WorldWideScience

Sample records for antibiotic resistant escherichia

  1. Widespread antibiotic resistance of diarrheagenic Escherichia coli and Shigella species

    OpenAIRE

    Azam Fatahi Sadeghabadi; Ali Ajami; Reza Fadaei; Masoud Zandieh; Elham Heidari; Mahmoud Sadeghi; Behrooz Ataei; Shervin Ghaffari Hoseini

    2014-01-01

    Background: Antibiotic resistance of enteric pathogens particularly Shigella species, is a critical world-wide problem and monitoring their resistant pattern is essential, because the choice of antibiotics is absolutely dependent on regional antibiotic susceptibility patterns. During summer 2013, an unusual increase in number of diarrheal diseases was noticed in Isfahan, a central province of Iran. Therefore, the antibiotic resistance of diarrheagenic Escherichia coli and Shigella species iso...

  2. Widespread antibiotic resistance of diarrheagenic Escherichia coli and Shigella species

    Directory of Open Access Journals (Sweden)

    Azam Fatahi Sadeghabadi

    2014-01-01

    Full Text Available Background: Antibiotic resistance of enteric pathogens particularly Shigella species, is a critical world-wide problem and monitoring their resistant pattern is essential, because the choice of antibiotics is absolutely dependent on regional antibiotic susceptibility patterns. During summer 2013, an unusual increase in number of diarrheal diseases was noticed in Isfahan, a central province of Iran. Therefore, the antibiotic resistance of diarrheagenic Escherichia coli and Shigella species isolated were evaluated. Materials and Methods: According to the guideline on National Surveillance System for Foodborn Diseases, random samples from patients with acute diarrhea were examined in local laboratories of health centers and samples suspicious of Shigella spp. were further assessed in referral laboratory. Isolated pathogens were identified by standard biochemical and serologic tests and antibiotic susceptibility testing was carried out by disc diffusion method. Results: A total of 1086 specimens were obtained and 58 samples suspicious of Shigella were specifically evaluated. The most prevalent isolated pathogen was Shigella sonnei (26/58 followed by E. coli (25/58 and Shigella flexneri (3/58. A large number of isolated bacteria were resistant to co-trimoxazole (Shigella spp: 100%, E. coli: 80%, azithromycin (Shigella spp: 70.4%, E. coli: 44.0%, ceftriaxone (Shigella spp: 88.9%, E. coli: 56.0% and cefixime (Shigella spp: 85.2%, E. coli: 68.0%. About88.3% of S. sonnei isolates, one S. flexneri isolate, and 56% of E. coli strains were resistant to at least three antibiotic classes (multidrug resistant. Conclusion: Due to high levels of resistance to recommended and commonly used antibiotics for diarrhea, continuous monitoring of antibiotic resistance seems essential for determining best options of empirical therapy.

  3. Sensitivity of antibiotic resistant and antibiotic susceptible Escherichia coli, Enterococcus and Staphylococcus strains against ozone.

    Science.gov (United States)

    Heß, Stefanie; Gallert, Claudia

    2015-12-01

    Tolerance of antibiotic susceptible and antibiotic resistant Escherichia coli, Enterococcus and Staphylococcus strains from clinical and wastewater samples against ozone was tested to investigate if ozone, a strong oxidant applied for advanced wastewater treatment, will affect the release of antibiotic resistant bacteria into the aquatic environment. For this purpose, the resistance pattern against antibiotics of the mentioned isolates and their survival after exposure to 4 mg/L ozone was determined. Antibiotic resistance (AR) of the isolates was not correlating with higher tolerance against ozone. Except for ampicillin resistant E. coli strains, which showed a trend towards increased resistance, E. coli strains that were also resistant against cotrimoxazol, ciprofloxacin or a combination of the three antibiotics were similarly or less resistant against ozone than antibiotic sensitive strains. Pigment-producing Enterococcus casseliflavus and Staphylococcus aureus seemed to be more resistant against ozone than non-pigmented species of these genera. Furthermore, aggregation or biofilm formation apparently protected bacteria in subsurface layers from inactivation by ozone. The relatively large variance of tolerance against ozone may indicate that resistance to ozone inactivation most probably depends on several factors, where AR, if at all, does not play a major role.

  4. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli

    OpenAIRE

    Tazzyman, Samuel J; Hall, Alex R

    2014-01-01

    The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under pha...

  5. Antibiotic Resistance

    Science.gov (United States)

    ... lives. But there is a growing problem of antibiotic resistance. It happens when bacteria change and become able ... resistant to several common antibiotics. To help prevent antibiotic resistance Don't use antibiotics for viruses like colds ...

  6. Antibiotic resistance and plasmid carriage among Escherichia coli isolates from chicken meat in Malaysia

    International Nuclear Information System (INIS)

    Escherichia coli isolates from 131 raw chicken meat samples were tested for susceptibility to 12 antibiotics. Plasmids were isolated from many samples and their DNA molecular weight calculated. An 81.7% plasmid occurrence rate was observed among the isolates, ranging from 0 to 8 in number and with sizes from 1.2 to 118.6 MDa. Plasmids were detected in 93.8% of E. coIi isolates resistant to all 12 antibiotics, and in 90.5% of E. coli isolates resistant to 11. Three (2.8%) isolates harboured 8 plasmids and were resistant to all 12 antibiotics. Antibiotic resistant genes in bacteria are usually carried in extrachromosomal DNA and it is postulated that E. coli with a high number of plasmids possesses wider resistance to antibiotics. (author)

  7. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli.

    Science.gov (United States)

    Tazzyman, Samuel J; Hall, Alex R

    2015-04-01

    The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under phage parasitism, the likelihood that antibiotic-resistant genetic backgrounds spread depends on their initial frequency, mutation rate and intrinsic growth rate relative to drug-susceptible genotypes, because these parameters determine relative rates of phage-resistance evolution on different genetic backgrounds. Moreover, the average cost of antibiotic resistance in terms of intrinsic growth in the antibiotic-free experimental environment was small relative to the benefits of an increased mutation rate in the presence of phages. This is consistent with our theoretical work indicating that, under phage selection, typical costs of antibiotic resistance can be outweighed by realistic increases in mutability if drug resistance and hypermutability are genetically linked, as is frequently observed in clinical isolates. This suggests the long-term distribution of antibiotic resistance depends on the relative rates at which different lineages adapt to other types of selection, which in the case of phage parasitism is probably extremely common, as well as costs of resistance inferred by classical in vitro methods. PMID:25268496

  8. Antibiotic Resistance in Escherichia coli from Pigs in Organic and Conventional Farming in Four European Countries

    DEFF Research Database (Denmark)

    Österberg, Julia; Wingstrand, Anne; Jensen, Annette Nygaard;

    2016-01-01

    Organic pig production differs in many ways from conventional production of pigs, e.g., in antibiotic use, herd structure, feeding regimes, access to outdoor areas and space allowance per pig. This study investigated if these differences result in a lower occurrence of antibiotic resistance...... in organic slaughter pigs in Denmark, France, Italy and Sweden. Samples were taken from the colon content and/or faeces and minimum inhibitory concentrations (MIC) of ten antibiotics were determined in isolates of Escherichia coli. In addition, the proportion of tetracycline (TET) resistant E. coli in colon...... in conventional pigs, except in Sweden where TET-resistance was equally low in both production types. There were also differences between countries within production type in the percentage resistance to individual antibiotics as well as the proportion of TET-resistant E. coli with lower median proportions...

  9. Antibiotic resistance patterns in Escherichia coli from gulls in nine European countries

    Directory of Open Access Journals (Sweden)

    Johan Stedt

    2014-01-01

    Full Text Available Background: The prevalence of antibiotic resistant faecal indicator bacteria from humans and food production animals has increased over the last decades. In Europe, resistance levels in Escherichia coli from these sources show a south-to-north gradient, with more widespread resistance in the Mediterranean region compared to northern Europe. Recent studies show that resistance levels can be high also in wildlife, but it is unknown to what extent resistance levels in nature conform to the patterns observed in human-associated bacteria. Methods: To test this, we collected 3,158 faecal samples from breeding gulls (Larus sp. from nine European countries and tested 2,210 randomly isolated E. coli for resistance against 10 antibiotics commonly used in human and veterinary medicine. Results: Overall, 31.5% of the gull E. coli isolates were resistant to ≥1 antibiotic, but with considerable variation between countries: highest levels of isolates resistant to ≥1 antibiotic were observed in Spain (61.2% and lowest levels in Denmark (8.3%. For each tested antibiotic, the Iberian countries were either the countries with the highest levels or in the upper range in between-country comparisons, while northern countries generally had a lower proportion of resistant E. coli isolates, thereby resembling the gradient of resistance seen in human and food animal sources. Conclusion: We propose that gulls may serve as a sentinel of environmental levels of antibiotic resistant E. coli to complement studies of human-associated microbiota.

  10. Mechanisms of antibiotic resistance to enrofloxacin in uropathogenic Escherichia coli in dog

    Science.gov (United States)

    Escherichia coli (E. coli) urinary tract infections (UTIs) are becoming a serious problem both for pets and humans (zoonosis) due to the close contact and to the increasing resistance to antibiotics. Canine E. coli represents a good experimental model useful to study this pathology. Moreover, as des...

  11. Determination Pattern of Antibiotic Resistance in Entropathogenic Escherichia coli Strains Isolated from Children with Diarrhea

    Directory of Open Access Journals (Sweden)

    P. Karami

    2012-04-01

    Full Text Available Introduction & Objective: Diarrheal diseases are considered a major health problem, especially in children. Enteropathogenic Escherichia coli (EPEC strains are the common cause of diarrhea in children especially in developing countries. Because of undesirable effects of diarrhea and its interference with children's growth, in some cases antibiotic treatment is recommended. In recent years, resistance toward common and effective antibiotics in the treatment of infectious diseases became one of the most important challenges in medical society, for this purpose, antibiotic sensitivity and resistance of strains in every geographical zone must be determined. So in this study, of antibiotic patterns of these bacteria were examined.Materials & Methods: This cross-sectional study was performed on 192 strains of Enteropathogen Escherichia coli isolated from children who were suffering from diarrhea in 1389-1390 in the microbiology laboratory of Hamadan University of medical sciences. To identify these strains, standard biochemical and serology tests were used. The antibiotic sensitivity test of these isolates was carried out with disc diffusion agar method according to the CLSI standards for 14 different antibiotics disc. Resistance toward 3 or more than 3 classes of antibiotics were defined as multidrug resistance.Results: The result of this study shows EPEC strains had the highest resistance to cefpodoxime (97%, trimethoprim (60.7%, tetracycline (58.4% and ampicillin (45.8%. Multidrug resistance was 68.7 percent. These strains also showed the highest sensitivity against imipenem, ceftriaxone, and ciprofloxacin antibiotics.Conclusion: EPEC strains that were studied with resistance to ampicillin, tetracycline and convenient sensitivity against fluoroquinolones are one of the major factors in children’s diarrhea. A result of this research suggests that antimicrobial resistance in Escherichia coli strains are high and prescribing and antibiotic is not

  12. Antibiotic Resistance of Escherichia Coli Isolated From Poultry and Poultry Environment of Bangladesh

    Directory of Open Access Journals (Sweden)

    Muhammad A. Akond

    2009-01-01

    Full Text Available Problem statement: Increased emergence in microbial resistance to antibiotics is a growing problem in Bangladesh, a tropical country with a large agrarian population having limited medical facilities. Wide spread use of antimicrobials in poultry farming here is a concern of multi-drug microbial resistance development that can potentially be transmitted to human pathogens even from non-pathogenic carrier strains. Attempt was made to assess drug susceptibility in Escherichia coli from poultry sources of Bangladesh. Approach: Eighty selected strains isolated from poultry sources were thoroughly characterized by standard cultural and biochemical tests followed by final identification using latex agglutination test of polyvalent anti-sera, from which 50 were tested for susceptibility to 13 antibiotics following disk diffusion method. Results: 145 (58%, out of total 250, were found positive for E. coli. 52-88% of tested E. coli strains from poultry sources were found resistant to Penicillin, Ciprofloxacin, Riphampicin, Kanamycin, Streptomycin, Cefixine, Erythromycin, Ampicillin, Tetracycline, and 20% strains showed resistance to both Chloramphenicol and Neomycin. No strains showed resistance to Norfloxacin and Gentamicin. Sensitivity was recorded in case of 60-86% strains to Norfloxacin, Gentamicin, Chloramphenicol, and Neomycin; and 26-36% strains against Tetracycline, Streptomycin, and Ampicillin. Intermediate resistance/ susceptibility to various antibiotics were observed for 12-36% Escherichia coli strains. Both, resistance and susceptibility were exhibited against Chloramphenicol, Ampicillin, Gentamicin, Neomycin, Tetracycline, Streptomycin and Norfloxacin. Multi drug resistance was found in case of 6-10 antibiotics for all strains tested. Conclusion: Further study is required on the role of poultry borne bacteria as vectors in transmitting drug resistance. Attention is to be paid for personnel hygiene in processing and handling of poultry and

  13. Multiple antibiotic resistant Escherichia coli from a tropical rain forest stream

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, C.E.; Alvarez, H.J.; Ortiz, N.; Bisbal, M.; Arias, W.; Baerga, C. [Univ. of Puerto Rico, Rio Piedras (Puerto Rico). Dept. of Biology; Hazen, T.C. [E.I. DuPont de Nemours and Co., Aiken, SC (United States). Savannah River Lab.

    1988-12-31

    High densities of fecal coliforms were obtained from a pristine site and sewage contaminated site in a tropical rain forest watershed in Puerto Rico. Confirmation of fecal coliform isolates as Escherichia coli was significantly lower than for temperate waters. Antibiotic resistance and multiple antibiotic resistance were common for isolates at both sites; however, the site receiving sewage effluent had a greater proportion of multiple antibiotic resistant isolates. R. plasmids were recovered from 4 MAR isolates, 2 from each site. All recovered plasmids were approximately 1 kilobase. The recovered plasmid were also capable of transforming E. coli HB101 in vitro. The high concentrations of enterobacteriaceae, small R-plasmid size, R-plasmid transformability, and long term survival of fecal origin bacteria in tropical freshwater environments give increasing importance to adequate sewage treatment, and better indicator monitoring methods for tropical areas.

  14. Antibiotic resistance and integrons in Shiga toxin-producing Escherichia coli (STEC

    Directory of Open Access Journals (Sweden)

    Rocío Colello

    2015-03-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC cause hemorrhagic colitis (HC and hemolytic-uremic syndrome in humans (HUS. Cattle are the main reservoir of STEC and transmission to humans occurs through contaminated food and water. Antibiotics are used in pig production systems to combat disease and improve productivity and play a key role in the dissemination of antibiotic resistance genes to the bacteria. Integrons have been identified in resistant bacteria allowing for the acquisition and dissemination of antibiotic resistance genes. STEC strains isolated from humans and animals have developed antibiotic resistance. In our laboratory, 21 non-157 STEC strains isolated from pigs were analyzed to detect class 1 and 2 integrons by PCR. Eight carried integrons, 7 of them harbored intl2. In another study 545 STEC strains were also analyzed for the presence of intl1 and intl2. Strains carrying intl1 belonged to isolates from environment (n = 1, chicken hamburger (n = 2, dairy calves (n = 4 and pigs (n = 8. Two strains isolated from pigs harbored intl2 and only one intl1/intl2, highlighting the presence of intl2 in pigs. The selection for multiresistant strains may contribute to the emergence of antibiotic resistant pathogens and facilitate the spreading of the mobile resistance elements to other bacteria.

  15. Antibiotic Resistance in Escherichia coli from Pigs in Organic and Conventional Farming in Four European Countries

    Science.gov (United States)

    Nygaard Jensen, Annette; Kerouanton, Annaelle; Cibin, Veronica; Barco, Lisa; Denis, Martine; Aabo, Sören

    2016-01-01

    Organic pig production differs in many ways from conventional production of pigs, e.g., in antibiotic use, herd structure, feeding regimes, access to outdoor areas and space allowance per pig. This study investigated if these differences result in a lower occurrence of antibiotic resistance in organic slaughter pigs in Denmark, France, Italy and Sweden. Samples were taken from the colon content and/or faeces and minimum inhibitory concentrations (MIC) of ten antibiotics were determined in isolates of Escherichia coli. In addition, the proportion of tetracycline (TET) resistant E. coli in colon content and/or faeces from individual pigs was determined. In all four countries the percentage resistance to ampicillin, streptomycin, sulphonamides or trimethoprim was significantly lower in E. coli from organic pigs. In France and Italy, the percentage of isolates resistant to chloramphenicol, ciprofloxacin, nalidixic acid or gentamicin was also significantly lower in the E. coli from organic pigs. Resistance to cefotaxime, was not found in any country. The percentage of E. coli isolates resistant to TET as well as the proportion of TET-resistant E. coli was significantly lower in organic than in conventional pigs, except in Sweden where TET-resistance was equally low in both production types. There were also differences between countries within production type in the percentage resistance to individual antibiotics as well as the proportion of TET-resistant E. coli with lower median proportions in Sweden and Denmark compared to France and Italy. The study shows that in each of the four countries resistance in intestinal E. coli was less common in organic than in conventional pigs, but that there were also large differences in resistance between countries within each production type, indicating that both country- and production-specific factors influence the occurrence of resistance. PMID:27362262

  16. Antibiotic Resistance in Escherichia coli from Pigs in Organic and Conventional Farming in Four European Countries.

    Directory of Open Access Journals (Sweden)

    Julia Österberg

    Full Text Available Organic pig production differs in many ways from conventional production of pigs, e.g., in antibiotic use, herd structure, feeding regimes, access to outdoor areas and space allowance per pig. This study investigated if these differences result in a lower occurrence of antibiotic resistance in organic slaughter pigs in Denmark, France, Italy and Sweden. Samples were taken from the colon content and/or faeces and minimum inhibitory concentrations (MIC of ten antibiotics were determined in isolates of Escherichia coli. In addition, the proportion of tetracycline (TET resistant E. coli in colon content and/or faeces from individual pigs was determined. In all four countries the percentage resistance to ampicillin, streptomycin, sulphonamides or trimethoprim was significantly lower in E. coli from organic pigs. In France and Italy, the percentage of isolates resistant to chloramphenicol, ciprofloxacin, nalidixic acid or gentamicin was also significantly lower in the E. coli from organic pigs. Resistance to cefotaxime, was not found in any country. The percentage of E. coli isolates resistant to TET as well as the proportion of TET-resistant E. coli was significantly lower in organic than in conventional pigs, except in Sweden where TET-resistance was equally low in both production types. There were also differences between countries within production type in the percentage resistance to individual antibiotics as well as the proportion of TET-resistant E. coli with lower median proportions in Sweden and Denmark compared to France and Italy. The study shows that in each of the four countries resistance in intestinal E. coli was less common in organic than in conventional pigs, but that there were also large differences in resistance between countries within each production type, indicating that both country- and production-specific factors influence the occurrence of resistance.

  17. Antibiotic Resistance in Escherichia coli from Pigs in Organic and Conventional Farming in Four European Countries.

    Science.gov (United States)

    Österberg, Julia; Wingstrand, Anne; Nygaard Jensen, Annette; Kerouanton, Annaelle; Cibin, Veronica; Barco, Lisa; Denis, Martine; Aabo, Sören; Bengtsson, Björn

    2016-01-01

    Organic pig production differs in many ways from conventional production of pigs, e.g., in antibiotic use, herd structure, feeding regimes, access to outdoor areas and space allowance per pig. This study investigated if these differences result in a lower occurrence of antibiotic resistance in organic slaughter pigs in Denmark, France, Italy and Sweden. Samples were taken from the colon content and/or faeces and minimum inhibitory concentrations (MIC) of ten antibiotics were determined in isolates of Escherichia coli. In addition, the proportion of tetracycline (TET) resistant E. coli in colon content and/or faeces from individual pigs was determined. In all four countries the percentage resistance to ampicillin, streptomycin, sulphonamides or trimethoprim was significantly lower in E. coli from organic pigs. In France and Italy, the percentage of isolates resistant to chloramphenicol, ciprofloxacin, nalidixic acid or gentamicin was also significantly lower in the E. coli from organic pigs. Resistance to cefotaxime, was not found in any country. The percentage of E. coli isolates resistant to TET as well as the proportion of TET-resistant E. coli was significantly lower in organic than in conventional pigs, except in Sweden where TET-resistance was equally low in both production types. There were also differences between countries within production type in the percentage resistance to individual antibiotics as well as the proportion of TET-resistant E. coli with lower median proportions in Sweden and Denmark compared to France and Italy. The study shows that in each of the four countries resistance in intestinal E. coli was less common in organic than in conventional pigs, but that there were also large differences in resistance between countries within each production type, indicating that both country- and production-specific factors influence the occurrence of resistance. PMID:27362262

  18. ANTIBACTERIAL ACTIVITY OF SOME WILD MEDICAL PLANTS EXTRACT TO ANTIBIOTIC RESISTANT ESCHERICHIA COLI

    Directory of Open Access Journals (Sweden)

    Lukáš Hleba

    2013-02-01

    Full Text Available Antibiotics are probably the most successful family of drugs so far developed for improving human health. Because of increasing resistance to antibiotics of many bacteria, plant extracts and plant compounds are of new interest as antiseptics and antimicrobial agents in medicine. In this study, we researched antimicrobial effects of extracts of some medical plants (Tussilagofarfara, Equisetum arvense, Sambucusnigra, Aesculushippocastanumand Taraxacumofficinale from Slovakia to antibiotic resistant and antibiotic sensitive bacteria isolated from milk of cows and mare, which were breeded in different conditions. Microorganisms which were used in this experiment we isolated from milk from conventional breeding of cows (tenE. coli strains and from ecological breeding of Lipicanmare (tenE. coli strains by sterile cotton swabs. For antibiotic susceptibility testing was used disc diffusion method according by EUCAST. After dried at room temperature we weighed 50 g of crushed medical plants (parts and it were to extract in 400 ml methanol for two weeks at room temperature. For antimicrobial susceptibility testing of medical plants extract blank discs with 6 mm diameter disc diffusion method was used. We determined that all Escherichia coli strains isolated from milk of conventional breeding of cows were resistant to ampicillin and chloramphenicol. We determined that all tested ampicillin and chloramphenicol resistant E. coli strains isolated from conventional breeding of cow showed susceptibility to all used medical plants extracts. In difference, we determined that antibiotic susceptible E. coli strains isolated from ecological breeding of Lipicanmare were susceptible to Tussilagofarfara extract only. From these results we could be conclude some observations, which could be important step in treatment of bacterial infections caused by antibiotic resistant bacteria and it could be important knowledge for treatment of livestock in conventional breeding

  19. Antibiotic resistance and plasmids carriage among Escherichia coli isolates from chicken meat in Malaysia

    International Nuclear Information System (INIS)

    One hundred and thirty-one Escherichia coli isolates from raw chicken meat were tested for antibiotic susceptibility to twelve antibiotics, namely ampicillin 10μg, cefoparazone 30μg, cephradine 30μg, ciprofloxacin 5μg, chloramphenicol 30μg, enrofloxacin 5μg, erythromycin 15μg, kanamycin 30μg, nalidixic acid 30μg, tetracycline 30μg, trimethoprim 5μg, and vancomycin 30μg. The plasmid isolation was carried out according to the method described by Maniatis et al, with modifications as in the protocol provided by Taq Dye Deoxy Terminator Cycle Sequencing Kit (ABI P/ N 401150). The newly modified method is a mini alkaline-lysis / PGE precipitation procedure and easy to perform on large numbers of samples. The graphical method of relating the logarithm of the molecular weight of a DNA molecule (log C) to its electrophoretic mobility (m) in gels was used to determine the molecular weight of plasmid. Plasmids of known molecular weight from E. coli V517 were used as standards for calibrating the size of plasmid DNA molecules. In this study DNA fragments are referred to as plasmids. In all Escherichia coli isolates resistance to ampicillin (96.2%), cefoperazone (83.3%), cephradine (93.9%), ciprofloxacin (78.0%), chloramphenical (75.6%), enrofloxacin (72.0%), erythromycin (84.0%), kanamycin (50.8%), nalidixic acid (94.7%), tetracycline (90.2%), trimethoprim (94.7%) and vancomycin (100%) was observed (Table I). Plasmid occurrence rates of 81.7% were observed among E. coli isolates from the chicken meat. The number of plasmids ranged from 0 to 8 and the sizes of plasmids ranged from 1.2 MDa to 118.6 MDa. Plasmids were detected in 93.8% of E. coli isolates that were resistant to all 12 antibiotics and in 90.5% of E. coli isolates resistant to 11 antibodies (Table II). Three (2.8%) E. coli isolates harboured 8 plasmids and showed resistant to 12 antibiotics (Table III). The antibiotic resistance among the E. coli isolates in this study was compared and it was found a

  20. Antibiotic resistance in uropathogenic Escherichia coli isolated from urinary tract infections out-patients in Kermanshah

    Directory of Open Access Journals (Sweden)

    Somayeh Jalilian

    2014-01-01

    Full Text Available Background: Urinary tract infections (UTIs are common cause of infections described in out-patient's setting and increase in antibiotic resistance of Escherichia coli, is encountered world-wide. Antibiotic treatment is usually empirical; therefore, this study to provide the knowledge of local resistance pathogen patterns in Kermanshah. Materials and Methods: We conducted a retrospective analysis of all E. coli isolates from urine samples admitted to Kermanshah Central lab between March 2011 and 2012 were included. Antimicrobial resistance was tested by the Kirby-Bauer disk diffusion. Results: This study showed a total of 20,742 samples, 1228 (5.92 were positive for pathogenic bacteria. E. coli were the predominant 801 isolate (65.2%. Out of the 13 antibiotics tested for E. coli isolates, minimum and maximum resistance were observed to ampicillin (9.4% and augmentin (68.6%. Almost 59-66% of the uropathogenic E. coli strains were resistant to amikacin, co-trimoxazole, tetracycline and cephalotin and nearly half of them were resistant to nalidixic acid and cephalexin. Conclusion: This study confirms that E. coli is still the most common uropathogen isolated. Augmentin and amikacin are not as a first choice for treatment of UTI in Kermanshah area. Ampicillin and nitrofurantoin may be considered as a first choice empiric agent in out-patients.

  1. Differential epigenetic compatibility of qnr antibiotic resistance determinants with the chromosome of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    María B Sánchez

    Full Text Available Environmental bacteria harbor a plethora of genes that, upon their horizontal transfer to new hosts, may confer resistance to antibiotics, although the number of such determinants actually acquired by pathogenic bacteria is very low. The founder effect, fitness costs and ecological connectivity all influence the chances of resistance transfer being successful. We examined the importance of these bottlenecks using the family of quinolone resistance determinants Qnr. The results indicate the epigenetic compatibility of a determinant with the host genome to be of great importance in the acquisition and spread of resistance. A plasmid carrying the widely distributed QnrA determinant was stable in Escherichia coli, whereas the SmQnr determinant was unstable despite both proteins having very similar tertiary structures. This indicates that the fitness costs associated with the acquisition of antibiotic resistance may not derive from a non-specific metabolic burden, but from the acquired gene causing specific changes in bacterial metabolic and regulatory networks. The observed stabilization of the plasmid encoding SmQnr by chromosomal mutations, including a mutant lacking the global regulator H-NS, reinforces this idea. Since quinolones are synthetic antibiotics, and since the origin of QnrA is the environmental bacterium Shewanella algae, the role of QnrA in this organism is unlikely to be that of conferring resistance. Its evolution toward this may have occurred through mutations or because of an environmental change (exaptation. The present results indicate that the chromosomally encoded Qnr determinants of S. algae can confer quinolone resistance upon their transfer to E. coli without the need of any further mutation. These results suggest that exaptation is important in the evolution of antibiotic resistance.

  2. ANTIBIOTIC RESISTANCE OF ESCHERICHIA COLI ISOLATED FROM UKRAINIAN BETULA VERRUCOSA EHRH. POLLEN AFTER MICROBIOLOGICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Tetiana Shevtsova

    2013-08-01

    Full Text Available Seven samples of silver birch pollen from different habitat of Ukraine were investigated in order to estimate their contamination with the Enterobacteriaceae family, anaerobic bacteria and fungi. Also resistance of 108 strains of Escherichia coli isolated from seven samples of Ukrainian Betula verrucosa Ehrh. pollen against 5 antibiotics: ampicillin, chloramphenicol, meropenem, ceftriaxone and ofloxacin were determined. Disc diffusion method was used for antibiotic suceptibility testing according to EUCAST 2012. It is established the concentrations of enterobacteria ranged from 0.00 to 4.16 log cfu/g, of anaerobic bacteria – 2.48 to 4.90 log cfu/g and concentration of fungi ranged from 2.48 to 4.14 log cfu/g. Degree of pollen contamination is different depending on the habitats. The resistance of E. coli isolates was determined against ampicillin, chloramphenicol, meropenem and ofloxacin. But intermediate resistance in the 33.3% of E. coli isolates and susceptibility in the 8.3% to ceftriaxone was found out. Antibiotic resistance was evaluated for all samples of pollen in whole.

  3. Antibiotic Resistance Patterns in Enteric and Uropathogenic Strains of Escherichia Coli in Children

    Directory of Open Access Journals (Sweden)

    This paper should be cited as: Sedighi I, Alikhani MY, Nakhaee S, Karami P . [ Antibiotic Resistance Patterns in Enteric and Uropathogenic Strains of Escherichia Coli in Children ]. mlj goums . 201 4 ; 8 ( Suppl 4 : 42 - 48 [Article in Per sian] Sedi ghi, I. (MD

    2014-11-01

    Full Text Available Background and Objective: Escherichia coli is the most common cause of urinary tract infections in children and the leading cause of intra-abdominal infections (peritonitis and abscess followed intestinal injuries. Urinary tract infection, including cystitis and pyelonephritis, is a common childhood infection. E. coli causes more than 90 percent of the community acquired and 50% of hospital acquired urinary tract infections; therefore, the determination of E. coli antibiotic susceptibility is a paramount importance to clinical and epidemiological purposes. Material and Methods: In this cross-sectional study, 50 E. coli strains isolated from urine samples of children less than 7 years of age with urinary tract infections. They were compared for drug susceptibility testing by disc diffusion method with 50 strains of Escherichia coli isolated from stool samples of healthy children with the same age and sex pattern. Results: The actual amount of drug sensitivity of uropathogenic and intestinal Escherichia coli strains to amikacin was 94 and 100%, nitrofurantoin 90 and 88%, gentamicin 66 and 94%, cefixime 56 and 60%, nalidixic acid 38 and 44% and to cotrimoxazole 28 and 32%, respectively. Conclusion: the rate of resistance to gentamicin, Cefixime and nalidixic acid in urinary tract infection isolates were more than intestinal strains. The highest rate of drug resistance in urinary Escherichia coli isolates was associated with cotrimoxazole and the lowest one with amikacin.

  4. CORRELATION BETWEEN BIOFILM FORMATION OF UROPATHOGE NIC ESCHERICHIA COLI AND ITS ANTIBIOTIC RESISTANCE PATT ERN

    Directory of Open Access Journals (Sweden)

    SarojGolia

    2012-09-01

    Full Text Available ABSTRACT BACKGROUND: Microorganisms growing in multilayered cell cluste rs embedded in a matrix of extracellular polysaccharide (slime which facilitat es the adherence of these microorganisms to biomedical surfaces and protect them from host immun e system and antimicrobial therapy. There are various methods to detect biofilm producti on like Tissue Culture Plate (TCP ,Tube method (TM ,Modified Congo Red Agar Method (MCRA, bio luminescent assay ,piezoelectric sensors and fluorescent microscopic examination. OBJECTIVES : This study was conducted to compare three methods f or the detection of biofilms and compare with antibiotic sensitivity pat tern, in uropathogenic Escherichia coli. METHOD: This study was carried out at the Department of Microbiology Dr. B. R. Ambedkar Medical College from Dec 2011 to June 2012. Total n umber of 107 clinical Escherichia coli isolates were randomly selected from all age groups were subjected to biofilm detection methods and their antibiotic resistance pattern w as compared. Isolates were identified by standard phenotypic methods. Biofilm detection was te sted by TCP, TM and MCRA methods . Antibiotic susceptibility test of uropathogenic E co li was performed using Kirby –Bauer disc diffusion method according to CLSI guidelines. RESULTS: From the total of 107 clinical isolate 74 (69.1 % isolates showed biofilm formation by all the TCP, TM, CRP methods. Biofilm forming i solates from catheter associated UTI showed drug resistance to more than 6 drugs. Only 2(13.3% isolates from Asymptomatic UTI showed biofilm by TM & MCRA methods & were sensitive all d rugs. Biofilm forming isolates from symptomatic UTI showed mixed drug resistance pattern. CONCLUSION: We conclude from our study that biofilm formation is more common in catheterized patients. TCP method is more quantitati ve and reliable method for the detection of biofilm forming micro-organisms as compared to TM a nd MCRA methods. So TCP method can be recommended

  5. Class 1 and 2 integrons, sul resistance genes and antibiotic resistance in Escherichia coli isolated from Dongjiang River, South China

    International Nuclear Information System (INIS)

    Antibiotic susceptibility, detection of sul gene types and presence of class 1, 2 and 3 integrons and gene cassettes using PCR assays were investigated in 3456 Escherichia coli isolates obtained from 38 sampling sites of the Dongjiang River catchment in the dry and wet seasons. 89.1% of the isolates were resistant and 87.5% showed resistance to at least three antibiotics. sul2 was detected most frequently in 89.2% of 1403 SXT-resistant isolates. The presence of integrons (class 1 and 2) was frequently observed (82.3%) while no class 3 integron was found. In these integrons, 21 resistance genes of 14 gene cassette arrays and 10 different families of resistance genes were identified. Three gene cassette arrays, aac(6')-Ib-cr-aar-3-dfrA27-aadA16, aacA4-catB3-dfrA1 and aadA2-lnuF, were detected for the first time in surface water. The results showed that bacterial resistance in the catchment was seriously influenced by human activities, especially discharge of wastewater. Highlights: ► Antibiotic resistance was investigated for a river catchment of southern China. ► 87.5% of E coli isolates showed resistance to at least three antibiotics. ► The presence of integrons (class 1 and 2) was frequently observed (82.3%). ► Bacterial resistance in the catchment was seriously influenced by human activities. - Bacterial resistance to antibiotics in a catchment is related to the discharge of wastewater into the aquatic environment.

  6. Mechanisms of antibiotic resistance to enrofloxacin in uropathogenic Escherichia coli in dog.

    Science.gov (United States)

    Piras, Cristian; Soggiu, Alessio; Greco, Viviana; Martino, Piera Anna; Del Chierico, Federica; Putignani, Lorenza; Urbani, Andrea; Nally, Jarlath E; Bonizzi, Luigi; Roncada, Paola

    2015-09-01

    Escherichia coli (E. coli) urinary tract infections (UTIs) are becoming a serious problem both for pets and humans (zoonosis) due to the close contact and to the increasing resistance to antibiotics. This study has been performed in order to unravel the mechanism of induced enrofloxacin resistance in canine E. coli isolates that represent a good tool to study this pathology. The isolated E. coli has been induced with enrofloxacin and studied through 2D DIGE and shotgun MS. Discovered differentially expressed proteins are principally involved in antibiotic resistance and linked to oxidative stress response, to DNA protection and to membrane permeability. Moreover, since enrofloxacin is an inhibitor of DNA gyrase, the overexpression of DNA starvation/stationary phase protection protein (Dsp) could be a central point to discover the mechanism of this clone to counteract the effects of enrofloxacin. In parallel, the dramatic decrease of the synthesis of the outer membrane protein W, which represents one of the main gates for enrofloxacin entrance, could explain additional mechanism of E. coli defense against this antibiotic. All 2D DIGE and MS data have been deposited into the ProteomeXchange Consortium with identifier PXD002000 and DOI http://dx.doi.org/10.6019/PXD002000. This article is part of a Special Issue entitled: HUPO 2014. PMID:26066767

  7. Echinoderms from Azores islands: an unexpected source of antibiotic resistant Enterococcus spp. and Escherichia coli isolates.

    Science.gov (United States)

    Marinho, Catarina; Silva, Nuno; Pombo, Sofia; Santos, Tiago; Monteiro, Ricardo; Gonçalves, Alexandre; Micael, Joana; Rodrigues, Pedro; Costa, Ana Cristina; Igrejas, Gilberto; Poeta, Patrícia

    2013-04-15

    The prevalence of antibiotic resistance and the implicated mechanisms of resistance were evaluated in Enterococcus spp. and Escherichia coli, isolated from a total of 250 faecal samples of echinoderms collected from Azorean waters (Portugal). A total of 144 enterococci (120 Enterococcus faecium, 14 E. hirae, 8 E. faecalis, 2 E. gallinarum) and 10 E. coli were recovered. High percentages of resistance in enterococci were found for erythromycin, ampicillin, tetracyclin and ciprofloxacin. The erm(A) or erm(B), tet(M) and/or tet(L), vat(D), aac(6')-aph(2″) and aph(3')-IIIa genes were found in isolates resistant to erythromycin, tetracycline, quinupristin/dalfopristin, high-level gentamicin and high-level kanamycin, respectively. Resistance in E. coli isolates was detected for streptomycin, amikacin, tetracycline and tobramycin. The aadA gene was found in streptomycin-resistant isolates and tet(A)+tet(B) genes in tetracycline-resistant isolates. The data recovered are essential to improve knowledge about the dissemination of resistant strains through marine ecosystems and the possible implications involved in transferring these resistances either to other animals or to humans. PMID:23419753

  8. Genotypic Detection of Antibiotic Resistance in "Escherichia Coli.": A Classroom Exercise

    Science.gov (United States)

    Longtin, Sarah; Guilfoile, Patrick; Asper, Andrea

    2004-01-01

    Bacterial antibiotic resistance remains a problem of clinical importance. Current microbiological methods for determining antibiotic resistance are based on culturing bacteria, and may require up to 48 hours to complete. Molecular methods are increasingly being developed to speed the identification of antibiotic resistance and to determine its…

  9. Antibiotic Resistance

    DEFF Research Database (Denmark)

    Munck, Christian

    morbidity and mortality as well as an increase in the cost of treatment. Understanding how bacteria respond to antibiotic exposure gives the foundations for a rational approach to counteract antimicrobial resistance. In the work presented in this thesis, I explore the two fundamental sources...... of antimicrobial resistance: (1) adaptive mutations and (2) horizontal acquisition of resistance genes from antibiotic gene reservoirs. By studying the geno- and phenotypic changes of E. coli in response to single and drug-pair exposures, I uncover the evolutionary trajectories leading to adaptive resistance. I...... to rationally design drug combinations that limit the evolution of antibiotic resistance due to counteracting evolutionary trajectories. My results highlight that an in-depth knowledge about the genetic responses to the individual antimicrobial compounds enables the prediction of responses to drug combinations...

  10. Escherichia coli antibiotic resistance in emergency departments. Do local resistance rates matter?

    Science.gov (United States)

    Grignon, O; Montassier, E; Corvec, S; Lepelletier, D; Hardouin, J-B; Caillon, J; Batard, E

    2015-03-01

    Ciprofloxacin and cotrimoxazole are recommended to treat uncomplicated pyelonephritis and uncomplicated cystitis, respectively, provided that local resistance rates of uropathogens do not exceed specified thresholds (10 and 20 %, respectively). However, Escherichia coli resistance rates in Emergency Departments (ED) remain poorly described. Our objectives were to assess E. coli ciprofloxacin and cotrimoxazole resistance rates in EDs of a French administrative region, and to determine if resistance rates differ between EDs. This was a retrospective study of E. coli urine isolates sampled in ten EDs between 2007 and 2012. The following risk factors for resistance were tested using logistic regression: ED, sex, age, sampling year, sampling month. A total of 17,527 isolates were included. Ciprofloxacin local resistance rates (range, 5.3 % [95 % CI, 4.0-7.1 %] to 11.7 % [95 % CI, 5.2-23.2 %]) were ≤10 % in nine EDs in 2012. Five EDs were risk factors for ciprofloxacin resistance, as were male sex, age and sampling in April or October. Cotrimoxazole local resistance rates (range, 13.3 % [95 % CI, 6.3-25.1 %] to 20.4 % [95 % CI, 18.9-22.0 %]) were ≤20 % in seven EDs in 2012. Five EDs were risk factors for cotrimoxazole resistance, as were age, sampling between October and December, and sampling in 2011 and 2012. We found a significant variability of E. coli ciprofloxacin and cotrimoxazole resistance rates among EDs of a small region. These differences impact on the feasibility of empirical treatment of urinary tract infections with ciprofloxacin or cotrimoxazole in a given ED. Continuous local survey of antibacterial resistance in ED urinary isolates is warranted to guide antibacterial therapy of urinary tract infections. PMID:25339200

  11. Effective Phages as Green Antimicrobial Agents Against Antibiotic-Resistant Hospital Escherichia coli

    OpenAIRE

    Rahmani, Rana; Zarrini, Gholamreza; Sheikhzadeh, Farzam; Aghamohammadzadeh, Naser

    2015-01-01

    Background: Bacteriophages are viruses that attack bacteria and lead to their lysis in an efficient and highly specific manner. These natural enemies of bacteria were used as therapeutic agents before the advent of antibiotics. Currently, with the rapid spread of multi-drug resistant bacteria, phage therapy can be an effective alternative treatment for antibiotic resistant bacteria. Objectives: This study evaluated the effectiveness of bacteriophages in removing antibiotic-resistant clinical ...

  12. Prevalence of veterinary antibiotics and antibiotic-resistant Escherichia coli in the surface water of a livestock production region in northern China.

    Directory of Open Access Journals (Sweden)

    Xuelian Zhang

    Full Text Available This study investigated the occurrence of 12 veterinary antibiotics (VAs and the susceptibility of Escherichia coli (E. coli in a rural water system that was affected by livestock production in northern China. Each of the surveyed sites was determined with at least eight antibiotics with maximum concentration of up to 450 ng L(-1. The use of VAs in livestock farming probably was a primary source of antibiotics in the rivers. Increasing total antibiotics were measured from up- to mid- and downstream in the two tributaries. Eighty-eight percent of the 218 E. coli isolates that were derived from the study area exhibited, in total, 48 resistance profiles against the eight examined drugs. Significant correlations were found among the resistance rates of sulfamethoxazole-trimethoprim, chloromycetin and ampicillin as well as between tetracycline and chlortetracycline, suggesting a possible cross-selection for resistance among these drugs. The E. coli resistance frequency also increased from up- to midstream in the three rivers. E. coli isolates from different water systems showed varying drug numbers of resistance. No clear relationship was observed in the antibiotic resistance frequency with corresponding antibiotic concentration, indicating that the antibiotic resistance for E. coli in the aquatic environment might be affected by factors besides antibiotics. High numbers of resistant E. coli were also isolated from the conserved reservoir. These results suggest that rural surface water may become a large pool of VAs and resistant bacteria. This study contributes to current information on VAs and resistant bacteria contamination in aquatic environments particularly in areas under intensive agriculture. Moreover, this study indicates an urgent need to monitor the use of VAs in animal production, and to control the release of animal-originated antibiotics into the environment.

  13. Prevalence of veterinary antibiotics and antibiotic-resistant Escherichia coli in the surface water of a livestock production region in northern China.

    Science.gov (United States)

    Zhang, Xuelian; Li, Yanxia; Liu, Bei; Wang, Jing; Feng, Chenghong; Gao, Min; Wang, Lina

    2014-01-01

    This study investigated the occurrence of 12 veterinary antibiotics (VAs) and the susceptibility of Escherichia coli (E. coli) in a rural water system that was affected by livestock production in northern China. Each of the surveyed sites was determined with at least eight antibiotics with maximum concentration of up to 450 ng L(-1). The use of VAs in livestock farming probably was a primary source of antibiotics in the rivers. Increasing total antibiotics were measured from up- to mid- and downstream in the two tributaries. Eighty-eight percent of the 218 E. coli isolates that were derived from the study area exhibited, in total, 48 resistance profiles against the eight examined drugs. Significant correlations were found among the resistance rates of sulfamethoxazole-trimethoprim, chloromycetin and ampicillin as well as between tetracycline and chlortetracycline, suggesting a possible cross-selection for resistance among these drugs. The E. coli resistance frequency also increased from up- to midstream in the three rivers. E. coli isolates from different water systems showed varying drug numbers of resistance. No clear relationship was observed in the antibiotic resistance frequency with corresponding antibiotic concentration, indicating that the antibiotic resistance for E. coli in the aquatic environment might be affected by factors besides antibiotics. High numbers of resistant E. coli were also isolated from the conserved reservoir. These results suggest that rural surface water may become a large pool of VAs and resistant bacteria. This study contributes to current information on VAs and resistant bacteria contamination in aquatic environments particularly in areas under intensive agriculture. Moreover, this study indicates an urgent need to monitor the use of VAs in animal production, and to control the release of animal-originated antibiotics into the environment.

  14. Prevalence of Antibiotic-Resistant Fecal Escherichia coli Isolates from Penned Broiler and Scavenging Local Chickens in Arusha, Tanzania.

    Science.gov (United States)

    Rugumisa, Bernadether T; Call, Douglas R; Mwanyika, Gaspary O; Mrutu, Rehema I; Luanda, Catherine M; Lyimo, Beatus M; Subbiah, Murugan; Buza, Joram J

    2016-08-01

    We compared the prevalence of antibiotic-resistant Escherichia coli isolates from household-level producers of broiler (commercial source breeds) and local chickens in the Arusha District of Tanzania. Households were composed of a single dwelling or residence with independent, penned broiler flocks. Free-range, scavenging chickens were mixed breed and loosely associated with individual households. A total of 1,800 E. coli isolates (1,200 from broiler and 600 from scavenging local chickens) from 75 chickens were tested for their susceptibility against 11 antibiotics by using breakpoint assays. Isolates from broiler chickens harbored a higher prevalence of antibiotic-resistant E. coli relative to scavenging local chickens, including sulfamethoxazole (80.3 versus 34%), followed by trimethoprim (69.3 versus 27.7%), tetracycline (56.8 versus 20%), streptomycin (52.7 versus 24.7%), amoxicillin (49.6 versus 17%), ampicillin (49.1 versus 16.8%), ciprofloxacin (21.9 versus 1.7%), and chloramphenicol (1.5 versus 1.2%). Except for resistance to chloramphenicol, scavenging local chickens harbored fewer resistant E. coli isolates (P < 0.05). Broiler chickens harbored more isolates that were resistant to ≥7 antibiotics (P < 0.05). The higher prevalence of antibiotic-resistant E. coli from broiler chickens correlated with the reported therapeutic and prophylactic use of antibiotics in this poultry population. We suggest that improved biosecurity measures and increased vaccination efforts would reduce reliance on antibiotics by these households.

  15. Virulence Factors and Antibiotic Resistance in Uropathogenic and Commensal Escherichia coli Isolates

    Directory of Open Access Journals (Sweden)

    Iraj Sedighi

    2016-10-01

    Full Text Available Background: Urinary Tract Infections (UTIs, including cystitis and pyelonephritis, are the most common infectious diseases in childhood. Aim and Objectives: Escherichia coli (E. coli account for as much as 90% of the community-acquired and also 50% of nosocomial UTIs. Therefore, the identification of E. coli strains and antibiotic resistance patterns is important for both clinical and epidemiological implications. Material and Methods: To characterize uropathogenic strains E. coli, we studied 100 strains recovered from both urine samples of children aged less than 7 years with community-acquired UTIs and stool samples of healthy children, respectively. Results: We assessed Virulence Factors (VFs and drug sensitivities of E. coli isolates. Drug sensitivities of the isolates were 94% (amikacin, 90% (nitrofurantoin, 66% (gentamicin, 56% (cefixime, 40% (nalidixic acid and 28% (cotrimoxazol. Laboratory tests showed that the prevalence of virulence factors ranged from 18% for hemolysin and P-fimbriae to 2% for type1-fimbriae. Most drug resistance was cotrimoxazole and amikacin was the lowest. P-fimbriae and hemolysin in uropathogenic E. coli were more frequent than non-pathogen type of E. coli. Conclusion: Although amikacin appeared to be the first choice for UTI in children, but nitrofurantoin seems to be practical and could be considered as the selective choice for uncomplicated lower UTIs.

  16. A response regulator from a soil metagenome enhances resistance to the β-lactam antibiotic carbenicillin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Heather K Allen

    Full Text Available Functional metagenomic analysis of soil metagenomes is a method for uncovering as-yet unidentified mechanisms for antibiotic resistance. Here we report an unconventional mode by which a response regulator derived from a soil metagenome confers resistance to the β-lactam antibiotic carbenicillin in Escherichia coli. A recombinant clone (βlr16 harboring a 5,169 bp DNA insert was selected from a metagenomic library previously constructed from a remote Alaskan soil. The βlr16 clone conferred specific resistance to carbenicillin, with limited increases in resistance to other tested antibiotics, including other β-lactams (penicillins and cephalosporins, rifampin, ciprofloxacin, erythromycin, chloramphenicol, nalidixic acid, fusidic acid, and gentamicin. Resistance was more pronounced at 24°C than at 37°C. Zone-of-inhibition assays suggested that the mechanism of carbenicillin resistance was not due to antibiotic inactivation. The DNA insert did not encode any genes known to confer antibiotic resistance, but did have two putative open reading frames (ORFs that were annotated as a metallopeptidase and a two-component response regulator. Transposon mutagenesis and subcloning of the two ORFs followed by phenotypic assays showed that the response regulator gene was necessary and sufficient to confer the resistance phenotype. Quantitative reverse transcriptase PCR showed that the response regulator suppressed expression of the ompF porin gene, independently of the small RNA regulator micF, and enhanced expression of the acrD, mdtA, and mdtB efflux pump genes. This work demonstrates that antibiotic resistance can be achieved by the modulation of gene regulation by heterologous DNA. Functional analyses such as these can be important for making discoveries in antibiotic resistance gene biology and ecology.

  17. Resistance of uropathogenic strains of Escherichia coli in pregnant women and other women in generative ages in comparison with antibiotics consumption in Zagreb

    OpenAIRE

    Marcel Leppée,; Ana Mlinarić-Džepina,; Josip Čulig; Jasmina Vraneš,

    2010-01-01

    Aim To compare resistance of uropathogenic strains of Escherichia coli (UPEC) to antibiotics in women in generative ages and pregnant women during two year period (2004 and 2008) in Zagreb, andcomparison of resistance and the consumption of antibiotics. Methods The standard disk-diffusion method was used for sensitivity testing to 16 different antibiotics.Data on antibiotic utilization were used to calculate the number of defined daily doses (DDD) and DDD per 1000 inhabitants using Anatomical...

  18. Longitudinal Comparison of Antibiotic Resistance in Diarrheagenic and Non-pathogenic Escherichia coli from Young Tanzanian Children.

    Science.gov (United States)

    Seidman, Jessica C; Johnson, Lashaunda B; Levens, Joshua; Mkocha, Harran; Muñoz, Beatriz; Silbergeld, Ellen K; West, Sheila K; Coles, Christian L

    2016-01-01

    Enteroaggregative, enteropathogenic, and enterotoxigenic Escherichia coli contribute significantly to the burden of diarrheal infections particularly in developing countries. Antibiotic resistance is increasingly common among bacterial pathogens including pathogenic E. coli. We assessed the relationship between pathogenic E. coli carriage and resistance to six antibiotics in E. coli isolated from young children in rural Tanzania. We surveyed temporal stability in antibiotic resistance in 2492 E. coli isolated from fecal samples obtained from young children in rural Tanzania collected over a 6 months period. Approximately half of the 377 children sampled were exposed to an azithromycin mass treatment program for trachoma control and half resided in control villages. Children were sampled at baseline, 1-, 3-, and 6 months following azithromycin treatment. We compared resistance to six antibiotics in pathogenic and non-pathogenic strains at the population level, within fecal specimens, and within individuals over time using chi-square tests, paired odds ratios, and logistic regression, respectively. Resistance to ampicillin and trimethoprim/sulfamethoxazole was highly prevalent (>65%). Resistance to 5 of 6 antibiotics tested and multi-drug resistance occurred more frequently in pathogenic isolates (p ≤ 0.001) within fecal specimens and overall. Azithromycin mass treatment exposure was significantly associated with increased odds of carriage of isolates resistant to erythromycin (OR 3.64, p < 0.001) and trimethoprim/sulfamethoxazole (OR 1.60, p < 0.05). Pathogenic isolates were approximately twice as likely to be resistant to erythromycin, ampicillin, or trimethoprim/sulfamethoxazole compared to non-pathogenic isolates from the same fecal specimen. The potential linkage between resistance and virulence in E. coli suggests hygiene and sanitation interventions aimed at reducing disease burden could play a role in controlling transmission of antibiotic resistance. PMID

  19. Longitudinal Comparison of Antibiotic Resistance in Diarrheagenic and Non-pathogenic Escherichia coli from Young Tanzanian Children

    Science.gov (United States)

    Seidman, Jessica C.; Johnson, Lashaunda B.; Levens, Joshua; Mkocha, Harran; Muñoz, Beatriz; Silbergeld, Ellen K.; West, Sheila K.; Coles, Christian L.

    2016-01-01

    Enteroaggregative, enteropathogenic, and enterotoxigenic Escherichia coli contribute significantly to the burden of diarrheal infections particularly in developing countries. Antibiotic resistance is increasingly common among bacterial pathogens including pathogenic E. coli. We assessed the relationship between pathogenic E. coli carriage and resistance to six antibiotics in E. coli isolated from young children in rural Tanzania. We surveyed temporal stability in antibiotic resistance in 2492 E. coli isolated from fecal samples obtained from young children in rural Tanzania collected over a 6 months period. Approximately half of the 377 children sampled were exposed to an azithromycin mass treatment program for trachoma control and half resided in control villages. Children were sampled at baseline, 1-, 3-, and 6 months following azithromycin treatment. We compared resistance to six antibiotics in pathogenic and non-pathogenic strains at the population level, within fecal specimens, and within individuals over time using chi-square tests, paired odds ratios, and logistic regression, respectively. Resistance to ampicillin and trimethoprim/sulfamethoxazole was highly prevalent (>65%). Resistance to 5 of 6 antibiotics tested and multi-drug resistance occurred more frequently in pathogenic isolates (p ≤ 0.001) within fecal specimens and overall. Azithromycin mass treatment exposure was significantly associated with increased odds of carriage of isolates resistant to erythromycin (OR 3.64, p < 0.001) and trimethoprim/sulfamethoxazole (OR 1.60, p < 0.05). Pathogenic isolates were approximately twice as likely to be resistant to erythromycin, ampicillin, or trimethoprim/sulfamethoxazole compared to non-pathogenic isolates from the same fecal specimen. The potential linkage between resistance and virulence in E. coli suggests hygiene and sanitation interventions aimed at reducing disease burden could play a role in controlling transmission of antibiotic resistance. PMID

  20. Impacts of urbanization on the prevalence of antibiotic-resistant Escherichia coli in the Chaophraya River and its tributaries.

    Science.gov (United States)

    Honda, Ryo; Watanabe, Toru; Sawaittayotin, Variga; Masago, Yoshifumi; Chulasak, Rungnapa; Tanong, Kulchaya; Chaminda, G Tushara; Wongsila, Krison; Sienglum, Chawala; Sunthonwatthanaphong, Varisara; Poonnotok, Anupong; Chiemchaisri, Wilai; Chiemchaisri, Chart; Furumai, Hiroaki; Yamamoto, Kazuo

    2016-01-01

    River water samples were taken from 32 locations around the basin of Chaophraya River and its four major tributaries in Thailand to investigate resistance ratios of Escherichia coli isolates to eight antibiotic agents of amoxicillin, sulfamethoxazole/trimethoprim, tetracycline, doxytetracycline, ciprofloxacin, levofloxacin, norfloxacin and ofloxacin. Principal component analysis was performed to characterize resistance patterns of the samples. Relevancy of the obtained principal components with urban land use and fecal contamination of the river were examined. The ratio of antibiotic-resistant bacteria is likely to increase when urban land use near the sampling site exceeds a certain ratio. The resistance ratio to fluoroquinolones tends to be high in a highly populated area. Meanwhile, no significant contribution of fecal contamination was found to increase the resistance ratio. These results suggest that an antibiotic-resistance ratio is dependent on conditions of local urbanization rather than the upstream conditions, and that the major sources of antibiotic-resistant bacteria in the Chaophraya River basin are possibly point sources located in the urban area which contains a high ratio of resistant bacteria. PMID:26819392

  1. Role of tetracycline speciation in the bioavailability to Escherichia coli for uptake and expression of antibiotic resistance.

    Science.gov (United States)

    Zhang, Yingjie; Boyd, Stephen A; Teppen, Brian J; Tiedje, James M; Li, Hui

    2014-05-01

    Tetracycline contains ionizable functional groups that manifest several species with charges at different locales and differing net charge; the fractional distribution of each species depends on pH-pKa relationship in the aqueous phase. In nature, these species interact with naturally abundant cations (e.g., Ca(2+) and Mg(2+)) to form metal-tetracycline complexes in water. In this study, we used Escherichia coli MC4100/pTGM whole-cell bioreporter to investigate tetracycline uptake from solution under varying conditions of pH, salt composition and concentration by quantifying the corresponding expression of antibiotic resistance gene. The expression of antibiotic resistance gene in the E. coli bioreporter responded linearly to intracellular tetracycline concentration. Less tetracycline entered E. coli cells at solution pH of 8.0 than at pH 6.0 or 7.0 indicating reduced bioavailability of the antibiotic at higher pH. Both Mg(2+) and Ca(2+) in solution formed metal-tetracycline complexes which reduced uptake of tetracycline by E. coli hence diminishing the bioresponse. Among the various tetracycline species present in solution, including both metal-complexed and free (noncomplexed) species, zwitterionic tetracycline was identified as the predominant species that most readily passed through the cell membrane eliciting activation of the antibiotic resistance gene in E. coli. The results indicate that the same total concentration of tetracycline in ambient solution can evoke very different expression of antibiotic resistance gene in the exposed bacteria due to differential antibiotic uptake. Accordingly, geochemical factors such as pH and metal cations can modulate the selective pressure exerted by tetracycline for development and enrichment of antibiotic resistant bacteria. We suggest that tetracycline speciation analysis should be incorporated into the risk assessment framework for evaluating environmental exposure and the corresponding development of antibiotic

  2. Association of Antibiotic Resistance in Agricultural Escherichia coli Isolates with Attachment to Quartz▿

    OpenAIRE

    Liu, Ping; Soupir, Michelle L; Zwonitzer, Martha; Huss, Bridgette; Jarboe, Laura R.

    2011-01-01

    Surface water can be contaminated by bacteria from various sources, including manure from agricultural facilities. Attachment of these bacteria to soil and organic particles contributes to their transport through the environment, though the mechanism of attachment is unknown. As bacterial attachment to human tissues is known to be correlated with antibiotic resistance, we have investigated here the relationship between bacterial attachment to environmental particles and antibiotic resistance ...

  3. Toxin production and antibiotic resistances in Escherichia coli isolated from bathing areas along the coastline of the Oslo fjord.

    Science.gov (United States)

    Charnock, Colin; Nordlie, Anne-Lise; Hjeltnes, Bjarne

    2014-09-01

    The presence of enterovirulent and/or antibiotic resistant strains of Escherichia coli in recreational bathing waters would represent a clear health issue. In total, 144 E. coli isolated from 26 beaches along the inner Oslo fjord were examined for virulence determinants and resistance to clinically important antibiotics. No isolates possessed the genetic determinants associated with enterotoxigenic strains and none showed the prototypic sorbitol negative, O157:H7 phenotype. A small number (∼1 %) produced alpha-hemolysin. Occurrences and patterns of antibiotic resistances were similar to those of E. coli isolated previously from environmental samples. In total, 6 % of the strains showed one or more clinically relevant resistances and 1.4 % were multi-drug resistant. Microarray analyses suggested that the resistance determinants were generally associated with mobile genetic elements. Resistant strains were not clonally related, and were, furthermore not concentrated at one or a few beach sites. This suggests that these strains are entering the waters at a low rate but in a widespread manner. The study demonstrates that resistant E. coli are present in coastal bathing waters where they can come into contact with bathers, and that the resistance determinants are potentially transferable. Some of the resistances registered in the study are to important antibiotics used in human medicine such as fluoroquinolones. The spread of antibiotic resistant genes, from the clinical setting to the environment, has clear implications with respect to the current management of bacterial infections and the long term value of antimicrobial therapy. The present study is the first of its kind in Norway.

  4. Resistance-resistant antibiotics.

    Science.gov (United States)

    Oldfield, Eric; Feng, Xinxin

    2014-12-01

    New antibiotics are needed because drug resistance is increasing while the introduction of new antibiotics is decreasing. We discuss here six possible approaches to develop 'resistance-resistant' antibiotics. First, multitarget inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy owing to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, repurposing existing drugs can lead to combinations of multitarget therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and, in some cases, suggest that sensitivity to existing antibiotics may be restored in otherwise drug-resistant organisms.

  5. Differential epigenetic compatibility of qnr antibiotic resistance determinants with the chromosome of Escherichia coli

    OpenAIRE

    María B Sánchez; Martínez, José L.

    2012-01-01

    Environmental bacteria harbor a plethora of genes that, upon their horizontal transfer to new hosts, may confer resistance to antibiotics, although the number of such determinants actually acquired by pathogenic bacteria is very low. The founder effect, fitness costs and ecological connectivity all influence the chances of resistance transfer being successful. We examined the importance of these bottlenecks using the family of quinolone resistance determinants Qnr. The results indicate the ep...

  6. Antibiotic resistance patterns of Escherichia coli strains isolated from surface water and groundwater samples in a pig production area

    Directory of Open Access Journals (Sweden)

    Roger Neto Schneider

    2009-09-01

    Full Text Available The use of antibiotics, so excessive and indiscriminate in intensive animal production, has triggered an increase in the number of resistant microorganisms which can be transported to aquatic environments. The aim of this study was to determine the profile of the antimicrobial resistance of samples of Escherichia coli isolated from groundwater and surface water in a region of pig breeding. Through the test of antimicrobial susceptibility, we analyzed 205 strains of E. coli. A high rate of resistance to cefaclor was observed, both in surface water (51.9% and groundwater (62.9%, while all samples were sensitive to amikacin. The percentages of multi-resistant samples were 25.96% and 26.73% in surface water and groundwater, respectively, while 19.23% and 13.86% were sensitive to all antibiotics tested. It was determined that the rate of multiple antibiotic resistance (MAR was 0.164 for surface water and 0.184 for groundwater. No significant differences were found in the profile of the antimicrobial resistance in strains of E. coli isolated in surface water and groundwater, but the index MAR calculated in certain points of groundwater may offer a potential risk of transmission of resistant genes.

  7. Hospitalization, a risk factor for antibiotic-resistant Escherichia coli in the community?

    NARCIS (Netherlands)

    Bruinsma, N; Filius, PMG; van den Bogaard, AE; Nys, S; Degener, J; Endtz, HP; Stobberingh, EE

    2003-01-01

    Objective: The impact of hospitalization on the prevalence of resistant Escherichia coli in the intestinal flora of patients admitted to the surgical wards of three Dutch university-affiliated hospitals was analysed prospectively. Methods: Faecal samples were obtained on admission to the hospital, a

  8. De novo acquisition of resistance to three antibiotics by Escherichia coli

    NARCIS (Netherlands)

    M.A. van der Horst; J.M. Schuurmans; M.C. Smid; B.B. Koenders; B.H. ter Kuile

    2011-01-01

    The acquisition of resistance to amoxicillin, tetracycline, and enrofloxacin by Escherichia coli MG 1655 was examined by exposing growing cells to constant or stepwise increasing concentrations of these compounds. The minimal inhibitory concentration (MIC) of E. coli for amoxicillin increased from 4

  9. Analyzing indicator microorganisms, antibiotic resistant Escherichia coli, and regrowth potential of foodborne pathogens in various organic fertilizers.

    Science.gov (United States)

    Miller, Cortney; Heringa, Spencer; Kim, Jinkyung; Jiang, Xiuping

    2013-06-01

    This study analyzed various organic fertilizers for indicator microorganisms, pathogens, and antibiotic-resistant Escherichia coli, and evaluated the growth potential of E. coli O157:H7 and Salmonella in fertilizers. A microbiological survey was conducted on 103 organic fertilizers from across the United States. Moisture content ranged from approximately 1% to 86.4%, and the average pH was 7.77. The total aerobic mesophiles ranged from approximately 3 to 9 log colony-forming units (CFU)/g. Enterobacteriaceae populations were in the range of fertilizer, respectively, whereas E. coli O157:H7 grew approximately 4.6, 4.0, 4.0, and 4.8 log CFU/g, respectively. Our results revealed that the microbiological quality of organic fertilizers varies greatly, with some fertilizers containing antibiotic resistant E. coli and a few supporting the growth of foodborne pathogens after reintroduction into the fertilizer.

  10. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria

    DEFF Research Database (Denmark)

    Adelowo, Olawale O.; Fagade, Obasola E.; Agersø, Yvonne

    2014-01-01

    Introduction: This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Methodology: Minimum inhibitory concentration (MIC) distributions of the isolates were determined using...... the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. Results: A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resistance was: tetracycline 81%, sulphamethoxazole 67%, streptomycin 56%, trimethoprim 47 %, ciprofloxacin 42......%, ampicillin 36%, spectinomycin 28%, nalidixic acid 25%, chloramphenicol 22%, neomycin 14%, gentamicin 8%, amoxicillin-clavulanate, ceftiofur, cefotaxime, colistin, florfenicol and apramycin 0%. Resistance genes found among the isolates include bla-TEM (85%), sul2 (67%), sul3 (17%), aadA (65%), strA (70%), str...

  11. Effect of ethnomedicinal plants used in folklore medicine in Jordan as antibiotic resistant inhibitors on Escherichia coli

    Directory of Open Access Journals (Sweden)

    Aburjai Talal A

    2010-02-01

    Full Text Available Abstract Background Escherichia coli occurs naturally in the human gut; however, certain strains that can cause infections, are becoming resistant to antibiotics. Multidrug-resistant E. coli that produce extended-spectrum β lactamases (ESBLs, such as the CTX-M enzymes, have emerged within the community setting as an important cause of urinary tract infections (UTIs and bloodstream infections may be associated with these community-onsets. This is the first report testing the antibiotic resistance-modifying activity of nineteen Jordanian plants against multidrug-resistant E. coli. Methods The susceptibility of bacterial isolates to antibiotics was tested by determining their minimum inhibitory concentrations (MICs using a broth microdilution method. Nineteen Jordanian plant extracts (Capparis spinosa L., Artemisia herba-alba Asso, Echinops polyceras Boiss., Gundelia tournefortii L, Varthemia iphionoides Boiss. & Blanche, Eruca sativa Mill., Euphorbia macroclada L., Hypericum trequetrifolium Turra, Achillea santolina L., Mentha longifolia Host, Origanum syriacum L., Phlomis brachydo(Boiss. Zohary, Teucrium polium L., Anagyris foetida L., Trigonella foenum-graecum L., Thea sinensis L., Hibiscus sabdariffa L., Lepidium sativum L., Pimpinella anisum L. were combined with antibiotics, from different classes, and the inhibitory effect of the combinations was estimated. Results Methanolic extracts of the plant materials enhanced the inhibitory effects of chloramphenicol, neomycin, doxycycline, cephalexin and nalidixic acid against both the standard strain and to a lesser extent the resistant strain of E. coli. Two edible plant extracts (Gundelia tournefortii L. and Pimpinella anisum L. generally enhanced activity against resistant strain. Some of the plant extracts like Origanum syriacum L.(Labiateae, Trigonella foenum- graecum L.(Leguminosae, Euphorbia macroclada (Euphorbiaceae and Hibiscus sabdariffa (Malvaceae did not enhance the activity of

  12. Persistence of Escherichia coli clones and phenotypic and genotypic antibiotic resistance in recurrent urinary tract infections in childhood

    DEFF Research Database (Denmark)

    Kõljalg, Siiri; Truusalu, Kai; Vainumäe, Inga;

    2009-01-01

    We assessed the clonality of consecutive Escherichia coli isolates during the course of recurrent urinary tract infections (RUTI) in childhood in order to compare clonality with phenotypic antibiotic resistance patterns, the presence of integrons, and the presence of the sul1, sul2, and sul3 genes...... and the presence or absence of the intI gene for class 1 integrons and the sulfamethoxazole resistance-encoding genes sul1, sul2, and sul3 were determined. All E. coli strains were genotyped by pulsed-field gel electrophoresis. There were no significant differences in the prevalences of resistance to beta......% of the patients, the recurrence of unique clonal E. coli strains alone or combined with individual strains was detected. Phenotypic resistance and the occurrence of sul genes were more stable in clonal strains than in individual strains (odds ratios, 8.7 [95% confidence interval {95% CI}, 1.8 to 40.8] and 4.4 [95...

  13. Genetic relationship between soxRS and mar loci in promoting multiple antibiotic resistance in Escherichia coli.

    OpenAIRE

    Miller, P F; Gambino, L F; Sulavik, M. C.; Gracheck, S. J.

    1994-01-01

    Multiple antibiotic resistance in Escherichia coli has typically been associated with mutations at the mar locus, located at 34 min on the E. coli chromosome. A new mutant, marC, isolated on the basis of a Mar phenotype but which maps to the soxRS (encoding the regulators of the superoxide stress response) locus located at 92 min, is described here. This mutant shares several features with a known constitutive allele of the soxRS gene, prompting the conclusion that it is a highly active allel...

  14. Resistance of Escherichia coli, the most frequent cause of urinary tract infection in children, to antibiotics

    Directory of Open Access Journals (Sweden)

    Stojanović Vesna

    2010-01-01

    Full Text Available Introduction. Urinary tract infections (UTI take the second place in the incidence of bacterial infection in children. Escherichia coli is a cause of infection in 85-90%. A periodic evaluation of the resistance to antimicrobial drugs has to be performed in each geographic region, since investigations confirmed that the resistance of bacteria causing UTI has been in progress. Material and methods. A retrospective investigation has been performed, comprising the two time periods in the range of 10 years in order to identify the prevalence and resistance of the bacteria causing UTI in the patients treated at the Department of Nephrology of Institute for Child and Youth Health Care of Vojvodina. Results. During the first investigated period from January 1996 up to December 1997, there were 163 urin analyses performed vs 134 urine analyses in the second period, starting from January 2006 to December 2007. In both periods, Escherichia coli, was the most frequent cause of UTI (82.1% in 1996/97 vs 86.50% in 2006/07. During this ten-year period, the resistance of Escherichia coli increased both to ampicillin (from 53% to 69% (p>0.05 and to trimethoprim/sulfamethoxazole (34% vs 55%; p<0.05 as well as to cephalexin (4% vs 36%; p<0.05 which has been lately used in our region as a drug of choice in empiric therapy of the suspect UTI. Discussion. There have been records on a slow increase of the Escherichia coli resistance to ceftazidim, gentamycin and nalidixic acid, but significant increase to ampicillin, trimethoprim/sulfamethoxazole and cephalexin. Conclusion. For the initial therapy of UTI in the Province of Vojvodina we recommend: per orally - cephalosporins I, II and III generation, and in case when the child is not capable to get therapy perorally, or in the case of highly febrile infant - cephalosporins III generation parenterally.

  15. Antibiotic resistance patterns of more than 120 000 clinical Escherichia coli isolates in Southeast Austria, 1998-2013.

    Science.gov (United States)

    Badura, A; Feierl, G; Pregartner, G; Krause, R; Grisold, A J

    2015-06-01

    Antibiotic resistance patterns of more than 120 000 clinical Escherichia coli isolates were retrospectively analysed. Isolates originated from both hospitalized patients and outpatients from the region of southeast Austria from 1998 to 2013. Except for amoxicillin/clavulanic acid, nitrofurantoin and piperacillin/tazobactam, all of the antibiotics analysed showed increasing proportions of resistant isolates over time, which were most prominent for ampicillin (from 25.4% in 1998 to 40% in 2013), cefotaxime (0.1% to 6.7%), ceftazidime (0.3% to 14.2%), ciprofloxacin (4.3% to 16.7%) and trimethoprim/sulfamethoxazole (14.6% to 24.8%). There was a marked increase in extended-spectrum β-lactamase-positive isolates (0.1% to 6.3%) starting in 2005, with male patients and hospital-related patients showing a higher increase than female patients and outpatients. Proportions of resistant isolates for most antibiotics were generally higher for male patients and hospital-related patients. Amikacin, nitrofurantoin and trimethoprim/sulfamethoxazole showed a marked increase in resistance proportions among male subjects aged 10 to 19 years which were absent for female subjects, indicating a strong modulation potential of host characteristics.

  16. Mecanismos moleculares de resistencia antibiótica en Escherichia coli asociadas a diarrea Molecular mechanisms of antibiotic resistance in Escherichia coli- associated diarrhea

    Directory of Open Access Journals (Sweden)

    Susan Mosquito

    2011-12-01

    Full Text Available La resistencia antibiótica es un problema emergente a nivel mundial presente en diversas bacterias, en especial en la Escherichia coli, que tiene altos porcentajes de resistencia hacia ampicilina, trimetoprim-sulfametoxazol, tetraciclina, cloramfenicol y ácido nalidíxico, lo que supone grandes complicaciones en el tratamiento antibiótico cuando este es requerido. Este aumento de resistencia antibiótica se debe a la adquisición de diferentes mecanismos moleculares de resistencia mediante mutaciones puntuales a nivel cromosómico o transferencia horizontal de material genético entre especies relacionadas o diferentes, facilitada por algunos elementos genéticos tales como los integrones. Esta revisión discute los efectos de los mecanismos moleculares de resistencia más comunes en E.coli: inactivación enzimática, alteraciones en el sitio blanco y alteraciones de la permeabilidad. El conocer los mecanismos de resistencia implicados, como lo recomienda la Organización Mundial de la Salud, permitirá optimizar la vigilancia de resistencia y las políticas de control y uso de antibióticos a nivel nacional.Antibiotic resistance is an emerging problem worldwide present in many bacteria, specially in Escherichia coli, which has high percentages of resistance to ampicilline, thrimethoprim-sulfamethoxazole, tetracycline, chloramphenicol and nalidixic acid, which implies important complications in antibiotic treatment when required. The increasing antibiotic resistance is due to the acquisition of different molecular mechanisms of resistance through point chromosomal mutations and /or horizontal transfer of genetic material between related or different species facilitated by some genetic elements such as integrons. This review discusses the effects of the most common molecular mechanisms of antibiotic resistance in E. coli: enzymatic inactivation, changes in the target site and permeability disturbances. Getting to know the mechanisms of

  17. Antibiotic Resistance in Escherichia Coli Strains Isolated from Urine of Inpatients and Outpatients

    Directory of Open Access Journals (Sweden)

    Abolfazl Davoodabadi

    2012-08-01

    Full Text Available The urinary tract infections regarded as a health problem around the world and not only as an agent of nosocomial infections but also infections in the community. Community acquired UTIs cause significant illness in the first 2 years of life [1]. Urinary tract infections in both inpatient and outpatient are common and widespread use of antibiotics is often the cause of emerging one or more antibiotic-resistant microorganisms [2]. Most studies have shown higher antibiotic resistance in bacterial strains isolated from hospitalized patients than outpatients. In this study, antibiogram was performed using disk diffusion susceptibility method according to NCCLS standards of the International Committee [3]. 8 different antibiotics, including ciprofloxacin (CP: 30 μg, ceftriaxone (CRO: 30 μg, cephalotin (CF: 30 μg, cefixime (CFM: 5 μg, cotrimoxazole (SXT, nalidixic acid (NA: 30 μg, nitrofurantoin (FM: 300 μg, gentamicin (GM: 10 μg were used for antibiogram. During 1388 the total number of urine samples sent to hospital microbiology laboratories valiasr (aj of Arak was 5156, of which 446 samples (65.8% were positive for E. coli culture.

  18. A novel, double mutation in DNA gyrase A of Escherichia coli conferring resistance to quinolone antibiotics.

    OpenAIRE

    Truong, Q C; Nguyen Van, J C; Shlaes, D; Gutmann, L; Moreau, N J

    1997-01-01

    A spontaneous Escherichia coli mutant, named Q3, resistant to nalidixic acid was obtained from a previously described clinical isolate of E. coli, Q2, resistant to fluoroquinolones but susceptible to nalidixic acid (E. Cambau, F. Bordon, E. Collatz, and L. Gutmann, Antimicrob. Agents Chemother. 37:1247-1252, 1993). Q3 harbored the mutation Asp82Gly in addition to the Gly81Asp mutation of Q2. The different mutations leading to Gly81Asp, Asp82Gly, and Gly81AspAsp82Gly were introduced into the g...

  19. Toward repurposing ciclopirox as an antibiotic against drug-resistant Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Kimberly M Carlson-Banning

    Full Text Available Antibiotic-resistant infections caused by gram-negative bacteria are a major healthcare concern. Repurposing drugs circumvents the time and money limitations associated with developing new antimicrobial agents needed to combat these antibiotic-resistant infections. Here we identified the off-patent antifungal agent, ciclopirox, as a candidate to repurpose for antibiotic use. To test the efficacy of ciclopirox against antibiotic-resistant pathogens, we used a curated collection of Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae clinical isolates that are representative of known antibiotic resistance phenotypes. We found that ciclopirox, at 5-15 µg/ml concentrations, inhibited bacterial growth regardless of the antibiotic resistance status. At these same concentrations, ciclopirox reduced growth of Pseudomonas aeruginosa clinical isolates, but some of these pathogens required higher ciclopirox concentrations to completely block growth. To determine how ciclopirox inhibits bacterial growth, we performed an overexpression screen in E. coli. This screen revealed that galE, which encodes UDP-glucose 4-epimerase, rescued bacterial growth at otherwise restrictive ciclopirox concentrations. We found that ciclopirox does not inhibit epimerization of UDP-galactose by purified E. coli GalE; however, ΔgalU, ΔgalE, ΔrfaI, or ΔrfaB mutant strains all have lower ciclopirox minimum inhibitory concentrations than the parent strain. The galU, galE, rfaI, and rfaB genes all encode enzymes that use UDP-galactose or UDP-glucose for galactose metabolism and lipopolysaccharide (LPS biosynthesis. Indeed, we found that ciclopirox altered LPS composition of an E. coli clinical isolate. Taken together, our data demonstrate that ciclopirox affects galactose metabolism and LPS biosynthesis, two pathways important for bacterial growth and virulence. The lack of any reported fungal resistance to ciclopirox in over twenty years of use in the clinic

  20. Molecular characterization and antibiotic resistance of enterotoxigenic and entero-aggregative Escherichia coli isolated from raw milk and unpasteurized cheeses

    Directory of Open Access Journals (Sweden)

    Mojtaba Bonyadian

    2014-04-01

    Full Text Available The aim of this study was to determine the occurrence of enterotoxigenic and enteroaggregative Escherichia coli strains and antibiotic resistance of the isolates in raw milk and unpasteurized cheese. Out of 200 samples of raw milk and 50 samples of unpasteurized cheeses, 96 and 24 strains of E. coli were isolated, respectively. Polymerase chain reaction (PCR was used to detect the genes encoding heat-stable enterotoxin a (STa, heat-stable enterotoxin b (STb, heat labile toxin (LT and enteroaggregative heat-stable toxin1 (EAST1. Twelve out of 120 (10.00% isolates harbored the gene for EAST1, 2(1.66% isolates were detected as producing STb and LT toxins and 12 (10.00% strains contained STb and EAST1 genes. None of the strains contain the STa gene. All of the strains were tested for antibiotic resistance by disk diffusion method. Disks included: ciprofloxacin (CFN, trimetoprim-sulfamethoxazole (TSX, oxytetracycline (OTC, gentamicin (GMN, cephalexin (CPN, nalidixic acid (NDA and nitrofurantoin (NFN, ampicillin (AMP, neomycin (NEO and streptomycin (STM. Among 120 isolated strains of E. coli, the resistance to each antibiotics were as follows: OTC100%, CPN 86.00%, NDA 56.00%, NFN 42.00%, GMN 30.00%, TSX 28.00%, CFN 20%, AM 23.40% and STM 4.25%. None of the isolates were resistant to NEO. The present data indicate that different resistant E. coli pathogens may be found in raw milk and unpasteurized cheese. It poses an infection risk for human and transferring the resistant factors to microflora of the consumers gut.

  1. Comparative analysis of antibiotic resistance and phylogenetic group patterns in human and porcine urinary tract infectious Escherichia coli

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Nielsen, E.M.; Krag, L.;

    2009-01-01

    Urinary tract infections (UTIs) are one of the most common infectious diseases in humans and domestic animals such as pigs. The most frequent infectious agent in such infections is Escherichia coli. Virulence characteristics of E. coli UTI strains range from highly virulent pyelonephritis strains...... to relatively benign asymptomatic bacteriuria strains. Here we analyse a spectrum of porcine and human UTI E. coli strains with respect to their antibiotic resistance patterns and their phylogenetic groups, determined by multiplex PCR. The clonal profiles of the strains differed profoundly; whereas human...... strains predominantly belonged to clonal types B2 and D, these were not seen among the porcine strains, which all belonged to the E. coli clonal groups A and B1. Contrary to the human strains, the majority of the porcine strains were multidrug resistant. The distinct profiles of the porcine strains...

  2. Facts about Antibiotic Resistance

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  3. Antibiotic / Antimicrobial Resistance Glossary

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  4. Detection of antibiotic resistant enterococci and Escherichia coli in free range Iberian Lynx (Lynx pardinus).

    Science.gov (United States)

    Gonçalves, Alexandre; Igrejas, Gilberto; Radhouani, Hajer; Santos, Tiago; Monteiro, Ricardo; Pacheco, Rui; Alcaide, Eva; Zorrilla, Irene; Serra, Rodrigo; Torres, Carmen; Poeta, Patrícia

    2013-07-01

    Thirty fecal samples from wild specimens of Iberian lynx were collected and analyzed for Enterococcus spp. (27 isolates) and Escherichia coli (18 isolates) recovery. The 45 isolates obtained were tested for antimicrobial resistance, molecular mechanisms of resistance, and presence of virulence genes. Among the enterococci, Enterococcus faecium and Enterococcus hirae were the most prevalent species (11 isolates each), followed by Enterococcus faecalis (5 isolates). High percentages of resistance to tetracycline and erythromycin (33% and 30%, respectively) were detected among enterococcal isolates. The tet(M) and/or tet(L), erm(B), aac(6')-Ie-aph(2″)-Ia, ant(6)-Ia, or aph(3')-IIIa genes were detected among resistant enterococci. Virulence genes were detected in one E. faecalis isolate (cpd, cylB, and cylL) and one E. hirae isolate (cylL). High percentages of resistance were detected in E. coli isolates to tetracycline (33%), streptomycin (28%), nalidixic acid (28%), and sulfamethoxazole-trimethoprim (SXT, 22%). Additionally, the blaTEM, tet(A), aadA, cmlA, and different combinations of sul genes were detected among most ampicillin, tetracycline, streptomycin, chloramphenicol and SXT-resistant isolates, respectively. Two isolates contained a class 1 integron with the gene cassette arrays dfrA1 + aadA1 and dfrA12 + aadA2. The E. coli isolates were ascribed to phylo-groups A (n=5); B1 (n=4); B2 (n=6), and D (n=3), with the virulence gene fimA present in all E. coli isolates. This study found resistance genes in wild specimens of Iberian lynx. Thus, it is important to notice that multiresistant bacteria have reached species as rare and completely non-synanthropic as the Iberian lynx. Furthermore, the susceptibility of this endangered species to bacterial infection may be affected by the presence of these virulence and resistance genes.

  5. Virulence Profiles, Phylogenetic Background, and Antibiotic Resistance of Escherichia coli Isolated from Turkeys with Airsacculitis

    Directory of Open Access Journals (Sweden)

    Marcos Paulo Vieira Cunha

    2014-01-01

    Full Text Available Avian Pathogenic Escherichia coli (APEC has been studied for decades because of its economic impact on the poultry industry. Recently, the zoonotic potential of APEC and multidrug-resistant strains have emerged. The aim of this study was to characterize 225 APEC isolated from turkeys presenting airsacculitis. The results showed that 92% of strains presented a multidrug-resistance (MDR, and the highest levels of resistance were to sulfamethazine (94% and tetracycline (83%. Half of these strains were classified in phylogenetic group B2, followed by B1 (28.6%, A (17.1%, and D (4.8%. The prevalence of virulence genes was as follows: salmochelin (iroN, 95%, increased serum survival (iss, 93%, colicin V (cvi/cva, 67%, aerobactin (iucD, 67%, temperature-sensitive haemagglutinin (tsh, 56%, iron-repressible protein (irp2, 51%, invasion brain endothelium (ibeA, 31%, vacuolating autotransporter toxin (vat, 24%, K1 antigen (neuS, 19%, enteroaggregative heat-stable cytotoxin (astA, 17%, and pilus associated with pyelonephritis (papC, 15%. These results demonstrate that the majority of the investigated strains belonged to group B2 and were MDR. These data suggest that turkeys may serve as a reservoir of pathogenic and multidrug-resistance strains, reinforcing the idea that poultry plays a role in the epidemiological chain of ExPEC.

  6. Antibiotic resistance profiles of Escherichia coli isolated from different water sources in the Mmabatho locality, Northwest Province, South Africa

    OpenAIRE

    C. Njie Ateba; D. Tonderai Kawadza; Constance N. Wose Kinge

    2010-01-01

    The antibiotic resistance profiles of Escherichia coli (E. coli), isolated from different water sources in the Mmabatho locality were evaluated. Water samples were collected from the local wastewater- and water-treatment plants, the Modimola Dam and homes in the area, and then analysed for the presence of E. coli, using standard methods. Presumptive isolates obtained were confirmed by the analytical profile index test. Antibiotic ...

  7. Outer membrane proteomics of kanamycin-resistant Escherichia coli identified MipA as a novel antibiotic resistance-related protein.

    Science.gov (United States)

    Li, Hui; Zhang, Dan-feng; Lin, Xiang-min; Peng, Xuan-xian

    2015-06-01

    Antibiotic-resistant bacteria are a great threat to human health and food safety and there is an urgent need to understand the mechanisms of resistance for combating these bacteria. In the current study, comparative proteomic methodologies were applied to identify Escherichia coli K-12 outer membrane (OM) proteins related to kanamycin resistance. Mass spectrometry and western blotting results revealed that OM proteins TolC, Tsx and OstA were up-regulated, whereas MipA, OmpA, FadL and OmpW were down-regulated in kanamycin-resistant E. coli K-12 strain. Genetic deletion of tolC (ΔtolC-Km) led to a 2-fold decrease in the minimum inhibitory concentration (MIC) of kanamycin and deletion of mipA (ΔmipA-Km) resulted in a 4-fold increase in the MIC of kanamycin. Changes in the MICs for genetically modified strains could be completely recovered by gene complementation. Compared with the wild-type strain, the survival capability of ΔompA-Km was significantly increased and that of Δtsx-Km was significantly decreased. We further evaluated the role and expression of MipA in response to four other antibiotics including nalidixic acid, streptomycin, chloramphenicol and aureomycin, which suggested that MipA was a novel OM protein related to antibiotic resistance.

  8. Outer membrane proteomics of kanamycin-resistant Escherichia coli identified MipA as a novel antibiotic resistance-related protein.

    Science.gov (United States)

    Li, Hui; Zhang, Dan-feng; Lin, Xiang-min; Peng, Xuan-xian

    2015-06-01

    Antibiotic-resistant bacteria are a great threat to human health and food safety and there is an urgent need to understand the mechanisms of resistance for combating these bacteria. In the current study, comparative proteomic methodologies were applied to identify Escherichia coli K-12 outer membrane (OM) proteins related to kanamycin resistance. Mass spectrometry and western blotting results revealed that OM proteins TolC, Tsx and OstA were up-regulated, whereas MipA, OmpA, FadL and OmpW were down-regulated in kanamycin-resistant E. coli K-12 strain. Genetic deletion of tolC (ΔtolC-Km) led to a 2-fold decrease in the minimum inhibitory concentration (MIC) of kanamycin and deletion of mipA (ΔmipA-Km) resulted in a 4-fold increase in the MIC of kanamycin. Changes in the MICs for genetically modified strains could be completely recovered by gene complementation. Compared with the wild-type strain, the survival capability of ΔompA-Km was significantly increased and that of Δtsx-Km was significantly decreased. We further evaluated the role and expression of MipA in response to four other antibiotics including nalidixic acid, streptomycin, chloramphenicol and aureomycin, which suggested that MipA was a novel OM protein related to antibiotic resistance. PMID:25940639

  9. Antibiotic resistance in Escherichia coli strains isolated from Antarctic bird feces, water from inside a wastewater treatment plant, and seawater samples collected in the Antarctic Treaty area

    Science.gov (United States)

    Rabbia, Virginia; Bello-Toledo, Helia; Jiménez, Sebastián; Quezada, Mario; Domínguez, Mariana; Vergara, Luis; Gómez-Fuentes, Claudio; Calisto-Ulloa, Nancy; González-Acuña, Daniel; López, Juana; González-Rocha, Gerardo

    2016-06-01

    Antibiotic resistance is a problem of global concern and is frequently associated with human activity. Studying antibiotic resistance in bacteria isolated from pristine environments, such as Antarctica, extends our understanding of these fragile ecosystems. Escherichia coli strains, important fecal indicator bacteria, were isolated on the Fildes Peninsula (which has the strongest human influence in Antarctica), from seawater, bird droppings, and water samples from inside a local wastewater treatment plant. The strains were subjected to molecular typing with pulsed-field gel electrophoresis to determine their genetic relationships, and tested for antibiotic susceptibility with disk diffusion tests for several antibiotic families: β-lactams, quinolones, aminoglycosides, tetracyclines, phenicols, and trimethoprim-sulfonamide. The highest E. coli count in seawater samples was 2400 cfu/100 mL. Only strains isolated from seawater and the wastewater treatment plant showed any genetic relatedness between groups. Strains of both these groups were resistant to β-lactams, aminoglycosides, tetracycline, and trimethoprim-sulfonamide.In contrast, strains from bird feces were susceptible to all the antibiotics tested. We conclude that naturally occurring antibiotic resistance in E. coli strains isolated from Antarctic bird feces is rare and the bacterial antibiotic resistance found in seawater is probably associated with discharged treated wastewater originating from Fildes Peninsula treatment plants.

  10. Resistência a antimicrobianos de Escherichia coli isolada de dejetos suínos em esterqueiras Antibiotic-resistance of Escherichia coli isolates from stored pig slurry

    Directory of Open Access Journals (Sweden)

    F.F.P. Silva

    2008-06-01

    Full Text Available The antimicrobial resistance of 96 Escherichia coli strains isolated from a stabilization pond system on a pig-breeding farm was evaluated. Strains were tested for their resistance against 14 antimicrobial using the agar diffusion method. E. coli strains showed resistance to tetracycline (82.3%, nalidixic acid (64%, ampicilin (41%, sulfamethoxazole/trimethoprin (36%, sulfonamide (34%, cloranphenicol (274%, ciprofloxacin (19%, cefaclor (16%, streptomicyn (7.3%, neomicyn (1%, amoxacilin/ clavulanic acid (1%, and amikacin (1%. No resistance was observed to gentamicin and tobramycin, and 37.5% of E. coli strains were resistant to four or more antimicrobials. The multiresistance pattern was found in strains isolated during all sampled period. Strains showed a high variability in the antimicrobial resistance pattern.

  11. Prevalence And Antibiotic Resistance Patterns of Diarrheagenic Escherichia Coli Isolated from Adolescents and Adults in Hamedan, Western Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Yousef Alikhani

    2013-03-01

    Full Text Available Background and Objectives: Pathogenic strains of Escherichia coli are a common cause of acute infectious diarrhea. The aim of this study was to investigate the frequency, virulence markers and antibiotic resistance patterns of diarrheagenic E. coli (DEC isolated from adolescents and adults in Hamadan, west of Iran.Materials and Methods: A total of 187 stool samples were collected from adults with acute diarrhea. Stool culture was performed by conventional methods for enteropathogenic bacteria. Virulence factor genes for DEC were detected by polymerase chain reaction. Antimicrobial susceptibility was tested using the disk diffusion method.Results: Among the 187 patients, 40 (21.4% were positive for DEC. The most frequently identified DEC was enteropathogenic E. coli (47.5%, followed by enteroaggregative (20%, enterotoxigenic (17.5% and shiga-toxin producing E. coli (15%. No isolates of enteroinvasive E. coli were detected. All STEC strains were stx+ / eaeA-. Out of the seven ETEC strains, five (71.4% produced ST, one (14.3% produced only LT and one (14.3% of the isolates produced both ST and LT encoded by est and elt genes, respectively. Among the 40 DEC strains 27(67.5% were multidrug resistant.Conclusion: DEC contribute to the burden of diarrhea in adults in Hamadan. Enteropathogenic E. coli was the most commonly identified DEC strain in the region studied.

  12. Resistance of uropathogenic strains of Escherichia coli in pregnant women and other women in generative ages in comparison with antibiotics consumption in Zagreb

    Directory of Open Access Journals (Sweden)

    Marcel Leppée,

    2010-02-01

    Full Text Available Aim To compare resistance of uropathogenic strains of Escherichia coli (UPEC to antibiotics in women in generative ages and pregnant women during two year period (2004 and 2008 in Zagreb, andcomparison of resistance and the consumption of antibiotics. Methods The standard disk-diffusion method was used for sensitivity testing to 16 different antibiotics.Data on antibiotic utilization were used to calculate the number of defined daily doses (DDD and DDD per 1000 inhabitants using Anatomical-Therapeutic-Chemical/DDD methodology.Data on antibiotic consumption during pregnancy were collected using a questionnaire filled in by 893 women after delivery.Results During 2004 resistance of UPEC to antimicrobial drugs was not different in pregnant and in non-pregnant women, with the exception of amoxicillin and nitrofurantoin, with statistically higher resistance in pregnant women (p <0.01. Four years later the statistically higher resistance to norfloxacin was observed in non-pregnant women (p <0.01. Comparing the resistance in 2004 and 2008, in the both groups of women a statistically significant decrease of resistance to cefalexin and nitrofurantoin was detected (p <0.01. Outpatient utilization of antimicrobial drugs in Zagreb increased significantly, from 32 to 39 DDD/1000 inhabitants per day. The most used antibiotic was co-amoxiclav, and its utilization increased from 9.6 to 12.2 DDD/1000/day. Amoxicillin and co-amoxiclav were used during pregnancy by 9.6% interviewed women. Conclusion The observed significant decrease of resistance to cefalexin makes that antibiotic the drug of choice for treatment of urinary tract infections in women in generative ages, and together with coamoxiclavcan be administered in pregnancy. Constant monitoring of urinary tract pathogens resistance to antimicrobial agents ensures the effectiveness of empirical therapy, whose versatile use is limited due the potentially harmful effects of antimicrobial drugs on fetus.

  13. Short communication: The role of autoinducer 2 (AI-2) on antibiotic resistance regulation in an Escherichia coli strain isolated from a dairy cow with mastitis.

    Science.gov (United States)

    Xue, Ting; Yu, Lumin; Shang, Fei; Li, Wenchang; Zhang, Ming; Ni, Jingtian; Chen, Xiaolin

    2016-06-01

    Extended spectrum β-lactamase (ESBL)-positive Escherichia coli is a major etiological organism responsible for bovine mastitis. The autoinducer 2 (AI-2) quorum sensing system is widely present in many species of gram-negative and gram-positive bacteria and has been proposed to be involved in interspecies communication. In E. coli model strains, the functional mechanisms of AI-2 have been well studied; however, in clinical antibiotic-resistant E. coli strains, whether AI-2 affects the expression of antibiotic resistance genes has not been reported. In this study, we report that exogenous AI-2 increased the antibiotic resistance of a clinical E. coli strain isolated from a dairy cow with mastitis by upregulating the expression of TEM-type enzyme in an LsrR (LuxS regulated repressor)-dependent manner.

  14. Short communication: The role of autoinducer 2 (AI-2) on antibiotic resistance regulation in an Escherichia coli strain isolated from a dairy cow with mastitis.

    Science.gov (United States)

    Xue, Ting; Yu, Lumin; Shang, Fei; Li, Wenchang; Zhang, Ming; Ni, Jingtian; Chen, Xiaolin

    2016-06-01

    Extended spectrum β-lactamase (ESBL)-positive Escherichia coli is a major etiological organism responsible for bovine mastitis. The autoinducer 2 (AI-2) quorum sensing system is widely present in many species of gram-negative and gram-positive bacteria and has been proposed to be involved in interspecies communication. In E. coli model strains, the functional mechanisms of AI-2 have been well studied; however, in clinical antibiotic-resistant E. coli strains, whether AI-2 affects the expression of antibiotic resistance genes has not been reported. In this study, we report that exogenous AI-2 increased the antibiotic resistance of a clinical E. coli strain isolated from a dairy cow with mastitis by upregulating the expression of TEM-type enzyme in an LsrR (LuxS regulated repressor)-dependent manner. PMID:27060825

  15. Quantifying attachment and antibiotic resistance of Escherichia coli from conventional and organic swine manure

    Science.gov (United States)

    Broad spectrum antibiotics, used to treat infections in livestock, are often administered at sub-therapeutic levels in feed rations to promote growth and for prophylaxis. Previous studies have shown that bacteria preferentially attach to sediments affecting their transport in overland flow; however...

  16. Study on antibiotic resistance of Escherichia coli isolated from fishery products%水产品中大肠埃希菌耐药性研究

    Institute of Scientific and Technical Information of China (English)

    张梦寒; 沈强; 朱莉勤; 姜韬

    2011-01-01

    目的:测定水产品中的大肠杆菌的耐药性.方法:进行水产品中大肠埃希菌分离,用VITEK 2 Compact全自动微生物分析仪鉴定和做药敏分析.结果:共分离得到85株具有抗生素抗性或中介性的大肠埃希菌,其中有5株菌产超广谱β-内酰胺酶(ESBLs),对抗生素的总耐药率高于50%.结论:应尽快做出有效措施,以遏制细菌耐药性的进一步发展.%Objective: To determine the antibiotic resistance of Escherichia coli strains isolated from fishery products. Methods : To isolate and identify E. Coli in fishery products, susceptibility test of different antimicrobial agents were done by VITEK 2 Compact. Results; 85 isolates of Escherichia coli with antibiotic resistance or intermediation were obtained in total, in which there were 5 strains of ESBLs, whose antibiotic resistance were higher than 50%. Conclusion: Effective measures should be adopted timely to prevent further progress of the antibiotic resistance.

  17. STUDIES ON ANTIBIOTICS AND HEAVY METAL RESISTANCE PROFILING OF ESCHERICHIA COLI FROM DRINKING WATER AND CLINICAL SPECIMENS

    Directory of Open Access Journals (Sweden)

    R. S. Kawane

    2012-11-01

    Full Text Available Bacterial resistance to antibiotics and heavy metals is an increasing problem in today’s society. Antibiotics resistances in the clinical isolates were high as compare to E.coli from drinking water. The drinking water and clinical E.coli showed more or less equal resistance to antibiotic: metronidazole, penicillin, clindamycin, cephoxithin and heavy metals; copper, mercury and lead, except cadmium metal ions. Multiple antibiotic resistance (MAR indices in the clinical isolates were high as compare to MAR indices of drinking water. E.coli isolates showed higher MAR indices to cephalothin, cephoxithin, clindamycin, metronidazole, penicillin and vancomycin indicated its human origin in drinking water. No significant variation in heavy metal tolerance (HMT was recorded from both types of isolated. Thus MAR indices were much more reliable indicator to differentiate origin of E.coli.

  18. Occurrence of Plasmid Borne Multiple Antibiotic Resistant Genes in Escherichia coli Isolated from Well Water in Eku, Ethiope East Local Government Area, Delta State, Nigeria

    Directory of Open Access Journals (Sweden)

    E. Akponah

    2014-05-01

    Full Text Available Five wells in Eku were assessed for total heterotrophic bacterial and coliform counts from January to December. Sixty isolates of Escherichia coli were also obtained from the well water samples throughout the study period. It was observed that, values of total heterotrophic bacterial and coliform load obtained varied with seasons although the total heterotrophic bacterial counts were significantly higher than the coliform load at all times. During the dry season, values of the total heterotrophic bacterial count ranged from 2.08 to 5.48 (log cfu/mL while coliform counts ranged from 2.3 to 3.26 (log cfu/mL. On the other hand, total heterotrophic bacterial and coliform counts ranged from 3.34 to 7.14 (log cfu/mL and 3.15 to 3.98 (log cfu/mL respectively during the rainy season. Results obtained revealed that 76.6% of total Escherichia coli isolates evaluated, demonstrated multiple antibiotics resistance while 18.3% showed single antibiotics resistance. On curing, 83.3% of test Escherichia coli population lost their antibiotics resistant gene indicating that these genes resided on plasmid.

  19. No evidence for transmission of antibiotic-resistant Escherichia coli strains from humans to wild western lowland gorillas in Lopé National Park, Gabon.

    Science.gov (United States)

    Benavides, Julio Andre; Godreuil, Sylvain; Bodenham, Rebecca; Ratiarison, Sandra; Devos, Céline; Petretto, Marie-Odile; Raymond, Michel; Escobar-Páramo, Patricia

    2012-06-01

    The intensification of human activities within the habitats of wild animals is increasing the risk of interspecies disease transmission. This risk is particularly important for great apes, given their close phylogenetic relationship with humans. Areas of high human density or intense research and ecotourism activities expose apes to a high risk of disease spillover from humans. Is this risk lower in areas of low human density? We determined the prevalence of Escherichia coli antibiotic-resistant isolates in a population of the critically endangered western lowland gorilla (Gorilla gorilla gorilla) and other wild mammals in Lopé National Park (LNP), Gabon, and we tested whether the observed pattern could be explained by bacterial transmission from humans and domestic animals into wildlife populations. Our results show a high prevalence of antibiotic-resistant bacterial isolates in humans and low levels in gorillas and other wildlife. The significant differences in the genetic background of the resistant bacteria isolated from humans and gorillas suggest that transmission is low or does not occur between these two species. These findings indicate that the presence of antibiotic-resistant strains in wildlife do not imply direct bacteria transmission from humans. Thus, in areas of low human density, human-wildlife E. coli transmission seems to be low. The presence of antibiotic-resistant isolates in gorillas may be better explained by other mechanisms for resistance acquisition, such as horizontal gene exchange among bacteria or naturally acquired resistance.

  20. No evidence for transmission of antibiotic-resistant Escherichia coli strains from humans to wild western lowland gorillas in Lopé National Park, Gabon.

    Science.gov (United States)

    Benavides, Julio Andre; Godreuil, Sylvain; Bodenham, Rebecca; Ratiarison, Sandra; Devos, Céline; Petretto, Marie-Odile; Raymond, Michel; Escobar-Páramo, Patricia

    2012-06-01

    The intensification of human activities within the habitats of wild animals is increasing the risk of interspecies disease transmission. This risk is particularly important for great apes, given their close phylogenetic relationship with humans. Areas of high human density or intense research and ecotourism activities expose apes to a high risk of disease spillover from humans. Is this risk lower in areas of low human density? We determined the prevalence of Escherichia coli antibiotic-resistant isolates in a population of the critically endangered western lowland gorilla (Gorilla gorilla gorilla) and other wild mammals in Lopé National Park (LNP), Gabon, and we tested whether the observed pattern could be explained by bacterial transmission from humans and domestic animals into wildlife populations. Our results show a high prevalence of antibiotic-resistant bacterial isolates in humans and low levels in gorillas and other wildlife. The significant differences in the genetic background of the resistant bacteria isolated from humans and gorillas suggest that transmission is low or does not occur between these two species. These findings indicate that the presence of antibiotic-resistant strains in wildlife do not imply direct bacteria transmission from humans. Thus, in areas of low human density, human-wildlife E. coli transmission seems to be low. The presence of antibiotic-resistant isolates in gorillas may be better explained by other mechanisms for resistance acquisition, such as horizontal gene exchange among bacteria or naturally acquired resistance. PMID:22492436

  1. Antibiotic resistance in probiotic bacteria

    Directory of Open Access Journals (Sweden)

    Miguel eGueimonde

    2013-07-01

    Full Text Available Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The main probiotic bacteria are strains belonging to the genera Lactobacillus and Bifidobacterium, although other representatives, such as Bacillus or Escherichia coli strains, have also been used. Lactobacillus and Bifidobacterium are two common inhabitants of the human intestinal microbiota. Also, some species are used in food fermentation processes as starters, or as adjunct cultures in the food industry. With some exceptions, antibiotic resistance in these beneficial microbes does not constitute a safety concern in itself, when mutations or intrinsic resistance mechanisms are responsible for the resistance phenotype. In fact, some probiotic strains with intrinsic antibiotic resistance could be useful for restoring the gut microbiota after antibiotic treatment. However, specific antibiotic resistance determinants carried on mobile genetic elements, such as tetracycline resistance genes, are often detected in the typical probiotic genera, and constitute a reservoir of resistance for potential food or gut pathogens, thus representing a serious safety issue.

  2. CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases.

    Science.gov (United States)

    Kim, Jun-Seob; Cho, Da-Hyeong; Park, Myeongseo; Chung, Woo-Jae; Shin, Dongwoo; Ko, Kwan Soo; Kweon, Dae-Hyuk

    2016-02-01

    Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) system, a genome editing technology, was shown to be versatile in treating several antibiotic-resistant bacteria. In the present study, we applied the CRISPR/ Cas9 technology to kill extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. ESBL bacteria are mostly multidrug resistant (MDR), and have plasmid-mediated antibiotic resistance genes that can be easily transferred to other members of the bacterial community by horizontal gene transfer. To restore sensitivity to antibiotics in these bacteria, we searched for a CRISPR/Cas9 target sequence that was conserved among >1,000 ESBL mutants. There was only one target sequence for each TEM- and SHV-type ESBL, with each of these sequences found in ~200 ESBL strains of each type. Furthermore, we showed that these target sequences can be exploited to re-sensitize MDR cells in which resistance is mediated by genes that are not the target of the CRISPR/Cas9 system, but by genes that are present on the same plasmid as target genes. We believe our Re-Sensitization to Antibiotics from Resistance (ReSAFR) technology, which enhances the practical value of the CRISPR/Cas9 system, will be an effective method of treatment against plasmid-carrying MDR bacteria.

  3. Stability in Escherichia coli of an antibiotic resistance plasmid from Bacteroides fragilis.

    OpenAIRE

    Rashtchian, A; Booth, S J

    1981-01-01

    A Bacteroides fragilis strain resistant to penicillin G, tetracycline, and clindamycin was screened for the presence of plasmid deoxyribonucleic acid (DNA). Agarose gel electrophoresis of ethanol-precipitated DNA from cleared lysates of this strain revealed two plasmid DNA bands. The molecular weights of the plasmids were estimated by their relative mobility in agarose gel and compared with standard plasmids with known molecular weights. The molecular weights were 3.40 +/- 0.20 x 10(6) and 1....

  4. Prevalence and antibiotic resistance profiles of diarrheagenic Escherichia coli strains isolated from food items in northwestern Mexico.

    Science.gov (United States)

    Canizalez-Roman, Adrian; Gonzalez-Nuñez, Edgar; Vidal, Jorge E; Flores-Villaseñor, Héctor; León-Sicairos, Nidia

    2013-06-01

    Diarrheogenic Escherichia coli (DEC) strains are an important cause of intestinal syndromes in the developing world mainly affecting children. DEC strains often infect tourists from developed countries traveling to Mexico, causing so-called "traveler diarrhea". DEC strains are typically transmitted by contaminated food and water; however, the prevalence of these strains in food items that are produced, consumed and sometimes exported in northwestern Mexico has not been evaluated. In this study, we conducted a large microbiological survey of DEC strains in 5162 food items and beverages consumed throughout Sinaloa state during 2008 and 2009. We developed a panel of eight sequential PCR reactions that detected the presence of all DEC categories, including typical or atypical variants. Thermotolerant coliforms (also known as fecal coliforms) and E. coli were detected by conventional bacteriology in 13.4% (692/5162) and 7.92% (409/5162) of food items, respectively. Among 409 E. coli isolates, 13.6% (56/409) belonged to DEC strains. Dairy products (2.8%) were the most contaminated with DEC, while DEC strains were not detected in beverages and ice samples. The pathogenic type that was most commonly isolated was EPEC (78.5%), followed by EAEC (10.7%), STEC (8.9%) and ETEC (1.7%). EHEC, DAEC and EIEC strains were not detected. Approximately 80% of EPEC and EAEC strains were classified as atypical variants; they did not adhere to a culture of HEp-2 cell. Of the isolated DEC strains, 66% showed resistance to at least one commonly prescribed antibiotic. In conclusion, the presence of DEC strains in food items and beverages available in northwestern Mexico is low and may not represent a threat for the general population or those traveling to tourist areas.

  5. Plasmid mediated multiple antibiotic resistance in Escherichia coli isolated from community acquired infection of urinary tract in Aligarh Hospital

    Institute of Scientific and Technical Information of China (English)

    Asad U Khan; Saeedut Zafar Ali; Mohammed S Zaman

    2008-01-01

    This study was to investigate the current trends of multiple drug resistance in bacteria against antibiotics for the proper empirical treatmen.Clinical isolates were collected from community-acquired infection of urinary tract patients in Aligarh India from March 1999 to August 1999.Antibiotic susceptibility test was performed,using the disc diffusion method followed by plasmid isolation by the method of Kado and Liu.Transfer experiments were performed by the method of Lederberg and Cohen.Clinical study revealed that this infection was more common in young women.Various strains of E.coli isolated during the course of study were found to show multiple antibiotic resistance which was further characterized as plasmid-borne drug resistance.This study shows that E.coli may be one of the important causative agents of urinary tract infection (UTI )in young women.

  6. The Frequency of Extended-spectrum Beta-lactamase and The Rate of Antibiotic Resistance in Escherichia coli Strains

    Directory of Open Access Journals (Sweden)

    Gul Karagoz

    2013-06-01

    Full Text Available Background The resistance related with production of extended-spectrum beta-lactamase (ESBL is an important problem that we face when we are treating infections caused by enterobacteriaceae. We aimed to evaluate the frequency of ESBL production in E. coli strains and the rate of antibiotic resistance isolated from in our microbiology laboratory. Method E. coli strains isolated from various clinical specimens between January 2010 – December 2011 were assessed retrospectively. Resistances to ESBL-producing and non-producing E. coli and the rate of ESBL production according to the years were investigated. The results were compared with statistical analysis. Results The rate of ESBL producing E. coli was 21.9% in 2010, and 25% in 2011. There was no resistance to imipenem, meropenem, ertapenem and tigecycline in all strains. The resistance to antibiotics other than amikacin was statistically significant in ESBL producing E. coli compared to ESBL non-producing E.coli (p<0.05. Conclusion Surveillance studies guide appropriate antibiotic therapy and prevent development of resistance. Empiric treatment should be started according to local surveillance data, and de-escalation of the administered antibiotics should be used following culture results. [TAF Prev Med Bull 2013; 12(3.000: 291-296

  7. Impact of Some Ecological Factors on Fecal Contamination of Drinking Water by Diarrheagenic Antibiotic-Resistant Escherichia coli in Zagazig City, Egypt

    Directory of Open Access Journals (Sweden)

    Ahmed Elsadek Fakhr

    2016-01-01

    Full Text Available Fecal contamination of drinking water is a major health problem which accounts for many cases of diarrhea mainly in infants and foreigners. This contamination is a complex interaction of many parameters. Antibiotic resistance among bacterial isolates complicates the problem. The study was done to identify fecal contamination of drinking water by Diarrheagenic Antibiotic-Resistant Escherichia coli in Zagazig city and to trace reasons for such contamination, three hundred potable water samples were investigated for E. coli existence. Locations of E. coli positive samples were investigated in relation to population density, water source, and type of water pipe. Sixteen E. coli strains were isolated. Antibiotic sensitivity was done and enterotoxigenic, enteropathogenic, and enterohaemorrhagic virulence genes were investigated by PCR. Probability of fecal contamination correlated with higher population density, with increased distance from Zagazig water plant, and with asbestos cement water pipes. Resistance to at least one antimicrobial drug was found in all isolates. Virulence genes were detected in a rate of 26.27%, 13.13%, 20%, 6.67%, and 33.33% for LT, ST, stx1, stx2, and eae genes, respectively. This relatively high frequency of fecal contamination points towards the high risk of developing diarrhea by antibiotic resistant DEC in low socioeconomic communities particularly with old fashion distribution systems.

  8. IncF Plasmids Are Commonly Carried by Antibiotic Resistant Escherichia coli Isolated from Drinking Water Sources in Northern Tanzania.

    Science.gov (United States)

    Lyimo, Beatus; Buza, Joram; Subbiah, Murugan; Temba, Sylivester; Kipasika, Honest; Smith, Woutrina; Call, Douglas R

    2016-01-01

    The aim of this study was to identify the replicon types of plasmids, conjugation efficiencies, and the complement of antibiotic resistance genes for a panel of multidrug resistant E. coli isolates from surface waters in northern Tanzania. Standard membrane filtration was used to isolate and uidA PCR was used to confirm the identity of strains as E. coli. Antibiotic susceptibility was determined by breakpoint assay and plasmid conjugation was determined by filter-mating experiments. PCR and sequencing were used to identify resistance genes and PCR-based replicon typing was used to determine plasmid types. Filter mating experiments indicated conjugation efficiencies ranged from 10(-1) to 10(-7). Over 80% of the donor cells successfully passed their resistance traits and eleven different replicon types were detected (IncI1, FIC, P, FIIA, A/C, FIB, FIA, H12, K/B B/O, and N). IncF plasmids were most commonly detected (49% of isolates), followed by types IncI1 and IncA/C. Detection of these public health-relevant conjugative plasmids and antibiotic resistant traits in Tanzanian water suggests the possible pollution of these water sources from human, livestock, and wild animal wastes and also shows the potential of these water sources in the maintenance and transmission of these resistance traits between environments, animals, and people.

  9. IncF Plasmids Are Commonly Carried by Antibiotic Resistant Escherichia coli Isolated from Drinking Water Sources in Northern Tanzania

    Directory of Open Access Journals (Sweden)

    Beatus Lyimo

    2016-01-01

    Full Text Available The aim of this study was to identify the replicon types of plasmids, conjugation efficiencies, and the complement of antibiotic resistance genes for a panel of multidrug resistant E. coli isolates from surface waters in northern Tanzania. Standard membrane filtration was used to isolate and uidA PCR was used to confirm the identity of strains as E. coli. Antibiotic susceptibility was determined by breakpoint assay and plasmid conjugation was determined by filter-mating experiments. PCR and sequencing were used to identify resistance genes and PCR-based replicon typing was used to determine plasmid types. Filter mating experiments indicated conjugation efficiencies ranged from 10−1 to 10−7. Over 80% of the donor cells successfully passed their resistance traits and eleven different replicon types were detected (IncI1, FIC, P, FIIA, A/C, FIB, FIA, H12, K/B B/O, and N. IncF plasmids were most commonly detected (49% of isolates, followed by types IncI1 and IncA/C. Detection of these public health-relevant conjugative plasmids and antibiotic resistant traits in Tanzanian water suggests the possible pollution of these water sources from human, livestock, and wild animal wastes and also shows the potential of these water sources in the maintenance and transmission of these resistance traits between environments, animals, and people.

  10. IncF Plasmids Are Commonly Carried by Antibiotic Resistant Escherichia coli Isolated from Drinking Water Sources in Northern Tanzania.

    Science.gov (United States)

    Lyimo, Beatus; Buza, Joram; Subbiah, Murugan; Temba, Sylivester; Kipasika, Honest; Smith, Woutrina; Call, Douglas R

    2016-01-01

    The aim of this study was to identify the replicon types of plasmids, conjugation efficiencies, and the complement of antibiotic resistance genes for a panel of multidrug resistant E. coli isolates from surface waters in northern Tanzania. Standard membrane filtration was used to isolate and uidA PCR was used to confirm the identity of strains as E. coli. Antibiotic susceptibility was determined by breakpoint assay and plasmid conjugation was determined by filter-mating experiments. PCR and sequencing were used to identify resistance genes and PCR-based replicon typing was used to determine plasmid types. Filter mating experiments indicated conjugation efficiencies ranged from 10(-1) to 10(-7). Over 80% of the donor cells successfully passed their resistance traits and eleven different replicon types were detected (IncI1, FIC, P, FIIA, A/C, FIB, FIA, H12, K/B B/O, and N). IncF plasmids were most commonly detected (49% of isolates), followed by types IncI1 and IncA/C. Detection of these public health-relevant conjugative plasmids and antibiotic resistant traits in Tanzanian water suggests the possible pollution of these water sources from human, livestock, and wild animal wastes and also shows the potential of these water sources in the maintenance and transmission of these resistance traits between environments, animals, and people. PMID:27110245

  11. IncF Plasmids Are Commonly Carried by Antibiotic Resistant Escherichia coli Isolated from Drinking Water Sources in Northern Tanzania

    Science.gov (United States)

    Lyimo, Beatus; Buza, Joram; Subbiah, Murugan; Temba, Sylivester; Kipasika, Honest; Smith, Woutrina; Call, Douglas R.

    2016-01-01

    The aim of this study was to identify the replicon types of plasmids, conjugation efficiencies, and the complement of antibiotic resistance genes for a panel of multidrug resistant E. coli isolates from surface waters in northern Tanzania. Standard membrane filtration was used to isolate and uidA PCR was used to confirm the identity of strains as E. coli. Antibiotic susceptibility was determined by breakpoint assay and plasmid conjugation was determined by filter-mating experiments. PCR and sequencing were used to identify resistance genes and PCR-based replicon typing was used to determine plasmid types. Filter mating experiments indicated conjugation efficiencies ranged from 10−1 to 10−7. Over 80% of the donor cells successfully passed their resistance traits and eleven different replicon types were detected (IncI1, FIC, P, FIIA, A/C, FIB, FIA, H12, K/B B/O, and N). IncF plasmids were most commonly detected (49% of isolates), followed by types IncI1 and IncA/C. Detection of these public health-relevant conjugative plasmids and antibiotic resistant traits in Tanzanian water suggests the possible pollution of these water sources from human, livestock, and wild animal wastes and also shows the potential of these water sources in the maintenance and transmission of these resistance traits between environments, animals, and people. PMID:27110245

  12. Quality of Water and Antibiotic Resistance of Escherichia coli from Water Sources of Hilly Tribal Villages with and without Integrated Watershed Management—A One Year Prospective Study

    Directory of Open Access Journals (Sweden)

    Sandeep S. Nerkar

    2014-06-01

    Full Text Available In many hilly tribal areas of the world, water scarcity is a major problem and diarrhoea is common. Poor quality of water also affects the environment. An integrated watershed management programme (IWMP aims to increase availability of water and to improve life conditions. Globally, there is a lack of information on water contamination, occurrence of diarrhoea and antibiotic resistance, a serious global concern, in relation to IWMP in hilly tribal areas. Therefore, a prospective observational study was conducted during 2011–2012 in six villages in a hilly tribal belt of India, three with and three without implementation of an IWMP, to explore quality of water, diarrhoeal cases in the community and antibiotic resistance of Escherichia coli from water sources. The results showed that physico-chemical quality of water was within limits of safe consumption in all samples. The odds of coliform contamination in water samples was 2.3 times higher in non-watershed management villages (NWMV compared to integrated watershed management villages (IWMV (95% CI 0.8–6.45, p = 0.081. The number of diarrhoeal cases (18/663 vs. 42/639, p < 0.05 was lower in IWMV as compared to NWMV. Overall E. coli isolates showed high susceptibility to antibiotics. Resistance to a wider range of antibiotics was observed in NWMV.

  13. Pneumococcal resistance to antibiotics.

    OpenAIRE

    Klugman, K P

    1990-01-01

    The geographic distribution of pneumococci resistant to one or more of the antibiotics penicillin, erythromycin, trimethoprim-sulfamethoxazole, and tetracycline appears to be expanding, and there exist foci of resistance to chloramphenicol and rifampin. Multiply resistant pneumococci are being encountered more commonly and are more often community acquired. Factors associated with infection caused by resistant pneumococci include young age, duration of hospitalization, infection with a pneumo...

  14. Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe.

    Directory of Open Access Journals (Sweden)

    Marlieke E A de Kraker

    2011-10-01

    Full Text Available BACKGROUND: The relative importance of human diseases is conventionally assessed by cause-specific mortality, morbidity, and economic impact. Current estimates for infections caused by antibiotic-resistant bacteria are not sufficiently supported by quantitative empirical data. This study determined the excess number of deaths, bed-days, and hospital costs associated with blood stream infections (BSIs caused by methicillin-resistant Staphylococcus aureus (MRSA and third-generation cephalosporin-resistant Escherichia coli (G3CREC in 31 countries that participated in the European Antimicrobial Resistance Surveillance System (EARSS. METHODS AND FINDINGS: The number of BSIs caused by MRSA and G3CREC was extrapolated from EARSS prevalence data and national health care statistics. Prospective cohort studies, carried out in hospitals participating in EARSS in 2007, provided the parameters for estimating the excess 30-d mortality and hospital stay associated with BSIs caused by either MRSA or G3CREC. Hospital expenditure was derived from a publicly available cost model. Trends established by EARSS were used to determine the trajectories for MRSA and G3CREC prevalence until 2015. In 2007, 27,711 episodes of MRSA BSIs were associated with 5,503 excess deaths and 255,683 excess hospital days in the participating countries, whereas 15,183 episodes of G3CREC BSIs were associated with 2,712 excess deaths and 120,065 extra hospital days. The total costs attributable to excess hospital stays for MRSA and G3CREC BSIs were 44.0 and 18.1 million Euros (63.1 and 29.7 million international dollars, respectively. Based on prevailing trends, the number of BSIs caused by G3CREC is likely to rapidly increase, outnumbering the number of MRSA BSIs in the near future. CONCLUSIONS: Excess mortality associated with BSIs caused by MRSA and G3CREC is significant, and the prolongation of hospital stay imposes a considerable burden on health care systems. A foreseeable shift in

  15. An Investigation of beta-lactam antibiotics resistance in Escherichia coli isolates and molecular detection of Escherichia coli O157:H7 in cage birds from Shahrekord, Iran

    OpenAIRE

    Hossein Tahmasby; Sara Barati; Hassan Momtaz; Mohammad Rafiee Dolatabadi; Mohammad Ghasemi; Seied Vahid Ahmadi Salianeh; Samaneh Mehrabiyan

    2014-01-01

    Introduction: Cage birds can harbor human pathogens and contribute to the transmission and spread of drug resistant infectious agents to human. Since many people are interested in keeping cage birds, present study was conducted in cage birds from Shahrekord to investigate the beta-lactam antibiotics resistant E. coli and molecular detection of E. coli O157:H7 that is responsible for outbreaks of human intestinal diseases and fatal haemolytic-uraemic syndrome worldwide. Materials and metho...

  16. Mortality and Hospital Stay Associated with Resistant Staphylococcus aureus and Escherichia coli Bacteremia : Estimating the Burden of Antibiotic Resistance in Europe

    NARCIS (Netherlands)

    de Kraker, Marlieke E. A.; Davey, Peter G.; Grundmann, Hajo

    2011-01-01

    Background: The relative importance of human diseases is conventionally assessed by cause-specific mortality, morbidity, and economic impact. Current estimates for infections caused by antibiotic-resistant bacteria are not sufficiently supported by quantitative empirical data. This study determined

  17. Comparison of the incidence of pathogenic and antibiotic-resistant Escherichia coli strains in adult cattle and veal calf slaughterhouse effluents highlighted different risks for public health.

    Science.gov (United States)

    Um, Maryse Michèle; Barraud, Olivier; Kérourédan, Monique; Gaschet, Margaux; Stalder, Thibault; Oswald, Eric; Dagot, Christophe; Ploy, Marie-Cecile; Brugère, Hubert; Bibbal, Delphine

    2016-01-01

    The goal of this study was to investigate the involvement of bovine slaughterhouse effluents and biosolids in the risk of environmental dissemination of pathogenic and antibiotic-resistant Escherichia coli. Several samples were collected from one adult cattle and one veal calf slaughterhouse wastewater treatment plant (WWTP). The treatment process had no impact on the percentage of Shiga toxin-producing E. coli (STEC) and on the percentage of atypical enteropathogenic E. coli (aEPEC). A STEC O157:H7 was isolated from the thickened sludge of the adult cattle slaughterhouse. As thickened sludge is intended to be spread on agricultural lands, the detection of this pathogenic strain is a public health issue. The percentage of antibiotic-resistant E. coli was 5.0% and 87.5% in wastewater from the adult cattle and the veal calf slaughterhouse, respectively. These percentages were not significantly different after treatment. Integron-bearing E. coli isolates were only detected in the veal calf slaughterhouse WWTP with percentages above 50.0% for all sampling points whatever the step of the treatment process. Taken together, these findings highlighted the fact that different public health risks might be associated with adult cattle or veal calf slaughterhouses regarding the dissemination of pathogenic and antibiotic-resistant E. coli isolates into the environment.

  18. Comparison of the incidence of pathogenic and antibiotic-resistant Escherichia coli strains in adult cattle and veal calf slaughterhouse effluents highlighted different risks for public health.

    Science.gov (United States)

    Um, Maryse Michèle; Barraud, Olivier; Kérourédan, Monique; Gaschet, Margaux; Stalder, Thibault; Oswald, Eric; Dagot, Christophe; Ploy, Marie-Cecile; Brugère, Hubert; Bibbal, Delphine

    2016-01-01

    The goal of this study was to investigate the involvement of bovine slaughterhouse effluents and biosolids in the risk of environmental dissemination of pathogenic and antibiotic-resistant Escherichia coli. Several samples were collected from one adult cattle and one veal calf slaughterhouse wastewater treatment plant (WWTP). The treatment process had no impact on the percentage of Shiga toxin-producing E. coli (STEC) and on the percentage of atypical enteropathogenic E. coli (aEPEC). A STEC O157:H7 was isolated from the thickened sludge of the adult cattle slaughterhouse. As thickened sludge is intended to be spread on agricultural lands, the detection of this pathogenic strain is a public health issue. The percentage of antibiotic-resistant E. coli was 5.0% and 87.5% in wastewater from the adult cattle and the veal calf slaughterhouse, respectively. These percentages were not significantly different after treatment. Integron-bearing E. coli isolates were only detected in the veal calf slaughterhouse WWTP with percentages above 50.0% for all sampling points whatever the step of the treatment process. Taken together, these findings highlighted the fact that different public health risks might be associated with adult cattle or veal calf slaughterhouses regarding the dissemination of pathogenic and antibiotic-resistant E. coli isolates into the environment. PMID:26460853

  19. Occurrence of multidrug resistance to oral antibiotics among Escherichia coli urine isolates from outpatient departments in Germany: extended-spectrum β-lactamases and the role of fosfomycin.

    Science.gov (United States)

    Kresken, Michael; Pfeifer, Yvonne; Hafner, Dieter; Wresch, Rebecca; Körber-Irrgang, Barbara

    2014-10-01

    The in vitro activities of fosfomycin and seven other antibiotics commonly used for oral treatment of urinary tract infections (UTIs) were evaluated for 499 Escherichia coli isolated from urine samples during a nationwide laboratory-based surveillance study in 2010. Overall, the highest resistance rates were found for amoxicillin (42.9%), followed by amoxicillin/clavulanic acid (32.7%), trimethoprim/sulfamethoxazole (SXT) (30.9%), ciprofloxacin (19.8%), cefuroxime (10.0%), cefpodoxime (8.6%) and cefixime (8.2%). One-half of the isolates (n=252; 50.5%) were fully susceptible to the eight drugs, whilst only 6 strains (1.2%) were resistant to fosfomycin. Combined resistance to amoxicillin, cefuroxime, ciprofloxacin and SXT was detected in 29 isolates (5.8%). Moreover, 40 isolates (8.0%) produced an extended-spectrum β-lactamase (ESBL), including CTX-M-type ESBLs detected in 39/40 isolates (97.5%) and a TEM-52 ESBL in 1 strain (2.5%). The predominant CTX-M-type ESBL was CTX-M-15 (27/39; 69.2%). Of the 27 CTX-M-15 producers, 19 (70.4%) belonged to the clonal lineage E. coli O25b-ST131. All but one ESBL-producing strains were fosfomycin-susceptible. In view of the emergence of multidrug resistance to standard oral antibiotics, these data support that oral fosfomycin (trometamol salt) may represent a valuable option in the treatment of uncomplicated UTIs.

  20. Genotyping DNA chip for the simultaneous assessment of antibiotic resistance and pathogenic potential of extraintestinal pathogenic Escherichia coli.

    Science.gov (United States)

    Barl, Timo; Dobrindt, Ulrich; Yu, Xiaolei; Katcoff, Don J; Sompolinsky, David; Bonacorsi, Stéphane; Hacker, Jörg; Bachmann, Till T

    2008-09-01

    Urinary tract infections (UTIs) are among the most frequently occurring infections and are mostly caused by extraintestinal pathogenic Escherichia coli. DNA microarrays are potent molecular diagnostic tools for rapid diagnosis of bacterial infections with high relevance for UTIs. In this study, we present the integration and application of two DNA chip modules for the simultaneous detection of single nucleotide polymorphisms in gyrA (quinolone resistance) and fimH (increased adhesion to urinary tract epithelium). The performance of the combined diagnostic chip was assessed by genotyping 140 E. coli strains. Resistance-causing mutations could only be identified in UTI isolates. A complete genotyping assay could be performed in tool for routine clinical diagnostics. PMID:18640014

  1. Investigating the Antibiotic Resistance Problem.

    Science.gov (United States)

    Lawson, Michael; Lawson, Amy L.

    1998-01-01

    Seeks to give teachers useful information on the extent of the problem of antibiotic-resistant bacteria, mechanisms bacteria use to resist antibiotics, the causes of the emergence of antibiotic-resistant organisms, and practices that can prevent or reverse this trend. Contains 19 references. (DDR)

  2. Characterization of Escherichia coli Isolates from an Urban Lake Receiving Water from a Wastewater Treatment Plant in Mexico City: Fecal Pollution and Antibiotic Resistance.

    Science.gov (United States)

    Rosas, Irma; Salinas, Eva; Martínez, Leticia; Cruz-Córdova, Ariadnna; González-Pedrajo, Bertha; Espinosa, Norma; Amábile-Cuevas, Carlos F

    2015-10-01

    The presence of enteric bacteria in water bodies is a cause of public health concerns, either by directly causing water- and food-borne diseases, or acting as reservoirs for antibiotic resistance determinants. Water is used for crop irrigation; and sediments and aquatic plants are used as fertilizing supplements and soil conditioners. In this work, the bacterial load of several micro-environments of the urban lake of Xochimilco, in Mexico City, was characterized. We found a differential distribution of enteric bacteria between the water column, sediment, and the rhizoplane of aquatic plants, with human fecal bacteria concentrating in the sediment, pointing to the need to assess such bacterial load for each micro-environment, for regulatory agricultural purposes, instead of only the one of the water, as is currently done. Resistance to tetracycline, ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole was common among Escherichia coli isolates, but was also differentially distributed, being again higher in sediment isolates. A distinct distribution of chloramphenicol minimum inhibitory concentrations (MIC) among these isolates suggests the presence of a local selective pressure favoring lower MICs than those of isolates from treated water. Fecal bacteria of human origin, living in water bodies along with their antibiotic resistance genes, could be much more common than typically considered, and pose a higher health risk, if assessments are only made on the water column of such bodies. PMID:26198413

  3. Strategies to Minimize Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Sang Hee Lee

    2013-09-01

    Full Text Available Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs and various data such as pharmacokinetic (PK and pharmacodynamic (PD properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST, clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care, the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing. The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics.

  4. Comparison of Antibiotic Resistance and Virulence Factors among Escherichia coli Isolated from Conventional and Free-Range Poultry

    Directory of Open Access Journals (Sweden)

    Vanessa L. Koga

    2015-01-01

    Full Text Available Microbiological contamination in commercial poultry production has caused concerns for human health because of both the presence of pathogenic microorganisms and the increase in antimicrobial resistance in bacterial strains that can cause treatment failure of human infections. The aim of our study was to analyze the profile of antimicrobial resistance and virulence factors of E. coli isolates from chicken carcasses obtained from different farming systems (conventional and free-range poultry. A total of 156 E. coli strains were isolated and characterized for genes encoding virulence factors described in extraintestinal pathogenic E. coli (ExPEC. Antimicrobial susceptibility testing was performed for 15 antimicrobials, and strains were confirmed as extended spectrum of β-lactamases- (ESBLs- producing E. coli by phenotypic and genotypic tests. The results indicated that strains from free-range poultry have fewer virulence factors than strains from conventional poultry. Strains from conventionally raised chickens had a higher frequency of antimicrobial resistance for all antibiotics tested and also exhibited genes encoding ESBL and AmpC, unlike free-range poultry isolates, which did not. Group 2 CTX-M and CIT were the most prevalent ESBL and AmpC genes, respectively. The farming systems of poultries can be related with the frequency of virulence factors and resistance to antimicrobials in bacteria.

  5. Antibiotic resistance pattern in uropathogens

    Directory of Open Access Journals (Sweden)

    Gupta V

    2002-01-01

    Full Text Available Uropathogenic strains from inpatient and outpatient departments were studied from April 1997 to March 1999 for their susceptibility profiles. The various isolates were Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Acinetobacter baumanii and Enterococcus faecalis. Antibiotic susceptibility pattern of these isolates revealed that for outpatients, first generation cephalosporins, nitrofurantoin, norfloxacin/ciprofloxacin were effective for treatment of urinary tract infection but for inpatients, parenteral therapy with newer aminoglycosides and third generation cephalosporins need to be advocated as the organisms for nosocomial UTI exhibit a high degree of drug resistance. Trimethoprim and sulphamethoxazole combination was not found to be effective for the treatment of urinary tract infections as all the uropathogens from inpatients and outpatients showed high degree of resistance to co-trimoxazole. Culture and sensitivity of the isolates from urine samples should be done as a routine before advocating the therapy.

  6. Epidemiology of antibiotic resistance in Burkina Faso

    Institute of Scientific and Technical Information of China (English)

    Simpore J; Zeba B; Karou D; Ilboudo D; Pignatelli S; Nacoulma OG; Musumeci S

    2008-01-01

    Burkina Faso (West Africa)is a tropical country with a high incidence of infectious diseases.The uncontrolled use of antibiotics against bacterial pathogens has given rise to the emergence of antibiotic resistance in this country.The aims of this study were.i)to determine the prevalences of the most important pathogenic bacteri-a,isolated in the town of Ouagadougou.ii)to identify the bacterial species which have acquired resistance as a result of antibiotic selection.iii)to compare antibiotic-resistances ofEscherichia coli isolated from stool cul-ture in the present study,with results obtained in 2002 from strains collected in the same structure in Burkina Faso.iv)to determine the trend of antibiotic resistance in Burkina Faso in order to give local advice on the most appropriate empiric antibiotic therapy.Six thousand two hundred and sixty four samples of blood,stools, urine,sputum,pus and vaginal secretion were collected and analyzed in Saint Camille Medical Center (SC-MC)laboratory from May 2001 to May 2006.Out of the 6264 samples tested no pathogen was identified in 1583 (25.31%),whilst 4681 (74.73%)were positive,with the incidence of the microrganisms isolated be-ing as follows:Escherichia coli 1291 (27.6%),Staphylococcus aureus 922 (19.7%),Salmonella spp 561 (12.0%),Streptococcus spp 499 (10.7%),Klebsiella spp 359 (7.7%),Shigella spp (6.3%),Acineto-bacter spp 266 (5.7%)and others 783 (16.7%).Among the isolated pathogens,the highest resistance was found to Amoxycillin:Proteus spp 95.6%,Escherichia coli 78.2%,Salmonella spp 62.2%,Shigella spp 73. 4% and Klebsiella spp 89.9%,followed by resistance to Ampicillin and cotrimoxazole.Comparing the preva-lence of antibiotic resistance of Escherichia coli from stool cultures isolated during 1999-2000 to that of 2001-2006,a significant reduction was found,which could be due to the improved use of antibiotics in recent years. The reduced antibiotic-resistance observed in pathogens isolated in Burkina Faso during this

  7. Augmenting the potency of third-line antibiotics with Berberis aristata: In vitro synergistic activity against carbapenem-resistant Escherichia coli.

    Science.gov (United States)

    Thakur, Pallavi; Chawla, Raman; Goel, Rajeev; Narula, Alka; Arora, Rajesh; Sharma, Rakesh Kumar

    2016-09-01

    The aim of this study was to analyse the in vitro synergistic antibacterial potential of an aquoethanolic extract of the stem bark of Berberis aristata (PTRC-2111-A) with third-line antibiotics against carbapenem-resistant Escherichia coli. PTRC-2111-A was prepared and was characterised using phytochemical- and bioactivity-based fingerprinting. Fourier transform infrared spectroscopy (FTIR) and liquid chromatography-mass spectrometry (LC-MS) analyses were performed, and superoxide and hydroxyl scavenging activities were assessed in conjunction with in vitro antimicrobial efficacy testing against the test micro-organism. Analysis of drug combinations of PTRC-2111-A and third-line antibiotics was performed using CompuSyn software. PTRC-2111-A from B. aristata was found to have seven common functional groups in comparison with the pre-identified marker compound quercetin, and phytochemical quantitation analysis revealed the presence of 25.44% alkaloids. Moreover, PTRC-2111-A was found to contain isoquinoline alkaloids, namely berbamine, berberine, reticuline, jatrorrhizine, palmatine and piperazine, as elucidated in the LC-MS analysis. Analysis of combinations of PTRC -2111-A and antibiotics revealed synergistic behaviour [fractional inhibitory concentration index (FICI)1) was seen with ertapenem and meropenem. PMID:27530832

  8. An Investigation of beta-lactam antibiotics resistance in Escherichia coli isolates and molecular detection of Escherichia coli O157:H7 in cage birds from Shahrekord, Iran

    Directory of Open Access Journals (Sweden)

    Hossein Tahmasby

    2014-04-01

    Full Text Available Introduction: Cage birds can harbor human pathogens and contribute to the transmission and spread of drug resistant infectious agents to human. Since many people are interested in keeping cage birds, present study was conducted in cage birds from Shahrekord to investigate the beta-lactam antibiotics resistant E. coli and molecular detection of E. coli O157:H7 that is responsible for outbreaks of human intestinal diseases and fatal haemolytic-uraemic syndrome worldwide. Materials and methods: Altogether 256 samples of cage birds (lovebirds, quails, nightingales, parrots, mynahs, goldfinchs, finches, kingbirds, peacocks, and pheasants faeces were collected with sterile cotton swabs from different areas of Shahrekord, Iran. Swabs were placed directly into Tryptone Soya Broth (TSB. In the laboratory, samples were streaked onto MacConkey agar and also Sorbitol MacConkey agar as selective plating media. Then, antibiogram tests were performed using disc diffusion method. Suspected colonies to E. coli O157:H7 were tested by polymerase chain reaction (PCR. Results: E. coli was isolated from 31 (12.1% out of 256 the samples. Resistance of isolates to Imipenem, Cefotaxime, Cefixime, Cefalexin, Amoxicillin, Penicillin G and Oxacillin was 0, 3.2, 16.1, 90.3, 100, 100 and 100% respectively. E. coli O157:H7 was not found in any samples. Discussion and conclusion: Although cage birds were not sourcee or carriers of E. coli O157:H7 in the studied region, they harbored beta-lactam antibiotics resistant E. coli and could be an important component of drug-resistant infections transmission from cage-birds to human, especially to kids and can pose a potential risk to human health. For this reason, it is recommended to make pet birds owners and general public aware of potential dangers of cage bird keeping.

  9. Antibiotic resistance in wild birds.

    Science.gov (United States)

    Bonnedahl, Jonas; Järhult, Josef D

    2014-05-01

    Wild birds have been postulated as sentinels, reservoirs, and potential spreaders of antibiotic resistance. Antibiotic-resistant bacteria have been isolated from a multitude of wild bird species. Several studies strongly indicate transmission of resistant bacteria from human rest products to wild birds. There is evidence suggesting that wild birds can spread resistant bacteria through migration and that resistant bacteria can be transmitted from birds to humans and vice versa. Through further studies of the spatial and temporal distribution of resistant bacteria in wild birds, we can better assess their role and thereby help to mitigate the increasing global problem of antibiotic resistance. PMID:24697355

  10. Vegetables and Restaurant Salads as a Reservoir for Shiga Toxigenic Escherichia coli: Distribution of Virulence Factors, O-Serogroups, and Antibiotic Resistance Properties.

    Science.gov (United States)

    Shakerian, Amir; Rahimi, Ebrahim; Emad, Pardis

    2016-07-01

    Close contact of vegetables with soil, polluted water, and animal manure and unsanitary conditions during processing of restaurant salads led us to study the distribution of virulence factors, O-serogroups, and antibiotic resistance properties in Shiga toxigenic Escherichia coli (STEC) isolated from vegetables and salads. Samples of vegetables and salad (n = 420) were collected and evaluated for the presence of E. coli using culture and a PCR assay. Total prevalence of E. coli in studied samples was 49.5%. E. coli was found in 49.6% of vegetable samples and 49% of salad samples. Leek and traditional salad had the highest incidence of E. coli. Significant differences in the incidence of E. coli were found between the hot and cold seasons. Of the 149 E. coli isolates from vegetable samples, 130 (87%) were STEC, and of the 59 E. coli isolates from salad samples, 50 (84%) were STEC. The most commonly detected virulence factors were stx1 and eaeA. A significant difference was found between the frequency of the attaching and effacing and the enterohemorrhagic E. coli subtypes. Serogroups O26 (46% of isolates), O157 (14%), O121 (10%), and O128 (9%) were the most commonly detected serogroups among the STEC strains. The tetA, sul1, aac(3)-IV, dfrA1, blaSHV, and CITM antibiotic resistance genes were found in 96, 47.7, 90, 51, 27, and 93% of isolates, respectively. The highest levels of resistance were found against ampicillin (96.6% of isolates), tetracycline (87%), and gentamicin (90%). This study shows the importance of vegetables and salads as potential sources of E. coli infection.

  11. A role for Tn6029 in the evolution of the complex antibiotic resistance gene loci in genomic island 3 in enteroaggregative hemorrhagic Escherichia coli O104:H4.

    Directory of Open Access Journals (Sweden)

    Piklu Roy Chowdhury

    Full Text Available In enteroaggregative hemorrhagic Escherichia coli (EAHEC O104 the complex antibiotic resistance gene loci (CRL found in the region of divergence 1 (RD1 within E. coli genomic island 3 (GI3 contains blaTEM-1, strAB, sul2, tet(AA, and dfrA7 genes encoding resistance to ampicillin, streptomycin, sulfamethoxazole, tetracycline and trimethoprim respectively. The precise arrangement of antibiotic resistance genes and the role of mobile elements that drove the evolutionary events and created the CRL have not been investigated. We used a combination of bioinformatics and iterative BLASTn searches to determine the micro-evolutionary events that likely led to the formation of the CRL in GI3 using the closed genome sequences of EAHEC O104:H4 strains 2011C-3493 and 2009EL-2050 and high quality draft genomes of EAHEC E. coli O104:H4 isolates from sporadic cases not associated with the initial outbreak. Our analyses indicate that the CRL in GI3 evolved from a progenitor structure that contained an In2-derived class 1 integron in a Tn21/Tn1721 hybrid backbone. Within the hybrid backbone, a Tn6029-family transposon, identified here as Tn6029C abuts the sul1 gene in the 3'-Conserved Segment (-CS of a class 1 integron generating a unique molecular signature that has only previously been observed in pASL01a, a small plasmid found in commensal E. coli in West Africa. From this common progenitor, independent IS26-mediated events created two novel transposons identified here as Tn6029D and Tn6222 in 2011C-3493 and 2009EL-2050 respectively. Analysis of RD1 within GI3 reveals IS26 has played a crucial role in the assembly of regions within the CRL.

  12. Vegetables and Restaurant Salads as a Reservoir for Shiga Toxigenic Escherichia coli: Distribution of Virulence Factors, O-Serogroups, and Antibiotic Resistance Properties.

    Science.gov (United States)

    Shakerian, Amir; Rahimi, Ebrahim; Emad, Pardis

    2016-07-01

    Close contact of vegetables with soil, polluted water, and animal manure and unsanitary conditions during processing of restaurant salads led us to study the distribution of virulence factors, O-serogroups, and antibiotic resistance properties in Shiga toxigenic Escherichia coli (STEC) isolated from vegetables and salads. Samples of vegetables and salad (n = 420) were collected and evaluated for the presence of E. coli using culture and a PCR assay. Total prevalence of E. coli in studied samples was 49.5%. E. coli was found in 49.6% of vegetable samples and 49% of salad samples. Leek and traditional salad had the highest incidence of E. coli. Significant differences in the incidence of E. coli were found between the hot and cold seasons. Of the 149 E. coli isolates from vegetable samples, 130 (87%) were STEC, and of the 59 E. coli isolates from salad samples, 50 (84%) were STEC. The most commonly detected virulence factors were stx1 and eaeA. A significant difference was found between the frequency of the attaching and effacing and the enterohemorrhagic E. coli subtypes. Serogroups O26 (46% of isolates), O157 (14%), O121 (10%), and O128 (9%) were the most commonly detected serogroups among the STEC strains. The tetA, sul1, aac(3)-IV, dfrA1, blaSHV, and CITM antibiotic resistance genes were found in 96, 47.7, 90, 51, 27, and 93% of isolates, respectively. The highest levels of resistance were found against ampicillin (96.6% of isolates), tetracycline (87%), and gentamicin (90%). This study shows the importance of vegetables and salads as potential sources of E. coli infection. PMID:27357034

  13. Determination of Extended-Spectrum Beta-lactamases Genes and Antibiotic Resistance Patterns in Escherichia coli Isolates from Healthy Cats

    Directory of Open Access Journals (Sweden)

    Baharak Akhtardanesh

    2016-01-01

    Full Text Available ne"> Background: This study was set to detect extended-spectrum beta-lactamases (ESBLsproducing E. coli isolates and the genes underlying their resistance in relation to phylogeneticbackground from fecal samples of healthy owned cats.Methods: A total of 50 E. coli isolates were confirmed by standard bacteriological tests. Thephylogenetic analyses of the isolates were carried out by combinations of three genetic markerschuA, yjaA and DNA fragment TspE4.C2 by a triplex PCR method. The ESBL (blaCTXM, blaTEM,blaSHV, blaOXA encoding genes were detected. To identify ESBL producing phenotypes, allselected isolates were screened with a double disk synergy test including cefotaxime, cefotaximewith clavulanic acid, ceftazidime and ceftazidime with clavulanic acid.Results: Results showed that E. coli isolates fell into four phylogenetic groups (A, D, B1 andB2 with prevalence of 78%, 4%, 8%, 10% and five phylogenetic subgroups including A0 (74%, A1 (4 %, B1 (8 %, B2–2 (6 %, B2–3 (4 % and D1 (4 %, respectively. Among all E. coliisolates, 4% were positive for bla SHV, blaCTX-M-15 and blaOXA-1 genes which distributed in B2-2,B2-3, A0 subgroups, respectively. According to antibiotic susceptibility test, 20 isolates wereresistant which belonged to D (D1 phylogenetic subgroup and A (A0 phylogenetic subgroupgroups.Conclusion: The results showed that healthy cats could be considered as potential source for thedissemination of ESBL-encoding genes. Further investigations in companion animals and theirowners are needed to clarify the importance of spreading of these zoonotic strains.

  14. Selective Conditions for a Multidrug Resistance Plasmid Depend on the Sociality of Antibiotic Resistance

    OpenAIRE

    Bottery, Michael; Wood, A. Jamie; Brockhurst, Michael

    2016-01-01

    Multidrug resistance (MDR) plasmids frequently carry antibiotic resistance genes conferring qualitatively different mechanisms of resistance. We show here that the antibiotic concentrations selecting for the RK2 plasmid in Escherichia coli depend upon the sociality of the drug resistance: the selection for selfish drug resistance (efflux pump) occurred at very low drug concentrations, just 1.3% of the MIC of the plasmid-free antibiotic-sensitive strain, whereas selection for cooperative drug ...

  15. Molecular characterization of a 21.4 kilobase antibiotic resistance plasmid from an α-hemolytic Escherichia coli O108:H- human clinical isolate.

    Directory of Open Access Journals (Sweden)

    Fay E Dawes

    Full Text Available This study characterizes the 21.4 kilobase plasmid pECTm80 isolated from Escherichia coli strain 80, an α hemolytic human clinical diarrhoeal isolate (serotype O108:H-. DNA sequence analysis of pECTm80 revealed it belonged to incompatibility group X1, and contained plasmid partition and toxin-antitoxin systems, an R6K-like triple origin (ori replication system, genes required for replication regulation, insertion sequences IS1R, ISEc37 and a truncated transposase gene (Tn3-like ΔtnpA of the Tn3 family, and carried a class 2 integron. The class 2 integron of pECTm80 contains an intact cassette array dfrA1-sat2, encoding resistance to trimethoprim and streptothricin, and an aadA1 gene cassette truncated by the insertion of IS1R. The complex plasmid replication system includes α, β and γ origins of replication. Pairwise BLASTn comparison of pECTm80 with plasmid pE001 reveals a conserved plasmid backbone suggestive of a common ancestral lineage. Plasmid pECTm80 is of potential clinical importance, as it carries multiple genes to ensure its stable maintenance through successive bacterial cell divisions and multiple antibiotic resistance genes.

  16. The Antibiotic Susceptibility Patterns of Uropathogenic Escherichia Coli, With Special Reference to the Fluoroquinolones

    OpenAIRE

    Shariff V A, Abdul Rahaman; Shenoy M, Suchitra; Yadav, Taruna; M, Radhakrishna

    2013-01-01

    Context: The emergence of drug resistance to trimethoprim-sulfamethoxazole, the penicillins, cephalosporins, and fluoroquinolones by Uropathogenic Escherichia coli (UPEC) has limited the options for selecting the appropriate antibiotic for the treatment of urinary tract infections.

  17. Fighting antibiotic resistance in the intensive care unit using antibiotics.

    Science.gov (United States)

    Plantinga, Nienke L; Wittekamp, Bastiaan H J; van Duijn, Pleun J; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to classical infection prevention protocols and surveillance programs, counterintuitive interventions, such as selective decontamination with antibiotics and antibiotic rotation have been applied and investigated to control the emergence of antibiotic resistance. This review provides an overview of selective oropharyngeal and digestive tract decontamination, decolonization of methicillin-resistant Staphylococcus aureus and antibiotic rotation as strategies to modulate antibiotic resistance in the intensive care unit.

  18. Escherichia coli Peritonitis in Peritoneal Dialysis: The Prevalence, Antibiotic Resistance and Clinical Outcomes in a South China Dialysis Center

    OpenAIRE

    FENG, XIAORAN; Yang, Xiao; Yi, Chunyan; Guo, Qunying; Mao, Haiping; Jiang, Zongpei; Li, Zhibin; Chen, Dongmei; Cui, Yingpeng; Yu, Xueqing

    2014-01-01

    ♦ Introduction: Escherichia coli (E. coli) peritonitis is a frequent, serious complication of peritoneal dialysis (PD). The extended-spectrum β-lactamase (ESBL)-producing E. coli peritonitis is associated with poorer prognosis and its incidence has been on continuous increase during the last decades. However, the clinical course and outcomes of E. coli peritonitis remain largely unclear.

  19. Relationship between level of antibiotic use and resistance among Escherichia coli isolates from integrated multi-site cohorts of humans and swine

    Science.gov (United States)

    The objective of this longitudinal ecological study was to examine the relationship between the prevalence of antibiotic-resistant (AR) commensal E. coli isolates from both monthly human wastewater and composite swine fecal samples, and the concurrent aggregated monthly antibiotic use recorded withi...

  20. Prevalence and Antibiotic Resistance Profiles of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Healthy Broilers in Shandong Province, China.

    Science.gov (United States)

    Li, Song; Zhao, Miaomiao; Liu, Junhe; Zhou, Yufa; Miao, Zengmin

    2016-07-01

    Food-producing animals carrying extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) have posed a potential threat to human and animal health. However, information regarding ESBL-EC in the intensive broiler breeding areas of Shandong Province, People's Republic of China, is very limited. The goal of our study was to investigate the prevalence and drug resistance characteristics of ESBL-EC in healthy broilers from Shandong Province. A total of 142 ESBL-EC isolates were collected from four prefectures in Shandong Province from October 2014 to February 2015. ESBL-EC isolates were frequently detected (142 of 160 samples, 88.8%) in healthy broilers. Antibiotic susceptibility testing showed that all 142 ESBL-EC isolates were resistant to ampicillin, piperacillin, and cefazolin but were sensitive to imipenem and meropenem. All ESBL-EC isolates carried one or more of the bla genes, in which blaCTX-M, blaTEM-1, and blaSHV-5 genes were identified in 142, 106, and 5 isolates, respectively. The blaCTX-M gene includes blaCTX-M-15 (56), blaCTX-M-65 (42), blaCTX-M-55 (36), blaCTX-M-14 (21), blaCTX-M-79 (1), blaCTX-M-3 (1), blaCTX-M-123 (1), and blaCTX-M-132 (1). In addition, 17 ESBL-EC isolates cocarried the genes of the CTX-M-1 and CTX-M-9 groups. Our findings indicate that healthy broiler flocks in Shandong Province in China are an important reservoir for ESBL-EC, with blaCTX-M and blaTEM-1 being the prevalent resistance genes identified.

  1. Prevalence and Antibiotic Resistance Profiles of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Healthy Broilers in Shandong Province, China.

    Science.gov (United States)

    Li, Song; Zhao, Miaomiao; Liu, Junhe; Zhou, Yufa; Miao, Zengmin

    2016-07-01

    Food-producing animals carrying extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) have posed a potential threat to human and animal health. However, information regarding ESBL-EC in the intensive broiler breeding areas of Shandong Province, People's Republic of China, is very limited. The goal of our study was to investigate the prevalence and drug resistance characteristics of ESBL-EC in healthy broilers from Shandong Province. A total of 142 ESBL-EC isolates were collected from four prefectures in Shandong Province from October 2014 to February 2015. ESBL-EC isolates were frequently detected (142 of 160 samples, 88.8%) in healthy broilers. Antibiotic susceptibility testing showed that all 142 ESBL-EC isolates were resistant to ampicillin, piperacillin, and cefazolin but were sensitive to imipenem and meropenem. All ESBL-EC isolates carried one or more of the bla genes, in which blaCTX-M, blaTEM-1, and blaSHV-5 genes were identified in 142, 106, and 5 isolates, respectively. The blaCTX-M gene includes blaCTX-M-15 (56), blaCTX-M-65 (42), blaCTX-M-55 (36), blaCTX-M-14 (21), blaCTX-M-79 (1), blaCTX-M-3 (1), blaCTX-M-123 (1), and blaCTX-M-132 (1). In addition, 17 ESBL-EC isolates cocarried the genes of the CTX-M-1 and CTX-M-9 groups. Our findings indicate that healthy broiler flocks in Shandong Province in China are an important reservoir for ESBL-EC, with blaCTX-M and blaTEM-1 being the prevalent resistance genes identified. PMID:27357036

  2. Antibiotic resistance pattern in uropathogens

    OpenAIRE

    Gupta V; Yadav A; Joshi R

    2002-01-01

    Uropathogenic strains from inpatient and outpatient departments were studied from April 1997 to March 1999 for their susceptibility profiles. The various isolates were Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Acinetobacter baumanii and Enterococcus faecalis. Antibiotic susceptibility pattern of these isolates revealed that for outpatients, first generation cephalosporins, nitrofurantoin, norfloxacin/ciprofloxacin were effective for treatment of urina...

  3. Antibiotics and the resistant microbiome

    DEFF Research Database (Denmark)

    Sommer, Morten; Dantas, Gautam

    2011-01-01

    Since the discovery and clinical application of antibiotics, pathogens and the human microbiota have faced a near continuous exposure to these selective agents. A well-established consequence of this exposure is the evolution of multidrug-resistant pathogens, which can become virtually untreatable....... Less appreciated are the concomitant changes in the human microbiome in response to these assaults and their contribution to clinical resistance problems. Studies have shown that pervasive changes to the human microbiota result from antibiotic treatment and that resistant strains can persist for years...... expand our understanding of the interplay between antibiotics and the microbiome....

  4. Cross-sectional survey of antibiotic resistance in Escherichia coli isolated from diseased farm livestock in England and Wales.

    Science.gov (United States)

    Cheney, T E A; Smith, R P; Hutchinson, J P; Brunton, L A; Pritchard, G; Teale, C J

    2015-09-01

    Between 2005 and 2007, E. coli obtained from clinical diagnostic submissions from cattle, goats, pigs and sheep to government laboratories in England and Wales were tested for sensitivity to 16 antimicrobials. Resistance was most commonly observed against ampicillin, streptomycin, sulphonamides and tetracyclines. Resistance levels varied significantly between species, with isolates from cattle frequently showing the highest levels. Verocytotoxigenic E. coli (VTEC) expressed less resistance than non-VTEC. Only 19·3% of non-VTEC and 43·5% of VTEC were susceptible to all antimicrobials, while 47·1% and 30·4%, respectively, were resistant to ⩾5 antimicrobials. The resistance phenotype SSuT was commonly observed, and isolates resistant to third-generation cephalosporins were also identified. We recommend judicious antimicrobial usage in the livestock industry in order to preserve efficacy.

  5. Suppression of antibiotic resistance acquisition by combined use of antibiotics.

    Science.gov (United States)

    Suzuki, Shingo; Horinouchi, Takaaki; Furusawa, Chikara

    2015-10-01

    We analyzed the effect of combinatorial use of antibiotics with a trade-off relationship of resistance, i.e., resistance acquisition to one drug causes susceptibility to the other drug, and vice versa, on the evolution of antibiotic resistance. We demonstrated that this combinatorial use of antibiotics significantly suppressed the acquisition of resistance.

  6. Comparison of Antibiotic Resistance and Virulence Factors among Escherichia coli Isolated from Conventional and Free-Range Poultry

    OpenAIRE

    Koga, Vanessa L.; Sara Scandorieiro; Vespero, Eliana C.; Alexandre Oba; Benito G. Brito; de Brito, Kelly C. T.; Gerson Nakazato; Renata K. T. Kobayashi

    2015-01-01

    Microbiological contamination in commercial poultry production has caused concerns for human health because of both the presence of pathogenic microorganisms and the increase in antimicrobial resistance in bacterial strains that can cause treatment failure of human infections. The aim of our study was to analyze the profile of antimicrobial resistance and virulence factors of E. coli isolates from chicken carcasses obtained from different farming systems (conventional and free-range poultry)...

  7. Mdt(A), a New Efflux Protein Conferring Multiple Antibiotic Resistance in Lactococcus lactis and Escherichia coli

    Science.gov (United States)

    Perreten, Vincent; Schwarz, Franziska V.; Teuber, Michael; Levy, Stuart B.

    2001-01-01

    The mdt(A) gene, previously designated mef214, from Lactococcus lactis subsp. lactis plasmid pK214 encodes a protein [Mdt(A) (multiple drug transporter)] with 12 putative transmembrane segments (TMS) that contain typical motifs conserved among the efflux proteins of the major facilitator superfamily. However, it also has two C-motifs (conserved in the fifth TMS of the antiporters) and a putative ATP-binding site. Expression of the cloned mdt(A) gene decreased susceptibility to macrolides, lincosamides, streptogramins, and tetracyclines in L. lactis and Escherichia coli, but not in Enterococcus faecalis or in Staphylococcus aureus. Glucose-dependent efflux of erythromycin and tetracycline was demonstrated in L. lactis and in E. coli. PMID:11257023

  8. The effects of antibiotic usage in food animals on the development of antimicrobial resistance of importance for humans in Campylobacter and Escherichia coli

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Wegener, Henrik Caspar

    1999-01-01

    Modern food animal production depends on use of large amounts of antibiotics for disease control. This provides favourable conditions for the spread and persistence of antimicrobial-resistant zoonotic bacteria such as Campylobacter and E. coli O157. The occurrence of antimicrobial resistance...... pathogenic bacteria such as Campylobacter and E, coli. (C) Elsevier, Paris....... to antimicrobials used in human therapy is increasing in human pathogenic Campylobacter and E. coli from animals. There is an urgent need to implement strategies for prudent use of antibiotics in food animal production to prevent further increases in the occurrence of antimicrobial resistance in food-borne human...

  9. The effects of antibiotic usage in food animals on the development of antimicrobial resistance of importance for humans in Campylobacter and Escherichia coli.

    Science.gov (United States)

    Aarestrup, F M; Wegener, H C

    1999-07-01

    Modern food animal production depends on use of large amounts of antibiotics for disease control. This provides favourable conditions for the spread and persistence of antimicrobial-resistant zoonotic bacteria such as Campylobacter and E. coli O157. The occurrence of antimicrobial resistance to antimicrobials used in human therapy is increasing in human pathogenic Campylobacter and E. coli from animals. There is an urgent need to implement strategies for prudent use of antibiotics in food animal production to prevent further increases in the occurrence of antimicrobial resistance in food-borne human pathogenic bacteria such as Campylobacter and E. coli.

  10. Mecanismos moleculares de resistencia antibiótica en Escherichia coli asociadas a diarrea Molecular mechanisms of antibiotic resistance in Escherichia coli- associated diarrhea

    OpenAIRE

    Susan Mosquito; Joaquim Ruiz; José Luis Bauer; Ochoa, Theresa J.

    2011-01-01

    La resistencia antibiótica es un problema emergente a nivel mundial presente en diversas bacterias, en especial en la Escherichia coli, que tiene altos porcentajes de resistencia hacia ampicilina, trimetoprim-sulfametoxazol, tetraciclina, cloramfenicol y ácido nalidíxico, lo que supone grandes complicaciones en el tratamiento antibiótico cuando este es requerido. Este aumento de resistencia antibiótica se debe a la adquisición de diferentes mecanismos moleculares de resistencia mediante mutac...

  11. Antibiotic resistance: An ethical challenge.

    Science.gov (United States)

    Littmann, Jasper; Buyx, Alena; Cars, Otto

    2015-10-01

    In this paper, we argue that antibiotic resistance (ABR) raises a number of ethical problems that have not yet been sufficiently addressed. We outline four areas in which ethical issues that arise in relation to ABR are particularly pressing. First, the emergence of multidrug-resistant and extensively drug-resistant infections exacerbates traditional ethical challenges of infectious disease control, such as the restriction of individual liberty for the protection of the public's health. Second, ABR raises issues of global distributive justice, both with regard to the overuse and lack of access to antibiotics. Third, the use of antibiotics in veterinary medicine raises serious concerns for animal welfare and sustainable farming practices. Finally, the diminishing effectiveness of antibiotics leads to questions about intergenerational justice and our responsibility for the wellbeing of future generations. We suggest that current policy discussions should take ethical conflicts into account and engage openly with the challenges that we outline in this paper.

  12. Impact of antibiotic restriction on resistance levels of Escherichia coli: a controlled interrupted time series study of a hospital-wide antibiotic stewardship programme

    DEFF Research Database (Denmark)

    Boel, Jonas Bredtoft; Andreasen, Viggo; Jarløv, Jens Otto;

    2016-01-01

    of E. coli. Results were directly compared with data from the control hospital utilizing a subtracted time series (STS). RESULTS: Direct comparison with the control hospital showed that the ASP was associated with a significant change in the level of use of cephalosporins [-151 DDDs/1000 bed-days (95......% CI -177, -126)] and fluoroquinolones [-44.5 DDDs/1000 bed-days (95% CI -58.9, -30.1)]. Resistance of E. coli showed a significant change in slope for cefuroxime [-0.13 percentage points/month (95% CI -0.21, -0.057)] and ciprofloxacin [-0.15 percentage points/month (95% CI -0.26, -0.038)]. CONCLUSIONS...

  13. Antibiotic resistance in Salmonella

    NARCIS (Netherlands)

    Vo, A.T.T.

    2007-01-01

    Immediately after their introduction in the beginning of the fourties of the previous century, the agents used to combat infectious diseases caused by bacteria were regarded with suspicion, but not long thereafter antibiotics had the status of miracle drugs. For decades mankind has lived under the i

  14. New Antibiotics in Development Against Multidrug-Resistant Bacteria

    Directory of Open Access Journals (Sweden)

    Soner Yýlmaz

    2013-05-01

    Full Text Available The rapid development of resistance to antimicrobial agents caused to investigate new antimicrobial agents for the treatment of various infections and new antibiotic effect mechanisms. Methicillin-resistant Staphylococcus aureus (MRSA, vancomycin-resistant enterococci (VRE, extended-spectrum beta-lactamase (ESBL Escherichia coli and Klebsiella spp., multidrug-resistant strains of Acinetobacter baumannii and Pseudomonas aeruginosa are the most important targets for new antibacterial. Development speed of new antibacterial agents decreased dramatically in the last ten years. Correct use of antibiotics should be the basic principle to avoid the development of resistance. In addition, although the development of new antibiotics is so important, the main purpose should be determining the new targets in order to minimize undesired effects and drug interactions, detecting new antibiotics effect mechanisms and developing new antibiotics for these purposes.

  15. Whole genome sequencing of diverse Shiga toxin-producing and non-producing Escherichia coli strains reveals a variety of virulence and novel antibiotic resistance plasmids

    Science.gov (United States)

    The genomes of a diverse set of Shiga toxin-producing E. coli strains and the presence of 38 plasmids among all the isolates were determined. Among the novel plasmids found, there were eight that encoded resistance genes to antibiotics, including aminoglycosides, carbapenems, penicillins, cephalosp...

  16. The multifaceted roles of antibiotics and antibiotic resistance in nature

    Directory of Open Access Journals (Sweden)

    Saswati eSengupta

    2013-03-01

    Full Text Available Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic-resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic-resistance in pathogens. In the natural milieu, antibiotics are often found to be present in subinhibitory concentrations acting as signalling molecules supporting quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host-parasite interactions (e.g., phagocytosis, adherence to the target cell and so on. The evolutionary and ecological aspects of antibiotics and antibiotic-resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behaviour of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and genes that confer resistance to antibiotics in

  17. Selective Conditions for a Multidrug Resistance Plasmid Depend on the Sociality of Antibiotic Resistance.

    Science.gov (United States)

    Bottery, Michael J; Wood, A Jamie; Brockhurst, Michael A

    2016-04-01

    Multidrug resistance (MDR) plasmids frequently carry antibiotic resistance genes conferring qualitatively different mechanisms of resistance. We show here that the antibiotic concentrations selecting for the RK2 plasmid inEscherichia colidepend upon the sociality of the drug resistance: the selection for selfish drug resistance (efflux pump) occurred at very low drug concentrations, just 1.3% of the MIC of the plasmid-free antibiotic-sensitive strain, whereas selection for cooperative drug resistance (modifying enzyme) occurred at drug concentrations exceeding the MIC of the plasmid-free strain. PMID:26787694

  18. Selection of antibiotic resistance at very low antibiotic concentrations.

    Science.gov (United States)

    Sandegren, Linus

    2014-05-01

    Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are found in sewage water, soils, and many water environments due to natural production and contamination from human activities. Selection of resistance at non-lethal antibiotic concentrations (below the wild-type minimum inhibitory concentration) occurs due to differences in growth rate at the particular antibiotic concentration between cells with different tolerance levels to the antibiotic. The minimum selective concentration for a particular antibiotic is reached when its reducing effect on growth of the susceptible strain balances the reducing effect (fitness cost) of the resistance determinant in the resistant strain. Recent studies have shown that resistant bacteria can be selected at concentrations several hundred-fold below the lethal concentrations for susceptible cells. Resistant mutants selected at low antibiotic concentrations are generally more fit than those selected at high concentrations but can still be highly resistant. The characteristics of selection at low antibiotic concentrations, the potential clinical problems of this mode of selection, and potential solutions will be discussed.

  19. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria.

    Science.gov (United States)

    Yap, Polly Soo Xi; Lim, Swee Hua Erin; Hu, Cai Ping; Yiap, Beow Chin

    2013-06-15

    In this study we investigated the relationship between several selected commercially available essential oils and beta-lactam antibiotics on their antibacterial effect against multidrug resistant bacteria. The antibacterial activity of essential oils and antibiotics was assessed using broth microdilution. The combined effects between essential oils of cinnamon bark, lavender, marjoram, tea tree, peppermint and ampicillin, piperacillin, cefazolin, cefuroxime, carbenicillin, ceftazidime, meropenem, were evaluated by means of the checkerboard method against beta-lactamase-producing Escherichia coli. In the latter assays, fractional inhibitory concentration (FIC) values were calculated to characterize interaction between the combinations. Substantial susceptibility of the bacteria toward natural antibiotics and a considerable reduction in the minimum inhibitory concentrations (MIC) of the antibiotics were noted in some paired combinations of antibiotics and essential oils. Out of 35 antibiotic-essential oil pairs tested, four of them showed synergistic effect (FIC≤0.5) and 31 pairs showed no interaction (FIC>0.5-4.0). The preliminary results obtained highlighted the occurrence of a pronounced synergistic relationship between piperacillin/cinnamon bark oil, piperacillin/lavender oil, piperacillin/peppermint oil as well as meropenem/peppermint oil against two of the three bacteria under study with a FIC index in the range 0.26-0.5. The finding highlighted the potential of peppermint, cinnamon bark and lavender essential oils being as antibiotic resistance modifying agent. Reduced usage of antibiotics could be employed as a treatment strategy to decrease the adverse effects and possibly to reverse the beta-lactam antibiotic resistance. PMID:23537749

  20. Antibiotic resistance in Burkholderia species.

    Science.gov (United States)

    Rhodes, Katherine A; Schweizer, Herbert P

    2016-09-01

    The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation β-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several β-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. PMID:27620956

  1. Removal of Antibiotic Resistance of Live Vaccine Strain Escherichia coli MM-3 and Evaluation of the Immunogenicity of the New Strain

    Institute of Scientific and Technical Information of China (English)

    Sheng-Ling YUAN; Peng WANG; Hao-Xia TAO; Xiang-Xin LIU; Yan-Chun WANG; De-Wen ZHAN; Chun-Jie LIU; Zhao-Shan ZHANG

    2006-01-01

    MM-3 was a live vaccine strain candidate for protecting neonatal piglets from diarrhea.Designed in the 1980s, a high degree of protection from colibacillosis was afforded to piglets in a challenge study and field trials. However MM-3 had a drawback of carrying the antibiotic resistance gene (chloramphenicol acetyltransferase gene, cat). The introduction of a host-plasmid balanced lethal system into the vaccine was a good idea to solve the problem. The λ-Red recombination system was adopted in this study to realize the replacement of cat by aspartate-semialdehyde dehydrogenase gene (asd) in the plasmid pMM085. The new plasmid named pMMASD was introduced into an Escherichia coli strain χ6097 and Salmonella typhimurium χ4072 where the asd gene had been knocked out in their chromosomes. Cultured in an Erlenmeyer flask,expression levels of two antigens K88ac fimbriae and heat-labile enterotoxin B subunit (LTB) in cell lysate were similar among MM-3, χ4072(pMMASD) and χ6097(pMMASD). However, χ4072(pMMASD) possessed the more effective secretion mechanism to transport LTB enterotoxin into culture liquid. The relatively higher stability of pMMASD in Salmonella typhimurium χ4072 than that of pMM085 in MM-3 was determined both in vitro in the absence of selective pressure, and in vivo following oral inoculation. Oral immunization of BALB/c mice with χ4072(pMMASD) or χ6097(pMMASD) was sufficient to elicit IgA responses in mucosal tissues as well as systemic IgG antibody responses to the K88 fimbriae, while MM-3 failed to elicit specific antibody responses to K88 fimbriae in mucosal tissues. Among three live strains, only χ4072(pMMASD)could develop strong humoral responses against LTB enterotoxin. The results suggest that χ4072(pMMASD)is expected to be a promising live vaccine strain.

  2. Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India

    Directory of Open Access Journals (Sweden)

    Marothi Yogyata

    2010-07-01

    Full Text Available Abstract Background Concerns have been raised about the public health implications of the presence of antibiotic residues in the aquatic environment and their effect on the development of bacterial resistance. While there is information on antibiotic residue levels in hospital effluent from some other countries, information on antibiotic residue levels in effluent from Indian hospitals is not available. Also, concurrent studies on antibiotic prescription quantity in a hospital and antibiotic residue levels and resistant bacteria in the effluent of the same hospital are few. Therefore, we quantified antibiotic residues in waters associated with a hospital in India and assessed their association, if any, with quantities of antibiotic prescribed in the hospital and the susceptibility of Escherichia coli found in the hospital effluent. Methods This cross-sectional study was conducted in a teaching hospital outside the city of Ujjain in India. Seven antibiotics - amoxicillin, ceftriaxone, amikacin, ofloxacin, ciprofloxacin, norfloxacin and levofloxacin - were selected. Prescribed quantities were obtained from hospital records. The samples of the hospital associated water were analysed for the above mentioned antibiotics using well developed and validated liquid chromatography/tandem mass spectrometry technique after selectively isolating the analytes from the matrix using solid phase extraction. Escherichia coli isolates from these waters were tested for antibiotic susceptibility, by standard Kirby Bauer disc diffusion method using Clinical and Laboratory Standard Institute breakpoints. Results Ciprofloxacin was the highest prescribed antibiotic in the hospital and its residue levels in the hospital wastewater were also the highest. In samples of the municipal water supply and the groundwater, no antibiotics were detected. There was a positive correlation between the quantity of antibiotics prescribed in the hospital and antibiotic residue levels in

  3. Study of Antibiotic Resistance Pattern and Mutation in Genes gyrA and parC of Escherichia Coli Causing Urinary Tract Infection

    Directory of Open Access Journals (Sweden)

    J. Faghri

    2016-07-01

    Full Text Available Introduction & Objective: Fluoroquinolones are essential antimicrobial agents used to treat UTIs. Clinical experiences have shown a high rate of antibiotic resistance among uropatho-gens. These resistance are usually the consequence of mutations involving genes encoding gyrA and parC. The aim of this study was to determine antimicrobial resistance pattern and the presence of mutations in regions that code for quinolone resistance in the genes gyrA and parC in clinical isolates of E. coli from a hospital in Isfahan, Iran. Materials & Methods: A total of 135 isolates of E.coli (from urine were collected from Sep-tember to February 2013 from Alzahra Hospital (Isfahan, Iran. Bacterial susceptibility to an-timicrobial agents was determined using disk diffusion method. PCR was performed to detect genes gyrA and parC. Then, 13 isolates were randomly chosen for genetic characterization of the quinolone-determining region (QRDR of the parC and gyrA genes. Results: Among 135 E. coli isolates, 61 isolates ( 45 % were resistant to fluoroquinolones. From 13 isolates, 11 isolates showed two mutations (Ser83Leu/ Asp87Asn and 2 isolates showed a single mutation (Ser83Leu in gyrA gene. Also, five different mutations were de-tected in parC gene in the E. coli isolates, encoding Ser80Ile, Ser80Val, Ser80Arg, Glu84Val, Gly78Ser. Conclusion: More research on the molecular basis of FQ resistance is required to develop new therapeutic strategies for FQ-resistant E. coli. To overcome antibiotic resistance antibiotic therapy should be limited and based on the susceptibility patterns of microorganisms. (Sci J Hamadan Univ Med Sci 2016; 23 (2:118-125

  4. Dielectrophoretic assay of bacterial resistance to antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Johari, Juliana [School of Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom); Huebner, Yvonne [School of Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom); Hull, Judith C [School of Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom); Dale, Jeremy W [School of Biomedical and Life Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom); Hughes, Michael P [School of Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom)

    2003-07-21

    The dielectrophoretic collection spectra of antibiotic-sensitive and antibiotic-resistant strains of Staphylococcus epidermidis have been determined. These indicate that in the absence of antibiotic treatment there is a strong similarity between the dielectric properties of sensitive and resistant strains, and that there is a significant difference between the sensitive strains before and after treatment with the antibiotic streptomycin after 24 h exposure. This method offers possibilities for the assessment of bacterial resistance to antibiotics. (note)

  5. Fighting antibiotic resistance in the intensive care unit using antibiotics

    NARCIS (Netherlands)

    Plantinga, Nienke L.; Wittekamp, Bastiaan H J; Van Duijn, Pleun J.; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to cl

  6. Antibiotic and Antimicrobial Resistance: Threat Report 2013

    Science.gov (United States)

    ... this? Submit What's this? Submit Button Antibiotic Resistance Threats in the United States, 2013 Recommend on Facebook Tweet Share Compartir This report, Antibiotic resistance threats in the United States, 2013 gives a first- ...

  7. Environmental pollution by antibiotics and by antibiotic resistance determinants

    International Nuclear Information System (INIS)

    Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. - The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.

  8. Environmental pollution by antibiotics and by antibiotic resistance determinants

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jose Luis, E-mail: jlmtnez@cnb.csic.e [Departamento de Biotecnologia Microbiana, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Darwin 3, Cantoblanco, 28049 Madrid, and CIBERESP (Spain)

    2009-11-15

    Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. - The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.

  9. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Roderick I. Mackie

    2013-07-01

    Full Text Available Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  10. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  11. Antibiotic Resistance in Urinary Tract Infections in College Students

    Science.gov (United States)

    Olson, Ronald P.; Haith, Karen

    2012-01-01

    Objective: To determine resistance to antibiotics of "Escherichia coli" in uncomplicated urinary tract infections (uUTIs) in female college students. Participants: Symptomatic patients presenting to a student health service from September 2008 to December 2009. Methods: Clean catch midstream urine samples were tested for urinalysis (UA) and…

  12. Controlling antibiotic resistance in the ICU

    NARCIS (Netherlands)

    Derde, L.P.G.

    2013-01-01

    Patients admitted to intensive care units (ICUs) are frequently colonized with (antibiotic-resistant) bacteria, which may lead to healthcare associated infections. Antimicrobial-resistant bacteria (AMRB), such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (V

  13. Fleroxacin resistance in Escherichia coli.

    OpenAIRE

    Chapman, J S; Bertasso, A; Georgopapadakou, N H

    1989-01-01

    Spontaneous fleroxacin-resistant mutants of Escherichia coli K-12 were isolated at a frequency of 10(-10) to 10(-11) mutants per CFU plated. All mutants exhibited quinolone-resistant replicative DNA biosynthesis, and 4 of 11 mutants also had decreased amounts of OmpF or OmpC porin. None of the mutants had changes solely in porin proteins.

  14. Ertapenem Resistance of Escherichia coli

    OpenAIRE

    Lartigue, Marie-Frédérique; Poirel, Laurent; Poyart, Claire; Réglier-Poupet, Hélène; Nordmann, Patrice

    2007-01-01

    An ertapenem-resistant Escherichia coli isolate was recovered from peritoneal fluid in a patient who had been treated with imipenem/cilastatin for 10 days. Ertapenem resistance may be explained by a defect in the outer membrane protein and production of extended-spectrum β-lactamase CTX-M-2.

  15. Antibiotic usage and resistance in different regions of the Dutch community

    NARCIS (Netherlands)

    Bruinsma, N; Filius, PMG; De Smet, PAGM; Degener, J; Endtz, P; Van den Bogaard, AE; Stobberingh, EE

    2002-01-01

    Regional differences of antibiotic use and antibiotic resistance in the fecal indicator bacteria Escherichia coli and enterococci were determined in different cities in the south, west, and north of The Netherlands. In 1999, differences in antibiotic consumption were observed between the different r

  16. No Development of Imipenem Resistance in Pneumonia Caused by Escherichia coli

    OpenAIRE

    Yayan, Josef; Ghebremedhin, Beniam; Rasche, Kurt

    2015-01-01

    Background: Antibiotic resistance continues to rise due to the increased number of antibiotic prescriptions and is now a major threat to public health. In particular, there is an increase in antibiotic resistance to Escherichia coli according to the latest reports. Trial Design: This article examines, retrospectively, antibiotic resistance in patients with community- and nosocomial-acquired pneumonia caused by E coli. Methods: The data of all patients with community- and nosocomial-acquired p...

  17. Antibiotic Resistance in Childhood with Pneumococcal Infection

    OpenAIRE

    Ali Gunes

    2013-01-01

    Aim: Resistance to antibiotics is better. Between should not be in capitals. Antibiotics resistant has been increasing in pneumococci that cause serious diseases such as pneumonia, meningitis in recent years. The resistance rates vary between geographic regions. In this study, we aimed to determine antibiotic resistance rates in pneumococcal infections in our region. Material and Method: This study included 31 pneumococcal strains isolated from blood, CSF and urine samples of patients with me...

  18. [Effect of Three Typical Disinfection Byproducts on Bacterial Antibiotic Resistance].

    Science.gov (United States)

    Lü, Lu; Zhang, Meng-lu; Wang, Chun-ming; Lin, Hui-rong; Yu, Xin

    2015-07-01

    The effect of typical disinfection byproducts (DBPs) on bacterial antibiotic resistance was investigated in this study. chlorodibromomethane (CDBM), iodoacetic acid (IAA) and chloral hydrate (CH) were selected, which belong to trihalomethanes (THMs), haloacetic acids (HAAs) and aldehydes, respectively. After exposure to the selected DBPs, the resistance change of the tested strains to antibiotics was determined. As a result, all of the three DBPs induced Pseudomonas aeruginosa PAO1 to gain increased resistance to the five antibiotics tested, and the DBPs ranked as IAA > CH > CDBM according to their enhancement effects. Multidrug resistance could also be enhanced by treatment with IAA. The same result was observed in Escherichia coli K12, suggesting that the effect of DBPs on antibiotic resistance was a common phenomenon. The mechanism was probably that DBPs stimulated oxidative stress, which induced mutagenesis. And the antibiotic resistance mutation frequency could be increased along with mutagenesis. This study revealed that the acquisition of bacterial antibiotic resistance might be related to DBPs in drinking water systems. Besides the genotoxicological risks, the epidemiological risks of DBPs should not be overlooked.

  19. Healthy Farms in Slovakia: Antibiotic Sensitivity of Escherichia coli Isolated from Rectal Swabs of Chicken and Ram

    Directory of Open Access Journals (Sweden)

    Jaroslav Pochop

    2012-10-01

    Full Text Available The aim of this experiment was determine of antibiotic resistance profile of Escherichia coli isolated from rectal swabs of chicken and ram from two different conventional breeding from Slovakia. For the antibiotic susceptibility testing disk diffusion method was used. A tested bacterium, Escherichia coli was exposed against four antibiotics: amikacin, gentamycin, tetracycline and chloramphenicol. For the identification of this strain, we used Chromogenic coliform agar, Triple sugar iron agar and biochemical test (ENTEROtest 24. For genetic identification of Escherichia coli Step One Real Time PCR with using special primer was used. Was determined that antibiotic resistance in Escherichia coli was not found. Was found susceptibility in all cases of Escherichia coli isolates. Antibiotic resistance is a biological danger. Bacteria, which we study, are considered to reservoirs of resistant genes and they are facultative and obligate pathogens. If these pathogen bacteria cause diseases those these diseases are difficult to treat. In this study, we determined that we have healthy farms in Slovakia too. In this farm antibiotic was not use and we do not determined any resistance to antibiotics, which we used in experiment.

  20. Assessing antibiotic resistance of microorganisms in sanitary sewage.

    Science.gov (United States)

    Kaeseberg, Thomas; Blumensaat, Frank; Zhang, Jin; Krebs, Peter

    2015-01-01

    The release of antimicrobial substances into surface waters is of growing concern due to direct toxic effects on all trophic levels and the promotion of antibiotic resistance through sub-inhibitory concentration levels. This study showcases (1) the variation of antibiotics in sanitary sewage depending on different timescales and (2) a method to assess the antibiotic resistance based on an inhibition test. The test is based on the measurement of the oxygen uptake rate (OUR) in wastewater samples with increasing concentrations of the selected antibiotic agents. The following antibiotics were analysed in the present study: clarithromycin (CLA) was selected due to its high toxicity to many microorganisms (low EC50), ciprofloxacin (CIP) which is used to generally fight all bacteria concerning interstitial infections and doxycyclin (DOX) having a broad spectrum efficacy. Results show that CLA inhibited the OUR by approximately 50% at a concentration of about 10 mg L⁻¹, because Gram-negative bacteria such as Escherichia coli are resistant, whereas CIP inhibited about 90% of the OUR at a concentration equal to or greater than 10 mg L⁻¹. In the case of DOX, a moderate inhibition of about 38% at a concentration of 10 mg L⁻¹ was identified, indicating a significant antibiotic resistance. The results are consistent with the corresponding findings from the Clinical and Laboratory Standards Institute. Thus, the presented inhibition test provides a simple but robust alternative method to assess antibiotic resistance in biofilms instead of more complex clinical tests. PMID:25633938

  1. Antibiotics and antibiotic resistance: a bitter fight against evolution.

    Science.gov (United States)

    Rodríguez-Rojas, Alexandro; Rodríguez-Beltrán, Jerónimo; Couce, Alejandro; Blázquez, Jesús

    2013-08-01

    One of the most terrible consequences of Darwinian evolution is arguably the emergence and spread of antibiotic resistance, which is becoming a serious menace to modern societies. While spontaneous mutation, recombination and horizontal gene transfer are recognized as the main causes of this notorious phenomenon; recent research has raised awareness that sub-lethal concentrations of antibiotics can also foster resistance as an undesirable side-effect. They can produce genetic changes by different ways, including a raise of free radicals within the cell, induction of error-prone DNA-polymerases mediated by SOS response, imbalanced nucleotide metabolism or affect directly DNA. In addition to certain environmental conditions, subinhibitory concentrations of antimicrobials may increase, even more, the mutagenic effect of antibiotics. Here, we review the state of knowledge on antibiotics as promoters of antibiotic resistance.

  2. Transmission of antibiotic-resistant Escherichia coli between cattle, humans and the environment in peri-urban livestock keeping communities in Morogoro, Tanzania

    DEFF Research Database (Denmark)

    Lupindu, Athumani M; Dalsgaard, Anders; Msoffe, Peter L. M.;

    2015-01-01

    Urban and peri-urban livestock farming is expanding world-widely because of increased urbanization and demands for food of animal origin. Such farming practices pose a public health risk as livestock are reservoirs of several zoonotic pathogens. In an attempt to determine the fecal transmission...... infrastructures (Odd Ratio=11.2, 95% CI=1.1-119.3) were associated with E. coli showing identical PFGE types within and between clusters. There is a need to improve animal husbandry and manure management practices to reduce risks of transmission of enteropathogens between livestock and humans in urban and peri-urban...... between livestock and people, 100 household clusters keeping cattle in close proximity of humans were selected in urban and peri-urban areas of Morogoro in Tanzania. One hundred eighteen ampicillin and tetracycline resistant Escherichia coli (40 from human stool, 50 from cattle feces, 21 from soil...

  3. General principles of antibiotic resistance in bacteria.

    Science.gov (United States)

    Martinez, Jose L

    2014-03-01

    Given the impact of antibiotic resistance on human health, its study is of great interest from a clinical view- point. In addition, antibiotic resistance is one of the few examples of evolution that can be studied in real time. Knowing the general principles involved in the acquisition of antibiotic resistance is therefore of interest to clinicians, evolutionary biologists and ecologists. The origin of antibiotic resistance genes now possessed by human pathogens can be traced back to environmental microorganisms. Consequently, a full understanding of the evolution of antibiotic resistance requires the study of natural environments as well as clinical ecosystems. Updated information on the evolutionary mechanisms behind resistance, indicates that ecological connectivity, founder effect and fitness costs are important bottle- necks that modulate the transfer of resistance from environmental microorganisms to pathogens. PMID:24847651

  4. Influence of population density on antibiotic resistance

    NARCIS (Netherlands)

    Bruinsma, N; Hutchinson, JM; van den Bogaard, AE; Giamarellou, H; Degener, J; Stobberingh, EE

    2003-01-01

    Antibiotic consumption and population density as a measure of crowding in the community were related to the prevalence of antibiotic resistance of three cities in three different countries: St Johns in Newfoundland (Canada), Athens in Greece and Groningen in The Netherlands. Antibiotic consumption w

  5. Tolerance of Escherichia coli to Fluoroquinolone Antibiotics Depends on Specific Components of the SOS Response Pathway

    OpenAIRE

    Theodore, Alyssa; Lewis, Kim; Vulić, Marin

    2013-01-01

    Bacteria exposed to bactericidal fluoroquinolone (FQ) antibiotics can survive without becoming genetically resistant. Survival of these phenotypically resistant cells, commonly called “persisters,” depends on the SOS gene network. We have examined mutants in all known SOS-regulated genes to identify functions essential for tolerance in Escherichia coli. The absence of DinG and UvrD helicases and the Holliday junction processing enzymes RuvA and RuvB leads to a decrease in survival. Analysis o...

  6. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.;

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains....... Characteristically, gradients of nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associated with decreased bacterial metabolic activity and increased doubling times of the bacterial cells; it is these more or less dormant cells that are responsible for some of the tolerance...

  7. What Can Be Done about Antibiotic Resistance?

    Science.gov (United States)

    ... WHO issued its Global Strategy for Containment of Antimicrobial Resistance , a document aimed at policy-makers that urges ... of existing antibiotics by modifying them so the bacterial enzymes that cause resistance cannot attack them. Alternately, "decoy" molecules can be ...

  8. Priorities for antibiotic resistance surveillance in Europe

    DEFF Research Database (Denmark)

    Fluit, A. C.; van der Bruggen, J. T.; Aarestrup, Frank Møller;

    2006-01-01

    Antibiotic resistance is an increasing global problem. Surveillance studies are needed to monitor resistance development, to guide local empirical therapy, and to implement timely and adequate countermeasures. To achieve this, surveillance studies must have standardised methodologies, be longitud......Antibiotic resistance is an increasing global problem. Surveillance studies are needed to monitor resistance development, to guide local empirical therapy, and to implement timely and adequate countermeasures. To achieve this, surveillance studies must have standardised methodologies...... to the various reservoirs of antibiotic-resistant bacteria, such as hospitalised patients, nursing homes, the community, animals and food. Two studies that could serve as examples of tailored programmes are the European Antimicrobial Resistance Surveillance System (EARSS), which collects resistance data during...... of antibiotic resistance....

  9. Coping with antibiotic resistance: contributions from genomics

    OpenAIRE

    Rossolini, Gian Maria; Thaller, Maria Cristina

    2010-01-01

    Antibiotic resistance is a public health issue of global dimensions with a significant impact on morbidity, mortality and healthcare-associated costs. The problem has recently been worsened by the steady increase in multiresistant strains and by the restriction of antibiotic discovery and development programs. Recent advances in the field of bacterial genomics will further current knowledge on antibiotic resistance and help to tackle the problem. Bacterial genomics and transcriptomics can inf...

  10. Antibiotic resistance: a physicist’s view

    Science.gov (United States)

    Allen, Rosalind; Waclaw, Bartłomiej

    2016-08-01

    The problem of antibiotic resistance poses challenges across many disciplines. One such challenge is to understand the fundamental science of how antibiotics work, and how resistance to them can emerge. This is an area where physicists can make important contributions. Here, we highlight cases where this is already happening, and suggest directions for further physics involvement in antimicrobial research.

  11. Multiple antibiotic resistance in Stenotrophomonas maltophilia.

    OpenAIRE

    Alonso, A.; Martínez, J L

    1997-01-01

    A cryptic multidrug resistance (MDR) system in Stenotrophomonas maltophilia, the expression of which is selectable by tetracycline, is described. Tetracycline resistance was the consequence of active efflux of the antibiotic, and it was associated with resistance to quinolones and chloramphenicol, but not to aminoglycosides or beta-lactam antibiotics. MDR is linked to the expression of an outer membrane protein (OMP54) both in a model system and in multidrug-resistant clinical isolates.

  12. Density-dependent adaptive resistance allows swimming bacteria to colonize an antibiotic gradient.

    Science.gov (United States)

    Hol, Felix J H; Hubert, Bert; Dekker, Cees; Keymer, Juan E

    2016-01-01

    During antibiotic treatment, antibiotic concentration gradients develop. Little is know regarding the effects of antibiotic gradients on populations of nonresistant bacteria. Using a microfluidic device, we show that high-density motile Escherichia coli populations composed of nonresistant bacteria can, unexpectedly, colonize environments where a lethal concentration of the antibiotic kanamycin is present. Colonizing bacteria establish an adaptively resistant population, which remains viable for over 24 h while exposed to the antibiotic. Quantitative analysis of multiple colonization events shows that collectively swimming bacteria need to exceed a critical population density in order to successfully colonize the antibiotic landscape. After colonization, bacteria are not dormant but show both growth and swimming motility under antibiotic stress. Our results highlight the importance of motility and population density in facilitating adaptive resistance, and indicate that adaptive resistance may be a first step to the emergence of genetically encoded resistance in landscapes of antibiotic gradients.

  13. Background antibiotic resistance patterns in antibiotic-free pastured poultry production

    Science.gov (United States)

    Antibiotic resistance (AR) is a significant public health issue, and agroecosystems are often viewed as major environmental sources of antibiotic resistant foodborne pathogens. While the use of antibiotics in agroecosystems can potentially increase AR, appropriate background resistance levels in th...

  14. Surveillance and Control of Antibiotic Resistance in the Mediterranean Region.

    Science.gov (United States)

    Ricciardi, Walter; Giubbini, Gabriele; Laurenti, Patrizia

    2016-01-01

    Antibiotic resistance is one of the most relevant problems in the healthcare: the growth of resistant microorganisms in healthcare settings is a worrisome threat, raising length to stay (LOS), morbidity and mortality in those patients. The importance of the antibiotic resistance and its spread around the world, gave rise to the activation of several surveillance systems, based especially on the collection of laboratory data to local or national level. The objective of this work is to carry out a review of the scientific literature existing on the topic and scientific activities related to surveillance of antibiotic resistance in the countries bordering the Mediterranean Sea. Recent Data from European Centre for Disease Prevention and Control (November 2015) show, for different combinations bacterium-drug, an increase of resistance from North to South and from West to East of Europe. It is of particular concern the phenomenon of resistance carried out by some gram-negative, specifically Klebsiella pneumoniae and Escherichia coli to third-generation cephalosporin, often combined in opposition to fluoroquinolones and aminoglycosides. Is particularly high the incidence of resistance to carbapenems by strains of Enterobacteriaceae (Klebsiella included). The resistance exerted by MRSA (Methicillin-resistant Staphylococcus aureus) continues to be relevant, albeit showing some decline in recent years. The incidence of resistance carried on by Streptococcus pneumoniae is stable and is mainly relevant to macrolides. Finally, a significant increase in recording relatively exercised by Enterococcus faecium to Vancomycin. Detecting, preventing, and controlling antibiotic resistance requires strategic, coordinated, and sustained efforts. It also depends on the engagement of governments, academia, industry, healthcare providers, the general public, and the agricultural community, as well as international partners. Committing to combating antibiotic-resistant microbes does support

  15. SURVEILLANCE AND CONTROL OF ANTIBIOTIC RESISTANCE IN THE MEDITERRANEAN REGION

    Directory of Open Access Journals (Sweden)

    Walter Ricciardi

    2016-07-01

    Full Text Available Antibiotic resistance is one of the most relevant problems in the healthcare: the growth of resistant micro-organisms in healthcare settings is a worrisome threat, raising length to stay (LOS, morbidity and mortality in those patients. The importance of the antibiotic resistance and its spread around the world, gave rise to the activation of several surveillance systems, based especially on the collection of laboratory data to local or national level. The objective of this work is to carry out a review of the scientific literature existing on the topic and scientific activities related to surveillance on antibiotic resistance in countries bordering the Mediterranean Sea. Recent Data from European Centre for Disease Prevention and Control (November 2015 show, for different combinations bacterium-drug, an increase of resistance from North to South and from West to East of Europe; it is particularly worrying the phenomenon of resistance carried out by some gram negative, specifically Klebsiella pneumoniae and Escherichia coli to third-generation cephalosporin, often combined in opposition to fluoroquinolones and amino glycosides. Is particularly relevant the incidence of resistance to carbapenems by strains of Enterobacteriaceae (Klebsiella included. The resistance exerted by MRSA (Methicillin-resistant Staphylococcus aureus continues to be relevant, albeit showing some decline in recent years. The incidence of resistance carried on by Streptococcus pneumoniae is stable and is mainly relevant to macrolides. Finally, a significant increase in recording relatively exercised by Enterococcus faecium to Vancomycin. Detecting, preventing, and controlling antibiotic resistance requires strategic, coordinated, and sustained efforts. It also depends on the engagement of governments, academia, industry, healthcare providers, the general public, and the agricultural community, as well as international partners. Committing to combating antibiotic-resistant

  16. Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action

    Directory of Open Access Journals (Sweden)

    Carlet Jean

    2012-02-01

    Full Text Available Abstract Resistance to antibiotics has increased dramatically over the past few years and has now reached a level that places future patients in real danger. Microorganisms such as Escherichia coli and Klebsiella pneumoniae, which are commensals and pathogens for humans and animals, have become increasingly resistant to third-generation cephalosporins. Moreover, in certain countries, they are also resistant to carbapenems and therefore susceptible only to tigecycline and colistin. Resistance is primarily attributed to the production of beta-lactamase genes located on mobile genetic elements, which facilitate their transfer between different species. In some rare cases, Gram-negative rods are resistant to virtually all known antibiotics. The causes are numerous, but the role of the overuse of antibiotics in both humans and animals is essential, as well as the transmission of these bacteria in both the hospital and the community, notably via the food chain, contaminated hands, and between animals and humans. In addition, there are very few new antibiotics in the pipeline, particularly for Gram-negative bacilli. The situation is slightly better for Gram-positive cocci as some potent and novel antibiotics have been made available in recent years. A strong and coordinated international programme is urgently needed. To meet this challenge, 70 internationally recognized experts met for a two-day meeting in June 2011 in Annecy (France and endorsed a global call to action ("The Pensières Antibiotic Resistance Call to Action". Bundles of measures that must be implemented simultaneously and worldwide are presented in this document. In particular, antibiotics, which represent a treasure for humanity, must be protected and considered as a special class of drugs.

  17. Antibiotic resistance in ocular bacterial pathogens

    Directory of Open Access Journals (Sweden)

    S Sharma

    2011-01-01

    Full Text Available Bacterial infections of the eye are common and ophthalmologists are spoilt for choice with a variety of antibiotics available in the market. Antibiotics can be administered in the eye by a number of routes; topical, subconjunctival, subtenon and intraocular. Apart from a gamut of eye drops available, ophthalmologists also have the option of preparing fortified eye drops from parenteral formulations, thereby, achieving high concentrations; often much above the minimum inhibitory concentration (MIC, of antibiotics in ocular tissues during therapy. Antibiotic resistance among ocular pathogens is increasing in parallel with the increase seen over the years in bacteria associated with systemic infections. Although it is believed that the rise in resistant ocular bacterial isolates is linked to the rise in resistant systemic pathogens, recent evidence has correlated the emergence of resistant bacteria in the eye to prior topical antibiotic therapy. One would like to believe that either of these contributes to the emergence of resistance to antibiotics among ocular pathogens. Until recently, ocular pathogens resistant to fluoroquinolones have been minimal but the pattern is currently alarming. The new 8-fluoroquinolone on the scene-besifloxacin, is developed exclusively for ophthalmic use and it is hoped that it will escape the selective pressure for resistance because of lack of systemic use. In addition to development of new antibacterial agents, the strategies to halt or control further development of resistant ocular pathogens should always include judicious use of antibiotics in the treatment of human, animal or plant diseases.

  18. Rapid determination of antibiotic resistance in E. coli using dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Hoettges, Kai F [School of Engineering, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Dale, Jeremy W [School of Biomedical and Life Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Hughes, Michael P [School of Engineering, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2007-09-21

    In recent years, infections due to antibiotic-resistant strains of bacteria such as methillicin-resistant Staphylococcus aureus and ciprofloxacin-resistant Escherichia coli are on the rise, and with them the demand for rapid antibiotic testing is also rising. Conventional tests, such as disc diffusion testing, require a primary sample to be tested in the presence of a number of antibiotics to verify which antibiotics suppress growth, which take approximately 24 h to complete and potentially place the patient at severe risk. In this paper we describe the use of dielectrophoresis as a rapid marker of cell death, by detecting changes in the electrophysiology of the cell caused by the administration of an antibiotic. In contrast to other markers, the electrophysiology of the cell changes rapidly during cell death allowing live cells to be distinguished from dead (or dying) cells without the need for culturing. Using polymyxin B as an example antibiotic, our studies indicate that significant changes in cell characteristics can be observed as soon as 1 h passes after isolating a culture from nutrient broth.

  19. [Modification of antibiotic resistance in microbial symbiosis].

    Science.gov (United States)

    Aznabaeva, L M; Usviatsov, B Ia; Bukharin, O V

    2010-01-01

    In antibiotic therapy it is necessary to use drugs active against the pathogen in its association with the host normal microflora. The aim of the study was to investigate modification of antibiotic resistance under conditions of the pathogen association with the representatives of the host normal microflora and to develop the microbiological criteria for determining effectiveness of antibacterials. Modification of microbial antibiotic resistance was investigated in 408 associations. Various changes in the antibiotic resistance of the strains were revealed: synergism, antagonism and indifference. On the basis of the results it was concluded that in the choice of the antibiotic active against Staphylococcus aureus and Streptococcus pyogenes the preference should be given to oxacillin, gentamicin and levomycetin, since the resistance of the pathogens to these antibiotics under the association conditions did not increase, which could contribute to their destruction, whereas the resistance of the normoflora increased or did not change, which was important for its retention in the biocenosis. The data on changeability of the antibiotic resistance of the microbial strains under the association conditions made it possible to develop microbiological criteria for determining effectiveness of antibiotics in the treatment of inflammatory diseases of microbial etiology (RF Patent No. 2231554). PMID:21033469

  20. Antibiotic resistance: are we all doomed?

    Science.gov (United States)

    Collignon, P

    2015-11-01

    Antibiotic resistance is a growing and worrying problem associated with increased deaths and suffering for people. Overall, there are only two factors that drive antimicrobial resistance, and both can be controlled. These factors are the volumes of antimicrobials used and the spread of resistant micro-organisms and/or the genes encoding for resistance. The One Health concept is important if we want to understand better and control antimicrobial resistance. There are many things we can do to better control antimicrobial resistance. We need to prevent infections. We need to have better surveillance with good data on usage patterns and resistance patterns available across all sectors, both human and agriculture, locally and internationally. We need to act on these results when we see either inappropriate usage or resistance levels rising in bacteria that are of concern for people. We need to ensure that food and water sources do not spread multi-resistant micro-organisms or resistance genes. We need better approaches to restrict successfully what and how antibiotics are used in people. We need to restrict the use of 'critically important' antibiotics in food animals and the entry of these drugs into the environment. We need to ensure that 'One Health' concept is not just a buzz word but implemented. We need to look at all sectors and control not only antibiotic use but also the spread and development of antibiotic resistant bacteria - both locally and internationally. PMID:26563691

  1. Isolation, Characterization and Antibiotic Resistance of Shiga Toxin-Producing Escherichia coli in Hamburger and Evolution of Virulence Genes stx1, stx2, eaeA and hly by Multiplex PCR

    Directory of Open Access Journals (Sweden)

    Mohammad Kargar

    2013-09-01

    Full Text Available Background & Objectives: Shiga toxin-producing Escherichia coli (STEC O157:H7 have emerged as pathogens that can cause food-borne infections and severe and potentially fatal illnesses in humans. E.coli O157:H7 colonizes the digestive tract of cattle and is transmitted to humans by food and water. The objectives of this study were to characterize the prevalence of E.coli O157:H7 isolates in hamburger in Shiraz and to test their antimicrobial sensitivity. Material & Methods: In this research, 428 samples of hamburger were collected from 7 main factories of meat products and enriched in TSB with novobiocin medium at 37ºC. Fermentation of sorbitol and lactose and activities of β- glucuronidase of separated bacteria were examined by using the SMAC and VRBA media and CHROMagar medium. Then isolation of E.coli O157:H7 was confirmed with the use of specific antisera; and with the multiplex PCR method, the presence of E.coli O157:H7 virulence genes – including stx1, stx2, eaeA, and hly – was analyzed. Finally, antibiotic resistance strains were tested with disk diffusion methods. Results: Out of all the examined samples, 264 (61.68% sorbitol-negative bacteria were separated in the CT-SMAC medium. After evaluation with specific antisera, the rate of the recognition of E.coli O157:H7 was 5 (1.17%. The stx1 and eaeA genes were diagnosed in 2 (0.47% cases of these samples. All the isolated bacteria were resistant to penicillin, clindamycin, and erythromycin antibiotics.Conclusion: The presence of STEC in animal products suggests that they may be a potential hazard for human health. A regular monitoring of STEC O157, mainly in hamburger, should be performed to prevent a possible consumer health threat.

  2. Metagenomic exploration of antibiotic resistance in soil.

    Science.gov (United States)

    Monier, Jean-Michel; Demanèche, Sandrine; Delmont, Tom O; Mathieu, Alban; Vogel, Timothy M; Simonet, Pascal

    2011-06-01

    The ongoing development of metagenomic approaches is providing the means to explore antibiotic resistance in nature and address questions that could not be answered previously with conventional culture-based strategies. The number of available environmental metagenomic sequence datasets is rapidly expanding and henceforth offer the ability to gain a more comprehensive understanding of antibiotic resistance at the global scale. Although there is now evidence that the environment constitutes a vast reservoir of antibiotic resistance gene determinants (ARGDs) and that the majority of ARGDs acquired by human pathogens may have an environmental origin, a better understanding of their diversity, prevalence and ecological significance may help predict the emergence and spreading of newly acquired resistances. Recent applications of metagenomic approaches to the study of ARGDs in natural environments such as soil should help overcome challenges concerning expanding antibiotic resistances. PMID:21601510

  3. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater.

    Science.gov (United States)

    McKinney, Chad W; Pruden, Amy

    2012-12-18

    Disinfection of wastewater treatment plant effluent may be an important barrier for limiting the spread of antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs). While ideally disinfection should destroy ARGs, to prevent horizontal gene transfer to downstream bacteria, little is known about the effect of conventional water disinfection technologies on ARGs. This study examined the potential of UV disinfection to damage four ARGs, mec(A), van(A), tet(A), and amp(C), both in extracellular form and present within a host ARBs: methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), Escherichia coli SMS-3-5, and Pseudomonas aeruginosa 01, respectively. An extended amplicon-length quantitative polymerase chain reaction assay was developed to enhance capture of ARG damage events and also to normalize to an equivalent length of target DNA (∼1000 bp) for comparison. It was found that the two Gram-positive ARBs (MRSA and VRE) were more resistant to UV disinfection than the two Gram-negative ARBs (E. coli and P. aeruginosa). The two Gram-positive organisms also possessed smaller total genome sizes, which could also have reduced their susceptibility to UV because of fewer potential pyrimidine dimer targets. An effect of cell type on damage to ARGs was only observed in VRE and P. aeruginosa, the latter potentially because of extracellular polymeric substances. In general, damage of ARGs required much greater UV doses (200-400 mJ/cm² for 3- to 4-log reduction) than ARB inactivation (10-20 mJ/cm² for 4- to 5-log reduction). The proportion of amplifiable ARGs following UV treatment exhibited a strong negative correlation with the number of adjacent thymines (Pearson r 0.85; p disinfection technologies should be explored.

  4. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes.

    Directory of Open Access Journals (Sweden)

    Aimée M Moore

    Full Text Available Emerging antibiotic resistance threatens human health. Gut microbes are an epidemiologically important reservoir of resistance genes (resistome, yet prior studies indicate that the true diversity of gut-associated resistomes has been underestimated. To deeply characterize the pediatric gut-associated resistome, we created metagenomic recombinant libraries in an Escherichia coli host using fecal DNA from 22 healthy infants and children (most without recent antibiotic exposure, and performed functional selections for resistance to 18 antibiotics from eight drug classes. Resistance-conferring DNA fragments were sequenced (Illumina HiSeq 2000, and reads assembled and annotated with the PARFuMS computational pipeline. Resistance to 14 of the 18 antibiotics was found in stools of infants and children. Recovered genes included chloramphenicol acetyltransferases, drug-resistant dihydrofolate reductases, rRNA methyltransferases, transcriptional regulators, multidrug efflux pumps, and every major class of beta-lactamase, aminoglycoside-modifying enzyme, and tetracycline resistance protein. Many resistance-conferring sequences were mobilizable; some had low identity to any known organism, emphasizing cryptic organisms as potentially important resistance reservoirs. We functionally confirmed three novel resistance genes, including a 16S rRNA methylase conferring aminoglycoside resistance, and two tetracycline-resistance proteins nearly identical to a bifidobacterial MFS transporter (B. longum s. longum JDM301. We provide the first report to our knowledge of resistance to folate-synthesis inhibitors conferred by a predicted Nudix hydrolase (part of the folate synthesis pathway. This functional metagenomic survey of gut-associated resistomes, the largest of its kind to date, demonstrates that fecal resistomes of healthy children are far more diverse than previously suspected, that clinically relevant resistance genes are present even without recent selective

  5. The Antibiotic Resistance Problem Revisited

    Science.gov (United States)

    Lawson, Michael A.

    2008-01-01

    The term "antibiotic" was first proposed by Vuillemin in 1889 but was first used in the current sense by Walksman in 1941. An antibiotic is defined as a "derivative produced by the metabolism of microorganisms that possess antibacterial activity at low concentrations and is not toxic to the host." In this article, the author describes how…

  6. Management Options For Reducing The Release Of Antibiotics And Antibiotic Resistance Genes To The Environment

    Science.gov (United States)

    Background: There is growing concern worldwide about the role of polluted soil and water - 77 environments in the development and dissemination of antibiotic resistance. 78 Objective: To identify management options for reducing the spread of antibiotics and 79 antibiotic resist...

  7. Antibiotic Selection of Escherichia coli Sequence Type 131 in a Mouse Intestinal Colonization Model

    OpenAIRE

    Boetius Hertz, Frederik; Løbner-Olesen, Anders; Frimodt-Møller, Niels

    2014-01-01

    The ability of different antibiotics to select for extended-spectrum β-lactamase (ESBL)-producing Escherichia coli remains a topic of discussion. In a mouse intestinal colonization model, we evaluated the selective abilities of nine common antimicrobials (cefotaxime, cefuroxime, dicloxacillin, clindamycin, penicillin, ampicillin, meropenem, ciprofloxacin, and amdinocillin) against a CTX-M-15-producing E. coli sequence type 131 (ST131) isolate with a fluoroquinolone resistance phenotype. Mice ...

  8. Induction of bacterial antibiotic resistance by mutagenic halogenated nitrogenous disinfection byproducts

    International Nuclear Information System (INIS)

    Halogenated nitrogenous disinfection byproducts (N-DBPs) raise concerns regarding their mutagenicity and carcinogenicity threatening public health. However, environmental consequence of their mutagenicity has received less attention. In this study, the effect of halogenated N-DBPs on bacterial antibiotic resistance (BAR) was investigated. After exposure to bromoacetamide (BAcAm), trichloroacetonitrile (TCAN) or tribromonitromethane (TBNM), the resistance of Pseudomonas aeruginosa PAO1 to both individual and multiple antibiotics (ciprofloxacin, gentamicin, polymyxin B, rifampin, tetracycline, ciprofloxacin + gentamicin and ciprofloxacin + tetracycline) was increased, which was predominantly ascribed to the overexpression of efflux pumps. The mechanism of this effect was demonstrated to be mutagenesis through sequencing and analyzing antibiotic resistance genes. The same induction phenomena also appeared in Escherichia coli, suggesting this effect may be universal to waterborne pathogens. Therefore, more attention should be given to halogenated N-DBPs, as they could increase not only genotoxicological risks but also epidemiological risks of drinking water. - Highlights: • The halogenated N-DBPs could induce bacterial antibiotic resistance. • Both individual and multiple resistances could be induced. • Efflux mechanism played an important role in the induced antibiotic resistance. • The halogenated N-DBPs induced bacterial antibiotic resistance via mutagenesis. • Effects of N-DBPs on antibiotic resistance may be universal to waterborne pathogens. - Halogenated N-DBPs could increase antibiotic resistance, even multidrug resistance via mutagenesis, contributing to the enrichment of antibiotic resistant bacteria in drinking water

  9. Assessing Antibiotic Resistance of Staphyloccocus: Students Use Their Own Microbial Flora To Explore Antibiotic Resistance.

    Science.gov (United States)

    Omoto, Charlotte K.; Malm, Kirstin

    2003-01-01

    Describes a microbiology laboratory experiment in which students test their own microbial flora of Staphylococcus for antibiotic resistance. Provides directions on how to conduct the experiment. (YDS)

  10. How to Fight Back Against Antibiotic Resistance

    DEFF Research Database (Denmark)

    Dantas, Gautam; Sommer, Morten

    2014-01-01

    Mapping the exchange of genes between pathogens and nonpathogens offers new ways to understand and manage the spread of drug-resistant strains. In reality, the development of new antibiotics is only part of the solution, as pathogens will inevitably develop resistance to even the most promising new...... compounds. To save the era of antibiotics, scientists must figure out what it is about bacterial pathogens that makes resistance inevitable. Although most studies on drug resistance have focused on disease causing pathogens, recent efforts have shifted attention to the resistomes of nonpathogenic bacteria...

  11. Mechanobiology of Antimicrobial Resistant Escherichia coli and Listeria innocua.

    Science.gov (United States)

    Tajkarimi, Mehrdad; Harrison, Scott H; Hung, Albert M; Graves, Joseph L

    2016-01-01

    A majority of antibiotic-resistant bacterial infections in the United States are associated with biofilms. Nanoscale biophysical measures are increasingly revealing that adhesive and viscoelastic properties of bacteria play essential roles across multiple stages of biofilm development. Atomic Force Microscopy (AFM) applied to strains with variation in antimicrobial resistance enables new opportunities for investigating the function of adhesive forces (stickiness) in biofilm formation. AFM force spectroscopy analysis of a field strain of Listeria innocua and the strain Escherichia coli K-12 MG1655 revealed differing adhesive forces between antimicrobial resistant and nonresistant strains. Significant increases in stickiness were found at the nanonewton level for strains of Listeria innocua and Escherichia coli in association with benzalkonium chloride and silver nanoparticle resistance respectively. This advancement in the usage of AFM provides for a fast and reliable avenue for analyzing antimicrobial resistant cells and the molecular dynamics of biofilm formation as a protective mechanism.

  12. Antibiotic resistance in children with complicated urinary tract infection

    International Nuclear Information System (INIS)

    Objective was to determine the resistance of antibiotics for complicated urinary tract infection (UTI), including urinary tract anomaly (UTA), for empirical antibiotic therapy of complicated UTI. Four hundred and twenty two urine isolates were obtained from 113 patients with recurrent UTI, who used prophylactic antibiotics between February 1999 and November 2004 in the Eskisehir Osmangazi University, Eskisehir, Turkey. Reflux was found to be most important predisposing factor for recurrent UTI (31.9%). Renal scar was detected more in patients with UTA than without UTA (59.2% versus 12.4%, p<0.05). Gram-negative organisms were dominant in patients with and without UTA (91.5% and 79.2%). Enterococci and Candida spp. were more prevalent in children with UTA than without UTA (p<0.001). Isolates were significantly more resistant to ampicillin, trimethoprim-sulfamethoxazole, amikacin, co-amoxiclav, ticarcillin-clvalanate and piperacillin-tazobactam in patients with UTA than without UTA. We found low resistance to ciprofloxacin and nitrofurantoin in UTI with and without UTA. Enterococci spp. was highly resistance to ampicillin and amikacin in patients with UTA. Aztreonam, meropenem and ciprofloxacin seemed to be the best choice for treatment of UTI with UTA due to Escherichia coli and Klebsiella spp. Nitrofurantoin and nalidixic acid may be first choice antibiotics for prophylaxis in UTI with and without UTA. The UTI with UTA caused by Enterococci spp. might not benefit from a combination of amikacin and ampicillin, it could be treated with glycopeptides. (author)

  13. Environmental and genetic factors affecting mutability to aminoglycoside antibiotics among Escherichia coli K12 strains

    Directory of Open Access Journals (Sweden)

    Monteiro A.C.M.

    2003-01-01

    Full Text Available Environmental and genetic factors affecting the in vitro spontaneous mutation frequencies to aminoglycoside resistance in Escherichia coli K12 were investigated. Spontaneous mutation frequencies to kanamycin resistance were at least 100 fold higher on modified Luria agar (L2 plates, when compared to results obtained in experiments carried out with Nutrient agar (NA plates. In contrast to rifampincin, the increased mutability to kanamycin resistance could not be attributed to a mutator phenotype expressed by DNA repair defective strains. Kanamycin mutant selection windows and mutant preventive concentrations on L2 plates were at least fourfold higher than on NA plates, further demonstrating the role of growth medium composition on the mutability to aminoglycosides. Mutability to kanamycin resistance was increased following addition of sorbitol, suggesting that osmolarity is involved on the spontaneous mutability of E. coli K12 strains to aminoglycosides. The spontaneous mutation rates to kanamycin resistance on both L2 and NA plates were strictly associated with the selective antibiotic concentrations. Moreover, mutants selected at different antibiotic concentrations expressed heterogeneous resistance levels to kanamycin and most of them expressing multiple resistance to all tested aminoglycoside antibiotics (gentamicin, neomycin, amykacin and tobramycin. These results will contribute to a better understanding of the complex nature of aminoglycoside resistance and the emergence of spontaneous resistant mutants among E. coli K12 strains.

  14. Antibiotic resistance of Escherichia coli in hospitalized patients with various diseases%不同疾病住院患者大肠埃希菌耐药性研究

    Institute of Scientific and Technical Information of China (English)

    陈凡; 卜一珊; 任海霞

    2012-01-01

    目的 了解不同疾病患者大肠埃希菌流行病学分布及耐药性.方法 查阅2009年12月-2011年2月细菌培养为大肠埃希菌的住院患者253例,8种疾病各收集40例次,统计不同疾病患者大肠埃希菌的耐药率.结果 不同疾病患者分离的大肠埃希菌对喹诺酮类药物耐药率不尽相同,其中恶性肿瘤患者耐药率最高达70.0%,其次为长期口服糖皮质激素和慢性阻塞性肺疾病(COPD)患者,为65.0%,器官移植患者耐药率也偏高,为62.5%;8种疾病中器官移植的ESBLs检出率最高达80.0%,其次COPD患者为52.5%,外伤患者检出率最低是25.0%;同一例患者基础疾病种类越多,耐药性也越严重.结论 大肠埃希菌的耐药性比较严峻,所以应加强细菌耐药监测,了解耐药变迁,为临床合理用药提供依据,防止耐药菌株的传播.%OBJECTIVE To explore the epidemiology and drug resistance of Escherichia coli in various groups. METHODS From Dec 2009 to Feb 2011, a total of 320 patients with bacteria cultured as E. coli were selected, with 8 types of diseases and 40 cases with each, statistical analysis of the drug resistance of E. coli in various groups was performed. RESULTS E. coli in different group of patients varied in drug resistance to quinolone antibiotics,drug resistance rate of the patients with malignant tumor reached to 70. 0% . followed by the patients suffered from COPD with the long-term use of corticosteroids (65. 0%), the resistance rate of the patients undergoing organ transplantation was relatively high (62. 5%); the detection rate of ESBLs of the organ transplantation of 8 diseases was the highest (80. 0%),followed by the patients with COPD patients<52. 5%), the detection rate of the patients with trauma was the lowest (25.0%); the more primary diseases the patient had, the more serious the drug resistance would be. CONCLUSION The drug resistance of E. coli is terribly severe, it is necessary to strengthen the

  15. Antibiotic resistance genes in the environment

    Directory of Open Access Journals (Sweden)

    Jianqiang Su

    2013-07-01

    Full Text Available Antibiotic resistance and its spread in bacteria are topics of great importance in global research. In this paper, we review recent progress in understanding sources, dissemination, distribution and discovery of novel antibiotics resistance genes (ARGs in the environment. Bacteria exhibiting intrinsic resistance and antibiotic resistant bacteria in feces from humans and animals are the major sources of ARGs occurring in the environment. A variety of novel ARGs have been discovered using functional metagenomics. Recently, the long-term overuse of antibotics in drug therapy and animal husbandry has led to an increase in diversity and abundance of ARGs, causing the environmental dissemination of ARGs in aquatic water, sewage treatmentplants, rivers, sediment and soil. Future research should focus on dissemination mechanisms of ARGs, the discovery of novel ARGs and their resistant mechanisms, and the establishment of environmental risk assessment systems for ARGs.

  16. Plasmid profiling and antibiotics resisitance of Escherichia coli strains isolated from Mytilus galloprovincialis and seawater

    Institute of Scientific and Technical Information of China (English)

    Cumhur Avşar; İsmet Berber

    2014-01-01

    Objective: To investigate plasmid DNA profiles and the antibiotic resistance of a total of 41 strains of Escherichia coli (E. coli) isolated from seawater and mussel collected from 15 different sampling stations in Sinop, Turkey. Methods: Most probable number technique was used for detection of E. coli. Antibiotic susceptibilities of the isolates were determined by the disc diffusion method. Plasmid DNA of the strains was extracted by the alkaline lyses procedure.Results:According to morphological and physiological properties, it was determined that the isolates belonged to E. coli species. Antibiotic susceptibility of the strains was determined against seven standard drugs using disc diffusion method. All isolates were resistant to bacitracin (100%), novobiocin (100%), ampicillin (12.5%), tetracycline (7.5%), ceftazidime (5%) and imipenem (2.5%), respectively, whereas the strains were susceptible to polymyxin B (100%). The multiple antibiotic resistance values for the strains were found in range from 0.28 to 0.57. In addition, plasmid DNA analyses results confirmed that 22 strains harbored a single or more than two plasmids sized approximately between 24.500 to 1.618 bp. The high-size plasmid (14.700 bp) was observed as common in 21 of all strains.Conclusions:As a result, our study indicated that the presence of antibiotic resistant E. coli strains in seawater and mussel might be potential risk for public health issue.

  17. Antibiotic treatment of verocytotoxin-producing Escherichia coli (VTEC) infection

    DEFF Research Database (Denmark)

    Agger, Morten; Scheutz, Flemming; Villumsen, Steen;

    2015-01-01

    OBJECTIVES: A consensus has existed on not to treat verocytotoxin-producing Escherichia coli (VTEC)-infected individuals with antibiotics because of possible subsequent increased risk of developing haemolytic uraemic syndrome (HUS). The aim of this systematic review is to clarify the risk...... associated with antibiotic treatment during acute VTEC infection and in chronic VTEC carrier states. METHODS: A systematic search in PubMed identified 1 meta-analysis, 10 clinical studies and 22 in vitro/in vivo studies. RESULTS: Four clinical studies found an increased risk of HUS, four studies found...... no altered risk of HUS and two studies found a protective effect of antibiotics. In vitro and clinical studies suggest that DNA synthesis inhibitors should be avoided, whereas evidence from in vitro studies indicates that certain protein and cell wall synthesis inhibitors reduce the release of toxins from...

  18. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria.

    Science.gov (United States)

    Bennett, P M

    2008-03-01

    Bacteria have existed on Earth for three billion years or so and have become adept at protecting themselves against toxic chemicals. Antibiotics have been in clinical use for a little more than 6 decades. That antibiotic resistance is now a major clinical problem all over the world attests to the success and speed of bacterial adaptation. Mechanisms of antibiotic resistance in bacteria are varied and include target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Acquisition of genes needed to elaborate the various mechanisms is greatly aided by a variety of promiscuous gene transfer systems, such as bacterial conjugative plasmids, transposable elements and integron systems, that move genes from one DNA system to another and from one bacterial cell to another, not necessarily one related to the gene donor. Bacterial plasmids serve as the scaffold on which are assembled arrays of antibiotic resistance genes, by transposition (transposable elements and ISCR mediated transposition) and site-specific recombination mechanisms (integron gene cassettes).The evidence suggests that antibiotic resistance genes in human bacterial pathogens originate from a multitude of bacterial sources, indicating that the genomes of all bacteria can be considered as a single global gene pool into which most, if not all, bacteria can dip for genes necessary for survival. In terms of antibiotic resistance, plasmids serve a central role, as the vehicles for resistance gene capture and their subsequent dissemination. These various aspects of bacterial resistance to antibiotics will be explored in this presentation. PMID:18193080

  19. [Evolution in the antibiotic susceptibility and resistance].

    Science.gov (United States)

    Stefani, S

    2009-07-01

    Over the last decade the proliferation of antibiotic-resistant pathogens has been a growing problem, especially in some geographic areas, making useless most of the classical antibiotic therapies. The rapid emergence of resistant bacteria is the result of different factors as the intrinsic microbial complexity, the growing attitude to travel of humans, animals and goods, the use of antibiotics outside hospitals, and the lack of precise therapeutic chooses for high risk group of patients. The antibiotic-resistance becomes certainly a serious problem when a resistant pathogen, and often multi-resistant today, is present in an infective site. In fact in a recent estimate of the Centre for Disease Control and Prevention (CDC) about 90.000 deaths per year in the USA are attributable to bacterial infections and in particular to resistant pathogens. It appears clear that the clinic relevance of this problem is the decimation of the sensible germs of the normal flora that leads to the upper hand of the only resistant bacteria. The antibiotic therapy, in fact, select the resistance and each bacteria has developed a particular strategy to survive: mutations of the genetic content or acquisition of resistance genes from the external. Among the Gram positive bacteria, besides methicillin resistant Staphyloccocus aureus, there are other pathogens such as coagulase-negative staphylococci (CoNS), Enterococcus faecium and Enterococcus faecalis, some species of streptococci and multiresistant Corynebacterium. The CoNS, eg. S. epidermidis, S. hominis and S. haemolyticus, are recognized as new important nosocomial pathogens and are not only responsible of invasive infections but have become in few years resistant to oxacillin (more than 60%) and multiresistant. The unsuspected fragility of glycopeptides, which for 40 years have been the most important treatment against infections due to Gram-positive bacteria, has posed the need for new antimicrobial molecules. Among the therapeutic

  20. Advanced treatment of urban wastewater by UV radiation: Effect on antibiotics and antibiotic-resistant E. coli strains.

    Science.gov (United States)

    Rizzo, Luigi; Fiorentino, Antonino; Anselmo, Antonella

    2013-06-01

    Urban wastewater treatment plant (UWWTP) effluents are among the possible sources of antibiotics and antibiotic-resistant bacteria (ARB) spread into the environment. In this work, the effect of UV radiation on antibiotic-resistant Escherichia coli (E. coli) strains was compared with that of chlorination process. Under the investigated conditions, UV disinfection process resulted in a total inactivation after 60min of irradiation (1.25×10(4)μWscm(-2)) compared to 120min chlorine contact time (initial chlorine dose of 2mgL(-1)). Moreover, no change in E. coli strains' resistance to amoxicillin (AMX) (minimum inhibiting concentration (MIC)>256mgL(-1)) and sulfamethoxazole (SMZ) (MIC>1024mgL(-1)) could be observed after UV treatment, while the treatment affected resistance of the lower resistance strain to ciprofloxacin (CPX) (MIC decreased by 33% and 50% after 60 and 120min, respectively). Contrarily, chlorination process did not affect antibiotic resistance of the investigated E. coli strains. Finally, the effect of UV radiation on the mixture of three antibiotics was also investigated and photodegradation data fit quite well pseudo first order kinetic models with t1/2 values of 14, 20 and 25min for CPX, AMX and SMZ, respectively. According to these results, conventional disinfection processes may not be effective in the inactivation of ARB, and the simultaneous release of ARB and antibiotics at sub-lethal concentrations into UWWTP effluent may promote the development of resistance among bacteria in receiving water.

  1. Antibiotic Resistance in Childhood with Pneumococcal Infection

    Directory of Open Access Journals (Sweden)

    Ali Gunes

    2013-10-01

    Full Text Available Aim: Resistance to antibiotics is better. Between should not be in capitals. Antibiotics resistant has been increasing in pneumococci that cause serious diseases such as pneumonia, meningitis in recent years. The resistance rates vary between geographic regions. In this study, we aimed to determine antibiotic resistance rates in pneumococcal infections in our region. Material and Method: This study included 31 pneumococcal strains isolated from blood, CSF and urine samples of patients with meningitis, sepsis and urinary tract infections who admitted Dicle University Medicine School Children Clinic and Diyarbakir Pediatric Hospital Between December 2004-April 2007. Reproducing clinical specimens with alpha-hemolysis, optochin-sensitive, bile soluble and gram-positive diplococci morphology was defined as S. pneumoniae. The antimicrobial susceptibilities of strains were measured by the E-test method. MIC values of penicillin against pneumococci was accepted as <0.06 mg / ml value of the sensitive, 0.12-1μg/ml mid-level resistance, ≥ 2 mg / ml value of the high-level resistance. Results: It was found 16% mid-level penicillin resistance and 3.2% high-level penicillin resistance by E-test method. 80.7% of Strains were percent of the penicillin-sensitive. Seftiriakson resistance was found as 3.2%. there was not Vancomycin resistance. Discussion: We think penicillin therapy is enough effective for pneumococcal infections except serious conditions such as meningitis and sepsis. Also we think it should be supported by multicenter studies.

  2. Effects of antibiotic resistance alleles on bacterial evolutionary responses to viral parasites.

    Science.gov (United States)

    Arias-Sánchez, Flor I; Hall, Alex R

    2016-05-01

    Antibiotic resistance has wide-ranging effects on bacterial phenotypes and evolution. However, the influence of antibiotic resistance on bacterial responses to parasitic viruses remains unclear, despite the ubiquity of such viruses in nature and current interest in therapeutic applications. We experimentally investigated this by exposing various Escherichia coli genotypes, including eight antibiotic-resistant genotypes and a mutator, to different viruses (lytic bacteriophages). Across 960 populations, we measured changes in population density and sensitivity to viruses, and tested whether variation among bacterial genotypes was explained by their relative growth in the absence of parasites, or mutation rate towards phage resistance measured by fluctuation tests for each phage. We found that antibiotic resistance had relatively weak effects on adaptation to phages, although some antibiotic-resistance alleles impeded the evolution of resistance to phages via growth costs. By contrast, a mutator allele, often found in antibiotic-resistant lineages in pathogenic populations, had a relatively large positive effect on phage-resistance evolution and population density under parasitism. This suggests costs of antibiotic resistance may modify the outcome of phage therapy against pathogenic populations previously exposed to antibiotics, but the effects of any co-occurring mutator alleles are likely to be stronger. PMID:27194288

  3. Effects of antibiotic resistance alleles on bacterial evolutionary responses to viral parasites.

    Science.gov (United States)

    Arias-Sánchez, Flor I; Hall, Alex R

    2016-05-01

    Antibiotic resistance has wide-ranging effects on bacterial phenotypes and evolution. However, the influence of antibiotic resistance on bacterial responses to parasitic viruses remains unclear, despite the ubiquity of such viruses in nature and current interest in therapeutic applications. We experimentally investigated this by exposing various Escherichia coli genotypes, including eight antibiotic-resistant genotypes and a mutator, to different viruses (lytic bacteriophages). Across 960 populations, we measured changes in population density and sensitivity to viruses, and tested whether variation among bacterial genotypes was explained by their relative growth in the absence of parasites, or mutation rate towards phage resistance measured by fluctuation tests for each phage. We found that antibiotic resistance had relatively weak effects on adaptation to phages, although some antibiotic-resistance alleles impeded the evolution of resistance to phages via growth costs. By contrast, a mutator allele, often found in antibiotic-resistant lineages in pathogenic populations, had a relatively large positive effect on phage-resistance evolution and population density under parasitism. This suggests costs of antibiotic resistance may modify the outcome of phage therapy against pathogenic populations previously exposed to antibiotics, but the effects of any co-occurring mutator alleles are likely to be stronger.

  4. Azorean wild rabbits as reservoirs of antimicrobial resistant Escherichia coli.

    Science.gov (United States)

    Marinho, Catarina; Igrejas, Gilberto; Gonçalves, Alexandre; Silva, Nuno; Santos, Tiago; Monteiro, Ricardo; Gonçalves, David; Rodrigues, Tiago; Poeta, Patrícia

    2014-12-01

    Antibiotic resistance in bacteria is an increasing problem that is not only constrained to the clinical setting but also to other environments that can lodge antibiotic resistant bacteria and therefore they may serve as reservoirs of genetic determinants of antibiotic resistance. One hundred and thirty-six faecal samples from European wild rabbits (Oryctolagus cuniculus algirus) were collected on São Jorge Island in Azores Archipelago, and analysed for Escherichia coli isolates. Seventy-seven isolates (56.6%) were recovered and studied for antimicrobial resistance, one isolate per positive sample. Thirteen (16.9%), 19 (24.7%), 25 (32.4%) and 20 (26%) isolates were ascribed to A, B1, B2 and D phylogenetic groups, respectively, by specific primer polymerase chain reaction. Different E. coli isolates were found to be resistant to ampicillin (16.9%), tetracycline (1.3%), streptomycin (42.9%), sulfamethoxazole-trimethoprim (1.3%), amikacin (1.3%), tobramycin (2.6%) and nalidixic acid (1.3%). Additionally, the blaTEM, tetA, strA/strB, aadA, sul1, intI, intI2 and qacEΔ+sul1 genes were found in most resistant isolates. This study showed that E. coli from the intestinal tract of wild rabbits from Azores Archipelago are resistant to widely prescribed antibiotics in medicine and they constitute a reservoir of antimicrobial resistant genes, which may play a significant role in the spread of antimicrobial resistance. Therefore, antibiotic resistant E. coli from Azorean wild rabbits may represent an ecological and public health problem.

  5. Emergence and dissemination of antibiotic resistance: a global problem.

    Science.gov (United States)

    Choudhury, R; Panda, S; Singh, D V

    2012-01-01

    Antibiotic resistance is a major problem in clinical health settings. Interestingly the origin of many of antibiotic resistance mechanisms can be traced back to non-pathogenic environmental organisms. Important factors leading to the emergence and spread of antibiotic resistance include absence of regulation in the use of antibiotics, improper waste disposal and associated transmission of antibiotic resistance genes in the community through commensals. In this review, we discussed the impact of globalisation on the transmission of antibiotic resistance genes in bacteria through immigration and export/import of foodstuff. The significance of surveillance to define appropriate use of antibiotics in the clinic has been included as an important preventive measure. PMID:23183460

  6. Where antibiotic resistance mutations meet quorum-sensing

    Directory of Open Access Journals (Sweden)

    Rok Krašovec

    2014-06-01

    Full Text Available We do not need to rehearse the grim story of the global rise of antibiotic resistant microbes. But what if it were possible to control the rate with which antibiotic resistance evolves by de novo mutation? It seems that some bacteria may already do exactly that: they modify the rate at which they mutate to antibiotic resistance dependent on their biological environment. In our recent study [Krašovec, et al. Nat. Commun. (2014, 5, 3742] we find that this modification depends on the density of the bacterial population and cell-cell interactions (rather than, for instance, the level of stress. Specifically, the wild-type strains of Escherichia coli we used will, in minimal glucose media, modify their rate of mutation to rifampicin resistance according to the density of wild-type cells. Intriguingly, the higher the density, the lower the mutation rate (Figure 1. Why this novel density-dependent ‘mutation rate plasticity’ (DD-MRP occurs is a question at several levels. Answers are currently fragmentary, but involve the quorum-sensing gene luxS and its role in the activated methyl cycle.

  7. Antibiotics in Animal Feed Contribute to Drug-Resistant Germs

    Science.gov (United States)

    ... medlineplus/news/fullstory_158316.html Antibiotics in Animal Feed Contribute to Drug-Resistant Germs: Study Individual farm ... HealthDay News) -- Use of antibiotics in farm animal feed is helping drive the worldwide increase in antibiotic- ...

  8. Antibiotics as CECs: An Overview of the Hazards Posed by Antibiotics and Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Geoffrey Ivan Scott

    2016-04-01

    Full Text Available ABSTRACTMonitoring programs have traditionally monitored legacy contaminants but are shifting focus to Contaminants of Emerging Concern (CECs. CECs present many challenges for monitoring and assessment, because measurement methods don't always exist nor have toxicological studies been fully conducted to place results in proper context. Also some CECs affect metabolic pathways to produce adverse outcomes that are not assessed through traditional toxicological evaluations. Antibiotics are CECs that pose significant environmental risks including development of both toxic effects at high doses and antibiotic resistance at doses well below the Minimum Inhibitory Concentration (MIC which kill bacteria and have been found in nearly half of all sites monitored in the US. Antimicrobial resistance has generally been attributed to the use of antibiotics in medicine for humans and livestock as well as aquaculture operations. The objective of this study was to assess the extent and magnitude of antibiotics in the environment and estimate their potential hazards in the environment. Antibiotics concentrations were measured in a number of monitoring studies which included Waste Water Treatment Plants (WWTP effluent, surface waters, sediments and biota. A number of studies reported levels of Antibiotic Resistant Microbes (ARM in surface waters and some studies found specific ARM genes (e.g. the blaM-1 gene in E. coli which may pose additional environmental risk. High levels of this gene were found to survive WWTP disinfection and accumulated in sediment at levels 100-1000 times higher than in the sewerage effluent, posing potential risks for gene transfer to other bacteria.in aquatic and marine ecosystems. Antibiotic risk assessment approaches were developed based on the use of MICs and MIC Ratios [High (Antibiotic Resistant/Low (Antibiotic Sensitive MIC] for each antibiotic indicating the range of bacterial adaptability to each antibiotic to help define the No

  9. Predation and selection for antibiotic resistance in natural environments

    DEFF Research Database (Denmark)

    Leisner, Jørgen; Jørgensen, Niels O. G.; Middelboe, Mathias

    2016-01-01

    Genes encoding resistance to antibiotics appear, like the antibiotics themselves, to be ancient, originating long before the rise of the era of anthropogenic antibiotics. However, detailed understanding of the specific biological advantages of antibiotic resistance in natural environments is still...... lacking, thus limiting our efforts to prevent environmental influx of resistance genes. Here, we propose that antibiotic-resistant cells not only evade predation from antibiotic producers but also take advantage of nutrients released from cells that are killed by the antibiotic-producing bacteria. Thus......, predation is potentially an important mechanism for driving antibiotic resistance during slow or stationary phase of growth when nutrients are deprived. This adds to explain the ancient nature and widespread occurrence of antibiotic resistance in natural environments unaffected by anthropogenic antibiotics...

  10. Functional metagenomics for the investigation of antibiotic resistance

    OpenAIRE

    Mullany, Peter

    2014-01-01

    Antibiotic resistance is a major threat to human health and well-being. To effectively combat this problem we need to understand the range of different resistance genes that allow bacteria to resist antibiotics. To do this the whole microbiota needs to be investigated. As most bacteria cannot be cultivated in the laboratory, the reservoir of antibiotic resistance genes in the non-cultivatable majority remains relatively unexplored. Currently the only way to study antibiotic resistance in thes...

  11. [Staphylococcus aureus and antibiotic resistance].

    Science.gov (United States)

    Sancak, Banu

    2011-07-01

    After the report of first case of methicillin-resistant Staphylococcus aureus (MRSA) in 1961, MRSA become a major problem worldwide. Over the last decade MRSA strains have emerged as serious pathogens in nosocomial and community settings. Glycopeptides (vancomycin and teicoplanin) are still the current mainstay of therapy for infections caused by MRSA. In the last decade dramatic changes have occurred in the epidemiology of MRSA infections. The isolates with reduced susceptibility and in vitro resistance to vancomycin have emerged. Recently, therapeutic alternatives such as quinupristin/dalfopristin, linezolid, tigecycline and daptomycin have been introduced into clinical practice for treating MRSA infections. Nevertheless, these drugs are only approved for certain indication and resistance has already been reported. In this review, the new information on novel drugs for treating MRSA infections and the resistance mechanisms of these drugs were discussed. PMID:21935792

  12. Fosfomycin Resistance in Escherichia coli, Pennsylvania, USA.

    Science.gov (United States)

    Alrowais, Hind; McElheny, Christi L; Spychala, Caressa N; Sastry, Sangeeta; Guo, Qinglan; Butt, Adeel A; Doi, Yohei

    2015-11-01

    Fosfomycin resistance in Escherichia coli is rare in the United States. An extended-spectrum β-lactamase-producing E. coli clinical strain identified in Pennsylvania, USA, showed high-level fosfomycin resistance caused by the fosA3 gene. The IncFII plasmid carrying this gene had a structure similar to those found in China, where fosfomycin resistance is commonly described.

  13. Antibiotic use and resistance in long term care facilities.

    OpenAIRE

    Buul, L.W. van; Steen, J.T. van der; Veenhuizen, R.B.; Achterberg, W.P.; Schellevis, F.G.; Essink, R.T.G.M.; Benthem, B.H.B. van; Natsch, S.; Hertogh, C.M.P.M.

    2012-01-01

    Introduction: The common occurrence of infectious diseases in nursing homes and residential care facilities may result in substantial antibiotic use, and consequently antibiotic resistance. Focusing on these settings, this article aims to provide a comprehensive overview of the literature available on antibiotic use, antibiotic resistance, and strategies to reduce antibiotic resistance. Methods: Relevant literature was identified by conducting a systematic search in the MEDLINE and EMBASE dat...

  14. Photodynamic inactivation of antibiotic-resistant pathogens

    International Nuclear Information System (INIS)

    Nowadays methicillin-resistant strain Staphylococcus aureus (MRSA) is one of the most widespread multiresistant bacteria. Photodynamic inactivation (PDI) of microorganisms by photosensitizers (PS) may be an effective and alternative therapeutic option against antibiotic resistant bacteria. The effectiveness of new PS cationic porphyrin Zn-TBut4PyP was tested on two strains of S. aureus (MRSA and methicillin-sensitive S. aureus). It is shown that Zn-TBut4PyP has high photodynamic activity against both strains

  15. Urinary Escherichia coli antimicrobial susceptibility profiles and their relationship with community antibiotic use in Tasmania, Australia.

    Science.gov (United States)

    Meumann, Ella M; Mitchell, Brett G; McGregor, Alistair; McBryde, Emma; Cooley, Louise

    2015-10-01

    This study assessed urinary Escherichia coli antibiotic susceptibility patterns in Tasmania, Australia, and examined their association with community antibiotic use. The susceptibility profiles of all urinary E. coli isolates collected in Tasmania between January 2010 and December 2012 were included. The amount of Pharmaceutical Benefits Scheme (PBS)-subsidised use of amoxicillin, amoxicillin/clavulanic acid (AMC), cefalexin, norfloxacin, ciprofloxacin and trimethoprim was retrieved (at the Tasmanian population level) and the number of defined daily doses per 1000 population per day in Tasmania for these antibiotics was calculated for each month during the study period. Antimicrobial susceptibility data were assessed for changes over time in the 3-year study period. Antimicrobial use and susceptibility data were assessed for seasonal differences and lag in resistance following antibiotic use. Excluding duplicates, 28145 E. coli isolates were included. Resistance levels were low; 35% of isolates were non-susceptible to amoxicillin, 14% were non-susceptible to trimethoprim and <5% were non-susceptible to AMC, cefalexin, gentamicin and norfloxacin. Amoxicillin use increased by 35% during winter/spring compared with summer/autumn, and AMC use increased by 21%. No seasonal variation in quinolone use or resistance was detected. The low levels of antimicrobial resistance identified may relate to Tasmania's isolated geographical location. Significant seasonal variation in amoxicillin and AMC use is likely to be due to increased use of these antibiotics for treatment of respiratory tract infections in winter. Quinolone use is restricted by the PBS in Australia, which is the likely explanation for the low levels of quinolone use and resistance identified. PMID:26187365

  16. Helicobacter pylori antibiotic resistance in Iran

    Institute of Scientific and Technical Information of China (English)

    Marjan Mohammadi; Delaram Doroud; Nazanin Mohajerani; Sadegh Massarrat

    2005-01-01

    AIM: To examine the frequency of antibiotic resistance in Iranian Helicobacter pylori(H pylori) strains isolated from two major hospitals in Tehran.METHODS: Examination of antibiotic resistance was performed on 120 strains by modified disc diffusion test and PCR-RFLP methods. In addition, in order to identify the possible causes of the therapeutic failure in Iran, we also determined the resistance of these strains to the most commonly used antibiotics (metronidazole, amoxicillin,and tetracycline) by modified disc diffusion test.RESULTS: According to modified disc diffusion test, 1.6% of the studied strains were resistant to amoxicillin, 16.7% to clarithromycin, 57.5% to metronidazole, and there was no resistance to tetracycline. Of the clarithromycin resistant strains, 73.68% had the A2143G mutation in the 23S rRNA gene, 21.05% A2142C, and 5.26% A2142G.None of the sensitive strains were positive for any of the three point mutations. Of the metronidazole resistant strains, deletion in rdxA gene was studied and detected in only 6 (5%) of the antibiogram-based resistant strains.None of the metronidazole sensitive strains possessed rdxA gene deletion.CONCLUSION: These data show that despite the fact that clarithromycin has not yet been introduced to the Iranian drug market as a generic drug, nearly 20% rate of resistance alerts toward the frequency of macrolide resistance strains, which may be due to the widespread prescription of erythromycin in Iran. rdxA gene inactivation,if present in Iranian H pylori strains, may be due to other genetic defects rather than gene deletion.

  17. Distribution of multiple antibiotic resistant Vibrio spp across Palk Bay

    Digital Repository Service at National Institute of Oceanography (India)

    Sneha, K.G.; Anas, A.; Jayalakshmy, K.V.; Jasmin, C.; VipinDas, P.V.; Pai, S.S.; Pappu, S.; Nair, M.; Muraleedharan, K.R.; Sudheesh, K.; Nair, S.

    Presence of multiple antibiotic resistant microorganisms in marine systems is increasingly a focus of concern as they pose potential health risk to humans and animals. The present study reports the distribution, diversity, antibiotic resistance...

  18. Antibiotic-Resistant Bacteria Detected in Sewage Spill

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_160031.html Antibiotic-Resistant Bacteria Detected in Sewage Spill 'People need to be ... News) -- Sewer line breaks can release antibiotic-resistant bacteria that pose a public health threat, a new ...

  19. REDUCTION OF ANTIBIOTIC RESISTANCE IN BACTERIA: A REVIEW

    Directory of Open Access Journals (Sweden)

    Suresh Jaiswal et al.

    2012-03-01

    Full Text Available Drug resistant bacteria have been posing a major challenge to the effective control of bacterial infections for quite some time. One of the main causes of antibiotics drug resistance is antibiotic overuse, abuse, and in some cases, misuse, due to incorrect diagnosis. Bacterial antibiotic resistance is a significant issues faced by various industries, including the food and agricultural industries, the medical and veterinary profession and others. The potential for transfer of antibiotics resistance, or of potentially lethal antibiotic resistant bacteria, for example from a food animal to human consumer, is of particular concern. A method of controlling development and spread of antibiotic-resistant bacteria include changes in antibiotic usage and pattern of usage of different antibiotics. However, the ability of bacteria to adapt to antibiotic usage and to acquire resistance to existing and new antibiotics usage overcomes such conventional measures, and requires the continued development of alternative means of control of antibiotic resistance bacteria. Alternative means for overcoming the tendency of bacteria to acquire resistance to antibiotic control measures have taken various forms. This article explains one method evaluated for control, that is reducing or removing antibiotic resistance is so called “curing” of antibiotic resistance. Antibiotic resistance is formed in the chromosomal elements. Thus elimination of such drug-resistance plasmids results in loss of antibiotics resistance by the bacterial cell. “Curing” of a microorganism refers to the ability of the organism to spontaneously lose a resistance plasmid under the effect of particular compounds and environmental conditions, thus recovering the antibiotic sensitive state.

  20. Antimicrobial Resistance of Escherichia fergusonii Isolated from Broiler Chickens.

    Science.gov (United States)

    Simmons, Karen; Islam, M Rashedul; Rempel, Heidi; Block, Glenn; Topp, Edward; Diarra, Moussa S

    2016-06-01

    The objective of this study was to investigate the antibiotic resistance of Escherichia fergusonii isolated from commercial broiler chicken farms. A total of 245 isolates from cloacal and cecal samples of 28- to 36-day-old chickens were collected from 32 farms. Isolates were identified using PCR, and their susceptibility to 16 antibiotics was determined by disk diffusion assay. All isolates were susceptible to meropenem, amikacin, and ciprofloxacin. The most common resistances were against ampicillin (75.1%), streptomycin (62.9%), and tetracycline (57.1%). Of the 184 ampicillin-resistant isolates, 127 were investigated using a DNA microarray carrying 75 probes for antibiotic resistance genetic determinants. Of these 127 isolates, the β-lactamase blaCMY2, blaTEM, blaACT, blaSHV, and blaCTX-M-15 genes were detected in 120 (94.5%), 31 (24.4%), 8 (6.3%), 6 (4.7%), and 4 (3.2%) isolates, respectively. Other detected genes included those conferring resistance to aminoglycosides (aadA1, strA, strB), trimethoprims (dfrV, dfrA1), tetracyclines (tetA, tetB, tetC, tetE), and sulfonamides (sul1, sul2). Class 1 integron was found in 35 (27.6%) of the ampicillin-resistant isolates. However, our data showed that the tested E. fergusonii did not carry any carbapenemase blaOXA genes. Pulsed-field gel electrophoresis revealed that the selected ampicillin-resistant E. fergusonii isolates were genetically diverse. The present study indicates that the monitoring of antimicrobial-resistant bacteria should include enteric bacteria such as E. fergusonii, which could be a reservoir of antibiotic resistance genes. The detection of isolates harboring extended-spectrum β-lactamase genes, particularly blaCTX-M-15, in this work suggests that further investigations on the occurrence of such genes in broilers are warranted.

  1. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment

    DEFF Research Database (Denmark)

    Pruden, Amy; Larsson, D.G. Joakim; Amézquita, Alejandro;

    2013-01-01

    Background: There is growing concern worldwide about the role of polluted soil and water environments in the development and dissemination of antibiotic resistance. Objective: Our aim in this study was to identify management options for reducing the spread of antibiotics and antibiotic resistance...... of management strategies is also highlighted. Finally, we describe a case study in Sweden that illustrates the critical role of communication to engage stakeholders and promote action. Conclusions: Environmental releases of antibiotics and antibiotic-resistant bacteria can in many cases be reduced at little...... associated with antibiotic resistance strongly indicate the need for action....

  2. Polyphosphate Kinase Mediates Antibiotic Tolerance in Extraintestinal Pathogenic Escherichia coli PCN033.

    Science.gov (United States)

    Chen, Jing; Su, Lijie; Wang, Xiangru; Zhang, Tao; Liu, Feng; Chen, Huanchun; Tan, Chen

    2016-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) causes a variety of acute infections in its hosts, and multidrug-resistant strains present significant challenges to public health and animal husbandry. Therefore, it is necessary to explore new drug targets to control E. coli epidemics. Previous studies have reported that ppk mutants of Burkholderia pseudomallei and Mycobacterium tuberculosis are more susceptible than the wild types (WTs) to stress. Therefore, we investigated the stress response to antibiotics mediated by polyphosphate kinase (PPK) in ExPEC strain PCN033. We observed that planktonic cells of a ppk knockout strain (Δppk) were more susceptible to antibiotics than was WT. However, biofilm-grown Δppk cells showed similar susceptibility to that of the WT and were more tolerant than the planktonic cells. During the planktonic lifestyle, the expression of genes involved in antibiotic tolerance (including resistance-conferring genes, and antibiotic influx, and efflux genes) did not change in the Δppk mutant without antibiotic treatment. However, the resistance-conferring gene bla and efflux genes were upregulated more in the WT than in the Δppk mutant by treatment with tazobactam. After treatment with gentamycin, the efflux genes and influx genes were upregulated and downregulated, respectively, more in the WT than in the Δppk mutant. The expression of genes involved in biofilm regulation also changed after treatment with tazobactam or gentamycin, and which is consistent with the results of the biofilm formation. Together, these observations indicate that PPK is important for the antibiotic stress response during the planktonic growth of ExPEC and might be a potential drug target in bacteria. PMID:27242742

  3. Polyphosphate Kinase Mediates Antibiotic Tolerance in Extraintestinal Pathogenic Escherichia coli PCN033

    Directory of Open Access Journals (Sweden)

    Jing eChen

    2016-05-01

    Full Text Available Extraintestinal pathogenic Escherichia coli (ExPEC causes a variety of acute infections in its hosts, and multidrug-resistant strains present significant challenges to public health and animal husbandry. Therefore, it is necessary to explore new drug targets to control E. coli epidemics. Previous studies have reported that ppk mutants of Burkholderia pseudomallei and Mycobacterium tuberculosis are more susceptible than the wild types (WTs to stress. Therefore, we investigated the stress response to antibiotics mediated by polyphosphate kinase (PPK in ExPEC strain PCN033. We observed that planktonic cells of a ppk knockout strain (Δppk were more susceptible to antibiotics than was WT. However, biofilm-grown Δppk cells showed similar susceptibility to that of the WT and were more tolerant than the planktonic cells. During the planktonic lifestyle, the expression of genes involved in antibiotic tolerance (including resistance-conferring genes,and antibiotic influx and efflux genes did not change in the Δppk mutant without antibiotic treatment. However, the resistance-conferring gene bla and efflux genes were upregulated more in the WT than in the Δppk mutant by treatment with tazobactam. After treatment with gentamycin, the efflux genes and influx genes were upregulated and downregulated, respectively, more in the WT than in the Δppk mutant. The expression of genes involved in biofilm regulation also changed after treatment with tazobactam or gentamycin, and which is consistent with the results of the biofilm formation. Together, these observations indicate that PPK is important for the antibiotic stress response during the planktonic growth of ExPEC and might be a potential drug target in bacteria.

  4. Antibiotic Resistance in Children with Bloody Diarrhea

    Directory of Open Access Journals (Sweden)

    Hamedi Abdolkarim

    2009-05-01

    Full Text Available Shigellosis is an important public health problem, especially in developing countries. Antibiotic treatment of bacterial dysentery, aimed at resolving diarrhea or reducing its duration is especially indicated whenever malnutrition is present. First-line drugs include ampicillin and trimethoprim sulfamethoxazole(TMP-SMX; however multidrug-resistance has occurred and careful antibiotic selection must be considered in prescribing .When epidemiologic data indicate a rise in resistancy, fluoroquinolones may be used in adults and oral third-generation cephalosporins and nalidixic acid in children. All children (n=2400 with acute diarrhea who were admitted to the Pediatric department of Dr.sheykh Hospital Mashhad, Iran from March 2004 to March 2005 were selected and their stool culture were obtained, then positive cultures (312 cases,13% were evaluated by antibiogram. This study showed that in heavily populated areas of IRAN like Mashhad, 97% shigella strain isolated from children with bloody diarrhea were sensitive to nalidixic acid, ciprofloxacin and cefixime and rarely susceptible to ampicillin and cotrimoxazole. There is increasing resistance of Shigella to most of the antibiotics in use, and for this reason, careful selection of antibiotics must use considered in each area. Development and use of new drugs are expensive and have severe limitations in the third world. Simple prophylactic alternatives are therefore, required, such as awareness of hygienic child care practices and early promotion of breast feeding. For treatment of shigellosis in infants Ceftriaxon, and in children Nalidixic Acid is recommended.

  5. Antibiotic-resistant fecal bacteria, antibiotics, and mercury in surface waters of Oakland County, Michigan, 2005-2006

    Science.gov (United States)

    Fogarty, Lisa R.; Duris, Joseph W.; Crowley, Suzanne L.; Hardigan, Nicole

    2007-01-01

    Water samples collected from 20 stream sites in Oakland and Macomb Counties, Mich., were analyzed to learn more about the occurrence of cephalosporin-resistant Escherichia coli (E. coli) and vancomycin-resistant enterococci (VRE) and the co-occurrence of antibiotics and mercury in area streams. Fecal indicator bacteria concentrations exceeded the Michigan recreational water-quality standard of 300 E. coli colony forming units (CFU) per 100 milliliters of water in 19 of 35 stream-water samples collected in Oakland County. A gene commonly associated with enterococci from humans was detected in samples from Paint Creek at Rochester and Evans Ditch at Southfield, indicating that human fecal waste is a possible source of fecal contamination at these sites. E. coli resistant to the cephalosporin antibiotics (cefoxitin and/ or ceftriaxone) were found at all sites on at least one occasion. The highest percentages of E. coli isolates resistant to cefoxitin and ceftriaxone were 71 percent (Clinton River at Auburn Hills) and 19 percent (Sashabaw Creek near Drayton Plains), respectively. Cephalosporin-resistant E. coli was detected more frequently in samples from intensively urbanized or industrialized areas than in samples from less urbanized areas. VRE were not detected in any sample collected in this study. Multiple antibiotics (azithromycin, erythromycin, ofloxacin, sulfamethoxazole, and trimethoprim) were detected in water samples from the Clinton River at Auburn Hills, and tylosin (an antibiotic used in veterinary medicine and livestock production that belongs to the macrolide group, along with erythromycin) was detected in one water sample from Paint Creek at Rochester. Concentrations of total mercury were as high as 19.8 nanograms per liter (Evans Ditch at Southfield). There was no relation among percentage of antibiotic-resistant bacteria and measured concentrations of antibiotics or mercury in the water. Genetic elements capable of exchanging multiple antibiotic-resistance

  6. Effect of seasonal changes on the prevalence of uropathogens in 2010-2011and determination of antibiotic resistance pattern of Escherichia coli in three neighbor cities; Shiraz, Marvdasht and Saadat-Shahr

    Directory of Open Access Journals (Sweden)

    Mohammad Pouryasin

    2014-03-01

    In addition to the patients’ gender and the region of study, seasonal changes fol-lowed by thermal and humidity changes, is another significant factor which influences the etiolo-gy of UTIs. Also antibiotic resistance pattern would be different even in neighbor cities.

  7. Antibiotic-Resistant Vibrios in Farmed Shrimp

    Directory of Open Access Journals (Sweden)

    Renata Albuquerque Costa

    2015-01-01

    Full Text Available Antimicrobial susceptibility pattern was determined in 100 strains of Vibrio isolated from the Litopenaeus vannamei shrimp and identified phenotypically. A high antibiotic-resistance index (75% was observed, with the following phenotypic profiles: monoresistance (n=42, cross-resistance to β-lactams (n=20 and multiple resistance (n=13. Plasmid resistance was characterized for penicillin (n=11, penicillin + ampicillin (n = 1, penicillin + aztreonam (n = 1, and ampicillin (n = 1. Resistance to antimicrobial drugs by the other strains (n=86 was possibly mediated by chromosomal genes. The findings of this study support the conclusion that the cultured shrimps can be vehicles of vibrios resistant to β-lactam and tetracycline.

  8. Antibiotic resistance: from Darwin to Lederberg to Keynes.

    Science.gov (United States)

    Amábile-Cuevas, Carlos F

    2013-04-01

    The emergence and spread of antibiotic-resistant bacteria reflects both, a gradual, completely Darwinian evolution, which mostly yields slight decreases in antibiotic susceptibility, along with phenotypes that are not precisely characterized as "resistance"; and sudden changes, from full susceptibility to full resistance, which are driven by a vast array of horizontal gene transfer mechanisms. Antibiotics select for more than just antibiotic resistance (i.e., increased virulence and enhanced gene exchange abilities); and many non-antibiotic agents or conditions select for or maintain antibiotic resistance traits as a result of a complex network of underlying and often overlapping mechanisms. Thus, the development of new antibiotics and thoughtful, integrated anti-infective strategies is needed to address the immediate and long-term threat of antibiotic resistance. Since the biology of resistance is complex, these new drugs and strategies will not come from free-market forces, or from "incentives" for pharmaceutical companies.

  9. Deliberations on the impact of antibiotic contamination on dissemination of antibiotic resistance genes in aquatic environments

    OpenAIRE

    Berglund, Björn

    2014-01-01

    The great success of antibiotics in treating bacterial infectious diseases has been hampered by the increasing prevalence of antibiotic resistant bacteria. Not only does antibiotic resistance threaten to increase the difficulty in treating bacterial infectious diseases, but it could also make medical procedures such as routine surgery and organ transplantations very dangerous to perform. Traditionally, antibiotic resistance has been regarded as a strictly clinical problem and studies of the p...

  10. Bacterial infections in Lilongwe, Malawi: aetiology and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Makoka Mwai H

    2012-03-01

    Full Text Available Abstract Background Life-threatening infections present major challenges for health systems in Malawi and the developing world because routine microbiologic culture and sensitivity testing are not performed due to lack of capacity. Use of empirical antimicrobial therapy without regular microbiologic surveillance is unable to provide adequate treatment in the face of emerging antimicrobial resistance. This study was conducted to determine antimicrobial susceptibility patterns in order to inform treatment choices and generate hospital-wide baseline data. Methods Culture and susceptibility testing was performed on various specimens from patients presenting with possible infectious diseases at Kamuzu Central Hospital, Lilongwe, Malawi. Results Between July 2006 and December 2007 3104 specimens from 2458 patients were evaluated, with 60.1% from the adult medical service. Common presentations were sepsis, meningitis, pneumonia and abscess. An etiologic agent was detected in 13% of patients. The most common organisms detected from blood cultures were Staphylococcus aureus, Escherichia coli, Salmonella species and Streptococcus pneumoniae, whereas Streptococcus pneumoniae and Cryptococcus neoformans were most frequently detected from cerebrospinal fluid. Haemophilus influenzae was rarely isolated. Resistance to commonly used antibiotics was observed in up to 80% of the isolates while antibiotics that were not commonly in use maintained susceptibility. Conclusions There is widespread resistance to almost all of the antibiotics that are empirically used in Malawi. Antibiotics that have not been widely introduced in Malawi show better laboratory performance. Choices for empirical therapy in Malawi should be revised accordingly. A microbiologic surveillance system should be established and prudent use of antimicrobials promoted to improve patient care.

  11. Dynamics of bacterial diversity and antibiotic resistance of Escherichia coli in Fu River, Chengdu%成都府河水体细菌动态变化及耐药性

    Institute of Scientific and Technical Information of China (English)

    黎丽雯; 邹立扣; 周杨; 胡苏; 庞玉娟

    2012-01-01

    To analyze the water quality of the Fu River, nine sampling sites were chosen from Baopingkou site in Dujiangyan to Wangjiang Park site in Fu River. Three microbiological indexes, including total number of bacteria, total coliform and the number of fecal coliform, have been selected to evaluate the water quality, analyze seasonal factors and find out the contamination sources in two different seasons. Besides, taking the antibiotic resistance rate of Escherichia coli at Baopingkou as background, 102 E. Coli identified by morphology and 16S rDNA have been selected for following antimicrobial susceptibility testing, and the susceptibility has been performed according to the standard disk diffusion K-B method. The results show that though the total number of bacteria, total coliform and fecal coliform varied from Baopingkou, Dujiangyan to Wangjiang Park, the total number of bacteria shows an increasing trend as the water flows. The nutrients enrich in spring and summer, and water quality decrease. The susceptibility of 13 antimicrobial agents tested against E. Coli isolated shows that 0.96% - 33.33% of the isolates are resistant to B-lactam, 1. 39% -7.84% to aminoglycoside, 11.43% -11.76% to fluoroquinolone, and 52.78% to trimethoprim-sulfamethoxazole. The resistance to B-lactam and fluoroquinolone is related with the source of water, however, other resistances are in connection with polluted water discharged from hospital and residential areas. Generally, this study has provided theoretical foundation for the control of pollution in Fu River.%将府河从都江堰宝瓶口段至望江公园段分设9个监测点,在秋冬、春夏两季分别取水,首次建立由细菌总数、总大肠菌群数及粪大肠菌群数三个微生物学指标组成的体系,对府河两季水质进行对比监测分析,以综合评价水质、分析季节影响因素并反映出污染物来源.以都江堰宝瓶口大肠杆菌耐药率作为背景值,对整个河段的9个采

  12. The global problem of antibiotic resistance.

    Science.gov (United States)

    Gootz, Thomas D

    2010-01-01

    Amid the recent attention justly focused on the potential problem of microbial sources for weapons of bioterrorism, it is also apparent that human pathogens frequently isolated from infections in patients from community and hospital sources have been growing more resistant to commonly used antibiotics. Much of the growth of multiple-drug-resistant (MDR) bacterial pathogens can be contributed to the overuse of broad-spectrum antimicrobial products. However, an equally troubling and often overlooked component of the problem involves the elegant ways in which pathogenic bacteria continually evolve complex genetic systems for acquiring and regulating an endless array of antibiotic-resistance mechanisms. Efforts to develop new antimicrobials have over the past two decades been woefully behind the rapid evolution of resistance genes developing among both gram-positive and gram-negative pathogens. Several new agents that are best suited for use in the hospital environment have been developed to combat staphylococci resistant to beta-lactam antimicrobials following acquisition of the mecA gene. However, the dramatic spread in the US of the now common community strain of Staphylococcus aureus USA300 has shifted the therapeutic need for new antibiotics useful against MRSA to the community. As the pharmaceutical industry focused on discovering new agents for use against MRSA, hospitals in many parts of the world have seen the emergence of gram-negative pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae that are clinically resistant to almost all available antimicrobials. Such MDR isolates usually contain multiple-resistance determinants, including loss of outer membrane porins via gene inactivation by chromosomally encoded insertion sequences, up-regulation of inate efflux pumps, as well as acquisition of drug-inactivating enzymes whose genes are encoded on self-transmissible plasmids, integrons, and complex transposable elements

  13. Messages about Antibiotic Resistance in Different Newspaper Genres

    OpenAIRE

    Marwa Nasr; Krina Amin; Rachel Virgo; Sochima Okafor; Parastou Donyai

    2013-01-01

    Poorer people are more likely to use antibiotics; inappropriate antibiotic use causes resistance, and health campaigns attempt to change behaviour through education. However, fuelled by the media, the public think antibiotic resistance is outside their control. Differences in the attribution of blame for antibiotic resistance in two genres of UK newspapers, targeting distinct socioeconomic groups, were examined using a mixed methods approach. Firstly, depiction of blame was categorised as eit...

  14. Bacteriophage biosensors for antibiotic-resistant bacteria.

    Science.gov (United States)

    Sorokulova, Irina; Olsen, Eric; Vodyanoy, Vitaly

    2014-03-01

    An increasing number of disease-causing bacteria are resistant to one or more anti-bacterial drugs utilized for therapy. Early and speedy detection of these pathogens is therefore very important. Traditional pathogen detection techniques, that include microbiological and biochemical assays are long and labor-intensive, while antibody or DNA-based methods require substantial sample preparation and purification. Biosensors based on bacteriophages have demonstrated remarkable potential to surmount these restrictions and to offer rapid, efficient and sensitive detection technique for antibiotic-resistant bacteria.

  15. Risk of resistance related to antibiotic use before admission in patients with community-acquired bacteraemia

    DEFF Research Database (Denmark)

    Pedersen, Gitte; Schønheyder, Henrik Carl; Steffensen, Flemming Hald;

    1999-01-01

    admission and to 37% during the 6 months. The most frequently prescribed antibiotics within 30 days were ampicillin (28%), penicillin G (27%), sulphonamides and/or trimethoprim (16%) and macrolides (14%). The most frequent blood isolates were Escherichia coli (33%), other Enterobacteriaceae 8......%), Streptococcus pneumoniae (23%) Staphylococcus aureus (10%). Of the 575 isolates of E. coli, 425 (74%), 432 (75%) and 518 (90%) were susceptible to ampicillin, sulphonamides and trimethoprim, respectively. Previous antibiotic prescriptions were strongly associated with resistance to ampicillin, sulphonamides...... and trimethoprim in E. coli. The association was less pronounced for S. aureus and enteric rods other than E. coli. Antibiotic prescriptions within the last 3 months predicted antibiotic resistance, and this should be taken into account when selecting empirical antibiotic therapy of severe community...

  16. The etiology of neonatal sepsis and patterns of antibiotic resistance

    International Nuclear Information System (INIS)

    Objective: To study the patterns of causative bacteria and antibiotic resistance in neonatal sepsis. Results: Among 228 cases included in the study, the male to female ratio was 2.1 to 1. The gestational age was less than 36 weeks in 68 (30%) cases and low birth weight babies were 143 (62.6%). History of birth asphyxia was present in 103 (45%) cases. There were 142 (62.3%) cases of early onset (7 days). Out of 233 positive blood cultures Escherichia coli was found to be commonest (47.8%, n =111, p<0.05) both in early onset (47.8%, n=68, p <0.05) and late onset sepsis (47.3%,n=43, p<0.05). Staphylococcus aureus was the most common among gram positive organism. Resistance to cefotaxime, ceftazidime and amikacin was 34% to 80% and to ciprofloxacin 13% to 72%. A total of 64 cases (28%) died. Mortality was four times higher in early onset sespis. Conclusion: Gram negative bacteria are the commenst cause of neonatal sepsis. The resistance to the commonly used antibiotics is alarmingly high. Mortality is four times higher in early one set sepsis. (author)

  17. Resistance to antibiotics in Gram-negative bacteria isolated from broiler carcasses

    Directory of Open Access Journals (Sweden)

    Moreira M.A.S.

    2002-01-01

    Full Text Available One hundred and ninety-seven isolates of Gram-negative bacteria, comprising 10 genera, were isolated from poultry carcasses at a processing plant in order to investigate resistance to low levels of antibiotics. The samples were taken just after evisceration and before inspection. Most of the isolates were of Samonella and Escherichia. Other genera present were Enterobacter, Serratia, Klebsiella, Kluyvera, Erwinia, Citrobacter, Pseudomonas and Aeromonas. Distinct profiles of antibiotic resistance were detected. Resistance to more than two antibiotics predominated and spanned several classes of antibiotics. Salmonellae and escherichiae were mainly resistant to the aminoglycosides, followed by tetracycline, nitrofuran, sulpha, macrolide, chloramphenicol, quinolones and beta-lactams. Most isolates were sensitive to 30mug/ml olaquindox, the growth promoter in use at the time of sampling. However, many were resistant to a level of 10mug/ml and 13mug/ml olaquindox, levels present in the gut due to the dilution in the feed. The results suggest a possible role of low level administration of antibiotics to broilers in selecting multi-resistant bacteria in vivo.

  18. Comparative Evaluation of the Modulation of Antibiotic-Activity against Strains of Escherichia coli and Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Henrique D. M. Coutinho

    2015-09-01

    Full Text Available Introduction: Combining multiple drugs is an strategy used to combat the dissemination of pathogenic and drug resistant bacteria. However, the misuse of these drugs against bacteria have caused the selection of more resistant specimens called multidrug-resistant bacteria. Objective: In this work we evaluated the antibiotic activity of claritromicin, gentamicin, ciprofloxacin and imipenen, alone or associating one by one, against strains of Escherichia coli and Staphylococcus aureus. Material and methods: The minimal inhibitory concentration (mic was performed us­ing the microdilution assay. Based in the mic values, the antibiotic effect of the drugs alone and in association were determined. Results: The association between the drugs demonstrated the synergism against the bacterial strains. Conclusion: The use of the combined antibiotic-therapy can be positively performed, but additional studies have to be conducted first for proving that its use is safe.

  19. Antibiotic resistance - the interplay between antibiotic use in animals and human beings

    DEFF Research Database (Denmark)

    Singer, R.S.; Finch, R.; Wegener, Henrik Caspar;

    2003-01-01

    Antibiotic-resistant bacteria were first identified in the 1940s, but while new antibiotics were being discovered at a steady rate, the consequences of this phenomenon were slow to be appreciated. Today, the excessive use of antibiotics compounded by the paucity of new agents on the market has...... meant the problem of antibiotic resistance is fast escalating into a global health crisis. There is no doubt that misuse of these drugs in human beings has contributed to the increasing rates of resistance, but recently the use of antibiotics in food animals and its consequent effect on resistance...... of antibiotics in animals-whether therapeutic or as growth promoters-pales by comparison with human use, and that efforts should be concentrated on the misuse of antibiotics in people. Others warn of the dangers of unregulated and unnecessary use of antibiotics, especially growth promoters in animal husbandry...

  20. Occurrence and reservoirs of antibiotic resistance genes in the environment

    NARCIS (Netherlands)

    Seveno, N.; Kallifidas, D.; Smalla, K.; Elsas, van J.D.; Collard, J.M.; Karagouni, A.; Wellington, E.M.H.

    2002-01-01

    Antibiotic resistance genes have become highly mobile since the development of antibiotic chemotherapy. A considerable body of evidence exists proving the link between antibiotic use and the significant increase in drug-resistant human bacterial pathogens. The application of molecular detection and

  1. Recent changes in bacteremia in patients with cancer: a systematic review of epidemiology and antibiotic resistance.

    Science.gov (United States)

    Montassier, E; Batard, E; Gastinne, T; Potel, G; de La Cochetière, M F

    2013-07-01

    Bacteremia remains a major cause of life-threatening complication in patients with cancer. Significant changes in the spectrum of microorganisms isolated from blood culture have been reported in cancer patients over the past years. The aim of our systematic review was to inventory the recent trends in epidemiology and antibiotic resistance of microorganisms causing bacteremia in cancer patients. Data for this review was identified by searches of Medline, Scopus and Cochrane Library for indexed articles and abstracts published in English since 2008. The principal search terms were: "antimicrobial resistance", "bacteremia", "bacterial epidemiology", "bloodstream infection", "cancer patients", "carbapenem resistance", "Escherichia coli resistance", "extended-spectrum β-lactamase producing E. coli", "febrile neutropenia", "fluoroquinolone resistance", "neutropenic cancer patient", "vancomycin-resistant Enterococcus", and "multidrug resistance". Boolean operators (NOT, AND, OR) were also used in succession to narrow and widen the search. Altogether, 27 articles were selected to be analyzed in the review. We found that Gram-negative bacteria were the most frequent pathogen isolated, particularly in studies with minimal use of antibiotic prophylaxis. Another important trend is the extensive emergence of antimicrobial-resistant strains associated with increased risk of morbidity, mortality and cost. This increasing incidence of antibiotic resistance has been reported in Gram-negative bacteria as well as in Gram-positive bacteria. This exhaustive review, reporting the recent findings in epidemiology and antibiotic resistance of bacteremia in cancer patients, highlights the necessity of local continuous surveillance of bacteremia and stringent enforcement of antibiotic stewardship programs in cancer patients. PMID:23354675

  2. Emerging antibiotic resistance in bacteria with special reference to India

    Indian Academy of Sciences (India)

    D Raghunath

    2008-11-01

    The antibiotic era started in the 1940s and changed the profile of infectious diseases and human demography. The burgeoning classes and numbers promised much and elimination of this major cause of human (and animal) morbidity appeared possible. Bacterial antibiotic resistance which was observed soon after antibiotic introduction has been studied extensively. Diverse mechanisms have been demonstrated and the genetic basis elucidated. The resilience of the prokaryote ecosystems to antibiotic stress has been realized. The paper presents these subjects briefly to afford an overview. The epidemiology of antibiotic resistance is dealt with and community practices in different countries are described. The role of high antibiotic usage environments is indicated. The implication of the wide use of antibiotics in animals has been pointed out. Steadily increasing antibiotic resistance and decreasing numbers of newer antibiotics appear to point to a post-antibiotic period during which treatment of infections would become increasingly difficult. This article attempts to review the global antimicrobial resistance scene and juxtaposes it to the Indian experience. The prevalence in India of antibiotic resistance among major groups of pathogens is described. The factors that determine the prevalent high antibiotic resistance rates have been highlighted. The future research activity to ensure continued utility of antibiotics in the control of infections has been indicated.

  3. Antibiotic selection of Escherichia coli sequence type 131 in a mouse intestinal colonization model.

    Science.gov (United States)

    Boetius Hertz, Frederik; Løbner-Olesen, Anders; Frimodt-Møller, Niels

    2014-10-01

    The ability of different antibiotics to select for extended-spectrum β-lactamase (ESBL)-producing Escherichia coli remains a topic of discussion. In a mouse intestinal colonization model, we evaluated the selective abilities of nine common antimicrobials (cefotaxime, cefuroxime, dicloxacillin, clindamycin, penicillin, ampicillin, meropenem, ciprofloxacin, and amdinocillin) against a CTX-M-15-producing E. coli sequence type 131 (ST131) isolate with a fluoroquinolone resistance phenotype. Mice (8 per group) were orogastrically administered 0.25 ml saline with 10(8) CFU/ml E. coli ST131. On that same day, antibiotic treatment was initiated and given subcutaneously once a day for three consecutive days. CFU of E. coli ST131, Bacteroides, and Gram-positive aerobic bacteria in fecal samples were studied, with intervals, until day 8. Bacteroides was used as an indicator organism for impact on the Gram-negative anaerobic population. For three antibiotics, prolonged colonization was investigated with additional fecal CFU counts determined on days 10 and 14 (cefotaxime, dicloxacillin, and clindamycin). Three antibiotics (cefotaxime, dicloxacillin, and clindamycin) promoted overgrowth of E. coli ST131 (P organisms. Only clindamycin treatment resulted in prolonged colonization. The remaining six antibiotics, including ciprofloxacin, did not promote overgrowth of E. coli ST131 (P > 0.95), nor did they suppress Bacteroides or Gram-positive organisms. The results showed that antimicrobials both with and without an impact on Gram-negative anaerobes can select for ESBL-producing E. coli, indicating that not only Gram-negative anaerobes have a role in upholding colonization resistance. Other, so-far-unknown bacterial populations must be of importance for preventing colonization by incoming E. coli.

  4. Modification of Escherichia coli–bacteriophage interactions by surfactants and antibiotics in vitro

    Science.gov (United States)

    Scanlan, Pauline D.; Bischofberger, Anna M.; Hall, Alex R.

    2016-01-01

    Although experiments indicate that the abiotic environment plays an important role in bacterial interactions with their parasitic viruses (bacteriophages or phages), it is not yet clear how exposure to compounds present in nature alters the impact of phages on bacterial growth and evolution. To address this question, we exposed Escherichia coli K12 MG1655, in combination with three lytic phages, to various substances that natural and clinical microbial populations are likely to encounter: bile salts (present in mammalian gastrointestinal tracts), sodium dodecyl sulfate (SDS, a common surfactant in cleaning and hygiene products) and four antibiotics (present at variable concentrations in natural and clinical environments). Our results show that bile salts and SDS can reduce the detrimental effect of phages on bacterial growth. In some cases these compounds completely mitigated any negative effects of phages on bacterial growth and consequently bacteria did not evolve resistance to phages in these conditions. The proportional effects of phages were unaffected by antibiotics in most combinations, excepting three cases of phage-drug synergy. These results suggest that accounting for interactions between phages and environmental factors such as surfactants and antibiotics will improve understanding of both bacterial growth and resistance evolution to phages in vivo and in nature.

  5. [Antibiotic resistance of bacteria to 6 antibiotics in secondary effluents of municipal wastewater treatment plants].

    Science.gov (United States)

    Lu, Sun-Qin; Li, Yi; Huang, Jing-Jing; Wei, Bin; Hu, Hong-Ying

    2011-11-01

    Prevalence of antibiotic-resistant bacteria in wastewater effluents is concerned as an emerging contaminant. To estimate antibiotic resistance in secondary effluents of municipal wastewater treatment plants, antibiotic tolerance of heterotrophic bacteria, proportion of antibiotic-resistant bacteria and hemi-inhibitory concentrations of six antibiotics (penicillin, ampicillin, cefalexin, chloramphenicol, tetracycline and rifampicin) were determined at two wastewater treatment plants (WWTPs) in Beijing. The results showed that proportions of ampicillin-resistant bacteria in WWTP-G and chloramphenicol-resistant bacteria in WWTP-Q were highest to 59% and 44%, respectively. The concentrations of ampicillin-resistant bacteria in the effluents of WWTP-G and WWTP-Q were as high as 4.0 x 10(3) CFU x mL(-1) and 3.5 x 10(4) CFU x mL(-1), respectively; the concentrations of chloramphenicol-resistant bacteria were 4.9 x 10(2) CFU x mL(-1) and 4.6 x 10(4) CFU x mL(-1), respectively. The data also indicated that the hemi-inhibitory concentrations of heterotrophic bacteria to 6 antibiotics were much higher than common concentrations of antibiotics in sewages, which suggested that antibiotic-resistant bacteria could exist over a long period in the effluents with low concentrations of antibiotics. Antibiotic-resistant bacteria could be a potential microbial risk during sewage effluent reuse or emission into environmental waters. PMID:22295644

  6. U.K. Case of Throat Gonorrhea Resists Antibiotics

    Science.gov (United States)

    ... html U.K. Case of Throat Gonorrhea Resists Antibiotics U.S. officials concerned about potential danger of untreatable ... throat gonorrhea that proved untreatable with the standard antibiotic regimen. The patient, a heterosexual man who had ...

  7. Antibiotic use and resistance in long term care facilities

    NARCIS (Netherlands)

    Buul, L.W. van; Steen, J.T. van der; Veenhuizen, R.B.; Achterberg, W.P.; Schellevis, F.G.; Essink, R.T.G.M.; Benthem, B.H. van; Natsch, S.S.; Hertogh, C.M.P.M.

    2012-01-01

    INTRODUCTION: The common occurrence of infectious diseases in nursing homes and residential care facilities may result in substantial antibiotic use, and consequently antibiotic resistance. Focusing on these settings, this article aims to provide a comprehensive overview of the literature available

  8. CURRENT ISSUES REGARDING ENDOCRINE DISRUPTING CHEMICALS AND ANTIBIOTIC RESISTANCE

    Science.gov (United States)

    Recently public concern has increased regarding industrial and environmental substances that may have adverse hormonal effects in human and wildlife populations. This concern has also been expanded to include antibiotic-resistant bacteria and the presence of various antibiotics a...

  9. Antibiotic use and resistance in long term care facilities.

    NARCIS (Netherlands)

    Buul, L.W. van; Steen, J.T. van der; Veenhuizen, R.B.; Achterberg, W.P.; Schellevis, F.G.; Essink, R.T.G.M.; Benthem, B.H.B. van; Natsch, S.; Hertogh, C.M.P.M.

    2012-01-01

    Introduction: The common occurrence of infectious diseases in nursing homes and residential care facilities may result in substantial antibiotic use, and consequently antibiotic resistance. Focusing on these settings, this article aims to provide a comprehensive overview of the literature available

  10. Transfer of antibiotic resistant bacteria from animals to man

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar; Aarestrup, Frank Møller; Gerner-Smidt, P.;

    1999-01-01

    for animals either for therapy or for growth promotion. Antibiotic resistance in zoonotic bacteria constitute a public health hazard, primarily through the increased risk of treatment failures. This paper describes the zoonotic bacteria, salmonella, campylobacter, yersinia and enterohaemorrhagic E. coli (EHEC......Antibiotic resistance develops in zoonotic bacteria in response to antibiotics used in food animals. A close association exists between the amounts of antibiotics used and the levels of resistance observed. The classes of antibiotics routinely used for treatment of human infections are also used......). Infections with these agents do not generally require antibiotic therapy, but in some cases antibiotics are essential to obtain a successful cure. The levels and types of resistance observed in zoonotic bacteria in some countries, especially the increasing levels of fluoroquinolone resistance in salmonella...

  11. Emergence and dissemination of antibiotic resistance: A global problem

    Directory of Open Access Journals (Sweden)

    R Choudhury

    2012-01-01

    Full Text Available Antibiotic resistance is a major problem in clinical health settings. Interestingly the origin of many of antibiotic resistance mechanisms can be traced back to non-pathogenic environmental organisms. Important factors leading to the emergence and spread of antibiotic resistance include absence of regulation in the use of antibiotics, improper waste disposal and associated transmission of antibiotic resistance genes in the community through commensals. In this review, we discussed the impact of globalisation on the transmission of antibiotic resistance genes in bacteria through immigration and export/import of foodstuff. The significance of surveillance to define appropriate use of antibiotics in the clinic has been included as an important preventive measure.

  12. U.S. Officials Confirm Superbug Resistant to All Antibiotics

    Science.gov (United States)

    ... E. coli was genetically resistant to the drug colistin. Colistin, an older antibiotic, fell out of favor in ... if carbapenem-resistant bacteria also gain resistance to colistin, it could leave doctors with no treatment options ...

  13. Effect of bacteriophage infection in combination with tobramycin on the emergence of resistance in Escherichia coli and Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Coulter, Lindsey B; McLean, Robert J C; Rohde, Rodney E; Aron, Gary M

    2014-10-03

    Bacteriophage infection and antibiotics used individually to reduce biofilm mass often result in the emergence of significant levels of phage and antibiotic resistant cells. In contrast, combination therapy in Escherichia coli biofilms employing T4 phage and tobramycin resulted in greater than 99% and 39% reduction in antibiotic and phage resistant cells, respectively. In P. aeruginosa biofilms, combination therapy resulted in a 60% and 99% reduction in antibiotic and PB-1 phage resistant cells, respectively. Although the combined treatment resulted in greater reduction of E. coli CFUs compared to the use of antibiotic alone, infection of P. aeruginosa biofilms with PB-1 in the presence of tobramycin was only as effective in the reduction of CFUs as the use of antibiotic alone. The study demonstrated phage infection in combination with tobramycin can significantly reduce the emergence of antibiotic and phage resistant cells in both E. coli and P. aeruginosa biofilms, however, a reduction in biomass was dependent on the phage-host system.

  14. Re-sensitizing drug-resistant bacteria to antibiotics by designing Antisense Therapeutics

    Science.gov (United States)

    Courtney, Colleen; Chatterjee, Anushree

    2014-03-01

    ``Super-bugs'' or ``multi-drug resistant organisms'' are a serious international health problem, with devastating consequences to patient health care. The Center for Disease Control has identified antibiotic resistance as one of the world's most pressing public health problems as a significant fraction of bacterial infections contracted are drug resistant. Typically, antibiotic resistance is encoded by ``resistance-genes'' which express proteins that carryout the resistance causing functions inside the bacterium. We present a RNA based therapeutic strategy for designing antimicrobials capable of re-sensitizing resistant bacteria to antibiotics by targeting labile regions of messenger RNAs encoding for resistance-causing proteins. We perform in silico RNA secondary structure modeling to identify labile target regions in an mRNA of interest. A synthetic biology approach is then used to administer antisense nucleic acids to our model system of ampicillin resistant Escherichia coli. Our results show a prolonged lag phase and decrease in viability of drug-resistant E. colitreated with antisense molecules. The antisense strategy can be applied to alter expression of other genes in antibiotic resistance pathways or other pathways of interest.

  15. Study of virulence factors of uropathogenic Escherichia coli and its antibiotic susceptibility pattern

    Directory of Open Access Journals (Sweden)

    Seema Mittal

    2014-01-01

    Full Text Available Context: Urinary tract infection (UTI is one of the most common nosocomial infections, caused by Escherichia coli. This study determined the presence of virulence factors in the organism and correlates it with the multi-drug resistance (MDR. Aims: The aim of the following study is to assess the virulence factors of uropathogenic E. coli and antibiotic susceptibility pattern. Settings and Design: This was a prospective study conducted in the Department of Microbiology in PT. B. D. Sharma, PGIMS, Rohtak. Subjects and Methods: The study was conducted over a period of 1 year. Urine samples received were processed as per standard microbiological procedures. Virulence factors such as hemolysin, hemagglutination, cell surface hydrophobicity, serum resistance, gelatinase and siderophore production were studied. The antimicrobial susceptibility was done as per Clinical and Laboratory Standard Institute Guidelines. Statistical Analysis Used: The data was analyzed by using SPSS(Statistical Package for the social sciences IBM Corporation version 17.0. A two sided P ≤ 0.05 was considered to be significant. Results: Hemolysin production was seen in 47.4%, hemagglutination in 74.8%, cell surface hydrophobicity in 61%, serum resistance in 59%, gelatinase in 67.5% and siderophore production in 88% isolates. Nitrofurantoin was found to be most effective followed by, gatifloxacin and gentamicin. Twenty nine percent (29.62% isolates were MDR. Conclusions: Therefore, the knowledge of virulence factors of E. coli and their antibiotic susceptibility pattern will help in better understanding of the organism and in the treatment of UTI.

  16. Unraveling the genetic driving forces enabling antibiotic resistance at the single cell level

    Science.gov (United States)

    Bos, Julia

    Bacteria are champions at finding ways to quickly respond and adapt to environments like the human gut, known as the epicentre of antibiotic resistance. How do they do it? Combining molecular biology tools to microfluidic and fluorescence microscopy technologies, we monitor the behavior of bacteria at the single cell level in the presence of non-toxic doses of antibiotics. By tracking the chromosome dynamics of Escherichia coli cells upon antibiotic treatment, we examine the changes in the number, localization and content of the chromosome copies within one cell compartment or between adjacent cells. I will discuss how our work pictures the bacterial genomic plasticity as a driving force in evolution and how it provides access to the mechanisms controlling the subtle balance between genetic diversity and stability in the development of antibiotic resistance.

  17. A spatial approach for the epidemiology of antibiotic use and resistance in community-based studies: the emergence of urban clusters of Escherichia coli quinolone resistance in Sao Paulo, Brasil

    Science.gov (United States)

    2011-01-01

    Background Population antimicrobial use may influence resistance emergence. Resistance is an ecological phenomenon due to potential transmissibility. We investigated spatial and temporal patterns of ciprofloxacin (CIP) population consumption related to E. coli resistance emergence and dissemination in a major Brazilian city. A total of 4,372 urinary tract infection E. coli cases, with 723 CIP resistant, were identified in 2002 from two outpatient centres. Cases were address geocoded in a digital map. Raw CIP consumption data was transformed into usage density in DDDs by CIP selling points influence zones determination. A stochastic model coupled with a Geographical Information System was applied for relating resistance and usage density and for detecting city areas of high/low resistance risk. Results E. coli CIP resistant cluster emergence was detected and significantly related to usage density at a level of 5 to 9 CIP DDDs. There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. Conclusions There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. The usage density of 5-9 CIP DDDs per 1,000 inhabitants within the same influence zone was the resistance triggering level. This level led to E. coli resistance clustering, proving that individual resistance emergence and dissemination was affected by antimicrobial population consumption. PMID:21356088

  18. A spatial approach for the epidemiology of antibiotic use and resistance in community-based studies: the emergence of urban clusters of Escherichia coli quinolone resistance in Sao Paulo, Brasil

    Directory of Open Access Journals (Sweden)

    Bailey Trevor C

    2011-02-01

    Full Text Available Abstract Background Population antimicrobial use may influence resistance emergence. Resistance is an ecological phenomenon due to potential transmissibility. We investigated spatial and temporal patterns of ciprofloxacin (CIP population consumption related to E. coli resistance emergence and dissemination in a major Brazilian city. A total of 4,372 urinary tract infection E. coli cases, with 723 CIP resistant, were identified in 2002 from two outpatient centres. Cases were address geocoded in a digital map. Raw CIP consumption data was transformed into usage density in DDDs by CIP selling points influence zones determination. A stochastic model coupled with a Geographical Information System was applied for relating resistance and usage density and for detecting city areas of high/low resistance risk. Results E. coli CIP resistant cluster emergence was detected and significantly related to usage density at a level of 5 to 9 CIP DDDs. There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. Conclusions There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. The usage density of 5-9 CIP DDDs per 1,000 inhabitants within the same influence zone was the resistance triggering level. This level led to E. coli resistance clustering, proving that individual resistance emergence and dissemination was affected by antimicrobial population consumption.

  19. Antibiotic selection of Escherichia coli sequence type 131 in a mouse intestinal colonization model.

    Science.gov (United States)

    Boetius Hertz, Frederik; Løbner-Olesen, Anders; Frimodt-Møller, Niels

    2014-10-01

    The ability of different antibiotics to select for extended-spectrum β-lactamase (ESBL)-producing Escherichia coli remains a topic of discussion. In a mouse intestinal colonization model, we evaluated the selective abilities of nine common antimicrobials (cefotaxime, cefuroxime, dicloxacillin, clindamycin, penicillin, ampicillin, meropenem, ciprofloxacin, and amdinocillin) against a CTX-M-15-producing E. coli sequence type 131 (ST131) isolate with a fluoroquinolone resistance phenotype. Mice (8 per group) were orogastrically administered 0.25 ml saline with 10(8) CFU/ml E. coli ST131. On that same day, antibiotic treatment was initiated and given subcutaneously once a day for three consecutive days. CFU of E. coli ST131, Bacteroides, and Gram-positive aerobic bacteria in fecal samples were studied, with intervals, until day 8. Bacteroides was used as an indicator organism for impact on the Gram-negative anaerobic population. For three antibiotics, prolonged colonization was investigated with additional fecal CFU counts determined on days 10 and 14 (cefotaxime, dicloxacillin, and clindamycin). Three antibiotics (cefotaxime, dicloxacillin, and clindamycin) promoted overgrowth of E. coli ST131 (P 0.95), nor did they suppress Bacteroides or Gram-positive organisms. The results showed that antimicrobials both with and without an impact on Gram-negative anaerobes can select for ESBL-producing E. coli, indicating that not only Gram-negative anaerobes have a role in upholding colonization resistance. Other, so-far-unknown bacterial populations must be of importance for preventing colonization by incoming E. coli. PMID:25092712

  20. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli.

    Science.gov (United States)

    Urfer, Matthias; Bogdanovic, Jasmina; Lo Monte, Fabio; Moehle, Kerstin; Zerbe, Katja; Omasits, Ulrich; Ahrens, Christian H; Pessi, Gabriella; Eberl, Leo; Robinson, John A

    2016-01-22

    Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM.

  1. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli.

    Science.gov (United States)

    Urfer, Matthias; Bogdanovic, Jasmina; Lo Monte, Fabio; Moehle, Kerstin; Zerbe, Katja; Omasits, Ulrich; Ahrens, Christian H; Pessi, Gabriella; Eberl, Leo; Robinson, John A

    2016-01-22

    Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM. PMID:26627837

  2. Functional metagenomics for the investigation of antibiotic resistance.

    Science.gov (United States)

    Mullany, Peter

    2014-04-01

    Antibiotic resistance is a major threat to human health and well-being. To effectively combat this problem we need to understand the range of different resistance genes that allow bacteria to resist antibiotics. To do this the whole microbiota needs to be investigated. As most bacteria cannot be cultivated in the laboratory, the reservoir of antibiotic resistance genes in the non-cultivatable majority remains relatively unexplored. Currently the only way to study antibiotic resistance in these organisms is to use metagenomic approaches. Furthermore, the only method that does not require any prior knowledge about the resistance genes is functional metagenomics, which involves expressing genes from metagenomic clones in surrogate hosts. In this review the methods and limitations of functional metagenomics to isolate new antibiotic resistance genes and the mobile genetic elements that mediate their spread are explored.

  3. Effect of efflux pump inhibitor CCCP on antibiotic resistance of multidrug resistant Escherichia coli%外排泵抑制剂羰酰氰间氯苯腙对多重耐药大肠埃希菌的耐药性影响

    Institute of Scientific and Technical Information of China (English)

    邹永胜; 王旭; 黄永茂; 游春芳; 陈枫; 钟利; 向成玉; 陈庄

    2013-01-01

    Objective To investigate the effect of carbonyl cyanide m-chlorophenylhydrazone (CCCP) on drug resistance of multidrug resistant Escherichia coli. Methods Disk diffusion (Kirby-Bauer test method) was used to detect the susceptibility of 71 strains of E. coli to 6 kinds of antibiotics, PCR assay to detect the acrA and acrB genes in E. coli strains, and constant broth dilution method to determine minimum inhibitory concentrations (MICs) of 2 fluoroquinolones to E. coli. MICs detected before and after CCCP was added were compared. Results Totally 71 strains were found resistant to 6 kinds of antibiotics (3 categories). The resistant rate of E. coli to ciprofloxacin was the highest (73.24%), and that of E. coli to aztreonam was the lowest (30.99%). Multidrug resistance (52.11%) was the main resistance pattern. AcrA/acrB positive rates were high (91.89% and 81.03%, respectively) in multidrug resistant strains. Variations of MICs detected before and after CCCP was added in multidrug resistant and sensitive strains were significantly different. Conclusion Efflux pump inhibitor CCCP can reduce the MICs of fluoroquinolone antibiotics to multidrug resistant E. coli.%目的 探讨外排泵抑制剂羰酰氰间氯苯腙(carbonyl cyanide m-chlorophenylhydrazone,CCCP)对多重耐药大肠埃希菌的耐药性影响.方法 采用纸片扩散法(K-B法)进行71株大肠埃希菌对6种抗菌药物的药物敏感性检测,用PCR技术检测受试菌株携带的acrA和acrB基因,用常量肉汤稀释法测定2种氟喹诺酮类抗菌药物对大肠埃希菌的最低抑菌浓度(minimum inhibitory concentrations,MICs),并对比加入CCCP前后的MICs值.结果 71株大肠埃希菌对3类6种抗菌药物耐药,其中对环丙沙星耐药率最高(73.24%),对氨曲南耐药率最低(30.99%),耐药模式以多重耐药为主(52.11%);外排泵基因acrA和acrB在多重耐药菌株中阳性率高达91.89%和81.03%;加入CCCP前后多重耐药菌株和敏感菌株的MICs值

  4. Prevalence of Antibiotic-Resistant Bacteria on Rectal Swabs and Factors Affecting Resistance to Antibiotics in Patients Undergoing Prostate Biopsy

    OpenAIRE

    Kim, Jong Beom; Jung, Seung Il; Hwang, Eu Chang; Kwon, Dong Deuk

    2014-01-01

    Purpose The prevalence of antibiotic-resistant bacteria on rectal swabs in patients undergoing transrectal ultrasound (TRUS)-guided prostate biopsy and the factors affecting resistance to antibiotics were evaluated. Materials and Methods Two hundred twenty-three men who underwent TRUS-guided prostate biopsy from November 2011 to December 2012 were retrospectively evaluated. Rectal swabs were cultured on MacConkey agar to identify antibiotic-resistant bacteria in rectal flora before TRUS-guide...

  5. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  6. Antibiotic misuse in the community--a contributor to resistance?

    LENUS (Irish Health Repository)

    Carey, B

    2012-02-03

    The problem of antibiotic resistance is associated with the indiscriminate usage of antibiotics. Efforts have been directed at encouraging the rational use of these drugs to reduce the volume of antibiotic consumption and decrease resistance rates. There is evidence to suggest that the misuse of antibiotics by patients may also contribute to the problem. We describe a survey of a random selection of patients attending a General Practitioners\\' surgery over a six week period in an effort to estimate the level of non-compliance to antibiotic therapy in the community. The results suggest that there may be a significant level of antibiotic misuse prevalent in the local community. We discuss these results and present evidence in the literature suggesting how antibiotic misuse may affect resistance in the community. The factors affecting patient compliance to therapy are outlined along with suggested measures to improve compliance among patients.

  7. Antibiotic Resistance Pattern Of Bacterial Pathogens Isolated From Poultry Manure Used To Fertilize Fish Ponds In New Bussa, Nigeria

    Directory of Open Access Journals (Sweden)

    Funso Omojowo

    2013-02-01

    Full Text Available This study was carried out to isolate and identify antibiotic resistant bacteria from poultry manure usually used for pond fertilization. Poultry manure from 120 Chickens in National Institute for Freshwater Fisheries Research (NIFFR integrated fish farms, New-Bussa, Nigeria was collected. Five bacterial pathogens; Salmonella typhi, Escherichia coli, Shigella dysenteriae, Staphylococcus aureus and Aeromonas hydrophila were isolated. Antibiotic susceptibility testing carried out using the disk diffusion technique. Antibiotics used were; ofloxacin, amoxicillin, tetracycline, ampicillin, erythromycin, gentamicin, nalidixic acid and chloramphenicol. All the isolated organisms were 100% sensitive to ofloxacin. The multiple resistance pattern revealed that 100% were resistant to tetracycline, 84.34% resistant to ampicillin, 76.68% resistant to amoxicillin, 66% resistant to chloramphenicol, 66% resistant to gentamicin, 29% resistant to erythromycin, 28.34% resistant to nalidixic acid. The risk posed by untreated poultry manure used in fish pond fertilization and the public health implications of these results were discussed.

  8. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance.

    NARCIS (Netherlands)

    Bell, B.G.; Schellevis, F.; Stobberingh, E.; Goossen, H.; Pringle, M.

    2014-01-01

    Background: Greater use of antibiotics during the past 50 years has exerted selective pressure on susceptible bacteria and may have favoured the survival of resistant strains. Existing information on antibiotic resistance patterns from pathogens circulating among community-based patients is substant

  9. Induction of bacterial antibiotic resistance by mutagenic halogenated nitrogenous disinfection byproducts.

    Science.gov (United States)

    Lv, Lu; Yu, Xin; Xu, Qian; Ye, Chengsong

    2015-10-01

    Halogenated nitrogenous disinfection byproducts (N-DBPs) raise concerns regarding their mutagenicity and carcinogenicity threatening public health. However, environmental consequence of their mutagenicity has received less attention. In this study, the effect of halogenated N-DBPs on bacterial antibiotic resistance (BAR) was investigated. After exposure to bromoacetamide (BAcAm), trichloroacetonitrile (TCAN) or tribromonitromethane (TBNM), the resistance of Pseudomonas aeruginosa PAO1 to both individual and multiple antibiotics (ciprofloxacin, gentamicin, polymyxin B, rifampin, tetracycline, ciprofloxacin + gentamicin and ciprofloxacin + tetracycline) was increased, which was predominantly ascribed to the overexpression of efflux pumps. The mechanism of this effect was demonstrated to be mutagenesis through sequencing and analyzing antibiotic resistance genes. The same induction phenomena also appeared in Escherichia coli, suggesting this effect may be universal to waterborne pathogens. Therefore, more attention should be given to halogenated N-DBPs, as they could increase not only genotoxicological risks but also epidemiological risks of drinking water.

  10. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    Science.gov (United States)

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria. PMID:22029522

  11. Antibiotic Resistance of Diverse Bacteria from Aquaculture in Borneo

    Science.gov (United States)

    Kathleen, M. M.; Felecia, C.; Reagan, E. L.; Kasing, A.; Lesley, M.; Toh, S. C.

    2016-01-01

    The administration of antimicrobials in aquaculture provides a selective pressure creating a reservoir of multiple resistant bacteria in the cultured fish and shrimps as well as the aquaculture environment. The objective of this study was to determine the extent of antibiotic resistance in aquaculture products and aquaculture's surrounding environment in Sarawak, Malaysian Borneo. Ninety-four identified bacterial isolates constituted of 17 genera were isolated from sediment, water, and cultured organisms (fish and shrimp) in selected aquaculture farms. These isolates were tested for their antibiotic resistance against 22 antibiotics from several groups using the disk diffusion method. The results show that the highest resistance was observed towards streptomycin (85%, n = 20), while the lowest resistance was towards gentamicin (1.1%, n = 90). The multiple antibiotic resistant (MAR) index of the isolates tested ranged between 0 and 0.63. It was suggested that isolates with MAR index > 0.2 were recovered from sources with high risk of antibiotic resistant contamination. This study revealed low level of antibiotic resistance in the aquaculture bacterial isolates except for streptomycin and ampicillin (>50% resistance, n = 94) which have been used in the aquaculture industry for several decades. Antibiotic resistant patterns should be continuously monitored to predict the emergence and widespread of MAR. Effective action is needed to keep the new resistance from further developing and spreading.

  12. Supramolecular Antibiotic Switches: A Potential Strategy for Combating Drug Resistance.

    Science.gov (United States)

    Bai, Haotian; Lv, Fengting; Liu, Libing; Wang, Shu

    2016-08-01

    Bacterial infectious disease is a serious public health concern throughout the world. Pathogen drug resistance, arising from both rational use and abuse/misuse of germicides, complicates the situation. Aside from developing novel antibiotics and antimicrobial agents, molecular approaches have become another significant method to overcome the problem of pathogen drug resistance. Established supramolecular systems, the antibiotic properties of which can be switched "on" and "off" through host-guest interactions, show great potential in combating issues regarding antibiotic resistance in the long term, as indicated by several recent studies. In this Concept, recently developed strategies for antibacterial regulation are summarized and further directions for research into antibiotic switches are proposed. PMID:27312106

  13. Antibiotic resistance gene discovery in food-producing animals.

    Science.gov (United States)

    Allen, Heather K

    2014-06-01

    Numerous environmental reservoirs contribute to the widespread antibiotic resistance problem in human pathogens. One environmental reservoir of particular importance is the intestinal bacteria of food-producing animals. In this review I examine recent discoveries of antibiotic resistance genes in agricultural animals. Two types of antibiotic resistance gene discoveries will be discussed: the use of classic microbiological and molecular techniques, such as culturing and PCR, to identify known genes not previously reported in animals; and the application of high-throughput technologies, such as metagenomics, to identify novel genes and gene transfer mechanisms. These discoveries confirm that antibiotics should be limited to prudent uses.

  14. Antibiotic-Resistant Fecal Bacteria, Antibiotics, and Mercury in Surface Waters of Oakland County, Michigan, 2005-2006

    Science.gov (United States)

    Fogarty, Lisa R.; Duris, Joseph W.; Crowley, Suzanne L.; Hardigan, Nicole

    2007-01-01

    Water samples collected from 20 stream sites in Oakland and Macomb Counties, Mich., were analyzed to learn more about the occurrence of cephalosporin-resistant Escherichia coli (E. coli) and vancomycin-resistant enterococci (VRE) and the co-occurrence of antibiotics and mercury in area streams. Fecal indicator bacteria concentrations exceeded the Michigan recreational water-quality standard of 300 E. coli colony-forming units (CFU) per 100 milliliters of water in 19 of 35 stream-water samples collected in Oakland County. A gene commonly associated with enterococci from humans was detected in samples from Paint Creek at Rochester and Evans Ditch at Southfield, indicating that human fecal waste is a possible source of fecal contamination at these sites. E. coli resistant to the cephalosporin antibiotics (cefoxitin and/or ceftriaxone) were found at all sites on at least one occasion. The highest percentages of E. coli isolates resistant to cefoxitin and ceftriaxone were 71 percent (Clinton River at Auburn Hills) and 19 percent (Sashabaw Creek near Drayton Plains), respectively. Cephalosporin-resistant E. coli was detected more frequently in samples from intensively urbanized or industrialized areas than in samples from less urbanized areas. VRE were not detected in any sample collected in this study. Multiple antibiotics (azithromycin, erythromycin, ofloxacin, sulfamethoxazole, and trimethoprim) were detected in water samples from the Clinton River at Auburn Hills, and tylosin (an antibiotic used in veterinary medicine and livestock production that belongs to the macrolide group, along with erythromycin) was detected in one water sample from Paint Creek at Rochester. Concentrations of total mercury were as high as 19.8 nanograms per liter (Evans Ditch at Southfield). There was no relation among percentage of antibiotic-resistant bacteria and measured concentrations of antibiotics or mercury in the water. Genetic elements capable of exchanging multiple antibiotic-resistance

  15. Transmission of antibiotic resistance from animals to humans

    NARCIS (Netherlands)

    Huijbers, P.M.C.

    2016-01-01

    Huijbers, P.M.C. (2016). Transmission of antibiotic resistance from animals to humans: Broilers as a reservoir of ESBL-producing bacteria. PhD thesis, Wageningen University, Wageningen, the Netherlands. Antibiotic resistance in animals becomes a public health issue when there is transmission of anti

  16. Antibiotic resistance in urban aquatic environments: can it be controlled?

    OpenAIRE

    Manaia, Célia; Macedo, Gonçalo; Fatta-Kassinos, Despo; Nunes, Olga

    2016-01-01

    Over the last decade, numerous evidences have contributed to establish a link between the natural and humanimpacted environments and the growing public health threat that is the antimicrobial resistance. In the environment, in particular in areas subjected to strong anthropogenic pressures, water plays a major role on the transformation and transport of contaminants including antibiotic residues, antibioticresistant bacteria, and antibiotic resistance genes. Therefore, ...

  17. Consolidating and Exploring Antibiotic Resistance Gene Data Resources

    DEFF Research Database (Denmark)

    Xavier, Basil Britto; Das, Anupam J.; Cochrane, Guy;

    2016-01-01

    The unrestricted use of antibiotics has resulted in rapid acquisition of antibiotic resistance (AR) and spread of multidrug-resistant (MDR) bacterial pathogens. With the advent of next-generation sequencing technologies and their application in understanding MDR pathogen dynamics, it has become...

  18. Metagenomics and other Methods for Measuring Antibiotic Resistance in Agroecosystems

    Science.gov (United States)

    Background: There is broad concern regarding antibiotic resistance on farms and in fields, however there is no standard method for defining or measuring antibiotic resistance in environmental samples. Methods: We used metagenomic, culture-based, and molecular methods to characterize the amount, t...

  19. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals.

    Science.gov (United States)

    Gullberg, Erik; Albrecht, Lisa M; Karlsson, Christoffer; Sandegren, Linus; Andersson, Dan I

    2014-01-01

    How sublethal levels of antibiotics and heavy metals select for clinically important multidrug resistance plasmids is largely unknown. Carriage of plasmids generally confers substantial fitness costs, implying that for the plasmid-carrying bacteria to be maintained in the population, the plasmid cost needs to be balanced by a selective pressure conferred by, for example, antibiotics or heavy metals. We studied the effects of low levels of antibiotics and heavy metals on the selective maintenance of a 220-kbp extended-spectrum β-lactamase (ESBL) plasmid identified in a hospital outbreak of Klebsiella pneumoniae and Escherichia coli. The concentrations of antibiotics and heavy metals required to maintain plasmid-carrying bacteria, the minimal selective concentrations (MSCs), were in all cases below (almost up to 140-fold) the MIC of the plasmid-free susceptible bacteria. This finding indicates that the very low antibiotic and heavy metal levels found in polluted environments and in treated humans and animals might be sufficiently high to maintain multiresistance plasmids. When resistance genes were moved from the plasmid to the chromosome, the MSC decreased, showing that MSC for a specific resistance conditionally depends on genetic context. This finding suggests that a cost-free resistance could be maintained in a population by an infinitesimally low concentration of antibiotic. By studying the effect of combinations of several compounds, it was observed that for certain combinations of drugs each new compound added lowered the minimal selective concentration of the others. This combination effect could be a significant factor in the selection of multidrug resistance plasmids/bacterial clones in complex multidrug environments. Importance: Antibiotic resistance is in many pathogenic bacteria caused by genes that are carried on large conjugative plasmids. These plasmids typically contain multiple antibiotic resistance genes as well as genes that confer resistance to

  20. "Practical knowledge" and perceptions of antibiotics and antibiotic resistance among drugsellers in Tanzanian private drugstores

    Directory of Open Access Journals (Sweden)

    Tomson Göran

    2010-09-01

    Full Text Available Abstract Background Studies indicate that antibiotics are sold against regulation and without prescription in private drugstores in rural Tanzania. The objective of the study was to explore and describe antibiotics sale and dispensing practices and link it to drugseller knowledge and perceptions of antibiotics and antibiotic resistance. Methods Exit customers of private drugstores in eight districts were interviewed about the drugstore encounter and drugs bought. Drugsellers filled in a questionnaire with closed- and open-ended questions about antibiotics and resistance. Data were analyzed using mixed quantitative and qualitative methods. Results Of 350 interviewed exit customers, 24% had bought antibiotics. Thirty percent had seen a health worker before coming and almost all of these had a prescription. Antibiotics were dispensed mainly for cough, stomachache, genital complaints and diarrhea but not for malaria or headache. Dispensed drugs were assessed as relevant for the symptoms or disease presented in 83% of all cases and 51% for antibiotics specifically. Non-prescribed drugs were assessed as more relevant than the prescribed. The knowledge level of the drugseller was ranked as high or very high by 75% of the respondents. Seventy-five drugsellers from three districts participated. Seventy-nine percent stated that diseases caused by bacteria can be treated with antibiotics but 24% of these also said that antibiotics can be used for treating viral disease. Most (85% said that STI can be treated with antibiotics while 1% said the same about headache, 4% general weakness and 3% 'all diseases'. Seventy-two percent had heard of antibiotic resistance. When describing what an antibiotic is, the respondents used six different kinds of keywords. Descriptions of what antibiotic resistance is and how it occurs were quite rational from a biomedical point of view with some exceptions. They gave rise to five categories and one theme: Perceiving antibiotic

  1. Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption

    DEFF Research Database (Denmark)

    Megraud, Francis; Coenen, Samuel; Versporten, Ann;

    2013-01-01

    OBJECTIVE: Resistance to antibiotics is the major cause of treatment failure of Helicobacter pylori infection. A study was conducted to assess prospectively the antibacterial resistance rates of H pylori in Europe and to study the link between outpatient antibiotic use and resistance levels...... in different countries. DESIGN: Primary antibiotic resistance rates of H pylori were determined from April 2008 to June 2009 in 18 European countries. Data on yearly and cumulative use over several years of systemic antibacterial agents in ambulatory care for the period 2001-8 were expressed in Defined Daily...... Doses (DDD) per 1000 inhabitants per day. The fit of models and the degree of ecological association between antibiotic use and resistance data were assessed using generalised linear mixed models. RESULTS: Of 2204 patients included, H pylori resistance rates for adults were 17.5% for clarithromycin, 14...

  2. Probing minority population of antibiotic-resistant bacteria.

    Science.gov (United States)

    Huang, Tianxun; Zheng, Yan; Yan, Ya; Yang, Lingling; Yao, Yihui; Zheng, Jiaxin; Wu, Lina; Wang, Xu; Chen, Yuqing; Xing, Jinchun; Yan, Xiaomei

    2016-06-15

    The evolution and spread of antibiotic-resistant pathogens has become a major threat to public health. Advanced tools are urgently needed to quickly diagnose antibiotic-resistant infections to initiate appropriate treatment. Here we report the development of a highly sensitive flow cytometric method to probe minority population of antibiotic-resistant bacteria via single cell detection. Monoclonal antibody against TEM-1 β-lactamase and Alexa Fluor 488-conjugated secondary antibody were used to selectively label resistant bacteria green, and nucleic acid dye SYTO 62 was used to stain all the bacteria red. A laboratory-built high sensitivity flow cytometer (HSFCM) was applied to simultaneously detect the side scatter and dual-color fluorescence signals of single bacteria. By using E. coli JM109/pUC19 and E. coli JM109 as the model systems for antibiotic-resistant and antibiotic-susceptible bacteria, respectively, as low as 0.1% of antibiotic-resistant bacteria were accurately quantified. By monitoring the dynamic population change of a bacterial culture with the administration of antibiotics, we confirmed that under the antimicrobial pressure, the original low population of antibiotic-resistant bacteria outcompeted susceptible strains and became the dominant population after 5hours of growth. Detection of antibiotic-resistant infection in clinical urine samples was achieved without cultivation, and the bacterial load of susceptible and resistant strains can be faithfully quantified. Overall, the HSFCM-based quantitative method provides a powerful tool for the fundamental studies of antibiotic resistance and holds the potential to provide rapid and precise guidance in clinical therapies. PMID:26852201

  3. Metagenomic Insights into Transferable Antibiotic Resistance in Oral Bacteria.

    Science.gov (United States)

    Sukumar, S; Roberts, A P; Martin, F E; Adler, C J

    2016-08-01

    Antibiotic resistance is considered one of the greatest threats to global public health. Resistance is often conferred by the presence of antibiotic resistance genes (ARGs), which are readily found in the oral microbiome. In-depth genetic analyses of the oral microbiome through metagenomic techniques reveal a broad distribution of ARGs (including novel ARGs) in individuals not recently exposed to antibiotics, including humans in isolated indigenous populations. This has resulted in a paradigm shift from focusing on the carriage of antibiotic resistance in pathogenic bacteria to a broader concept of an oral resistome, which includes all resistance genes in the microbiome. Metagenomics is beginning to demonstrate the role of the oral resistome and horizontal gene transfer within and between commensals in the absence of selective pressure, such as an antibiotic. At the chairside, metagenomic data reinforce our need to adhere to current antibiotic guidelines to minimize the spread of resistance, as such data reveal the extent of ARGs without exposure to antimicrobials and the ecologic changes created in the oral microbiome by even a single dose of antibiotics. The aim of this review is to discuss the role of metagenomics in the investigation of the oral resistome, including the transmission of antibiotic resistance in the oral microbiome. Future perspectives, including clinical implications of the findings from metagenomic investigations of oral ARGs, are also considered. PMID:27183895

  4. The role of biofilms as environmental reservoirs of antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Jose Luis eBalcazar

    2015-10-01

    Full Text Available Antibiotic resistance has become a significant and growing threat to public and environmental health. To face this problem both at local and global scales, a better understanding of the sources and mechanisms that contribute to the emergence and spread of antibiotic resistance is required. Recent studies demonstrate that aquatic ecosystems are reservoirs of resistant bacteria and antibiotic resistance genes as well as potential conduits for their transmission to human pathogens. Despite the wealth of information about antibiotic pollution and its effect on the aquatic microbial resistome, the contribution of environmental biofilms to the acquisition and spread of antibiotic resistance has not been fully explored in aquatic systems. Biofilms are structured multicellular communities embedded in a self-produced extracellular matrix that acts as a barrier to antibiotic diffusion. High population densities and proximity of cells in biofilms also increases the chances for genetic exchange among bacterial species converting biofilms in hot spots of antibiotic resistance. This review focuses on the potential effect of antibiotic pollution on biofilm microbial communities, with special emphasis on ecological and evolutionary processes underlying acquired resistance to these compounds.

  5. Prevalence and Antibiotic Resistance of Neonatal Sepsis Pathogens in Neyshabour, Iran

    Directory of Open Access Journals (Sweden)

    Behmadi

    2016-04-01

    Full Text Available Background Neonatal sepsis is a systemic inflammatory response syndrome that is secondary to infection. It is a major cause of neonatal mortality in the world, particularly in developing countries. A definitive diagnosis requires the isolation of pathogens from a normally sterile body site, including blood, cerebrospinal fluid and urine. Empirical antibiotic therapy is based on the physician’s knowledge of the anticipated bacterial species and their expected antibiotic susceptibilities. Objectives The aim of this study was to determine the prevalence and evaluate the antimicrobial susceptibility patterns of bacterial infections at a neonatal unit. Patients and Methods This study was conducted at the neonatal intensive care unit and neonatal ward of Hakim hospital, Neyshabour, Iran. Blood, cerebrospinal fluid (CSF and urine specimens were collected before institution of empirical antibiotic therapy. Antibiotic resistance pattern of the isolates was studied by the disc diffusion technique. Results Coagulase-negative staphylococci (CoNS were the most prevalent pathogens isolated from blood specimens in early and late-onset disease. Escherichia coli and Klebsiella were the most causative pathogens in early and late-onset urinary tract infections. They had high resistance to our empirical antibiotic regimens. Prevalence of bacterial meningitis was low in our study. Conclusions Due to the increasing resistance of pathogens to usual empirical antibiotics, it is reasonable to stress upon preventive measures, so that a minimum number of neonates develop sepsis.

  6. [Antibiotic resistance analysis of Enterococcus spp. and Enterobacteriaceae spp. isolated from food].

    Science.gov (United States)

    Korotkevich, Yu V

    2016-01-01

    The isolates from foods were screened for sensitivity to clinically significant antibiotics to assess the actual situation related to the prevalence of the antibiotic-resistant microorganisms in food. The goal of this work was to study the phenotypic characteristics of the antibiotic susceptibility of Enterobacteriaceae and Enterococcus spp. isolated from the good quality foods, and evaluation of the prevalence of tetracycline resistance in this groups of microbial contaminants. 68 strains of Enterobacteriaceae family and Enterococcus spp. isolated from poultry and livestock meat, pasteurized dairy products, acquired in the retail in the Moscow region, were studied. The disk-diffusion method (DDM) analysis showed a rather high prevalence of bacteria that are resistant and forming resistance to broad-spectrum antibiotics: in general 38% of Enterobacteriaceae strains and 40% of Enterococcus spp., isolated from meat products were resistant to tetracycline and doxycycline, and 21 and 33% - from dairy products, respectively; 26% of milk isolates and 54% of meat isolates were resistant to ampicillin. Considering that the tetracyclines is the most frequently used in animal husbandry and veterinary, the incidence and levels of tetracycline resistance were evaluated using tests with higher sensitivity to minimum inhibitory concentration (MIC), than the DDM. It was shown that among the Enterobacteriaceae strains 26% of dairy> isolates and 38% isolates were highly resistant to tetracycline (MIC ranged from 8 to 120 mg/kg) and 17-40% - among Enterococcus spp. These data obtained on a small number of samples, however, correspond to the frequency of tetracycline resistant strains detected in animal products in the EU (10-50%). Two multidrug-resistant enterobacteria strains - Klebsiella pneumoniae (farmer cheese) and Escherichia coli (minced turkey) were found among the .46 strains (4.4%), and they were resistant to 8 antibiotics. PMID:27455596

  7. Mechanisms of Helicobacter pylori antibiotic resistance and molecular testing

    Directory of Open Access Journals (Sweden)

    Toshihiro eNishizawa

    2014-10-01

    Full Text Available Antibiotic resistance in Helicobacter pylori (H. pylori is the main factor affecting the efficacy of current treatment methods against infection caused by this organism. The traditional culture methods for testing bacterial susceptibility to antibiotics are expensive and require 10 to 14 days. Since resistance to clarithromycin, fluoroquinolone, and tetracycline seems to be exclusively caused by specific mutations in a small region of the responsible gene, molecular methods offer an attractive alternative to the above-mentioned techniques. The technique of polymerase chain reaction (PCR is an accurate and rapid method for the detection of mutations that confer antibiotic resistance. This review highlights the mechanisms of antibiotic resistance in H. pylori and the molecular methods for antibiotic susceptibility testing.

  8. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens.

    Science.gov (United States)

    Pamer, Eric G

    2016-04-29

    The intestinal microbiota, which is composed of diverse populations of commensal bacterial species, provides resistance against colonization and invasion by pathogens. Antibiotic treatment can damage the intestinal microbiota and, paradoxically, increase susceptibility to infections. Reestablishing microbiota-mediated colonization resistance after antibiotic treatment could markedly reduce infections, particularly those caused by antibiotic-resistant bacteria. Ongoing studies are identifying commensal bacterial species that can be developed into next-generation probiotics to reestablish or enhance colonization resistance. These live medicines are at various stages of discovery, testing, and production and are being subjected to existing regulatory gauntlets for eventual introduction into clinical practice. The development of next-generation probiotics to reestablish colonization resistance and eliminate potential pathogens from the gut is warranted and will reduce health care-associated infections caused by highly antibiotic-resistant bacteria. PMID:27126035

  9. Antibiotic Resistance in Animal and Environmental Samples Associated with Small-Scale Poultry Farming in Northwestern Ecuador

    OpenAIRE

    Braykov, Nikolay P.; Eisenberg, Joseph N. S.; Grossman, Marissa; Zhang, Lixin; Vasco, Karla; CEVALLOS, WILLIAM; Muñoz, Diana; Acevedo, Andrés; Moser, Kara A.; Marrs, Carl F.; Foxman, Betsy; Trostle, James; Trueba, Gabriel; Levy, Karen

    2016-01-01

    ABSTRACT The effects of animal agriculture on the spread of antibiotic resistance (AR) are cross-cutting and thus require a multidisciplinary perspective. Here we use ecological, epidemiological, and ethnographic methods to examine populations of Escherichia coli circulating in the production poultry farming environment versus the domestic environment in rural Ecuador, where small-scale poultry production employing nontherapeutic antibiotics is increasingly common. We sampled 262 “production ...

  10. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes.

    Science.gov (United States)

    Sharma, Virender K; Johnson, Natalie; Cizmas, Leslie; McDonald, Thomas J; Kim, Hyunook

    2016-05-01

    Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental systems such as natural environments and drinking water resources. For example, ARG or ARB with resistance to ciprofloxacin, sulfamethoxazole, trimethoprim, quinolone, vancomycin, or tetracycline (e.g., tet(A), tet(B), tet(C), tet(G), tet(O), tet(M), tet(W), sul I, and sul II) have been detected in the environment. The development of resistance may be intrinsic, may be acquired through spontaneous mutations (de novo), or may occur due to horizontal gene transfer from donor bacteria, phages, or free DNA to recipient bacteria. An overview is also provided of the current knowledge regarding inactivation of ARB and ARG, and the mechanism of the effects of different disinfection processes in water and wastewater (chlorination, UV irradiation, Fenton reaction, ozonation, and photocatalytic oxidation). The effects of constructed wetlands and nanotechnology on ARB and ARG are also summarized. PMID:26775188

  11. Selection of appropriate analytical tools to determine the potency and bioactivity of antibiotics and antibiotic resistance$

    Institute of Scientific and Technical Information of China (English)

    Nishant A. Dafale n; Uttam P. Semwal; Rupak K. Rajput; G.N. Singh

    2016-01-01

    Antibiotics are the chemotherapeutic agents that kill or inhibit the pathogenic microorganisms. Re-sistance of microorganism to antibiotics is a growing problem around the world due to indiscriminate and irrational use of antibiotics. In order to overcome the resistance problem and to safely use antibiotics, the correct measurement of potency and bioactivity of antibiotics is essential. Microbiological assay and high performance liquid chromatography (HPLC) method are used to quantify the potency of antibiotics. HPLC method is commonly used for the quantification of potency of antibiotics, but unable to determine the bioactivity; whereas microbiological assay estimates both potency and bioactivity of antibiotics. Additionally, bioassay is used to estimate the effective dose against antibiotic resistant microbes. Simultaneously, microbiological assay addresses the several parameters such as minimal inhibitory concentration (MIC), minimum bactericidal concentration (MBC), mutation prevention concentration (MPC) and critical concentration (Ccr) which are used to describe the potency in a more informative way. Microbiological assay is a simple, sensitive, precise and cost effective method which gives reproducible results similar to HPLC. However, the HPLC cannot be a complete substitute for microbiological assay and both methods have their own significance to obtain more realistic and precise results.

  12. Detection of antibiotic resistance in probiotics of dietary supplements

    KAUST Repository

    Wong, Aloysius Tze

    2015-09-14

    Background Probiotics are live microorganisms that confer nutrition- and health-promoting benefits if consumed in adequate amounts. Concomitant with the demand for natural approaches to maintaining health is an increase in inclusion of probiotics in food and health products. Since probiotic bacteria act as reservoir for antibiotic resistant determinants, the transfer of these genes to pathogens sharing the same intestinal habitat is thus conceivable considering the fact that dietary supplements contain high amounts of often heterogeneous populations of probiotics. Such events can confer pathogens protection against commonly-used drugs. Despite numerous reports of antibiotic resistant probiotics in food and biological sources, the antibiogram of probiotics from dietary supplements remained elusive. Findings Here, we screened five commercially available dietary supplements for resistance towards antibiotics of different classes. Probiotics of all batches of products were resistant towards vancomycin while batch-dependent resistance towards streptomycin, aztreonam, gentamycin and/or ciprofloxacin antibiotics was detected for probiotics of brands Bi and Bn, Bg, and L. Isolates of brand Cn was also resistant towards gentamycin, streptomycin and ciprofloxacin antibiotics. Additionally, we also report a discrepancy between the enumerated viable bacteria amounts and the claims of the manufacturers. Conclusions This short report has highlighted the present of antibiotic resistance in probiotic bacteria from dietary supplements and therefore serves as a platform for further screenings and for in-depth characterization of the resistant determinants and the molecular machinery that confers the resistance.

  13. Antibiotic Resistance Pattern of Gram-Negative Bacteria in Gorgan

    Directory of Open Access Journals (Sweden)

    Golsha, R. (MD

    2014-06-01

    Full Text Available Background and Objective: The excessive use of broad-spectrum antibiotics will lead to drug resistance of microorganism and specially nosocomial organisms. Because of high incidence of antibiotic resistance in hospitals, we aimed to study antibiotic resistance to gram negative bacteria. Material and Methods: This cross-sectional study was conducted on the data of biological samples (2006-2008, with positive culture result. Using antibiogram, microbial resistance to isolated microorganism was determined, and after culturing the samples, bacteria were identified by using differential media and antiserum. Then, antibiotic resistance was performed by disk diffusion. Results: The most common gram-negative microorganism obtained from all cultures was E.coli with the lowest drug resistance to Nitrofurantoin. Conclusion: Based on the results, antimicrobial resistance pattern is not the same in different places and furthermore it is ever changing. Therefore, further research is needed to be done to have an accurate pattern of antibiotic resistance to provide effective treatment regimens. Key words: Antibiotic Resistance; Disk Diffusion; Gram Negative Bacteria; Gorgan

  14. Antibiotic surgical prophylaxis increases nasal carriage of antibiotic-resistant staphylococci.

    Science.gov (United States)

    McMurray, Claire L; Hardy, Katherine J; Verlander, Neville Q; Hawkey, Peter M

    2015-12-01

    Staphylococci are a significant cause of hospital-acquired infection. Nasal carriage of Staphylococcus aureus is an important risk factor for infection in surgical patients and coagulase-negative staphylococci (CNS) are a major cause of prosthetic joint infections. The impact that antibiotic surgical prophylaxis has on the nasal carriage of staphylococci has not been studied. Daily nasal swabs were taken from 63 patients who received antibiotic surgical prophylaxis and 16 patients who received no antibiotics. Total aerobic bacterial count, S. aureus and CNS were enumerated by culture from nasal swabs. Representative isolates were typed by staphylococcal interspersed repeat units (SIRU) typing and PFGE, and MICs to nine antibiotics were determined. After antibiotic administration, there was a reduction in S. aureus counts (median - 2.3 log(10)c.f.u. ml(- 1)) in 64.0 % of S. aureus carriers, compared with only a 0.89 log(10)c.f.u. ml(- 1) reduction in 75.0 % of S. aureus carriers who did not receive antibiotics. A greater increase in the nasal carriage rate of meticillin-resistant CNS was observed after antibiotic surgical prophylaxis compared with hospitalization alone, with increases of 16.4 and 4.6 %, respectively. Antibiotic-resistant S. epidermidis carriage rate increased by 16.6 % after antibiotic administration compared with 7.5 % with hospitalization alone. Antibiotic surgical prophylaxis impacts the nasal carriage of both S. aureus and CNS.

  15. Resistance to antibiotics in heterotrophic bacteria as a result of environmental pollution

    Directory of Open Access Journals (Sweden)

    Maria Bartoszewic

    2014-12-01

    Full Text Available Introduction. The aim of the study was to investigate resistance to selected antibiotics in Escherichia coli and Enterococcus faecalis strains that were isolated from water collected from ten streams within the administrative boundaries of the city of Sopot. Material and methods. 114 E. coli strains and 57 E. faecalis strains were studied. Antibiotic resistance was determined by the disc diffusion method using antibiotic-impregnated discs. Results. The isolated E. coli strains were resistant to chloramphenicol (21%, cefepime (51%, tetracycline (41%, imipenem (35%, cephazoline (62% and gentamicin (90%. E. faecalis isolates showed resistance to erythromycin (75%, chloramphenicol (21% and imipenem (33%. The relationship between the level of antibiotic resistance, the origin of water sample and the level of water contamination with E. coli and Enterococcus faecalis bacteria in the investigated streams was analyzed. Conclusions. Based on the obtained results, it was determined that multi-drug resistant bacterial strains of E. coli and E. faecalis are present in the investigated surface waters.

  16. Prevalence of antibiotic-resistant E. coli in retail chicken: comparing conventional, organic, kosher, and raised without antibiotics [v2; ref status: indexed, http://f1000r.es/1pu

    Directory of Open Access Journals (Sweden)

    Jack M Millman

    2013-09-01

    Full Text Available Retail poultry products are known sources of antibiotic-resistant Escherichia coli, a major human health concern. Consumers have a range of choices for poultry, including conventional, organic, kosher, and raised without antibiotics (RWA – designations that are perceived to indicate differences in quality and safety. However, whether these categories vary in the frequency of contamination with antibiotic-resistant E. coli is unknown. We examined the occurrence of antibiotic-resistant E. coli on raw chicken marketed as conventional, organic, kosher and RWA. From April – June 2012, we purchased 213 samples of raw chicken from 15 locations in the New York City metropolitan area. We screened E. coli isolates from each sample for resistance to 12 common antibiotics. Although the organic and RWA labels restrict the use of antibiotics, the frequency of antibiotic-resistant E. coli tended to be only slightly lower for RWA, and organic chicken was statistically indistinguishable from conventional products that have no restrictions. Kosher chicken had the highest frequency of antibiotic-resistant E. coli, nearly twice that of conventional products, a result that belies the historical roots of kosher as a means to ensure food safety. These results indicate that production methods influence the frequency of antibiotic-resistant E. coli on poultry products available to consumers. Future research to identify the specific practices that cause the high frequency of antibiotic-resistant E. coli in kosher chicken could promote efforts to reduce consumer exposure to this potential pathogen.

  17. Response to "Antibiotic Use and Resistance"

    DEFF Research Database (Denmark)

    Malo, Sara; Rabanaque, María José; Feja, Christina;

    2014-01-01

    As mentioned, antibiotic consumption in heavy users, especially in children, is really striking. Certainly, our results revealed an antibiotic use in this age group higher than published in previous studies, and in line with different reports repeatedly presenting the high antibiotic consumption...... existing in Spain compared with other European countries (1). Determinants involved in antibiotic prescribing are numerous and varied. It is true that therapeutic failures lead to repeated courses of antibiotic treatment. However, it is not probably the only reason. Frequent and high consumption...... of antibiotics, as observed in heavy users, could also be due to factors related to the GP, patient and parents' expectations or the influence exerted by the pharmaceutical industry (2). This article is protected by copyright. All rights reserved....

  18. Determining of antibiotic resistance profile inStaphylococcus aureus isolates

    Institute of Scientific and Technical Information of China (English)

    Hossein Motamedi; Hadis Mirzabeigi; Tahere Shirali

    2010-01-01

    Objective:To determine the pattern of antibiotic resistance amongStaphylococcus aureus (S. aureus) isolates from clinical specimens and to identify community-acquired methicillin-resistantStaphylococcus aureus(CA-MRSA)in specimens that have been collected from patients referring to one of the hospitals of Ahvaz.Methods:S. aureus isolates from a hospital in Ahvaz were screened for resistance to various antibiotics including methicillin. The susceptibility of the isolates was determined by Kirby-Bauer disc diffusion method. TheMRSA was also treated with ethidium bromide to find the origin of resistance.Results: Among the bacterial isolates, all of 11S. aureus were resistant to methicillin and cefixime,2 were resistant to ciprofloxacine,6 were resistant to tetracycline and the reminder were sensitive or intermediate to other antibiotics. The treated isolates were reminded resistant to methicillin and this suggested that the plasmid was not the origin of resistance in these isolates.Conclusions: These results showed that infection due toMRSA is widespread in Ahvaz and with respect to the spread of vancomycin resistance among MRSA and appearance of overwhelming infections. It is necessary to identify continuously the profile of antibiotic resistance amongS. aureus isolates in other regions and finding appropriate antibiotic for infection control and eradication.

  19. Integron involvement in environmental spread of antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Thibault eStalder

    2012-04-01

    Full Text Available The spread of antibiotic-resistant bacteria is a growing problem and a public health issue. In recent decades, various genetic mechanisms involved in the spread of resistance genes among bacteria have been identified. Integrons -- genetic elements that acquire, exchange and express genes embedded within gene cassettes (GC -- are one of these mechanisms. Integrons are widely distributed, especially in Gram-negative bacteria; they are carried by mobile genetic elements, plasmids and transposons, which promote their spread within bacterial communities. Initially studied mainly in the clinical setting for their involvement in antibiotic resistance, their role in the environment is now an increasing focus of attention. The aim of this review is to provide an in-depth analysis of recent studies of antibiotic-resistance integrons in the environment, highlighting their potential involvement in antibiotic resistance outside the clinical context. We will focus particularly on the impact of human activities (agriculture, industries, wastewater treatment, etc..

  20. Identification of Antibiotic Use Pattern as an Effort to Control Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Ivan S. Pradipta

    2012-03-01

    Full Text Available The objective of this study is to determine quantity and pattern of antibiotic use in hospitalized patients at one of Bandung’s private hospital that can give benefit in control of antibiotic resistance and procurement planning of antibiotic. Data of antibiotic consumption were obtained from hospital pharmacy department on February–September 2011. Data were processed using the ATC/DDD and DU90% method. There were 390,98 DDD/100 bed days and 381,34 DDD/100 bed days total of an-tbiotic use in 2009 and 2010. Thirty nine antibiotic were consumed in 2009 within 11 kind of antibiotics in DU90% segment (ceftriaxone, amoxicillin, cefotaxime, ciprofloxacin, levofloxacin, metronidazole, cefixime, doxycycline, thiamphenicol, cefodoxime, cefalexin and 44 antibiotic were consumed in 2010 within 18 kind of antibiotics in DU90% segment (ceftriaxone, ciprofloxacin, amoxicillin, cefixime, levofloxacin, cefadroxil, cefotaxime, metronidazole, thiamphenicol, doxycycline, clindamycin, chloramphenicol, amikacin, sulbactam, gentamycin, streptomycin, cefoperazone, canamycin. There were decline of antibiotic use that followed decline number of bed days/year in 2009–2010, but in both antibiotic kind and quantity of DU90% antibiotic group were increased.

  1. Isolation of lytic phages for clinical antibiotic resistant Pseudomonas aeruginosa

    OpenAIRE

    Pires, Diana; Sillankorva, Sanna; Faustino, A.; Azeredo, Joana

    2009-01-01

    Pseudomonas aeruginosa is a relevant opportunist pathogen involved in noso-comial infections. P. aeruginosa uses an arsenal of virulence factors to cause serious infections and one of the most worrying characteristics of this bacte-rium is its low antibiotic susceptibility. The low susceptibility to antibiotics can be attributed to a concerted action of multidrug efflux pumps with chromo-somally-encoded antibiotic resistance genes and the low permeability of the bacterial cellular envelopes. ...

  2. Chaperonin GroEL/GroES over-expression promotes multi-drug resistance in E. coli following exposure to aminoglycoside antibiotics

    Directory of Open Access Journals (Sweden)

    Lise eGoltermann

    2016-01-01

    Full Text Available Antibiotic resistance is an increasing challenge to modern healthcare. Aminoglycoside antiobiotics cause translation corruption and protein misfolding and aggregation in Escherichia coli. We previously showed that chaperonin GroEL/GroES depletion and overexpression sensitize and promote short-term tolerance, respectively, to this drug class. Here we show that chaperonin GroEL/GroES over-expression accelerates acquisition of aminoglycoside resistance and multi-drug resistance following sub-lethal aminoglycoside antibiotic exposure. Chaperonin buffering could provide a novel mechanism for antibiotic resistance and multi-drug resistance development.

  3. Identification of Antibiotic Use Pattern as an Effort to Control Antibiotic Resistance

    OpenAIRE

    Ivan S. Pradipta; Ellin Febrina; Muhammad H. Ridwan; Rani Ratnawati

    2012-01-01

    The objective of this study is to determine quantity and pattern of antibiotic use in hospitalized patients at one of Bandung’s private hospital that can give benefit in control of antibiotic resistance and procurement planning of antibiotic. Data of antibiotic consumption were obtained from hospital pharmacy department on February–September 2011. Data were processed using the ATC/DDD and DU90% method. There were 390,98 DDD/100 bed days and 381,34 DDD/100 bed days total of an-tbiotic use i...

  4. High-throughput screening of antibiotic-resistant bacteria in picodroplets.

    Science.gov (United States)

    Liu, X; Painter, R E; Enesa, K; Holmes, D; Whyte, G; Garlisi, C G; Monsma, F J; Rehak, M; Craig, F F; Smith, C A

    2016-04-26

    The prevalence of clinically-relevant bacterial strains resistant to current antibiotic therapies is increasing and has been recognized as a major health threat. For example, multidrug-resistant tuberculosis and methicillin-resistant Staphylococcus aureus are of global concern. Novel methodologies are needed to identify new targets or novel compounds unaffected by pre-existing resistance mechanisms. Recently, water-in-oil picodroplets have been used as an alternative to conventional high-throughput methods, especially for phenotypic screening. Here we demonstrate a novel microfluidic-based picodroplet platform which enables high-throughput assessment and isolation of antibiotic-resistant bacteria in a label-free manner. As a proof-of-concept, the system was used to isolate fusidic acid-resistant mutants and estimate the frequency of resistance among a population of Escherichia coli (strain HS151). This approach can be used for rapid screening of rare antibiotic-resistant mutants to help identify novel compound/target pairs. PMID:27033300

  5. A framework for global surveillance of antibiotic resistance

    NARCIS (Netherlands)

    Grundmann, Hajo; Klugman, Keith P.; Walsh, Timothy; Ramon-Pardo, Pilar; Sigauque, Betuel; Khan, Wasif; Laxminarayan, Ramanan; Heddini, Andreas; Stelling, John

    2011-01-01

    The foreseen decline in antibiotic effectiveness explains the needs for data to inform the global public health agenda about the magnitude and evolution of antibiotic resistance as a serious threat to human health and development. Opportunistic bacterial pathogens are the cause of the majority of co

  6. Evaluating antibiotic resistance genes in soils with applied manures

    Science.gov (United States)

    Antibiotics are commonly used in livestock production to promote growth and combat disease. Recent studies have shown the potential for spread of antibiotic resistance genes (ARG) to the environment following application of livestock manures. In this study, concentrations of bacteria with ARG in soi...

  7. Antibiotic Application and Emergence of Multiple Antibiotic Resistance (MAR) in Global Catfish Aquaculture.

    Science.gov (United States)

    Chuah, Li-Oon; Effarizah, M E; Goni, Abatcha Mustapha; Rusul, Gulam

    2016-06-01

    Catfish is one of the most cultivated species worldwide. Antibiotics are usually used in catfish farming as therapeutic and prophylactic agents. In the USA, only oxytetracycline, a combination of sulfadimethoxine and ormetoprim, and florfenicol are approved by the Food Drug Administration for specific fish species (e.g., catfish and salmonids) and their specific diseases. Misuse of antibiotics as prophylactic agents in disease prevention, however, is common and contributes in the development of antibiotic resistance. Various studies had reported on antibiotic residues and/or resistance in farmed species, feral fish, water column, sediments, and, in a lesser content, among farm workers. Ninety percent of the world aquaculture production is carried out in developing countries, which lack regulations and enforcement on the use of antibiotics. Hence, efforts are needed to promote the development and enforcement of such a regulatory structure. Alternatives to antibiotics such as antibacterial vaccines, bacteriophages and their lysins, and probiotics have been applied to curtail the increasing emergence of antibiotic-resistant bacteria due to the imprudent application of antibiotics in aquaculture. PMID:27038482

  8. Are Sewage Treatment Plants Promoting Antibiotic Resistance?

    Science.gov (United States)

    1. Introduction 1.1. How bacteria exhibit resistance 1.1.1. Resistance to -lactams 1.1.2. Resistance to sulphonamides and trimethoprim 1.1.3. Resistance to macrolides 1.1.4. Resistance to fluoroquinolones 1.1.5. Resistance to tetracyclines 1.1.6. Resistance to nitroimidaz...

  9. Antibiotic Resistance: The Need For a Global Strategy.

    Science.gov (United States)

    Elder, David P; Kuentz, Martin; Holm, René

    2016-08-01

    The development of antibiotic resistance is a major problem for mankind and results in fatal consequences on a daily basis across the globe. There are a number of reasons for this situation including increasing globalization with worldwide travel, health tourism, over use and ineffective use (both in man and animals), and counterfeiting of the antimicrobial drug products we have available currently. Although there are huge economical, demographic, legal and logistic differences among the global communities, there are also differences regarding the best approach to dealing with antibiotic resistance. However, as resistant bacteria do not respect international borders, there is clearly a need for a global strategy to minimize the spread of antibiotic resistance, to optimize the use of antibiotics, and to facilitate the development of new and effective medications. This commentary provides an insight into the issues and some of the ongoing programs to ensure an effective treatment for the future. PMID:27397433

  10. Studies on emergence and spread of antibiotic resistant Streptococcus pneumoniae

    OpenAIRE

    Karlsson, Diana

    2010-01-01

    Streptococcus pneumoniae is one of the major contributors to mortality and morbidity around the world. It causes a wide variety of diseases ranging from uncomplicated respiratory infections to life-threatening invasive infections such as meningitis and septicemia. In recent years, the effectiveness of antibiotic therapy has been hampered by the increasing rates of resistant pneumococci. As antibiotic resistance increases, there is a growing need for interventions that minimi...

  11. Intravenous antibiotics infusion and bacterial resistence: nursing responsability

    OpenAIRE

    Heloisa Helena Karnas Hoefel; Liana Lautert

    2006-01-01

    The success of antibiotics treatment and development of bacterial resistance depend on many factors. The preparation and management of these factors are associated with nursing care. The aim of this paper is review literature about preparation, management and knowledge of intravenous antibiotics errors analyzing possibilities of influence of bacterial resistance prevention by nurses. Methods: a systematic review was done from LiILACS and M...

  12. Plasmid Mediated Antibiotic Resistance in Isolated Bacteria From Burned Patients

    OpenAIRE

    Beige, Fahimeh; Baseri Salehi, Majid; Bahador, Nima; Mobasherzadeh, Sina

    2014-01-01

    Background: Nowadays, the treatment of burned patients is difficult because of the high frequency of infection with antibiotic resistance bacteria. Objectives: This study was conducted to evaluate the level of antibiotic resistance in Gram-negative bacteria and its relation with the existence of plasmid. Materials and Methods: The samples were collected from two hundred twenty hospitalized burned patients in Isfahan burn hospital during a three-month period (March 2012 to June 2012). The samp...

  13. Bactericidal antibiotic-phytochemical combinations against methicillin resistant Staphylococcus aureus

    OpenAIRE

    Bhone Myint Kyaw; Shuchi arora; Chu Sing Lim

    2012-01-01

    Methicillin resistant Staphylococcus aureus (MRSA) infection is a global concern nowadays. Due to its multi-drug resistant nature, treatment with conventional antibiotics does not assure desired clinical outcomes. Therefore, there is a need to find new compounds and/or alternative methods to get arsenal against the pathogen. Combination therapies using conventional antibiotics and phytochemicals fulfill both requirements. In this study, the efficacy of different phytochemicals in combination ...

  14. Targets for Combating the Evolution of Acquired Antibiotic Resistance

    OpenAIRE

    Culyba, Matthew J.; Mo, Charlie Y.; Kohli, Rahul M.

    2015-01-01

    Bacteria possess a remarkable ability to rapidly adapt and evolve in response to antibiotics. Acquired antibiotic resistance can arise by multiple mechanisms but commonly involves altering the target site of the drug, enzymatically inactivating the drug, or preventing the drug from accessing its target. These mechanisms involve new genetic changes in the pathogen leading to heritable resistance. This recognition underscores the importance of understanding how such genetic changes can arise. H...

  15. Antibiotic Resistance among Urinary Isolates from Female Outpatients in the United States in 2003 and 2012.

    Science.gov (United States)

    Sanchez, Guillermo V; Babiker, Ahmed; Master, Ronald N; Luu, Tony; Mathur, Anisha; Bordon, Jose

    2016-05-01

    A retrospective analysis was performed using The Surveillance Network, USA, to examine the prevalence of antibiotic resistance among urine isolates from U.S. female outpatients in 2012 and assessed trends in antibiotic resistance comparing data from 2003 and 2012. The most common pathogen identified in 2012 (n = 285,325) was Escherichia coli (64.9% of isolates). In 2012, E. coli resistance to nitrofurantoin was low (<3%) across all age groups. E. coli resistance to ciprofloxacin was high among adults (11.8%) and elderly outpatients (29.1%). When comparing the 2003 and 2012 data from isolates from adults, E. coli resistance to nitrofurantoin changed only slightly (from 0.7% to 0.9%), whereas increases in resistance to ciprofloxacin (3.6% to 11.8%) and trimethoprim-sulfamethoxazole (17.2% to 22.2%) changed substantially. In the United States, E. coli has become increasingly resistant to ciprofloxacin and trimethoprim-sulfamethoxazole (TMP-SMX) in adult female outpatients. Nitrofurantoin retains high levels of antibiotic activity against urinary E. coli. PMID:26883714

  16. Tolerance of Escherichia coli to fluoroquinolone antibiotics depends on specific components of the SOS response pathway.

    Science.gov (United States)

    Theodore, Alyssa; Lewis, Kim; Vulic, Marin

    2013-12-01

    Bacteria exposed to bactericidal fluoroquinolone (FQ) antibiotics can survive without becoming genetically resistant. Survival of these phenotypically resistant cells, commonly called "persisters," depends on the SOS gene network. We have examined mutants in all known SOS-regulated genes to identify functions essential for tolerance in Escherichia coli. The absence of DinG and UvrD helicases and the Holliday junction processing enzymes RuvA and RuvB leads to a decrease in survival. Analysis of the respective mutants indicates that, in addition to repair of double-strand breaks, tolerance depends on the repair of collapsed replication forks and stalled transcription complexes. Mutation in recF results in increased survival, which identifies RecAF recombination as a poisoning mechanism not previously linked to FQ lethality. DinG acts upstream of SOS promoting its induction, whereas RuvAB participates in repair only. UvrD directly promotes all repair processes initiated by FQ-induced damage and prevents RecAF-dependent misrepair, making it one of the crucial SOS functions required for tolerance.

  17. Tolerance of Escherichia coli to fluoroquinolone antibiotics depends on specific components of the SOS response pathway.

    Science.gov (United States)

    Theodore, Alyssa; Lewis, Kim; Vulic, Marin

    2013-12-01

    Bacteria exposed to bactericidal fluoroquinolone (FQ) antibiotics can survive without becoming genetically resistant. Survival of these phenotypically resistant cells, commonly called "persisters," depends on the SOS gene network. We have examined mutants in all known SOS-regulated genes to identify functions essential for tolerance in Escherichia coli. The absence of DinG and UvrD helicases and the Holliday junction processing enzymes RuvA and RuvB leads to a decrease in survival. Analysis of the respective mutants indicates that, in addition to repair of double-strand breaks, tolerance depends on the repair of collapsed replication forks and stalled transcription complexes. Mutation in recF results in increased survival, which identifies RecAF recombination as a poisoning mechanism not previously linked to FQ lethality. DinG acts upstream of SOS promoting its induction, whereas RuvAB participates in repair only. UvrD directly promotes all repair processes initiated by FQ-induced damage and prevents RecAF-dependent misrepair, making it one of the crucial SOS functions required for tolerance. PMID:24077306

  18. Changes in Enterococcal and E coli populations and related antibiotic resistance from medical center to receiving environment

    Science.gov (United States)

    Petit, F.; Berthe, T.; Oberle, K.; Denamur, E.; Clermont, O.; Leclercq, R.; Cattoir, V.; Budzinski, H.

    2013-12-01

    The spread of antibiotic-resistant faecal bacteria and their corresponding genes in water environment, as a result of the overuse of antibiotics, have become an ecological and a public problem. The aim of this multidisciplinary research program (FLASH) -associating chemists, hydrologists, clinical and environmental microbiologists- was to determine to what extent the hospital effluent have an ecological impact on the downstream aquatic environment. For this purpose, fate of Escherichia coli (distribution of phylogenetic groups, antibiotic resistance, integrons- 342 strains) and Enterococci (diversity, antibiotic resistance, genes ermB, mefA, clonal complex 17- 235 strains ) was analyzed in water and sediments along a medical center - WWTP - river - estuary continuum, during a high epidemiologic period in the North west of France. A multi-residue chemical methodology was developed in order to detect low levels of 34 antibiotics in water. To link occurrence of antibiotic-resistant bacteria in water and antibiotic prescription, we use the data collection from the hospital and the antibiotics sales information. In the medical center, the main prescribed antibiotic (amoxicillin) was weakly found in effluents. Along the continuum, contamination of water by antibiotics decreased from 160μg.L-1 (cefotaxim) in hospital effluents to 1ng.L-1 (ofloxacin) in the river. These concentrations were too low to exert a selective pressure (mg.L-1) on antibiotic-resistant bacteria. In same samples, occurrences of antibiotic-resistant E. coli and those harboring a class 1 integrons decreased significantly (p-value Enterococcus populations, E. faecium was mainly isolated (from 89% to 98%). All E. faecium isolates from medical center effluents were multiply antibiotic-resistant, contained erm(B) and mef(A) genes, and belonged to the hospital adapted CC17. The relative proportion of CC17 decreased in favor of other subpopulations, less resistant to antibiotics along the continuum. In the

  19. Antibiotic Resistance Related to Biofilm Formation in Klebsiella pneumoniae.

    Science.gov (United States)

    Vuotto, Claudia; Longo, Francesca; Balice, Maria Pia; Donelli, Gianfranco; Varaldo, Pietro E

    2014-01-01

    The Gram-negative opportunistic pathogen, Klebsiella pneumoniae, is responsible for causing a spectrum of community-acquired and nosocomial infections and typically infects patients with indwelling medical devices, especially urinary catheters, on which this microorganism is able to grow as a biofilm. The increasingly frequent acquisition of antibiotic resistance by K. pneumoniae strains has given rise to a global spread of this multidrug-resistant pathogen, mostly at the hospital level. This scenario is exacerbated when it is noted that intrinsic resistance to antimicrobial agents dramatically increases when K. pneumoniae strains grow as a biofilm. This review will summarize the findings about the antibiotic resistance related to biofilm formation in K. pneumoniae.

  20. Antibiotics in animal feed and their role in resistance development

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar

    2003-01-01

    Animals and humans constitute overlapping reservoirs of resistance, and consequently use of antimicrobials in animals can impact on public health. For example, the occurrence of vancomycin-resistant enterococci in food-animals is associated with the use of avoparcin, a glycopeptide antibiotic used...... as a feed additive for the growth promotion of animals. Vancomycin-resistant enterococci and vancomycin resistance determinants can therefore spread from animals to humans. The bans on avoparcin and other antibiotics as growth promoters in the EU have provided scientists with a unique opportunity...

  1. Public Beliefs about Antibiotics, Infection and Resistance: A Qualitative Study

    Directory of Open Access Journals (Sweden)

    Helen Madden

    2013-11-01

    Full Text Available We aimed to gain an in-depth understanding of public views and ways of talking about antibiotics. Four focus groups were held with members of the public. In addition, 39 households were recruited and interviews, diaries of medicine taking, diaries of any contact with medication were used to explore understanding and use of medication. Discussions related to antibiotics were identified and analyzed. Participants in this study were worried about adverse effects of antibiotics, particularly for recurrent infections. Some were concerned that antibiotics upset the body’s “balance”, and many used strategies to try to prevent and treat infections without antibiotics. They rarely used military metaphors about infection (e.g., describing bacteria as invading armies but instead spoke of clearing infections. They had little understanding of the concept of antibiotic resistance but they thought that over-using antibiotics was unwise because it would reduce their future effectiveness. Previous studies tend to focus on problems such as lack of knowledge, or belief in the curative powers of antibiotics for viral illness, and neglect the concerns that people have about antibiotics, and the fact that many people try to avoid them. We suggest that these concerns about antibiotics form a resource for educating patients, for health promotion and social marketing strategies.

  2. Co-occurrence of antibiotic drugs, resistant bacteria and resistance genes in runoff from cattle feedlots

    Science.gov (United States)

    Agricultural uses of antibiotics raises concerns about the development of antibiotic resistance in food animals, and the potential to transmit resistance to human clinical settings via fecal contamination of surface and ground water. Although there is broad agreement that agricultural resistance can...

  3. Antibiotic tolerance and resistance in biofilms

    DEFF Research Database (Denmark)

    Ciofu, Oana; Tolker-Nielsen, Tim

    2010-01-01

    One of the most important features of microbial biofilms is their tolerance to antimicrobial agents and components of the host immune system. The difficulty of treating biofilm infections with antibiotics is a major clinical problem. Although antibiotics may decrease the number of bacteria...... in biofilms, they will not completely eradicate the bacteria in vivo which may have important clinical consequences in form of relapses of the infection....

  4. Wastewater as a Source of Carbapenem Resistant Escherichia coli

    Science.gov (United States)

    Clinical studies have reported that the occurrence of carbapenem resistant E. coli is on the rise. This is of concern because carbapenem antibiotics are typically reserved for treating infections caused by bacteria resistant to other classes of antibiotics. Current literature st...

  5. Water quality and antibiotic resistance at beaches of the Galápagos Islands

    Directory of Open Access Journals (Sweden)

    Katie eOverbey

    2015-10-01

    Full Text Available Tourism and residential population growth are increasing on the Galápagos Islands, yet the effects of this growth on environmental quality are not well understood. The goal of this study was to characterize recreational water quality on one of the inhabited islands of the Galápagos (Isla San Cristóbal. Five beaches were sampled to allow a comparison between beaches with and without discharge of human sewage, and to help elucidate the effects of human activities in this unique environment. Enterococcus concentrations were quantified using IDEXX Enterolert® and antibiotic resistance testing was performed on Escherichia coli isolated by membrane filtration. All study beaches sometimes exceeded international guidelines for recreational water quality, and significantly higher Enterococcus concentrations were found near sites subjected to sewage discharge (p < 0.01. These sewage-impacted sites also had higher levels of antibiotic resistant E. coli, suggesting that human activities are increasing the levels of resistance that would occur naturally. Future studies should characterize the extent of this impact both spatially and temporally. The results of this study demonstrate that sewage can contribute antibiotic resistant bacteria to marine waters and suggest that human impacts in the Galápagos Islands extend to the environmental resistome. This impact is likely common in areas across the globe wherever tourists frequently carry and use antibiotics.

  6. Intravenous antibiotics infusion and bacterial resistence: nursing responsability

    Directory of Open Access Journals (Sweden)

    Heloisa Helena Karnas Hoefel

    2006-12-01

    Full Text Available The success of antibiotics treatment and development of bacterial resistance depend on many factors. The preparation and management of these factors are associated with nursing care. The aim of this paper is review literature about preparation, management and knowledge of intravenous antibiotics errors analyzing possibilities of influence of bacterial resistance prevention by nurses. Methods: a systematic review was done from LiILACS and Medline searching for the word nursing and bacterial resistance, antibiotics control, hospital infections, administration drugs, errors and adverse events. There were chose 58 papers about nursing and/or were basics for international and Brazilian studies. Results: It was described international classifications errors and consequences analyzing their possible influences on antibiotics effects. Based on these knowledge, interventions are recommended to implement safety practice and care.

  7. The ABC of Ribosome-Related Antibiotic Resistance

    Science.gov (United States)

    Wilson, Daniel N.

    2016-01-01

    ABSTRACT The increase in multidrug-resistant pathogenic bacteria is limiting the utility of our current arsenal of antimicrobial agents. Mechanistically understanding how bacteria obtain antibiotic resistance is a critical first step to the development of improved inhibitors. One common mechanism for bacteria to obtain antibiotic resistance is by employing ATP-binding cassette (ABC) transporters to actively pump the drug from the cell. The ABC-F family includes proteins conferring resistance to a variety of clinically important ribosome-targeting antibiotics; however, controversy remains as to whether resistance is conferred via efflux like other ABC transporters or whether another mechanism, such as ribosome protection, is at play. A recent study by Sharkey and coworkers (L. K. Sharkey, T. A. Edwards, and A. J. O’Neill, mBio 7:e01975-15, 2016, http://dx.doi.org/10.1128/mBio.01975-15) provides strong evidence that ABC-F proteins conferring antibiotic resistance utilize ribosome protection mechanisms, namely, by interacting with the ribosome and displacing the drug from its binding site, thus revealing a novel role for ABC-F proteins in antibiotic resistance. PMID:27143393

  8. Water Disinfection Byproducts Induce Antibiotic Resistance-Role of Environmental Pollutants in Resistance Phenomena.

    Science.gov (United States)

    Li, Dan; Zeng, Siyu; He, Miao; Gu, April Z

    2016-03-15

    The spread of antibiotic resistance represents a global threat to public health, and has been traditionally attributed to extensive antibiotic uses in clinical and agricultural applications. As a result, researchers have mostly focused on clinically relevant high-level resistance enriched by antibiotics above the minimal inhibitory concentrations (MICs). Here, we report that two common water disinfection byproducts (chlorite and iodoacetic acid) had antibiotic-like effects that led to the evolution of resistant E. coli strains under both high (near MICs) and low (sub-MIC) exposure concentrations. The subinhibitory concentrations of DBPs selected strains with resistance higher than those evolved under above-MIC exposure concentrations. In addition, whole-genome analysis revealed distinct mutations in small sets of genes known to be involved in multiple drug and drug-specific resistance, as well as in genes not yet identified to play role in antibiotic resistance. The number and identities of genetic mutations were distinct for either the high versus low sub-MIC concentrations exposure scenarios. This study provides evidence and mechanistic insight into the sub-MIC selection of antibiotic resistance by antibiotic-like environmental pollutants such as disinfection byproducts in water, which may be important contributors to the spread of global antibiotic resistance. The results from this study open an intriguing and profound question on the roles of large amount and various environmental contaminants play in selecting and spreading the antibiotics resistance in the environment. PMID:26928861

  9. The use of platensimycin and platencin to fight antibiotic resistance.

    Science.gov (United States)

    Allahverdiyev, Adil M; Bagirova, Melahat; Abamor, Emrah Sefik; Ates, Sezen Canim; Koc, Rabia Cakir; Miraloglu, Meral; Elcicek, Serhat; Yaman, Serkan; Unal, Gokce

    2013-01-01

    Infectious diseases are known as one of the most life-threatening disabilities worldwide. Approximately 13 million deaths related to infectious diseases are reported each year. The only way to combat infectious diseases is by chemotherapy using antimicrobial agents and antibiotics. However, due to uncontrolled and unnecessary use of antibiotics in particular, surviving bacteria have evolved resistance against several antibiotics. Emergence of multidrug resistance in bacteria over the past several decades has resulted in one of the most important clinical health problems in modern medicine. For instance, approximately 440,000 new cases of multidrug-resistant tuberculosis are reported every year leading to the deaths of 150,000 people worldwide. Management of multidrug resistance requires understanding its molecular basis and the evolution and dissemination of resistance; development of new antibiotic compounds in place of traditional antibiotics; and innovative strategies for extending the life of antibiotic molecules. Researchers have begun to develop new antimicrobials for overcoming this important problem. Recently, platensimycin - isolated from extracts of Streptomyces platensis - and its analog platencin have been defined as promising agents for fighting multidrug resistance. In vitro and in vivo studies have shown that these new antimicrobials have great potential to inhibit methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and penicillin-resistant Streptococcus pneumoniae by targeting type II fatty acid synthesis in bacteria. Showing strong efficacy without any observed in vivo toxicity increases the significance of these antimicrobial agents for their use in humans. However, at the present time, clinical trials are insufficient and require more research. The strong antibacterial efficacies of platensimycin and platencin may be established in clinical trials and their use in humans for coping with multidrug resistance may be

  10. Impact of antibiotic resistance on chemotherapy for pneumococcal infections

    OpenAIRE

    Pallarés Giner, Roman; Viladrich, P F; Liñares Louzao, Josefina; Cabellos Mínguez, Ma. Carmen; Gudiol i Munté, Francesc

    1998-01-01

    Over the past three decades, penicillin-resistant pneumococci have emerged worldwide. In addition, penicillin-resistant strains have also decreased susceptibility to other β-lactams (including cephalosporins) and these strains are often resistant to other antibiotic groups, making the treatment options much more difficult. Nevertheless, the present in vitro definitions of resistance to penicillin and cephalosporins in pneumococci could not be appropriated for all types of pneumococcal infecti...

  11. STUDIES ON SUSCEPTIBILITY AND RESISTANCE PATTERNS OF VARIOUS E. COLI ISOLATED FROM DIFFERENT WATER SAMPLES AGAINST CLINICALLY SIGNIFICANT ANTIBIOTICS

    OpenAIRE

    Rudrangshu Chatterjee, Shraddha Sinha, Silky Aggarwal, Amita Gaurav Dimri, Dushyant Singh, Pankaj Goyal, Abhishek

    2012-01-01

    Escherichia coli is an emerging pathogen of the greatest concern as it is the leading cause of various severe infections of stomach, urinary tract, ear, wound etc. in humans. Increasing rates of antimicrobial resistance among E. coli is another furthermost fret worldwide. This problem is more traumatic when water bodies are getting contaminated with faecal pollution and inappropriate use of antibiotics that led to emergence of multi-drug resistant strains of this normal microbiota of human in...

  12. ANTIBIOTIC RESISTANCE IN THE OPPORTUNISTIC PATHOGEN STENOTROPHOMONAS MALTOPHILIA

    Directory of Open Access Journals (Sweden)

    María Blanca Sánchez

    2015-06-01

    Full Text Available Stenotrophomonas maltophilia is an environmental bacterium found in the soil, associated with plants and animals, and in aquatic environments. It is also an opportunistic pathogen now causing an increasing number of nosocomial infections. The treatment of S. maltophilia is quite difficult given its intrinsic resistance to a number of antibiotics, and because it is able to acquire new resistances via horizontal gene transfer and mutations. Certainly, strains resistant to quinolones, cotrimoxale and/or cephalosporins - antibiotics commonly used to treat S. maltophilia infections - have emerged. The increasing number of available S. maltophilia genomes has allowed the identification and annotation of a large number of antimicrobial and heavy metal resistance genes. Most encode inactivating enzymes and efflux pumps, but information on their role in intrinsic and acquired resistance is limited. Non-typical antibiotic resistance mechanisms that also form part of the intrinsic resistome have been identified via mutant library screening. These include non-typical antibiotic resistance genes, such as bacterial metabolism genes, and non-inheritable resistant phenotypes, such as biofilm formation and persistence. Their relationships with resistance are complex and require further study.

  13. Monitoring and Analysis on Multi Drug Resistance of Escherichia coli from Captive Population Amur Tiger

    Institute of Scientific and Technical Information of China (English)

    Xue; Yuan; Li; Fengyong; Sun; Jing; Cai; Longhui; Wu; Qingming; Zhou; Ming; Huang; Xianguang; Hua; Yuping

    2014-01-01

    In order to investigate the multi drug resistance to Escherichia coli from captive population Amur tiger,E. coli strains were isolated from the fecal samples of tiger in Heilongjiang Amur Tiger Park in Harbin. The sensitivity of E. coli isolates to 14 antibiotics was determined by scrip diffusion method. The results indicated that all the isolates varied in drug resistance to different antibiotics; the isolates gave high resistance to ampicillin,with a drug fast rate of 100%; over80% of the isolates were resistant to tetracycline and Paediatric Compound Sulfamethoxazole Tablets(SMZ- TMP),and over 70% of the isolates were sensitive to aztreonam,amoxicillin /potassium clavulanate. Most of the isolates had high sensitive to aztreonam and amoxicillin / clavulanate acid.

  14. Resistance to colistin: what is the fate for this antibiotic in pig production?

    Science.gov (United States)

    Rhouma, Mohamed; Beaudry, Francis; Letellier, Ann

    2016-08-01

    Colistin, a cationic polypeptide antibiotic, has reappeared in human medicine as a last-line treatment option for multidrug-resistant Gram-negative bacteria (MDR-GNB). Colistin is widely used in veterinary medicine for the treatment of gastrointestinal infections caused by Enterobacteriaceae. GNB resistant to colistin owing to chromosomal mutations have already been reported both in human and veterinary medicine, however several recent studies have just identified a plasmid-mediated mcr-1 gene encoding for colistin resistance in Escherichia coli colistin resistance. The discovery of a non-chromosomal mechanism of colistin resistance in E. coli has led to strong reactions in the scientific community and to concern among physicians and veterinarians. Colistin use in food animals and particularly in pig production has been singled out as responsible for the emergence of colistin resistance. The present review will focus mainly on the possible link between colistin use in pigs and the spread of colistin resistance in Enterobacteriaceae. First we demonstrate a possible link between Enterobacteriaceae resistance emergence and oral colistin pharmacokinetics/pharmacodynamics and its administration modalities in pigs. We then discuss the potential impact of colistin use in pigs on public health with respect to resistance. We believe that colistin use in pig production should be re-evaluated and its dosing and usage optimised. Moreover, the search for competitive alternatives to using colistin with swine is of paramount importance to preserve the effectiveness of this antibiotic for the treatment of MDR-GNB infections in human medicine. PMID:27234675

  15. "Population structure of drug-susceptible,-resistant and ESBL-producing Escherichia coli from community-acquired urinary tract"

    DEFF Research Database (Denmark)

    Hertz, Frederik Boëtius; Nielsen, Jesper Boye; Schønning, Kristian;

    2016-01-01

    BACKGROUND: Escherichia coli is the most common cause of urinary tract infection (UTI). The pathogenic isolates are becoming increasingly resistant to antibiotics; with a worldwide dissemination of resistant sequence types (ST). We characterized three different uropathogenic E. coli populations, ...... population was a much more diverse group than the resistant and ESBL-producing E. coli populations. Overall, these findings suggest that dominant ESBL-producing lineages are derived from UPEC lineages already established in the general UPEC population....

  16. Increased prevalence of antibiotic-resistant E. coli in gulls sampled in Southcentral Alaska is associated with urban environments

    Science.gov (United States)

    Atterby, Clara; Ramey, Andrew M.; Hall, Gabriel Gustafsson; Järhult, Josef; Börjesson, Stefan; Bonnedahl, Jonas

    2016-01-01

    Background Antibiotic-resistant bacteria pose challenges to healthcare delivery systems globally; however, limited information is available regarding the prevalence and spread of such bacteria in the environment. The aim of this study was to compare the prevalence of antibiotic-resistant bacteria in large-bodied gulls (Larus spp.) at urban and remote locations in Southcentral Alaska to gain inference into the association between antibiotic resistance in wildlife and anthropogenically influenced habitats. Methods Escherichia coli was cultured (n=115 isolates) from fecal samples of gulls (n=160) collected from a remote location, Middleton Island, and a more urban setting on the Kenai Peninsula. Results Screening of E. coli from fecal samples collected from glaucous-winged gulls (Larus glaucescens) at Middleton Island revealed 8% of isolates were resistant to one or more antibiotics and 2% of the isolates were resistant to three or more antibiotics. In contrast, 55% of E. coli isolates derived from fecal samples collected from large-bodied gulls (i.e. glaucous, herring [Larus argentatus], and potentially hybrid gulls) on the Kenai Peninsula were resistant to one or more antibiotics and 22% were resistant to three or more antibiotics. In addition, total of 16% of the gull samples from locations on the Kenai Peninsula harbored extended-spectrum cephalosporin-resistant E. coli isolates (extended-spectrum beta-lactamases [ESBL] and plasmid-encoded AmpC [pAmpC]), in contrast to Middleton Island where no ESBL- or pAmpC-producing isolates were detected. Conclusion Our findings indicate that increased prevalence of antibiotic resistance is associated with urban environments in Southcentral Alaska and presumably influenced by anthropogenic impacts. Further investigation is warranted to assess how migratory birds may maintain and spread antimicrobial-resistant bacteria of relevance to human and animal health. PMID:27649798

  17. Increased prevalence of antibiotic-resistant E. coli in gulls sampled in Southcentral Alaska is associated with urban environments

    Directory of Open Access Journals (Sweden)

    Clara Atterby

    2016-09-01

    Full Text Available Background: Antibiotic-resistant bacteria pose challenges to healthcare delivery systems globally; however, limited information is available regarding the prevalence and spread of such bacteria in the environment. The aim of this study was to compare the prevalence of antibiotic-resistant bacteria in large-bodied gulls (Larus spp. at urban and remote locations in Southcentral Alaska to gain inference into the association between antibiotic resistance in wildlife and anthropogenically influenced habitats. Methods: Escherichia coli was cultured (n=115 isolates from fecal samples of gulls (n=160 collected from a remote location, Middleton Island, and a more urban setting on the Kenai Peninsula. Results: Screening of E. coli from fecal samples collected from glaucous-winged gulls (Larus glaucescens at Middleton Island revealed 8% of isolates were resistant to one or more antibiotics and 2% of the isolates were resistant to three or more antibiotics. In contrast, 55% of E. coli isolates derived from fecal samples collected from large-bodied gulls (i.e. glaucous, herring [Larus argentatus], and potentially hybrid gulls on the Kenai Peninsula were resistant to one or more antibiotics and 22% were resistant to three or more antibiotics. In addition, total of 16% of the gull samples from locations on the Kenai Peninsula harbored extended-spectrum cephalosporin-resistant E. coli isolates (extended-spectrum beta-lactamases [ESBL] and plasmid-encoded AmpC [pAmpC], in contrast to Middleton Island where no ESBL- or pAmpC-producing isolates were detected. Conclusion: Our findings indicate that increased prevalence of antibiotic resistance is associated with urban environments in Southcentral Alaska and presumably influenced by anthropogenic impacts. Further investigation is warranted to assess how migratory birds may maintain and spread antimicrobial-resistant bacteria of relevance to human and animal health.

  18. Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii

    Science.gov (United States)

    Wan, Guoqing; Ruan, Lingao; Yin, Yu; Yang, Tian; Ge, Mei; Cheng, Xiaodong

    2016-01-01

    Acinetobacter baumannii resistance to carbapenem antibiotics is a serious clinical challenge. As a newly developed technology, silver nanoparticles (AgNPs) show some excellent characteristics compared to older treatments, and are a candidate for combating A. baumannii infection. However, its mechanism of action remains unclear. In this study, we combined AgNPs with antibiotics to treat carbapenem-resistant A. baumannii (aba1604). Our results showed that single AgNPs completely inhibited A. baumannii growth at 2.5 μg/mL. AgNP treatment also showed synergistic effects with the antibiotics polymixin B and rifampicin, and an additive effect with tigecyline. In vivo, we found that AgNPs–antibiotic combinations led to better survival ratios in A. baumannii-infected mouse peritonitis models than that by single drug treatment. Finally, we employed different antisense RNA-targeted Escherichia coli strains to elucidate the synergistic mechanism involved in bacterial responses to AgNPs and antibiotics. PMID:27574420

  19. [New aspects of antibiotic resistance and possibilities of its prevention].

    Science.gov (United States)

    Blahová, J; Králiková, K; Krcméry, V

    2001-08-01

    New phenomena of the antibiotic resistance in bacteria have recently appeared. The may hold present explosive development of resistance and prevent its transferability from multiple drug resistant bacteria to still sensitive ones. They may prevent the production of so-called extended-spectrum beta-lactamases (ESBLs) among Enterobacteriaceae producing resistance virtually to all penicillins and cephalosporins with exception of those antibiotics potentiated by clavulanic acid or sulbactam, the resistance to vancomycin in enterococci and staphylococce, and the resistance of Stenotrophomonas maltophilia. Factors participating on the development of resistance include: a) transferability of resistance genes among bacteria which explosively change susceptible strains to resistant ones, b) dosage and types of antibiotics which cause the selection pressure to certain species of bacteria, c) level of organization and strict adherence to hygienic and anti-epidemic regimen starting with the entry of patients into the hospital. Analyses are necessary to check whether the patient brings resistant bacteria with a transferable resistance (with ESBLs) into the hospital. Preventive measures would be strictly applied to stop the clonal spread of resistant strains among the patients and/or hospital environment, which occurs if these strains have such opportunity. Last, but not least to be considered is the dosage, composition and rationality of administration of antibacterials, mainly in post-operative prophylaxis in intensive care units, in so-called empirical usage, etc. At the same time, it would be highly unethical to hesitate with application of antibacterials to patients when it is justified, necessary and rational. Hospital antibiotics policy should rationally decide between these alternatives in each application of antibiotics or their combinations.

  20. 我国部分地区奶牛乳房炎源大肠杆菌生物学特性及耐药性分析%Characterization and Antibiotic Resistance of Ninety-five Strains of Escherichia coli Isolated from Bovine with Mastitis in Some Regions of China

    Institute of Scientific and Technical Information of China (English)

    徐继英; 刘俊林; 李先波; 霍生东; 杨志强

    2012-01-01

    调查奶牛乳房炎源大肠杆菌的某些生物学特性及其耐药状况,以提高药物疗效,减少牛乳中药物的残留.本研究从国内7个省、市、自治区部分地区患乳房炎奶牛的乳样中分离纯化与鉴定出95株大肠杆菌(Escherichia coli),并对大肠杆菌分离株进行O血清型鉴定、小鼠(Mus musculus)致病性试验以及抗菌药物敏感性分析.研究结果显示,95株大肠杆菌共鉴定出37种血清型,覆盖了54株分离株,另有2株自凝,39株未鉴定出型,较常见血清型为093和09;大肠杆菌分离株接种小白鼠剖检可见明显病变;95株大肠杆菌对16种抗菌药物中的8种药物耐药率超过50%,青霉素的耐药率甚至达到100%,同一菌株最多耐药14种,最少耐药2种,耐药6种以上菌株占到51.58%.表明,奶牛乳房炎源大肠杆菌分离株血清型比较复杂,且对多种药物产生不同程度的耐药性,存在着严重的多重耐药情况.本研究为奶牛乳房炎疫苗的研制和乳房炎的临床治疗提供理论依据.%The aim of the study was to investigate that characterization and antibiotic resistance of Escherichia coli isolated from bovine mastitis in some areas of China for raising therapeutic effect and decreasing drug residues. Milk samples of clinical and subclinical bovine mastitis were collected from seven provinces in China and a total of 95 E. Coli isolates were further identified by microbiological tests. Following, serotype, pathogenicity and antibiotic resistance of 95 strains were also studied. The results showed that for the 95 E. Coli strains, 54 isolates were identified as 37 serogroups, 2 isolates were self-clumpinged and 39 isolates could not be serotyped, 093 and 09 serotypes were the most common serogroups. Obviously pathological changes were observed in internal organs of dissected experiment mouse (Mus musculus). Among the 95 strains, the rate of drug fast to 8 out of 16 antibacterial drugs exceeded 50%, and a same

  1. Plasmidic qnrA3 enhances Escherichia coli fitness in absence of antibiotic exposure.

    Directory of Open Access Journals (Sweden)

    Adrien Michon

    Full Text Available The widespread presence of plasmid-mediated quinolone resistance determinants, particularly qnr genes, has become a current issue. By protecting DNA-gyrase from quinolones, Qnr proteins confer a low level quinolone resistance that is not sufficient to explain their emergence. Since Qnr proteins were hypothesized to act as DNA-binding protein regulators, qnr genes could have emerged by providing a selective advantage other than antibiotic resistance. We investigated host fitness of Escherichia coli isogenic strains after acquisition of the qnrA3 gene, inserted either alone onto a small plasmid (pBR322, or harbored on a large conjugative native plasmid, pHe96(qnrA3 found in a clinical isolate. The isogenic strains were derived from the susceptible E. coli CFT073, a virulent B2 group strain known to infect bladder and kidneys in a mouse model of pyelonephritis. In vitro experiments included growth analysis by automatic spectrophotometry and flow cytometry, and competitions with CFU enumeration. In vivo experiments included infection with each strain and pairwise competitions in absence of antimicrobial exposure. As controls for our experiments we used mutations known to reduce fitness (rpsL K42N mutation or to enhance fitness (tetA deletion in pBR322. E. coli CFT073 transformed with pBRAM(PBR322-qnrA3 had significantly higher maximal OD than E. coli CFT073 transformed with pBR322 or pBR322ΔtetA, and in vivo competitions were more often won by the qnrA3 carrying strain (24 victories vs. 9 loss among 42 competitions, p = 0.001. In contrast, when pHe96(qnrA3 was introduced by conjugation in E. coli CFT073, it exerted a fitness cost shown by an impaired growth observed in vitro and in vivo and a majority of lost competitions (33/35, p<0.0001. In conclusion, qnrA3 acquisition enhanced bacterial fitness, which may explain qnr emergence and suggests a regulation role of qnr. However, fitness was reduced when qnrA3 was inserted onto multidrug-resistant

  2. Mobile antibiotic resistance - the spread of genes determining the resistance of bacteria through food products.

    Science.gov (United States)

    Godziszewska, Jolanta; Guzek, Dominika; Głąbski, Krzysztof; Wierzbicka, Agnieszka

    2016-01-01

    In recent years, more and more antibiotics have become ineffective in the treatment of bacterial nfections. The acquisition of antibiotic resistance by bacteria is associated with circulation of genes in the environment. Determinants of antibiotic resistance may be transferred to pathogenic bacteria. It has been shown that conjugation is one of the key mechanisms responsible for spread of antibiotic resistance genes, which is highly efficient and allows the barrier to restrictions and modifications to be avoided. Some conjugative modules enable the transfer of plasmids even between phylogenetically distant bacterial species. Many scientific reports indicate that food is one of the main reservoirs of these genes. Antibiotic resistance genes have been identified in meat products, milk, fruits and vegetables. The reason for such a wide spread of antibiotic resistance genes is the overuse of antibiotics by breeders of plants and animals, as well as by horizontal gene transfer. It was shown, that resistance determinants located on mobile genetic elements, which are isolated from food products, can easily be transferred to another niche. The antibiotic resistance genes have been in the environment for 30 000 years. Their removal from food products is not possible, but the risks associated with the emergence of multiresistant pathogenic strains are very large. The only option is to control the emergence, selection and spread of these genes. Therefore measures are sought to prevent horizontal transfer of genes. Promising concepts involve the combination of developmental biology, evolution and ecology in the fight against the spread of antibiotic resistance. PMID:27383577

  3. The role of outer membrane in Serratia marcescens intrinsic resistance to antibiotics.

    Science.gov (United States)

    Sánchez, L; Ruiz, N; Leranoz, S; Viñas, M; Puig, M

    1997-09-01

    Three different porins from Serratia marcescens were described. They were named Omp1, Omp2 and Omp3 and their molecular weights were 42, 40 and 39 kDa respectively. Omp2 and Omp3 showed osmoregulation and thermoregulation in a similar way to OmpC and OmpF of Escherichia coli. Permeability coefficients of the outer membrane of this species were calculated following the Zimmermann and Rosselet method. P values were similar to those obtained in Escherichia coli, which suggests that the chromosomal beta-lactamase would play a major role in the resistance of Serratia marcescens to beta-lactam antibiotics. Both MIC values and permeabilities were modified by salycilates and acetylsalycilate. Synergism between the outer membrane and the beta-lactamase was also evaluated. When bacteria grew in the presence of a beta-lactam in the medium, the beta-lactamase accounted for most of the resistance.

  4. Aerobic bacterial profile and antibiotic resistance in patients with diabetic foot infections

    Directory of Open Access Journals (Sweden)

    Michele Cezimbra Perim

    2015-10-01

    Full Text Available ABSTRACTINTRODUCTION: This study aimed to determine the frequencies of bacterial isolates cultured from diabetic foot infections and assess their resistance and susceptibility to commonly used antibiotics.METHODS: This prospective study included 41 patients with diabetic foot lesions. Bacteria were isolated from foot lesions, and their antibiotic susceptibility pattern was determined using the Kirby-Bauer disk diffusion method and/or broth method [minimum inhibitory concentration (MIC].RESULTS: The most common location of ulceration was the toe (54%, followed by the plantar surface (27% and dorsal portion (19%. A total of 89 bacterial isolates were obtained from 30 patients. The infections were predominantly due to Gram-positive bacteria and polymicrobial bacteremia. The most commonly isolated Gram-positive bacteria were Staphylococcus aureus, followed by Staphylococcus saprophyticus, Staphylococcus epidermidis, Streptococcus agalactiae, and Streptococcus pneumoniae. The most commonly isolated Gram-negative bacteria were Proteus spp. and Enterobacterspp., followed by Escherichia coli, Pseudomonasspp., and Citrobacterspp. Nine cases of methicillin-resistant Staphylococcus aureus (MRSA had cefoxitin resistance, and among these MRSA isolates, 3 were resistant to vancomycin with the MIC technique. The antibiotic imipenem was the most effective against both Gram-positive and Gram-negative bacteria, and gentamicin was effective against Gram-negative bacteria.CONCLUSIONS: The present study confirmed the high prevalence of multidrug-resistant pathogens in diabetic foot ulcers. It is necessary to evaluate the different microorganisms infecting the wound and to know the antibiotic susceptibility patterns of the isolates from the infected wound. This knowledge is crucial for planning treatment with the appropriate antibiotics, reducing resistance patterns, and minimizing healthcare costs.

  5. Tropical Atlantic marine macroalgae with bioactivity against virulent and antibiotic resistant Vibrio

    Directory of Open Access Journals (Sweden)

    Giselle Cristina Silva

    2013-03-01

    Full Text Available The antibacterial activity of ethanol, methanol, hexane and acetone-based extracts of the macroalgae Padina gymnospora (PG, Hypnea musciformes (HM, Ulva fasciata (UF and Caulerpa prolifera (CP was investigated. The disk diffusion method was used to evaluate the algae antimicrobial effect against standard strains of Vibrio parahaemolyticus, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella enterica and five virulent antibiotic-resistant strains of V. brasiliensis, V. xuii and V. navarrensis (isolated from the hemolymph of Litopenaeus vannamei. Ethanol extracts of PG and HM inhibited all Vibrio strains. E. coli and P. aeruginosa were only susceptible to ethanol extracts of PG. Among the methanol extracts, only UF was bioactive, inhibiting V. navarrensis. The observed inhibitory effect of ethanol extracts of PG, HM and UF against virulent antibiotic-resistant bacteria suggests these macroalgal species constitute a potential source of bioactive compounds.

  6. Methods to predict antibiotic resistance: From genes to metagenomes

    OpenAIRE

    Lira, Felipe

    2015-01-01

    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 21-10-2015 As many antibiotics exist as many mechanisms of resistance will rise. Antibiotic resistance is a worldwide problem and deserves all sort of attention and dedication to identify the critical points which might promote or facilitate the emergence of novel resistance genes in one community, as well the propagation of the already kno...

  7. [Antimicrobial resistance forever? Judicious and appropriate use of antibiotics].

    Science.gov (United States)

    Cagliano, Stefano

    2015-06-01

    This article takes its cue from the original work of sir Alexander Fleming on penicillin, published in the first issue of Recenti Progressi in Medicina in 1946 and reproduced here on the occasion of the approaching 70-year anniversary of the journal. In 1928, at the time when penicillin was discovered, it could not be imagined that bacterial resistance to antibiotics would develop so rapidly: the introduction of every new class of antibiotics has been shortly followed by the emergence of new strains of bacteria resistant to that class. Bacterial resistance to antibiotic treatment is a huge concern. In this respect, an action plan against antimicrobial resistance has been devised in the United States that is targeted for a 50% reduction over the next five years.

  8. Antibiotic concentration and antibiotic-resistant bacteria in two shallow urban lakes after stormwater event.

    Science.gov (United States)

    Zhang, Songhe; Pang, Si; Wang, PeiFang; Wang, Chao; Han, Nini; Liu, Bin; Han, Bing; Li, Yi; Anim-Larbi, Kwaku

    2016-05-01

    Stormwater runoff is generally characterized as non-point source pollution. In the present study, antibiotic concentration and antibiotic susceptibilities of cultivable heterotrophic bacteria were investigated in two small shallow urban lakes before and after strong storm event. Several antibiotics, lactose-fermenting bacteria and cultivable heterotrophic bacteria concentrations increased in surface water and/or surface sediment of two small urban lakes (Lake Xuanwu and Wulongtan) after strong storm event. In general, the frequencies of bacteria showing resistance to nine antibiotics increased after storm event. Based on the 16S rRNA genes of 50 randomly selected isolates from each water sample of two lakes, Aeromonas and Bacillus were dominant genera in samples from two lakes, while genera Proteus and Lysinibacillus were the third abundant genera in Lake Xuanwu and Wulongtu, respectively. Presences of nine antibiotic resistance genes (ARGs) in the 100 isolates were detected and most of these isolates harbored at least two ARGs with different functions. The detection frequency of ARGs in Gram-negative isolates was higher than that in Gram-positive isolates. The most prevalent integron in 100 isolates was int(II) (n = 28), followed by int(I) (n = 17) and int(III) (n = 17). Our results indicate that strong storm events potentially contribute to the transfer of ARGs and antibiotic-resistant bacteria from land-sewer system to the urban Lakes. PMID:26865482

  9. Characterization of Antibiotics and Antibiotic Resistance Genes on an Ecological Farm System

    Directory of Open Access Journals (Sweden)

    Songhe Zhang

    2015-01-01

    Full Text Available There is a growing concern worldwide about the prevalence of antibiotics and antibiotic resistance genes (ARGs on the farm. In this study, we investigated the distribution of seven antibiotics and ten ARGs in fresh and dried pig feces, in biogas slurry, and in grape-planting soil from an ecological farm. Antibiotics including sulfamethazine, norfloxacin, ofloxacin, tetracycline, oxytetracycline, and chlortetracycline were detected in these samples (except for sulfamethoxazole in dried feces. In general, antibiotics levels in samples were in the sequence: biogas slurry > fresh feces > soil or dried feces. Results of ecological risk assessments revealed that among the seven antibiotics chlortetracycline showed the highest ecological risk. Among the ten ARGs, sulI and tetO were the most prevalent on this ecological farm. There were positive correlations between certain ARGs and the corresponding antibiotics on this ecological farm. Therefore, continuous monitoring of antibiotics and their corresponding ARGs should be conducted in the agroecosystem near the concentrated animal farming operation systems.

  10. Effects of combination of antibiotic-resistant bifidobacteria and corresponding antibiotics on survival of irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Korshunov, V.M.; Pinegin, B.V.; Ivanova, N.P.; Mal' tsev, V.N.

    1982-05-01

    Broad-spectrum antibiotics are used to treat intestinal dysbacteriosis of diverse etiology, including postradiation dysbacteriosis. Antibiotic therapy is instrumental in decontaminating the intestine. In addition to pathogenic microorganisms, there is disappearance of lactobacilli and bifidobacteria which perform several important and useful functions. For this reason, in addition to antibiotics, bifidobacterial preparations are used to restore the microbial cenosis and administration thereof is started after antibiotics are discontinued. There are some flaws to deferred administration of bifidobacteria, since the process of colonization of the intestine with commercial bifidobacterial preparations is rather lengthy, and there is slow elevation of bididobacterium level in the intestinal tract, whereas exogenous recontamination of the intestine by conditionally pathogenic bacteria is possible after antibiotic therapy is discontinued. On the other hand, use of antibiotics alone could, in turn, be the cause of intestinal dysbacteriosis. Our objective was to eliminate intestinal dysbacteriosis in irradiated animals by means of combining antibiotics and preparations of bifidobacteria resistant to these antibiotics, and thus prolong the life of these animals.

  11. An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance.

    Science.gov (United States)

    Jutkina, Jekaterina; Rutgersson, Carolin; Flach, Carl-Fredrik; Larsson, D G Joakim

    2016-04-01

    Ability to understand the factors driving horizontal transfer of antibiotic resistance from unknown, harmless bacteria to pathogens is crucial in order to tackle the growing resistance problem. However, current methods to measure effects of stressors on horizontal gene transfer have limitations and often fall short, as the estimated endpoints can be a mix of both the number of transfer events and clonal growth of transconjugants. Our aim was therefore to achieve a proper strategy for assessing the minimal concentration of a stressor (exemplified by tetracycline) that drives horizontal transfer of antibiotic resistance from a complex community to a model pathogen. Conditions were optimized to improve a culture-based approach using the bacterial community of treated sewage effluent as donor, and fluorescent, traceable Escherichia coli as recipient. Reduced level of background resistance, differentiation of isolates as well as decreased risk for measuring effects of selection were achieved through the use of chromogenic medium, optimization of conjugation time as well as applying a different antibiotic for isolation of transconjugants than the one tested for its ability to drive transfer. Using this assay, we showed that a very low concentration of tetracycline, 10μg/L i.e. 150 times below the minimal inhibitory concentration of the recipient, promoted horizontal transfer of multiple antibiotic-resistance determinants. Higher concentrations favoured selection of a tetracycline-resistance phenotype along with a decline in the number of detectable transfer events. The described method can be used to evaluate different environmental conditions and factors that trigger horizontal dissemination of mobile resistance elements, eventually resulting in the formation of drug-resistant pathogens.

  12. Glycopeptide Antibiotic To Overcome the Intrinsic Resistance of Gram-Negative Bacteria.

    Science.gov (United States)

    Yarlagadda, Venkateswarlu; Manjunath, Goutham B; Sarkar, Paramita; Akkapeddi, Padma; Paramanandham, Krishnamoorthy; Shome, Bibek R; Ravikumar, Raju; Haldar, Jayanta

    2016-02-12

    The emergence of drug resistance along with a declining pipeline of clinically useful antibiotics has made it vital to develop more effective antimicrobial therapeutics, particularly against difficult-to-treat Gram-negative pathogens (GNPs). Many antibacterial agents, including glycopeptide antibiotics such as vancomycin, are inherently inactive toward GNPs because of their inability to cross the outer membrane of these pathogens. Here, we demonstrate, for the first time, lipophilic cationic (permanent positive charge) vancomycin analogues were able to permeabilize the outer membrane of GNPs and overcome the inherent resistance of GNPs toward glycopeptides. Unlike vancomycin, these analogues were shown to have a high activity against a variety of multidrug-resistant clinical isolates such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. In the murine model of carbapenem-resistant A. baumannii infection, the optimized compound showed potent activity with no observed toxicity. The notable activity of these compounds is attributed to the incorporation of new membrane disruption mechanisms (cytoplasmic membrane depolarization along with outer and inner (cytoplasmic) membrane permeabilization) into vancomycin. Therefore, our results indicate the potential of the present vancomycin analogues to be used against drug-resistant GNPs, thus strengthening the antibiotic arsenal for combating Gram-negative bacterial infections. PMID:27624964

  13. Aerobic digestion reduces the quantity of antibiotic resistance genes in residual municipal wastewater solids

    OpenAIRE

    Burch, Tucker R.; Sadowsky, Michael J.; LaPara, Timothy M.

    2013-01-01

    Numerous initiatives have been undertaken to circumvent the problem of antibiotic resistance, including the development of new antibiotics, the use of narrow spectrum antibiotics, and the reduction of inappropriate antibiotic use. We propose an alternative but complimentary approach to reduce antibiotic resistant bacteria (ARB) by implementing more stringent technologies for treating municipal wastewater, which is known to contain large quantities of ARB and antibiotic resistance genes (ARGs)...

  14. Antibiotic resistance in urban aquatic environments: can it be controlled?

    Science.gov (United States)

    Manaia, Célia M; Macedo, Gonçalo; Fatta-Kassinos, Despo; Nunes, Olga C

    2016-02-01

    Over the last decade, numerous evidences have contributed to establish a link between the natural and human-impacted environments and the growing public health threat that is the antimicrobial resistance. In the environment, in particular in areas subjected to strong anthropogenic pressures, water plays a major role on the transformation and transport of contaminants including antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes. Therefore, the urban water cycle, comprising water abstraction, disinfection, and distribution for human consumption, and the collection, treatment, and delivery of wastewater to the environment, is a particularly interesting loop to track the fate of antibiotic resistance in the environment and to assess the risks of its transmission back to humans. In this article, the relevance of different transepts of the urban water cycle on the potential enrichment and spread of antibiotic resistance is reviewed. According to this analysis, some gaps of knowledge, research needs, and control measures are suggested. The critical rationale behind the measures suggested and the desirable involvement of some key action players is also discussed. PMID:26649735

  15. Antibiotic resistance mechanisms in M. tuberculosis: an update.

    Science.gov (United States)

    Nguyen, Liem

    2016-07-01

    Treatment of tuberculosis (TB) has been a therapeutic challenge because of not only the naturally high resistance level of Mycobacterium tuberculosis to antibiotics but also the newly acquired mutations that confer further resistance. Currently standardized regimens require patients to daily ingest up to four drugs under direct observation of a healthcare worker for a period of 6-9 months. Although they are quite effective in treating drug susceptible TB, these lengthy treatments often lead to patient non-adherence, which catalyzes for the emergence of M. tuberculosis strains that are increasingly resistant to the few available anti-TB drugs. The rapid evolution of M. tuberculosis, from mono-drug-resistant to multiple drug-resistant, extensively drug-resistant and most recently totally drug-resistant strains, is threatening to make TB once again an untreatable disease if new therapeutic options do not soon become available. Here, I discuss the molecular mechanisms by which M. tuberculosis confers its profound resistance to antibiotics. This knowledge may help in developing novel strategies for weakening drug resistance, thus enhancing the potency of available antibiotics against both drug susceptible and resistant M. tuberculosis strains. PMID:27161440

  16. Ciprofloxacin-resistant Escherichia coli in Central Greece: mechanisms of resistance and molecular identification

    Directory of Open Access Journals (Sweden)

    Mavroidi Angeliki

    2012-12-01

    Full Text Available Abstract Background Fluoroquinolone resistant E. coli isolates, that are also resistant to other classes of antibiotics, is a significant challenge to antibiotic treatment and infection control policies. In Central Greece a significant increase of ciprofloxacin-resistant Escherichia coli has occurred during 2011, indicating the need for further analysis. Methods A total of 106 ciprofloxacin-resistant out of 505 E. coli isolates consecutively collected during an eight months period in a tertiary Greek hospital of Central Greece were studied. Antimicrobial susceptibility patterns and mechanisms of resistance to quinolones were assessed, whereas selected isolates were further characterized by multilocus sequence typing and β-lactamase content. Results Sequence analysis of the quinolone-resistance determining region of the gyrA and parC genes has revealed that 63% of the ciprofloxacin-resistant E. coli harbored a distinct amino acid substitution pattern (GyrA:S83L + D87N; ParC:S80I + E84V, while 34% and 3% carried the patterns GyrA:S83L + D87N; ParC:S80I and GyrA:S83L + D87N; ParC:S80I + E84G respectively. The aac (6’-1b-cr plasmid-mediated quinolone resistance determinant was also detected; none of the isolates was found to carry the qnrA, qnrB and qnrS. Genotyping of a subset of 35 selected ciprofloxacin-resistant E. coli by multilocus sequence typing has revealed the presence of nine sequence types; ST131 and ST410 were the most prevalent and were exclusively correlated with hospital and health care associated infections, while strains belonging to STs 393, 361 and 162 were associated with community acquired infections. The GyrA:S83L + D87N; ParC:S80I + E84V substitution pattern was found exclusively among ST131 ciprofloxacin-resistant E. coli. Extended-spectrum β-lactamase-positive ST131 ciprofloxacin-resistant isolates produced CTX-M-type enzymes; eight the CTX-M-15 and one the CTX-M-3 variant. CTX-M-1 like and KPC-2 enzymes were detected

  17. Clinical, economic and societal impact of antibiotic resistance.

    Science.gov (United States)

    Barriere, Steven L

    2015-02-01

    The concern over antibiotic resistance has been voiced since the discovery of modern antibiotics > 75 years ago. The concerns have only increased with time, with efforts to control resistance caused by widespread overuse of antibiotics in human medicine and far more than appreciated use in the feeding of animals for human consumption to promote growth. The problem is worldwide, but certain regions and selected health care institutions report far more resistance, including strains of Gram-negative bacteria that are susceptible only to the once discarded drugs polymyxin B or colistin, and pan-resistant strains are on the rise. One of the central efforts to control resistance, apart from antimicrobial stewardship, is the development of new antimicrobial agents. This has lagged significantly over the past 10 - 15 years, for a variety of reasons; but promising new agents are being developed, unfortunately none thus far addressing all potentially resistant strains. There is the unlikely, but not unreal, possibility that we could return to a pre-antibiotic era, where morbidity and mortality rates have risen dramatically and routine surgical procedures are not performed for fear of post-operative infections. The onus of control of resistance is a moral imperative that falls on the shoulders of all.

  18. Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England

    Directory of Open Access Journals (Sweden)

    Williams Nicola J

    2010-04-01

    Full Text Available Abstract Background Escherichia coli isolates of equine faecal origin were investigated for antibiotic resistance, resistance genes and their ability to perform horizontal transfer. Methods In total, 264 faecal samples were collected from 138 horses in hospital and community livery premises in northwest England, yielding 296 resistant E. coli isolates. Isolates were tested for susceptibility to antimicrobial drugs by disc diffusion and agar dilution methods in order to determine minimum inhibitory concentrations (MIC. PCR amplification was used to detect genes conferring resistance to: ampicillin (TEM and SHV beta-lactamase, chloramphenicol (catI, catII, catIII and cml, tetracycline (tetA, tetB, tetC, tetD, tet E and tetG, and trimethoprim (dfrA1, dfrA9, dfrA12, dfrA13, dfr7, and dfr17. Results The proportion of antibiotic resistant isolates, and multidrug resistant isolates (MDR was significantly higher in hospital samples compared to livery samples (MDR: 48% of hospital isolates; 12% of livery isolates, p dfr, TEM beta-lactamase, tet and cat, conferring resistance to trimethoprim, ampicillin, tetracycline and chloramphenicol, respectively. Within each antimicrobial resistance group, these genes occurred at frequencies of 93% (260/279, 91%, 86.8% and 73.5%, respectively; with 115/296 (38.8% found to be MDR isolates. Conjugation experiments were performed on selected isolates and MDR phenotypes were readily transferred. Conclusions Our findings demonstrate that E. coli of equine faecal origin are commonly resistant to antibiotics used in human and veterinary medicine. Furthermore, our results suggest that most antibiotic resistance observed in equine E. coli is encoded by well-known and well-characterized resistant genes common to E. coli from man and domestic animals. These data support the ongoing concern about antimicrobial resistance, MDR, antimicrobial use in veterinary medicine and the zoonotic risk that horses could potentially pose to

  19. RESISTANCE PATTERN OF FECAL ESCHERICHIA COLI IN SELECTED BROILER FARMS OF EASTERN HARARGHE ZONE, ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Tesfaheywet Zeryehun

    2013-02-01

    Full Text Available A study was conducted to determine the pattern of antimicrobial resistance in Escherichia coli isolated from Cloacal swab of broiler chickens in selected farms of Eastern Harrarge zone of Ethiopia. Isolation and identification of Escherichia coli were done by using enrichment media, selective media, and biochemical tests.65 selected isolates were subjected to 9 antimicrobial agents to determine their resistance by the disk diffusion method. Accordingly, the resistance of E.coli was tetracycline (90%, streptomycin (78%, ampicillin (60%, amoxicillin (56%, erythromycin (45%, ciprofloxacin (38%, and chloramphenicol (15%. None of the isolates showed resistance to gentamicin. Sensitivity was observed in case of 80%, 77%, 44%, 32%, 26%, 20%, 20%, 15%, and 10% of the isolates for chloramphenicol, gentamicin, ciprofloxacin, amoxicillin, ampicillin, streptomycin, erythromycin, and tetracycline, respectively. Intermediate resistance/susceptibility was recorded for 5-35% of the isolates. 92.3% of the isolates tested showed multidrug resistance for 2 or more antimicrobials and the highest levels (18.5% of multidrug-resistant E. coli were observed for 3 antimicrobials accounting 7.7% for tetracycline-ampicillin-streptomycin and 10.8% for tetracycline-ampicillin-amoxicillin. This study showed resistance against the antibiotics that are commonly used in poultry. Furthermore, it was concluded that gentamicin, chloramphenicole and ciproflaxin will be the first drugs of choice to resist infections caused by E. coli in chicken in Ethiopia. These findings confirm significant increase in the incidence of antimicrobial resistance in the E. coli isolates which is most probably due to increased use of antibiotics asfeed additives for growth promotion and prevention of diseases and use of inappropriate antibiotics for treatment of diseases. Hence, excess or abusive use of antimicrobials should be guarded through judicious application of antimicrobials.

  20. ANTIMICROBIAL RESISTANT PATTERN OF FECAL ESCHERICHIA COLI IN SELECTED BROILER FARMS OF EASTERN HARARGE ZONE, ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Tesfaheywet Zeryehun

    2013-12-01

    Full Text Available A study was conducted to determine the pattern of antimicrobial resistance in Escherichia coli isolated from Cloacal swab of broiler chickens in selected farms of Eastern Harrarge zone of Ethiopia. Isolation and identification of Escherichia coli were done by using enrichment media, selective media, and biochemical tests. 65 selected isolates were subjected to 9 antimicrobial agents to determine their resistance by the disk diffusion method. Accordingly, the resistance of E.coli was tetracycline (90%, streptomycin (78%, ampicillin (60%, amoxicillin (56%, erythromycin (45%, ciprofloxacin (38%, and chloramphenicol (15%. None of the isolates showed resistance to gentamicin. Sensitivity was observed in case of 80%, 77%, 44%, 32%, 26%, 20%, 20%, 15%, and 10% of the isolates for chloramphenicol, gentamicin, ciprofloxacin, amoxicillin, ampicillin, streptomycin, erythromycin, and tetracycline, respectively. Intermediate resistance/susceptibility was recorded for 5-35% of the isolates. 92.3% of the isolates tested showed multidrug resistance for 2 or more antimicrobials and the highest levels (18.5% of multidrug-resistant E. coli were observed for 3 antimicrobials accounting 7.7% for tetracycline-ampicillin-streptomycin and 10.8% for tetracycline-ampicillin-amoxicillin. This study showed resistance against the antibiotics that are commonly used in poultry. Furthermore, it was concluded that gentamicin, chloramphenicole and ciproflaxin will be the first drugs of choice to resist infections caused by E. coli in chicken in Ethiopia. These findings confirm significant increase in the incidence of antimicrobial resistance in the E. coli isolates which is most probably due to increased use of antibiotics as feed additives for growth promotion and prevention of diseases and use of inappropriate antibiotics for treatment of diseases. Hence, excess or abusive use of antimicrobials should be guarded through judicious application of antimicrobials

  1. Antibiotic resistance of Neisseria gonorrhoeae isolated from gonorrhoeae patients

    Directory of Open Access Journals (Sweden)

    Mohammad Bokaeian

    2010-06-01

    Full Text Available Background: The objective of this study was to determine antibiotic susceptibility and penicillinase production by Neisseria gonorrhoeae strains isolated from gonorrhoeae patients in Zahedan.Materials and methods: In a descriptive study during 2005-2008 years, 400 suspected patients were studied by history review, medical examination, gram staining and culture in Thayer-Martin medium. Antibiotic susceptibility and penicillinase tests of isolated strains were done by disk diffusion method and aciodometric method, respectively.Results: Cultures were positive in 77(19.2% patients. The resistanat rate against antibiotics were as follow: penicillin (79.2%, ciprofloxacin (53.2%, ceftriaxone(3.8%, spectinomycin(2.5%, cefixime(12.9%, co-trimoxazole(93.5%, tetracycline(88.3% and gentamicin(29.8%. In the meanwhile, 83.1 percent of penicillin resistant isolates produced penicillinase enzyme. Discussion: Ceftriaxone, spectinomycin and cefixime are the sole antibiotics that could be considered as selective drugs. Quinolones which were regarded as an effective group of antibiotics recently have lost their importance. Resistance against other antibiotics is rapidly developing, thus, conducting experimental tests and determination of minimum inhibitory concentration and clinical trial studies at fixed intervals can contribute to diagnosis of resistance of gonococci and rapid and successful treatment of their infections in Zahedan region.

  2. Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic marine waters

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, M.J.B.D.; Nair, S.; LokaBharathi, P.A.; Chandramohan, D.

    in 68% of the isolates. Depending on the antibiotics the isolates showed different percentage of resistance. Multiple drug and metal-resistance were observed. High incidence of resistance to both antibiotics and metals were common among the pigmented...

  3. Penetration barrier contributes to bacterial biofilm-associated resistance against only select antibiotics, and exhibits genus-, strain- and antibiotic-specific differences.

    Science.gov (United States)

    Singh, Rachna; Sahore, Simmi; Kaur, Preetinder; Rani, Alka; Ray, Pallab

    2016-08-01

    Bacterial biofilms are implicated in a wide range of implant-based and chronic infections. These infections are often associated with adverse therapeutic outcomes, owing to the decreased antibiotic susceptibility of biofilms compared with their planktonic counterparts. This altered biofilm susceptibility has been attributed to multiple factors, including a reduced antibiotic penetration. Although several studies have addressed the role of penetration barrier in biofilm-associated drug resistance, it remains inconclusive. This study was done to elucidate antibiotic penetration through biofilms formed by Staphylococcus aureus, S. epidermidis, Escherichia coli and Klebsiella pneumoniae, using an agar disk diffusion assay. Penetration capacity of six antimicrobial drugs from different classes (β-lactams, aminoglycosides, tetracyclines, phenicols, fluoroquinolones and glycopeptides) through biofilms formed by standard strains and clinical isolates from catheter-related bloodstream infections (CRBSI) was elucidated by measuring their growth-inhibition zones in lawn cultures on Mueller-Hinton agar, following diffusion of an antibiotic from an overlying disk through their biofilm to the agar medium. Penetration of only select antimicrobials (vancomycin and chloramphenicol) was hindered through biofilms. There was considerable variation in biofilm-permeating capacity depending upon the genus, strain/CRBSI isolate and antibiotic tested. Furthermore, antibiotics failed to kill the biofilm cells independent of penetration, indicating that other factors contributed substantially to biofilm resistance. PMID:27402781

  4. Penetration barrier contributes to bacterial biofilm-associated resistance against only select antibiotics, and exhibits genus-, strain- and antibiotic-specific differences.

    Science.gov (United States)

    Singh, Rachna; Sahore, Simmi; Kaur, Preetinder; Rani, Alka; Ray, Pallab

    2016-08-01

    Bacterial biofilms are implicated in a wide range of implant-based and chronic infections. These infections are often associated with adverse therapeutic outcomes, owing to the decreased antibiotic susceptibility of biofilms compared with their planktonic counterparts. This altered biofilm susceptibility has been attributed to multiple factors, including a reduced antibiotic penetration. Although several studies have addressed the role of penetration barrier in biofilm-associated drug resistance, it remains inconclusive. This study was done to elucidate antibiotic penetration through biofilms formed by Staphylococcus aureus, S. epidermidis, Escherichia coli and Klebsiella pneumoniae, using an agar disk diffusion assay. Penetration capacity of six antimicrobial drugs from different classes (β-lactams, aminoglycosides, tetracyclines, phenicols, fluoroquinolones and glycopeptides) through biofilms formed by standard strains and clinical isolates from catheter-related bloodstream infections (CRBSI) was elucidated by measuring their growth-inhibition zones in lawn cultures on Mueller-Hinton agar, following diffusion of an antibiotic from an overlying disk through their biofilm to the agar medium. Penetration of only select antimicrobials (vancomycin and chloramphenicol) was hindered through biofilms. There was considerable variation in biofilm-permeating capacity depending upon the genus, strain/CRBSI isolate and antibiotic tested. Furthermore, antibiotics failed to kill the biofilm cells independent of penetration, indicating that other factors contributed substantially to biofilm resistance.

  5. Antibiotic resistance: challenges and successes in respiratory infection.

    Science.gov (United States)

    Sethi, Sanjay; Bryan, Jenny

    2016-01-01

    European Respiratory Society Congress, Amsterdam, 26-30 September 2015, and CHEST 2015, Montréal, Canada, 24-28 October 2015 With approximately 50,000 deaths in the US and EU attributed to antibacterial resistance each year, together with several million days of hospital care [1], the need to address resistance mechanisms and find new targets for novel antibiotics has never been greater. At the annual congresses of the European Respiratory Society and the American College of Chest Physicians, presenters reported advances in understanding of the mechanisms of antibiotic resistance and how these may be overcome. The latest clinical trial data on antibiotic treatment for hospital- and community-acquired pneumonia, including the potential for novel nebulized forms of therapy, were also discussed. PMID:27081910

  6. Antibiotic Resistance of Bacteria Involved in Urinary Infections in Brazil: A Cross-Sectional and Retrospective Study

    Science.gov (United States)

    Rodrigues, Wellington Francisco; Miguel, Camila Botelho; Nogueira, Ana Paula Oliveira; Ueira-Vieira, Carlos; Paulino, Tony De Paiva; Soares, Siomar De Castro; De Resende, Elisabete Aparecida Mantovani Rodrigues; Lazo-Chica, Javier Emilio; Araújo, Marcelo Costa; Oliveira, Carlo José

    2016-01-01

    Empirical and prolonged antimicrobial treatment of urinary tract infections caused by Escherichia coli is associated with the emergence of bacterial resistance, and not all countries have strict policies against the indiscriminate use of drugs in order to prevent resistance. This cross-sectional and retrospective study (2010–2015) aimed to evaluate the sensitivity and resistance of patient-derived E. coli to different drugs broadly used to treat urinary infections in Brazil: ampicillin + sulbactam, cephalothin, ciprofloxacin, norfloxacin, and nitrofurantoin. We obtained 1654 E. coli samples from ambulatory patients with disease symptoms of the urinary tract from a Brazilian public hospital. While all antibiotics were effective in killing E. coli to a large degree, nitrofurantoin was the most effective, with fewer samples exhibiting antibiotic resistance. We assessed the costs of generic and brand name versions of each antibiotic. Nitrofurantoin, the most effective antibiotic, was the cheapest, followed by the fluoroquinolones (ciprofloxacin and norfloxacin), ampicillin + sulbactam and, lastly, cephalothin. Finally, assessment of antibiotic resistance to fluoroquinolones over the study period and extrapolation of the data led to the conclusion that these antibiotics could no longer be effective against E. coli-based urinary infections in approximately 20 years if their indiscriminate use in empirical treatment continues. PMID:27649224

  7. Bacterial Etiology and Antibiotic Resistance Profile of Community-Acquired Urinary Tract Infections in a Cameroonian City

    Science.gov (United States)

    Gonsu, Hortense Kamga; Koulla-Shiro, Sinata

    2016-01-01

    Introduction. Community-acquired urinary tract infections (CAUTIs) are usually treated empirically. Geographical variations in etiologic agents and their antibiotic sensitivity patterns are common. Knowledge of antibiotic resistance trends is important for improving evidence-based recommendations for empirical treatment of UTIs. Our aim was to determine the major bacterial etiologies of CAUTIs and their antibiotic resistance patterns in a cosmopolitan area of Cameroon for comparison with prescription practices of local physicians. Methods. We performed a cross-sectional descriptive study at two main hospitals in Yaoundé, collecting a clean-catch mid-stream urine sample from 92 patients having a clinical diagnosis of UTI. The empirical antibiotherapy was noted, and identification of bacterial species was done on CLED agar; antibiotic susceptibility testing was performed using the Kirby-Bauer disc diffusion method. Results. A total of 55 patients had samples positive for a UTI. Ciprofloxacin and amoxicillin/clavulanic acid were the most empirically prescribed antibiotics (30.9% and 23.6%, resp.); bacterial isolates showed high prevalence of resistance to both compounds. Escherichia coli (50.9%) was the most common pathogen, followed by Klebsiella pneumoniae (16.4%). Prevalence of resistance for ciprofloxacin was higher compared to newer quinolones. Conclusions. E. coli and K. pneumoniae were the predominant bacterial etiologies; the prevalence of resistance to commonly prescribed antibiotics was high. PMID:27667998

  8. Bacterial Etiology and Antibiotic Resistance Profile of Community-Acquired Urinary Tract Infections in a Cameroonian City.

    Science.gov (United States)

    Nzalie, Rolf Nyah-Tuku; Gonsu, Hortense Kamga; Koulla-Shiro, Sinata

    2016-01-01

    Introduction. Community-acquired urinary tract infections (CAUTIs) are usually treated empirically. Geographical variations in etiologic agents and their antibiotic sensitivity patterns are common. Knowledge of antibiotic resistance trends is important for improving evidence-based recommendations for empirical treatment of UTIs. Our aim was to determine the major bacterial etiologies of CAUTIs and their antibiotic resistance patterns in a cosmopolitan area of Cameroon for comparison with prescription practices of local physicians. Methods. We performed a cross-sectional descriptive study at two main hospitals in Yaoundé, collecting a clean-catch mid-stream urine sample from 92 patients having a clinical diagnosis of UTI. The empirical antibiotherapy was noted, and identification of bacterial species was done on CLED agar; antibiotic susceptibility testing was performed using the Kirby-Bauer disc diffusion method. Results. A total of 55 patients had samples positive for a UTI. Ciprofloxacin and amoxicillin/clavulanic acid were the most empirically prescribed antibiotics (30.9% and 23.6%, resp.); bacterial isolates showed high prevalence of resistance to both compounds. Escherichia coli (50.9%) was the most common pathogen, followed by Klebsiella pneumoniae (16.4%). Prevalence of resistance for ciprofloxacin was higher compared to newer quinolones. Conclusions. E. coli and K. pneumoniae were the predominant bacterial etiologies; the prevalence of resistance to commonly prescribed antibiotics was high. PMID:27667998

  9. The use of platensimycin and platencin to fight antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Allahverdiyev AM

    2013-09-01

    Full Text Available Adil M Allahverdiyev,1 Melahat Bagirova,1 Emrah Sefik Abamor,1 Sezen Canim Ates,1 Rabia Cakir Koc,2 Meral Miraloglu,3 Serhat Elcicek,4 Serkan Yaman,1 Gokce Unal1 1Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey; 2Department of Biomedical Engineering, Yeni Yuzyil University, Istanbul, Turkey; 3Vocational School of Health Services, Cukurova University, Adana, Turkey; 4Department of Bioengineering, Firat University, Elazig, Turkey Abstract: Infectious diseases are known as one of the most life-threatening disabilities worldwide. Approximately 13 million deaths related to infectious diseases are reported each year. The only way to combat infectious diseases is by chemotherapy using antimicrobial agents and antibiotics. However, due to uncontrolled and unnecessary use of antibiotics in particular, surviving bacteria have evolved resistance against several antibiotics. Emergence of multidrug resistance in bacteria over the past several decades has resulted in one of the most important clinical health problems in modern medicine. For instance, approximately 440,000 new cases of multidrug-resistant tuberculosis are reported every year leading to the deaths of 150,000 people worldwide. Management of multidrug resistance requires understanding its molecular basis and the evolution and dissemination of resistance; development of new antibiotic compounds in place of traditional antibiotics; and innovative strategies for extending the life of antibiotic molecules. Researchers have begun to develop new antimicrobials for overcoming this important problem. Recently, platensimycin – isolated from extracts of Streptomyces platensis – and its analog platencin have been defined as promising agents for fighting multidrug resistance. In vitro and in vivo studies have shown that these new antimicrobials have great potential to inhibit methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and penicillin-resistant

  10. Removal of antibiotics and antibiotic resistance genes in rural wastewater by an integrated constructed wetland.

    Science.gov (United States)

    Chen, Jun; Liu, You-Sheng; Su, Hao-Chang; Ying, Guang-Guo; Liu, Feng; Liu, Shuang-Shuang; He, Liang-Ying; Chen, Zhi-Feng; Yang, Yong-Qiang; Chen, Fan-Rong

    2015-02-01

    Integrated constructed wetlands (ICWs) are regarded as one of the most important removal technology for pollutants in rural domestic wastewaters. This study investigated the efficiency of an ICW consisting of a regulating pool, four surface and subsurface flow-constructed wetlands, and a stabilization unit for removing antibiotics and antibiotic resistance genes (ARGs) from rural domestic wastewaters. The results showed that antibiotics leucomycin, ofloxacin, lincomycin, and sulfamethazine, and ARGs sul1, sul2, tetM, and tetO were the predominant antibiotics and ARGs in the influent, respectively. The ICW system could significantly reduce most of the detected antibiotics and ARGs with their aqueous removal rates of 78 to 100 % and >99 %, respectively. Based on the measured concentrations, the total pollution loadings of antibiotics were 3,479 μg/day in the influent and 199 μg/day in the final effluent. Therefore, constructed wetlands could be a promising technology for rural wastewater in removing contaminants such as antibiotics and ARGs.

  11. Occurrence and prevalence of antibiotic resistance in landfill leachate.

    Science.gov (United States)

    Wang, Yangqing; Tang, Wei; Qiao, Jing; Song, Liyan

    2015-08-01

    Antibiotic resistance (AR) is extensively present in various environments, posing emerging threat to public and environmental health. Landfill receives unused and unwanted antibiotics through household waste and AR within waste (e.g., activated sludge and illegal clinical waste) and is supposed to serve as an important AR reservoir. In this study, we used culture-dependent methods and quantitative molecular techniques to detect and quantify antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in 12 landfill leachate samples from six geographic different landfills, China. Five tested ARGs (tetO, tetW, bla(TEM), sulI, and sulII) and seven kinds of antibiotic-resistant heterotrophic ARB were extensively detected in all samples, demonstrating their occurrence in landfill. The detected high ratio (10(-2) to 10(-5)) of ARGs to 16S ribosomal RNA (rRNA) gene copies implied that ARGs are prevalent in landfill. Correlation analysis showed that ARGs (tetO, tetW, sulI, and sulII) significantly correlated to ambient bacterial 16S rRNA gene copies, suggesting that the abundance of bacteria in landfill leachate may play an important role in the horizontal spread of ARGs.

  12. Multiple Antibiotic Resistance and Heavy Metal Resistance Profile of Bacteria Isolated from Giant Freshwater Prawn (Macrobrachium rosenbergii) Hatchery

    Institute of Scientific and Technical Information of China (English)

    S W Lee; M Najiah; W Wendy; A Zahrol; M Nadirah

    2009-01-01

    In this article,antibiogram and heavy metal resistance profile of bacteria isolated from giant freshwater prawn (Macrobrachium rosenbergii) hatchery in Malaysia are described.Although giant freshwater prawn was introduced into Malaysia since the 1980s,there was no database information on antibiogram and heavy metal resistance profile of bacteria from giant freshwater prawn (M.rosenbergii) hatchery in Malaysia.Therefore,this study was carried out to determine the effectiveness of antibiotic and heavy metal resistance profile to control bacterial diseases in M.rosenbergii hatchery.The results can provide valuable information for local M.rosenbergii post-larval producer.Antibiotic sensitivity test was carried out by disk-diffusion method against 15 types of antibiotics as follows:oxolinic acid (2 μg),ampicillin (10 μg),erythromycin (15 μg),furazolidone (15 μg),lincomycin (15 μg),amoxicillin (25 μg),col istin sulphate (25 μg),doxycycline (30 μg),florfenicol (30 μg),flumequine (30 μg),nalidixic acid (30 μg),tetracycline (30 μg),oleandomyein (15 μg),fosfomycin (50 μg),and spiramycin (100 μg),whereas heavy metal resistance profile of the present bacterial isolates was determined by 2-fold agar dilution technique.In this study,5 types of bacteria were successfully isolated;they were Aeromonas spp.(n= 77),Escherichia coil (n = 73),Edwardsiella spp.(n = 62),Salmonella spp.(n= 75),and Vibrio spp.(n = 43).The result showed that furazolidone was the most effective antibiotic to control the bacteria isolated in this study,approximately 89.7% of the bacterial isolates were sensitive to this antibiotic.Multiple antibiotic resistance (MAR) index indicated that the hatchery water source and M.rosenbergii post-larval and sediment tanks were at high-risk exposure to the tested antibiotic.Furthermore,all the tested heavy metals (Cd2+,Cr6+ Hg2+,and Cu2+) failed to inhibit the growth of the bacterial isolates.Therefore,it indicated that the water source of the hatchery is

  13. Excretion of antibiotic resistance genes by dairy calves fed milk replacers with varying doses of antibiotics

    Directory of Open Access Journals (Sweden)

    Callie H. Thames

    2012-04-01

    Full Text Available Elevated levels of antibiotic resistance genes (ARGs in soil and water have been linked to livestock farms and in some cases feed antibiotics may select for antibiotic resistant gut microbiota. The purpose of this study was to examine the establishment of ARGs in the feces of calves receiving milk replacer containing no antibiotics versus subtherapeutic or therapeutic doses of tetracycline and neomycin. The effect of antibiotics on calf health was also of interest. Twenty-eight male and female dairy calves were assigned to one of the three antibiotic treatment groups at birth and fecal samples were collected at weeks 6, 7 (prior to weaning, and 12 (5 weeks after weaning. ARGs corresponding to the tetracycline (tetC, tetG, tetO, tetW, and tetX, macrolide (ermB, ermF, and sulfonamide (sul1, sul2 classes of antibiotics along with the class I integron gene, intI1, were monitored by quantitative polymerase chain reaction as potential indicators of direct selection, co-selection, or horizontal gene transfer of ARGs. Surprisingly, there was no significant effect of antibiotic treatment on the absolute abundance (gene copies/ g wet manure of any of the ARGs except ermF, which was lower in the antibiotic-treated calf manure, presumably because a significant portion of host bacterial cells carrying ermF were not resistant to tetracycline or neomycin. However, relative abundance (gene copies normalized to 16S rRNA genes of tetO was higher in calves fed the highest dose of antibiotic than in the other treatments. All genes, except tetC and intI1, were detectable in feces from 6 weeks onwards, and tetW and tetG significantly increased (P<0.10, even in control calves. Overall, the results provide new insight into the colonization of calf gut flora with ARGs in the early weeks. Although feed antibiotics exerted little effect on the ARGs monitored in this study, the fact that they also provided no health benefit suggests that the greater than conventional

  14. A novel approach for assessing the susceptibility of Escherichia coli to antibiotics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The dynamic growth process of Escherichia coli CVCC249 under different concentrations of antibiotics was analyzed. The results suggested that the main reason that definitive results cannot be obtained by antibiotic susceptibility testing (AST) is that the ratio of drug concentration to the population of bacteria and the combined effect of drug concentration and action time cannot be completely determined with the methods used. Based on the analysis of the growth process with a series of concentrations of gentamicin acting for a certain time, and according to the forward difference method, a novel method for AST was proposed. The net increase in turbidity of the bacterial population was used to eliminate the existing effects of resting cells, and then the recurrent coefficient for a growing sequence was used to characterize the effect of antibiotics on bacterial division, and the contour plot was used to display and analyze the combined effect of drug concentration and action time. The inhibition rate of the antibiotics can be characterized as the dynamic change in the composite function of the antibiotic concentration and action time, which indicated that the inhibition rate was dependent on the combined effect of time and concentration of antibiotics. The effectiveness of this new method has been verified with different kinds of antibiotics, such as enrofloxacin, levofloxacin, and ceftriaxone, having different antibacterial mechanisms.

  15. IS26-Mediated Formation of Transposons Carrying Antibiotic Resistance Genes.

    Science.gov (United States)

    Harmer, Christopher J; Hall, Ruth M

    2016-01-01

    The IS26 transposase, Tnp26, catalyzes IS26 movement to a new site and deletion or inversion of adjacent DNA via a replicative route. The intramolecular deletion reaction produces a circular molecule consisting of a DNA segment and a single IS26, which we call a translocatable unit or TU. Recently, Tnp26 was shown to catalyze an additional intermolecular, conservative reaction between two preexisting copies of IS26 in different plasmids. Here, we have investigated the relative contributions of homologous recombination and Tnp26-catalyzed reactions to the generation of a transposon from a TU. Circular TUs containing the aphA1a kanamycin and neomycin resistance gene or the tet(D) tetracycline resistance determinant were generated in vitro and transformed into Escherichia coli recA cells carrying R388::IS26. The TU incorporated next to the IS26 in R388::IS26 forms a transposon with the insertion sequence (IS) in direct orientation. Introduction of a second TU produced regions containing both the aphA1a gene and the tet(D) determinant in either order but with only three copies of IS26. The integration reaction, which required a preexisting IS26, was precise and conservative and was 50-fold more efficient when both IS26 copies could produce an active Tnp26. When both ISs were inactivated by a frameshift in tnp26, TU incorporation was not detected in E. coli recA cells, but it did occur in E. coli recA (+) cells. However, the Tnp-catalyzed reaction was 100-fold more efficient than RecA-dependent homologous recombination. The ability of Tnp26 to function in either a replicative or conservative mode is likely to explain the prominence of IS26-bounded transposons in the resistance regions found in Gram-negative bacteria. IMPORTANCE In Gram-negative bacteria, IS26 recruits antibiotic resistance genes into the mobile gene pool by forming transposons carrying many different resistance genes. In addition to replicative transposition, IS26 was recently shown to use a novel

  16. Food Safety Hazards Related to Emerging Antibiotic Resistant Bacteria in Cultured Freshwater Fishes of Kolkata, India

    Directory of Open Access Journals (Sweden)

    T. Jawahar Abraham

    2011-02-01

    Full Text Available Association of opportunistic human bacterial pathogens in cultured freshwater fishes of Kolkata, India and their sensitivity to broad spectrum antibiotics was investigated. Both indigenous and non-indigenous human bacterial pathogens such as Aeromonas hydrophila, A. caviae, Edwardsiella tarda, Escherichia coli, Pseudomonas spp. and Vibrio parahaemolyticus were isolated from freshwater fishes of Kolkata. These strains were highly resistant to oxytetracycline (62% and nitrofurantoin (46%, and sensitive to ciprofloxacin (91% and chloramphenicol (89%. Multiple Antibiotic Resistance (MAR was high in catfishes (76% followed by miscellaneous fishes (66% and sewage-fed farm grown carps (55%. Among the bacterial species, the MAR was high in Ed. tarda (86%. More than 50% of the strains of A. hydrophila, A. caviae, E. coli, Pseudomonas spp., V. parahaemolyticus and unidentified Gram positive rods exhibited MAR. The results suggested that there is added risk of antibacterial resistance developing in the emerging human bacterial pathogens from freshwater aquaculture and of such antibiotic resistant bacterial pathogens entering the food chain.

  17. Efforts to slacken antibiotic resistance: Labeling meat products from animals raised without antibiotics in the United States.

    Science.gov (United States)

    Centner, Terence J

    2016-09-01

    As bacteria and diseases spread due to climatic change, greater amounts of antibiotics will be used thereby exacerbating the problem of antibiotic resistance. To help slacken the development of resistant bacteria, the medical community is attempting to reduce unnecessary and excessive usage of antibiotics. One of the targets is the use of antibiotics for enhancing animal growth and promoting feed efficiency in the production of food animals. While governments can adopt regulations prohibiting nontherapeutic uses of antibiotics in food animals and strategies to reduce antibiotic usage, another idea is to publicize when antibiotics are used in food animal production by allowing labeled meat products. This paper builds upon existing labeling and marketing efforts in the United States to show how a government can develop a verified antibiotic-free labeling program that would allow consumers to purchase meat products from animals that had never received antibiotics. PMID:27236477

  18. Antimicrobial-resistant faecal Escherichia coli in wild mammals in central Europe: multiresistant Escherichia coli producing extended-spectrum ß-lactamases in wild boars

    DEFF Research Database (Denmark)

    Literak, I.; Dolejska, Monika; Radimersky, T.;

    2010-01-01

    Aims: To determine the presence of antibiotic-resistant faecal Escherichia coli in populations of wild mammals in the Czech Republic and Slovakia. Methods and Results: Rectal swabs or faeces collected during 2006-2008 from wild mammals were spread on MacConkey agar and MacConkey agar containing 2...... mg l-1 of cefotaxime. From plates with positive growth, one isolate was recovered and identified as E. coli. Susceptibility to 12 antibiotics was tested using the disk diffusion method. Resistance genes, class 1 and 2 integrons and gene cassettes were detected in resistant isolates by polymerase....... The prevalence of resistant isolates was 2% in small terrestrial mammals (rodents and insectivores, n(E. coli) = 242), 12% in wild ruminants and foxes (n(E. coli) = 42), while no resistant isolates were detected in brown bears (n(E. coli) = 16). In wild boars (Sus scrofa) (n(E. coli) = 290), the prevalence...

  19. Determination of the Antibiotic Resistance Profile of Student Cell Phones

    Directory of Open Access Journals (Sweden)

    Lisa Ann Blankinship

    2012-08-01

    Full Text Available Sampling of common use items (e.g., student cell phones for bacterial presence, identification, and antibiotic resistance profiling helps students to recognize the need for routine cleaning of personal items and encourages thoughtful use of currently available medications. This multilab period project can be used to teach or reinforce several methods from general microbiology including aseptic technique, isolation streak, serial dilution, spread plating, Kirby Bauer testing, unknown identification, and media production. The data generated can be saved and added to each semester, thus providing a data set that reflects a local trend of antibiotic resistance.      

  20. Determination of Antibiotic Resistance and Synergistic Effect of Multiple Antibiotics on Helicobacter Pylori Isolated from the Stomach Ulcer Biopsy Specimens

    Directory of Open Access Journals (Sweden)

    Habibi Nava, F. (MSc

    2014-06-01

    Full Text Available Background and Objective: Resistance of Helicobacter Pylori (H. pylori to antibiotics is the main cause of relapse into Helcobacterial infections. With the use of several antibiotics that have synergistic effect, we can inhibit this antibiotic resistance. Thus, we aimed at determining resistance patterns and assessing the synergy of combining multiple antibiotics on H. pylori. Material and Methods: Biopsy specimens were taken from 100 patients with gastric ulcer referred to Imam Reza hospital in Amol, north of Iran. After isolation and identification of H. Pylori, antibiogram was performed with different antibiotic disks containing one antibiotic, a combination of two antibiotics (metronidazole + clarithromycin and three antibiotics (metronidazole + Claritromycin + Ciprofloxacin. Results: In this study, H. pylori were isolated from 53 (53% biopsy specimens. Of these, 49 (5.92% were resistant to metronidazole, 14 (26% to amoxicillin, 10 (19% to clarithromycin, 7 (13% to tetracycline, 13 (5/24% to furazolidone and 7 (13% to ciprofloxacin. In survey of synergistic effect, an increase in inhibition zone diameter around of combined disks was seen up to 5mm compared to the most effective antibiotic. Conclusion: The inhibition zone diameter of discs containing two and three antibiotics was large, in comparison with one antibiotic. Key words: H. Pylori; Antibiotic Resistance; Synergy Effect

  1. Relationships between antibiotics and antibiotic resistance gene levels in municipal solid waste leachates in Shanghai, China.

    Science.gov (United States)

    Wu, Dong; Huang, Zhiting; Yang, Kai; Graham, David; Xie, Bing

    2015-04-01

    Many studies have quantified antibiotics and antibiotic resistance gene (ARG) levels in soils, surface waters, and waste treatment plants (WTPs). However, similar work on municipal solid waste (MSW) landfill leachates is limited, which is concerning because antibiotics disposal is often in the MSW stream. Here we quantified 20 sulfonamide (SA), quinolone (FQ), tetracycline (TC), macrolide (ML), and chloramphenicol (CP) antibiotics, and six ARGs (sul1, sul2, tetQ, tetM, ermB, and mefA) in MSW leachates from two Shanghai transfer stations (TS; sites Hulin (HL) and Xupu (XP)) and one landfill reservoir (LR) in April and July 2014. Antibiotic levels were higher in TS than LR leachates (985 ± 1965 ng/L vs 345 ± 932 ng/L, n = 40), which was because of very high levels in the HL leachates (averaging at 1676 ± 5175 ng/L, n = 40). The mean MLs (3561 ± 8377 ng/L, n = 12), FQs (975 ± 1608 ng/L, n = 24), and SAs (402 ± 704 ng/L, n = 42) classes of antibiotics were highest across all samples. ARGs were detected in all leachate samples with normalized sul2 and ermB levels being especially elevated (-1.37 ± 1.2 and -1.76 ± 1.6 log (copies/16S-rDNA), respectively). However, ARG abundances did not correlate with detected antibiotic levels, except for tetW and tetQ with TC levels (r = 0.88 and 0.81, respectively). In contrast, most measured ARGs did significantly correlate with heavy metal levels (p antibiotics can prevail in MSW leachates and landfills may be an underappreciated as a source of antibiotics and ARGs to the environment.

  2. Chaperonin GroEL/GroES Over-Expression Promotes Aminoglycoside Resistance and Reduces Drug Susceptibilities in Escherichia coli Following Exposure to Sublethal Aminoglycoside Doses

    DEFF Research Database (Denmark)

    Goltermann, Lise; Sarusie, Menachem V; Bentin, Thomas

    2016-01-01

    Antibiotic resistance is an increasing challenge to modern healthcare. Aminoglycoside antibiotics cause translation corruption and protein misfolding and aggregation in Escherichia coli. We previously showed that chaperonin GroEL/GroES depletion and over-expression sensitize and promote short......-term tolerance, respectively, to this drug class. Here, we show that chaperonin GroEL/GroES over-expression accelerates acquisition of streptomycin resistance and reduces susceptibility to several other antibiotics following sub-lethal streptomycin antibiotic exposure. Chaperonin buffering could provide a novel...

  3. Effect of solar radiation on multidrug resistant E. coli strains and antibiotic mixture photodegradation in wastewater polluted stream

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, L., E-mail: l.rizzo@unisa.it [Department of Civil Engineering, University of Salerno, via Ponte don Melillo, 1-84084 Fisciano (Italy); Fiorentino, A. [Department of Civil Engineering, University of Salerno, via Ponte don Melillo, 1-84084 Fisciano (Italy); Anselmo, A. [Pluriacque, via Alento, 84060 Prignano Cilento (Italy)

    2012-06-15

    The effect of solar radiation on the inactivation of multidrug resistant Escherichia coli (MDR) strains selected from an urban wastewater treatment plant (UWWTP) effluent and the change of their resistance to a mixture of three antibiotics (evaluated in terms of minimum inhibit concentration (MIC)) in wastewater polluted stream were investigated. The solar photodegradation of the mixture of the three target antibiotics (amoxicillin (AMX), ciprofloxacin (CPX), and sulfamethoxazole (SMZ)) was also evaluated. Additionally, since UWWTP effluents are possible sources of antibiotics and antibiotic resistant bacteria, the disinfection by conventional chlorination process of the UWWTP effluent inoculated with MDR strains was investigated too. Solar radiation poorly affected the inactivation of the two selected antibiotic resistant E. coli strains (40 and 60% after 180 min irradiation). Moreover, solar radiation did not affect strain resistance to AMX (MIC > 256 {mu}g/mL) and SMZ (MIC > 1024 {mu}g/mL), but affected resistance of the lower resistance strain to CPX (MIC decreased by 33% but only after 180 min of irradiation). Chlorination of wastewater sample strongly decreased the number of the two selected antibiotic resistant E. coli strains (99.667 and 99.999%), after 60 min of contact time at 2.0 mg/L initial chlorine concentration, but the resistance of survived colonies to antibiotics was unchanged. Finally, the solar photodegradation rate of the antibiotic mixture (1 mg/L initial concentration respectively) resulted in the following order (half-life time): CPX (t{sub 1/2} = 24 min) < AMX (t{sub 1/2} = 99 min) < SMZ (t{sub 1/2} = 577 min). Accordingly, the risk of the development of resistance to SMZ in surface water is significantly higher compared to CPX and AMX. - Highlights: Black-Right-Pointing-Pointer Solar radiation did not affect E. coli strain resistance to AMX and SMZ. Black-Right-Pointing-Pointer Solar radiation affected the resistance of one E. coli strain

  4. Growth mediated feedback and the abrupt onset of antibiotic resistance

    Science.gov (United States)

    Barrett Deris, J.

    2010-03-01

    Recent results in our lab indicate that global gene expression will change in a growth-dependent manner for bacteria in sublethal antibiotic levels. We analyzed a system containing a constitutively expressed drug resistance gene and found that growth-mediated feedback provided a mechanism for bistable growth rates. That is, two identical cell-lines in the same antibiotic-infused media may respond with distinct growth rates. Our experimental work with cells carrying this resistance gene has shown that a rapid drop in growth occurs over a relatively small range of antibiotic. This result is consistent with a growth plateau arising in our analysis of the feedback mechanism. Furthermore, experiments have shown that a culture's degree of drug resistance depends on the initial growth conditions prior to exposure to high levels of antibiotics. This result is consistent with the predicted existence of a hysteretic regime near the growth plateau. The work reveals concrete mechanisms by which bacteria cope with high levels of antibiotics and illustrates the importance of considering growth-mediated feedback on gene circuits.

  5. Characterization of Multidrug Resistant ESBL-Producing Escherichia coli Isolates from Hospitals in Malaysia

    Directory of Open Access Journals (Sweden)

    King-Ting Lim

    2009-01-01

    Full Text Available The emergence of Escherichia coli that produce extended spectrum β-lactamases (ESBLs and are multidrug resistant (MDR poses antibiotic management problems. Forty-seven E. coli isolates from various public hospitals in Malaysia were studied. All isolates were sensitive to imipenem whereas 36 were MDR (resistant to 2 or more classes of antibiotics. PCR detection using gene-specific primers showed that 87.5% of the ESBL-producing E. coli harbored the blaTEM gene. Other ESBL-encoding genes detected were blaOXA, blaSHV, and blaCTX-M. Integron-encoded integrases were detected in 55.3% of isolates, with class 1 integron-encoded intI1 integrase being the majority. Amplification and sequence analysis of the 5′CS region of the integrons showed known antibiotic resistance-encoding gene cassettes of various sizes that were inserted within the respective integrons. Conjugation and transformation experiments indicated that some of the antibiotic resistance genes were likely plasmid-encoded and transmissible. All 47 isolates were subtyped by PFGE and PCR-based fingerprinting using random amplified polymorphic DNA (RAPD, repetitive extragenic palindromes (REPs, and enterobacterial repetitive intergenic consensus (ERIC. These isolates were very diverse and heterogeneous. PFGE, ERIC, and REP-PCR methods were more discriminative than RAPD in subtyping the E. coli isolates.

  6. Carriage of antibiotic-resistant enteric bacteria varies among sites in Galapagos reptiles.

    Science.gov (United States)

    Wheeler, Emily; Hong, Pei-Ying; Bedon, Lenin Cruz; Mackie, Roderick I

    2012-01-01

    Increased overlap between humans and wildlife populations has increased the risk for novel disease emergence. Detecting contacts with a high risk for transmission of pathogens requires the identification of dependable measures of microbial exchange. We evaluated antibiotic resistance as a molecular marker for the intensity of human-wildlife microbial connectivity in the Galápagos Islands. We isolated Escherichia coli and Salmonella enterica from the feces of land iguanas (Conolophus sp.), marine iguanas (Amblyrhynchus cristatus), giant tortoises (Geochelone nigra), and seawater, and tested these bacteria with the use of the disk diffusion method for resistance to 10 antibiotics. Antibiotic-resistant bacteria were found in reptile feces from two tourism sites (Isla Plaza Sur and La Galapaguera on Isla San Cristóbal) and from seawater close to a public use beach near Puerto Baquerizo Moreno on Isla San Cristóbal. No resistance was detected at two protected beaches on more isolated islands (El Miedo on Isla Santa Fe and Cape Douglas on Isla Fernandina) and at a coastal tourism site (La Lobería on Isla San Cristóbal). Eighteen E. coli isolates from three locations, all sites relatively proximate to a port town, were resistant to ampicillin, doxycycline, tetracycline, and trimethoprin/sulfamethoxazole. In contrast, only five S. enterica isolates showed a mild decrease in susceptibility to doxycycline and tetracycline from these same sites (i.e., an intermediate resistance phenotype), but no clinical resistance was detected in this bacterial species. These findings suggest that reptiles living in closer proximity to humans potentially have higher exposure to bacteria of human origin; however, it is not clear from this study to what extent this potential exposure translates to ongoing exchange of bacterial strains or genetic traits. Resistance patterns and bacterial exchange in this system warrant further investigation to understand better how human associations

  7. Carriage of antibiotic-resistant enteric bacteria varies among sites in Galapagos reptiles.

    Science.gov (United States)

    Wheeler, Emily; Hong, Pei-Ying; Bedon, Lenin Cruz; Mackie, Roderick I

    2012-01-01

    Increased overlap between humans and wildlife populations has increased the risk for novel disease emergence. Detecting contacts with a high risk for transmission of pathogens requires the identification of dependable measures of microbial exchange. We evaluated antibiotic resistance as a molecular marker for the intensity of human-wildlife microbial connectivity in the Galápagos Islands. We isolated Escherichia coli and Salmonella enterica from the feces of land iguanas (Conolophus sp.), marine iguanas (Amblyrhynchus cristatus), giant tortoises (Geochelone nigra), and seawater, and tested these bacteria with the use of the disk diffusion method for resistance to 10 antibiotics. Antibiotic-resistant bacteria were found in reptile feces from two tourism sites (Isla Plaza Sur and La Galapaguera on Isla San Cristóbal) and from seawater close to a public use beach near Puerto Baquerizo Moreno on Isla San Cristóbal. No resistance was detected at two protected beaches on more isolated islands (El Miedo on Isla Santa Fe and Cape Douglas on Isla Fernandina) and at a coastal tourism site (La Lobería on Isla San Cristóbal). Eighteen E. coli isolates from three locations, all sites relatively proximate to a port town, were resistant to ampicillin, doxycycline, tetracycline, and trimethoprin/sulfamethoxazole. In contrast, only five S. enterica isolates showed a mild decrease in susceptibility to doxycycline and tetracycline from these same sites (i.e., an intermediate resistance phenotype), but no clinical resistance was detected in this bacterial species. These findings suggest that reptiles living in closer proximity to humans potentially have higher exposure to bacteria of human origin; however, it is not clear from this study to what extent this potential exposure translates to ongoing exchange of bacterial strains or genetic traits. Resistance patterns and bacterial exchange in this system warrant further investigation to understand better how human associations

  8. Antibiotic resistant Esherichia coli strains from seafood and its susceptibility to seaweed extracts

    Institute of Scientific and Technical Information of China (English)

    Subramanian Kumaran; Balaraman Deivasigamani; Kumarappan Alagappan; Mannikam Sakthivel; Rajamani Karthikeyan

    2010-01-01

    Objective: To determine the prevalence and antibiotic resistance of Escherichia coli (E.coli) , in seafood obtained from Cuddalore and Parangipettai fish landing centres. Also, to identify the susceptibility of E. coli against predominant seaweeds red alga Kappaphycusalvarezii (K. alvarezii) and brown alga Padina boergessenii (P. boergessenii) extracts as sulfated polysaccharides and polyphenols respectively. Methods: A total of 48 samples (Two stations Cuddalore and Parangipettai, Tamil Nadu, India). Sampling area are fish landing centre where fishes caught from sea and estuary, seafood processing plants (packing and ice packed fishes) and local fish markets (fish samples). After isolation totally 80 strains were analyzed for its antimicrobial resistance and sensitivity against commercially 10 antibiotics. The ampicillin resistant E. coli CE21 was identified through molecular techniques as 16S rDNA sequencing. Two seaweeds K. alvarezii and P. boergessenii were screened for antibacterial activity against 12 antibiotic resistant E. coli strains. Results: Totally 48 swabbed samples from two different fish handling area were characterized for total bacterial and E. coli count. Mostly, the E. coli strains were isolated from fish local market and seafood processing plants before and after packaging process. In that maximum 56.25% strains were resistant to ampicillin and the minimum 2.5% strains were resistant to chloramphenicol. Therefore, the E. coli CE21 was identified through molecular techniques E. coli (GenBank accession number GU065251), The MIC value for polyphenol extract was slightly less than sulfated polysaccharides. E. coli strain isolated from Parangipettai was considerably increased MIC value that Cuddalore. Conclusions:The polyphenol and sulfated polysaccharides showed promising inhibitory response against all antimicrobial resistant E. coli strains and in particular the inhibitory response of ampicillin resistant E. coli.

  9. Macrophage adaptation leads to parallel evolution of genetically diverse Escherichia coli small-colony variants with increased fitness in vivo and antibiotic collateral sensitivity.

    Science.gov (United States)

    Ramiro, Ricardo S; Costa, Henrique; Gordo, Isabel

    2016-09-01

    Small-colony variants (SCVs) are commonly observed in evolution experiments and clinical isolates, being associated with antibiotic resistance and persistent infections. We recently observed the repeated emergence of Escherichia coli SCVs during adaptation to the interaction with macrophages. To identify the genetic targets underlying the emergence of this clinically relevant morphotype, we performed whole-genome sequencing of independently evolved SCV clones. We uncovered novel mutational targets, not previously associated with SCVs (e.g. cydA, pepP) and observed widespread functional parallelism. All SCV clones had mutations in genes related to the electron-transport chain. As SCVs emerged during adaptation to macrophages, and often show increased antibiotic resistance, we measured SCV fitness inside macrophages and measured their antibiotic resistance profiles. SCVs had a fitness advantage inside macrophages and showed increased aminoglycoside resistance in vitro, but had collateral sensitivity to other antibiotics (e.g. tetracycline). Importantly, we observed similar results in vivo. SCVs had a fitness advantage upon colonization of the mouse gut, which could be tuned by antibiotic treatment: kanamycin (aminoglycoside) increased SCV fitness, but tetracycline strongly reduced it. Our results highlight the power of using experimental evolution as the basis for identifying the causes and consequences of adaptation during host-microbe interactions. PMID:27606007

  10. Antibiotic resistance modulation by natural products obtained from Nasutitermes corniger (Motschulsky, 1855) and its nest.

    Science.gov (United States)

    Chaves, Thiago P; Clementino, Elaine L C; Felismino, Delcio C; Alves, Rômulo R N; Vasconcellos, Alexandre; Coutinho, Henrique D M; Medeiros, Ana Cláudia D

    2015-07-01

    Insects and their products are included in the traditional pharmacopoeia of various ethnic groups worldwide. In the Brazilian semiarid region can be highlighted the use of the termite Nasutitermes corniger for the treatment of various diseases. This study evaluated the ethanol extract of N. corniger and its nest as an antimicrobial agent and as a modulator of bacterial resistance against multidrug strains. The Minimum Inhibitory Concentration (MIC) of the extract on Staphylococcus aureus and Escherichia coli by microdilution was determined, as well as MIC of antibiotics in the presence and absence of extract. Despite having no significant antimicrobial activity (MIC ⩾ 1000 μg mL(-1)), the extract showed additive activity to the antibiotic efficacy, significantly reducing its MIC. These results suggest that N. corniger and its nest are promising natural products for use in antimicrobial therapy. PMID:26150745

  11. Antibiotic-resistant acne: getting under the skin.

    Science.gov (United States)

    Sinha, Mau; Sadhasivam, Suresh; Bhattacharyya, Anamika; Jain, Shilpi; Ghosh, Shamik; Arndt, Kenneth A; Dover, Jeffrey S; Sengupta, Shiladitya

    2016-06-01

    Propionibacterium acnes is a key pathogenic factor in the development of acne. Antibiotics are the first choice of treatment for mild-to-moderate, mixed, papular/pustular, and moderate nodular acne, and an alternative choice in severe, nodular/conglobate acne. The emergence of resistance to the currently available antibiotics poses a serious set-back to this algorithm, and the reduced arsenal can diminish efficacy of treatment. This emerging situation should catalyze innovations in dermatology; for example, newer drugs and technologies such as next-generation antibiotics with excellent potency and low propensity to develop resistance, rapid diagnostic platforms to select responders and nonresponders, and delivery technologies that target the bacteria. Such innovations can dramatically expand the arsenal for dermatologists in the management of acne. PMID:27416310

  12. Fate and transport of antibiotic residues and antibiotic resistance genetic determinants during manure storage, treatment, and land application

    Science.gov (United States)

    Antibiotics are used in swine production for therapeutic treatment of disease and at sub-therapeutic levels for growth promotion and improvement of feed efficiency. It is estimated that ca.75% of antibiotics are not absorbed by animals and are excreted in waste. Antibiotic resistance selection occur...

  13. Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Wan G

    2016-08-01

    Full Text Available Guoqing Wan,1,2 Lingao Ruan,2,3 Yu Yin,2,3 Tian Yang,2,3 Mei Ge,2 Xiaodong Cheng1,4 1School of Life Science and Technology, China Pharmaceutical University, Nanjing, 2Shanghai Laiyi Center for Biopharmaceutical R&D, 3School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 4Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center, Houston, TX, USA Abstract: Acinetobacter baumannii resistance to carbapenem antibiotics is a serious clinical challenge. As a newly developed technology, silver nanoparticles (AgNPs show some excellent characteristics compared to older treatments, and are a candidate for combating A. baumannii infection. However, its mechanism of action remains unclear. In this study, we combined AgNPs with antibiotics to treat carbapenem-resistant A. baumannii (aba1604. Our results showed that single AgNPs completely inhibited A. baumannii growth at 2.5 µg/mL. AgNP treatment also showed synergistic effects with the antibiotics polymixin B and rifampicin, and an additive effect with tigecyline. In vivo, we found that AgNPs–antibiotic combinations led to better survival ratios in A. baumannii-infected mouse peritonitis models than that by single drug treatment. Finally, we employed different antisense RNA-targeted Escherichia coli strains to elucidate the synergistic mechanism involved in bacterial responses to AgNPs and antibiotics. Keywords: Acinetobacter baumannii, AgNPs, synergistic, antibiotic combination, anti­sense RNA 

  14. Metabolic profiling for detection of Staphylococcus aureus infection and antibiotic resistance.

    Directory of Open Access Journals (Sweden)

    Henrik Antti

    Full Text Available Due to slow diagnostics, physicians must optimize antibiotic therapies based on clinical evaluation of patients without specific information on causative bacteria. We have investigated metabolomic analysis of blood for the detection of acute bacterial infection and early differentiation between ineffective and effective antibiotic treatment. A vital and timely therapeutic difficulty was thereby addressed: the ability to rapidly detect treatment failures because of antibiotic-resistant bacteria. Methicillin-resistant Staphylococcus aureus (MRSA and methicillin-sensitive S. aureus (MSSA were used in vitro and for infecting mice, while natural MSSA infection was studied in humans. Samples of bacterial growth media, the blood of infected mice and of humans were analyzed with combined Gas Chromatography/Mass Spectrometry. Multivariate data analysis was used to reveal the metabolic profiles of infection and the responses to different antibiotic treatments. In vitro experiments resulted in the detection of 256 putative metabolites and mice infection experiments resulted in the detection of 474 putative metabolites. Importantly, ineffective and effective antibiotic treatments were differentiated already two hours after treatment start in both experimental systems. That is, the ineffective treatment of MRSA using cloxacillin and untreated controls produced one metabolic profile while all effective treatment combinations using cloxacillin or vancomycin for MSSA or MRSA produced another profile. For further evaluation of the concept, blood samples of humans admitted to intensive care with severe sepsis were analyzed. One hundred thirty-three putative metabolites differentiated severe MSSA sepsis (n = 6 from severe Escherichia coli sepsis (n = 10 and identified treatment responses over time. Combined analysis of human, in vitro, and mice samples identified 25 metabolites indicative of effective treatment of S. aureus sepsis. Taken together, this

  15. Characterization of antibiotic resistance determinants in oral biofilms.

    Science.gov (United States)

    Kim, Seon-Mi; Kim, Hyeong C; Lee, Seok-Woo S

    2011-08-01

    Oral biofilms contain numerous antibiotic resistance determinants that can be transferred within or outside of the oral cavity. The aim of this study was to evaluate the prevalence and the relative level of antibiotic resistance determinants from oral biofilms. Oral biofilm samples that were collected from healthy subjects and periodontitis patients were subjected to qualitative and quantitative analyses for selected antibiotic resistance determinants using PCR. The prevalence of tet(Q), tet(M), cfxA, and bla ( TEM ) was very high both in the patient and the healthy subject group, with a tendency toward higher values in the patient group, with the exception of erm(F), which was more prevalent in the healthy group. The two extended spectrum β-lactam (ESBL) resistance determinants bla ( SHV ) and bla ( TEM ) showed a dramatic difference, as bla ( TEM ) was present in all of the samples and bla ( SHV ) was not found at all. The aacA-aphD, vanA, and mecA genes were rarely detected, suggesting that they are not common in oral bacteria. A quantitative PCR analysis showed that the relative amount of resistance determinants present in oral biofilms of the patient group was much greater than that of the healthy group, exhibiting 17-, 13-, 145-, and 3-fold increases for tet(Q), tet(M), erm(F), and cfxA, respectively. The results of this study suggest that the oral antibiotic resistome is more diverse and abundant in periodontitis patients than in healthy subjects, suggesting that there is a difference in the diversity and distribution of antibiotic resistance in oral biofilms associated with health and disease.

  16. Antibiotic residues and drug resistance in human intestinal flora.

    OpenAIRE

    Corpet, D. E.

    1987-01-01

    The effect of residual levels of ampicillin on the drug resistance of fecal flora was studied in human volunteers given 1.5 mg of ampicillin orally per day for 21 days. This treatment failed to have any significant reproducible effect on the number of resistant Escherichia coli in their feces. The effect of continuous administration of small doses of ampicillin, chlortetracycline, or streptomycin in the drinking water was studied in gnotobiotic mice inoculated with a human fecal flora. In thi...

  17. Molecular Mechanisms of Antibiotic Resistance in Helicobacter pylori

    NARCIS (Netherlands)

    M.M. Gerrits (Monique)

    2004-01-01

    textabstractAn estimated 4 to 5 million individuals in the Netherlands are actively infected with Helicobacter pylori. Eradication of this bacterium becomes more difficult as the prevalence of antibiotic resistance is increasing worldwide. Most H. pylori infections are now diagnosed by non-invasi

  18. Risk of antibiotic resistance from metal contaminated soils

    Science.gov (United States)

    Knapp, Charles

    2013-04-01

    It is known that contaminated soils can lead to increased incidence of illness and disease, but it may also prevent our ability to fight disease. Many antibiotic resistant genes (ARG) acquired by bacteria originate from the environment. It is important to understand factors that influence levels of ARG in the environment, which could affect us clinically and agriculturally. The presence of elevated metal content in soils often promotes antibiotic resistance in exposed microorganisms. Using qPCR, the abundances of ARG to compare levels with geochemical conditions in randomly selected soils from several countries. Many ARG positively correlated with soil metal content, especially copper, chromium, nickel, lead, and iron. Results suggest that geochemical metal conditions influence the potential for antibiotic resistance in soil, which might be used to estimate baseline gene presence on various landscape scales and may translate to epidemiological risk of antibiotic-resistance transmission from the environment. This suggests that we may have to reconsider tolerances of metal pollution in the environment.

  19. ANTIBIOTIC RESISTANT BACTERIA FROM HALIOTIS TUBERCULATA AND MYTILUS GALLOPROVINCIALIS

    Directory of Open Access Journals (Sweden)

    F. Conte

    2009-12-01

    Full Text Available The antibiotic resistance (AR of Gram negative bacteria from Haliotis tuberculata (Ht and Mytilus galloprovincialis (Mg was assessed. Essential differences between R profiles of Pseudomonas spp and of other strains was not observed. Strains AR from Ht and Mg was similar.

  20. Multidrug transporters and antibiotic resistance in Lactococcus lactis

    NARCIS (Netherlands)

    Poelarends, GJ; Mazurkiewicz, P; Konings, WN

    2002-01-01

    The Gram-positive bacterium Lactococcus lactis produces two distinct multidrug transporters, designated LmrA and LmrP, that both confer resistance to a wide variety of cationic lipophilic cytotoxic compounds as well as to many clinically relevant antibiotics. While LmrP is a proton/drug antiporter t

  1. Tracking acquired antibiotic resistance in commensal bacteria of Galapagos land iguanas: no man, no resistance.

    Directory of Open Access Journals (Sweden)

    Maria Cristina Thaller

    Full Text Available BACKGROUND: Antibiotic resistance, evolving and spreading among bacterial pathogens, poses a serious threat to human health. Antibiotic use for clinical, veterinary and agricultural practices provides the major selective pressure for emergence and persistence of acquired resistance determinants. However, resistance has also been found in the absence of antibiotic exposure, such as in bacteria from wildlife, raising a question about the mechanisms of emergence and persistence of resistant strains under similar conditions, and the implications for resistance control strategies. Since previous studies yielded some contrasting results, possibly due to differences in the ecological landscapes of the studied wildlife, we further investigated this issue in wildlife from a remote setting of the Galapagos archipelago. METHODOLOGY/PRINCIPAL FINDINGS: Screening for acquired antibiotic resistance was carried out in commensal enterobacteria from Conolophus pallidus, the terrestrial iguana of Isla Santa Fe, where: i the abiotic conditions ensure to microbes good survival possibilities in the environment; ii the animal density and their habits favour microbial circulation between individuals; and iii there is no history of antibiotic exposure and the impact of humans and introduced animal species is minimal except for restricted areas. Results revealed that acquired antibiotic resistance traits were exceedingly rare among bacteria, occurring only as non-dominant strains from an area of minor human impact. CONCLUSIONS/SIGNIFICANCE: Where both the exposure to antibiotics and the anthropic pressure are minimal, acquired antibiotic resistance traits are not normally found in bacteria from wildlife, even if the ecological landscape is highly favourable to bacterial circulation among animals. Monitoring antibiotic resistance in wildlife from remote areas could also be a useful tool to evaluate the impact of anthropic pressure.

  2. Silver nanoparticle-embedded polymersome nanocarriers for the treatment of antibiotic-resistant infections

    Science.gov (United States)

    Geilich, Benjamin M.; van de Ven, Anne L.; Singleton, Gloria L.; Sepúlveda, Liuda J.; Sridhar, Srinivas; Webster, Thomas J.

    2015-02-01

    The rapidly diminishing number of effective antibiotics that can be used to treat infectious diseases and associated complications in a physician's arsenal is having a drastic impact on human health today. This study explored the development and optimization of a polymersome nanocarrier formed from a biodegradable diblock copolymer to overcome bacterial antibiotic resistance. Here, polymersomes were synthesized containing silver nanoparticles embedded in the hydrophobic compartment, and ampicillin in the hydrophilic compartment. Results showed for the first time that these silver nanoparticle-embedded polymersomes (AgPs) inhibited the growth of Escherichia coli transformed with a gene for ampicillin resistance (bla) in a dose-dependent fashion. Free ampicillin, AgPs without ampicillin, and ampicillin polymersomes without silver nanoparticles had no effect on bacterial growth. The relationship between the silver nanoparticles and ampicillin was determined to be synergistic and produced complete growth inhibition at a silver-to-ampicillin ratio of 1 : 0.64. In this manner, this study introduces a novel nanomaterial that can effectively treat problematic, antibiotic-resistant infections in an improved capacity which should be further examined for a wide range of medical applications.

  3. High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut.

    Science.gov (United States)

    Hinnebusch, B Joseph; Rosso, Marie-Laure; Schwan, Tom G; Carniel, Elisabeth

    2002-10-01

    The acquisition of foreign DNA by horizontal transfer from unrelated organisms is a major source of variation leading to new strains of bacterial pathogens. The extent to which this occurs varies widely, due in part to lifestyle factors that determine exposure to potential donors. Yersinia pestis, the plague bacillus, infects normally sterile sites in its mammalian host, but forms dense aggregates in the non-sterile digestive tract of its flea vector to produce a transmissible infection. Here we show that unrelated co-infecting bacteria in the flea midgut are readily incorporated into these aggregates, and that this close physical contact leads to high-frequency conjugative genetic exchange. Transfer of an antibiotic resistance plasmid from an Escherichia coli donor to Y. pestis occurred in the flea midgut at a frequency of 10-3 after only 3 days of co-infection, and after 4 weeks 95% of co-infected fleas contained an average of 103 antibiotic-resistant Y. pestis transconjugants. Thus, transit in its arthropod vector exposes Y. pestis to favourable conditions for efficient genetic exchange with microbial flora of the flea gut. Horizontal gene transfer in the flea may be the source of antibiotic-resistant Y. pestis strains recently isolated from plague patients in Madagascar. PMID:12406213

  4. Carriage of antibiotic-resistant bacteria by healthy children.

    Science.gov (United States)

    Millar, M R; Walsh, T R; Linton, C J; Zhang, S; Leeming, J P; Bennett, P M

    2001-05-01

    The frequency of carriage of antibiotic-resistant bacteria in healthy 7- and 8-year-old children in Bristol was studied. Children born in Avon between 1 April 1991 and 31 December 1992, attending the Avon Longitudinal Study of Pregnancy and Childhood (ALSPAC) 7 year follow-up clinic, formed the study population. Carriage was estimated using mouth and stool samples. None of 105 children on whom information was available had received tetracycline, chloramphenicol, ciprofloxacin or an extended-spectrum cephalosporin in the previous year. Staphylococcus aureus was isolated from mouthwashes from 200 (37.1%) of 539 children sampled. Six (3%) of the isolates were resistant to chloramphenicol or tetracycline and four (2%) were methicillin resistant. Haemophilus spp. were isolated from 369 (72%) of 513 samples and 63 (17%) were ampicillin resistant, 49 (13.3%) were erythromycin resistant and seven (1.9%) were tetracycline resistant. Branhamella catarrhalis was isolated from 333 (74%) of 450 samples. Twenty-eight (8.4%) were erythromycin resistant and 14 (4.2%) strains were tetracycline resistant. Group A beta-haemolytic streptococci were isolated from 17 of 507 children sampled. One (5.9%) was tetracycline resistant. Stool samples were returned from 335 (62%) of 539 children from whom they were requested. Eleven per cent of samples yielded Gram-negative bacilli with high-level resistance to chloramphenicol, which was frequently linked to resistance to ampicillin, spectinomycin and streptomycin. Isolates demonstrating resistance to the third-generation cephalosporin ceftazidime were recovered from 17 subjects (3.2%). Six (35%) of 17 isolates possessed extended-spectrum beta-lactamases. Healthy children carry bacteria resistant to antibiotics to which children are not usually exposed. Resistance to ceftazidime, chloramphenicol and tetracycline may be co-selected by exposure to other antibiotics used in children or may be acquired from family members, pets, other children or

  5. Quantitative assessment of faecal shedding of β-lactam-resistant Escherichia coli and enterococci in dogs

    DEFF Research Database (Denmark)

    Gongora, Carmen Espinosa; Shah, Syed Qaswar Ali; Jessen, Lisbeth Rem;

    2015-01-01

    Quantitative data on faecal shedding of antimicrobial resistant bacteria are crucial to assess the risk of transmission from dogs to other animals as well as humans. In this study we investigated prevalence and concentrations of β-lactam-resistant Escherichia coli and enterococci in the faeces...... of 108 dogs presenting at a veterinary hospital in Denmark. The dogs had not been treated with antimicrobials for 4 weeks prior to the study. Total E. coli and enterococci were quantified by counts on MacConkey and Slanetz-Bartley, respectively. Resistant E. coli and enterococci were counted on the same...... media containing relevant antibiotic concentrations, followed by species identification using MALDI-TOF. Ampicillin- and cefotaxime-resistant E. coli were detected in 40% and 8% of the dogs, respectively, whereas approximately 15% carried ampicillin-resistant enterococci, mainly Enterococcus faecium...

  6. The changing pattern of antimicrobial resistance within 42,033 Escherichia coli isolates from nosocomial, community and urology patient-specific urinary tract infections, Dublin, 1999-2009.

    LENUS (Irish Health Repository)

    Cullen, Ivor M

    2012-04-01

    To investigate the changing pattern of antimicrobial resistance in Escherichia coli urinary tract infection over an eleven year period, and to determine whether E. coli antibiotic resistance rates vary depending on whether the UTI represents a nosocomial, community acquired or urology patient specific infection.

  7. Antibiotics, Antibiotic Resistance Genes, and Bacterial Community Composition in Fresh Water Aquaculture Environment in China.

    Science.gov (United States)

    Xiong, Wenguang; Sun, Yongxue; Zhang, Tong; Ding, Xueyao; Li, Yafei; Wang, Mianzhi; Zeng, Zhenling

    2015-08-01

    Environmental antibiotic resistance has drawn increasing attention due to its great threat to human health. In this study, we investigated concentrations of antibiotics (tetracyclines, sulfonamides and (fluoro)quinolones) and abundances of antibiotic resistance genes (ARGs), including tetracycline resistance genes, sulfonamide resistance genes, and plasmid-mediated quinolone resistance genes, and analyzed bacterial community composition in aquaculture environment in Guangdong, China. The concentrations of sulfametoxydiazine, sulfamethazine, sulfamethoxazole, oxytetracycline, chlorotetracycline, doxycycline, ciprofloxacin, norfloxacin, and enrofloxacin were as high as 446 μg kg(-1) and 98.6 ng L(-1) in sediment and water samples, respectively. The relative abundances (ARG copies/16S ribosomal RNA (rRNA) gene copies) of ARGs (sul1, sul2, sul3, tetM, tetO, tetW, tetS, tetQ, tetX, tetB/P, qepA, oqxA, oqxB, aac(6')-Ib, and qnrS) were as high as 2.8 × 10(-2). The dominant phyla were Proteobacteria, Bacteroidetes, and Firmicutes in sediment samples and Proteobacteria, Actinobacteria and Bacteroidetes in water samples. The genera associated with pathogens were also observed, such as Acinetobacter, Arcobacter, and Clostridium. This study comprehensively investigated antibiotics, ARGs, and bacterial community composition in aquaculture environment in China. The results indicated that fish ponds are reservoirs of ARGs and the presence of potential resistant and pathogen-associated taxonomic groups in fish ponds might imply the potential risk to human health.

  8. Antibiotics as CECs: An Overview of the Hazards Posed by Antibiotics and Antibiotic Resistance

    OpenAIRE

    Geoffrey Ivan Scott; Porter, Dwayne E.; R. Sean Norman; C. Hart Scott; Miguel Ignacio Uyaguari-Diaz; Keith eMaruya; Steve B. Weisberg; Fulton, Michael H.; Ed F. Wirth; Janet eMooore; Pennington , Paul L.; Daniel eSchlenk; Cobb, George P.; Denslow, Nancy D.

    2016-01-01

    ABSTRACTMonitoring programs have traditionally monitored legacy contaminants but are shifting focus to Contaminants of Emerging Concern (CECs). CECs present many challenges for monitoring and assessment, because measurement methods don't always exist nor have toxicological studies been fully conducted to place results in proper context. Also some CECs affect metabolic pathways to produce adverse outcomes that are not assessed through traditional toxicological evaluations. Antibiotics are CEC...

  9. Vancomycin-resistant enterococci: validation of susceptibility testing and in vitro activity of novel antibiotics

    DEFF Research Database (Denmark)

    Rathe, Mathias; Lise, Kristensen,; Ellermann-Eriksen, Svend;

    Vancomycin-resistant enterococci: validation of susceptibility testing and in vitro activity of novel antibiotics......Vancomycin-resistant enterococci: validation of susceptibility testing and in vitro activity of novel antibiotics...

  10. Genomic Microbial Epidemiology Is Needed to Comprehend the Global Problem of Antibiotic Resistance and to Improve Pathogen Diagnosis

    Science.gov (United States)

    Wyrsch, Ethan R.; Roy Chowdhury, Piklu; Chapman, Toni A.; Charles, Ian G.; Hammond, Jeffrey M.; Djordjevic, Steven P.

    2016-01-01

    Contamination of waste effluent from hospitals and intensive food animal production with antimicrobial residues is an immense global problem. Antimicrobial residues exert selection pressures that influence the acquisition of antimicrobial resistance and virulence genes in diverse microbial populations. Despite these concerns there is only a limited understanding of how antimicrobial residues contribute to the global problem of antimicrobial resistance. Furthermore, rapid detection of emerging bacterial pathogens and strains with resistance to more than one antibiotic class remains a challenge. A comprehensive, sequence-based genomic epidemiological surveillance model that captures essential microbial metadata is needed, both to improve surveillance for antimicrobial resistance and to monitor pathogen evolution. Escherichia coli is an important pathogen causing both intestinal [intestinal pathogenic E. coli (IPEC)] and extraintestinal [extraintestinal pathogenic E. coli (ExPEC)] disease in humans and food animals. ExPEC are the most frequently isolated Gram negative pathogen affecting human health, linked to food production practices and are often resistant to multiple antibiotics. Cattle are a known reservoir of IPEC but they are not recognized as a source of ExPEC that impact human or animal health. In contrast, poultry are a recognized source of multiple antibiotic resistant ExPEC, while swine have received comparatively less attention in this regard. Here, we review what is known about ExPEC in swine and how pig production contributes to the problem of antibiotic resistance. PMID:27379026

  11. SCREENING THE ANTIMICROBIAL ACTIVITY OF SOME MEDICINAL PLANTS AGAINST MULTIDRUG RESISTANCE ESCHERICHIA COLI TYPE (1

    Directory of Open Access Journals (Sweden)

    SHAZA ANWAR AL LAHAM, FRDOOS MOHAMMAD

    2014-05-01

    Full Text Available The increasing number of Escherichia coli causing mastitis and of bacteria resistant to conventional antibiotics has become aserious problem in recent years. So the search for new antibiotics and alternative products to solve this problem is the question ofthe age. This research aims to investigate the effectiveness of the extracts prepared from different parts of the following plants:Olea europea Linn (Oleaceae ، Myrtus communis Linn (Liliaceae، Majorana syriacus Linn (Laminaceae، Zingiber officinaleLinn (Zingiberaceae، Achillea falcata Linn (Asteraceae against resistant Escherichia coli Type (1. Investigation began forE.coli bacteria in 667 milk samples. The bacteria were identified culturally, morphologically and biochemically. Antibioticsusceptibility testing against E.coli by Kirby-Bauer disk diffusion method were conducted. Then using the blood agar,MacConkey agar, salmonella - shigella agar, and biochemical testing method [API 20 E testing Enterobacteriaceae] were made totype E.coli. Plants were extracted with water, absolute alcohol, then ether using a soxhlet apparatus and rotary vacuumevaporator. Then extracts susceptibility testing against antibiotic resistant E.coli Type (1 were studied. E. coli was defined asoxidase negative, indole positive, catalase positive. The studied antibiotics did not show any antibacterial effect against E.coli .By the results of the biochemical analysis (API20e on resistant E.coli , E.coli type (1 was 33.35% of the total number ofsamples. The anti-bacterial effectiveness against E.coli type (1 of ethanol extracts prepared from different parts of the studiedplants were variant, whereas the Myrtus communis extract effectively has the most powerful antibacterial effect for these bacteria,while the Zingiber officinale extract has the lowest influence.

  12. 尿道致病性大肠埃希菌分离株的耐药性与毒力基因分布及相互间关系研究%Study on correlation between antibiotics resistance and distribution of virulence genes in uropathogenic Escherichia coli isolates

    Institute of Scientific and Technical Information of China (English)

    王立平; 刘世巍; 郭洁; 王玉飞; 徐杰; 高光俊; 王璐璐; 李卓林; 张正芳

    2013-01-01

    OBJECTIVE To study the distribution of the virulence factors and its correlation with the antibiotic resistance of the uropathogenic Escherichia coli (UPEC). METHODS The virulence genes, including fimH, traT, aerj, papGⅢ , fyuA, pAI, hlyA, papG and papC of the 95 strains of UPEC isolated from urine, were screened by PCR. The drug susceptibility testing of 18 antibiotics was performed by K-B methods. RESULTS Among the 95 strains of UPEC, the positive rates of fimH, traT, aerj, papGⅢ , fyuA, pAI, hlyA,papG and papC gene were 92. 63%, 81.05%, 65. 26%, 37.89%, 24. 21%, 30.53%, 3. 16%, 11. 58%, and 21.05%, respectively. The drug resistance rates of the 95 strains of UPEC to penicillins, β-lactamase inhibition compounds, cephalosporins, aminoglycosides, and fluoroquinolones were 74. 74% ,33. 68% , 32.63%, 36.84%, and76.84%, respectively, all higher than 30. 00%. The drug susceptibility rate to carbapenems was 100. 00% among the 6 categories of antibiotics. There was statistical difference between the distribution of virulence genes and antibiotic resistance (Presistant. There is a close relationship between the virulence genes and the antibiotic resistance, thus it is necessary for the hospital to pay attention to the reasonable use of antibiotics so as to prevent the emergence and spread of the drug-resistant UPEC.%目的 探讨尿道致病性大肠埃希菌(UPEC)临床分离株中毒力因子的分布、耐药性及其两者间的关系.方法 用PCR扩增的方法筛查95株UPEC临床分离株的fimH、traT、aerJ、papGⅢ、fyuA、pAI、hlyA、pa pG、pa pC等毒力基因的分布;用K-B法分析菌株对18种抗菌药物的敏感率.结果 95株UPEC中fimH、traT、aerJ、pa pGⅢ、fyuA、pAI、hlyA、pa pG、papC等毒力基因的分布率依次为92.63%、81.05%、65.26%、37.89%、24.21%、30

  13. Multidrug resistant Escherichia coli strains isolated from urine sample, University of Gondar Hospital, Northwest Ethiopia

    Institute of Scientific and Technical Information of China (English)

    Setegn Eshetie; Fentahun Tarekegn; Gemechu Kumera; Feleke Mekonnen

    2016-01-01

    Objective: To assess multidrug resistant (MDR) Escherichia coli (E. coli) isolates from patients with urinary tract infection. Methods: From February to June 2014, a cross sectional study was conducted among urinary tract infection patients at the University of Gondar Hospital. Culture and disk diffusion method were used for E. coli isolation and to determine the antibiotic susceptibility patterns. Data were entered and analyzed using SPSS version 20. P Results: A total of 112 E. coli isolates were identified and the rate of isolation was higher among female participants (28.7%; P = 0.03). Of the isolates, 104 (92.9%) were MDR E. coli; and the isolates showed high resistance rates towards ampicillin (99%), cotrimoxazole (69%), chloramphenicol (58.7%), gentamycin (56.7%) and ceftazidime (55.8%). However, comparative isolates showed low resistance rates to ciprofloxacin (1%), cefepime (8.7%), and ceftriaxone (11.5%). Moreover, resistance rates of MDR E. coli isolates were significantly higher than non-MDR strains for ceftazidime (55.8% versus 12.5%; P = 0.015), and ampicillin (99% versus 87.5%; P = 0.018). Conclusions: High prevalence of MDR E. coli isolates was observed in this study. Regular monitoring of antibiotic resistance rates is necessarily required to improve and revise empirical antibiotic therapy protocols.

  14. Antibiotic resistance-the need for global solutions.

    Science.gov (United States)

    Laxminarayan, Ramanan; Duse, Adriano; Wattal, Chand; Zaidi, Anita K M; Wertheim, Heiman F L; Sumpradit, Nithima; Vlieghe, Erika; Hara, Gabriel Levy; Gould, Ian M; Goossens, Herman; Greko, Christina; So, Anthony D; Bigdeli, Maryam; Tomson, Göran; Woodhouse, Will; Ombaka, Eva; Peralta, Arturo Quizhpe; Qamar, Farah Naz; Mir, Fatima; Kariuki, Sam; Bhutta, Zulfiqar A; Coates, Anthony; Bergstrom, Richard; Wright, Gerard D; Brown, Eric D; Cars, Otto

    2013-12-01

    The causes of antibiotic resistance are complex and include human behaviour at many levels of society; the consequences affect everybody in the world. Similarities with climate change are evident. Many efforts have been made to describe the many different facets of antibiotic resistance and the interventions needed to meet the challenge. However, coordinated action is largely absent, especially at the political level, both nationally and internationally. Antibiotics paved the way for unprecedented medical and societal developments, and are today indispensible in all health systems. Achievements in modern medicine, such as major surgery, organ transplantation, treatment of preterm babies, and cancer chemotherapy, which we today take for granted, would not be possible without access to effective treatment for bacterial infections. Within just a few years, we might be faced with dire setbacks, medically, socially, and economically, unless real and unprecedented global coordinated actions are immediately taken. Here, we describe the global situation of antibiotic resistance, its major causes and consequences, and identify key areas in which action is urgently needed.

  15. Cultures of resistance? A Bourdieusian analysis of doctors' antibiotic prescribing.

    Science.gov (United States)

    Broom, Alex; Broom, Jennifer; Kirby, Emma

    2014-06-01

    The prospect of an 'antimicrobial perfect storm' in the coming decades through the emergence and proliferation of multi-resistant organisms has become an urgent public health concern. With limited drug discovery solutions foreseeable in the immediate future, and with evidence that resistance can be ameliorated by optimisation of prescribing, focus currently centres on antibiotic use. In hospitals, this is manifest in the development of stewardship programs that aim to alter doctors' prescribing behaviour. Yet, in many clinical contexts, doctors' antibiotic prescribing continues to elude best practice. In this paper, drawing on qualitative interviews with 30 Australian hospital-based doctors in mid-2013, we draw on Bourdieu's theory of practice to illustrate that 'sub-optimal' antibiotic prescribing is a logical choice within the habitus of the social world of the hospital. That is, the rules of the game within the field are heavily weighted in favour of the management of immediate clinical risks, reputation and concordance with peer practice vis-à-vis longer-term population consequences. Antimicrobial resistance is thus a principal of limited significance in the hospital. We conclude that understanding the habitus of the hospital and the logics underpinning practice is a critical step toward developing governance practices that can respond to clinically 'sub-optimal' antibiotic use.

  16. Antibiotic resistance in prevalent bacterial and protozoan sexually transmitted infections

    Directory of Open Access Journals (Sweden)

    Karl Krupp

    2015-01-01

    Full Text Available The emergence of multi-drug resistant sexually transmitted infections (STIs is causing a treatment crisis across the globe. While cephalosporin-resistant gonorrhea is one of the most pressing issues, extensively antibiotic resistant Chlamydia trachomatis and Mycoplasma hominis are also becoming commonplace. Experts have suggested that the failure of current treatment regimens are "largely inevitable" and have called for entirely new classes of antimicrobial agents. With the exception of several new classes of drugs primarily targeting nosocomial infections, progress has been slow. While pharmaceutical companies continue to introduce new drugs, they are based on decade-old discoveries. While there is disagreement about what constitutes new classes of antibiotics, many experts suggest that the last truly new family of antimicrobials was discovered in 1987. This review summarizes the existing literature on antibiotic resistance in common bacterial and protozoal STIs. It also briefly discusses several of the most promising alternatives to current therapies, and further examines how advances in drug delivery, formulation, concentration, and timing are improving the efficacy of existing treatments. Finally, the paper discusses the current state of pharmaceutical development for multidrug-resistant STI.

  17. Insects Represent a Link between Food Animal Farms and the Urban Environment for Antibiotic Resistance Traits

    OpenAIRE

    Zurek, Ludek; Ghosh, Anuradha

    2014-01-01

    Antibiotic-resistant bacterial infections result in higher patient mortality rates, prolonged hospitalizations, and increased health care costs. Extensive use of antibiotics as growth promoters in the animal industry represents great pressure for evolution and selection of antibiotic-resistant bacteria on farms. Despite growing evidence showing that antibiotic use and bacterial resistance in food animals correlate with resistance in human pathogens, the proof for direct transmission of antibi...

  18. Why Finish Your Antibiotics? A Novel, Hands-On, Classroom Approach for Teaching the Dynamics of Antibiotic Resistance

    Science.gov (United States)

    Wassmer, Gary T.; Kipe-Nolt, Judith A.; Chayko, Catherine A.

    2006-01-01

    We present an effective, engaging, and fun method for teaching how the use or misuse of antibiotics can select for resistant strains of bacteria. This method uses candy as a substitute for strains of bacteria varying in resistance to a given antibiotic. Results and discussion are presented in the context of this emerging healthcare crisis.

  19. Effects of reducing beta-lactam antibiotic pressure on intestinal colonization of antibiotic-resistant gram-negative bacteria

    NARCIS (Netherlands)

    S. Nijssen (Saskia); A.C. Fluit (Ad); D.A.M.C. van de Vijver (David); J. Top (Janetta); R.J.L. Willems (Rob); M.J.M. Bonten (Marc)

    2010-01-01

    textabstractBackground: We determined the effects of two antibiotic policies (predominance of either β-lactam antibiotics or fluroquinolones) on acquisition with third-generation cephalosporin-resistant Enterobacteriaceae (CRE) and fluoroquinolone-resistant CRE (FCRE) in two ICUs, with monitoring of

  20. Adaptive resistance to antibiotics in bacteria: a systems biology perspective.

    Science.gov (United States)

    Sandoval-Motta, Santiago; Aldana, Maximino

    2016-05-01

    Despite all the major breakthroughs in antibiotic development and treatment procedures, there is still no long-term solution to the bacterial antibiotic resistance problem. Among all the known types of resistance, adaptive resistance (AdR) is particularly inconvenient. This phenotype is known to emerge as a consequence of concentration gradients, as well as contact with subinhibitory concentrations of antibiotics, both known to occur in human patients and livestock. Moreover, AdR has been repeatedly correlated with the appearance of multidrug resistance, although the biological processes behind its emergence and evolution are not well understood. Epigenetic inheritance, population structure and heterogeneity, high mutation rates, gene amplification, efflux pumps, and biofilm formation have all been reported as possible explanations for its development. Nonetheless, these concepts taken independently have not been sufficient to prevent AdR's fast emergence or to predict its low stability. New strains of resistant pathogens continue to appear, and none of the new approaches used to kill them (mixed antibiotics, sequential treatments, and efflux inhibitors) are completely efficient. With the advent of systems biology and its toolsets, integrative models that combine experimentally known features with computational simulations have significantly improved our understanding of the emergence and evolution of the adaptive-resistant phenotype. Apart from outlining these findings, we propose that one of the main cornerstones of AdR in bacteria, is the conjunction of two types of mechanisms: one rapidly responding to transient environmental challenges but not very efficient, and another much more effective and specific, but developing on longer time scales. WIREs Syst Biol Med 2016, 8:253-267. doi: 10.1002/wsbm.1335 For further resources related to this article, please visit the WIREs website. PMID:27103502

  1. Adaptive resistance to antibiotics in bacteria: a systems biology perspective.

    Science.gov (United States)

    Sandoval-Motta, Santiago; Aldana, Maximino

    2016-05-01

    Despite all the major breakthroughs in antibiotic development and treatment procedures, there is still no long-term solution to the bacterial antibiotic resistance problem. Among all the known types of resistance, adaptive resistance (AdR) is particularly inconvenient. This phenotype is known to emerge as a consequence of concentration gradients, as well as contact with subinhibitory concentrations of antibiotics, both known to occur in human patients and livestock. Moreover, AdR has been repeatedly correlated with the appearance of multidrug resistance, although the biological processes behind its emergence and evolution are not well understood. Epigenetic inheritance, population structure and heterogeneity, high mutation rates, gene amplification, efflux pumps, and biofilm formation have all been reported as possible explanations for its development. Nonetheless, these concepts taken independently have not been sufficient to prevent AdR's fast emergence or to predict its low stability. New strains of resistant pathogens continue to appear, and none of the new approaches used to kill them (mixed antibiotics, sequential treatments, and efflux inhibitors) are completely efficient. With the advent of systems biology and its toolsets, integrative models that combine experimentally known features with computational simulations have significantly improved our understanding of the emergence and evolution of the adaptive-resistant phenotype. Apart from outlining these findings, we propose that one of the main cornerstones of AdR in bacteria, is the conjunction of two types of mechanisms: one rapidly responding to transient environmental challenges but not very efficient, and another much more effective and specific, but developing on longer time scales. WIREs Syst Biol Med 2016, 8:253-267. doi: 10.1002/wsbm.1335 For further resources related to this article, please visit the WIREs website.

  2. armA and aminoglycoside resistance in Escherichia coli.

    Science.gov (United States)

    González-Zorn, Bruno; Teshager, Tirushet; Casas, María; Porrero, María C; Moreno, Miguel A; Courvalin, Patrice; Domínguez, Lucas

    2005-06-01

    We report armA in an Escherichia coli pig isolate from Spain. The resistance gene was borne by self-transferable IncN plasmid pMUR050. Molecular analysis of the plasmid and of the armA locus confirmed the spread of this resistance determinant.

  3. Genetic determinants of heat resistance in Escherichia coli

    OpenAIRE

    Ryan eMercer; Jinshui eZheng; Rigoberto eGarcia-Hernandez; Lifang eRuan; Michael eGänzle; Lynn eMcMullen

    2015-01-01

    Escherichia coli AW1.7 is a heat resistant food isolate and the occurrence of pathogenic strains with comparable heat resistance may pose a risk to food safety. To identify the genetic determinants of heat resistance, 29 strains of E. coli that differed in their of heat resistance were analyzed by comparative genomics. Strains were classified as highly heat resistant strains, exhibiting a D60-value of more than 6 min; moderately heat resistant strains, exhibiting a D60-value of more than 1 mi...

  4. Identification and characterization of integron mediated antibiotic resistance in pentachlorophenol degrading bacterium isolated from the chemostat

    Institute of Scientific and Technical Information of China (English)

    SHARMA Ashwani; THAKUR Indu Shekhar

    2009-01-01

    A bacterial consortium was developed by continuous enrichment of microbial population isolated from sediment core of pulp and paper mill effluent in mineral salts medium (MSM) supplemented with pentachlorophenol (PCP) as sole source of carbon and energy in the chemostat.The consortia contained three bacterial strains.They were identified as Escherichia coli,Pseudomonas aeruginosa and Acinetobacter sp.by 16S rRNA gene sequence analysis.Acinetobacter sp.readily degraded PCP through the formation of tetrachloro-p-hydroquinone (TecH),2-chloro-1,4-benzenediol and products of ortho ring cleavage detected by Gas Chromatograph/Mass Spectrometer μgC-MS).Out of the three acclimated PCP degrading bacterial strains only one strain,Acinetobacter sp.showed the presence of integron gene cassette as a marker of its stability and antibiotic resistance.The strain possessed a 4.17 kb amplicon with 22 ORF's.The plasmid isolated from the Acinetobacter sp.was subjected to shotgun cloning through restriction digestion by BamHI,HindIII and SalI,ligated to pUC19 vector and transformed into E.coli XLBlue1α,and finally selected on MSM containing PCP as sole source of carbon and energy with ampicillin as antibiotic marker.DNA sequence analysis of recombinant clones indicated homology with integron gene cassette and multiple antibiotic resistance genes.

  5. Macrolones Are a Novel Class of Macrolide Antibiotics Active against Key Resistant Respiratory Pathogens In Vitro and In Vivo.

    Science.gov (United States)

    Čipčić Paljetak, Hana; Verbanac, Donatella; Padovan, Jasna; Dominis-Kramarić, Miroslava; Kelnerić, Željko; Perić, Mihaela; Banjanac, Mihailo; Ergović, Gabrijela; Simon, Nerrisa; Broskey, John; Holmes, David J; Eraković Haber, Vesna

    2016-09-01

    As we face an alarming increase in bacterial resistance to current antibacterial chemotherapeutics, expanding the available therapeutic arsenal in the fight against resistant bacterial pathogens causing respiratory tract infections is of high importance. The antibacterial potency of macrolones, a novel class of macrolide antibiotics, against key respiratory pathogens was evaluated in vitro and in vivo MIC values against Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, and Haemophilus influenzae strains sensitive to macrolide antibiotics and with defined macrolide resistance mechanisms were determined. The propensity of macrolones to induce the expression of inducible erm genes was tested by the triple-disk method and incubation in the presence of subinhibitory concentrations of compounds. In vivo efficacy was assessed in a murine model of S. pneumoniae-induced pneumonia, and pharmacokinetic (PK) profiles in mice were determined. The in vitro antibacterial profiles of macrolones were superior to those of marketed macrolide antibiotics, including the ketolide telithromycin, and the compounds did not induce the expression of inducible erm genes. They acted as typical protein synthesis inhibitors in an Escherichia coli transcription/translation assay. Macrolones were characterized by low to moderate systemic clearance, a large volume of distribution, a long half-life, and low oral bioavailability. They were highly efficacious in a murine model of pneumonia after intraperitoneal application even against an S. pneumoniae strain with constitutive resistance to macrolide-lincosamide-streptogramin B antibiotics. Macrolones are the class of macrolide antibiotics with an outstanding antibacterial profile and reasonable PK parameters resulting in good in vivo efficacy. PMID:27353268

  6.   Bloodstream Bacterial Pathogens and their Antibiotic Resistance Pattern in Dhahira Region, Oman

    Directory of Open Access Journals (Sweden)

    PP Geethanjali

    2011-07-01

    Full Text Available Objectives: To describe the epidemiological, clinical, microbiological characteristics and antimicrobial resistance pattern of Bloodstream infections in Dhahira region, Oman.Methods: Clinical data was collected from all patients with positive blood cultures for two years period. Standard laboratory methods were used for blood culture. Antibiotic sensitivity was tested using Kirby-Bauer disc diffusion method.Results: Of the 360 bacterial pathogens isolated from 348 patients, 57.8�0were gram-positive and 42.2�0were gram-negative. The common isolates were: Streptococcus species 76 (21.1� coagulase-negative Staphylococci 75 (20.8� Escherichia coli 43 (11.9� Staphylococcus aureus 41 (11.4� Overall, mortality was 21.3�0(74/348. Staphylococcus species (Staphylococcus aureus and CoNS were more commonly resistant to Trimethoprim/ Sulphamethoxazole (35.3�20and Penicillin (25.9� Streptococcus species were resistant to Trimethoprim/Sulphamethoxazole (39.1�20and Erythromycin (19.6�Conclusion: Bloodstream infections are important causes of morbidity and mortality in our patients, especially among chronically ill elderly adult males. Prescription of proven resistant antibiotics to suspected bacteremic patients needs attention in Dhahira region.

  7. Microarray Evaluation of Antimicrobial Resistance and Virulence of Escherichia coli Isolates from Portuguese Poultry

    Directory of Open Access Journals (Sweden)

    Nuno Mendonça

    2016-01-01

    Full Text Available The presence of antimicrobial resistance and virulence factors of 174 Escherichia coli strains isolated from healthy Portuguese Gallus gallus was evaluated. Resistance profiles were determined against 33 antimicrobials by microbroth dilution. Resistance was prevalent for tetracycline (70% and ampicillin (63%. Extended-spectrum beta-lactamase (ESBL phenotype was observed in 18% of the isolates. Multidrug resistance was found in 56% of isolates. A subset of 74 isolates were screened by DNA microarrays for the carriage of 88 antibiotic resistance genes and 62 virulence genes. Overall, 37 different resistance genes were detected. The most common were tet(A (72%, blaTEM (68%, and sul1 (47%, while 21% isolates harbored an ESBL gene (blaCTX-M group 1, group 2, or group 9. Of these, 96% carried the increased serum survival (iss virulence gene, while 89% presented the enterobactin siderophore receptor protein (iroN, 70% the temperature-sensitive hemagglutinin (tsh, and 68% the long polar fimbriae (lpfA virulence genes associated with extraintestinal pathogenic E. coli. In conclusion, prevalence of antibiotic resistant E. coli from the microbiota of Portuguese chickens was high, including to extended spectrum cephalosporins. The majority of isolates seems to have the potential to trigger extraintestinal human infection due to the presence of some virulence genes. However, the absence of genes specific for enteropathogenic E. coli reduces the risk for human intestinal infection.

  8. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

    Directory of Open Access Journals (Sweden)

    Paula Blanco

    2016-02-01

    Full Text Available Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.

  9. After genomics, what proteomics tools could help us understand the antimicrobial resistance of Escherichia coli?

    Science.gov (United States)

    Radhouani, Hajer; Pinto, Luís; Poeta, Patrícia; Igrejas, Gilberto

    2012-06-01

    Proteomic approaches have been considerably improved during the past decade and have been used to investigate the differences in protein expression profiles of cells grown under a broad spectrum of growth conditions and with different stress factors including antibiotics. In Europe, the most significant disease threat remains the presence of microorganisms that have become resistant to antimicrobials and so it is important that different scientific tools are combined to achieve the largest amount of knowledge in this area of expertise. The emergence and spread of the antibiotic-resistant Gram-negative pathogens, such as Escherichia coli, can lead to serious problem public health in humans. E. coli, a very well described prokaryote, has served as a model organism for several biological and biotechnological studies increasingly so since the completion of the E. coli genome-sequencing project. The purpose of this review is to present an overview of the different proteomic approaches to antimicrobial-resistant E. coli that will be helpful to obtain a better knowledge of the antibiotic-resistant mechanism(s). This can also aid to understand the molecular determinants involved with pathogenesis, which is essential for the development of effective strategies to combat infection and to reveal new therapeutic targets. This article is part of a Special Issue entitled: Proteomics: The clinical link.

  10. Simulation Study for Transfer of Antibiotic Resistance via Mutator Subpopulation

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Aarestrup, Frank Møller;

    Evolution of antibiotic resistance in bacterial populations is an increasing problem having fatal consequences for treatment of diseases. Therefore it is very important to understand this evolution. Traditionally evolution is considered to happen by single point mutations, where each mutant must...... have a growth advantage over the parent strain and grow to a sufficient number before a second mutation can occur. However, when multiple mutations are necessary for development of resistance, single mutations occurring with a normal mutation rate can not always explain the observed resistance. We...... introduce an alternative hypothesis by which a subpopulation of mutators drives the evolution process. Resistance is acquired by a subpoplution of mutators, for which the mutation rate is much higher than the wild-type. If the resistance is located on a transferable plasmid it can subsequently...

  11. Antibiotic Resistance Patterns in Invasive Group B Streptococcal Isolates

    Directory of Open Access Journals (Sweden)

    Mei L. Castor

    2008-01-01

    Full Text Available Antibiotics are used for both group B streptococcal (GBS prevention and treatment. Active population-based surveillance for invasive GBS disease was conducted in four states during 1996—2003. Of 3813 case-isolates, 91.0% (3471 were serotyped, 77.1% (2937 had susceptibility testing, and 46.6% (3471 had both. All were sensitive to penicillin, ampicillin, cefazolin, cefotaxime, and vancomycin. Clindamycin and erythromycin resistance was 12.7% and 25.6%, respectively, and associated with serotype V (P<.001. Clindamycin resistance increased from 10.5% to 15.0% (X2 for trend 12.70; P<.001; inducible clindamycin resistance was associated with the erm genotype. Erythromycin resistance increased from 15.8% to 32.8% (X2 for trend 55.46; P<.001. While GBS remains susceptible to beta-lactams, resistance to alternative agents such as erythromycin and clindamycin is an increasing concern.

  12. Characterization of Antibiotic Resistance Profiles of Ocular Enterobacteriaceae Isolates.

    Science.gov (United States)

    Paul-Satyaseela, Maneesh; Murali, Sowmiya; Thirunavukkarasu, Bharani; Naraharirao, Madhavan Hajib; Jambulingam, Malathi

    2016-03-01

    Emergence of extended-spectrum β-lactamase (ESBL) and fluoroquinolone resistance among ocular Enterobacteriaceae is increasing in higher frequency. Therefore, studies are being carried out to understand their multidrug resistance pattern. A total of 101 Enterobacteriaceae isolates recovered from various ocular diseases in a tertiary eye care center at Chennai, India during the period of January 2011 to June 2014 were studied. Forty one randomly chosen isolates were subjected to antibiotic susceptibility by minimum inhibitory concentration (MIC) and genotypic analysis. Of them, 16 were ESBL producers, one was carbapenemase producer and four were resistant to ertapenem which could be due to porin loss associated with AmpC production, and 17 were resistant to fluoroquinolones. Sixteen isolates harbored ESBL genes in which 14 had more than one gene and none of them were positive for blaNDM-1 gene. QNR genes were detected in 18 isolates. ESBL producers were predominantly isolated from conjunctiva. A high degree of ESBL production and fluoroquinolone resistance is seen among the genus Klebsiella sp. Hence, monitoring the rate of ESBL prevalence plays a vital role in the administration of appropriate intravitreal antibiotics to save the vision and also to reduce the development of drug resistance in ocular pathogens. PMID:27141313

  13. Antibiotic resistance: what is the impact of agricultural uses of antibiotics on children's health?

    Science.gov (United States)

    Shea, Katherine M

    2003-07-01

    Antimicrobial resistance has reached crisis stage in human medicine. The rapid acceleration of multidrug-resistant bacteria in the past 2 decades has overtaken new drug development, and patients and clinicians are faced with the prospect of untreatable infections. Although much of the problem stems from overuse and misuse of antimicrobial agents in human medicine, large-scale use of antimicrobials in agriculture also contributes to the crisis. Agricultural uses of antibiotics produce environmental exposures in a variety of reservoirs, which select for resistant microbes and microbial genes. This article presents the major lines of evidence documenting the risks to human health of some of the agricultural uses of antimicrobials. A brief review of the microbiologic antecedents of resistance is followed by a discussion of agricultural uses of antimicrobials and a targeted review of the literature, which provides the background knowledge and evidence necessary for pediatricians and other clinicians to be informed and to advocate for judicious use of antimicrobials in all sectors.

  14. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

    OpenAIRE

    Paula Blanco; Sara Hernando-Amado; Jose Antonio Reales-Calderon; Fernando Corona; Felipe Lira; Manuel Alcalde-Rico; Alejandra Bernardini; Maria Blanca Sanchez; Jose Luis Martinez

    2016-01-01

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of ant...

  15. Factors influencing antibiotic resistance burden in municipal wastewater treatment plants

    OpenAIRE

    Novo, Ana; Manaia, Célia M.

    2010-01-01

    Municipal wastewater treatment plants are recognized reservoirs of antibiotic-resistant bacteria. Three municipal wastewater treatment plants differing on the dimensions and bio-treatment processes were compared for the loads of amoxicillin-, tetracycline-, and ciprofloxacinresistant heterotrophic bacteria, enterobacteria, and enterococci in the raw inflow and in the treated effluents. The sewage received by each plant, in average, corresponded to 85,000 inhabitant equ...

  16. Resistance to Third-Generation Cephalosporins and Other Antibiotics by Enterobacteriaceae in Western Nigeria

    Directory of Open Access Journals (Sweden)

    A. O. Okesola

    2009-01-01

    Full Text Available Problem statement: The emergence and spread of resistance to third-generation cephalosporins are threatening to create species resistant to all currently available agents. The most common cause of bacterial resistance to beta-lactam antibiotics is the production of beta-lactamases and many of the 2nd and 3rd-generation penicillins and cephalosporins were specifically designed to resist the hydrolytic action of major ß-lactamases. However new ß-lactamases emerged against each of the new classes of ß-lactams that were introduced and caused resistance. This study was designed to determine the rate of resistance to 3rd-generation cephalosporins and other classes of antibiotics by the Enterobacteriaceae in this environment. Approach: One hundred bacteria isolates belonging to the family Enterobacteriaceae identified from different clinical specimens between October and December 2007 using standard bacteriological methods. These were subjected to antibiotic susceptibility testing to third-generation cephalosporins and other classes of antibiotics which included quinolones and an aminoglycoside using the Kirby-Bauer method of disc diffusion test. Results: Out of the total number of Enterobacteriaceae isolated in the study period, only 54.8% of the klebsiella species isolated were sensitive to ceftazidime, 48.4% to ceftriaxone and 30.7% to cefotaxime. With Escherichia coli however, the susceptibility pattern to the 3rd-generation cephalosporins was better (65.6% were sensitive to ceftazidime, 62.5% to ceftriaxone and 71.9% to cefotaxime. In proteus species, the susceptibility pattern was generally poor to the three classes of antibiotics(50% were sensitive to ceftazidime and ceftriaxone, 0% to cefotaxime, 33.3% to ciprofloxacin, 50% to gentamycin and 0% to amoxycillin/clavulanate. Conclusion/Recommendations: The poor susceptibility to amoxicillin/clavulanate demonstrated by all the isolates in this

  17. Distribution and quantification of antibiotic resistant genes and bacteria across agricultural and non-agricultural metagenomes.

    Science.gov (United States)

    Durso, Lisa M; Miller, Daniel N; Wienhold, Brian J

    2012-01-01

    There is concern that antibiotic resistance can potentially be transferred from animals to humans through the food chain. The relationship between specific antibiotic resistant bacteria and the genes they carry remains to be described. Few details are known about the ecology of antibiotic resistant genes and bacteria in food production systems, or how antibiotic resistance genes in food animals compare to antibiotic resistance genes in other ecosystems. Here we report the distribution of antibiotic resistant genes in publicly available agricultural and non-agricultural metagenomic samples and identify which bacteria are likely to be carrying those genes. Antibiotic resistance, as coded for in the genes used in this study, is a process that was associated with all natural, agricultural, and human-impacted ecosystems examined, with between 0.7 to 4.4% of all classified genes in each habitat coding for resistance to antibiotic and toxic compounds (RATC). Agricultural, human, and coastal-marine metagenomes have characteristic distributions of antibiotic resistance genes, and different bacteria that carry the genes. There is a larger percentage of the total genome associated with antibiotic resistance in gastrointestinal-associated and agricultural metagenomes compared to marine and Antarctic samples. Since antibiotic resistance genes are a natural part of both human-impacted and pristine habitats, presence of these resistance genes in any specific habitat is therefore not sufficient to indicate or determine impact of anthropogenic antibiotic use. We recommend that baseline studies and control samples be taken in order to determine natural background levels of antibiotic resistant bacteria and/or antibiotic resistance genes when investigating the impacts of veterinary use of antibiotics on human health. We raise questions regarding whether the underlying biology of each type of bacteria contributes to the likelihood of transfer via the food chain.

  18. Antibiotic selection of Escherichia coli sequence type 131 in a mouse intestinal colonization model

    DEFF Research Database (Denmark)

    Hertz, Frederik Boetius; Løbner-Olesen, Anders; Frimodt-Møller, Niels

    2014-01-01

    The ability of different antibiotics to select for extended-spectrum β-lactamase (ESBL)-producing Escherichia coli remains a topic of discussion. In a mouse intestinal colonization model, we evaluated the selective abilities of nine common antimicrobials (cefotaxime, cefuroxime, dicloxacillin...... day, antibiotic treatment was initiated and given subcutaneously once a day for three consecutive days. CFU of E. coli ST131, Bacteroides, and Gram-positive aerobic bacteria in fecal samples were studied, with intervals, until day 8. Bacteroides was used as an indicator organism for impact on the Gram....... coli ST131 (P > 0.95), nor did they suppress Bacteroides or Gram-positive organisms. The results showed that antimicrobials both with and without an impact on Gram-negative anaerobes can select for ESBL-producing E. coli, indicating that not only Gram-negative anaerobes have a role in upholding...

  19. Interaction of the antibiotics clindamycin and lincomycin with Escherichia coli 23S ribosomal RNA

    DEFF Research Database (Denmark)

    Douthwaite, S

    1992-01-01

    Interaction of the antibiotics clindamycin and lincomycin with Escherichia coli ribosomes has been compared by chemical footprinting. The protection afforded by both drugs is limited to the peptidyl transferase loop of 23S rRNA. Under conditions of stoichiometric binding at 1 mM drug concentration...... of the two drugs for the ribosome, estimated by footprinting, is approximately the same, giving Kdiss values of 5 microM for lincomycin and 8 microM for clindamycin. The results show that in vitro the drugs are equally potent in blocking their ribosomal target site. Their inhibitory effects on peptide bond...

  20. Identification of a small molecule that simultaneously suppresses virulence and antibiotic resistance of Pseudomonas aeruginosa

    OpenAIRE

    Qiaoyun Guo; Yu Wei; Bin Xia; Yongxin Jin; Chang Liu; Xiaolei Pan; Jing Shi; Feng Zhu; Jinlong Li; Lei Qian; Xinqi Liu; Zhihui Cheng; Shouguang Jin; Jianping Lin; Weihui Wu

    2016-01-01

    The rising antibiotic resistance of bacteria imposes a severe threat on human health. Inhibition of bacterial virulence is an alternative approach to develop new antimicrobials. Molecules targeting antibiotic resistant enzymes have been used in combination with cognate antibiotics. It might be ideal that a molecule can simultaneously suppress virulence factors and antibiotic resistance. Here we combined genetic and computer-aided inhibitor screening to search for such molecules against the ba...

  1. Escherichia coli adhesion, biofilm development and antibiotic susceptibility on biomedical materials.

    Science.gov (United States)

    Gomes, L C; Silva, L N; Simões, M; Melo, L F; Mergulhão, F J

    2015-04-01

    The aim of this work was to test materials typically used in the construction of medical devices regarding their influence in the initial adhesion, biofilm development and antibiotic susceptibility of Escherichia coli biofilms. Adhesion and biofilm development was monitored in 12-well microtiter plates containing coupons of different biomedical materials--silicone (SIL), stainless steel (SS) and polyvinyl chloride (PVC)--and glass (GLA) as control. The susceptibility of biofilms to ciprofloxacin and ampicillin was assessed, and the antibiotic effect in cell morphology was observed by scanning electron microscopy. The surface hydrophobicity of the bacterial strain and materials was also evaluated from contact angle measurements. Surface hydrophobicity was related with initial E. coli adhesion and subsequent biofilm development. Hydrophobic materials, such as SIL, SS, and PVC, showed higher bacterial colonization than the hydrophilic GLA. Silicone was the surface with the greatest number of adhered cells and the biofilms formed on this material were also less susceptible to both antibiotics. It was found that different antibiotics induced different levels of elongation on E. coli sessile cells. Results revealed that, by affecting the initial adhesion, the surface properties of a given material can modulate biofilm buildup and interfere with the outcome of antimicrobial therapy. These findings raise the possibility of fine-tuning surface properties as a strategy to reach higher therapeutic efficacy.

  2. STUDY OF THE RELATIONSHIP BETWEEN ANTIBIOTIC RESISTANCE AND CLASS I INTEGRON OF UROPATHOGENIC ESCHERICHIA COLI%尿路感染大肠杆菌耐药性与1类整合子的关系分析

    Institute of Scientific and Technical Information of China (English)

    马翠卿; 王秀荣; 魏林; 侯天文; 姚智燕; 尹晓琳

    2007-01-01

    目的 分析尿路感染大肠杆菌(uropathogenic Escherichia coli,UPEC)1类整合子对其耐药性的影响.方法 留取临床泌尿系感染患者中段尿分离株,常规方法鉴定为大肠杆菌感染者;K-B法做耐药菌株的药敏实验;PCR扩增检测intI1基因.结果 58株菌中有26株(44.8%)1类整合子检测阳性,有500、750、1 000、1 800、20 000 bp等5种不同大小的整合子结构,且绝大多数(92.3%)的整合子在500bp以上,其中10株含有2种整合子结构;整合子阳性菌株对20种抗菌药物的耐药率多数都在50%以上,尤其是对头孢噻肟、头孢哌酮、头孢曲松、氟喹诺酮类和庆大霉素的耐药率显著高于整合子阴性的菌株,经χ2检验差异有统计学意义.结论 1类整合子广泛分布于UPEC中,整合子阳性菌株对部分第三代头孢菌素、氨基糖甙类、氟喹诺酮类等抗生素的耐药率明显高于阴性菌株,说明整合子对UPEC耐药性的播散有一定的作用.

  3. Calcined Eggshell Waste for Mitigating Soil Antibiotic-Resistant Bacteria/Antibiotic Resistance Gene Dissemination and Accumulation in Bell Pepper.

    Science.gov (United States)

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Li, Xu; Schwab, Arthur P; Wan, Jinzhong; Liu, Manqiang; Tian, Da; Liu, Kuan; Wu, Jun; Jiang, Xin

    2016-07-13

    The combined accumulation of antibiotics, heavy metals, antibiotic-resistant bacteria (ARB)/antibiotic resistance genes (ARGs) in vegetables has become a new threat to human health. This is the first study to investigate the feasibility of calcined eggshells modified by aluminum sulfate as novel agricultural wastes to impede mixed contaminants from transferring to bell pepper (Capsicum annuum L.). In this work, calcined eggshell amendment mitigated mixed pollutant accumulation in bell pepper significantly, enhanced the dissipation of soil tetracycline, sulfadiazine, roxithromycin, and chloramphenicol, decreased the water-soluble fractions of antibiotics, and declined the diversity of ARB/ARGs inside the vegetable. Moreover, quantitative polymerase chain reaction analysis detected that ARG levels in the bell pepper fruits significantly decreased to 10(-10) copies/16S copies, indicating limited risk of ARGs transferring along the food chain. Furthermore, the restoration of soil microbial biological function suggests that calcined eggshell is an environmentally friendly amendment to control the dissemination of soil ARB/ARGs in the soil-vegetable system. PMID:27333280

  4. Increasing transmission of antibiotic resistance from animals to humans

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Frimodt-Møller, Niels

    2011-01-01

    The importance of the animal reservoir for emergence of antimicrobial resistance in bacteria in humans is difficult to estimate. In this article we give our estimate of the importance and also highlight on which points we have become wiser during recent years. We conclude that it still is the hum...... usage of antibiotics which contributes most to resistance observed in humans, but also that the contribution from animals is large and larger than estimated just a few years ago. This indicates the need to implement restriction on antimicrobial usage for both humans and animals....

  5. Virulence factors and drug resistance in Escherichia coli isolated from extraintestinal infections

    Directory of Open Access Journals (Sweden)

    Sharma S

    2007-01-01

    Full Text Available Purpose: To determine the virulence factors produced by Escherichia coli isolated from extraintestinal infections, to study the drug resistance pattern in E. coli with special reference to extended spectrum β -lactamase (ESBL and to evaluate screening methods for ESBL. Methods: A total of 152 isolates of E. coli from various extraintestinal infections were screened for virulence factors such as haemolysin, surface hydrophobicity, serum resistance and protease. All the isolates were also studied for antibiotic susceptibility pattern using modified Kirby Bauer disk diffusion method. ESBL production was screened by standard disk diffusion method and confirmed using phenotypic confirmatory method. Results: Among 152 isolates, 36 (23.7% were haemolytic, 42 (27.6% were hydrophobic, 132 (86.8% were serum resistant and only four were positive for protease. Multiple virulence factor were observed in 67 (44% of isolates. Seventy-nine (51.4% isolates produced ESBL. ESBL producing isolates showed multidrug resistance. There was a significant association ( P < 0.001 between multiple virulence factors and ESBL production by extraintestinal E. coli . Conclusions: The present study shows the expression of virulence factors and multidrug resistance in E. coli isolated from various extraintestinal infections. The study also shows that appropriate methods of detecting drug resistance and ESBL production are required for the judicious use of antibiotics in managing these infections.

  6. Bactericidal antibiotic-phytochemical combinations against methicillin resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Bhone Myint Kyaw

    2012-09-01

    Full Text Available Methicillin resistant Staphylococcus aureus (MRSA infection is a global concern nowadays. Due to its multi-drug resistant nature, treatment with conventional antibiotics does not assure desired clinical outcomes. Therefore, there is a need to find new compounds and/or alternative methods to get arsenal against the pathogen. Combination therapies using conventional antibiotics and phytochemicals fulfill both requirements. In this study, the efficacy of different phytochemicals in combination with selected antibiotics was tested against 12 strains of S. aureus (ATCC MRSA 43300, ATCC methicillin sensitive S. aureus or MSSA 29213 and 10 MRSA clinical strains collected from National University Hospital, Singapore. Out of the six phytochemicals used, tannic acid was synergistic with fusidic acid, minocycline, cefotaxime and rifampicin against most of strains tested and additive with ofloxacin and vancomycin. Quercetin showed synergism with minocycline, fusidic acid and rifampicin against most of the strains. Gallic acid ethyl ester showed additivity against all strains in combination with all antibiotics under investigation except with vancomycin where it showed indifference effect. Eugenol, menthone and caffeic acid showed indifference results against all strains in combination with all antibiotics. Interestingly, no antagonism was observed within these interactions. Based on the fractional inhibitory concentration indices, synergistic pairs were further examined by time-kill assays to confirm the accuracy and killing rate of the combinations over time. The two methods concurred with each other with 92% accuracy and the combinatory pairs were effective throughout the 24 hours of assay. The study suggests a possible incorporation of effective phytochemicals in combination therapies for MRSA infections.

  7. Determinants of carriage of resistant Escherichia coli in the Indonesian population inside and outside hospitals

    NARCIS (Netherlands)

    O.D. Duerink (Offra); E.S. Lestari (Endang Sri); U. Hadi (Usman); N.J.D. Nagelkerke (Nico); J.A. Severin (Juliëtte); H.A. Verbrugh (Henri); M. Keuter (Monique); I.C. Gyssens (Inge); P. van den Broek (Peterhans)

    2007-01-01

    textabstractObjectives: Antibiotic resistance is a worldwide healthcare problem exacerbated by antibiotic use and transmission of resistant bacteria. Not much is known about resistance in commensal flora and about determinants for resistance in Indonesia. This study analysed recent antibiotic use as

  8. Increasing antibiotic resistance among uropathogens isolated during years 2006-2009: impact on the empirical management

    Directory of Open Access Journals (Sweden)

    Hamid Mohammad-Jafari

    2012-02-01

    Full Text Available Urinary tract infections (UTI are one of the most common infections with an increasing resistance to antimicrobial agents. PURPOSE: Empirical initial antibiotic treatment of UTI must rely on susceptible data from local studies. MATERIALS AND METHODS: Retrospective analysis of isolated bacteria from children with UTIs was performed at the university hospital during years 2006-2009. The findings were compared with data collected in a similar study carried out in 2002- 2003. RESULTS: A total of 1439 uropathogens were isolated. Escherichia coli (E.coli was the leading cause, followed by Enterobacter, and other gram negative bacilli. It was observed resistance of E.coli to ceftriaxone, cefexime, amikacin, gentamycin, and nalidixic acid; Enterobacter to cefexime; and the resistance of gram negative bacilli to gentamicin and cefexime increased significantly. The highest effective antibiotic was Imipenem, ciprofloxacin, and amikacin with 96.7%, 95% and 91% sensitivity rates , respectively, followed by ceftriaxone 77.2%, gentamicin 77%, nitrofurantoin 76.4%, nalidixic acid 74.3% and cefexime with 70%. CONCLUSION: The use of nitrofurantoin or nalidixic acid as initial empirical antibacterial therapy for cystitis seems appropriate. For cases of simple febrile UTI, the use of initial parenteral therapies with amikacin or ceftriaxone followed by an oral third generation cephalosporin also seemed appropriated, and in cases of severely ill patients or complicated UTI, imipenem as monotherapy or, a combination of Ceftriaxone with an aminoglycoside, are recommended.

  9. The gut is the epicentre of antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Carlet Jean

    2012-11-01

    Full Text Available Abstract The gut contains very large numbers of bacteria. Changes in the composition of the gut flora, due in particular to antibiotics, can happen silently, leading to the selection of highly resistant bacteria and Candida species. These resistant organisms may remain for months in the gut of the carrier without causing any symptoms or translocate through the gut epithelium, induce healthcare-associated infections, undergo cross-transmission to other individuals, and cause limited outbreaks. Techniques are available to prevent, detect, and treat the carriage of resistant organisms in the gut. However, evidence on these techniques is scant, the only exception being selective digestive decontamination (SDD, which has been extensively studied in neutropenic and ICU patients. After the destruction of resistant colonizing bacteria, which has been successfully obtained in several studies, the gut could be re-colonized with normal faecal flora or probiotics. Studies are warranted to evaluate this concept.

  10. Antimicrobial Resistance, Virulence Factors and Genetic Diversity of Escherichia coli Isolates from Household Water Supply in Dhaka, Bangladesh

    OpenAIRE

    Talukdar, Prabhat Kumar; Rahman, M; Nabi, Ashikun; Islam, Zhahirul; Hoque, Mahfuzul; Endtz, Hubert

    2013-01-01

    textabstractBackground: Unsafe water supplies continue to raise public health concerns, especially in urban areas in low resource countries. To understand the extent of public health risk attributed to supply water in Dhaka city, Bangladesh, Escherichia coli isolated from tap water samples collected from different locations of the city were characterized for their antibiotic resistance, pathogenic properties and genetic diversity. Methodology/Principal Findings: A total of 233 E. coli isolate...

  11. Antimicrobial resistance in community and nosocomial Escherichia coli urinary tract isolates, London 2005 – 2006

    OpenAIRE

    Wareham David W.; Krahe Daniel; Bean David C

    2008-01-01

    Abstract Background Escherichia coli is the commonest cause of community and nosocomial urinary tract infection (UTI). Antibiotic treatment is usually empirical relying on susceptibility data from local surveillance studies. We therefore set out to determine levels of resistance to 8 commonly used antimicrobial agents amongst all urinary isolates obtained over a 12 month period. Methods Antimicrobial susceptibility to ampicillin, amoxicillin/clavulanate, cefalexin, ciprofloxacin, gentamicin, ...

  12. Proteomics for Drug Resistance on the Food Chain? Multidrug-Resistant Escherichia coli Proteomes from Slaughtered Pigs.

    Science.gov (United States)

    Ramos, Sónia; Silva, Nuno; Hébraud, Michel; Santos, Hugo M; Nunes-Miranda, Júlio Dinis; Pinto, Luís; Pereira, José E; Capelo, José-Luis; Poeta, Patrícia; Igrejas, Gilberto

    2016-06-01

    Understanding global drug resistance demands an integrated vision, focusing on both human and veterinary medicine. Omics technologies offer new vistas to decipher mechanisms of drug resistance in the food chain. For example, Escherichia coli resistance to major antibiotics is increasing whereas multidrug resistance (MDR) strains are now commonly found in humans and animals. Little is known about the structural and metabolic changes in the cell that trigger resistance to antimicrobial agents. Proteomics is an emerging field that is used to advance our knowledge in global health and drug resistance in the food chain. In the present proteomic analysis, we offer an overview of the global protein expression of different MDR E. coli strains from fecal samples of pigs slaughtered for human consumption. A full proteomic survey of the drug-resistant strains SU60, SU62, SU76, and SU23, under normal growth conditions, was made by two-dimensional electrophoresis, identifying proteins by MALDI-TOF/MS. The proteomes of these four E. coli strains with different genetic profiles were compared in detail. Identical transport, stress response, or metabolic proteins were discovered in the four strains. Several of the identified proteins are essential in bacterial pathogenesis (GAPDH, LuxS, FKBPs), development of bacterial resistance (Omp's, TolC, GroEL, ClpB, or SOD), and potential antibacterial targets (FBPA, FabB, ACC's, or Fab1). Effective therapies against resistant bacteria are crucial and, to accomplish this, a comprehensive understanding of putative resistance mechanisms is essential. Moving forward, we suggest that multi-omics research will further improve our knowledge about bacterial growth and virulence on the food chain, especially under antibiotic stress.

  13. Proteomics for Drug Resistance on the Food Chain? Multidrug-Resistant Escherichia coli Proteomes from Slaughtered Pigs.

    Science.gov (United States)

    Ramos, Sónia; Silva, Nuno; Hébraud, Michel; Santos, Hugo M; Nunes-Miranda, Júlio Dinis; Pinto, Luís; Pereira, José E; Capelo, José-Luis; Poeta, Patrícia; Igrejas, Gilberto

    2016-06-01

    Understanding global drug resistance demands an integrated vision, focusing on both human and veterinary medicine. Omics technologies offer new vistas to decipher mechanisms of drug resistance in the food chain. For example, Escherichia coli resistance to major antibiotics is increasing whereas multidrug resistance (MDR) strains are now commonly found in humans and animals. Little is known about the structural and metabolic changes in the cell that trigger resistance to antimicrobial agents. Proteomics is an emerging field that is used to advance our knowledge in global health and drug resistance in the food chain. In the present proteomic analysis, we offer an overview of the global protein expression of different MDR E. coli strains from fecal samples of pigs slaughtered for human consumption. A full proteomic survey of the drug-resistant strains SU60, SU62, SU76, and SU23, under normal growth conditions, was made by two-dimensional electrophoresis, identifying proteins by MALDI-TOF/MS. The proteomes of these four E. coli strains with different genetic profiles were compared in detail. Identical transport, stress response, or metabolic proteins were discovered in the four strains. Several of the identified proteins are essential in bacterial pathogenesis (GAPDH, LuxS, FKBPs), development of bacterial resistance (Omp's, TolC, GroEL, ClpB, or SOD), and potential antibacterial targets (FBPA, FabB, ACC's, or Fab1). Effective therapies against resistant bacteria are crucial and, to accomplish this, a comprehensive understanding of putative resistance mechanisms is essential. Moving forward, we suggest that multi-omics research will further improve our knowledge about bacterial growth and virulence on the food chain, especially under antibiotic stress. PMID:27310477

  14. Antibiotic resistances of intestinal lactobacilli isolated from wild boars.

    Science.gov (United States)

    Klose, Viviana; Bayer, Katharina; Kern, Corinna; Goelß, Florian; Fibi, Silvia; Wegl, Gertrude

    2014-01-10

    Acquired antibiotic resistances have been reported in lactobacilli of various animal and food sources, but there are no data from wild boar. The objective was a preliminary examination of the antibiotic resistance prevalence of intrinsically vancomycin-resistant lactobacilli isolated from wild boar intestines and analysis of the genetic determinants implicated. Out of three wild boars, 121 lactobacilli were recovered and grouped according to their whole cell protein patterns. Initial phenotypic screening revealed that all were susceptible to erythromycin (2 μg/ml), but 30 were resistant to tetracycline (32 μg/ml). Based on Randomly Amplified Polymorphic DNA-PCR clustering, 64 strains were selected as representative genotypes for identification and minimum inhibitory concentration (MIC) determination. Partial 16S rRNA gene sequencing identified four species: (i) L. mucosae (n=57), (ii) L. reuteri (n=47), (iii) L. fermentum (n=12), and (iv) L. murinus (n=5). Most heterofermentative strains displayed low MICs for ampicillin (AMP), chloramphenicol (CHL), streptomycin (STR), kanamycin (KAN), gentamicin (GEN), erythromycin (ERY), quinupristin/dalfopristin (Q/D), and clindamycin (CLI). Atypical MICs were found mainly in L. mucosae and L. reuteri for TET, KAN, STR, AMP and CHL, but except the TET MICs of L. mucosae mostly at low level. L. murinus strains revealed atypical MICs for aminoglycosides, and/or CHL, AMP, CLI. PCR screening detected tet(W) in 12 and tet(M) in one of heterofermentative strains, as well as the aph(3')-III kanamycin gene in L. murinus. This is the first report showing acquired antibiotic resistance determinants in intestinal lactobacilli of wild boar origin.

  15. Antibiotic resistances of intestinal lactobacilli isolated from wild boars.

    Science.gov (United States)

    Klose, Viviana; Bayer, Katharina; Kern, Corinna; Goelß, Florian; Fibi, Silvia; Wegl, Gertrude

    2014-01-10

    Acquired antibiotic resistances have been reported in lactobacilli of various animal and food sources, but there are no data from wild boar. The objective was a preliminary examination of the antibiotic resistance prevalence of intrinsically vancomycin-resistant lactobacilli isolated from wild boar intestines and analysis of the genetic determinants implicated. Out of three wild boars, 121 lactobacilli were recovered and grouped according to their whole cell protein patterns. Initial phenotypic screening revealed that all were susceptible to erythromycin (2 μg/ml), but 30 were resistant to tetracycline (32 μg/ml). Based on Randomly Amplified Polymorphic DNA-PCR clustering, 64 strains were selected as representative genotypes for identification and minimum inhibitory concentration (MIC) determination. Partial 16S rRNA gene sequencing identified four species: (i) L. mucosae (n=57), (ii) L. reuteri (n=47), (iii) L. fermentum (n=12), and (iv) L. murinus (n=5). Most heterofermentative strains displayed low MICs for ampicillin (AMP), chloramphenicol (CHL), streptomycin (STR), kanamycin (KAN), gentamicin (GEN), erythromycin (ERY), quinupristin/dalfopristin (Q/D), and clindamycin (CLI). Atypical MICs were found mainly in L. mucosae and L. reuteri for TET, KAN, STR, AMP and CHL, but except the TET MICs of L. mucosae mostly at low level. L. murinus strains revealed atypical MICs for aminoglycosides, and/or CHL, AMP, CLI. PCR screening detected tet(W) in 12 and tet(M) in one of heterofermentative strains, as well as the aph(3')-III kanamycin gene in L. murinus. This is the first report showing acquired antibiotic resistance determinants in intestinal lactobacilli of wild boar origin. PMID:24326231

  16. Prevalence of LRTI in Patients Presenting with Productive Cough and Their Antibiotic Resistance Pattern

    Science.gov (United States)

    Vijay, Sunil

    2016-01-01

    Aim To find out the prevalence of Lower Respiratory Tract Infection (LRTI) such as bacterial, fungal, mycobacterial infections etc. in patients with productive cough of duration less than 15 days and to rule out the patients having previous history of tuberculosis or having treatment of tuberculosis. Materials and Methods Outdoor and Indoor patients of Department of Medicine and Chest & TB, SRG hospital and Jhalawar Medical College, Jhalawar were included. After sample collection the specimens were sent to the Microbiology department, for processing of Gram staining, Acid fast staining, KOH mount and bacteriological culture and sensitivity. Results A total of 200 samples were obtained from the outpatient and inpatient Department of Medicine and Chest & TB of which 66% were male and 34% were female. Seventy seven percent of samples were culture positive for both single pathogen and mixed infection of which 56.5% were male and 20.5% were female as males are more at risk for LRTI. Klebsiella pneumoniae was the most prevalent pathogen (71/193), followed by coagulase positive Staphylococci i.e. COPS (43/193). More resistant pattern was found in coagulase negative Staohylococci (CONS) showed 61.11% Methicillin Resistant Staohylococci (MRS) incidence compared to 41.86% in COPS, also regarding Extended Spectrum Beta Lactamase (ESBL) production Escherichia coli showed incidence of 36.36% as compared to other gram negative bacilli. Pseudomonas aeruginosa was the most resistant organism found based on the antibiotic susceptibility pattern while Proteus mirabilis was the most sensitive organism. Conclusion Lower respiratory tract infections can spread easily among community and indiscriminate use of antibiotics contributes to their therapeutic failure. Area-wise studies on antimicrobial susceptibility profiles are essential to guide policy on the appropriate use of antibiotics to reduce the morbidity and mortality and also to control the emergence of antimicrobial resistance

  17. 'The body gets used to them': patients' interpretations of antibiotic resistance and the implications for containment strategies.

    NARCIS (Netherlands)

    Brookes-Howell, L.; Elwyn, G.; Hood, K.; Wood, F.; Cooper, L.; Goossens, H.; Ieven, M.; Butler, C.C.

    2012-01-01

    BACKGROUND: Interventions promoting evidence based antibiotic prescribing and use frequently build on the concept of antibiotic resistance but patients and clinicians may not share the same assumptions about its meaning. OBJECTIVE: To explore patients' interpretations of 'antibiotic resistance' and

  18. A Survey and Analysis of the American Public's Perceptions and Knowledge About Antibiotic Resistance.

    Science.gov (United States)

    Carter, Rebecca R; Sun, Jiayang; Jump, Robin L P

    2016-09-01

    Background.  Little is known about the American public's perceptions or knowledge about antibiotic-resistant bacteria or antibiotic misuse. We hypothesized that although many people recognize antibiotic resistance as a problem, they may not understand the relationship between antibiotic consumption and selection of resistant bacteria. Methods.  We developed and tested a survey asking respondents about their perceptions and knowledge regarding appropriate antibiotic use. Respondents were recruited with the Amazon Mechanical Turk crowdsourcing platform. The survey, carefully designed to assess a crowd-sourced population, asked respondents to explain "antibiotic resistance" in their own words. Subsequent questions were multiple choice. Results.  Of 215 respondents, the vast majority agreed that inappropriate antibiotic use contributes to antibiotic resistance (92%), whereas a notable proportion (70%) responded neutrally or disagreed with the statement that antibiotic resistance is a problem. Over 40% of respondents indicated that antibiotics were the best choice to treat a fever or a runny nose and sore throat. Major themes from the free-text responses included that antibiotic resistance develops by bacteria, or by the infection, or the body (ie, an immune response). Minor themes included antibiotic overuse and antibiotic resistance caused by bacterial adaptation or an immune response. Conclusions.  Our findings indicate that the public is aware that antibiotic misuse contributes to antibiotic resistance, but many do not consider it to be an important problem. The free-text responses suggest specific educational targets, including the difference between an immune response and bacterial adaptation, to increase awareness and understanding of antibiotic resistance. PMID:27382598

  19. PREVALENCE AND ANTIBIOTIC RESISTANCE OF FOOD BORNE BACTERIAL CONTAMINATION IN SOME EGYPTIAN FOOD food

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-09-01

    Full Text Available This study was undertaken to investigate the prevalence and antibiotic resistance of food borne bacterial contamination in some Egyptian food. Total viable bacteria and total coliform bacteriawere isolated from different sources of food; carbohydrates (bread, flour and basbousa, vegetables (outer and inner tissues of potato and outer and inner tissues of cucumber and proteins (mincedmeat, cheese and milk. The study resulted in maximum value of total viable bacteria found in outer tissue of potato 68X104±1.0, while the minimum value found in inner tissues of potato andcucumber. The study resulted in total coliform was maximum value in minced meat 6.4X103±0.3. Basbousa and inner tissue of potato and cucumber were free from coliforms. The ability of isolatesto producing proteolytic enzymes was tested, we found that 326 isolate (63.92% from all isolates had this ability, thus we selected most 2 potent proteolytic isolates. The two isolates were identifiedas Bacillus cereus and Escherichia coli. The identification confirmed by microlog 34.20 system and 16SrRNA for two isolates and the same result was founded. Sensitivity tested for the most potentproteolytic species to 12 of the most commonly used antibiotics in the Egyptian pharmacy. The results showed that all species were sensitive to most of antibiotics, except B. cereus which was strongly susceptible to azteronam and ceftazidim. The data showed that raw meat, cooked food products, and raw milk were most commonly contaminated with foodborne pathogens and many pathogens were resistant to different antibiotics. The study provided useful information for assessment of the possible risk posed to consumers, which has significant public health impact.

  20. First case of Helicobacter pylori infection resistant to seven antibiotics in Iran

    Directory of Open Access Journals (Sweden)

    Amin Talebi Bezmin Abadi

    2014-10-01

    Full Text Available Treatment of Helicobacter pylori infection with common antibiotics is typically recommended for several digestive conditions, including peptic ulcers. However, reports of resistant H. pylori isolates are increasing, and unfortunately, these do not respond to currently available therapeutic regimens. We report the case of a 31-year-old woman with two peptic ulcers in the duodenal antrum. An H. pylori strain was isolated, and tested for antibiotic resistance using agar dilution and disk diffusion. The isolated strain was found to be resistant to all seven antibiotics that were tested. Therefore, constant monitoring for antibiotic resistance should be performed prior to initiating antibiotic therapy.

  1. A new strategy to fight antimicrobial resistance: the revival of old antibiotics

    Directory of Open Access Journals (Sweden)

    Nadim eCassir

    2014-10-01

    Full Text Available The increasing prevalence of hospital- and community-acquired infections caused by multidrug-resistant bacterial pathogens is limiting the options for effective antibiotic therapy. Moreover, this alarming spread of antimicrobial resistance has not been paralleled by the development of novel antimicrobials. Resistance to the scarce new antibiotics is also emerging. In this context, the rational use of older antibiotics could represent an alternative for the treatment of multidrug-resistant bacterial pathogens. This strategy would help to optimize the armamentarium of antibiotics so as to preserve the effectiveness of new antibiotics and avoid the prescription of drugs known to favor the spread of resistance (i.e., quinolones. Furthermore, from a global economic perspective, this strategy could be useful in public health, given that several of these cheapest forgotten antibiotics are not available in many countries. We will review here the successful treatment of multidrug-resistant bacterial infections with old antibiotics and discuss their place in current practice.

  2. Apigenin as an anti-quinolone-resistance antibiotic.

    Science.gov (United States)

    Morimoto, Yuh; Baba, Tadashi; Sasaki, Takashi; Hiramatsu, Keiichi

    2015-12-01

    We previously reported the first 'reverse antibiotic' (RA), nybomycin (NYB), which showed a unique antimicrobial activity against Staphylococcus aureus strains. NYB specifically suppressed the growth of quinolone-resistant S. aureus strains but was not effective against quinolone-susceptible strains. Although NYB was first reported in 1955, little was known about its unique antimicrobial activity because it was before the synthesis of the first quinolone ('old quinolone'), nalidixic acid, in 1962. Following our re-discovery of NYB, we looked for other RAs among natural substances that act on quinolone-resistant bacteria. Commercially available flavones were screened against S. aureus, including quinolone-resistant strains, and their minimum inhibitory concentrations (MICs) were compared using the microbroth dilution method. Some of the flavones screened showed stronger antimicrobial activity against quinolone-resistant strains than against quinolone-susceptible ones. Amongst them, apigenin (API) was the most potent in its RA activity. DNA cleavage assay showed that API inhibited DNA gyrase harbouring the quinolone resistance mutation gyrA(Ser84Leu) but did not inhibit 'wild-type' DNA gyrase that is sensitive to levofloxacin. An API-susceptible S. aureus strain Mu50 was also selected using agar plates containing 20mg/L API. Whole-genome sequencing of selected mutant strains was performed and frequent back-mutations (reverse mutations) were found among API-resistant strains derived from the API-susceptible S. aureus strains. Here we report that API represents another molecular class of natural antibiotic having RA activity against quinolone-resistant bacteria. PMID:26526895

  3. Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts.

    Science.gov (United States)

    Zhou, N; Zhang, J X; Fan, M T; Wang, J; Guo, G; Wei, X Y

    2012-09-01

    The aim of this study was to evaluate the susceptibility of 43 strains of lactic acid bacteria, isolated from Chinese yogurts made in different geographical areas, to 11 antibiotics (ampicillin, penicillin G, roxithromycin, chloramphenicol, tetracycline, chlortetracycline, lincomycin, kanamycin, streptomycin, neomycin, and gentamycin). The 43 isolates (18 Lactobacillus bulgaricus and 25 Streptococcus thermophilus) were identified at species level and were typed by random amplified polymorphic DNA analysis. Thirty-five genotypically different strains were detected and their antimicrobial resistance to 11 antibiotics was determined using the agar dilution method. Widespread resistance to ampicillin, chloramphenicol, chlortetracycline, tetracyclines, lincomycin, streptomycin, neomycin, and gentamycin was found among the 35 strains tested. All of the Strep. thermophilus strains tested were susceptible to penicillin G and roxithromycin, whereas 23.5 and 64.7% of Lb. bulgaricus strains, respectively, were resistant. All of the Strep. thermophilus and Lb. bulgaricus strains were found to be resistant to kanamycin. The presence of the corresponding resistance genes in the resistant isolates was investigated through PCR, with the following genes detected: tet(M) in 1 Lb. bulgaricus and 2 Strep. thermophilus isolates, ant(6) in 2 Lb. bulgaricus and 2 Strep. thermophilus isolates, and aph(3')-IIIa in 5 Lb. bulgaricus and 2 Strep. thermophilus isolates. The main threat associated with these bacteria is that they may transfer resistance genes to pathogenic bacteria, which has been a major cause of concern to human and animal health. To our knowledge, the aph(3')-IIIa and ant(6) genes were found in Lb. bulgaricus and Strep. thermophilus for the first time. Further investigations are required to analyze whether the genes identified in Lb. bulgaricus and Strep. thermophilus isolates might be horizontally transferred to other species.

  4. The drinking water treatment process as a potential source of affecting the bacterial antibiotic resistance.

    Science.gov (United States)

    Bai, Xiaohui; Ma, Xiaolin; Xu, Fengming; Li, Jing; Zhang, Hang; Xiao, Xiang

    2015-11-15

    Two waterworks, with source water derived from the Huangpu or Yangtze River in Shanghai, were investigated, and the effluents were plate-screened for antibiotic-resistant bacteria (ARB) using five antibiotics: ampicillin (AMP), kanamycin (KAN), rifampicin (RFP), chloramphenicol (CM) and streptomycin (STR). The influence of water treatment procedures on the bacterial antibiotic resistance rate and the changes that bacteria underwent when exposed to the five antibiotics at concentration levels ranging from 1 to 100 μg/mL were studied. Multi-drug resistance was also analyzed using drug sensitivity tests. The results indicated that bacteria derived from water treatment plant effluent that used the Huangpu River rather than the Yangtze River as source water exhibited higher antibiotic resistance rates against AMP, STR, RFP and CM but lower antibiotic resistance rates against KAN. When the antibiotic concentration levels ranged from 1 to 10 μg/mL, the antibiotic resistance rates of the bacteria in the water increased as water treatment progressed. Biological activated carbon (BAC) filtration played a key role in increasing the antibiotic resistance rate of bacteria. Chloramine disinfection can enhance antibiotic resistance. Among the isolated ARB, 75% were resistant to multiple antibiotics. Ozone oxidation, BAC filtration and chloramine disinfection can greatly affect the relative abundance of bacteria in the community.

  5. High-level Multi-Resistant and Virulent Escherichia coli in Abeokuta, Nigeria.

    Science.gov (United States)

    Akinduti, Paul Akinniyi; Aboderin, Bukola W; Oloyede, Rasaq; Ogiogwa, Joseph I; Motayo, Babatunde O; Ejilude, Oluwaseun

    2016-01-01

    Multi-resistant Escherichia coli (E. coli) strains co-harboring virulence genes is a cause of high morbidity in Abeokuta, Nigeria. This study was designed to determine some virulent factors among enteropathogenic E. coli in Abeokuta, Nigeria. Approximately non-repetitive 102 isolates of E. coli were recovered from clinical samples from two health facilities in Abeokuta. Biotyping using API and antibiotic susceptibility was determined, and eae and flic genes were assayed by PCR. Antibiotic resistance relatedness was performed by DendroUPGMA. Results showed that 48.0% and 52.0 % were intestinal and extra-intestinal E. coli, ampicillin recorded 100% resistance, amoxycilli/clavulanic acid 64.7%, cotrimoxazole 57.8% and 56.8% resistance against cefotaxime, at MIC >16 ug/mL, 100%, 57.8%, and 50% have MIC50 to ampicillin, tetracycline, and ceftazidime, while 74.5% and 48.0% have MIC90 to ampicillin and ceftazidime. Significant rates of 4.9%, 7.8%, and 9.8% flic, eae, and flic/eae genes were found in intestinal isolates, while 2.9%, 2.0%, and 3.9% were found in extra-intestinal (P coli pathotypes with high resistance could trigger unprecedented morbidity and mortality, mostly among children and the elderly.

  6. Antimicrobial activity of peptidomimetics against multidrug-resistant Escherichia coli

    DEFF Research Database (Denmark)

    Jahnsen, Rasmus D; Frimodt-Møller, Niels; Franzyk, Henrik

    2012-01-01

    -lactamase-producing Escherichia coli was assessed by testing an array comprising different types of cationic peptidomimetics obtained by a general monomer-based solid-phase synthesis protocol. Most of the peptidomimetics possessed high to moderate activity toward multidrug-resistant E. coli as opposed to the corresponding...

  7. Multidrug-Resistant Escherichia coli in Bovine Animals, Europe.

    Science.gov (United States)

    Brennan, Evan; Martins, Marta; McCusker, Matthew P; Wang, Juan; Alves, Bruno Martins; Hurley, Daniel; El Garch, Farid; Woehrlé, Frédérique; Miossec, Christine; McGrath, Leisha; Srikumar, Shabarinath; Wall, Patrick; Fanning, Séamus

    2016-09-01

    Of 150 Escherichia coli strains we cultured from specimens taken from cattle in Europe, 3 had elevated MICs against colistin. We assessed all 3 strains for the presence of the plasmid-mediated mcr-1 gene and identified 1 isolate as mcr-1-positive and co-resistant to β-lactam, florfenicol, and fluoroquinolone antimicrobial compounds. PMID:27533105

  8. Potential use of Bacillus thuringiensis bacteriocins to control antibiotic-resistant bacteria associated with mastitis in dairy goats.

    Science.gov (United States)

    Gutiérrez-Chávez, A J; Martínez-Ortega, E A; Valencia-Posadas, M; León-Galván, M F; de la Fuente-Salcido, N M; Bideshi, D K; Barboza-Corona, J E

    2016-01-01

    Mastitis caused by microbial infections in dairy goats reduces milk yield, modifies milk composition, and potentially contributes to morbidity in herds and consumers of dairy products. Microorganisms associated with mastitis in dairy goats are commonly controlled with antibiotics, but it is known that continued use of these chemical agents promotes antibiotic resistance among bacterial populations. Recently, it has been shown that bacteriocins of Bacillus thuringiensis inhibit growth of food-borne pathogens and also bacteria associated with bovine mastitis. However, there is no report on their ability to inhibit microorganisms linked to mastitis in dairy goats. In this study, using 16S rDNA and ITS regions of rDNA, we identified nine bacterial isolates and an encapsulated yeast associated with mastitis in dairy goats. Enterococcus durans, Brevibacillus sp., and Staphylococcus epidermidis 2 were resistant to, respectively, 75, ~67, ~42, and ~42 % of the antibiotics screened. In addition, 60 % of the bacterial isolates were resistant to penicillin, ampicillin, vancomycin, and dicloxacillin. Importantly, 60 % of the isolates were inhibited by the bacteriocins, but S. epidermidis 1, Enterobacter sp., Escherichia vulneris, and Cryptococcus neoformans were not susceptible to these antimicrobial peptides. Using Brevibacillus sp. and Staphylococcus chromogenes as indicator bacteria, we show that peptides of ~10 kDa that correspond to the molecular mass of bacteriocins used in this study are responsible for the inhibitory activity. Our results demonstrate that multiple antibiotic-resistant bacteria associated with subclinical mastitis in dairy goats from Guanajuato, Mexico, are susceptible to bacteriocins produced by B. thuringiensis.

  9. Potential use of Bacillus thuringiensis bacteriocins to control antibiotic-resistant bacteria associated with mastitis in dairy goats.

    Science.gov (United States)

    Gutiérrez-Chávez, A J; Martínez-Ortega, E A; Valencia-Posadas, M; León-Galván, M F; de la Fuente-Salcido, N M; Bideshi, D K; Barboza-Corona, J E

    2016-01-01

    Mastitis caused by microbial infections in dairy goats reduces milk yield, modifies milk composition, and potentially contributes to morbidity in herds and consumers of dairy products. Microorganisms associated with mastitis in dairy goats are commonly controlled with antibiotics, but it is known that continued use of these chemical agents promotes antibiotic resistance among bacterial populations. Recently, it has been shown that bacteriocins of Bacillus thuringiensis inhibit growth of food-borne pathogens and also bacteria associated with bovine mastitis. However, there is no report on their ability to inhibit microorganisms linked to mastitis in dairy goats. In this study, using 16S rDNA and ITS regions of rDNA, we identified nine bacterial isolates and an encapsulated yeast associated with mastitis in dairy goats. Enterococcus durans, Brevibacillus sp., and Staphylococcus epidermidis 2 were resistant to, respectively, 75, ~67, ~42, and ~42 % of the antibiotics screened. In addition, 60 % of the bacterial isolates were resistant to penicillin, ampicillin, vancomycin, and dicloxacillin. Importantly, 60 % of the isolates were inhibited by the bacteriocins, but S. epidermidis 1, Enterobacter sp., Escherichia vulneris, and Cryptococcus neoformans were not susceptible to these antimicrobial peptides. Using Brevibacillus sp. and Staphylococcus chromogenes as indicator bacteria, we show that peptides of ~10 kDa that correspond to the molecular mass of bacteriocins used in this study are responsible for the inhibitory activity. Our results demonstrate that multiple antibiotic-resistant bacteria associated with subclinical mastitis in dairy goats from Guanajuato, Mexico, are susceptible to bacteriocins produced by B. thuringiensis. PMID:26022411

  10. Sewage sludge and liquid pig manure as possible sources of antibiotic resistant bacteria.

    Science.gov (United States)

    Hölzel, Christina S; Schwaiger, Karin; Harms, Katrin; Küchenhoff, Helmut; Kunz, Anne; Meyer, Karsten; Müller, Christa; Bauer, Johann

    2010-05-01

    Within the last decades, the environmental spread of antibiotic resistant bacteria has become a topic of concern. In this study, liquid pig manure (n=305) and sewage sludge (n=111) - used as agricultural fertilizers between 2002 and 2005 - were investigated for the presence of Escherichia coli, Enterococcus faecalis and Enterococcus faecium. Bacteria were tested for their resistance against 40 chemotherapeutics including several "reserve drugs". E. coli (n=613) from pig manure were at a significantly higher degree resistant to streptomycin, doxycycline, spectinomycin, cotrimoxazole, and chloramphenicol than E. coli (n=116) from sewage sludge. Enterococci (Ent. faecalis, n=387, and Ent. faecium, n=183) from pig manure were significantly more often resistant to high levels of doxycycline, rifampicin, erythromycin, and streptomycin than Ent. faecalis (n=44) and Ent. faecium (n=125) from sewage sludge. Significant differences in enterococcal resistance were also seen for tylosin, chloramphenicol, gentamicin high level, fosfomycin, clindamicin, enrofloxacin, moxifloxacin, nitrofurantoin, and quinupristin/dalfopristin. By contrast, aminopenicillins were more effective in enterococci from pig manure, and mean MIC-values of piperacillin+tazobactam and third generation cefalosporines were significantly lower in E. coli from pig manure than in E. coli from sewage sludge. 13.4% (E. coli) to 25.3% (Ent. faecium) of pig manure isolates were high-level multiresistant to substances from more than three different classes of antimicrobial agents. In sewage sludge, high-level-multiresistance reached from 0% (Ent. faecalis) to 16% (Ent. faecium). High rates of (multi-) resistant bacteria in pig manure emphasize the need for a prudent - cautious - use of antibiotics in farm animals. PMID:20303077

  11. Current perspectivesin pathogenesis and antimicrobial resistance of enteroaggregative Escherichia coli.

    Science.gov (United States)

    Kong, Haishen; Hong, Xiaoping; Li, Xuefen

    2015-08-01

    Enteroaggregative Escherichia coli (EAEC) is an emerging pathogen that causes acute and persistent diarrhea in children and adults. While the pathogenic mechanisms of EAEC intestinal colonization have been uncovered (including bacterial adhesion, enterotoxin and cytotoxin secretion, and stimulation of mucosal inflammation), those of severe extraintestinal infections remain largely unknown. The recent emergence of multidrug resistant EAEC represents an alarming public health threat and clinical challenge, and research on the molecular mechanisms of resistance is urgently needed.

  12. The incidence of antibiotic resistant bacteria in chicken and pork / Eugénie van Wijk

    OpenAIRE

    Van Wijk, Eugénie

    2003-01-01

    The emergence of antibiotic resistance in important human pathogens has globally become a public health concern. Consumption of contaminated meat and meat products constitute a major route for the transmission of antibiotic resistant organisms and the dissemination of resistance genes in the human environment. The aim of this study was to determine the level of antibiotic resistance in potentially pathogenic bacteria associated with pork, chicken meat, chicken manure, chicken f...

  13. Bacteriophages as potential treatment option for antibiotic resistant bacteria.

    Science.gov (United States)

    Bragg, Robert; van der Westhuizen, Wouter; Lee, Ji-Yun; Coetsee, Elke; Boucher, Charlotte

    2014-01-01

    The world is facing an ever-increasing problem with antibiotic resistant bacteria and we are rapidly heading for a post-antibiotic era. There is an urgent need to investigate alterative treatment options while there are still a few antibiotics left. Bacteriophages are viruses that specifically target bacteria. Before the development of antibiotics, some efforts were made to use bacteriophages as a treatment option, but most of this research stopped soon after the discovery of antibiotics. There are two different replication options which bacteriophages employ. These are the lytic and lysogenic life cycles. Both these life cycles have potential as treatment options. There are various advantages and disadvantages to the use of bacteriophages as treatment options. The main advantage is the specificity of bacteriophages and treatments can be designed to specifically target pathogenic bacteria while not negatively affecting the normal microbiota. There are various advantages to this. However, the high level of specificity also creates potential problems, the main being the requirement of highly specific diagnostic procedures. Another potential problem with phage therapy includes the development of immunity and limitations with the registration of phage therapy options. The latter is driving research toward the expression of phage genes which break the bacterial cell wall, which could then be used as a treatment option. Various aspects of phage therapy have been investigated in studies undertaken by our research group. We have investigated specificity of phages to various avian pathogenic E. coli isolates. Furthermore, the exciting NanoSAM technology has been employed to investigate bacteriophage replication and aspects of this will be discussed.

  14. Bacteriophages as potential treatment option for antibiotic resistant bacteria.

    Science.gov (United States)

    Bragg, Robert; van der Westhuizen, Wouter; Lee, Ji-Yun; Coetsee, Elke; Boucher, Charlotte

    2014-01-01

    The world is facing an ever-increasing problem with antibiotic resistant bacteria and we are rapidly heading for a post-antibiotic era. There is an urgent need to investigate alterative treatment options while there are still a few antibiotics left. Bacteriophages are viruses that specifically target bacteria. Before the development of antibiotics, some efforts were made to use bacteriophages as a treatment option, but most of this research stopped soon after the discovery of antibiotics. There are two different replication options which bacteriophages employ. These are the lytic and lysogenic life cycles. Both these life cycles have potential as treatment options. There are various advantages and disadvantages to the use of bacteriophages as treatment options. The main advantage is the specificity of bacteriophages and treatments can be designed to specifically target pathogenic bacteria while not negatively affecting the normal microbiota. There are various advantages to this. However, the high level of specificity also creates potential problems, the main being the requirement of highly specific diagnostic procedures. Another potential problem with phage therapy includes the development of immunity and limitations with the registration of phage therapy options. The latter is driving research toward the expression of phage genes which break the bacterial cell wall, which could then be used as a treatment option. Various aspects of phage therapy have been investigated in studies undertaken by our research group. We have investigated specificity of phages to various avian pathogenic E. coli isolates. Furthermore, the exciting NanoSAM technology has been employed to investigate bacteriophage replication and aspects of this will be discussed. PMID:24619620

  15. Tackling antibiotic resistance in febrile neutropenia: current challenges with and recommendations for managing infections with resistant Gram-negative organisms.

    Science.gov (United States)

    Nouér, Simone A; Nucci, Marcio; Anaissie, Elias

    2015-10-01

    Multidrug resistant (MDR) Gram-negative bacteria (GNB) have emerged as important pathogens and a serious challenge in the management of neutropenic patients worldwide. The great majority of infections are caused by the Enterobacteriaceae (especially Escherichia coli and Klebsiella spp.) and Pseudomonas aeruginosa, and less frequently Acinetobacter spp. and Stenotrophomonas maltophilia. A broader-spectrum empiric antibiotic regimen is usually recommended in patients with a history of prior bloodstream infection caused by a MDR GNB, in those colonized by a MDR GNB, and if MDR GNBs are frequently isolated in the initial blood cultures. In any situation, de-escalation to standard empiric regimen is advised if infection with MDR GNB is not documented.

  16. Antibiotic Exposure in a Low-Income Country: Screening Urine Samples for Presence of Antibiotics and Antibiotic Resistance in Coagulase Negative Staphylococcal Contaminants

    DEFF Research Database (Denmark)

    Lerbeck, Anne Mette; Tersbøl, Britt Pinkowski; Styrishave, Bjarne

    2014-01-01

    Development of antimicrobial resistance has been assigned to excess and misuse of antimicrobial agents. Staphylococci are part of the normal flora but are also potential pathogens that have become essentially resistant to many known antibiotics. Resistances in coagulase negative staphylococci (Co......NS) are suggested to evolve due to positive selective pressure following antibiotic treatment. This study investigated the presence of the nine most commonly used antimicrobial agents in human urine from outpatients in two hospitals in Ghana in relation to CoNS resistance. Urine and CoNS were sampled (n5246 and n...... was the most common isolate (75%), followed by S. epidermidis (13%) and S. hominis (6%). S. haemolyticus was also the species displaying the highest resistance prevalence (82%). 69% of the isolated CoNS were multiple drug resistant (§4 antibiotics) and 45% of the CoNS were methicillin resistant. Antimicrobial...

  17. Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes.

    Science.gov (United States)

    Berglund, Björn; Khan, Ghazanfar Ali; Weisner, Stefan E B; Ehde, Per Magnus; Fick, Jerker; Lindgren, Per-Eric

    2014-04-01

    Recently, there have been growing concerns about pharmaceuticals including antibiotics as environmental contaminants. Antibiotics of concentrations commonly encountered in wastewater have been suggested to affect bacterial population dynamics and to promote dissemination of antibiotic resistance. Conventional wastewater treatment processes do not always adequately remove pharmaceuticals causing environmental dissemination of low levels of these compounds. Using constructed wetlands as an additional treatment step after sewage treatment plants have been proposed as a cheap alternative to increase reduction of wastewater contaminants, however this means that the natural microbial community of the wetlands becomes exposed to elevated levels of antibiotics. In this study, experimental surface-flow wetlands in Sweden were continuously exposed to antibiotics of concentrations commonly encountered in wastewater. The aim was to assess the antibiotic removal efficiency of constructed wetlands and to evaluate the impact of low levels of antibiotics on bacterial diversity, resistance development and expression in the wetland bacterial community. Antibiotic concentrations were measured using liquid chromatography-mass spectrometry and the effect on the bacterial diversity was assessed with 16S rRNA-based denaturing gradient gel electrophoresis. Real-time PCR was used to detect and quantify antibiotic resistance genes and integrons in the wetlands, during and after the exposure period. The results indicated that the antibiotic removal efficiency of constructed wetlands was comparable to conventional wastewater treatment schemes. Furthermore, short-term treatment of the constructed wetlands with environmentally relevant concentrations (i.e. 100-2000 ng×l(-1)) of antibiotics did not significantly affect resistance gene concentrations, suggesting that surface-flow constructed wetlands are well-suited for wastewater treatment purposes.

  18. 'Reduce Resistance' An Antibiotic stewardship program to change prescribing practices in a Public Dental Service

    OpenAIRE

    McCafferty, Rosarii

    2015-01-01

    This program implemented an antibiotic stewardship program (ASP) to change prescribing practices in one Public Dental Service with the aim of reducing the number of unnecessary antibiotic prescriptions and ensuring that those antibiotics which are prescribed adhere to best practice guidelines. There is vast scientific evidence that antibiotic resistance is promoted through excessive use of antibiotics and that Dental Surgeons are contributing significantly to this issue due to their inappropr...

  19. Glycopeptide antibiotics: evolving resistance, pharmacology and adverse event profile.

    Science.gov (United States)

    Henson, Karl Evans R; Levine, Miriam T; Wong, Eunice Ann H; Levine, Donald P

    2015-01-01

    The first glycopeptide antibiotic was vancomycin, isolated from the soil in the 1950s; since then, the class has expanded to include teicoplanin and the new semisynthetic glycopeptides dalbavancin, oritavancin and telavancin. They are bactericidal, active against most Gram-positive organisms, and in a concentration-dependent manner, inhibit cell wall synthesis. Resistance to vancomycin has emerged, especially among enterococci and Staphylococcus aureus through a variety of mechanisms. This emerging resistance to vancomycin makes proper dosing and monitoring of the area under the curve/MIC critically important. The chief adverse effect of vancomycin is nephrotoxicity, which is also intricately related to its dose. The efficacy of the semisynthetic glycopeptides has been demonstrated in skin and soft-tissue infections, but remains to be seen in serious methicillin-resistant Staphylococcus aureus infections.

  20. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study.

    Science.gov (United States)

    Cheng, Weixiao; Li, Jianan; Wu, Ying; Xu, Like; Su, Chao; Qian, Yanyun; Zhu, Yong-Guan; Chen, Hong

    2016-03-01

    This study aims to determine abundance and persistence of antibiotics and antibiotic resistance genes (ARGs) in eco-agricultural system (EAS), which starts from swine feces to anaerobic digestion products, then application of anaerobic digestion solid residue (ADSR) and anaerobic digestion liquid residue (ADLR) to the soil to grow ryegrass, one of swine feed. Oxytetracycline had the highest concentration in manure reaching up to 138.7 mg/kg. Most of antibiotics could be effectively eliminated by anaerobic digestion and removal rates ranged from 11% to 86%. ARGs abundance fluctuated within EAS. TetQ had the highest relative abundance and the relative abundance of tetG had the least variation within the system, which indicates that tetG is persistent in the agricultural environment and requires more attention. Compared to the relative abundance in manure, tetC and tetM increased in biogas residue while three ribosomal protection proteins genes (tetO, tetQ, tetW) decreased (p0.05). Most ARGs in downstream components (soils and fishpond) of EAS showed significantly higher relative abundance than the control agricultural system (p<0.05), except for tetG and sulI.

  1. Status Report from the Scientific Panel on Antibiotic Use in Dermatology of the American Acne and Rosacea Society: Part 1: Antibiotic Prescribing Patterns, Sources of Antibiotic Exposure, Antibiotic Consumption and Emergence of Antibiotic Resistance, Impact of Alterations in Antibiotic Prescribing, and Clinical Sequelae of Antibiotic Use.

    Science.gov (United States)

    Del Rosso, James Q; Webster, Guy F; Rosen, Ted; Thiboutot, Diane; Leyden, James J; Gallo, Richard; Walker, Clay; Zhanel, George; Eichenfield, Lawrence

    2016-04-01

    Oral and topical antibiotics are commonly prescribed in dermatologie practice, often for noninfectious disorders, such as acne vulgaris and rosacea. Concerns related to antibiotic exposure from both medical and nonmedical sources require that clinicians consider in each case why and how antibiotics are being used and to make appropriate adjustments to limit antibiotic exposure whenever possible. This first article of a three-part series discusses prescribing patterns in dermatology, provides an overview of sources of antibiotic exposure, reviews the relative correlations between the magnitude of antibiotic consumption and emergence of antibiotic resistance patterns, evaluates the impact of alterations in antibiotic prescribing, and discusses the potential relevance and clinical sequelae of antibiotic use, with emphasis on how antibiotics are used in dermatology. PMID:27462384

  2. Antimicrobial resistance of Escherichia coli isolated in newly-hatched chickens and effect of amoxicillin treatment during their growth.

    Science.gov (United States)

    Jiménez-Belenguer, Ana; Doménech, Eva; Villagrá, Arantxa; Fenollar, Alejandro; Ferrús, Maria Antonia

    2016-08-01

    The use of antimicrobials in food animals is the major determinant for the propagation of resistant bacteria in the animal reservoir. However, other factors may also play a part, and in particular vertical spread between the generations has been suggested to be an important transmission pathway. The objective of this paper was to determine the resistance patterns of Escherichia coli isolated from newly-hatched chickens as well as to study the antibiotic pressure effect when amoxicillin was administered during their growing period. With this aim, meconium from 22 one-day-old Ross chickens was analysed. In addition, during their growth period, amoxicillin treatments at days 7, 21 and 35 were carried out. Results showed a high number of E. coli-resistant strains were isolated from the treated one-day-old chickens, and were the highest for β-lactams group, followed by quinolone and tetracyclines. After treatment with amoxicillin, the highest percentage of resistances were detected for this antibiotic compared to the others analysed, with significant differences in resistance percentages between control and treated broilers detected in relation to ampicillin, cephalothin, streptomycin, kanamycin, gentamicin, chloramphenicol and tetracycline. Differences in resistances to ciprofloxacin and nalidixic acid between control and treated animals were not observed and there was lack of resistance for amikacin and ceftriaxone. These results suggest the possibility of vertical transmission of resistant strains to newly-hatched chicks from parent flocks, and seem to indicate that the treatment with amoxicillin increased the resistance of E. coli to other antibiotics. PMID:27035748

  3. Empiric antibiotic therapy in acute uncomplicated urinary tract infections and fluoroquinolone resistance: a prospective observational study

    Directory of Open Access Journals (Sweden)

    Düzgün Nurşen

    2009-10-01

    Full Text Available Abstract Background The aims of this study were to determine the antimicrobial susceptibility patterns of urinary isolates from community acquired acute uncomplicated urinary tract infections (uUTI and to evaluate which antibiotics were empirically prescribed in the outpatient management of uUTI. Methods Among the patients which were admitted to outpatient clinics of Ankara University Medical Faculty, Ibni-Sina Hospital during 2005-2006, a total of 429 women between the age of 18 and 65 years old who were clinically diagnosed with uUTI and to whom prescribed empirical antibiotics were enrolled in this prospective observational study. Patients' demographical data, urine culture results, resistance rates to antimicrobial agents and prescribed empiric antimicrobial therapy were analyzed. Results Totally 390 (90.9% patients among all study population were requested for urine culture by their physicians. 150 (38.5% of these urine cultures were positive. The most common isolated uropathogen was Escherichia coli (E. coli (71.3%. The variations of uropathogens according to age and menopause status were not significantly different. The resistance rates of E. coli isolates for ampicillin, ampicillin-sulbactam, amoxicillin-clavulonate, cefuroxime, ceftriaxone, fluoroquinolones (FQ, co-trimoxazole (TMP-SMX and gentamicin were 55.1%, 32.7%, 32.7%, 23.4%, 15.9%, 25.2%, 41.1%, 6.1% respectively. FQ were the most common prescribed antibiotics (77.9% (P P Conclusion Empirical use of FQ in uUTI should be discouraged because of increased antimicrobial resistance rates.

  4. Abundance and dynamics of antibiotic resistance genes and integrons in lake sediment microcosms.

    Directory of Open Access Journals (Sweden)

    Björn Berglund

    Full Text Available Antibiotic resistance in bacteria causing disease is an ever growing threat to the world. Recently, environmental bacteria have become established as important both as sources of antibiotic resistance genes and in disseminating resistance genes. Low levels of antibiotics and other pharmaceuticals are regularly released into water environments via wastewater, and the concern is that such environmental contamination may serve to create hotspots for antibiotic resistance gene selection and dissemination. In this study, microcosms were created from water and sediments gathered from a lake in Sweden only lightly affected by human activities. The microcosms were exposed to a mixture of antibiotics of varying environmentally relevant concentrations (i.e., concentrations commonly encountered in wastewaters in order to investigate the effect of low levels of antibiotics on antibiotic resistance gene abundances and dynamics in a previously uncontaminated environment. Antibiotic concentrations were measured using liquid chromatography-tandem mass spectrometry. Abundances of seven antibiotic resistance genes and the class 1 integron integrase gene, intI1, were quantified using real-time PCR. Resistance genes sulI and ermB were quantified in the microcosm sediments with mean abundances 5 and 15 gene copies/10(6 16S rRNA gene copies, respectively. Class 1 integrons were determined in the sediments with a mean concentration of 3.8 × 10(4 copies/106 16S rRNA gene copies. The antibiotic treatment had no observable effect on antibiotic resistance gene or integron abundances.

  5. Antibiotic Resistance of Isolated Bacteria from Urban and Hospital Wastewaters in Hamadan City

    OpenAIRE

    Karimi, M; A.M Ebrahimzadeh Namvar; R Shokoohi; M. Hadi; M Solaimany Aminabad

    2011-01-01

    "nBackground and Objectives: widely use of antib