WorldWideScience

Sample records for antibiotic-resistant gram negative

  1. Low prevalence of antibiotic-resistant gram-negative bacteria ...

    African Journals Online (AJOL)

    The objective of this study was to determine antibiotic resistance patterns and specific resistance genes in Gram-negative enteric bacteria recovered from 42 different drinking water sources servicing 2 rural villages in south-western Uganda. These water sites were prone to contamination by both human and cattle activity.

  2. Automated annotation of mobile antibiotic resistance in Gram-negative bacteria: the Multiple Antibiotic Resistance Annotator (MARA) and database.

    Science.gov (United States)

    Partridge, Sally R; Tsafnat, Guy

    2018-04-01

    Multiresistance in Gram-negative bacteria is often due to acquisition of several different antibiotic resistance genes, each associated with a different mobile genetic element, that tend to cluster together in complex conglomerations. Accurate, consistent annotation of resistance genes, the boundaries and fragments of mobile elements, and signatures of insertion, such as DR, facilitates comparative analysis of complex multiresistance regions and plasmids to better understand their evolution and how resistance genes spread. To extend the Repository of Antibiotic resistance Cassettes (RAC) web site, which includes a database of 'features', and the Attacca automatic DNA annotation system, to encompass additional resistance genes and all types of associated mobile elements. Antibiotic resistance genes and mobile elements were added to RAC, from existing registries where possible. Attacca grammars were extended to accommodate the expanded database, to allow overlapping features to be annotated and to identify and annotate features such as composite transposons and DR. The Multiple Antibiotic Resistance Annotator (MARA) database includes antibiotic resistance genes and selected mobile elements from Gram-negative bacteria, distinguishing important variants. Sequences can be submitted to the MARA web site for annotation. A list of positions and orientations of annotated features, indicating those that are truncated, DR and potential composite transposons is provided for each sequence, as well as a diagram showing annotated features approximately to scale. The MARA web site (http://mara.spokade.com) provides a comprehensive database for mobile antibiotic resistance in Gram-negative bacteria and accurately annotates resistance genes and associated mobile elements in submitted sequences to facilitate comparative analysis.

  3. Antibiotic Resistance Patterns of Common Gram-negative ...

    African Journals Online (AJOL)

    Background: The resistance of bacteria causing urinary tract infection (UTI) to commonly prescribed antibiotics is increasing both in developing and developed countries. Resistance has emerged even to more potent antimicrobial agents. This study was undertaken to determine the current antibiotic resistance pattern ...

  4. Prior colonization is associated with increased risk of antibiotic-resistant Gram-negative bacteremia in cancer patients.

    Science.gov (United States)

    Hess, Aaron S; Kleinberg, Michael; Sorkin, John D; Netzer, Giora; Johnson, Jennifer K; Shardell, Michelle; Thom, Kerri A; Harris, Anthony D; Roghmann, Mary-Claire

    2014-05-01

    We hypothesized that prior colonization with antibiotic-resistant Gram-negative bacteria is associated with increased risk of subsequent antibiotic-resistant Gram-negative bacteremia among cancer patients. We performed a matched case-control study. Cases were cancer patients with a blood culture positive for antibiotic-resistant Gram-negative bacteria. Controls were cancer patients with a blood culture not positive for antibiotic-resistant Gram-negative bacteria. Prior colonization was defined as any antibiotic-resistant Gram-negative bacteria in surveillance or non-sterile-site cultures obtained 2-365 days before the bacteremia. Thirty-two (37%) of 86 cases and 27 (8%) of 323 matched controls were previously colonized by any antibiotic-resistant Gram-negative bacteria. Prior colonization was strongly associated with antibiotic-resistant Gram-negative bacteremia (odds ratio [OR] 7.2, 95% confidence interval [CI] 3.5-14.7) after controlling for recent treatment with piperacillin-tazobactam (OR 2.5, 95% CI 1.3-4.8). In these patients with suspected bacteremia, prior cultures may predict increased risk of antibiotic-resistant Gram-negative bacteremia. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Antibiotic Resistance Patterns of Common Gram-negative Uropathogens in St. Paul's Hospital Millennium Medical College.

    Science.gov (United States)

    Mamuye, Yeshwondm

    2016-03-01

    The resistance of bacteria causing urinary tract infection (UTI) to commonly prescribed antibiotics is increasing both in developing and developed countries. Resistance has emerged even to more potent antimicrobial agents. This study was undertaken to determine the current antibiotic resistance pattern among common bacterial uropathogens in St.paul's Hospital Millennium Medical College. Using cross sectional study design, a total of 217 female and 207 male participants were consecutively recruited. Mid-urine samples were collected from all patients using wide mouthed urine cup. Inoculation was performed onto blood agar and MacConkey agar symoultaniously, and isolated organisms were identified by conventional methods. Antibiotic susceptibility was done by Kirby Bauer disk diffusion method. Thirteen different antibiotics representing different families of antibiotics were tested on all isolated organisms. Of the total 424 samples, 95(22.4%) showed significant growth. Gram negative organisms totaled 85(20.05%), and 10(2.4%) isolates were gram positive. The most frequently isolated gram negative bacterium was E. coli followed by Protues and Klebsiella spp. 53(12.5%), 8(8.4%), and 7(7.4%) respectively. Resistance to Tetracyclin, Ampicilin, Amoxycilin and Nalidixic Acid was more than 70% of all isolates of E.coli strains. There was relatively low resistance rate to Nitrofurantoin, Gentamycin and Trimethoprim-Sulfamethoxazole. However, there was emerging resistance to Ciprofloxacilin and Ceftriaxone especially for common bacteruria. In this study setting, resistant rates to Tetracyclin, Ampicilin, Amoxycilin and Nalidixic Acid were high. Since most isolates were sensitive for Nitrofurantoin, Gentamycin and Trimethoprim-Sulfamethoxazole, they are considered as appropriate antimicrobials for empirical treatment for urinary tract infections with the absence of culture and sensitivity setting. Increasing antibiotic resistance trends indicate that it is imperative to

  6. Low antibiotic resistance among anaerobic Gram-negative bacteria in periodontitis 5 years following metronidazole therapy.

    Science.gov (United States)

    Dahlen, G; Preus, H R

    2017-02-01

    The objective of this study was to assess antibiotic susceptibility among predominant Gram-negative anaerobic bacteria isolated from periodontitis patients who 5 years prior had been subject to mechanical therapy with or without adjunctive metronidazole. One pooled sample was taken from the 5 deepest sites of each of 161 patients that completed the 5 year follow-up after therapy. The samples were analyzed by culture. A total number of 85 anaerobic strains were isolated from the predominant subgingival flora of 65/161 patient samples, identified, and tested for antibiotic susceptibility by MIC determination. E-tests against metronidazole, penicillin, amoxicillin, amoxicillin + clavulanic acid and clindamycin were employed. The 73/85 strains were Gram-negative rods (21 Porphyromonas spp., 22 Prevotella/Bacteroides spp., 23 Fusobacterium/Filifactor spp., 3 Campylobacter spp. and 4 Tannerella forsythia). These were all isolated from the treated patients irrespective of therapy procedures (+/-metronidazole) 5 years prior. Three strains (Bifidobacterium spp., Propionibacterium propionicum, Parvimonas micra) showed MIC values for metronidazole over the European Committee on Antimicrobial Susceptibility Testing break point of >4 μg/mL. All Porphyromonas and Tannerella strains were highly susceptible. Metronidazole resistant Gram-negative strains were not found, while a few showed resistance against beta-lactam antibiotics. In this population of 161 patients who had been subject to mechanical periodontal therapy with or without adjunct metronidazole 5 years prior, no cultivable antibiotic resistant anaerobes were found in the predominant subgingival microbiota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. [News of antibiotic resistance among Gram-negative bacilli in Algeria].

    Science.gov (United States)

    Baba Ahmed-Kazi Tani, Z; Arlet, G

    2014-06-01

    Antibiotic resistance has become a major public health problem in Algeria. Indeed the past decade, we have seen a significant increase in resistance to antibiotics especially in Gram-negative bacilli. Resistance to β-lactams in enterobacteria is dominated by the production of ESBL CTX-M-3 and CTX-M-15. The strains producing these enzymes are often the cause of potentially serious infections in both hospital and community settings. Identified plasmid cephalosporinases are CMY-2, CMY-12 and DHA-1. The isolation of strains of Enterobacteriaceae and Pseudomonas aeruginosa producing carbapenemases is rare in Algeria. Some Enterobacteriaceae producing OXA-48 or VIM-19 have been reported; so far, only VIM-2 has been identified in P. aeruginosa. However, the situation regarding the strains of Acinetobacter baumannii resistant to carbapenemases seems to be more disturbing. The carbapenemase OXA-23 is the most common and seems to be endemic in the north. The carbapenemase NDM-1 has also been identified. Resistance to aminoglycosides is marked by the identification armA gene associated with blaCTX-M genes in strains of Salmonella sp. Several other resistance genes have been identified sporadically in strains of Enterobacteriaceae, P. aeruginosa and A. baumannii. Resistance genes to fluoroquinolones are more recent identification in Algeria. The most common are the Qnr determinants followed by the bifunctional enzyme AAC[6']-Ib-cr. Resistance to sulfonamides and trimethoprim was also reported in Enterobacteriaceae strains in the west of the country. Copyright © 2014. Published by Elsevier SAS.

  8. The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria

    Science.gov (United States)

    Plésiat, Patrick

    2015-01-01

    SUMMARY The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps. PMID:25788514

  9. Phototherapeutic spectrum expansion through synergistic effect of mesoporous silica trio-nanohybrids against antibiotic-resistant gram-negative bacterium.

    Science.gov (United States)

    Kuthati, Yaswanth; Kankala, Ranjith Kumar; Busa, Prabhakar; Lin, Shi-Xiang; Deng, Jin-Pei; Mou, Chung-Yuan; Lee, Chia-Hung

    2017-04-01

    The extensive impact of antibiotic resistance has led to the exploration of new anti-bacterial modalities. We designed copper impregnated mesoporous silica nanoparticles (Cu-MSN) with immobilizing silver nanoparticles (SNPs) to apply photodynamic inactivation (PDI) of antibiotic-resistant E. coli. SNPs were decorated over the Cu-MSN surfaces by coordination of silver ions on diamine-functionalized Cu-MSN and further reduced to silver nanoparticles with formalin. We demonstrate that silver is capable of sensitizing the gram-negative bacteria E. coli to a gram-positive specific phototherapeutic agent in vitro; thereby expanding curcumin's phototherapeutic spectrum. The mesoporous structure of Cu-MSN remains intact after the exterior decoration with silver nanoparticles and subsequent curcumin loading through an enhanced effect from copper metal-curcumin affinity interaction. The synthesis, as well as successful assembly of the functional nanomaterials, was confirmed by various physical characterization techniques. Curcumin is capable of producing high amounts of reactive oxygen species (ROS) under light irradiation, which can further improve the silver ion release kinetics for antibacterial activity. In addition, the positive charged modified surfaces of Cu-MSN facilitate antimicrobial response through electrostatic attractions towards negatively charged bacterial cell membranes. The antibacterial action of the synthesized nanocomposites can be activated through a synergistic mechanism of energy transfer of the absorbed light from SNP to curcumin. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Rapid Detection of Antibiotic Resistance in Gram-Negative Bacteria Through Assessment of Changes in Cellular Morphology.

    Science.gov (United States)

    Otero, Fátima; Santiso, Rebeca; Tamayo, Maria; Fernández, José Luis; Bou, Germán; Lepe, José Antonio; McConnell, Michael J; Gosálvez, Jaime; Cisneros, José Miguel

    2017-03-01

    Rapid antimicrobial susceptibility testing has the potential to improve patient outcomes and reduce healthcare-associated costs. In this study, a novel assay based on bacterial cell elongation after exposure to an antibiotic (ceftazidime) was evaluated for its ability to rapidly detect resistance in Gram-negative bacteria. The assay was used to detect resistance in a large collection of strains containing 320 clinical isolates of Acinetobacter baumannii, 171 clinical isolates of Klebsiella pneumoniae, and 212 clinical isolates of Pseudomonas aeruginosa, and the results were compared to those obtained using standard antimicrobial susceptibility testing methods. The assay identified ceftazidime-resistant strains with 100% sensitivity and 100% specificity for A. baumannii, 100% sensitivity and 97.2% specificity for K. pneumoniae, and with 82.3% sensitivity and 100% specificity for P. aeruginosa. Importantly, results were obtained in 1 hour 15 minutes from exponentially growing cultures. This study demonstrates that changes in cell length are highly correlated with phenotypic antibiotic susceptibility determined using standard susceptibility testing methods. This study therefore provides proof-of-concept that changes in cell morphology can be used as the basis for rapid detection of antibiotic resistance and provides the basis for the development of novel rapid diagnostics for the detection of antibiotic resistance.

  11. European and Russian physician awareness of best management approaches for infections due to antibiotic-resistant Gram-negative bacteria.

    Science.gov (United States)

    Irani, Paurus; Salimi, Tehseen; Epstein, Robert; Leone-Perkins, Megan; Aubert, Ronald; Khalid, Mona; Epstein, Emma; Teagarden, J Russell

    2017-08-01

    The rapid spread of infections due to antibiotic-resistant, Gram-negative bacteria in Europe and surrounding regions requires a heightened level of awareness among physicians within their practice settings. We surveyed 800 physicians who treat these infections across France, Germany, Spain, Italy, and Russia to assess their awareness of best management approaches. We found that more than two-thirds do not consider themselves highly aware of best management practices. The respondents are facing these resistant infections as evidenced by the antibiotics they report using and their stated interest in newer agents. Respondents indicated that precious time is lost waiting for culture results, but also said they will need more information about accuracy, use, and costs for adopting rapid molecular testing. The survey further identified the need for treatment guidelines and clinical decision support tools that can be applied at the bedside.

  12. Antiseptic and antibiotic resistance in Gram-negative bacteria causing urinary tract infection.

    Science.gov (United States)

    Stickler, D J; Thomas, B

    1980-01-01

    A collection of 802 isolates of Gram-negative bacteria causing urinary tract infections was made from general practice, antenatal clinics, and local hospitals. The organisms were tested for their sensitivity to chlorhexidine, cetrimide, glutaraldehyde, phenyl mercuric nitrate, a phenolic formulation, and a proprietary antiseptic containing a mixture of picloxydine, octyl phenoxy polyethoxyethanol, and benzalkonium chloride. Escherichia coli, the major species isolated, proved to be uniformly sensitive to these agents. Approximately 10% of the total number of isolates, however, exhibited a degree of resistance to the cationic agents. These resistant organisms were members of the genera Proteus, Providencia, and Pseudomonas; they were also generally resistant to five, six, or seven antibiotics. It is proposed therefore that an antiseptic policy which involves the intensive use of cationic antiseptics might lead to the selection of a flora of notoriously drug-resistant species. PMID:6769972

  13. Evaluation of an expanded microarray for detecting antibiotic resistance genes in a broad range of gram-negative bacterial pathogens.

    Science.gov (United States)

    Card, Roderick; Zhang, Jiancheng; Das, Priya; Cook, Charlotte; Woodford, Neil; Anjum, Muna F

    2013-01-01

    A microarray capable of detecting genes for resistance to 75 clinically relevant antibiotics encompassing 19 different antimicrobial classes was tested on 132 Gram-negative bacteria. Microarray-positive results correlated >91% with antimicrobial resistance phenotypes, assessed using British Society for Antimicrobial Chemotherapy clinical breakpoints; the overall test specificity was >83%. Microarray-positive results without a corresponding resistance phenotype matched 94% with PCR results, indicating accurate detection of genes present in the respective bacteria by microarray when expression was low or absent and, hence, undetectable by susceptibility testing. The low sensitivity and negative predictive values of the microarray results for identifying resistance to some antimicrobial resistance classes are likely due to the limited number of resistance genes present on the current microarray for those antimicrobial agents or to mutation-based resistance mechanisms. With regular updates, this microarray can be used for clinical diagnostics to help accurate therapeutic options to be taken following infection with multiple-antibiotic-resistant Gram-negative bacteria and prevent treatment failure.

  14. Antibiotic Resistance and Regulation of the Gram-Negative Bacterial Outer Membrane Barrier by Host Innate Immune Molecules

    Directory of Open Access Journals (Sweden)

    Samuel I. Miller

    2016-09-01

    Full Text Available The Gram-negative outer membrane is an important barrier that provides protection against toxic compounds, which include antibiotics and host innate immune molecules such as cationic antimicrobial peptides. Recently, significant research progress has been made in understanding the biogenesis, regulation, and functioning of the outer membrane, including a recent paper from the laboratory of Dr. Brett Finlay at the University of British Columbia (J. van der Heijden et al., mBio 7:e01238-16, 2016, http://dx.doi.org/10.1128/mBio.01541-16. These investigators demonstrate that toxic oxygen radicals, such as those found in host tissues, regulate outer membrane permeability by altering the outer membrane porin protein channels to regulate the influx of oxygen radicals as well as β-lactam antibiotics. This commentary provides context about this interesting paper and discusses the prospects of utilizing increased knowledge of outer membrane biology to develop new antibiotics for antibiotic-resistant Gram-negative bacteria.

  15. Rapid Identification of Bacterial Antibiotic Resistance by qPCR in Infants with Gram-Negative Septicaemia: A Proof-of-Concept Study.

    Science.gov (United States)

    Lam, Hugh Simon; Chan, Kathy Y Y; Ip, Margaret; Leung, Kam Tong; Lo, Norman W S; Wong, Raymond P O; Li, Karen; Ng, Pak Cheung

    2017-01-01

    Neonatal sepsis remains an important cause of neonatal morbidity and mortality. Tools to rapidly predict antibiotic resistance in neonatal sepsis would be extremely valuable. To develop quantitative polymerase chain reaction (qPCR) primer/probe sets that can rapidly detect antibiotic resistance genes common to a neonatal unit, and to investigate the feasibility of direct detection of antibiotic resistance genes in whole blood of infants with Gram-negative septicaemia without first isolating the organism. Primer/probe sets were designed to detect genes that produce aminoglycoside-modifying enzymes or extended-spectrum β-lactamase. In phase 1, Gram-negative organisms isolated from neonatal clinical specimens within a 12-month period were analysed by qPCR to detect preselected genes. In phase 2, blood specimens of infants with Gram-negative septicaemia were subjected to qPCR analysis to detect antibiotic resistance genes for comparison against conventional antibiotic resistance profile results. Two primer/probe sets showed promising diagnostic utilities for the prediction of antibiotic resistance; the diagnostic utilities (sensitivity, specificity, positive predictive value and negative predictive value) were 90.9, 96.4, 92.6 and 95.5%, respectively, for AAC3-2 [aac(3')-IIa/aacC3/aacC2, aac(3')-IIc/aacC2] to detect gentamicin resistance, and 59.3, 99.3, 94.1 and 92.6%, respectively, for BLA-C1 (blaCTX-M-9, blaCTX-M-14, blaCTX-M-24, blaCTX-M-27) to detect cephalosporin resistance. Twenty-six infants were tested in phase 2, and both gentamicin and cephalosporin resistance patterns were predicted with 100% sensitivity and 100% specificity by AAC3-2 and BLA-C1, respectively. qPCR with appropriately designed primer/probe sets can predict antibiotic resistance directly from neonatal blood, and it can substantially reduce the turnaround time for antibiotic resistance results. © 2016 S. Karger AG, Basel.

  16. A 980nm driven photothermal ablation of virulent and antibiotic resistant Gram-positive and Gram-negative bacteria strains using Prussian blue nanoparticles.

    Science.gov (United States)

    Maaoui, Houcem; Jijie, Roxana; Pan, Guo-Hui; Drider, Djamel; Caly, Delphine; Bouckaert, Julie; Dumitrascu, Nicoleta; Chtourou, Radouane; Szunerits, Sabine; Boukherroub, Rabah

    2016-10-15

    A 980nm laser-driven antimicrobial photothermal therapy using poly(vinylpyrrolidone) -coated Prussian Blue nanoparticles (PVP/PB NPs) is demonstrated. This approach allows an efficient eradication of a virulent strain of Gram-negative Escherichia coli (E. coli) associated with urinary tract infection as well as for the ablation of antibiotic resistant pathogens such as methicillin resistant Staphylococcus aureus (MRSA) and extended spectrum β-lactamase (ESBL) E. coli. Interestingly the 980nm irradiation exhibits minimal effect on mammalian cells up to a PVP/PB NPs concentration of 50μgmL(-1), while at this concentration bacteria are completely eradicated. This feature is certainly very promising for the selective targeting of bacteria over mammalian cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Array based detection of antibiotic resistance genes in Gram negative bacteria isolated from retail poultry meat in the UK and Ireland.

    Science.gov (United States)

    McNeece, Grainne; Naughton, Violetta; Woodward, Martin J; Dooley, James S G; Naughton, Patrick J

    2014-06-02

    The use of antibiotics in birds and animals intended for human consumption within the European Union (EU) and elsewhere has been subject to regulation prohibiting the use of antimicrobials as growth promoters and the use of last resort antibiotics in an attempt to reduce the spread of multi-resistant Gram negative bacteria. Given the inexorable spread of antibiotic resistance there is an increasing need for improved monitoring of our food. Using selective media, Gram negative bacteria were isolated from retail chicken of UK-Intensively reared (n=27), Irish-Intensively reared (n=19) and UK-Free range (n=30) origin and subjected to an oligonucleotide based array system for the detection of 47 clinically relevant antibiotic resistance genes (ARGs) and two integrase genes. High incidences of β-lactamase genes were noted in all sample types, acc (67%), cmy (80%), fox (55%) and tem (40%) while chloramphenicol resistant determinants were detected in bacteria from the UK poultry portions and were absent in bacteria from the Irish samples. Denaturing Gradient Gel Electrophoresis (DGGE) was used to qualitatively analyse the Gram negative population in the samples and showed the expected diversity based on band stabbing and DNA sequencing. The array system proved to be a quick method for the detection of antibiotic resistance gene (ARG) burden within a mixed Gram negative bacterial population. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Antibiotic resistance of gram-negative bacilli isolated from pediatric patients with nosocomial bloodstream infections in a Mexican tertiary care hospital.

    Science.gov (United States)

    Ares, Miguel Ángel; Alcántar-Curiel, Maria Dolores; Jiménez-Galicia, César; Rios-Sarabia, Nora; Pacheco, Sabino; De la Cruz, Miguel Ángel

    2013-01-01

    Gram-negative bacilli are the most common bacteria causing nosocomial bloodstream infections (NBSIs) in Latin American countries. The antibiotic resistance profiles of Gram-negative bacilli isolated from blood cultures in pediatric patients with NBSIs over a 3-year period in a tertiary care pediatric hospital in Mexico City were determined using the VITEK-2 system. Sixteen antibiotics were tested to ascertain the resistance rate and the minimum inhibitory concentration using the Clinical Laboratory Standards Institute (CLSI) broth micro-dilution method as a reference. A total of 931 isolates were recovered from 847 clinically significant episodes of NBSI. Of these, 477 (51.2%) were caused by Gram-negative bacilli. The most common Gram-negative bacilli found were Klebsiella pneumoniae (30.4%), Escherichia coli (18.9%), Enterobacter cloacae (15.1%), Pseudomonas aeruginosa (9.9%), and Acinetobacter baumannii (4.6%). More than 45 and 60% of the K. pneumoniae and E. coli isolates, respectively, were resistant to cephalosporins, and 64% of the E. coli isolates were resistant to fluoroquinolones. A. baumannii exhibited low rates of resistance to antibiotics tested. In the E. cloacae and P. aeruginosa isolates, no rates of resistance higher than 38% were observed. In this study, we found that the proportion of NBSIs due to antibiotic-resistant organisms is increasing in a tertiary care pediatric hospital of Mexico.

  19. Horizontal transfer of antibiotic resistance genes among gram negative bacteria in sewage and lake water and influence of some physico-chemical parameters of water on conjugation process.

    Science.gov (United States)

    Shakibaie, M R; Jalilzadeh, K A; Yamakanamardi, S M

    2009-01-01

    Transfer of antibiotic resistance genes among gram negative bacteria in sewage and lake water and easy access of these bacteria to the community are major environmental and public health concern. The aim of this study was to determine transfer of the antimicrobial resistance genes from resistant to susceptible gram negative bacteria in the sewage and lake water by conjugation process and to determine the influence of some physico-chemical parameters of sewage and lake water on the transfer of these resistance genes. For this reason, we isolated 20 liter of each sewage and lake water from coconut area within university campus and Lingambudi lake respectively in Mysore city, India, during monsoon season and studied different physical parameters of the water samples like pH, temperature, conductivity turbidity and color as well as chemical parameters like BOD, COD, field DO and total chloride ion. The gram negative bacteria were isolated and identified from the above water samples using microbiological and biochemical methods and their sensitivity to different antibiotics was determined by disc diffusion break point assay. Conjugation between two multiple antibiotic resistant isolates Pseudomonas aeuginosa and E. coli as donor and E. coli Rif(r) (sensitive to antibiotics) as recipient were carried out in 5ml sterile sewage and lake water. All isolates were resistant to Am, moderately resistant to Te and E, while majority were sensitive to Cip, Gm and CAZ antibiotics. Horizontal transfer of antibiotic resistance genes by conjugation process revealed transfer of Gm, Te and E resistant genes from Ps. aeruginosa to E. coli Rif(r) recipient with mean frequency of +/- 2.3 x 10(-4) in sewage and +/- 2.6 x 10(-6) in lake water respectively Frequency of conjugation in sewage was two fold more as compared to lake water (pbacteria by conjugation. Physico-chemical parameters of water may play role in this process.

  20. Antibacterial and antibiotic resistance modulatory activities of leaves and bark extracts of Recinodindron heudelotii (Euphorbiaceae) against multidrug-resistant Gram-negative bacteria.

    Science.gov (United States)

    Fankam, Aimé Gabriel; Kuiate, Jules-Roger; Kuete, Victor

    2017-03-24

    Recinodindron heudelotii (Euphorbiaceae) is a plant used in Africa, particularly in Cameroon to treat various ailments including bacterial infections. In this study, we evaluated the extracts of the leaves (RHL) and bark (RHB) of R. heudelotii for their antibacterial and antibiotic resistance modulating activities against 29 Gram-negative bacteria, including multidrug-resistant (MDR) phenotypes. The broth micro-dilution assay was used to evaluate the antibacterial activity, and the antibiotic resistance modulating effects of the plant extracts. RHL displayed the most important spectrum of activity with minimal inhibitory concentrations (MICs) values ranging from 256 to 1024 μg/mL against 75.86% of the 29 tested bacteria strains while RHB was not active. RHL also showed killing effects with minimal bactericidal concentrations (MBCs) ranging from 256 to 1024 μg/mL. The activities of tetracycline and kanamycin associated with RHL were improved on 88.89% and 77.78% of the tested MDR bacteria, at MIC/2 at MIC/4 respectively, with 2 to 16-folds decreasing of MIC. This suggests the antibiotic resistance modulating effects of these antibiotics. The present study provides data indicating a possible use of the leaves extract of Recinodindron heudelotii alone or in association with common antibiotics in the fight against bacterial infections including those involving MDR bacteria.

  1. Antibacterial and antibiotic-resistance modifying activity of the extracts and compounds from Nauclea pobeguinii against Gram-negative multi-drug resistant phenotypes.

    Science.gov (United States)

    Seukep, Jackson A; Sandjo, Louis P; Ngadjui, Bonaventure T; Kuete, Victor

    2016-07-07

    Multi-drug resistance of Gram-negative bacteria constitutes a major obstacle in the antibacterial fight worldwide. The discovery of new and effective antimicrobials and/or resistance modulators is necessary to combat the spread of resistance or to reverse the multi-drug resistance. In this study, we investigated the antibacterial and antibiotic-resistance modifying activities against 29 Gram-negative bacteria including multi-drug resistant (MDR) phenotypes of the methanol extracts from Nauclea pobeguiinii leaves (NPL), Nauclea pobeguiinii bark (NPB) and six compounds from the bark extract, identified as 3-acetoxy-11-oxo-urs-12-ene (1), p-coumaric acid (2), citric acid trimethyl ester (3), resveratrol (4), resveratrol β- D -glucopyranoside (5) and strictosamide (6). The broth microdilution method was used to determine the minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of crude extracts and compounds as well as the antibiotic-resistance modifying effects of MPB and 4. MIC determinations indicate values ranging from 32-1024 μg/mL for NPB and NPL on 89.7 % and 69.0 % of the tested bacterial strains respectively. MIC values below 100 μg/mL were obtained with NPB against Escherichia coli ATCC10536, AG100 and Enterobacter aerogenes CM64 strains. The lowest MIC value for crude extracts of 32 μg/mL was obtained with NPB against E. coli ATCC10536. Compound 4 was active all tested bacteria, whilst 1, 3 and 6 displayed weak and selective inhibitory effects. The corresponding MIC value (16 μg/mL) was obtained with 4 against Klebsiella pneumoniae KP55 strain. Synergistic effects of the combination of NPB with chloramphenicol (CHL), kanamycin (KAN) as well as that of compound 4 with streptomycin (STR) and ciprofloxacin (CIP) were observed. The present study provides information on the possible use of Nauclea pobeguinii and compound 4 in the control of Gram-negative bacterial infections including MDR phenotypes. It also indicates

  2. [Identification of anaerobic gram-negative bacilli isolated from various clinical specimens and determination of antibiotic resistance profiles with E-test methods].

    Science.gov (United States)

    Demir, Cengiz; Keşli, Recep

    2018-01-01

    The aim of this study was to identify gram-negative anaerobic bacilli isolated from various clinical specimens that were obtained from patients with suspected anaerobic infections and to determine the antibiotic resistance profiles by using the antibiotic concentration gradient method. The study was performed in Afyon Kocatepe University Ahmet Necdet Sezer Research and Practice Hospital, Medical Microbiology Laboratory between 1 November 2014 and 30 October 2015. Two hundred and seventyeight clinical specimens accepted for anaerobic culture were enrolled in the study. All the samples were cultivated anaerobically by using Schaedler agar with 5% defibrinated sheep blood and Schaedler broth. The isolated anaerobic gram-negative bacilli were identified by using both the conventional methods and automated identification system (VITEK 2, bioMerieux, France). Antibiotic susceptibility tests were performed with antibiotic concentration gradient method (E-test, bioMerieux, France); against penicillin G, clindamycin, cefoxitin, metronidazole, moxifloxacin, imipenem, meropenem, ertapenem and doripenem for each isolate. Of the 28 isolated anaerobic gram-negative bacilli; 14 were identified as Bacteroides fragilis group, 9 were Prevotella spp., and 5 were Fusobacterium spp. The highest resistance rate was found against penicillin (78.5%) and resistance rates against clindamycin and cefoxitin were found as 17.8% and 21.4%, respectively. No resistance was found against metronidazole, moxifloxacin, imipenem, meropenem, ertapenem and doripenem. As a result, isolation and identification of anaerobic bacteria are difficult, time-consuming and more expensive when compared with the cost of aerobic culture. The rate of anaerobic bacteria isolation may be increased by obtaining the appropriate clinical specimen and appropriate transportation of these specimens. We believe that the data obtained from the study in our center may offer benefits for the follow up and treatment of infections

  3. Screening of antibiotic resistant gram negative bacteria and plasmid profiling of multi-drug resistant isolates present in sewage associated with health care centers

    OpenAIRE

    Khan Md. Anik Ashfaq, Sutradhar Pijush, Islam Mohammad Majharul, Ojha Ravi Kant, Biswas Gokul Chandra

    2013-01-01

    Background: Healthcare effluent acts as the store house of harmful infectious agents such as the pathogens and microorganisms possessing multiple drug resistant genes. Potential health risk includes spreading of diseases by these pathogens and wide dissemination of antimicrobial resistance genes. Gram-negative bacteria are particularly important for causing most of the hospital and community acquired infections. Aim: This study was carried out to highlight the incidence of antibiotic resistan...

  4. Colonization dynamics of antibiotic-resistant coagulase-negative Staphylococci in neonates

    NARCIS (Netherlands)

    Hira, V.; Kornelisse, R.F.; Sluijter, M.; Kamerbeek, A.; Goessens, W.H.F.; Groot, R. de; Hermans, P.W.M.

    2013-01-01

    Coagulase-negative staphylococci (CoNS) isolated in neonatal late-onset sepsis are often antibiotic resistant. We analyzed CoNS from skin and feces of neonates during hospitalization. Antibiotic resistance of skin isolates increased during hospitalization, especially in Staphylococcus haemolyticus.

  5. Appraising contemporary strategies to combat multidrug resistant gram-negative bacterial infections--proceedings and data from the Gram-Negative Resistance Summit.

    Science.gov (United States)

    Kollef, Marin H; Golan, Yoav; Micek, Scott T; Shorr, Andrew F; Restrepo, Marcos I

    2011-09-01

    The emerging problem of antibiotic resistance, especially among Gram-negative bacteria (GNB), has become a serious threat to global public health. Very few new antibacterial classes with activity against antibiotic-resistant GNB have been brought to market. Renewed and growing attention to the development of novel compounds targeting antibiotic-resistant GNB, as well as a better understanding of strategies aimed at preventing the spread of resistant bacterial strains and preserving the efficacy of existing antibiotic agents, has occurred. The Gram-Negative Resistance Summit convened national opinion leaders for the purpose of analyzing current literature, epidemiologic trends, clinical trial data, therapeutic options, and treatment guidelines related to the management of antibiotic-resistant GNB infections. After an in-depth analysis, the Summit investigators were surveyed with regard to 4 clinical practice statements. The results then were compared with the same survey completed by 138 infectious disease and critical care physicians and are the basis of this article.

  6. Synthesis and evaluation of isatin-β-thiosemicarbazones as novel agents against antibiotic-resistant Gram-positive bacterial species.

    Science.gov (United States)

    Zhang, Xu-Meng; Guo, Hui; Li, Zai-Shun; Song, Fu-Hang; Wang, Wei-Min; Dai, Huan-Qin; Zhang, Li-Xin; Wang, Jian-Guo

    2015-08-28

    Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) have caused an increasing mortality rate, which means that antibiotic resistance is becoming an important health issue. In the course to screen new agents for resistant bacteria, we identified that a series of isatin-β-thiosemicarbazones (IBTs) could inhibit the growth of MRSA and VRE. This was the first time that the "familiar" IBT compounds exhibited significant anti Gram-positive pathogen activity. Against a clinical isolated MRSA strain, 20 of the 51 synthesized compounds showed minimum inhibitory concentration (MIC) data of 0.78 mg/L and another 12 novel compounds had MICs of 0.39 mg/L. Moreover, these compounds also inhibited Enterococcus faecalis and VRE at similar levels, indicating that IBTs might have different mode of action compared with vancomycin. For these IBTs, comparative field analysis (CoMFA) models were further established to understand the structure-activity relationships in order to design new compounds from steric and electrostatic contributions. This work has suggested that IBTs can be considered as potential lead compounds to discover antibacterial inhibitors to combat drug resistance. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue.

    Science.gov (United States)

    Becerra, Sandra C; Roy, Daniel C; Sanchez, Carlos J; Christy, Robert J; Burmeister, David M

    2016-04-12

    Bacterial infections are a common clinical problem in both acute and chronic wounds. With growing concerns over antibiotic resistance, treatment of bacterial infections should only occur after positive diagnosis. Currently, diagnosis is delayed due to lengthy culturing methods which may also fail to identify the presence of bacteria. While newer costly bacterial identification methods are being explored, a simple and inexpensive diagnostic tool would aid in immediate and accurate treatments for bacterial infections. Histologically, hematoxylin and eosin (H&E) and Gram stains have been employed, but are far from optimal when analyzing tissue samples due to non-specific staining. The goal of the current study was to develop a modification of the Gram stain that enhances the contrast between bacteria and host tissue. A modified Gram stain was developed and tested as an alternative to Gram stain that improves the contrast between Gram positive bacteria, Gram negative bacteria and host tissue. Initially, clinically relevant strains of Pseudomonas aeruginosa and Staphylococcus aureus were visualized in vitro and in biopsies of infected, porcine burns using routine Gram stain, and immunohistochemistry techniques involving bacterial strain-specific fluorescent antibodies as validation tools. H&E and Gram stain of serial biopsy sections were then compared to a modification of the Gram stain incorporating a counterstain that highlights collagen found in tissue. The modified Gram stain clearly identified both Gram positive and Gram negative bacteria, and when compared to H&E or Gram stain alone provided excellent contrast between bacteria and non-viable burn eschar. Moreover, when applied to surgical biopsies from patients that underwent burn debridement this technique was able to clearly detect bacterial morphology within host tissue. We describe a modification of the Gram stain that provides improved contrast of Gram positive and Gram negative microorganisms within host

  8. Gram-negative and Gram-positive bacterial extracellular vesicles.

    Science.gov (United States)

    Kim, Ji Hyun; Lee, Jaewook; Park, Jaesung; Gho, Yong Song

    2015-04-01

    Like mammalian cells, Gram-negative and Gram-positive bacteria release nano-sized membrane vesicles into the extracellular environment either in a constitutive manner or in a regulated manner. These bacterial extracellular vesicles are spherical bilayered proteolipids enriched with bioactive proteins, lipids, nucleic acids, and virulence factors. Recent progress in this field supports the critical pathophysiological functions of these vesicles in both bacteria-bacteria and bacteria-host interactions. This review provides an overview of the current understanding on Gram-negative and Gram-positive bacterial extracellular vesicles, especially regarding the biogenesis, components, and functions in poly-species communities. We hope that this review will stimulate additional research in this emerging field of bacterial extracellular vesicles and contribute to the development of extracellular vesicle-based diagnostic tools and effective vaccines against pathogenic Gram-negative and Gram-positive bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Veillonella, Firmicutes: Microbes disguised as Gram negatives

    DEFF Research Database (Denmark)

    Vesth, Tammi Camilla; Ozen, Asli; Andersen, Sandra Christine

    2013-01-01

    related to Gram-negative species. Though the Negativicutes stain Gram-negative and possess two membranes, the genome and proteome analysis presented here confirm their place within the (mainly) Gram positive phylum of the Firmicutes. Further studies are required to unveil the evolutionary history...

  10. [Biorhythms of antibiotic resistance of microorganisms].

    Science.gov (United States)

    Bukharin, O V; Perunova, N B; Fadeev, S B; Timokhina, T Kh; Iavnova, S V

    2008-01-01

    To study of circadian dynamics of antibiotic susceptibility and resistance of Gram-positive and Gram-negative microorganisms. Circadian dynamics of antibiotic susceptibility was studied on clinical strains of enterobacteria, non-fermenting Gram-negative bacteria, and staphylococci which were isolated and identified by common methods. During a day, with 3-hours intervals, studied strains were tested on susceptibility to ampicillin, oxacillin, ceftriaxone, meropenem, gentamycin, and ciprofloxacin using method of serial dilutions in agar. Circadian biorhythms of resistance to antibiotics in studied microorganisms were revealed. Along with common patterns, differences in temporal changes of microrganisms' susceptibility to antibacterial drugs were noted. Chronobiologic approach allowed to reveal significant amplitude of changes of minimal inhibitoryconcentration (MIC) of antibiotics versus resistant Gram-positive cocci reflecting presence of susceptibility periods, whereas in susceptible Gram-negative bacteria peaks of resistance were observed. Circadian dynamics of MIC of majority of antibiotics versus resistant Gram-negative bacteria and susceptible Gram-positive cocci was characterized by lower amplitude of changes without shifts from antibiotic resistance to susceptibility and vice versa. Obtained data open perspective of using biorhythmological approach in study of susceptibility of microorganisms to antibiotics during the elucidation of mechanisms of pathogens adaptation to environmental conditions and creation of new strategies of control for antibiotic resistance strains.

  11. Identification and Determination of Antibiotic Multiresistance of Gram-negative Bacteria Isolated from Hospital Sewage

    Directory of Open Access Journals (Sweden)

    Fatih Matyar

    2016-10-01

    Full Text Available In this study it was aimed to determine the microbial diversity and level of antibiotic resistance patterns of Gram-negative bacterial isolates from the hospital sewages. The 219 Gram-negative bacterial isolates to 16 different antibiotics (belonging 10 classes, was investigated by agar diffusion method. A total of 18 species of bacteria were isolated: the most common strains isolated from all samples were Klebsiella oxytoca (27.4%, Klebsiella pneumoniae (20.5% and Escherichia coli (20.1%. There was a high incidence of resistance to ampicillin (98.6%, streptomycin (95.9% and erythromycin (90.0%, and a low incidence of resistance to cefepim (13.2%, imipenem (5.0% and meropenem (3.2%. 35.6% of all bacteria isolated from hospital sewage were resistant to 9 different antibiotics. The multiple antibiotic resistances (MAR index ranged from 0.25 to 0.94. Results show that hospital sewages have a significant proportion of antibiotic resistant Gram-negative bacteria, and these bacteria constitute a potential risk for public health.

  12. Integron involvement in environmental spread of antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Thibault eStalder

    2012-04-01

    Full Text Available The spread of antibiotic-resistant bacteria is a growing problem and a public health issue. In recent decades, various genetic mechanisms involved in the spread of resistance genes among bacteria have been identified. Integrons -- genetic elements that acquire, exchange and express genes embedded within gene cassettes (GC -- are one of these mechanisms. Integrons are widely distributed, especially in Gram-negative bacteria; they are carried by mobile genetic elements, plasmids and transposons, which promote their spread within bacterial communities. Initially studied mainly in the clinical setting for their involvement in antibiotic resistance, their role in the environment is now an increasing focus of attention. The aim of this review is to provide an in-depth analysis of recent studies of antibiotic-resistance integrons in the environment, highlighting their potential involvement in antibiotic resistance outside the clinical context. We will focus particularly on the impact of human activities (agriculture, industries, wastewater treatment, etc..

  13. Prevalence and antibiotic resistance of coagulase-negative Staphylococci isolated from poultry farms in three regions of Ghana

    DEFF Research Database (Denmark)

    Boamah, Vivian Etsiapa; Agyare, Christian; Odoi, Hayford

    2017-01-01

    The use of antibiotics in animal production has been associated with the development and spread of antibiotic-resistant organisms including commensals. Coagulase-negative Staphylococcus (CoNS) species, which were until recently considered non-pathogenic, have been associated with opportunistic...... infections and high resistance to several antibiotics. This study sought to determine the prevalence, identity, and phenotypic resistance of coagulase-negative Staphylococcus spp. isolated from some selected poultry farms and farm workers in the Ashanti, Brong Ahafo, and Greater Accra regions of Ghana......-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. Antibiotic susceptibility testing of the isolates was performed using the Kirby-Bauer disk diffusion method. Zones of growth inhibition were interpreted based on the European Committee on Antimicrobial Susceptibility Testing...

  14. Inhaled Antibiotics for Gram-Negative Respiratory Infections

    Science.gov (United States)

    Fraidenburg, Dustin R.; Scardina, Tonya

    2016-01-01

    SUMMARY Gram-negative organisms comprise a large portion of the pathogens responsible for lower respiratory tract infections, especially those that are nosocomially acquired, and the rate of antibiotic resistance among these organisms continues to rise. Systemically administered antibiotics used to treat these infections often have poor penetration into the lung parenchyma and narrow therapeutic windows between efficacy and toxicity. The use of inhaled antibiotics allows for maximization of target site concentrations and optimization of pharmacokinetic/pharmacodynamic indices while minimizing systemic exposure and toxicity. This review is a comprehensive discussion of formulation and drug delivery aspects, in vitro and microbiological considerations, pharmacokinetics, and clinical outcomes with inhaled antibiotics as they apply to disease states other than cystic fibrosis. In reviewing the literature surrounding the use of inhaled antibiotics, we also highlight the complexities related to this route of administration and the shortcomings in the available evidence. The lack of novel anti-Gram-negative antibiotics in the developmental pipeline will encourage the innovative use of our existing agents, and the inhaled route is one that deserves to be further studied and adopted in the clinical arena. PMID:27226088

  15. Genetic Diversity and Antibiotic Resistance Among Coagulase-Negative Staphylococci Recovered from Birds of Prey in Portugal.

    Science.gov (United States)

    Sousa, Margarida; Silva, Nuno; Igrejas, Gilberto; Sargo, Roberto; Benito, Daniel; Gómez, Paula; Lozano, Carmen; Manageiro, Vera; Torres, Carmen; Caniça, Manuela; Poeta, Patrícia

    2016-12-01

    Wild animal populations in contact with antimicrobials and antimicrobial resistant bacteria that are daily released into the environment are able to become unintentional hosts of these resistant microorganisms. To clarify this issue, our study evaluated the presence of antibiotic resistance determinants on coagulase-negative staphylococci recovered from birds of prey and studied their genetic relatedness by pulsed-field gel electrophoresis (PFGE). The unusual vga(A) and erm(T) genes, which confer resistance to clindamycin and erythromycin, respectively, were detected in Staphylococcus sciuri or Staphylococcus xylosus strains and the tet(K) gene in Staphylococcus kloosii. The PFGE patterns showed that three S. xylosus (isolated of Strix aluco and Otus scops) and two S. sciuri (recovered from Strix aluco and Milvus migrans) were clonally indistinguishable. These animals could be a source of unusual antimicrobial resistance determinants for highly used antibiotics in veterinary clinical practice.

  16. Antibiotic Resistance

    DEFF Research Database (Denmark)

    Hansen, Malene Plejdrup; Hoffmann, Tammy C; McCullough, Amanda R

    2015-01-01

    Numerous opportunities are available in primary care for alleviating the crisis of increasing antibiotic resistance. Preventing patients from developing an acute respiratory infection (ARI) will obviate any need for antibiotic use downstream. Hygiene measures such as physical barriers and hand...... will greatly improve the use of antibiotics for ARIs. However, used in concert, combinations are likely to enable clinicians and health care systems to implement the strategies that will reduce antimicrobial resistance in the future....... antibiotic prescribing are a major factor in the prescribing for ARIs. Professional interventions with educational components are effective, although they have modest effects, and are expensive. GPs' perceptions - that mistakenly assume as a default that patients want antibiotics for their ARIs - are often...

  17. Antagonistic effect of brevicin on Gram positive and Gram negative ...

    African Journals Online (AJOL)

    A new low molecular weight brevicin produced by Lactobacillus brevis NS01 has greater antimicrobial activity on Gram positive and negative food borne bacteria. This is stable at high temperature acidic to neutral pH, non proteolytic enzymes and organic solvents. The synergistic effect of brevicin with ...

  18. Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes.

    Science.gov (United States)

    Henriques, Isabel; Tacão, Marta; Leite, Laura; Fidalgo, Cátia; Araújo, Susana; Oliveira, Cláudia; Alves, Artur

    2016-08-15

    The goal of this study was to investigate co-selection of antibiotic resistance in gram-negative epiphytic bacteria. Halimione portulacoides samples were collected from metal(loid)-contaminated and non-contaminated salt marshes. Bacterial isolates (n=137) affiliated with Vibrio, Pseudomonas, Shewanella, Comamonas, Aeromonas and with Enterobacteriaceae. Vibrio isolates were more frequent in control site while Pseudomonas was common in contaminated sites. Metal(loid) and antibiotic resistance phenotypes varied significantly according to site contamination, and multiresistance was more frequent in contaminated sites. However, differences among sites were not observed in terms of prevalence or diversity of acquired antibiotic resistance genes, integrons and plasmids. Gene merA, encoding mercury resistance, was only detected in isolates from contaminated sites, most of which were multiresistant to antibiotics. Results indicate that metal(loid) contamination selects for antibiotic resistance in plant surfaces. In salt marshes, antibiotic resistance may be subsequently transferred to other environmental compartments, such as estuarine water or animals, with potential human health risks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Study of antibiotic resistance of staph aureus and coagulase negative staphylococci isolated from patient samples

    Directory of Open Access Journals (Sweden)

    M Anvary

    2006-04-01

    Full Text Available Introduction: Drug resistant Staphylococci are the most important agents of nosocomial infections. In this survey, effect of different antibiotics on these bacteria and their drug resistance was investigated. Methods: The study included 500 strains of Staphylococci. Minimum Inhibitory Concentrations of all antibiotics was determined by the broth macro dilution technique and standard methods from the National Committee for Clinical Laboratory Standards. Result : Oxacillin resistance of S. aureus was 14.2% and that of coagulase-negative staphylococci was 53.4%. The activity of different antibiotics is presented in detail. Conclusion: Surveillance of strains resistant to methicillin is necessary.

  20. Antibiotic Resistance in Staphylococcus aureus and Coagulase Negative Staphylococci Isolated from Goats with Subclinical Mastitis

    Directory of Open Access Journals (Sweden)

    Salvatore Virdis

    2010-01-01

    Full Text Available Antimicrobial resistance patterns and gene coding for methicillin resistance (mecA were determined in 25 S. aureus and 75 Coagulase Negative Staphylococci (CNS strains isolates from half-udder milk samples collected from goats with subclinical mastitis. Fourteen (56.0% S. aureus and thirty-one (41.3% CNS isolates were resistant to one or more antimicrobial agents. S. aureus showed the highest resistance rate against kanamycin (28.0%, oxytetracycline (16.0%, and ampicillin (12.0%. The CNS tested were more frequently resistant to ampicillin (36.0% and kanamycin (6.7%. Multiple antimicrobial resistance was observed in eight isolates, and one Staphylococcus epidermidis was found to be resistant to six antibiotics. The mecA gene was not found in any of the tested isolates. Single resistance against β-lactamics or aminoglicosides is the most common trait observed while multiresistance is less frequent.

  1. Revisiting the gram-negative lipoprotein paradigm

    Science.gov (United States)

    The processing of lipoproteins (lpps) in Gram-negative bacteria is generally considered to be an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein n-acyltransferase. The mature lipoproteins are then sorted...

  2. Antibiotic resistance patterns of coagulase-negative staphylococcus strains isolated from blood cultures of septicemic patients in Turkey.

    Science.gov (United States)

    Koksal, F; Yasar, H; Samasti, M

    2009-01-01

    The aim of this study is to determine antibiotic resistance patterns and slime production characteristics of coagulase-negative Staphylococci (CoNS) caused nosocomial bacteremia. A total of 200 CoNS strains were isolated from blood samples of patients with true bacteremia who were hospitalized in intensive care units and in other departments of Istanbul University Cerrahpasa Medical Hospital between 1999 and 2006. Among 200 CoNS isolates, Staphylococcus epidermidis was the most prevalent species (87) followed by Staphylococcus haemolyticus (23), Staphylococcus hominis (19), Staphylococcus lugdunensis (18), Staphylococcus capitis (15), Staphylococcus xylosus (10), Staphylococcus warneri (8), Staphylococcus saprophyticus (5), Staphylococcus lentus (5), Staphylococcus simulans (4), Staphylococcus chromogenes (3), Staphylococcus cohnii (1), Staphylococcus schleiferi (1), and Staphylococcus auricularis (1). Resistance to methicillin was detected in 67.5% of CoNS isolates. Methicillin-resistant CoNS strains were determined to be more resistant to antibiotics than methicillin-susceptible CoNS strains. Resistance rates of methicillin-resistant and methicillin-susceptible CoNS strains to the antibacterial agents, respectively, were as follows: gentamicin 90% and 17%, erythromycin 80% and 37%, clindamycin 72% and 18%, trimethoprim-sulfamethoxazole 68% and 38%, ciprofloxacin 67% and 23%, tetracycline 60% and 45%, chloramphenicol 56% and 13% and fusidic acid 25% and 15%. None of the strains were resistant to vancomycin and teicoplanin. Slime production was detected in 86 of 200 CoNS strains. Resistance to methicillin was found in 81% of slime-positive and in 57% of slime-negative strains. Our results indicated that there is a high level of resistance to widely used agents in causative methicillin-resistant CoNS strains. However fusidic acid has the smallest resistance ratio, with the exception of glycopeptides. Additionally, most S. epidermidis strains were slime

  3. Tunable stochastic pulsing in the Escherichia coli multiple antibiotic resistance network from interlinked positive and negative feedback loops.

    Science.gov (United States)

    Garcia-Bernardo, Javier; Dunlop, Mary J

    2013-01-01

    Cells live in uncertain, dynamic environments and have many mechanisms for sensing and responding to changes in their surroundings. However, sudden fluctuations in the environment can be catastrophic to a population if it relies solely on sensory responses, which have a delay associated with them. Cells can reconcile these effects by using a tunable stochastic response, where in the absence of a stressor they create phenotypic diversity within an isogenic population, but use a deterministic response when stressors are sensed. Here, we develop a stochastic model of the multiple antibiotic resistance network of Escherichia coli and show that it can produce tunable stochastic pulses in the activator MarA. In particular, we show that a combination of interlinked positive and negative feedback loops plays an important role in setting the dynamics of the stochastic pulses. Negative feedback produces a pulsatile response that is tunable, while positive feedback serves to amplify the effect. Our simulations show that the uninduced native network is in a parameter regime that is of low cost to the cell (taxing resistance mechanisms are expressed infrequently) and also elevated noise strength (phenotypic variability is high). The stochastic pulsing can be tuned by MarA induction such that variability is decreased once stresses are sensed, avoiding the detrimental effects of noise when an optimal MarA concentration is needed. We further show that variability in the expression of MarA can act as a bet hedging mechanism, allowing for survival in time-varying stress environments, however this effect is tunable to allow for a fully induced, deterministic response in the presence of a stressor.

  4. Tunable stochastic pulsing in the Escherichia coli multiple antibiotic resistance network from interlinked positive and negative feedback loops.

    Directory of Open Access Journals (Sweden)

    Javier Garcia-Bernardo

    Full Text Available Cells live in uncertain, dynamic environments and have many mechanisms for sensing and responding to changes in their surroundings. However, sudden fluctuations in the environment can be catastrophic to a population if it relies solely on sensory responses, which have a delay associated with them. Cells can reconcile these effects by using a tunable stochastic response, where in the absence of a stressor they create phenotypic diversity within an isogenic population, but use a deterministic response when stressors are sensed. Here, we develop a stochastic model of the multiple antibiotic resistance network of Escherichia coli and show that it can produce tunable stochastic pulses in the activator MarA. In particular, we show that a combination of interlinked positive and negative feedback loops plays an important role in setting the dynamics of the stochastic pulses. Negative feedback produces a pulsatile response that is tunable, while positive feedback serves to amplify the effect. Our simulations show that the uninduced native network is in a parameter regime that is of low cost to the cell (taxing resistance mechanisms are expressed infrequently and also elevated noise strength (phenotypic variability is high. The stochastic pulsing can be tuned by MarA induction such that variability is decreased once stresses are sensed, avoiding the detrimental effects of noise when an optimal MarA concentration is needed. We further show that variability in the expression of MarA can act as a bet hedging mechanism, allowing for survival in time-varying stress environments, however this effect is tunable to allow for a fully induced, deterministic response in the presence of a stressor.

  5. Revisiting the Gram-negative lipoprotein paradigm.

    Science.gov (United States)

    LoVullo, Eric D; Wright, Lori F; Isabella, Vincent; Huntley, Jason F; Pavelka, Martin S

    2015-05-01

    The processing of lipoproteins (Lpps) in Gram-negative bacteria is generally considered an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein N-acyltransferase. The mature lipoproteins are then sorted by the Lol system, with most Lpps inserted into the outer membrane (OM). We demonstrate here that the lnt gene is not essential to the Gram-negative pathogen Francisella tularensis subsp. tularensis strain Schu or to the live vaccine strain LVS. An LVS Δlnt mutant has a small-colony phenotype on sucrose medium and increased susceptibility to globomycin and rifampin. We provide data indicating that the OM lipoprotein Tul4A (LpnA) is diacylated but that it, and its paralog Tul4B (LpnB), still sort to the OM in the Δlnt mutant. We present a model in which the Lol sorting pathway of Francisella has a modified ABC transporter system that is capable of recognizing and sorting both triacylated and diacylated lipoproteins, and we show that this modified system is present in many other Gram-negative bacteria. We examined this model using Neisseria gonorrhoeae, which has the same Lol architecture as that of Francisella, and found that the lnt gene is not essential in this organism. This work suggests that Gram-negative bacteria fall into two groups, one in which full lipoprotein processing is essential and one in which the final acylation step is not essential, potentially due to the ability of the Lol sorting pathway in these bacteria to sort immature apolipoproteins to the OM. This paper describes the novel finding that the final stage in lipoprotein processing (normally considered an essential process) is not required by Francisella tularensis or Neisseria gonorrhoeae. The paper provides a potential reason for this and shows that it may be widespread in other Gram-negative bacteria. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Antibiotic resistance and mecA characterization of coagulase-negative staphylococci isolated from three hotels in London, UK

    Directory of Open Access Journals (Sweden)

    Zhen eXu

    2015-09-01

    Full Text Available Antibiotic resistance in bacteria isolated from non–healthcare environments, is a potential problem to public health. In our survey a total of 71 coagulase negative staphylococci belonging to 11 different species were isolated from 3 large hotels in London, UK. The most prevalent species was Staphylococcus haemolyticus, with S. hominis, S. warneri, S.cohnii and S. epidermidis commonly detected. Antimicrobial susceptibilities and carriage of the mecA gene were determined for all of these isolates. Most (85.9% staphylococci were resistant to multiple antibiotics with all displaying increased susceptibility towards penicillin, fusidic acid, erythromycin and cefepime. 21 (29.5% of the isolates were mecA positive, however MIC values to oxacillin, normally associated with the carriage of mecA, varied widely in this group (from 0.06 mg/L to 256 mg/L. 15 of the 21 mecA positive isolates carried SCCmec of these 7 were type V, 1 type I, 1 type II and 1 type IV. Additionally, five of these 15 isolates carried a previously unreported type, 1A, which involves an association between class A mec complex and ccr type 1. The remaining 6 of the 21 isolates were non-typeable and carried a combination of class A mec complex and ccrC. In addition to this, we also report on new MLST types which were assigned for 5 Staphylococcus epidermidis isolates. 4 out of these 5 isolates had MICs between 0.06 to 256 mg/L to oxacillin and would be regarded as clinically susceptible but one isolate had a high oxacillin MIC of 256 mg/L. We demonstrated widespread multiple drug resistance among different staphylococcal species isolated from non-healthcare environments highlighting the potential for these species to act as a reservoir for methicillin and other forms of drug resistance.

  7. Antibiotic resistance and mecA characterization of coagulase-negative staphylococci isolated from three hotels in London, UK

    Science.gov (United States)

    Xu, Zhen; Mkrtchyan, Hermine V.; Cutler, Ronald R.

    2015-01-01

    Antibiotic resistance in bacteria isolated from non-healthcare environments, is a potential problem to public health. In our survey a total of 71 coagulase negative staphylococci (CNS) belonging to 11 different species were isolated from three large hotels in London, UK. The most prevalent species was Staphylococcus haemolyticus, with S. hominis, S. warneri, S. cohnii, and Staphylococcus epidermidis commonly detected. Antimicrobial susceptibilities and carriage of the mecA gene were determined for all of these isolates. Most (85.9%) staphylococci were resistant to multiple antibiotics with all displaying increased susceptibility toward penicillin, fusidic acid, erythromycin, and cefepime. Twenty-one (29.5%) of the isolates were mecA positive, however MIC values to oxacillin, normally associated with the carriage of mecA, varied widely in this group (from 0.06 to 256 mg/L). Fifteen of the twenty-one mecA positive isolates carried SCCmec of these seven were type V, one type I, one type II, and one type IV. Additionally, five of these 15 isolates carried a previously unreported type, 1A, which involves an association between class A mec complex and ccr type 1. The remaining six of the 21 isolates were non-typeable and carried a combination of class A mec complex and ccrC. In addition to this, we also report on new MLST types which were assigned for five S. epidermidis isolates. Four out of these five isolates had MICs between 0.06 and 256 mg/L to oxacillin and would be regarded as clinically susceptible but one isolate had a high oxacillin MIC of 256 mg/L. We demonstrated widespread multiple drug resistance among different staphylococcal species isolated from non-healthcare environments highlighting the potential for these species to act as a reservoir for methicillin and other forms of drug resistance. PMID:26441881

  8. Environmental cycle of antibiotic resistance encoded genes: A systematic review

    Directory of Open Access Journals (Sweden)

    R. ghanbari

    2017-12-01

    Full Text Available Antibiotic-resistant bacteria and genes enter the environment in different ways. The release of these factors into the environment has increased concerns related to public health. The aim of the study was to evaluate the antibiotic resistance genes (ARGs in the environmental resources. In this systematic review, the data were extracted from valid sources of information including ScienceDirect, PubMed, Google Scholar and SID. Evaluation and selection of articles were conducted on the basis of the PRISMA checklist. A total of 39 articles were included in the study, which were chosen from a total of 1249 papers. The inclusion criterion was the identification of genes encoding antibiotic resistance against the eight important groups of antibiotics determined by using the PCR technique in the environmental sources including municipal and hospital wastewater treatment plants, animal and agricultural wastes, effluents from treatment plants, natural waters, sediments, and drinking waters. In this study, 113 genes encoding antibiotic resistance to eight groups of antibiotics (beta-lactams, aminoglycosides, tetracyclines, macrolides, sulfonamides, chloramphenicol, glycopeptides and quinolones were identified in various environments. Antibiotic resistance genes were found in all the investigated environments. The investigation of microorganisms carrying these genes shows that most of the bacteria especially gram-negative bacteria are effective in the acquisition and the dissemination of these pollutants in the environment. Discharging the raw wastewaters and effluents from wastewater treatments acts as major routes in the dissemination of ARGs into environment sources and can pose hazards to public health.

  9. Efficient Photodynamic Therapy against Gram-Positive and Gram-Negative Bacteria Using THPTS, a Cationic Photosensitizer Excited by Infrared Wavelength

    Science.gov (United States)

    Schastak, Stanislaw; Ziganshyna, Svitlana; Gitter, Burkhard; Wiedemann, Peter; Claudepierre, Thomas

    2010-01-01

    The worldwide rise in the rates of antibiotic resistance of bacteria underlines the need for alternative antibacterial agents. A promising approach to kill antibiotic-resistant bacteria uses light in combination with a photosensitizer to induce a phototoxic reaction. Concentrations of 1, 10 and 100µM of tetrahydroporphyrin-tetratosylat (THPTS) and different incubation times (30, 90 and 180min) were used to measure photodynamic efficiency against two Gram-positive strains of S.aureus (MSSA and MRSA), and two Gram-negative strains of E.coli and P.aeruginosa. We found that phototoxicity of the drug is independent of the antibiotic resistance pattern when incubated in PBS for the investigated strains. Also, an incubation with 100µM THPTS followed by illumination, yielded a 6lg (≥99.999%) decrease in the viable numbers of all bacteria strains tested, indicating that the THPTS drug has a high degree of photodynamic inactivation. We then modulated incubation time, photosensitizer concentration and monitored the effect of serum on the THPTS activity. In doing so, we established the conditions to obtain the strongest bactericidal effect. Our results suggest that this new and highly pure synthetic compound should improve the efficiency of photodynamic therapy against multiresistant bacteria and has a significant potential for clinical applications in the treatment of nosocomial infections. PMID:20652031

  10. Antibiotics and Antibiotic Resistance

    Science.gov (United States)

    ... Drugs Resources for You Information for Consumers (Drugs) Buying & Using Medicine Safely Antibiotics and Antibiotic Resistance Antibiotics ... Antibiotic Resistance and Protect Public Health The White House Blog FDA’s Take on the Executive Order and ...

  11. Combating Antibiotic Resistance

    Science.gov (United States)

    ... in Farm Animals FDA: Cutting-Edge Technology Sheds Light on Antibiotic Resistance For More Information Antibiotics and Antibiotic Resistance Antimicrobial Resistance Information for Consumers and Health Professionals CDC: Get Smart: Know When Antibiotics Work More in Consumer Updates ...

  12. Functional synergy of α-helical antimicrobial peptides and traditional antibiotics against Gram-negative and Gram-positive bacteria in vitro and in vivo.

    Science.gov (United States)

    Feng, Q; Huang, Y; Chen, M; Li, G; Chen, Y

    2015-01-01

    In this study, the antimicrobial activities based on the synergistic effects of traditional antibiotics (imipenem, cefepime, levofloxacin hydrochloride and vancomycin) and antimicrobial peptides (AMPs; PL-5, PL-31, PL-32, PL-18, PL-29 and PL-26), alone or in combination, against three Gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumoniae and Staphylococcus epidermidis) and three Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae) were investigated. In addition, the antimicrobial activity that was based on the synergistic effects of levofloxacin hydrochloride and PL-5 against Staphylococcus aureus in vivo was explored in a mouse infection model. Traditional antibiotics and AMPs showed significant synergistic effects on the antibacterial activities against the different Gram-positive and Gram-negative bacteria in vitro. A strong synergistic effect in the PL-5 and levofloxacin hydrochloride combination against Staphylococcus aureus was observed in the mouse infection model in vivo. The mechanism of synergistic action was due to the different targets of AMPs and traditional antibiotics. The combination of AMPs and traditional antibiotics can dramatically enhance antimicrobial activity and may help prevent or delay the emergence of antibiotic resistance. Thus, this combination therapy could be a promising approach to treat bacterial infections, particularly mixed infections and multi-antibiotic-resistant infections, in the clinics.

  13. Photodynamic inactivation of antibiotic-resistant bacteria and biofilms by hematoporphyrin monomethyl ether.

    Science.gov (United States)

    Liu, Chengcheng; Hu, Min; Ma, Dandan; Lei, Jin'e; Xu, Jiru

    2016-02-01

    The worldwide increase in bacterial antibiotic resistance has led to a search for alternative antibacterial therapies. A promising approach to killing antibiotic-resistant bacteria is photodynamic antimicrobial chemotherapy, which uses light in combination with a photosensitizer to induce a phototoxic reaction. We evaluated the photodynamic inactivation (PDI) efficiency of hematoporphyrin monomethyl ether (HMME) on antibiotic-resistant bacteria and biofilms. HMME exhibited no significant dark toxicity and provided dose-dependent inactivation of antibiotic-resistant bacteria and biofilms. After incubation with 100-μM HMME and irradiation with 72-J cm(-2) white light, 4.19-7.59 log10 reductions in survival were achieved in planktonic suspension. Antibiotic-resistant strains were as susceptible to PDI in biofilms as in planktonic suspensions, but the inactivation of bacterial cells in biofilms was attenuated. In addition, gram-positive bacterial strains and biofilms were more susceptible than gram-negative strains and biofilms to the PDI effect of HMME. Thus, HMME is a promising photosensitizer for the treatment of infectious diseases caused by antibiotic-resistant bacteria, especially gram-positive bacteria.

  14. Resistant gram-negative bacilli and antibiotic consumption in zarqa, jordan

    International Nuclear Information System (INIS)

    Bataineh, H.A.; Alrashed, K.M.

    2007-01-01

    To investigate the prevalence of antibiotic resistance among gram-negative bacteria in relation to antibiotic use in Prince Hashem Hospital (PHH), Jordan. One hundred consecutive gram-negative bacterial isolates from different sites were collected from patients admitted to the ICU at PHH. The susceptibilities of the strains to 12 antibiotics were performed and interpreted. The quantities and the numbers of the patients discharged on antibiotics and the quantities consumed were obtained from the hospital pharmacy records. The most common isolate was P. aeruginosa (n=21) The most common site of isolation was the respiratory tract (65%), The highest susceptibility was to piperacillin/ tazobactam(78%), and the lowest was to cefuroxime(34%). The aminoglycosides gentamicin and amikacin were active against 71% and 73% of the isolates respectively, Ciprofloxacin was active against 75% of the isolates. The most frequently used antibiotics were the third-generation cephalosporins ceftriaxone and ceftazidime, followed by imipenem and amikacin. Antibiotic resistance surveillance programs associated with registration of antibiotic consumption are necessary to promote optimal use of antibiotics. Rational prescribing of antibiotics should be encouraged through educational programs, surveillance and audit. Proper infection control measures should be practiced to prevent horizontal transfer of drug-resistant organisms. (author)

  15. Extended-spectrum ß-lactamases in gram negative bacteria

    Directory of Open Access Journals (Sweden)

    Deepti Rawat

    2010-01-01

    Full Text Available Extended-spectrum ß-lactamases (ESBLs are a group of plasmid-mediated, diverse, complex and rapidly evolving enzymes that are posing a major therapeutic challenge today in the treatment of hospitalized and community-based patients. Infections due to ESBL producers range from uncomplicated urinary tract infections to life-threatening sepsis. Derived from the older TEM is derived from Temoniera, a patient from whom the strain was first isolated in Greece. ß-lactamases, these enzymes share the ability to hydrolyze third-generation cephalosporins and aztreonam and yet are inhibited by clavulanic acid. In addition, ESBL-producing organisms exhibit co-resistance to many other classes of antibiotics, resulting in limitation of therapeutic option. Because of inoculum effect and substrate specificity, their detection is also a major challenge. At present, however, organizations such as the Clinical and Laboratory Standards Institute (formerly the National Committee for Clinical Laboratory Standards provide guidelines for the detection of ESBLs in Klebsiella pneumoniae, K. oxytoca, Escherichia coli and Proteus mirabilis. In common to all ESBL-detection methods is the general principle that the activity of extended-spectrum cephalosporins against ESBL-producing organisms will be enhanced by the presence of clavulanic acid. Carbapenems are the treatment of choice for serious infections due to ESBL-producing organisms, yet carbapenem-resistant isolates have recently been reported. ESBLs represent an impressive example of the ability of gram-negative bacteria to develop new antibiotic-resistance mechanisms in the face of the introduction of new antimicrobial agents. Thus there is need for efficient infection-control practices for containment of outbreaks; and intervention strategies, e.g., antibiotic rotation to reduce further selection and spread of these increasingly resistant pathogens.

  16. Quorum sensing in gram-negative bacteria

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.J.; Høiby, N.

    2004-01-01

    Bacteria can communicate with each other by means of signal molecules to coordinate the behavior of the entire community, and the mechanism is referred to as quorum sensing (QS). Signal systems enable bacteria to sense the size of their densities by monitoring the concentration of the signal...... molecules. Among Gram-negative bacteria N-acyl-L-homoserine lactone (acyl-HSL)-dependent quorum sensing systems are particularly widespread. These systems are used to coordinate expression of phenotypes that are fundamental to the interaction of bacteria with each other and with their environment...

  17. Salicylate-inducible antibiotic resistance in Pseudomonas cepacia associated with absence of a pore-forming outer membrane protein.

    OpenAIRE

    Burns, J L; Clark, D K

    1992-01-01

    The most common mechanism of antibiotic resistance in multiply resistant Pseudomonas cepacia is decreased porin-mediated outer membrane permeability. In some gram-negative organisms this form of antibiotic resistance can be induced by growth in the presence of weak acids, such as salicylates, which suppress porin synthesis. To determine the effects of salicylates on outer membrane permeability of P. cepacia, a susceptible laboratory strain, 249-2, was grown in 10 mM sodium salicylate. Antibio...

  18. Nanotransformation of Vancomycin Overcomes the Intrinsic Resistance of Gram-Negative Bacteria.

    Science.gov (United States)

    Fernandes, Margarida M; Ivanova, Kristina; Hoyo, Javier; Pérez-Rafael, Sílvia; Francesko, Antonio; Tzanov, Tzanko

    2017-05-03

    The increased emergence of antibiotic-resistant bacteria is a growing public health concern, and although new drugs are constantly being sought, the pace of development is slow compared with the evolution and spread of multidrug-resistant species. In this study, we developed a novel broad-spectrum antimicrobial agent by simply transforming vancomycin into nanoform using sonochemistry. Vancomycin is a glycopeptide antibiotic largely used for the treatment of infections caused by Gram-positive bacteria but inefficient against Gram-negative species. The nanospherization extended its effect toward Gram-negative Escherichia coli and Pseudomonas aeruginosa, making these bacteria up to 10 and 100 times more sensitive to the antibiotic, respectively. The spheres were able to disrupt the outer membranes of these bacteria, overcoming their intrinsic resistance toward glycopeptides. The penetration of nanospheres into a Langmuir monolayer of bacterial membrane phospholipids confirmed the interaction of the nanoantibiotic with the membrane of E. coli cells, affecting their physical integrity, as further visualized by scanning electron microscopy. Such mechanism of antibacterial action is unlikely to induce mutations in the evolutionary conserved bacterial membrane, therefore reducing the possibility of acquiring resistance. Our results indicated that the nanotransformation of vancomycin could overcome the inherent resistance of Gram-negative bacteria toward this antibiotic and disrupt mature biofilms at antibacterial-effective concentrations.

  19. Interrogating the plasmidome to determine antibiotic resistance gene mobility within the swine fecal microbiota

    Science.gov (United States)

    The use of antibiotics in animal production has been highlighted as a key contributor to the increasing prevalence of antibiotic resistance in agroecosystems. Gram negative bacteria, such as the Enterobacteriaceae, are important facilitators for resistance gene dissemination in the environment and i...

  20. Carbapenem-Resistant Non-Glucose-Fermenting Gram-Negative Bacilli: the Missing Piece to the Puzzle

    Science.gov (United States)

    Gniadek, Thomas J.; Carroll, Karen C.

    2016-01-01

    The non-glucose-fermenting Gram-negative bacilli Pseudomonas aeruginosa and Acinetobacter baumannii are increasingly acquiring carbapenem resistance. Given their intrinsic antibiotic resistance, this can cause extremely difficult-to-treat infections. Additionally, resistance gene transfer can occur between Gram-negative species, regardless of their ability to ferment glucose. Thus, the acquisition of carbapenemase genes by these organisms increases the risk of carbapenemase spread in general. Ultimately, infection control practitioners and clinical microbiologists need to work together to determine the risk carried by carbapenem-resistant non-glucose-fermenting Gram-negative bacilli (CR-NF) in their institution and what methods should be considered for surveillance and detection of CR-NF. PMID:26912753

  1. Antibiotic-Resistant Gonorrhea (ARG)

    Science.gov (United States)

    ... Twitter STD on Facebook Sexually Transmitted Diseases (STDs) Antibiotic-Resistant Gonorrhea Basic Information Recommend on Facebook Tweet Share Compartir Antibiotic-Resistant Gonorrhea: An Overview Antibiotic resistance is the ...

  2. Multidrug-resistant Gram-negative bacteria: a product of globalization.

    Science.gov (United States)

    Hawkey, P M

    2015-04-01

    Global trade and mobility of people has increased rapidly over the last 20 years. This has had profound consequences for the evolution and the movement of antibiotic resistance genes. There is increasing exposure of populations all around the world to resistant bacteria arising in the emerging economies. Arguably the most important development of the last two decades in the field of antibiotic resistance is the emergence and spread of extended-spectrum β-lactamases (ESBLs) of the CTX-M group. A consequence of the very high rates of ESBL production among Enterobacteriaceae in Asian countries is that there is a substantial use of carbapenem antibiotics, resulting in the emergence of plasmid-mediated resistance to carbapenems. This article reviews the emergence and spread of multidrug-resistant Gram-negative bacteria, focuses on three particular carbapenemases--imipenem carbapenemases, Klebsiella pneumoniae carbapenemase, and New Delhi metallo-β-lactamase--and highlights the importance of control of antibiotic use. Copyright © 2015. Published by Elsevier Ltd.

  3. Motuporamine Derivatives as Antimicrobial Agents and Antibiotic Enhancers against Resistant Gram-Negative Bacteria.

    Science.gov (United States)

    Borselli, Diane; Blanchet, Marine; Bolla, Jean-Michel; Muth, Aaron; Skruber, Kristen; Phanstiel, Otto; Brunel, Jean Michel

    2017-02-01

    Dihydromotuporamine C and its derivatives were evaluated for their in vitro antimicrobial activities and antibiotic enhancement properties against Gram-negative bacteria and clinical isolates. The mechanism of action of one of these derivatives, MOTU-N44, was investigated against Enterobacter aerogenes by using fluorescent dyes to evaluate outer-membrane depolarization and permeabilization. Its efficiency correlated with inhibition of dye transport, thus suggesting that these molecules inhibit drug transporters by de-energization of the efflux pump rather than by direct interaction of the molecule with the pump. This suggests that depowering the efflux pump provides another strategy to address antibiotic resistance. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. SURVEILLANCE AND CONTROL OF ANTIBIOTIC RESISTANCE IN THE MEDITERRANEAN REGION

    Directory of Open Access Journals (Sweden)

    Walter Ricciardi

    2016-07-01

    Full Text Available Antibiotic resistance is one of the most relevant problems in the healthcare: the growth of resistant micro-organisms in healthcare settings is a worrisome threat, raising length to stay (LOS, morbidity and mortality in those patients. The importance of the antibiotic resistance and its spread around the world, gave rise to the activation of several surveillance systems, based especially on the collection of laboratory data to local or national level. The objective of this work is to carry out a review of the scientific literature existing on the topic and scientific activities related to surveillance on antibiotic resistance in countries bordering the Mediterranean Sea. Recent Data from European Centre for Disease Prevention and Control (November 2015 show, for different combinations bacterium-drug, an increase of resistance from North to South and from West to East of Europe; it is particularly worrying the phenomenon of resistance carried out by some gram negative, specifically Klebsiella pneumoniae and Escherichia coli to third-generation cephalosporin, often combined in opposition to fluoroquinolones and amino glycosides. Is particularly relevant the incidence of resistance to carbapenems by strains of Enterobacteriaceae (Klebsiella included. The resistance exerted by MRSA (Methicillin-resistant Staphylococcus aureus continues to be relevant, albeit showing some decline in recent years. The incidence of resistance carried on by Streptococcus pneumoniae is stable and is mainly relevant to macrolides. Finally, a significant increase in recording relatively exercised by Enterococcus faecium to Vancomycin. Detecting, preventing, and controlling antibiotic resistance requires strategic, coordinated, and sustained efforts. It also depends on the engagement of governments, academia, industry, healthcare providers, the general public, and the agricultural community, as well as international partners. Committing to combating antibiotic-resistant

  5. Antimicrobial resistance pattern of Gramnegative bacilli isolated of Vali-Asr Hospital wards in Arak

    Directory of Open Access Journals (Sweden)

    Farshid Didgar

    2014-11-01

    Full Text Available Background: Infectious diseases are of the most important causes of mortality all around the world particular in developing countries. Recently, the most important thing that has worried medical society is antibiotic resistance. Multi-resistant gram_negative rods are important pathogens in hospitals, causing high rate of mortality.The main goal of this study was to investigate the antimicrobial resistance patterns among common gram-negative bacilli isolated from patients of Vali-Asr Hospital. Material and Methods: This is a cross-sectional descriptive study conducted between the years 2010-2012 in Vali-Asr hospital in Arak. In this study 1120 specimen were examined. Bacterial strains were isolated by conventional methods from various clinical samples of patients including: blood, urine, wound, sputum, CSF, andetc.All isolates were examined for antimicrobial resistance using disc diffusion method. Results: In this study 737 specimen were positive cultures. A total of 332 isolates of Gram-negative bacilli were identified. The most frequent gram negative bacteria were isolated from urine, wound, blood, respiratory secretion and catheter. The most frequent pathogens were E.coli followed by k.pneumonia, entrobacter, p.oaeruginosa, Acinetobacter spp, citrobacter and proteus. High rate of resistance to third generation of cephalospoins & carbapenems observed amang isolates of Acintobacter spp.Prodution of extended spectrum beralactamases (ESBLS was found in 51.4% of all Gram negative bacteria. Conclusion: Antibiotic resistance, particularly multi-drug resistance is frequent among microorganisms of ValiAsr Hospital. Resistance in our country, like other countries have been shown to be increased, so it is highly recommended to prohibit unnecessary prescription of antibiotics.

  6. Antibiotic-Resistant Gonorrhea

    Science.gov (United States)

    ... Twitter STD on Facebook Sexually Transmitted Diseases (STDs) Antibiotic-Resistant Gonorrhea Recommend on Facebook Tweet Share Compartir ... Threat Gonorrhea has progressively developed resistance to the antibiotic drugs prescribed to treat it. Following the spread ...

  7. Comparative Genomics of Environmental and Clinical Stenotrophomonas maltophilia Strains with Different Antibiotic Resistance Profiles.

    Science.gov (United States)

    Youenou, Benjamin; Favre-Bonté, Sabine; Bodilis, Josselin; Brothier, Elisabeth; Dubost, Audrey; Muller, Daniel; Nazaret, Sylvie

    2015-08-14

    Stenotrophomonas maltophilia, a ubiquitous Gram-negative γ-proteobacterium, has emerged as an important opportunistic pathogen responsible for nosocomial infections. A major characteristic of clinical isolates is their high intrinsic or acquired antibiotic resistance level. The aim of this study was to decipher the genetic determinism of antibiotic resistance among strains from different origins (i.e., natural environment and clinical origin) showing various antibiotic resistance profiles. To this purpose, we selected three strains isolated from soil collected in France or Burkina Faso that showed contrasting antibiotic resistance profiles. After whole-genome sequencing, the phylogenetic relationships of these 3 strains and 11 strains with available genome sequences were determined. Results showed that a strain's phylogeny did not match their origin or antibiotic resistance profiles. Numerous antibiotic resistance coding genes and efflux pump operons were revealed by the genome analysis, with 57% of the identified genes not previously described. No major variation in the antibiotic resistance gene content was observed between strains irrespective of their origin and antibiotic resistance profiles. Although environmental strains generally carry as many multidrug resistant (MDR) efflux pumps as clinical strains, the absence of resistance-nodulation-division (RND) pumps (i.e., SmeABC) previously described to be specific to S. maltophilia was revealed in two environmental strains (BurA1 and PierC1). Furthermore the genome analysis of the environmental MDR strain BurA1 showed the absence of SmeABC but the presence of another putative MDR RND efflux pump, named EbyCAB on a genomic island probably acquired through horizontal gene transfer. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Antibiotic Exposure in a Low-Income Country: Screening Urine Samples for Presence of Antibiotics and Antibiotic Resistance in Coagulase Negative Staphylococcal Contaminants

    DEFF Research Database (Denmark)

    Lerbeck, Anne Mette; Tersbøl, Britt Pinkowski; Styrishave, Bjarne

    2014-01-01

    Development of antimicrobial resistance has been assigned to excess and misuse of antimicrobial agents. Staphylococci are part of the normal flora but are also potential pathogens that have become essentially resistant to many known antibiotics. Resistances in coagulase negative staphylococci (Co......NS) are suggested to evolve due to positive selective pressure following antibiotic treatment. This study investigated the presence of the nine most commonly used antimicrobial agents in human urine from outpatients in two hospitals in Ghana in relation to CoNS resistance. Urine and CoNS were sampled (n5246 and n...... was the most common isolate (75%), followed by S. epidermidis (13%) and S. hominis (6%). S. haemolyticus was also the species displaying the highest resistance prevalence (82%). 69% of the isolated CoNS were multiple drug resistant (§4 antibiotics) and 45% of the CoNS were methicillin resistant. Antimicrobial...

  9. Coagulase-negative staphylococci (CoNS) isolated from ready-to-eat food of animal origin--phenotypic and genotypic antibiotic resistance.

    Science.gov (United States)

    Chajęcka-Wierzchowska, Wioleta; Zadernowska, Anna; Nalepa, Beata; Sierpińska, Magda; Łaniewska-Trokenheim, Łucja

    2015-04-01

    The aim of this work was to study the pheno- and genotypical antimicrobial resistance profile of coagulase negative staphylococci (CoNS) isolated from 146 ready-to-eat food of animal origin (cheeses, cured meats, sausages, smoked fishes). 58 strains were isolated, they were classified as Staphylococcus xylosus (n = 29), Staphylococcus epidermidis (n = 16); Staphylococcus lentus (n = 7); Staphylococcus saprophyticus (n = 4); Staphylococcus hyicus (n = 1) and Staphylococcus simulans (n = 1) by phenotypic and genotypic methods. Isolates were tested for resistance to erythromycin, clindamycin, gentamicin, cefoxitin, norfloxacin, ciprofloxacin, tetracycline, tigecycline, rifampicin, nitrofurantoin, linezolid, trimetoprim, sulphamethoxazole/trimethoprim, chloramphenicol, quinupristin/dalfopristin by the disk diffusion method. PCR was used for the detection of antibiotic resistance genes encoding: methicillin resistance--mecA; macrolide resistance--erm(A), erm(B), erm(C), mrs(A/B); efflux proteins tet(K) and tet(L) and ribosomal protection proteins tet(M). For all the tet(M)-positive isolates the presence of conjugative transposons of the Tn916-Tn1545 family was determined. Most of the isolates were resistant to cefoxitin (41.3%) followed by clindamycin (36.2%), tigecycline (24.1%), rifampicin (17.2%) and erythromycin (13.8%). 32.2% staphylococcal isolates were multidrug resistant (MDR). All methicillin resistant staphylococci harboured mecA gene. Isolates, phenotypic resistant to tetracycline, harboured at least one tetracycline resistance determinant on which tet(M) was most frequent. All of the isolates positive for tet(M) genes were positive for the Tn916-Tn1545 -like integrase family gene. In the erythromycin-resistant isolates, the macrolide resistance genes erm(C) or msr(A/B) were present. Although coagulase-negative staphylococci are not classical food poisoning bacteria, its presence in food could be of public health significance due to the possible spread of

  10. Minimum inhibitory concentrations of herbal essential oils and monolaurin for gram-positive and gram-negative bacteria.

    Science.gov (United States)

    Preuss, Harry G; Echard, Bobby; Enig, Mary; Brook, Itzhak; Elliott, Thomas B

    2005-04-01

    New, safe antimicrobial agents are needed to prevent and overcome severe bacterial, viral, and fungal infections. Based on our previous experience and that of others, we postulated that herbal essential oils, such as those of origanum, and monolaurin offer such possibilities. We examined in vitro the cidal and/or static effects of oil of origanum, several other essential oils, and monolaurin on Staphylococcus aureus, Bacillus anthracis Sterne, Escherichia coli, Klebsiella pneumoniae, Helicobacter pylori, and Mycobacterium terrae. Origanum proved cidal to all tested organisms with the exception of B. anthracis Sterne in which it was static. Monolaurin was cidal to S. aureus and M. terrae but not to E. coli and K. pneumoniae. Unlike the other two gram-negative organisms, H. pylori were extremely sensitive to monolaurin. Similar to origanum, monolaurin was static to B. anthracis Sterne. Because of their longstanding safety record, origanum and/or monolaurin, alone or combined with antibiotics, might prove useful in the prevention and treatment of severe bacterial infections, especially those that are difficult to treat and/or are antibiotic resistant.

  11. Antibacterial activities of β-glucan (laminaran) against gram-negative and gram-positive bacteria

    Science.gov (United States)

    Chamidah, A.; Hardoko, Prihanto, A. A.

    2017-05-01

    This study aimed to determine the antibacterial activity of β-Glucan (laminaran) of LAE and LME extracts from brown algae Sargassum crassifolium using HPMS and Ultrasonication against Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) and Gram-negative bacteria (Salmonella typhimurium and Escherichia coli). The highest antibacterial activities of LME extract obtained using the HPMS method against Gram-positive bacteria (B. subtilis and S. aureus) were at 18:10 and 18.80 mm. The ultrasonication method showed a lower inhibition trend than the HPMS method, with MIC and MBC values of 250 mg/ml and 2-8 CFU/ml, respectively, in all Gram-negative and Gram-positive bacteria. The results showed that LME extract at a concentration of 250 mg/mL is bacteriostatic against Gram-positive and -negative bacteria.

  12. Architecture of class 1, 2 and 3 integrons from Gram negative bacteria recovered among fruits and vegetables.

    Directory of Open Access Journals (Sweden)

    Daniela Jones-Dias

    2016-09-01

    Full Text Available The spread of antibiotic resistant bacteria throughout the food chain constitutes a public health concern. To understand the contribution of fresh produce in shaping antibiotic resistance bacteria and integron prevalence in the food chain, 333 antibiotic resistance Gram negative isolates were collected from organic and conventionally produced fruits (pears, apples and strawberries and vegetables (lettuces, tomatoes and carrots. Although low levels of resistance have been detected, the bacterial genera identified in the assessed fresh produce are often described not only as environmental, but mostly as commensals and opportunistic pathogens. The genomic characterization of integron-harboring isolates revealed a high number of mobile genetic elements and clinically relevant antibiotic resistance genes, of which we highlight the presence of as mcr-1, qnrA1, blaGES-11, mphA and oqxAB. The study of class 1 (n=8, class 2 (n=3 and class 3 (n=1 integrons, harbored by species such as Morganella morganii, Escherichia coli, Klebsiella pneumoniae, led to the identification of different integron promoters (PcW, PcH1, PcS and PcWTNG-10 and cassette arrays (containing drfA, aadA, cmlA, estX, sat and blaGES. In fact, the diverse integron backbones were associated with transposable elements (e.g. Tn402, Tn7, ISCR1, Tn2*, IS26, IS1326 and IS3 that conferred greater mobility. This is also the first appearance of In1258, In1259 and In3-13, which should be monitored to prevent their establishment as successfully dispersed mobile resistance integrons. These results underscore the growing concern about the dissemination of acquired resistance genes by mobile elements in the food chain.

  13. In vitro susceptibility of gram-negative bacterial isolates to ...

    African Journals Online (AJOL)

    In vitro susceptibility of gram-negative bacterial isolates to chlorhexidine gluconate. Y Mengistu, W Erge, B Bellete. Abstract. Objective: To investigate the susceptibility of clinical isolates of gram-negative bacteria to chlorhexidine gluconate. Design: Prospective laboratory study. Setting: Tikur Anbessa Hospital, Addis Ababa, ...

  14. Antimicrobial resistance of gram-negative aerobic bacteria isolates ...

    African Journals Online (AJOL)

    The increasing incidence of antimicrobial resistance in pathogenic and commensal Gram-negative bacteria from dogs has continued to raise concerns in veterinary small animal practice and public health. In this study, antimicrobial resistance was investigated in Gram-negative aerobic bacteria isolated from the faeces of ...

  15. Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes.

    Science.gov (United States)

    Zhang, Songhe; Han, Bing; Gu, Ju; Wang, Chao; Wang, Peifang; Ma, Yanyan; Cao, Jiashun; He, Zhenli

    2015-09-01

    Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants of environmental concern. Heterotrophic bacteria in activated sludge have an important role in wastewater treatment plants (WWTPs). However, the fate of cultivable heterotrophic ARB and ARGs in WWPTs process remains unclear. In the present study, we investigated the antibiotic-resistant phenotypes of cultivable heterotrophic bacteria from influent and effluent water of three WWTPs and analysed thirteen ARGs in ARB and in activated sludge from anoxic, anaerobic and aerobic compartments. From each influent or effluent sample of the three plants, 200 isolates were randomly tested for susceptibility to 12 antibiotics. In these samples, between 5% and 64% isolates showed resistance to >9 antibiotics and the proportion of >9-drug-resistant bacteria was lower in isolates from effluent than from influent. Eighteen genera were identified in 188 isolates from influent (n=94) and effluent (n=94) of one WWTP. Six genera (Aeromonas, Bacillus, Lysinibacillus, Microbacterium, Providencia, and Staphylococcus) were detected in both influent and effluent samples. Gram-negative and -positive isolates dominated in influent and effluent, respectively. The 13 tetracycline-, sulphonamide-, streptomycin- and β-lactam-resistance genes were detected at a higher frequency in ARB from influent than from effluent, except for sulA and CTX-M, while in general, the abundances of ARGs in activated sludge from two of the three plants were higher in aerobic compartments than in anoxic ones, indicating abundant ARGs exit in the excess sledges and/or in uncultivable bacteria. These findings may be useful for elucidating the effect of WWTP on ARB and ARGs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Prediction of lipoprotein signal peptides in Gram-negative bacteria

    DEFF Research Database (Denmark)

    Juncker, Agnieszka; Willenbrock, Hanni; Von Heijne, G.

    2003-01-01

    A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed. The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor...... was able to predict 96.8% of the lipoproteins correctly with only 0.3% false positives in a set of SPaseI-cleaved, cytoplasmic, and transmembrane proteins. The results obtained were significantly better than those of previously developed methods. Even though Gram-positive lipoprotein signal peptides differ...... from Gram-negatives, the HMM was able to identify 92.9% of the lipoproteins included in a Gram-positive test set. A genome search was carried out for 12 Gram-negative genomes and one Gram-positive genome. The results for Escherichia coli K12 were compared with new experimental data, and the predictions...

  17. Membrane-active macromolecules resensitize NDM-1 gram-negative clinical isolates to tetracycline antibiotics.

    Directory of Open Access Journals (Sweden)

    Divakara S S M Uppu

    Full Text Available Gram-negative 'superbugs' such as New Delhi metallo-beta-lactamase-1 (blaNDM-1 producing pathogens have become world's major public health threats. Development of molecular strategies that can rehabilitate the 'old antibiotics' and halt the antibiotic resistance is a promising approach to target them. We report membrane-active macromolecules (MAMs that restore the antibacterial efficacy (enhancement by >80-1250 fold of tetracycline antibiotics towards blaNDM-1 Klebsiella pneumonia and blaNDM-1 Escherichia coli clinical isolates. Organismic studies showed that bacteria had an increased and faster uptake of tetracycline in the presence of MAMs which is attributed to the mechanism of re-sensitization. Moreover, bacteria did not develop resistance to MAMs and MAMs stalled the development of bacterial resistance to tetracycline. MAMs displayed membrane-active properties such as dissipation of membrane potential and membrane-permeabilization that enabled higher uptake of tetracycline in bacteria. In-vivo toxicity studies displayed good safety profiles and preliminary in-vivo antibacterial efficacy studies showed that mice treated with MAMs in combination with antibiotics had significantly decreased bacterial burden compared to the untreated mice. This report of re-instating the efficacy of the antibiotics towards blaNDM-1 pathogens using membrane-active molecules advocates their potential for synergistic co-delivery of antibiotics to combat Gram-negative superbugs.

  18. Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria

    Science.gov (United States)

    Zeng, Ximin; Lin, Jun

    2013-01-01

    Production of beta-lactamases, the enzymes that degrade beta-lactam antibiotics, is the most widespread and threatening mechanism of antibiotic resistance. In the past, extensive research has focused on the structure, function, and ecology of beta-lactamases while limited efforts were placed on the regulatory mechanisms of beta-lactamases. Recently, increasing evidence demonstrate a direct link between beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Specifically, expression of beta-lactamase could be induced by the liberated murein fragments, such as muropeptides. This article summarizes current knowledge on cell wall metabolism, beta-lactam antibiotics, and beta-lactamases. In particular, we comprehensively reviewed recent studies on the beta-lactamase induction by muropeptides via two major molecular mechanisms (the AmpG–AmpR–AmpC pathway and BlrAB-like two-component regulatory system) in Gram-negative bacteria. The signaling pathways for beta-lactamase induction offer a broad array of promising targets for the discovery of new antibacterial drugs used for combination therapies. Therefore, to develop effective mitigation strategies against the widespread beta-lactam resistance, examination of the molecular basis of beta-lactamase induction by cell wall fragment is highly warranted. PMID:23734147

  19. Correction: Membrane-active macromolecules resensitize NDM-1 gram-negative clinical isolates to tetracycline antibiotics.

    Directory of Open Access Journals (Sweden)

    Divakara S S M Uppu

    Full Text Available Gram-negative 'superbugs' such as New Delhi metallo-beta-lactamase-1 (blaNDM-1 producing pathogens have become world's major public health threats. Development of molecular strategies that can rehabilitate the 'old antibiotics' and halt the antibiotic resistance is a promising approach to target them. We report membrane-active macromolecules (MAMsthat restore the antibacterial efficacy (enhancement by >80-1250 fold of tetracycline antibiotics towards blaNDM-1 Klebsiella pneumonia and blaNDM-1 Escherichia coli clinical isolates.Organismic studies showed that bacteria had an increased and faster uptake of tetracyclinein the presence of MAMs which is attributed to the mechanism of re-sensitization. Moreover,bacteria did not develop resistance to MAMs and MAMs stalled the development of bacterial resistance to tetracycline. MAMs displayed membrane-active properties such as dissipation of membrane potential and membrane-permeabilization that enabled higher uptake of tetracycline in bacteria. In-vivo toxicity studies displayed good safety profiles and preliminary in-vivo antibacterial efficacy studies showed that mice treated with MAMs in combination with antibiotics had significantly decreased bacterial burden compared to the untreated mice. This report of re-instating the efficacy of the antibiotics towards blaNDM-1 pathogens using membrane-active molecules advocates their potential for synergistic co-delivery of antibiotics to combat Gram-negative superbugs.

  20. Protamine-induced permeabilization of cell envelopes of gram-positive and gram-negative bacteria

    DEFF Research Database (Denmark)

    Johansen, Charlotte; Verheul, A.; Gram, Lone

    1997-01-01

    carboxyfluorescein and ATP after 2 to 5 min. Maximum antibacterial activity was reached at alkaline pH and in the absence of divalent cations. The efficient permeabilization of cell envelopes of both gram-positive and gram-negative bacteria suggests that protamine causes a general disruption of the cell envelope...

  1. Antibiotic Resistance of Commensal Staphylococcus aureus and Coagulase-Negative Staphylococci in an International Cohort of Surgeons: A Prospective Point-Prevalence Study.

    Directory of Open Access Journals (Sweden)

    Mario Morgenstern

    Full Text Available Nasal colonization with antibiotic resistant bacteria represents both a risk factor for the colonized individual and their immediate contacts. Despite the fact that healthcare workers such as orthopedic surgeons are at a critical interface between the healthcare environment and an at-risk patient population, the prevalence of antibiotic resistant bacteria within the surgical profession remains unclear. This study offers a snapshot of the rate of nasal colonization of orthopedic surgeons with multi-resistant staphylococci including methicillin-resistant S. aureus (MRSA and methicillin-resistant coagulase-negative staphylococci (MRCoNS. We performed a prospective, observational study obtained at a single time point in late 2013. The participants were active orthopedic, spine and head & neck surgeons from 75 countries. The prevalence of nasal carriage of the different bacteria and the corresponding 95% confidence interval were calculated. From a cohort of 1,166 surgeons, we found an average S. aureus nasal colonization rate of 28.0% (CI 25.4;30.6 and MRSA rate of 2.0% (CI 1.3;2.9, although significant regional variations were observed. The highest rates of MRSA colonization were found in Asia (6.1%, Africa (5.1% and Central America (4.8%. There was no MRSA carriage detected within our population of 79 surgeons working in North America, and a low (0.6% MRSA rate in 657 surgeons working in Europe. High rates of MRCoNS nasal carriage were also observed (21.4% overall, with a similar geographic distribution. Recent use of systemic antibiotics was associated with higher rates of carriage of resistant staphylococci. In conclusion, orthopedic surgeons are colonized by S. aureus and MRSA at broadly equivalent rates to the general population. Crucially, geographic differences were observed, which may be partially accounted for by varying antimicrobial stewardship practices between the regions. The elevated rates of resistance within the coagulase-negative

  2. Antibiotic Resistance of Commensal Staphylococcus aureus and Coagulase-Negative Staphylococci in an International Cohort of Surgeons: A Prospective Point-Prevalence Study.

    Science.gov (United States)

    Morgenstern, Mario; Erichsen, Christoph; Hackl, Simon; Mily, Julia; Militz, Matthias; Friederichs, Jan; Hungerer, Sven; Bühren, Volker; Moriarty, T Fintan; Post, Virginia; Richards, R Geoff; Kates, Stephen L

    2016-01-01

    Nasal colonization with antibiotic resistant bacteria represents both a risk factor for the colonized individual and their immediate contacts. Despite the fact that healthcare workers such as orthopedic surgeons are at a critical interface between the healthcare environment and an at-risk patient population, the prevalence of antibiotic resistant bacteria within the surgical profession remains unclear. This study offers a snapshot of the rate of nasal colonization of orthopedic surgeons with multi-resistant staphylococci including methicillin-resistant S. aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci (MRCoNS). We performed a prospective, observational study obtained at a single time point in late 2013. The participants were active orthopedic, spine and head & neck surgeons from 75 countries. The prevalence of nasal carriage of the different bacteria and the corresponding 95% confidence interval were calculated. From a cohort of 1,166 surgeons, we found an average S. aureus nasal colonization rate of 28.0% (CI 25.4;30.6) and MRSA rate of 2.0% (CI 1.3;2.9), although significant regional variations were observed. The highest rates of MRSA colonization were found in Asia (6.1%), Africa (5.1%) and Central America (4.8%). There was no MRSA carriage detected within our population of 79 surgeons working in North America, and a low (0.6%) MRSA rate in 657 surgeons working in Europe. High rates of MRCoNS nasal carriage were also observed (21.4% overall), with a similar geographic distribution. Recent use of systemic antibiotics was associated with higher rates of carriage of resistant staphylococci. In conclusion, orthopedic surgeons are colonized by S. aureus and MRSA at broadly equivalent rates to the general population. Crucially, geographic differences were observed, which may be partially accounted for by varying antimicrobial stewardship practices between the regions. The elevated rates of resistance within the coagulase-negative

  3. Antibiotic-Resistant Bacteria.

    Science.gov (United States)

    Longenecker, Nevin E.; Oppenheimer, Dan

    1982-01-01

    A study conducted by high school advanced bacteriology students appears to confirm the hypothesis that the incremental administration of antibiotics on several species of bacteria (Escherichia coli, Staphylococcus epidermis, Bacillus sublitus, Bacillus megaterium) will allow for the development of antibiotic-resistant strains. (PEB)

  4. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria

    International Nuclear Information System (INIS)

    Scorciapino, Mariano Andrea; Acosta-Gutierrez, Silvia; Benkerrou, Dehbia; D’Agostino, Tommaso; Malloci, Giuliano; Samanta, Susruta; Bodrenko, Igor; Ceccarelli, Matteo

    2017-01-01

    The increasing level of antibiotic resistance in Gram-negative bacteria, together with the lack of new potential drug scaffolds in the pipeline, make the problem of infectious diseases a global challenge for modern medicine. The main reason that Gram-negative bacteria are particularly challenging is the presence of an outer cell-protecting membrane, which is not present in Gram-positive species. Such an asymmetric bilayer is a highly effective barrier for polar molecules. Several protein systems are expressed in the outer membrane to control the internal concentration of both nutrients and noxious species, in particular: (i) water-filled channels that modulate the permeation of polar molecules and ions according to concentration gradients, and (ii) efflux pumps to actively expel toxic compounds. Thus, besides expressing specific enzymes for drugs degradation, Gram-negative bacteria can also resist by modulating the influx and efflux of antibiotics, keeping the internal concentration low. However, there are no direct and robust experimental methods capable of measuring the permeability of small molecules, thus severely limiting our knowledge of the molecular mechanisms that ultimately control the permeation of antibiotics through the outer membrane. This is the innovation gap to be filled for Gram-negative bacteria. This review is focused on the permeation of small molecules through porins, considered the main path for the entry of polar antibiotics into Gram-negative bacteria. A fundamental understanding of how these proteins are able to filter small molecules is a prerequisite to design/optimize antibacterials with improved permeation. The level of sophistication of modern molecular modeling algorithms and the advances in new computer hardware has made the simulation of such complex processes possible at the molecular level. In this work we aim to share our experience and perspectives in the context of a multidisciplinary extended collaboration within the IMI

  5. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria

    Science.gov (United States)

    Scorciapino, Mariano Andrea; Acosta-Gutierrez, Silvia; Benkerrou, Dehbia; D'Agostino, Tommaso; Malloci, Giuliano; Samanta, Susruta; Bodrenko, Igor; Ceccarelli, Matteo

    2017-03-01

    The increasing level of antibiotic resistance in Gram-negative bacteria, together with the lack of new potential drug scaffolds in the pipeline, make the problem of infectious diseases a global challenge for modern medicine. The main reason that Gram-negative bacteria are particularly challenging is the presence of an outer cell-protecting membrane, which is not present in Gram-positive species. Such an asymmetric bilayer is a highly effective barrier for polar molecules. Several protein systems are expressed in the outer membrane to control the internal concentration of both nutrients and noxious species, in particular: (i) water-filled channels that modulate the permeation of polar molecules and ions according to concentration gradients, and (ii) efflux pumps to actively expel toxic compounds. Thus, besides expressing specific enzymes for drugs degradation, Gram-negative bacteria can also resist by modulating the influx and efflux of antibiotics, keeping the internal concentration low. However, there are no direct and robust experimental methods capable of measuring the permeability of small molecules, thus severely limiting our knowledge of the molecular mechanisms that ultimately control the permeation of antibiotics through the outer membrane. This is the innovation gap to be filled for Gram-negative bacteria. This review is focused on the permeation of small molecules through porins, considered the main path for the entry of polar antibiotics into Gram-negative bacteria. A fundamental understanding of how these proteins are able to filter small molecules is a prerequisite to design/optimize antibacterials with improved permeation. The level of sophistication of modern molecular modeling algorithms and the advances in new computer hardware has made the simulation of such complex processes possible at the molecular level. In this work we aim to share our experience and perspectives in the context of a multidisciplinary extended collaboration within the IMI

  6. Antibiotic resistance pattern of bacterial isolates in neonatal care unit

    Directory of Open Access Journals (Sweden)

    S Shrestha

    2010-12-01

    Full Text Available INTRODUCTION: Bacterial infections account for a huge proportion of neonatal deaths worldwide. The problem of antibiotic resistance among common bacterial pathogens mainly the gram negative bacteria is emerging globally which is of more serious concern in developing countries like Nepal. METHODS: A one year retrospective hospital based study was carried out to analyze the results of neonatal blood, cerebrospinal fluid, urine, stool and surface cultures and to look into the sensitivity pattern of the commonly used antibiotics. RESULTS: The positive yield of blood, urine, eye swab and CSF cultures were 19.56%, 38.5%, 60% and 0.36% respectively. The most common isolates in the blood culture were coagulase negative Staphylococcus, Acinetobacter, Enterobacter and non-haemolytic Streptococcus. A significant percent of the isolates were resistant to the first line antibiotics. Among the gram negative isolates more than 30% are resistant to cefotaxime and more than 50% are resistant to gentamicin. During the one year period we had Nursery outbreaks of methicillin resistant Staphylococcus aureus and Salmonella infections. With the help of environmental cultures we were able to trace the source and intervene appropriately. CONCLUSIONS: Continuous surveillance for antibiotic susceptibility, rational use of antibiotics and the strategy of antibiotic cycling can provide some answers to the emerging problem of antibiotic resistance.

  7. Antibiotic resistance pattern of bacterial isolates in neonatal care unit.

    Science.gov (United States)

    Shrestha, S; Adhikari, N; Rai, B K; Shreepaili, A

    2010-01-01

    Bacterial infections account for a huge proportion of neonatal deaths worldwide. The problem of antibiotic resistance among common bacterial pathogens mainly the gram negative bacteria is emerging globally which is of more serious concern in developing countries like Nepal. A one year retrospective hospital based study was carried out to analyze the results of neonatal blood, cerebrospinal fluid, urine, stool and surface cultures and to look into the sensitivity pattern of the commonly used antibiotics. The positive yield of blood, urine, eye swab and CSF cultures were 19.56%, 38.5%, 60% and 0.36% respectively. The most common isolates in the blood culture were coagulase negative Staphylococcus, Acinetobacter, Enterobacter and non-haemolytic Streptococcus. A significant percent of the isolates were resistant to the first line antibiotics. Among the gram negative isolates more than 30% are resistant to cefotaxime and more than 50% are resistant to gentamicin. During the one year period we had Nursery outbreaks of methicillin resistant Staphylococcus aureus and Salmonella infections. With the help of environmental cultures we were able to trace the source and intervene appropriately. Continuous surveillance for antibiotic susceptibility, rational use of antibiotics and the strategy of antibiotic cycling can provide some answers to the emerging problem of antibiotic resistance.

  8. Volatile metabolites from some gram-negative bacteria

    DEFF Research Database (Denmark)

    Schöller, Charlotte; Molin, Søren; Wilkins, Ken

    1997-01-01

    A survey of volatile organic compounds (VOCs) excreted from various Gram-negative bacteria (Pseudomonas spp., Serratia spp. and Enterobacter spp.) was carried out. Compounds were identified by gas chromatography-mass spectrometry. VOCs identified included dimethyl disulphide, dimethyl trisulphide...

  9. Extended-spectrum beta-lactamase producing gram negative ...

    African Journals Online (AJOL)

    ESBL)-producing Gram- negative bacteria (GNB), particularly in Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa, have increased all over the world. ESBLs are characterized by their ability to hydrolyze β-lactams, ...

  10. Antibiotic resistance of bacteria isolated from heavy metal-polluted soils with different land uses.

    Science.gov (United States)

    Safari Sinegani, Ali Akbar; Younessi, Nayereh

    2017-09-01

    The main objective of this study was to determine the relationship between the antibiotic and heavy metal tolerance of culturable bacteria isolated from mining waste, pasture, and agricultural soils containing different levels of heavy metals. The populations of total culturable bacteria, and heavy metal- and antibiotic-tolerant bacteria in the soils were enumerated on nutrient agar, nutrient agar amended with metals, and Mueller-Hinton agar amended with antibiotics, respectively. The multiple antibiotic resistance index, and patterns of antibiotic resistance and heavy metal-antibiotic co-resistance were determined for 237 isolates. Among all the samples, those of the tailings of mines with higher levels of heavy metals had the lowest number of bacteria, but a relatively higher abundance of heavy metal- and antibiotic-resistant bacteria. A high degree of resistance was observed for ampicillin and amoxicillin in the isolates from all soils. The agricultural soil isolates had a high prevalence of resistance towards vancomycin, tetracycline, and streptomycin. Among all the tested antibiotics, gentamicin was the most potent. The most frequent pattern of multiple antibiotic resistance in the isolates from agricultural soils was amoxicillin, ampicillin, streptomycin, vancomycin, tetracycline, and doxycycline. The percentage of isolates with multiple antibiotic resistance was considerably higher in the agricultural soils than in the mining waste soils. A high rate of co-resistance towards Hg and antibiotics was observed among the gram-negative isolates, and towards Zn, Ni, Hg, and the beta-lactam antibiotics among the gram-positive isolates. The higher percentage of isolates with multiple antibiotic resistance in the agricultural soils that in the mining waste soils may be related to (1) the level of soil heavy metals, (2) the population and diversity of soil bacteria, (3) the application of manures, and (4) other factors affecting gene transfer between bacteria

  11. In Vitro Antibacterial Activity of Several Plant Extracts and Oils against Some Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Ayman Al-Mariri

    2014-01-01

    Full Text Available Background: Medicinal plants are considered new resources for producing agents that could act as alternatives to antibiotics in the treatment of antibiotic-resistant bacteria. The aim of this study was to evaluate the antibacterial activity of 28 plant extracts and oils against four Gram-negative bacterial species. Methods: Experimental, in vitro, evaluation of the activities of 28 plant extracts and oils as well as some antibiotics against E. coli O157:H7, Yersinia enterocolitica O9, Proteus spp., and Klebsiella pneumoniae was performed. The activity against 15 isolates of each bacterium was determined by disc diffusion method at a concentration of 5%. Microdilution susceptibility assay was used in order to determine the minimal inhibitory concentrations (MICs of the plant extracts, oils, and antibiotics. Results: Among the evaluated herbs, only Origanum syriacum L., Thymus syriacus Boiss., Syzygium aromaticum L., Juniperus foetidissima Wild, Allium sativum L., Myristica fragrans Houtt, and Cinnamomum zeylanicum L. essential oils and Laurus nobilis L. plant extract showed anti-bacterial activity. The MIC50 values of these products against the Gram-negative organisms varied from 1.5 (Proteus spp. and K. pneumoniae( and 6.25 µl/ml (Yersinia enterocolitica O9 to 12.5 µl/ml (E. coli O:157. Conclusion: Among the studied essential oils, O. syriacum L., T. syriacus Boiss., C. zeylanicum L., and S. aromaticum L. essential oils were the most effective. Moreover, Cephalosporin and Ciprofloxacin were the most effective antibiotics against almost all the studied bacteria. Therefore, O. syriacum L., T. syriacus Boiss., C. zeylanicum L., and S. aromaticum L. could act as bactericidal agents against Gram-negative bacteria.

  12. Antibiotic Resistance in Foodborne Pathogens

    OpenAIRE

    Walsh, Ciara; Duffy, Geraldine

    2013-01-01

    Wide-spread antibiotic resistance among bacterial pathogens is now a serious public health issue and multi-antibiotic resistance has been reported in many foodborne pathogens including Salmonella and E. coli. A study to determine antibiotic resistance profiles of a range of Salmonella and Verocytotoxigenic E.coli (VTEC) isolated from Irish foods revealed significant levels of antibiotic resistance in the strains. S. typhimurium DT104 were multiantibiotic resistant with 97% resistant to 7 anti...

  13. Pulmonary infiltrates during community acquired Gram-negative bacteremia

    DEFF Research Database (Denmark)

    Fjeldsøe-Nielsen, Hans; Gjeraa, Kirsten; Berthelsen, Birgitte G

    2013-01-01

    The primary aim of this study was to describe the frequency of pulmonary infiltrates on chest X-ray (CXR) during community acquired Gram-negative bacteremia at a single centre in Denmark.......The primary aim of this study was to describe the frequency of pulmonary infiltrates on chest X-ray (CXR) during community acquired Gram-negative bacteremia at a single centre in Denmark....

  14. Effects of reducing beta-lactam antibiotic pressure on intestinal colonization of antibiotic-resistant gram-negative bacteria

    NARCIS (Netherlands)

    S. Nijssen (Saskia); A.C. Fluit (Ad); D.A.M.C. van de Vijver (David); J. Top (Janetta); R.J.L. Willems (Rob); M.J.M. Bonten (Marc)

    2010-01-01

    textabstractBackground: We determined the effects of two antibiotic policies (predominance of either β-lactam antibiotics or fluroquinolones) on acquisition with third-generation cephalosporin-resistant Enterobacteriaceae (CRE) and fluoroquinolone-resistant CRE (FCRE) in two ICUs, with monitoring of

  15. Silver enhances antibiotic activity against gram-negative bacteria.

    Science.gov (United States)

    Morones-Ramirez, J Ruben; Winkler, Jonathan A; Spina, Catherine S; Collins, James J

    2013-06-19

    A declining pipeline of clinically useful antibiotics has made it imperative to develop more effective antimicrobial therapies, particularly against difficult-to-treat Gram-negative pathogens. Silver has been used as an antimicrobial since antiquity, yet its mechanism of action remains unclear. We show that silver disrupts multiple bacterial cellular processes, including disulfide bond formation, metabolism, and iron homeostasis. These changes lead to increased production of reactive oxygen species and increased membrane permeability of Gram-negative bacteria that can potentiate the activity of a broad range of antibiotics against Gram-negative bacteria in different metabolic states, as well as restore antibiotic susceptibility to a resistant bacterial strain. We show both in vitro and in a mouse model of urinary tract infection that the ability of silver to induce oxidative stress can be harnessed to potentiate antibiotic activity. Additionally, we demonstrate in vitro and in two different mouse models of peritonitis that silver sensitizes Gram-negative bacteria to the Gram-positive-specific antibiotic vancomycin, thereby expanding the antibacterial spectrum of this drug. Finally, we used silver and antibiotic combinations in vitro to eradicate bacterial persister cells, and show both in vitro and in a mouse biofilm infection model that silver can enhance antibacterial action against bacteria that produce biofilms. This work shows that silver can be used to enhance the action of existing antibiotics against Gram-negative bacteria, thus strengthening the antibiotic arsenal for fighting bacterial infections.

  16. Multiparametric Profiling for Identification of Chemosensitizers against Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Vincent Lôme

    2018-02-01

    Full Text Available Antibiotic resistance is now a worldwide therapeutic problem. Since the beginning of anti-infectious treatment bacteria have rapidly shown an incredible ability to develop and transfer resistance mechanisms. In the last decades, the design variation of pioneer bioactive molecules has strongly improved their activity and the pharmaceutical companies partly won the race against the clock. Since the 1980s, the new classes of antibiotics that emerged were mainly directed to Gram-positive bacteria. Thus, we are now facing to multidrug-resistant Gram-negative bacteria, with no therapeutic options to deal with them. These bacteria are mainly resistant because of their double membrane that conjointly impairs antibiotic accumulation and extrudes these molecules when entered. The main challenge is to allow antibiotics to cross the impermeable envelope and reach their targets. One promising solution would be to associate, in a combination therapy, a usual antibiotic with a non-antibiotic chemosensitizer. Nevertheless, for effective drug discovery, there is a prominent lack of tools required to understand the rules of permeation and accumulation into Gram-negative bacteria. By the use of a multidrug-resistant enterobacteria, we introduce a high-content screening procedure for chemosensitizers discovery by quantitative assessment of drug accumulation, alteration of barriers, and deduction of their activity profile. We assembled and analyzed a control chemicals library to perform the proof of concept. The analysis was based on real-time monitoring of the efflux alteration and measure of the influx increase in the presence of studied compounds in an automatized bio-assay. Then, synergistic activity of compounds with an antibiotic was studied and kinetic data reduction was performed which led to the calculation of a score for each barrier to be altered.

  17. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma

    Science.gov (United States)

    Mai-Prochnow, Anne; Clauson, Maryse; Hong, Jungmi; Murphy, Anthony B.

    2016-12-01

    Cold atmospheric-pressure plasma (CAP) is a relatively new method being investigated for antimicrobial activity. However, the exact mode of action is still being explored. Here we report that CAP efficacy is directly correlated to bacterial cell wall thickness in several species. Biofilms of Gram positive Bacillus subtilis, possessing a 55.4 nm cell wall, showed the highest resistance to CAP, with less than one log10 reduction after 10 min treatment. In contrast, biofilms of Gram negative Pseudomonas aeruginosa, possessing only a 2.4 nm cell wall, were almost completely eradicated using the same treatment conditions. Planktonic cultures of Gram negative Pseudomonas libanensis also had a higher log10 reduction than Gram positive Staphylococcus epidermidis. Mixed species biofilms of P. aeruginosa and S. epidermidis showed a similar trend of Gram positive bacteria being more resistant to CAP treatment. However, when grown in co-culture, Gram negative P. aeruginosa was more resistant to CAP overall than as a mono-species biofilm. Emission spectra indicated OH and O, capable of structural cell wall bond breakage, were present in the plasma. This study indicates that cell wall thickness correlates with CAP inactivation times of bacteria, but cell membranes and biofilm matrix are also likely to play a role.

  18. Mid-infrared spectroscopic assessment of nanotoxicity in gram-negative vs. gram-positive bacteria.

    Science.gov (United States)

    Heys, Kelly A; Riding, Matthew J; Strong, Rebecca J; Shore, Richard F; Pereira, M Glória; Jones, Kevin C; Semple, Kirk T; Martin, Francis L

    2014-03-07

    Nanoparticles appear to induce toxic effects through a variety of mechanisms including generation of reactive oxygen species (ROS), physical contact with the cell membrane and indirect catalysis due to remnants from manufacture. The development and subsequent increasing usage of nanomaterials has highlighted a growing need to characterize and assess the toxicity of nanoparticles, particularly those that may have detrimental health effects such as carbon-based nanomaterials (CBNs). Due to interactions of nanoparticles with some reagents, many traditional toxicity tests are unsuitable for use with CBNs. Infrared (IR) spectroscopy is a non-destructive, high throughput technique, which is unhindered by such problems. We explored the application of IR spectroscopy to investigate the effects of CBNs on Gram-negative (Pseudomonas fluorescens) and Gram-positive (Mycobacterium vanbaalenii PYR-1) bacteria. Two types of IR spectroscopy were compared: attenuated total reflection Fourier-transform infrared (ATR-FTIR) and synchrotron radiation-based FTIR (SR-FTIR) spectroscopy. This showed that Gram-positive and Gram-negative bacteria exhibit differing alterations when exposed to CBNs. Gram-positive bacteria appear more resistant to these agents and this may be due to the protection afforded by their more sturdy cell wall. Markers of exposure also vary according to Gram status; Amide II was consistently altered in Gram-negative bacteria and carbohydrate altered in Gram-positive bacteria. ATR-FTIR and SR-FTIR spectroscopy could both be applied to extract biochemical alterations induced by each CBN that were consistent across the two bacterial species; these may represent potential biomarkers of nanoparticle-induced alterations. Vibrational spectroscopy approaches may provide a novel means of fingerprinting the effects of CBNs in target cells.

  19. Nanotransformation of vancomycin overcomes the intrinsic resistance of Gram-negative bacteria

    OpenAIRE

    Ivanova, Kristina Dimitrova; Hoyo Pérez, Javier; Francesko, Antonio; Tzanov, Tzanko

    2017-01-01

    The increased emergence of antibiotic-resistant bacteria is a growing public health concern, and although new drugs are constantly being sought, the pace of development is slow compared with the evolution and spread of multidrug- resistant species. In this study, we developed a novel broad-spectrum antimicrobial agent by simply transforming vancomycin into nanoform using sonochemistry. Vancomycin is a glycopeptide antibiotic largely used for the treatment of infections caused by Gram-positive...

  20. Engineered endolysin-based "Artilysins" to combat multidrug-resistant gram-negative pathogens.

    Science.gov (United States)

    Briers, Yves; Walmagh, Maarten; Van Puyenbroeck, Victor; Cornelissen, Anneleen; Cenens, William; Aertsen, Abram; Oliveira, Hugo; Azeredo, Joana; Verween, Gunther; Pirnay, Jean-Paul; Miller, Stefan; Volckaert, Guido; Lavigne, Rob

    2014-07-01

    The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii. Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains in vitro with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective in vitro (human keratinocytes) and in vivo (Caenorhabditis elegans). Importance: Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins--enzymes derived from bacterial viruses--represent a completely novel, promising class of

  1. Antibiotic resistance of microbial contaminations isolated from husbandry animals and foodstuffs

    Directory of Open Access Journals (Sweden)

    Lukáš Hleba

    2014-05-01

    Full Text Available In this paper the antibiotic resistance of microbial contaminations isolated from husbandry animals and foodstuffs were investigated. Microorganisms isolated from animals and foodstuffs were contaminations of selective media as MacConkey agar for Enterobacteriaceae genera and MRS agar for lactobacilli strains. Microorganisms were isolated and puryfied by agar four ways streak plate method. Identification of isolated microorganisms was done by mass-spectrometry method in MALDI-TOF MS Biotyper. For investigation of antibiotic resistance disc diffusion method by EUCAST was used. In this study Gram-negative and Gram-positive bacteria were identified. The most resistant or multi-resistant bacteria as Pseudomonas aeruginosa, Acinetobacter lwoffi, Lysinibacillus sphaericus, Staphylococcus aureus and Staphylococcus epidermis were determined. Other identified microorganisms were resistant to one antibiotic or not at all.

  2. Insights into Newer Antimicrobial Agents against Gram-negative Bacteria

    Directory of Open Access Journals (Sweden)

    Neelam Yaneja

    2016-01-01

    Full Text Available Currently, drug resistance, especially against cephalosporins and carbapenems, among gram-negative bacteria is an important challenge, which is further enhanced by the limited availability of drugs against these bugs. There are certain antibiotics (colistin, fosfomycin, temocillin, and rifampicin that have been revived from the past to tackle the menace of superbugs, including members of Enterobacteriaceae, Acinetobacter species, and Pseudomonas species. Very few newer antibiotics have been added to the pool of existing drugs. There are still many antibiotics that are passing through various phases of clinical trials. The initiative of Infectious Disease Society of America to develop 10 novel antibiotics against gram-negative bacilli by 2020 is a step to fill the gap of limited availability of drugs. This review aims to provide insights into the current and newer drugs in pipeline for the treatment of gram-negative bacteria and also discusses the major challenging issues for their management.

  3. Prognostic factors and monomicrobial necrotizing fasciitis: gram-positive versus gram-negative pathogens

    Directory of Open Access Journals (Sweden)

    Hsu Wei-Hsiu

    2011-01-01

    Full Text Available Abstract Background Monomicrobial necrotizing fasciitis is rapidly progressive and life-threatening. This study was undertaken to ascertain whether the clinical presentation and outcome for patients with this disease differ for those infected with a gram-positive as compared to gram-negative pathogen. Methods Forty-six patients with monomicrobial necrotizing fasciitis were examined retrospectively from November 2002 to January 2008. All patients received adequate broad-spectrum antibiotic therapy, aggressive resuscitation, prompt radical debridement and adjuvant hyperbaric oxygen therapy. Eleven patients were infected with a gram-positive pathogen (Group 1 and 35 patients with a gram-negative pathogen (Group 2. Results Group 2 was characterized by a higher incidence of hemorrhagic bullae and septic shock, higher APACHE II scores at 24 h post-admission, a higher rate of thrombocytopenia, and a higher prevalence of chronic liver dysfunction. Gouty arthritis was more prevalent in Group 1. For non-survivors, the incidences of chronic liver dysfunction, chronic renal failure and thrombocytopenia were higher in comparison with those for survivors. Lower level of serum albumin was also demonstrated in the non-survivors as compared to those in survivors. Conclusions Pre-existing chronic liver dysfunction, chronic renal failure, thrombocytopenia and hypoalbuminemia, and post-operative dependence on mechanical ventilation represent poor prognostic factors in monomicrobial necrotizing fasciitis. Patients with gram-negative monobacterial necrotizing fasciitis present with more fulminant sepsis.

  4. Mechanisms of Antimicrobial Peptide Resistance in Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Victor I. Band

    2014-12-01

    Full Text Available Cationic antimicrobial peptides (CAMPs are important innate immune defenses that inhibit colonization by pathogens and contribute to clearance of infections. Gram-negative bacterial pathogens are a major target, yet many of them have evolved mechanisms to resist these antimicrobials. These resistance mechanisms can be critical contributors to bacterial virulence and are often crucial for survival within the host. Here, we summarize methods used by Gram-negative bacteria to resist CAMPs. Understanding these mechanisms may lead to new therapeutic strategies against pathogens with extensive CAMP resistance.

  5. New transposon tools tailored for metabolic engineering of Gram-negative microbial cell factories

    Directory of Open Access Journals (Sweden)

    Esteban eMartínez-García

    2014-10-01

    Full Text Available Re-programming microorganisms to modify their existing functions and/or to bestow bacteria with entirely new-to-Nature tasks have largely relied so far on specialized molecular biology tools. Such endeavors are not only relevant in the burgeoning metabolic engineering arena, but also instrumental to explore the functioning of complex regulatory networks from a fundamental point of view. À la carte modification of bacterial genomes thus calls for novel tools to make genetic manipulations easier. We propose the use of a series of new broad-host-range mini-Tn5 vectors, termed pBAMDs, for the delivery of gene(s into the chromosome of Gram-negative bacteria and for generating saturated mutagenesis libraries in gene function studies. These delivery vectors endow the user with the possibility of easy cloning and subsequent insertion of functional cargoes with three different antibiotic resistance markers (kanamycin, streptomycin, and gentamicin. After validating the pBAMD vectors in the environmental bacterium Pseudomonas putida KT2440, their use was also illustrated by inserting the entire poly(3-hydroxybutyrate (PHB synthesis pathway from Cupriavidus necator in the chromosome of a phosphotransacetylase mutant of Escherichia coli. PHB is a completely biodegradable polyester with a number of industrial applications that make it attractive as a potential replacement of oil-based plastics. The non-selective nature of chromosomal insertions of the biosynthetic genes was evidenced by a large landscape of PHB synthesis levels in independent clones. One clone was selected and further characterized as a microbial cell factory for PHB accumulation, and it achieved polymer accumulation levels comparable to those of a plasmid-bearing recombinant. Taken together, our results demonstrate that the new mini-Tn5 vectors can be used to confer interesting phenotypes in Gram-negative bacteria that would be very difficult to engineer through direct manipulation of the

  6. New Transposon Tools Tailored for Metabolic Engineering of Gram-Negative Microbial Cell Factories

    International Nuclear Information System (INIS)

    Martínez-García, Esteban; Aparicio, Tomás; Lorenzo, Víctor de; Nikel, Pablo I.

    2014-01-01

    Re-programming microorganisms to modify their existing functions and/or to bestow bacteria with entirely new-to-Nature tasks have largely relied so far on specialized molecular biology tools. Such endeavors are not only relevant in the burgeoning metabolic engineering arena but also instrumental to explore the functioning of complex regulatory networks from a fundamental point of view. À la carte modification of bacterial genomes thus calls for novel tools to make genetic manipulations easier. We propose the use of a series of new broad-host-range mini-Tn5-vectors, termed pBAMDs, for the delivery of gene(s) into the chromosome of Gram-negative bacteria and for generating saturated mutagenesis libraries in gene function studies. These delivery vectors endow the user with the possibility of easy cloning and subsequent insertion of functional cargoes with three different antibiotic-resistance markers (kanamycin, streptomycin, and gentamicin). After validating the pBAMD vectors in the environmental bacterium Pseudomonas putida KT2440, their use was also illustrated by inserting the entire poly(3-hydroxybutyrate) (PHB) synthesis pathway from Cupriavidus necator in the chromosome of a phosphotransacetylase mutant of Escherichia coli. PHB is a completely biodegradable polyester with a number of industrial applications that make it attractive as a potential replacement of oil-based plastics. The non-selective nature of chromosomal insertions of the biosynthetic genes was evidenced by a large landscape of PHB synthesis levels in independent clones. One clone was selected and further characterized as a microbial cell factory for PHB accumulation, and it achieved polymer accumulation levels comparable to those of a plasmid-bearing recombinant. Taken together, our results demonstrate that the new mini-Tn5-vectors can be used to confer interesting phenotypes in Gram-negative bacteria that would be very difficult to engineer through direct manipulation of the structural genes.

  7. Development of Quorum-Based Anti-Virulence Therapeutics Targeting Gram-Negative Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Wen Shan Yew

    2013-08-01

    Full Text Available Quorum sensing is a cell density-dependent signaling phenomenon used by bacteria for coordination of population-wide phenotypes, such as expression of virulence genes, antibiotic resistance and biofilm formation. Lately, disruption of bacterial communication has emerged as an anti-virulence strategy with enormous therapeutic potential given the increasing incidences of drug resistance in pathogenic bacteria. The quorum quenching therapeutic approach promises a lower risk of resistance development, since interference with virulence generally does not affect the growth and fitness of the bacteria and, hence, does not exert an associated selection pressure for drug-resistant strains. With better understanding of bacterial communication networks and mechanisms, many quorum quenching methods have been developed against various clinically significant bacterial pathogens. In particular, Gram-negative bacteria are an important group of pathogens, because, collectively, they are responsible for the majority of hospital-acquired infections. Here, we discuss the current understanding of existing quorum sensing mechanisms and present important inhibitory strategies that have been developed against this group of pathogenic bacteria.

  8. [Development and Evaluation of a New Selective Culture Medium, KBM Anaero RS-GNR, for Detection of Anaerobic Gram Negative Rods].

    Science.gov (United States)

    Narita, Taeko; Kato, Kyohei; Hanaiwa, Hiroki; Harada, Tetsuhiro; Funashima, Yumiko; Akiwa, Makoto; Sekiguchi, Jun-Ichiro; Nagasawa, Zenzo; Umemura, Tsukuru

    2017-03-22

    The laboratory culture methods for isolating drug-resistant pathogens has been the gold standard in medical microbiology, and play pivotal roles in the overall management of infectious diseases. Recently, several reports have emphasized the development of antibiotics-resistance among anaerobic gram-negative rods, especially Genus Bacteroides and Prevotella . Therefore, a selective culture method to detect these pathogens is needed. We developed here the new selective culture medium, termed "KBM Anaero RS-GNR," for detecting anaerobic Gram-negative rods. Growth capability and selectivity of the agar medium were assessed by using the pure culture suspensions of more than 100 bacterial strains as well as the 13 samples experimentally contaminated with these bacterial strains. This new medium, "KBM Anaero RS-GNR," successfully showed the selective isolation of anaerobic Gram-negative rods. Compared with commercially available medium, "PV Brucella HK Agar, " which is also designed to detect anaerobic Gram-negative rods, there was no significant difference of the overall detection efficiency between two media. However, "KBM Anaero RS-GNR" showed superior to selectivity for anaerobic Gram-negative rods, especially from the samples contaminated with Candida species. Thus, the culture method using KBM Anaero RS-GNR is relevant for isolation of anaerobic Gram-negative rods especially from clinical specimens.

  9. Mechanisms of Antibiotic Resistance

    Science.gov (United States)

    Munita, Jose M.; Arias, Cesar A.

    2015-01-01

    Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have emerged not only in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic “attack” is the prime example of bacterial adaptation and the pinnacle of evolution. “Survival of the fittest” is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice providing specific examples in relevant bacterial pathogens. PMID:27227291

  10. Surveillance of antibiotic resistance

    Science.gov (United States)

    Johnson, Alan P.

    2015-01-01

    Surveillance involves the collection and analysis of data for the detection and monitoring of threats to public health. Surveillance should also inform as to the epidemiology of the threat and its burden in the population. A further key component of surveillance is the timely feedback of data to stakeholders with a view to generating action aimed at reducing or preventing the public health threat being monitored. Surveillance of antibiotic resistance involves the collection of antibiotic susceptibility test results undertaken by microbiology laboratories on bacteria isolated from clinical samples sent for investigation. Correlation of these data with demographic and clinical data for the patient populations from whom the pathogens were isolated gives insight into the underlying epidemiology and facilitates the formulation of rational interventions aimed at reducing the burden of resistance. This article describes a range of surveillance activities that have been undertaken in the UK over a number of years, together with current interventions being implemented. These activities are not only of national importance but form part of the international response to the global threat posed by antibiotic resistance. PMID:25918439

  11. Antimicrobial Peptide Novicidin Synergizes with Rifampin, Ceftriaxone, and Ceftazidime against Antibiotic-Resistant Enterobacteriaceae In Vitro.

    Science.gov (United States)

    Soren, Odel; Brinch, Karoline Sidelmann; Patel, Dipesh; Liu, Yingjun; Liu, Alexander; Coates, Anthony; Hu, Yanmin

    2015-10-01

    The spread of antibiotic resistance among Gram-negative bacteria is a serious clinical threat, and infections with these organisms are a leading cause of mortality worldwide. Traditional novel drug development inevitably leads to the emergence of new resistant strains, rendering the new drugs ineffective. Therefore, reviving the therapeutic potentials of existing antibiotics represents an attractive novel strategy. Novicidin, a novel cationic antimicrobial peptide, is effective against Gram-negative bacteria. Here, we investigated novicidin as a possible antibiotic enhancer. The actions of novicidin in combination with rifampin, ceftriaxone, or ceftazidime were investigated against 94 antibiotic-resistant clinical Gram-negative isolates and 7 strains expressing New Delhi metallo-β-lactamase-1. Using the checkerboard method, novicidin combined with rifampin showed synergy with >70% of the strains, reducing the MICs significantly. The combination of novicidin with ceftriaxone or ceftazidime was synergistic against 89.7% of the ceftriaxone-resistant strains and 94.1% of the ceftazidime-resistant strains. Synergistic interactions were confirmed using time-kill studies with multiple strains. Furthermore, novicidin increased the postantibiotic effect when combined with rifampin or ceftriaxone. Membrane depolarization assays revealed that novicidin alters the cytoplasmic membrane potential of Gram-negative bacteria. In vitro toxicology tests showed novicidin to have low hemolytic activity and no detrimental effect on cell cultures. We demonstrated that novicidin strongly rejuvenates the therapeutic potencies of ceftriaxone or ceftazidime against resistant Gram-negative bacteria in vitro. In addition, novicidin boosted the activity of rifampin. This strategy can have major clinical implications in our fight against antibiotic-resistant bacterial infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Prevalence of Gram-negative Pathogens and their antimicrobial ...

    African Journals Online (AJOL)

    The present study was conducted to find out the prevalence and spectrum of Gram negative pathogens causing bacterial meningitis and their antimicrobial susceptibility pattern in a tertiary care hospital. The cerebrospinal fluid (CSF) (3-5 ml) was collected from 638 admitted children clinically suspected of septic meningitis.

  13. NDM 1 Gene Carrying Gram negative Bacteria Isolated from Rats ...

    African Journals Online (AJOL)

    In this study, we screened 56 Gram negative bacteria comprising: 3 isolates of Enterobacter ludwigii, 30 Pseudomonas aeruginosa, 22 Proteus mirabilis, and 1 Aeromonas caviae isolated from oral cavity and rectum of rats captured from commercial poultry houses in Ibadan, Oyo State, Nigeria that were resistant to at least ...

  14. Sinus surgery postpones chronic gram-negative lung infection

    DEFF Research Database (Denmark)

    Alanin, M C; Aanaes, K; Høiby, N

    2016-01-01

    Background: In patients with cystic fibrosis (CF) the sinuses are a bacterial reservoir for Gram-negative bacteria (GNB). From the sinuses the GNB can repeatedly migrate to the lungs. In a one-year follow-up study, endoscopic sinus surgery (ESS) with adjuvant therapy reduced the frequency...

  15. Quinolones resistance and R-plasmids of some gram negative ...

    African Journals Online (AJOL)

    The isolated gram-negative enteric bacilli consist of Escherichia coli (22), Klebsiella species (65), Proteus species (20), Salmonella typhi (2), Pseudomonas aeruginosa (39) and Pseudomonas species (18). Among the antimicrobial agents tested, high resistance was found with ofloxacin 44.0%, followed by pefloxacin 30.1% ...

  16. Occurrence of unusual non-fermentative gram negative bacilli in ...

    African Journals Online (AJOL)

    Non-fermentative Gram-negative bacilli (NFGNB) other than Pseudomonas and Acinetobacter species have emerged as nosocomial pathogens. No much data is currently available concerning the occurrence of these types of bacteria in Zagazig University Hospitals (ZUHs). In this study, the occurrence as well as the ...

  17. Detection of Extended Spectrum Beta-Lactamases in Gram Negative ...

    African Journals Online (AJOL)

    Antimicrobial drug resistance seen among many gram-negative bacteria, especially those expressing the extended-spectrum β-lactamase (ESBL) enzymes that hydrolyze the expandedspectrum cephalosporins has been on the increase. This has compromised treatment options and thus a threat to the containment of ...

  18. Battacin (Octapeptin B5), a new cyclic lipopeptide antibiotic from Paenibacillus tianmuensis active against multidrug-resistant Gram-negative bacteria.

    Science.gov (United States)

    Qian, Chao-Dong; Wu, Xue-Chang; Teng, Yi; Zhao, Wen-Peng; Li, Ou; Fang, Sheng-Guo; Huang, Zhao-Hui; Gao, Hai-Chun

    2012-03-01

    Hospital-acquired infections caused by drug-resistant bacteria are a significant challenge to patient safety. Numerous clinical isolates resistant to almost all commercially available antibiotics have emerged. Thus, novel antimicrobial agents, specifically those for multidrug-resistant Gram-negative bacteria, are urgently needed. In the current study, we report the isolation, structure elucidation, and preliminary biological characterization of a new cationic lipopeptide antibiotic, battacin or octapeptin B5, produced from a Paenibacillus tianmuensis soil isolate. Battacin kills bacteria in vitro and has potent activity against Gram-negative bacteria, including multidrug-resistant and extremely drug-resistant clinical isolates. Hospital strains of Escherichia coli and Pseudomonas aeruginosa are the pathogens most sensitive to battacin, with MICs of 2 to 4 μg/ml. The ability of battacin to disrupt the outer membrane of Gram-negative bacteria is comparable to that of polymyxin B, the last-line therapy for infections caused by antibiotic-resistant Gram-negative bacteria. However, the capacity of battacin to permeate bacterial plasma membranes is less extensive than that of polymyxin B. The bactericidal kinetics of battacin correlate with the depolarization of the cell membrane, suggesting that battacin kills bacteria by disrupting the cytoplasmic membrane. Other studies indicate that battacin is less acutely toxic than polymyxin B and has potent in vivo biological activity against E. coli. Based on the findings of the current study, battacin may be considered a potential therapeutic agent for the treatment of infections caused by antibiotic-resistant Gram-negative bacteria.

  19. Identification and molecular phylogeny of coagulase-negative staphylococci isolates from Minas Frescal cheese in southeastern Brazil: Superantigenic toxin production and antibiotic resistance.

    Science.gov (United States)

    Casaes Nunes, Raquel Soares; Pires de Souza, Camilla; Pereira, Karen Signori; Del Aguila, Eduardo Mere; Flosi Paschoalin, Vânia Margaret

    2016-04-01

    linezolid, which have therapeutic importance in both human and veterinarian medicines. The risk of staphylococci food poisoning by the consumption of improperly manufactured Minas Frescal was emphasized, in addition to the possibility of these food matrices being a reservoir for antibiotic resistance. More effective control measures concerning the presence and typing of staphylococci in raw milk and dairy derivatives should be included to prevent the spread of pathogenic strains. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Multidrug efflux systems in Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Maria Aparecida Scatamburlo Moreira

    2004-06-01

    Full Text Available Multidrug efflux mechanisms in bacteria contribute significantly to intrinsic and acquired resistance to antimicrobial agents. Genome analysis have confirmed the broad distribution of these systems in Gram-negative as well as in Gram-positive bacteria. Among resistance mechanisms, the multidrug efflux system or pump deserves special attention, since a cell that has acquired it can simultaneously diminish or even suppress the susceptibility to a wide range of antimicrobials. The efflux system is mediated by transport proteins which confer resistance to toxic compounds. In Gram-negative bacteria, a tripartite efflux system is necessary to expel the drug to the outer medium: a protein localized in the cytoplasmic membrane; another in the periplasmatic space (membrane fusion protein - MFP; and a third in the outer membrane (outer membrane factor - OMF. The drug transport is active, and depends either on the energy provided by ATP hydrolysis or is directly driven by the proton motive force. The transport proteins are grouped in families, according to the homology of the amino acid sequences and to similarity of mechanisms. Among Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa have most of the hitherto identified and studied multidrug efflux systems.

  1. [Predictive factors for hospital infections caused by Gram-positive and Gram-negative organisms].

    Science.gov (United States)

    Domínguez-Castellano, A; Cerro, R; Bueno, C; Bringas, M J; Balonga, B; Royo, J L

    1995-12-01

    Knowing the bacterian map and clinical profile of nosocomial infections (NI) in Spain may aid the better planning of empiric antimicrobian treatment. A prospective incidence study carried out over 9 months was performed. Data collection out with the use of an EPINE project file. The chi square test and comparison of independent sample percentages were used for statistical analysis. During the study period 156 cases of NI (rate (5.5%) were detected: 65 patients with gram-negative bacilli infection (GNB), 34 by gram-positive cocci (GPC), 20 with mixed infection and 13 by Candida. The most frequent localization was urinary infection (63%) followed by surgical wound infection, pressure ulcers and respiratory infection. Of the 203 isolations, 57% corresponded to GNB, with E. coli being the most frequent microorganism. Staphylococcus aureus was the GPC most often found (95% methycilline sensitive). The profile of a patient with nosocomial infection in a hospital such as that in which the autors work would be as follows: if the patient were admitted in the department of internal medicine, was dementia or coma, denutrition, urinary catheter or neurologic disease and has NI (overall urinary infection) the infection would most likely be a caused by a gram-negative microorganism. If the patient has an i.v. line or is in a surgical ward, or has deep surgical wound infection the microorganism isolated would most likely be gram-positive.

  2. The Comprehensive Antibiotic Resistance Database

    Science.gov (United States)

    McArthur, Andrew G.; Waglechner, Nicholas; Nizam, Fazmin; Yan, Austin; Azad, Marisa A.; Baylay, Alison J.; Bhullar, Kirandeep; Canova, Marc J.; De Pascale, Gianfranco; Ejim, Linda; Kalan, Lindsay; King, Andrew M.; Koteva, Kalinka; Morar, Mariya; Mulvey, Michael R.; O'Brien, Jonathan S.; Pawlowski, Andrew C.; Piddock, Laura J. V.; Spanogiannopoulos, Peter; Sutherland, Arlene D.; Tang, Irene; Taylor, Patricia L.; Thaker, Maulik; Wang, Wenliang; Yan, Marie; Yu, Tennison

    2013-01-01

    The field of antibiotic drug discovery and the monitoring of new antibiotic resistance elements have yet to fully exploit the power of the genome revolution. Despite the fact that the first genomes sequenced of free living organisms were those of bacteria, there have been few specialized bioinformatic tools developed to mine the growing amount of genomic data associated with pathogens. In particular, there are few tools to study the genetics and genomics of antibiotic resistance and how it impacts bacterial populations, ecology, and the clinic. We have initiated development of such tools in the form of the Comprehensive Antibiotic Research Database (CARD; http://arpcard.mcmaster.ca). The CARD integrates disparate molecular and sequence data, provides a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO), and can quickly identify putative antibiotic resistance genes in new unannotated genome sequences. This unique platform provides an informatic tool that bridges antibiotic resistance concerns in health care, agriculture, and the environment. PMID:23650175

  3. The role of surveillance systems in confronting the global crisis of antibiotic-resistant bacteria.

    Science.gov (United States)

    Perez, Federico; Villegas, Maria Virginia

    2015-08-01

    It is widely accepted that infection control, advanced diagnostics, and novel therapeutics are crucial to mitigate the impact of antibiotic-resistant bacteria. The role of global, national, and regional surveillance systems as part of the response to the challenge posed by antibiotic resistance is not sufficiently highlighted. We provide an overview of contemporary surveillance programs, with emphasis on gram-negative bacteria. The WHO and public health agencies in Europe and the United States recently published comprehensive surveillance reports. These highlight the emergence and dissemination of carbapenem-resistant Enterobacteriaceae and other multidrug-resistant gram-negative bacteria. In Israel, public health action to control carbapenem-resistant Enterobacteriaceae, especially Klebsiella pneumoniae carbapenemase producing K. pneumoniae, has advanced together with a better understanding of its epidemiology. Surveillance models adapted to the requirements and capacities of each country are in development. Robust surveillance systems are essential to combat antibiotic resistance, and need to emphasize a 'one health' approach. Refinements in surveillance will come from advances in bioinformatics and genomics that permit the integration of global and local information about antibiotic consumption in humans and animals, molecular mechanisms of resistance, and bacterial genotyping.

  4. Evaluation of post-antibiotic effect in Gram-negative and Gram-positive bacteria

    Directory of Open Access Journals (Sweden)

    Elisa Tavella

    2008-03-01

    Full Text Available Although the postantibiotic effect (PAE is a well recognized phenomenon, the mechanism by which it is induced has not fully elucidated yet. It has been suggested that PAE is the time required by bacteria to synthesize proteins or mRNA characterized by a short half-life that are consumed during antibiotic treatment.This phenomenon is widely studied on Gram-positive cocci and Gram-negative rods, while information about Gram-positive rods and Gram-negative cocci are scanty.To gain new insights on the PAE, this study was addressed to evaluated the time required by Moraxella catarrhalis and Lactobacillus planctarum to resume their physiological growth rate after exposure to various antibiotics. Methods PAE was estimated in accordance with the method of Craig and Gudmundsson using the following drugs: penicillin, piperacillin-tazobactam, cefalotin, ceftazidime, imipenem, ciprofloxacin, gentamycin and azithromycin. Log-phase bacteria were exposed to drug at a concentration corresponding to 4 times the MIC value for 1h.The drug was inactivated by 1:1000 dilution. Bacterial counts were determined at time zero, immediately after drug dilution, and at each hour after removal for 6 - 7h by a pour-plate technique. The PAE was defined as the difference in time required by test and control cultures to increase by 1 log in CFU number. Results All drugs tested induced a PAE on the strains studied. M. catarrhalis registered PAE values ranging between 0,5 (gentamycin and 2 (ceftazidime, imipenem and azithromycin.With respect to L. plantarum a PAE between 0,8 (cefalotin and 3 hours (ciprofloxacin were detected. Conclusion. These findings demonstrated that all the drugs tested were able to induce a PAE on the strains tested.This observation differs from that observed on Gram-negative rods characterised by negative PAE values induced by penicillins and cephalosporins.This results might reflect the different target of these compounds on these Gram-positive rods or the

  5. Gram-negative bacteraemia; a multi-centre prospective evaluation of empiric antibiotic therapy and outcome in English acute hospitals.

    Science.gov (United States)

    Fitzpatrick, J M; Biswas, J S; Edgeworth, J D; Islam, J; Jenkins, N; Judge, R; Lavery, A J; Melzer, M; Morris-Jones, S; Nsutebu, E F; Peters, J; Pillay, D G; Pink, F; Price, J R; Scarborough, M; Thwaites, G E; Tilley, R; Walker, A S; Llewelyn, M J

    2016-03-01

    Increasing antibiotic resistance makes choosing antibiotics for suspected Gram-negative infection challenging. This study set out to identify key determinants of mortality among patients with Gram-negative bacteraemia, focusing particularly on the importance of appropriate empiric antibiotic treatment. We conducted a prospective observational study of 679 unselected adults with Gram-negative bacteraemia at ten acute english hospitals between October 2013 and March 2014. Appropriate empiric antibiotic treatment was defined as intravenous treatment on the day of blood culture collection with an antibiotic to which the cultured organism was sensitive in vitro. Mortality analyses were adjusted for patient demographics, co-morbidities and illness severity. The majority of bacteraemias were community-onset (70%); most were caused by Escherichia coli (65%), Klebsiella spp. (15%) or Pseudomonas spp. (7%). Main foci of infection were urinary tract (51%), abdomen/biliary tract (20%) and lower respiratory tract (14%). The main antibiotics used were co-amoxiclav (32%) and piperacillin-tazobactam (30%) with 34% receiving combination therapy (predominantly aminoglycosides). Empiric treatment was inappropriate in 34%. All-cause mortality was 8% at 7 days and 15% at 30 days. Independent predictors of mortality (p antibiotic therapy was not associated with mortality at either time-point (adjusted OR 0.82; 95% CI 0.35-1.94 and adjusted OR 0.92; 95% CI 0.50-1.66, respectively). Although our study does not exclude an impact of empiric antibiotic choice on survival in Gram-negative bacteraemia, outcome is determined primarily by patient and disease factors. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  6. Evaluating the resistance pattern of gram-negative bacteria during three years at the nephrology ward of a referral hospital in southwest of Iran.

    Science.gov (United States)

    Karimzadeh, Iman; Sadeghimanesh, Niloofar; Mirzaee, Mona; Sagheb, Mohammad Mahdi

    2017-07-01

    Gram-negative bacteria are associated with an increase in rates of antibacterial resistance. In most low- and middle-income countries such as Iran, there is no continuous surveillance system for antibiotic resistance. The purpose of this survey was to determine the pattern of antimicrobial sensitivity of gram-negative bacteria within 3 consecutive years at a nephrology ward of Nemazee hospital in Shiraz. During a 3-year period from 2013 to 2015 at the adult nephrology ward, bacteriological data of all biological samples of hospitalized patients in favor of gram-negative microorganisms were analyzed retrospectively. Antimicrobial susceptibility was performed by the Kirby-Bauer disc diffusion method. The most common gram negative bacterium isolated from biological samples was Escherichia coli (43.9%). The highest (86.3%-94.1%) antibacterial resistance rate was associated with Acinetobacter spp. The most frequent resistance was seen with cephalosporins. In contrast to ceftriaxone, ciprofloxacin, and trimethoprim/sulfamethoxazole, nitrofurantoin and aminoglycosides remained their acceptable activity against E. coli. At least three-fourths (75%) of Acinetobacter spp. isolates was resistant to either aminoglycosides or imipenem. All (100%) isolated Acinetobacter spp. and Pseudomonas aeruginosa species were susceptible to colistin. The rate of Acinetobacter spp. and P. aeruginosa resistant to three or more drugs was 81.7% and 74.6%, respectively. The resistant rate of gram negative pathogens to different tested antibacterial agents was considerably high and has increased during the recent three years in our center.

  7. Detection of emerging antibiotic resistance in bacteria isolated from subclinical mastitis in cattle in West Bengal

    Directory of Open Access Journals (Sweden)

    Arnab Das

    2017-05-01

    Full Text Available Aim: The aim of this work was to detect antibiotic resistance in Gram-negative bacteria isolated from subclinical mastitis in cattle in West Bengal. Materials and Methods: The milk samples were collected from the cattle suffering with subclinical mastitis in West Bengal. The milk samples were inoculated into the nutrient broth and incubated at 37°C. On the next day, the growth was transferred into nutrient agar and MacConkey agar. All the pure cultures obtained from nutrient agar slant were subjected to Gram-staining and standard biochemical tests. All the bacterial isolates were tested in vitro for their sensitivity to different antibiotics commonly used in veterinary practices. All Gram-negative isolates including positive control were subjected to polymerase chain reaction (PCR for detection of blaCTX-M, blaTEM, blaSHV, blaVIM, tetA, tetB, tetC, and tetM genes considered for extended-spectrum β-lactamase (ESBL, metallo-β-lactamase, and tetracycline resistance. Results: In total, 50 Gram-negative organisms (Escherichia coli, Proteus, Pseudomonas, Klebsiella, and Enterobacter were isolated from milk samples of subclinical mastitis infected cattle. Among these Gram-negative isolates, 48% (24/50 were found either ESBL producing or tetracycline resistant. Out of total 50 Gram-negative isolates, blaCTX-M was detected in 18 (36% isolates, and 6 (12% harbored blaTEM genes in PCR. None of the isolates carried blaSHV genes. Further, in this study, 5 (10% isolates harbored tet(A gene, and 8 (16% isolates carried tet(B gene. No tet(C gene was detected from the isolates. Conclusion: This study showed emerging trend of antibiotic-resistant Gram-negative bacteria associated with subclinical mastitis in cattle in West Bengal, India.

  8. Antibiotic Resistance in Nephrological Practice

    Directory of Open Access Journals (Sweden)

    O.I. Taran

    2017-02-01

    Full Text Available The problem of antibiotic resistance is a serious threat to the global public health and requires action by both the state and the public. The World Health Organization identified 15 most dangerous and prevalent superbugs, which it ranked based on three levels of threat they present to the public health. At the heart of the fight against antibiotic resistance lies the increased awareness of the health professionals and general public that incorrect and excessive use of antibiotics amid poor practices in infection prevention and control contributes to the acceleration of antibiotic resistance.

  9. Sonodynamic Excitation of Rose Bengal for Eradication of Gram-Positive and Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Faina Nakonechny

    2013-01-01

    Full Text Available Photodynamic antimicrobial chemotherapy based on photosensitizers activated by illumination is limited by poor penetration of visible light through skin and tissues. In order to overcome this problem, Rose Bengal was excited in the dark by 28 kHz ultrasound and was applied for inactivation of bacteria. It is demonstrated, for the first time, that the sonodynamic technique is effective for eradication of Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The net sonodynamic effect was calculated as a 3-4 log10 reduction in bacteria concentration, depending on the cell and the Rose Bengal concentration and the treatment time. Sonodynamic treatment may become a novel and effective form of antimicrobial therapy and can be used for low-temperature sterilization of medical instruments and surgical accessories.

  10. Antibiotic resistance in animals.

    Science.gov (United States)

    Barton, Mary D; Pratt, Rachael; Hart, Wendy S

    2003-01-01

    There is currently no systematic surveillance or monitoring of antibiotic resistance in Australian animals. Registration of antibiotics for use in animals is tightly controlled and has been very conservative. Fluoroquinolones have not been registered for use in food producing animals and other products have been removed from the market because of human health concerns. In the late 1970s, the Animal Health Committee coordinated a survey of resistance in Salmonella and Escherichia coli isolates from cattle, pigs and poultry and in bovine Staphylococcus aureus. Some additional information is available from published case reports. In samples collected prior to the withdrawal of avoparcin from the market, no vancomycin resistant Enterococcus faecium or Enterococcus faecalis were detected in samples collected from pigs, whereas some vanA enterococci, including E. faecium and E. faecalis, were found in chickens. No vanB enterococci were detected in either species. Virginiamycin resistance was common in both pig and poultry isolates. Multiple resistance was common in E. coli and salmonellae isolates. No fluoroquinolone resistance was found in salmonellae, E. coli or Campylobacter. Beta-lactamase production is common in isolates from bovine mastitis, but no methicillin resistance has been detected. However, methicillin resistance has been reported in canine isolates of Staphylococcus intermedius and extended spectrum beta-lactamase producing E. coli has been found in dogs.

  11. Rapid method for the differentiation of gram-positive and gram-negative bacteria on membrane filters.

    OpenAIRE

    Romero, S; Schell, R F; Pennell, D R

    1988-01-01

    Microfiltration has become a popular procedure for the concentration and enumeration of bacteria. We developed a rapid and sensitive method for the differentiation of gram-positive and gram-negative bacteria, utilizing a polycarbonate membrane filter, crystal violet, iodine, 95% ethanol, and 6% carbol fuchsin, that can be completed in 60 to 90 s. Gram reactions of 49 species belonging to 30 genera of bacteria were correctly determined by the filter-Gram stain. The sensitivities of the filter-...

  12. Raman Spectroscopy of Xylitol Uptake and Metabolism in Gram-Positive and Gram-Negative Bacteria▿

    Science.gov (United States)

    Palchaudhuri, Sunil; Rehse, Steven J.; Hamasha, Khozima; Syed, Talha; Kurtovic, Eldar; Kurtovic, Emir; Stenger, James

    2011-01-01

    Visible-wavelength Raman spectroscopy was used to investigate the uptake and metabolism of the five-carbon sugar alcohol xylitol by Gram-positive viridans group streptococcus and the two extensively used strains of Gram-negative Escherichia coli, E. coli C and E. coli K-12. E. coli C, but not E. coli K-12, contains a complete xylitol operon, and the viridans group streptococcus contains an incomplete xylitol operon used to metabolize the xylitol. Raman spectra from xylitol-exposed viridans group streptococcus exhibited significant changes that persisted even in progeny grown from the xylitol-exposed mother cells in a xylitol-free medium for 24 h. This behavior was not observed in the E. coli K-12. In both viridans group streptococcus and the E. coli C derivative HF4714, the metabolic intermediates are stably formed to create an anomaly in bacterial normal survival. The uptake of xylitol by Gram-positive and Gram-negative pathogens occurs even in the presence of other high-calorie sugars, and its stable integration within the bacterial cell wall may discontinue bacterial multiplication. This could be a contributing factor for the known efficacy of xylitol when taken as a prophylactic measure to prevent or reduce occurrences of persistent infection. Specifically, these bacteria are causative agents for several important diseases of children such as pneumonia, otitis media, meningitis, and dental caries. If properly explored, such an inexpensive and harmless sugar-alcohol, alone or used in conjunction with fluoride, would pave the way to an alternative preventive therapy for these childhood diseases when the causative pathogens have become resistant to modern medicines such as antibiotics and vaccine immunotherapy. PMID:21037297

  13. Countermeasures to Antibiotics Crisis: a Global Priority List of Antibiotic-Resistant Bacteria for Research and Development of New Antibiotics

    OpenAIRE

    Editorial

    2017-01-01

    On 27 Feb., 2017, the World Health Organization (WHO) announced the first list of important antibiotic-resistant bacteria (http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/en/), which tremendously threat human-being’s health. This list included 12 kinds of bacteria that were categorized into three priority tiers: Critical, High and Medium. In the first tier, Critical, three Gram negative bacteria were included: Acinetobacter baumannii with carbapenem-resis...

  14. Can antibiotic resistance analysis be a useful tool for tracking population sources of contamination in Yucatan groundwater?

    Science.gov (United States)

    McLain, J. E.; Lenczewski, M.; Leal-Bautista, R. M.

    2013-05-01

    Antibiotic resistance patterns have been widely used in scientific studies conducted to identify sources of water contamination. However, the methods of resistance determination have not been standardized; therefore, the data on antibiotic resistance in the environment come from studies that have used a range of media types, antibiotic concentrations, and incubation periods, making it difficult to compare results between environments. Over two years, we assessed antibiotic sensitivity of Gram-positive and Gram-negative bacteria isolated from Yucatan water sources, to identify unique resistance patterns and assess the potential for antibiotic resistance analysis as a tool to discriminate between fecal pollution from two population sources (tourist and local). Though resistance to erythromycin, streptomycin, and ciprofloxacin showed some differences between populations, natural bacterial resistance (in isolates from pristine sources) was very high and confounded the research findings. This study highlights the need among the research community involved in tracking of environmental antibiotic resistance to develop a standardized and rigorously validated suite of methods that address background resistance and that can be used across environments, to accurately inform source tracking studies.

  15. RecA Inhibitors Potentiate Antibiotic Activity and Block Evolution of Antibiotic Resistance.

    Science.gov (United States)

    Alam, Md Kausar; Alhhazmi, Areej; DeCoteau, John F; Luo, Yu; Geyer, C Ronald

    2016-03-17

    Antibiotic resistance arises from the maintenance of resistance mutations or genes acquired from the acquisition of adaptive de novo mutations or the transfer of resistance genes. Antibiotic resistance is acquired in response to antibiotic therapy by activating SOS-mediated DNA repair and mutagenesis and horizontal gene transfer pathways. Initiation of the SOS pathway promotes activation of RecA, inactivation of LexA repressor, and induction of SOS genes. Here, we have identified and characterized phthalocyanine tetrasulfonic acid RecA inhibitors that block antibiotic-induced activation of the SOS response. These inhibitors potentiate the activity of bactericidal antibiotics, including members of the quinolone, β-lactam, and aminoglycoside families in both Gram-negative and Gram-positive bacteria. They reduce the ability of bacteria to acquire antibiotic resistance mutations and to transfer mobile genetic elements conferring resistance. This study highlights the advantage of including RecA inhibitors in bactericidal antibiotic therapies and provides a new strategy for prolonging antibiotic shelf life. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Comparison of E-test with other conventional susceptibility testing methods for ciprofloxacin and gentamicin against gram negative enteric bacilli.

    Science.gov (United States)

    Ogbolu, D O; Terry-Alli, O A; Daini, O A; Olabiyi, F A; Igharo, E A

    2012-06-01

    Increasing antibiotic resistance in Gram negative bacteria has led to the need for a faster and reliable method for determining antimicrobial susceptibility testing. In a resource poor setting like ours, it's also important to look for methods that will be clinically and economically beneficial to the patient. This study was aimed at evaluating the Epsilometer test (E-test) and conventional methods for determining antimicrobial susceptibility of isolates of Gram-negative enteric bacteria to ciprofloxacin and gentamicin. Disc diffusion, E-test, broth dilution and agar dilution methods were performed on 54 bacterial isolates. Using the E-test, 88.9% of bacterial isolates were resistant to ciprofloxacin, 92.6% were resistant using broth microdilution, 96.3% were resistant using agar dilution and 72.2% were resistant using disc diffusion. Minimum inhibitory concentration (MIC50) of isolates for gentamicin showed significant difference for all the techniques (p 0.05). Both E-test and broth dilution methods showed high levels of agreement (p > 0.05), there were low levels of agreement between E-test and agar dilution method (p < 0.05), especially at MIC50. The E-test can therefore be considered a reliable method to determine antimicrobial susceptibility testing and it gives results which are at least as accurate as those obtained by the broth dilution method.

  17. [Diagnostic and therapeutic management of Gram-negative infections].

    Science.gov (United States)

    Bassetti, Matteo; Repetto, Ernestina

    2008-04-01

    Among Gram negative bacteria, Pseudomonas aeruginosa, the extended spectrum beta-lactamases (ESBL)-producing strains, Acinetobacter spp, in particular the multiresistant Acinetobacter baumannii, and Stenotrophomonas maltophilia are the most implicated micrororganisms in the ever more increasing problem of bacterial resistance. Possible solutions have to be searched, on one hand, in the use of new drugs but, on the other hand, in the re-evaluation of those already available drugs, possibly considering a new role for old drugs such as colistine and fosfomycin. Concerning ESBL-producing strains, the most recent data provided by EARSS report, in Italy, an incidence rate of 10-25 percent. The insurgence of an infection sustained by an ESBL+ve strain is strictly related to some well known risk factors, like the hospital stay itself, the disease severity, the length of stay in ICU, intubation and mechanical ventilation, catheterization, urinary or artery, and the past exposure to antibiotics. The raise in ESBL producing strains is closely related to the increasing use of cephalosporins. In the setting of a Gram negative infection, the combination therapy guarantees a higher coverage by reducing insurgence of possible resistance mechanisms, possibly resulting synergistic, and allowing a de-escalation therapy, although to this latter other problems, such as tolerability, costs and compliance, can be related. Another basic aspect to take into account of, in order to achieve the maximal efficacy of the antibiotic treatment, is the right dosage. In the idea to look for the best approach for the antibiotic treatment of a severe infection in a hospital setting, when a Gram negative aetiology is implicated, it can be possibly presumed that the right way consists in avoiding inappropriate antibiotic therapies, making therapeutic choices based on guidelines resulted from local epidemiological data, initiating the therapy promptly, avoiding excessive use of antibiotics, possibly

  18. Paracoccus marcusii sp. nov., an orange gram-negative coccus.

    Science.gov (United States)

    Harker, M; Hirschberg, J; Oren, A

    1998-04-01

    Phenotypic, chemotaxonomic and 16S rDNA sequence analysis of an orange Gram-negative coccus that appeared as a contaminant on a nutrient agar plate delineated a new species of the genus Paracoccus. Phenotypic features of the strain that differ from all or most of the previously described Paracoccus species include its bright orange colour, caused by the synthesis of large amounts of carotenoids (mainly astaxanthin), and its inability to use nitrate as an electron acceptor in respiration. The name Paracoccus marcusii is proposed for this organism. The type strain is DSM 11574T.

  19. Antimicrobial Activity of Carbon Nanoparticles Isolated from Natural Sources against Pathogenic Gram-Negative and Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Sheena Varghese

    2013-01-01

    Full Text Available This paper describes the isolation of carbon nanoparticles (CNPs from kitchen soot, characterization of the CNPs by UV/visible spectroscopy, SEM and XRD, and their antimicrobial action. The antibacterial activity of the isolated carbon nanoparticles was tested against various pathogenic bacterial strains such as Gram-negative Proteus refrigere and Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus and Streptococcus haemolyticus. The inhibition zones were measured, and it was found that the carbon nanoparticles isolated from natural sources are active against these Gram-negative and Gram-positive bacterial strains.

  20. Bio sorption of some Rare Earth Elements and Yttrium by Gram Positive and Gram Negative Bacteria

    International Nuclear Information System (INIS)

    Ibrahim, H.A.

    2012-01-01

    The separate bio sorption of the REEs La, Sm, Eu and Dy together with yttrium upon the Gram positive bacteria Bacillus subtilis (B.subtilis) and Bacillus Licheniformis (B. Licheniformis),the Gram negative bacterium Escherichia coli (E. coli ) and Saccharomyces cervisiae (Yeast) was studied. The revelant factors of ph 1-6, contact time (30-180 min), the initial rare earth concentration (50-200 mg/l) have been studied. The amount of the accumulated element was strongly affected by its concentration.In addition, bio sorptive fractionation of Y and the studied REEs from a solution containing a mixture of these elements was also studied. From the obtained data, it was found that Langmuir isotherm model for both B.licheniformis and E.coli gives a best fit for the studied elements over the working range of concentration (50-200 mg/I). Transmission electron microscopy exhibited accumulation throughout the bacterial cell with some granular deposits in both the cell periphery and cytoplasm

  1. The effects of antibiotic cycling and mixing on antibiotic resistance in intensive care units: a cluster-randomised crossover trial.

    Science.gov (United States)

    van Duijn, Pleun Joppe; Verbrugghe, Walter; Jorens, Philippe Germaine; Spöhr, Fabian; Schedler, Dirk; Deja, Maria; Rothbart, Andreas; Annane, Djillali; Lawrence, Christine; Nguyen Van, Jean-Claude; Misset, Benoit; Jereb, Matjaz; Seme, Katja; Šifrer, Franc; Tomiç, Viktorija; Estevez, Francisco; Carneiro, Jandira; Harbarth, Stephan; Eijkemans, Marinus Johannes Cornelis; Bonten, Marc

    2018-04-01

    Whether antibiotic rotation strategies reduce prevalence of antibiotic-resistant, Gram-negative bacteria in intensive care units (ICUs) has not been accurately established. We aimed to assess whether cycling of antibiotics compared with a mixing strategy (changing antibiotic to an alternative class for each consecutive patient) would reduce the prevalence of antibiotic-resistant, Gram-negative bacteria in European intensive care units (ICUs). In a cluster-randomised crossover study, we randomly assigned ICUs to use one of three antibiotic groups (third-generation or fourth-generation cephalosporins, piperacillin-tazobactam, and carbapenems) as preferred empirical treatment during 6-week periods (cycling) or to change preference after every consecutively treated patient (mixing). Computer-based randomisation of intervention and rotated antibiotic sequence was done centrally. Cycling or mixing was applied for 9 months; then, following a washout period, the alternative strategy was implemented. We defined antibiotic-resistant, Gram-negative bacteria as Enterobacteriaceae with extended-spectrum β-lactamase production or piperacillin-tazobactam resistance, and Acinetobacter spp and Pseudomonas aeruginosa with piperacillin-tazobactam or carbapenem resistance. Data were collected for all admissions during the study. The primary endpoint was average, unit-wide, monthly point prevalence of antibiotic-resistant, Gram-negative bacteria in respiratory and perineal swabs with adjustment for potential confounders. This trial is registered with ClinicalTrials.gov, number NCT01293071. Eight ICUs (from Belgium, France, Germany, Portugal, and Slovenia) were randomly assigned and patients enrolled from June 27, 2011, to Feb 16, 2014. 4069 patients were admitted during the cycling periods in total and 4707 were admitted during the mixing periods. Of these, 745 patients during cycling and 853 patients during mixing were present during the monthly point-prevalence surveys, and were

  2. A Gestalt approach to Gram-negative entry.

    Science.gov (United States)

    Silver, Lynn L

    2016-12-15

    A major obstacle confronting the discovery and development of new antibacterial agents to combat resistant Gram-negative (GN) organisms is the lack of a rational process for endowing compounds with properties that allow (or promote) entry into the bacterial cytoplasm. The major permeability difference between GN and Gram-positive (GP) bacteria is the GN outer membrane (OM) which is a permeability barrier itself and potentiates efflux pumps that expel compounds. Based on the fact that OM-permeable and efflux-deleted GNs are sensitive to many anti-GP drugs, recent efforts to approach the GN entry problem have focused on ways of avoiding efflux and transiting or compromising the OM, with the tacit assumption that this could allow entry of compounds into the GN cytoplasm. But bypassing the OM and efflux obstacles does not take into account the additional requirement of penetrating the cytoplasmic membrane (CM) whose sieving properties appear to be orthogonal to that of the OM. That is, tailoring compounds to transit the OM may well compromise their ability to enter the cytoplasm. Thus, a Gestalt approach to understanding the chemical requirements for GN entry seems a useful adjunct. This might consist of characterizing compounds which reach the cytoplasm, grouping (or binning) by routes of entry and formulating chemical 'rules' for those bins. This will require acquisition of data on large numbers of compounds, using non-activity-dependent methods of measuring accumulation in the cytoplasm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Strategies to Minimize Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Sang Hee Lee

    2013-09-01

    Full Text Available Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs and various data such as pharmacokinetic (PK and pharmacodynamic (PD properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST, clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care, the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing. The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics.

  4. Inhaled antibiotics for gram-negative respiratory infections.

    Science.gov (United States)

    Hudson, Ryan; Olson Blair, Brooke

    2011-10-01

    Several disease states create conditions that lead to opportunistic Gram-negative respiratory infections. Inhalation is the most direct and, until recently, underutilized means of antimicrobial drug targeting for respiratory tract infections. All approved antimicrobial agents for administration by inhalation are indicated for Pseudomonas aeruginosa infections in patients with cystic fibrosis. These inhaled therapies have directly contributed to a significant reduction in exacerbations and hospitalizations in this patient population over the last few decades. The relentless adaptation of pathogenic organisms to current treatment options demands that the pharmaceutical industry continue designing next-generation antimicrobial agents over 70 years after they were first introduced. Recent technological advances in inhalation devices and drug formulation techniques have broadened the scope of antimicrobial structural classes that can be investigated by inhalation; however, there is an urgent need to discover novel compounds with improved resistance profiles relative to those drugs that are already marketed.

  5. The gram-negative bacterial periplasm: Size matters.

    Directory of Open Access Journals (Sweden)

    Samuel I Miller

    2018-01-01

    Full Text Available Gram-negative bacteria are surrounded by two membrane bilayers separated by a space termed the periplasm. The periplasm is a multipurpose compartment separate from the cytoplasm whose distinct reducing environment allows more efficient and diverse mechanisms of protein oxidation, folding, and quality control. The periplasm also contains structural elements and important environmental sensing modules, and it allows complex nanomachines to span the cell envelope. Recent work indicates that the size or intermembrane distance of the periplasm is controlled by periplasmic lipoproteins that anchor the outer membrane to the periplasmic peptidoglycan polymer. This periplasm intermembrane distance is critical for sensing outer membrane damage and dictates length of the flagellar periplasmic rotor, which controls motility. These exciting results resolve longstanding debates about whether the periplasmic distance has a biological function and raise the possibility that the mechanisms for maintenance of periplasmic size could be exploited for antibiotic development.

  6. Marine Compounds with Therapeutic Potential in Gram-Negative Sepsis

    Directory of Open Access Journals (Sweden)

    Irina Yermak

    2013-06-01

    Full Text Available This paper concerns the potential use of compounds, including lipid A, chitosan, and carrageenan, from marine sources as agents for treating endotoxemic complications from Gram-negative infections, such as sepsis and endotoxic shock. Lipid A, which can be isolated from various species of marine bacteria, is a potential antagonist of bacterial endotoxins (lipopolysaccharide (LPSs. Chitosan is a widespread marine polysaccharide that is derived from chitin, the major component of crustacean shells. The potential of chitosan as an LPS-binding and endotoxin-neutralizing agent is also examined in this paper, including a discussion on the generation of hydrophobic chitosan derivatives to increase the binding affinity of chitosan to LPS. In addition, the ability of carrageenan, which is the polysaccharide of red alga, to decrease the toxicity of LPS is discussed. We also review data obtained using animal models that demonstrate the potency of carrageenan and chitosan as antiendotoxin agents.

  7. Global regulator SoxR is a negative regulator of efflux pump gene expression and affects antibiotic resistance and fitness in Acinetobacter baumannii.

    Science.gov (United States)

    Li, Henan; Wang, Qi; Wang, Ruobing; Zhang, Yawei; Wang, Xiaojuan; Wang, Hui

    2017-06-01

    SoxR is a global regulator contributing to multidrug resistance in Enterobacteriaceae. However, the contribution of SoxR to antibiotic resistance and fitness in Acinetobacter baumannii has not yet been studied. Comparisons of molecular characteristics were performed between 32 multidrug-resistant A. baumannii isolates and 11 susceptible isolates. A soxR overexpression mutant was constructed, and its resistance phenotype was analyzed. The impact of SoxR on efflux pump gene expression was measured at the transcription level. The effect of SoxR on the growth and fitness of A. baumannii was analyzed using a growth rate assay and an in vitro competition assay. The frequency of the Gly39Ser mutation in soxR was higher in multidrug-resistant A. baumannii, whereas the soxS gene was absent in all strains analyzed. SoxR overexpression led to increased susceptibility to chloramphenicol (4-fold), tetracycline (2-fold), tigecycline (2-fold), ciprofloxacin (2-fold), amikacin (2-fold), and trimethoprim (2-fold), but it did not influence imipenem susceptibility. Decreased expression of abeS (3.8-fold), abeM (1.3-fold), adeJ (2.4-fold), and adeG (2.5-fold) were correlated with soxR overexpression (P baumannii.

  8. Assessing the nosocomial infections' rate and the antibiotic resistance pattern among the patient hospitalized in beheshti hospital during 2013

    Directory of Open Access Journals (Sweden)

    Manijeh Kadkhodaei

    2018-01-01

    Full Text Available Aims: Nosocomial infection is associated with increased mortality, morbidity, and length of stay. Detection of infection, identify the etiology of bacterial antibiotic resistance pattern, is necessary given the widespread use of antibiotics and antibiotic-resistant organisms. Materials and Methods: This cross-sectional study was done on 288 patients admitted to the Beheshti Hospitals in Kashan based on NNIS definitions according to the state of Health and Medical education. In this study infections and antibiotic resistance symptoms were found. Data analyses were performed with Chi-square test. Results: Among the 288 patients studied, with mean out of hospital infection was 0.80%. Most cases of infection associated were pneumonia. The highest rates of infection were in the Intensive Care Unit (ICU with 51.7%. Nosocomial infection in ICU wards was associated with increased mortality and morbidity. The most common types were ventilator-associated pneumonia. Among the microorganisms, negative Gram was seen more. The common pathogens were including Acinetobacter, Escherichia coli, and Klebsiella. Antimicrobial resistance was generally increasing and had emerged from selective pressure from antibiotic use and transmission through health staff. Conclusion: This study showed a correlation between antibiotic use and resistance of microorganisms is significant. Hence, it seems that reducing aggressive acts and conduct hygiene education and monitoring act of antibiotics is necessary to prevent antibiotic resistance.

  9. State Health Department Requirements for Reporting of Antibiotic-Resistant Infections by Providers, United States, 2013 and 2015.

    Science.gov (United States)

    Pogorzelska-Maziarz, Monika; Carter, Eileen J; Manning, Mary Lou; Larson, Elaine L

    Due to the high burden of antibiotic-resistant infections, several US states mandate public reporting of these infections. To examine the extent to which state departments of health require reporting of antibiotic-resistant infections, we abstracted data from lists of reportable conditions from all 50 states at 2 time points, May 2013 and May 2015. Requirements varied substantially by state. In 2015, most states (n = 44) required reporting of at least 1 antibiotic-resistant infection; vancomycin-intermediate and/or vancomycin-resistant Staphylococcus aureus was the most frequently reportable infection (n = 40). Few states required reporting of methicillin-resistant S aureus (n = 11), multidrug-resistant gram-negative bacteria (n = 9), or vancomycin-resistant enterococci (n = 8). During the 2 years we studied, 2013 and 2015, 4 states removed and 9 added at least 1 reporting requirement. The changes in reporting requirements suggest flexibility in health departments' response to local surveillance needs and emerging threats. Future studies should assess how data on antibiotic-resistant infections through different sources are used at the state level to drive prevention and control efforts.

  10. Antioxidant activity via DPPH, gram-positive and gram-negative antimicrobial potential in edible mushrooms.

    Science.gov (United States)

    Ahmad, Nisar; Mahmood, Fazal; Khalil, Shahid Akbar; Zamir, Roshan; Fazal, Hina; Abbasi, Bilal Haider

    2014-10-01

    Edible mushrooms (EMs) are nutritionally rich source of proteins and essential amino acids. In the present study, the antioxidant activity via 1,1-diphenyl-2-picrylhydrazyl (DPPH) and antimicrobial potential in EMs (Pleurotus ostreatus, Morchella esculenta, P. ostreatus (Black), P. ostreatus (Yellow) and Pleurotus sajor-caju) were investigated. The DPPH radical scavenging activity revealed that the significantly higher activity (66.47%) was observed in Morchella esculenta at a maximum concentration. Similarly, the dose-dependent concentrations (200, 400, 600, 800 and 1000 µg) were also used for other four EMs. Pleurotus ostreatus exhibited 36.13% activity, P. ostreatus (Black (B)) exhibited 30.64%, P. ostreatus (Yellow (Y)) exhibited 40.75% and Pleurotus sajor-caju exhibited 47.39% activity at higher concentrations. Furthermore, the antimicrobial potential were investigated for its toxicity against gram-negative bacterial strains (Escherichia coli, Pseudomonas aeroginosa, Salmonella typhi, Klebsiella pneumonia, Erwinia carotovora and Agrobacterium tumifaciens), gram-positive bacterial strains (Bacillus subtilis, Bacillus atrophaeus and Staphylococcus aureus) and a fungal strain (Candida albicans) in comparison with standard antibiotics. Antimicrobial screening revealed that the ethanol extract of P. ostreatus was active against all microorganism tested except E. coli. Maximum zone of inhibition (13 mm) was observed against fungus and A. tumifaciens. P. sajor-caju showed best activities (12.5 mm) against B. subtilis, B. atrophaeus and K. pneumonia. P. ostreatus (Y) showed best activities against P. aeroginosa (21.83 mm), B. atrophaeus (20 mm) and C. albicans (21 mm). P. ostreatus (B) exhibited best activities against C. albicans (16 mm) and slightly lower activities against all other microbes except S. typhi. M. esculenta possess maximum activities in terms of inhibition zone against all microorganisms tested except S. typhi. © The Author(s) 2012.

  11. Emergence of antibiotic-resistant bacteria in patients with Fournier gangrene.

    Science.gov (United States)

    Lin, Wei-Ting; Chao, Chien-Ming; Lin, Hsin-Lan; Hung, Ming-Chran; Lai, Chih-Cheng

    2015-04-01

    This study was conducted to investigate the bacteriology and associated patterns of antibiotic resistance Fournier gangrene. Patients with Fournier's gangrene from 2008 to 2012 were identified from the computerized database in a medical center in southern Taiwan. The medical records of all patients with Fournier's gangrene were reviewed retrospectively. There were 61 microorganisms, including 60 bacteria and one Candida spp, isolated from clinical wound specimens from 32 patients. The most common isolates obtained were Streptococcus spp. (n=12), Peptoniphilus spp. (n=8), Staphylococcus aureus (n=7), Escherichia coli (n=7), and Klebsiella pneumoniae (n=7). Among 21 strains of gram-negative bacilli, five (23.8%) were resistant to fluoroquinolones, and three isolates were resistant to ceftriaxone. Two E. coli strains produced extended-spectrum beta-lactamase. Four of the seven S. aureus isolates were methicillin-resistant. Among 15 anaerobic isolates, nine (60%) were resistant to penicillin, and eight (53.3%) were resistant to clindamycin. Four (26.7%) isolates were resistant to metronidazole. The only independent risk factor associated with mortality was inappropriate initial antibiotic treatment (p=0.021). Antibiotic-resistant bacteria are emerging in the clinical setting of Fournier gangrene. Clinicians should use broad-spectrum antibiotics initially to cover possible antibiotic-resistant bacteria.

  12. The Stringent Response Promotes Antibiotic Resistance Dissemination by Regulating Integron Integrase Expression in Biofilms

    Directory of Open Access Journals (Sweden)

    Emilie Strugeon

    2016-08-01

    Full Text Available Class 1 integrons are genetic systems that enable bacteria to capture and express gene cassettes. These integrons, when isolated in clinical contexts, most often carry antibiotic resistance gene cassettes. They play a major role in the dissemination of antibiotic resistance among Gram-negative bacteria. The key element of integrons is the integrase, which allows gene cassettes to be acquired and shuffled. Planktonic culture experiments have shown that integrase expression is regulated by the bacterial SOS response. In natural settings, however, bacteria generally live in biofilms, which are characterized by strong antibiotic resilience and by increased expression of stress-related genes. Here, we report that under biofilm conditions, the stringent response, which is induced upon starvation, (i increases basal integrase and SOS regulon gene expression via induction of the SOS response and (ii exerts biofilm-specific regulation of the integrase via the Lon protease. This indicates that biofilm environments favor integron-mediated acquisition of antibiotic resistance and other adaptive functions encoded by gene cassettes.

  13. Antibiotic resistance in Haemophilus influenzae decreased, except for beta-lactamase-negative amoxicillin-resistant isolates, in parallel with community antibiotic consumption in Spain from 1997 to 2007.

    Science.gov (United States)

    García-Cobos, Silvia; Campos, José; Cercenado, Emilia; Román, Federico; Lázaro, Edurne; Pérez-Vázquez, María; de Abajo, Francisco; Oteo, Jesús

    2008-08-01

    The susceptibility to 14 antimicrobial agents and the mechanisms of aminopenicillin resistance were studied in 197 clinical isolates of Haemophilus influenzae--109 isolated in 2007 (study group) and 88 isolated in 1997 (control group). Community antibiotic consumption trends were also examined. H. influenzae strains were consecutively isolated from the same geographic area, mostly from respiratory specimens from children and adults. Overall, amoxicillin resistance decreased by 8.4% (from 38.6 to 30.2%). Beta-lactamase production decreased by 15.6% (from 33 to 17.4%, P = 0.01), but amoxicillin resistance without beta-lactamase production increased by 7.1% (from 5.7 to 12.8%). All beta-lactamase-positive isolates were TEM-1, but five different promoter regions were identified, with Pdel being the most prevalent in both years, and Prpt being associated with the highest amoxicillin resistance. A new promoter consisting of a double repeat of 54 bp was detected. Community consumption of most antibiotics decreased, as did the geometric means of their MICs, but amoxicillin-clavulanic acid and azithromycin consumption increased by ca. 60%. For amoxicillin-clavulanic acid, a 14.2% increase in the population with an MIC of 2 to 4 microg/ml (P = 0.02) was observed; for azithromycin, a 21.2% increase in the population with an MIC of 2 to 8 microg/ml (P = 0.0005) was observed. In both periods, the most common gBLNAR (i.e., H. influenzae isolates with mutations in the ftsI gene as previously defined) patterns were IIc and IIb. Community consumption of trimethoprim-sulfamethoxazole decreased by 54%, while resistance decreased from 50 to 34.9% (P = 0.04). Antibiotic resistance in H. influenzae decreased in Spain from 1997 to 2007, but surveillance should be maintained since new forms of resistances may be developing.

  14. PREVALENCE AND ANTIBIOTIC RESISTANCE OF ...

    African Journals Online (AJOL)

    9 mars 2015 ... strategy to prevent the spread of this resistance. Keywords: Staphylococci; Staphylococcus aureus; Oxacillin; Antibiotic resistance; Disc diffusion. Author Correspondence, e-mail: mn.boukhatem@yahoo.fr. ICID: 1142924. Journal of Fundamental and Applied Sciences. ISSN 1112-9867. Available online at.

  15. Polyacrylamide gel electrophoresis and subspeciation of total cell proteins from multi-antibiotic-resistant skin diphtheroids labelled with [35S]methionine or [35S]thioATP and of coagulase negative staphylococci labelled with [35S]methionine

    International Nuclear Information System (INIS)

    Asante, M.; Holton, J.; Jackson, F.R.; Smith, I.

    1987-01-01

    The authors demonstrate that [ 35 S]methionine labelling of proteins followed by PAGE can be used to distinguish biochemically similar, multi-antibiotic-resistant skin diphtheroids; thirty-one isolates fell into four subgroups. The method also distinguished ten separate electrophoretypes of coagulase-negative staphylococci which correlated approximately with eight biotypes; the fifty-one isolates of biotypes SII, the commonest clinical isolate, were electrophoretically identical, thus suggesting that they are, indeed, members of a single subgroup. The authors also report a novel method of radiolabelling the phosphoproteins using [ 35 S]thioATP and have demonstrated the method using the above diphtheroids. These were again distinguished into the same four subgroups although the patterns of phosphoproteins were qualitatively and quantitatively different from those of the proteins. This thioATP labelling method should have wide application also. 14 refs.; 7 figs.; 4 tabs

  16. Mobile antibiotic resistance encoding elements promote their own diversity.

    Directory of Open Access Journals (Sweden)

    Geneviève Garriss

    2009-12-01

    Full Text Available Integrating conjugative elements (ICEs are a class of bacterial mobile genetic elements that disseminate via conjugation and then integrate into the host cell genome. The SXT/R391 family of ICEs consists of more than 30 different elements that all share the same integration site in the host chromosome but often encode distinct properties. These elements contribute to the spread of antibiotic resistance genes in several gram-negative bacteria including Vibrio cholerae, the agent of cholera. Here, using comparative analyses of the genomes of several SXT/R391 ICEs, we found evidence that the genomes of these elements have been shaped by inter-ICE recombination. We developed a high throughput semi-quantitative method to explore the genetic determinants involved in hybrid ICE formation. Recombinant ICE formation proved to be relatively frequent, and to depend on host (recA and ICE (s065 and s066 loci, which can independently and potentially cooperatively mediate hybrid ICE formation. s065 and s066, which are found in all SXT/R391 ICEs, are orthologues of the bacteriophage lambda Red recombination genes bet and exo, and the s065/s066 recombination system is the first Red-like recombination pathway to be described in a conjugative element. Neither ICE excision nor conjugative transfer proved to be essential for generation of hybrid ICEs. Instead conjugation facilitates the segregation of hybrids and could provide a means to select for functional recombinant ICEs containing novel combinations of genes conferring resistance to antibiotics. Thus, ICEs promote their own diversity and can yield novel mobile elements capable of disseminating new combinations of antibiotic resistance genes.

  17. The etiology of neonatal sepsis and patterns of antibiotic resistance

    International Nuclear Information System (INIS)

    Waheed, M.; Laeeq, A.; Maqbool, S.

    2003-01-01

    Objective: To study the patterns of causative bacteria and antibiotic resistance in neonatal sepsis. Results: Among 228 cases included in the study, the male to female ratio was 2.1 to 1. The gestational age was less than 36 weeks in 68 (30%) cases and low birth weight babies were 143 (62.6%). History of birth asphyxia was present in 103 (45%) cases. There were 142 (62.3%) cases of early onset ( 7 days). Out of 233 positive blood cultures Escherichia coli was found to be commonest (47.8%, n =111, p<0.05) both in early onset (47.8%, n=68, p <0.05) and late onset sepsis (47.3%,n=43, p<0.05). Staphylococcus aureus was the most common among gram positive organism. Resistance to cefotaxime, ceftazidime and amikacin was 34% to 80% and to ciprofloxacin 13% to 72%. A total of 64 cases (28%) died. Mortality was four times higher in early onset sespis. Conclusion: Gram negative bacteria are the commenst cause of neonatal sepsis. The resistance to the commonly used antibiotics is alarmingly high. Mortality is four times higher in early one set sepsis. (author)

  18. Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria

    OpenAIRE

    Cristina Anamaria Semeniuc; Carmen Rodica Pop; Ancuţa Mihaela Rotar

    2017-01-01

    The aim of this study was to compare the antibacterial effects of several essential oils (EOs) alone and in combination against different Gram-positive and Gram-negative bacteria associated with food products. Parsley, lovage, basil, and thyme EOs, as well as their mixtures (1:1, v/v), were tested against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Salmonella typhimurium. The inhibitory effects ranged from strong (thyme EO against E. coli) to no inhib...

  19. The Prehistory of Antibiotic Resistance.

    Science.gov (United States)

    Perry, Julie; Waglechner, Nicholas; Wright, Gerard

    2016-06-01

    Antibiotic resistance is a global problem that is reaching crisis levels. The global collection of resistance genes in clinical and environmental samples is the antibiotic "resistome," and is subject to the selective pressure of human activity. The origin of many modern resistance genes in pathogens is likely environmental bacteria, including antibiotic producing organisms that have existed for millennia. Recent work has uncovered resistance in ancient permafrost, isolated caves, and in human specimens preserved for hundreds of years. Together with bioinformatic analyses on modern-day sequences, these studies predict an ancient origin of resistance that long precedes the use of antibiotics in the clinic. Understanding the history of antibiotic resistance is important in predicting its future evolution. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  20. Antibiotic resistance in probiotic bacteria

    Directory of Open Access Journals (Sweden)

    Miguel eGueimonde

    2013-07-01

    Full Text Available Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The main probiotic bacteria are strains belonging to the genera Lactobacillus and Bifidobacterium, although other representatives, such as Bacillus or Escherichia coli strains, have also been used. Lactobacillus and Bifidobacterium are two common inhabitants of the human intestinal microbiota. Also, some species are used in food fermentation processes as starters, or as adjunct cultures in the food industry. With some exceptions, antibiotic resistance in these beneficial microbes does not constitute a safety concern in itself, when mutations or intrinsic resistance mechanisms are responsible for the resistance phenotype. In fact, some probiotic strains with intrinsic antibiotic resistance could be useful for restoring the gut microbiota after antibiotic treatment. However, specific antibiotic resistance determinants carried on mobile genetic elements, such as tetracycline resistance genes, are often detected in the typical probiotic genera, and constitute a reservoir of resistance for potential food or gut pathogens, thus representing a serious safety issue.

  1. A chromatographic approach to distinguish Gram-positive from Gram-negative bacteria using exogenous volatile organic compound metabolites.

    Science.gov (United States)

    Ramírez-Guízar, Susana; Sykes, Hannah; Perry, John D; Schwalbe, Edward C; Stanforth, Stephen P; Perez-Perez, Ma Cristina I; Dean, John R

    2017-06-09

    This paper utilized L-alanine aminopeptidase activity as a useful approach to distinguish between Gram-negative and Gram-positive bacteria. This was done using two enzyme substrates, specifically 2-amino-N-phenylpropanamide and 2-amino-N-(4-methylphenyl)propanamide which liberated the volatile compounds aniline and p-toluidine, respectively. Two complementary analytical techniques have been used to identify and quantify the VOCs, specifically static headspace multicapillary column gas chromatography ion mobility spectrometry (SHS-MCC-GC-IMS) and headspace solid phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS). Superior limits of detection were obtained using HS-SPME-GC-MS, typically by a factor of x6 such that the LOD for aniline was 0.02μg/mL and 0.01μg/mL for p-toluidine. In addition, it was also possible to determine indole interference-free by HS-SPME-GC-MS at an LOD of 0.01μg/mL. The approach was applied to a range of selected bacteria: 15 Gram-negative and 7 Gram-positive bacteria. Use of pattern recognition, in the form of Principal Component Analysis, confirmed that it is possible to differentiate between Gram-positive and Gram-negative bacteria using the enzyme generated VOCs, aniline and p-toluidine. The exception was Stenotrophomonas maltophilia which showed negligible VOC concentrations for both aniline and p-toluidine, irrespective of the analytical techniques used and hence was not characteristic of the other Gram-negative bacteria investigated. The developed methodology has the potential to be applied for clinical and food applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. LpxC inhibitors as new antibacterial agents and tools for studying regulation of lipid A biosynthesis in Gram-negative pathogens.

    Science.gov (United States)

    Tomaras, Andrew P; McPherson, Craig J; Kuhn, Michael; Carifa, Arlene; Mullins, Lisa; George, David; Desbonnet, Charlene; Eidem, Tess M; Montgomery, Justin I; Brown, Matthew F; Reilly, Usa; Miller, Alita A; O'Donnell, John P

    2014-09-30

    The problem of multidrug resistance in serious Gram-negative bacterial pathogens has escalated so severely that new cellular targets and pathways need to be exploited to avoid many of the preexisting antibiotic resistance mechanisms that are rapidly disseminating to new strains. The discovery of small-molecule inhibitors of LpxC, the enzyme responsible for the first committed step in the biosynthesis of lipid A, represents a clinically unprecedented strategy to specifically act against Gram-negative organisms such as Pseudomonas aeruginosa and members of the Enterobacteriaceae. In this report, we describe the microbiological characterization of LpxC-4, a recently disclosed inhibitor of this bacterial target, and demonstrate that its spectrum of activity extends to several of the pathogenic species that are most threatening to human health today. We also show that spontaneous generation of LpxC-4 resistance occurs at frequencies comparable to those seen with marketed antibiotics, and we provide an in-depth analysis of the mechanisms of resistance utilized by target pathogens. Interestingly, these isolates also served as tools to further our understanding of the regulation of lipid A biosynthesis and enabled the discovery that this process occurs very distinctly between P. aeruginosa and members of the Enterobacteriaceae. Finally, we demonstrate that LpxC-4 is efficacious in vivo against multiple strains in different models of bacterial infection and that the major first-step resistance mechanisms employed by the intended target organisms can still be effectively treated with this new inhibitor. New antibiotics are needed for the effective treatment of serious infections caused by Gram-negative pathogens, and the responsibility of identifying new drug candidates rests squarely on the shoulders of the infectious disease community. The limited number of validated cellular targets and approaches, along with the increasing amount of antibiotic resistance that is

  3. Glycosaminoglycans are involved in pathogen adherence to corneal epithelial cells differently for Gram-positive and Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Beatriz García

    2016-11-01

    Full Text Available The epithelium of the cornea is continuously exposed to pathogens, and adhesion to epithelial cells is regarded as an essential first step in bacterial pathogenesis. In this article, the involvement of glycosaminoglycans in the adhesion of various pathogenic bacteria to corneal epithelial cells is analyzed. All microorganisms use glycosaminoglycans as receptors, but arranged in different patterns depending on the Gram-type of the bacterium. The heparan sulfate chains of syndecans are the main receptors, though other molecular species also seem to be involved, particularly in Gram-negative bacteria. Adherence is inhibited differentially by peptides, including heparin binding sequences, indicating the participation of various groups of Gram-positive and -negative adhesins. The length of the saccharides produces a major effect, and low molecular weight chains inhibit the binding of Gram-negative microorganisms but increase the adherence of Gram-positives. Pathogen adhesion appears to occur preferentially through sulfated domains, and is very dependent on N- and 6-O-sulfation of the glucosamine residue and, to a lesser extent, 2-O sulfation of uronic acid. These data show the differential use of corneal receptors, which could facilitate the development of new anti-infective strategies.

  4. Host susceptibility to gram-negative pneumonia after lung contusion.

    Science.gov (United States)

    Dolgachev, Vladislav A; Yu, Bi; Reinke, Julia M; Raghavendran, Krishnan; Hemmila, Mark R

    2012-03-01

    Lung contusion (LC) induces inflammation with high local concentrations of proinflammatory mediators stimulating chemotaxis and activation of neutrophils. LC is also a risk factor for development of pneumonia; however, the reason for this increased susceptibility is not clearly identified. We hypothesize that LC creates acute changes in the host pulmonary innate immune system that leads to vulnerability from a "second" hit bacterial infection. Female C57Bl/6 mice underwent LC injury at time -6 hours. At 0 hours, these mice were inoculated intratracheally with 1,000 colony forming unit (CFU) of Klebsiella pneumoniae (LC+Pneu) or vehicle (LC). Control animals underwent a sham LC injury followed by pneumonia (Sham+Pneu). Bronchoalveolar lavage (BAL) fluid and lung tissue specimens were collected. Lung bacteria levels were quantified by serial dilution, plating, and counting CFUs. Cytokine levels were assayed by ELISA. Cell type identification and quantification was performed using flow cytometry. Survival at 72 hours was markedly different for the LC, Sham+Pneu, and LC+Pneu groups (100%, 80%, 20%, p Pneu vs. LC+Pneu). LC+Pneu animals had decreased pulmonary bacterial clearance at 24 hours compared with the Sham+Pneu group (4 × 10(7) vs. 8 × 10(6) CFUs, p Pneu mice compared with the Sham+Pneu group at 24 hours. Conversely, the Sham+Pneu mice had increased levels of macrophage inflammatory protein-2, total cells, macrophages, and neutrophils in BAL compared with the LC+Pneu group at 24 hours. LC+Pneu animals demonstrated changes in macrophage apoptosis and necrosis in BAL samples obtained 2 hours after induction of pneumonia when compared with the Sham+Pneu group. Both Sham+Pneu and LC+Pneu animals demonstrated an increase in the level of IL-10 in BAL fluid compared with LC animals. Acute inflammation after LC acts to modulate the presence of inflammatory cells necessary to combat gram-negative bacteria. This results in decreased bacterial clearance and increased

  5. Identification of antibiotic-resistant Escherichia coli isolated from a municipal wastewater treatment plant.

    Science.gov (United States)

    Zanotto, Carlo; Bissa, Massimiliano; Illiano, Elena; Mezzanotte, Valeria; Marazzi, Francesca; Turolla, Andrea; Antonelli, Manuela; De Giuli Morghen, Carlo; Radaelli, Antonia

    2016-12-01

    The emergence and diffusion of antibiotic-resistant bacteria has been a major public health problem for many years now. In this study, antibiotic-resistance of coliforms and Escherichia coli were investigated after their isolation from samples collected in a municipal wastewater treatment plant in the Milan area (Italy) along different points of the treatment sequence: inflow to biological treatment; outflow from biological treatment following rapid sand filtration; and outflow from peracetic acid disinfection. The presence of E. coli that showed resistance to ampicillin (AMP) and chloramphenicol (CAF), used as representative antibiotics for the efficacy against Gram-positive and Gram-negative bacteria, was evaluated. After determining E. coli survival using increasing AMP and CAF concentrations, specific single-resistant (AMP R or CAF R ) and double-resistant (AMP R /CAF R ) strains were identified among E. coli colonies, through amplification of the β-lactamase Tem-1 (bla) and acetyl-transferase catA1 (cat) gene sequences. While a limited number of CAF R bacteria was observed, most AMP R colonies showed the specific resistance genes to both antibiotics, which was mainly due to the presence of the bla gene sequence. The peracetic acid, used as disinfection agent, showed to be very effective in reducing bacteria at the negligible levels of less than 10 CFU/100 mL, compatible with those admitted for the irrigation use of treated waters. Copyright © 2016. Published by Elsevier Ltd.

  6. Antibiotic concentration and antibiotic-resistant bacteria in two shallow urban lakes after stormwater event.

    Science.gov (United States)

    Zhang, Songhe; Pang, Si; Wang, PeiFang; Wang, Chao; Han, Nini; Liu, Bin; Han, Bing; Li, Yi; Anim-Larbi, Kwaku

    2016-05-01

    Stormwater runoff is generally characterized as non-point source pollution. In the present study, antibiotic concentration and antibiotic susceptibilities of cultivable heterotrophic bacteria were investigated in two small shallow urban lakes before and after strong storm event. Several antibiotics, lactose-fermenting bacteria and cultivable heterotrophic bacteria concentrations increased in surface water and/or surface sediment of two small urban lakes (Lake Xuanwu and Wulongtan) after strong storm event. In general, the frequencies of bacteria showing resistance to nine antibiotics increased after storm event. Based on the 16S rRNA genes of 50 randomly selected isolates from each water sample of two lakes, Aeromonas and Bacillus were dominant genera in samples from two lakes, while genera Proteus and Lysinibacillus were the third abundant genera in Lake Xuanwu and Wulongtu, respectively. Presences of nine antibiotic resistance genes (ARGs) in the 100 isolates were detected and most of these isolates harbored at least two ARGs with different functions. The detection frequency of ARGs in Gram-negative isolates was higher than that in Gram-positive isolates. The most prevalent integron in 100 isolates was int(II) (n = 28), followed by int(I) (n = 17) and int(III) (n = 17). Our results indicate that strong storm events potentially contribute to the transfer of ARGs and antibiotic-resistant bacteria from land-sewer system to the urban Lakes.

  7. Inhibition of Multidrug-Resistant Gram-Positive and Gram-Negative Bacteria by a Photoactivated Porphyrin.

    Science.gov (United States)

    Bondi, Moreno; Mazzini, Anna; de Niederhäusern, Simona; Iseppi, Ramona; Messi, Patrizia

    2017-12-04

    The authors studied the in vitro antibacterial activity of the photo-activated porphyrin meso-tri(N-methyl-pyridyl), mono(N-tetradecyl-pyridyl)porphine (C14) against four multidrug-resistant bacteria: Staphylococcus aureus, Enterococcus faecalis (Gram-positive), Escherichia coli, Pseudomonas aeruginosa (Gram-negative). Using 10 μg/ml of porphyrin and 60 sec irradiation we observed the remarkable susceptibility of S. aureus and E. faecalis to treatment while, under the same conditions, E. coli and P. aeruginosa showed very low susceptibility. In a later stage, suspensions of Gram-negative bacteria were processed with EDTA before photo-activation, obtaining a significant decrease in viable counts. In view of the results, if the combination of low porphyrin concentrations and short irradiation times will be effective in vivo also, this approach could be a possible alternative to antibiotics, in particular against localized infections due to multidrug-resistant microorganisms.

  8. Bacterial Contamination of Iranian Paper Currency and Their Antibiotic Resistance Patterns

    Directory of Open Access Journals (Sweden)

    Farzaneh Firoozeh

    2017-11-01

    Full Text Available Background: Paper currency is used in exchange for services, and thisis why the circulation of paper currency from person to person expandsmicroorganisms. Objectives:: Paper banknotes would be a vector for transmission of pathogenic microorganisms through handling. This study aimed to determine bacterial contamination of Iranian paper currencies in circulation and their antibiotic resistance patterns. Materials and Methods: In this study, 337 currency notes of different value were collected from markets, shops, restaurants, bus stations and banks in Kashan, Iran during April 2015 to March 2016. The currency notes transferred to microbiology laboratory and were tested for bacterial contamination using standard microbiological methods. Antibiotic resistance patterns of isolated bacteria were determined by disk diffusion method according to CLSI standards. The results and data were analyzed using descriptive statistics. Results: Of 337 currency notes, 262 (77.7% were identified with bacterial contamination. Bacteria isolated from currency notes were as follows: Bacillus spp 113 (43.1%, coagulase-negative Staphylococci 99 (37.7%, Escherichia coli 20 (7.6%, Enterococci species 14 (5.3%, Staphylococcus aureus 8 (3.1%, Klebsiella spp 4 (1.5%, Shigella species 2 (0.8%, Pseudomonas species 2 (0.8%. The most and least contaminated currency notes were 50000 and 500 Rials, respectively. The most resistance rates in gram negative rods were against nalidixicacid, and ampicillin. Also most resistance rates in Staphylococcus aureus, coagulase-negative Staphylococci and Enterococci species were against ampicillin, erythromycin and tetracycline. Conclusion: Our study revealed that the bacterial contamination among Iranian paper currency in circulation especially those obtained from certain sources including shops and bus stations is high and in most cases these bacterial isolates are antibiotic resistant strains.

  9. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis.

    Science.gov (United States)

    Tacconelli, Evelina; Carrara, Elena; Savoldi, Alessia; Harbarth, Stephan; Mendelson, Marc; Monnet, Dominique L; Pulcini, Céline; Kahlmeter, Gunnar; Kluytmans, Jan; Carmeli, Yehuda; Ouellette, Marc; Outterson, Kevin; Patel, Jean; Cavaleri, Marco; Cox, Edward M; Houchens, Chris R; Grayson, M Lindsay; Hansen, Paul; Singh, Nalini; Theuretzbacher, Ursula; Magrini, Nicola

    2018-03-01

    antibiotics that are active against multidrug-resistant tuberculosis and Gram-negative bacteria. The global strategy should include antibiotic-resistant bacteria responsible for community-acquired infections such as Salmonella spp, Campylobacter spp, N gonorrhoeae, and H pylori. World Health Organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Does the empiric use of vancomycin in pediatrics increase the risk for Gram-negative bacteremia?

    NARCIS (Netherlands)

    Cuno, SPMU; Heesen, GJM; Arends, JP; Kimpen, JLL; van Houten, M.A.

    Background, Gram-negative bacteremia in children, a major cause of morbidity and mortality, may in part be induced by intensive treatment procedures and nonspecific use of antibiotics. Our primary objective was to study the causal relationship between the use of vancomycin and Gram-negative

  11. Antibiotic resistance profile of staphylococci from clinical sources ...

    African Journals Online (AJOL)

    Infants, children and the aged are among the groups most vulnerable to microbial infections more so when these microbial agents become resistant to antimicrobials. The antibiotic resistant profile of Staphylococcus aureus and selected coagulase negative staphylococci were determined by standard methods. Of the 178 ...

  12. Probing interaction of Gram-positive and Gram-negative bacterial cells with ZnO nanorods

    International Nuclear Information System (INIS)

    Jain, Aanchal; Bhargava, Richa; Poddar, Pankaj

    2013-01-01

    In the present work, the physiological effects of the ZnO nanorods on the Gram positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Aerobacter aerogenes) bacterial cells have been studied. The analysis of bacterial growth curves for various concentrations of ZnO nanorods indicates that Gram positive and Gram negative bacterial cells show inhibition at concentrations of ∼ 64 and ∼ 256 μg/mL respectively. The marked difference in susceptibility towards nanorods was also validated by spread plate and disk diffusion methods. In addition, the scanning electron micrographs show a clear damage to the cells via changed morphology of the cells from rod to coccoid etc. The confocal optical microscopy images of these cells also demonstrate the reduction in live cell count in the presence of ZnO nanorods. These, results clearly indicate that the antibacterial activity of ZnO nanorods is higher towards Gram positive bacterium than Gram negative bacterium which indicates that the structure of the cell wall might play a major role in the interaction with nanostructured materials and shows high sensitivity to the particle concentration. Highlights: ► Effect of ZnO nanorods on the growth cycles of four bacterial strains. ► A relation has been established between growth rate of bacteria and concentration. ► Serious damage in the morphology of bacterial cells in the presence of ZnO nanorods. ► Microscopic studies to see the time dependent effect on bacterial cells

  13. Clinical, economic and societal impact of antibiotic resistance.

    Science.gov (United States)

    Barriere, Steven L

    2015-02-01

    The concern over antibiotic resistance has been voiced since the discovery of modern antibiotics > 75 years ago. The concerns have only increased with time, with efforts to control resistance caused by widespread overuse of antibiotics in human medicine and far more than appreciated use in the feeding of animals for human consumption to promote growth. The problem is worldwide, but certain regions and selected health care institutions report far more resistance, including strains of Gram-negative bacteria that are susceptible only to the once discarded drugs polymyxin B or colistin, and pan-resistant strains are on the rise. One of the central efforts to control resistance, apart from antimicrobial stewardship, is the development of new antimicrobial agents. This has lagged significantly over the past 10 - 15 years, for a variety of reasons; but promising new agents are being developed, unfortunately none thus far addressing all potentially resistant strains. There is the unlikely, but not unreal, possibility that we could return to a pre-antibiotic era, where morbidity and mortality rates have risen dramatically and routine surgical procedures are not performed for fear of post-operative infections. The onus of control of resistance is a moral imperative that falls on the shoulders of all.

  14. Predatory bacteria: a potential ally against multidrug-resistant Gram-negative pathogens.

    Directory of Open Access Journals (Sweden)

    Daniel E Kadouri

    Full Text Available Multidrug-resistant (MDR Gram-negative bacteria have emerged as a serious threat to human and animal health. Bdellovibrio spp. and Micavibrio spp. are Gram-negative bacteria that prey on other Gram-negative bacteria. In this study, the ability of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus to prey on MDR Gram-negative clinical strains was examined. Although the potential use of predatory bacteria to attack MDR pathogens has been suggested, the data supporting these claims is lacking. By conducting predation experiments we have established that predatory bacteria have the capacity to attack clinical strains of a variety of ß-lactamase-producing, MDR Gram-negative bacteria. Our observations indicate that predatory bacteria maintained their ability to prey on MDR bacteria regardless of their antimicrobial resistance, hence, might be used as therapeutic agents where other antimicrobial drugs fail.

  15. Antibiotic resistance of lactic acid bacteria

    OpenAIRE

    Bulajić Snežana; Mijačević Zora; Savić-Radovanović Radoslava

    2008-01-01

    Knowledge on the antibiotic resistance of lactic acid bacteria is still limited, possibly because of the large numbers of genera and species encountered in this group, as well as variances in their resistance spectra. The EFSA considers antibiotic resistances, especially transferable resistances, an important decision criterion for determining a strain's QPS status. There are no approved standards for the phenotypic or genotypic evaluation of antibiotic resistances in food isolat...

  16. Antibiotic resistance: the Iowa experience.

    Science.gov (United States)

    Bell, Nancy

    2002-11-01

    In the past 10 years, the number of strains of Streptococcus pneumoniae and other common respiratory pathogens that are resistant to penicillin has increased. The Iowa Department of Public Health convened a multidisciplinary task force in January 1998 to develop strategies to combat antibiotic resistance in the state because they were alarmed by these reports. Within 18 months, the task force implemented statewide surveillance of resistant organisms and posted information about the surveillance on the Internet, distributed a public health guide on judicious antibiotic use and infection control measures to 7500 healthcare providers, and held a press conference to inform the public about antibiotic resistance. The task force collaborated with several major insurers in the state to profile the top prescribers of antibiotic agents in their plan. The profiling and educational interventions led to a substantial decrease in both overall antibiotic prescribing and drug costs. Other states may want to undertake similar programs to help protect their citizens from infections caused by resistant pathogens.

  17. Antibiotic Resistance in Modern World

    Directory of Open Access Journals (Sweden)

    Leyla S. Namazova-Baranova

    2017-01-01

    Full Text Available The article brings up the topic not only vital and urgent for further development of modern medical science, but also affecting the interests of mankind as a whole and of every inhabitant of the Earth in particular: that is the irrational use of antibiotics and antibiotic resistance which rate is growing rapidly. We investigate the reasons for the epidemic of antibiotic resistance and discuss in detail all the necessary measures in order to cope with this problem. The shocking data on the almost universal irrational use of antibiotics by both medical workers and parents is provided. We demonstrate the microbiome changes that follow antibacterial drugs application resulting in the development of severe chronic pediatric diseases which cause severe disability or life-threatening conditions in children with long-term results in adult age. In conclusion, we summarize the evidence-based research in phytomedicine that present the phytopreparations as a serious alternative to antibiotics in a number of clinical settings. 

  18. Mathematical analysis of multi-antibiotic resistance.

    Science.gov (United States)

    Zhao, Bin; Zhang, Xiaoying

    2016-09-15

    Multi-antibiotic resistance in bacterial infections is a growing threat to public health. Some experiments were carried out to study the multi-antibiotic resistance. The changes of the multi-antibiotic resistance with time were achieved by numerical simulations and the mathematical models, with the calculated temperature field, velocity field, and the antibiotic concentration field. The computed results and experimental results are compared. Both numerical simulations and the analytic models suggest that minor low concentrations of antibiotics could induce antibiotic resistance in bacteria. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. The determinants of the antibiotic resistance process.

    Science.gov (United States)

    Franco, Beatriz Espinosa; Altagracia Martínez, Marina; Sánchez Rodríguez, Martha A; Wertheimer, Albert I

    2009-01-01

    The use of antibiotic drugs triggers a complex interaction involving many biological, sociological, and psychological determinants. Resistance to antibiotics is a serious worldwide problem which is increasing and has implications for morbidity, mortality, and health care both in hospitals and in the community. To analyze current research on the determinants of antibiotic resistance and comprehensively review the main factors in the process of resistance in order to aid our understanding and assessment of this problem. We conducted a MedLine search using the key words "determinants", "antibiotic", and "antibiotic resistance" to identify publications between 1995 and 2007 on the determinants of antibiotic resistance. Publications that did not address the determinants of antibiotic resistance were excluded. The process and determinants of antibiotic resistance are described, beginning with the development of antibiotics, resistance and the mechanisms of resistance, sociocultural determinants of resistance, the consequences of antibiotic resistance, and alternative measures proposed to combat antibiotic resistance. Analysis of the published literature identified the main determinants of antibiotic resistance as irrational use of antibiotics in humans and animal species, insufficient patient education when antibiotics are prescribed, lack of guidelines for treatment and control of infections, lack of scientific information for physicians on the rational use of antibiotics, and lack of official government policy on the rational use of antibiotics in public and private hospitals.

  20. Gram-negative folliculitis. A rare problem or is it underdiagnosed? Case report and literature review

    Directory of Open Access Journals (Sweden)

    Sierra-Téllez Daniela, Ponce-Olivera Rosa María, Tirado-Sánchez Andrés

    2011-07-01

    Full Text Available AbstractGram-negative folliculitis may be the result of prolonged antibacterial treatments in patients with acne and rosacea. It is caused by alteration of facial skin flora and the nasal mucous, a decrease of Gram-positive bacteria and a proliferation of Gram-negative bacteria (for example Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens, Klebsiella sp. and Proteus mirabilis. It should be considered in patients with acne who have not had a clinical improvement after 3-6 months of treatment with tetracyclines. The disease is underestimated, probably because bacteriological studies are rarely requested and the increased use of oral isotretinoin for acne management. One of the most effective treatments for Gram-negative folliculitis is oral isotretinoin (0.5-1 mg / kg / day for 4-5 months. We report the case of Gram negative folliculitis successfully treated with oral isotretinoin.

  1. Effects of ultraviolet disinfection on antibiotic-resistant Escherichia coli from wastewater: inactivation, antibiotic resistance profiles and antibiotic resistance genes.

    Science.gov (United States)

    Zhang, Chong-Miao; Xu, Li-Mei; Wang, Xiaochang C; Zhuang, Kai; Liu, Qiang-Qiang

    2017-04-29

    To evaluate the effect of ultraviolet (UV) disinfection on antibiotic-resistant Escherichia coli (E. coli). Antibiotic-resistant E. coli strains were isolated from a wastewater treatment plant and subjected to UV disinfection. The effect of UV disinfection on the antibiotic resistance profiles and the antibiotic resistance genes (ARGs) of antibiotic-resistant E. coli was evaluated by a combination of antibiotic susceptibility analysis and molecular methods. Results indicated that multiple-antibiotic-resistant (MAR) E. coli were more resistant at low UV doses and required a higher UV dose (20 mJ cm -2 ) to enter the tailing phase compared with those of antibiotic-sensitive E. coli (8 mJ cm -2 ). UV disinfection caused a selective change in the inhibition zone diameters of surviving antibiotic-resistant E. coli and a slight damage to ARGs. The inhibition zone diameters of the strains resistant to antibiotics were more difficult to alter than those susceptible to antibiotics because of the existence and persistence of corresponding ARGs. The resistance of MAR bacteria to UV disinfection at low UV doses and the changes in inhibition zone diameters could potentially contribute to the selection of ARB in wastewater treatment after UV disinfection. The risk of spread of antibiotic resistance still exists owing to the persistence of ARGs. Our study highlights the acquisition of other methods to control the spread of ARGs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria

    Science.gov (United States)

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. PMID:24223039

  3. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria.

    Science.gov (United States)

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Daniels, Dwayne; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50  μ L leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties.

  4. Top-Down LESA Mass Spectrometry Protein Analysis of Gram-Positive and Gram-Negative Bacteria

    Science.gov (United States)

    Kocurek, Klaudia I.; Stones, Leanne; Bunch, Josephine; May, Robin C.; Cooper, Helen J.

    2017-10-01

    We have previously shown that liquid extraction surface analysis (LESA) mass spectrometry (MS) is a technique suitable for the top-down analysis of proteins directly from intact colonies of the Gram-negative bacterium Escherichia coli K-12. Here we extend the application of LESA MS to Gram-negative Pseudomonas aeruginosa PS1054 and Gram-positive Staphylococcus aureus MSSA476, as well as two strains of E. coli (K-12 and BL21 mCherry) and an unknown species of Staphylococcus. Moreover, we demonstrate the discrimination between three species of Gram-positive Streptococcus ( Streptococcus pneumoniae D39, and the viridans group Streptococcus oralis ATCC 35037 and Streptococcus gordonii ATCC35105), a recognized challenge for matrix-assisted laser desorption ionization time-of-flight MS. A range of the proteins detected were selected for top-down LESA MS/MS. Thirty-nine proteins were identified by top-down LESA MS/MS, including 16 proteins that have not previously been observed by any other technique. The potential of LESA MS for classification and characterization of novel species is illustrated by the de novo sequencing of a new protein from the unknown species of Staphylococcus. [Figure not available: see fulltext.

  5. Marine bacteria: potential sources for compounds to overcome antibiotic resistance.

    Science.gov (United States)

    Eom, Sung-Hwan; Kim, Young-Mog; Kim, Se-Kwon

    2013-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most problematic Gram-positive bacterium in the context of public health due to its resistance against almost all available antibiotics except vancomycin and teicoplanin. Moreover, glycopeptide-resistant S. aureus have been emerging with the increasing use of glycopeptides. Recently, resistant strains against linezolid and daptomycin, which are alternative drugs to treat MRSA infection, have also been reported. Thus, the development of new drugs or alternative therapies is clearly a matter of urgency. In response to the antibiotic resistance, many researchers have studied for alternative antibiotics and therapies. In this review, anti-MRSA substances isolated from marine bacteria, with their potential antibacterial effect against MRSA as potential anti-MRSA agents, are discussed and several strategies for overcoming the antibiotic resistance are also introduced. Our objective was to highlight marine bacteria that have potential to lead in developing novel antibiotics or clinically useful alternative therapeutic treatments.

  6. Resistance trends in gram-negative bacteria: surveillance results from two Mexican hospitals, 2005–2010

    Directory of Open Access Journals (Sweden)

    Morfin-Otero Rayo

    2012-06-01

    Full Text Available Abstract Background Hospital-acquired infections caused by multiresistant gram-negative bacteria are difficult to treat and cause high rates of morbidity and mortality. The analysis of antimicrobial resistance trends of gram-negative pathogens isolated from hospital-acquired infections is important for the development of antimicrobial stewardship programs. The information obtained from antimicrobial resistant programs from two hospitals from Mexico will be helpful in the selection of empiric therapy for hospital-acquired gram-negative infections. Findings Two thousand one hundred thirty two gram-negative bacteria collected between January 2005 and December 2010 from hospital-acquired infections occurring in two teaching hospitals in Mexico were evaluated. Escherichia coli was the most frequently isolated gram-negative bacteria, with >50% of strains resistant to ciprofloxacin and levofloxacin. Klebsiella spp. showed resistance rates similar to Escherichia coli for ceftazidime (33.1% vs 33.2%, but exhibited lower rates for levofloxacin (18.2% vs 56%. Of the samples collected for the third most common gram-negative bacteria, Pseudomonas aeruginosa, >12.8% were resistant to the carbapenems, imipenem and meropenem. The highest overall resistance was found in Acinetobacter spp. Enterobacter spp. showed high susceptibility to carbapenems. Conclusions E. coli was the most common nosocomial gram-negative bacilli isolated in this study and was found to have the second-highest resistance to fluoroquinolones (>57.9%, after Acinetobacter spp. 81.2%. This finding represents a disturbing development in a common nosocomial and community pathogen.

  7. Antibiotic resistance and biofilm formation among coagulase-negative staphylococci isolated from clinical samples at a tertiary care hospital of eastern Nepal

    Directory of Open Access Journals (Sweden)

    Lok Bahadur Shrestha

    2017-08-01

    Full Text Available Abstract Background Coagulase negative staphylococci were long regarded non-pathogenic as they are the commensals of human skin and mucosa but the recent changes in the medical practice and changes in underlying host populations, they are being considered significant pathogens associated with number of nosocomial infections. The objective of the study was to determine the species, antimicrobial susceptibility pattern, biofilm forming ability of the clinically significant CoNS isolates and to compare the different methods for the detection of biofilm formation. Methods A total of 52 clinically significant CoNS isolates obtained from different units during a year period were studied. Characterization was done using standard microbiological guidelines and antimicrobial susceptibility was done following CLSI guidelines. Biofilm formation was detected by using three methods i.e. tissue culture plate method, congo red agar method and tube adherence method. Results Among 52 isolates, S. epidermidis (52% was the most common species which was followed by S. saprophyticus (18% and S. haemolyticus (14%. Antimicrobial susceptibility pattern of CoNS documented resistance of 80% to ampicillin. Resistance to cefoxitin and ceftriaxone was observed in 58% of the isolates. Biofilm formation was observed in 65.38% of the isolates. The accuracy of Congo red agar and tube adherence method for the detection of biofilm formation was 82% and 76% respectively. Conclusion CoNS isolates obtained from clinical samples should be processed routinely and antimicrobial susceptibility testing should be performed. Multidrug-resistant CoNS are prevalent. All the three methods i.e. tissue culture plate, Congo red agar and tube adherence method can be used in detecting biofilm formation.

  8. Bacterial biofilms and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Liliana Caldas-Arias

    2015-04-01

    Full Text Available Biofilms give to bacteria micro-environmental benefits; confers protection against antimicrobials. Bacteria have antibiotic resistance by conventional and unusual mechanisms leading to delayed wound healing, to increase recurrent chronic infections and nosocomial contamination of medical devices. Objective: This narrative review aims to introduce the characteristics of Bacteria-biofilms, antimicrobial resistance mechanisms and potential alternatives for prevention and control of its formation. Methods: Search strategy was performed on records: PubMed / Medline, Lilacs, Redalyc; with suppliers such as EBSCO and thesaurus MeSH and DeCS. Conclusions: Knowledge and research performance of biofilm bacteria are relevant in the search of technology for detection and measuring sensitivity to antibiotics. The identification of Bacterial-biofilms needs no-traditional microbiological diagnosis.

  9. PCR targeting of antibiotic resistant bacteria in public drinking water of Lahore metropolitan, Pakistan.

    Science.gov (United States)

    Samra, Zahoor Qadir; Naseem, Mariam; Khan, Sumaria Javed; Dar, Nadia; Athar, Muhammad Amin

    2009-12-01

    To investigate the prevalence of kanamycin (kan) and ampicillin (amp) resistant bacteria in public drinking water. Bacteria containing kan and amp resistant genes were amplified by PCR and further characterized by colony hybridization and transformation studies. The genus of kan and amp resistant bacteria was determined with standard methods. Among the 625 drinking water samples, 400 contained kan and amp resistant bacteria and the percentage was 42.5% and 57.5%, respectively, which was further confirmed by the amplification of a 810 bp kan resistant gene and a 850 bp amp resistant gene. Of the 170 kan resistant bacteria, 90 were Gram negative and 80 were Gram positive. Of the 230 amp resistant bacteria, 160 were Gram negative while 70 were Gram positive. Salmonella, Shigella, Staphylococcus, Streptococcus, and E.coli were detected as 13%, 11%, 17%, 30%, and 29%, respectively. Bacterial strain DH5alpha transformed with plasmids isolated from kan and amp resistant bacteria confirmed that the antibiotic resistant genes were mediated by plasmids. Drinking water is contaminated with kan and amp resistant bacteria due to poor sanitary conditions.

  10. Role of Gram-Negative Bacteria and Their Endotoxins in Rat Death after Heat Stress,

    Science.gov (United States)

    1981-02-26

    small volume (0.05 ml) of the homogenate on selective ( MacConkey , Difco, Detroit, MI) and non-selective (5% sheep blood agar) plating media. In...homogenates. Gram-negative bacterial count per gram of duodenal sample was determined from colony counts made from 5 replicate MacConkey plates prepared from

  11. Is screening patients for antibiotic-resistant bacteria justified in the Indian context?

    Science.gov (United States)

    Bhattacharya, S

    2011-01-01

    Infection with multi-antibiotic-resistant bacteria is a common clinical problem in India. In some countries and centres, screening patients to detect colonisation by these organisms is used to determine specific interventions such as decolonisation treatment, prophylactic antibiotics prior to surgical interventions or for selection of empirical antibiotic therapy, and to isolate patients so that transmission of these difficult to treat organisms to other patients could be prevented. In India, there is no national guideline or recommendation for screening patients for multi-drug-resistant (MDR) bacteria such as MRSA (methicillin-resistant Staphylococcus aureus), VRE (vancomycin-resistant enterococcus), ESBL (extended spectrum beta-lactamase) or MBL (metallo-beta-lactamase) producers. The present article discusses the relevance of screening patients for multi-antibiotic-resistant bacteria in the Indian context. Literature has been reviewed about antibiotic resistance in India, screening methodology, economic debate about screening. The percentages of strains from various hospitals in India which were reported to be MRSA was between 8 and 71%, those for ESBL between 19 and 60% and carbapenem-resistant Gram-negative bacilli between 5.3 and 59%. There exists culture-based technology for the detection of these resistant organisms from patient samples. For some pathogens, such as MRSA and VRE Polymerase chain reaction-based tests are also becoming available. Screening for MDR bacteria is an option which may be used after appraisal of the resources available, and after exploring possibility of implementing the interventions that may be required after a positive screening test result.

  12. How bacterial cell division might cheat turgor pressure - a unified mechanism of septal division in Gram-positive and Gram-negative bacteria.

    Science.gov (United States)

    Erickson, Harold P

    2017-08-01

    An important question for bacterial cell division is how the invaginating septum can overcome the turgor force generated by the high osmolarity of the cytoplasm. I suggest that it may not need to. Several studies in Gram-negative bacteria have shown that the periplasm is isoosmolar with the cytoplasm. Indirect evidence suggests that this is also true for Gram-positive bacteria. In this case the invagination of the septum takes place within the uniformly high osmotic pressure environment, and does not have to fight turgor pressure. A related question is how the V-shaped constriction of Gram-negative bacteria relates to the plate-like septum of Gram-positive bacteria. I collected evidence that Gram-negative bacteria have a latent capability of forming plate-like septa, and present a model in which septal division is the basic mechanism in both Gram-positive and Gram-negative bacteria. © 2017 WILEY Periodicals, Inc.

  13. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study

    Directory of Open Access Journals (Sweden)

    Azam A

    2012-12-01

    Full Text Available Ameer Azam,1,2 Arham S Ahmed,2 Mohammad Oves,3 Mohammad S Khan,3 Sami S Habib,1 Adnan Memic11Centre of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia; 2Centre of Excellence in Materials Science (Nanomaterials, 3Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, IndiaBackground: Nanomaterials have unique properties compared to their bulk counterparts. For this reason, nanotechnology has attracted a great deal of attention from the scientific community. Metal oxide nanomaterials like ZnO and CuO have been used industrially for several purposes, including cosmetics, paints, plastics, and textiles. A common feature that these nanoparticles exhibit is their antimicrobial behavior against pathogenic bacteria. In this report, we demonstrate the antimicrobial activity of ZnO, CuO, and Fe2O3 nanoparticles against Gram-positive and Gram-negative bacteria.Methods and results: Nanosized particles of three metal oxides (ZnO, CuO, and Fe2O3 were synthesized by a sol–gel combustion route and characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and transmission electron microscopy techniques. X-ray diffraction results confirmed the single-phase formation of all three nanomaterials. The particle sizes were observed to be 18, 22, and 28 nm for ZnO, CuO, and Fe2O3, respectively. We used these nanomaterials to evaluate their antibacterial activity against both Gram-negative (Escherichia coli and Pseudomonas aeruginosa and Gram-positive (Staphylococcus aureus and Bacillus subtilis bacteria.Conclusion: Among the three metal oxide nanomaterials, ZnO showed greatest antimicrobial activity against both Gram-positive and Gram-negative bacteria used in this study. It was observed that ZnO nanoparticles have excellent bactericidal potential, while Fe2O3 nanoparticles exhibited the least bactericidal activity. The order of antibacterial activity was demonstrated to be the following: ZnO > CuO > Fe2O3

  14. Antibacterial Activity of Stenotrophomonas maltophilia Endolysin P28 against both Gram-positive and Gram-negative Bacteria.

    Science.gov (United States)

    Dong, Hongling; Zhu, Chaoyang; Chen, Jingyi; Ye, Xing; Huang, Yu-Ping

    2015-01-01

    Maltocin P28 is a phage-tail like bacteriocin produced by Stenotrophomonas maltophilia P28. The ORF8 of maltocin P28 gene cluster is predicted to encode an endolysin and we name it endolysin P28. Sequence analysis revealed that it contains the lysozyme_like superfamily conserved domain. Endolysin P28 has the four consensus motifs as that of Escherichia coli phage lambda gpR. In this study, endolysin P28 was expressed in E. coli BL21 (DE3) and purified with a C-terminal oligo-histidine tag. The antibacterial activity of endolysin P28 increased as the temperature rose from 25 to 45°C. Thermostability assays showed that endolysin P28 was stable up to 50°C, while its residual activity was reduced by 55% after treatment at 70°C for 30 min. Acidity and high salinity could enhance its antibacterial activity. Endolysin P28 exhibited a broad antibacterial activity against 14 out of 16 tested Gram-positive and Gram-negative bacteria besides S. maltophilia. Moreover, it could effectively lyse intact Gram-negative bacteria in the absence of ethylenediaminetetraacetic acid as an outer membrane permeabilizer. Therefore, the characteristics of endolysin P28 make it a potential therapeutic agent against multi-drug-resistant pathogens.

  15. Antibacterial activity of Stenotrophomonas maltophilia endolysin P28 against both Gram-positive and Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Hongling eDong

    2015-11-01

    Full Text Available Maltocin P28 is a phage-tail like bacteriocin produced by Stenotrophomonas maltophilia P28. The ORF8 of maltocin P28 gene cluster is predicted to encode an endolysin and we name it endolysin P28. Sequence analysis revealed that it contains the lysozyme_like superfamily conserved domain. Endolysin P28 has the four consensus motifs as that of Escherichia coli phage lambda gpR. In this study endolysin P28 was expressed in E. coli BL21 (DE3 and purified with a C-terminal oligo-histidine tag. The antibacterial activity of endolysin P28 increased as the temperature rose from 25°C to 45°C. Thermostability assays showed that endolysin P28 was stable up to 50°C, while its residual activity was reduced by 55% after treatment at 70°C for 30 min. Acidity and high salinity could enhance its antibacterial activity. Endolysin P28 exhibited a broad antibacterial activity against 14 out of 16 tested Gram-positive and Gram-negative bacteria besides S. maltophilia. Moreover, it could effectively lyse intact Gram-negative bacteria in the absence of ethylenediaminetetraacetic acid (EDTA as an outer membrane permeabilizer. Therefore, the characteristics of endolysin P28 make it a potential therapeutic agent against multi-drug-resistant pathogens.

  16. First detection of bla TEM, SHV and CTX-M among Gram negative ...

    African Journals Online (AJOL)

    First detection of bla TEM, SHV and CTX-M among Gram negative bacilli exhibiting extended spectrum β- lactamase phenotype isolated at University Hospital Center, Yalgado Ouedraogo, Ouagadougou, Burkina Faso.

  17. Gram-negative rod bacteremia after cardiovascular surgery: Clinical features and prognostic factors

    Directory of Open Access Journals (Sweden)

    Sayaka Tago

    2017-06-01

    Conclusion: Graft replacement was the most common surgical procedure in patients with GNRB after CVS. Empirical antibiotics covering Gram-negative rods including P. aeruginosa should be considered if bacteremia is suspected in unstable patients after CVS.

  18. Amplifiable DNA from Gram-negative and Gram-positive bacteria by a low strength pulsed electric field method

    Science.gov (United States)

    Vitzthum, Frank; Geiger, Georg; Bisswanger, Hans; Elkine, Bentsian; Brunner, Herwig; Bernhagen, Jürgen

    2000-01-01

    An efficient electric field-based procedure for cell disruption and DNA isolation is described. Isoosmotic suspensions of Gram-negative and Gram-positive bacteria were treated with pulsed electric fields of Pulses had an exponential decay waveform with a time constant of 3.4 µs. DNA yield was linearly dependent on time or pulse number, with several thousand pulses needed. Electrochemical side-effects and electrophoresis were minimal. The lysates contained non-fragmented DNA which was readily amplifiable by PCR. As the method was not limited to samples of high specific resistance, it should be applicable to physiological fluids and be useful for genomic and DNA diagnostic applications. PMID:10734214

  19. Colistin: an Antibiotic and Its Role in Multiresistant Gram-negative Infections

    Directory of Open Access Journals (Sweden)

    Tonny Loho

    2016-05-01

    Full Text Available Increasing number of infection cases caused by multiresistant Gram-negative bacteria or multidrug resistant organism (MDRO has become a major problem worldwide since there have been a lot of resistance to many classes of antibiotics. Mutant isolates such as fluoroquinolone-resistant and β-lactamase-resistant bacteria have been commonly found, particularly in intensive care unit (ICU. During the last two decades, there has been no study of developing antibiotics in search of discovering new type of antibiotics; meanwhile, the resistance of Gram-negative bacteria or MDRO to antibiotics is increasing. Colistin or polymyxin E is an old antibiotic, which has been used since 1959 for treating infection caused by Gram-negative MDRO. It was revealed that colistin has side effects of nephrotoxicity and neurotoxicity; therefore, the use of this antibiotic was stopped and it was replaced by other antibiotics which were effective and were considered safer at that time. There is an increasing number of infections with multi-resistant Gram-negative (MDRO against the available antibiotics and the availability of alternative antibiotics has not been satisfying; therefore, microbiologists are searching back to the old option, which has been proven to be effective against multi-resistant Gram-negative bacteria, the old antibiotic that has been long forgotten, i.e. colistin, as an alternative treatment against Gram-negative MDRO. It is expected that colistin may have essential and reliable role as future antibiotics for treatment of multi-resistant Gram-negative infections and as an alternative of antibiotics that have been available so far. Key words: antibiotics, colistin, Gram-negative, multidrug resistant organism (MDRO.

  20. Organo-Selenium Coatings Inhibit Gram-Negative and Gram-Positive Bacterial Attachment to Ophthalmic Scleral Buckle Material.

    Science.gov (United States)

    Tran, Phat; Arnett, Avery; Jarvis, Courtney; Mosley, Thomas; Tran, Khien; Hanes, Rob; Webster, Dan; Mitchell, Kelly; Dominguez, Leo; Hamood, Abdul; Reid, Ted W

    2017-09-01

    Biofilm formation is a problem for solid and sponge-type scleral buckles. This can lead to complications that require removal of the buckle, and result in vision loss due to related ocular morbidity, primarily infection, or recurrent retinal detachment. We investigate the ability of a covalent organo-selenium coating to inhibit biofilm formation on a scleral buckle. Sponge and solid Labtican brand scleral buckles were coated with organo-selenium coupled to a silyation reagent. Staphylococcus aureus biofilm formation was monitored by a standard colony-forming unit assay and the confocal laser scanning microscopy, while Pseudomonas aeruginosa biofilm formation was examined by scanning electron microscopy. Stability studies were done, by soaking in phosphate buffer saline (PBS) at room temperature for 2 months. Toxicity against human corneal epithelial cell was examined by growing the cells in the presence of organo-selenium-coated scleral buckles. The organo-selenium coating inhibited biofilm formation by gram-negative and gram-positive bacteria. The buckle coatings also were shown to be fully active after soaking in PBS for 2 months. The organo-selenium coatings had no effect on the viability of human corneal epithelial cells. Organo-selenium can be used to covalently coat a scleral buckle, which is stable and inhibits biofilm formation for gram-negative and gram-positive bacteria. The organo-selenium buckle coating was stable and nontoxic to cell culture. This technology provides a means to inhibit bacterial attachment to devices attached to the eye, without damage to ocular cells.

  1. Widespread Fosfomycin Resistance in Gram-Negative Bacteria Attributable to the Chromosomal fosA Gene

    Directory of Open Access Journals (Sweden)

    Ryota Ito

    2017-08-01

    Full Text Available Fosfomycin is a decades-old antibiotic which is being revisited because of its perceived activity against many extensively drug-resistant Gram-negative pathogens. FosA proteins are Mn2+ and K+-dependent glutathione S-transferases which confer fosfomycin resistance in Gram-negative bacteria by conjugation of glutathione to the antibiotic. Plasmid-borne fosA variants have been reported in fosfomycin-resistant Escherichia coli strains. However, the prevalence and distribution of fosA in other Gram-negative bacteria are not known. We systematically surveyed the presence of fosA in Gram-negative bacteria in over 18,000 published genomes from 18 Gram-negative species and investigated their contribution to fosfomycin resistance. We show that FosA homologues are present in the majority of genomes in some species (e.g., Klebsiella spp., Enterobacter spp., Serratia marcescens, and Pseudomonas aeruginosa, whereas they are largely absent in others (e.g., E. coli, Acinetobacter baumannii, and Burkholderia cepacia. FosA proteins in different bacterial pathogens are highly divergent, but key amino acid residues in the active site are conserved. Chromosomal fosA genes conferred high-level fosfomycin resistance when expressed in E. coli, and deletion of chromosomal fosA in S. marcescens eliminated fosfomycin resistance. Our results indicate that FosA is encoded by clinically relevant Gram-negative species and contributes to intrinsic fosfomycin resistance.

  2. Linking microbial community structure and function to characterize antibiotic resistant bacteria and antibiotic resistant genes from cattle feces

    Science.gov (United States)

    There is widespread interest in monitoring the development of antibiotic resistant bacteria and antibiotic resistance genes in agriculturally impacted environments, however little is known about the relationships between bacterial community structure, and antibiotic resistance gene profiles. Cattl...

  3. Tachypleus lysate test for endotoxin in patients with Gram negative bacterial infections.

    Science.gov (United States)

    Usawattanakul, W; Tharavanij, S; Limsuwan, A

    1979-03-01

    Amoebocyte lysate from the horseshoe crabs (Tachypleus gigas) which abounds in the Gulf of Thailand was used to detect endotoxin in patients with Gram-negative bacteremia, in patients with Gram-positive bacterial infections as well as in the control. The Tachypleus lysate test (TLT) was positive in 94.4% of 36 patients with Gram-negative bacteremia before initiation of antibiotic therapy. Only 4% of 50 healthy individuals were positive and all 7 patients with Gram-positive bacterial infections were negative. The threshold sensitivity of TLT was 0.625 micrograms endotoxin per ml of the plasma. In comparison with the commercial Limulus lysate test (LLT), the TLT was slightly more sensitive in exhibiting higher grade of reaction, eventhough the threshold sensitivity was the same.

  4. Antibiotic resistance is prevalent in an isolated cave microbiome.

    Directory of Open Access Journals (Sweden)

    Kirandeep Bhullar

    Full Text Available Antibiotic resistance is a global challenge that impacts all pharmaceutically used antibiotics. The origin of the genes associated with this resistance is of significant importance to our understanding of the evolution and dissemination of antibiotic resistance in pathogens. A growing body of evidence implicates environmental organisms as reservoirs of these resistance genes; however, the role of anthropogenic use of antibiotics in the emergence of these genes is controversial. We report a screen of a sample of the culturable microbiome of Lechuguilla Cave, New Mexico, in a region of the cave that has been isolated for over 4 million years. We report that, like surface microbes, these bacteria were highly resistant to antibiotics; some strains were resistant to 14 different commercially available antibiotics. Resistance was detected to a wide range of structurally different antibiotics including daptomycin, an antibiotic of last resort in the treatment of drug resistant Gram-positive pathogens. Enzyme-mediated mechanisms of resistance were also discovered for natural and semi-synthetic macrolide antibiotics via glycosylation and through a kinase-mediated phosphorylation mechanism. Sequencing of the genome of one of the resistant bacteria identified a macrolide kinase encoding gene and characterization of its product revealed it to be related to a known family of kinases circulating in modern drug resistant pathogens. The implications of this study are significant to our understanding of the prevalence of resistance, even in microbiomes isolated from human use of antibiotics. This supports a growing understanding that antibiotic resistance is natural, ancient, and hard wired in the microbial pangenome.

  5. Antibiotic resistance is prevalent in an isolated cave microbiome.

    Science.gov (United States)

    Bhullar, Kirandeep; Waglechner, Nicholas; Pawlowski, Andrew; Koteva, Kalinka; Banks, Eric D; Johnston, Michael D; Barton, Hazel A; Wright, Gerard D

    2012-01-01

    Antibiotic resistance is a global challenge that impacts all pharmaceutically used antibiotics. The origin of the genes associated with this resistance is of significant importance to our understanding of the evolution and dissemination of antibiotic resistance in pathogens. A growing body of evidence implicates environmental organisms as reservoirs of these resistance genes; however, the role of anthropogenic use of antibiotics in the emergence of these genes is controversial. We report a screen of a sample of the culturable microbiome of Lechuguilla Cave, New Mexico, in a region of the cave that has been isolated for over 4 million years. We report that, like surface microbes, these bacteria were highly resistant to antibiotics; some strains were resistant to 14 different commercially available antibiotics. Resistance was detected to a wide range of structurally different antibiotics including daptomycin, an antibiotic of last resort in the treatment of drug resistant Gram-positive pathogens. Enzyme-mediated mechanisms of resistance were also discovered for natural and semi-synthetic macrolide antibiotics via glycosylation and through a kinase-mediated phosphorylation mechanism. Sequencing of the genome of one of the resistant bacteria identified a macrolide kinase encoding gene and characterization of its product revealed it to be related to a known family of kinases circulating in modern drug resistant pathogens. The implications of this study are significant to our understanding of the prevalence of resistance, even in microbiomes isolated from human use of antibiotics. This supports a growing understanding that antibiotic resistance is natural, ancient, and hard wired in the microbial pangenome.

  6. Colistin: an antibiotic and its role in multiresistant Gram-negative infections.

    Science.gov (United States)

    Loho, Tonny; Dharmayanti, Anti

    2015-04-01

    Increasing number of infection cases caused by multiresistant Gram-negative bacteria or multidrug resistant organism (MDRO) has become a major problem worldwide since there have been a lot of resistance to many classes of antibiotics. Mutant isolates such as fluoroquinolone-resistant and -lactamase-resistant bacteria have been commonly found, particularly in intensive care unit (ICU). During the last two decades, there has been no study of developing antibiotics in search of discovering new type of antibiotics; meanwhile, the resistance of Gram-negative bacteria or MDRO to antibiotics is increasing. Colistin or polymyxin E is an old antibiotic, which has been used since 1959 for treating infection caused by Gram-negative MDRO. It was revealed that colistin has side effects of nephrotoxicity and neurotoxicity; therefore, the use of this antibiotic was stopped and it was replaced by other antibiotics which were effective and were considered safer at that time. There is an increasing number of infections with multi-resistant Gram-negative (MDRO) against the available antibiotics and the availability of alternative antibiotics has not been satisfying; therefore, microbiologists are searching back to the old option, which has been proven to be effective against multi-resistant Gram-negative bacteria, the old antibiotic that has been long forgotten, i.e. colistin, as an alternative treatment against Gram-negative MDRO. It is expected that colistin may have essential and reliable role as future antibiotics for treatment of multi-resistant Gram-negative infections and as an alternative of antibiotics that have been available so far.

  7. Source, pattern and antibiotic resistance of blood stream infections in hematopoietic stem cell transplant recipients

    International Nuclear Information System (INIS)

    El-Mahallawy, H.; Samir, I.; Kadry, D.; Abdel Fattah, R.; El-Kholy, A.

    2014-01-01

    Mucositis developing as a result of myelo-ablative high dose therapy administered prior to hematopoietic stem cell transplantation (HSCT) is associated with the risk of bacteremia. The aim of the present study was to detect the pattern of bacteremia coinciding with the present practice of HSCT, to study the contribution of health-care associated infection (HAI) to the pattern of infection, in the context of the problem of antibiotic resistance in HSCT recipients. Patients and methods: This is a retrospective, single center study including patients who developed febrile neutropenia (FN) among HSCT recipients in one year duration. Results: Ninety FN episodes were recorded in 50 patients. Out of 39 positive blood cultures, Gram negative rods (GNR) were the predominant pathogens, constituting 67% (n =26) of isolated organisms, while 33% of infections were caused by gram positive cocci (GPC) (n= 13). Bacteremia was significantly associated with central venous line (CVL) infections and gastroenteritis (diarrhea and vomiting) with a p-value 0.024, 0.20 and 0.0001, respectively. Multi-drug resistant organisms (MDROs) were identified in 27 (69%) of the 39 positive blood cultures. Conclusion: In one year duration, gram negative pathogens were the predominant causes of infection in HSCT recipients with high rates of MDROs in our institution. Gastroenteritis and central venous line infections are the main sources of bacteremia

  8. Antibiotic Resistance: MedlinePlus Health Topic

    Science.gov (United States)

    ... GO GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Health Topics → Antibiotic Resistance URL of this page: https://medlineplus.gov/antibioticresistance. ...

  9. Molecular analysis and antibiotic resistance investigation of ...

    African Journals Online (AJOL)

    Molecular analysis and antibiotic resistance investigation of Staphylococcus aureus isolates associated with staphylococcal food poisoning and nosocomial infections. Y Zhang, S Cheng, G Ding, M Zhu, X Pan, L Zhang ...

  10. minimising antibiotic resistance to staphylococcus aureus

    African Journals Online (AJOL)

    2002-11-02

    (26). Prevention of emergence of antibiotic resistance during treatment is therefore an important goal when prescribing antimicrobials. Problems affecting the operation of laboratories at the peripheral level are widespread.

  11. Transfer of Antibiotic Resistance in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Haaber, Jakob; Penadés, José R; Ingmer, Hanne

    2017-01-01

    Staphylococcus aureus is a serious human pathogen with remarkable adaptive powers. Antibiotic-resistant clones rapidly emerge mainly by acquisition of antibiotic-resistance genes from other S. aureus strains or even from other genera. Transfer is mediated by a diverse complement of mobile genetic...... of plasmids that can be transferred by conjugation and the efficiency with which transduction occurs. Here, we review the main routes of antibiotic resistance gene transfer in S. aureus in the context of its biology as a human commensal and a life-threatening pathogen. Staphylococcus aureus cells...... are effective in exchanging mobile genetic elements, including antibiotic-resistance genes.During colonization or infection of host organisms, the exchange appears to be particularly effective.Bacteriophage-mediated transfer involves both transduction and autotransduction, which may enable lysogenic S. aureus...

  12. Antibiotic Resistance in Human Chronic Periodontitis Microbiota

    NARCIS (Netherlands)

    Rams, Thomas E.; Degener, John E.; van Winkelhoff, Arie J.

    Background: Patients with chronic periodontitis (CP) may yield multiple species of putative periodontal bacterial pathogens that vary in their antibiotic drug susceptibility. This study determines the occurrence of in vitro antibiotic resistance among selected subgingival periodontal pathogens in

  13. Selective decontamination and antibiotic resistance in ICUs

    NARCIS (Netherlands)

    Plantinga, Nienke L.; Bonten, Marc J. M.

    2015-01-01

    Selective digestive decontamination (SDD) and selective oropharyngeal decontamination (SOD) have been associated with reduced mortality and lower ICU-acquired bacteremia and ventilator-associated pneumonia rates in areas with low levels of antibiotic resistance. However, the effect of selective

  14. Studies on reproductive stress caused by candidate Gram positive and Gram negative bacteria using model organism, Caenorhabditis elegans.

    Science.gov (United States)

    Sharika, Rajasekharan; Subbaiah, Priya; Balamurugan, Krishnaswamy

    2018-04-05

    Microbial association with a host using model system C. elegans have been widely studied based on factors such as host survival, the mode of infection, disease pathogenesis and the role of various players regulated during infection. The influence of pathogenic microorganism on reproduction and associated issues has not been explored fully. The present study focuses on the impact of bacterial infection on male reproductive parameters such as spermatogenesis and spermiogenesis, including physiological aspects like tail morphology defect and underlying molecular mechanisms that have been perturbed. In order to compare the consequence of infection caused by Gram positive and negative bacteria, Staphylococcus aureus and Vibrio alginolyticus were chosen as candidate pathogens, respectively. Microscopic observations revealed notable changes in tail morphology during 24 h of infection, as along with change in sperm size and activation. The Real Time-PCR results suggest the plausible down regulation of DBL-1/TGF-β pathway suggesting the morphological change in the tail. Shotgun proteomics further lead to the identification of MAG-1, Magonashi Protein a candidate regulatory player that affects spermatogenesis and HIF-1 that regulate during stress in both Gram positive and Gram negative infection. The protein-protein interaction with detected proteins revealed RACK-1 protein and mTOR pathway in S. aureus and V. alginolyticus respectively interacting with MAG-1 protein, which plays an important role in spermatogenesis termination in hermaphrodites during L4 to adult switch. This study paves a way to understand the candidate players that regulate reproduction during bacterial infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The determinants of the antibiotic resistance process

    Directory of Open Access Journals (Sweden)

    Beatriz Espinosa Franco

    2009-04-01

    Full Text Available Beatriz Espinosa Franco1, Marina Altagracia Martínez2, Martha A Sánchez Rodríguez1, Albert I Wertheimer31Facultad de Estudios Superiores Zaragoza (UNAM, Mexico; 2Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico; 3Temple University, Philadelphia, Pennsylvania, USABackground: The use of antibiotic drugs triggers a complex interaction involving many biological, sociological, and psychological determinants. Resistance to antibiotics is a serious worldwide problem which is increasing and has implications for morbidity, mortality, and health care both in hospitals and in the community.Objectives: To analyze current research on the determinants of antibiotic resistance and comprehensively review the main factors in the process of resistance in order to aid our understanding and assessment of this problem.Methods: We conducted a MedLine search using the key words “determinants”, “antibiotic”, and “antibiotic resistance” to identify publications between 1995 and 2007 on the determinants of antibiotic resistance. Publications that did not address the determinants of antibiotic resistance were excluded.Results: The process and determinants of antibiotic resistance are described, beginning with the development of antibiotics, resistance and the mechanisms of resistance, sociocultural determinants of resistance, the consequences of antibiotic resistance, and alternative measures proposed to combat antibiotic resistance.Conclusions: Analysis of the published literature identified the main determinants of antibiotic resistance as irrational use of antibiotics in humans and animal species, insufficient patient education when antibiotics are prescribed, lack of guidelines for treatment and control of infections, lack of scientific information for physicians on the rational use of antibiotics, and lack of official government policy on the rational use of antibiotics in public and private hospitals.Keywords: antibiotic drug resistance

  16. An underappreciated hotspot of antibiotic resistance

    DEFF Research Database (Denmark)

    Chen, Qing-Lin; Li, Hu; Zhou, Xin-Yuan

    2017-01-01

    Landfills are so far the most common practice for the disposals of municipal solid waste (MSW) worldwide. Since MSW landfill receives miscellaneous wastes, including unused/expired antibiotics and bioactive wastes, it gradually becomes a huge potential bioreactor for breeding antibiotic resistance...... be the potential hosts of ARGs. These findings provide evidence that groundwater near MSW landfill is an underappreciated hotspot of antibiotic resistance and contribute to the spread of ARGs via the flowing contaminated groundwater....

  17. Rapid discrimination of Gram-positive and Gram-negative bacteria in liquid samples by using NaOH-sodium dodecyl sulfate solution and flow cytometry.

    Directory of Open Access Journals (Sweden)

    Atsushi Wada

    Full Text Available BACKGROUND: For precise diagnosis of urinary tract infections (UTI, and selection of the appropriate prescriptions for their treatment, we explored a simple and rapid method of discriminating gram-positive and gram-negative bacteria in liquid samples. METHODOLOGY/PRINCIPAL FINDINGS: We employed the NaOH-sodium dodecyl sulfate (SDS solution conventionally used for plasmid extraction from Escherichia coli and the automated urine particle analyzer UF-1000i (Sysmex Corporation for our novel method. The NaOH-SDS solution was used to determine differences in the cell wall structures between gram-positive and gram-negative bacteria, since the tolerance to such chemicals reflects the thickness and structural differences of bacterial cell walls. The UF-1000i instrument was used as a quantitative bacterial counter. We found that gram-negative bacteria, including E. coli, in liquid culture could easily be lysed by direct addition of equal volumes of NaOH-SDS solution. In contrast, Enterococcus faecalis, which is a gram-positive bacterium, could not be completely lysed by the solution. We then optimized the reaction time of the NaOH-SDS treatment at room temperature by using 3 gram-positive and 4 gram-negative bacterial strains and determined that the optimum reaction time was 5 min. Finally, in order to evaluate the generalizability of this method, we treated 8 gram-positive strains and 8 gram-negative strains, or 4 gram-positive and 4 gram-negative strains incubated in voluntary urine from healthy volunteers in the same way and demonstrated that all the gram-positive bacteria were discriminated quantitatively from gram negative bacteria using this method. CONCLUSIONS/SIGNIFICANCE: Using our new method, we could easily discriminate gram-positive and gram-negative bacteria in liquid culture media within 10 min. This simple and rapid method may be useful for determining the treatment course of patients with UTIs, especially for those without a prior history

  18. MICROBIAL PROFILE AND ANTIBIOTIC RESISTANCE PATTERN OF THE BACTERIAL ISOLATES IN A TERTIARY CARE PSYCHIATRY HOSPITAL

    Directory of Open Access Journals (Sweden)

    Jyoti

    2015-11-01

    Full Text Available BACKGROUND: Antibiotic resistance is a challenge for effective management of infections as it increases the morbidity, mortality and costs of treating infectious diseases. AIMS: This study was aimed to obtain the profile of the bacterial isolates and their antibiotic resistance pattern. SETTINGS AND DESIGN: It is a cross sectional study carried out in a tertiary care psychiatry hospital in India. MATERIALS AND METHODS: Isolation and identification of the isolates were done by standard methods. Susceptibility patterns were checked by Kirby Bauer disc diffusion method. STATISTICAL ANALYSIS USED: Statistical analysis was done by using SPSS 16.0 version to calculate the frequencies as well as for cross tabulation. RESULTS: Significant bacterial growth observed in 43(25.6% samples, of which 39(90.7% showed resistant to at least one of the antibiotics used and 36(83.7% were multi-drug resistant. Gram negative organism accounted for the 25(58.14% of total significant isolates, Escherichia coli being the highest (76% in this group. Among multi-drug resistant (MDR isolates E.coli was the highest (44.4% and imipenem resistance was also observed in 1(5.3% of 19 E.coli isolates. Among the 43 isolates 18(41.86% were Gram positive with Streptococcus spp. showing incidence of 41.7% among the total MDR isolates. CONCLUSION: Increasing incidence of MDR strains seen in the population requires continuous monitoring and a restricted use of antibiotics to keep a check on resistance pattern, for effective treatment plan.

  19. STUDY ON SURGICAL SITE INFECTIONS CAUSED BY ESBL PRODUCING GRAM NEGATIVE BACTERIA

    Directory of Open Access Journals (Sweden)

    Rambabu

    2015-09-01

    Full Text Available Surgical site infections have been a major problem, because of the emergence of drug resistant bacteria, in particular B - lactamase producing bacteria. Extended spectrum beta lactamase producing gram negative organisms pose a great challenge in treatment o f SSI present study is aimed at determining multiple drug resistance in gram negative bacteria & to find out ESBL producers, in correlation with treatment outcome. A total of 120 wound infected cases were studied. Staphylococcus aureus was predominant bact erium - 20.Among gram negative bacteria, Pseudomonas species is predominant (14 followed by Escherichia coli (13 , Klebsiella species (12 , Proteus (9 Citrobacter (4 Providencia (2 & Acinetobacter species (2 . Out of 56 gramnegative bacteria isolated, 20 were i dentified as ESBL producers, which was statistically significant. Delay in wound healing correlated with infection by ESBL producers, which alarms the need of abstinence from antibiotic abuse

  20. [Antimicrobial therapy in severe infections with multidrug-resistant Gram-negative bacterias].

    Science.gov (United States)

    Duszyńska, Wiesława

    2010-01-01

    Multidrug-resistant Gram-negative bacteria pose a serious and rapidly emerging threat to patients in healthcare settings, and are especially prevalent and problematic in intensive therapy units. Recently, the emergence of pandrug-resistance in Gram-negative bacteria poses additional concerns. This review examines the clinical impact and epidemiology of multidrug-resistant Gram-negative bacteria as a cause of increased morbidity and mortality among ITU patients. Beta-lactamases, cephalosporinases and carbapenemases play the most important role in resistance to antibiotics. Despite the tendency to increased resistance, carbapenems administered by continuous infusion remain the most effective drugs in severe sepsis. Drug concentration monitoring, albeit rarely used in practice, is necessary to ensure an effective therapeutic effect.

  1. Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria.

    Science.gov (United States)

    Masadeh, Majed M; Karasneh, Ghadah A; Al-Akhras, Mohammad A; Albiss, Borhan A; Aljarah, Khaled M; Al-Azzam, Sayer I; Alzoubi, Karem H

    2015-05-01

    Metal oxide nanoparticles have been suggested as good candidates for the development of antibacterial agents. Cerium oxide (CeO2) and iron oxide (Fe2O3) nanoparticles have been utilized in a number of biomedical applications. Here, the antibacterial activity of CeO2 and Fe2O3 nanoparticles were evaluated on a panel of gram positive and gram negative bacteria in both the planktonic and biofilm cultures. Additionally, the effect of combining CeO2 and Fe2O3 nanoparticles with the broad spectrum antibiotic ciprofloxacin on tested bacteria was investigated. Thus, minimum inhibitory concentrations (MICs) of CeO2 and Fe2O3 nanoparticles that are required to inhibit bacterial planktonic growth and bacterial biofilm, were evaluated, and were compared to the MICs of the broad spectrum antibiotic ciprofloxacin alone or in the presence of CeO2 and Fe2O3 nanoparticles. Results of this study show that both CeO2 and Fe2O3 nanoparticles fail to inhibit bacterial growth and biofilm biomass for all the bacterial strains tested. Moreover, adding CeO2 or Fe2O3 nanoparticles to the broad spectrum antibiotic ciprofloxacin almost abolished its antibacterial activity. Results of this study suggest that CeO2 and Fe2O3 nanoparticles are not good candidates as antibacterial agents, and they could interfere with the activity of important antibiotics.

  2. Comparison of gram-negative and gram-positive hematogenous pyogenic spondylodiscitis: clinical characteristics and outcomes of treatment.

    Science.gov (United States)

    Lee, Ching-Yu; Wu, Meng-Huang; Cheng, Chin-Chang; Huang, Tsung-Jen; Huang, Tsung-Yu; Lee, Chien-Yin; Huang, Jou-Chen; Li, Yen-Yao

    2016-12-06

    To the best of our knowledge, no study has compared gram-negative bacillary hematogenous pyogenic spondylodiscitis (GNB-HPS) with gram-positive coccal hematogenous pyogenic spondylodiscitis (GPC-HPS) regarding their clinical characteristics and outcomes. From January 2003 to January 2013, 54 patients who underwent combined antibiotic and surgical therapy in the treatment of hematogenous pyogenic spondylodiscitis were included. Compared with 37 GPC-HPS patients, the 17 GNB-HPS patients were more often found to be older individuals, a history of cancer, and a previous history of symptomatic urinary tract infection. They also had a less incidence of epidural abscess formation compared with GPC-HPS patients from findings on magnetic resonance imaging (MRI). Constitutional symptoms were the primary reasons for initial physician visits in GNB-HPS patients whereas pain in the affected spinal region was the most common manifestation in GPC-HPS patients at initial visit. The clinical outcomes of GNB-HPS patients under combined surgical and antibiotic treatment were not different from those of GPC-HPS patients. In multivariate analysis, independent predicting risk factors for GNB-HPS included a malignant history and constitutional symptoms and that for GPC-HPS was epidural abscess. The clinical manifestations and MRI presentations of GNB-HPS were distinguishable from those of GPC-HPS.

  3. Biocompatible Fe3O4 Increases the Efficacy of Amoxicillin Delivery against Gram-Positive and Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Alexandru Mihai Grumezescu

    2014-04-01

    Full Text Available This paper reports the synthesis and characterization of amoxicillin- functionalized magnetite nanostructures (Fe3O4@AMO, revealing and discussing several biomedical applications of these nanomaterials. Our results proved that 10 nm Fe3O4@AMO nanoparticles does not alter the normal cell cycle progression of cultured diploid cells, and an in vivo murine model confirms that the nanostructures disperse through the host body and tend to localize in particular sites and organs. The nanoparticles were found clustered especially in the lungs, kidneys and spleen, next to the blood vessels at this level, while being totally absent in the brain and liver, suggesting that they are circulated through the blood flow and have low toxicity. Fe3O4@AMO has the ability to be easily circulated through the body and optimizations may be done so these nanostructures cluster to a specific target region. Functionalized magnetite nanostructures proved a great antimicrobial effect, being active against both the Gram positive pathogen S. aureus and the Gram negative pathogen E. coli. The fabricated nanostructures significantly reduced the minimum inhibitory concentration (MIC of the active drug. This result has a great practical relevance, since the functionalized nanostructures may be used for decreasing the therapeutic doses which usually manifest great severe side effects, when administrated in high doses. Fe3O4@AMO represents also a suitable approach for the development of new alternative strategies for improving the activity of therapeutic agents by targeted delivery and controlled release.

  4. Preparation and evaluation of antibacterial potential of Pithecellobium dulce root extract against Gram positive and Gram negative bacteria.

    Science.gov (United States)

    Bhat, Muneer Ahmad; Malik, Rayees Ahmad; Prakash, Poonam; Lone, Ali Mohd

    2018-03-01

    In the present study hexane, benzene, ethyl acetate and ethanol extracts of Pithecellobium dulce root were prepared using soxhlet extractor. The extracts were evaluated for antibacterial activity against one Gram positive (Staphylococcus aureus) and three Gram negative (Acetobacter aceti, Acetobacter aceti, Klebsiella pneumoniae) strains. Disc diffusion method revealed promising antibacterial activity of the extracts prepared in polar solvents (ethyl acetate and ethanol) compared to non-polar solvents (hexane and benzene). Ethanolic root extract was found to be most active against Acetobacter aceti, Staphylococcus aureus, Klebsiella pneumonia and Enterobacter aerogenes bacterial strains. The zone of inhibition of ethanolic root extract against Acetobacter aceti, Staphylococcus aureus, Klebsiella pneumonia and Enterobacter aerogenes bacterial strains was 15.4, 11.0, 19.0 and 13.0 mm, respectively at 100 mg concentration. Ethyl acetate extract also exhibited good antibacterial activity against Entrobacter aerogenes, Klebsiella pneumonia and Acetobacter aceti. The zone of inhibition of ethyl acetate root extracts against Entrobacter aerogenes, Acetobacter aceti and Klebsiella pneumonia was 10.5, 18.0 and 10.0 mm, respectively. The benzene extract showed some activity against Acetobacter aceti with the zone of inhibition 10.0 mm. The antibacterial activity of Pithecellobium dulce root hexane extract was found to be negligible against all the four tested strains of bacteria. These findings suggest that ethanolic and ethyl acetate root extracts of Pithecellobium dulce has potential as effective anti-bacterial agent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Dose-Dependent Antimicrobial Activity of Silver Nanoparticles on Polycaprolactone Fibers against Gram-Positive and Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Erick Pazos-Ortiz

    2017-01-01

    Full Text Available The adhesion ability and adaptability of bacteria, coupled with constant use of the same bactericides, have made the increase in the diversity of treatments against infections necessary. Nanotechnology has played an important role in the search for new ways to prevent and treat infections, including the use of metallic nanoparticles with antibacterial properties. In this study, we worked on the design of a composite of silver nanoparticles (AgNPS embedded in poly-epsilon-caprolactone nanofibers and evaluated its antimicrobial properties against various Gram-positive and Gram-negative microorganisms associated with drug-resistant infections. Polycaprolactone-silver composites (PCL-AgNPs were prepared in two steps. The first step consisted in the reduction in situ of Ag+ ions using N,N-dimethylformamide (DMF in tetrahydrofuran (THF solution, and the second step involved the simple addition of polycaprolactone before electrospinning process. Antibacterial activity of PCL-AgNPs nanofibers against E. coli, S. mutans, K. pneumoniae, S. aureus, P. aeruginosa, and B. subtilis was evaluated. Results showed sensibility of E. coli, K. pneumoniae, S. aureus, and P. aeruginosa, but not for B. subtilis and S. mutans. This antimicrobial activity of PCL-AgNPs showed significant positive correlations associated with the dose-dependent effect. The antibacterial property of the PCL/Ag nanofibers might have high potential medical applications in drug-resistant infections.

  6. Biocompatible Fe3O4 increases the efficacy of amoxicillin delivery against Gram-positive and Gram-negative bacteria.

    Science.gov (United States)

    Grumezescu, Alexandru Mihai; Gestal, Monica Cartelle; Holban, Alina Maria; Grumezescu, Valentina; Vasile, Bogdan Stefan; Mogoantă, Laurențiu; Iordache, Florin; Bleotu, Coralia; Mogoșanu, George Dan

    2014-04-22

    This paper reports the synthesis and characterization of amoxicillin- functionalized magnetite nanostructures (Fe3O4@AMO), revealing and discussing several biomedical applications of these nanomaterials. Our results proved that 10 nm Fe3O4@AMO nanoparticles does not alter the normal cell cycle progression of cultured diploid cells, and an in vivo murine model confirms that the nanostructures disperse through the host body and tend to localize in particular sites and organs. The nanoparticles were found clustered especially in the lungs, kidneys and spleen, next to the blood vessels at this level, while being totally absent in the brain and liver, suggesting that they are circulated through the blood flow and have low toxicity. Fe3O4@AMO has the ability to be easily circulated through the body and optimizations may be done so these nanostructures cluster to a specific target region. Functionalized magnetite nanostructures proved a great antimicrobial effect, being active against both the Gram positive pathogen S. aureus and the Gram negative pathogen E. coli. The fabricated nanostructures significantly reduced the minimum inhibitory concentration (MIC) of the active drug. This result has a great practical relevance, since the functionalized nanostructures may be used for decreasing the therapeutic doses which usually manifest great severe side effects, when administrated in high doses. Fe3O4@AMO represents also a suitable approach for the development of new alternative strategies for improving the activity of therapeutic agents by targeted delivery and controlled release.

  7. Inhibition of various gram-positive and gram-negative bacteria growth on selenium nanoparticle coated paper towels.

    Science.gov (United States)

    Wang, Qi; Larese-Casanova, Philip; Webster, Thomas J

    2015-01-01

    There are wide spread bacterial contamination issues on various paper products, such as paper towels hanging in sink splash zones or those used to clean surfaces, filter papers used in water and air purifying systems, and wrappings used in the food industry; such contamination may lead to the potential spread of bacteria and consequent severe health concerns. In this study, selenium nanoparticles were coated on normal paper towel surfaces through a quick precipitation method, introducing antibacterial properties to the paper towels in a healthy way. Their effectiveness at preventing biofilm formation was tested in bacterial assays involving Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus epidermidis. The results showed significant and continuous bacteria inhibition with about a 90% reduction from 24 to 72 hours for gram-positive bacteria including S. aureus and S. epidermidis. The selenium coated paper towels also showed significant inhibition of gram-negative bacteria like P. aeruginosa and E. coli growth at about 57% and 84%, respectively, after 72 hours of treatment. Therefore, this study established a promising selenium-based antibacterial strategy to prevent bacterial growth on paper products, which may lead to the avoidance of bacteria spreading and consequent severe health concerns.

  8. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria.

    Science.gov (United States)

    Fischer, Carol L; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2012-03-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity--the sphingoid bases D-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid--against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection.

  9. Nanoparticle targeting of Gram-positive and Gram-negative bacteria for magnetic-based separations of bacterial pathogens

    Science.gov (United States)

    Lu, Hoang D.; Yang, Shirley S.; Wilson, Brian K.; McManus, Simon A.; Chen, Christopher V. H.-H.; Prud'homme, Robert K.

    2017-04-01

    Antimicrobial resistance is a healthcare problem of increasing significance, and there is increasing interest in developing new tools to address bacterial infections. Bacteria-targeting nanoparticles hold promise to improve drug efficacy, compliance, and safety. In addition, nanoparticles can also be used for novel applications, such as bacterial imaging or bioseperations. We here present the use of a scalable block-copolymer-directed self-assembly process, Flash NanoPrecipitation, to form zinc(II)-bis(dipicolylamine) modified nanoparticles that bind to both Gram-positive and Gram-negative bacteria with specificity. Particles have tunable surface ligand densities that change particle avidity and binding efficacy. A variety of materials can be encapsulated into the core of the particles, such as optical dyes or iron oxide colloids, to produce imageable and magnetically active bacterial targeting constructs. As a proof-of-concept, these particles are used to bind and separate bacteria from solution in a magnetic column. Magnetic manipulation and separation would translate to a platform for pathogen identification or removal. These magnetic and targeted nanoparticles enable new methods to address bacterial infections.

  10. An unusual class of anthracyclines potentiate Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria

    Science.gov (United States)

    Cox, Georgina; Koteva, Kalinka; Wright, Gerard D.

    2014-01-01

    Objectives An orthogonal approach taken towards novel antibacterial drug discovery involves the identification of small molecules that potentiate or enhance the activity of existing antibacterial agents. This study aimed to identify natural-product rifampicin adjuvants in the intrinsically resistant organism Escherichia coli. Methods E. coli BW25113 was screened against 1120 actinomycete fermentation extracts in the presence of subinhibitory (2 mg/L) concentrations of rifampicin. The active molecule exhibiting the greatest rifampicin potentiation was isolated using activity-guided methods and identified using mass and NMR spectroscopy. Susceptibility testing and biochemical assays were used to determine the mechanism of antibiotic potentiation. Results The anthracycline Antibiotic 301A1 was isolated from the fermentation broth of a strain of Streptomyces (WAC450); the molecule was shown to be highly synergistic with rifampicin (fractional inhibitory concentration index = 0.156) and moderately synergistic with linezolid (FIC index = 0.25) in both E. coli and Acinetobacter baumannii. Activity was associated with inhibition of efflux and the synergistic phenotype was lost when tested against E. coli harbouring mutations within the rpoB gene. Structure–activity relationship studies revealed that other anthracyclines do not synergize with rifampicin and removal of the sugar moiety of Antibiotic 301A1 abolishes activity. Conclusions Screening only a subsection of our natural product library identified a small-molecule antibiotic adjuvant capable of sensitizing Gram-negative bacteria to antibiotics to which they are ordinarily intrinsically resistant. This result demonstrates the great potential of this approach in expanding antibiotic effectiveness in the face of the growing challenge of resistance in Gram-negatives. PMID:24627312

  11. Resistance in gram-negative bacilli in a cardiac intensive care unit in India: Risk factors and outcome

    Directory of Open Access Journals (Sweden)

    Pawar Mandakini

    2008-01-01

    Full Text Available The objective of this study was to compare the risk factors and outcome of patients with preexisting resistant gram-negative bacilli (GNB with those who develop sensitive GNB in the cardiac intensive care unit (ICU. Of the 3161 patients ( n = 3,161 admitted to the ICU during the study period, 130 (4.11% developed health care-associated infections (HAIs with GNB and were included in the cohort study. Pseudomonas aeruginosa (37.8% was the most common organism isolated followed by Klebsiella species (24.2%, E. coli (22.0%, Enterobacter species (6.1%, Stenotrophomonas maltophilia (5.7%, Acinetobacter species (1.3%, Serratia marcescens (0.8%, Weeksella virosa (0.4% and Burkholderia cepacia (0.4%. Univariate analysis revealed that the following variables were significantly associated with the antibiotic-resistant GNB: females ( P = 0.018, re-exploration ( P = 0.004, valve surgery ( P = 0.003, duration of central venous catheter ( P < 0.001, duration of mechanical ventilation ( P < 0.001, duration of intra-aortic balloon counter-pulsation ( P = 0.018, duration of urinary catheter ( P < 0.001, total number of antibiotic exposures prior to the development of resistance ( P < 0.001, duration of antibiotic use prior to the development of resistance ( P = 0.014, acute physiology and age chronic health evaluation score (APACHE II, receipt of anti-pseudomonal penicillins (piperacillin-tazobactam ( P = 0.002 and carbapenems ( P < 0.001. On multivariate analysis, valve surgery (adjusted OR = 2.033; 95% CI = 1.052-3.928; P = 0.035, duration of mechanical ventilation (adjusted OR = 1.265; 95% CI = 1.055-1.517; P = 0.011 and total number of antibiotic exposure prior to the development of resistance (adjusted OR = 1.381; 95% CI = 1.030-1.853; P = 0.031 were identified as independent risk factors for HAIs in resistant GNB. The mortality rate in patients with resistant GNB was significantly higher than those with sensitive GNB (13.9% vs. 1.8%; P = 0.03. HAI with

  12. Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Matyar, Fatih [Cukurova University, Faculty of Education, Department of Science and Technology Education, 01330 Balcali, Adana (Turkey)], E-mail: fmatyar@cu.edu.tr; Kaya, Aysenur; Dincer, Sadik [Cukurova University, Faculty of Science and Letters, Department of Biology, 01330 Balcali, Adana (Turkey)

    2008-12-15

    The aim of the present study was to determine the level of antibiotic resistance patterns and distribution of heavy metal resistance of bacterial isolates from seawater, sediment and shrimps, and to determine if there is a relationship between antibiotic and heavy metal resistance. We undertook studies in 2007 in the industrially polluted Iskenderun Bay, on the south coast of Turkey. The resistance of 236 Gram-negative bacterial isolates (49 from seawater, 90 from sediment and 97 from shrimp) to 16 different antibiotics, and to 5 heavy metals, was investigated by agar diffusion and agar dilution methods, respectively. A total of 31 species of bacteria were isolated: the most common strains isolated from all samples were Escherichia coli (11.4%), Aeromonas hydrophila (9.7%) and Stenotrophomonas maltophilia (9.3%). There was a high incidence of resistance to ampicillin (93.2%), streptomycin (90.2%) and cefazolin (81.3%), and a low incidence of resistance to imipenem (16.5%), meropenem (13.9%) and cefepime (8.0%). Some 56.8% of all bacteria isolated from seawater, sediment and shrimp were resistant to 7 or more antibiotics. Most isolates showed tolerance to different concentrations of heavy metals, and minimal inhibition concentrations ranged from 12.5 {mu}g/ml to > 3200 {mu}g/ml. The bacteria from seawater, sediment and shrimp showed high resistance to cadmium of 69.4%, 88.9%, and 81.1% respectively, and low resistance to manganese of 2%, 6.7% and 11.3% respectively. The seawater and sediment isolates which were metal resistant also showed a high resistance to three antibiotics: streptomycin, ampicillin and trimethoprim-sulphamethoxazole. In contrast, the shrimp isolates which were metal resistant were resistant to four antibiotics: cefazolin, nitrofurantoin, cefuroxime and ampicillin. Our results show that Iskenderun Bay has a significant proportion of antibiotic and heavy metal resistant Gram-negative bacteria, and these bacteria constitute a potential risk for

  13. Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey

    International Nuclear Information System (INIS)

    Matyar, Fatih; Kaya, Aysenur; Dincer, Sadik

    2008-01-01

    The aim of the present study was to determine the level of antibiotic resistance patterns and distribution of heavy metal resistance of bacterial isolates from seawater, sediment and shrimps, and to determine if there is a relationship between antibiotic and heavy metal resistance. We undertook studies in 2007 in the industrially polluted Iskenderun Bay, on the south coast of Turkey. The resistance of 236 Gram-negative bacterial isolates (49 from seawater, 90 from sediment and 97 from shrimp) to 16 different antibiotics, and to 5 heavy metals, was investigated by agar diffusion and agar dilution methods, respectively. A total of 31 species of bacteria were isolated: the most common strains isolated from all samples were Escherichia coli (11.4%), Aeromonas hydrophila (9.7%) and Stenotrophomonas maltophilia (9.3%). There was a high incidence of resistance to ampicillin (93.2%), streptomycin (90.2%) and cefazolin (81.3%), and a low incidence of resistance to imipenem (16.5%), meropenem (13.9%) and cefepime (8.0%). Some 56.8% of all bacteria isolated from seawater, sediment and shrimp were resistant to 7 or more antibiotics. Most isolates showed tolerance to different concentrations of heavy metals, and minimal inhibition concentrations ranged from 12.5 μg/ml to > 3200 μg/ml. The bacteria from seawater, sediment and shrimp showed high resistance to cadmium of 69.4%, 88.9%, and 81.1% respectively, and low resistance to manganese of 2%, 6.7% and 11.3% respectively. The seawater and sediment isolates which were metal resistant also showed a high resistance to three antibiotics: streptomycin, ampicillin and trimethoprim-sulphamethoxazole. In contrast, the shrimp isolates which were metal resistant were resistant to four antibiotics: cefazolin, nitrofurantoin, cefuroxime and ampicillin. Our results show that Iskenderun Bay has a significant proportion of antibiotic and heavy metal resistant Gram-negative bacteria, and these bacteria constitute a potential risk for public

  14. Prevalence of Antimicrobial Resistance Among Gram-Negative Isolates in and Adult Intensive care unit at a Tertiary care Center in Saudi Arabia

    International Nuclear Information System (INIS)

    Al Johani, Sameera

    2010-01-01

    Patients in the ICU have encountered an increasing emergence and spread of antibiotic-resistant pathogens. We examined patterns of antimicrobial susceptibility in gram-negative isolates to commonly used drugs in an adult ICU at a tertiary care hospital in Riyadh, Saudi Arabia.A retrospective study was carried out of gram-negative isolates from the adult ICU of King Fahad National Guard Hospital (KFNGH) between 2004 and 2009. Organisms were identified and tested by an automated identification and susceptibility system, and the antibiotic susceptibility testing was confirmed by the disk diffusion. The most frequently isolated organism was Acinetobacter baumannii, followed by Pseudomonas aeruginosa, Escherichia coli, Klebsiella pnemoniae, Stenotrophomonas maltophilia, and Enterobacter. Antibiotic susceptibility patterns significantly declined in many organisms, especially A baumannii, E coli, S marcescens, and Enterobacter. A baumannii susceptibility was significantly decreased to imipenem (55% to 10%), meropenem (33% to 10%), ciprofloxacin (22% to 10%), and amikacin (12% to 6%). E coli susceptibility was markedly decreased (from 75% to 50% or less) to cefuroxime, ceftazidime, cefotaxime, and cefepime. S marcescens susceptibility was markedly decreased to cefotaxime (100% to 32%), ceftazidime (100% to 35%), and cefepime (100% to 66%). Enterobacter susceptibility was markedly decreased to ceftazidime (34% to 5%), cefotaxime (34% to 6%), and pipracillin-tazobactam (51% to 35%). Respiratory samples were the most frequently indicative of multidrug-resistant pathogens (63%), followed by urinary samples (57%).Antimicrobial resistance is an emerging problem in the KFNGH ICU, justifying new more stringent antibiotic prescription guidelines. Continuous monitoring of antimicrobial susceptibility and strict adherence to infection prevention guidelines are essential to eliminate major outbreaks in the future (Author).

  15. LPS-binding protein-deficient mice have an impaired defense against Gram-negative but not Gram-positive pneumonia

    NARCIS (Netherlands)

    Branger, Judith; Florquin, Sandrine; Knapp, Sylvia; Leemans, Jaklien C.; Pater, Jennie M.; Speelman, Peter; Golenbock, Douglas T.; van der Poll, Tom

    2004-01-01

    LPS-binding protein (LBP) can facilitate the transfer of cell wall components of both Gram-negative bacteria (LPS) and Gram-positive bacteria (lipoteichoic acid) to inflammatory cells. Although LBP is predominantly produced in the liver, recent studies have indicated that this protein is also

  16. A pathway closely related to the (D)-tagatose pathway of gram-negative enterobacteria identified in the gram-positive bacterium Bacillus licheniformis.

    Science.gov (United States)

    Van der Heiden, Edwige; Delmarcelle, Michaël; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M; Galleni, Moreno; Joris, Bernard

    2013-06-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus.

  17. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    Science.gov (United States)

    Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682

  18. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    OpenAIRE

    Van der Heiden, Edwige; Delmarcelle, Michaël; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus.

  19. Comparative activity of tigecycline and tetracycline on Gram-negative and Gram-positive bacteria revealed by a multicentre study in four North European countries

    DEFF Research Database (Denmark)

    Nilsson, Lennart E; Frimodt-Møller, Niels; Vaara, Martti

    2011-01-01

    This study involves a multicentre surveillance of tigecycline and tetracycline activity against Gram-negative and Gram-positive bacteria from primary care centres (PCCs), general hospital wards (GHWs) and intensive care units (ICUs) in Denmark (n = 9), Finland (n = 10), Norway (n = 7) and Sweden (n...

  20. Performance of Gram staining on blood cultures flagged negative by an automated blood culture system.

    Science.gov (United States)

    Peretz, A; Isakovich, N; Pastukh, N; Koifman, A; Glyatman, T; Brodsky, D

    2015-08-01

    Blood is one of the most important specimens sent to a microbiology laboratory for culture. Most blood cultures are incubated for 5-7 days, except in cases where there is a suspicion of infection caused by microorganisms that proliferate slowly, or infections expressed by a small number of bacteria in the bloodstream. Therefore, at the end of incubation, misidentification of positive cultures and false-negative results are a real possibility. The aim of this work was to perform a confirmation by Gram staining of the lack of any microorganisms in blood cultures that were identified as negative by the BACTEC™ FX system at the end of incubation. All bottles defined as negative by the BACTEC FX system were Gram-stained using an automatic device and inoculated on solid growth media. In our work, 15 cultures that were defined as negative by the BACTEC FX system at the end of the incubation were found to contain microorganisms when Gram-stained. The main characteristic of most bacteria and fungi growing in the culture bottles that were defined as negative was slow growth. This finding raises a problematic issue concerning the need to perform Gram staining of all blood cultures, which could overload the routine laboratory work, especially laboratories serving large medical centers and receiving a large number of blood cultures.

  1. Antibiotic-Resistance Genes in Waste Water.

    Science.gov (United States)

    Karkman, Antti; Do, Thi Thuy; Walsh, Fiona; Virta, Marko P J

    2018-03-01

    Waste water and waste water treatment plants can act as reservoirs and environmental suppliers of antibiotic resistance. They have also been proposed to be hotspots for horizontal gene transfer, enabling the spread of antibiotic resistance genes between different bacterial species. Waste water contains antibiotics, disinfectants, and metals which can form a selection pressure for antibiotic resistance, even in low concentrations. Our knowledge of antibiotic resistance in waste water has increased tremendously in the past few years with advances in the molecular methods available. However, there are still some gaps in our knowledge on the subject, such as how active is horizontal gene transfer in waste water and what is the role of the waste water treatment plant in the environmental resistome? The purpose of this review is to briefly describe some of the main methods for studying antibiotic resistance in waste waters and the latest research and main knowledge gaps on the issue. In addition, some future research directions are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Diversity in Biochemical Characteristics and Antibiotics Resistant ...

    African Journals Online (AJOL)

    In this study, biochemical and antibiotic susceptibility tests were carried out on one hundred and fifty poultry isolates of Escherichia coli using Microscan® Dried Gram-negative Breakpoint Combo Pannels. The microscan panel analysed bacterial isolates for 24 biochemical tests and 23 to 25 antimicrobial agents following ...

  3. Pyridone Methylsulfone Hydroxamate LpxC Inhibitors for the Treatment of Serious Gram-Negative Infections

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Justin I.; Brown, Matthew F.; Reilly, Usa; Price, Loren M.; Abramite, Joseph A.; Arcari, Joel; Barham, Rose; Che, Ye; Chen, Jinshan Michael; Chung, Seung Won; Collantes, Elizabeth M.; Desbonnet, Charlene; Doroski, Matthew; Doty, Jonathan; Engtrakul, Juntyma J.; Harris, Thomas M.; Huband, Michael; Knafels, John D.; Leach, Karen L.; Liu, Shenping; Marfat, Anthony; McAllister, Laura; McElroy, Eric; Menard, Carol A.; Mitton-Fry, Mark; Mullins, Lisa; Noe, Mark C.; O’Donnell, John; Oliver, Robert; Penzien, Joseph; Plummer, Mark; Shanmugasundaram, Veerabahu; Thoma, Christy; Tomaras, Andrew P.; Uccello, Daniel P.; Vaz, Alfin; Wishka, Donn G. (Pfizer)

    2012-11-09

    The synthesis and biological activity of a new series of LpxC inhibitors represented by pyridone methylsulfone hydroxamate 2a is presented. Members of this series have improved solubility and free fraction when compared to compounds in the previously described biphenyl methylsulfone hydroxamate series, and they maintain superior Gram-negative antibacterial activity to comparator agents.

  4. In vitro susceptibility of gram-negative bacterial isolates to chlorhexidine gluconate.

    Science.gov (United States)

    Mengistu, Y; Erge, W; Bellete, B

    1999-05-01

    To investigate the susceptibility of clinical isolates of gram-negative bacteria to chlorhexidine gluconate. Prospective laboratory study. Tikur Anbessa Hospital, Addis Ababa, Ethiopia. Clinical specimens from 443 hospital patients. Significant number of gram negative bacteria were not inhibited by chlorhexidine gluconate (0.02-0.05%) used for antisepsis. Four hundred and forty three strains of gram-negative bacteria were isolated from Tikur Anbessa Hospital patients. Escherichia coli (31.6%) and Klebsiella pneumoniae (23%) were the most frequently isolated bacteria followed by Proteus species (13.3%), Pseudomonas species (9.2%), and Citrobacter species (6.1%). Each organism was tested to chlorhexidine gluconate (CHG), minimum inhibitory concentration (MIC) ranging from 0.0001% to 1%w/v. All Salmonella species and E. coli were inhibited by CHG, MIC or = 0.1%). Our results showed that a significant number of the gram-negative bacterial isolates were not inhibited by CHG at the concentration used for disinfection of wounds or instruments (MIC 0.02-0.05% w/v). It is therefore important to select appropriate concentration of this disinfectant and rationally use it for disinfection and hospital hygiene. Continuing follow up and surveillance is also needed to detect resistant bacteria to chlorhexidine or other disinfectants in time.

  5. Non-oral gram-negative facultative rods in chronic periodontitis microbiota

    NARCIS (Netherlands)

    van Winkelhoff, Arie J; Rurenga, Patrick; Wekema-Mulder, Gepke J; Singadji, Zadnach; Rams, Thomas E

    OBJECTIVE: The subgingival prevalence of gram-negative facultative rods not usually inhabiting or indigenous to the oral cavity (non-oral GNFR), as well as selected periodontal bacterial pathogens, were evaluated by culture in untreated and treated chronic periodontitis patients. METHODS:

  6. Clinical outcomes and safety of colistin in treatment of gram negative infections: A prospective observational study

    Directory of Open Access Journals (Sweden)

    Kinnari Desai

    2016-08-01

    Conclusion: Colistin is effective in treatment of gram negative infections and its use should be reappraised. However since colistin is the last resort it is imperative to make its best use to ensure that it remains as a safe and effective mode of treatment when need be.

  7. Activation of toll-like receptors 2 and 4 by gram-negative periodontal bacteria

    NARCIS (Netherlands)

    Kikkert, R.; Laine, M. L.; Aarden, L. A.; van Winkelhoff, A. J.

    2007-01-01

    BACKGROUND/AIMS: Periodontitis is a chronic infectious disease associated with a gram-negative subgingival microflora. Bacterial components stimulate, among other receptors, Toll-like receptor (TLR) 2 and/or TLR4. Accumulating evidence indicates that both qualitatively and quantitatively distinct

  8. Loss of outer membrane integrity in Gram-negative bacteria by silver ...

    Indian Academy of Sciences (India)

    Mater. Sci., Vol. 39, No. 7, December 2016, pp. 1871–1878. c Indian Academy of Sciences. DOI 10.1007/s12034-016-1317-5. Loss of outer membrane integrity in Gram-negative bacteria by silver nanoparticles loaded with Camellia sinensis leaf phytochemicals: plausible mechanism of bacterial cell disintegration. M SINGH.

  9. Prevalence of AmpC β-lactamase among Gram-negative bacteria ...

    African Journals Online (AJOL)

    Purpose: Infections caused by AmpC-positive bacteria results in high patient morbidity and mortality making their detection clinically important as they cannot be detected in routine susceptibility testing. This study aim to determine the prevalence of AmpC β-lactamase among Gram negative bacteria recovered from clinical ...

  10. The structures of lipopolysaccharides from plant-associated gram-negative bacteria

    DEFF Research Database (Denmark)

    Molinaro, Antonio; Newman, Mari-Anne; Lanzetta, Rosa

    2009-01-01

    Gram-negative bacterial lipopolysaccharides (LPSs) have multiple roles in plant-microbe interactions. LPSs contribute to the low permeabilities of bacterial outer membranes, which act as barriers to protect bacteria from plant-derived antimicrobial substances. Conversely, perception of LPSs by pl...

  11. Mechanisms of antibiotic resistance in enterococci

    Science.gov (United States)

    Miller, William R; Munita, Jose M; Arias, Cesar A

    2015-01-01

    Multidrug-resistant (MDR) enterococci are important nosocomial pathogens and a growing clinical challenge. These organisms have developed resistance to virtually all antimicrobials currently used in clinical practice using a diverse number of genetic strategies. Due to this ability to recruit antibiotic resistance determinants, MDR enterococci display a wide repertoire of antibiotic resistance mechanisms including modification of drug targets, inactivation of therapeutic agents, overexpression of efflux pumps and a sophisticated cell envelope adaptive response that promotes survival in the human host and the nosocomial environment. MDR enterococci are well adapted to survive in the gastrointestinal tract and can become the dominant flora under antibiotic pressure, predisposing the severely ill and immunocompromised patient to invasive infections. A thorough understanding of the mechanisms underlying antibiotic resistance in enterococci is the first step for devising strategies to control the spread of these organisms and potentially establish novel therapeutic approaches. PMID:25199988

  12. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Kwon, Deug-Nam; Kim, Jin-Hoi

    2014-07-01

    Silver nanoparticles (AgNPs) have been used as antibacterial, antifungal, antiviral, anti-inflammtory, and antiangiogenic due to its unique properties such as physical, chemical, and biological properties. The present study was aimed to investigate antibacterial and anti-biofilm activities of silver nanoparticles alone and in combination with conventional antibiotics against various human pathogenic bacteria. Here, we show that a simple, reliable, cost effective and green method for the synthesis of AgNPs by treating silver ions with leaf extract of Allophylus cobbe. The A. cobbe-mediated synthesis of AgNPs (AgNPs) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the antibacterial and anti-biofilm activity of antibiotics or AgNPs, or combinations of AgNPs with an antibiotic was evaluated using a series of assays: such as in vitro killing assay, disc diffusion assay, biofilm inhibition, and reactive oxygen species generation in Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus, and Streptococcus pneumonia. The results suggest that, in combination with antibiotics, there were significant antimicrobial and anti-biofilm effects at lowest concentration of AgNPs using a novel plant extract of A. cobbe, otherwise sublethal concentrations of the antibiotics. The significant enhancing effects were observed for ampicillin and vancomycin against Gram-negative and Gram-positive bacteria, respectively. These data suggest that combining antibiotics and biogenic AgNPs can be used therapeutically for the treatment of infectious diseases caused by bacteria. This study presented evidence of antibacterial and anti-biofilm effects of A. cobbe-mediated synthesis of AgNPs and their enhanced capacity against various human pathogenic bacteria. These results

  13. Flow cytometric evaluation of physico-chemical impact on Gram-positive and Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Antje eFröhling

    2015-09-01

    Full Text Available Since heat sensitivity of fruits and vegetables limits the application of thermal inactivation processes, new emerging inactivation technologies have to be established to fulfil the requirements of food safety without affecting the produce quality. The efficiency of inactivation treatments has to be ensured and monitored. Monitoring of inactivation effects is commonly performed using traditional cultivation methods which have the disadvantage of the time span needed to obtain results.The aim of this study was to compare the inactivation effects of peracetic acid (PAA, ozonated water (O3 and cold atmospheric pressure plasma (CAPP on Gram-positive and Gram-negative bacteria using flow cytometric methods. E. coli cells were completely depolarized after treatment (15 s with 0.25 % PAA at 10 °C, and after treatment (10 s with 3.8 mg l-1 O3 at 12°C. The membrane potential of CAPP treated cells remained almost constant at an operating power of 20 W over a time period of 3 min, and subsequently decreased within 30 s of further treatment. Complete membrane permeabilization was observed after 10 s O3 treatment, but treatment with PAA and CAPP did not completely permeabilize the cells within 2 min and 4 min, respectively. Similar results were obtained for esterase activity. O3 inactivates cellular esterase but esterase activity was detected after 4 min CAPP treatment and 2 min PAA treatment. L. innocua cells and P. carotovorum cells were also permeabilized instantaneously by O3 treatment at concentrations of 3.8 ± 1 mg l-1. However, higher membrane permeabilization of L. innocua and P. carotovorum than of E. coli was observed at CAPP treatment of 20 W. The degree of bacterial damage due to the inactivation processes is highly dependent on treatment parameters as well as on treated bacteria. Important information regarding the inactivation mechanisms can be obtained by flow cytometric measurements and this enables the definition of critical process

  14. Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Cristina Anamaria Semeniuc

    2017-04-01

    Full Text Available The aim of this study was to compare the antibacterial effects of several essential oils (EOs alone and in combination against different Gram-positive and Gram-negative bacteria associated with food products. Parsley, lovage, basil, and thyme EOs, as well as their mixtures (1:1, v/v, were tested against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Salmonella typhimurium. The inhibitory effects ranged from strong (thyme EO against E. coli to no inhibition (parsley EO against P. aeruginosa. Thyme EO exhibited strong (against E. coli, moderate (against S. typhimurium and B. cereus, or mild inhibitory effects (against P. aeruginosa and S. aureus, and basil EO showed mild (against E. coli and B. cereus or no inhibitory effects (against S. typhimurium, P. aeruginosa, and S. aureus. Parsley and lovage EOs revealed no inhibitory effects against all tested strains. Combinations of lovage/thyme and basil/thyme EOs displayed antagonistic effects against all bacteria, parsley/thyme EOs against B. cereus, S. aureus, P. aeruginosa, and E. coli, and lovage/basil EOs against B. cereus and E. coli. Combinations of parsley/lovage and parsley/basil EOs exhibited indifferent effects against all bacteria. The combination of lovage/basil EO showed indifferent effect against S. aureus, P. aeruginosa, and S. typhimurium, and the combination parsley/thyme EO against S. typhimurium. Thyme EO has the highest percentage yield and antibacterial potential from all tested formulations; its combination with parsley, lovage, and basil EOs determines a reduction of its antibacterial activity. Hence, it is recommended to be used alone as the antibacterial agent.

  15. Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria.

    Science.gov (United States)

    Semeniuc, Cristina Anamaria; Pop, Carmen Rodica; Rotar, Ancuţa Mihaela

    2017-04-01

    The aim of this study was to compare the antibacterial effects of several essential oils (EOs) alone and in combination against different Gram-positive and Gram-negative bacteria associated with food products. Parsley, lovage, basil, and thyme EOs, as well as their mixtures (1:1, v/v), were tested against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Salmonella typhimurium. The inhibitory effects ranged from strong (thyme EO against E. coli) to no inhibition (parsley EO against P. aeruginosa). Thyme EO exhibited strong (against E. coli), moderate (against S. typhimurium and B. cereus), or mild inhibitory effects (against P. aeruginosa and S. aureus), and basil EO showed mild (against E. coli and B. cereus) or no inhibitory effects (against S. typhimurium, P. aeruginosa, and S. aureus). Parsley and lovage EOs revealed no inhibitory effects against all tested strains. Combinations of lovage/thyme and basil/thyme EOs displayed antagonistic effects against all bacteria, parsley/thyme EOs against B. cereus, S. aureus, P. aeruginosa, and E. coli, and lovage/basil EOs against B. cereus and E. coli. Combinations of parsley/lovage and parsley/basil EOs exhibited indifferent effects against all bacteria. The combination of lovage/basil EO showed indifferent effect against S. aureus, P. aeruginosa, and S. typhimurium, and the combination parsley/thyme EO against S. typhimurium. Thyme EO has the highest percentage yield and antibacterial potential from all tested formulations; its combination with parsley, lovage, and basil EOs determines a reduction of its antibacterial activity. Hence, it is recommended to be used alone as the antibacterial agent. Copyright © 2016. Published by Elsevier B.V.

  16. [Characteristics of epidemiology and antimicrobial resistance of gram-negative bacterial bloodstream infections in children].

    Science.gov (United States)

    Dong, L; Zhang, X Y; Li, C C; Li, Z; Xia, Y Q

    2017-09-02

    Objective: To study the epidemiology and antimicrobial resistance of Gram-negative bacterial bloodstream infections in children, and to guide the choice of antimicrobials and the control of nosocomial infection. Method: Clinical data, bacteriology and antimicrobial susceptibility test results were collected retrospectively in hospitalized children who were diagnosed with gram-negative bacterial bloodstream infections in Yuying Children's Hospital of Wenzhou Medical University from January, 2010 to December, 2015. Result: A total of 399 cases (253 male and 146 female) were identified. The age ranged from 16 hours to 16 years (median age 10.1 months). The majority of cases were collected from division of neonatology ( n =261, 65.4%), followed by 31 cases (7.8%) from pediatric intensive care unit and 29 cases (7.3%) from Gastroenterology Department; 275 cases (68.9%) had underlying diseases, mainly including preterm birth( n =172), neonatal respiratory distress syndrome( n =67) and newborn asphyxia( n =53). Eighty cases had received invasive procedures and 20 had surgical operation; 149 cases (37.3%) were community-acquired and 250 cases (62.7%) were hospital acquired. Fifty cases had complications, among those, 40 cases had septic shock, 32 cases had multiple organ dysfunction syndrome and 7 cases had disseminated intravascular coagulation; 288 cases were cured, 48 improved, 17 gave up treatment and discharged, and 46 died; totally 408 strains were isolated from 399 children, including Enterobacteriaceae (346, 84.8%), non-fermentative Gram-negative bacteria (49, 12.0%) and other gram-negative bacteria (13, 3.2%). The resistance rates of Escherichia coli ( n =175) and Klebsiella pneumoniae ( n =106) to carbapenems, β-lactams enzyme and its inhibitors, amikacin and cefoxitin were all lower than 10%. Totally 245 multi-drug resistant strains (60.1%) were isolated, including 225 strains of Enterobacteriaceae and 18 strains of non-fermentative Gram-negative bacteria ( P

  17. Antibiotic Resistance in Severe Orofacial Infections.

    Science.gov (United States)

    Kim, Min Kyoung; Chuang, Sung-Kiang; August, Meredith

    2017-05-01

    This study assessed the antibiotic resistance profile in patients with severe orofacial infections treated at a single institution from 2009 through 2014. Factors contributing to resistance were studied. The resistance profile was compared with that of a cohort of similar patients treated a decade previously to identify changes in antibiotic resistance. In addition, the effect of antibiotic resistance on in-hospital course was studied. This was a 5-year retrospective cohort study. Patients were identified through the oral and maxillofacial surgery data registry. Inclusion criteria were patients treated for orofacial infection requiring hospital admission, surgical drainage, and availability of complete medical, surgical, and microbiological data. Patients with incomplete data or treated as outpatients or nonsurgically were excluded. Sixty patient charts were identified for review. Demographic data; medical, dental, and surgical histories; and hospital course and treatment specifics were obtained for each patient. Linear regression and logistic analyses were used to analyze the data. Men composed 60% of the cohort (mean age, 45 yr). Average hospital stay was 5.5 days. Penicillin resistance was found in 32.5% of aerobic isolates and clindamycin resistance was found in 29.3%. Streptococcus viridans and Staphylococcus species showed increased resistance to clindamycin and erythromycin compared with historic controls. Younger patient age, surgical history, and number of cultured aerobes showed a relevant correlation to antibiotic resistance. The need for changes in antibiotics, repeat surgical drainage, and increased serum urea nitrogen levels correlated with longer hospital stay. A serious increase in clindamycin and erythromycin resistance was found for S viridans and Staphylococcus species. Age, surgical history, and number of cultured aerobes showed a statistically meaningful correlation to antibiotic resistance. Presence of antibiotic resistance failed to show

  18. Antibiotic Resistant Bacterial Isolates from Captive Green Turtles and In Vitro Sensitivity to Bacteriophages

    Directory of Open Access Journals (Sweden)

    Alessandro Delli Paoli Carini

    2017-01-01

    Full Text Available This study aimed to test multidrug resistant isolates from hospitalised green turtles (Chelonia mydas and their environment in North Queensland, Australia, for in vitro susceptibility to bacteriophages. Seventy-one Gram-negative bacteria were isolated from green turtle eye swabs and water samples. Broth microdilution tests were used to determine antibiotic susceptibility. All isolates were resistant to at least two antibiotics, with 24% being resistant to seven of the eight antibiotics. Highest resistance rates were detected to enrofloxacin (77% and ampicillin (69.2%. More than 50% resistance was also found to amoxicillin/clavulanic acid (62.5%, ceftiofur (53.8%, and erythromycin (53.3%. All the enriched phage filtrate mixtures resulted in the lysis of one or more of the multidrug resistant bacteria, including Vibrio harveyi and V. parahaemolyticus. These results indicate that antibiotic resistance is common in Gram-negative bacteria isolated from hospitalised sea turtles and their marine environment in North Queensland, supporting global concern over the rapid evolution of multidrug resistant genes in the environment. Using virulent bacteriophages as antibiotic alternatives would not only be beneficial to turtle health but also prevent further addition of multidrug resistant genes to coastal waters.

  19. Effectiveness of oral antibiotics for definitive therapy of Gram-negative bloodstream infections.

    Science.gov (United States)

    Kutob, Leila F; Justo, Julie Ann; Bookstaver, P Brandon; Kohn, Joseph; Albrecht, Helmut; Al-Hasan, Majdi N

    2016-11-01

    There is paucity of data evaluating intravenous-to-oral antibiotic switch options for Gram-negative bloodstream infections (BSIs). This retrospective cohort study examined the effectiveness of oral antibiotics for definitive treatment of Gram-negative BSI. Patients with Gram-negative BSI hospitalised for antibiotics were included in this study. The cohort was stratified into three groups based on bioavailability of oral antibiotics prescribed (high, ≥95%; moderate, 75-94%; and low, antibiotics were prescribed to 106, 179 and 77 patients, respectively, for definitive therapy of Gram-negative BSI. Mean patient age was 63 years, 217 (59.9%) were women and 254 (70.2%) had a urinary source of infection. Treatment failure rates were 2%, 12% and 14% in patients receiving oral antibiotics with high, moderate and low bioavailability, respectively (P = 0.02). Risk of treatment failure in the multivariate Cox model was higher in patients receiving antibiotics with moderate [adjusted hazard ratio (aHR) = 5.9, 95% CI 1.6-38.5; P = 0.005] and low bioavailability (aHR = 7.7, 95% CI 1.9-51.5; P = 0.003) compared with those receiving oral antimicrobial agents with high bioavailability. These data demonstrate the effectiveness of oral antibiotics with high bioavailability for definitive therapy of Gram-negative BSI. Risk of treatment failure increases as bioavailability of the oral regimen declines. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  20. Relationship between Gram negative enteric rods, Aggregatibacter actinomycetemcomitans, and clinical parameters in periodontal disease

    Directory of Open Access Journals (Sweden)

    Carlos M Ardila

    2012-01-01

    Full Text Available Background: The association between Gram negative enteric rods and Aggregatibacter actinomycetemcomitans in periodontal diseases has received little attention in the literature. The objective of this study was to explore the relationship between these organisms and clinical parameters of periodontal disease. Materials and Methods: Clinical parameters and occurrence of Gram-negative enteric rods and A. actinomycetemcomitans were examined in 76 patients with chronic periodontitis. Chi-square and Mann-Whitney tests were used to determine differences in clinical variables versus the presence or absence of both microorganisms. Correlation among both organisms and clinical data were determined using Spearman rank correlation coefficient. Results: Gram-negative enteric rods and A. actinomycetemcomitans were detected in 20 (26.3% and 18 (23.7% individuals, respectively. A total of 14 (18.4% patients harbored both microorganisms studied. There were significantly positive correlations between enteric rods and presence of A. actinomycetemcomitans (r=0.652, P<0.0001. Both microorganisms were significant and positively correlated with probing depth (PD, clinical attachment level, and bleeding on probing (P<0.0001. The mean PD (mm of the sampled sites was significantly deeper in patients with presence of A. actinomycetemcomitans and Gram-negative enteric rods. Conclusion: The results of the present study suggest a strong positive correlation between Gram-negative enteric rods and A. actinomycetemcomitans in the population studied. This finding must be taken into account when considering the best therapeutic approach, including the utilization of antimicrobials. The adverse clinical outcomes observed in presence of these microorganisms could have implications in the pathogenesis of periodontal disease and a possible impact on outcomes after treatment.

  1. Antibiotic resistance mechanisms of Vibrio cholerae.

    Science.gov (United States)

    Kitaoka, Maya; Miyata, Sarah T; Unterweger, Daniel; Pukatzki, Stefan

    2011-04-01

    As the causative agent of cholera, the bacterium Vibrio cholerae represents an enormous public health burden, especially in developing countries around the world. Cholera is a self-limiting illness; however, antibiotics are commonly administered as part of the treatment regimen. Here we review the initial identification and subsequent evolution of antibiotic-resistant strains of V. cholerae. Antibiotic resistance mechanisms, including efflux pumps, spontaneous chromosomal mutation, conjugative plasmids, SXT elements and integrons, are also discussed. Numerous multidrug-resistant strains of V. cholerae have been isolated from both clinical and environmental settings, indicating that antibiotic use has to be restricted and alternative methods for treating cholera have to be implemented.

  2. Interspecies signalling: Pseudomonas putida efflux pump TtgGHI is activated by indole to increase antibiotic resistance.

    Science.gov (United States)

    Molina-Santiago, Carlos; Daddaoua, Abdelali; Fillet, Sandy; Duque, Estrella; Ramos, Juan-Luis

    2014-05-01

    In Gram-negative bacteria, multidrug efflux pumps are responsible for the extrusion of chemicals that are deleterious for growth. Some of these efflux pumps are induced by endogenously produced effectors, while abiotic or biotic signals induce the expression of other efflux pumps. In Pseudomonas putida, the TtgABC efflux pump is the main antibiotic extrusion system that respond to exogenous antibiotics through the modulation of the expression of this operon mediated by TtgR. The plasmid-encoded TtgGHI efflux pump in P. putida plays a minor role in antibiotic resistance in the parental strain; however, its role is critical in isogenic backgrounds deficient in TtgABC. Expression of ttgGHI is repressed by the TtgV regulator that recognizes indole as an effector, although P. putida does not produce indole itself. Because indole is not produced by Pseudomonas, the indole-dependent antibiotic resistance seems to be part of an antibiotic resistance programme at the community level. Pseudomonas putida recognizes indole added to the medium or produced by Escherichia coli in mixed microbial communities. Transcriptomic analyses revealed that the indole-specific response involves activation of 43 genes and repression of 23 genes. Indole enhances not only the expression of the TtgGHI pump but also a set of genes involved in iron homeostasis, as well as genes for amino acid catabolism. In a ttgABC-deficient P. putida, background ampicillin and other bactericidal compounds lead to cell death. Co-culture of E. coli and P. putida ΔttgABC allowed growth of the P. putida mutant in the presence of ampicillin because of induction of the indole-dependent efflux pump. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Convergent acquisition of antibiotic resistance determinants ...

    African Journals Online (AJOL)

    Convergent acquisition of antibiotic resistance determinants amongst the Enterobacteriaceae isolates of the Mhlathuze River, KwaZulu-Natal (RSA) ... The possibility of transmission of resistant genes between bacteria (especially pathogenic) which invade human and animal populations within this river poses a health risk ...

  4. Antibiotic resistance: a physicist’s view

    Science.gov (United States)

    Allen, Rosalind; Waclaw, Bartłomiej

    2016-08-01

    The problem of antibiotic resistance poses challenges across many disciplines. One such challenge is to understand the fundamental science of how antibiotics work, and how resistance to them can emerge. This is an area where physicists can make important contributions. Here, we highlight cases where this is already happening, and suggest directions for further physics involvement in antimicrobial research.

  5. Antibiotic Resistance of Bacteria: A Global Challenge

    Indian Academy of Sciences (India)

    vealed several aminoglycoside resistances in nonculturable bac- teria. Notwithstanding the availability of so many antimicrobial agents, infectious diseases still remain the second leading cause of death worldwide. Eventually, the widespread occurrence of antibiotic-resistant bacteria has added a new dimension to the.

  6. Antibiotic resistance in Candida albicans and Staphylococcus ...

    African Journals Online (AJOL)

    Nowadays, vaginal candidiasis and bacterial vaginosis are frequently encountered in medical practice and antibiotic resistance in implicated pathogens has not been reported in Dschang. This study sought to determine the antimicrobial susceptibility patterns of 198 isolates of Candida albicans and 300 strains of ...

  7. Antibiotic resistance properties of uropathogenic Escherichia coli ...

    African Journals Online (AJOL)

    Purpose: To investigate the antibiotic resistance pattern of uropathogenic Escherichia coli (UPEC) strains isolated from pregnant women with history of recurrent urinary tract infections (RUTIs) and healthy pregnant women. Methods: A total of 485 high vaginal swab specimens were collected from pregnant women with ...

  8. Probiotic approach to prevent antibiotic resistance.

    Science.gov (United States)

    Ouwehand, Arthur C; Forssten, Sofia; Hibberd, Ashley A; Lyra, Anna; Stahl, Buffy

    2016-01-01

    Probiotics are live microorganisms, mainly belonging to the genera Lactobacillus and Bifidobacterium, although also strain of other species are commercialized, that have a beneficial effect on the host. From the perspective of antibiotic use, probiotics have been observed to reduce the risk of certain infectious disease such as certain types of diarrhea and respiratory tract infection. This may be accompanied with a reduced need of antibiotics for secondary infections. Antibiotics tend to be effective against most common diseases, but increasingly resistance is being observed among pathogens. Probiotics are specifically selected to not contribute to the spread of antibiotic resistance and not carry transferable antibiotic resistance. Concomitant use of probiotics with antibiotics has been observed to reduce the incidence, duration and/or severity of antibiotic-associated diarrhea. This contributes to better adherence to the antibiotic prescription and thereby reduces the evolution of resistance. To what extent probiotics directly reduce the spread of antibiotic resistance is still much under investigation; but maintaining a balanced microbiota during antibiotic use may certainly provide opportunities for reducing the spread of resistances. Key messages Probiotics may reduce the risk for certain infectious diseases and thereby reduce the need for antibiotics. Probiotics may reduce the risk for antibiotic-associated diarrhea Probiotics do not contribute to the spread of antibiotic resistance and may even reduce it.

  9. Antibiotic resistance properties of uropathogenic Escherichia coli ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus, ..... and Argentina [28]. CONCLUSION. As far as we know, the present study is the first prevalence report on antibiotic resistance pattern of UPEC strains in ... serogroups profiles of uropathogenic Escherichia coli isolated ...

  10. Antibiotic resistance and pathogenicity factors in Staphylococcus ...

    Indian Academy of Sciences (India)

    Methicillin-resistant Staphylococcus aureus (MRSA) poses a serious problem in dairy animals suffering from mastitis. In the present study, the distribution of mastitic MRSA and antibiotic resistance was studied in 107 strains of. S. aureus isolated from milk samples from 195 infected udders. The characterizations pathogenic ...

  11. Antibiotic resistance and pathogenicity factors in Staphylococcus ...

    Indian Academy of Sciences (India)

    Methicillin-resistant Staphylococcus aureus (MRSA) poses a serious problem in dairy animals suffering from mastitis. In the present study, the distribution of mastitic MRSA and antibiotic resistance was studied in 107 strains of S. aureus isolated from milk samples from 195 infected udders. The characterizations pathogenic ...

  12. Klebsiella pneumoniae antibiotic resistance identified by atomic ...

    Indian Academy of Sciences (India)

    In particular, we studied Klebsiella pneumoniae bacteria provided by the Lavagna Hospital ASL4Liguria (Italy), where there are cases linked with antibiotics resistance of the Klebsiella pneumoniae. By comparing AFMimages of bacteria strains treated with different antibiotics is possible to identify unambiguously the ...

  13. Bactérias gram negativas resistentes a antimicrobianos em alimentos Gram-negative bacteria resistant to antibiotics in foods

    Directory of Open Access Journals (Sweden)

    José Cavalcante de Albuquerque Ribeiro Dias

    1985-12-01

    Full Text Available A partir de 154 espécimens de alimentos, representados por hortaliças (alface, leite e merenda escolar, obteve-se o isolamento e identificação de 400 amostras de bacilos Gram negativos. Esta amostragem se distribuiu em 339 enterobactérias (Escherichia, Shigella, Citrobacter, Klebsiella, Enterobacter, Serratia e Proteus e 61 de gêneros afins (Acinetobacter, Flavobacterium, Aeromonas e Pseudomonas. Submetendo-se as culturas aos antimicrobianos: sulfadiazina (Su, estreptomicina (Sm, tetraciclina (Tc, cloranfenicol (Cm, canamicina (Km, ampicilina (Ap, ácido nalidíxico (Nal e gentamicina (Gm, observou-se apenas seis estirpes sensíveis a todas as drogas e sensibilidade absoluta à Gm. A predominância dos modelos Su (27,6% e Su-Ap (39,6% incidiu nas enterobactérias, enquanto que, 18,0% para Ap e 9,8% para Su-Ap foram detectados nos gêneros afins. Para caracterização da resistência foram realizados testes de conjugação e a totalidade das culturas não revelou transferência para o gene que confere resistência ao ácido nalidíxico. Relevantes são as taxas de amostras R+ observadas nos bacilos entéricos, oscilando em torno de 90% (leite e merenda escolar e alface, em torno de 70%From 154 food samples, including vegetables (lettuce, milk and meals served at school it was possible to isolate and identify 400 Gram negative bacilli distributed among 339 enteric bacteria (Escherichia, Shigella, Citrobacter, Klebsiella, Enterobacter, Serratia and Proteus and other 61 non enteric bacilli (Acinetobacter, Flavobacterium, Aeromonas and Pseudomonas. Submitting this cultures to the drugs sulfadiazine (Su, streptomycin (Sm, tetracycline (Tc, chloramphenicol (Cm, kanamycin (Km, ampicillin (Ap, nalidixic acid (Nal and gentamycin (Gm it was observed only six stocks susceptible to all drugs and total sensibility to Gm. Among enteric bacteria the profiles Su (27,6% and Su-Ap (39,6% predominated, while for the non enteric bacilli percentages of 18.0 for

  14. A prediction tool for nosocomial multi-drug Resistant Gram-Negative Bacilli infections in critically ill patients - prospective observational study.

    Science.gov (United States)

    Vasudevan, Anupama; Mukhopadhyay, Amartya; Li, Jialiang; Yuen, Eugene Goh Yu; Tambyah, Paul Ananth

    2014-11-25

    The widespread use of empiric broad spectrum antibiotics has contributed to the global increase of Resistant Gram-Negative Bacilli (RGNB) infections in intensive care units (ICU). The aim of this study was to develop a tool to predict nosocomial RGNB infections among ICU patients for targeted therapy. We conducted a prospective observational study from August'07 to December'11. All adult patients who were admitted and stayed for more than 24 hours at the medical and surgical ICU's were included. All patients who developed nosocomial RGNB infections 48 hours after ICU admission were identified. A prediction score was formulated by using independent risk factors obtained from logistic regression analysis. This was prospectively validated with a subsequent cohort of patients admitted to the ICUs during the following time period of January-September 2012. Seventy-six patients with nosocomial RGNB Infection (31bacteremia) were compared with 1398 patients with Systemic Inflammatory Response Syndrome (SIRS) without any gram negative bacterial infection/colonization admitted to the ICUs during the study period. The following independent risk factors were obtained by a multivariable logistic regression analysis - prior isolation of Gram negative organism (coeff: 1.1, 95% CI 0.5-1.7); Surgery during current admission (coeff: 0.69, 95% CI 0.2-1.2); prior Dialysis with end stage renal disease (coeff: 0.7, 95% CI 0.1-1.1); prior use of Carbapenems (coeff: 1.3, 95% CI 0.3-2.3) and Stay in the ICU for more than 5 days (coeff: 2.4, 95% CI 1.6-3.2). It was validated prospectively in a subsequent cohort (n = 408) and the area-under-the-curve (AUC) of the GSDCS score for predicting nosocomial ICU acquired RGNB infection and bacteremia was 0.77 (95% CI 0.68-0.89 and 0.78 (95% CI 0.69-0.89) respectively. The GSDCS (0-4.3) score clearly differentiated the low (0-1.3), medium (1.4-2.3) and high (2.4-4.3) risk patients, both for RGNB infection (p:0.003) and bacteremia (p:0

  15. Analisi delle antibiotico-resistenze di Gram-negativi isolati da pazienti con infezioni del tratto urinario afferenti al Polo Oncologico e Dermatologico I.F.O.

    OpenAIRE

    Maria Teresa Gallo; Grazia Prignano; Mauro Belardi; Karim Donato; Gian Piero Testore; Fabrizio Ensoli

    2006-01-01

    Introduction. Urinary tract infections represent a worlwide problem due to their prevalence among nosocomial infections and to the increasing frequency of antibiotic resistance among the Gram-negative pathogens. Knowledge of the antimicrobial resistance patterns according to local epidemiology is essential for providing clinically appropriate therapy for urinary tract infection. In the present study we analysed the drug resistence pattern of Gram negative bacteria isolated from urine samples ...

  16. A novel approach for emerging and antibiotic resistant infections: Innate Defense Regulators as an agnostic therapy

    Science.gov (United States)

    North, John R.; Takenaka, Shunsuke; Rozek, Annett; Kielczewska, Agnieszka; Opal, Steven; Morici, Lisa A.; Finlay, B. Brett; Schaber, Christopher J.; Straube, Richard; Donini, Oreola

    2016-01-01

    Innate Defense Regulators (IDRs) are short synthetic peptides that target the host innate immune system via an intracellular adaptor protein which functions at key signaling nodes. In this work, further details of the mechanism of action of IDRs have been discovered. The studies reported here show that the lead clinical IDR, SGX94, has broad-spectrum activity against Gram-negative and Gram-positive bacterial infections caused by intracellular or extracellular bacteria and also complements the actions of standard of care antibiotics. Based on in vivo and primary cell culture studies, this activity is shown to result from the primary action of SGX94 on tissue-resident cells and subsequent secondary signaling to activate myeloid-derived cells, resulting in enhanced bacterial clearance and increased survival. Data from non-clinical and clinical studies also show that SGX94 treatment modulates pro-inflammatory and anti-inflammatory cytokine levels, thereby mitigating the deleterious inflammatory consequences of innate immune activation. Since they act through host pathways to provide both broad-spectrum anti-infective capability as well as control of inflammation, IDRs are unlikely to be impacted by resistance mechanisms and offer potential clinical advantages in the fight against emerging and antibiotic resistant bacterial infections. PMID:27015977

  17. A novel approach for emerging and antibiotic resistant infections: Innate defense regulators as an agnostic therapy.

    Science.gov (United States)

    North, John R; Takenaka, Shunsuke; Rozek, Annett; Kielczewska, Agnieszka; Opal, Steven; Morici, Lisa A; Finlay, B Brett; Schaber, Christopher J; Straube, Richard; Donini, Oreola

    2016-05-20

    Innate Defense Regulators (IDRs) are short synthetic peptides that target the host innate immune system via an intracellular adaptor protein which functions at key signaling nodes. In this work, further details of the mechanism of action of IDRs have been discovered. The studies reported here show that the lead clinical IDR, SGX94, has broad-spectrum activity against Gram-negative and Gram-positive bacterial infections caused by intracellular or extracellular bacteria and also complements the actions of standard of care antibiotics. Based on in vivo and primary cell culture studies, this activity is shown to result from the primary action of SGX94 on tissue-resident cells and subsequent secondary signaling to activate myeloid-derived cells, resulting in enhanced bacterial clearance and increased survival. Data from non-clinical and clinical studies also show that SGX94 treatment modulates pro-inflammatory and anti-inflammatory cytokine levels, thereby mitigating the deleterious inflammatory consequences of innate immune activation. Since they act through host pathways to provide both broad-spectrum anti-infective capability as well as control of inflammation, IDRs are unlikely to be impacted by resistance mechanisms and offer potential clinical advantages in the fight against emerging and antibiotic resistant bacterial infections. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria.

    Science.gov (United States)

    Peng, Bo; Su, Yu-Bin; Li, Hui; Han, Yi; Guo, Chang; Tian, Yao-Mei; Peng, Xuan-Xian

    2015-02-03

    Multidrug-resistant bacteria are an increasingly serious threat to human and animal health. However, novel drugs that can manage infections by multidrug-resistant bacteria have proved elusive. Here we show that glucose and alanine abundances are greatly suppressed in kanamycin-resistant Edwardsiella tarda by GC-MS-based metabolomics. Exogenous alanine or glucose restores susceptibility of multidrug-resistant E. tarda to killing by kanamycin, demonstrating an approach to killing multidrug-resistant bacteria. The mechanism underlying this approach is that exogenous glucose or alanine promotes the TCA cycle by substrate activation, which in turn increases production of NADH and proton motive force and stimulates uptake of antibiotic. Similar results are obtained with other Gram-negative bacteria (Vibrio parahaemolyticus, Klebsiella pneumoniae, Pseudomonas aeruginosa) and Gram-positive bacterium (Staphylococcus aureus), and the results are also reproduced in a mouse model for urinary tract infection. This study establishes a functional metabolomics-based strategy to manage infection by antibiotic-resistant bacteria. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. LiF Reduces MICs of Antibiotics against Clinical Isolates of Gram-Positive and Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    H. C. Syed

    2012-01-01

    Full Text Available Antibiotic resistance is an ever-growing problem yet the development of new antibiotics has slowed to a trickle, giving rise to the use of combination therapy to eradicate infections. The purpose of this study was to evaluate the combined inhibitory effect of lithium fluoride (LiF and commonly used antimicrobials on the growth of the following bacteria: Enterococcus faecalis, Staphyloccoccus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, and Streptococcus pneumoniae. The in vitro activities of ceftazidime, sulfamethoxazole-trimethoprim, streptomycin, erythromycin, amoxicillin, and ciprofloxacin, doxycycline, alone or combined with LiF were performed by microdilution method. MICs were determined visually following 18–20 h of incubation at 37°C. We observed reduced MICs of antibiotics associated with LiF ranging from two-fold to sixteen-fold. The strongest decreases of MICs observed were for streptomycin and erythromycin associated with LiF against Acinetobacter baumannii and Streptococcus pneumoniae. An eight-fold reduction was recorded for streptomycin against S. pneumoniae whereas an eight-fold and a sixteen-fold reduction were obtained for erythromycin against A. baumannii and S. pneumoniae. This suggests that LiF exhibits a synergistic effect with a wide range of antibiotics and is indicative of its potential as an adjuvant in antibiotic therapy.

  20. Community-acquired multidrug-resistant Gram-negative bacterial infective endocarditis.

    Science.gov (United States)

    Naha, Sowjanya; Naha, Kushal; Acharya, Vasudev; Hande, H Manjunath; Vivek, G

    2014-08-05

    We describe two cases of bacterial endocarditis secondary to multidrug-resistant Gram-negative organisms. In both cases, the diagnosis was made in accordance with the modified Duke's criteria and confirmed by histopathological analysis. Furthermore, in both instances there were no identifiable sources of bacteraemia and no history of contact with hospital or other medical services prior to the onset of symptoms. The patients were managed in similar fashion with prolonged broad-spectrum antibiotic therapy and surgical intervention and made complete recoveries. These cases highlight Gram-negative organisms as potential agents for endocarditis, as well as expose the dissemination of such multidrug-resistant bacteria into the community. The application of an integrated medical and surgical approach and therapeutic dilemmas encountered in managing these cases are described. 2014 BMJ Publishing Group Ltd.

  1. Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria.

    Science.gov (United States)

    Sperandeo, Paola; Martorana, Alessandra M; Polissi, Alessandra

    2017-11-01

    The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer containing a unique glycolipid, lipopolysaccharide (LPS) in its outer leaflet. LPS molecules confer to the OM peculiar permeability barrier properties enabling Gram-negative bacteria to exclude many toxic compounds, including clinically useful antibiotics, and to survive harsh environments. Transport of LPS poses several problems to the cells due to the amphipatic nature of this molecule. In this review we summarize the current knowledge on the LPS transport machinery, discuss the challenges associated with this process and present the solutions that bacterial cells have evolved to address the problem of LPS transport and assembly at the cell surface. Finally, we discuss how knowledge on LPS biogenesis can be translated for the development of novel antimicrobial therapies. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016. Published by Elsevier B.V.

  2. Antimicrobial compounds targeting Gram-negative bacteria in food: Their mode of action and combinational effects

    DEFF Research Database (Denmark)

    Hyldgaard, Morten

    2015-01-01

    they interact with bacterial cells to exert their mechanism of inhibition or killing. Furthermore, natural antimicrobials are often not potent enough as single compounds, and may cause unwanted sensory side-effects, which limit the quantities that can be applied to food. These problems might be circumvented......Gram-negative bacteria are a major cause of food spoilage and foodborne illnesses. However, finding effective solutions against Gram-negative bacteria are complicated because of increasing consumer demands for more natural, minimally processed, and fresh high quality food products without...... that isoeugenol permeabilized the cytoplasmic membrane, and probably inhibited intracellular esterases. We proposed that isoeugenol interacted with cytoplasmic membranes of E. coli in a reversible fashion, which destabilized membranes to become leaky in a non-disruptive detergent-like mechanism. In the third...

  3. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria.

    Science.gov (United States)

    Arzanlou, Mohsen; Chai, Wern Chern; Venter, Henrietta

    2017-02-28

    Gram-negative bacteria are responsible for a large proportion of antimicrobial-resistant infections in humans and animals. Among this class of bacteria are also some of the most successful environmental organisms. Part of this success is their adaptability to a variety of different niches, their intrinsic resistance to antimicrobial drugs and their ability to rapidly acquire resistance mechanisms. These mechanisms of resistance are not exclusive and the interplay of several mechanisms causes high levels of resistance. In this review, we explore the molecular mechanisms underlying resistance in Gram-negative organisms and how these different mechanisms enable them to survive many different stress conditions. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Transmission dynamics of gram-negative bacterial pathogens in the anesthesia work area.

    Science.gov (United States)

    Loftus, Randy W; Brown, Jeremiah R; Patel, Hetal M; Koff, Matthew D; Jensen, Jens T; Reddy, Sundara; Ruoff, Kathryn L; Heard, Stephen O; Dodds, Thomas M; Beach, Michael L; Yeager, Mark P

    2015-04-01

    Gram-negative organisms are a major health care concern with increasing prevalence of infection and community spread. Our primary aim was to characterize the transmission dynamics of frequently encountered gram-negative bacteria in the anesthesia work area environment (AWE). Our secondary aim was to examine links between these transmission events and 30-day postoperative health care-associated infections (HCAIs). Gram-negative isolates obtained from the AWE (patient nasopharynx and axilla, anesthesia provider hands, and the adjustable pressure-limiting valve and agent dial of the anesthesia machine) at 3 major academic medical centers were identified as possible intraoperative bacterial transmission events by class of pathogen, temporal association, and phenotypic analysis (analytical profile indexing). The top 5 frequently encountered genera were subjected to antibiotic disk diffusion sensitivity to identify epidemiologically related transmission events. Complete multivariable logistic regression analysis and binomial tests of proportion were then used to examine the relative contributions of reservoirs of origin and within- and between-case modes of transmission, respectively, to epidemiologically related transmission events. Analyses were conducted with and without the inclusion of duplicate transmission events of the same genera occurring in a given study unit (first and second case of the day in each operating room observed) to examine the potential effect of statistical dependency. Transmitted isolates were compared by pulsed-field gel electrophoresis to disease-causing bacteria for 30-day postoperative HCAIs. The top 5 frequently encountered gram-negative genera included Acinetobacter, Pseudomonas, Brevundimonas, Enterobacter, and Moraxella that together accounted for 81% (767/945) of possible transmission events. For all isolates, 22% (167/767) of possible transmission events were identified by antibiotic susceptibility patterns as epidemiologically related

  5. Exploring the hidden potential of fosfomycin for the fight against severe Gram-negative infections.

    Science.gov (United States)

    Saiprasad, P V; Krishnaprasad, K

    2016-01-01

    Gram-negative resistance is a serious global crisis putting the world on the cusp of 'pre-antibiotic era'. This serious crisis has been catalysed by the rapid increase in carbapenem-resistant Enterobacteriaceae (CRE). Spurge in colistin usage to combat CRE infections leads to the reports of (colistin and carbapenem resistant enterobacteriaceae) CCRE (resistance to colistin in isolates of CRE) infections further jeopardising our last defence. The antibacterial apocalypse imposed by global resistance crisis requires urgent alternative therapeutic options. Interest in the use of fosfomycin renewed recently for serious systemic infections caused by multidrug-resistant Enterobacteriaceae. This review aimed at analysing the recent evidence on intravenous fosfomycin to explore its hidden potential, especially when fosfomycin disodium is going to be available in India. Although a number of promising evidence are coming up for fosfomycin, there are still areas where more work is required to establish intravenous fosfomycin as the last resort antibacterial for severe Gram-negative infections.

  6. Quorum-Sensing Signal-Response Systems in Gram-Negative Bacteria

    Science.gov (United States)

    Papenfort, Kai; Bassler, Bonnie

    2016-01-01

    Abstract / Preface Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal–response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host–microbial associations and antibacterial therapy. PMID:27510864

  7. Comparison of antibiotic resistant Escherichia coli obtained from drinking water sources in northern Tanzania: a cross-sectional study.

    Science.gov (United States)

    Lyimo, Beatus; Buza, Joram; Subbiah, Murugan; Smith, Woutrina; Call, Douglas R

    2016-11-03

    Antimicrobial resistance (AMR) is a growing and significant threat to public health on a global scale. Escherichia coli comprises Gram-negative, fecal-borne pathogenic and commensal bacteria that are frequently associated with antibiotic resistance. AMR E. coli can be ingested via food, water and direct contact with fecal contamination. We estimated the prevalence of AMR Escherichia coli from select drinking water sources in northern Tanzania. Water samples (n = 155) were collected and plated onto Hi-Crome E. coli and MacConkey agar. Presumptive E. coli were confirmed by using a uidA PCR assay. Antibiotic susceptibility breakpoint assays were used to determine the resistance patterns of each isolate for 10 antibiotics. Isolates were also characterized by select PCR genotyping and macro-restriction digest assays. E. coli was isolated from 71 % of the water samples, and of the 1819 E. coli tested, 46.9 % were resistant to one or more antibiotics. Resistance to ampicillin, streptomycin, sulfamethoxazole, tetracycline, and trimethoprim was significantly higher (15-30 %) compared to other tested antibiotics (0-6 %; P E. coli isolates obtained from these water sources were genetically diverse with few matching macro-restriction digest patterns. Water supplies in northern Tanzania may be a source of AMR E. coli for people and animals. Further studies are needed to identify the source of these contaminants and devise effective intervention strategies.

  8. Spectrum and antibiotic resistance of uropathogens between 2004 and 2015 in a tertiary care hospital in Hungary.

    Science.gov (United States)

    Magyar, András; Köves, Béla; Nagy, Károly; Dobák, András; Arthanareeswaran, Vinodh Kumar Adithyaa; Bálint, Péter; Wagenlehner, Florian; Tenke, Péter

    2017-06-01

    Surveillance of the bacterial spectrum and antibiotic-resistance patterns of locally occurring uropathogens is essential to serve as a basis for empirical treatment of urinary tract infections (UTIs), as antibiotic-resistance rates may vary geographically with significant differences between countries and regions, and with time. We retrospectively analysed all urine samples taken in the department of urology in a tertiary care hospital in Hungary from January 2004 to December 2015.Results/Key findings. The five most commonly occurring bacteria were Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Proteus mirabilis. Resistance of Escherichia coli to ciprofloxacin increased significantly from 19 to 25 %. Although the resistance of Escherichia coli against cephalosporins showed an increasing trend, it still remained generally low. However, resistance rates of K. pneumoniae to cephalosporins were very high, reaching 60 %, due to the high rate of extended-spectrum-β-lactamase-positive Klebsiella strains. We observed a significant increase in the rate of carbapenem-resistant Pseudomonas aeruginosa. Fluoroquinolones cannot be recommended for empirical treatment in our region. Cephalosporins can be a good empirical choice for treating Gram-negative UTIs, but should be avoided when multi-drug resistant (MDR) bacteria are suspected. Increases in the rate of carbapenem-resistant Pseudomonas aeruginosa, and in the general rate of MDR bacteria, are both a very alarming trend. We recommend practising prudent antibiotic policy, preferably using antibiotics with the narrowest possible spectrum.

  9. Genomic Microbial Epidemiology Is Needed to Comprehend the Global Problem of Antibiotic Resistance and to Improve Pathogen Diagnosis

    Science.gov (United States)

    Wyrsch, Ethan R.; Roy Chowdhury, Piklu; Chapman, Toni A.; Charles, Ian G.; Hammond, Jeffrey M.; Djordjevic, Steven P.

    2016-01-01

    Contamination of waste effluent from hospitals and intensive food animal production with antimicrobial residues is an immense global problem. Antimicrobial residues exert selection pressures that influence the acquisition of antimicrobial resistance and virulence genes in diverse microbial populations. Despite these concerns there is only a limited understanding of how antimicrobial residues contribute to the global problem of antimicrobial resistance. Furthermore, rapid detection of emerging bacterial pathogens and strains with resistance to more than one antibiotic class remains a challenge. A comprehensive, sequence-based genomic epidemiological surveillance model that captures essential microbial metadata is needed, both to improve surveillance for antimicrobial resistance and to monitor pathogen evolution. Escherichia coli is an important pathogen causing both intestinal [intestinal pathogenic E. coli (IPEC)] and extraintestinal [extraintestinal pathogenic E. coli (ExPEC)] disease in humans and food animals. ExPEC are the most frequently isolated Gram negative pathogen affecting human health, linked to food production practices and are often resistant to multiple antibiotics. Cattle are a known reservoir of IPEC but they are not recognized as a source of ExPEC that impact human or animal health. In contrast, poultry are a recognized source of multiple antibiotic resistant ExPEC, while swine have received comparatively less attention in this regard. Here, we review what is known about ExPEC in swine and how pig production contributes to the problem of antibiotic resistance. PMID:27379026

  10. Coexpression of ESBL, Amp C and MBL in gram negative bacilli

    OpenAIRE

    Ruturaj M. Kolhapure; Ashwin Kumar; HRV Rajkumar

    2015-01-01

    Background: Resistant bacteria are emerging worldwide as a threat to the favourable outcome of common infections in community and hospital settings. Extended Spectrum Beta-Lactamases (ESBLs), AmpC beta lactamases and Metallo-beta Lactamases (MBL) are the three important mechanism of resistance to beta lactam drugs in the bacteria. The objective of the study was to screen gram negative isolates for co-expression of extended spectrum beta-lactamase, Amp C beta-lactamase and Metallo beta-lactama...

  11. Metallo beta lactamase mediated resistance in Carbapenem resistant gram-negative bacilli: A cause for concern

    Directory of Open Access Journals (Sweden)

    Malini Jagannatha Rao, Shruti A Harle, Padmavathy M, Umapathy BL, Navaneeth BV

    2014-04-01

    Full Text Available Introduction: The emergence of acquired metallo-β-lactamases (MBL in Gram-negative bacilli is becoming a therapeutic challenge, as these enzymes usually possess a broad hydrolysis profile that includes carbapenems, extended-spectrum β-lactams. Aim: To detect Extended spectrum β-lactamases and metallo-β-lactamase in carbapenem resistant Gram negative clinical isolates from various clinical specimens and to evaluate their antibiotic susceptibility patterns. Material and Methods: A total of 100 non duplicates imipenem resistant isolates were tested for the presence of extended spectrum β-lactamases by phenotypic confirmatory test, metallo-β-lactamases by Double disk synergy test with various distances from edge to edge (10mm,15mm,20mm, between the IPM and EDTA and combined disc test. Result: Of the 100 IMP resistant isolates screened 30 (30% were MBL positive by phenotypic methods, i.e., double disk synergy test and combined disc test. Co-existence of Extended spectrum β-lactamases and MBL were detected in 3 (30%. All the 30 MBL positive isolates had shown synergy at (100% at 10 mm distance, 27 (90% isolates had shown synergy at 15 mm distance and 13 (43.4% isolates were shown synergy at 20 mm distance. All the 30 MBLs producers were multidrug resistant and 27 (90% were sensitive to colistin (CL. All MBL positive Pseudomonas aeruginosa were sensitive to polymyxin B (100µg. Conclusion: Microbiologists are now facing a challenge of drug resistance due to MBL production. Although CLSI guidelines do not quote about the ESBL detection in Pseudomonas aeruginosa MBLs and ESBL have to be detected in them. The use of combination tests would increase the sensitivity to detect the presence of MBL among the clinical isolates of Gram-negative bacilli. The spread of MBL producing Gram negative organism can be prevented if they are detected in all isolates and routinely adopted in all laboratories.

  12. Survival of Gram-Negative Bacteria on Plastic Compounded with Hexachlorophene

    Science.gov (United States)

    Taylor, Gerald F.

    1970-01-01

    Gram-negative bacteria representing nine genera were screened for their ability to survive surface exposure to polyethylene sheet plastic containing chemically compounded hexachlorophene (0.25%). Subcultures were made at hourly intervals over a 6-hr period of time. An exceedingly large drop in viable cells beginning at the 1-hr exposure was noted for each genus except one tested on the hexachlorophene-plastic, whereas most nonadditive controls grew bacterial colonies too numerous to count. PMID:5415208

  13. Sensing the enemy within: how macrophages detect intracellular Gram-negative bacteria

    OpenAIRE

    Demon, Dieter; Vande Walle, Lieselotte; Lamkanfi, Mohamed

    2014-01-01

    Caspase-11 contributes to host defense against Gram-negative bacterial pathogens by inducing an inflammatory form of programmed cell death in infected cells. Lipopolysaccharides (LPS) have been identified as the microbial agents that stimulate caspase-11 activation; however, the mechanism of LPS detection has been unknown. In a recent study, Shao and colleagues demonstrate that caspase-11 and its human homologues, caspases -4 and -5, unexpectedly act as direct sensors of cytosolic LPS.

  14. Chromogenic method for rapid isolation of recA-like mutants of gram-negative bacteria.

    OpenAIRE

    Barbe, J; Fernandez de Henestrosa, A R; Calero, S; Gibert, I

    1991-01-01

    We have devised a rapid and widely applicable color test for detecting recA-like mutants of gram-negative bacteria. The technique depends on decreased expression of an Escherichia coli recA-lacZ fusion in recA mutants and uses a broad-host-range plasmid to transfer the fusion gene into new species. We describe the isolation of a recA-like mutant of Pseudomonas syringae by this technique.

  15. A New Family of Lysozyme Inhibitors Contributing to Lysozyme Tolerance in Gram-Negative Bacteria

    OpenAIRE

    Callewaert, Lien; Aertsen, Abram; Deckers, Daphne; Vanoirbeek, Kristof G. A.; Vanderkelen, Lise; Van Herreweghe, Joris M.; Masschalck, Barbara; Nakimbugwe, Dorothy; Robben, Johan; Michiels, Chris W.

    2008-01-01

    Lysozymes are ancient and important components of the innate immune system of animals that hydrolyze peptidoglycan, the major bacterial cell wall polymer. Bacteria engaging in commensal or pathogenic interactions with an animal host have evolved various strategies to evade this bactericidal enzyme, one recently proposed strategy being the production of lysozyme inhibitors. We here report the discovery of a novel family of bacterial lysozyme inhibitors with widespread homologs in gram-negative...

  16. DMPD: Gram-negative endotoxin: an extraordinary lipid with profound effects oneukaryotic signal transduction. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1916089 Gram-negative endotoxin: an extraordinary lipid with profound effects oneuk...ep;5(12):2652-60. (.png) (.svg) (.html) (.csml) Show Gram-negative endotoxin: an extraordinary lipid with pr...tive endotoxin: an extraordinary lipid with profound effects oneukaryotic signal transduction. Authors Raetz

  17. The Frequency and Antibiotic Resistance of Chromate Tolerating Microorganisms in Qom Industrial wastewater

    Directory of Open Access Journals (Sweden)

    MR Zolfaghary

    2012-07-01

    Full Text Available

    Background and Objectives: Chromium is one of the major sources of environmental pollution and a potent occupational carcinogen. The hexavalent chromium compounds are more toxic than those of trivalent. Recent studies have suggested that reduction of Cr(VI to its lower oxidation states and related free radical reactions play an important role in carcinogenic, genotoxic and immunotoxic effects in human and animals.

     This paper reports occurrence of chromium tolerant and antibiotic resistant organism of four industrial wastewaters including electroplating, textile, galvanization, and dye manufacturing in Qom.

     

    Methods: In this study 241 isolates including 23 gram positive coccus, 3 gram negative bacilli and 215 gram positive bacilli were obtained by using of LB Agar plus determined concentration of potassium chromate.

     

    Results: A gram positive coccus, chromate reducing bacteria strain isolated from effluent of chromo plaiting could tolerate up to 760mM concentration in 34°c and pH=7 within 24h and showed resistance to some antibiotics. Biochemical, physiological, morphological and 16SrRNA tests showed this bacteria belongs to staphylococcus arlettae strain R1-7A.

     

    Conclusion: the result indicates that the indigenous microbial isolates can be useful for hexavalent chromium detoxification of chromium contamination environment and reduction of its pathogenicity and carcinogenicity, on the other hand the control of these bacteria is important from the medical view.

     

  18. Emergence of Pan-drug resistance amongst gram negative bacteria! The First case series from India

    Directory of Open Access Journals (Sweden)

    Abdul Ghafur

    2014-09-01

    Full Text Available Objective: Increasing prevalence of carbapenem resistant Gram negative bacteria is a serious clinical and public health challenge. Bacteria resistant to all available antibiotics (Pan Drug Resistance herald the onset of post antibiotics era. We hereby report clinical profile of 13 patients with pan drug resistant gram negative isolates. Methods:Retrospective analysis of 13 patients with pan drug resistant gram negative isolates over the last 18 months was done by medical records review. Identification of the isolates and susceptibility testing was done using VITEK auto analyzer in concordance with the corresponding CLSI guidelines. Results:Out of four patients with bacteremic isolates, three patients received colistin based combination therapy. Though two of these patients had microbiologic clearance, all the three died. Out of the 9 patients with non bacteremic isolates, 4 had infection and 5 had colonization. Three (out of four were treated with combination therapy including colistin and one patient received colistin monotherapy. All four patients had microbiological clearance. Three patients had clinical cure and were discharged. One patient later developed bacteremia and died. Conclusion:Infections, particularly blood stream with pan drug resistant organisms has a higher mortality. Urgent studies to reevaluate existing therapeutic options and research into new antibiotic molecules are the need of the hour. J Microbiol Infect Dis 2014; 4(3: 86-91

  19. Gram-Negative Infections in Adult Intensive Care Units of Latin America and the Caribbean

    Directory of Open Access Journals (Sweden)

    Carlos M. Luna

    2014-01-01

    Full Text Available This review summarizes recent epidemiology of Gram-negative infections in selected countries from Latin American and Caribbean adult intensive care units (ICUs. A systematic search of the biomedical literature (PubMed was performed to identify articles published over the last decade. Where appropriate, data also were collected from the reference list of published articles, health departments of specific countries, and registries. Independent cohort data from all countries (Argentina, Brazil, Chile, Colombia, Cuba, Mexico, Trinidad and Tobago, and Venezuela signified a high rate of ICU infections (prevalence: Argentina, 24%; Brazil, 57%. Gram-negative pathogens, predominantly Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli, accounted for >50% of ICU infections, which were often complicated by the presence of multidrug-resistant strains and clonal outbreaks. Empirical use of antimicrobial agents was identified as a strong risk factor for resistance development and excessive mortality. Infection control strategies utilizing hygiene measures and antimicrobial stewardship programs reduced the rate of device-associated infections. To mitigate the poor health outcomes associated with infections by multidrug-resistant Gram-negative bacteria, urgent focus must be placed on infection control strategies and local surveillance programs.

  20. Exogenous lytic activity of SPN9CC endolysin against gram-negative bacteria.

    Science.gov (United States)

    Lim, Jeong-A; Shin, Hakdong; Heu, Sunggi; Ryu, Sangryeol

    2014-06-28

    Concerns over drug-resistant bacteria have stimulated interest in developing alternative methods to control bacterial infections. Endolysin, a phage-encoded enzyme that breaks down bacterial peptidoglycan at the terminal stage of the phage reproduction cycle, is reported to be effective for the control of bacterial pathogenic bacteria. Bioinformatic analysis of the SPN9CC bacteriophage genome revealed a gene that encodes an endolysin with a domain structure similar to those of the endolysins produced by the P1 and P22 coliphages. The SPN9CC endolysin was purified with a C-terminal oligo-histidine tag. The endolysin was relatively stable and active over a broad temperature range (from 24°C to 65°C). It showed maximal activity at 50°C, and its optimum pH range was from pH 7.5 to 8.5. The SPN9CC endolysin showed antimicrobial activity against only gram-negative bacteria and functioned by cutting the glycosidic bond of peptidoglycan. Interestingly, the SPN9CC endolysin could lyse intact gram-negative bacteria in the absence of EDTA as an outer membrane permeabilizer. The exogenous lytic activity of the SPN9CC endolysin makes it a potential therapeutic agent against gram-negative bacteria.

  1. Detection and Antibiotic Susceptibility Pattern of Biofilm Producing Gram Positive and Gram Negative Bacteria Isolated From a Tertiary Care Hospital of Pakistan

    Directory of Open Access Journals (Sweden)

    Iqbal, M.

    2011-01-01

    Full Text Available Microorganisms adhere to non-living material or living tissue, and form biofilms made up of extracellular polymers/slime. Biofilm-associated microorganisms behave differently from free-floating bacteria with respect to growth rates and ability to resist antimicrobial treatments and therefore pose a public health problem. The objective of this study is to detect the prevalence of biofilm producers among Gram positive and Gram negative bacteria isolated from clinical specimens, and to study their antimicrobial susceptibility pattern. The study was carried out from October 2009 to March 2010, at the Department of Microbiology, Army Medical College/ National University of Sciences and Technology (NUST, Rawalpindi, Pakistan. Clinical specimens were received from various wards of a tertiary care hospital. These were dealt by standard microbiological procedures. Gram positive and Gram negative bacteria isolated were subjected to biofilm detection by congo red agar method (CRA. Antimicrobial susceptibility testing of those isolates, which showed positive results (slime production, was done according to the Kirby-Bauer disc diffusion technique. A total of 150 isolates were tested for the production of biofilm/slime. Among them, 81 isolates showed positive results. From these 81, 51 were Gram positive and 30 were Gram negative. All the 81(54% slime producers showed reduced susceptibility to majority of antibiotics. Bacterial biofilms are an important virulence factor associated with chronic nosocomial infection. Detection of biofilm forming organisms can help in appropriate antibiotic choice.

  2. Genomic and metagenomic diversity of antibiotic resistance in dairy animals

    Science.gov (United States)

    Antibiotic resistance in food animals has received increased scrutiny in recent years due to the increased prevalence of antibiotic resistant infections in the human clinical setting. The extent to which antibiotic usage in food animals is responsible for the burden of antibiotic resistance in human...

  3. Does antifouling paint select for antibiotic resistance?

    Science.gov (United States)

    Flach, Carl-Fredrik; Pal, Chandan; Svensson, Carl Johan; Kristiansson, Erik; Östman, Marcus; Bengtsson-Palme, Johan; Tysklind, Mats; Larsson, D G Joakim

    2017-07-15

    There is concern that heavy metals and biocides contribute to the development of antibiotic resistance via co-selection. Most antifouling paints contain high amounts of such substances, which risks turning painted ship hulls into highly mobile refuges and breeding grounds for antibiotic-resistant bacteria. The objectives of this study were to start investigate if heavy-metal based antifouling paints can pose a risk for co-selection of antibiotic-resistant bacteria and, if so, identify the underlying genetic basis. Plastic panels with one side painted with copper and zinc-containing antifouling paint were submerged in a Swedish marina and biofilms from both sides of the panels were harvested after 2.5-4weeks. DNA was isolated from the biofilms and subjected to metagenomic sequencing. Biofilm bacteria were cultured on marine agar supplemented with tetracycline, gentamicin, copper sulfate or zinc sulfate. Biofilm communities from painted surfaces displayed lower taxonomic diversity and enrichment of Gammaproteobacteria. Bacteria from these communities showed increased resistance to both heavy metals and tetracycline but not to gentamicin. Significantly higher abundance of metal and biocide resistance genes was observed, whereas mobile antibiotic resistance genes were not enriched in these communities. In contrast, we found an enrichment of chromosomal RND efflux system genes, including such with documented ability to confer decreased susceptibility to both antibiotics and biocides/heavy metals. This was paralleled by increased abundances of integron-associated integrase and ISCR transposase genes. The results show that the heavy metal-based antifouling paint exerts a strong selection pressure on marine bacterial communities and can co-select for certain antibiotic-resistant bacteria, likely by favoring species and strains carrying genes that provide cross-resistance. Although this does not indicate an immediate risk for promotion of mobile antibiotic resistance, the

  4. DETECTION OF CTX-M GENE ANTIBIOTICS RESISTANCE IN KLEBSIELLA PNEUMONIA ISOLATES OF HOSPITALS IN ADJARA (GEORGIA).

    Science.gov (United States)

    Koiava, T; Gonçalves, D; Palmeira, J; Arobelidze, K; Tediashvili, M; Akhvlediani, L; Ferreira, H

    2016-09-01

    Research describing the epidemiology of antibiotic resistant microbes is vital to the proactive development of new antimicrobial agents. In the last years, CTX-M extended-spectrum β-lactamases (ESBLs) have emerged worldwide and have replaced classical TEM and SHV-type ESBLs in many countries. CTX-M-15 is currently the most frequent, with a pandemic distribution, and its rapid spread is facilitated by incorporation of resistance genes in mobile genetic elements. The ESBL is efficacious in Gram-negative bacteria and thus closely associated with nosocomial environments, often colonizing the intestines, particularly in older and dependent patients. Little is known about the CTX-M ESBLs among Klebsiella pneumonia in Adjara. Our paper describes the detected and characterized ESBLs among Klebsiella pneumonia isolates from patients in two different hospitals in Adjara.

  5. Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action

    Directory of Open Access Journals (Sweden)

    Carlet Jean

    2012-02-01

    Full Text Available Abstract Resistance to antibiotics has increased dramatically over the past few years and has now reached a level that places future patients in real danger. Microorganisms such as Escherichia coli and Klebsiella pneumoniae, which are commensals and pathogens for humans and animals, have become increasingly resistant to third-generation cephalosporins. Moreover, in certain countries, they are also resistant to carbapenems and therefore susceptible only to tigecycline and colistin. Resistance is primarily attributed to the production of beta-lactamase genes located on mobile genetic elements, which facilitate their transfer between different species. In some rare cases, Gram-negative rods are resistant to virtually all known antibiotics. The causes are numerous, but the role of the overuse of antibiotics in both humans and animals is essential, as well as the transmission of these bacteria in both the hospital and the community, notably via the food chain, contaminated hands, and between animals and humans. In addition, there are very few new antibiotics in the pipeline, particularly for Gram-negative bacilli. The situation is slightly better for Gram-positive cocci as some potent and novel antibiotics have been made available in recent years. A strong and coordinated international programme is urgently needed. To meet this challenge, 70 internationally recognized experts met for a two-day meeting in June 2011 in Annecy (France and endorsed a global call to action ("The Pensières Antibiotic Resistance Call to Action". Bundles of measures that must be implemented simultaneously and worldwide are presented in this document. In particular, antibiotics, which represent a treasure for humanity, must be protected and considered as a special class of drugs.

  6. Association study of multiple antibiotic resistance and virulence: a strategy to assess the extent of risk posed by bacterial population in aquatic environment.

    Science.gov (United States)

    Singh, Santosh Kumar; Ekka, Roseleen; Mishra, Mitali; Mohapatra, Harapriya

    2017-07-01

    The present study explored the association between multiple antibiotic resistance (MAR) index and virulence index to determine what percent of environmental antibiotic-resistant (eARB) bacteria could pose threat as potential pathogen. 16srRNA-based sequencing of 113 non-duplicate isolates identified majority of them to be gram negative belonging to Enterobacter, Pseudomonas, Aeromonas, Proteus, Acinetobacter, and Klebsiella. Statistical comparison of MAR indices of the abovementioned genera indicated differences in the median values among the groups (p  Klebsiella = Acinetobacter > Proteus > Aeromonas > Enterobacter. Association between MAR index and virulence index revealed that 25% of isolates in the population under study posed high threat to human/animal or both; out of which 75% isolates belonged to genus Pseudomonas. Based on observations of comparative analysis of the six gram-negative genera, it could be concluded that Pseudomonas isolates from environment pose significantly high threat as potential pathogens while Enterobacter isolates posed no threat.

  7. Engineered Endolysin-Based “Artilysins” To Combat Multidrug-Resistant Gram-Negative Pathogens

    Science.gov (United States)

    Briers, Yves; Walmagh, Maarten; Van Puyenbroeck, Victor; Cornelissen, Anneleen; Cenens, William; Aertsen, Abram; Oliveira, Hugo; Azeredo, Joana; Verween, Gunther; Pirnay, Jean-Paul; Miller, Stefan; Volckaert, Guido

    2014-01-01

    ABSTRACT The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii. Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains in vitro with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective in vitro (human keratinocytes) and in vivo (Caenorhabditis elegans). PMID:24987094

  8. Overview: Global and Local Impact of Antibiotic Resistance.

    Science.gov (United States)

    Watkins, Richard R; Bonomo, Robert A

    2016-06-01

    The rapid and ongoing spread of antibiotic resistance poses a serious threat to global public health. The indiscriminant use of antibiotics in agriculture and human medicine along with increasingly connected societies has fueled the distribution of antibiotic-resistant bacteria. These factors together have led to rising numbers of infections caused by multidrug-resistant and pan-resistant bacteria, with increases in morbidity and mortality. This article summarizes the trends in antibiotic resistance, discusses the impact of antibiotic resistance on society, and reviews the use of antibiotics in agriculture. Feasible ways to tackle antibiotic resistance to avert a post-antibiotic era are suggested. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Emergence and dissemination of antibiotic resistance: a global problem.

    Science.gov (United States)

    Choudhury, R; Panda, S; Singh, D V

    2012-01-01

    Antibiotic resistance is a major problem in clinical health settings. Interestingly the origin of many of antibiotic resistance mechanisms can be traced back to non-pathogenic environmental organisms. Important factors leading to the emergence and spread of antibiotic resistance include absence of regulation in the use of antibiotics, improper waste disposal and associated transmission of antibiotic resistance genes in the community through commensals. In this review, we discussed the impact of globalisation on the transmission of antibiotic resistance genes in bacteria through immigration and export/import of foodstuff. The significance of surveillance to define appropriate use of antibiotics in the clinic has been included as an important preventive measure.

  10. Pleural effusion adenosine deaminase: a candidate biomarker to discriminate between Gram-negative and Gram-positive bacterial infections of the pleural space

    Directory of Open Access Journals (Sweden)

    Ruolin Li

    2016-05-01

    Full Text Available OBJECTIVES: Delay in the treatment of pleural infection may contribute to its high mortality. In this retrospective study, we aimed to evaluate the diagnostic accuracy of pleural adenosine deaminase in discrimination between Gram-negative and Gram-positive bacterial infections of the pleural space prior to selecting antibiotics. METHODS: A total of 76 patients were enrolled and grouped into subgroups according to Gram staining: 1 patients with Gram-negative bacterial infections, aged 53.2±18.6 years old, of whom 44.7% had empyemas and 2 patients with Gram-positive bacterial infections, aged 53.5±21.5 years old, of whom 63.1% had empyemas. The pleural effusion was sampled by thoracocentesis and then sent for adenosine deaminase testing, biochemical testing and microbiological culture. The Mann-Whitney U test was used to examine the differences in adenosine deaminase levels between the groups. Correlations between adenosine deaminase and specified variables were also quantified using Spearman’s correlation coefficient. Moreover, receiver operator characteristic analysis was performed to evaluate the diagnostic accuracy of pleural effusion adenosine deaminase. RESULTS: Mean pleural adenosine deaminase levels differed significantly between Gram-negative and Gram-positive bacterial infections of the pleural space (191.8±32.1 U/L vs 81.0±16.9 U/L, p<0.01. The area under the receiver operator characteristic curve was 0.689 (95% confidence interval: 0.570, 0.792, p<0.01 at the cutoff value of 86 U/L. Additionally, pleural adenosine deaminase had a sensitivity of 63.2% (46.0-78.2%; a specificity of 73.7% (56.9-86.6%; positive and negative likelihood ratios of 2.18 and 0.50, respectively; and positive and negative predictive values of 70.6% and 66.7%, respectively. CONCLUSIONS: Pleural effusion adenosine deaminase is a helpful alternative biomarker for early and quick discrimination of Gram-negative from Gram-positive bacterial infections of the

  11. How Economic Development Affects Antibiotic Resistance

    OpenAIRE

    John B. Horowitz; H. Brian Moehring

    2014-01-01

    Initially, economic development increases resistance because migration of people to urban areas in developing countries increases incomes, crowding and the use of antibiotics. Also, developing countries often don't require prescriptions or distribute high quality antibiotics. In developed countries, antibiotic resistance often falls or there is a decline in the rate of growth of resistance because infections decline with improvements in water quality, sanitation, housing and nutrition. Howeve...

  12. Photodynamic inactivation of antibiotic-resistant pathogens

    International Nuclear Information System (INIS)

    Paronyan, M.H.

    2015-01-01

    Nowadays methicillin-resistant strain Staphylococcus aureus (MRSA) is one of the most widespread multiresistant bacteria. Photodynamic inactivation (PDI) of microorganisms by photosensitizers (PS) may be an effective and alternative therapeutic option against antibiotic resistant bacteria. The effectiveness of new PS cationic porphyrin Zn-TBut4PyP was tested on two strains of S. aureus (MRSA and methicillin-sensitive S. aureus). It is shown that Zn-TBut4PyP has high photodynamic activity against both strains

  13. Distribution of antibiotic resistance in urban watershed in Japan

    International Nuclear Information System (INIS)

    Ham, Young-Sik; Kobori, Hiromi; Kang, Joo-Hyon; Matsuzaki, Takayuki; Iino, Michiyo; Nomura, Hayashi

    2012-01-01

    Antibiotic-resistant E. coli concentrations showed large spatial and temporal variations, with greater concentrations observed in tributaries and downstream than in the upstream and midstream. Twenty percent of the geometric mean concentrations of antibiotic-resistant E. coli in the Tama River basin (Japan) exceeded the maximum acceptable concentration of indicator E. coli established by the USEPA. The indicator E. coli concentrations were positively correlated with those of antibiotic-resistant E. coli and multiple-antibiotic-resistant E. coli (resistance to more than two kinds of antibiotics), respectively, but not the detection rate of antibiotic-resistant E. coli, implying that use of antibiotic-resistant E. coli concentration rather than the detection rate can be a better approach for water quality assessment. Multiple-antibiotic-resistant E. coli is a useful indicator for estimating the resistance diffusion, water quality degradation and public health risk potential. This assessment provides beneficial information for setting national regulatory or environmental standards and managing integrated watershed areas. - Highlights: ► We extensively observed antibiotic-resistant E. coli (AREc) in Tama River (Japan). ► AREc count rather than the detection rate is better approach for water quality test. ► Multiple-AREc is resistant to the antibiotic to which single-AREc has no resistance. ► Multiple-AREc increase will accelerate the diffusion of antibiotic resistance. - Multiple-antibiotic-resistant E. coli in the watershed can cause the diffusion of conventionally rare antibiotic resistance.

  14. Antibiotic Resistance and Antibiotic Resistance Genes in Escherichia coli Isolates from Hospital Wastewater in Vietnam

    Science.gov (United States)

    Lan, Pham Thi; Chuc, Nguyen Thi Kim; Hoa, Nguyen Quynh; Nhung, Pham Hong; Thoa, Nguyen Thi Minh; Diwan, Vishal; Tamhankar, Ashok J.; Stålsby Lundborg, Cecilia

    2017-01-01

    The environmental spread of antibiotic-resistant bacteria has been recognised as a growing public health threat for which hospitals play a significant role. The aims of this study were to investigate the prevalence of antibiotic resistance and antibiotic resistance genes (ARGs) in Escherichia coli isolates from hospital wastewater in Vietnam. Wastewater samples before and after treatment were collected using continuous sampling every month over a year. Standard disk diffusion and E-test were used for antibiotic susceptibility testing. Extended-spectrum beta-lactamase (ESBL) production was tested using combined disk diffusion. ARGs were detected by polymerase chain reactions. Resistance to at least one antibiotic was detected in 83% of isolates; multidrug resistance was found in 32%. The highest resistance prevalence was found for co-trimoxazole (70%) and the lowest for imipenem (1%). Forty-three percent of isolates were ESBL-producing, with the blaTEM gene being more common than blaCTX-M. Co-harbouring of the blaCTX-M, blaTEM and qepA genes was found in 46% of isolates resistant to ciprofloxacin. The large presence of antibiotic-resistant E. coli isolates combined with ARGs in hospital wastewater, even post-treatment, poses a threat to public health. It highlights the need to develop effective processes for hospital wastewater treatment plants to eliminate antibiotic resistant bacteria and ARGs. PMID:28661465

  15. Antibiotic Resistance and Antibiotic Resistance Genes in Escherichia coli Isolates from Hospital Wastewater in Vietnam.

    Science.gov (United States)

    Lien, La Thi Quynh; Lan, Pham Thi; Chuc, Nguyen Thi Kim; Hoa, Nguyen Quynh; Nhung, Pham Hong; Thoa, Nguyen Thi Minh; Diwan, Vishal; Tamhankar, Ashok J; Stålsby Lundborg, Cecilia

    2017-06-29

    The environmental spread of antibiotic-resistant bacteria has been recognised as a growing public health threat for which hospitals play a significant role. The aims of this study were to investigate the prevalence of antibiotic resistance and antibiotic resistance genes (ARGs) in Escherichia coli isolates from hospital wastewater in Vietnam. Wastewater samples before and after treatment were collected using continuous sampling every month over a year. Standard disk diffusion and E-test were used for antibiotic susceptibility testing. Extended-spectrum beta-lactamase (ESBL) production was tested using combined disk diffusion. ARGs were detected by polymerase chain reactions. Resistance to at least one antibiotic was detected in 83% of isolates; multidrug resistance was found in 32%. The highest resistance prevalence was found for co-trimoxazole (70%) and the lowest for imipenem (1%). Forty-three percent of isolates were ESBL-producing, with the bla TEM gene being more common than bla CTX-M . Co-harbouring of the bla CTX-M , bla TEM and qepA genes was found in 46% of isolates resistant to ciprofloxacin. The large presence of antibiotic-resistant E. coli isolates combined with ARGs in hospital wastewater, even post-treatment, poses a threat to public health. It highlights the need to develop effective processes for hospital wastewater treatment plants to eliminate antibiotic resistant bacteria and ARGs.

  16. Prevalence of Device-associated Nosocomial Infections Caused By Gram-negative Bacteria in a Trauma Intensive Care Unit in Libya

    Directory of Open Access Journals (Sweden)

    Abdulaziz Zorgani

    2015-07-01

    Full Text Available Objectives: Device-associated nosocomial infections (DANIs have a major impact on patient morbidity and mortality. Our study aimed to determine the distribution rate of DANIs and causative agents and patterns of antibiotic resistance in the trauma-surgical intensive care unit (ICU. Methods: Our study was conducted at Abusalim Trauma Hospital in Tripoli, Libya. All devices associated with nosocomial infections, including central venous catheters (CVC, endotracheal tubes (ETT, Foley’s urinary catheters, chest tubes, nasogastric tubes (NGT, and tracheostomy tubes, were removed aseptically and examined for Gram-negative bacteria (GNB. Results: During a one-year study period, 363 patients were hospitalized; the overall mortality rate was 29%. A total of 79 DANIs were identified, the most common site of infection was ETT (39.2%, followed by urinary catheters (19%, NGTs (18%, tracheostomy tubes (11%, CVCs (10%, and chest tubes (3%. The most frequently isolated organisms were Klebsiella pneumonia, Acinetobacter baumannii, and Pseudomonas aeruginosa (30%, 20%, and 14%, respectively. Extremely high resistance rates were observed among GNB to ampicillin (99%, cefuroxime (95%, amoxicillin-clavulante (92%, and nitrofurantoin (91%. Lower levels of resistance were exhibited to amikacin (38%, imipenem (38%, and colistin (29%. About 39% of the isolates were defined as multi-drug resistant (MDR. Overall, extended spectrum β-lactmase producers were expressed in 39% of isolates mainly among K. pneumonia (88%. A. baumannii isolates exhibited extremely high levels of resistance to all antibiotics except colistin (100% sensitive. In addition, 56.3% of A. baumannii isolates were found to be MDR. P. aeruginosa isolates showed 46%–55% effectiveness to anti-pseudomonas antibiotics. Conclusion: High rates of DANI’s and the emergence of MDR organisms poses a serious threat to patients. There is a need to strengthen infection control within the ICU environment

  17. Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria.

    Science.gov (United States)

    Tängdén, Thomas

    2014-05-01

    Combination antibiotic therapy for Gram-negative sepsis is controversial. The present review provides a brief summary of the existing knowledge on combination therapy for severe infections with multidrug-resistant Pseudomonas spp., Acinetobacter spp., and Enterobacteriaceae. Empirical combination antibiotic therapy is recommended for severe sepsis and septic shock to reduce mortality related to inappropriate antibiotic treatment. Because definitive combination therapy has not been proven superior to monotherapy in meta-analyses, it is generally advised to de-escalate antibiotic therapy when the antibiotic susceptibility profile is known, although it cannot be excluded that some subgroups of patients might still benefit from continued combination therapy. Definitive combination therapy is recommended for carbapenemase-producing Enterobacteriaceae and should also be considered for severe infections with Pseudomonas and Acinetobacter spp. when beta-lactams cannot be used. Because resistance to broad-spectrum beta-lactams is increasing in Gram-negative bacteria and because no new antibiotics are expected to become available in the near future, the antibacterial potential of combination therapy should be further explored. In vitro data suggest that combinations can be effective even if the bacteria are resistant to the individual antibiotics, although existing evidence is insufficient to support the choice of combinations and explain the synergistic effects observed. In vitro models can be used to screen for effective combinations that can later be validated in animal or clinical studies. Further, in the absence of clinical evidence, in vitro data might be useful in supporting therapeutic decisions for severe infections with multidrug-resistant Gram-negative bacteria.

  18. Cefepime restriction improves gram-negative overall resistance patterns in neonatal intensive care unit

    Directory of Open Access Journals (Sweden)

    Orlei Ribeiro de Araujo

    Full Text Available Antibiotic restriction can be useful in maintaining bacterial susceptibility. The objective of this study was verify if restriction of cefepime, the most frequently used cephalosporin in our neonatal intensive care unit (NICU, would ameliorate broad-spectrum susceptibility of Gram-negative isolates. Nine hundred and ninety-five premature and term newborns were divided into 3 cohorts, according to the prevalence of cefepime use in the unit: Group 1 (n=396 comprised patients admitted from January 2002 to December 2003, period in which cefepime was the most used broad-spectrum antibiotic. Patients in Group 2 (n=349 were admitted when piperacillin/tazobactam replaced cefepime (January to December 2004 and in Group 3 (n=250 when cefepime was reintroduced (January to September 2005. Meropenem was the alternative third-line antibiotic for all groups. Multiresistance was defined as resistance to 2 or more unrelated antibiotics, including necessarily a third or fourth generation cephalosporin, piperacillin/tazobactam or meropenem. Statistics involved Kruskal-Wallis, Mann-Whitney and logrank tests, Kaplan-Meier analysis. Groups were comparable in length of stay, time of mechanical ventilation, gestational age and birth weight. Ninety-eight Gram-negative isolates were analyzed. Patients were more likely to remain free of multiresistant isolates by Kaplan-Meier analysis in Group 2 when compared to Group 1 (p=0.017 and Group 3 (p=0.003. There was also a significant difference in meropenem resistance rates. Cefepime has a greater propensity to select multiresistant Gram-negative pathogens than piperacillin/tazobactam and should not be used extensively in neonatal intensive care.

  19. Prevalence of Gram-negative Pathogens and their antimicrobial susceptibility in bacterial meningitis in pediatric cases

    Directory of Open Access Journals (Sweden)

    Yash Pal Chugh

    2012-07-01

    Full Text Available The present study was conducted to find out the prevalence and spectrum of Gram negative pathogens causing bacterial meningitis and their antimicrobial susceptibility pattern in a tertiary care hospital. The cerebrospinal fluid (CSF (3-5 ml was collected from 638 admitted children clinically suspected of septic meningitis. Bacterial isolates were identified and antimicrobial susceptibility was assessed by the Kirby-Bauer disk diffusion method. Of the 638 samples tested 102 (15.99% were culture positive. Male to female (M:F ratio was 1.62:1. The maximum incidence of 45 (44.12% cases was found in children (1-12 yrs; in institutional deliveries the incidence was 58 (56.86% cases. Further, the incidence of 51 cases was found from May to August. Escherichia coli (E. coli were commonest, seen in 9 (25% cases followed by Acinetobacter spp., Citrobacter spp. and Klebsiella spp. with 6 (16.67% cases each. Enterobacter spp., Neisseria spp. and Pseudomonas aeruginosa were isolated in 3 (8.33% cases each. E. coli, Acinetobacter spp, Citrobacter spp and Klebsiella spp isolates were 100% susceptible to meropenem, piperacillin-tazobactam and cefoperazone-sulbactam and 100% resistant to cotrimoxazole and tetracycline. All strains of Neisseria spp, Enterobacter spp and Pseudomonas spp. were 100% susceptible to meropenem followed by gatifloxacin. These were 100% resistant to tetracycline and cotrimoxazole. Neisseria spp. were also 100% susceptible to pristinamycin. In septic meningitis Gram negative organisms are less common (35.29%. Of the isolates, more common Gram negative isolates included E. coli, Acinetobacter Spp., Citrobacter Spp., and Klebsiella spp. and these isolates were 100% susceptible to meropenem, piperacillin-tazobacatam and cefoperazone-sulbactam. Hence, empirical therapy should be formulated according to antimicrobial susceptibility patterns.

  20. PVC bacteria: variation of, but not exception to, the Gram-negative cell plan.

    Science.gov (United States)

    Devos, Damien P

    2014-01-01

    Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) bacteria have features that differentiate them from classical Gram-negative (G-) bacteria. One such feature is their complex endomembrane system. Based on the difference of membrane organization and compartment identity, PVC bacteria were proposed to form an exception to the bacterial G- cell plan. Here I argue that all PVC membranes are derived from G- membranes, and that their organization and the compartments they form are similar to those of G- bacteria. I suggest that PVC membrane organization should be evaluated within a G- framework and as a variation of it. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Sensing the enemy within: how macrophages detect intracellular Gram-negative bacteria.

    Science.gov (United States)

    Demon, Dieter; Vande Walle, Lieselotte; Lamkanfi, Mohamed

    2014-12-01

    Caspase-11 contributes to host defense against Gram-negative bacterial pathogens by inducing an inflammatory form of programmed cell death in infected cells. Lipopolysaccharides (LPS) have been identified as the microbial agents that stimulate caspase-11 activation; however, the mechanism of LPS detection has been unknown. In a recent study, Shao and colleagues demonstrate that caspase-11 and its human homologues, caspases -4 and -5, unexpectedly act as direct sensors of cytosolic LPS. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. BacPP: a web-based tool for Gram-negative bacterial promoter prediction.

    Science.gov (United States)

    de Avila E Silva, S; Notari, D L; Neis, F A; Ribeiro, H G; Echeverrigaray, S

    2016-04-04

    Bacterial Promoter Prediction (BacPP) is a tool used to predict given sequences as promoters of Gram-negative bacteria according to the σ factor that recognizes it. The first version of BacPP was implemented in Python language in a desktop version without a friendly interface. For this reason, a web version of BacPP is now available with the purpose of improving its usability and availability. The present paper describes the implementation of the web version of this tool, focusing on its software architecture and user functionalities. The software is available at www.bacpp.bioinfoucs.com/home.

  3. An inner membrane platform in the type II secretion machinery of Gram-negative bacteria

    OpenAIRE

    Py, Béatrice; Loiseau, Laurent; Barras, Frédéric

    2001-01-01

    The type II secretion machinery allows most Gram-negative bacteria to deliver virulence factors into their surroundings. We report that in Erwinia chrysanthemi, GspE (the putative NTPase), GspF, GspL and GspM constitute a complex in the inner membrane that is presumably used as a platform for assembling other parts of the secretion machinery. The GspE–GspF–GspL–GspM complex was demonstrated by two methods: (i) co-immunoprecipitation of GspE–GspF–GspL with antibodies raised against either GspE...

  4. O-antigen protects gram-negative bacteria from histone killing.

    Directory of Open Access Journals (Sweden)

    Catherine Chaput

    Full Text Available Beyond their traditional role of wrapping DNA, histones display antibacterial activity to Gram-negative and -positive bacteria. To identify bacterial components that allow survival to a histone challenge, we selected resistant bacteria from homologous Escherichia coli libraries that harbor plasmids carrying pieces of the chromosome in different sizes. We identified genes required for exopolysaccharide production and for the synthesis of the polysaccharide domain of the lipopolysaccharide, called O-antigen. Indeed, O-antigen and exopolysaccharide conferred further resistance to histones. Notably, O-antigen also conferred resistance to histones in the pathogens Shigella flexneri and Klebsiella pneumoniae.

  5. Quorum sensing signal molecules (acylated homoserine lactones) in Gram-negative fish pathogenic bacteria

    DEFF Research Database (Denmark)

    Bruhn, Jesper Bartholin; Dalsgaard, Inger; Nielsen, K.F.

    2005-01-01

    The aim of the present study was to investigate the production of quorum sensing signals (specifically acylated homoserine lactones, AHLs) among a selection of strains of Gram-negative fish bacterial pathogens. These signals are involved in the regulation of virulence factors in some human....... In conclusion, the production of quorum sensing signals, AHLs, is common among the strains that we examined. If the AHL molecules regulate the expression of the virulence phenotype in these bacteria, as shown to occur in some bacterial pathogens, novel disease control measures may be developed by blocking AHL...

  6. Gram-negative rod bacteremia after cardiovascular surgery: Clinical features and prognostic factors

    OpenAIRE

    田子, さやか

    2016-01-01

    博士(医学) 乙第2895号(主論文の要旨、要約、本文),著者名:Sayaka Tago・Yuji Hirai・Yusuke Ainoda・Takahiro Fujita・Ken Kikuchi,タイトル:Gram-negative rod bacteremia after cardiovascular surgery: Clinical features and prognostic factors,掲載誌:Journal of microbiology(1684-1182), immunology and infection,著作権関連情報:ℂ2015, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. All rights reserved.DOI: 10.1016/j.jmii.2015.07.008

  7. Toll-Like Receptor 4 Decoy, TOY, Attenuates Gram-Negative Bacterial Sepsis

    OpenAIRE

    Jung, Keehoon; Lee, Jung-Eun; Kim, Hak-Zoo; Kim, Ho Min; Park, Beom Seok; Hwang, Seong-Ik; Lee, Jie-Oh; Kim, Sun Chang; Koh, Gou Young

    2009-01-01

    Lipopolysaccharide (LPS), the Gram-negative bacterial outer membrane glycolipid, induces sepsis through its interaction with myeloid differentiation protein-2 (MD-2) and Toll-like receptor 4 (TLR4). To block interaction between LPS/MD-2 complex and TLR4, we designed and generated soluble fusion proteins capable of binding MD-2, dubbed TLR4 decoy receptor (TOY) using 'the Hybrid leucine-rich repeats (LRR) technique'. TOY contains the MD-2 binding ectodomain of TLR4, the LRR motif of hagfish va...

  8. Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria.

    OpenAIRE

    Gay, P; Le Coq, D; Steinmetz, M; Berkelman, T; Kado, C I

    1985-01-01

    We constructed the broad-host-range plasmid pUCD800 containing the sacB gene of Bacillus subtilis for use in the positive selection and isolation of insertion sequence (IS) elements in gram-negative bacteria. Cells containing pUCD800 do not grow on medium containing 5% sucrose unless the sacB gene is inactivated. By using pUCD800, we isolated a 1.4-kilobase putative IS element from Agrobacterium tumefaciens NT1RE by selection for growth on sucrose medium. This putative IS element appears to b...

  9. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  10. Evaluation of the in vitro growth of urinary tract infection-causing gram-negative and gram-positive bacteria in a proposed synthetic human urine (SHU) medium.

    Science.gov (United States)

    Ipe, Deepak S; Ulett, Glen C

    2016-08-01

    Bacteriuria is a hallmark of urinary tract infection (UTI) and asymptomatic bacteriuria (ABU), which are among the most frequent infections in humans. A variety of gram-negative and gram-positive bacteria are associated with these infections but Escherichia coli contributes up to 80% of cases. Multiple bacterial species including E. coli can grow in human urine as a means to maintain colonization during infections. In vitro bacteriuria studies aimed at modeling microbial growth in urine have utilized various compositions of synthetic human urine (SHU) and a Composite SHU formulation was recently proposed. In this study, we sought to validate the recently proposed Composite SHU as a medium that supports the growth of several bacterial species that are known to grow in normal human urine and/or artificial urine. Comparative growth assays of gram-negative and gram-positive bacteria E. coli, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus agalactiae, Staphylococcus saprophyticus and Enterococcus faecalis were undertaken using viable bacterial count and optical density measurements over a 48h culture period. Three different SHU formulations were tested in various culture vessels, shaking conditions and volumes and showed that Composite SHU can support the robust growth of gram-negative bacteria but requires supplementation with 0.2% yeast extract to support the growth of gram-positive bacteria. Experiments are also presented that show an unexpected but major influence of P. mirabilis towards the ability to measure bacterial growth in generally accepted multiwell assays using absorbance readings, predicted to have a basis in the release of volatile organic compound(s) from P. mirabilis during growth in Composite SHU medium. This study represents an essential methodological validation of a more chemically defined type of synthetic urine that can be applied to study mechanisms of bacteriuria and we conclude will offer a useful in vitro model to investigate the

  11. Bactericidal Efficacy of Hydrogen Peroxide-Based Disinfectants Against Gram-Positive and Gram-Negative Bacteria on Stainless Steel Surfaces.

    Science.gov (United States)

    Ríos-Castillo, Abel G; González-Rivas, Fabián; Rodríguez-Jerez, José J

    2017-10-01

    In order to develop disinfectant formulations that leverage the effectiveness of hydrogen peroxide (H 2 O 2 ), this study evaluated the bactericidal efficacy of hydrogen peroxide-based disinfectants against Gram-positive and Gram-negative bacteria on stainless steel surfaces. Low concentration of hydrogen peroxide as 0.5% with a cationic polymer, ethoxylated fatty alcohol, and ethyl alcohol had bactericidal efficacy (reductions ≥ 4 log 10 CFU/mL) against Escherichia coli, Staphylococcus aureus, Enterococcus hirae, and Pseudomonas aeruginosa. Hydrogen peroxide-based disinfectants were more effective against E. hirae and P. aeruginosa than to S. aureus. However, the efficacy of hydrogen peroxide against catalase positive bacteria such as S. aureus was increased when this compound was formulated with low concentrations of benzalkonium chloride or ethyl alcohol, lactic acid, sodium benzoate, cationic polymer, and salicylic acid. This study demonstrates that the use of hydrogen peroxide with other antimicrobial products, in adequate concentrations, had bactericidal efficacy in Gram-positive and Gram-negative bacteria on stainless steel surfaces, enabling to reduce the effective concentration of hydrogen peroxide. In the same way, the use of hydrogen peroxide-based disinfectants could reduce the concentrations of traditional disinfectants as quaternary ammonium compounds and therefore a reduction of their chemical residues in the environment after being used. The study of the bactericidal properties of environmentally nontoxic disinfectants such as hydrogen peroxide, sole or in formulations with other disinfectants against Gram-positive and Gram-negative bacteria can enhance the efficacy of various commonly used disinfectant formulations with the hygiene benefits that it entails. Also, the use of hydrogen peroxide formulations can reduce the concentration levels of products that generate environmental residues. © 2017 Institute of Food Technologists®.

  12. Cefepime shows good efficacy and no antibiotic resistance in pneumonia caused by Serratia marcescens and Proteus mirabilis - an observational study.

    Science.gov (United States)

    Yayan, Josef; Ghebremedhin, Beniam; Rasche, Kurt

    2016-03-23

    Many antibiotics have no effect on Gram-positive and Gram-negative microbes, which necessitates the prescription of broad-spectrum antimicrobial agents that can lead to increased risk of antibiotic resistance. These pathogens constitute a further threat because they are also resistant to numerous beta-lactam antibiotics, as well as other antibiotic groups. This study retrospectively investigates antimicrobial resistance in hospitalized patients suffering from pneumonia triggered by Gram-negative Serratia marcescens or Proteus mirabilis. The demographic and clinical data analyzed in this study were obtained from the clinical databank of the HELIOS Clinic, Witten/Herdecke University, Wuppertal, Germany, for inpatients presenting with pneumonia triggered by S. marcescens or P. mirabilis from 2004 to 2014. An antibiogram was conducted for the antibiotics utilized as part of the management of patients with pneumonia triggered by these two pathogens. Pneumonia was caused by Gram-negative bacteria in 115 patients during the study period from January 1, 2004, to August 12, 2014. Of these, 43 (37.4 %) hospitalized patients [26 males (60.5 %, 95 % CI 45.9 %-75.1 %) and 17 females (39.5 %, 95 % CI 24.9 %-54.1 %)] with mean age of 66.2 ± 13.4 years had pneumonia triggered by S. marcescens, while 20 (17.4 %) patients [14 males (70 %, 95 % CI 49.9 %-90.1 %) and 6 females (30 %, 95 % CI 9.9 %-50.1 %)] with a mean age of 64.6 ± 12.8 years had pneumonia caused by P. mirabilis. S. marcescens showed an increased antibiotic resistance to ampicillin (100 %), ampicillin-sulbactam (100 %), and cefuroxime (100 %). P. mirabilis had a high resistance to tetracycline (100 %) and ampicillin (55 %). S. marcescens (P marcescens and P. mirabilis were resistant to several commonly used antimicrobial agents, but showed no resistance to cefepime.

  13. Gram staining.

    Science.gov (United States)

    Coico, Richard

    2005-10-01

    Named after Hans Christian Gram who developed the method in 1884, the Gram stain allows one to distinguish between Gram-positive and Gram-negative bacteria on the basis of differential staining with a crystal violet-iodine complex and a safranin counterstain. The cell walls of Gram-positive organisms retain this complex after treatment with alcohol and appear purple, whereas gram-negative organisms decolorize following such treatment and appear pink. The method described here is useful for assessing bacterial contamination of tissue culture samples or for examining the Gram stain status and morphological features of bacteria isolated from mixed or isolated bacterial cultures.

  14. Antibiotic Resistance in Haemophilus influenzae Decreased, except for β-Lactamase-Negative Amoxicillin-Resistant Isolates, in Parallel with Community Antibiotic Consumption in Spain from 1997 to 2007▿

    Science.gov (United States)

    García-Cobos, Silvia; Campos, José; Cercenado, Emilia; Román, Federico; Lázaro, Edurne; Pérez-Vázquez, María; de Abajo, Francisco; Oteo, Jesús

    2008-01-01

    The susceptibility to 14 antimicrobial agents and the mechanisms of aminopenicillin resistance were studied in 197 clinical isolates of Haemophilus influenzae—109 isolated in 2007 (study group) and 88 isolated in 1997 (control group). Community antibiotic consumption trends were also examined. H. influenzae strains were consecutively isolated from the same geographic area, mostly from respiratory specimens from children and adults. Overall, amoxicillin resistance decreased by 8.4% (from 38.6 to 30.2%). β-Lactamase production decreased by 15.6% (from 33 to 17.4%, P = 0.01), but amoxicillin resistance without β-lactamase production increased by 7.1% (from 5.7 to 12.8%). All β-lactamase-positive isolates were TEM-1, but five different promoter regions were identified, with Pdel being the most prevalent in both years, and Prpt being associated with the highest amoxicillin resistance. A new promoter consisting of a double repeat of 54 bp was detected. Community consumption of most antibiotics decreased, as did the geometric means of their MICs, but amoxicillin-clavulanic acid and azithromycin consumption increased by ca. 60%. For amoxicillin-clavulanic acid, a 14.2% increase in the population with an MIC of 2 to 4 μg/ml (P = 0.02) was observed; for azithromycin, a 21.2% increase in the population with an MIC of 2 to 8 μg/ml (P = 0.0005) was observed. In both periods, the most common gBLNAR (i.e., H. influenzae isolates with mutations in the ftsI gene as previously defined) patterns were IIc and IIb. Community consumption of trimethoprim-sulfamethoxazole decreased by 54%, while resistance decreased from 50 to 34.9% (P = 0.04). Antibiotic resistance in H. influenzae decreased in Spain from 1997 to 2007, but surveillance should be maintained since new forms of resistances may be developing. PMID:18505850

  15. Physico-Chemical-Managed Killing of Penicillin-Resistant Static and Growing Gram-Positive and Gram-Negative Vegetative Bacteria

    Science.gov (United States)

    Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor); Farris, III, Alex F. (Inventor)

    2012-01-01

    Systems and methods for the use of compounds from the Hofmeister series coupled with specific pH and temperature to provide rapid physico-chemical-managed killing of penicillin-resistant static and growing Gram-positive and Gram-negative vegetative bacteria. The systems and methods represent the more general physico-chemical enhancement of susceptibility for a wide range of pathological macromolecular targets to clinical management by establishing the reactivity of those targets to topically applied drugs or anti-toxins.

  16. Synergistic action of Galleria mellonella apolipophorin III and lysozyme against Gram-negative bacteria.

    Science.gov (United States)

    Zdybicka-Barabas, Agnieszka; Stączek, Sylwia; Mak, Paweł; Skrzypiec, Krzysztof; Mendyk, Ewaryst; Cytryńska, Małgorzata

    2013-06-01

    Insect immune response relies on the humoral and cellular mechanisms of innate immunity. The key factors are the antimicrobial polypeptides that act in concert against invading pathogens. Several such components, e.g. apolipophorin III (apoLp-III), lysozyme, and anionic peptide 2, are present constitutively in the hemolymph of non-challenged Galleria mellonella larvae. In the present study, we demonstrate an evidence for a synergistic action of G. mellonella lysozyme and apoLp-III against Gram-negative bacteria, providing novel insights into the mode of action of these proteins in insect antimicrobial defense. It was found that the muramidase activity of G. mellonella lysozyme considerably increased in the presence of apoLp-III. Moreover, apoLp-III enhanced the permeabilizing activity of lysozyme toward Escherichia coli cells. As shown using non-denaturing PAGE, the proteins did not form intermolecular complexes in vivo and in vitro, indicating that the effect observed was not connected with the intermolecular interactions between the proteins. Analysis of AFM images of E. coli cells exposed to G. mellonella lysozyme and/or apoLp-III revealed evident alterations in the bacterial surface structure accompanied by the changes in their biophysical properties. The bacterial cells demonstrated significant differences in elasticity, reflected by Young's modulus, as well as in adhesive forces and roughness values in comparison to the control ones. The constitutive presence of these two defense molecules in G. mellonella hemolymph and the fact that apoLp-III enhances lysozyme muramidase and perforating activities indicate that they can be regarded as important antibacterial factors acting at the early stage of infection against Gram-negative as well as Gram-positive bacteria. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Medicinal plant extracts with efflux inhibitory activity against Gram-negative bacteria.

    Science.gov (United States)

    Garvey, Mark I; Rahman, M Mukhlesur; Gibbons, Simon; Piddock, Laura J V

    2011-02-01

    It was hypothesised that extracts from plants that are used as herbal medicinal products contain inhibitors of efflux in Gram-negative bacteria. Extracts from 21 plants were screened by bioassay for synergy with ciprofloxacin against Salmonella enterica serotype Typhimurium, including mutants in which acrB and tolC had been inactivated. The most active extracts, fractions and purified compounds were further examined by minimum inhibitory concentration testing with five antibiotics for activity against Enterobacteriaceae and Pseudomonas aeruginosa. Efflux activity was determined using the fluorescent dye Hoechst 33342. Eighty-four extracts from 21 plants, 12 fractions thereof and 2 purified molecules were analysed. Of these, 12 plant extracts showed synergy with ciprofloxacin, 2 of which had activity suggesting efflux inhibition. The most active extract, from Levisticum officinale, was fractionated and the two fractions displaying the greatest synergy with the five antibiotics were further analysed. From these two fractions, falcarindiol and the fatty acids oleic acid and linoleic acid were isolated. The fractions and compounds possessed antibacterial activity especially for mutants lacking a component of AcrAB-TolC. However, no synergism was seen with the fractions or purified molecules, suggesting that a combination of compounds is required for efflux inhibition. These data indicate that medicinal plant extracts may provide suitable lead compounds for future development and possible clinical utility as inhibitors of efflux for various Gram-negative bacteria. Copyright © 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  18. Exploring the hidden potential of fosfomycin for the fight against severe Gram-negative infections

    Directory of Open Access Journals (Sweden)

    P V Saiprasad

    2016-01-01

    Full Text Available Gram-negative resistance is a serious global crisis putting the world on the cusp of 'pre-antibiotic era'. This serious crisis has been catalysed by the rapid increase in carbapenem-resistant Enterobacteriaceae (CRE. Spurge in colistin usage to combat CRE infections leads to the reports of (colistin and carbapenem resistant enterobacteriaceae CCRE (resistance to colistin in isolates of CRE infections further jeopardising our last defence. The antibacterial apocalypse imposed by global resistance crisis requires urgent alternative therapeutic options. Interest in the use of fosfomycin renewed recently for serious systemic infections caused by multidrug-resistant Enterobacteriaceae. This review aimed at analysing the recent evidence on intravenous fosfomycin to explore its hidden potential, especially when fosfomycin disodium is going to be available in India. Although a number of promising evidence are coming up for fosfomycin, there are still areas where more work is required to establish intravenous fosfomycin as the last resort antibacterial for severe Gram-negative infections.

  19. Antibacterial activity of crude extract of Punica granatum pericarp on pathogenic Gram-negative bacilli.

    Directory of Open Access Journals (Sweden)

    Voravuthikunchai, S.

    2005-08-01

    Full Text Available The objective of this study was to investigate the effect of crude extracts of Punica granatum Linn. pericarp with 3 different solvents against pathogenic Gram-negative bacilli. Ethanolic extracts showed the antibacterial activity against all strains tested including enterohaemorrhagic Escherichia coli 4 strains (E. coli O157: H7, E. coli O26: H11, E. coli O111: NM, E. coli O22, Pseudomonas aeruginosa, Shigella boydii and Salmonella london. Inhibition zones ranged from 10.02 to 19.15 mm. Minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC ranged from 0.09 to 3.13 mg/ml and 3.13 to 25 mg/ml, respectively. Aqueous extract had low antibacterial activity while crude chloroform extracts had no effect on the growth of these strains. Ethyl acetate and n-butanol fractions of P. granatum pericarp demonstrated high activity with the best MIC and MBC values of 0.02 to 0.78 mg/ml and 0.19 to 6.25 mg/ml, respectively. As ethanolic extract of P. granatum was very effective against these pathogenic bacteria, further investigation on this plant species may provide alternative, but bioactive, medicines for the treatment of Gram-negative bacterial infection.

  20. The role of intestinal colonization with gram-negative bacteria as a source for intensive care unit-acquired bacteremia

    NARCIS (Netherlands)

    Oostdijk, E.A.; Smet, A.M. de; Kesecioglu, J.; Bonten, M.J.; Kalkman, C.J.; Joore, H.C.; Hoeven, J.G. van der; Pickkers, P.; Sturm, P.D.J.; Voss, A.; et al.,

    2011-01-01

    OBJECTIVE: Selective digestive tract decontamination aims to eradicate gram-negative bacteria in both the intestinal tract and respiratory tract and is combined with a 4-day course of intravenous cefotaxime. Selective oropharyngeal decontamination only aims to eradicate respiratory tract

  1. Survival and detection of coliforms, Enterobacteriaceae, and gram-negative bacteria in Greek yogurt.

    Science.gov (United States)

    Hervert, C J; Martin, N H; Boor, K J; Wiedmann, M

    2017-02-01

    Despite the widespread use of coliforms as indicator bacteria, increasing evidence suggests that the Enterobacteriaceae (EB) and total gram-negative groups more accurately reflect the hygienic status of high-temperature, short-time pasteurized milk and processing environments. If introduced into milk as postpasteurization contamination, these bacteria may grow to high levels and produce a wide range of sensory-related defects. However, limited information is available on the use and survival of bacterial hygiene indicators in dairy products outside of pasteurized fluid milk and cheese. The goal of this study was to (1) provide information on the survival of a diverse set of bacterial hygiene indicators in the low pH environment of Greek yogurt, (2) compare traditional and alternative detection methods for their ability to detect bacterial hygiene indicators in Greek yogurt, and (3) offer insight into optimal hygiene indicator groups for use in low-pH fermented dairy products. To this end, we screened 64 bacterial isolates, representing 24 dairy-relevant genera, for survival and detection in Greek yogurt using 5 testing methods. Before testing, isolates were inoculated into plain, 0% fat Greek yogurt (pH 4.35 to 4.65), followed by a 12-h hold period at 4 ± 1°C. Yogurts were subsequently tested using Coliform Petrifilm (3M, St. Paul, MN) to detect coliforms; Enterobacteriaceae Petrifilm (3M), violet red bile glucose agar and the D-Count (bioMérieux, Marcy-l'Étoile, France) to detect EB; and crystal violet tetrazolium agar (CVTA) to detect total gram-negative bacteria. Overall, the non-EB gram-negative isolates showed significantly larger log reductions 12 h after inoculation into Greek yogurt (based on bacterial numbers recovered on CVTA) compared with the coliform and noncoliform EB isolates tested. The methods evaluated varied in their ability to detect different microbial hygiene indicators in Greek yogurt. Crystal violet tetrazolium agar detected the highest

  2. Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins

    Directory of Open Access Journals (Sweden)

    Tomé Augusto C

    2009-04-01

    Full Text Available Abstract Background In recent times photodynamic antimicrobial therapy has been used to efficiently destroy Gram (+ and Gram (- bacteria using cationic porphyrins as photosensitizers. There is an increasing interest in this approach, namely in the search of photosensitizers with adequate structural features for an efficient photoinactivation process. In this study we propose to compare the efficiency of seven cationic porphyrins differing in meso-substituent groups, charge number and charge distribution, on the photodynamic inactivation of a Gram (+ bacterium (Enterococcus faecalis and of a Gram (- bacterium (Escherichia coli. The present study complements our previous work on the search for photosensitizers that might be considered good candidates for the photoinactivation of a large spectrum of environmental microorganisms. Results Bacterial suspension (107 CFU mL-1 treated with different photosensitizers concentrations (0.5, 1.0 and 5.0 μM were exposed to white light (40 W m-2 for a total light dose of 64.8 J cm-2. The most effective photosensitizers against both bacterial strains were the Tri-Py+-Me-PF and Tri-Py+-Me-CO2Me at 5.0 μM with a light fluence of 64.8 J cm-2, leading to > 7.0 log (> 99,999% of photoinactivation. The tetracationic porphyrin also proved to be a good photosensitizer against both bacterial strains. Both di-cationic and the monocationic porphyrins were the least effective ones. Conclusion The number of positive charges, the charge distribution in the porphyrins' structure and the meso-substituent groups seem to have different effects on the photoinactivation of both bacteria. As the Tri-Py+-Me-PF porphyrin provides the highest log reduction using lower light doses, this photosensitizer can efficiently photoinactivate a large spectrum of environmental bacteria. The complete inactivation of both bacterial strains with low light fluence (40 W m-2 means that the photodynamic approach can be applied to wastewater treatment

  3. Appropriateness of gram-negative agent use at a tertiary care hospital in the setting of significant antimicrobial resistance.

    Science.gov (United States)

    Vora, Neil M; Kubin, Christine J; Furuya, E Yoko

    2015-01-01

    Background.  Practicing antimicrobial stewardship in the setting of widespread antimicrobial resistance among gram-negative bacilli, particularly in urban areas, is challenging. Methods.  We conducted a retrospective cross-sectional study at a tertiary care hospital with an established antimicrobial stewardship program in New York, New York to determine appropriateness of use of gram-negative antimicrobials and to identify factors associated with suboptimal antimicrobial use. Adult inpatients who received gram-negative agents on 2 dates, 1 June 2010 or 1 December 2010, were identified through pharmacy records. Clinical data were collected for each patient. Use of gram-negative agents was deemed optimal or suboptimal through chart review and according to hospital guidelines. Data were compared using χ(2) or Fischer's exact test for categorical variables and Student t test or Mann-Whitney U test for continuous variables. Results.  A total of 356 patients were included who received 422 gram-negative agents. Administration was deemed suboptimal in 26% of instances, with the most common reason being spectrum of activity too broad. In multivariable analysis, being in an intensive care unit (adjusted odds ratio [aOR], .49; 95% confidence interval [CI], .29-.84), having an infectious diseases consultation within the previous 7 days (aOR, .52; 95% CI, .28-.98), and having a history of multidrug-resistant gram-negative bacilli within the past year (aOR, .24; 95% CI, .09-.65) were associated with optimal gram-negative agent use. Beta-lactam/beta-lactamase inhibitor combination drug use (aOR, 2.6; 95% CI, 1.35-5.16) was associated with suboptimal use. Conclusions.  Gram-negative agents were used too broadly despite numerous antimicrobial stewardship program activities.

  4. Frequency and antibiotic resistance patterns of isolated bacteria from positive blood culture of hospitalized patients

    Directory of Open Access Journals (Sweden)

    Azadeh Vahedi

    2018-03-01

    Conclusion: The most prevalent bacterial isolate among the blood cultures of patients was Pseudomonas. The patients more than 50 years were more susceptible to blood stream infections. The most bacteria were isolated from the internal medicine department of hospital. The antibiotic resistance was also increasing especially in Acinetobacter, Staphylococcus coagulase negative, Escherichia coil and Klebsiella

  5. Nosocomial Infections in Pediatric Population and Antibiotic Resistance of the Causative Organisms in North of Iran

    Science.gov (United States)

    Behzadnia, Salar; Davoudi, Alireza; Rezai, Mohammad Sadegh; Ahangarkani, Fatemeh

    2014-01-01

    Background: Treatment of the nosocomial infections is complicated especially in children due to an increase in the antibiotic-resistant bacteria. Objectives: The aim of this study was to survey the nosocomial infections in children and determine the antibiotic susceptibility of their causative organisms in teaching hospitals in the north of Iran. Patients and Methods: The investigation was designed as a retrospective cross-sectional study. The study population consisted of patients under 12 years old, which were hospitalized in three teaching hospitals in the north of Iran and had symptoms of nosocomial infections in 2012. The required data of patients were extracted and entered in the information forms. The collected data were analyzed using SPSS (ver. 16). Descriptive statistics and Fisher’s exact tests (Monte Carlo) were used. Results: Out of the total number of 34556 hospitalized patients in three teaching hospitals, 61 (0.17%) patients were children under 12 years old age with nosocomial infection from which 50.81% were girls and 49.18% were boys. Most of these patients (55.73%) were admitted to the burn unit. The most common type of nosocomial infection (49.18%) was wound infection. Pseudomonas spp. (36.84%) and Acinetobacter spp. (28.02%) were the most common bacteria isolated from the clinical specimens. All the Acinetobacter spp. were multidrug-resistant. All the gram negative and gram positive bacterial species in our study showed high resistance to antibiotics. Conclusions: The rate of nosocomial infections was low in our study because the detection of nosocomial infection was based on the clinical grounds in most cases and laboratory reports might contain false-negative results. These results provide useful information for future large scale surveillance in the context of prevention programs. PMID:24719744

  6. Colonization of the oropharynx with Gram-negative bacilli in children with severe protein-calorie malnutrition.

    Science.gov (United States)

    Gilman, R H; Brown, K H; Gilman, J B; Gaffar, A; Alamgir, S M; Kibriya, A K; Sack, R B

    1982-08-01

    Oral pharyngeal isolation of Gram-negative bacteria was compared in four groups of Bengali children; acutely ill, severely malnourished outpatients swabbed on hospital admission; ill but less severely malnourished outpatients from the same area as the malnourished children; orphans also less severely malnourished but not acutely ill; and well controls drawn from a priviledged socioeconomic group. The expected weight for height percentage (National Center Health Statistics/Center for Disease Control median) of the four groups was respectively 67, 91, 97, and 97%. Isolation of Gram-negative bacteria from 74 of 87 (85%) severely malnourished children was significantly greater (p less than 0.01) compared to 43 of 113 (38%) outpatients, to 20 of 93 (22%) orphans, and to five of 51 (10%) controls. A total of 71 malnourished children under 5 yr of age (90%) had higher rates of Gram-negative throat colonization than did 16 older children (63%) (p less than 0.01). Thus there was an increased rate of Gram-negative colonization in severely malnourished children especially among the younger age group. In the subset of ill children, Gram-negative pharyngeal colonization was significantly associated inversely with nutritional indices and age. The high rate of such carriage may be partly responsible for the increased susceptibility of Gram-negative infection demonstrated in these children.

  7. Characterization of carbapenem-resistant Gram-negative bacteria from Tamil Nadu.

    Science.gov (United States)

    Nachimuthu, Ramesh; Subramani, Ramkumar; Maray, Suresh; Gothandam, K M; Sivamangala, Karthikeyan; Manohar, Prasanth; Bozdogan, Bülent

    2016-10-01

    Carbapenem resistance is disseminating worldwide among Gram-negative bacteria. The aim of this study was to identify carbapenem-resistance level and to determine the mechanism of carbapenem resistance among clinical isolates from two centres in Tamil Nadu. In the present study, a total of 93 Gram-negative isolates, which is found to be resistant to carbapenem by disk diffusion test in two centres, were included. All isolates are identified at species level by 16S rRNA sequencing. Minimal inhibitory concentrations (MICs) of isolates for Meropenem were tested by agar dilution method. Presence of blaOXA, blaNDM, blaVIM, blaIMP and blaKPC genes was tested by PCR in all isolates. Amplicons were sequenced for confirmation of the genes. Among 93 isolates, 48 (%52) were Escherichia coli, 10 (%11) Klebsiella pneumoniae, nine (%10) Pseudomonas aeruginosa. Minimal inhibitory concentration results showed that of 93 suspected carbapenem-resistant isolates, 27 had meropenem MICs ≥ 2 μg/ml. The MIC range, MIC50 and MIC90 were 128 μg/ml, 0.12 and 16 μg/ml, respectively. Fig. 1 . Among meropenem-resistant isolates, E. coli were the most common (9/48, 22%), followed by K. pneumoniae (7/9, 77%), P. aeruginosa (6/10, 60%), Acinetobacter baumannii (2/2, 100%), Enterobacter hormaechei (2/3, 67%) and one Providencia rettgeri (1/1, 100%). PCR results showed that 16 of 93 carried blaNDM, three oxa181, and one imp4. Among blaNDM carriers, nine were E. coli, four Klebsiella pneumoniae, two E. hormaechei and one P. rettgeri. Three K. pneumoniae were OXA-181 carriers. The only imp4 carrier was P. aeruginosa. A total of seven carbapenem-resistant isolates were negatives by PCR for the genes studied. All carbapenem-resistance gene-positive isolates had meropenem MICs >2 μg/ml. Our results confirm the dissemination of NDM and emergence of OXA-181 beta-lactamase among Gram-negative bacteria in South India. This study showed the emergence of NDM producer in clinical isolates of E

  8. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: a systematic review and meta-analysis.

    Science.gov (United States)

    Baur, David; Gladstone, Beryl Primrose; Burkert, Francesco; Carrara, Elena; Foschi, Federico; Döbele, Stefanie; Tacconelli, Evelina

    2017-09-01

    Antibiotic stewardship programmes have been shown to reduce antibiotic use and hospital costs. We aimed to evaluate evidence of the effect of antibiotic stewardship on the incidence of infections and colonisation with antibiotic-resistant bacteria. For this systematic review and meta-analysis, we searched PubMed, the Cochrane Database of Systematic Reviews, the Cochrane Central Register of Controlled Trials, and Web of Science for studies published from Jan 1, 1960, to May 31, 2016, that analysed the effect of antibiotic stewardship programmes on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infections in hospital inpatients. Two authors independently assessed the eligibility of trials and extracted data. Studies involving long-term care facilities were excluded. The main outcomes were incidence ratios (IRs) of target infections and colonisation per 1000 patient-days before and after implementation of antibiotic stewardship. Meta-analyses were done with random-effect models and heterogeneity was calculated with the I 2 method. We included 32 studies in the meta-analysis, comprising 9 056 241 patient-days and 159 estimates of IRs. Antibiotic stewardship programmes reduced the incidence of infections and colonisation with multidrug-resistant Gram-negative bacteria (51% reduction; IR 0·49, 95% CI 0·35-0·68; pbacteria (48%; 0·52, 0·27-0·98; p=0·0428), and meticillin-resistant Staphylococcus aureus (37%; 0·63, 0·45-0·88; p=0·0065), as well as the incidence of C difficile infections (32%; 0·68, 0·53-0·88; p=0·0029). Antibiotic stewardship programmes were more effective when implemented with infection control measures (IR 0·69, 0·54-0·88; p=0·0030), especially hand-hygiene interventions (0·34, 0·21-0·54; pAntibiotic stewardship did not affect the IRs of vancomycin-resistant enterococci and quinolone-resistant and aminoglycoside-resistant Gram-negative bacteria. Significant heterogeneity

  9. Antibiotic resistance in Mexico: a brief overview of the current status and its causes.

    Science.gov (United States)

    Amábile-Cuevas, Carlos

    2010-03-29

    As in many other developing countries, conditions that may foster antibiotic resistance in Mexico differ from developed countries, and so resistance prevalence. Fecal pollution and other traits of overcrowded, poor cities, might create ideal settings for selecting, exchanging and maintaining resistance traits. Medical abuse of antibiotics, along with low-quality drugs, are also present as in many developing countries. Self-prescription, a common yet unmeasured practice among Mexican population, may also contribute to increased resistance rates. Pneumococcal resistance towards penicillin and macrolides are the highest in Latin American countries, as is resistance of Salmonella and uropathogenic Escherichia coli towards ampicillin and sulfamethoxazole-trimethoprim; about one tenth of isolates of these gram-negative pathogens seem to produce extended-spectrum beta-lactamases (ESBL). High rates of multiple-drug resistant Mycobacterium tuberculosis are also found in Mexico, although there is no report of extensively drug-resistant strains. As to hospital-acquired pathogens, about a third of E. coli and Klebsiella isolates are ESBL-producers, and half of Staphylococcus aureus isolates are resistant to oxacillin (MRSA). Around 40% Pseudomonas aeruginosa isolates are resistant to ceftazidime, imipenem or levofloxacin. Although community-acquired MRSA, vancomycin-resistant enterococci, and other resistance problems found in developed countries, are not as common in Mexico, local issues are no small concern, and are disturbingly moving towards outpatients.

  10. Chemical communication of antibiotic resistance by a highly resistant subpopulation of bacterial cells.

    Directory of Open Access Journals (Sweden)

    Omar M El-Halfawy

    Full Text Available The overall antibiotic resistance of a bacterial population results from the combination of a wide range of susceptibilities displayed by subsets of bacterial cells. Bacterial heteroresistance to antibiotics has been documented for several opportunistic Gram-negative bacteria, but the mechanism of heteroresistance is unclear. We use Burkholderia cenocepacia as a model opportunistic bacterium to investigate the implications of heterogeneity in the response to the antimicrobial peptide polymyxin B (PmB and also other bactericidal antibiotics. Here, we report that B. cenocepacia is heteroresistant to PmB. Population analysis profiling also identified B. cenocepacia subpopulations arising from a seemingly homogenous culture that are resistant to higher levels of polymyxin B than the rest of the cells in the culture, and can protect the more sensitive cells from killing, as well as sensitive bacteria from other species, such as Pseudomonas aeruginosa and Escherichia coli. Communication of resistance depended on upregulation of putrescine synthesis and YceI, a widely conserved low-molecular weight secreted protein. Deletion of genes for the synthesis of putrescine and YceI abrogate protection, while pharmacologic inhibition of putrescine synthesis reduced resistance to polymyxin B. Polyamines and YceI were also required for heteroresistance of B. cenocepacia to various bactericidal antibiotics. We propose that putrescine and YceI resemble "danger" infochemicals whose increased production by a bacterial subpopulation, becoming more resistant to bactericidal antibiotics, communicates higher level of resistance to more sensitive members of the population of the same or different species.

  11. Crystallization and preliminary diffraction studies of SFC-1, a carbapenemase conferring antibiotic resistance

    International Nuclear Information System (INIS)

    Hong, Myoung-Ki; Lee, Jae Jin; Wu, Xing; Kim, Jin-Kwang; Jeong, Byeong Chul; Pham, Tan-Viet; Kim, Seung-Hwan; Lee, Sang Hee; Kang, Lin-Woo

    2012-01-01

    The SFC-1 gene from S. fonticola was cloned and SFC-1 was expressed, purified and crystallized. X-ray diffraction data were collected from an SFC-1 crystal to 1.6 Å resolution. SFC-1, a class A carbapenemase that confers antibiotic resistance, hydrolyzes the β-lactam rings of β-lactam antibiotics (carbapenems, cephalosporins, penicillins and aztreonam). SFC-1 presents an enormous challenge to infection control, particularly in the eradication of Gram-negative pathogens. As SFC-1 exhibits a remarkably broad substrate range, including β-lactams of all classes, the enzyme is a potential target for the development of antimicrobial agents against pathogens producing carbapenemases. In this study, SFC-1 was cloned, overexpressed, purified and crystallized. The SFC-1 crystal diffracted to 1.6 Å resolution and belonged to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 65.8, b = 68.3, c = 88.8 Å. Two molecules are present in the asymmetric unit, with a corresponding V M of 1.99 Å 3 Da −1 and a solvent content of 38.1%

  12. Quorum sensing in Acinetobacter: with special emphasis on antibiotic resistance, biofilm formation and quorum quenching

    Directory of Open Access Journals (Sweden)

    Bindu Subhadra

    2016-02-01

    Full Text Available Acinetobacter is an important nosocomial, opportunistic human pathogen that is gradually gaining more attention as a major health threat worldwide. Quorum sensing (QS is a cell-cell communication system in which specific signaling molecules called autoinducers accumulate in the medium as the population density grows and control various physiological processes including production of virulence factors, biofilm and development of antibiotic resistance. The complex QS machinery in Acinetobacter is mediated by a two-component system which is homologous to the typical LuxI/LuxR system found in Gram-negative bacteria. This cell signaling system comprises of a sensor protein that functions as autoinducer synthase and a receptor protein which binds to the signal molecules, acyl homoserine lactones inducing a cascade of reactions. Lately, disruption of QS has emerged as an anti-virulence strategy with great therapeutic potential. Here, we depict the current understanding of the existing QS network in Acinetobacter and describe important anti-virulent strategies developed in order to effectively tackle this pathogen. In addition, the prospects of quorum quenching to control Acinetobacter infections is also been discussed.

  13. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control.

    Directory of Open Access Journals (Sweden)

    Qing-Bin Yuan

    Full Text Available This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L. The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L. By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L. However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.

  14. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control.

    Science.gov (United States)

    Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian

    2015-01-01

    This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L). The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L). By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L). However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.

  15. Predation and selection for antibiotic resistance in natural environments

    DEFF Research Database (Denmark)

    Leisner, Jørgen; Jørgensen, Niels O. G.; Middelboe, Mathias

    2016-01-01

    Genes encoding resistance to antibiotics appear, like the antibiotics themselves, to be ancient, originating long before the rise of the era of anthropogenic antibiotics. However, detailed understanding of the specific biological advantages of antibiotic resistance in natural environments is still......, predation is potentially an important mechanism for driving antibiotic resistance during slow or stationary phase of growth when nutrients are deprived. This adds to explain the ancient nature and widespread occurrence of antibiotic resistance in natural environments unaffected by anthropogenic antibiotics...

  16. Bloodstream infections in pediatric patients with acute leukemia: Emphasis on gram-negative bacteria infections.

    Science.gov (United States)

    Kuo, Fu-Chun; Wang, Shih-Min; Shen, Ching-Fen; Ma, Yun-Ju; Ho, Tzong-Shiann; Chen, Jiann-Shiuh; Cheng, Chao-Neng; Liu, Ching-Chuan

    2017-08-01

    Acute leukemia is the most common pediatric hematological malignancy. Bloodstream infections (BSIs) are severe complications in these patients during chemotherapy. This study aims to explore clinical features, laboratory, and microbiological characteristics of BSIs in acute leukemic children. Patients aged leukemia or acute lymphocytic leukemia with BSIs from January 2004 to December 2013 were enrolled. BSIs was defined as positive isolate(s) of blood culture and associated with clinical findings. Clinical presentations, demographic features, and microbiological findings were retrospectively reviewed. In total, 126 isolates of 115 episodes of BSIs were identified from 69 patients (acute lymphocytic leukemia 56; acute myeloid leukemia 13). Gram-negative bacteria (GNB), gram-positive cocci, and fungi constituted 56.3%, 42.3%, and 2.4% of the pathogens, respectively. Eighty-three and a half percent of BSIs occurred along with neutropenia, and 73% had severe neutropenia. GNB was the leading pathogen of BSIs. The major GNBs were Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa. White blood cell counts, absolute neutrophil counts, and platelet counts were significantly lower in patients of BSIs caused by GNB than gram-positive cocci. Plasma level of C-reactive protein was significant high in patients of GNB BSIs (179.8 mg/L vs. 127.2 mg/L; p = 0.005). Eighty-two percent of patients of E. coli, K. pneumonia, and P. aeruginosa BSIs had sepsis related organ failure or organ dysfunction. P. aeruginosa BSIs had the highest case-mortality (40%). Neutropenia was the major risk factor of BSIs in pediatric leukemic patients. BSIs of GNB were associated with severe neutropenia, systemic inflammatory responses, and high mortality. Copyright © 2015. Published by Elsevier B.V.

  17. Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen. [Salmonella typhimurium; Escherichia coli; Sarcina lutea; Staphylococcus aureus; Streptococcus lactis; Streptococcus faecalis

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, T.A.; Midden, W.R. (Bowling Green State Univ., OH (USA)); Hartman, P.E. (Johns Hopkins Univ., Baltimore, MD (USA))

    1989-04-01

    Gram-negative and gram-positive bacteria were found to display different sensitivities to pure singlet oxygen generated outside of cells. Killing curves for Salmonella typhimurium and Escherichia coli strains were indicative of multihit killing, whereas curves for Sarcina lutea, Staphylococcus aureus, Streptococcus lactis, and Streptococcus faecalis exhibited single-hit kinetics. The S. typhimurium deep rough strain TA1975, which lacks nearly all of the cell wall lipopolysaccharide coat and manifests concomitant enhancement of penetration by some exogenous substances, responded to singlet oxygen with initially faster inactivation than did the S. typhimurium wild-type strain, although the maximum rates of killing appeared to be quite similar. The structure of the cell wall thus plays an important role in susceptibility to singlet oxygen. The outer membrane-lipopolysaccharide portion of the gram-negative cell wall initially protects the bacteria from extracellular singlet oxygen, although it may also serve as a source for secondary reaction products which accentuate the rates of cell killing. S. typhimurium and E. coli strains lacking the cellular antioxidant, glutathione, showed no difference from strains containing glutathione in response to the toxic effects of singlet oxygen. Strains of Sarcina lutea and Staphylococcus aureus that contained carotenoids, however, were far more resistant to singlet oxygen lethality than were both carotenoidless mutants of the same species and other gram-positive species lacking high levels of protective carotenoids.

  18. Antibiotic resistance: are we all doomed?

    Science.gov (United States)

    Collignon, P

    2015-11-01

    Antibiotic resistance is a growing and worrying problem associated with increased deaths and suffering for people. Overall, there are only two factors that drive antimicrobial resistance, and both can be controlled. These factors are the volumes of antimicrobials used and the spread of resistant micro-organisms and/or the genes encoding for resistance. The One Health concept is important if we want to understand better and control antimicrobial resistance. There are many things we can do to better control antimicrobial resistance. We need to prevent infections. We need to have better surveillance with good data on usage patterns and resistance patterns available across all sectors, both human and agriculture, locally and internationally. We need to act on these results when we see either inappropriate usage or resistance levels rising in bacteria that are of concern for people. We need to ensure that food and water sources do not spread multi-resistant micro-organisms or resistance genes. We need better approaches to restrict successfully what and how antibiotics are used in people. We need to restrict the use of 'critically important' antibiotics in food animals and the entry of these drugs into the environment. We need to ensure that 'One Health' concept is not just a buzz word but implemented. We need to look at all sectors and control not only antibiotic use but also the spread and development of antibiotic resistant bacteria - both locally and internationally. © 2015 Royal Australasian College of Physicians.

  19. Assessment of Antibiotic Resistant Commensal Bacteria in Food

    National Research Council Canada - National Science Library

    Lehman, Mark

    2006-01-01

    .... Although antibiotic resistance (AR) in foodborne pathogens has been studied extensively, the contribution of foodborne commensals in disseminating the resistance genes has been neglected in the past...

  20. Fighting antibiotic resistance in the intensive care unit using antibiotics.

    Science.gov (United States)

    Plantinga, Nienke L; Wittekamp, Bastiaan H J; van Duijn, Pleun J; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to classical infection prevention protocols and surveillance programs, counterintuitive interventions, such as selective decontamination with antibiotics and antibiotic rotation have been applied and investigated to control the emergence of antibiotic resistance. This review provides an overview of selective oropharyngeal and digestive tract decontamination, decolonization of methicillin-resistant Staphylococcus aureus and antibiotic rotation as strategies to modulate antibiotic resistance in the intensive care unit.

  1. Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria.

    Science.gov (United States)

    Díaz De Rienzo, Mayri A; Stevenson, Paul; Marchant, Roger; Banat, Ibrahim M

    2016-01-01

    The antibacterial properties and ability to disrupt biofilms of biosurfactants (rhamnolipids, sophorolipids) and sodium dodecyl sulphate (SDS) in the presence and absence of selected organic acids were investigated. Pseudomonas aeruginosa PAO1 was inhibited by sophorolipids and SDS at concentrations >5% v/v, and the growth of Escherichia coli NCTC 10418 was also inhibited by sophorolipids and SDS at concentrations >5% and 0.1% v/v, respectively. Bacillus subtilis NCTC 10400 was inhibited by rhamnolipids, sophorolipids and SDS at concentrations >0.5% v/v of all three; the same effect was observed with Staphylococcus aureus ATCC 9144. The ability to attach to surfaces and biofilm formation of P. aeruginosa PAO1, E. coli NCTC 10418 and B. subtilis NCTC 10400 was inhibited by sophorolipids (1% v/v) in the presence of caprylic acid (0.8% v/v). In the case of S. aureus ATCC 9144, the best results were obtained using caprylic acid on its own. It was concluded that sophorolipids are promising compounds for the inhibition/disruption of biofilms formed by Gram-positive and Gram-negative microorganisms and this activity can be enhanced by the presence of booster compounds such as caprylic acid. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    OpenAIRE

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) versus their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1- a Pseudomonas sp.) and thermophilic (Iso T10- a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts ...

  3. The bovine acute phase response to endotoxin and Gram-negative bacteria

    DEFF Research Database (Denmark)

    Jacobsen, Stine

    exposure to LPS were employed: 1) intravenous bolus injection of Escherichia coli (E. coli) LPS inducing systemic inflammation (Papers I-III and Reports I and II), and 2) intramammary inoculation with E. coli inducing infection and local inflammation in the mammary gland (Paper IV). Systemic inflammation...... it appeared in the systemic circulation suggests that extrahepatic synthesis of SAA takes place in the inflamed udder. SAA levels in plasma and milk were very low prior to inoculation, increased rapidly and exponentially after inoculation, and returned quickly to the baseline after the infection was cleared...... aimed at containing infections, eliminating bacteria and restoring homeostasis. However, during infections or disease complexes in which LPS and/or Gram-negative bacteria persist, disease and pathological changes may result from the prolonged inflammatory response. For example, protracted LPS...

  4. Comparative Activity of Several Antimicrobial Agents against Nosocomial Gram-Negative Rods Isolated across Canada

    Directory of Open Access Journals (Sweden)

    Shelley R Scriver

    1995-01-01

    Full Text Available In 1992, a surveillance study was performed in Canada to determine the susceptibility of nosocomial Gram-negative rods to several wide spectrum antimicrobials. Consecutive isolates from 10 institutions, as well as additional strains of selected species of Enterobacteriaceae that are known to possess the Bush group 1 beta-lactamase, were tested for susceptibility to 12 antimicrobials. Third-generation cephalosporin resistance was found to be as high as 29% in Enterobacter cloacae that possesses the Bush group 1 beta-lactamase and less than 4% in those isolates not possessing this enzyme. Cefepime equalled or exceeded the activity of the third-generation cephalosporins against the species of Enterobacteriaceae that demonstrated resistance to the third-generation cephalosporins.

  5. Stenotrophomonas maltophilia: A Gram-Negative Bacterium Useful for Transformations of Flavanone and Chalcone

    Directory of Open Access Journals (Sweden)

    Edyta Kostrzewa-Susłow

    2017-10-01

    Full Text Available A group of flavones, isoflavones, flavanones, and chalcones was subjected to small-scale biotransformation studies with the Gram-negative Stenotrophomonas maltophilia KB2 strain in order to evaluate the capability of this strain to transform flavonoid compounds and to investigate the relationship between compound structure and transformation type. The tested strain transformed flavanones and chalcones. The main type of transformation of compounds with a flavanone moiety was central heterocyclic C ring cleavage, leading to chalcone and dihydrochalcone structures, whereas chalcones underwent reduction to dihydrochalcones and cyclisation to a benzo-γ-pyrone moiety. Substrates with a C-2–C-3 double bond (flavones and isoflavones were not transformed by Stenotrophomonas maltophilia KB2.

  6. Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture.

    Science.gov (United States)

    Turner, Robert D; Hurd, Alexander F; Cadby, Ashley; Hobbs, Jamie K; Foster, Simon J

    2013-01-01

    Cellular integrity and morphology of most bacteria is maintained by cell wall peptidoglycan, the target of antibiotics essential in modern healthcare. It consists of glycan strands, cross-linked by peptides, whose arrangement determines cell shape, prevents lysis due to turgor pressure and yet remains dynamic to allow insertion of new material, and hence growth. The cellular architecture and insertion pattern of peptidoglycan have remained elusive. Here we determine the peptidoglycan architecture and dynamics during growth in rod-shaped Gram-negative bacteria. Peptidoglycan is made up of circumferentially oriented bands of material interspersed with a more porous network. Super-resolution fluorescence microscopy reveals an unexpected discontinuous, patchy synthesis pattern. We present a consolidated model of growth via architecture-regulated insertion, where we propose only the more porous regions of the peptidoglycan network that are permissive for synthesis.

  7. Influences of graphene on microbial community and antibiotic resistance genes in mouse gut as determined by high-throughput sequencing.

    Science.gov (United States)

    Xie, Yongchao; Wu, Bing; Zhang, Xu-Xiang; Yin, Jinbao; Mao, Liang; Hu, Maojie

    2016-02-01

    Graphene is a promising candidate as an antibacterial material owning to its bacterial toxicity. However, little information on influence of graphene on gut microbiota is available. In this study, mice were exposed to graphene for 4 weeks, and high-throughput sequencing was applied to characterize the changes in microbial community and antibiotic resistance genes (ARGs) in mouse gut. The results showed that graphene exposure increased biodiversity of gut microbiota, and changed their community. The 1 μg/d graphene exposure had higher influences on the gut microbiota than 10 μg/d and 100 μg/d graphene exposures, which might be due to higher aggregation of high-level graphene. The influence of graphene on gut microbiota might attribute to that graphene could induce oxidative stress and damage of cell membrane integrity. The results were verified by the increase of ratio of Gram-negative bacteria. Outer membrane of Gram-negative bacteria could reduce the membrane damage induced by graphene and make them more tolerance to graphene. Further, we found that graphene exposure significantly increased the abundance and types of ARGs, indicating a potential health risk of graphene. This study firstly provides new insight to the health effects of graphene on gut microbiota. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Epidemiology and molecular characterization of multidrug-resistant Gram-negative bacteria in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Nuntra Suwantarat

    2016-05-01

    Full Text Available Abstract Background Multidrug-resistant Gram-negative bacteria (MDRGN, including extended-spectrum β-lactamases (ESBLs and multidrug-resistant glucose-nonfermenting Gram-negative bacilli (nonfermenters, have emerged and spread throughout Southeast Asia. Methods We reviewed and summarized current critical knowledge on the epidemiology and molecular characterization of MDRGN in Southeast Asia by PubMed searches for publications prior to 10 March 2016 with the term related to “MDRGN definition” combined with specific Southeast Asian country names (Thailand, Singapore, Malaysia, Vietnam, Indonesia, Philippines, Laos, Cambodia, Myanmar, Brunei. Results There were a total of 175 publications from the following countries: Thailand (77, Singapore (35, Malaysia (32, Vietnam (23, Indonesia (6, Philippines (1, Laos (1, and Brunei (1. We did not find any publications on MDRGN from Myanmar and Cambodia. We did not include publications related to Shigella spp., Salmonella spp., and Vibrio spp. and non-human related studies in our review. English language articles and abstracts were included for analysis. After the abstracts were reviewed, data on MDRGN in Southeast Asia from 54 publications were further reviewed and included in this study. Conclusions MDRGNs are a major contributor of antimicrobial-resistant bacteria in Southeast Asia. The high prevalence of ESBLs has been a major problem since 2005 and is possibly related to the development of carbapenem resistant organisms in this region due to the overuse of carbapenem therapy. Carbapenem–resistant Acinetobacter baumannii is the most common pathogen associated with nosocomial infections in this region followed by carbapenem-resistant Pseudomonas aeruginosa. Although Southeast Asia is not an endemic area for carbapenem-resistant Enterobacteriaceae (CRE, recently, the rate of CRE detection has been increasing. Limited infection control measures, lack of antimicrobial control, such as the presence of

  9. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions

    Science.gov (United States)

    Amachawadi, Raghavendra G.; Renter, David G.; Volkova, Victoriya V.

    2016-01-01

    Antimicrobial treatments result in the host’s enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment

  10. Phenotypic and Genotypic Detection of Metallo-beta-lactamases among Imipenem-Resistant Gram Negative Isolates

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadzadeh

    2016-08-01

    Full Text Available Background:   Imipenem-resistant gram negative bacteria, resulting from metallo-beta-lactamase (MBLs-producing strains have been reported to be among the important causes of nosocomial infections and of serious therapeutic problem worldwide. Because of their broad range, potent carbapenemase activity and resistance to inhibitors, these enzymes can confer resistance to almost all beta-lactams. The prevalence of metallo-beta-lactamase among imipenem-resistant Acinetobacter spp., Pseudomonas spp. and Enerobacteriaceae isolates is determined.Methods:   In this descriptive study 864 clinical isolates of Acinetobacter spp., Pseudomonas spp. and Enterobacteriaceae, were initially tested for imipenem susceptibility. The metallo-beta-lactamase production was detected using combined disk diffusion, double disk synergy test, and Hodge test. Then all imipenem resistant isolates were tested by PCR for imp, vim and ndm genes. Results:   Among 864 isolates, 62 (7.17 % were imipenem-resistant. Positive phonetypic test for metallo-beta-lactamase was 40 (64.5%, of which 24 (17.1% and 16 (9.2% isolates were Acinetobacter spp. and Pseudomonas spp., respectively. By PCR method 30 (48.4% of imipenem resistant Acinetobacter, and Pseudomonas isolates were positive for MBL-producing genes. None of the Enterobacteriaceae isolates were positive for metallo-beta-lactamase activity. Conclusion:   The results of this study are indicative of the growing number of nosocomial infections associated with multidrug-resistant gram negative bacteria in this region leading to difficulties in antibiotic therapy. Thereby, using of phenotypic methods can be helpful for management of this problem.

  11. Structural modifications of bacterial lipopolysaccharide that facilitate Gram-negative bacteria evasion of host innate immunity

    Directory of Open Access Journals (Sweden)

    Motohiro eMatsuura

    2013-05-01

    Full Text Available Bacterial lipopolysaccharide (LPS, a cell wall component characteristic of Gram-negative bacteria, is a representative pathogen-associated molecular pattern that allows mammalian cells to recognize bacterial invasion and trigger innate immune responses. The polysaccharide moiety of LPS primary plays protective roles for bacteria such as prevention from complement attacks or camouflage with common host carbohydrate residues. The lipid moiety, termed lipid A, is recognized by the Toll-like receptor 4 (TLR4/MD-2 complex, which transduces signals for activation of host innate immunity. The basic structure of lipid A is a glucosamine disaccharide substituted by phosphate groups and acyl groups. Lipid A with 6 acyl groups (hexa-acylated form has been indicated to be a strong stimulator of the TLR4/MD-2 complex. This type of lipid A is conserved among a wide variety of Gram-negative bacteria, and those bacteria are easily recognized by host cells for activation of defensive innate immune responses. Modifications of the lipid A structure to less-acylated forms have been observed in some bacterial species, and those forms are poor stimulators of the TLR4/MD-2 complex. Such modifications are thought to facilitate bacterial evasion of host innate immunity, thereby enhancing pathogenicity. This hypothesis is supported by studies of Yersinia pestis LPS, which contains hexa-acylated lipid A when the bacterium grows at 27ºC (the temperature of the vector flea, and shifts to contain less-acylated forms when grown at the human body temperature of 37ºC. This alteration of lipid A forms following transmission of Y. pestis from fleas to humans contributes predominantly to the virulence of this bacterium over other virulence factors. A similar role for less-acylated lipid A forms has been indicated in some other bacterial species, such as Francisella tularensis, Helicobacter pylori, and Porphyromonas gingivalis, and further studies to explore this concept are

  12. Pulmonary and systemic inflammatory responses in rabbits with gram-negative pneumonia.

    Science.gov (United States)

    Fox-Dewhurst, R; Alberts, M K; Kajikawa, O; Caldwell, E; Johnson, M C; Skerrett, S J; Goodman, R B; Ruzinski, J T; Wong, V A; Chi, E Y; Martin, T R

    1997-06-01

    The major goals of this study were to define the relationships between intrapulmonary and systemic inflammatory responses in animals with gram-negative pneumonia. We treated rabbits with intrapulmonary Escherichia coli (1 x 10(7) to 1 x 10(10) cfu/ml), and then measured physiologic, cellular, and molecular events in the lungs and systemic circulation for 24 h. The treatment protocols resulted in groups of animals that mimicked the stages of the septic inflammatory response in humans. Animals treated with low inocula had systemic changes consistent with systemic inflammatory response syndrome and cleared the bacteria and inflammatory products from the lungs. Animals treated with high inocula failed to clear bacteria from the lungs, had severe intrapulmonary inflammatory responses, and developed septic shock. Intrapulmonary leukocyte recruitment was directly related to the size of the bacterial inoculum, but lung protein accumulation was not. Tumor neurosis factor-alpha (TNF-alpha), interleukin-8 (IL-8), and GRO were detectable in lung lavage fluid at 4 h and declined by 24 h in animals that cleared intrapulmonary E. coli. In contrast, lavage TNF-alpha, IL-8, and GRO increased over 24 h in animals that failed to clear intrapulmonary bacteria. MCP-1 increased between 4 h and 24 h in the lungs of all of the animals as the histologic response evolved from neutrophilic to mononuclear cell predominance. Thus, the intensity of systemic inflammatory and physiologic responses to intrapulmonary gram-negative infection depends on the inoculum size and whether the bacteria are cleared from or proliferate in the lungs. The results provide experimental support for the recently proposed classification of septic responses in humans.

  13. Silver resistance in Gram-negative bacteria: a dissection of endogenous and exogenous mechanisms

    Science.gov (United States)

    Randall, Christopher P.; Gupta, Arya; Jackson, Nicole; Busse, David; O'Neill, Alex J.

    2015-01-01

    Objectives To gain a more detailed understanding of endogenous (mutational) and exogenous (horizontally acquired) resistance to silver in Gram-negative pathogens, with an emphasis on clarifying the genetic bases for resistance. Methods A suite of microbiological and molecular genetic techniques was employed to select and characterize endogenous and exogenous silver resistance in several Gram-negative species. Results In Escherichia coli, endogenous resistance arose after 6 days of exposure to silver, a consequence of two point mutations that were both necessary and sufficient for the phenotype. These mutations, in ompR and cusS, respectively conferred loss of the OmpC/F porins and derepression of the CusCFBA efflux transporter, both phenotypic changes previously linked to reduced intracellular accumulation of silver. Exogenous resistance involved derepression of the SilCFBA efflux transporter as a consequence of mutation in silS, but was additionally contingent on expression of the periplasmic silver-sequestration protein SilE. Silver resistance could be selected at high frequency (>10−9) from Enterobacteriaceae lacking OmpC/F porins or harbouring the sil operon and both endogenous and exogenous resistance were associated with modest fitness costs in vitro. Conclusions Both endogenous and exogenous silver resistance are dependent on the derepressed expression of closely related efflux transporters and are therefore mechanistically similar phenotypes. The ease with which silver resistance can become selected in some bacterial pathogens in vitro suggests that there would be benefit in improved surveillance for silver-resistant isolates in the clinic, along with greater control over use of silver-containing products, in order to best preserve the clinical utility of silver. PMID:25567964

  14. A new family of lysozyme inhibitors contributing to lysozyme tolerance in gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Lien Callewaert

    2008-03-01

    Full Text Available Lysozymes are ancient and important components of the innate immune system of animals that hydrolyze peptidoglycan, the major bacterial cell wall polymer. Bacteria engaging in commensal or pathogenic interactions with an animal host have evolved various strategies to evade this bactericidal enzyme, one recently proposed strategy being the production of lysozyme inhibitors. We here report the discovery of a novel family of bacterial lysozyme inhibitors with widespread homologs in gram-negative bacteria. First, a lysozyme inhibitor was isolated by affinity chromatography from a periplasmic extract of Salmonella Enteritidis, identified by mass spectrometry and correspondingly designated as PliC (periplasmic lysozyme inhibitor of c-type lysozyme. A pliC knock-out mutant no longer produced lysozyme inhibitory activity and showed increased lysozyme sensitivity in the presence of the outer membrane permeabilizing protein lactoferrin. PliC lacks similarity with the previously described Escherichia coli lysozyme inhibitor Ivy, but is related to a group of proteins with a common conserved COG3895 domain, some of them predicted to be lipoproteins. No function has yet been assigned to these proteins, although they are widely spread among the Proteobacteria. We demonstrate that at least two representatives of this group, MliC (membrane bound lysozyme inhibitor of c-type lysozyme of E. coli and Pseudomonas aeruginosa, also possess lysozyme inhibitory activity and confer increased lysozyme tolerance upon expression in E. coli. Interestingly, mliC of Salmonella Typhi was picked up earlier in a screen for genes induced during residence in macrophages, and knockout of mliC was shown to reduce macrophage survival of S. Typhi. Based on these observations, we suggest that the COG3895 domain is a common feature of a novel and widespread family of bacterial lysozyme inhibitors in gram-negative bacteria that may function as colonization or virulence factors in bacteria

  15. A New Family of Lysozyme Inhibitors Contributing to Lysozyme Tolerance in Gram-Negative Bacteria

    Science.gov (United States)

    Callewaert, Lien; Aertsen, Abram; Deckers, Daphne; Vanoirbeek, Kristof G. A.; Vanderkelen, Lise; Van Herreweghe, Joris M.; Masschalck, Barbara; Nakimbugwe, Dorothy; Robben, Johan; Michiels, Chris W.

    2008-01-01

    Lysozymes are ancient and important components of the innate immune system of animals that hydrolyze peptidoglycan, the major bacterial cell wall polymer. Bacteria engaging in commensal or pathogenic interactions with an animal host have evolved various strategies to evade this bactericidal enzyme, one recently proposed strategy being the production of lysozyme inhibitors. We here report the discovery of a novel family of bacterial lysozyme inhibitors with widespread homologs in gram-negative bacteria. First, a lysozyme inhibitor was isolated by affinity chromatography from a periplasmic extract of Salmonella Enteritidis, identified by mass spectrometry and correspondingly designated as PliC (periplasmic lysozyme inhibitor of c-type lysozyme). A pliC knock-out mutant no longer produced lysozyme inhibitory activity and showed increased lysozyme sensitivity in the presence of the outer membrane permeabilizing protein lactoferrin. PliC lacks similarity with the previously described Escherichia coli lysozyme inhibitor Ivy, but is related to a group of proteins with a common conserved COG3895 domain, some of them predicted to be lipoproteins. No function has yet been assigned to these proteins, although they are widely spread among the Proteobacteria. We demonstrate that at least two representatives of this group, MliC (membrane bound lysozyme inhibitor of c-type lysozyme) of E. coli and Pseudomonas aeruginosa, also possess lysozyme inhibitory activity and confer increased lysozyme tolerance upon expression in E. coli. Interestingly, mliC of Salmonella Typhi was picked up earlier in a screen for genes induced during residence in macrophages, and knockout of mliC was shown to reduce macrophage survival of S. Typhi. Based on these observations, we suggest that the COG3895 domain is a common feature of a novel and widespread family of bacterial lysozyme inhibitors in gram-negative bacteria that may function as colonization or virulence factors in bacteria interacting with

  16. Intrathecal or intraventricular therapy for post-neurosurgical Gram-negative meningitis: matched cohort study.

    Science.gov (United States)

    Shofty, B; Neuberger, A; Naffaa, M E; Binawi, T; Babitch, T; Rappaport, Z H; Zaaroor, M; Sviri, G; Paul, M

    2016-01-01

    Gram-negative post-operative meningitis due to carbapenem-resistant bacteria (CR-GNPOM) is a dire complication of neurosurgical procedures. We performed a nested propensity-matched historical cohort study aimed at examining the possible benefit of intrathecal or intraventricular (IT/IV) antibiotic treatment for CR-GNPOM. We included consecutive adults with GNPOM in two centres between 2005 and 2014. Patients receiving combined systemic and IT/IV treatment were matched to patients receiving systemic treatment only. Matching was done based on the propensity of the patients to receive IT/IV treatment. We compared patient groups with 30-day mortality defined as the primary outcome. The cohort included 95 patients with GNPOM. Of them, 37 received IT/IV therapy in addition to systemic treatment (22 with colistin and 15 with amikacin), mostly as initial therapy, through indwelling cerebrospinal fluid drains. Variables associated with IT/IV therapy in the propensity score included no previous neurosurgery, time from admission to meningitis, presence of a urinary catheter and GNPOM caused by carbapenem-resistant Gram-negative bacteria. Following propensity matching, 23 patients given IT/IV therapy and 27 controls were analysed. Mortality was significantly lower with IT/IV therapy: 2/23 (8.7%) versus 9/27 (33.3%), propensity-adjusted OR 0.19, 95% CI 0.04-0.99. Death or neurological deterioration at 30 days, 14-day and in-hospital mortality were lower with IT/IV therapy (OR <0.4 for all) without statistically significant differences. Among patients discharged alive, those receiving IT/IV therapy did not experience more neurological deterioration. Serious adverse events with IT/IV therapy were not documented. Our results support the early use of IT antibiotic treatment for CR-GNPOM when a delivery method is available. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  17. High Prevalence of Antimicrobial-resistant Gram-negative Colonization in Hospitalized Cambodian Infants.

    Science.gov (United States)

    Turner, Paul; Pol, Sreymom; Soeng, Sona; Sar, Poda; Neou, Leakhena; Chea, Phal; Day, Nicholas Pj; Cooper, Ben S; Turner, Claudia

    2016-08-01

    Antimicrobial-resistant Gram-negative infections are a significant cause of mortality in young infants. We aimed to determine characteristics of, and risk factors for, colonization and invasive infection caused by 3rd generation cephalosporin (3GC) or carbapenem-resistant organisms in outborn infants admitted to a neonatal unit (NU) in Cambodia. During the first year of operation, patients admitted to the Angkor Hospital for Children NU, Siem Reap, Cambodia, underwent rectal swabbing on admission and twice weekly until discharge. Swabs were taken also from 7 environmental sites. Swabs were cultured to identify 3GC or carbapenem-resistant Acinetobacter sp., Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. The study included 333 infants with a median age at NU admission of 10 days (range, 0-43). Colonization by ≥1 3GC-resistant organism was detected in 85.9% (286/333). Admission swabs were collected in 289 infants: 61.9% were colonized by a 3GC-resistant organism at the time of admission, and a further 23.2% were colonized during hospitalization, at a median of 4 days [95% confidence interval: 3-5]. Probiotic treatment (hazard ratio: 0.58; 95% confidence interval: 0.35-0.98) was associated with delayed colonization. Colonization by a carbapenem-resistant organism occurred in 25 (7.5%) infants. Six infants had NU-associated K. pneumoniae bacteremia; phenotypically identical colonizing strains were found in 3 infants. Environmental colonization occurred early. Colonization by antimicrobial-resistant Gram-negative organisms occurred early in hospitalized Cambodian infants and was associated with subsequent invasive infection. Trials of potential interventions such as probiotics are needed.

  18. Epidemiology of meningitis with a negative CSF Gram stain: under-utilization of available diagnostic tests.

    Science.gov (United States)

    Nesher, L; Hadi, C M; Salazar, L; Wootton, S H; Garey, K W; Lasco, T; Luce, A M; Hasbun, R

    2016-01-01

    Meningitis with a negative cerebrospinal fluid Gram stain (CSF-GS) poses a diagnostic challenge as more than 50% of patients remain without an aetiology. The introduction of polymerase chain reaction (PCR) and arboviral serologies have increased diagnostic capabilities, yet large scale epidemiological studies evaluating their use in clinical practice are lacking. We conducted a prospective observational study in New Orleans between November 1999 and September 2008 (early era) when PCR was not widely available, and in Houston between November 2008 and June 2013 (modern era), when PCR was commonly used. Patients presenting with meningitis and negative CSF-GS were followed for 4 weeks. All investigations, PCR used, and results were recorded as they became available. In 323 patients enrolled, PCR provided the highest diagnostic yield (24·2%) but was ordered for 128 (39·6%) patients; followed by serology for arboviruses (15%) that was ordered for 100 (31%) of all patients. The yield of blood cultures was (10·3%) and that of CSF cultures was 4%; the yield for all other tests was meningitis and a negative CSF-GS, but both tests are being under-utilized.

  19. Disruption of the Gut Microbiome: Clostridium difficile Infection and the Threat of Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Priscilla A. Johanesen

    2015-12-01

    Full Text Available Clostridium difficile is well recognized as the leading cause of antibiotic-associated diarrhea, having a significant impact in both health-care and community settings. Central to predisposition to C. difficile infection is disruption of the gut microbiome by antibiotics. Being a Gram-positive anaerobe, C. difficile is intrinsically resistant to a number of antibiotics. Mobile elements encoding antibiotic resistance determinants have also been characterized in this pathogen. While resistance to antibiotics currently used to treat C. difficile infection has not yet been detected, it may be only a matter of time before this occurs, as has been seen with other bacterial pathogens. This review will discuss C. difficile disease pathogenesis, the impact of antibiotic use on inducing disease susceptibility, and the role of antibiotic resistance and mobile elements in C. difficile epidemiology.

  20. Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC

    Energy Technology Data Exchange (ETDEWEB)

    Lemaître, Nadine; Liang, Xiaofei; Najeeb, Javaria; Lee, Chul-Jin; Titecat, Marie; Leteurtre, Emmanuelle; Simonet, Michel; Toone, Eric J.; Zhou, Pei; Sebbane, Florent; Nacy, Carol A.

    2017-07-25

    ABSTRACT

    The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effectivein vitroagainst a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacteriumYersinia pestis. Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria.

    IMPORTANCEThe rapid spread of antimicrobial resistance among Gram-negative bacilli highlights the urgent need for new antibiotics. Here, we describe a new class of antibiotics lacking cross-resistance with conventional antibiotics. The compounds inhibit LpxC, a key enzyme in the lipid A biosynthetic pathway in Gram-negative bacteria, and are activein vitroagainst a broad panel of clinical isolates of Gram-negative bacilli involved in nosocomial and community infections. The present study also constitutes the first demonstration of the curative treatment of bubonic plague by a novel, broad

  1. Antibiotic Resistance and the Biology of History.

    Science.gov (United States)

    Landecker, Hannah

    2016-12-01

    Beginning in the 1940s, mass production of antibiotics involved the industrial-scale growth of microorganisms to harvest their metabolic products. Unfortunately, the use of antibiotics selects for resistance at answering scale. The turn to the study of antibiotic resistance in microbiology and medicine is examined, focusing on the realization that individual therapies targeted at single pathogens in individual bodies are environmental events affecting bacterial evolution far beyond bodies. In turning to biological manifestations of antibiotic use, sciences fathom material outcomes of their own previous concepts. Archival work with stored soil and clinical samples produces a record described here as 'the biology of history': the physical registration of human history in bacterial life. This account thus foregrounds the importance of understanding both the materiality of history and the historicity of matter in theories and concepts of life today.

  2. Antibiotic resistance profiles and relatedness of enteric bacterial ...

    African Journals Online (AJOL)

    GREGO

    2007-04-16

    Apr 16, 2007 ... Antibiotic resistance profiles and the correlation of enteric bacterial pathogens from HIV positive indivi- duals with and ... from the various study cohorts showed multiple antibiotic resistance to penicillin, amoxicillin, ampicillin, erythromycin .... chose to work closely with support groups, NGOs and HIV care-.

  3. Transmission of antibiotic resistance from animals to humans

    NARCIS (Netherlands)

    Huijbers, P.M.C.

    2016-01-01

    Huijbers, P.M.C. (2016). Transmission of antibiotic resistance from animals to humans: Broilers as a reservoir of ESBL-producing bacteria. PhD thesis, Wageningen University, Wageningen, the Netherlands.

    Antibiotic resistance in animals becomes a public health issue when there is

  4. Antibiotic resistance plasmids in wastewater treatment plants and ...

    African Journals Online (AJOL)

    Antibiotic resistance plasmids found in wastewater treatment plants (WWTPs) may represent a threat to public health if they are readily disseminated into the environment and ultimately into pathogenic bacteria. The wastewater environments provide an ideal ecosystem for development and evolution of antibiotic resistance ...

  5. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7.

    Science.gov (United States)

    Chen, Songcan; Li, Xiaomin; Sun, Guoxin; Zhang, Yingjiao; Su, Jianqiang; Ye, Jun

    2015-09-29

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals on bacterial antibiotic resistance is largely unclear. To investigate this, the effects of heavy metals on antibiotic resistance were studied in a genome-sequenced bacterium, LSJC7. The results showed that the presence of arsenate, copper, and zinc were implicated in fortifying the resistance of LSJC7 towards tetracycline. The concentrations of heavy metals required to induce antibiotic resistance, i.e., the minimum heavy metal concentrations (MHCs), were far below (up to 64-fold) the minimum inhibition concentrations (MIC) of LSJC7. This finding indicates that the relatively low heavy metal levels in polluted environments and in treated humans and animals might be sufficient to induce bacterial antibiotic resistance. In addition, heavy metal induced antibiotic resistance was also observed for a combination of arsenate and chloramphenicol in LSJC7, and copper/zinc and tetracycline in antibiotic susceptible strain Escherichia coli DH5α. Overall, this study implies that heavy metal induced antibiotic resistance might be ubiquitous among various microbial species and suggests that it might play a role in the emergence and spread of antibiotic resistance in metal and antibiotic co-contaminated environments.

  6. Genomic and metagenomic analysis of antibiotic resistance in dairy animals

    Science.gov (United States)

    The extent to which carriage of antibiotic resistant bacteria in food animals is responsible for the burden of antibiotic resistance in human infections is currently not well known. Thus, there is a need to further evaluate the genomic diversity of multidrug resistant (MDR) bacteria and the microbi...

  7. Fighting antibiotic resistance in the intensive care unit using antibiotics

    NARCIS (Netherlands)

    Plantinga, Nienke L.; Wittekamp, Bastiaan H J; Van Duijn, Pleun J.; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to

  8. Antibiotic resistance patterns and beta-lactamase identification in ...

    African Journals Online (AJOL)

    Background. Antibiotic resistance is a growing problem worldwide. Mechanisms of resistance vary, and some can confer resistance to multiple classes of antibiotics. Objective. To characterise the antibiotic resistance profiles of Escherichia coli isolates obtained from stool samples of young rural children exposed or ...

  9. Comparative Analysis Of Antibiotic Resistance And R-Plasmids Of ...

    African Journals Online (AJOL)

    Bacterial resistance to antibiotics constitutes a major cause of failure in the treatment of bacterial infections. The genetic exchange of plasmids containing antibiotic resistant determinants between bacteria is believed to play a critical role in the evolution of antibiotics resistant bacteria and this has been shown in S. aureus.

  10. False-negative rate of gram-stain microscopy for diagnosis of septic arthritis: suggestions for improvement.

    Science.gov (United States)

    Stirling, Paul; Faroug, Radwane; Amanat, Suheil; Ahmed, Abdulkhaled; Armstrong, Malcolm; Sharma, Pankaj; Qamruddin, Ahmed

    2014-01-01

    We quantify the false-negative diagnostic rate of septic arthritis using Gram-stain microscopy of synovial fluid and compare this to values reported in the peer-reviewed literature. We propose a method of improving the diagnostic value of Gram-stain microscopy using Lithium Heparin containers that prevent synovial fluid coagulation. Retrospective study of the Manchester Royal Infirmary microbiology database of patients undergoing synovial fluid Gram-stain and culture between December 2003 and March 2012 was undertaken. The initial cohort of 1896 synovial fluid analyses for suspected septic arthritis was reduced to 143 after exclusion criteria were applied. Analysis of our Gram-stain microscopy yielded 111 false-negative results from a cohort size of 143 positive synovial fluid cultures, giving a false-negative rate of 78%. We report a false-negative rate of Gram-stain microscopy for septic arthritis of 78%. Clinicians should therefore avoid the investigation until a statistically significant data set confirms its efficacy. The investigation's value could be improved by using Lithium Heparin containers to collect homogenous synovial fluid samples. Ongoing research aims to establish how much this could reduce the false-negative rate.

  11. Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC

    Directory of Open Access Journals (Sweden)

    Nadine Lemaître

    2017-07-01

    Full Text Available The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effective in vitro against a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacterium Yersinia pestis. Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria.

  12. False-Negative Rate of Gram-Stain Microscopy for Diagnosis of Septic Arthritis: Suggestions for Improvement

    Directory of Open Access Journals (Sweden)

    Paul Stirling

    2014-01-01

    Full Text Available We quantify the false-negative diagnostic rate of septic arthritis using Gram-stain microscopy of synovial fluid and compare this to values reported in the peer-reviewed literature. We propose a method of improving the diagnostic value of Gram-stain microscopy using Lithium Heparin containers that prevent synovial fluid coagulation. Retrospective study of the Manchester Royal Infirmary microbiology database of patients undergoing synovial fluid Gram-stain and culture between December 2003 and March 2012 was undertaken. The initial cohort of 1896 synovial fluid analyses for suspected septic arthritis was reduced to 143 after exclusion criteria were applied. Analysis of our Gram-stain microscopy yielded 111 false-negative results from a cohort size of 143 positive synovial fluid cultures, giving a false-negative rate of 78%. We report a false-negative rate of Gram-stain microscopy for septic arthritis of 78%. Clinicians should therefore avoid the investigation until a statistically significant data set confirms its efficacy. The investigation's value could be improved by using Lithium Heparin containers to collect homogenous synovial fluid samples. Ongoing research aims to establish how much this could reduce the false-negative rate.

  13. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Divakara S S M Uppu

    Full Text Available Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells. The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections.

  14. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria.

    Science.gov (United States)

    Uppu, Divakara S S M; Konai, Mohini M; Sarkar, Paramita; Samaddar, Sandip; Fensterseifer, Isabel C M; Farias-Junior, Celio; Krishnamoorthy, Paramanandam; Shome, Bibek R; Franco, Octávio L; Haldar, Jayanta

    2017-01-01

    Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin) to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells). The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC) clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS) of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms) and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections.

  15. Serum procalcitonin elevation in critically ill patients at the onset of bacteremia caused by either Gram negative or Gram positive bacteria.

    Science.gov (United States)

    Charles, Pierre Emmanuel; Ladoire, Sylvain; Aho, Serge; Quenot, Jean-Pierre; Doise, Jean-Marc; Prin, Sébastien; Olsson, Niels-Olivier; Blettery, Bernard

    2008-03-26

    In the ICU, bacteremia is a life-threatening infection whose prognosis is highly dependent on early recognition and treatment with appropriate antibiotics. Procalcitonin levels have been shown to distinguish between bacteremia and noninfectious inflammatory states accurately and quickly in critically ill patients. However, we still do not know to what extent the magnitude of PCT elevation at the onset of bacteremia varies according to the Gram stain result. Review of the medical records of every patient treated between May, 2004 and December, 2006 who had bacteremia caused by either Gram positive (GP) or Gram negative (GN) bacteria, and whose PCT dosage at the onset of infection was available. 97 episodes of either GN bacteremia (n = 52) or GP bacteremia (n = 45) were included. Procalcitonin levels were found to be markedly higher in patients with GN bacteremia than in those with GP bacteremia, whereas the SOFA score value in the two groups was similar. Moreover, in the study population, a high PCT value was found to be independently associated with GN bacteremia. A PCT level of 16.0 ng/mL yielded an 83.0% positive predictive value and a 74.0% negative predictive value for GN-related bacteremia in the study cohort (AUROCC = 0.79; 95% CI, 0.71-0.88). In a critically ill patient with clinical sepsis, GN bacteremia could be associated with higher PCT values than those found in GP bacteremia, regardless of the severity of the disease.

  16. CXC Chemokines Exhibit Bactericidal Activity against Multidrug-Resistant Gram-Negative Pathogens

    Directory of Open Access Journals (Sweden)

    Matthew A. Crawford

    2017-11-01

    Full Text Available The continued rise and spread of antimicrobial resistance among bacterial pathogens pose a serious challenge to global health. Countering antimicrobial-resistant pathogens requires a multifaceted effort that includes the discovery of novel therapeutic approaches. Here, we establish the capacity of the human CXC chemokines CXCL9 and CXCL10 to kill multidrug-resistant Gram-negative bacteria, including New Delhi metallo-beta-lactamase-1-producing Klebsiella pneumoniae and colistin-resistant members of the family Enterobacteriaceae that harbor the mobile colistin resistance protein MCR-1 and thus possess phosphoethanolamine-modified lipid A. Colistin-resistant K. pneumoniae isolates affected by genetic mutation of the PmrA/PmrB two-component system, a chromosomally encoded regulator of lipopolysaccharide modification, and containing 4-amino-4-deoxy-l-arabinose-modified lipid A were also found to be susceptible to chemokine-mediated antimicrobial activity. However, loss of PhoP/PhoQ autoregulatory control, caused by disruption of the gene encoding the negative regulator MgrB, limited the bactericidal effects of CXCL9 and CXCL10 in a variable, strain-specific manner. Cumulatively, these findings provide mechanistic insight into chemokine-mediated antimicrobial activity, highlight disparities amongst determinants of colistin resistance, and suggest that chemokine-mediated bactericidal effects merit additional investigation as a therapeutic avenue for treating infections caused by multidrug-resistant pathogens.

  17. Evaluation of pyrrolidonyl arylamidase for the identification of nonfermenting Gram-negative rods.

    Science.gov (United States)

    Bombicino, Karina A; Almuzara, Marisa N; Famiglietti, Angela M R; Vay, Carlos

    2007-01-01

    To evaluate the activity of pyrrolidonyl arylamidase (PYR) for the differentiation and identification of nonfermenting gram negative rods (NFGNR), 293 isolates were tested. A 24 h culture of each test organism was prepared. From this a 108-109 cfu/mL suspension was added to 0.25 mL of sterile physiologic solution. A PYR disk was then added and the test was incubated for 30 minutes at 35-37 degrees C, at environmental atmosphere. Reading was done by adding 1 drop of cinnamaldehyde reagent. Strains of Acinetobacter baumannii, Acinetobacter haemolyticus, Alcaligenes faecalis, Bergeyella zoohelcum, Bordetella bronchiseptica, Bordetella hinzii, Brevundimonas diminuta, Brevundimonas vesicularis, Brucella ovis, Brucella spp., Brucella suis, Burkholderia cepacia complex, Moraxella catarrhalis, Moraxella lacunata, Moraxella nonliquefaciens, Moraxella osloensis, Oligella ureolytica, Pseudomonas alcaligenes, Pseudomonas mendocina, Pseudomonas pseudoalcaligenes, Pseudomonas putida, Pseudomonas stutzeri, Pseudomonas Vb3, Psychrobacter phenylpyruvicus, and Stenotrophomonas maltophilia were PYR negative. On the other hand Achromobacter piechaudii, Achromobacter denitrificans, Achromobacter xylosoxidans, Burkholderia gladioli, Chryseobacterium gleum-indologenes, Comamonas testosroni, Cupriavidus pauculus, Delftia acidovorans, Elizabethkingia meningoseptica, Myroides spp., Ochrobactrum anthropi, Pseudomonas oryzihabitans, Ralstonia pickettii, Rhizobium radiobacter, Shewanella spp., Sphingobacterium multivorum, Sphingobacterium spiritivorum, and Weeksella virosa were PYR positive. Finally, Acinetobacter lwoffii, Pseudomonas aeruginosa, Pseudomonas fluorescens, Roseomonas spp., and Sphingomonas paucimobilis-parapaucimobilis were PYR variable. PYR testing should be considered as a useful tool to facilitate the identification of NFGNR.

  18. Combating antibiotic resistance, mitigating future threats and ongoing initiatives.

    Science.gov (United States)

    Velez, Roseann; Sloand, Elizabeth

    2016-07-01

    To emphasise the impact of antibiotic resistance as a persistent, global health threat and highlight efforts to improve this complex problem. Political agendas, legislation, development of therapies and educational initiatives are essential to mitigate the increasing rate of antibiotic resistance. Original manuscript. Prescribers, policymakers and researchers are charged with the complex task of mitigating antibiotic resistance in an era when new treatments for bacterial infections are limited. Monitoring, surveillance and incentivising of practice, policy and new treatments provide solutions to antibiotic resistance in both the human and agricultural sectors. This article emphasises the complexity of antibiotic resistance and highlights the need for a multifaceted approach to improve health care outcomes. © 2016 John Wiley & Sons Ltd.

  19. Emergence and dissemination of antibiotic resistance: A global problem

    Directory of Open Access Journals (Sweden)

    R Choudhury

    2012-01-01

    Full Text Available Antibiotic resistance is a major problem in clinical health settings. Interestingly the origin of many of antibiotic resistance mechanisms can be traced back to non-pathogenic environmental organisms. Important factors leading to the emergence and spread of antibiotic resistance include absence of regulation in the use of antibiotics, improper waste disposal and associated transmission of antibiotic resistance genes in the community through commensals. In this review, we discussed the impact of globalisation on the transmission of antibiotic resistance genes in bacteria through immigration and export/import of foodstuff. The significance of surveillance to define appropriate use of antibiotics in the clinic has been included as an important preventive measure.

  20. Myeloid cell sirtuin-1 expression does not alter host immune responses to Gram-negative endotoxemia or Gram-positive bacterial infection.

    Directory of Open Access Journals (Sweden)

    Laura E Crotty Alexander

    Full Text Available The role of sirtuin-1 (SIRT1 in innate immunity, and in particular the influence of SIRT1 on antimicrobial defense against infection, has yet to be reported but is important to define since SIRT1 inhibitors are being investigated as therapeutic agents in the treatment of cancer, Huntington's disease, and autoimmune diseases. Given the therapeutic potential of SIRT1 suppression, we sought to characterize the role of SIRT1 in host defense. Utilizing both pharmacologic methods and a genetic knockout, we demonstrate that SIRT1 expression has little influence on macrophage and neutrophil antimicrobial functions. Myeloid SIRT1 expression does not change mortality in gram-negative toxin-induced shock or gram-positive bacteremia, suggesting that therapeutic suppression of SIRT1 may be done safely without suppression of myeloid cell-specific immune responses to severe bacterial infections.

  1. [State-of-the-art status on airborne antibiotic resistant bacteria and antibiotic resistance genes].

    Science.gov (United States)

    Li, J; Yao, M S

    2018-04-06

    The world is facing more deaths due to increasing antibiotic-resistant bacterial infections and the shortage of new highly effective antibiotics, however the air media as its important transmission route has not been adequately studied. Based on the latest literature acquired in this work, we have discussed the state-of-the-art research progress of the concentration, distribution and spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in different environmental air media, and also analyzed some future prevention and control measures. The large use of antibiotics in the medical settings and animal husbandry places has resulted in higher abundances of ARB and ARGs in the relevant and surrounding atmosphere than in urban and general indoor air environments. ARGs can be spread by adhering to airborne particles, and researchers have also found that air media contain more abundant ARGs than other environmental media such as soil, water and sediment. It was suggested in this review that strengthening the monitoring, study on spreading factors and biological toxicity, and also research and development on pathogen accurate diagnosis and new green antibiotic are expected to help effectively monitor, prevent and control of the impacts of airborne resistant bacteria and resistance genes on both human and ecologies.

  2. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study

    International Nuclear Information System (INIS)

    Abbaszadegan, A.; Ghahramani, Y.; Nabavizadeh, M.; Gholami, A.; Hemmateenejad, I.; Dorostkar, S.; Sharghi, H.

    2014-01-01

    The bactericidal efficiency of various positively and negatively charged silver nanoparticles has been extensively evaluated in literature, but there is no report on efficacy of neutrally charged silver nanoparticles. The goal of this study is to evaluate the role of electrical charge at the surface of silver nanoparticles on antibacterial activity against a panel of microorganisms. Three different silver nanoparticles were synthesized by different methods, providing three different electrical surface charges (positive, neutral, and negative). The antibacterial activity of these nanoparticles was tested against gram-positive (i.e., Staphylococcus aureus, Streptococcus mutans, and Streptococcus pyogenes) and gram-negative (i.e., Escherichia coli and Proteus vulgaris) bacteria. Well diffusion and micro-dilution tests were used to evaluate the bactericidal activity of the nanoparticles. According to the obtained results, the positively-charged silver nanoparticles showed the highest bactericidal activity against all microorganisms tested. The negatively charged silver nanoparticles had the least and the neutral nanoparticles had intermediate antibacterial activity. The most resistant bacteria were Proteus vulgaris. We found that the surface charge of the silver nanoparticles was a significant factor affecting bactericidal activity on these surfaces. Although the positively charged nanoparticles showed the highest level of effectiveness against the organisms tested, the neutrally charged particles were also potent against most bacterial species.

  3. Changes in bacterial epidemiology and antibiotic resistance among veterans with spinal cord injury/disorder over the past 9 years.

    Science.gov (United States)

    Fitzpatrick, Margaret A; Suda, Katie J; Safdar, Nasia; Burns, Stephen P; Jones, Makoto M; Poggensee, Linda; Ramanathan, Swetha; Evans, Charlesnika T

    2018-03-01

    Patients with spinal cord injury and disorder (SCI/D) have an increased risk of infection with multidrug-resistant (MDR) bacteria. We described bacterial epidemiology and resistance in patients with SCI/D at Veterans Affairs Medical Centers (VAMCs) for the past 9 years. Retrospective cohort. One hundred thirty VAMCs. Veterans with SCI/D and bacterial cultures with antibiotic susceptibility testing performed between 1/1/2005-12/31/2013. Single cultures with contaminants and duplicate isolates within 30 days of initial isolates were excluded. None. Trends in microbial epidemiology and antibiotic resistance. Included were 216,504 isolates from 19,421 patients. Urine was the most common source and Gram-negative bacteria (GNB) were isolated most often, with 36.1% of GNB being MDR. Logistic regression models clustered by patient and adjusted for location at an SCI/D center and geographic region showed increased odds over time of vancomycin resistance in Enterococcus [adjusted odds ratio (aOR) 1.67, 95% confidence interval (CI) 1.30-2.15], while methicillin resistance in Staphylococcus aureus remained unchanged (aOR 0.90, 95% CI 0.74-1.09). There were also increased odds of fluoroquinolone resistance (aOR 1.39, 95% CI 1.31-1.47) and multidrug resistance (aOR 1.46, 95% CI 1.38-1.55) in GNB, with variability in the odds of MDR bacteria by geographic region. GNB are isolated frequently in Veterans with SCI/D and have demonstrated increasing resistance over the past 9 years. Priority should be given to controlling the spread of resistant bacteria in this population. Knowledge of local and regional epidemiologic trends in antibiotic resistance in patients with SCI/D may improve appropriate antibiotic prescribing.

  4. Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Venturi Vittorio

    2009-09-01

    Full Text Available Abstract Background Burkholderia cenocepacia are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND efflux pumps in the genome of B. cenocepacia J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear. Results To investigate the contribution of efflux pumps to intrinsic drug resistance of B. cenocepacia J2315, we deleted 3 operons encoding the putative RND transporters RND-1, RND-3, and RND-4 containing the genes BCAS0591-BCAS0593, BCAL1674-BCAL1676, and BCAL2822-BCAL2820. Each deletion included the genes encoding the RND transporter itself and those encoding predicted periplasmic proteins and outer membrane pores. In addition, the deletion of rnd-3 also included BCAL1672, encoding a putative TetR regulator. The B. cenocepacia rnd-3 and rnd-4 mutants demonstrated increased sensitivity to inhibitory compounds, suggesting an involvement of these proteins in drug resistance. Moreover, the rnd-3 and rnd-4 mutants demonstrated reduced accumulation of N-acyl homoserine lactones in the growth medium. In contrast, deletion of the rnd-1 operon had no detectable phenotypes under the conditions assayed. Conclusion Two of the three inactivated RND efflux pumps in B. cenocepacia J2315 contribute to the high level of intrinsic resistance of this strain to some antibiotics and other inhibitory compounds. Furthermore, these efflux systems also mediate accumulation in the growth medium of quorum sensing molecules that have been shown to contribute to infection. A systematic study of RND efflux systems in B. cenocepacia is required to provide a full picture of intrinsic antibiotic resistance in this opportunistic

  5. Rz/Rz1 lysis gene equivalents in phages of Gram-negative hosts.

    Science.gov (United States)

    Summer, Elizabeth J; Berry, Joel; Tran, Tram Anh T; Niu, Lili; Struck, Douglas K; Young, Ry

    2007-11-09

    Under usual laboratory conditions, lysis by bacteriophage lambda requires only the holin and endolysin genes, but not the Rz and Rz1 genes, of the lysis cassette. Defects in Rz or Rz1 block lysis only in the presence of high concentrations of divalent cations. The lambda Rz and Rz1 lysis genes are remarkable in that Rz1, encoding an outer membrane lipoprotein, is completely embedded in the +1 register within Rz, which itself encodes an integral inner membrane protein. While Rz and Rz1 equivalents have been identified in T7 and P2, most phages, including such well-studied classic phages as T4, P1, T1, Mu and SP6, lack annotated Rz/Rz1 equivalents. Here we report that a search strategy based primarily on gene arrangement and membrane localization signals rather than sequence similarity has revealed that Rz/Rz1 equivalents are nearly ubiquitous among phages of Gram-negative hosts, with 120 of 137 phages possessing genes that fit the search criteria. In the case of T4, a deletion of a non-overlapping gene pair pseT.2 and pseT.3 identified as Rz/Rz1 equivalents resulted in the same divalent cation-dependent lysis phenotype. Remarkably, in T1 and six other phages, Rz/Rz1 pairs were not found but a single gene encoding an outer membrane lipoprotein with a C-terminal transmembrane domain capable of integration into the inner membrane was identified. These proteins were named "spanins," since their protein products are predicted to span the periplasm providing a physical connection between the inner and outer membranes. The T1 spanin gene was shown to complement the lambda Rz-Rz1- lysis defect, indicating that spanins function as Rz/Rz1 equivalents. The widespread presence of Rz/Rz1 or their spanin equivalents in phages of Gram-negative hosts suggests a strong selective advantage and that their role in the ecology of these phages is greater than that inferred from the mild laboratory phenotype.

  6. Clinical impact of delayed catheter removal for patients with central-venous-catheter-related Gram-negative bacteraemia.

    Science.gov (United States)

    Lee, Y-M; Moon, C; Kim, Y J; Lee, H J; Lee, M S; Park, K-H

    2018-01-10

    Gram-negative bacteria are increasingly the cause of catheter-related bloodstream infection (CRBSI), and the prevalence of multi-drug-resistant strains is rising rapidly. This study evaluated the impact of delayed central venous catheter (CVC) removal on clinical outcomes in patients with Gram-negative CRBSI. Between January 2007 and December 2016, patients with Gram-negative bacteraemia and CVC placement, from two tertiary care hospitals, were included retrospectively. Cases with CVC removal more than three days after onset of bacteraemia or without CVC removal were classified as having delayed CVC removal. In total, 112 patients were included. Of these, 78 had CRBSI (43 definite and 35 probable) and 34 had Gram-negative bacteraemia from another source (non-CRBSI). Enterobacteriaceae were less common pathogens in patients with CRBSI than in patients with non-CRBSI (11.5% vs 41.3%; P0.99). Delayed CVC removal [odds ratio (OR) 6.8], multi-drug-resistant (MDR) Gram-negative bacteraemia (OR 6.3) and chronic renal failure (OR 11.1) were associated with 30-day mortality in patients with CRBSI. The protective effect of early CVC removal on mortality was evident in the MDR group (48.3% vs 18.2%; P=0.03), but not in the non-MDR group (11.1% vs 0%; P=0.43). CVCs should be removed early to improve clinical outcomes in patients with Gram-negative CRBSI, especially in settings where MDR isolates are prevalent. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  7. Risk factors for carbapenem resistant bacteraemia and mortality due to gram negative bacteraemia in a developing country

    International Nuclear Information System (INIS)

    Kalam, K.; Kumar, S.; Ali, S.; Baqi, S.; Qamar, F.

    2014-01-01

    Objective: To identify the risk factors for carbapenem resistant bacteraemia and mortality due to gram negative bacteraemia in a developing country. Methods: A prospective cohort study was conducted at the Sindh Institute of Urology and Transplantation (SIUT) from June to October 2012. Hospitalized patients > 15 years of age with gram negative bacteraemia were included and followed for a period of 2 weeks for in hospital mortality. Data was collected and analyzed for 243 subjects. Multivariate analysis was used to determine the risk factors for carbapenem resistant bacteraemia and mortality due to gram negative bacteraemia. Crude and adjusted odds ratio and 95% CI are reported. Results: A total of 729 out of 1535 (47.5%) cultures were positive for gram negative isolates. Out of 243 subjects, 117 (48%) had an MDR isolate. Having an MDR isolate on culture (AOR, 2.33; 95% CI, 1.35 -4.0), having multiple positive cultures (AOR, 1.8; 95% CI, 0.94 -3.4) and stay in ICU >48 hours (AOR, 2.0 ; 95% CI, 1.12 -3.78) were identified as significant risk factors for mortality due to gram negative organisms. Risk factors for carbapenem resistant bacteraemia were age >50 years (AOR, 1.83; 95% CI, 1.0-3.5), septic shock on presentation (AOR 2.53; 95% CI, 1.03 -6.2) , ICU stay of >72 hours (AOR 2.40; 95% CI, 1.14-5.0) and receiving immunosuppressant medications (AOR 2.23; 95% CI, 0.74 - 6.7). Conclusion: There is a high burden of MDR and carbapenem resistant gram negative bacteraemia, with a high mortality rate. (author)

  8. In Vitro Activity of Cefepime against Multidrug-Resistant Gram-Negative Bacilli, Viridans Group Streptococci and Streptococcus pneumoniae from a Cross-Canada Surveillance Study

    Directory of Open Access Journals (Sweden)

    Donald E Low

    1999-01-01

    Full Text Available OBJECTIVE: To determine the in vitro activity of cefepime against multidrug-resistant Gram-negative bacilli and Gram-positive cocci obtained from an ongoing cross-Canada surveillance study.

  9. Cloning, expression, crystallization and preliminary X-ray analysis of a putative multiple antibiotic resistance repressor protein (MarR) from Xanthomonas campestris

    International Nuclear Information System (INIS)

    Tu, Zhi-Le; Li, Juo-Ning; Chin, Ko-Hsin; Chou, Chia-Cheng; Lee, Cheng-Chung; Shr, Hui-Lin; Lyu, Ping-Chiang; Gao, Fei Philip; Wang, Andrew H.-J.; Chou, Shan-Ho

    2005-01-01

    A putative repressor for the multiple antibiotic resistance operon from a plant pathogen X. campestris pv. campestris has been overexpressed in E. coli, purified and crystallized. The crystals diffracted to 2.3 Å with good quality. The multiple antibiotic resistance operon (marRAB) is a member of the multidrug-resistance system. When induced, this operon enhances resistance of bacteria to a variety of medically important antibiotics, causing a serious global health problem. MarR is a marR-encoded protein that represses the transcription of the marRAB operon. Through binding with salicylate and certain antibiotics, however, MarR can derepress and activate the marRAB operon. In this report, the cloning, expression, crystallization and preliminary X-ray analysis of XC1739, a putative MarR repressor protein present in the Xanthomonas campestris pv. campestris, a Gram-negative bacterium causing major worldwide disease of cruciferous crops, are described. The XC1739 crystals diffracted to a resolution of at least 1.8 Å. They are orthorhombic and belong to space group P2 1 2 1 2 1 , with unit-cell parameters a = 39.5, b = 54.2 and c = 139.5 Å, respectively. They contain two molecules in the asymmetric unit from calculation of the self-rotation function

  10. Biofilms Formed by Gram-Negative Bacteria Undergo Increased Lipid A Palmitoylation, Enhancing In Vivo Survival

    Science.gov (United States)

    Chalabaev, Sabina; Chauhan, Ashwini; Novikov, Alexey; Iyer, Pavithra; Szczesny, Magdalena; Beloin, Christophe; Caroff, Martine

    2014-01-01

    ABSTRACT Bacterial biofilm communities are associated with profound physiological changes that lead to novel properties compared to the properties of individual (planktonic) bacteria. The study of biofilm-associated phenotypes is an essential step toward control of deleterious effects of pathogenic biofilms. Here we investigated lipopolysaccharide (LPS) structural modifications in Escherichia coli biofilm bacteria, and we showed that all tested commensal and pathogenic E. coli biofilm bacteria display LPS modifications corresponding to an increased level of incorporation of palmitate acyl chain (palmitoylation) into lipid A compared to planktonic bacteria. Genetic analysis showed that lipid A palmitoylation in biofilms is mediated by the PagP enzyme, which is regulated by the histone-like protein repressor H-NS and the SlyA regulator. While lipid A palmitoylation does not influence bacterial adhesion, it weakens inflammatory response and enhances resistance to some antimicrobial peptides. Moreover, we showed that lipid A palmitoylation increases in vivo survival of biofilm bacteria in a clinically relevant model of catheter infection, potentially contributing to biofilm tolerance to host immune defenses. The widespread occurrence of increased lipid A palmitoylation in biofilms formed by all tested bacteria suggests that it constitutes a new biofilm-associated phenotype in Gram-negative bacteria. PMID:25139899

  11. Infection-related hemolysis and susceptibility to Gram-negative bacterial co-infection

    Directory of Open Access Journals (Sweden)

    Katharine eOrf

    2015-06-01

    Full Text Available Increased susceptibility to co-infection with enteric Gram-negative bacteria, particularly non-typhoidal Salmonella, is reported in malaria and Oroya fever (Bartonella bacilliformis infection, and can lead to increased mortality. Accumulating epidemiological evidence indicates a causal association with risk of bacterial co-infection, rather than just co-incidence of common risk factors. Both malaria and Oroya fever are characterised by hemolysis, and observations in humans and animal models suggest that hemolysis causes the susceptibility to bacterial co-infection. Evidence from animal models implicates hemolysis in the impairment of a variety of host defence mechanisms, including macrophage dysfunction, neutrophil dysfunction and impairment of adaptive immune responses. One mechanism supported by evidence from animal models and human data, is the induction of heme oxygenase-1 in bone marrow, which impairs the ability of developing neutrophils to mount a competent oxidative burst. As a result, dysfunctional neutrophils become a new niche for replication of intracellular bacteria. Here we critically appraise and summarize the key evidence for mechanisms which may contribute to these very specific combinations of co-infections, and propose interventions to ameliorate this risk.

  12. Altered glucose kinetics in diabetic rats during Gram-negative infection

    International Nuclear Information System (INIS)

    Lang, C.H.; Dobrescu, C.; Bagby, G.J.; Spitzer, J.J.

    1987-01-01

    The present study examined the purported exacerbating effect of sepsis on glucose metabolism in diabetes. Diabetes was induced in rats by an intravenous injection of 70 or 45 mg/kg streptozotocin. The higher dose produced severe diabetes, whereas the lower dose of streptozotocin produced a miler, latent diabetes. After a chronic diabetic state had developed for 4 wk, rats had catheters implanted and sepsis induced by intraperitoneal injections of live Escherichia coli. After 24 h of sepsis the blood glucose concentration was unchanged in nondiabetics and latent diabetics, but glucose decreased from 15 to 8 mM in the septic severe diabetic group. This decrease in blood glucose was not accompanied by alterations in the plasma insulin concentration. Glucose turnover, assessed by the constant intravenous infusion of [6- 3 H]- and [U- 14 C]glucose, was elevated in the severe diabetic group, compared with either latent diabetics or nondiabetics. Sepsis increased the rate of glucose disappearance in nondiabetic rats but had no effect in either group of diabetic animals. Sepsis also failed to alter the insulinogenic index, used to estimate the insulin secretory capacity, in diabetic rats. Thus the present study suggests that the imposition of nonlethal Gram-negative sepsis on severe diabetic animals does not further impair glucose homeostasis and that the milder latent diabetes was not converted to a more severe diabetic state by the septic challenge

  13. Interleukin 10 overexpression alters survival in the setting of gram-negative pneumonia following lung contusion.

    Science.gov (United States)

    Dolgachev, Vladislav A; Yu, Bi; Sun, Lei; Shanley, Thomas P; Raghavendran, Krishnan; Hemmila, Mark R

    2014-04-01

    Lung contusion injury produces a vulnerable window within the inflammatory defenses of the lung that predisposes the patient to pneumonia. Interleukin 10 (IL-10) is a known anti-inflammatory mediator produced by macrophages and capable of downregulating acute lung inflammation. We investigated the impact of increased levels of IL-10 within the lung on survival and the host response to trauma in the setting of lung contusion (LC) and gram-negative pneumonia. A bitransgenic, tetracycline-inducible, lung-specific human IL-10 overexpression (IL-10 OE) mouse model and single transgenic (TG-) control mice were used. Mice underwent LC injury or sham injury (sham) at time -6 h. At time 0, animals were inoculated intratracheally with 500 colony-forming units of Klebsiella pneumoniae (pneu). Bronchoalveolar lavage fluid, lung tissue specimens, or purified macrophages were collected. Lung tissue and blood bacteria levels were quantified. Cytokine levels were assayed by enzyme-linked immunosorbent assay, and gene expression levels were evaluated by real-time polymerase chain reaction. Cell-type identification and quantification were done using real-time polymerase chain reaction and flow cytometry. Interleukin 10 OE mice demonstrated decreased 5-day survival compared with TG- mice following LC + pneu (0 vs. 30%, P pneu animals (P < 0.05). Lung-specific IL-10 overexpression induces alternative activation of alveolar macrophages. This shift in macrophage phenotype decreases intracellular bacterial killing, resulting in a more pronounced bacteremia and accelerated mortality in a model of LC and pneumonia.

  14. IL-10 Overexpression Alters Survival in the Setting of Gram Negative Pneumonia Following Lung Contusion

    Science.gov (United States)

    Dolgachev, Vladislav A.; Yu, Bi; Sun, Lei; Shanley, Thomas P.; Raghavendran, Krishnan; Hemmila, Mark R.

    2014-01-01

    Objective Lung contusion injury produces a vulnerable window within the inflammatory defenses of the lung that predisposes the patient to pneumonia. IL-10 is a known anti-inflammatory mediator produced by macrophages and capable of down-regulating acute lung inflammation. We investigated the impact of increased levels of IL-10 within the lung on survival and the host response to trauma in the setting of lung contusion and Gram-negative pneumonia. Design A bi-transgenic, tetracycline inducible, lung specific human IL-10 overexpression (IL-10 OE) mouse model and single transgenic (TG-) control mice were used. Mice underwent lung contusion injury (LC) or sham injury (Sham) at time -6 hrs. At time 0 animals were inoculated intratracheally with 500 CFU of Klebsiella pneumoniae (Pneu). Bronchoalveolar lavage fluid (BAL), lung tissue specimens, or purified macrophages were collected. Lung tissue and blood bacteria levels were quantified. Cytokine levels were assayed by ELISA and gene expression levels were evaluated by real time PCR. Cell type identification and quantification was done using real time PCR and flow cytometry. Main Results IL-10 OE mice demonstrated decreased 5 day survival compared to TG-mice following LC+Pneu (0 vs. 30%, pPneu animals (p<0.05). Conclusions Lung specific IL-10 over expression induces alternative activation of alveolar macrophages. This shift in macrophage phenotype decreases intracellular bacterial killing, resulting in a more pronounced bacteremia and accelerated mortality in a model of lung contusion and pneumonia. PMID:24430542

  15. Membrane permeabilization of colistin toward pan-drug resistant Gram-negative isolates.

    Science.gov (United States)

    Mohamed, Yasmine Fathy; Abou-Shleib, Hamida Moustafa; Khalil, Amal Mohamed; El-Guink, Nadia Mohamed; El-Nakeeb, Moustafa Ahmed

    2016-01-01

    Pan-drug resistant Gram-negative bacteria, being resistant to most available antibiotics, represent a huge threat to the medical community. Colistin is considered the last therapeutic option for patients in hospital settings. Thus, we were concerned in this study to demonstrate the membrane permeabilizing activity of colistin focusing on investigating its efficiency toward those pan-drug resistant isolates which represent a critical situation. We determined the killing dynamics of colistin against pan-drug resistant isolates. The permeability alteration was confirmed by different techniques as: leakage, electron microscopy and construction of an artificial membrane model; liposomes. Moreover, selectivity of colistin against microbial cells was also elucidated. Colistin was proved to be rapid bactericidal against pan-drug resistant isolates. It interacts with the outer bacterial membrane leading to deformation of its outline, pore formation, leakage of internal contents, cell lysis and finally death. Furthermore, variations in membrane composition of eukaryotic and microbial cells provide a key for colistin selectivity toward bacterial cells. Colistin selectively alters membrane permeability of pan-drug resistant isolates which leads to cell lysis. Colistin was proved to be an efficient last line treatment for pan-drug resistant infections which are hard to treat. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  16. Small-Molecule Inhibitors of Gram-Negative Lipoprotein Trafficking Discovered by Phenotypic Screening

    Science.gov (United States)

    Fleming, Paul R.; MacCormack, Kathleen; McLaughlin, Robert E.; Whiteaker, James D.; Narita, Shin-ichiro; Mori, Makiko; Tokuda, Hajime; Miller, Alita A.

    2015-01-01

    In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy. PMID:25583975

  17. Exploiting Quorum Sensing Interfering Strategies in Gram-Negative Bacteria for the Enhancement of Environmental Applications.

    Science.gov (United States)

    Zhang, Weiwei; Li, Chenghua

    2015-01-01

    Quorum sensing (QS) is a widespread intercellular form of communication to coordinate physiological processes and cooperative activities of bacteria at the population level, and it depends on the production, secretion, and detection of small diffusible autoinducers, such as acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2. In this review, the function of QS autoinducers of gram-negative bacteria in different aspects of wastewater treatment systems is examined. Based on research primarily performed over the past 10 years, QS involvement in the formation of biofilm and aerobic granules and changes of the microbial community and degradation/transformation pathways is discussed. In particular, the QS pathway in the role of bacterial infections and disease prevention in aquaculture is addressed. Interference of QS autoinducer-regulated pathways is considered potential treatment for a variety of environmentally related problems. This review is expected to serve as a stepping stone for further study and development strategies based on the mediation of QS-regulated pathways to enhance applications in both wastewater treatment systems and aquaculture.

  18. Toll-like receptor 4 decoy, TOY, attenuates gram-negative bacterial sepsis.

    Directory of Open Access Journals (Sweden)

    Keehoon Jung

    Full Text Available Lipopolysaccharide (LPS, the Gram-negative bacterial outer membrane glycolipid, induces sepsis through its interaction with myeloid differentiation protein-2 (MD-2 and Toll-like receptor 4 (TLR4. To block interaction between LPS/MD-2 complex and TLR4, we designed and generated soluble fusion proteins capable of binding MD-2, dubbed TLR4 decoy receptor (TOY using 'the Hybrid leucine-rich repeats (LRR technique'. TOY contains the MD-2 binding ectodomain of TLR4, the LRR motif of hagfish variable lymphocyte receptor (VLR, and the Fc domain of IgG1 to make it soluble, productive, and functional. TOY exhibited strong binding to MD-2, but not to the extracellular matrix (ECM, resulting in a favorable pharmacokinetic profile in vivo. TOY significantly extended the lifespan, when administered in either preventive or therapeutic manners, in both the LPS- and cecal ligation/puncture-induced sepsis models in mice. TOY markedly attenuated LPS-triggered NF-kappaB activation, secretion of proinflammatory cytokines, and thrombus formation in multiple organs. Taken together, the targeting strategy for sequestration of LPS/MD-2 complex using the decoy receptor TOY is effective in treating LPS- and bacteria-induced sepsis; furthermore, the strategy used in TOY development can be applied to the generation of other novel decoy receptor proteins.

  19. In vitro susceptibility pattern of extended spectrum ?-lactamase producing gram negative bacilli against tetracyclines

    International Nuclear Information System (INIS)

    Gill, M.M.

    2015-01-01

    Extended Spectrum beta-lactamases (ESBLs) are emerging as common nosocomial pathogens and important cause of mortality and morbidity, if not treated properly. The need of the hour is to find effective treatment options for dealing with ESBL producing organisms. This study was aimed to evaluate in vitro susceptibility pattern of extended spectrum beta-lactamase producers against tetracyclines. Methods: This descriptive cross-sectional study was carried out in the department of Microbiology, Army Medical College, Rawalpindi, National University of Sciences and Technology over a period of 6 months. Seventy eight non-duplicate isolates were included in the study. ESBL detection was done using Jarlier et al method. In vitro susceptibility of tetracyclines like tetracycline, doxycycline, minocycline and tigecycline was then tested using Modified Kirby Bauer disc diffusion method. The zones of inhibition were measured after completion of incubation period and interpreted as per CLSI and FDA guidelines. Results: Approximately 56.4% of the isolates were Escherichia coli, 28.2% were Klebsiella pneumoniae, 10.26% were Enterobacter species, and 2.6% were each Klebsiella oxytoca and Acinetobacter species. ESBLs were found to be most sensitive to tigecycline, intermediate in susceptibility to minocycline while least sensitive to doxycycline and tetracycline. Conclusion: Among tetracyclines, tigecycline has best in vitro susceptibility against ESBL producing Gram negative rods. (author)

  20. Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis

    Science.gov (United States)

    Arunmanee, Wanatchaporn; Pathania, Monisha; Solovyova, Alexandra S.; Le Brun, Anton P.; Ridley, Helen; Baslé, Arnaud; van den Berg, Bert; Lakey, Jeremy H.

    2016-01-01

    The outer membrane (OM) of gram-negative bacteria is an unusual asymmetric bilayer with an external monolayer of lipopolysaccharide (LPS) and an inner layer of phospholipids. The LPS layer is rigid and stabilized by divalent cation cross-links between phosphate groups on the core oligosaccharide regions. This means that the OM is robust and highly impermeable to toxins and antibiotics. During their biogenesis, OM proteins (OMPs), which function as transporters and receptors, must integrate into this ordered monolayer while preserving its impermeability. Here we reveal the specific interactions between the trimeric porins of Enterobacteriaceae and LPS. Isolated porins form complexes with variable numbers of LPS molecules, which are stabilized by calcium ions. In earlier studies, two high-affinity sites were predicted to contain groups of positively charged side chains. Mutation of these residues led to the loss of LPS binding and, in one site, also prevented trimerization of the porin, explaining the previously observed effect of LPS mutants on porin folding. The high-resolution X-ray crystal structure of a trimeric porin–LPS complex not only helps to explain the mutagenesis results but also reveals more complex, subtle porin–LPS interactions and a bridging calcium ion. PMID:27493217

  1. Mechanics of membrane bulging during cell-wall disruption in Gram-negative bacteria

    Science.gov (United States)

    Daly, Kristopher E.; Huang, Kerwyn Casey; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2011-04-01

    The bacterial cell wall is a network of sugar strands crosslinked by peptides that serve as the primary structure for bearing osmotic stress. Despite its importance in cellular survival, the robustness of the cell wall to network defects has been relatively unexplored. Treatment of the Gram-negative bacterium Escherichia coli with the antibiotic vancomycin, which disrupts the crosslinking of new material during growth, leads to the development of pronounced bulges and eventually of cell lysis. Here, we model the mechanics of the bulging of the cytoplasmic membrane through pores in the cell wall. We find that the membrane undergoes a transition between a nearly flat state and a spherical bulge at a critical pore radius of ~20 nm. This critical pore size is large compared to the typical distance between neighboring peptides and glycan strands, and hence pore size acts as a constraint on network integrity. We also discuss the general implications of our model to membrane deformations in eukaryotic blebbing and vesiculation in red blood cells.

  2. Small-molecule inhibitors of gram-negative lipoprotein trafficking discovered by phenotypic screening.

    Science.gov (United States)

    McLeod, Sarah M; Fleming, Paul R; MacCormack, Kathleen; McLaughlin, Robert E; Whiteaker, James D; Narita, Shin-Ichiro; Mori, Makiko; Tokuda, Hajime; Miller, Alita A

    2015-03-01

    In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Antibacterial activities of selected edible plants extracts against multidrug-resistant Gram-negative bacteria.

    Science.gov (United States)

    Djeussi, Doriane E; Noumedem, Jaurès A K; Seukep, Jackson A; Fankam, Aimé G; Voukeng, Igor K; Tankeo, Simplice B; Nkuete, Antoine H L; Kuete, Victor

    2013-07-10

    In response to the propagation of bacteria resistant to many antibiotics also called multi-drug resistant (MDR) bacteria, the discovery of new and more efficient antibacterial agents is primordial. The present study was aimed at evaluating the antibacterial activities of seven Cameroonian dietary plants (Adansonia digitata, Aframomum alboviolaceum, Aframomum polyanthum, Anonidium. mannii, Hibiscus sabdarifa, Ocimum gratissimum and Tamarindus indica). The phytochemical screening of the studied extracts was performed using described methods whilst the liquid broth micro dilution was used for all antimicrobial assays against 27 Gram-negative bacteria. The results of the phytochemical tests indicate that all tested extracts contained phenols and triterpenes, other classes of chemicals being selectively present. The studied extracts displayed various degrees of antibacterial activities. The extracts of A. digitata, H. sabdarifa, A. polyanthum, A. alboviolaceum and O. gratissimum showed the best spectra of activity, their inhibitory effects being recorded against 81.48%, 66.66%, 62.96%, 55.55%, and 55.55% of the 27 tested bacteria respectively. The extract of A. polyanthum was very active against E. aerogenes EA294 with the lowest recorded minimal inhibitory concentration (MIC) of 32 μg/ml. The results of the present work provide useful baseline information for the potential use of the studied edible plants in the fight against both sensitive and MDR phenotypes.

  4. Molecular Structure of Endotoxins from Gram-negative Marine Bacteria: An Update

    Directory of Open Access Journals (Sweden)

    Antonio Molinaro

    2007-09-01

    Full Text Available Marine bacteria are microrganisms that have adapted, through millions of years, to survival in environments often characterized by one or more extreme physical or chemical parameters, namely pressure, temperature and salinity. The main interest in the research on marine bacteria is due to their ability to produce several biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents. Nonetheless, lipopolysaccharides (LPSs, or their portions, from Gram-negative marine bacteria, have often shown low virulence, and represent potential candidates in the development of drugs to prevent septic shock. Besides, the molecular architecture of such molecules is related to the possibility of thriving in marine habitats, shielding the cell from the disrupting action of natural stress factors. Over the last few years, the depiction of a variety of structures of lipids A, core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been given. In particular, here we will examine the most recently encountered structures for bacteria belonging to the genera Shewanella, Pseudoalteromonas and Alteromonas, of the γ-Proteobacteria phylum, and to the genera Flavobacterium, Cellulophaga, Arenibacter and Chryseobacterium, of the Cytophaga- Flavobacterium-Bacteroides phylum. Particular attention will be paid to the chemical features expressed by these structures (characteristic monosaccharides, non-glycidic appendages, phosphate groups, to the typifying traits of LPSs from marine bacteria and to the possible correlation existing between such features and the adaptation, over years, of bacteria to marine environments.

  5. Investigational drugs for the treatment of infections caused by multidrug-resistant Gram-negative bacteria.

    Science.gov (United States)

    Avery, Lindsay M; Nicolau, David P

    2018-04-01

    Infections caused by multidrug-resistant Gram-negative bacteria (MDR-GNB) are associated with significant mortality and costs. New drugs in development to combat these difficult-to-treat infections primarily target carbapenem-resistant Enterobacteriaceae, MDR Pseudomonas aeruginosa, and MDR Acinetobacter baumannii. Areas covered: The authors summarize in vitro and in vivo efficacy studies, as well as available clinical trial findings, for new agents in development for treatment of infection caused by MDR-GNB. Information regarding dosage regimens utilized in clinical trials and key pharmacokinetic and pharmacodynamic considerations are provided if available. A summary of recently approved agents, delafloxacin and meropenem/vaborbactam, is also included. Expert opinion: The development of multiple novel agents to fight MDR-GNB is promising to help save the lives of patients who acquire infection, and judicious use of these agents is imperative once they come to market to prevent the development of resistance. The other component paramount to this field of research is implementation of effective infection control policies and carbapenem-resistant Enterobacteriaceae (CRE) carrier screening protocols to mitigate the worldwide spread of MDR-GNB. Further investigation of anti-infective synergistic combinations will also be important, as well as support for economic research to reveal the true cost-benefit of utilization of the new agents discussed herein.

  6. Predicting subcellular localization of gram-negative bacterial proteins by linear dimensionality reduction method.

    Science.gov (United States)

    Wang, Tong; Yang, Jie

    2010-01-01

    With the rapid increase of protein sequences in the post-genomic age, the need for an automated and accurate tool to predict protein subcellular localization becomes increasingly important. Many efforts have been tried. Most of them aim to find the optimal classification scheme and less of them take the simplifying the complexity of biological system into consideration. This work shows how to decrease the complexity of biological system with linear DR (Dimensionality Reduction) method by transforming the original high-dimensional feature vectors into the low-dimensional feature vectors. A powerful sequence encoding scheme by fusing PSSM (Position-Specific Score Matrix) and Chou's PseAA (Pseudo Amino Acid) composition is proposed to represent the protein samples. Then, the K-NN (K-Nearest Neighbor) classifier is employed to identify the subcellular localization based on their reduced low-dimensional feature vectors. Experimental results thus obtained are quite encouraging, indicating that the aforementioned linear DR method is quite promising in dealing with complicated biological problems, such as predicting the subcellular localization of Gram-negative bacterial proteins.

  7. Exploiting quorum sensing interfering strategies in gram-negative bacteria for the enhancement of environmental applications

    Directory of Open Access Journals (Sweden)

    Weiwei eZhang

    2016-01-01

    Full Text Available Quorum sensing (QS is a widespread intercellular form of communication to coordinate physiological processes and cooperative activities of bacteria at the population level, and it depends on the production, secretion, and detection of small diffusible autoinducers, such as acyl-homoserine lactones (AHLs, auto-inducing oligo-peptides (AIPs and autoinducer 2. In this review, the function of QS autoinducers of gram-negative bacteria in different aspects of wastewater treatment systems is examined. Based on research primarily performed over the past ten years, QS involvement in the formation of biofilm and aerobic granules and changes of the microbial community and degradation/transformation pathways is discussed. In particular, the QS pathway in the role of bacterial infections and disease prevention in aquaculture is addressed. Interference of QS autoinducer-regulated pathways is considered potential treatment for a variety of environmentally related problems. This review is expected to serve as a stepping stone for further study and development strategies based on the mediation of QS-regulated pathways to enhance applications in both wastewater treatment systems and aquaculture.

  8. Trends of 9,416 multidrug-resistant Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Viviane Decicera Colombo Oliveira

    2015-06-01

    Full Text Available Summary Objective: a resistance of hospital-acquired bacteria to multiple antibiotics is a major concern worldwide. The objective of this study was to investigate multidrugresistant (MDR bacteria, clinical specimens, origin of specimen and trends, and correlate these with bacterial sensitivity and consumption of antimicrobials. Methods: 9,416 bacteria of nosocomial origin were evaluated in a tertiary hospital, from 1999 to 2008. MDR was defined for Gram-negative bacteria (GNB as resistance to two or more classes/groups of antibiotics. Results: GNB MDR increased by 3.7 times over the study period (p<0.001. Acinetobacter baumannii was the most prevalent (36.2%. Over the study period, there were significant 4.8-fold and 14.6-fold increases for A. baumannii and K. pneumoniae (p<0.001, respectively. Sixty-seven percent of isolates of MDR GNB were isolated in intensive care units. The resistance of A. baumannii to carbapenems increased from 7.4 to 57.5% during the study period and concomitant with an increased consumption. Conclusion: that decade showed prevalence of GNB and a gradual increase in MDR GNB. There was an increase in carbapenem resistance of 50.1% during the study.

  9. The antibiotic pipeline for multi-drug resistant gram negative bacteria: what can we expect?

    Science.gov (United States)

    Falagas, Matthew E; Mavroudis, Andreas D; Vardakas, Konstantinos Z

    2016-08-01

    A real concern in the medical community is the increasing resistance of bacteria, especially that of Gram-negative types. New antibiotics are currently under clinical development, promising to tackle severe infections caused, especially, by multi-drug resistant (MDR) bacteria and broaden the armamentarium of clinicians. We searched PUBMED and GOOGLE databases. Combinations of already approved β-lactams or monobactams with new β-lactamase inhibitors [imipenem-cilastatin/MK-7655 (relebactam), meropenem/RPX7009 (vaborbactam), ceftaroline/avibactam, aztreonam/avibactam], new β-lactams (S-649266, BAL30072), aminoglycosides (plazomicin), quinolones (finafloxacin) and tetracyclines (eravacycline) were included in the review. Expert commentary: For the majority of the upcoming antibiotics the currently available data is limited to their microbiology and pharmacokinetics. Their effectiveness and safety against infections due to MDR bacteria remain to be proved. Significant issues are also the impact of these antibiotics on the human intestinal microbiota and their possible co-administration with already-known antimicrobial agents in difficult-to-treat-infections; further studies should be conducted for these objectives.

  10. Veillonella rogosae sp. nov., an anaerobic, Gram-negative coccus isolated from dental plaque

    Science.gov (United States)

    Arif, Nausheen; Do, Thuy; Byun, Roy; Sheehy, Evelyn; Clark, Douglas; Gilbert, Steven C.; Beighton, David

    2008-01-01

    Strains of a novel anaerobic, Gram-negative coccus were isolated from the supra-gingival plaque of children. Independent strains from each of six subjects were shown, at a phenotypic level and based on 16S rRNA gene sequencing, to be members of the genus Veillonella. Analysis revealed that the six strains shared 99.7 % similarity in their 16S rRNA gene sequences and 99.0 % similarity in their rpoB gene sequences. The six novel strains formed a distinct group and could be clearly separated from recognized species of the genus Veillonella of human or animal origin. The novel strains exhibited 98 and 91 % similarity to partial 16S rRNA and rpoB gene sequences of Veillonella parvula ATCC 10790T, the most closely related member of the genus. The six novel strains could be differentiated from recognized species of the genus Veillonella based on partial 16S rRNA and rpoB gene sequencing. The six novel strains are thus considered to represent a single novel species of the genus Veillonella, for which the name Veillonella rogosae sp. nov. is proposed. The type strain is CF100T (=CCUG 54233T=DSM 18960T). PMID:18319459

  11. The attenuation effect of UVc radiation doses in gram-negative bacteria (Brucella, Yersinia, Escherichia coli)

    International Nuclear Information System (INIS)

    Al-Mariri, A.

    2006-06-01

    The gram-negative bacteria Yersinia enterocolitica sero group O:3 and O:9, and Brucella (Melitensis and abortus) together with Escherichia coli (O:157, DH5α-pEt15b), were investigated to evaluate their susceptibility to UV radiation at 254 nm. If the dose of UVc was 18.7 mW/cm 2 , the time required for inactivation of Y. enterocolitica and E. coli DH5α-pEt15b and O:157 was 240s and 360s in the dark and light respectively; where if the dose was 19.5 mW/cm 2 , the time required was 60s in the dark and 120s in light respectively. The time required for inactivation of Brucella strains (melitensis and abortus) if the dose was 18.7 mW/cm 2 was 240s in both dark and light, whereas it was 120s(dark) and 240s (light) respectively, when the dose was 19.5 mW/cm 2 . Using E. coli O:157 as control, it appears that Y. enterocolitica sero group O:3 and O:9 and vaccinal strains of Brucella (Rev. 1 and S19) are more sensitive to UV than wild Brucella strains. No relation was found between the sensitivity of Y. enterocolitica to UV and the presence or absence of a pYV + virulence plasmid. (author)

  12. Exploiting Quorum Sensing Interfering Strategies in Gram-Negative Bacteria for the Enhancement of Environmental Applications

    Science.gov (United States)

    Zhang, Weiwei; Li, Chenghua

    2016-01-01

    Quorum sensing (QS) is a widespread intercellular form of communication to coordinate physiological processes and cooperative activities of bacteria at the population level, and it depends on the production, secretion, and detection of small diffusible autoinducers, such as acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2. In this review, the function of QS autoinducers of gram-negative bacteria in different aspects of wastewater treatment systems is examined. Based on research primarily performed over the past 10 years, QS involvement in the formation of biofilm and aerobic granules and changes of the microbial community and degradation/transformation pathways is discussed. In particular, the QS pathway in the role of bacterial infections and disease prevention in aquaculture is addressed. Interference of QS autoinducer-regulated pathways is considered potential treatment for a variety of environmentally related problems. This review is expected to serve as a stepping stone for further study and development strategies based on the mediation of QS-regulated pathways to enhance applications in both wastewater treatment systems and aquaculture. PMID:26779175

  13. A survey of gram-negative bacteria survival on hospital fabrics and plastics.

    Science.gov (United States)

    Neely, A N

    2000-01-01

    One critical factor for the transmission of microorganisms from person to person or from the environment to a person (patient or health care worker) is the ability of the microbe to survive on an environmental surface. The purpose of this study was to determine the length of survival of various gram-negative bacteria on fabrics and plastics commonly used in hospitals. Seven materials were tested: smooth cotton (clothing), cotton terry (towels), 60% cotton-40% polyester blend (scrub suits and lab coats), polyester (drapes), 75% nylon-25% spandex (pressure garments), polyvinyl (splash aprons), and polyurethane (keyboard covers). The following bacteria were tested: Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, Proteus mirabilis, Acinetobacter species, and Enterobacter species. Swatches of the materials were inoculated with defined amounts of bacteria and assayed at regular intervals. Survival was dependent on the bacterium, its inoculum size, and the material tested. At 102 microorganisms per swatch, bacteria survived from less than 1 hour to 8 days. At 10(4) to 10(5) bacteria per swatch, survival ranged from 2 hours to more than 60 days. These findings emphasize the need for careful disinfection and conscientious contact control procedures in areas that serve immunosuppressed individuals, such as patients with burn injuries.

  14. Molecular structure of endotoxins from Gram-negative marine bacteria: an update.

    Science.gov (United States)

    Leone, Serena; Silipo, Alba; L Nazarenko, Evgeny; Lanzetta, Rosa; Parrilli, Michelangelo; Molinaro, Antonio

    2007-09-19

    Marine bacteria are microrganisms that have adapted, through millions of years, to survival in environments often characterized by one or more extreme physical or chemical parameters, namely pressure, temperature and salinity. The main interest in the research on marine bacteria is due to their ability to produce several biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents. Nonetheless, lipopolysaccharides (LPSs), or their portions, from Gram-negative marine bacteria, have often shown low virulence, and represent potential candidates in the development of drugs to prevent septic shock. Besides, the molecular architecture of such molecules is related to the possibility of thriving in marine habitats, shielding the cell from the disrupting action of natural stress factors. Over the last few years, the depiction of a variety of structures of lipids A, core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been given. In particular, here we will examine the most recently encountered structures for bacteria belonging to the genera Shewanella, Pseudoalteromonas and Alteromonas, of the gamma-Proteobacteria phylum, and to the genera Flavobacterium, Cellulophaga, Arenibacter and Chryseobacterium, of the Cytophaga-Flavobacterium-Bacteroides phylum. Particular attention will be paid to the chemical features expressed by these structures (characteristic monosaccharides, non-glycidic appendages, phosphate groups), to the typifying traits of LPSs from marine bacteria and to the possible correlation existing between such features and the adaptation, over years, of bacteria to marine environments.

  15. Epidemiology and genetics of VIM-type metallo-β-lactamases in Gram-negative bacilli.

    Science.gov (United States)

    Zhao, Wei-Hua; Hu, Zhi-Qing

    2011-03-01

    Metallo-β-lactamases (MBLs) are a rapidly evolving group of β-lactamases, which hydrolyze most β-lactams including the carbapenems. Of the known MBLs, VIMs are one of the most common families, with 27 variants detected in at least 23 species of Gram-negative bacilli from more than 40 countries/regions. The amino acid similarities of VIM variants range from 72.9 to 99.6% with 1-72 different residues. Most of the bla (VIM)s are harbored by a class 1 integron, a genetic platform able to acquire and express gene cassettes. The integrons are usually embedded in transposons and, in turn, accommodated on plasmids, making them highly mobile. Integrons display considerable diversity, with at least 110 different structures associated with the gain and spread of the bla (VIM)s. In most instances, the bla (VIM)s co-exist with one or more other resistance genes. The processes for the identification of bacteria harboring bla (VIM)s are also discussed in this article.

  16. The horseshoe crab: a model for gram-negative sepsis in marine organisms and humans.

    Science.gov (United States)

    Levin, J

    1988-01-01

    The roles of the amebocyte in providing hemostasis and controlling infection, and its reaction to endotoxin, suggest that the response of platelets and the blood coagulation system in various mammals to gram-negative infection or endotoxin is an evolutionary remnant of this ancient mechanism. In humans, this mechanism occasionally subverts its presumed protective function by overresponding in a manner that results in pathophysiologic thrombosis or hemorrhage. (In this regard, it is interesting that human platelets are much more resistant to the effects of bacterial endotoxins than are other species.) Similarly, the rudimentary ability of mammalian platelets to phagocytose particles and kill bacteria may be another remnant of functions that are more important in amebocytes (or the thrombocytes of other invertebrates). Thus, these two cells, one from an ancient invertebrate and the other from mammals, have remarkably similar characteristics, although the relative importance of their various functions has changed as evolution has taken place. Nevertheless, after at least 400,000,000 years of evolution, coagulation and anti-bacterial mechanisms remain at least partially linked.

  17. Coprinopsis cinerea intracellular lactonases hydrolyze quorum sensing molecules of Gram-negative bacteria.

    Science.gov (United States)

    Stöckli, Martina; Lin, Chia-Wei; Sieber, Ramon; Plaza, David F; Ohm, Robin A; Künzler, Markus

    2017-05-01

    Biofilm formation on fungal hyphae and production of antifungal molecules are strategies of bacteria in their competition with fungi for nutrients. Since these strategies are often coordinated and under control of quorum sensing by the bacteria, interference with this bacterial communication system can be used as a counter-strategy by the fungi in this competition. Hydrolysis of N-acyl-homoserine lactones (HSL), a quorum sensing molecule used by Gram-negative bacteria, by fungal cultures has been demonstrated. However, the enzymes that are responsible for this activity, have not been identified. In this study, we identified and characterized two paralogous HSL hydrolyzing enzymes from the coprophilous fungus Coprinopsis cinerea. The C. cinerea HSL lactonases belong to the metallo-β-lactamase family and show sequence homology to and a similar biochemical activity as the well characterized lactonase AiiA from Bacillus thuringiensis. We show that the fungal lactonases, similar to the bacterial enzymes, are kept intracellularly and act as a sink for the bacterial quorum sensing signals both in C. cinerea and in Saccharomyces cerevisiae expressing C. cinerea lactonases, due to the ability of these signal molecules to diffuse over the fungal cell wall and plasma membrane. The two isogenes coding for the C. cinerea HSL lactonases are arranged in the genome as a tandem repeat and expressed preferentially in vegetative mycelium. The occurrence of orthologous genes in genomes of other basidiomycetes appears to correlate with a saprotrophic lifestyle. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Functional characterization of Gram-negative bacteria from different genera as multiplex cadmium biosensors.

    Science.gov (United States)

    Bereza-Malcolm, Lara; Aracic, Sanja; Kannan, Ruban; Mann, Gülay; Franks, Ashley E

    2017-08-15

    Widespread presence of cadmium in soil and water systems is a consequence of industrial and agricultural processes. Subsequent accumulation of cadmium in food and drinking water can result in accidental consumption of dangerous concentrations. As such, cadmium environmental contamination poses a significant threat to human health. Development of microbial biosensors, as a novel alternative method for in situ cadmium detection, may reduce human exposure by complementing traditional analytical methods. In this study, a multiplex cadmium biosensing construct was assembled by cloning a single-output cadmium biosensor element, cadRgfp, and a constitutively expressed mrfp1 onto a broad-host range vector. Incorporation of the duplex fluorescent output [green and red fluorescence proteins] allowed measurement of biosensor functionality and viability. The biosensor construct was tested in several Gram-negative bacteria including Pseudomonas, Shewanella and Enterobacter. The multiplex cadmium biosensors were responsive to cadmium concentrations ranging from 0.01 to 10µgml -1 , as well as several other heavy metals, including arsenic, mercury and lead at similar concentrations. The biosensors were also responsive within 20-40min following exposure to 3µgml -1 cadmium. This study highlights the importance of testing biosensor constructs, developed using synthetic biology principles, in different bacterial genera. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The attenuation effect of UVc radiation doses in gram-negative bacteria (Brucella, Yersinia, Escherichia coli)

    International Nuclear Information System (INIS)

    Al-Mariri, A.

    2007-01-01

    The gram-negative bacteria Yersinia enterocolitica sero group O:3 and O:9, and Brucella (Melitensis and abortus) together with Escherichia coli (O:157, DH5alpha-pEt15b), were investigated to evaluate their susceptibility to UV radiation at 254 nm. If the dose of UVc was 18.7 mW/cm2, the time required for inactivation of Y. enterocolitica and E. coli DH5alpha-pEt15b and O:157 was 240s and 360s in the dark and light respectively. Where if the dose was 19.5 mW/cm2, the time required was 60s in the dark and 120s in light respectively. The time required for inactivation of Brucella strains (melitensis and abortus) if the dose was 18.7 mW/cm2 was 240s in both dark and light, whereas it was 120s (dark) and 240s (light) respectively, when the dose was 19.5 mW/cm2. Using E. coli O:157 as control, it appears that Y. enterocolitica sero group O:3 and O:9 and vaccinal strains of Brucella (Rev. 1 and S19) are more sensitive to UV than wild Brucella strains. No relation was found between the sensitivity of Y. enterocolitica to UV and the presence or absence of a pYV+ virulence plasmid. (author)

  20. Gram-Negative Bacterial Lipopolysaccharide Stimulates Activin A Secretion from Human Amniotic Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Yumiko Abe

    2013-01-01

    Full Text Available Activin A is involved in inflammation. The present study was performed to clarify if lipopolysaccharide, a component of Gram-negative bacteria, stimulates activin A secretion from human amniotic epithelial cells and to determine if activin A plays a role in amnionitis. Fetal membranes were obtained during elective cesarean sections performed in full-term pregnancies of patients without systemic disease, signs of premature delivery, or fetal complications. Amniotic epithelial cells were isolated by trypsinization. The activin A concentrations in the culture media were measured by enzyme-linked immunosorbent assay, and cell proliferation was assessed by 5-bromo-2′-deoxyuridine incorporation. Amniotic epithelial cells secreted activin A in a cell density-dependent manner, and lipopolysaccharide (10 μg/mL enhanced the secretion at each cell density. Lipopolysaccharide (10–50 μg/mL also stimulated activin A secretion in a dose-dependent manner. Contrary to the effect of activin A secretion, lipopolysaccharide inhibited cell proliferation in amniotic epithelial cells. The present study suggests that lipopolysaccharide stimulation of activin A secretion may be a mechanism in the pathogenesis of amnionitis.

  1. Computational prediction of type III and IV secreted effectors in Gram-negative bacteria

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Jason E.; Corrigan, Abigail L.; Peterson, Elena S.; Oehmen, Christopher S.; Niemann, George; Cambronne, Eric; Sharp, Danna; Adkins, Joshua N.; Samudrala, Ram; Heffron, Fred

    2011-01-01

    In this review, we provide an overview of the methods employed by four recent papers that described novel methods for computational prediction of secreted effectors from type III and IV secretion systems in Gram-negative bacteria. The results of the studies in terms of performance at accurately predicting secreted effectors and similarities found between secretion signals that may reflect biologically relevant features for recognition. We discuss the web-based tools for secreted effector prediction described in these studies and announce the availability of our tool, the SIEVEserver (http://www.biopilot.org). Finally, we assess the accuracy of the three type III effector prediction methods on a small set of proteins not known prior to the development of these tools that we have recently discovered and validated using both experimental and computational approaches. Our comparison shows that all methods use similar approaches and, in general arrive at similar conclusions. We discuss the possibility of an order-dependent motif in the secretion signal, which was a point of disagreement in the studies. Our results show that there may be classes of effectors in which the signal has a loosely defined motif, and others in which secretion is dependent only on compositional biases. Computational prediction of secreted effectors from protein sequences represents an important step toward better understanding the interaction between pathogens and hosts.

  2. Mechanism of decreased susceptibility for Gram-negative bacteria and synergistic effect with ampicillin of indole-3-carbinol.

    Science.gov (United States)

    Sung, Woo Sang; Lee, Dong Gun

    2008-09-01

    Indole-3-carbinol (I3C) is a natural compound found in a wide variety of plant food substances including members of the family Cruciferae with antioxidant and potential chemopreventive properties. In a previous study, I3C exhibited broad spectrum antibacterial activities. Particularly, it showed a more potent antibacterial activity against Gram-positive bacteria than Gram-negative bacteria. To elucidate this disparity of antibacterial activity between Gram-positive and Gram-negative bacteria, we investigated the actions of the efflux pumps and the lipopolysaccharide (LPS) barrier of the outer membrane of Gram-negative bacteria. The results showed that the antibacterial activity of I3C was affected by the barrier action of LPS in the outer membrane rather than by the efflux pumps. To assess its potential for combination therapy in treating bacterial infections, we investigated its synergy effects in combination with conventional antibiotics. The results demonstrated that I3C showed considerable synergistic activity in combination with ampicillin against drug-resistant isolates.

  3. Third generation cephalosporin resistant Enterobacteriaceae and multidrug resistant gram-negative bacteria causing bacteremia in febrile neutropenia adult cancer patients in Lebanon, broad spectrum antibiotics use as a major risk factor, and correlation with poor prognosis

    Directory of Open Access Journals (Sweden)

    Rima eMoghnieh

    2015-02-01

    Full Text Available Bacteremia remains a major cause of life-threatening complications in patients receiving anticancer chemotherapy. The spectrum and susceptibility profiles of causative microorganisms differ with time and place. Data from Lebanon are scarce. We aim at evaluating the epidemiology of bacteremia in cancer patients in a university hospital in Lebanon, emphasizing antibiotic resistance and risk factors of multi-drug resistant organism (MDRO-associated bacteremia.This is a retrospective study of 75 episodes of bacteremia occurring in febrile neutropenic patients admitted to the hematology-oncology unit at Makassed General Hospital, Lebanon, from October 2009-January 2012.It corresponds to epidemiological data on bacteremia episodes in febrile neutropenic cancer patients including antimicrobial resistance and identification of risk factors associated with third generation cephalosporin resistance (3GCR and MDRO-associated bacteremia. Out of 75 bacteremias, 42.7% were gram-positive (GP, and 57.3% were gram-negative (GN. GP bacteremias were mostly due to methicillin-resistant coagulase negative staphylococci (28% of total bacteremias and 66% of GP bacteremias. Among the GN bacteremias, Escherichia coli (22.7% of total, 39.5% of GN organisms and Klebsiellapneumoniae(13.3% of total, 23.3% of GN organisms were the most important causative agents. GN bacteremia due to 3GC sensitive (3GCS bacteria represented 28% of total bacteremias, while 29% were due to 3GCR bacteria and 9% were due to carbapenem-resistant organisms. There was a significant correlation between bacteremia with MDRO and subsequent intubation, sepsis and mortality. Among potential risk factors, only broad spectrum antibiotic intake >4 days before bacteremia was found to be statistically significant for acquisition of 3GCR bacteria. Using carbapenems or piperacillin/ tazobactam>4 days before bacteremia was significantly associated with the emergence of MDRO (p value<0.05.

  4. Ciprofloxacin residue and antibiotic-resistant biofilm bacteria in hospital effluent.

    Science.gov (United States)

    Ory, Jérôme; Bricheux, Geneviève; Togola, Anne; Bonnet, Jean Louis; Donnadieu-Bernard, Florence; Nakusi, Laurence; Forestier, Christiane; Traore, Ousmane

    2016-07-01

    Discharge of antimicrobial residues and resistant bacteria in hospital effluents is supposed to have strong impacts on the spread of antibiotic resistant bacteria in the environment. This study aimed to characterize the effluents of the Gabriel Montpied teaching hospital, Clermont-Ferrand, France, by simultaneously measuring the concentration of ciprofloxacin and of biological indicators resistant to this molecule in biofilms formed in the hospital effluent and by comparing these data to ciprofloxacin consumption and resistant bacterial isolates of the hospital. Determination of the measured environmental concentration of ciprofloxacin by spot sampling and polar organic chemical integrative (POCIS) sampling over 2 weeks, and comparison with predicted environmental concentrations produced a hazard quotient >1, indicating a potential ecotoxicological risk. A negative impact was also observed with whole hospital effluent samples using the Tetrahymena pyriformis biological model. During the same period, biofilms were formed within the hospital effluent, and analysis of ciprofloxacin-resistant isolates indicated that Gamma-Proteobacteria were numerous, predominantly Aeromonadaceae (69.56%) and Enterobacteriaceae (22.61%). Among the 115 isolates collected, plasmid-mediated fluoroquinolone-resistant genes were detected, with mostly aac(6')-lb-cr and qnrS. In addition, 60% of the isolates were resistant to up to six antibiotics, including molecules mostly used in the hospital (aminosides and third-generation cephalosporins). In parallel, 1247 bacteria isolated from hospitalized patients and resistant to at least one of the fluoroquinolones were collected. Only 5 of the 14 species identified in the effluent biofilm were also found in the clinical isolates, but PFGE typing of the Gram-negative isolates found in both compartments showed there was no clonality among the strains. Altogether, these data confirm the role of hospital loads as sources of pollution for wastewater

  5. Emergence and spread of antibiotic resistance: setting a parameter space.

    Science.gov (United States)

    Martínez, José Luis; Baquero, Fernando

    2014-05-01

    The emergence and spread of antibiotic resistance among human pathogens is a relevant problem for human health and one of the few evolution processes amenable to experimental studies. In the present review, we discuss some basic aspects of antibiotic resistance, including mechanisms of resistance, origin of resistance genes, and bottlenecks that modulate the acquisition and spread of antibiotic resistance among human pathogens. In addition, we analyse several parameters that modulate the evolution landscape of antibiotic resistance. Learning why some resistance mechanisms emerge but do not evolve after a first burst, whereas others can spread over the entire world very rapidly, mimicking a chain reaction, is important for predicting the evolution, and relevance for human health, of a given mechanism of resistance. Because of this, we propose that the emergence and spread of antibiotic resistance can only be understood in a multi-parameter space. Measuring the effect on antibiotic resistance of parameters such as contact rates, transfer rates, integration rates, replication rates, diversification rates, and selection rates, for different genes and organisms, growing under different conditions in distinct ecosystems, will allow for a better prediction of antibiotic resistance and possibilities of focused interventions.

  6. Staphylococcus aureus carriage rates and antibiotic resistance patterns in patients with acne vulgaris.

    Science.gov (United States)

    Delost, Gregory R; Delost, Maria E; Armile, James; Lloyd, Jenifer

    2016-04-01

    Overuse of antibiotics has led to the development of antibiotic-resistant strains of Staphylococcus aureus, which are occurring more frequently within the community. We sought to determine whether long-term antibiotic therapy for acne alter the carriage rate and antibiotic resistance profiles of S aureus. This was a prospective, cross-sectional, quasiexperimental study. Samples of anterior nares were obtained from dermatology patients given a diagnosis of acne vulgaris (n = 263) who were treated with antibiotics (n = 142) or who were not treated with antibiotics (n = 121). Specimens were tested for the presence of S aureus by growth on mannitol salt agar and then isolated on 5% sheep blood agar. Identification was confirmed based on colonial morphology, Gram stain, catalase, and coagulase testing. Antibiotic susceptibility testing was performed using the VITEK 2 system (bioMerieux, Marcy-l'Étoile, France). The S aureus carriage rate was significantly lower in patients with acne treated with antibiotics (6.3%) compared with those not treated with antibiotics (15.7%; P = .016). The percentage of S aureus isolates resistant to 1 or more antibiotics did not significantly differ between the 2 groups (P = .434). Cross-sectional study, patient compliance, and effects of prior acne treatments are limitations. Treatment of patients with acne using antibiotics decreases the S aureus carriage rate but does not significantly alter the antibiotic resistance rates. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  7. Serum procalcitonin elevation in critically ill patients at the onset of bacteremia caused by either gram negative or gram positive bacteria

    Directory of Open Access Journals (Sweden)

    Prin Sébastien

    2008-03-01

    Full Text Available Abstract Background In the ICU, bacteremia is a life-threatening infection whose prognosis is highly dependent on early recognition and treatment with appropriate antibiotics. Procalcitonin levels have been shown to distinguish between bacteremia and noninfectious inflammatory states accurately and quickly in critically ill patients. However, we still do not know to what extent the magnitude of PCT elevation at the onset of bacteremia varies according to the Gram stain result. Methods Review of the medical records of every patient treated between May, 2004 and December, 2006 who had bacteremia caused by either Gram positive (GP or Gram negative (GN bacteria, and whose PCT dosage at the onset of infection was available. Results 97 episodes of either GN bacteremia (n = 52 or GP bacteremia (n = 45 were included. Procalcitonin levels were found to be markedly higher in patients with GN bacteremia than in those with GP bacteremia, whereas the SOFA score value in the two groups was similar. Moreover, in the study population, a high PCT value was found to be independently associated with GN bacteremia. A PCT level of 16.0 ng/mL yielded an 83.0% positive predictive value and a 74.0% negative predictive value for GN-related bacteremia in the study cohort (AUROCC = 0.79; 95% CI, 0.71–0.88. Conclusion In a critically ill patient with clinical sepsis, GN bacteremia could be associated with higher PCT values than those found in GP bacteremia, regardless of the severity of the disease.

  8. The antimicrobial efficacy of silver on antibiotic-resistant bacteria isolated from burn wounds.

    Science.gov (United States)

    Percival, Steven L; Thomas, John; Linton, Sara; Okel, Tyler; Corum, Linda; Slone, Will

    2012-10-01

    The antibiotic-resistant bacteria are a major concern to wound care because of their ability to resist many of the antibiotics used today to treat infections. Consequently, other antimicrobials, in particular ionic silver, are considered ideal topical agents for effectively helping to manage and prevent local infections. Little is known about the antimicrobial efficacy of ionic silver on antibiotic-resistant bacteria at different pH values. Consequently, in this study our aim was to evaluate the effect of pH on the antimicrobial efficacy of a silver alginate (SA) and a silver carboxymethyl cellulose (SCMC) dressing on antibiotic-resistant bacteria isolated from burn patients. Forty-nine antibiotic-resistant bacteria, including Vancomycin-resistant Enterococcus faecium, meticillin-resistant Staphylococcus aureus, multidrug-resistant (MDR) Pseudomonas aeruginosa, MDR Vibrio sp, MDR Stenotrophomonas maltophilia, extended-spectrum ß-lactamase (ESBL) producing Salmonella sp, ESBL producing Klebsiella pneumoniae, ESBL producing Proteus mirabilis, ESBL producing Escherichia coli and MDR Acinetobacter baumannii, routinely isolated from burn wounds were used in the study and evaluated for their susceptibility to two silver containing wound dressings using a standardised antimicrobial efficacy screening assay [corrected zone of inhibition (CZOI)]. The mean overall CZOI for the Gram-positive isolates at a pH of 5·5 were very similar for both dressings. A mean CZOI of 5 mm was recorded for the SCMC dressing, which was slightly higher, at 5·4 mm for the SA dressing. At a pH of 7·0 both dressings, in general, showed a similar activity. However, at a pH of 8·5 the mean CZOI of the SCMC dressing was found to be significantly (P bacteria followed a similar pattern as observed with the Gram-positive bacteria. Susceptibility to silver ions did vary significantly between genera and species of bacteria. Interestingly, when pH was changed from 8·5 to 5·5 antimicrobial activity

  9. Bacteriological Assessment of Pneumonia Caused by Gram-Negative Bacteria in Patients Hospitalized in Intensive Care Unit.

    Science.gov (United States)

    Guzek, A; Korzeniewski, K; Tomaszewski, D; Rybicki, Z; Zwolińska, E

    2017-01-01

    The article presents the results of 11-year study (2005-2015) of Gram-negative bacteria responsible for pneumonia in 2033 mechanically ventilated patients hospitalized in Intensive Care Unit. Of 8796 biological samples, consisting mainly of bronchial aspirate (97.9 %), 2056 bacterial strains were isolated and subjected to identification. VITEK 2 was used to determine drug susceptibility (classified according to the EUCAST criteria). ESBL, MBL and KPC-producing strains were identified by means of phenotypic methods using appropriate discs. The findings were that the predominant bacteria responsible for infections consisted of Enterobacteriaceae (42.0 %), Acinetobacter baumannii (37.2 %), Pseudomonas aeruginosa (16.1 %), and Stenotrophomonas maltophila (4.7 %). We observed a rise in the number of bacteria causing pneumonia throughout the study period, especially in S. maltophila and Enterobacteriaceae ESBL (+). Gram-negative bacilli were 100 % susceptible to colistin, apart from naturally resistant strains such as Proteus mirabilis, Serratia marcescens, whereas Enterobacteriaceae ESBL (+) were susceptible to imipenem and meropenem. Acinetobacter baumannii strains exhibited the lowest drug susceptibility. In conclusion, we report an increase in the prevalence of pneumonia associated with Gram-negative bacteria in mechanically ventilated intensive care patients. Colistin remains the most effective drug against the majority of Gram-negative bacteria. Therapeutic problems are common in the course of treatment of Acinetobacter baumannii infections.

  10. Viruses and Gram-negative bacilli dominate the etiology of community-acquired pneumonia in Indonesia, a cohort study

    Directory of Open Access Journals (Sweden)

    Helmia Farida

    2015-09-01

    Conclusions: Viruses and Gram-negative bacilli are dominant causes of CAP in this region, more so than S. pneumoniae. Most of the bacteria have wild type susceptibility to antimicrobial agents. Patients with severe disease and those with unknown etiology have a higher mortality risk.

  11. Serum amyloid P component bound to gram-negative bacteria prevents lipopolysaccharide-mediated classical pathway complement activation

    NARCIS (Netherlands)

    de Haas, C. J.; van Leeuwen, E. M.; van Bommel, T.; Verhoef, J.; van Kessel, K. P.; van Strijp, J. A.

    2000-01-01

    Although serum amyloid P component (SAP) is known to bind many ligands, its biological function is not yet clear. Recently, it was demonstrated that SAP binds to lipopolysaccharide (LPS). In the present study, SAP was shown to bind to gram-negative bacteria expressing short types of LPS or

  12. Serum amyloid P component bound to gram-negative bacteria prevents lipopolysaccharide-mediated classical pathway complement activation

    NARCIS (Netherlands)

    de Haas, CJC; van Leeuwen, EMM; van Bommel, T; Verhoef, J; van Kessel, KPM; van Strijp, JAG

    Although serum amyloid P component (SAP) is known to bind many ligands, its biological function is not yet clear. Recently, it was demonstrated that SAP binds to lipopolysaccharide (LPS), In the present study, SAP was shown to bind to gram-negative bacteria expressing short types of LPS or

  13. Lifesaving pericardiocentesis due to purulent pericarditis with growth of Gram-negative rods in an immune-competent Inuit male

    DEFF Research Database (Denmark)

    Simonÿ, Carl Frederik Brandt; Malham, Mikkel; Kanstrup, Jacob

    2014-01-01

    Polymicrobial Gram-negative pericarditis is a rare entity in the immune-competent patient, and purulent pericarditis due to bacteria complicated by tamponade is a life-threatening condition with high mortality rates. A prompt diagnosis and treatment is, as in this case, lifesaving and facilitated...

  14. Novel touchdown-PCR method for the detection of putrescine producing gram-negative bacteria in food products.

    Science.gov (United States)

    Wunderlichová, Leona; Buňková, Leona; Koutný, Marek; Valenta, Tomáš; Buňka, František

    2013-06-01

    Formation of biogenic amines may occur in food due to metabolic activities of contaminating Gram-negative bacteria. Putrescine is assumed to be the major biogenic amine associated with microbial food spoilage. Gram-negative bacteria can form putrescine by three metabolic pathways that can include eight different enzymes. The objective of this study was to design new sets of primers able to detect all important enzymes involved in the production of putrescine by Gram-negative bacteria. Seven new sets of consensual primers based on gene sequences of different bacteria were designed and used for detection of the speA, adiA, adi, speB, aguA, speC, and speF genes. A newly developed touchdown polymerase chain reaction (PCR) method using these primers was successfully applied on several putrescine-producers. Selected PCR products were sequenced and high similarity of their sequences (99-91%) with known sequences of the corresponding genes confirmed high specificity of the developed sets of primers. Furthermore, all the investigated bacteria produced both putrescine and agmatine, an intermediate of putrescine production, which was confirmed by chemical analysis. The developed new touchdown PCR method could easily be used to detect potential foodborne Gram-negative producers of putrescine. The newly developed sets of primers could also be useful in further research on putrescine metabolism in contaminating microbiota. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Detection of Extended Spectrum Beta-Lactamases Among Gram Negative Bacilli Recovered from Cattle Feces In Benin City, Nigeria

    Directory of Open Access Journals (Sweden)

    Helen Oroboghae OGEFERE

    2017-06-01

    Full Text Available This study was carried out to determine the prevalence of extended spectrum beta-lactamase (ESBL among Gram negative bacteria isolated from cattle feces in Benin City, Nigeria. A total of 250 Gram negative bacteria isolates were recovered from cattle feces and were processed microbiologically using standard techniques. Emergent colonies were identified and antibacterial susceptibility tests were determined using Kirby-Bauer disk diffusion method. All bacterial isolates were screened for the presence of ESBL using the double-disc synergy method. A total of 37 (14.8% isolates were positive for ESBL, with 33 (13.2% indicated by ceftazidime, while only 4 (1.6% were indicated by both ceftazidime and cefotaxime (P < 0.0001. Of the Gram negative bacterial isolates recovered, Salmonella species was the most prevalent ESBL-producer with 55.0% prevalence (P = 0.0092, while no isolate of Pseudomonas aeruginosa produced ESBL. ESBL-positive isolates showed poor susceptibility to the tested antibacterial agents in comparison with non-ESBL-producers and imipenem was the most active antibiotic. The prevalence of ESBL among Gram negative bacilli recovered from cattle feces was 14.8%. The study advises prudent use of antibiotics in the treatment of cattle and harps on improved hygiene in managing cattle, as they are potential reservoirs of ESBL-producing organisms.

  16. Direct common gram-negative bacterial identification from positive blood culture bottles by SELDI-TOF MS.

    Science.gov (United States)

    Xiao, Daiwen; Yang, Yongchang; Jiang, Wei; Zhang, Hangfeng; Liu, Hua; Yu, Hua; Xie, Chunbao; Zhong, Min; Chen, Liang; Huang, Wenfang

    2014-10-01

    A protein database was constructed and validated with identification rate over 90% for the 4 most common Gram-negative bacteria on agar plates. By protein masses comparison, 120 bacteria of the 4 species from blood culture bottles were identified. The concordance was high (Kappa=0.906) between our method and conventional approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Monomicrobial necrotizing fasciitis in a single center: the emergence of Gram-negative bacteria as a common pathogen

    Directory of Open Access Journals (Sweden)

    D. Yahav

    2014-11-01

    Conclusions: In our center, 42% of monomicrobial necrotizing fasciitis cases were found to be caused by Gram-negative organisms, mostly E. coli. These infections usually appeared in immunocompromised or postoperative patients, often presented with normal CPK levels, and were associated with high mortality rates.

  18. Complete Genome Sequence of Bacillus velezensis CN026 Exhibiting Antagonistic Activity against Gram-Negative Foodborne Pathogens.

    Science.gov (United States)

    Nannan, Catherine; Gillis, Annika; Caulier, Simon; Mahillon, Jacques

    2018-01-25

    We report here the complete genome sequence of Bacillus velezensis strain CN026, a member of the B. subtilis group, which is known for its many industrial applications. The genome contains 3,995,812 bp and displays six gene clusters potentially involved in strain CN026's activity against Gram-negative foodborne pathogens. Copyright © 2018 Nannan et al.

  19. Complete Genome Sequence of Bacillus velezensis CN026 Exhibiting Antagonistic Activity against Gram-Negative Foodborne Pathogens

    OpenAIRE

    Nannan, Catherine; Gillis, Annika; Caulier, Simon; Mahillon, Jacques

    2018-01-01

    ABSTRACT We report here the complete genome sequence of Bacillus velezensis strain CN026, a member of the B. subtilis group, which is known for its many industrial applications. The genome contains 3,995,812 bp and displays six gene clusters potentially involved in strain CN026’s activity against Gram-negative foodborne pathogens.

  20. Comparing the harmful effects of nontuberculous mycobacteria and Gram negative bacteria on lung function in patients with cystic fibrosis

    DEFF Research Database (Denmark)

    Qvist, Tavs; Taylor-Robinson, David; Waldmann, Elisabeth

    2015-01-01

    BACKGROUND: To better understand the relative effects of infection with nontuberculous mycobacteria and Gram negative bacteria on lung function decline in cystic fibrosis, we assessed the impact of each infection in a Danish setting. METHODS: Longitudinal registry study of 432 patients with cystic...

  1. In vitro Efficacy of Meropenem, Colistin and Tigecycline Against the Extended Spectrum Beta-Lactamase Producing Gram Negative Bacilli

    International Nuclear Information System (INIS)

    Gill, M. M.; Usman, J.; Hassan, A.; Kaleem, F.; Anjum, R.

    2015-01-01

    Objective:To compare the in vitroefficacy of meropenem, colistin and tigecycline against extended spectrum Betalactamase producing Gram negative bacilli by minimal inhibitory concentration. Study Design:Cross-sectional descriptive study. Place and Duration of Study: Department of Microbiology, Army Medical College, National University of Sciences and Technology, Rawalpindi, from June to December 2010. Methodology: Routine clinical specimens were subjected to standard microbiological procedures and the isolates were identified to species level. Extended spectrum beta-lactamase producing Gram negative bacilli were detected by Jarlier disc synergy method and confirmed by ceftazidime and ceftazidime-clavulanate Etest. Minimum Inhibitory Concentration (MIC90) of meropenem, colistin and tigecycline was determined by Etest (AB BIOMERIUX) and the results were interpreted according to the manufacturer's instructions and Clinical and Laboratory Standards Institute guidelines and Food and Drug Authority recommendations. Results were analyzed by using Statistical Package for the Social Sciences version 20. Results: A total of 52 non-duplicate extended spectrum Beta-lactamase-producing Gram negative bacilli were included in the study. The MIC90 of tigecycline (0.75 micro g/ml) was lowest as compared to the meropenem (2 micro g/ml) and colistin (3 micro g/ml). Conclusion: Tigecycline is superior in efficacy against the extended spectrum Beta-lactamase producing Gram negative bacilli as compared to colistin and meropenem. (author)

  2. Susceptibilities of 540 anaerobic gram-negative bacilli to amoxicillin, amoxicillin-BRL 42715, amoxicillin-clavulanate, temafloxacin, and clindamycin.

    OpenAIRE

    Appelbaum, P C; Spangler, S K; Shiman, R; Jacobs, M R

    1992-01-01

    Agar dilution MIC testing of amoxicillin, amoxicillin-BRL 42715, amoxicillin-clavulanate, temafloxacin, and clindamycin against 496 beta-lactamase-producing anaerobic gram-negative rods revealed MICs for 90% of the strains tested of 256.0 (amoxicillin), 2.0 (amoxicillin-BRL 42715 and amoxicillin-clavulanate), and 4.0 (temafloxacin and clindamycin) microgram/ml. Amoxicillin, temafloxacin, and clindamycin inhibited all 44 beta-lactamase-negative strains (MICs for 90% of the strains tested, less...

  3. Emergence of Imipenem-Resistant Gram-Negative Bacilli in Intestinal Flora of Intensive Care Patients

    Science.gov (United States)

    Angebault, Cécile; Barbier, François; Hamelet, Emilie; Defrance, Gilles; Ruppé, Etienne; Bronchard, Régis; Lepeule, Raphaël; Lucet, Jean-Christophe; El Mniai, Assiya; Wolff, Michel; Montravers, Philippe; Plésiat, Patrick; Andremont, Antoine

    2013-01-01

    Intestinal flora contains a reservoir of Gram-negative bacilli (GNB) resistant to cephalosporins, which are potentially pathogenic for intensive care unit (ICU) patients; this has led to increasing use of carbapenems. The emergence of carbapenem resistance is a major concern for ICUs. Therefore, in this study, we aimed to assess the intestinal carriage of imipenem-resistant GNB (IR-GNB) in intensive care patients. For 6 months, 523 consecutive ICU patients were screened for rectal IR-GNB colonization upon admission and weekly thereafter. The phenotypes and genotypes of all isolates were determined, and a case control study was performed to identify risk factors for colonization. The IR-GNB colonization rate increased regularly from 5.6% after 1 week to 58.6% after 6 weeks in the ICU. In all, 56 IR-GNB strains were collected from 50 patients: 36 Pseudomonas aeruginosa strains, 12 Stenotrophomonas maltophilia strains, 6 Enterobacteriaceae strains, and 2 Acinetobacter baumannii strains. In P. aeruginosa, imipenem resistance was due to chromosomally encoded resistance (32 strains) or carbapenemase production (4 strains). In the Enterobacteriaceae strains, resistance was due to AmpC cephalosporinase and/or extended-spectrum β-lactamase production with porin loss. Genomic comparison showed that the strains were highly diverse, with 8 exceptions (4 VIM-2 carbapenemase-producing P. aeruginosa strains, 2 Klebsiella pneumoniae strains, and 2 S. maltophilia strains). The main risk factor for IR-GNB colonization was prior imipenem exposure. The odds ratio for colonization was already as high as 5.9 (95% confidence interval [95% CI], 1.5 to 25.7) after 1 to 3 days of exposure and increased to 7.8 (95% CI, 2.4 to 29.8) thereafter. In conclusion, even brief exposure to imipenem is a major risk factor for IR-GNB carriage. PMID:23318796

  4. Analysis of surface protein expression reveals the growth pattern of the gram-negative outer membrane.

    Directory of Open Access Journals (Sweden)

    Tristan S Ursell

    Full Text Available The outer membrane (OM of Gram-negative bacteria is a complex bilayer composed of proteins, phospholipids, lipoproteins, and lipopolysaccharides. Despite recent advances revealing the molecular pathways underlying protein and lipopolysaccharide incorporation into the OM, the spatial distribution and dynamic regulation of these processes remain poorly understood. Here, we used sequence-specific fluorescent labeling to map the incorporation patterns of an OM-porin protein, LamB, by labeling proteins only after epitope exposure on the cell surface. Newly synthesized LamB appeared in discrete puncta, rather than evenly distributed over the cell surface. Further growth of bacteria after labeling resulted in divergence of labeled LamB puncta, consistent with a spatial pattern of OM growth in which new, unlabeled material was also inserted in patches. At the poles, puncta remained relatively stationary through several rounds of division, a salient characteristic of the OM protein population as a whole. We propose a biophysical model of growth in which patches of new OM material are added in discrete bursts that evolve in time according to Stokes flow and are randomly distributed over the cell surface. Simulations based on this model demonstrate that our experimental observations are consistent with a bursty insertion pattern without spatial bias across the cylindrical cell surface, with approximately one burst of ≈ 10(-2 µm(2 of OM material per two minutes per µm(2. Growth by insertion of discrete patches suggests that stochasticity plays a major role in patterning and material organization in the OM.

  5. Paenibacillus mobilis sp. nov., a Gram-stain-negative bacterium isolated from soil.

    Science.gov (United States)

    Yang, Dahye; Cha, Seho; Choi, Jiwon; Seo, Taegun

    2018-04-01

    A novel Gram-stain-negative bacterium, designated strain S8 T , was isolated from a soil sample obtained in Gyeonggi Province, Republic of Korea. Cells of strain S8 T were endospore-forming, motile by means of peritrichous flagella, and rod-shaped. S8 T colonies were round, convex, wavy and white. Strain S8 T grew optimally at 37 °C, pH 6-8, and up to 2.0 % (w/v) NaCl. Based on 16S rRNA gene sequence similarity, strain S8 T was affiliated with the genus Paenibacillus in the family Paenibacillaceae and was most closely related to Paenibacillus yonginensis DCY84 T and Paenibacillus physcomitrellae XB T (98.8 and 97.1 % sequence similarity). The DNA G+C content of the novel strain was 53.1±0.3 mol%. Strain S8 T contained diphosphatidylglycerol, phosphatidylglycerol, two phospholipids, four aminophospholipids, an aminolipid and three unidentified lipids. The major fatty acid was anteiso-branched C15 : 0. The quinone was menaquinone MK-7. The peptidoglycan of strain S8 T contained meso-diaminopimelic acid. The DNA-DNA hybridization values of strain S8 T with P. yonginensis KCTC 33428 T and P. physcomitrellae DSM 29851 T were 44 % and 32 %, respectively. Data from the DNA-DNA hybridization, biochemical, phylogenetic and physiological analyses indicate that strain S8 T (=KCTC 33848 T =JCM 31672 T ) represents a novel species of the genus Paenibacillus, for which the name Paenibacillus mobilis sp. nov. is proposed.

  6. Rapid photokilling of gram-negative Escherichia coli bacteria by platinum dispersed titania nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Bonamali, E-mail: bpal@thapar.edu [School of Chemistry and Biochemistry, Thapar University, Patiala 147004 (India); Singh, Isha; Angrish, Kunal; Aminedi, Raghavendra; Das, Niranjan [Department of Biotechnology and Environmental Sciences, Thapar University, Patiala 147004 (India)

    2012-09-14

    Superior antimicrobial activity of 2 wt.% Pt-dispersed TiO{sub 2} thin film was observed in photokilling Gram-negative Escherichia coli bacteria within 5 min irradiation (640 {mu}W cm{sup -2}, {lambda} > 340 nm) from UV torch than bare TiO{sub 2} film. Severe disruption of cell membrane has occurred over illuminated Pt-TiO{sub 2} catalysts films coated with 100-300 {mu}g powders per 5 cm{sup 2} areas over sterilized glass slides. The Pt dispersion onto TiO{sub 2} by impregnation-hydrogen reduction always exhibited better photokilling effect than Pt photodeposition, irrespective of Pt-TiO{sub 2} dose and light exposure time. Similar trend in photoactivity difference between two Pt-TiO{sub 2} catalysts is also observed in aqueous slurry because of the unlike surface structure of TiO{sub 2} due to different annealing temperatures, size and nature of Pt particles dispersion onto TiO{sub 2} photocatalysts. -- Graphical abstract: Platinization of TiO{sub 2} by impregnation-hydrogen reduction method exhibited drastic photoetching and killing of E. coli bacteria over UV-irradiated catalysts films in comparison to Pt photodeposition. Highlights: Black-Right-Pointing-Pointer Remarkable antimicrobial activity of photorradiated Pt-TiO{sub 2} coated thin film. Black-Right-Pointing-Pointer Pt impregnation-exhibits superior photoactivity than Pt photodeposition onto TiO{sub 2}. Black-Right-Pointing-Pointer Photokilling of E. coli cells occur within 10 min of UV (640 {mu}W cm{sup -2}) irradiation. Black-Right-Pointing-Pointer Size and nature of Pt deposition control the bactericidal effect of TiO{sub 2} catalyst. Black-Right-Pointing-Pointer Photodissolution of bacterial surface is occurred on prolong UV light exposure.

  7. Infections Caused by Antimicrobial Drug-Resistant Saprophytic Gram-Negative Bacteria in the Environment.

    Science.gov (United States)

    Raphael, Eva; Riley, Lee W

    2017-01-01

    Drug-resistance genes found in human bacterial pathogens are increasingly recognized in saprophytic Gram-negative bacteria (GNB) from environmental sources. The clinical implication of such environmental GNBs is unknown. We conducted a systematic review to determine how often such saprophytic GNBs cause human infections. We queried PubMed for articles published in English, Spanish, and French between January 2006 and July 2014 for 20 common environmental saprophytic GNB species, using search terms "infections," "human infections," "hospital infection." We analyzed 251 of 1,275 non-duplicate publications that satisfied our selection criteria. Saprophytes implicated in blood stream infection (BSI), urinary tract infection (UTI), skin and soft tissue infection (SSTI), post-surgical infection (PSI), osteomyelitis (Osteo), and pneumonia (PNA) were quantitatively assessed. Thirteen of the 20 queried GNB saprophytic species were implicated in 674 distinct infection episodes from 45 countries. The most common species included Enterobacter aerogenes, Pantoea agglomerans , and Pseudomonas putida . Of these infections, 443 (66%) had BSI, 48 (7%) had SSTI, 36 (5%) had UTI, 28 (4%) had PSI, 21 (3%) had PNA, 16 (3%) had Osteo, and 82 (12%) had other infections. Nearly all infections occurred in subjects with comorbidities. Resistant strains harbored extended-spectrum beta-lactamase (ESBL), carbapenemase, and metallo-β-lactamase genes recognized in human pathogens. These observations show that saprophytic GNB organisms that harbor recognized drug-resistance genes cause a wide spectrum of infections, especially as opportunistic pathogens. Such GNB saprophytes may become increasingly more common in healthcare settings, as has already been observed with other environmental GNBs such as Acinetobacter baumannii and Pseudomonas aeruginosa .

  8. Infections Caused by Antimicrobial Drug-Resistant Saprophytic Gram-Negative Bacteria in the Environment

    Directory of Open Access Journals (Sweden)

    Eva Raphael

    2017-10-01

    Full Text Available BackgroundDrug-resistance genes found in human bacterial pathogens are increasingly recognized in saprophytic Gram-negative bacteria (GNB from environmental sources. The clinical implication of such environmental GNBs is unknown.ObjectivesWe conducted a systematic review to determine how often such saprophytic GNBs cause human infections.MethodsWe queried PubMed for articles published in English, Spanish, and French between January 2006 and July 2014 for 20 common environmental saprophytic GNB species, using search terms “infections,” “human infections,” “hospital infection.” We analyzed 251 of 1,275 non-duplicate publications that satisfied our selection criteria. Saprophytes implicated in blood stream infection (BSI, urinary tract infection (UTI, skin and soft tissue infection (SSTI, post-surgical infection (PSI, osteomyelitis (Osteo, and pneumonia (PNA were quantitatively assessed.ResultsThirteen of the 20 queried GNB saprophytic species were implicated in 674 distinct infection episodes from 45 countries. The most common species included Enterobacter aerogenes, Pantoea agglomerans, and Pseudomonas putida. Of these infections, 443 (66% had BSI, 48 (7% had SSTI, 36 (5% had UTI, 28 (4% had PSI, 21 (3% had PNA, 16 (3% had Osteo, and 82 (12% had other infections. Nearly all infections occurred in subjects with comorbidities. Resistant strains harbored extended-spectrum beta-lactamase (ESBL, carbapenemase, and metallo-β-lactamase genes recognized in human pathogens.ConclusionThese observations show that saprophytic GNB organisms that harbor recognized drug-resistance genes cause a wide spectrum of infections, especially as opportunistic pathogens. Such GNB saprophytes may become increasingly more common in healthcare settings, as has already been observed with other environmental GNBs such as Acinetobacter baumannii and Pseudomonas aeruginosa.

  9. Glyphosate application increased catabolic activity of gram-negative bacteria but impaired soil fungal community.

    Science.gov (United States)

    Liu, Yehao; Li, Yongchun; Hua, Xiaomei; Müller, Karin; Wang, Hailong; Yang, Tongyi; Wang, Qiong; Peng, Xin; Wang, Mengcheng; Pang, Yanjun; Qi, Jinliang; Yang, Yonghua

    2018-03-14

    Glyphosate is a non-selective organophosphate herbicide that is widely used in agriculture, but its effects on soil microbial communities are highly variable and often contradictory, especially for high dose applications. We applied glyphosate at two rates: the recommended rate of 50 mg active ingredient kg -1 soil and 10-fold this rate to simulate multiple glyphosate applications during a growing season. After 6 months, we investigated the effects on the composition of soil microbial community, the catabolic activity and the genetic diversity of the bacterial community using phospholipid fatty acids (PLFAs), community level catabolic profiles (CLCPs), and 16S rRNA denaturing gradient gel electrophoresis (DGGE). Microbial biomass carbon (C mic ) was reduced by 45%, and the numbers of the cultivable bacteria and fungi were decreased by 84 and 63%, respectively, under the higher glyphosate application rate. According to the PLFA analysis, the fungal biomass was reduced by 29% under both application rates. However, the CLCPs showed that the catabolic activity of the gram-negative (G-) bacterial community was significantly increased under the high glyphosate application rate. Furthermore, the DGGE analysis indicated that the bacterial community in the soil that had received the high glyphosate application rate was dominated by G- bacteria. Real-time PCR results suggested that copies of the glyphosate tolerance gene (EPSPS) increased significantly in the treatment with the high glyphosate application rate. Our results indicated that fungi were impaired through glyphosate while G- bacteria played an important role in the tolerance of microbiota to glyphosate applications.

  10. The Structural Diversity of Carbohydrate Antigens of Selected Gram-Negative Marine Bacteria

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2011-10-01

    Full Text Available Marine microorganisms have evolved for millions of years to survive in the environments characterized by one or more extreme physical or chemical parameters, e.g., high pressure, low temperature or high salinity. Marine bacteria have the ability to produce a range of biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents, and as a result, they have been a topic of research interest for many years. Among these biologically active molecules, the carbohydrate antigens, lipopolysaccharides (LPSs, O-antigens found in cell walls of Gram-negative marine bacteria, show great potential as candidates in the development of drugs to prevent septic shock due to their low virulence. The structural diversity of LPSs is thought to be a reflection of the ability for these bacteria to adapt to an array of habitats, protecting the cell from being compromised by exposure to harsh environmental stress factors. Over the last few years, the variety of structures of core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been discovered. In this review, we discuss the most recently encountered structures that have been identified from bacteria belonging to the genera Aeromonas, Alteromonas, Idiomarina, Microbulbifer, Pseudoalteromonas, Plesiomonas and Shewanella of the Gammaproteobacteria phylum; Sulfitobacter and Loktanella of the Alphaproteobactera phylum and to the genera Arenibacter, Cellulophaga, Chryseobacterium, Flavobacterium, Flexibacter of the Cytophaga-Flavobacterium-Bacteroides phylum. Particular attention is paid to the particular chemical features of the LPSs, such as the monosaccharide type, non-sugar substituents and phosphate groups, together with some of the typifying traits of LPSs obtained from marine bacteria. A possible correlation is then made between such features and the environmental adaptations undertaken by marine bacteria.

  11. The structural diversity of carbohydrate antigens of selected gram-negative marine bacteria.

    Science.gov (United States)

    Nazarenko, Evgeny L; Crawford, Russell J; Ivanova, Elena P

    2011-01-01

    Marine microorganisms have evolved for millions of years to survive in the environments characterized by one or more extreme physical or chemical parameters, e.g., high pressure, low temperature or high salinity. Marine bacteria have the ability to produce a range of biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents, and as a result, they have been a topic of research interest for many years. Among these biologically active molecules, the carbohydrate antigens, lipopolysaccharides (LPSs, O-antigens) found in cell walls of gram-negative marine bacteria, show great potential as candidates in the development of drugs to prevent septic shock due to their low virulence. The structural diversity of LPSs is thought to be a reflection of the ability for these bacteria to adapt to an array of habitats, protecting the cell from being compromised by exposure to harsh environmental stress factors. Over the last few years, the variety of structures of core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been discovered. In this review, we discuss the most recently encountered structures that have been identified from bacteria belonging to the genera Aeromonas, Alteromonas, Idiomarina, Microbulbifer, Pseudoalteromonas, Plesiomonas and Shewanella of the Gammaproteobacteria phylum; Sulfitobacter and Loktanella of the Alphaproteobactera phylum and to the genera Arenibacter, Cellulophaga, Chryseobacterium, Flavobacterium, Flexibacter of the Cytophaga-Flavobacterium-Bacteroides phylum. Particular attention is paid to the particular chemical features of the LPSs, such as the monosaccharide type, non-sugar substituents and phosphate groups, together with some of the typifying traits of LPSs obtained from marine bacteria. A possible correlation is then made between such features and the environmental adaptations undertaken by marine bacteria.

  12. Infective endocarditis due to multidrug resistant gram-negative bacilli: single centre experience over 5 years.

    Science.gov (United States)

    Durante-Mangoni, Emanuele; Andini, Roberto; Agrusta, Federica; Iossa, Domenico; Mattucci, Irene; Bernardo, Mariano; Utili, Riccardo

    2014-09-01

    Infective endocarditis (IE) due to gram-negative (GN) bacilli is uncommon. Although multi- and extensively-drug resistant (MDR/XDR) GN infections are emerging, very few data are available on IE due to these microrganisms. In this study, we describe the clinical characteristics, course and outcome of five contemporary, definite, MDR/XDR GNIE cases seen at our centre. All patients had been admitted to a hospital during the 6months before IE onset, 2 were on hemodialysis and 3 on intravenous medications. Three of the 5 cases were hospital-acquired. Intracardiac prosthetic devices were present in all cases (3 central venous lines, 2 prosthetic heart valves, 2 pacemakers). Mean Charlson comorbidity index was 5.8. Causative pathogens were XDR Pseudomonas aeruginosa (2 cases), XDR Acinetobacter baumannii, MDR Burkolderia cepacia and MDR Escherichia coli (1 case each). Concomitant pathogens with a MDR/XDR phenotype were isolated in 4 patients. Both valves and intracardiac devices and left and right sides of the heart were involved. The rate of complications was high. Antibiotic treatment hinged on the use of colistin, a carbapenem or both. Cardiovascular surgical procedures were performed in 3 patients. Despite aggressive therapeutic regimens, outcomes were poor. Clearance of bacteremia was obtained in 3 patients, in-hospital death occurred in 3 patients, only 1 patient survived during follow up. MDR/XDR GN are emerging as a cause of IE in carriers of intracardiac prostheses with extensive healthcare contacts and multiple comorbidities. Resistant GNIE has a complicated course and shows a dismal prognosis. Copyright © 2014 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  13. β-lactam resistance in gram-negative pathogens isolated from animals.

    Science.gov (United States)

    Trott, Darren

    2013-01-01

    Although β-lactams remain a cornerstone of veterinary therapeutics, only a restricted number are actually approved for use in food-producing livestock in comparison to companion animals and wildlife. Nevertheless, both registered and off-label use of third and fourth-generation cephalosporins in livestock may have influenced the emergence of plasmid-encoded AmpC β-lactamases (pAmpC) (mainly CMY-2) and CTX-M extended-spectrum β-lactamases (ESBLs) in both Gram-negative pathogens and commensals isolated from animals. This presents a public health concern due to the potential risk of transfer of β-lactam-resistant pathogens from livestock to humans through food. The recent detection of pAmpC and ESBLs in multidrug-resistant Enterobacteriaceae isolated from dogs has also confirmed the public health importance of β-lactam resistance in companion animals, though in this case, human-to-animal transmission may be equally as relevant as animal-to-human transmission. Identification of pAmpC and ESBLs in Enterobacteriaceae isolated from wildlife and aquaculture species may be evidence of environmental selection pressure arising from both human and veterinary use of β- lactams. Such selection pressure in animals could be reduced by the availability of reliable alternative control measures such as vaccines, bacteriophage treatments and/or competitive exclusion models for endemic production animal diseases such as colibacillosis. The global emergence and pandemic spread of extraintestinal pathogenic E. coli O25-ST131 strains expressing CTX-M-15 ESBL in humans and its recent detection in livestock, companion animals and wildlife is a major cause for concern and goes against the paradigm that Gramnegative pathogens do not necessarily have to lose virulence in compensation for acquiring resistance.

  14. Quantitative Real-time PCR detection of putrescine-producing Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Kristýna Maršálková

    2017-01-01

    Full Text Available Biogenic amines are indispensable components of living cells; nevertheless these compounds could be toxic for human health in higher concentrations. Putrescine is supposed to be the major biogenic amine associated with microbial food spoilage. Development of reliable, fast and culture-independent molecular methods to detect bacteria producing biogenic amines deserves the attention, especially of the food industry in purpose to protect health. The objective of this study was to verify the newly designed primer sets for detection of two inducible genes adiA and speF together in Salmonella enterica and Escherichia coli genome by Real-time PCR. These forenamed genes encode enzymes in the metabolic pathway which leads to production of putrescine in Gram-negative bacteria. Moreover, relative expression of these genes was studied in E. coli CCM 3954 strain using Real-time PCR. In this study, sets of new primers for the detection two inducible genes (speF and adiA in Salmonella enterica and E. coli by Real-time PCR were designed and tested. Amplification efficiency of a Real-time PCR was calculated from the slope of the standard curves (adiA, speF, gapA. An efficiency in a range from 95 to 105 % for all tested reactions was achieved. The gene expression (R of adiA and speF genes in E. coli was varied depending on culture conditions. The highest gene expression of adiA and speF was observed at 6, 24 and 36 h (RadiA ~ 3, 5, 9; RspeF ~11, 10, 9; respectively after initiation of growth of this bacteria in nutrient broth medium enchired with amino acids. The results show that these primers could be used for relative quantification analysis of E. coli.

  15. Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria.

    Science.gov (United States)

    Walsh, S E; Maillard, J-Y; Russell, A D; Catrenich, C E; Charbonneau, D L; Bartolo, R G

    2003-01-01

    This study investigates the antimicrobial activity and mode of action of two natural products, eugenol and thymol, a commonly utilized biostatic agent, triclocarban (TCC), and two surfactants, didecyldimethylammonium chloride (DDDMAC) and C10-C16 alkyldimethyl amine N-oxides (ADMAO). Methods used included: determination of minimum inhibitory concentrations (MICs), lethal effect studies with suspension tests and the investigation of sub-MIC concentrations on growth of E. coli, Staph. aureus and Ps. aeruginosa using a Bioscreen microbiological analyser. Leakage of intracellular constituents and the effects of potentiating agents were also investigated. Only DDDMAC was bactericidal against all of the organisms tested. Eugenol, thymol and ADMAO showed bacteriostatic and bactericidal activity, but not against Ps. aeruginosa. TCC was only bacteristatic against Staph. aureus, but like the other agents, it did affect the growth of the other organisms in the Bioscreen experiments. All of the antimicrobial agents tested were potentiated by the permeabilizers to some extent and leakage of potassium was seen with all of the agents except TCC. DDDMAC was bactericidal against all organisms tested and all compounds had some bacteriostatic action. Low level static effects on bacterial growth were seen with sub-MIC concentrations. Membrane damage may account for at least part of the mode of action of thymol, eugenol, DDDMAC and ADMAO. The ingredients evaluated demonstrated a range of bactericidal and bacteriostatic properties against the Gram-negative and -positive organisms evaluated and the membrane (leakage of intracellular components) was implicated in the mode of action for most (except TCC). Sub-MIC levels of all ingredients did induce subtle effects on the organisms which impacted bacterial growth, even for those which had no true inhibitory effects.

  16. Antibiotic resistance in bacterial pathogens causing meningitis in ...

    African Journals Online (AJOL)

    Antibiotic resistance in bacterial pathogens causing meningitis in children at Harare Central Hospital, Zimbabwe. M Gudza-Mugabe, R.T. Mavenyengwa, M.P. Mapingure, S Mtapuri-Zinyowera, A Tarupiwa, V.J. Robertson ...

  17. Preliminary studies on antibiotic-resistant Escherichia coli isolated ...

    African Journals Online (AJOL)

    Preliminary studies on antibiotic-resistant Escherichia coli isolated from cattle and children in the pastoral community of Nyabushozi, Uganda. J Okwee-Acai, S Majalija, SG Okech, MBS Kisaka, J Acon ...

  18. Handling Time-dependent Variables : Antibiotics and Antibiotic Resistance

    NARCIS (Netherlands)

    Munoz-Price, L. Silvia; Frencken, Jos F.; Tarima, Sergey; Bonten, Marc

    2016-01-01

    Elucidating quantitative associations between antibiotic exposure and antibiotic resistance development is important. In the absence of randomized trials, observational studies are the next best alternative to derive such estimates. Yet, as antibiotics are prescribed for varying time periods,

  19. CURRENT ISSUES REGARDING ENDOCRINE DISRUPTING CHEMICALS AND ANTIBIOTIC RESISTANCE

    Science.gov (United States)

    Recently public concern has increased regarding industrial and environmental substances that may have adverse hormonal effects in human and wildlife populations. This concern has also been expanded to include antibiotic-resistant bacteria and the presence of various antibiotics a...

  20. Mathematical studies on nosocomial spread of antibiotic-resistant bacteria

    NARCIS (Netherlands)

    Gurieva, T.V.

    2017-01-01

    Infections with antibiotic-resistant bacteria are a worldwide problem in hospitals and their rates remain high in many countries despite efforts to reduce the rates. Infection prevention is complicated by asymptomatic carriers. Using mathematical modelling, different intervention strategies were

  1. Antibiotic resistance profiles and relatedness of enteric bacterial ...

    African Journals Online (AJOL)

    Antibiotic resistance profiles and relatedness of enteric bacterial pathogens isolated from HIV/AIDS patients with and without diarrhoea and their household drinking water in rural communities in Limpopo Province South Africa.

  2. Cooperative Antibiotic Resistance in a Multi-Drug Environment

    Science.gov (United States)

    Yurtsev, Eugene; Dai, Lei; Gore, Jeff

    2013-03-01

    The emergence of antibiotic resistance in bacteria is a significant health concern. A frequent mechanism of antibiotic resistance involves the production of an enzyme which inactivates the antibiotic. By inactivating the antibiotic, resistant cells can ``share'' their resistance with other cells in the bacterial population, suggesting that it may be possible to observe cooperation between strains that inactivate different antibiotics. Here, we experimentally track the population dynamics of two E. coli strains in the presence of two different antibiotics. We find that together the strains are able to grow in antibiotic concentrations that inhibit growth of either of the strains individually. We observe that even when there is stable coexistence between the two strains, the population size of each strain can undergo large oscillations. We expect that our results will provide insight into the evolution of antibiotic resistance and the evolutionary origin of phenotypic diversity and cooperative behaviors.

  3. Effective Antibiotic Resistance Mitigation during Cheese Fermentation ▿

    OpenAIRE

    Li, Xinhui; Li, Yingli; Alvarez, Valente; Harper, Willis James; Wang, Hua H.

    2011-01-01

    Controlling antibiotic-resistant (ART) bacteria in cheese fermentation is important for food safety and public health. A plant-maintained culture was found to be a potential source for ART bacterial contamination in cheese fermentation. Antibiotics had a detectable effect on the ART population from contamination in the finished product. The decrease in the prevalence of antibiotic resistance (AR) in retail cheese samples from 2010 compared to data from 2006 suggested the effectiveness of targ...

  4. Probing minority population of antibiotic-resistant bacteria.

    Science.gov (United States)

    Huang, Tianxun; Zheng, Yan; Yan, Ya; Yang, Lingling; Yao, Yihui; Zheng, Jiaxin; Wu, Lina; Wang, Xu; Chen, Yuqing; Xing, Jinchun; Yan, Xiaomei

    2016-06-15

    The evolution and spread of antibiotic-resistant pathogens has become a major threat to public health. Advanced tools are urgently needed to quickly diagnose antibiotic-resistant infections to initiate appropriate treatment. Here we report the development of a highly sensitive flow cytometric method to probe minority population of antibiotic-resistant bacteria via single cell detection. Monoclonal antibody against TEM-1 β-lactamase and Alexa Fluor 488-conjugated secondary antibody were used to selectively label resistant bacteria green, and nucleic acid dye SYTO 62 was used to stain all the bacteria red. A laboratory-built high sensitivity flow cytometer (HSFCM) was applied to simultaneously detect the side scatter and dual-color fluorescence signals of single bacteria. By using E. coli JM109/pUC19 and E. coli JM109 as the model systems for antibiotic-resistant and antibiotic-susceptible bacteria, respectively, as low as 0.1% of antibiotic-resistant bacteria were accurately quantified. By monitoring the dynamic population change of a bacterial culture with the administration of antibiotics, we confirmed that under the antimicrobial pressure, the original low population of antibiotic-resistant bacteria outcompeted susceptible strains and became the dominant population after 5hours of growth. Detection of antibiotic-resistant infection in clinical urine samples was achieved without cultivation, and the bacterial load of susceptible and resistant strains can be faithfully quantified. Overall, the HSFCM-based quantitative method provides a powerful tool for the fundamental studies of antibiotic resistance and holds the potential to provide rapid and precise guidance in clinical therapies. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Optimal use of antibiotic resistance surveillance systems.

    Science.gov (United States)

    Critchley, I A; Karlowsky, J A

    2004-06-01

    Increasing concern about the emergence of resistance in clinically important pathogens has led to the establishment of a number of surveillance programmes to monitor the true extent of resistance at the local, regional and national levels. Although some programmes have been operating for several years, their true usefulness is only now being realised. This review describes some of the major surveillance initiatives and the way in which the data have been used in a number of different settings. In the hospital, surveillance data have been used to monitor local antibiograms and determine infection control strategies and antibiotic usage policies. In the community, surveillance data have been used to monitor public health threats, such as infectious disease outbreaks involving resistant pathogens and the effects of bioterrorism countermeasures, by following the effects of prophylactic use of different antibiotics on resistance. Initially, the pharmaceutical industry sponsored surveillance programmes to monitor the susceptibility of clinical isolates to marketed products. However, in the era of burgeoning resistance, many developers of antimicrobial agents find surveillance data useful for defining new drug discovery and development strategies, in that they assist with the identification of new medical needs, allow modelling of future resistance trends, and identify high-profile isolates for screening the activity of new agents. Many companies now conduct pre-launch surveillance of new products to benchmark activity so that changes in resistance can be monitored following clinical use. Surveillance data also represent an integral component of regulatory submissions for new agents and, together with clinical trial data, are used to determine breakpoints. It is clear that antibiotic resistance surveillance systems will continue to provide valuable data to health care providers, university researchers, pharmaceutical companies, and government and regulatory agencies.

  6. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes.

    Science.gov (United States)

    Sharma, Virender K; Johnson, Natalie; Cizmas, Leslie; McDonald, Thomas J; Kim, Hyunook

    2016-05-01

    Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental systems such as natural environments and drinking water resources. For example, ARG or ARB with resistance to ciprofloxacin, sulfamethoxazole, trimethoprim, quinolone, vancomycin, or tetracycline (e.g., tet(A), tet(B), tet(C), tet(G), tet(O), tet(M), tet(W), sul I, and sul II) have been detected in the environment. The development of resistance may be intrinsic, may be acquired through spontaneous mutations (de novo), or may occur due to horizontal gene transfer from donor bacteria, phages, or free DNA to recipient bacteria. An overview is also provided of the current knowledge regarding inactivation of ARB and ARG, and the mechanism of the effects of different disinfection processes in water and wastewater (chlorination, UV irradiation, Fenton reaction, ozonation, and photocatalytic oxidation). The effects of constructed wetlands and nanotechnology on ARB and ARG are also summarized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Antibiotic resistance in the wild: an eco-evolutionary perspective.

    Science.gov (United States)

    Hiltunen, Teppo; Virta, Marko; Laine, Anna-Liisa

    2017-01-19

    The legacy of the use and misuse of antibiotics in recent decades has left us with a global public health crisis: antibiotic-resistant bacteria are on the rise, making it harder to treat infections. At the same time, evolution of antibiotic resistance is probably the best-documented case of contemporary evolution. To date, research on antibiotic resistance has largely ignored the complexity of interactions that bacteria engage in. However, in natural populations, bacteria interact with other species; for example, competition and grazing are import interactions influencing bacterial population dynamics. Furthermore, antibiotic leakage to natural environments can radically alter bacterial communities. Overall, we argue that eco-evolutionary feedback loops in microbial communities can be modified by residual antibiotics and evolution of antibiotic resistance. The aim of this review is to connect some of the well-established key concepts in evolutionary biology and recent advances in the study of eco-evolutionary dynamics to research on antibiotic resistance. We also identify some key knowledge gaps related to eco-evolutionary dynamics of antibiotic resistance, and review some of the recent technical advantages in molecular microbiology that offer new opportunities for tackling these questions. Finally, we argue that using the full potential of evolutionary theory and active communication across the different fields is needed for solving this global crisis more efficiently.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Authors.

  8. A Review on Antibiotic Resistance: Alarm Bells are Ringing.

    Science.gov (United States)

    Zaman, Sojib Bin; Hussain, Muhammed Awlad; Nye, Rachel; Mehta, Varshil; Mamun, Kazi Taib; Hossain, Naznin

    2017-06-28

    Antibiotics are the 'wonder drugs' to combat microbes. For decades, multiple varieties of antibiotics have not only been used for therapeutic purposes but practiced prophylactically across other industries such as agriculture and animal husbandry. Uncertainty has arisen, as microbes have become resistant to common antibiotics while the host remains unaware that antibiotic resistance has emerged. The aim of this review is to explore the origin, development, and the current state of antibiotic resistance, regulation, and challenges by examining available literature. We found that antibiotic resistance is increasing at an alarming rate. A growing list of infections i.e., pneumonia, tuberculosis, and gonorrhea are becoming harder and at times impossible to treat while antibiotics are becoming less effective. Antibiotic-resistant infections correlate with the level of antibiotic consumption. Non-judicial use of antibiotics is mostly responsible for making the microbes resistant. The antibiotic treatment repertoire for existing or emerging hard-to-treat multidrug-resistant bacterial infections is limited, resulting in high morbidity and mortality report. This review article reiterates the optimal use of antimicrobial medicines in human and animal health to reduce antibiotic resistance. Evidence from the literature suggests that the knowledge regarding antibiotic resistance in the population is still scarce. Therefore, the need of educating patients and the public is essential to fight against the antimicrobial resistance battle.

  9. Antibiotic resistance in the wild: an eco-evolutionary perspective

    Science.gov (United States)

    Virta, Marko

    2017-01-01

    The legacy of the use and misuse of antibiotics in recent decades has left us with a global public health crisis: antibiotic-resistant bacteria are on the rise, making it harder to treat infections. At the same time, evolution of antibiotic resistance is probably the best-documented case of contemporary evolution. To date, research on antibiotic resistance has largely ignored the complexity of interactions that bacteria engage in. However, in natural populations, bacteria interact with other species; for example, competition and grazing are import interactions influencing bacterial population dynamics. Furthermore, antibiotic leakage to natural environments can radically alter bacterial communities. Overall, we argue that eco-evolutionary feedback loops in microbial communities can be modified by residual antibiotics and evolution of antibiotic resistance. The aim of this review is to connect some of the well-established key concepts in evolutionary biology and recent advances in the study of eco-evolutionary dynamics to research on antibiotic resistance. We also identify some key knowledge gaps related to eco-evolutionary dynamics of antibiotic resistance, and review some of the recent technical advantages in molecular microbiology that offer new opportunities for tackling these questions. Finally, we argue that using the full potential of evolutionary theory and active communication across the different fields is needed for solving this global crisis more efficiently. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences'. PMID:27920384

  10. Investigation of antifouling and disinfection potential of chitosan coated iron oxide-PAN hollow fiber membrane using Gram-positive and Gram-negative bacteria.

    Science.gov (United States)

    Mukherjee, Munmun; De, Sirshendu

    2017-06-01

    Chitosan coated iron oxide nanoparticles were impregnated into polyacrylonitrile based hollow fiber membrane. The molecular weight cut off was varied in the range of 120 to 145kDa with the concentration of nanoparticles. Incorporation of nanoparticles improved the permeability, mechanical property and hydrophilicity of the membrane. The contact angle of the membrane decreased from 80° to 51° and the permeability increased by 31% at 0.5wt% nanoparticles concentration. The antibacterial and antifouling property of the membrane were investigated with two biofilm causing Gram positive and Gram negative bacteria. The damage of cell membrane was directly confirmed by release of cellular constituent absorbing in 260nm. The cellular deformation on the membrane surface was evident by direct microscopic observation in FESEM. This damage was likely caused by electrostatic interaction between NH 3 + group of nanoparticles and anionic components of phosphoryl group of bacteria. The hollow fiber membrane shows promising antibiofouling property even after long experimental run as evident by 95% flux recovery ratio. The effect of operating conditions on rejection and flux profile was investigated during long experimental run. The result indicated that there was no detectable iron in the permeate sample that could impose adverse health hazard. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effects of Photodynamic Therapy on Gram-Positive and Gram-Negative Bacterial Biofilms by Bioluminescence Imaging and Scanning Electron Microscopic Analysis

    Science.gov (United States)

    Núñez, Silvia C.; Azambuja, Nilton; Fregnani, Eduardo R.; Rodriguez, Helena M.H.; Hamblin, Michael R.; Suzuki, Hideo; Ribeiro, Martha S.

    2013-01-01

    Abstract Objective: The aim of this study was to test photodynamic therapy (PDT) as an alternative approach to biofilm disruption on dental hard tissue, We evaluated the effect of methylene blue and a 660 nm diode laser on the viability and architecture of Gram-positive and Gram-negative bacterial biofilms. Materials and methods: Ten human teeth were inoculated with bioluminescent Pseudomonas aeruginosa or Enterococcus faecalis to form 3 day biofilms in prepared root canals. Bioluminescence imaging was used to serially quantify and evaluate the bacterial viability, and scanning electron microscopic (SEM) imaging was used to assess architecture and morphology of bacterial biofilm before and after PDT employing methylene blue and 40 mW, 660 nm diode laser light delivered into the root canal via a 300 μm fiber for 240 sec, resulting in a total energy of 9.6 J. The data were statistically analyzed with analysis of variance (ANOVA) followed by Tukey test. Results: The bacterial reduction showed a dose dependence; as the light energy increased, the bioluminescence decreased in both planktonic suspension and in biofilms. The SEM analysis showed a significant reduction of biofilm on the surface. PDT promoted disruption of the biofilm and the number of adherent bacteria was reduced. Conclusions: The photodynamic effect seems to disrupt the biofilm by acting both on bacterial cells and on the extracellular matrix. PMID:23822168

  12. 1-(2-aminophenyl)-1H-1,2,3-triazole-4-carboxylic acid: activity against Gram-positive and Gram-negative pathogens including Vibrio cholerae

    Science.gov (United States)

    Maji, Krishnendu; Haldar, Debasish

    2017-10-01

    We report a new synthetic aromatic ε-amino acid containing a triazole moiety with antimicrobial potential against Gram-positive, Gram-negative and pathogenic bacteria including Vibrio cholerae. Structure-property relationship studies revealed that all the functional groups are essential to enhance the antimicrobial activity. The 1-(2-aminophenyl)-1H-1,2,3-triazole-4-carboxylic acid was synthesized by click chemistry. From X-ray crystallography, the amino acid adopts a kink-like structure where the phenyl and triazole rings are perpendicular to each other and the amine and acid groups maintain an angle of 60°. The agar diffusion test shows that the amino acid has significant antibacterial activity. The liquid culture test exhibits that the minimum inhibitory concentration (MIC) value for Bacillus subtilis and Vibrio cholerae is 59.5 µg ml-1. FE-SEM experiments were performed to study the morphological changes of bacterial shape after treatment with compound 1. The antimicrobial activity of the amino acid was further studied by DNA binding and degradation study, protein binding, dye-binding assay and morphological analysis. Moreover, the amino acid does not have any harmful effect on eukaryotes.

  13. Growth of Ag-nanoparticles in an aqueous solution and their antimicrobial activities against Gram positive, Gram negative bacterial strains and Candida fungus.

    Science.gov (United States)

    Aazam, Elham Shafik; Zaheer, Zoya

    2016-04-01

    Silver nanoparticles (AgNPs) were synthesized using Ocimum sanctum (Tulsi) leaves aqueous extract as reducing as well as a capping agent in absence and presence of cetyltrimethylammonium bromide (CTAB). The resulting nanomaterials were characterized by UV-visible spectrophotometer, and transmission electron microscope. The UV-Vis spectroscopy revealed the formation of AgNPs at 400-450 nm. TEM photographs indicate that the truncated triangular silver nanoplates and/or spherical morphology of the AgNPs with an average diameter of 25 nm have been distorted markedly in presence of CTAB. The AgNPs were almost mono disperse in nature. Antimicrobial activities of AgNPs were determined by using two bacteria (Gram positive Staphylococcus aureus MTCC-3160), Gram negative Escherichia coli MTCC-450) and one species of Candida fungus (Candida albicans ATCC 90030) with Kirby-Bauer or disc diffusion method. The zone of inhibition seems extremely good showing a relatively large zone of inhibition in both Staphylococcus aureus, Escherichia coli, and Candida albicans strains.

  14. High diversity of bacterial pathogens and antibiotic resistance in salmonid fish farm pond water as determined by molecular identification employing 16S rDNA PCR, gene sequencing and total antibiotic susceptibility techniques.

    Science.gov (United States)

    Moore, John E; Huang, Junhua; Yu, Pengbo; Ma, Chaofeng; Moore, Peter Ja; Millar, Beverley C; Goldsmith, Colin E; Xu, Jiru

    2014-10-01

    The aim of this study was to examine the microbiological and related parameters (antibiotic resistance and pathogen identification) of water at two salmonid fish farms in Northern Ireland. Total Bacterial Counts at the Movanagher Fish Farm was 1730 colony forming units (cfu)/ml water (log10 3.24cfu/ml) and 3260cfu/ml (log10 3.51cfu/ml) at the Bushmills Salmon Station. Examination of resulting organisms revealed 10 morphological phenotypes, which were subsequently sequenced to determine their identification. All these organisms were Gram-negative and no Gram-positive organisms were isolated from any water sample. From these phenotypes, eight different genera were identified including Acinetobacter, Aeromonas, Chryseobacterium, Erwinia, Flavobacterium, Pseudomonas and Rheinheimera. One unnamed novel taxon was identified from water at the Movanagher Fish Farm, belonging to the genus Acinetobacter and has been tentatively named Acinetobacter movanagherensis. No other novel taxa were observed. All but one of these environmental organisms (Erwinia) are potential pathogens of fish disease. Total antibiotic resistance was observed to varying degrees in water specimens. The most resistant populations were observed in water taken from the Bushmills Salmon Station inlet, followed by water from the Movanagher Fish Farm. No resistance was observed against tetracycline and there was only one occurrence of resistance against ciprofloxacin. Overall, this study indicates that potential fish pathogens made up the majority of environmental organisms identified, even in the absence of recorded fish disease. There was also relatively high levels of total antibiotic resistance in the bacterial water populations examined, where tetracycline was the only antibiotic with zero resistance. These data indicate that the threat of bacterial disease is relatively close due to the indigenous colonization of farm water and that husbandry standards should be maintained at a high standard to avert

  15. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species

    Directory of Open Access Journals (Sweden)

    Chiara eDevirgiliis

    2013-10-01

    Full Text Available Lactobacilli represent a major Lactic Acid Bacteria (LAB component within the complex microbiota of fermented foods obtained from meat, dairy and vegetable sources. Lactococci, on the other hand, are typical of milk and fermented dairy products, which in turn represent the vast majority of fermented products. As is the case for all species originating from the environment, foodborne lactobacilli and lactococci consist of natural, uncharacterized strains, whose biodiversity depends on geographical origin, seasonality, animal feeding/plant growth conditions. Although a few species of opportunistic pathogens have been described in lactobacilli and lactococci, they are mostly non-pathogenic, Gram-positive bacteria displaying probiotic features. Since antibiotic resistant (AR strains do not constitute an immediate threat to human health, scientific interest for detailed studies on AR genes in these species has been greatly hindered. However, increasing evidence points at a crucial role for foodborne LAB as reservoir of potentially transmissible AR genes, underlining the need for further, more detailed studies aimed at identifying possible strategies to avoid AR spread to pathogens through fermented food consumption. The availability of a growing number of sequenced bacterial genomes has been very helpful in identifying the presence/distribution of mobile elements associated with AR genes, but open questions and knowledge gaps still need to be filled, underlining the need for systematic and datasharing approaches to implement both surveillance and mechanistic studies on transferability of AR genes. In the present review we report an update of the recent literature on AR in lactobacilli and lactococci following the 2006 EU-wide ban of the use of antibiotics as feed additives in animal farming, and we discuss the limits of the present knowledge in evaluating possible risks for human health.

  16. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection.

    Science.gov (United States)

    Sharkey, Liam K R; Edwards, Thomas A; O'Neill, Alex J

    2016-03-22

    Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F pro