibility data obtained by routine methods. In addition, strains resistant to carbapenems were characterized by PCR. A total of 110 Gram negative multi-resistance strains were found, including 74 and 36 isolated from healthcare or nosocomial settings and community acquired infections, respectively. The most represented pathogens were: A. baumannii (38, 34.5%, E. coli (30, 27.2%, P. aeruginosa (29, 26.3%, K. pneumoniae (9, 8.2% and P. mirabilis (4, 3.6%. A. baumannii were more frequently collected from healthcare settings or nosocomial samples, while the other strains were generally equally isolated from in- and out-patients. Amikacin was the most active molecule against E. coli and P. mirabilis (96,7% and 100% of susceptible stains respectively. Colistin was the only active molecule agains A. baumanii and P. aeruginosa (100% of susceptible strains. Against K. pneumoniae tigecycline and colistin were the most active molecules (100% of susceptible strains. Imipenem was the most active compound against E. coli and P. mirabilis (100% of susceptible strains. A large number (97.4% of A. baumannii was resistant to imipenem. K. pneumoniae and P. aeruginosa showed rates of resistance of 88% and 34.4% respectively. A. baumannii, K. pneumoniae and P. aeruginosa isolates resistant to Imipenem, carried OXA-23, KPC and VIM carbapenemases.These data shown a significant spread of multidrug-resistant Gram negative bacteria in hospitals and in communities.The production of carbapenemase in

  10. Monoclonal antibodies specific for Escherichia coli J5 lipopolysaccharide: cross-reaction with other gram-negative bacterial species.

    OpenAIRE

    Mutharia, L M; Crockford, G; Bogard, W C; Hancock, R E

    1984-01-01

    Four monoclonal antibodies against Escherichia coli J5 were studied. Each of these monoclonal antibodies reacted with purified lipopolysaccharides from E. coli J5, the deep rough mutant Salmonella minnesota Re595, Agrobacterium tumefaciens, and Pseudomonas aeruginosa PAO1 as well as with the purified lipid A of P. aeruginosa. Enzyme-linked immunosorbent assays using the outer membranes from a variety of gram-negative bacteria demonstrated that these lipid A-specific monoclonal antibodies inte...

  11. Structural and Enzymatic Characterization of ABgp46, a Novel Phage Endolysin with Broad Anti-Gram-Negative Bacterial Activity

    Science.gov (United States)

    Oliveira, Hugo; Vilas Boas, Diana; Mesnage, Stéphane; Kluskens, Leon D.; Lavigne, Rob; Sillankorva, Sanna; Secundo, Francesco; Azeredo, Joana

    2016-01-01

    The present study demonstrates the antibacterial potential of a phage endolysin against Gram-negative pathogens, particularly against multidrug resistant strains of Acinetobacter baumannii. We have cloned, heterologously expressed and characterized a novel endolysin (ABgp46) from Acinetobacter phage vb_AbaP_CEB1 and tested its antibacterial activity against several multidrug-resistant A. baumannii strains. LC-MS revealed that ABgp46 is an N-acetylmuramidase, that is also active over a broad pH range (4.0–10.0) and temperatures up to 50°C. Interestingly, ABgp46 has intrinsic and specific anti-A. baumannii activity, reducing multidrug resistant strains by up to 2 logs within 2 h. By combining ABgp46 with several organic acids that act as outer membrane permeabilizing agents, it is possible to increase and broaden antibacterial activity to include other Gram-negative bacterial pathogens. In the presence of citric and malic acid, ABgp46 reduces A. baumannii below the detection limit (>5 log) and more than 4 logs Pseudomonas aeruginosa and Salmonella typhimurium strains. Overall, this globular endolysin exhibits a broad and high activity against Gram-negative pathogens, that can be enhanced in presence of citric and malic acid, and be used in human and veterinary medicine. PMID:26955368

  12. Effect of Light-Activated Hypocrellin B on the Growth and Membrane Permeability of Gram-Negative Escherichia coli Cells

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2014-01-01

    Full Text Available Aim. To investigate the effect of light-activated hypocrellin B on the growth and membrane permeability of Gram-negative bacteria. Methods. Escherichia coli (E. coli as a model bacterium of Gram-negative bacteria was incubated with various concentrations of hypocrellin B for 60 min and was subsequently irradiated by blue light with wavelength of 470 nm at the dose of 12 J/cm2. Colony forming units were counted and the growth inhibition rate of E. coli cells was calculated after light-activated hypocrellin B. Membrane permeability was measured using flow cytometry and confocal laser scanning microscopy (CLSM with propidium iodide (PI staining. Bacterial morphology was observed using transmission electron microscopy (TEM. Reactive oxygen species in bacterial cells were measured using flow cytometry with DCFH-DA staining. Results. Significant growth inhibition rate of E. coli cells was observed after photodynamic action of hypocrellin B. Remarkable damage to the ultrastructure of E. coli was also observed by TEM. Flow cytometry and CLSM observation showed that light-activated hypocrellin B markedly increased membrane permeability of E. coli. Flow cytometry showed the intracellular ROS increase in E. coli treated by photodynamic action of hypocrellin B. Conclusion. Light-activated hypocrellin B caused intracellular ROS increase and structural damages and inhibited the growth of Gram-negative E. coli cells.

  13. Genotypic Detection of Antibiotic Resistance in "Escherichia Coli.": A Classroom Exercise

    Science.gov (United States)

    Longtin, Sarah; Guilfoile, Patrick; Asper, Andrea

    2004-01-01

    Bacterial antibiotic resistance remains a problem of clinical importance. Current microbiological methods for determining antibiotic resistance are based on culturing bacteria, and may require up to 48 hours to complete. Molecular methods are increasingly being developed to speed the identification of antibiotic resistance and to determine its…

  14. Lactobacillus plantarum LB95 impairs the virulence potential of Gram-positive and Gram-negative food-borne pathogens in HT-29 and Vero cell cultures.

    Science.gov (United States)

    Dutra, Virna; Silva, Ana Carla; Cabrita, Paula; Peres, Cidália; Malcata, Xavier; Brito, Luisa

    2016-01-01

    Listeria monocytogenes, Salmonella enterica and verocytotoxigenic Escherichia coli (VTEC) are amongst the most important agents responsible for food outbreaks occurring worldwide. In this work, two Lactobacillus spp. strains (LABs), Lactobacillus plantarum (LB95) and Lactobacillus paraplantarum (LB13), previously isolated from spontaneously fermenting olive brines, and two reference probiotic strains, Lactobacillus casei Shirota and Lactobacillus rhamnosus GG, were investigated for their ability to attenuate the virulence of the aforementioned pathogens using animal cell culture assays. In competitive exclusion assays, the relative percentages of adhesion and invasion of S. enterica subsp. enterica serovar Enteritidis were significantly reduced when the human HT-29 cell line was previously exposed to LB95. The relative percentage of invasion by Listeria monocytogenes was significantly reduced when HT-29 cells were previously exposed to LB95. In the cytotoxicity assays, the cell-free supernatant of the co-culture (CFSC)of VTEC with LB95 accounted for the lowest value obtained amongst the co-cultures of VTEC with LABs, and was significantly lower than the value obtained with the co-culture of VTEC with the two probiotic reference strains. The cytotoxicity of CFSC of VTEC with both LB95 and LB13 exhibited values not significantly different from the cell-free supernatant of the nonpathogenic E. coli B strain. Our results suggested that LB95 may be able to attenuate the virulence of Gram-positive and Gram-negative food-borne pathogens; together with other reported features of these strains, our data reveal their possible use in probiotic foods due to their interesting potential in preventing enteric infections in humans.

  15. Comparing the Antibacterial and Functional Properties of Cameroonian and Manuka Honeys for Potential Wound Healing—Have We Come Full Cycle in Dealing with Antibiotic Resistance?

    Directory of Open Access Journals (Sweden)

    Joshua Boateng

    2015-09-01

    Full Text Available The increased incidence of bacterial resistance to antibiotics has generated renewed interest in “traditional” antimicrobials, such as honey. This paper reports on a study comparing physico-chemical, antioxidant and antibacterial characteristics (that potentially contribute in part, to the functional wound healing activity of Cameroonian honeys with those of Manuka honey. Agar well diffusion was used to generate zones of inhibition against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus while broth dilutions were used to study the minimum inhibitory concentrations (MICs. Non-peroxide activity was investigated by catalase for hydrogen peroxide reduction. The Cameroonian honeys demonstrated functional properties similar to Manuka honey, with strong correlations between the antioxidant activity and total phenol content of each honey. They were also as effective as Manuka honey in reducing bacteria load with an MIC of 10% w/v against all three bacteria and exhibited non-peroxide antimicrobial activity. These Cameroon honeys have potential therapeutic activity and may contain compounds with activity against Gram positive and Gram negative bacteria. Antibacterial agents from such natural sources present a potential affordable treatment of wound infections caused by antibiotic resistant bacteria, which are a leading cause of amputations and deaths in many African countries.

  16. The warmer the weather, the more gram-negative bacteria - impact of temperature on clinical isolates in intensive care units.

    Directory of Open Access Journals (Sweden)

    Frank Schwab

    Full Text Available BACKGROUND: We investigated the relationship between average monthly temperature and the most common clinical pathogens causing infections in intensive care patients. METHODS: A prospective unit-based study in 73 German intensive care units located in 41 different hospitals and 31 different cities with total 188,949 pathogen isolates (102,377 Gram-positives and 86,572 Gram-negatives from 2001 to 2012. We estimated the relationship between the number of clinical pathogens per month and the average temperature in the month of isolation and in the month prior to isolation while adjusting for confounders and long-term trends using time series analysis. Adjusted incidence rate ratios for temperature parameters were estimated based on generalized estimating equation models which account for clustering effects. RESULTS: The incidence density of Gram-negative pathogens was 15% (IRR 1.15, 95%CI 1.10-1.21 higher at temperatures ≥ 20°C than at temperatures below 5°C. E. cloacae occurred 43% (IRR=1.43; 95%CI 1.31-1.56 more frequently at high temperatures, A. baumannii 37% (IRR=1.37; 95%CI 1.11-1.69, S. maltophilia 32% (IRR=1.32; 95%CI 1.12-1.57, K. pneumoniae 26% (IRR=1.26; 95%CI 1.13-1.39, Citrobacter spp. 19% (IRR=1.19; 95%CI 0.99-1.44 and coagulase-negative staphylococci 13% (IRR=1.13; 95%CI 1.04-1.22. By contrast, S. pneumoniae 35% (IRR=0.65; 95%CI 0.50-0.84 less frequently isolated at high temperatures. For each 5°C increase, we observed a 3% (IRR=1.03; 95%CI 1.02-1.04 increase of Gram-negative pathogens. This increase was highest for A. baumannii with 8% (IRR=1.08; 95%CI 1.05-1.12 followed by K. pneumoniae, Citrobacter spp. and E. cloacae with 7%. CONCLUSION: Clinical pathogens vary by incidence density with temperature. Significant higher incidence densities of Gram-negative pathogens were observed during summer whereas S. pneumoniae peaked in winter. There is increasing evidence that different seasonality due to physiologic changes underlies

  17. Antibiotic resistance--consequences for animal health, welfare, and food production.

    Science.gov (United States)

    Bengtsson, Björn; Greko, Christina

    2014-05-01

    Most of the literature on the consequences of emergence and spread of bacteria resistant to antibiotics among animals relate to the potential impact on public health. But antibiotics are used to treat sick animals, and resistance in animal pathogens may lead to therapy failure. This has received little scientific attention, and therefore, in this article, we discuss examples that illustrate the possible impact of resistance on animal health and consequences thereof. For all animals, there may be a negative effect on health and welfare when diseases cannot be treated. Other consequences will vary depending on why and how different animal species are kept. Animals kept as companions or for sports often receive advanced care, and antibiotic resistance can lead to negative social and economic consequences for the owners. Further, spread of hospital-acquired infections can have an economic impact on the affected premises. As to animals kept for food production, antibiotics are not needed to promote growth, but, if infectious diseases cannot be treated when they occur, this can have a negative effect on the productivity and economy of affected businesses. Antibiotic resistance in animal bacteria can also have positive consequences by creating incentives for adoption of alternative regimes for treatment and prevention. It is probable that new antibiotic classes placed on the market in the future will not reach veterinary medicine, which further emphasizes the need to preserve the efficacy of currently available antibiotics through antibiotic stewardship. A cornerstone in this work is prevention, as healthy animals do not need antibiotics.

  18. Transfer of antibiotic resistant bacteria from animals to man

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar; Aarestrup, Frank Møller; Gerner-Smidt, P.;

    1999-01-01

    for animals either for therapy or for growth promotion. Antibiotic resistance in zoonotic bacteria constitute a public health hazard, primarily through the increased risk of treatment failures. This paper describes the zoonotic bacteria, salmonella, campylobacter, yersinia and enterohaemorrhagic E. coli (EHEC......Antibiotic resistance develops in zoonotic bacteria in response to antibiotics used in food animals. A close association exists between the amounts of antibiotics used and the levels of resistance observed. The classes of antibiotics routinely used for treatment of human infections are also used......). Infections with these agents do not generally require antibiotic therapy, but in some cases antibiotics are essential to obtain a successful cure. The levels and types of resistance observed in zoonotic bacteria in some countries, especially the increasing levels of fluoroquinolone resistance in salmonella...

  19. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens.

    Science.gov (United States)

    Pamer, Eric G

    2016-04-29

    The intestinal microbiota, which is composed of diverse populations of commensal bacterial species, provides resistance against colonization and invasion by pathogens. Antibiotic treatment can damage the intestinal microbiota and, paradoxically, increase susceptibility to infections. Reestablishing microbiota-mediated colonization resistance after antibiotic treatment could markedly reduce infections, particularly those caused by antibiotic-resistant bacteria. Ongoing studies are identifying commensal bacterial species that can be developed into next-generation probiotics to reestablish or enhance colonization resistance. These live medicines are at various stages of discovery, testing, and production and are being subjected to existing regulatory gauntlets for eventual introduction into clinical practice. The development of next-generation probiotics to reestablish colonization resistance and eliminate potential pathogens from the gut is warranted and will reduce health care-associated infections caused by highly antibiotic-resistant bacteria. PMID:27126035

  20. Antibiotics and antibiotic resistance: a bitter fight against evolution.

    Science.gov (United States)

    Rodríguez-Rojas, Alexandro; Rodríguez-Beltrán, Jerónimo; Couce, Alejandro; Blázquez, Jesús

    2013-08-01

    One of the most terrible consequences of Darwinian evolution is arguably the emergence and spread of antibiotic resistance, which is becoming a serious menace to modern societies. While spontaneous mutation, recombination and horizontal gene transfer are recognized as the main causes of this notorious phenomenon; recent research has raised awareness that sub-lethal concentrations of antibiotics can also foster resistance as an undesirable side-effect. They can produce genetic changes by different ways, including a raise of free radicals within the cell, induction of error-prone DNA-polymerases mediated by SOS response, imbalanced nucleotide metabolism or affect directly DNA. In addition to certain environmental conditions, subinhibitory concentrations of antimicrobials may increase, even more, the mutagenic effect of antibiotics. Here, we review the state of knowledge on antibiotics as promoters of antibiotic resistance.

  1. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

    OpenAIRE

    Paula Blanco; Sara Hernando-Amado; Jose Antonio Reales-Calderon; Fernando Corona; Felipe Lira; Manuel Alcalde-Rico; Alejandra Bernardini; Maria Blanca Sanchez; Jose Luis Martinez

    2016-01-01

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of ant...

  2. Studies on emergence and spread of antibiotic resistant Streptococcus pneumoniae

    OpenAIRE

    Karlsson, Diana

    2010-01-01

    Streptococcus pneumoniae is one of the major contributors to mortality and morbidity around the world. It causes a wide variety of diseases ranging from uncomplicated respiratory infections to life-threatening invasive infections such as meningitis and septicemia. In recent years, the effectiveness of antibiotic therapy has been hampered by the increasing rates of resistant pneumococci. As antibiotic resistance increases, there is a growing need for interventions that minimi...

  3. Characterization of antibiotic resistance determinants in oral biofilms.

    Science.gov (United States)

    Kim, Seon-Mi; Kim, Hyeong C; Lee, Seok-Woo S

    2011-08-01

    Oral biofilms contain numerous antibiotic resistance determinants that can be transferred within or outside of the oral cavity. The aim of this study was to evaluate the prevalence and the relative level of antibiotic resistance determinants from oral biofilms. Oral biofilm samples that were collected from healthy subjects and periodontitis patients were subjected to qualitative and quantitative analyses for selected antibiotic resistance determinants using PCR. The prevalence of tet(Q), tet(M), cfxA, and bla ( TEM ) was very high both in the patient and the healthy subject group, with a tendency toward higher values in the patient group, with the exception of erm(F), which was more prevalent in the healthy group. The two extended spectrum β-lactam (ESBL) resistance determinants bla ( SHV ) and bla ( TEM ) showed a dramatic difference, as bla ( TEM ) was present in all of the samples and bla ( SHV ) was not found at all. The aacA-aphD, vanA, and mecA genes were rarely detected, suggesting that they are not common in oral bacteria. A quantitative PCR analysis showed that the relative amount of resistance determinants present in oral biofilms of the patient group was much greater than that of the healthy group, exhibiting 17-, 13-, 145-, and 3-fold increases for tet(Q), tet(M), erm(F), and cfxA, respectively. The results of this study suggest that the oral antibiotic resistome is more diverse and abundant in periodontitis patients than in healthy subjects, suggesting that there is a difference in the diversity and distribution of antibiotic resistance in oral biofilms associated with health and disease.

  4. Factors influencing antibiotic resistance burden in municipal wastewater treatment plants

    OpenAIRE

    Novo, Ana; Manaia, Célia M.

    2010-01-01

    Municipal wastewater treatment plants are recognized reservoirs of antibiotic-resistant bacteria. Three municipal wastewater treatment plants differing on the dimensions and bio-treatment processes were compared for the loads of amoxicillin-, tetracycline-, and ciprofloxacinresistant heterotrophic bacteria, enterobacteria, and enterococci in the raw inflow and in the treated effluents. The sewage received by each plant, in average, corresponded to 85,000 inhabitant equ...

  5. Isolation of lytic phages for clinical antibiotic resistant Pseudomonas aeruginosa

    OpenAIRE

    Pires, Diana; Sillankorva, Sanna; Faustino, A.; Azeredo, Joana

    2009-01-01

    Pseudomonas aeruginosa is a relevant opportunist pathogen involved in noso-comial infections. P. aeruginosa uses an arsenal of virulence factors to cause serious infections and one of the most worrying characteristics of this bacte-rium is its low antibiotic susceptibility. The low susceptibility to antibiotics can be attributed to a concerted action of multidrug efflux pumps with chromo-somally-encoded antibiotic resistance genes and the low permeability of the bacterial cellular envelopes. ...

  6. Targets for Combating the Evolution of Acquired Antibiotic Resistance

    OpenAIRE

    Culyba, Matthew J.; Mo, Charlie Y.; Kohli, Rahul M.

    2015-01-01

    Bacteria possess a remarkable ability to rapidly adapt and evolve in response to antibiotics. Acquired antibiotic resistance can arise by multiple mechanisms but commonly involves altering the target site of the drug, enzymatically inactivating the drug, or preventing the drug from accessing its target. These mechanisms involve new genetic changes in the pathogen leading to heritable resistance. This recognition underscores the importance of understanding how such genetic changes can arise. H...

  7. Antibiotic resistance-the need for global solutions.

    Science.gov (United States)

    Laxminarayan, Ramanan; Duse, Adriano; Wattal, Chand; Zaidi, Anita K M; Wertheim, Heiman F L; Sumpradit, Nithima; Vlieghe, Erika; Hara, Gabriel Levy; Gould, Ian M; Goossens, Herman; Greko, Christina; So, Anthony D; Bigdeli, Maryam; Tomson, Göran; Woodhouse, Will; Ombaka, Eva; Peralta, Arturo Quizhpe; Qamar, Farah Naz; Mir, Fatima; Kariuki, Sam; Bhutta, Zulfiqar A; Coates, Anthony; Bergstrom, Richard; Wright, Gerard D; Brown, Eric D; Cars, Otto

    2013-12-01

    The causes of antibiotic resistance are complex and include human behaviour at many levels of society; the consequences affect everybody in the world. Similarities with climate change are evident. Many efforts have been made to describe the many different facets of antibiotic resistance and the interventions needed to meet the challenge. However, coordinated action is largely absent, especially at the political level, both nationally and internationally. Antibiotics paved the way for unprecedented medical and societal developments, and are today indispensible in all health systems. Achievements in modern medicine, such as major surgery, organ transplantation, treatment of preterm babies, and cancer chemotherapy, which we today take for granted, would not be possible without access to effective treatment for bacterial infections. Within just a few years, we might be faced with dire setbacks, medically, socially, and economically, unless real and unprecedented global coordinated actions are immediately taken. Here, we describe the global situation of antibiotic resistance, its major causes and consequences, and identify key areas in which action is urgently needed.

  8. Environmental pollution by antibiotics and by antibiotic resistance determinants

    International Nuclear Information System (INIS)

    Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. - The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.

  9. Detection of antibiotic resistance in probiotics of dietary supplements

    KAUST Repository

    Wong, Aloysius Tze

    2015-09-14

    Background Probiotics are live microorganisms that confer nutrition- and health-promoting benefits if consumed in adequate amounts. Concomitant with the demand for natural approaches to maintaining health is an increase in inclusion of probiotics in food and health products. Since probiotic bacteria act as reservoir for antibiotic resistant determinants, the transfer of these genes to pathogens sharing the same intestinal habitat is thus conceivable considering the fact that dietary supplements contain high amounts of often heterogeneous populations of probiotics. Such events can confer pathogens protection against commonly-used drugs. Despite numerous reports of antibiotic resistant probiotics in food and biological sources, the antibiogram of probiotics from dietary supplements remained elusive. Findings Here, we screened five commercially available dietary supplements for resistance towards antibiotics of different classes. Probiotics of all batches of products were resistant towards vancomycin while batch-dependent resistance towards streptomycin, aztreonam, gentamycin and/or ciprofloxacin antibiotics was detected for probiotics of brands Bi and Bn, Bg, and L. Isolates of brand Cn was also resistant towards gentamycin, streptomycin and ciprofloxacin antibiotics. Additionally, we also report a discrepancy between the enumerated viable bacteria amounts and the claims of the manufacturers. Conclusions This short report has highlighted the present of antibiotic resistance in probiotic bacteria from dietary supplements and therefore serves as a platform for further screenings and for in-depth characterization of the resistant determinants and the molecular machinery that confers the resistance.

  10. Where antibiotic resistance mutations meet quorum-sensing

    Directory of Open Access Journals (Sweden)

    Rok Krašovec

    2014-06-01

    Full Text Available We do not need to rehearse the grim story of the global rise of antibiotic resistant microbes. But what if it were possible to control the rate with which antibiotic resistance evolves by de novo mutation? It seems that some bacteria may already do exactly that: they modify the rate at which they mutate to antibiotic resistance dependent on their biological environment. In our recent study [Krašovec, et al. Nat. Commun. (2014, 5, 3742] we find that this modification depends on the density of the bacterial population and cell-cell interactions (rather than, for instance, the level of stress. Specifically, the wild-type strains of Escherichia coli we used will, in minimal glucose media, modify their rate of mutation to rifampicin resistance according to the density of wild-type cells. Intriguingly, the higher the density, the lower the mutation rate (Figure 1. Why this novel density-dependent ‘mutation rate plasticity’ (DD-MRP occurs is a question at several levels. Answers are currently fragmentary, but involve the quorum-sensing gene luxS and its role in the activated methyl cycle.

  11. Environmental pollution by antibiotics and by antibiotic resistance determinants

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jose Luis, E-mail: jlmtnez@cnb.csic.e [Departamento de Biotecnologia Microbiana, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Darwin 3, Cantoblanco, 28049 Madrid, and CIBERESP (Spain)

    2009-11-15

    Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. - The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.

  12. Multicentre open-label randomised controlled trial to compare colistin alone with colistin plus meropenem for the treatment of severe infections caused by carbapenem-resistant Gram-negative infections (AIDA): a study protocol

    Science.gov (United States)

    Dickstein, Yaakov; Leibovici, Leonard; Yahav, Dafna; Eliakim-Raz, Noa; Daikos, George L; Skiada, Anna; Antoniadou, Anastasia; Carmeli, Yehuda; Nutman, Amir; Levi, Inbar; Adler, Amos; Durante-Mangoni, Emanuele; Andini, Roberto; Cavezza, Giusi; Mouton, Johan W; Wijma, Rixt A; Theuretzbacher, Ursula; Friberg, Lena E; Kristoffersson, Anders N; Zusman, Oren; Koppel, Fidi; Dishon Benattar, Yael; Altunin, Sergey; Paul, Mical

    2016-01-01

    Introduction The emergence of antibiotic-resistant bacteria has driven renewed interest in older antibacterials, including colistin. Previous studies have shown that colistin is less effective and more toxic than modern antibiotics. In vitro synergy studies and clinical observational studies suggest a benefit of combining colistin with a carbapenem. A randomised controlled study is necessary for clarification. Methods and analysis This is a multicentre, investigator-initiated, open-label, randomised controlled superiority 1:1 study comparing colistin monotherapy with colistin–meropenem combination therapy for infections caused by carbapenem-resistant Gram-negative bacteria. The study is being conducted in 6 centres in 3 countries (Italy, Greece and Israel). We include patients with hospital-associated and ventilator-associated pneumonia, bloodstream infections and urosepsis. The primary outcome is treatment success at day 14, defined as survival, haemodynamic stability, stable or improved respiratory status for patients with pneumonia, microbiological cure for patients with bacteraemia and stability or improvement of the Sequential Organ Failure Assessment (SOFA) score. Secondary outcomes include 14-day and 28-day mortality as well as other clinical end points and safety outcomes. A sample size of 360 patients was calculated on the basis of an absolute improvement in clinical success of 15% with combination therapy. Outcomes will be assessed by intention to treat. Serum colistin samples are obtained from all patients to obtain population pharmacokinetic models. Microbiological sampling includes weekly surveillance samples with analysis of resistance mechanisms and synergy. An observational trial is evaluating patients who met eligibility requirements but were not randomised in order to assess generalisability of findings. Ethics and dissemination The study was approved by ethics committees at each centre and informed consent will be obtained for all patients. The

  13. DOWN-STREAM SPATIAL DISTRIBUTION OF ANTIBIOTIC RESISTANCE TRAITS ALONG METAL CONTAMINATED STREAM REACHES

    Energy Technology Data Exchange (ETDEWEB)

    Tuckfield, C; J V Mcarthur (NOEMAIL), J

    2007-04-16

    Sediment bacteria samples were collected from three streams in South Carolina, two contaminated with multiple metals (Four Mile Creek and Castor Creek), one uncontaminated (Meyers Branch), and another metal contaminated stream (Lampert Creek) in northern Washington State. Growth plates inoculated with Four Mile Creek sample extracts show bacteria colony growth after incubation on plates containing either one of two aminoglycosides (kanamycin or streptomycin), tetracycline or chloramphenocol. This study analyzes the spatial pattern of antibiotic resistance in culturable sediment bacteria in all four streams that may be due to metal contamination. We summarize the two aminoglycoside resistance measures and the 10 metals concentrations by Principal Components Analysis. Respectively, 63% and 58% of the variability was explained in the 1st principal component of each variable set. We used the respective multivariate summary metrics (i.e. 1st principal component scores) as input measures for exploring the spatial correlation between antibiotic resistance and metal concentration for each stream reach sampled. Results show a significant and negative correlation between metals scores versus aminoglycoside resistance scores and suggest that selection for metal tolerance among sediment bacteria may influence selection for antibiotic resistance differently than previously supposed.. In addition, we borrow a method from geostatistics (variography) wherein a spatial cross-correlation analysis shows that decreasing metal concentrations scores are associated with increasing aminoglycoside resistance scores as the separation distance between sediment samples decreases, but for contaminated streams only. Since these results were counter to our initial expectation and to other experimental evidence for water column bacteria, we suspect our field results are influenced by metal bioavailability in the sediments and by a contaminant promoted interaction or ''cocktail effect

  14. Species Diversity and Pheno- and Genotypic Antibiotic Resistance Patterns of Staphylococci Isolated from Retail Ground Meats.

    Science.gov (United States)

    Guran, Husnu Sahan; Kahya, Serpil

    2015-06-01

    The presence and species diversity of staphylococci in 250 ground beef and lamb meat samples obtained from Diyarbakir, Turkey were investigated. The presence of the 16S rRNA gene, mecA, nuc, pvl, and femA was analyzed by multiplex PCR. Pheno- and genotypic antibiotic resistance profiles of 208 staphylococci isolates were established. Of the ground beef and ground lamb samples, 86.4% and 62.4% were positive for staphylococci, respectively. Staphylococcus aureus, S. saprophyticus, S. hominis, S. lentus, S. pasteuri, S. warneri, S. intermedius, and S. vitulinus made up 40.8%, 28.8%, 11%, 3.8%, 3.8%, 2.4%, 2.4%, and 2.4% of isolates, respectively. Of the 85 S. aureus isolates, 40%, 47%, and 5.8% carried femA, mecA, and pvl, respectively, whereas the corresponding rates for the 118 coagulase-negative staphylococci (CoNS) were 0%, 10.1%, and 0%, respectively. We determined from the 208 isolates, the highest antibiotic resistances were to tetracycline and oxytetracycline (85.5%), followed by penicillin (51.4%), novobiocin (45.6%), ampicillin (39.9%), and doxycycline (31.7%), using the Clinical and Laboratory Standards Inst. (CLSI) method. All isolates were sensitive to gentamycin, ofloxacin, and tobramycin, but 2.3% of the S. aureus isolates had resistance to vancomycin. The staphylococci isolates carried tet(K), blaZ, tet(L), tet(W), cat, tet(S), tet(M), ermB, ermA, and ermC antibiotic resistance genes at rates of 59%, 51.7%, 36.9%, 31.8%, 27.2%, 27.2%, 24.4%, 18.1%, 7.9%, and 3.9%, respectively. PMID:25944650

  15. Screening of the novel colicinogenic gram-negative rods against pathogenic Escherichia coli O157:H7

    Directory of Open Access Journals (Sweden)

    H Mushtaq

    2015-01-01

    Full Text Available Purpose: Escherichia coli (E. coli O157:H7 is gram-negative enteric pathogen producing different types of Shiga toxin. This bacterium is the most corporate cause of haemorrhagic colitis in human. Administration of antibiotics (particularly sulfa drugs against this pathogen is a debatable topic as this may increase the risk of uremic syndrome; especially in children and aged people. Around the world, microbiologists are in search of alternative therapeutic methods specially probiotics against this pathogen. In the present study, we have focused on the investigation of alternate bio-therapeutics (probiotics for the treatment of patients infected with E. coli O157:H7. This study is based on the identification of colicin-producing gram-negative bacteria (particularly enterobacteriaceae which can competently exclude E. coli O157:H7 from the gut of the infected individual. Materials and Methods: Hundred samples from human, animal faeces and septic tank water were analysed for nonpathogenic gram-negative rods (GNRs. Results: Out of these samples, 175 isolates of GNRs were checked for their activity against E. coli O157:H7. Only 47 isolates inhibited the growth of E. coli O157:H7, among which majority were identified as E. coli. These E. coli strains were found to be the efficient producers of colicin. Some of the closely related species i. e., Citrobacter sp, Pantoea sp. and Kluyvera sp. also showed considerable colicinogenic activity. Moreover, colicinogenic species were found to be nonhaemolytic, tolerant to acidic environment (pH 3 and sensitive to commonly used antibiotics. Conclusion: Nonhaemolytic, acid tolerant and sensitive to antibiotics suggests the possible use of these circulating endothelial cells (CEC as inexpensive and inoffensive therapeutic agent (probiotics in E. coli O157:H7 infections.

  16. Evaluation of combined disc method for the detection of metallo-β-lactamase producing Gram negative bacilli

    Directory of Open Access Journals (Sweden)

    Omair, M.

    2012-01-01

    Full Text Available Aims: Infections due to metallo-β-lactamase (MBL producing Gram negative rods are a cause of high mortality and morbidity. Early detection by an economical and accurate method may improve patient outcome. This study was aimed to evaluate the diagnostic accuracy of combined disc method for MBL detection by comparing it with MBL-Etest.Methodology and Results: This cross-sectional, validation study was carried out in the Department of Microbiology, Army Medical College, National University of Sciences and Technology, Rawalpindi, over a period of six months. A total of 52 non-duplicate Gram-negative rods isolated from the routine clinical specimens and found resistant to meropenem/imipenem on Kirby Bauer Disc Diffusion method were subjected to two tests for metallo-β-lactamase detection. One was combined Disc test using imipenem with Ethylene Diamine Tetraacetic Acid (EDTA, where a strain showing an increase in zone of inhibition of combined disc of ≥ 7 mm as compared to imipenem alone, was considered as MBL producer and the other one was MBL-Etest for which results were interpreted as per manufacturer’s guidelines. Combined disc method for MBL detection was found to have a sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 97.5%, 100%, 100%, 92% and 98%.Conclusion, Significance and Impact of study: Combined disc method is an economical and reliable method for metallo-β-lactamase detection which can be used routinely in any laboratory.

  17. Occurrence of non-fermenting gram negative bacteria in drinking water dispensed from point-of-use microfiltration devices

    OpenAIRE

    Franza Zanetti; Giovanna De Luca; Erica Leoni; Rossella Sacchetti

    2014-01-01

    Introduction and objective. Many devices have been marketed in order to improve the organoleptic characteristics of tap water resulting from disinfection with chlorine derivates. The aim of the presented study was to assess the degree of contamination by non-fermenting Gram-negative bacteria (NF-GNB) of drinking water dispensed from microfiltration devices at point-of-use. Methods. Water samples were collected from 94 point-of-use water devices fitted with a filter (0.5μm pore size) contai...

  18. Gram-negative bacteria account for main differences between faecal microbiota from patients with ulcerative colitis and healthy controls

    DEFF Research Database (Denmark)

    Vigsnæs, Louise Kristine; Brynskov, J.; Steenholdt, C.;

    2012-01-01

    Detailed knowledge about the composition of the intestinal microbiota may be critical to unravel the pathogenesis of ulcerative colitis (UC), a human chronic inflammatory bowel disease, since the intestinal microbes are expected to influence some of the key mechanisms involved in the inflammatory...... that the microbiota in UC patients with active disease differ from that in healthy controls. Our findings indicate that alterations in the composition of the Gram-negative bacterial population, as well as reduced numbers of lactobacilli and A. muciniphila may play a role in UC....

  19. Antimicrobial susceptibility and beta-lactamase production of selected gram-negative bacilli from two Croatian hospitals: MYSTIC study results.

    Science.gov (United States)

    Bedenic, B; Goic-Barisic, I; Budimir, A; Tonkic, M; Mihajkevic, L J; Novak, A; Sviben, M; Plecko, V; Punda-Polic, V; Kalenic, S

    2010-06-01

    The meropenem yearly Susceptibility Test Information Collection (MYSTIC) programme is a global, longitudinal resistance surveillance network that monitors the activity of meropenem and compares its activity with other broadspectrum antimicrobial agents. We now report the antimicrobial efficacy of meropenem compared to other broad-spectrum agents within the selective Gram-negative pathogen groups from two Croatian Hospitals investigated between 2002-2007. A total of 1510 Gram-negative pathogens were tested and the minimum-inhibitory concentrations (MICs) were determined by broth microdilution method according to CLSI.There was no resistance to either imipenem or meropenem observed for Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis in both medical centers. High resistance rates of K. pneumoniae to ceftazidime (18%), cefepime (17%) and gentamicin (39%) are raising concern. Acinetobacter baumannii turned out to be the most resistant Gram-negative bacteria with 81% resistant to ceftazidime, 73% to cefepime, 69% to gentamicin and 71% to ciprofloxacin. Almost 20% of Pseudomonas aeruginosa strains were resistant to imipenem, 13% to meropenem, 69% to gentamicin and 38% to ciprofloxacin.The prevalence of extended-spectrum beta-lactamases (ESBLs) in E. coli was 10% and in K. pneumoniae 49%. PCR and sequencing of the amplicons revealed the presence of SHV-5 in nine E. coli strains and additional tem-1 beta-lactamase five strains. Five K. pneumoniae strains were positive for bla(SHV-5 )gene. Eight ESBL positive Enterobacter spp. strains were found to produce tem and CtX-m beta-lactamases. Plasmid-mediated AmpC beta-lactamases were not found among K. pneumoniae, E. coli and Enterobacter spp. Three A. baumannii strains from Zagreb University Center were identified by multiplex PCR as OXA-58 like producers. Six A. baumannii strains from Split University Center were found to possess an ISAba1 insertion sequence upstream of bla(OXA-51 )gene. According to our results

  20. Effects of environmental conditions on the morphologic change of Pseudomonas aeruginosa and its association with antibiotic resistance in burn patients

    Directory of Open Access Journals (Sweden)

    Mohsen Moghoofei

    2015-12-01

    Full Text Available Introduction: Pseudomonas aeruginosa is an aerobic gram-negative bacteria, which causes hospital infections. Bacteria under stress, such as lack of food, pH and osmotic pressure change and antibiotic stress transforms its morphology to coccoid form. In the bacill form due to changes in the peptidoglycan cell wall, membrane lipids and decreased metabolic activity, bacteria resistant to antibiotics. Due to an increase in mortality in burn patients and important problem of antibiotic resistance in P.aeruginosa the researcher decided to study the factors affecting on morphologic change to coccoid form. Materials and methods: In this study P.aeruginosa strains obtained from clinical samples of burned patients (8 samples were taken from the wound by Infectious Disease Specialist and standard strain ATCC 27853 were used. Samples were confirmed by biochemical tests and PCR by 16srDNA primer. Then bacteria were put under lack of food and antibiotic stress invitro. After that bacterial morphology was examined on different days by digital DP 72-BX 51 microscope to 60 days. After induction coccoid forms, bacterial viability was confirmed by flow cytometry. Results: Bacteria begin to change morphology from 5 days for antibiotic stress and 10 days for other stress. Changing morphology was initially elongate bacilli, U shape and finally the coccoid form was seen. Discussion and conclusion: Changing morphology of bacilli to coccoid bacteria that are the result of stress on the bacteria which enter the body can lead to bacterial resistance to antibiotics and have grave consequences for the patient.

  1. Evaluation of direct inoculation of the BD PHOENIX system from positive BACTEC blood cultures for both Gram-positive cocci and Gram-negative rods

    Directory of Open Access Journals (Sweden)

    Wolffs Petra FG

    2011-06-01

    Full Text Available Abstract Background Rapid identification (ID and antibiotic susceptibility testing (AST of the causative micro-organism of bloodstream infections result in earlier targeting of antibiotic therapy. In order to obtain results of ID and AST up to 24 hours earlier, we evaluated the accuracy of direct inoculation of the Phoenix system from positive blood cultures (BACTEC by using Serum Separator Tubes to harvest bacteria from positive blood cultures. Results were compared to those of standard Phoenix procedure. Discrepancies between the two methods were resolved by using the API system, E-test or microbroth dilution. Results ID with the direct method was correct for 95.2% of all tested Enterobacteriaceae (n = 42 and 71.4% of Pseudomonas aeruginosa strains (n = 7. AST with the direct method showed a categorical agreement for Gram-negative rods (GNR of 99.0%, with 0.7% minor errors, 0.3% very major errors and no major errors. All antibiotics showed an agreement of >95%. The direct method for AST of Staphylococcus (n = 81 and Enterococcus (n = 3 species showed a categorical agreement of 95.4%, with a minor error rate of 1.1%, a major error rate of 3.1% and a very major error rate of 0.4%. All antibiotics showed an agreement of >90%, except for trimethoprim-sulfamethoxazole and erythromycin. Conclusions Inoculation of Phoenix panels directly from positive blood cultures can be used to report reliable results of AST of GNR a day earlier, as well as ID-results of Enterobacteriaceae. For Staphylococcus and Enterococcus species, results of AST can also be reported a day earlier for all antibiotics, except for erythromycin and trimethoprim-sulfamethoxazole.

  2. Metallo- β-lactamases among Multidrug Resistant (MDR Gram Negative Bacteria Isolated from Clinical Specimens during 2009 in Sanandaj, Kurdistan Province

    Directory of Open Access Journals (Sweden)

    Himen Salimizand

    2012-08-01

    Full Text Available Background: Today, there are numerous reports about emerging multi drug resistant gram negative bacteria all around the world, especially in ICUs. Rarely, Metallo-β-lactamase (MBL enzymes are responsible for these cases. Study of MBLs for diagnosing and preventing distribution of the origin of infection are critical issues. In addition, we would like to compare the efficacy of Iranian and foreign- made antibiotic disks. Materials and Methods: During 2009 all entered clinical specimens to the laboratory tested for detecting gram negative bacteria. Isolated bacteria were tested by Kirby-Bauer method to antibiotic susceptibility test by Iranian and foreign (MAST disks. For gram negative carbapenem resistant isolates, PCR technique used to detect VIM, GIM, and SIM variants of MBLs.Results: During one year, 17890 clinical specimens referred Besat laboratory. The most specimen was Urine (8172 followed by blood culture (5190 that in which 1110 gram negative and positives isolated. Out of which, 778 (70% of isolates were gram negatives. MDR gram negatives were 157 (20.2%. Imipenem and meropenem were the most efficient antibiotics (all susceptible and ceftriaxone was the least (19 % susceptible. E. coli was the most prevalent isolate. 79 Gram negative isolates (10.1% were resistant to Iranian-made discs but all susceptible for foreign ones. All 79 isolates were tested by PCR for MBL genes, that, all were negative. Besides, Iranian imipenem and cefepime disks have had distinguishable difference in susceptibility of isolates.Conclusion: Fortunately, none of gram negative isolates were MBL producer, which revealed no colonization of MBL producing bacteria. Iranian-made disks appear efficient except for imipenem and cefepime.

  3. Antibiotic resistance and enterotoxin genes in Staphylococcus sp. isolates from polluted water in Southern Brazil

    Directory of Open Access Journals (Sweden)

    ANA P. BASSO

    2014-12-01

    Full Text Available The aim of this study was to evaluate the species distribution, antibiotic-resistance profile and presence of enterotoxin (SE genes in staphylococci isolated from the Dilúvio stream in South Brazil. Eighty-eight staphylococci were identified, 93.18% were identified as coagulase-negative (CNS and 6.82% coagulase-positive (CPS. Fourteen Staphylococcus species were detected and the most frequently were Staphylococcus cohnii (30.48% and S. haemolyticus (21.95%. Resistance to erythromycin was verified in 37.50% of the strains, followed by 27.27% to penicillin, 12.50% to clindamycin, 6.81% to trimethoprim-sulfamethoxazole, 5.68% to chloramphenicol and 2.27% to norfloxacin. None of the investigated strains showed gentamicin and ciprofloxacin resistance. The strains were tested for the presence of sea, seb, sec, sed and see genes by PCR and only CNS strains (43.18% showed positive results to one or more SE genes. The scientific importance of our results is due to the lack of data about these topics in polluted waters in Brazil. In conclusion, polluted waters from the Dilúvio stream may constitute a reservoir for disseminating antibiotic-resistance and enterotoxin into the community. In addition, the detection of staphylococci in the polluted waters of the Dilúvio stream indicated a situation of environmental contamination and poor sanitation conditions.

  4. Constitutive presence of antibiotic resistance genes within the bacterial community of a large subalpine lake.

    Science.gov (United States)

    Di Cesare, Andrea; Eckert, Ester M; Teruggi, Alessia; Fontaneto, Diego; Bertoni, Roberto; Callieri, Cristiana; Corno, Gianluca

    2015-08-01

    The fate of antibiotic resistance genes (ARGs) in environmental microbial communities is of primary concern as prodromal of a potential transfer to pathogenic bacteria. Although of diverse origin, the persistence of ARGs in aquatic environments is highly influenced by anthropic activities, allowing potential control actions in well-studied environments. However, knowledge of abundance and space-time distribution of ARGs in ecosystems is still scarce. Using quantitative real-time PCR, we investigated the presence and the abundance of twelve ARGs (against tetracyclines, β-lactams, aminoglycosides, quinolones and sulphonamides) at different sampling sites, depths and seasons, in Lake Maggiore, a large subalpine lake, and in the area of its watershed. We then evaluated the correlation between each ARG and a number of ecological parameters in the water column in the deepest part of the lake. Our results suggest the constitutive presence of at least four ARGs within the bacterial community with a high proportion of bacteria potentially resistant to tetracyclines and sulphonamides. The presence of these ARGs was independent of the total bacterial density and temperature. The dynamics of tet(A) and sulII genes were, however, positively correlated with dissolved oxygen and negatively to chlorophyll a, suggesting that the resistant microbes inhabit specific niches. These observations indicate that the lake is a reservoir of antibiotic resistances, highlighting the need of a deeper understanding of the sources of ARGs and the factors allowing their persistence in waters. PMID:26118321

  5. Label-free Gram-negative bacteria detection using bacteriophage-adhesin-coated long-period gratings.

    Science.gov (United States)

    Brzozowska, Ewa; Koba, Marcin; Śmietana, Mateusz; Górska, Sabina; Janik, Monika; Gamian, Andrzej; Bock, Wojtek J

    2016-03-01

    This paper presents a novel application of a highly sensitive sensor based on long-period gratings (LPGs) coated with T4 bacteriophage adhesin for Gram-negative bacteria detection. We show here, that the sensor evidently recognizes Escherichia coli K-12 (PCM2560), whereas in the reference tests - ELISA and BIAcore - the results are questionable. For LPGs sensor the resonant wavelength shift observed for E. coli K-12 was approximately half of that measured for E.coli B (positive control). The BIAcore readings (RU) for E. coli K-12 were at 10% level of the signal obtained for E .coli B. These results confirm the improved sensitivity of the LPGs sensor. Moreover, we also show that application of adhesin may allow for efficient detection of E. coli O111 (PCM418), Klebsiella pneumoniae O1 (PCM1) and Yersinia enterocolitica O1 (PCM1879). The specificity of binding bacteria by the adhesin is discussed and it is determined by a distinct region of lipopolysaccharide receptors and/or by the presence of outer-membrane protein C in an outer membrane of Gram-negative bacteria.

  6. Widespread antibiotic resistance of diarrheagenic Escherichia coli and Shigella species

    Directory of Open Access Journals (Sweden)

    Azam Fatahi Sadeghabadi

    2014-01-01

    Full Text Available Background: Antibiotic resistance of enteric pathogens particularly Shigella species, is a critical world-wide problem and monitoring their resistant pattern is essential, because the choice of antibiotics is absolutely dependent on regional antibiotic susceptibility patterns. During summer 2013, an unusual increase in number of diarrheal diseases was noticed in Isfahan, a central province of Iran. Therefore, the antibiotic resistance of diarrheagenic Escherichia coli and Shigella species isolated were evaluated. Materials and Methods: According to the guideline on National Surveillance System for Foodborn Diseases, random samples from patients with acute diarrhea were examined in local laboratories of health centers and samples suspicious of Shigella spp. were further assessed in referral laboratory. Isolated pathogens were identified by standard biochemical and serologic tests and antibiotic susceptibility testing was carried out by disc diffusion method. Results: A total of 1086 specimens were obtained and 58 samples suspicious of Shigella were specifically evaluated. The most prevalent isolated pathogen was Shigella sonnei (26/58 followed by E. coli (25/58 and Shigella flexneri (3/58. A large number of isolated bacteria were resistant to co-trimoxazole (Shigella spp: 100%, E. coli: 80%, azithromycin (Shigella spp: 70.4%, E. coli: 44.0%, ceftriaxone (Shigella spp: 88.9%, E. coli: 56.0% and cefixime (Shigella spp: 85.2%, E. coli: 68.0%. About88.3% of S. sonnei isolates, one S. flexneri isolate, and 56% of E. coli strains were resistant to at least three antibiotic classes (multidrug resistant. Conclusion: Due to high levels of resistance to recommended and commonly used antibiotics for diarrhea, continuous monitoring of antibiotic resistance seems essential for determining best options of empirical therapy.

  7. Low Temperature and Modified Atmosphere: Hurdles for Antibiotic Resistance Transfer?

    Science.gov (United States)

    Van Meervenne, Eva; Van Coillie, Els; Van Weyenberg, Stephanie; Boon, Nico; Herman, Lieve; Devlieghere, Frank

    2015-12-01

    Food is an important dissemination route for antibiotic-resistant bacteria. Factors used during food production and preservation may contribute to the transfer of antibiotic resistance genes, but research on this subject is scarce. In this study, the effect of temperature (7 to 37°C) and modified atmosphere packaging (air, 50% CO2-50% N2, and 100% N2) on antibiotic resistance transfer from Lactobacillus sakei subsp. sakei to Listeria monocytogenes was evaluated. Filter mating was performed on nonselective agar plates with high-density inocula. A more realistic setup was created by performing modified atmosphere experiments on cooked ham using high-density and low-density inocula. Plasmid transfer was observed between 10 and 37°C, with plasmid transfer also observed at 7°C during a prolonged incubation period. When high-density inocula were used, transconjugants were detected, both on agar plates and cooked ham, under the three atmospheres (air, 50% CO2-50% N2, and 100% N2) at 7°C. This yielded a median transfer ratio (number of transconjugants/number of recipients) with an order of magnitude of 10(-4) to 10(-6). With low-density inocula, transfer was only detected under the 100% N2 atmosphere after 10-day incubation at 7°C, yielding a transfer ratio of 10(-5). Under this condition, the highest bacterial density was obtained. The results indicate that low temperature and modified atmosphere packaging, two important hurdles in the food industry, do not necessarily prevent plasmid transfer from Lactobacillus sakei subsp. sakei to Listeria monocytogenes.

  8. Can chlorination co-select antibiotic-resistance genes?

    Science.gov (United States)

    Lin, Wenfang; Zhang, Menglu; Zhang, Shenghua; Yu, Xin

    2016-08-01

    Selective pressures, such as chemical or heavy metal pollution, may co-select for bacterial antibiotic resistance in the environment. However, whether chlorination in water treatment can co-select antibiotic-resistant bacteria is controversial. In this study, high capacity quantitative polymerase chain reaction (qPCR) analysis was applied to target almost all known antibiotic-resistance genes (ARGs) (282 types) and 13 mobile genetic elements (MGEs) in bacteria detected in secondary effluents from a municipal wastewater treatment plant after chlorination. The results revealed that 125 unique ARGs were detected in non-chlorinated samples, and the number decreased (79-91 types) as the chlorine concentration was increased. Moreover, 7.49 × 10(4)-3.92 × 10(7) copies/100 ml water reduction of ARGs occurred with 4 mg Cl2/l. Considering the relative abundance of ARGs (i.e., ARG copies normalized to 16S rRNA gene copies), 119 ARGs decreased in response to chlorination, whereas only six ARGs, such as dfrA1, tetPB-03, tetPA, ampC-04, tetA-02, and erm(36), were potentially enriched by 10.90-, 10.06-, 8.63-, 6.86-, 3.77-, and 1.09-fold, respectively. Furthermore, the relative abundance of 12 detected MGEs was lower after chlorination. Therefore, chlorination was effective in reducing ARGs and MGEs rather than co-selecting them. PMID:27192478

  9. Antibiotic resistances of intestinal lactobacilli isolated from wild boars.

    Science.gov (United States)

    Klose, Viviana; Bayer, Katharina; Kern, Corinna; Goelß, Florian; Fibi, Silvia; Wegl, Gertrude

    2014-01-10

    Acquired antibiotic resistances have been reported in lactobacilli of various animal and food sources, but there are no data from wild boar. The objective was a preliminary examination of the antibiotic resistance prevalence of intrinsically vancomycin-resistant lactobacilli isolated from wild boar intestines and analysis of the genetic determinants implicated. Out of three wild boars, 121 lactobacilli were recovered and grouped according to their whole cell protein patterns. Initial phenotypic screening revealed that all were susceptible to erythromycin (2 μg/ml), but 30 were resistant to tetracycline (32 μg/ml). Based on Randomly Amplified Polymorphic DNA-PCR clustering, 64 strains were selected as representative genotypes for identification and minimum inhibitory concentration (MIC) determination. Partial 16S rRNA gene sequencing identified four species: (i) L. mucosae (n=57), (ii) L. reuteri (n=47), (iii) L. fermentum (n=12), and (iv) L. murinus (n=5). Most heterofermentative strains displayed low MICs for ampicillin (AMP), chloramphenicol (CHL), streptomycin (STR), kanamycin (KAN), gentamicin (GEN), erythromycin (ERY), quinupristin/dalfopristin (Q/D), and clindamycin (CLI). Atypical MICs were found mainly in L. mucosae and L. reuteri for TET, KAN, STR, AMP and CHL, but except the TET MICs of L. mucosae mostly at low level. L. murinus strains revealed atypical MICs for aminoglycosides, and/or CHL, AMP, CLI. PCR screening detected tet(W) in 12 and tet(M) in one of heterofermentative strains, as well as the aph(3')-III kanamycin gene in L. murinus. This is the first report showing acquired antibiotic resistance determinants in intestinal lactobacilli of wild boar origin.

  10. Antibiotic resistances of intestinal lactobacilli isolated from wild boars.

    Science.gov (United States)

    Klose, Viviana; Bayer, Katharina; Kern, Corinna; Goelß, Florian; Fibi, Silvia; Wegl, Gertrude

    2014-01-10

    Acquired antibiotic resistances have been reported in lactobacilli of various animal and food sources, but there are no data from wild boar. The objective was a preliminary examination of the antibiotic resistance prevalence of intrinsically vancomycin-resistant lactobacilli isolated from wild boar intestines and analysis of the genetic determinants implicated. Out of three wild boars, 121 lactobacilli were recovered and grouped according to their whole cell protein patterns. Initial phenotypic screening revealed that all were susceptible to erythromycin (2 μg/ml), but 30 were resistant to tetracycline (32 μg/ml). Based on Randomly Amplified Polymorphic DNA-PCR clustering, 64 strains were selected as representative genotypes for identification and minimum inhibitory concentration (MIC) determination. Partial 16S rRNA gene sequencing identified four species: (i) L. mucosae (n=57), (ii) L. reuteri (n=47), (iii) L. fermentum (n=12), and (iv) L. murinus (n=5). Most heterofermentative strains displayed low MICs for ampicillin (AMP), chloramphenicol (CHL), streptomycin (STR), kanamycin (KAN), gentamicin (GEN), erythromycin (ERY), quinupristin/dalfopristin (Q/D), and clindamycin (CLI). Atypical MICs were found mainly in L. mucosae and L. reuteri for TET, KAN, STR, AMP and CHL, but except the TET MICs of L. mucosae mostly at low level. L. murinus strains revealed atypical MICs for aminoglycosides, and/or CHL, AMP, CLI. PCR screening detected tet(W) in 12 and tet(M) in one of heterofermentative strains, as well as the aph(3')-III kanamycin gene in L. murinus. This is the first report showing acquired antibiotic resistance determinants in intestinal lactobacilli of wild boar origin. PMID:24326231

  11. Non-aqueous glycerol monolaurate gel exhibits antibacterial and anti-biofilm activity against Gram-positive and Gram-negative pathogens.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Mueller

    Full Text Available Skin and surgical infections due to Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii are causes of patient morbidity and increased healthcare costs. These organisms grow planktonically and as biofilms, and many strains exhibit antibiotic resistance. This study examines the antibacterial and anti-biofilm activity of glycerol monolaurate (GML, as solubilized in a non-aqueous vehicle (5% GML Gel, as a novel, broadly-active topical antimicrobial. The FDA has designated GML as generally recognized as safe for human use, and the compound is commonly used in the cosmetic and food industries.In vitro, bacterial strains in broths and biofilms were exposed to GML Gel, and effects on bacterial colony-forming units (CFUs were assessed. In vivo,subcutaneous incisions were made in New Zealand white rabbits; the incisions were closed with four sutures. Bacterial strains were painted onto the incision sites, and then GML Gel or placebo was liberally applied to cover the sites completely. Rabbits were allowed to awaken and were examined for CFUs as a function of exposure time.In vitro, GML Gel was bactericidal for all broth culture and biofilm organisms in <1 hour and <4 hour, respectively; no CFUs were detected after the entire 24 h test period. In vivo, GML Gel inhibited bacterial growth in the surgical incision sites, compared to no growth inhibition in controls. GML Gel significantly reduced inflammation, as viewed by lack of redness in and below the incision sites.Our findings suggest that 5% GML Gel is useful as a potent topical antibacterial and anti-inflammatory agent for prevention of infections.

  12. Capsular Polysaccharide and O-Specific Antigen Divergently Modulate Pulmonary Neutrophil Influx in an Escherichia coli Model of Gram-Negative Pneumonitis in Rats

    OpenAIRE

    Russo, Thomas A.; Davidson, Bruce A.; Priore, Roger L.; Carlino, Ulrike B.; Helinski, Jadwiga D.; Knight, Paul R.

    2000-01-01

    Enteric gram-negative bacilli cause a severe, often life-threatening pneumonia. An improved understanding of the pathogenesis of this infection may lead to improved treatment. Nearly all of the responsible gram-negative bacilli possess capsular polysaccharides and/or an O-specific antigen as part of their lipopolysaccharide (LPS). We hypothesized that these surface polysaccharides may modulate the pulmonary host response. To investigate this, a rat pneumonitis model was used, and pulmonary ne...

  13. Ventriculo-peritoneal shunt independence following successful treatment of Gram negative (E. coli) ventriculitis: Case report and review of the literature.

    Science.gov (United States)

    Hussain, Rahim A; Sainuddin, Sajid; Bhatti, I; Leach, P

    2016-08-01

    We report a case of tumour-related hydrocephalus in a child treated with a ventriculo-peritoneal shunt which subsequently became infected with gram negative bacteria (Escherichia coli). After successful treatment of the infection the patient became shunt independent and has remained so for over 2 years. Gram negative ventriculitis is associated with diminished cerebro-spinal fluid production and we discuss the literature to date regarding this phenomenon. PMID:26449688

  14. Methods to predict antibiotic resistance: From genes to metagenomes

    OpenAIRE

    Lira, Felipe

    2015-01-01

    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 21-10-2015 As many antibiotics exist as many mechanisms of resistance will rise. Antibiotic resistance is a worldwide problem and deserves all sort of attention and dedication to identify the critical points which might promote or facilitate the emergence of novel resistance genes in one community, as well the propagation of the already kno...

  15. Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe.

    Directory of Open Access Journals (Sweden)

    Marlieke E A de Kraker

    2011-10-01

    the burden of antibiotic resistance from Gram-positive to Gram-negative infections will exacerbate this situation and is reason for concern.

  16. Identification of a new family of enzymes with potential O-acetylpeptidoglycan esterase activity in both Gram-positive and Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Clarke Anthony J

    2005-08-01

    Full Text Available Abstract Background The metabolism of the rigid bacterial cell wall heteropolymer peptidoglycan is a dynamic process requiring continuous biosynthesis and maintenance involving the coordination of both lytic and synthetic enzymes. The O-acetylation of peptidoglycan has been proposed to provide one level of control on these activities as this modification inhibits the action of the major endogenous lytic enzymes, the lytic transglycosylases. The O-acetylation of peptidoglycan also inhibits the activity of the lysozymes which serve as the first line of defense of host cells against the invasion of bacterial pathogens. Despite this central importance, there is a dearth of information regarding peptidoglycan O-acetylation and nothing has previously been reported on its de-acetylation. Results Homology searches of the genome databases have permitted this first report on the identification of a potential family of O-Acetylpeptidoglycan esterases (Ape. These proteins encoded in the genomes of a variety of both Gram-negative and Gram-positive bacteria, including a number of important human pathogens such as species of Neisseria, Helicobacter, Campylobacter, and Bacillus anthracis, have been organized into three families based on amino acid sequence similarities with family 1 being further divided into three sub-families. The genes encoding these proteins are shown to be clustered with Peptidoglycan O-acetyltransferases (Pat and in some cases, together with other genes involved in cell wall metabolism. Representative bacteria that encode the Ape proteins were experimentally shown to produce O-acetylated peptidoglycan. Conclusion The hypothetical proteins encoded by the pat and ape genes have been organized into families based on sequence similarities. The Pat proteins have sequence similarity to Pseudomonas aeruginosa AlgI, an integral membrane protein known to participate in the O-acetylation of the exopolysaccaride, alginate. As none of the bacteria

  17. Ecology of antibiotic resistant vibrios in traditional shrimp farming system (bhery) of West Bengal, India

    Institute of Scientific and Technical Information of China (English)

    Leesa Priyadarsani; Thangapalam Jawahar Abraham

    2013-01-01

    Objective: To study the ecology of antibiotic resistant bacteria with emphasis on sucrose negative vibrios in water and sediments samples of traditional shrimp farming system (bhery) in West Bengal, India. Methods: The vibrios were isolated from traditional shrimp farm samples on thiosulphate citrate bthilee f rseaqltu esunccryo osfe aangtaibr ioatnidc rseuscisrotasnec nee. gative bacterial strains were used as biomarkers to assess Results: The incoming water brought presumptive vibrios ranging from 5.50×101 to 1.00×103 mL in ttoh etrhee wbhase rayb, oauntd 9t hfoelrde ainpcpreeaarseed itno vbiubirlido su. pT hvieb rleiovse lisn othf ev icburlitousr ew seyrest eombs ewrivtehd d taoy sb eo f mcuoldteurraet,e alys higher in outlet water and ranged between 4.15×102 and 4.15×103 mL. The counts of vibrios in pond sediment was found to be 1.00×102–4.90×103 g; while in inlet (2.00×102–4.20×104 g) and outlet (3.00×102–6.85×103 g) their levels were observed to be higher than the pond sediment. Thirteen wdiefrfeer seennt sVitiibvrei oto s cphelcoireasm wpehreen iecnocl,o fuonlltoewreedd ibny tcriapdriotifloonxaalc sinh rainmdp g cautilftluorxea csiyns (t9e8m.2 4a%n)d, gaelnl tvaimbircioins (t9w5o.6 1a%n)t iabniodt ioctsh,e rw aans tinboitoitcicesd. aTmheo nmgu ltiple antibiotic resistance (MAR), i.e., resistance to at least sucrose negative non-vibrios. 43.85% of the sucrose negative vibrios and 41.86% of the was used in the bhery, the preAvalll evnicberi oosf harveyi strains exhibited MAR. Although no antibiotic vibrios is a cause of concern. MAR in 44% of the sucrose negative vibrios and non- The MAR index was higher in inlet water and sediment samples. The MofA iRn loebt ssearmvepdle sin, tbhiuosm caornkfeirrm sitnragi nths eo ffa pcot nthda wt iantecor manindg sweadtiemr ewnat s( 4t0h%e) mwaajso rc osmoupracrea obfl ea ntoti bthiootsiec resistant bacteria. Conclusions: It seems that the shrimp culture in bhery does not favour the proliferation and spread

  18. Levels and treatment options for enteric and antibiotic resistant bacteria in sewage from Sisimiut, Greenland

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Gunnarsdottir, Ragnhildur; Andersen, Henrik Rasmus;

    2013-01-01

    marine environment negatively. Both peracetic acid treatment and UV-C radiation shows potential for disinfection of the wastewater after removal of solids >60μm. E-coli was most susceptible to peracetic acid treatment, while a maximum possible reduction of enterococci and coliforms of 2-3 size orders...... was observed. The highest reduction observed by UV-C treatment was 4 size orders for enterococci, but no maximum level was observed. UV-treatment may thus be a preferred disinfection method, in particular for a community with long transport distances to the nearest chemical supplier and access to hydropower......Sewage treatment in Arctic towns is inadequate. Sewage contains pathogenic microorganisms, parasites, antibiotic resistant bacteria, and toxic compounds. Discharging of untreated sewage can thus have a negative effect on people’s health and the aquatic environment in the receiving water bodies...

  19. ANTIBIOTIC RESISTANCE IN THE OPPORTUNISTIC PATHOGEN STENOTROPHOMONAS MALTOPHILIA

    Directory of Open Access Journals (Sweden)

    María Blanca Sánchez

    2015-06-01

    Full Text Available Stenotrophomonas maltophilia is an environmental bacterium found in the soil, associated with plants and animals, and in aquatic environments. It is also an opportunistic pathogen now causing an increasing number of nosocomial infections. The treatment of S. maltophilia is quite difficult given its intrinsic resistance to a number of antibiotics, and because it is able to acquire new resistances via horizontal gene transfer and mutations. Certainly, strains resistant to quinolones, cotrimoxale and/or cephalosporins - antibiotics commonly used to treat S. maltophilia infections - have emerged. The increasing number of available S. maltophilia genomes has allowed the identification and annotation of a large number of antimicrobial and heavy metal resistance genes. Most encode inactivating enzymes and efflux pumps, but information on their role in intrinsic and acquired resistance is limited. Non-typical antibiotic resistance mechanisms that also form part of the intrinsic resistome have been identified via mutant library screening. These include non-typical antibiotic resistance genes, such as bacterial metabolism genes, and non-inheritable resistant phenotypes, such as biofilm formation and persistence. Their relationships with resistance are complex and require further study.

  20. Determining of antibiotic resistance profile inStaphylococcus aureus isolates

    Institute of Scientific and Technical Information of China (English)

    Hossein Motamedi; Hadis Mirzabeigi; Tahere Shirali

    2010-01-01

    Objective:To determine the pattern of antibiotic resistance amongStaphylococcus aureus (S. aureus) isolates from clinical specimens and to identify community-acquired methicillin-resistantStaphylococcus aureus(CA-MRSA)in specimens that have been collected from patients referring to one of the hospitals of Ahvaz.Methods:S. aureus isolates from a hospital in Ahvaz were screened for resistance to various antibiotics including methicillin. The susceptibility of the isolates was determined by Kirby-Bauer disc diffusion method. TheMRSA was also treated with ethidium bromide to find the origin of resistance.Results: Among the bacterial isolates, all of 11S. aureus were resistant to methicillin and cefixime,2 were resistant to ciprofloxacine,6 were resistant to tetracycline and the reminder were sensitive or intermediate to other antibiotics. The treated isolates were reminded resistant to methicillin and this suggested that the plasmid was not the origin of resistance in these isolates.Conclusions: These results showed that infection due toMRSA is widespread in Ahvaz and with respect to the spread of vancomycin resistance among MRSA and appearance of overwhelming infections. It is necessary to identify continuously the profile of antibiotic resistance amongS. aureus isolates in other regions and finding appropriate antibiotic for infection control and eradication.

  1. Antibiotic resistance in prevalent bacterial and protozoan sexually transmitted infections

    Directory of Open Access Journals (Sweden)

    Karl Krupp

    2015-01-01

    Full Text Available The emergence of multi-drug resistant sexually transmitted infections (STIs is causing a treatment crisis across the globe. While cephalosporin-resistant gonorrhea is one of the most pressing issues, extensively antibiotic resistant Chlamydia trachomatis and Mycoplasma hominis are also becoming commonplace. Experts have suggested that the failure of current treatment regimens are "largely inevitable" and have called for entirely new classes of antimicrobial agents. With the exception of several new classes of drugs primarily targeting nosocomial infections, progress has been slow. While pharmaceutical companies continue to introduce new drugs, they are based on decade-old discoveries. While there is disagreement about what constitutes new classes of antibiotics, many experts suggest that the last truly new family of antimicrobials was discovered in 1987. This review summarizes the existing literature on antibiotic resistance in common bacterial and protozoal STIs. It also briefly discusses several of the most promising alternatives to current therapies, and further examines how advances in drug delivery, formulation, concentration, and timing are improving the efficacy of existing treatments. Finally, the paper discusses the current state of pharmaceutical development for multidrug-resistant STI.

  2. The incidence of antibiotic resistant bacteria in chicken and pork / Eugénie van Wijk

    OpenAIRE

    Van Wijk, Eugénie

    2003-01-01

    The emergence of antibiotic resistance in important human pathogens has globally become a public health concern. Consumption of contaminated meat and meat products constitute a major route for the transmission of antibiotic resistant organisms and the dissemination of resistance genes in the human environment. The aim of this study was to determine the level of antibiotic resistance in potentially pathogenic bacteria associated with pork, chicken meat, chicken manure, chicken f...

  3. Aerobic digestion reduces the quantity of antibiotic resistance genes in residual municipal wastewater solids

    OpenAIRE

    Burch, Tucker R.; Sadowsky, Michael J.; LaPara, Timothy M.

    2013-01-01

    Numerous initiatives have been undertaken to circumvent the problem of antibiotic resistance, including the development of new antibiotics, the use of narrow spectrum antibiotics, and the reduction of inappropriate antibiotic use. We propose an alternative but complimentary approach to reduce antibiotic resistant bacteria (ARB) by implementing more stringent technologies for treating municipal wastewater, which is known to contain large quantities of ARB and antibiotic resistance genes (ARGs)...

  4. Deliberations on the impact of antibiotic contamination on dissemination of antibiotic resistance genes in aquatic environments

    OpenAIRE

    Berglund, Björn

    2014-01-01

    The great success of antibiotics in treating bacterial infectious diseases has been hampered by the increasing prevalence of antibiotic resistant bacteria. Not only does antibiotic resistance threaten to increase the difficulty in treating bacterial infectious diseases, but it could also make medical procedures such as routine surgery and organ transplantations very dangerous to perform. Traditionally, antibiotic resistance has been regarded as a strictly clinical problem and studies of the p...

  5. Distribution and quantification of antibiotic resistant genes and bacteria across agricultural and non-agricultural metagenomes.

    Science.gov (United States)

    Durso, Lisa M; Miller, Daniel N; Wienhold, Brian J

    2012-01-01

    There is concern that antibiotic resistance can potentially be transferred from animals to humans through the food chain. The relationship between specific antibiotic resistant bacteria and the genes they carry remains to be described. Few details are known about the ecology of antibiotic resistant genes and bacteria in food production systems, or how antibiotic resistance genes in food animals compare to antibiotic resistance genes in other ecosystems. Here we report the distribution of antibiotic resistant genes in publicly available agricultural and non-agricultural metagenomic samples and identify which bacteria are likely to be carrying those genes. Antibiotic resistance, as coded for in the genes used in this study, is a process that was associated with all natural, agricultural, and human-impacted ecosystems examined, with between 0.7 to 4.4% of all classified genes in each habitat coding for resistance to antibiotic and toxic compounds (RATC). Agricultural, human, and coastal-marine metagenomes have characteristic distributions of antibiotic resistance genes, and different bacteria that carry the genes. There is a larger percentage of the total genome associated with antibiotic resistance in gastrointestinal-associated and agricultural metagenomes compared to marine and Antarctic samples. Since antibiotic resistance genes are a natural part of both human-impacted and pristine habitats, presence of these resistance genes in any specific habitat is therefore not sufficient to indicate or determine impact of anthropogenic antibiotic use. We recommend that baseline studies and control samples be taken in order to determine natural background levels of antibiotic resistant bacteria and/or antibiotic resistance genes when investigating the impacts of veterinary use of antibiotics on human health. We raise questions regarding whether the underlying biology of each type of bacteria contributes to the likelihood of transfer via the food chain.

  6. Identification of a small molecule that simultaneously suppresses virulence and antibiotic resistance of Pseudomonas aeruginosa

    OpenAIRE

    Qiaoyun Guo; Yu Wei; Bin Xia; Yongxin Jin; Chang Liu; Xiaolei Pan; Jing Shi; Feng Zhu; Jinlong Li; Lei Qian; Xinqi Liu; Zhihui Cheng; Shouguang Jin; Jianping Lin; Weihui Wu

    2016-01-01

    The rising antibiotic resistance of bacteria imposes a severe threat on human health. Inhibition of bacterial virulence is an alternative approach to develop new antimicrobials. Molecules targeting antibiotic resistant enzymes have been used in combination with cognate antibiotics. It might be ideal that a molecule can simultaneously suppress virulence factors and antibiotic resistance. Here we combined genetic and computer-aided inhibitor screening to search for such molecules against the ba...

  7. How Should We Be Determining Background and Baseline Antibiotic Resistance Levels in Agroecosystem Research?

    Science.gov (United States)

    Rothrock, Michael J; Keen, Patricia L; Cook, Kimberly L; Durso, Lisa M; Franklin, Alison M; Dungan, Robert S

    2016-03-01

    Although historically, antibiotic resistance has occurred naturally in environmental bacteria, many questions remain regarding the specifics of how humans and animals contribute to the development and spread of antibiotic resistance in agroecosystems. Additional research is necessary to completely understand the potential risks to human, animal, and ecological health in systems altered by antibiotic-resistance-related contamination. At present, analyzing and interpreting the effects of human and animal inputs on antibiotic resistance in agroecosystems is difficult, since standard research terminology and protocols do not exist for studying background and baseline levels of resistance in the environment. To improve the state of science in antibiotic-resistance-related research in agroecosystems, researchers are encouraged to incorporate baseline data within the study system and background data from outside the study system to normalize the study data and determine the potential impact of antibiotic-resistance-related determinants on a specific agroecosystem. Therefore, the aims of this review were to (i) present standard definitions for commonly used terms in environmental antibiotic resistance research and (ii) illustrate the need for research standards (normalization) within and between studies of antibiotic resistance in agroecosystems. To foster synergy among antibiotic resistance researchers, a new surveillance and decision-making tool is proposed to assist researchers in determining the most relevant and important antibiotic-resistance-related targets to focus on in their given agroecosystems. Incorporation of these components within antibiotic-resistance-related studies should allow for a more comprehensive and accurate picture of the current and future states of antibiotic resistance in the environment. PMID:27065388

  8. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli

    OpenAIRE

    Tazzyman, Samuel J; Hall, Alex R

    2014-01-01

    The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under pha...

  9. 革兰氏阳性菌和阴性菌对山梨酸钾的耐受差异性%Study of the Tolerance Difference between Gram Positive and Gram Negative Bacteria to Potassium Sorbate

    Institute of Scientific and Technical Information of China (English)

    滕菲; 郭桂萍; 赵勇; 潘迎捷; 卢瑛

    2012-01-01

    对革兰氏阳性菌和革兰氏阴性茵对山梨酸钾防腐剂的耐受性差异进行了探讨.以食品中常见的革兰氏阳性菌(蜡样芽孢杆菌,金黄色葡萄球茵和单增李斯特茵)与革兰氏阴性茵(沙门氏菌、副溶血弧菌、荧光假单胞菌)为研究对象,针对纯培养状态和模拟食品体系进行了研究.结果显示,加入1 g/L山梨酸钾后革兰氏阴性茵的菌数可减少近102~103.5 CFU/mL,而革兰氏阳性茵的菌数只能减少近10 CFU/mL,说明山梨酸钾对革兰氏阴性茵的抑茵效果比革兰氏阳性茵要高2倍以上.最小抑菌浓度实验和即食海带的接种模拟实验结果与生长曲线结果相吻合,显示革兰氏阳性茵对山梨酸钾的耐受性强于革兰氏阴性茵,此结果对于今后应用山梨酸钾进行革兰氏阳性菌类的防控具有重要意义.%In this study, the tolerance of 3 gram positive (Bacillus cereus, Staphylococcus au-reus and Listeria monocytologene) and 3 gram negative bacteria {Vibrio parahaemolyticus, Salmonella and Pseudomonas fluorescent) topotassium sorbate were carefully studied by pure cultivation and simulation of food system. When 1 g/L potassium sorbate was presented in culture, the number of gram negative bacteria was reduced to up to 2~3. 5 lg(CFU/mL), while those of gram positive bacteria were only reduce to 1 lg(CFU/mL). This results demonstrated potassium sorbate inhibited on the gram negative bacteria growth than that of the gram negative bacteria. Results of pure culture, minimal inhibitory concentration (MIC) and inoculation to instant kelp results all showed that the tolerance of gram positive bacteria is better than gram negative bacteria. It may have significance in the application of potassium sorbate on the control of gram positive bacteria.

  10. A new class of quorum quenching molecules from Staphylococcus species affects communication and growth of gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Ya-Yun Chu

    Full Text Available The knowledge that many pathogens rely on cell-to-cell communication mechanisms known as quorum sensing, opens a new disease control strategy: quorum quenching. Here we report on one of the rare examples where Gram-positive bacteria, the 'Staphylococcus intermedius group' of zoonotic pathogens, excrete two compounds in millimolar concentrations that suppress the quorum sensing signaling and inhibit the growth of a broad spectrum of Gram-negative beta- and gamma-proteobacteria. These compounds were isolated from Staphylococcus delphini. They represent a new class of quorum quenchers with the chemical formula N-[2-(1H-indol-3-ylethyl]-urea and N-(2-phenethyl-urea, which we named yayurea A and B, respectively. In vitro studies with the N-acyl homoserine lactone (AHL responding receptor LuxN of V. harveyi indicated that both compounds caused opposite effects on phosphorylation to those caused by AHL. This explains the quorum quenching activity. Staphylococcal strains producing yayurea A and B clearly benefit from an increased competitiveness in a mixed community.

  11. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment

    DEFF Research Database (Denmark)

    Pruden, Amy; Larsson, D.G. Joakim; Amézquita, Alejandro;

    2013-01-01

    Background: There is growing concern worldwide about the role of polluted soil and water environments in the development and dissemination of antibiotic resistance. Objective: Our aim in this study was to identify management options for reducing the spread of antibiotics and antibiotic resistance...... of management strategies is also highlighted. Finally, we describe a case study in Sweden that illustrates the critical role of communication to engage stakeholders and promote action. Conclusions: Environmental releases of antibiotics and antibiotic-resistant bacteria can in many cases be reduced at little...... associated with antibiotic resistance strongly indicate the need for action....

  12. Presence of exoY, exoS, exoU and exoT genes, antibiotic resistance and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran

    Directory of Open Access Journals (Sweden)

    Azimi, Somayeh

    2016-02-01

    Full Text Available Background: , as Gram-negative rod bacilli, has an important role in human infection. In the present study we aimed to investigate the presence of genes and biofilm production among isolates in Northwest Iran.Material and methods: 160 isolates of were collected and identified by biochemical tests and were characterized for antibiotic resistance. Biofilm production was evaluated by microtiter plate assay and the presence of genes was evaluated by allele-specific PCR (polymerase chain reaction. Chi-square test was used for statistical analysis.Results: The most effective antibiotics against isolates were colistin and polymyxin B. 87% of the isolates were biofilm producers of which 69% were strongly biofilm producers. 55% of the isolates carried , 52% of the isolates carried , and 26.3% and 5% carried and , respectively.Conclusion: Our findings showed different distribution of genes in clinical isolates of in Northwest Iran. and were more prevalent in non-biofilm producers and was more prevalent in biofilm producer isolates. These results might indicate the importance of in biofilm production of .

  13. Diversity of Gram negative bacteria antagonistic against major pathogens of rice from rice seed in the tropic environment

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    With the use of a seed washing technique, more than 4000 Gram negative bacteria were isolated by two improved isolation methods from 446 batches of 1 kg rice seed samples obtained from 22 provinces in the Philippines. They were initially characterized on the basis of colony morphology and results of biochemical and pathogenicity tests. Six hundred and fifty-two strains were further identified by Biolog, from which 133 were selected for fatty acid methyl ester (FAME) analysis together with 80 standard reference!strains. Sixteen species or types of Pseudomonas and 17 genera of non-pseudomonads were identified, more than one third of which have not been recorded in rice. The most predominant species observed were P. putida and P. fulva. About 17% of the strains of Pseudomonas and 2% of the non-pseudomonads were antagonistic to one or more fungal or bacterial pathogens of rice. Rice seed is an important source of biological control agents.

  14. Candidatus Renichlamydia lutjani, a Gram-negative bacterium in internal organs of blue striped snapper Lutjanus kasmira from Hawaii.

    Science.gov (United States)

    Corsaro, Daniele; Work, Thierry M.

    2012-01-01

    The blue-striped snapper Lutjanus kasmira (Perciformes, Lutjanidae) are cosmopolitan in the Indo-Pacific but were introduced into Oahu, Hawaii, USA, in the 1950s and have since colonized most of the archipelago. Studies of microparasites in blue-striped snappers from Hawaii revealed chlamydia-like organisms (CLO) infecting the spleen and kidney, characterized by intracellular basophilic granular inclusions containing Gram-negative and Gimenez-positive bacteria similar in appearance to epitheliocysts when seen under light microscopy. We provide molecular evidence that CLO are a new member of Chlamydiae, i.e. Candidatus Renichlamydia lutjani, that represents the first reported case of chlamydial infection in organs other than the gill in fishes.

  15. Gram-Negative Bacterial Infection in Thigh Abscess Can Migrate to Distant Burn Depending on Burn Depth

    Directory of Open Access Journals (Sweden)

    Victoria Hamrahi

    2012-01-01

    Full Text Available Sepsis remains the major cause of death in patients with major burn injuries. In the present investigation we evaluated the interaction between burn injuries of varying severity and preexisting distant infection. We used Gram-negative bacteria (Pseudomonas aeruginosa and Proteus mirabilis that were genetically engineered to be bioluminescent, which allowed for noninvasive, sequential optical imaging of the extent and severity of the infection. The bioluminescent bacteria migrated from subcutaneous abscesses in the leg to distant burn wounds on the back depending on the severity of the burn injury, and this migration led to increased mortality of the mice. Treatment with ciprofloxacin, injected either in the leg with the bacterial infection or into the burn eschar, prevented this colonization of the wound and decreased mortality. The present data suggest that burn wounds can readily become colonized by infections distant from the wound itself.

  16. Efflux Pump Blockers in Gram-Negative Bacteria: The New Generation of Hydantoin Based-Modulators to Improve Antibiotic Activity.

    Science.gov (United States)

    Otręebska-Machaj, Ewa; Chevalier, Jacqueline; Handzlik, Jadwiga; Szymańska, Ewa; Schabikowski, Jakub; Boyer, Gérard; Bolla, Jean-Michel; Kieć-Kononowicz, Katarzyna; Pagès, Jean-Marie; Alibert, Sandrine

    2016-01-01

    Multidrug resistant (MDR) bacteria are an increasing health problem with the shortage of new active antibiotic agents. Among effective mechanisms that contribute to the spread of MDR Gram-negative bacteria are drug efflux pumps that expel clinically important antibiotic classes out of the cell. Drug pumps are attractive targets to restore the susceptibility toward the expelled antibiotics by impairing their efflux activity. Arylhydantoin derivatives were investigated for their potentiation of activities of selected antibiotics described as efflux substrates in Enterobacter aerogenes expressing or not AcrAB pump. Several compounds increased the bacterial susceptibility toward nalidixic acid, chloramphenicol and sparfloxacin and were further pharmacomodulated to obtain a better activity against the AcrAB producing bacteria. PMID:27199950

  17. Calcined Eggshell Waste for Mitigating Soil Antibiotic-Resistant Bacteria/Antibiotic Resistance Gene Dissemination and Accumulation in Bell Pepper.

    Science.gov (United States)

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Li, Xu; Schwab, Arthur P; Wan, Jinzhong; Liu, Manqiang; Tian, Da; Liu, Kuan; Wu, Jun; Jiang, Xin

    2016-07-13

    The combined accumulation of antibiotics, heavy metals, antibiotic-resistant bacteria (ARB)/antibiotic resistance genes (ARGs) in vegetables has become a new threat to human health. This is the first study to investigate the feasibility of calcined eggshells modified by aluminum sulfate as novel agricultural wastes to impede mixed contaminants from transferring to bell pepper (Capsicum annuum L.). In this work, calcined eggshell amendment mitigated mixed pollutant accumulation in bell pepper significantly, enhanced the dissipation of soil tetracycline, sulfadiazine, roxithromycin, and chloramphenicol, decreased the water-soluble fractions of antibiotics, and declined the diversity of ARB/ARGs inside the vegetable. Moreover, quantitative polymerase chain reaction analysis detected that ARG levels in the bell pepper fruits significantly decreased to 10(-10) copies/16S copies, indicating limited risk of ARGs transferring along the food chain. Furthermore, the restoration of soil microbial biological function suggests that calcined eggshell is an environmentally friendly amendment to control the dissemination of soil ARB/ARGs in the soil-vegetable system. PMID:27333280

  18. Presence and antimicrobial profile of gram-negative facultative anaerobe rods in patients with chronic periodontitis and gingivitis.

    Science.gov (United States)

    Gamboa, Fredy; García, Dabeiba-Adriana; Acosta, Adriana; Mizrahi, Deborah; Paz, Andreína; Martínez, Diana; Arévalo, Azucena; Aristizabal, Fabio; Abba, Martín

    2013-01-01

    Chronic periodontitis is a multifactorial infectious disease associated with Gram-negative anaerobes which are part of the subgingival microflora. In recent years, studies have been conducted to assess the presence of Gram-negative facultative anaerobes (Enterobacteriaceae) and their participation in the development and progression of chronic periodontitis. The aim of this study was to determine the presence of Enterobacteriaceae in patients with chronic periodontitis and gingivitis and to assess antimicrobial susceptibility of clinical isolates. A descriptive, observational study was performed including 64 patients with chronic periodontitis and 22 patients with gingivitis. Microbiological samples were taken from the gingival sulcus using paper points, which then were placed in thioglycollate broth. Samples were incubated for 4 hours at 37 degrees C and finally replated on MacConkey agar Bacteria were identified using the API-20E system (Biomerieux, France) and antimicrobial susceptibility was determined using the disk diffusion method. The evaluation of samples showed presence of 29 enterobacterial species distributed as follows: 7 in the group with gingivitis and 22 in the group with chronic periodontitis. In the chronic periodontitis group the most common species were: K. oxytoca n = 5, S. liquefaciens n = 4 and K. pneumoniae and E. coli with n = 3. The gingivitis group had the highest frequency of Erwinia sp. (n = 2). Clinical isolates showed very low sensitivity levels to beta-lactam ampicillin and amoxicillin/ clavulanic acid, 17.2% and 27.6% respectively, and higher sensitivity levels to ciprofloxacin (96.6%), amikacin (79.3%), gentamicin (68.9%) and ceftazidime, ceftriaxone, kanamycin and trimethoprimsulfa (65.5%). In conclusion, the existence of a high frequency of enterobacteria in patients with chronic periodontitis and gingivitis shows that periodontologists should pay greater attention to prevention protocols, and develop mechanical and antimicrobial

  19. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens.

    Science.gov (United States)

    Karageorgopoulos, Drosos E; Wang, Rui; Yu, Xu-Hong; Falagas, Matthew E

    2012-02-01

    Fosfomycin has attracted renewed interest for the treatment of lower urinary tract and even systemic infections caused by Gram-negative pathogens with resistance to traditionally used agents. The main concern regarding the clinical utility of fosfomycin refers to the potential for the emergence of resistance during therapy. In this review, we evaluate the available published evidence regarding the mechanisms and the frequency of in vitro mutational resistance to fosfomycin in Gram-negative pathogens. We also review data regarding the emergence of resistance in clinical studies of fosfomycin therapy in various infectious syndromes and data from studies that evaluate the evolution of fosfomycin resistance over time. There appears to be discordance between the high frequency of mutational resistance to fosfomycin in vitro and the lower extent of this phenomenon in clinical studies. This discordance could at least partly be attributed to a biological cost associated with common mutations that confer resistance to fosfomycin, including decreased growth rate and low adherence to epithelial cells for the resistant mutants. The development of resistance appears to be more frequent both in vitro and in clinical studies for Pseudomonas aeruginosa in comparison with Escherichia coli, whereas relevant data for other Enterobacteriaceae are relatively scarce. The urinary tract seems to provide a favourable environment for the use of fosfomycin with a low associated likelihood for the emergence of resistance, owing to high drug concentrations and acidic pH. Additional data are needed to further clarify the optimal use of fosfomycin for different infectious syndromes caused by contemporary multidrug-resistant pathogens.

  20. Aminoglycoside resistance rates, phenotypes, and mechanisms of Gram-negative bacteria from infected patients in upper Egypt.

    Directory of Open Access Journals (Sweden)

    Gamal F Gad

    Full Text Available With the re-emergence of older antibiotics as valuable choices for treatment of serious infections, we studied the aminoglycoside resistance of Gram-negative bacteria isolated from patients with ear, urinary tract, skin, and gastrointestinal tract infections at Minia university hospital in Egypt. Escherichia coli (mainly from urinary tract and gastrointestinal tract infections was the most prevalent isolate (28.57%, followed by Pseudomonas aeruginosa (25.7% (mainly from ear discharge and skin infections. Isolates exhibited maximal resistance against streptomycin (83.4%, and minimal resistance against amikacin (17.7% and intermediate degrees of resistance against neomycin, kanamycin, gentamicin, and tobramycin. Resistance to older aminoglycosides was higher than newer aminoglycosides. The most common aminoglycoside resistance phenotype was that of streptomycin resistance, present as a single phenotype or in combination, followed by kanamycin-neomycin as determined by interpretative reading. The resistant Pseudomonas aeruginosa strains were capable of producing aminoglycoside-modifying enzymes and using efflux as mechanisms of resistance. Using checkerboard titration method, the most frequently-observed outcome in combinations of aminoglycosides with β-lactams or quinolones was synergism. The most effective combination was amikacin with ciprofloxacin (100% Synergism, whereas the least effective combination was gentamicin with amoxicillin (53.3% Synergistic, 26.7% additive, and 20% indifferent FIC indices. Whereas the studied combinations were additive and indifferent against few of the tested strains, antagonism was never observed. The high resistance rates to aminoglycosides exhibited by Gram-negative bacteria in this study could be attributed to the selective pressure of aminoglycoside usage which could be controlled by successful implementation of infection control measures.

  1. Biodegradation of geosmin by a novel Gram-negative bacterium; isolation, phylogenetic characterisation and degradation rate determination.

    Science.gov (United States)

    Hoefel, Daniel; Ho, Lionel; Monis, Paul T; Newcombe, Gayle; Saint, Christopher P

    2009-06-01

    Biologically active sand filters within water treatment plants (WTPs) are now recognised as an effective barrier for the removal of geosmin. However, little is known regarding the actual microbiological processes occurring or the bacteria capable of degrading geosmin. This study reports the enrichment and isolation of a Gram-negative bacterium, Geo48, from the biofilm of a WTP sand filter where the isolate was shown to effectively degrade geosmin individually. Experiments revealed that Geo48 degraded geosmin in a planktonic state by a pseudo-first-order mechanism. Initial geosmin concentrations ranging from 100 to 1000ng/l were shown to directly influence geosmin degradation in reservoir water by Geo48, with rate constants increasing from 0.010h(-1) (R(2)=0.93) to 0.029h(-1) (R(2)=0.97) respectively. Water temperature also influenced degradation of geosmin by Geo48 where temperatures of 11, 22 and 30 degrees C resulted in rate constants of 0.017h(-1) (R(2)=0.98), 0.023h(-1) (R(2)=0.91) and 0.019h(-1) (R(2)=0.85) respectively. Phylogenetic analysis using the 16S rRNA gene of Geo48 revealed it was a member of the Alphaproteobacteria and clustered with 99% bootstrap support with an isolate designated Geo24, a Sphingopyxis sp. previously described as degrading geosmin but only as a member of a bacterial consortium. Of the previously described bacteria, Geo48 was most similar to Sphingopyxis alaskensis (97.2% sequence similarity to a 1454bp fragment of the 16S rRNA gene). To date, this is the only study to report the isolation and characterisation of a Gram-negative bacterium from a biologically active sand filter capable of the sole degradation of geosmin.

  2. Antimicrobial susceptibility of Gram-negative bacteria causing intra-abdominal infections in China: SMART China 2011

    Institute of Scientific and Technical Information of China (English)

    Zhang Hui; Yang Qiwen; Xiao Meng; Chen Minjun; Robert E.Badal; Xu Yingchun

    2014-01-01

    Background The Study for Monitoring Antimicrobial Resistance Trends program monitors the activity of antibiotics against aerobic and facultative Gram-negative bacilli (GNBs) from intra-abdominal infections (IAIs) in patients worldwide.Methods In 2011,1 929 aerobic and facultative GNBs from 21 hospitals in 16 cities in China were collected.All isolates were tested using a panel of 12 antimicrobial agents,and susceptibility was determined following the Clinical Laboratory Standards Institute guidelines.Results Among the Gram-negative pathogens causing IAIs,Escherichia coli (47.3%) was the most commonly isolated,followed by Klebsiella pneumoniae (17.2%),Pseudomonas aeruginosa (10.1%),and Acinetobacter baumannii (8.3%).Enterobacteriaceae comprised 78.8% (1521/1929) of the total isolates.Among the antimicrobial agents tested,ertapenem and imipenem were the most active agents against Enterobacteriaceae,with susceptibility rates of 95.1% and 94.4%,followed by amikacin (93.9%) and piperacillin/tazobactam (87.7%).Susceptibility rates of ceftriaxone,cefotaxime,ceftazidime,and cefepime against Enterobacteriaceae were 38.3%,38.3%,61.1%,and 50.8%,respectively.The leastactive agent against Enterobacteriaceae was ampicillin/sulbactam (25.9%).The extended-spectrum β-lactamase (ESBL) rates among E.coli,K.pneumoniae,Klebsiella oxytoca,and Proteus mirabilis were 68.8%,38.1%,41.2%,and 57.7%,respectively.Conclusions Enterobacteriaceae were the major pathogens causing IAIs,and the most active agents against the study isolates (including those producing ESBLs) were ertapenem,imipenem,and amikacin.Including the carbapenems,most agents exhibited reduced susceptibility against ESBL-positive and multidrug-resistant isolates.

  3. Potentiation effects of amikacin and fosfomycin against selected amikacin-nonsusceptible Gram-negative respiratory tract pathogens.

    Science.gov (United States)

    Montgomery, A Bruce; Rhomberg, Paul R; Abuan, Tammy; Walters, Kathie-Anne; Flamm, Robert K

    2014-07-01

    The amikacin-fosfomycin inhalation system (AFIS) is a combination of 2 antibiotics and an in-line nebulizer delivery system that is being developed for adjunctive treatment of pneumonia caused by Gram-negative organisms in patients on mechanical ventilation. AFIS consists of a combination of amikacin and fosfomycin solutions at a 5:2 ratio (amikacin, 3 ml at 100 mg/ml; fosfomycin, 3 ml at 40 mg/ml) and the PARI Investigational eFlow Inline System. In this antibiotic potentiation study, the antimicrobial activities of amikacin and fosfomycin, alone and in a 5:2 combination, were assessed against 62 Gram-negative pathogens from a worldwide antimicrobial surveillance collection (SENTRY). The amikacin MICs for 62 isolates of Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae were ≥32 μg/ml (intermediate or resistant according to the Clinical and Laboratory Standards Institute [CLSI]; resistant according to the European Committee on Antimicrobial Susceptibility Testing [EUCAST]). Each isolate was tested against amikacin (0.25 to 1,024 μg/ml), fosfomycin (0.1 to 409.6 μg/ml), and amikacin-fosfomycin (at a 5:2 ratio) using CLSI reference agar dilution methods. The median MIC values for amikacin and fosfomycin against the 62 isolates each decreased 2-fold with the amikacin-fosfomycin (5:2) combination from that with either antibiotic alone. Interactions between amikacin and fosfomycin differed by isolate and ranged from no detectable interaction to high potentiation. The amikacin-fosfomycin (5:2) combination reduced the amikacin concentration required to inhibit all 62 isolates from >1,024 to ≤ 256 μg/ml and reduced the required fosfomycin concentration from 204.8 to 102.4 μg/ml. These results support continued development of the amikacin-fosfomycin combination for aerosolized administration, where high drug levels can be achieved. PMID:24752275

  4. Overexpression of the endothelial protein C receptor is detrimental during pneumonia-derived gram-negative sepsis (Melioidosis.

    Directory of Open Access Journals (Sweden)

    Liesbeth M Kager

    Full Text Available BACKGROUND: The endothelial protein C receptor (EPCR enhances anticoagulation by accelerating activation of protein C to activated protein C (APC and mediates anti-inflammatory effects by facilitating APC-mediated signaling via protease activated receptor-1. We studied the role of EPCR in the host response during pneumonia-derived sepsis instigated by Burkholderia (B. pseudomallei, the causative agent of melioidosis, a common form of community-acquired Gram-negative (pneumosepsis in South-East Asia. METHODOLOGY/PRINCIPAL FINDINGS: Soluble EPCR was measured in plasma of patients with septic culture-proven melioidosis and healthy controls. Experimental melioidosis was induced by intranasal inoculation of B. pseudomallei in wild-type (WT mice and mice with either EPCR-overexpression (Tie2-EPCR or EPCR-deficiency (EPCR(-/-. Mice were sacrificed after 24, 48 or 72 hours. Organs and plasma were harvested to measure colony forming units, cellular influxes, cytokine levels and coagulation parameters. Plasma EPCR-levels were higher in melioidosis patients than in healthy controls and associated with an increased mortality. Tie2-EPCR mice demonstrated enhanced bacterial growth and dissemination to distant organs during experimental melioidosis, accompanied by increased lung damage, neutrophil influx and cytokine production, and attenuated coagulation activation. EPCR(-/- mice had an unremarkable response to B. pseudomallei infection as compared to WT mice, except for a difference in coagulation activation in plasma. CONCLUSION/SIGNIFICANCE: Increased EPCR-levels correlate with accelerated mortality in patients with melioidosis. In mice, transgenic overexpression of EPCR aggravates outcome during Gram-negative pneumonia-derived sepsis caused by B. pseudomallei, while endogenous EPCR does not impact on the host response. These results add to a better understanding of the regulation of coagulation during severe (pneumosepsis.

  5. Use of colistin in treating multi-resistant Gram-negative organisms in a specialised burns unit.

    Science.gov (United States)

    Ganapathy, H; Pal, S K; Teare, L; Dziewulski, P

    2010-06-01

    Patients with burns are at an increased risk of infection which can affect their outcome-duration of hospital stay, intensive care requirements, organ support, inotrope requirements, renal replacement therapy, ventilatory requirements and overall mortality. Our study aimed to evaluate the use of colistin in our burns intensive care unit (ICU) in treating multi-resistant Gram-negative infections. This was a retrospective study carried out in a regional referral centre for burns and plastics, Chelmsford, UK. We looked at data from patients admitted to our intensive care over a two-year period from November 2003 to November 2005. All patients who received colistin were included in the study. Admission data included demographic data and burn data, other relevant medical history, and blood results. We also recorded: length of ICU stay, ultimate outcome, total dose of colistin, repeated doses, and mode of drug delivery, organ support, organisms grown and their resistance. Response to colistin was judged by improvement in clinical status, decrease in white blood cell count (WCC) and inflammatory markers and no growth on cultures. The data were subjected to non-parametric Wilcoxon Signed Rank Test using SPSS version 14. Twenty-nine patients were included in the study all of whom received colistin in one form or the other. The average total dose of colistin was 69 million units (range 1-268). Of these, 17 patients survived (58.6%) and 12 died (41.4%). Twenty patients improved (69%) and 9 did not improve (31%) after administration of colistin. We also compared creatinine levels on admission and post colistin. We used non-parametric Wilcoxon Signed Rank test which showed no difference in the two groups (p=0.38). We found colistin to be safe and effective in treating multi-resistant Gram-negative infections in burns patients and we did not see any statistically significant impairment of renal function.

  6. Indole inhibition of N-acylated homoserine lactone-mediated quorum signalling is widespread in Gram-negative bacteria.

    Science.gov (United States)

    Hidalgo-Romano, Benjamin; Gollihar, Jimmy; Brown, Stacie A; Whiteley, Marvin; Valenzuela, Ernesto; Kaplan, Heidi B; Wood, Thomas K; McLean, Robert J C

    2014-11-01

    The LuxI/R quorum-sensing system and its associated N-acylated homoserine lactone (AHL) signal is widespread among Gram-negative bacteria. Although inhibition by indole of AHL quorum signalling in Pseudomonas aeruginosa and Acinetobacter oleivorans has been reported previously, it has not been documented among other species. Here, we show that co-culture with wild-type Escherichia coli, but not with E. coli tnaA mutants that lack tryptophanase and as a result do not produce indole, inhibits AHL-regulated pigmentation in Chromobacterium violaceum (violacein), Pseudomonas chlororaphis (phenazine) and Serratia marcescens (prodigiosin). Loss of pigmentation also occurred during pure culture growth of Chro. violaceum, P. chlororaphis and S. marcescens in the presence of physiologically relevant indole concentrations (0.5-1.0 mM). Inhibition of violacein production by indole was counteracted by the addition of the Chro. violaceum cognate autoinducer, N-decanoyl homoserine lactone (C10-HSL), in a dose-dependent manner. The addition of exogenous indole or co-culture with E. coli also affected Chro. violaceum transcription of vioA (violacein pigment production) and chiA (chitinase production), but had no effect on pykF (pyruvate kinase), which is not quorum regulated. Chro. violaceum AHL-regulated elastase and chitinase activity were inhibited by indole, as was motility. Growth of Chro. violaceum was not affected by indole or C10-HSL supplementation. Using a nematode-feeding virulence assay, we observed that survival of Caenorhabditis elegans exposed to Chro. violaceum, P. chlororaphis and S. marcescens was enhanced during indole supplementation. Overall, these studies suggest that indole represents a general inhibitor of AHL-based quorum signalling in Gram-negative bacteria. PMID:25165125

  7. A large family of antivirulence regulators modulates the effects of transcriptional activators in Gram-negative pathogenic bacteria.

    Directory of Open Access Journals (Sweden)

    Araceli E Santiago

    2014-05-01

    Full Text Available We have reported that transcription of a hypothetical small open reading frame (orf60 in enteroaggregative E. coli (EAEC strain 042 is impaired after mutation of aggR, which encodes a global virulence activator. We have also reported that the cryptic orf60 locus was linked to protection against EAEC diarrhea in two epidemiologic studies. Here, we report that the orf60 product acts as a negative regulator of aggR itself. The orf60 protein product lacks homology to known repressors, but displays 44-100% similarity to at least fifty previously undescribed small (<10 kDa hypothetical proteins found in many gram negative pathogen genomes. Expression of orf60 homologs from enterotoxigenic E. coli (ETEC repressed the expression of the AraC-transcriptional ETEC regulator CfaD/Rns and its regulon in ETEC strain H10407. Complementation in trans of EAEC 042orf60 by orf60 homologs from ETEC and the mouse pathogen Citrobacter rodentium resulted in dramatic suppression of aggR. A C. rodentium orf60 homolog mutant showed increased levels of activator RegA and increased colonization of the adult mouse. We propose the name Aar (AggR-activated regulator for the clinically and epidemiologically important orf60 product in EAEC, and postulate the existence of a large family of homologs among pathogenic Enterobacteriaceae and Pasteurellaceae. We propose the name ANR (AraC Negative Regulators for this family.

  8. Toll-like receptor 2 impairs host defense in gram-negative sepsis caused by Burkholderia pseudomallei (Melioidosis.

    Directory of Open Access Journals (Sweden)

    W Joost Wiersinga

    2007-07-01

    Full Text Available BACKGROUND: Toll-like receptors (TLRs are essential in host defense against pathogens by virtue of their capacity to detect microbes and initiate the immune response. TLR2 is seen as the most important receptor for gram-positive bacteria, while TLR4 is regarded as the gram-negative TLR. Melioidosis is a severe infection caused by the gram-negative bacterium, Burkholderia pseudomallei, that is endemic in Southeast Asia. We aimed to characterize the expression and function of TLRs in septic melioidosis. METHODS AND FINDINGS: Patient studies: 34 patients with melioidosis demonstrated increased expression of CD14, TLR1, TLR2, and TLR4 on the cell surfaces of monocytes and granulocytes, and increased CD14, TLR1, TLR2, TLR4, LY96 (also known as MD-2, TLR5, and TLR10 mRNA levels in purified monocytes and granulocytes when compared with healthy controls. In vitro experiments: Whole-blood and alveolar macrophages obtained from TLR2 and TLR4 knockout (KO mice were less responsive to B. pseudomallei in vitro, whereas in the reverse experiment, transfection of HEK293 cells with either TLR2 or TLR4 rendered these cells responsive to this bacterium. In addition, the lipopolysaccharide (LPS of B. pseudomallei signals through TLR2 and not through TLR4. Mouse studies: Surprisingly, TLR4 KO mice were indistinguishable from wild-type mice with respect to bacterial outgrowth and survival in experimentally induced melioidosis. In contrast, TLR2 KO mice displayed a markedly improved host defenses as reflected by a strong survival advantage together with decreased bacterial loads, reduced lung inflammation, and less distant-organ injury. CONCLUSIONS: Patients with melioidosis displayed an up-regulation of multiple TLRs in peripheral blood monocytes and granulocytes. Although both TLR2 and TLR4 contribute to cellular responsiveness to B. pseudomallei in vitro, TLR2 detects the LPS of B. pseudomallei, and only TLR2 impacts on the immune response of the intact host in

  9. Antibiotic consumption and healthcare-associated infections caused by multidrug-resistant gram-negative bacilli at a large medical center in Taiwan from 2002 to 2009: implicating the importance of antibiotic stewardship.

    Directory of Open Access Journals (Sweden)

    I-Ling Chen

    Full Text Available BACKGROUND: Better depicting the relationship between antibiotic consumption and evolutionary healthcare-associated infections (HAIs caused by multidrug-resistant Gram-negative bacilli (MDR-GNB may help highlight the importance of antibiotic stewardship. METHODOLOGY/PRINCIPAL FINDINGS: The correlations between antibiotic consumption and MDR-GNB HAIs at a 2,700-bed primary care and tertiary referral center in Taiwan between 2002 and 2009 were assessed. MDR-GNB HAI referred to a HAI caused by MDR-Enterobacteriaceae, MDR-Pseudomonas aeruginosa or MDR-Acinetobacter spp. Consumptions of individual antibiotics and MDR-GNB HAI series were first evaluated for trend over time. When a trend was significant, the presence or absence of associations between the selected clinically meaningful antibiotic resistance and antibiotic consumption was further explored using cross-correlation analyses. Significant major findings included (i increased consumptions of extended-spectrum cephalosporins, carbapenems, aminopenicillins/β-lactamase inhibitors, piperacillin/tazobactam, and fluoroquinolones, (ii decreased consumptions of non-extended-spectrum cephalosporins, natural penicillins, aminopenicillins, ureidopenicillin and aminoglycosides, and (iii decreasing trend in the incidence of the overall HAIs, stable trends in GNB HAIs and MDR-GNB HAIs throughout the study period, and increasing trend in HAIs caused by carbapenem-resistant (CR Acinetobacter spp. since 2006. HAIs due to CR-Acinetobacter spp. was found to positively correlate with the consumptions of carbapenems, extended-spectrum cephalosporins, aminopenicillins/β-lactamase inhibitors, piperacillin/tazobactam and fluoroquinolones, and negatively correlate with the consumptions of non-extended-spectrum cephalosporins, penicillins and aminoglycosides. No significant association was found between the increased use of piperacilllin/tazobactam and increasing HAIs due to CR-Acinetobacter spp. CONCLUSIONS: The

  10. Performance Evaluation of the Verigene Gram-Positive and Gram-Negative Blood Culture Test for Direct Identification of Bacteria and Their Resistance Determinants from Positive Blood Cultures in Hong Kong.

    Directory of Open Access Journals (Sweden)

    Gilman K H Siu

    Full Text Available A multicenter study was conducted to evaluate the diagnostic performance and the time to identifcation of the Verigene Blood Culture Test, the BC-GP and BC-GN assays, to identify both Gram-positive and Gram-negative bacteria and their drug resistance determinants directly from positive blood cultures collected in Hong Kong.A total of 364 blood cultures were prospectively collected from four public hospitals, in which 114 and 250 cultures yielded Gram-positive and Gram-negative bacteria, and were tested with the BC-GP and BC-GN assay respectively. The overall identification agreement for Gram-positive and Gram-negative bacteria were 89.6% and 90.5% in monomicrobial cultures and 62.5% and 53.6% in polymicrobial cultures, respectively. The sensitivities for most genus/species achieved at least 80% except Enterococcus spp. (60%, K.oxytoca (0%, K.pneumoniae (69.2%, whereas the specificities for all targets ranged from 98.9% to 100%. Of note, 50% (7/14 cultures containing K.pneumoniae that were missed by the BC-GN assay were subsequently identified as K.variicola. Approximately 5.5% (20/364 cultures contained non-target organisms, of which Aeromonas spp. accounted for 25% and are of particular concern. For drug resistance determination, the Verigene test showed 100% sensitivity for identification of MRSA, VRE and carbapenem resistant Acinetobacter, and 84.4% for ESBL-producing Enterobacteriaceae based on the positive detection of mecA, vanA, blaOXA and blaCTXM respectively.Overall, the Verigene test provided acceptable accuracy for identification of bacteria and resistance markers with a range of turnaround time 40.5 to 99.2 h faster than conventional methods in our region.

  11. Microbiological and biochemical studies on certain antibiotic-resistant bacteria isolated from certain clinical specimens

    International Nuclear Information System (INIS)

    Infection is a dynamic process involving invasion of the body by pathogenic microorganisms and reactions of the tissues to microorganisms and their toxins. Pathogenic microorganisms isolated from clinical samples are of great threat to human health.The outcome of an infection depends on the virulence of the pathogen and the relative degree of resistance or susceptibility to antimicrobial chemotherapy. Antimicrobial agents interfere with specific processes that are essential for growth and division.Development of antibiotic resistance in bacteria is a problem of great concern. The high prevalence of resistant bacteria seems to be related to uncontrolled usage of antibiotics. B-lactamases are the most common cause of bacterial resistance to B-lactam antimicrobial agents, and it is one of the most important reason for increasing the resistance in pathogenic bacteria against some antibiotics especially those acting on inhibition of cell wall synthesis. One hundred and seven clinical samples and specimens were collected from public, private hospitals and National Cancer Institute (NCI) in Cairo, Egypt. Out of them 72 cases positive for microbial infection. Twelve cases were showed mixed infection. Eighty four isolates of pathogenic bacteria and yeast were collected from single and mixed culture. Susceptibilities of the isolates to 20 different antimicrobial agents were determined according to Kirby-Bauer method. Nine multi-drug resistant gram-negative bacterial strains were identified by (Micro Scan WalkAway 96 SI System). Six of them urine isolates, 2 wound (pus) isolates and one sputum isolate. The identified strains were exposed to in-vitro gamma irradiation at dose level of 24.4 Gy, which is biologically equivalent to the fractionated multiple therapeutic dose used in the protocol of cancer treatment of some patients. The antimicrobial susceptibility of the nine multi-drug resistant strains were carried out by disk diffusion method before and after irradiation

  12. Identification of Novel Small Molecule Inhibitors of 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME) kinase of Gram-negative bacteria

    OpenAIRE

    Tang, M; Odejinmi, SI; Allette, YM; Vankayalapati, H; Lai, K.

    2011-01-01

    The biosyntheses of isoprenoids is essential for the survival in all living organisms, and requires one of the two biochemical pathways: (a) Mevalonate (MVA) Pathway or (b) Methylerythritol Phosphate (MEP) Pathway. The latter pathway, which is used by all Gram-negative bacteria, some Gram-positive bacteria and a few apicomplexan protozoa, provides an attractive target for the development of new antimicrobials because of its absence in humans. In this report, we describe two different approach...

  13. Simulation Study for Transfer of Antibiotic Resistance via Mutator Subpopulation

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Aarestrup, Frank Møller;

    Evolution of antibiotic resistance in bacterial populations is an increasing problem having fatal consequences for treatment of diseases. Therefore it is very important to understand this evolution. Traditionally evolution is considered to happen by single point mutations, where each mutant must...... have a growth advantage over the parent strain and grow to a sufficient number before a second mutation can occur. However, when multiple mutations are necessary for development of resistance, single mutations occurring with a normal mutation rate can not always explain the observed resistance. We...... introduce an alternative hypothesis by which a subpopulation of mutators drives the evolution process. Resistance is acquired by a subpoplution of mutators, for which the mutation rate is much higher than the wild-type. If the resistance is located on a transferable plasmid it can subsequently...

  14. Antibiotic resistance: challenges and successes in respiratory infection.

    Science.gov (United States)

    Sethi, Sanjay; Bryan, Jenny

    2016-01-01

    European Respiratory Society Congress, Amsterdam, 26-30 September 2015, and CHEST 2015, Montréal, Canada, 24-28 October 2015 With approximately 50,000 deaths in the US and EU attributed to antibacterial resistance each year, together with several million days of hospital care [1], the need to address resistance mechanisms and find new targets for novel antibiotics has never been greater. At the annual congresses of the European Respiratory Society and the American College of Chest Physicians, presenters reported advances in understanding of the mechanisms of antibiotic resistance and how these may be overcome. The latest clinical trial data on antibiotic treatment for hospital- and community-acquired pneumonia, including the potential for novel nebulized forms of therapy, were also discussed. PMID:27081910

  15. Marker-free plasmids for gene therapeutic applications--lack of antibiotic resistance gene substantially improves the manufacturing process.

    Science.gov (United States)

    Mairhofer, Jürgen; Cserjan-Puschmann, Monika; Striedner, Gerald; Nöbauer, Katharina; Razzazi-Fazeli, Ebrahim; Grabherr, Reingard

    2010-04-01

    Plasmid DNA is being considered as a promising alternative to traditional protein vaccines or viral delivery methods for gene therapeutic applications. DNA-based products are highly flexible, stable, are easily stored and can be manufactured on a large scale. Although, much safer than viral approaches, issues have been raised with regard to safety due to possible integration of plasmid DNA into cellular DNA or spread of antibiotic resistance genes to intestinal bacteria by horizontal gene transfer. Accordingly, there is interest in methods for the production of plasmid DNA that lacks the antibiotic resistance gene to further improve their safety profile. Here, we report for the first time the gram-scale manufacturing of a minimized plasmid that is devoid of any additional sequence elements on the plasmid backbone, and merely consists of the target expression cassette and the bacterial origin of replication. Three different host/vector combinations were cultivated in a fed-batch fermentation process, comparing the progenitor strain JM108 to modified strains JM108murselect, hosting a plasmid either containing the aminoglycoside phosphotransferase which provides kanamycin resistance, or a marker-free variant of the same plasmid. The metabolic load exerted by expression of the aminoglycoside phosphotransferase was monitored by measuring ppGpp- and cAMP-levels. Moreover, we revealed that JM108 is deficient of the Lon protease and thereby refined the genotype of JM108. The main consequences of Lon-deficiency with regard to plasmid DNA production are discussed herein. Additionally, we found that the expression of the aminoglycoside phosphotransferase, conferring resistance to kanamycin, was very high in plasmid DNA producing processes that actually inclusion bodies were formed. Thereby, a severe metabolic load on the host cell was imposed, detrimental for overall plasmid yield. Hence, deleting the antibiotic resistance gene from the vector backbone is not only beneficial

  16. Pandemic serotypes of Vibrio cholerae isolated from ships' ballast tanks and coastal waters: assessment of antibiotic resistance and virulence genes (tcpA and ctxA).

    Science.gov (United States)

    Dobbs, Fred C; Goodrich, Amanda L; Thomson, Frank K; Hynes, Wayne

    2013-05-01

    There is concern that ships' ballasting operations may disseminate Vibrio cholerae to ports throughout the world. Given evidence that the bacterium is indeed transported by ships, we isolated pandemic serotypes O1 and O139 from ballast tanks and characterized them with respect to antibiotic resistance and virulence genes ctxA and tcpA. We carried out concurrent studies with V. cholerae isolated from coastal waters. Of 284 isolates, 30 were serotype O1 and 59 were serotype O139. These serotypes were overrepresented in ballast tanks relative to the coastal waters sampled. All locations, whether coastal waters or ballast tanks, yielded samples from which serotype O1, O139, or both were isolated. There were three groups among the 62 isolates for which antibiotic characterization was conclusive: those exhibiting β-lactamase activity and resistance to at least one of the 12 antibiotics tested; those negative for β-lactamase but having antibiotic resistance; those negative for β-lactamase and registering no antibiotic resistance. When present, antibiotic resistance in nearly all cases was to ampicillin; resistance to multiple antibiotics was uncommon. PCR assays revealed that none of the isolates contained the ctxA gene and only two isolates, one O139 and one O1, contained the tcpA gene; both isolates originated from ballast water. These results support the bacteriological regulations proposed by the International Maritime Association for discharged ballast water.

  17. Staphylococci with markers of antibiotic resistance collected from blood cultures

    Directory of Open Access Journals (Sweden)

    Vittorio Focarelli

    2012-06-01

    Full Text Available Introduction: Blood culture is still the gold standard for the detection of the causative agent of sepsis. Especially in intensive care patients and those with vascular catheters, the most common organisms isolated are coagulase-negative staphylococci (CoNS and Staphylococcus aureus, both characterized by multidrug resistance. Purposes of our work are the study of the incidence of markers of resistance in staphylococci and evaluation of potential changes over the years. Materials and methods: In the period January 2008-June 2011 5239 blood cultures were analyzed.They were mainly obtained from the departments of Intensive Care, Cardiology, Hematology, General Medicine, Emergency Medicine, Infectious Diseases, Oncology, Pulmonology and Pediatric Hematoncology. The vials containing the blood were incubated in the BACTEC 9120 automated tool of Becton Dickinson and susceptibility testing performed with the Phoenix instrument of the same company. Results:Within a total of 5239 blood cultures, 3967 (75.7% were negative and 1272 (24.3% positive. Fungi were isolated in 6.2% (79 of the positive ones, Gram-negative bacteria in 24.6% (313 and Gram-positive bacteria in 69.2% (880. Within the latter, 187 (21.2% were not staphylococcal isolates, 693 (78.8% were stafiloccocci mainly represented by S. epidermidis, S. aureus, S. hominis, S. haemolyticus and S. saprophyticus. Of the 693 staphylococcal isolates, 436 (62.9% were b lactamase producers, and between them 336 (77.1% were methicillin resistant, while only 3 of 436 (0.69% were S. aureus resistant to vancomycin as well.The incidence of markers of resistance was very high, especially in patients in intensive care and cardiac surgery, who are usually subjected to combined antibiotic therapy. In the three years studied there were no statistically significant differences in the resistance of staphylococci. Conclusions: The data show an alarming high number of multi-resistant staphylococci, which is often a

  18. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    Science.gov (United States)

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1—a Pseudomonas sp.) and thermophilic (Iso T10—a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457–0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130–0.486, P = 0.075–0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and

  19. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters.

    Science.gov (United States)

    Miller, Jennifer H; Novak, John T; Knocke, William R; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene

  20. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria

    Science.gov (United States)

    The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater- and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hotspot for pr...