WorldWideScience

Sample records for antibiotic resistance protein

  1. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection.

    Science.gov (United States)

    Sharkey, Liam K R; Edwards, Thomas A; O'Neill, Alex J

    2016-03-22

    Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to anin vitrotranslation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosomein vitro To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.IMPORTANCEAntimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which includelsa(A),msr(A),optr(A), andvga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition. Copyright © 2016 Sharkey et al.

  2. Antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Marianne Frieri

    2017-07-01

    Full Text Available Summary: Antimicrobial resistance in bacterial pathogens is a challenge that is associated with high morbidity and mortality. Multidrug resistance patterns in Gram-positive and -negative bacteria are difficult to treat and may even be untreatable with conventional antibiotics. There is currently a shortage of effective therapies, lack of successful prevention measures, and only a few new antibiotics, which require development of novel treatment options and alternative antimicrobial therapies. Biofilms are involved in multidrug resistance and can present challenges for infection control. Virulence, Staphylococcus aureus, Clostridium difficile infection, vancomycin-resistant enterococci, and control in the Emergency Department are also discussed. Keywords: Antibiotic resistance, Biofilms, Infections, Public health, Emergency Department

  3. Antibiotics and Antibiotic Resistance

    Science.gov (United States)

    ... all that ails you. Antibiotics, also known as antimicrobial drugs, are drugs that fight infections caused by bacteria. ... Information for Consumers and Health Professionals Information by drug class Antimicrobial Resistance Animal and Veterinary Related Resources Further information ...

  4. Antibiotic Resistance

    DEFF Research Database (Denmark)

    Munck, Christian

    morbidity and mortality as well as an increase in the cost of treatment. Understanding how bacteria respond to antibiotic exposure gives the foundations for a rational approach to counteract antimicrobial resistance. In the work presented in this thesis, I explore the two fundamental sources...... of antimicrobial resistance: (1) adaptive mutations and (2) horizontal acquisition of resistance genes from antibiotic gene reservoirs. By studying the geno- and phenotypic changes of E. coli in response to single and drug-pair exposures, I uncover the evolutionary trajectories leading to adaptive resistance. I...... to rationally design drug combinations that limit the evolution of antibiotic resistance due to counteracting evolutionary trajectories. My results highlight that an in-depth knowledge about the genetic responses to the individual antimicrobial compounds enables the prediction of responses to drug combinations...

  5. Combating Antibiotic Resistance

    Science.gov (United States)

    ... Bacteria Phasing Out Certain Antibiotic Use in Farm Animals FDA: Cutting-Edge Technology Sheds Light on Antibiotic Resistance For More Information Antibiotics and Antibiotic Resistance Antimicrobial Resistance Information for Consumers and Health Professionals CDC: ...

  6. Antibiotic Resistance

    DEFF Research Database (Denmark)

    Hansen, Malene Plejdrup; Hoffmann, Tammy C; McCullough, Amanda R

    2015-01-01

    hygiene, and possibly vaccination and exercise, may be effective. Also, a large range of complementary and alternative medicines (e.g. zinc, vitamin C and probiotics) are proposed for preventing and treating ARIs, but evidence for efficacy is scarce. General practitioners' (GPs) attitudes towards...... wrong. Shared decision making might be a solution, as it enables clinician and patient to participate jointly in making a health decision, having discussed the options together with the evidence for their harms as well as benefits. Furthermore, GPs' diagnostic uncertainty - often leading...... will greatly improve the use of antibiotics for ARIs. However, used in concert, combinations are likely to enable clinicians and health care systems to implement the strategies that will reduce antimicrobial resistance in the future....

  7. High-resolution structure of the antibiotic resistance protein NimA from Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Leiros, Hanna-Kirsti S.; Tedesco, Consiglia; McSweeney, Seán M.

    2008-01-01

    In this paper, the 1.2 Å atomic resolution crystal structure of the 5-nitroimidazole antibiotic resistance protein NimA from Deinococcus radiodurans (DrNimA) is presented. Many anaerobic human pathogenic bacteria are treated using 5-nitroimidazole-based (5-Ni) antibiotics, a class of inactive prodrugs that contain a nitro group. The nitro group must be activated in an anaerobic one-electron reduction and is therefore dependent on the redox system in the target cells. Antibiotic resistance towards 5-Ni drugs is found to be related to the nim genes (nimA, nimB, nimC, nimD, nimE and nimF), which are proposed to encode a reductase that is responsible for converting the nitro group of the antibiotic into a nonbactericidal amine. A mechanism for the Nim enzyme has been proposed in which two-electron reduction of the nitro group leads to the generation of nontoxic derivatives and confers resistance against these antibiotics. The cofactor was found to be important in the mechanism and was found to be covalently linked to the reactive His71. In this paper, the 1.2 Å atomic resolution crystal structure of the 5-nitroimidazole antibiotic resistance protein NimA from Deinococcus radiodurans (DrNimA) is presented. A planar cofactor is clearly visible and well defined in the electron-density map adjacent to His71, the identification of the cofactor and its properties are discussed

  8. Analysis of the protein profiles of the antibiotic-resistant Salmonella ...

    African Journals Online (AJOL)

    The emergent Salmonella typhimurium definitive phage type (DT) 104 is of particular global concern due to its frequent isolation and multiple antibiotic resistances. There is thus a need to know the kind of proteins expressed by S. typhimurium DT104 so as to provide a basis for developing an intervention. This study ...

  9. Analysis of the protein profiles of the antibiotic- resistant Salmonella ...

    African Journals Online (AJOL)

    Owner

    2005-05-18

    May 18, 2005 ... ice-cold 100% acetone and air-dried. The dried whole cell proteins and other samples (flagillin, CFUS) for 2DE were digested (100oC,. 5 min) in 4 µl of 10% SDS and dissolved in 100 µl of urea sample buffer containing 8 M urea, 4% Triton X-100, 20 mM dithiothreitol,. 2% ampholyte (pH 3.5~10) and traces ...

  10. Mutations in the Bacterial Ribosomal Protein L3 and Their Association with Antibiotic Resistance

    Science.gov (United States)

    Klitgaard, Rasmus N.; Ntokou, Eleni; Nørgaard, Katrine; Biltoft, Daniel; Hansen, Lykke H.; Trædholm, Nicolai M.; Kongsted, Jacob

    2015-01-01

    Different groups of antibiotics bind to the peptidyl transferase center (PTC) in the large subunit of the bacterial ribosome. Resistance to these groups of antibiotics has often been linked with mutations or methylations of the 23S rRNA. In recent years, there has been a rise in the number of studies where mutations have been found in the ribosomal protein L3 in bacterial strains resistant to PTC-targeting antibiotics but there is often no evidence that these mutations actually confer antibiotic resistance. In this study, a plasmid exchange system was used to replace plasmid-carried wild-type genes with mutated L3 genes in a chromosomal L3 deletion strain. In this way, the essential L3 gene is available for the bacteria while allowing replacement of the wild type with mutated L3 genes. This enables investigation of the effect of single mutations in Escherichia coli without a wild-type L3 background. Ten plasmid-carried mutated L3 genes were constructed, and their effect on growth and antibiotic susceptibility was investigated. Additionally, computational modeling of the impact of L3 mutations in E. coli was used to assess changes in 50S structure and antibiotic binding. All mutations are placed in the loops of L3 near the PTC. Growth data show that 9 of the 10 mutations were well accepted in E. coli, although some of them came with a fitness cost. Only one of the mutants exhibited reduced susceptibility to linezolid, while five exhibited reduced susceptibility to tiamulin. PMID:25845869

  11. Bioinformatics and structural characterization of a hypothetical protein from Streptococcus mutans: implication of antibiotic resistance.

    Directory of Open Access Journals (Sweden)

    Jie Nan

    2009-10-01

    Full Text Available As an oral bacterial pathogen, Streptococcus mutans has been known as the aetiologic agent of human dental caries. Among a total of 1960 identified proteins within the genome of this organism, there are about 500 without any known functions. One of these proteins, SMU.440, has very few homologs in the current protein databases and it does not fall into any protein functional families. Phylogenetic studies showed that SMU.440 is related to a particular ecological niche and conserved specifically in some oral pathogens, due to lateral gene transfer. The co-occurrence of a MarR protein within the same operon among these oral pathogens suggests that SMU.440 may be associated with antibiotic resistance. The structure determination of SMU.440 revealed that it shares the same fold and a similar pocket as polyketide cyclases, which indicated that it is very likely to bind some polyketide-like molecules. From the interlinking structural and bioinformatics studies, we have concluded that SMU.440 could be involved in polyketide-like antibiotic resistance, providing a better understanding of this hypothetical protein. Besides, the combination of multiple methods in this study can be used as a general approach for functional studies of a protein with unknown function.

  12. Phenotypic Resistance to Antibiotics

    Directory of Open Access Journals (Sweden)

    Jose L. Martinez

    2013-04-01

    Full Text Available The development of antibiotic resistance is usually associated with genetic changes, either to the acquisition of resistance genes, or to mutations in elements relevant for the activity of the antibiotic. However, in some situations resistance can be achieved without any genetic alteration; this is called phenotypic resistance. Non-inherited resistance is associated to specific processes such as growth in biofilms, a stationary growth phase or persistence. These situations might occur during infection but they are not usually considered in classical susceptibility tests at the clinical microbiology laboratories. Recent work has also shown that the susceptibility to antibiotics is highly dependent on the bacterial metabolism and that global metabolic regulators can modulate this phenotype. This modulation includes situations in which bacteria can be more resistant or more susceptible to antibiotics. Understanding these processes will thus help in establishing novel therapeutic approaches based on the actual susceptibility shown by bacteria during infection, which might differ from that determined in the laboratory. In this review, we discuss different examples of phenotypic resistance and the mechanisms that regulate the crosstalk between bacterial metabolism and the susceptibility to antibiotics. Finally, information on strategies currently under development for diminishing the phenotypic resistance to antibiotics of bacterial pathogens is presented.

  13. Antibiotic resistance reservoirs

    NARCIS (Netherlands)

    Versluis, Dennis

    2016-01-01

    One of the major threats to human health in the 21st century is the emergence of pathogenic bacteria that are resistant to multiple antibiotics, thereby limiting treatment options. An important route through which pathogens become resistant is via acquisition of resistance genes from

  14. Antibiotic-Resistant Gonorrhea

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Gonorrhea Note: Javascript is disabled or is not supported ... on Facebook Sexually Transmitted Diseases (STDs) Antibiotic-Resistant Gonorrhea Recommend on Facebook Tweet Share Compartir Low Resolution ...

  15. Mechanisms of Antibiotic Resistance

    Science.gov (United States)

    Munita, Jose M.; Arias, Cesar A.

    2015-01-01

    Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have emerged not only in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic “attack” is the prime example of bacterial adaptation and the pinnacle of evolution. “Survival of the fittest” is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice providing specific examples in relevant bacterial pathogens. PMID:27227291

  16. Antibiotic Resistance in Foodborne Pathogens

    OpenAIRE

    Walsh, Ciara; Duffy, Geraldine

    2013-01-01

    Wide-spread antibiotic resistance among bacterial pathogens is now a serious public health issue and multi-antibiotic resistance has been reported in many foodborne pathogens including Salmonella and E. coli. A study to determine antibiotic resistance profiles of a range of Salmonella and Verocytotoxigenic E.coli (VTEC) isolated from Irish foods revealed significant levels of antibiotic resistance in the strains. S. typhimurium DT104 were multiantibiotic resistant with 97% resistant to 7 anti...

  17. Antibiotic resistance in Burkholderia species.

    Science.gov (United States)

    Rhodes, Katherine A; Schweizer, Herbert P

    2016-09-01

    The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation β-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several β-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Antibiotic resistance in animals.

    Science.gov (United States)

    Barton, Mary D; Pratt, Rachael; Hart, Wendy S

    2003-01-01

    There is currently no systematic surveillance or monitoring of antibiotic resistance in Australian animals. Registration of antibiotics for use in animals is tightly controlled and has been very conservative. Fluoroquinolones have not been registered for use in food producing animals and other products have been removed from the market because of human health concerns. In the late 1970s, the Animal Health Committee coordinated a survey of resistance in Salmonella and Escherichia coli isolates from cattle, pigs and poultry and in bovine Staphylococcus aureus. Some additional information is available from published case reports. In samples collected prior to the withdrawal of avoparcin from the market, no vancomycin resistant Enterococcus faecium or Enterococcus faecalis were detected in samples collected from pigs, whereas some vanA enterococci, including E. faecium and E. faecalis, were found in chickens. No vanB enterococci were detected in either species. Virginiamycin resistance was common in both pig and poultry isolates. Multiple resistance was common in E. coli and salmonellae isolates. No fluoroquinolone resistance was found in salmonellae, E. coli or Campylobacter. Beta-lactamase production is common in isolates from bovine mastitis, but no methicillin resistance has been detected. However, methicillin resistance has been reported in canine isolates of Staphylococcus intermedius and extended spectrum beta-lactamase producing E. coli has been found in dogs.

  19. Strategies to Minimize Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Sang Hee Lee

    2013-09-01

    Full Text Available Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs and various data such as pharmacokinetic (PK and pharmacodynamic (PD properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST, clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care, the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing. The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics.

  20. Surveillance of antibiotic resistance

    Science.gov (United States)

    Johnson, Alan P.

    2015-01-01

    Surveillance involves the collection and analysis of data for the detection and monitoring of threats to public health. Surveillance should also inform as to the epidemiology of the threat and its burden in the population. A further key component of surveillance is the timely feedback of data to stakeholders with a view to generating action aimed at reducing or preventing the public health threat being monitored. Surveillance of antibiotic resistance involves the collection of antibiotic susceptibility test results undertaken by microbiology laboratories on bacteria isolated from clinical samples sent for investigation. Correlation of these data with demographic and clinical data for the patient populations from whom the pathogens were isolated gives insight into the underlying epidemiology and facilitates the formulation of rational interventions aimed at reducing the burden of resistance. This article describes a range of surveillance activities that have been undertaken in the UK over a number of years, together with current interventions being implemented. These activities are not only of national importance but form part of the international response to the global threat posed by antibiotic resistance. PMID:25918439

  1. Combined Effect of the Cfr Methyltransferase and Ribosomal Protein L3 Mutations on Resistance to Ribosome-Targeting Antibiotics.

    Science.gov (United States)

    Pakula, Kevin K; Hansen, Lykke H; Vester, Birte

    2017-09-01

    Several groups of antibiotics inhibit bacterial growth by binding to bacterial ribosomes. Mutations in ribosomal protein L3 have been associated with resistance to linezolid and tiamulin, which both bind at the peptidyl transferase center in the ribosome. Resistance to these and other antibiotics also occurs through methylation of 23S rRNA at position A2503 by the methyltransferase Cfr. The mutations in L3 and the cfr gene have been found together in clinical isolates, raising the question of whether they have a combined effect on antibiotic resistance or growth. We transformed a plasmid-borne cfr gene into a uL3-depleted Escherichia coli strain containing either wild-type L3 or L3 with one of seven mutations, G147R, Q148F, N149S, N149D, N149R, Q150L, or T151P, expressed from plasmid-carried rplC genes. The L3 mutations are well tolerated, with small to moderate growth rate decreases. The presence of Cfr has a very minor influence on the growth rate. The resistance of the transformants to linezolid, tiamulin, florfenicol, and Synercid (a combination of quinupristin and dalfopristin [Q-D]) was measured by MIC assays. The resistance from Cfr was, in all cases, stronger than the effects of the L3 mutations, but various effects were obtained with the combinations of Cfr and L3 mutations ranging from a synergistic to an antagonistic effect. Linezolid and tiamulin susceptibility varied greatly among the L3 mutations, while no significant effects on florfenicol and Q-D susceptibility were seen. This study underscores the complex interplay between various resistance mechanisms and cross-resistance, even from antibiotics with overlapping binding sites. Copyright © 2017 American Society for Microbiology.

  2. Antibiotics and Resistance: Glossary

    Science.gov (United States)

    ... chromosomes and plasmids. Transposons often carry genes specifying antimicrobial resistance. Virus An extremely small infective agent, visible only with an electron microscope. Viruses can cause disease in humans, animals and plants. Viruses consist of a protein coat ...

  3. Bacterial cheating limits antibiotic resistance

    Science.gov (United States)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  4. Antibiotic residues and resistance in the environment

    NARCIS (Netherlands)

    Pikkemaat, M.G.; Yassin, H.; Fels-Klerkx, H.J.; Berendsen, B.J.A.

    2016-01-01

    Antibiotic usage has benefited the animal industry and helped providing affordable animal proteins to the growing human population. However, since extensive use of antibiotics results in the inhibition of susceptible organisms while selecting for the resistant ones, agricultural use is contributing

  5. TARSyn: Tunable Antibiotic Resistance Devices Enabling Bacterial Synthetic Evolution and Protein Production

    DEFF Research Database (Denmark)

    Rennig, Maja; Martinez, Virginia; Mirzadeh, Kiavash

    2018-01-01

    Evolution can be harnessed to optimize synthetic biology designs. A prominent example is recombinant protein production-a dominating theme in biotechnology for more than three decades. Typically, a protein coding sequence (cds) is recombined with genetic elements, such as promoters, ribosome...... and allows expression levels in large clone libraries to be probed using a simple cell survival assay on the respective antibiotic. The power of the approach is demonstrated by substantially increasing production of two commercially interesting proteins, a Nanobody and an Affibody. The method is a simple......-level expression-an example of synthetic evolution. However, manual screening limits the ability to assay expression levels of all putative sequences in the libraries. Here we have solved this bottleneck by designing a collection of translational coupling devices based on a RNA secondary structure. Exchange...

  6. The Prehistory of Antibiotic Resistance.

    Science.gov (United States)

    Perry, Julie; Waglechner, Nicholas; Wright, Gerard

    2016-06-01

    Antibiotic resistance is a global problem that is reaching crisis levels. The global collection of resistance genes in clinical and environmental samples is the antibiotic "resistome," and is subject to the selective pressure of human activity. The origin of many modern resistance genes in pathogens is likely environmental bacteria, including antibiotic producing organisms that have existed for millennia. Recent work has uncovered resistance in ancient permafrost, isolated caves, and in human specimens preserved for hundreds of years. Together with bioinformatic analyses on modern-day sequences, these studies predict an ancient origin of resistance that long precedes the use of antibiotics in the clinic. Understanding the history of antibiotic resistance is important in predicting its future evolution. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  7. Fighting antibiotic resistance in the intensive care unit using antibiotics.

    Science.gov (United States)

    Plantinga, Nienke L; Wittekamp, Bastiaan H J; van Duijn, Pleun J; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to classical infection prevention protocols and surveillance programs, counterintuitive interventions, such as selective decontamination with antibiotics and antibiotic rotation have been applied and investigated to control the emergence of antibiotic resistance. This review provides an overview of selective oropharyngeal and digestive tract decontamination, decolonization of methicillin-resistant Staphylococcus aureus and antibiotic rotation as strategies to modulate antibiotic resistance in the intensive care unit.

  8. Mechanisms of antibiotic resistance in Staphylococcus aureus.

    Science.gov (United States)

    Pantosti, Annalisa; Sanchini, Andrea; Monaco, Monica

    2007-06-01

    Staphylococcus aureus can exemplify better than any other human pathogen the adaptive evolution of bacteria in the antibiotic era, as it has demonstrated a unique ability to quickly respond to each new antibiotic with the development of a resistance mechanism, starting with penicillin and methicillin, until the most recent, linezolid and daptomycin. Resistance mechanisms include enzymatic inactivation of the antibiotic (penicillinase and aminoglycoside-modification enzymes), alteration of the target with decreased affinity for the antibiotic (notable examples being penicillin-binding protein 2a of methicillin-resistant S. aureus and D-Ala-D-Lac of peptidoglycan precursors of vancomycin-resistant strains), trapping of the antibiotic (for vancomycin and possibly daptomycin) and efflux pumps (fluoroquinolones and tetracycline). Complex genetic arrays (staphylococcal chromosomal cassette mec elements or the vanA operon) have been acquired by S. aureus through horizontal gene transfer, while resistance to other antibiotics, including some of the most recent ones (e.g., fluoroquinolones, linezolid and daptomycin) have developed through spontaneous mutations and positive selection. Detection of the resistance mechanisms and their genetic basis is an important support to antibiotic susceptibility surveillance in S. aureus.

  9. Handling Time-dependent Variables : Antibiotics and Antibiotic Resistance

    NARCIS (Netherlands)

    Munoz-Price, L. Silvia; Frencken, Jos F.; Tarima, Sergey; Bonten, Marc

    2016-01-01

    Elucidating quantitative associations between antibiotic exposure and antibiotic resistance development is important. In the absence of randomized trials, observational studies are the next best alternative to derive such estimates. Yet, as antibiotics are prescribed for varying time periods,

  10. Selection of antibiotic resistance at very low antibiotic concentrations

    OpenAIRE

    Sandegren, Linus

    2014-01-01

    Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are fou...

  11. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions

    NARCIS (Netherlands)

    Leibovici, Leonard; Paul, Mical; Garner, Paul; Sinclair, David J; Afshari, Arash; Pace, Nathan Leon; Cullum, Nicky; Williams, Hywel C; Smyth, Alan; Skoetz, Nicole; Del Mar, Chris; Schilder, Anne G M; Yahav, Dafna; Tovey, David

    Antibiotics are among the most important interventions in healthcare. Resistance of bacteria to antibiotics threatens the effectiveness of treatment. Systematic reviews of antibiotic treatments often do not address resistance to antibiotics even when data are available in the original studies. This

  12. Antibiotics and the resistant microbiome

    DEFF Research Database (Denmark)

    Sommer, Morten; Dantas, Gautam

    2011-01-01

    . Less appreciated are the concomitant changes in the human microbiome in response to these assaults and their contribution to clinical resistance problems. Studies have shown that pervasive changes to the human microbiota result from antibiotic treatment and that resistant strains can persist for years....... Additionally, culture-independent functional characterization of the resistance genes from the microbiome has demonstrated a close evolutionary relationship between resistance genes in the microbiome and in pathogens. Application of these techniques and novel cultivation methods are expected to significantly...... expand our understanding of the interplay between antibiotics and the microbiome....

  13. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains....... Characteristically, gradients of nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associated with decreased bacterial metabolic activity and increased doubling times of the bacterial cells; it is these more or less dormant cells that are responsible for some of the tolerance...

  14. PREVALENCE AND ANTIBIOTIC RESISTANCE OF ...

    African Journals Online (AJOL)

    9 mars 2015 ... strategy to prevent the spread of this resistance. Keywords: Staphylococci; Staphylococcus aureus; Oxacillin; Antibiotic resistance; Disc diffusion. Author Correspondence, e-mail: mn.boukhatem@yahoo.fr. ICID: 1142924. Journal of Fundamental and Applied Sciences. ISSN 1112-9867. Available online at.

  15. The determinants of the antibiotic resistance process.

    Science.gov (United States)

    Franco, Beatriz Espinosa; Altagracia Martínez, Marina; Sánchez Rodríguez, Martha A; Wertheimer, Albert I

    2009-01-01

    The use of antibiotic drugs triggers a complex interaction involving many biological, sociological, and psychological determinants. Resistance to antibiotics is a serious worldwide problem which is increasing and has implications for morbidity, mortality, and health care both in hospitals and in the community. To analyze current research on the determinants of antibiotic resistance and comprehensively review the main factors in the process of resistance in order to aid our understanding and assessment of this problem. We conducted a MedLine search using the key words "determinants", "antibiotic", and "antibiotic resistance" to identify publications between 1995 and 2007 on the determinants of antibiotic resistance. Publications that did not address the determinants of antibiotic resistance were excluded. The process and determinants of antibiotic resistance are described, beginning with the development of antibiotics, resistance and the mechanisms of resistance, sociocultural determinants of resistance, the consequences of antibiotic resistance, and alternative measures proposed to combat antibiotic resistance. Analysis of the published literature identified the main determinants of antibiotic resistance as irrational use of antibiotics in humans and animal species, insufficient patient education when antibiotics are prescribed, lack of guidelines for treatment and control of infections, lack of scientific information for physicians on the rational use of antibiotics, and lack of official government policy on the rational use of antibiotics in public and private hospitals.

  16. Antibiotic resistance in Salmonella

    NARCIS (Netherlands)

    Vo, A.T.T.

    2007-01-01

    Immediately after their introduction in the beginning of the fourties of the previous century, the agents used to combat infectious diseases caused by bacteria were regarded with suspicion, but not long thereafter antibiotics had the status of miracle drugs. For decades mankind has lived under the

  17. Antibiotic and Antimicrobial Resistance: Threat Report 2013

    Science.gov (United States)

    ... Form Controls Cancel Submit Search The CDC Antibiotic / Antimicrobial Resistance Note: Javascript is disabled or is not ... please visit this page: About CDC.gov . Antibiotic / Antimicrobial Resistance About Antimicrobial Resistance Biggest Threats Emerging Drug ...

  18. Rapid Assessment of Resistance to Antibiotic Inhibitors of Protein Synthesis in the Gram-Positive Pathogens, Enterococcus faecalis and Streptococcus pneumoniae, Based on Evaluation of the Lytic Response.

    Science.gov (United States)

    Otero, Fátima; Tamayo, María; Santiso, Rebeca; Gosálvez, Jaime; Bou, Germán; Fernández, José Luis

    2017-04-01

    A novel assay for rapid determination of resistance to antibiotic inhibitors of protein synthesis was developed for the gram-positive pathogens, Enterococcus faecalis and Streptococcus pneumoniae. To this purpose, a lytic response was obtained by a brief incubation with lysozyme or a mixture of lysozyme, Triton X-100, and EDTA for E. faecalis (n = 82) and S. pneumoniae (n = 51), respectively. Lysis was quantified by visualizing the released nucleoids. Antibiotic-susceptible bacteria treated with Clinical and Laboratory Standards Institute (CLSI) breakpoint doses of erythromycin, azithromycin, or doxycycline that inhibited protein synthesis demonstrated a large reduction of lysed cells with respect to the control, that is, without antibiotics. However, cell lysis prevention was much lower in nonsusceptible strains, with unsuccessful inhibition of protein synthesis. ROC analysis showed that a reduction value of ≥35.6% and ≥40.4% discriminates susceptible and nonsusceptible strains for erythromycin and for doxycycline, respectively, in E. faecalis, whereas ≥20.0% is adequate for both macrolides and doxycycline in S. pneumoniae. Resistant stains were identified in 90-120 min with sensitivity and specificity between 91.7% and 100%. This is a proof of concept that evaluation of the lytic response may be a rapid and efficient test for determination of resistance to antibiotic inhibitors of protein synthesis.

  19. The multifaceted roles of antibiotics and antibiotic resistance in nature

    Directory of Open Access Journals (Sweden)

    Saswati eSengupta

    2013-03-01

    Full Text Available Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic-resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic-resistance in pathogens. In the natural milieu, antibiotics are often found to be present in subinhibitory concentrations acting as signalling molecules supporting quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host-parasite interactions (e.g., phagocytosis, adherence to the target cell and so on. The evolutionary and ecological aspects of antibiotics and antibiotic-resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behaviour of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and genes that confer resistance to antibiotics in

  20. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions

    DEFF Research Database (Denmark)

    Leibovici, Leonard; Paul, Mical; Garner, Paul

    2016-01-01

    Antibiotics are among the most important interventions in healthcare. Resistance of bacteria to antibiotics threatens the effectiveness of treatment. Systematic reviews of antibiotic treatments often do not address resistance to antibiotics even when data are available in the original studies....... This omission creates a skewed view, which emphasizes short-term efficacy and ignores the long-term consequences to the patient and other people. We offer a framework for addressing antibiotic resistance in systematic reviews. We suggest that the data on background resistance in the original trials should...... controlled trials or systematic reviews....

  1. Selection of antibiotic resistance at very low antibiotic concentrations.

    Science.gov (United States)

    Sandegren, Linus

    2014-05-01

    Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are found in sewage water, soils, and many water environments due to natural production and contamination from human activities. Selection of resistance at non-lethal antibiotic concentrations (below the wild-type minimum inhibitory concentration) occurs due to differences in growth rate at the particular antibiotic concentration between cells with different tolerance levels to the antibiotic. The minimum selective concentration for a particular antibiotic is reached when its reducing effect on growth of the susceptible strain balances the reducing effect (fitness cost) of the resistance determinant in the resistant strain. Recent studies have shown that resistant bacteria can be selected at concentrations several hundred-fold below the lethal concentrations for susceptible cells. Resistant mutants selected at low antibiotic concentrations are generally more fit than those selected at high concentrations but can still be highly resistant. The characteristics of selection at low antibiotic concentrations, the potential clinical problems of this mode of selection, and potential solutions will be discussed.

  2. [Antibiotic resistance: A global crisis].

    Science.gov (United States)

    Alós, Juan-Ignacio

    2015-12-01

    The introduction of antibiotics into clinical practice represented one of the most important interventions for the control of infectious diseases. Antibiotics have saved millions of lives and have also brought a revolution in medicine. However, an increasing threat has deteriorated the effectiveness of these drugs, that of bacterial resistance to antibiotics, which is defined here as the ability of bacteria to survive in antibiotic concentrations that inhibit/kill others of the same species. In this review some recent and important examples of resistance in pathogens of concern for mankind are mentioned. It is explained, according to present knowledge, the process that led to the current situation in a short time, evolutionarily speaking. It begins with the resistance genes, continues with clones and genetic elements involved in the maintenance and dissemination, and ends with other factors that contribute to its spread. Possible responses to the problem are also reviewed, with special reference to the development of new antibiotics. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  3. Antibiotics and antibiotic resistance in agroecosystems: State of the science

    Science.gov (United States)

    We propose a simple causal model depicting relationships involved in dissemination of antibiotics and antibiotic resistance in agroecosystems and potential effects on human health, functioning of natural ecosystems, and agricultural productivity. Available evidence for each causal link is briefly su...

  4. Cloning, expression, crystallization and preliminary X-ray analysis of a putative multiple antibiotic resistance repressor protein (MarR) from Xanthomonas campestris

    International Nuclear Information System (INIS)

    Tu, Zhi-Le; Li, Juo-Ning; Chin, Ko-Hsin; Chou, Chia-Cheng; Lee, Cheng-Chung; Shr, Hui-Lin; Lyu, Ping-Chiang; Gao, Fei Philip; Wang, Andrew H.-J.; Chou, Shan-Ho

    2005-01-01

    A putative repressor for the multiple antibiotic resistance operon from a plant pathogen X. campestris pv. campestris has been overexpressed in E. coli, purified and crystallized. The crystals diffracted to 2.3 Å with good quality. The multiple antibiotic resistance operon (marRAB) is a member of the multidrug-resistance system. When induced, this operon enhances resistance of bacteria to a variety of medically important antibiotics, causing a serious global health problem. MarR is a marR-encoded protein that represses the transcription of the marRAB operon. Through binding with salicylate and certain antibiotics, however, MarR can derepress and activate the marRAB operon. In this report, the cloning, expression, crystallization and preliminary X-ray analysis of XC1739, a putative MarR repressor protein present in the Xanthomonas campestris pv. campestris, a Gram-negative bacterium causing major worldwide disease of cruciferous crops, are described. The XC1739 crystals diffracted to a resolution of at least 1.8 Å. They are orthorhombic and belong to space group P2 1 2 1 2 1 , with unit-cell parameters a = 39.5, b = 54.2 and c = 139.5 Å, respectively. They contain two molecules in the asymmetric unit from calculation of the self-rotation function

  5. Dielectrophoretic assay of bacterial resistance to antibiotics

    International Nuclear Information System (INIS)

    Johari, Juliana; Huebner, Yvonne; Hull, Judith C; Dale, Jeremy W; Hughes, Michael P

    2003-01-01

    The dielectrophoretic collection spectra of antibiotic-sensitive and antibiotic-resistant strains of Staphylococcus epidermidis have been determined. These indicate that in the absence of antibiotic treatment there is a strong similarity between the dielectric properties of sensitive and resistant strains, and that there is a significant difference between the sensitive strains before and after treatment with the antibiotic streptomycin after 24 h exposure. This method offers possibilities for the assessment of bacterial resistance to antibiotics. (note)

  6. Antibiotic Resistance and Fungus

    Centers for Disease Control (CDC) Podcasts

    2017-02-28

    Dr. David Denning, President of the Global Action Fund for Fungal Infections and an infectious diseases clinician, discusses antimicrobial resistance and fungus.  Created: 2/28/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/28/2017.

  7. Fighting antibiotic resistance in the intensive care unit using antibiotics

    NARCIS (Netherlands)

    Plantinga, Nienke L.; Wittekamp, Bastiaan H J; Van Duijn, Pleun J.; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to

  8. Environmental pollution by antibiotics and by antibiotic resistance determinants

    International Nuclear Information System (INIS)

    Martinez, Jose Luis

    2009-01-01

    Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. - The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.

  9. Environmental pollution by antibiotics and by antibiotic resistance determinants

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jose Luis, E-mail: jlmtnez@cnb.csic.e [Departamento de Biotecnologia Microbiana, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Darwin 3, Cantoblanco, 28049 Madrid, and CIBERESP (Spain)

    2009-11-15

    Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. - The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.

  10. The determinants of the antibiotic resistance process

    Directory of Open Access Journals (Sweden)

    Beatriz Espinosa Franco

    2009-04-01

    Full Text Available Beatriz Espinosa Franco1, Marina Altagracia Martínez2, Martha A Sánchez Rodríguez1, Albert I Wertheimer31Facultad de Estudios Superiores Zaragoza (UNAM, Mexico; 2Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico; 3Temple University, Philadelphia, Pennsylvania, USABackground: The use of antibiotic drugs triggers a complex interaction involving many biological, sociological, and psychological determinants. Resistance to antibiotics is a serious worldwide problem which is increasing and has implications for morbidity, mortality, and health care both in hospitals and in the community.Objectives: To analyze current research on the determinants of antibiotic resistance and comprehensively review the main factors in the process of resistance in order to aid our understanding and assessment of this problem.Methods: We conducted a MedLine search using the key words “determinants”, “antibiotic”, and “antibiotic resistance” to identify publications between 1995 and 2007 on the determinants of antibiotic resistance. Publications that did not address the determinants of antibiotic resistance were excluded.Results: The process and determinants of antibiotic resistance are described, beginning with the development of antibiotics, resistance and the mechanisms of resistance, sociocultural determinants of resistance, the consequences of antibiotic resistance, and alternative measures proposed to combat antibiotic resistance.Conclusions: Analysis of the published literature identified the main determinants of antibiotic resistance as irrational use of antibiotics in humans and animal species, insufficient patient education when antibiotics are prescribed, lack of guidelines for treatment and control of infections, lack of scientific information for physicians on the rational use of antibiotics, and lack of official government policy on the rational use of antibiotics in public and private hospitals.Keywords: antibiotic drug resistance

  11. Controlling antibiotic resistance in the ICU

    NARCIS (Netherlands)

    Derde, L.P.G.

    2013-01-01

    Patients admitted to intensive care units (ICUs) are frequently colonized with (antibiotic-resistant) bacteria, which may lead to healthcare associated infections. Antimicrobial-resistant bacteria (AMRB), such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci

  12. Development of botanicals to combat antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Pooja D. Gupta

    2017-10-01

    Full Text Available The discovery of antibiotics in the previous century lead to reduction in mortality and morbidity due to infectious diseases but their inappropriate and irrational use has resulted in emergence of resistant microbial populations. Alteration of target sites, active efflux of drugs and enzymatic degradations are the strategies employed by the pathogenic bacteria to develop intrinsic resistance to antibiotics. This has led to an increased interest in medicinal plants since 25–50% of current pharmaceuticals are plant derived. Crude extracts of medicinal plants could serve as an alternate source of resistance modifying agents owing to the wide variety of secondary metabolites. These metabolites (alkaloids, tannins, polyphenols etc. could act as potentials for antimicrobials and resistance modifiers. Plant extracts have the ability to bind to protein domains leading to modification or inhibition protein–protein interactions. This enables the herbals to also present themselves as effective modulators of host related cellular processes viz immune response, mitosis, apoptosis and signal transduction. Thus they may exert their activity not only by killing the microorganism but by affecting key events in the pathogenic process, thereby, the bacteria, fungi and viruses may have a reduced ability to develop resistance to botanicals. The article is meant to stimulate research wherein the cidal activity of the extract is not the only parameter considered but other mechanism of action by which plants can combat drug resistant microbes are investigated. The present article emphasizes on mechanisms involved in countering multi drug resistance.

  13. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Science.gov (United States)

    Hong, Pei-Ying; Al-Jassim, Nada; Ansari, Mohd Ikram; Mackie, Roderick I.

    2013-01-01

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water. PMID:27029309

  14. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying; Aljassim, Nada I.; Ansari, Mohd Ikram; Mackie, Roderick

    2013-01-01

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  15. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Roderick I. Mackie

    2013-07-01

    Full Text Available Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  16. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  17. Bacterial biofilms and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Liliana Caldas-Arias

    2015-04-01

    Full Text Available Biofilms give to bacteria micro-environmental benefits; confers protection against antimicrobials. Bacteria have antibiotic resistance by conventional and unusual mechanisms leading to delayed wound healing, to increase recurrent chronic infections and nosocomial contamination of medical devices. Objective: This narrative review aims to introduce the characteristics of Bacteria-biofilms, antimicrobial resistance mechanisms and potential alternatives for prevention and control of its formation. Methods: Search strategy was performed on records: PubMed / Medline, Lilacs, Redalyc; with suppliers such as EBSCO and thesaurus MeSH and DeCS. Conclusions: Knowledge and research performance of biofilm bacteria are relevant in the search of technology for detection and measuring sensitivity to antibiotics. The identification of Bacterial-biofilms needs no-traditional microbiological diagnosis.

  18. Probiotic approach to prevent antibiotic resistance.

    Science.gov (United States)

    Ouwehand, Arthur C; Forssten, Sofia; Hibberd, Ashley A; Lyra, Anna; Stahl, Buffy

    2016-01-01

    Probiotics are live microorganisms, mainly belonging to the genera Lactobacillus and Bifidobacterium, although also strain of other species are commercialized, that have a beneficial effect on the host. From the perspective of antibiotic use, probiotics have been observed to reduce the risk of certain infectious disease such as certain types of diarrhea and respiratory tract infection. This may be accompanied with a reduced need of antibiotics for secondary infections. Antibiotics tend to be effective against most common diseases, but increasingly resistance is being observed among pathogens. Probiotics are specifically selected to not contribute to the spread of antibiotic resistance and not carry transferable antibiotic resistance. Concomitant use of probiotics with antibiotics has been observed to reduce the incidence, duration and/or severity of antibiotic-associated diarrhea. This contributes to better adherence to the antibiotic prescription and thereby reduces the evolution of resistance. To what extent probiotics directly reduce the spread of antibiotic resistance is still much under investigation; but maintaining a balanced microbiota during antibiotic use may certainly provide opportunities for reducing the spread of resistances. Key messages Probiotics may reduce the risk for certain infectious diseases and thereby reduce the need for antibiotics. Probiotics may reduce the risk for antibiotic-associated diarrhea Probiotics do not contribute to the spread of antibiotic resistance and may even reduce it.

  19. What Can Be Done about Antibiotic Resistance?

    Science.gov (United States)

    ... Us General Background: What can be done about Antibiotic Resistance? What can I do? Are antibacterial agents, such as antibacterial soaps, a solution? Are antibiotics regulated? Is there any international action on the ...

  20. Antibiotic Resistance in Human Chronic Periodontitis Microbiota

    NARCIS (Netherlands)

    Rams, Thomas E.; Degener, John E.; van Winkelhoff, Arie J.

    Background: Patients with chronic periodontitis (CP) may yield multiple species of putative periodontal bacterial pathogens that vary in their antibiotic drug susceptibility. This study determines the occurrence of in vitro antibiotic resistance among selected subgingival periodontal pathogens in

  1. Antibiotic resistance increases with local temperature

    Science.gov (United States)

    MacFadden, Derek R.; McGough, Sarah F.; Fisman, David; Santillana, Mauricio; Brownstein, John S.

    2018-06-01

    Bacteria that cause infections in humans can develop or acquire resistance to antibiotics commonly used against them1,2. Antimicrobial resistance (in bacteria and other microbes) causes significant morbidity worldwide, and some estimates indicate the attributable mortality could reach up to 10 million by 20502-4. Antibiotic resistance in bacteria is believed to develop largely under the selective pressure of antibiotic use; however, other factors may contribute to population level increases in antibiotic resistance1,2. We explored the role of climate (temperature) and additional factors on the distribution of antibiotic resistance across the United States, and here we show that increasing local temperature as well as population density are associated with increasing antibiotic resistance (percent resistant) in common pathogens. We found that an increase in temperature of 10 °C across regions was associated with an increases in antibiotic resistance of 4.2%, 2.2%, and 2.7% for the common pathogens Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. The associations between temperature and antibiotic resistance in this ecological study are consistent across most classes of antibiotics and pathogens and may be strengthening over time. These findings suggest that current forecasts of the burden of antibiotic resistance could be significant underestimates in the face of a growing population and climate change4.

  2. Crystal structures of the transpeptidase domain of the Mycobacterium tuberculosis penicillin-binding protein PonA1 reveal potential mechanisms of antibiotic resistance.

    Science.gov (United States)

    Filippova, Ekaterina V; Kieser, Karen J; Luan, Chi-Hao; Wawrzak, Zdzislaw; Kiryukhina, Olga; Rubin, Eric J; Anderson, Wayne F

    2016-06-01

    Mycobacterium tuberculosis is a human respiratory pathogen that causes the deadly disease tuberculosis. The rapid global spread of antibiotic-resistant M. tuberculosis makes tuberculosis infections difficult to treat. To overcome this problem new effective antimicrobial strategies are urgently needed. One promising target for new therapeutic approaches is PonA1, a class A penicillin-binding protein, which is required for maintaining physiological cell wall synthesis and cell shape during growth in mycobacteria. Here, crystal structures of the transpeptidase domain, the enzymatic domain responsible for penicillin binding, of PonA1 from M. tuberculosis in the inhibitor-free form and in complex with penicillin V are reported. We used site-directed mutagenesis, antibiotic profiling experiments, and fluorescence thermal shift assays to measure PonA1's sensitivity to different classes of β-lactams. Structural comparison of the PonA1 apo-form and the antibiotic-bound form shows that binding of penicillin V induces conformational changes in the position of the loop β4'-α3 surrounding the penicillin-binding site. We have also found that binding of different antibiotics including penicillin V positively impacts protein stability, while other tested β-lactams such as clavulanate or meropenem resulted in destabilization of PonA1. Our antibiotic profiling experiments indicate that the transpeptidase activity of PonA1 in both M. tuberculosis and M. smegmatis mediates tolerance to specific cell wall-targeting antibiotics, particularly to penicillin V and meropenem. Because M. tuberculosis is an important human pathogen, these structural data provide a template to design novel transpeptidase inhibitors to treat tuberculosis infections. Structural data are available in the PDB database under the accession numbers 5CRF and 5CXW. © 2016 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  3. Control of fire blight (Erwinia amylovora on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes

    Directory of Open Access Journals (Sweden)

    Srđan G. Aćimović

    2015-02-01

    Full Text Available Management of fire blight is complicated by limitations on use of antibiotics in agriculture, antibiotic resistance development, and limited efficacy of alternative control agents. Even though successful in control, preventive antibiotic sprays also affect non-target bacteria, aiding the selection for resistance which could ultimately be transferred to the pathogen Erwinia amylovora. Trunk injection is a target-precise pesticide delivery method that utilizes tree xylem to distribute injected compounds. Trunk injection could decrease antibiotic usage in the open environment and increase the effectiveness of compounds in fire blight control. In field experiments, after 1-2 apple tree injections of either streptomycin, potassium phosphites (PH or acibenzolar-S-methyl (ASM, significant reduction of blossom and shoot blight symptoms was observed compared to water- or non-injected control trees. Overall disease suppression with streptomycin was lower than typically observed following spray applications to flowers. Trunk injection of oxytetracycline resulted in excellent control of shoot blight severity, suggesting that injection is a superior delivery method for this antibiotic. Injection of both ASM and PH resulted in the significant induction of PR-1, PR-2 and PR-8 protein genes in apple leaves indicating induction of systemic acquired resistance (SAR under field conditions. The time separating SAR induction and fire blight symptom suppression indicated that various defensive compounds within the SAR response were synthesized and accumulated in the canopy. ASM and PH suppressed fire blight even after cessation of induced gene expression. With the development of injectable formulations and optimization of doses and injection schedules, the injection of protective compounds could serve as an effective option for fire blight control.

  4. Antibiotic resistance pattern in uropathogens

    Directory of Open Access Journals (Sweden)

    Gupta V

    2002-01-01

    Full Text Available Uropathogenic strains from inpatient and outpatient departments were studied from April 1997 to March 1999 for their susceptibility profiles. The various isolates were Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Acinetobacter baumanii and Enterococcus faecalis. Antibiotic susceptibility pattern of these isolates revealed that for outpatients, first generation cephalosporins, nitrofurantoin, norfloxacin/ciprofloxacin were effective for treatment of urinary tract infection but for inpatients, parenteral therapy with newer aminoglycosides and third generation cephalosporins need to be advocated as the organisms for nosocomial UTI exhibit a high degree of drug resistance. Trimethoprim and sulphamethoxazole combination was not found to be effective for the treatment of urinary tract infections as all the uropathogens from inpatients and outpatients showed high degree of resistance to co-trimoxazole. Culture and sensitivity of the isolates from urine samples should be done as a routine before advocating the therapy.

  5. Klebsiella pneumoniae Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering.

    Science.gov (United States)

    Barnes, Melissa D; Winkler, Marisa L; Taracila, Magdalena A; Page, Malcolm G; Desarbre, Eric; Kreiswirth, Barry N; Shields, Ryan K; Nguyen, Minh-Hong; Clancy, Cornelius; Spellberg, Brad; Papp-Wallace, Krisztina M; Bonomo, Robert A

    2017-10-31

    mechanism of resistance is the breakdown of β-lactam antibiotics by β-lactamase enzymes. KPC-2 is a β-lactamase that inactivates carbapenems and β-lactamase inhibitors (e.g., clavulanate) and is prevalent around the world, including in the United States. Resistance to the new antibiotic ceftazidime-avibactam, which was designed to overcome KPC resistance, had already emerged within a year. Using protein engineering, we uncovered a mechanism by which resistance to this new drug emerges, which could arm scientists with the ability to forestall such resistance to future drugs. Copyright © 2017 Barnes et al.

  6. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions.

    Science.gov (United States)

    Leibovici, Leonard; Paul, Mical; Garner, Paul; Sinclair, David J; Afshari, Arash; Pace, Nathan Leon; Cullum, Nicky; Williams, Hywel C; Smyth, Alan; Skoetz, Nicole; Del Mar, Chris; Schilder, Anne G M; Yahav, Dafna; Tovey, David

    2016-09-01

    Antibiotics are among the most important interventions in healthcare. Resistance of bacteria to antibiotics threatens the effectiveness of treatment. Systematic reviews of antibiotic treatments often do not address resistance to antibiotics even when data are available in the original studies. This omission creates a skewed view, which emphasizes short-term efficacy and ignores the long-term consequences to the patient and other people. We offer a framework for addressing antibiotic resistance in systematic reviews. We suggest that the data on background resistance in the original trials should be reported and taken into account when interpreting results. Data on emergence of resistance (whether in the body reservoirs or in the bacteria causing infection) are important outcomes. Emergence of resistance should be taken into account when interpreting the evidence on antibiotic treatment in randomized controlled trials or systematic reviews. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Priorities for antibiotic resistance surveillance in Europe

    DEFF Research Database (Denmark)

    Fluit, A. C.; van der Bruggen, J. T.; Aarestrup, Frank Møller

    2006-01-01

    Antibiotic resistance is an increasing global problem. Surveillance studies are needed to monitor resistance development, to guide local empirical therapy, and to implement timely and adequate countermeasures. To achieve this, surveillance studies must have standardised methodologies, be longitud......Antibiotic resistance is an increasing global problem. Surveillance studies are needed to monitor resistance development, to guide local empirical therapy, and to implement timely and adequate countermeasures. To achieve this, surveillance studies must have standardised methodologies...... to the various reservoirs of antibiotic-resistant bacteria, such as hospitalised patients, nursing homes, the community, animals and food. Two studies that could serve as examples of tailored programmes are the European Antimicrobial Resistance Surveillance System (EARSS), which collects resistance data during...... of antibiotic resistance....

  8. Antibiotic resistance: a physicist’s view

    Science.gov (United States)

    Allen, Rosalind; Waclaw, Bartłomiej

    2016-08-01

    The problem of antibiotic resistance poses challenges across many disciplines. One such challenge is to understand the fundamental science of how antibiotics work, and how resistance to them can emerge. This is an area where physicists can make important contributions. Here, we highlight cases where this is already happening, and suggest directions for further physics involvement in antimicrobial research.

  9. Antibiotic Resistance in Pediatric Urinary Tract Infections.

    Science.gov (United States)

    Stultz, Jeremy S; Doern, Christopher D; Godbout, Emily

    2016-12-01

    Urinary tract infections (UTIs) are a common problem in pediatric patients. Resistance to common antibiotic agents appears to be increasing over time, although resistance rates may vary based on geographic region or country. Prior antibiotic exposure is a pertinent risk factor for acquiring resistant organisms during a first UTI and recurrent UTI. Judicious prescribing of antibiotics for common pediatric conditions is needed to prevent additional resistance from occurring. Complex pediatric patients with histories of hospitalizations, prior antibiotic exposure, and recurrent UTIs are also at high risk for acquiring UTIs due to extended spectrum beta-lactamase-producing organisms. Data regarding the impact of in vitro antibiotic susceptibility testing interpretation on UTI treatment outcomes is lacking.

  10. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens

    DEFF Research Database (Denmark)

    Jiang, Xinglin; Ellabaan, Mostafa M Hashim; Charusanti, Pep

    2017-01-01

    It has been hypothesized that some antibiotic resistance genes (ARGs) found in pathogenic bacteria derive from antibiotic-producing actinobacteria. Here we provide bioinformatic and experimental evidence supporting this hypothesis. We identify genes in proteobacteria, including some pathogens...... and experimentally test a 'carry-back' mechanism for the transfer, involving conjugative transfer of a carrier sequence from proteobacteria to actinobacteria, recombination of the carrier sequence with the actinobacterial ARG, followed by natural transformation of proteobacteria with the carrier-sandwiched ARG. Our...... results support the existence of ancient and, possibly, recent transfers of ARGs from antibiotic-producing actinobacteria to proteobacteria, and provide evidence for a defined mechanism....

  11. Antibiotic Resistance: MedlinePlus Health Topic

    Science.gov (United States)

    ... GO GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Health Topics → Antibiotic Resistance URL of this page: https://medlineplus.gov/antibioticresistance. ...

  12. Antibiotic resistance and pathogenicity factors in Staphylococcus ...

    Indian Academy of Sciences (India)

    know which endemic strains of S. aureus in dairy cattle ... Antibiotic resistance; cattle; mastitis; MRSA; pathogenic genes ... recommended by Clinical and Laboratory Standards Institute ...... fnbA, eno, hla and nuc, did not show any relation to.

  13. tration on Phenotypic Antibiotic Susceptibility and Resistance

    African Journals Online (AJOL)

    resistance in bacteria of food animal origin (Van den Bogaard and Stobberingh, ... however, the effect of antimicrobial drug use in companion animals like dogs or ...... Antibiotic sensitivity of bacterial isolates from cases of canine dermatitis.

  14. Transfer of Antibiotic Resistance in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Haaber, Jakob; Penadés, José R; Ingmer, Hanne

    2017-01-01

    Staphylococcus aureus is a serious human pathogen with remarkable adaptive powers. Antibiotic-resistant clones rapidly emerge mainly by acquisition of antibiotic-resistance genes from other S. aureus strains or even from other genera. Transfer is mediated by a diverse complement of mobile genetic...... of plasmids that can be transferred by conjugation and the efficiency with which transduction occurs. Here, we review the main routes of antibiotic resistance gene transfer in S. aureus in the context of its biology as a human commensal and a life-threatening pathogen. Staphylococcus aureus cells...... are effective in exchanging mobile genetic elements, including antibiotic-resistance genes.During colonization or infection of host organisms, the exchange appears to be particularly effective.Bacteriophage-mediated transfer involves both transduction and autotransduction, which may enable lysogenic S. aureus...

  15. Management Options For Reducing The Release Of Antibiotics And Antibiotic Resistance Genes To The Environment

    Science.gov (United States)

    Background: There is growing concern worldwide about the role of polluted soil and water - 77 environments in the development and dissemination of antibiotic resistance. 78 Objective: To identify management options for reducing the spread of antibiotics and 79 antibiotic resist...

  16. An Antibiotic Selection System For Protein Overproducing Bacteria

    DEFF Research Database (Denmark)

    Rennig, Maja; Nørholm, Morten

    2015-01-01

    Introduction: Protein overproduction is a major bottleneck for analyses of membrane proteins and for the construction of cell factories. Screening for optimized protein production can be very time consuming. In this study we show that the coupling of antibiotic resistance to poorly produced...... membrane proteins of Escherichia coli can be used as a fast and simple selection system for protein overproduction.Methods: We designed an expression plasmid encoding the gene of interest and an additional, inducible antibiotic resistance marker. Both genes were linked by a hairpin structure...... that translationally couples the genes. Consequently, high expressing gene variants also allow for higher production of the coupled antibiotic resistance marker. Therefore, high expressing gene variants in a library can be determined either by plating the expression library on selection plates or by growing...

  17. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  18. Pharmaceutical Approaches to Target Antibiotic Resistance Mechanisms.

    Science.gov (United States)

    Schillaci, Domenico; Spanò, Virginia; Parrino, Barbara; Carbone, Anna; Montalbano, Alessandra; Barraja, Paola; Diana, Patrizia; Cirrincione, Girolamo; Cascioferro, Stella

    2017-10-26

    There is urgent need for new therapeutic strategies to fight the global threat of antibiotic resistance. The focus of this Perspective is on chemical agents that target the most common mechanisms of antibiotic resistance such as enzymatic inactivation of antibiotics, changes in cell permeability, and induction/activation of efflux pumps. Here we assess the current landscape and challenges in the treatment of antibiotic resistance mechanisms at both bacterial cell and community levels. We also discuss the potential clinical application of chemical inhibitors of antibiotic resistance mechanisms as add-on treatments for serious drug-resistant infections. Enzymatic inhibitors, such as the derivatives of the β-lactamase inhibitor avibactam, are closer to the clinic than other molecules. For example, MK-7655, in combination with imipenem, is in clinical development for the treatment of infections caused by carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa, which are difficult to treat. In addition, other molecules targeting multidrug-resistance mechanisms, such as efflux pumps, are under development and hold promise for the treatment of multidrug resistant infections.

  19. Proteome analyses of cellular proteins in methicillin-resistant Staphylococcus aureus treated with rhodomyrtone, a novel antibiotic candidate.

    Directory of Open Access Journals (Sweden)

    Wipawadee Sianglum

    Full Text Available The ethanolic extract from Rhodomyrtus tomentosa leaf exhibited good antibacterial activities against both methicillin-resistant Staphylococcus aureus (MRSA and S. aureus ATCC 29213. Its minimal inhibitory concentration (MIC values ranged from 31.25-62.5 µg/ml, and the minimal bactericidal concentration (MBC was 250 µg/ml. Rhodomyrtone, an acylphloroglucinol derivative, was 62.5-125 times more potent at inhibiting the bacteria than the ethanolic extract, the MIC and MBC values were 0.5 µg/ml and 2 µg/ml, respectively. To provide insights into antibacterial mechanisms involved, the effects of rhodomyrtone on cellular protein expression of MRSA have been investigated using proteomic approaches. Proteome analyses revealed that rhodomyrtone at subinhibitory concentration (0.174 µg/ml affected the expression of several major functional classes of whole cell proteins in MRSA. The identified proteins involve in cell wall biosynthesis and cell division, protein degradation, stress response and oxidative stress, cell surface antigen and virulence factor, and various metabolic pathways such as amino acid, carbohydrate, energy, lipid, and nucleotide metabolism. Transmission electron micrographs confirmed the effects of rhodomyrtone on morphological and ultrastructural alterations in the treated bacterial cells. Biological processes in cell wall biosynthesis and cell division were interrupted. Prominent changes including alterations in cell wall, abnormal septum formation, cellular disintegration, and cell lysis were observed. Unusual size and shape of staphylococcal cells were obviously noted in the treated MRSA. These pioneer findings on proteomic profiling and phenotypic features of rhodomyrtone-treated MRSA may resolve its antimicrobial mechanisms which could lead to the development of a new effective regimen for the treatment of MRSA infections.

  20. An underappreciated hotspot of antibiotic resistance

    DEFF Research Database (Denmark)

    Chen, Qing-Lin; Li, Hu; Zhou, Xin-Yuan

    2017-01-01

    Landfills are so far the most common practice for the disposals of municipal solid waste (MSW) worldwide. Since MSW landfill receives miscellaneous wastes, including unused/expired antibiotics and bioactive wastes, it gradually becomes a huge potential bioreactor for breeding antibiotic resistance....... Antibiotic resistance genes (ARGs) in landfill can flow to the environment through leakage of landfill leachate and pose a risk to public health. Using high throughput quantitative Polymerase Chain Reaction (HT-qPCR), we investigated the prevalence, diversity of ARGs and its association with various mobile...... be the potential hosts of ARGs. These findings provide evidence that groundwater near MSW landfill is an underappreciated hotspot of antibiotic resistance and contribute to the spread of ARGs via the flowing contaminated groundwater....

  1. Antibiotic Resistance of Bacteria: A Global Challenge

    Indian Academy of Sciences (India)

    protein that functions as an elctroneutral antiport system. The .... isolates, obtained from north Bengal, and over the counter sale of the same antibiotics in and around .... biology is being applied to rapidly explore and optimize the interactions ...

  2. A bacterial antibiotic-resistance gene that complements the human multidrug-resistance P-glycoprotein gene

    NARCIS (Netherlands)

    van Veen, HW; Callaghan, R; Soceneantu, L; Sardini, A; Konings, WN; Higgins, CF

    1998-01-01

    Bacteria have developed many fascinating antibiotic-resistance mechanisms(1,2). A protein in Lactococcus lactis, LmrA, mediates antibiotic resistance by extruding amphiphilic compounds from the inner leaflet of the cytoplasmic membrane(3,4). Unlike other known bacterial multidrug-resistance

  3. Macrolide antibiotic interaction and resistance on the bacterial ribosome.

    Science.gov (United States)

    Poehlsgaard, Jacob; Douthwaite, Stephen

    2003-02-01

    Our understanding of the fine structure of many antibiotic target sites has reached a new level of enlightenment in the last couple of years due to the advent, by X-ray crystallography, of high-resolution structures of the bacterial ribosome. Many classes of clinically useful antibiotics bind to the ribosome to inhibit bacterial protein synthesis. Macrolide, lincosamide and streptogramin B (MLSB) antibiotics form one of the largest groups, and bind to the same site on the 50S ribosomal subunit. Here, we review the molecular details of the ribosomal MLSB site to put into perspective the main points from a wealth of biochemical and genetic data that have been collected over several decades. The information is now available to understand, at atomic resolution, how macrolide antibiotics interact with their ribosomal target, how the target is altered to confer resistance, and in which directions we need to look if we are to rationally design better drugs to overcome the extant resistance mechanisms.

  4. Predictable Phenotypes of Antibiotic Resistance Mutations.

    Science.gov (United States)

    Knopp, M; Andersson, D I

    2018-05-15

    Antibiotic-resistant bacteria represent a major threat to our ability to treat bacterial infections. Two factors that determine the evolutionary success of antibiotic resistance mutations are their impact on resistance level and the fitness cost. Recent studies suggest that resistance mutations commonly show epistatic interactions, which would complicate predictions of their stability in bacterial populations. We analyzed 13 different chromosomal resistance mutations and 10 host strains of Salmonella enterica and Escherichia coli to address two main questions. (i) Are there epistatic interactions between different chromosomal resistance mutations? (ii) How does the strain background and genetic distance influence the effect of chromosomal resistance mutations on resistance and fitness? Our results show that the effects of combined resistance mutations on resistance and fitness are largely predictable and that epistasis remains rare even when up to four mutations were combined. Furthermore, a majority of the mutations, especially target alteration mutations, demonstrate strain-independent phenotypes across different species. This study extends our understanding of epistasis among resistance mutations and shows that interactions between different resistance mutations are often predictable from the characteristics of the individual mutations. IMPORTANCE The spread of antibiotic-resistant bacteria imposes an urgent threat to public health. The ability to forecast the evolutionary success of resistant mutants would help to combat dissemination of antibiotic resistance. Previous studies have shown that the phenotypic effects (fitness and resistance level) of resistance mutations can vary substantially depending on the genetic context in which they occur. We conducted a broad screen using many different resistance mutations and host strains to identify potential epistatic interactions between various types of resistance mutations and to determine the effect of strain

  5. Convergent acquisition of antibiotic resistance determinants ...

    African Journals Online (AJOL)

    Convergent acquisition of antibiotic resistance determinants amongst the Enterobacteriaceae isolates of the Mhlathuze River, KwaZulu-Natal (RSA) ... The possibility of transmission of resistant genes between bacteria (especially pathogenic) which invade human and animal populations within this river poses a health risk ...

  6. Antibiotics resistance of Stenotrophomonas maltophilia strains ...

    African Journals Online (AJOL)

    Background: A limited number of antibiotics are recommended for the therapy of Stenotrophomonas maltophilia infections due to therapy difficulties caused by its numerous mechanisms of resistance. Objectives: In this study conducted over a period of approximately 5 years we aimed to determine resistance rates of S.

  7. How to Fight Back Against Antibiotic Resistance

    DEFF Research Database (Denmark)

    Dantas, Gautam; Sommer, Morten

    2014-01-01

    compounds. To save the era of antibiotics, scientists must figure out what it is about bacterial pathogens that makes resistance inevitable. Although most studies on drug resistance have focused on disease causing pathogens, recent efforts have shifted attention to the resistomes of nonpathogenic bacteria...

  8. Prevalence of nasopharyngeal antibiotic-Resistant pneumococcal ...

    African Journals Online (AJOL)

    Conclusion: Pneumococcal resistance was significant in this group of children with easy access to paediatric services and antibiotic use. The implication of such high resistance for the treatment of pneumococcal diseases is that high-dose amoxicillin is the preferred empirical oral therapy for treatment of otitis media.

  9. Antibiotic resistance of lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Bulajić Snežana

    2008-01-01

    Full Text Available Knowledge on the antibiotic resistance of lactic acid bacteria is still limited, possibly because of the large numbers of genera and species encountered in this group, as well as variances in their resistance spectra. The EFSA considers antibiotic resistances, especially transferable resistances, an important decision criterion for determining a strain's QPS status. There are no approved standards for the phenotypic or genotypic evaluation of antibiotic resistances in food isolates. Also, the choice of media is problematic, as well as the specification of MIC breakpoint values as a result of the large species variation and the possible resulting variation in MIC values between species and genera. The current investigations in this field showed that we might end up with a range of different species- or genus-specific breakpoint values that may further increase the current complexity. Another problem associated with safety determinations of starter strains is that once a resistance phenotype and an associated resistance determinant have been identified, it becomes difficult to show that this determinant is not transferable, especially if the resistance gene is not located on a plasmid and no standard protocols for showing genetic transfer are available. Encountering those problems, the QPS system should allow leeway for the interpretations of results, especially when these relate to the methodology for resistance phenotype determinations, determinations of MIC breakpoints for certain genera, species, or strains, the nondeterminability of a genetic basis of a resistance phenotype and the transferability of resistance genes.

  10. [Virulence and its relationship to antibiotic resistance].

    Science.gov (United States)

    Joly-Guillou, M L

    1998-12-01

    PATHOGENIC ISLANDS: Certain DNA blocks inserted into the chromosome of most Gram negative bacteria originated in pathogens found in plants. VIRULENCE-ANTIBIOTIC INTERACTIONS: During the invasive phase, the bacterial cell covers itself with adhesins which facilitate its adherence to tissues. The bacterial cell produces a fibronectin which protects its defense systems. Antibiotics favor bacterial resistance by increasing the expression of surface adhesins and fibronectin production. PENICILLIN RESISTANT PNEUMOCOCCI: Experimental models have demonstrated that mortality in mice and host resistance to pneumococcal infection are related to the type of capsule and not to antibiotic resistance. QUORUM SENSING: The bacterial inoculum regulates the production of virulence factors in vivo via quorum sensing. This regulation can play an important role in Pseudomonas aeruginosa infections. ACINETOBACTER BAUMANNI VIRULENCE: Long poorly understood, factors favoring A. baumanni virulence appear to result from bacterial production of IROMPs in the extracellular growth medium in response to iron depletion during the exponential growth phase.

  11. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes.

    Directory of Open Access Journals (Sweden)

    Aimée M Moore

    Full Text Available Emerging antibiotic resistance threatens human health. Gut microbes are an epidemiologically important reservoir of resistance genes (resistome, yet prior studies indicate that the true diversity of gut-associated resistomes has been underestimated. To deeply characterize the pediatric gut-associated resistome, we created metagenomic recombinant libraries in an Escherichia coli host using fecal DNA from 22 healthy infants and children (most without recent antibiotic exposure, and performed functional selections for resistance to 18 antibiotics from eight drug classes. Resistance-conferring DNA fragments were sequenced (Illumina HiSeq 2000, and reads assembled and annotated with the PARFuMS computational pipeline. Resistance to 14 of the 18 antibiotics was found in stools of infants and children. Recovered genes included chloramphenicol acetyltransferases, drug-resistant dihydrofolate reductases, rRNA methyltransferases, transcriptional regulators, multidrug efflux pumps, and every major class of beta-lactamase, aminoglycoside-modifying enzyme, and tetracycline resistance protein. Many resistance-conferring sequences were mobilizable; some had low identity to any known organism, emphasizing cryptic organisms as potentially important resistance reservoirs. We functionally confirmed three novel resistance genes, including a 16S rRNA methylase conferring aminoglycoside resistance, and two tetracycline-resistance proteins nearly identical to a bifidobacterial MFS transporter (B. longum s. longum JDM301. We provide the first report to our knowledge of resistance to folate-synthesis inhibitors conferred by a predicted Nudix hydrolase (part of the folate synthesis pathway. This functional metagenomic survey of gut-associated resistomes, the largest of its kind to date, demonstrates that fecal resistomes of healthy children are far more diverse than previously suspected, that clinically relevant resistance genes are present even without recent selective

  12. Antibiotic Resistance and the Biology of History.

    Science.gov (United States)

    Landecker, Hannah

    2016-12-01

    Beginning in the 1940s, mass production of antibiotics involved the industrial-scale growth of microorganisms to harvest their metabolic products. Unfortunately, the use of antibiotics selects for resistance at answering scale. The turn to the study of antibiotic resistance in microbiology and medicine is examined, focusing on the realization that individual therapies targeted at single pathogens in individual bodies are environmental events affecting bacterial evolution far beyond bodies. In turning to biological manifestations of antibiotic use, sciences fathom material outcomes of their own previous concepts. Archival work with stored soil and clinical samples produces a record described here as 'the biology of history': the physical registration of human history in bacterial life. This account thus foregrounds the importance of understanding both the materiality of history and the historicity of matter in theories and concepts of life today.

  13. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications

    Directory of Open Access Journals (Sweden)

    Christy Manyi-Loh

    2018-03-01

    Full Text Available Due to the increased demand of animal protein in developing countries, intensive farming is instigated, which results in antibiotic residues in animal-derived products, and eventually, antibiotic resistance. Antibiotic resistance is of great public health concern because the antibiotic-resistant bacteria associated with the animals may be pathogenic to humans, easily transmitted to humans via food chains, and widely disseminated in the environment via animal wastes. These may cause complicated, untreatable, and prolonged infections in humans, leading to higher healthcare cost and sometimes death. In the said countries, antibiotic resistance is so complex and difficult, due to irrational use of antibiotics both in the clinical and agriculture settings, low socioeconomic status, poor sanitation and hygienic status, as well as that zoonotic bacterial pathogens are not regularly cultured, and their resistance to commonly used antibiotics are scarcely investigated (poor surveillance systems. The challenges that follow are of local, national, regional, and international dimensions, as there are no geographic boundaries to impede the spread of antibiotic resistance. In addition, the information assembled in this study through a thorough review of published findings, emphasized the presence of antibiotics in animal-derived products and the phenomenon of multidrug resistance in environmental samples. This therefore calls for strengthening of regulations that direct antibiotic manufacture, distribution, dispensing, and prescription, hence fostering antibiotic stewardship. Joint collaboration across the world with international bodies is needed to assist the developing countries to implement good surveillance of antibiotic use and antibiotic resistance.

  14. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications.

    Science.gov (United States)

    Manyi-Loh, Christy; Mamphweli, Sampson; Meyer, Edson; Okoh, Anthony

    2018-03-30

    Due to the increased demand of animal protein in developing countries, intensive farming is instigated, which results in antibiotic residues in animal-derived products, and eventually, antibiotic resistance. Antibiotic resistance is of great public health concern because the antibiotic-resistant bacteria associated with the animals may be pathogenic to humans, easily transmitted to humans via food chains, and widely disseminated in the environment via animal wastes. These may cause complicated, untreatable, and prolonged infections in humans, leading to higher healthcare cost and sometimes death. In the said countries, antibiotic resistance is so complex and difficult, due to irrational use of antibiotics both in the clinical and agriculture settings, low socioeconomic status, poor sanitation and hygienic status, as well as that zoonotic bacterial pathogens are not regularly cultured, and their resistance to commonly used antibiotics are scarcely investigated (poor surveillance systems). The challenges that follow are of local, national, regional, and international dimensions, as there are no geographic boundaries to impede the spread of antibiotic resistance. In addition, the information assembled in this study through a thorough review of published findings, emphasized the presence of antibiotics in animal-derived products and the phenomenon of multidrug resistance in environmental samples. This therefore calls for strengthening of regulations that direct antibiotic manufacture, distribution, dispensing, and prescription, hence fostering antibiotic stewardship. Joint collaboration across the world with international bodies is needed to assist the developing countries to implement good surveillance of antibiotic use and antibiotic resistance.

  15. Antibiotic Resistance in Childhood with Pneumococcal Infection

    Directory of Open Access Journals (Sweden)

    Ali Gunes

    2013-10-01

    Full Text Available Aim: Resistance to antibiotics is better. Between should not be in capitals. Antibiotics resistant has been increasing in pneumococci that cause serious diseases such as pneumonia, meningitis in recent years. The resistance rates vary between geographic regions. In this study, we aimed to determine antibiotic resistance rates in pneumococcal infections in our region. Material and Method: This study included 31 pneumococcal strains isolated from blood, CSF and urine samples of patients with meningitis, sepsis and urinary tract infections who admitted Dicle University Medicine School Children Clinic and Diyarbakir Pediatric Hospital Between December 2004-April 2007. Reproducing clinical specimens with alpha-hemolysis, optochin-sensitive, bile soluble and gram-positive diplococci morphology was defined as S. pneumoniae. The antimicrobial susceptibilities of strains were measured by the E-test method. MIC values of penicillin against pneumococci was accepted as <0.06 mg / ml value of the sensitive, 0.12-1μg/ml mid-level resistance, ≥ 2 mg / ml value of the high-level resistance. Results: It was found 16% mid-level penicillin resistance and 3.2% high-level penicillin resistance by E-test method. 80.7% of Strains were percent of the penicillin-sensitive. Seftiriakson resistance was found as 3.2%. there was not Vancomycin resistance. Discussion: We think penicillin therapy is enough effective for pneumococcal infections except serious conditions such as meningitis and sepsis. Also we think it should be supported by multicenter studies.

  16. Antibiotic Resistance and Antibiotic Resistance Genes in Escherichia coli Isolates from Hospital Wastewater in Vietnam.

    Science.gov (United States)

    Lien, La Thi Quynh; Lan, Pham Thi; Chuc, Nguyen Thi Kim; Hoa, Nguyen Quynh; Nhung, Pham Hong; Thoa, Nguyen Thi Minh; Diwan, Vishal; Tamhankar, Ashok J; Stålsby Lundborg, Cecilia

    2017-06-29

    The environmental spread of antibiotic-resistant bacteria has been recognised as a growing public health threat for which hospitals play a significant role. The aims of this study were to investigate the prevalence of antibiotic resistance and antibiotic resistance genes (ARGs) in Escherichia coli isolates from hospital wastewater in Vietnam. Wastewater samples before and after treatment were collected using continuous sampling every month over a year. Standard disk diffusion and E-test were used for antibiotic susceptibility testing. Extended-spectrum beta-lactamase (ESBL) production was tested using combined disk diffusion. ARGs were detected by polymerase chain reactions. Resistance to at least one antibiotic was detected in 83% of isolates; multidrug resistance was found in 32%. The highest resistance prevalence was found for co-trimoxazole (70%) and the lowest for imipenem (1%). Forty-three percent of isolates were ESBL-producing, with the bla TEM gene being more common than bla CTX-M . Co-harbouring of the bla CTX-M , bla TEM and qepA genes was found in 46% of isolates resistant to ciprofloxacin. The large presence of antibiotic-resistant E. coli isolates combined with ARGs in hospital wastewater, even post-treatment, poses a threat to public health. It highlights the need to develop effective processes for hospital wastewater treatment plants to eliminate antibiotic resistant bacteria and ARGs.

  17. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology.

    Science.gov (United States)

    Gibson, Molly K; Forsberg, Kevin J; Dantas, Gautam

    2015-01-01

    Antibiotic resistance is a dire clinical problem with important ecological dimensions. While antibiotic resistance in human pathogens continues to rise at alarming rates, the impact of environmental resistance on human health is still unclear. To investigate the relationship between human-associated and environmental resistomes, we analyzed functional metagenomic selections for resistance against 18 clinically relevant antibiotics from soil and human gut microbiota as well as a set of multidrug-resistant cultured soil isolates. These analyses were enabled by Resfams, a new curated database of protein families and associated highly precise and accurate profile hidden Markov models, confirmed for antibiotic resistance function and organized by ontology. We demonstrate that the antibiotic resistance functions that give rise to the resistance profiles observed in environmental and human-associated microbial communities significantly differ between ecologies. Antibiotic resistance functions that most discriminate between ecologies provide resistance to β-lactams and tetracyclines, two of the most widely used classes of antibiotics in the clinic and agriculture. We also analyzed the antibiotic resistance gene composition of over 6000 sequenced microbial genomes, revealing significant enrichment of resistance functions by both ecology and phylogeny. Together, our results indicate that environmental and human-associated microbial communities harbor distinct resistance genes, suggesting that antibiotic resistance functions are largely constrained by ecology.

  18. Does antifouling paint select for antibiotic resistance?

    Science.gov (United States)

    Flach, Carl-Fredrik; Pal, Chandan; Svensson, Carl Johan; Kristiansson, Erik; Östman, Marcus; Bengtsson-Palme, Johan; Tysklind, Mats; Larsson, D G Joakim

    2017-07-15

    There is concern that heavy metals and biocides contribute to the development of antibiotic resistance via co-selection. Most antifouling paints contain high amounts of such substances, which risks turning painted ship hulls into highly mobile refuges and breeding grounds for antibiotic-resistant bacteria. The objectives of this study were to start investigate if heavy-metal based antifouling paints can pose a risk for co-selection of antibiotic-resistant bacteria and, if so, identify the underlying genetic basis. Plastic panels with one side painted with copper and zinc-containing antifouling paint were submerged in a Swedish marina and biofilms from both sides of the panels were harvested after 2.5-4weeks. DNA was isolated from the biofilms and subjected to metagenomic sequencing. Biofilm bacteria were cultured on marine agar supplemented with tetracycline, gentamicin, copper sulfate or zinc sulfate. Biofilm communities from painted surfaces displayed lower taxonomic diversity and enrichment of Gammaproteobacteria. Bacteria from these communities showed increased resistance to both heavy metals and tetracycline but not to gentamicin. Significantly higher abundance of metal and biocide resistance genes was observed, whereas mobile antibiotic resistance genes were not enriched in these communities. In contrast, we found an enrichment of chromosomal RND efflux system genes, including such with documented ability to confer decreased susceptibility to both antibiotics and biocides/heavy metals. This was paralleled by increased abundances of integron-associated integrase and ISCR transposase genes. The results show that the heavy metal-based antifouling paint exerts a strong selection pressure on marine bacterial communities and can co-select for certain antibiotic-resistant bacteria, likely by favoring species and strains carrying genes that provide cross-resistance. Although this does not indicate an immediate risk for promotion of mobile antibiotic resistance, the

  19. Distribution of antibiotic resistance in urban watershed in Japan

    International Nuclear Information System (INIS)

    Ham, Young-Sik; Kobori, Hiromi; Kang, Joo-Hyon; Matsuzaki, Takayuki; Iino, Michiyo; Nomura, Hayashi

    2012-01-01

    Antibiotic-resistant E. coli concentrations showed large spatial and temporal variations, with greater concentrations observed in tributaries and downstream than in the upstream and midstream. Twenty percent of the geometric mean concentrations of antibiotic-resistant E. coli in the Tama River basin (Japan) exceeded the maximum acceptable concentration of indicator E. coli established by the USEPA. The indicator E. coli concentrations were positively correlated with those of antibiotic-resistant E. coli and multiple-antibiotic-resistant E. coli (resistance to more than two kinds of antibiotics), respectively, but not the detection rate of antibiotic-resistant E. coli, implying that use of antibiotic-resistant E. coli concentration rather than the detection rate can be a better approach for water quality assessment. Multiple-antibiotic-resistant E. coli is a useful indicator for estimating the resistance diffusion, water quality degradation and public health risk potential. This assessment provides beneficial information for setting national regulatory or environmental standards and managing integrated watershed areas. - Highlights: ► We extensively observed antibiotic-resistant E. coli (AREc) in Tama River (Japan). ► AREc count rather than the detection rate is better approach for water quality test. ► Multiple-AREc is resistant to the antibiotic to which single-AREc has no resistance. ► Multiple-AREc increase will accelerate the diffusion of antibiotic resistance. - Multiple-antibiotic-resistant E. coli in the watershed can cause the diffusion of conventionally rare antibiotic resistance.

  20. Functional Repertoire of Antibiotic Resistance Genes in Antibiotic Manufacturing Effluents and Receiving Freshwater Sediments

    Science.gov (United States)

    González-Plaza, Juan J.; Šimatović, Ana; Milaković, Milena; Bielen, Ana; Wichmann, Fabienne; Udiković-Kolić, Nikolina

    2018-01-01

    Environments polluted by direct discharges of effluents from antibiotic manufacturing are important reservoirs for antibiotic resistance genes (ARGs), which could potentially be transferred to human pathogens. However, our knowledge about the identity and diversity of ARGs in such polluted environments remains limited. We applied functional metagenomics to explore the resistome of two Croatian antibiotic manufacturing effluents and sediments collected upstream of and at the effluent discharge sites. Metagenomic libraries built from an azithromycin-production site were screened for resistance to macrolide antibiotics, whereas the libraries from a site producing veterinary antibiotics were screened for resistance to sulfonamides, tetracyclines, trimethoprim, and beta-lactams. Functional analysis of eight libraries identified a total of 82 unique, often clinically relevant ARGs, which were frequently found in clusters and flanked by mobile genetic elements. The majority of macrolide resistance genes identified from matrices exposed to high levels of macrolides were similar to known genes encoding ribosomal protection proteins, macrolide phosphotransferases, and transporters. Potentially novel macrolide resistance genes included one most similar to a 23S rRNA methyltransferase from Clostridium and another, derived from upstream unpolluted sediment, to a GTPase HflX from Emergencia. In libraries deriving from sediments exposed to lower levels of veterinary antibiotics, we found 8 potentially novel ARGs, including dihydrofolate reductases and beta-lactamases from classes A, B, and D. In addition, we detected 7 potentially novel ARGs in upstream sediment, including thymidylate synthases, dihydrofolate reductases, and class D beta-lactamase. Taken together, in addition to finding known gene types, we report the discovery of novel and diverse ARGs in antibiotic-polluted industrial effluents and sediments, providing a qualitative basis for monitoring the dispersal of ARGs

  1. Functional Repertoire of Antibiotic Resistance Genes in Antibiotic Manufacturing Effluents and Receiving Freshwater Sediments

    Directory of Open Access Journals (Sweden)

    Juan J. González-Plaza

    2018-01-01

    Full Text Available Environments polluted by direct discharges of effluents from antibiotic manufacturing are important reservoirs for antibiotic resistance genes (ARGs, which could potentially be transferred to human pathogens. However, our knowledge about the identity and diversity of ARGs in such polluted environments remains limited. We applied functional metagenomics to explore the resistome of two Croatian antibiotic manufacturing effluents and sediments collected upstream of and at the effluent discharge sites. Metagenomic libraries built from an azithromycin-production site were screened for resistance to macrolide antibiotics, whereas the libraries from a site producing veterinary antibiotics were screened for resistance to sulfonamides, tetracyclines, trimethoprim, and beta-lactams. Functional analysis of eight libraries identified a total of 82 unique, often clinically relevant ARGs, which were frequently found in clusters and flanked by mobile genetic elements. The majority of macrolide resistance genes identified from matrices exposed to high levels of macrolides were similar to known genes encoding ribosomal protection proteins, macrolide phosphotransferases, and transporters. Potentially novel macrolide resistance genes included one most similar to a 23S rRNA methyltransferase from Clostridium and another, derived from upstream unpolluted sediment, to a GTPase HflX from Emergencia. In libraries deriving from sediments exposed to lower levels of veterinary antibiotics, we found 8 potentially novel ARGs, including dihydrofolate reductases and beta-lactamases from classes A, B, and D. In addition, we detected 7 potentially novel ARGs in upstream sediment, including thymidylate synthases, dihydrofolate reductases, and class D beta-lactamase. Taken together, in addition to finding known gene types, we report the discovery of novel and diverse ARGs in antibiotic-polluted industrial effluents and sediments, providing a qualitative basis for monitoring the

  2. Genetic Regulation of Virulence and Antibiotic Resistance in Acinetobacter baumannii

    Science.gov (United States)

    Kröger, Carsten; Kary, Stefani C.; Schauer, Kristina; Cameron, Andrew D. S.

    2016-01-01

    Multidrug resistant microorganisms are forecast to become the single biggest challenge to medical care in the 21st century. Over the last decades, members of the genus Acinetobacter have emerged as bacterial opportunistic pathogens, in particular as challenging nosocomial pathogens because of the rapid evolution of antimicrobial resistances. Although we lack fundamental biological insight into virulence mechanisms, an increasing number of researchers are working to identify virulence factors and to study antibiotic resistance. Here, we review current knowledge regarding the regulation of virulence genes and antibiotic resistance in Acinetobacter baumannii. A survey of the two-component systems AdeRS, BaeSR, GacSA and PmrAB explains how each contributes to antibiotic resistance and virulence gene expression, while BfmRS regulates cell envelope structures important for pathogen persistence. A. baumannii uses the transcription factors Fur and Zur to sense iron or zinc depletion and upregulate genes for metal scavenging as a critical survival tool in an animal host. Quorum sensing, nucleoid-associated proteins, and non-classical transcription factors such as AtfA and small regulatory RNAs are discussed in the context of virulence and antibiotic resistance. PMID:28036056

  3. Antibiotic resistance patterns and beta-lactamase identification in ...

    African Journals Online (AJOL)

    Background. Antibiotic resistance is a growing problem worldwide. Mechanisms of resistance vary, and some can confer resistance to multiple classes of antibiotics. Objective. To characterise the antibiotic resistance profiles of Escherichia coli isolates obtained from stool samples of young rural children exposed or ...

  4. Predation and selection for antibiotic resistance in natural environments

    DEFF Research Database (Denmark)

    Leisner, Jørgen; Jørgensen, Niels O. G.; Middelboe, Mathias

    2016-01-01

    Genes encoding resistance to antibiotics appear, like the antibiotics themselves, to be ancient, originating long before the rise of the era of anthropogenic antibiotics. However, detailed understanding of the specific biological advantages of antibiotic resistance in natural environments is still...... lacking, thus limiting our efforts to prevent environmental influx of resistance genes. Here, we propose that antibiotic-resistant cells not only evade predation from antibiotic producers but also take advantage of nutrients released from cells that are killed by the antibiotic-producing bacteria. Thus......, predation is potentially an important mechanism for driving antibiotic resistance during slow or stationary phase of growth when nutrients are deprived. This adds to explain the ancient nature and widespread occurrence of antibiotic resistance in natural environments unaffected by anthropogenic antibiotics...

  5. Photodynamic inactivation of antibiotic-resistant pathogens

    International Nuclear Information System (INIS)

    Paronyan, M.H.

    2015-01-01

    Nowadays methicillin-resistant strain Staphylococcus aureus (MRSA) is one of the most widespread multiresistant bacteria. Photodynamic inactivation (PDI) of microorganisms by photosensitizers (PS) may be an effective and alternative therapeutic option against antibiotic resistant bacteria. The effectiveness of new PS cationic porphyrin Zn-TBut4PyP was tested on two strains of S. aureus (MRSA and methicillin-sensitive S. aureus). It is shown that Zn-TBut4PyP has high photodynamic activity against both strains

  6. Antibiotics resistance of Stenotrophomonas maltophilia strains ...

    African Journals Online (AJOL)

    Introduction. Stenotrophomonas maltophilia is a resistant pathogen that can cause bacteremia, endocarditis, respiratory system, central nervous system and urinary tract infections in patients with risk factors like malignancy or neutrope- nia, use of broad-spectrum antibiotics like carbapenem or long-term hospitalization1,2.

  7. The Prevalence of Antibiotic Resistant Diarrhogenic Bacterial ...

    African Journals Online (AJOL)

    GB

    2017-07-01

    Jul 1, 2017 ... Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the ..... (septic tank, diving), pets, and wild birds. Various species of bacteria were isolated, most of them ..... Vakulenko, S. An antibiotic resistance enzyme from a deep-sea bacterium.J. Am. Chem.

  8. Antibiotic resistance properties of uropathogenic Escherichia coli ...

    African Journals Online (AJOL)

    Purpose: To investigate the antibiotic resistance pattern of uropathogenic Escherichia coli (UPEC) strains isolated from pregnant women with history of recurrent urinary tract infections (RUTIs) and healthy pregnant women. Methods: A total of 485 high vaginal swab specimens were collected from pregnant women with ...

  9. Antibiotics as CECs: An Overview of the Hazards Posed by Antibiotics and Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Geoffrey Ivan Scott

    2016-04-01

    Full Text Available ABSTRACTMonitoring programs have traditionally monitored legacy contaminants but are shifting focus to Contaminants of Emerging Concern (CECs. CECs present many challenges for monitoring and assessment, because measurement methods don't always exist nor have toxicological studies been fully conducted to place results in proper context. Also some CECs affect metabolic pathways to produce adverse outcomes that are not assessed through traditional toxicological evaluations. Antibiotics are CECs that pose significant environmental risks including development of both toxic effects at high doses and antibiotic resistance at doses well below the Minimum Inhibitory Concentration (MIC which kill bacteria and have been found in nearly half of all sites monitored in the US. Antimicrobial resistance has generally been attributed to the use of antibiotics in medicine for humans and livestock as well as aquaculture operations. The objective of this study was to assess the extent and magnitude of antibiotics in the environment and estimate their potential hazards in the environment. Antibiotics concentrations were measured in a number of monitoring studies which included Waste Water Treatment Plants (WWTP effluent, surface waters, sediments and biota. A number of studies reported levels of Antibiotic Resistant Microbes (ARM in surface waters and some studies found specific ARM genes (e.g. the blaM-1 gene in E. coli which may pose additional environmental risk. High levels of this gene were found to survive WWTP disinfection and accumulated in sediment at levels 100-1000 times higher than in the sewerage effluent, posing potential risks for gene transfer to other bacteria.in aquatic and marine ecosystems. Antibiotic risk assessment approaches were developed based on the use of MICs and MIC Ratios [High (Antibiotic Resistant/Low (Antibiotic Sensitive MIC] for each antibiotic indicating the range of bacterial adaptability to each antibiotic to help define the No

  10. Combined Effect of the Cfr Methyltransferase and Ribosomal Protein L3 Mutations on Resistance to Ribosome-Targeting Antibiotics

    DEFF Research Database (Denmark)

    Pakula, Kevin K; Hansen, Lykke H; Vester, Birte

    2017-01-01

    . The presence of Cfr has a very minor influence on the growth rate. The resistance of the transformants to linezolid, tiamulin, florfenicol, and Synercid (a combination of quinupristin and dalfopristin [Q-D]) was measured by MIC assays. The resistance from Cfr was, in all cases, stronger than the effects...... of the L3 mutations, but various effects were obtained with the combinations of Cfr and L3 mutations ranging from a synergistic to an antagonistic effect. Linezolid and tiamulin susceptibility varied greatly among the L3 mutations, while no significant effects on florfenicol and Q-D susceptibility were...

  11. [Antibiotic resistance: measures urgently needed].

    NARCIS (Netherlands)

    Kluytmans, J.; Vandenbroucke-Grauls, C.M.; Meer, J.W.M. van der

    2010-01-01

    Antimicrobial resistance is increasing rapidly and there are hardly any new antimicrobial agents to be expected in the coming years. The number of patients affected by extended spectrum beta-lactamase producing organisms (ESBLs) is rising and there are strong indications that this is caused in part

  12. Distribution of multiple antibiotic resistant Vibrio spp across Palk Bay

    Digital Repository Service at National Institute of Oceanography (India)

    Sneha, K.G.; Anas, A.; Jayalakshmy, K.V.; Jasmin, C.; VipinDas, P.V.; Pai, S.S.; Pappu, S.; Nair, M.; Muraleedharan, K.R.; Sudheesh, K.; Nair, S.

    Presence of multiple antibiotic resistant microorganisms in marine systems is increasingly a focus of concern as they pose potential health risk to humans and animals. The present study reports the distribution, diversity, antibiotic resistance...

  13. Emerging antibiotic resistant enteric bacterial flora among food ...

    African Journals Online (AJOL)

    Emerging antibiotic resistant enteric bacterial flora among food animals in Abeokuta, Nigeria. ... Nigerian Journal of Animal Production ... Bacterial resistance to antibiotic in food animals is an emerging public health concern as a result of ...

  14. Reusing Treated Wastewater: Consideration of the Safety Aspects Associated with Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying; Julian, Timothy; Pype, Marie-Laure; Jiang, Sunny; Nelson, Kara; Graham, David; Pruden, Amy; Manaia, Cé lia

    2018-01-01

    As more countries engage in water reuse, either intended or de facto, there is an urgent need to more comprehensively evaluate resulting environmental and public health concerns. While antibiotic-resistant bacteria (ARB) and antibiotic resistance

  15. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control.

    Directory of Open Access Journals (Sweden)

    Qing-Bin Yuan

    Full Text Available This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L. The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L. By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L. However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.

  16. [State-of-the-art status on airborne antibiotic resistant bacteria and antibiotic resistance genes].

    Science.gov (United States)

    Li, J; Yao, M S

    2018-04-06

    The world is facing more deaths due to increasing antibiotic-resistant bacterial infections and the shortage of new highly effective antibiotics, however the air media as its important transmission route has not been adequately studied. Based on the latest literature acquired in this work, we have discussed the state-of-the-art research progress of the concentration, distribution and spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in different environmental air media, and also analyzed some future prevention and control measures. The large use of antibiotics in the medical settings and animal husbandry places has resulted in higher abundances of ARB and ARGs in the relevant and surrounding atmosphere than in urban and general indoor air environments. ARGs can be spread by adhering to airborne particles, and researchers have also found that air media contain more abundant ARGs than other environmental media such as soil, water and sediment. It was suggested in this review that strengthening the monitoring, study on spreading factors and biological toxicity, and also research and development on pathogen accurate diagnosis and new green antibiotic are expected to help effectively monitor, prevent and control of the impacts of airborne resistant bacteria and resistance genes on both human and ecologies.

  17. A Review on Antibiotic Resistance: Alarm Bells are Ringing

    OpenAIRE

    Zaman, Sojib Bin; Hussain, Muhammed Awlad; Nye, Rachel; Mehta, Varshil; Mamun, Kazi Taib; Hossain, Naznin

    2017-01-01

    Antibiotics are the ?wonder drugs? to combat microbes. For decades, multiple varieties of antibiotics have not only been used for therapeutic purposes but practiced prophylactically across other industries such as agriculture and animal husbandry. Uncertainty has arisen, as microbes have become resistant to common antibiotics while the host remains unaware that antibiotic resistance has emerged. The aim of this review is to explore the origin, development, and the current state of antibiotic ...

  18. Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2017-11-01

    Full Text Available Antibiotic contamination in agroecosystems may cause serious problems, such as the proliferation of various antibiotic resistant bacteria and the spreading of antibiotic resistance genes (ARGs in the environment or even to human beings. However, it is unclear whether environmental antibiotics, antibiotic resistant bacteria, and ARGs can directly enter into, or occur in, the endophytic systems of plants exposed to pollutants. In this study, a hydroponic experiment exposing pakchoi (Brassica chinensis L. to tetracycline, cephalexin, and sulfamethoxazole at 50% minimum inhibitory concentration (MIC levels and MIC levels, respectively, was conducted to explore plant growth, antibiotic uptake, and the development of antibiotic resistance in endophytic systems. The three antibiotics promoted pakchoi growth at 50% MIC values. Target antibiotics at concentrations ranging from 6.9 to 48.1 µg·kg−1 were detected in the treated vegetables. Additionally, the rates of antibiotic-resistant endophytic bacteria to total cultivable endophytic bacteria significantly increased as the antibiotics accumulated in the plants. The detection and quantification of ARGs indicated that four types, tetX, blaCTX-M, and sul1 and sul2, which correspond to tetracycline, cephalexin, and sulfamethoxazole resistance, respectively, were present in the pakchoi endophytic system and increased with the antibiotic concentrations. The results highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophytic systems.

  19. Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure.

    Science.gov (United States)

    Zhang, Hao; Li, Xunan; Yang, Qingxiang; Sun, Linlin; Yang, Xinxin; Zhou, Mingming; Deng, Rongzhen; Bi, Linqian

    2017-11-03

    Antibiotic contamination in agroecosystems may cause serious problems, such as the proliferation of various antibiotic resistant bacteria and the spreading of antibiotic resistance genes (ARGs) in the environment or even to human beings. However, it is unclear whether environmental antibiotics, antibiotic resistant bacteria, and ARGs can directly enter into, or occur in, the endophytic systems of plants exposed to pollutants. In this study, a hydroponic experiment exposing pakchoi ( Brassica chinensis L.) to tetracycline, cephalexin, and sulfamethoxazole at 50% minimum inhibitory concentration (MIC) levels and MIC levels, respectively, was conducted to explore plant growth, antibiotic uptake, and the development of antibiotic resistance in endophytic systems. The three antibiotics promoted pakchoi growth at 50% MIC values. Target antibiotics at concentrations ranging from 6.9 to 48.1 µg·kg -1 were detected in the treated vegetables. Additionally, the rates of antibiotic-resistant endophytic bacteria to total cultivable endophytic bacteria significantly increased as the antibiotics accumulated in the plants. The detection and quantification of ARGs indicated that four types, tet X, bla CTX-M , and sul 1 and sul 2, which correspond to tetracycline, cephalexin, and sulfamethoxazole resistance, respectively, were present in the pakchoi endophytic system and increased with the antibiotic concentrations. The results highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophytic systems.

  20. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment

    DEFF Research Database (Denmark)

    Pruden, Amy; Larsson, D.G. Joakim; Amézquita, Alejandro

    2013-01-01

    Background: There is growing concern worldwide about the role of polluted soil and water environments in the development and dissemination of antibiotic resistance. Objective: Our aim in this study was to identify management options for reducing the spread of antibiotics and antibiotic resistance...

  1. Cooperative Antibiotic Resistance in a Multi-Drug Environment

    Science.gov (United States)

    Yurtsev, Eugene; Dai, Lei; Gore, Jeff

    2013-03-01

    The emergence of antibiotic resistance in bacteria is a significant health concern. A frequent mechanism of antibiotic resistance involves the production of an enzyme which inactivates the antibiotic. By inactivating the antibiotic, resistant cells can ``share'' their resistance with other cells in the bacterial population, suggesting that it may be possible to observe cooperation between strains that inactivate different antibiotics. Here, we experimentally track the population dynamics of two E. coli strains in the presence of two different antibiotics. We find that together the strains are able to grow in antibiotic concentrations that inhibit growth of either of the strains individually. We observe that even when there is stable coexistence between the two strains, the population size of each strain can undergo large oscillations. We expect that our results will provide insight into the evolution of antibiotic resistance and the evolutionary origin of phenotypic diversity and cooperative behaviors.

  2. Fate and transport of veterinary antibiotics, antibiotic-resistant bacteria, and antibiotic resistance gene from fields receiving poultry manure during storm events

    Science.gov (United States)

    Antimicrobials are used in production agriculture to treat disease and promote animal growth, but the presence of antibiotics in the environment raises concern about widespread antibiotic resistance. This study documents the occurrence and transport of tylosin, tetracycline, enterococci resistant to...

  3. Microbial resistance to antibiotics | Chinedum | African Journal of ...

    African Journals Online (AJOL)

    Organisms that are normally sensitive to the action of an antibiotic may sometimes develop resistance or insensitivity to it. This, they may do through destroying the antibiotic or by retaining their growth even in the presence of the drug. Microbial resistance to antibiotics is now widespread and poses a serious clinical threat.

  4. Antibiotic resistance status of Escherichia coli isolated from healthy ...

    African Journals Online (AJOL)

    The research revealed a high level of antibiotic resistance among E. coli. The percentage of resistance observed for the antibiotics included in this study reflected the degree of their respective uses in pig production in the study area. This work further supports the need for prudent use of each of the antibiotics in animal ...

  5. Addressing the Natural Antibiotic Resistome in Studies of Soil Resistance

    Science.gov (United States)

    The environment is recognized as a source and a reservoir of antibiotic resistance (AR). Many antibiotic compounds are derived from bacteria and fungi that are naturally present in the environment. These microbes carry genes encoding resistance to the antibiotic that they produce and their resistanc...

  6. Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment.

    Science.gov (United States)

    Shao, Sicheng; Hu, Yongyou; Cheng, Jianhua; Chen, Yuancai

    2018-05-28

    Antimicrobial and antibiotics resistance caused by misuse or overuse of antibiotics exposure is a growing and significant threat to global public health. The spread and horizontal transfer of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) by the selective pressure of antibiotics in an aquatic environment is a major public health issue. To develop a better understanding of potential ecological risks die to antibiotics and ARGs, this study mainly summarizes research progress about: (i) the occurrence, concentration, fate, and potential ecological effects of antibiotics and ARGs in various aquatic environments, (ii) the threat, spread, and horizontal gene transfer (HGT) of ARGs, and (iii) the relationship between antibiotics, ARGs, and ARB. Finally, this review also proposes future research direction on antibiotics and ARGs.

  7. Action and resistance mechanisms of antibiotics: A guide for clinicians

    Directory of Open Access Journals (Sweden)

    Garima Kapoor

    2017-01-01

    Full Text Available Infections account for a major cause of death throughout the developing world. This is mainly due to the emergence of newer infectious agents and more specifically due to the appearance of antimicrobial resistance. With time, the bacteria have become smarter and along with it, massive imprudent usage of antibiotics in clinical practice has resulted in resistance of bacteria to antimicrobial agents. The antimicrobial resistance is recognized as a major problem in the treatment of microbial infections. The biochemical resistance mechanisms used by bacteria include the following: antibiotic inactivation, target modification, altered permeability, and “bypass” of metabolic pathway. Determination of bacterial resistance to antibiotics of all classes (phenotypes and mutations that are responsible for bacterial resistance to antibiotics (genetic analysis are helpful. Better understanding of the mechanisms of antibiotic resistance will help clinicians regarding usage of antibiotics in different situations. This review discusses the mechanism of action and resistance development in commonly used antimicrobials.

  8. Bacterial Cheating Limits the Evolution of Antibiotic Resistance

    Science.gov (United States)

    Yurtsev, Eugene; Xiao Chao, Hui; Datta, Manoshi; Artemova, Tatiana; Gore, Jeff

    2012-02-01

    The emergence of antibiotic resistance in bacteria is a significant health concern. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removal of the antibiotic. The presence of a cooperative mechanism of resistance suggests that a cheater strain - which does not contribute to breaking down the antibiotic - may be able to take advantage of resistant cells. We find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We use a simple model in conjunction with difference equations to explain the observed population dynamics as a function of cell density and antibiotic concentration. Our experimental difference equations resemble the logistic map, raising the possibility of oscillations or even chaotic dynamics.

  9. Antibiotic-resistant bacteria in drinking water.

    Science.gov (United States)

    Armstrong, J L; Shigeno, D S; Calomiris, J J; Seidler, R J

    1981-08-01

    We analyzed drinking water from seven communities for multiply antibiotic-resistant (MAR) bacteria (bacteria resistant to two or more antibiotics) and screened the MAR bacterial isolates obtained against five antibiotics by replica plating. Overall, 33.9% of 2,653 standard plate count bacteria from treated drinking waters were MAR. Two different raw water supplies for two communities carried MAR standard plate count bacteria at frequencies of 20.4 and 18.6%, whereas 36.7 and 67.8% of the standard plate count populations from sites within the respective distribution systems were MAR. Isolate identification revealed that MAR gram-positive cocci (Staphylococcus) and MAR gram-negative, nonfermentative rods (Pseudomonas, Alcaligenes, Moraxella-like group M, and Acinetobacter) were more common in drinking waters than in untreated source waters. Site-to-site variations in generic types and differences in the incidences of MAR organisms indicated that shedding of MAR bacteria living in pipelines may have contributed to the MAR populations in tap water. We conclude that the treatment of raw water and its subsequent distribution select for standard plate count bacteria exhibiting the MAR phenotype.

  10. Antibiotic resistance: current issues and future strategies

    Directory of Open Access Journals (Sweden)

    Giancarlo Scarafile

    2016-09-01

    Full Text Available The antibiotic resistance (antimicrobial resistance – AMR and the particular emergence of multi-resistant bacterial strains, is a problem of clinical relevance involving serious threats to public health worldwide. From early this decade, a lot of studies have demonstrated a significant increase in the rates of antibiotic resistance by bacterial pathogens responsible for nosocomial and community infections all over the world. The AMR leads to a reduced drug efficacy in the treatment options available and therefore, to an increase in mortality rates. The original causes of the phenomenon are: environmental factors which favor a mutation of the genetic bacterial inheritance, thereby inhibiting the active ingredient of the antibiotics; unsuitable administering of antibiotics in veterinary, incorrect taking both in hospitals and at home and, lately, lack of investments in the development of new drugs. The alarming epidemiological data prompted the World Health Organization (WHO in 2011 to coin the slogan "No action today, no cure tomorrow" in order to immediately implement a new strategy to improve the use of available drugs and to accelerate the introduction of new ones through a new phase of research involving private and public institutions. The European Union has stressed that the surveillance is considered an essential factor for an effective response to this problem but it has also highlighted that the results produced have been lower than expectations because of serious shortcomings such as lack of methodological standards, insufficient data sharing and no coordination among European countries. In Italy the situation is much more troubling; in fact, according to the Ministry of Health, 5000-7000 yearly deaths are deemed due to nosocomial infections, with an annual cost of more than 100 million €.These figures explain how the fight against infections is far from being won. The purpose of this review is to analyze the basic causes of the

  11. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics

    Science.gov (United States)

    Berglund, Björn

    2015-01-01

    Antibiotic resistance is a growing problem which threatens modern healthcare globally. Resistance has traditionally been viewed as a clinical problem, but recently non-clinical environments have been highlighted as an important factor in the dissemination of antibiotic resistance genes (ARGs). Horizontal gene transfer (HGT) events are likely to be common in aquatic environments; integrons in particular are well suited for mediating environmental dissemination of ARGs. A growing body of evidence suggests that ARGs are ubiquitous in natural environments. Particularly, elevated levels of ARGs and integrons in aquatic environments are correlated to proximity to anthropogenic activities. The source of this increase is likely to be routine discharge of antibiotics and resistance genes, for example, via wastewater or run-off from livestock facilities and agriculture. While very high levels of antibiotic contamination are likely to select for resistant bacteria directly, the role of sub-inhibitory concentrations of antibiotics in environmental antibiotic resistance dissemination remains unclear. In vitro studies have shown that low levels of antibiotics can select for resistant mutants and also facilitate HGT, indicating the need for caution. Overall, it is becoming increasingly clear that the environment plays an important role in dissemination of antibiotic resistance; further studies are needed to elucidate key aspects of this process. Importantly, the levels of environmental antibiotic contamination at which resistant bacteria are selected for and HGT is facilitated at should be determined. This would enable better risk analyses and facilitate measures for preventing dissemination and development of antibiotic resistance in the environment. PMID:26356096

  12. Antibiotic resistance - the interplay between antibiotic use in animals and human beings

    DEFF Research Database (Denmark)

    Singer, R.S.; Finch, R.; Wegener, Henrik Caspar

    2003-01-01

    Antibiotic-resistant bacteria were first identified in the 1940s, but while new antibiotics were being discovered at a steady rate, the consequences of this phenomenon were slow to be appreciated. Today, the excessive use of antibiotics compounded by the paucity of new agents on the market has...... meant the problem of antibiotic resistance is fast escalating into a global health crisis. There is no doubt that misuse of these drugs in human beings has contributed to the increasing rates of resistance, but recently the use of antibiotics in food animals and its consequent effect on resistance....... There is a growing concern over the transmission of resistant bacteria via the food chain. Many questions will be difficult to resolve, such as how do you distinguish the fraction of resistance in human beings that originated from animals? If we wait to see evidence that a significant amount of antibiotic resistance...

  13. Prevalence of bovine mastitis and multi-antibiotic resistant ...

    African Journals Online (AJOL)

    Prevalence of bovine mastitis and multi-antibiotic resistant Staphylococcus and ... Bulletin of Animal Health and Production in Africa ... their antibiotic sensitivities and management practices of sahiwal and dairy cattle kept at a centre of Kenya ...

  14. Antibiotic use and resistance in long term care facilities.

    NARCIS (Netherlands)

    Buul, L.W. van; Steen, J.T. van der; Veenhuizen, R.B.; Achterberg, W.P.; Schellevis, F.G.; Essink, R.T.G.M.; Benthem, B.H.B. van; Natsch, S.; Hertogh, C.M.P.M.

    2012-01-01

    Introduction: The common occurrence of infectious diseases in nursing homes and residential care facilities may result in substantial antibiotic use, and consequently antibiotic resistance. Focusing on these settings, this article aims to provide a comprehensive overview of the literature available

  15. Antibiotic Resistance Determinant-Focused Acinetobacter baumannii Vaccine Designed Using Reverse Vaccinology.

    Science.gov (United States)

    Ni, Zhaohui; Chen, Yan; Ong, Edison; He, Yongqun

    2017-02-21

    As one of the most influential and troublesome human pathogens, Acinetobacter baumannii ( A. baumannii ) has emerged with many multidrug-resistant strains. After collecting 33 complete A. baumannii genomes and 84 representative antibiotic resistance determinants, we used the Vaxign reverse vaccinology approach to predict classical type vaccine candidates against A. baumannii infections and new type vaccine candidates against antibiotic resistance. Our genome analysis identified 35 outer membrane or extracellular adhesins that are conserved among all 33 genomes, have no human protein homology, and have less than 2 transmembrane helices. These 35 antigens include 11 TonB dependent receptors, 8 porins, 7 efflux pump proteins, and 2 fimbrial proteins (FilF and CAM87009.1). CAM86003.1 was predicted to be an adhesin outer membrane protein absent from 3 antibiotic-sensitive strains and conserved in 21 antibiotic-resistant strains. Feasible anti-resistance vaccine candidates also include one extracellular protein (QnrA), 3 RND type outer membrane efflux pump proteins, and 3 CTX-M type β-lactamases. Among 39 β-lactamases, A. baumannii CTX-M-2, -5, and -43 enzymes are predicted as adhesins and better vaccine candidates than other β-lactamases to induce preventive immunity and enhance antibiotic treatments. This report represents the first reverse vaccinology study to systematically predict vaccine antigen candidates against antibiotic resistance for a microbial pathogen.

  16. Emergence and dissemination of antibiotic resistance: A global problem

    Directory of Open Access Journals (Sweden)

    R Choudhury

    2012-01-01

    Full Text Available Antibiotic resistance is a major problem in clinical health settings. Interestingly the origin of many of antibiotic resistance mechanisms can be traced back to non-pathogenic environmental organisms. Important factors leading to the emergence and spread of antibiotic resistance include absence of regulation in the use of antibiotics, improper waste disposal and associated transmission of antibiotic resistance genes in the community through commensals. In this review, we discussed the impact of globalisation on the transmission of antibiotic resistance genes in bacteria through immigration and export/import of foodstuff. The significance of surveillance to define appropriate use of antibiotics in the clinic has been included as an important preventive measure.

  17. Transfer of antibiotic resistant bacteria from animals to man

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar; Aarestrup, Frank Møller; Gerner-Smidt, P.

    1999-01-01

    for animals either for therapy or for growth promotion. Antibiotic resistance in zoonotic bacteria constitute a public health hazard, primarily through the increased risk of treatment failures. This paper describes the zoonotic bacteria, salmonella, campylobacter, yersinia and enterohaemorrhagic E. coli (EHEC......Antibiotic resistance develops in zoonotic bacteria in response to antibiotics used in food animals. A close association exists between the amounts of antibiotics used and the levels of resistance observed. The classes of antibiotics routinely used for treatment of human infections are also used......). Infections with these agents do not generally require antibiotic therapy, but in some cases antibiotics are essential to obtain a successful cure. The levels and types of resistance observed in zoonotic bacteria in some countries, especially the increasing levels of fluoroquinolone resistance in salmonella...

  18. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants.

    Science.gov (United States)

    Blanco, Paula; Hernando-Amado, Sara; Reales-Calderon, Jose Antonio; Corona, Fernando; Lira, Felipe; Alcalde-Rico, Manuel; Bernardini, Alejandra; Sanchez, Maria Blanca; Martinez, Jose Luis

    2016-02-16

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.

  19. Genetic Mechanisms of Antibiotic Resistance and the Role of Antibiotic Adjuvants.

    Science.gov (United States)

    Pontes, Daniela Santos; de Araujo, Rodrigo Santos Aquino; Dantas, Natalina; Scotti, Luciana; Scotti, Marcus Tullius; de Moura, Ricardo Olimpio; Mendonca-Junior, Francisco Jaime Bezerra

    2018-01-01

    The ever increasing number of multidrug-resistant microorganism pathogens has become a great and global public health threat. Antibiotic mechanisms of action and the opposing mechanisms of resistance are intimately associated, but comprehension of the biochemical and molecular functions of such drugs is not a simple exercise. Both the environment, and genetic settings contribute to alterations in phenotypic resistance (natural bacterial evolution), and make it difficult to control the emergence and impacts of antibiotic resistance. Under such circumstances, comprehension of how bacteria develop and/or acquire antibiotic resistance genes (ARG) has a critical role in developing propositions to fight against these superbugs, and to search for new drugs. In this review, we present and discuss both general information and examples of common genetic and molecular mechanisms related to antibiotic resistance, as well as how the expression and interactions of ARGs are important to drug resistance. At the same time, we focus on the recent achievements in the search for antibiotic adjuvants, which help combat antibiotic resistance through deactivation of bacterial mechanisms of action such as β-lactamases. Recent advances involving the use of anti-resistance drugs such as: efflux pump inhibitors; anti-virulence drugs; drugs against quorum sensing; and against type II/III secretion systems are revealed. Such antibiotic adjuvants (as explored herein) collaborate against the problems of antibiotic resistance, and may restore or prolong the therapeutic activity of known antibiotics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Antibiotic resistance shaping multi-level population biology of bacteria.

    Science.gov (United States)

    Baquero, Fernando; Tedim, Ana P; Coque, Teresa M

    2013-01-01

    Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent "population biologies." Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of "clinical" antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi

  1. Antibiotic resistance shaping multilevel population biology of bacteria

    Directory of Open Access Journals (Sweden)

    Fernando eBaquero

    2013-03-01

    Full Text Available Antibiotics have natural functions, mostly involving cell-to-cell signalling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent population biologies. Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of clinical antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge

  2. Antibiotic resistance in community-acquired urinary tract infections

    African Journals Online (AJOL)

    the treatment of other infections would inevitably lead to the development of resistance. S Afr Med J 1994; 84: 600-602. Antibiotic resistance is a major problem in developing countries.' There are many reasons for this, including antibiotic use in animal feeds, inappropriate prescribing and poor sanitation. Resistance rates in ...

  3. Antibiotic-Resistant Enteric Bacteria in Environmental Waters

    OpenAIRE

    Lisa M. Casanova; Mark D. Sobsey

    2016-01-01

    Sources of antibiotic resistant organisms, including concentrated animal feeding operations (CAFOs), may lead to environmental surface and groundwater contamination with resistant enteric bacteria of public health concern. The objective of this research is to determine whether Salmonella, Escherichia coli, Yersinia enterocolitica, and enterococci resistant to clinically relevant antibiotics are present in surface and groundwater sources in two eastern North Carolina counties, Craven and Wayne...

  4. Antibiotic Resistance Patterns of Common Gram-negative ...

    African Journals Online (AJOL)

    Background: The resistance of bacteria causing urinary tract infection (UTI) to commonly prescribed antibiotics is increasing both in developing and developed countries. Resistance has emerged even to more potent antimicrobial agents. This study was undertaken to determine the current antibiotic resistance pattern ...

  5. [Global and national strategies against antibiotic resistance].

    Science.gov (United States)

    Abu Sin, Muna; Nahrgang, Saskia; Ziegelmann, Antina; Clarici, Alexandra; Matz, Sibylle; Tenhagen, Bernd-Alois; Eckmanns, Tim

    2018-05-01

    Antimicrobial resistance (AMR) is increasingly perceived as a global health problem. To tackle AMR effectively, a multisectoral one health approach is needed. We present some of the initiatives and activities at the national and global level that target the AMR challenge. The Global Action Plan on AMR, which has been developed by the World Health Organization (WHO), in close collaboration with the Food and Agriculture Organization of the United Nations (FAO) and the World Organisation for Animal Health (OIE) is considered a blueprint to combat AMR. Member states endorsed the action plan during the World Health Assembly 2015 and committed themselves to develop national action plans on AMR. The German Antibiotic Resistance Strategy (DART 2020) is based on the main objectives of the global action plan and was revised and published in 2015. Several examples of the implementation of DART 2020 are outlined here.

  6. The expression of antibiotic resistance genes in antibiotic-producing bacteria.

    Science.gov (United States)

    Mak, Stefanie; Xu, Ye; Nodwell, Justin R

    2014-08-01

    Antibiotic-producing bacteria encode antibiotic resistance genes that protect them from the biologically active molecules that they produce. The expression of these genes needs to occur in a timely manner: either in advance of or concomitantly with biosynthesis. It appears that there have been at least two general solutions to this problem. In many cases, the expression of resistance genes is tightly linked to that of antibiotic biosynthetic genes. In others, the resistance genes can be induced by their cognate antibiotics or by intermediate molecules from their biosynthetic pathways. The regulatory mechanisms that couple resistance to antibiotic biosynthesis are mechanistically diverse and potentially relevant to the origins of clinical antibiotic resistance. © 2014 John Wiley & Sons Ltd.

  7. Old and New Glycopeptide Antibiotics: Action and Resistance

    Directory of Open Access Journals (Sweden)

    Elisa Binda

    2014-11-01

    Full Text Available Glycopeptides are considered antibiotics of last resort for the treatment of life-threatening infections caused by relevant Gram-positive human pathogens, such as Staphylococcus aureus, Enterococcus spp. and Clostridium difficile. The emergence of glycopeptide-resistant clinical isolates, first among enterococci and then in staphylococci, has prompted research for second generation glycopeptides and a flurry of activity aimed at understanding resistance mechanisms and their evolution. Glycopeptides are glycosylated non-ribosomal peptides produced by a diverse group of soil actinomycetes. They target Gram-positive bacteria by binding to the acyl-D-alanyl-D-alanine (D-Ala-D-Ala terminus of the growing peptidoglycan on the outer surface of the cytoplasmatic membrane. Glycopeptide-resistant organisms avoid such a fate by replacing the D-Ala-D-Ala terminus with D-alanyl-D-lactate (D-Ala-D-Lac or D-alanyl-D-serine (D-Ala-D-Ser, thus markedly reducing antibiotic affinity for the cellular target. Resistance has manifested itself in enterococci and staphylococci largely through the expression of genes (named van encoding proteins that reprogram cell wall biosynthesis and, thus, evade the action of the antibiotic. These resistance mechanisms were most likely co-opted from the glycopeptide producing actinomycetes, which use them to avoid suicide during antibiotic production, rather than being orchestrated by pathogen bacteria upon continued treatment. van-like gene clusters, similar to those described in enterococci, were in fact identified in many glycopeptide-producing actinomycetes, such as Actinoplanes teichomyceticus, which produces teicoplanin, and Streptomyces toyocaensis, which produces the A47934 glycopeptide. In this paper, we describe the natural and semi-synthetic glycopeptide antibiotics currently used as last resort drugs for Gram-positive infections and compare the van gene-based strategies of glycopeptide resistance among the pathogens and

  8. Diversity and antibiotic resistance of uropathogenic bacteria from ...

    African Journals Online (AJOL)

    Background: Urinary tract infections (UTI) are one of the major causes of prescribing and antibiotic consumption. In order to use the best antibiotic treatment for their patients, reliable and recent data about epidemiology and antibiotic resistance profile of uropathogenic bacteria must be available for clinicians. Therefore ...

  9. Combating antibiotic resistance - A Policy Roadmap to Reduce Use of Medically Important Antibiotics in Livestock

    DEFF Research Database (Denmark)

    Price, Lance B.; Newland, Jason; Bole, Aparna

    edical and public health organizations around the world agree that more prudent use of antibiotics in human medicine and in livestock production is paramount to slow the spread of antibiotic resistance. Of particular concern is the widespread use of antibiotics important to human medicine in food...... animals. In the U.S., such use accounts for 70% of all sales of medically important antibiotics. It is against this backdrop that 12 antibiotic resistance experts from the fields of infectious disease medicine, veterinary medicine, microbiology, epidemiology and public health joined to craft a policy...... roadmap to help move the U.S. forward in addressing the contribution of livestock antibiotic use to the growing global threat of antibiotic resistance. The policy roadmap consists of 11 core policy recommendations that are aimed at a broad set of stakeholders: federal, state and local policymakers, food...

  10. Detection Antibiotic Resistance of Enviromental Bacterial Strains

    Directory of Open Access Journals (Sweden)

    Huda Zuheir Majeed

    2018-05-01

    Full Text Available      Antibiotics are randomly prescribed  for veterinary and human medication. Antibiotics by little number are used by human , animals are digested uncompletely  in their digestive system and ended up in communal sewage and hospitals, eventually discharge in environmental water sources directly with no processing.     Water itself consider as major factor of dispersal of bacteria between different environmental components. Besides, bacteria had  transferable genetic mobile elements to different sites of soil, water and humans.       Environmental swabs were collected locally including 50 swabs of hospital environment , 15 samples of poultry feces and chicken guts , 20 sample of heavy water and 15 sample of fish tank to identify16 isolate of Staphylococcus (4 isolate of Staphylococus aureus and 12 isolate of coagulase –ve Staphylococcus , 19 isolate of Enterococcus spp. , 7 isolates of Pseudomonas and 5 environment isolates for each Shigella spp.  and Salmonella spp. .           Teicoplanin and Vancomycin sensitivity test of isolates was done , showing that 2out of 16 isolates of Staphylococcus (12.5% were Vancomycin-resistant , and 3out of 19 isolates of Enterococcus (15.7 % were Vancomycin-resistant, while the rest of isolates were Vancomycin- sensitive. From other side , all isolates was Teicoplanin- sensitive except only 1 Enterococcus spp. Isolate which was intermediate . The range of the Vancomycin MIC were (6-64 µg/ml . Vancomycin resistant isolates , showed that some isolates have one plasmid band after Extraction of their DNA.

  11. Antibiotic misuse in the community--a contributor to resistance?

    LENUS (Irish Health Repository)

    Carey, B

    2012-02-03

    The problem of antibiotic resistance is associated with the indiscriminate usage of antibiotics. Efforts have been directed at encouraging the rational use of these drugs to reduce the volume of antibiotic consumption and decrease resistance rates. There is evidence to suggest that the misuse of antibiotics by patients may also contribute to the problem. We describe a survey of a random selection of patients attending a General Practitioners\\' surgery over a six week period in an effort to estimate the level of non-compliance to antibiotic therapy in the community. The results suggest that there may be a significant level of antibiotic misuse prevalent in the local community. We discuss these results and present evidence in the literature suggesting how antibiotic misuse may affect resistance in the community. The factors affecting patient compliance to therapy are outlined along with suggested measures to improve compliance among patients.

  12. Newly approved antibiotics and antibiotics reserved for resistant infections: Implications for emergency medicine.

    Science.gov (United States)

    Mazer-Amirshahi, Maryann; Pourmand, Ali; May, Larissa

    2017-01-01

    Millions of patients are evaluated every year in the emergency department (ED) for bacterial infections. Emergency physicians often diagnose and prescribe initial antibiotic therapy for a variety of bacterial infections, ranging from simple urinary tract infections to severe sepsis. In life-threatening infections, inappropriate choice of initial antibiotic has been shown to increase morbidity and mortality. As such, initiation of appropriate antibiotic therapy on the part of the emergency physician is critical. Increasing rates of antibiotic resistance, drug allergies, and antibiotic shortages further complicates the choice of antibiotics. Patients may have a history of prior resistant infections or culture data indicating that common first-line antibiotics used in the ED may be ineffective. In recent years, there have been several new antibiotic approvals as well as renewed interest in second and third line antibiotics because of the aforementioned concerns. In addition, several newly approved antibiotics have the advantage of being administered once weekly or even as a single infusion, which has the potential to decrease hospitalizations and healthcare costs. This article reviews newly approved antibiotics and antibiotics used to treat resistant infections with a focus on implications for emergency medicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Self-resistance in Streptomyces, with Special Reference to β-Lactam Antibiotics.

    Science.gov (United States)

    Ogawara, Hiroshi

    2016-05-10

    Antibiotic resistance is one of the most serious public health problems. Among bacterial resistance, β-lactam antibiotic resistance is the most prevailing and threatening area. Antibiotic resistance is thought to originate in antibiotic-producing bacteria such as Streptomyces. In this review, β-lactamases and penicillin-binding proteins (PBPs) in Streptomyces are explored mainly by phylogenetic analyses from the viewpoint of self-resistance. Although PBPs are more important than β-lactamases in self-resistance, phylogenetically diverse β-lactamases exist in Streptomyces. While class A β-lactamases are mostly detected in their enzyme activity, over two to five times more classes B and C β-lactamase genes are identified at the whole genomic level. These genes can subsequently be transferred to pathogenic bacteria. As for PBPs, two pairs of low affinity PBPs protect Streptomyces from the attack of self-producing and other environmental β-lactam antibiotics. PBPs with PASTA domains are detectable only in class A PBPs in Actinobacteria with the exception of Streptomyces. None of the Streptomyces has PBPs with PASTA domains. However, one of class B PBPs without PASTA domain and a serine/threonine protein kinase with four PASTA domains are located in adjacent positions in most Streptomyces. These class B type PBPs are involved in the spore wall synthesizing complex and probably in self-resistance. Lastly, this paper emphasizes that the resistance mechanisms in Streptomyces are very hard to deal with, despite great efforts in finding new antibiotics.

  14. Antibiotic Resistance of Diverse Bacteria from Aquaculture in Borneo

    Directory of Open Access Journals (Sweden)

    M. M. Kathleen

    2016-01-01

    Full Text Available The administration of antimicrobials in aquaculture provides a selective pressure creating a reservoir of multiple resistant bacteria in the cultured fish and shrimps as well as the aquaculture environment. The objective of this study was to determine the extent of antibiotic resistance in aquaculture products and aquaculture’s surrounding environment in Sarawak, Malaysian Borneo. Ninety-four identified bacterial isolates constituted of 17 genera were isolated from sediment, water, and cultured organisms (fish and shrimp in selected aquaculture farms. These isolates were tested for their antibiotic resistance against 22 antibiotics from several groups using the disk diffusion method. The results show that the highest resistance was observed towards streptomycin (85%, n=20, while the lowest resistance was towards gentamicin (1.1%, n=90. The multiple antibiotic resistant (MAR index of the isolates tested ranged between 0 and 0.63. It was suggested that isolates with MAR index > 0.2 were recovered from sources with high risk of antibiotic resistant contamination. This study revealed low level of antibiotic resistance in the aquaculture bacterial isolates except for streptomycin and ampicillin (>50% resistance, n=94 which have been used in the aquaculture industry for several decades. Antibiotic resistant patterns should be continuously monitored to predict the emergence and widespread of MAR. Effective action is needed to keep the new resistance from further developing and spreading.

  15. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance.

    NARCIS (Netherlands)

    Bell, B.G.; Schellevis, F.; Stobberingh, E.; Goossen, H.; Pringle, M.

    2014-01-01

    Background: Greater use of antibiotics during the past 50 years has exerted selective pressure on susceptible bacteria and may have favoured the survival of resistant strains. Existing information on antibiotic resistance patterns from pathogens circulating among community-based patients is

  16. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance

    NARCIS (Netherlands)

    Bell, B.G.; Schellevis, F.; Stobberingh, E.; Goossens, H.; Pringle, M.

    2014-01-01

    Background: Greater use of antibiotics during the past 50 years has exerted selective pressure on susceptible bacteria and may have favoured the survival of resistant strains. Existing information on antibiotic resistance patterns from pathogens circulating among community-based patients is

  17. Sensitivity of antibiotic resistant and antibiotic susceptible Escherichia coli, Enterococcus and Staphylococcus strains against ozone.

    Science.gov (United States)

    Heß, Stefanie; Gallert, Claudia

    2015-12-01

    Tolerance of antibiotic susceptible and antibiotic resistant Escherichia coli, Enterococcus and Staphylococcus strains from clinical and wastewater samples against ozone was tested to investigate if ozone, a strong oxidant applied for advanced wastewater treatment, will affect the release of antibiotic resistant bacteria into the aquatic environment. For this purpose, the resistance pattern against antibiotics of the mentioned isolates and their survival after exposure to 4 mg/L ozone was determined. Antibiotic resistance (AR) of the isolates was not correlating with higher tolerance against ozone. Except for ampicillin resistant E. coli strains, which showed a trend towards increased resistance, E. coli strains that were also resistant against cotrimoxazol, ciprofloxacin or a combination of the three antibiotics were similarly or less resistant against ozone than antibiotic sensitive strains. Pigment-producing Enterococcus casseliflavus and Staphylococcus aureus seemed to be more resistant against ozone than non-pigmented species of these genera. Furthermore, aggregation or biofilm formation apparently protected bacteria in subsurface layers from inactivation by ozone. The relatively large variance of tolerance against ozone may indicate that resistance to ozone inactivation most probably depends on several factors, where AR, if at all, does not play a major role.

  18. Antibiotic resistance of Staphylococcus aureus isolated from fresh ...

    African Journals Online (AJOL)

    Antibiotic resistance of Staphylococcus aureus isolated from fresh cow milk in settled ... produced alpha haemolysin, 45.5% (n=25) produced beta haemolysin and ... resistant strains of S. aureus of animal and human biotypes and can serve as ...

  19. Banning antibiotics, reducing resistance, preventing and fighting infections : White paper on research enabling an 'antibiotic-free' animal husbandry

    NARCIS (Netherlands)

    Kimman, T.G.; Smits, M.A.; Kemp, B.; Wever, P.; Verheijden, J.

    2010-01-01

    Resistance of bacteria to antibiotics in animal husbandry is increasing and a point of growing concern. The large use of antibiotics in agriculture undoubtedly leads to the development of antibiotic resistance. This has resulted in a growing public concern on the rise of antibiotic resistance, and

  20. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    Science.gov (United States)

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria.

  1. Overexpression of antibiotic resistance genes in hospital effluents over time

    OpenAIRE

    Rowe, Will P. M.; Baker-Austin, Craig; Verner-Jeffreys, David W.; Ryan, Jim J.; Micallef, Christianne; Maskell, Duncan J.; Pearce, Gareth P.

    2017-01-01

    $\\textbf{Objectives}$: Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varyi...

  2. Consolidating and Exploring Antibiotic Resistance Gene Data Resources

    DEFF Research Database (Denmark)

    Xavier, Basil Britto; Das, Anupam J.; Cochrane, Guy

    2016-01-01

    The unrestricted use of antibiotics has resulted in rapid acquisition of antibiotic resistance (AR) and spread of multidrug-resistant (MDR) bacterial pathogens. With the advent of next-generation sequencing technologies and their application in understanding MDR pathogen dynamics, it has become i...

  3. Transmission of antibiotic resistance from animals to humans

    NARCIS (Netherlands)

    Huijbers, P.M.C.

    2016-01-01

    Huijbers, P.M.C. (2016). Transmission of antibiotic resistance from animals to humans: Broilers as a reservoir of ESBL-producing bacteria. PhD thesis, Wageningen University, Wageningen, the Netherlands.

    Antibiotic resistance in animals becomes a public health issue when there is

  4. Occurrence of antibiotic resistant bacteria in dogs presented with ...

    African Journals Online (AJOL)

    Otitis is one of the most common infections in dogs. This has been associated with misuse of antibiotics thereby promoting the emergence of multi-resistant micro-organisms. This study was conducted to determine the occurrence and the antibiotic resistance pattern of bacterial pathogens associated with otitis in dogs ...

  5. correlations between antibiotic intake and resistance of some enteric ...

    African Journals Online (AJOL)

    DJFLEX

    2010-06-25

    Jun 25, 2010 ... Bacterial resistance to antibiotics has been attributed to many different factors with emphasis on the widespread use, misuse or overuse of antibiotics. Current thinking has referenced these as providing the selective pressure favouring propagation of resistant organisms (Livermore, 2003). This, however ...

  6. Antibiotic resistant Staphylococcus aureus in Abia State of Nigeria ...

    African Journals Online (AJOL)

    The S. aureus. isolates varied in their antibiotic susceptibility pattern when tested for their sensitivity to 16 antibiotics. Eighty percent of the isolates were resistant to more than one antimicrobial agent. All the isolates showed resistance to nalidixic acid and 100% sensitivity to rifampicin. Key words: Staphylococcus aureus, ...

  7. Genomic Analysis Reveals Distinct Concentration-Dependent Evolutionary Trajectories for Antibiotic Resistance in Escherichia coli

    Science.gov (United States)

    Mogre, Aalap; Sengupta, Titas; Veetil, Reshma T.; Ravi, Preethi; Seshasayee, Aswin Sai Narain

    2014-01-01

    Evolution of bacteria under sublethal concentrations of antibiotics represents a trade-off between growth and resistance to the antibiotic. To understand this trade-off, we performed in vitro evolution of laboratory Escherichia coli under sublethal concentrations of the aminoglycoside kanamycin over short time durations. We report that fixation of less costly kanamycin-resistant mutants occurred earlier in populations growing at lower sublethal concentration of the antibiotic, compared with those growing at higher sublethal concentrations; in the latter, resistant mutants with a significant growth defect persisted longer. Using deep sequencing, we identified kanamycin resistance-conferring mutations, which were costly or not in terms of growth in the absence of the antibiotic. Multiple mutations in the C-terminal end of domain IV of the translation elongation factor EF-G provided low-cost resistance to kanamycin. Despite targeting the same or adjacent residues of the protein, these mutants differed from each other in the levels of resistance they provided. Analysis of one of these mutations showed that it has little defect in growth or in synthesis of green fluorescent protein (GFP) from an inducible plasmid in the absence of the antibiotic. A second class of mutations, recovered only during evolution in higher sublethal concentrations of the antibiotic, deleted the C-terminal end of the ATP synthase shaft. This mutation confers basal-level resistance to kanamycin while showing a strong growth defect in the absence of the antibiotic. In conclusion, the early dynamics of the development of resistance to an aminoglycoside antibiotic is dependent on the levels of stress (concentration) imposed by the antibiotic, with the evolution of less costly variants only a matter of time. PMID:25281544

  8. Thermus Thermophilus as a Model System for the Study of Ribosomal Antibiotic Resistance

    Science.gov (United States)

    Gregory, Steven T.

    2018-03-01

    Ribosomes are the intracellular ribonucleoprotein machines responsible for the translation of mRNA sequence into protein sequence. As an essential cell component, the ribosome is the target of numerous antibiotics that bind to critical functional sites to impair protein synthesis. Mutations causing resistance to antibiotics arise in antibiotic binding sites, and an understanding of the basis of resistance will be an essential component of efforts to develop new antibiotics by rational drug design. We have identified a number of antibiotic-resistance mutations in ribosomal genes of the thermophilic bacterium Thermus thermophilus. This species offers two primary advantages for examining the structural basis of antibiotic-resistance, in particular, its potential for genetic manipulation and the suitability of its ribosomes for analysis by X-ray crystallography. Mutations we have identified in this organism are in many instances identical to those found in other bacterial species, including important pathogens, a result of the extreme conservation of ribosome functional sites. Here I summarize the advantages of this organism as a model system to study antibiotic-resistance mechanisms at the molecular level.

  9. Klebsiella pneumoniae Carbapenemase-2 (KPC-2, Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering

    Directory of Open Access Journals (Sweden)

    Melissa D. Barnes

    2017-10-01

    Full Text Available The emergence of Klebsiella pneumoniae carbapenemases (KPCs, β-lactamases that inactivate “last-line” antibiotics such as imipenem, represents a major challenge to contemporary antibiotic therapies. The combination of ceftazidime (CAZ and avibactam (AVI, a potent β-lactamase inhibitor, represents an attempt to overcome this formidable threat and to restore the efficacy of the antibiotic against Gram-negative bacteria bearing KPCs. CAZ-AVI-resistant clinical strains expressing KPC variants with substitutions in the Ω-loop are emerging. We engineered 19 KPC-2 variants bearing targeted mutations at amino acid residue Ambler position 179 in Escherichia coli and identified a unique antibiotic resistance phenotype. We focus particularly on the CAZ-AVI resistance of the clinically relevant Asp179Asn variant. Although this variant demonstrated less hydrolytic activity, we demonstrated that there was a prolonged period during which an acyl-enzyme intermediate was present. Using mass spectrometry and transient kinetic analysis, we demonstrated that Asp179Asn “traps” β-lactams, preferentially binding β-lactams longer than AVI owing to a decreased rate of deacylation. Molecular dynamics simulations predict that (i the Asp179Asn variant confers more flexibility to the Ω-loop and expands the active site significantly; (ii the catalytic nucleophile, S70, is shifted more than 1.5 Å and rotated more than 90°, altering the hydrogen bond networks; and (iii E166 is displaced by 2 ÅÅ when complexed with ceftazidime. These analyses explain the increased hydrolytic profile of KPC-2 and suggest that the Asp179Asn substitution results in an alternative complex mechanism leading to CAZ-AVI resistance. The future design of novel β-lactams and β-lactamase inhibitors must consider the mechanistic basis of resistance of this and other threatening carbapenemases.

  10. The role of biofilms as environmental reservoirs of antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Jose Luis eBalcazar

    2015-10-01

    Full Text Available Antibiotic resistance has become a significant and growing threat to public and environmental health. To face this problem both at local and global scales, a better understanding of the sources and mechanisms that contribute to the emergence and spread of antibiotic resistance is required. Recent studies demonstrate that aquatic ecosystems are reservoirs of resistant bacteria and antibiotic resistance genes as well as potential conduits for their transmission to human pathogens. Despite the wealth of information about antibiotic pollution and its effect on the aquatic microbial resistome, the contribution of environmental biofilms to the acquisition and spread of antibiotic resistance has not been fully explored in aquatic systems. Biofilms are structured multicellular communities embedded in a self-produced extracellular matrix that acts as a barrier to antibiotic diffusion. High population densities and proximity of cells in biofilms also increases the chances for genetic exchange among bacterial species converting biofilms in hot spots of antibiotic resistance. This review focuses on the potential effect of antibiotic pollution on biofilm microbial communities, with special emphasis on ecological and evolutionary processes underlying acquired resistance to these compounds.

  11. "Practical knowledge" and perceptions of antibiotics and antibiotic resistance among drugsellers in Tanzanian private drugstores

    Directory of Open Access Journals (Sweden)

    Tomson Göran

    2010-09-01

    Full Text Available Abstract Background Studies indicate that antibiotics are sold against regulation and without prescription in private drugstores in rural Tanzania. The objective of the study was to explore and describe antibiotics sale and dispensing practices and link it to drugseller knowledge and perceptions of antibiotics and antibiotic resistance. Methods Exit customers of private drugstores in eight districts were interviewed about the drugstore encounter and drugs bought. Drugsellers filled in a questionnaire with closed- and open-ended questions about antibiotics and resistance. Data were analyzed using mixed quantitative and qualitative methods. Results Of 350 interviewed exit customers, 24% had bought antibiotics. Thirty percent had seen a health worker before coming and almost all of these had a prescription. Antibiotics were dispensed mainly for cough, stomachache, genital complaints and diarrhea but not for malaria or headache. Dispensed drugs were assessed as relevant for the symptoms or disease presented in 83% of all cases and 51% for antibiotics specifically. Non-prescribed drugs were assessed as more relevant than the prescribed. The knowledge level of the drugseller was ranked as high or very high by 75% of the respondents. Seventy-five drugsellers from three districts participated. Seventy-nine percent stated that diseases caused by bacteria can be treated with antibiotics but 24% of these also said that antibiotics can be used for treating viral disease. Most (85% said that STI can be treated with antibiotics while 1% said the same about headache, 4% general weakness and 3% 'all diseases'. Seventy-two percent had heard of antibiotic resistance. When describing what an antibiotic is, the respondents used six different kinds of keywords. Descriptions of what antibiotic resistance is and how it occurs were quite rational from a biomedical point of view with some exceptions. They gave rise to five categories and one theme: Perceiving antibiotic

  12. Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption

    DEFF Research Database (Denmark)

    Megraud, Francis; Coenen, Samuel; Versporten, Ann

    2013-01-01

    OBJECTIVE: Resistance to antibiotics is the major cause of treatment failure of Helicobacter pylori infection. A study was conducted to assess prospectively the antibacterial resistance rates of H pylori in Europe and to study the link between outpatient antibiotic use and resistance levels...... in different countries. DESIGN: Primary antibiotic resistance rates of H pylori were determined from April 2008 to June 2009 in 18 European countries. Data on yearly and cumulative use over several years of systemic antibacterial agents in ambulatory care for the period 2001-8 were expressed in Defined Daily...... Doses (DDD) per 1000 inhabitants per day. The fit of models and the degree of ecological association between antibiotic use and resistance data were assessed using generalised linear mixed models. RESULTS: Of 2204 patients included, H pylori resistance rates for adults were 17.5% for clarithromycin, 14...

  13. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps.

    Science.gov (United States)

    Yılmaz, Çiğdem; Özcengiz, Gülay

    2017-06-01

    The discovery of penicillin followed by streptomycin, tetracycline, cephalosporins and other natural, semi-synthetic and synthetic antimicrobials completely revolutionized medicine by reducing human morbidity and mortality from most of the common infections. However, shortly after they were introduced to clinical practice, the development of resistance was emerged. The decreasing interest from antibiotic industry in spite of rapid global emergence of antibiotic resistance is a tough dilemma from the pointview of public health. The efficiency of antimicrobial treatment is determined by both pharmacokinetics and pharmacodynamics. In spite of their selective toxicity, antibiotics still cause severe, life-threatening adverse reactions in host body mostly due to defective drug metabolism or excessive dosing regimen. The present article aims at updating current knowledge on pharmacokinetics/pharmacodynamics concepts and models, toxicity of antibiotics as well as antibiotic resistance mechanisms, resistome analyses and search for novel antibiotic resistance determinants with special emphasis given to the-state-of-the-art regarding multidrug efflux pumps and their additional physiological functions in stress adaptation and virulence of bacteria. All these issues are highly linked to each other and not only important for most efficient and prolonged use of current antibiotics, but also for discovery and development of new antibiotics and novel inhibitors of antibiotic resistance determinants of pathogens. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Overexpression of antibiotic resistance genes in hospital effluents over time.

    Science.gov (United States)

    Rowe, Will P M; Baker-Austin, Craig; Verner-Jeffreys, David W; Ryan, Jim J; Micallef, Christianne; Maskell, Duncan J; Pearce, Gareth P

    2017-06-01

    Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varying antibiotic usage to the receiving environment. Gene abundance in effluents (municipal hospital and dairy farm) was compared against background samples of the receiving aquatic environment (i.e. the catchment source) to determine the resistome contribution of effluents. We used metagenomics and metatranscriptomics to correlate DNA and RNA abundance and identified differentially regulated gene transcripts. We found that mean antibiotic resistance gene and transcript abundances were correlated for both hospital ( ρ  = 0.9, two-tailed P  hospital effluent samples. High β-lactam resistance gene transcript abundance was related to hospital antibiotic usage over time and hospital effluents contained antibiotic residues. We conclude that effluents contribute high levels of antibiotic resistance genes to the aquatic environment; these genes are expressed at significant levels and are possibly related to the level of antibiotic usage at the effluent source. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  15. Antibiotic-resistant bacteria: a challenge for the food industry.

    Science.gov (United States)

    Capita, Rosa; Alonso-Calleja, Carlos

    2013-01-01

    Antibiotic-resistant bacteria were first described in the 1940s, but whereas new antibiotics were being discovered at a steady rate, the consequences of this phenomenon were slow to be appreciated. At present, the paucity of new antimicrobials coming into the market has led to the problem of antibiotic resistance fast escalating into a global health crisis. Although the selective pressure exerted by the use of antibiotics (particularly overuse or misuse) has been deemed the major factor in the emergence of bacterial resistance to these antimicrobials, concerns about the role of the food industry have been growing in recent years and have been raised at both national and international levels. The selective pressure exerted by the use of antibiotics (primary production) and biocides (e.g., disinfectants, food and feed preservatives, or decontaminants) is the main driving force behind the selection and spread of antimicrobial resistance throughout the food chain. Genetically modified (GM) crops with antibiotic resistance marker genes, microorganisms added intentionally to the food chain (probiotic or technological) with potentially transferable antimicrobial resistance genes, and food processing technologies used at sub-lethal doses (e.g., alternative non-thermal treatments) are also issues for concern. This paper presents the main trends in antibiotic resistance and antibiotic development in recent decades, as well as their economic and health consequences, current knowledge concerning the generation, dissemination, and mechanisms of antibacterial resistance, progress to date on the possible routes for emergence of resistance throughout the food chain and the role of foods as a vehicle for antibiotic-resistant bacteria. The main approaches to prevention and control of the development, selection, and spread of antibacterial resistance in the food industry are also addressed.

  16. Re-sensitizing drug-resistant bacteria to antibiotics by designing Antisense Therapeutics

    Science.gov (United States)

    Courtney, Colleen; Chatterjee, Anushree

    2014-03-01

    ``Super-bugs'' or ``multi-drug resistant organisms'' are a serious international health problem, with devastating consequences to patient health care. The Center for Disease Control has identified antibiotic resistance as one of the world's most pressing public health problems as a significant fraction of bacterial infections contracted are drug resistant. Typically, antibiotic resistance is encoded by ``resistance-genes'' which express proteins that carryout the resistance causing functions inside the bacterium. We present a RNA based therapeutic strategy for designing antimicrobials capable of re-sensitizing resistant bacteria to antibiotics by targeting labile regions of messenger RNAs encoding for resistance-causing proteins. We perform in silico RNA secondary structure modeling to identify labile target regions in an mRNA of interest. A synthetic biology approach is then used to administer antisense nucleic acids to our model system of ampicillin resistant Escherichia coli. Our results show a prolonged lag phase and decrease in viability of drug-resistant E. colitreated with antisense molecules. The antisense strategy can be applied to alter expression of other genes in antibiotic resistance pathways or other pathways of interest.

  17. Antibiotic use and resistance in animals: Belgian initiatives.

    Science.gov (United States)

    Daeseleire, Els; De Graef, Evelyne; Rasschaert, Geertrui; De Mulder, Thijs; Van den Meersche, Tina; Van Coillie, Els; Dewulf, Jeroen; Heyndrickx, Marc

    2016-05-01

    The widespread use of antibiotics in animals is causing concerns about the growing risk for development and the spread of antibiotic-resistant bacteria. Antibiotic consumption is higher in animals than in humans as reported in a joint publication of EFSA (European Food Safety Agency), ECDC (European Centre for Disease Prevention and Control), and EMA (European Medicines Agency) using data from 2011 and 2012. Both in humans and animals, positive associations between the consumption of antibiotics and resistant bacteria are observed. Responsible use of antibiotics in humans and animals should therefore be promoted. In this paper some general aspects of antibiotic resistance such as microbiological versus clinical resistance, intrinsic versus acquired resistance, resistance mechanisms, and transfer of resistance are briefly introduced. In 2012, the Belgian Center of Expertise on Antimicrobial Consumption and Resistance in Animals (AMCRA) was founded. Its mission is to collect and analyze all data related to antibiotic use and resistance in animals in Belgium and to communicate these findings in a neutral and objective manner. One of AMCRA's 10 objectives is a 50% reduction in antibiotic consumption in veterinary medicine in Belgium by 2020. The aim of this paper is to report on the achievements of this national project. The Institute for Agricultural and Fisheries Research (ILVO, Merelbeke-Melle), in collaboration with Ghent University, is currently working on three nationally funded projects on antibiotic resistance in animal husbandry. In the first project, an in vitro model is used to study the influence of low antibiotic concentrations due to carry-over after production and usage of medicated feed on the development of resistance in the pig gut. Part of that project is to develop a quantitative risk assessment model. A second project focuses on tracking excreted antibiotics used in pig rearing and their influence on the development of antibiotic resistance in pig

  18. Genomics of antibiotic-resistance prediction in Pseudomonas aeruginosa.

    Science.gov (United States)

    Jeukens, Julie; Freschi, Luca; Kukavica-Ibrulj, Irena; Emond-Rheault, Jean-Guillaume; Tucker, Nicholas P; Levesque, Roger C

    2017-06-02

    Antibiotic resistance is a worldwide health issue spreading quickly among human and animal pathogens, as well as environmental bacteria. Misuse of antibiotics has an impact on the selection of resistant bacteria, thus contributing to an increase in the occurrence of resistant genotypes that emerge via spontaneous mutation or are acquired by horizontal gene transfer. There is a specific and urgent need not only to detect antimicrobial resistance but also to predict antibiotic resistance in silico. We now have the capability to sequence hundreds of bacterial genomes per week, including assembly and annotation. Novel and forthcoming bioinformatics tools can predict the resistome and the mobilome with a level of sophistication not previously possible. Coupled with bacterial strain collections and databases containing strain metadata, prediction of antibiotic resistance and the potential for virulence are moving rapidly toward a novel approach in molecular epidemiology. Here, we present a model system in antibiotic-resistance prediction, along with its promises and limitations. As it is commonly multidrug resistant, Pseudomonas aeruginosa causes infections that are often difficult to eradicate. We review novel approaches for genotype prediction of antibiotic resistance. We discuss the generation of microbial sequence data for real-time patient management and the prediction of antimicrobial resistance. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  19. One of two TolC-like proteins is involved in antibiotic resistance and biofilm formation of Actinobacillus pleuropneumoniae clinical isolate SC1516

    Directory of Open Access Journals (Sweden)

    Ying Li

    2016-10-01

    Full Text Available Actinobacillus pleuropneumoniae is the etiologic agent of porcine contagious pleuropneumonia, a significant disease that causes serious economic losses to the swine industry worldwide. Persistent infections caused by bacterial biofilms are recalcitrant to treat because of the particular drug resistance of biofilm-dwelling cells. TolC, a key component of multidrug efflux pumps, are responsible for multidrug resistance in many Gram-negative bacteria. In this study, we identified two TolC-like proteins, TolC1 and TolC2, in A. pleuropneumoniae. Deletion of tolC1, but not tolC2, caused a significant reduction in biofilm formation, as well as increased drug sensitivity of both planktonic and biofilm cells. The genetic-complementation of the tolC1 mutation restored the competent biofilm and drug resistance. Besides, biofilm formation was inhibited and drug sensitivity was increased by the addition of phenylalanine-arginine beta-naphthylamide (PAβN, a well-known efflux pump inhibitor (EPI, suggesting a role for EPI in antibacterial strategies towards drug tolerance of A. pleuropneumoniae. Taken together, TolC1 is required for biofilm formation and is a part of the multidrug resistance machinery of both planktonic and biofilm cells, which could supplement therapeutic strategies for resistant bacteria and biofilm-related infections of A. pleuropneumoniae clinical isolate SC1516.

  20. Antibiotic resistance rates and physician antibiotic prescription patterns of uncomplicated urinary tract infections in southern Chinese primary care

    OpenAIRE

    Wong, Carmen Ka Man; Kung, Kenny; Au-Doung, Philip Lung Wai; Ip, Margaret; Lee, Nelson; Fung, Alice; Wong, Samuel Yeung Shan

    2017-01-01

    Uncomplicated urinary tract infections (UTI) are common in primary care. Whilst primary care physicians are called to be antimicrobial stewards, there is limited primary care antibiotic resistance surveillance and physician antibiotic prescription data available in southern Chinese primary care. The study aimed to investigate the antibiotic resistance rate and antibiotic prescription patterns in female patients with uncomplicated UTI. Factors associated with antibiotic resistance and prescrip...

  1. Detection of antibiotic resistance in probiotics of dietary supplements

    KAUST Repository

    Wong, Aloysius Tze

    2015-09-14

    Background Probiotics are live microorganisms that confer nutrition- and health-promoting benefits if consumed in adequate amounts. Concomitant with the demand for natural approaches to maintaining health is an increase in inclusion of probiotics in food and health products. Since probiotic bacteria act as reservoir for antibiotic resistant determinants, the transfer of these genes to pathogens sharing the same intestinal habitat is thus conceivable considering the fact that dietary supplements contain high amounts of often heterogeneous populations of probiotics. Such events can confer pathogens protection against commonly-used drugs. Despite numerous reports of antibiotic resistant probiotics in food and biological sources, the antibiogram of probiotics from dietary supplements remained elusive. Findings Here, we screened five commercially available dietary supplements for resistance towards antibiotics of different classes. Probiotics of all batches of products were resistant towards vancomycin while batch-dependent resistance towards streptomycin, aztreonam, gentamycin and/or ciprofloxacin antibiotics was detected for probiotics of brands Bi and Bn, Bg, and L. Isolates of brand Cn was also resistant towards gentamycin, streptomycin and ciprofloxacin antibiotics. Additionally, we also report a discrepancy between the enumerated viable bacteria amounts and the claims of the manufacturers. Conclusions This short report has highlighted the present of antibiotic resistance in probiotic bacteria from dietary supplements and therefore serves as a platform for further screenings and for in-depth characterization of the resistant determinants and the molecular machinery that confers the resistance.

  2. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact.

    Science.gov (United States)

    Yang, Yuyi; Xu, Chen; Cao, Xinhua; Lin, Hui; Wang, Jun

    2017-08-01

    Urban lakes are impacted by heavy human activities and represent potential reservoirs for antibiotic resistance genes. In this study, six urban lakes in Wuhan, central China were selected to analyze the distribution of sulfonamide resistance (sul) genes, tetracycline resistance (tet) genes and quinolone resistance (qnr) genes and their relationship with heavy metals, antibiotics, lake morphology and anthropic impact. sul1 and sul2 were detected in all six lakes and dominated the types of antibiotic resistance genes, which accounted for 86.28-97.79% of the total antibiotic resistance gene abundance. For eight tested tet genes, antibiotic efflux pumps (tetA, tetB, tetC, and tetG) genes were all observed in six lakes and had higher relative abundance than ribosomal protection protein genes (tetM and tetQ). For 4 plasmid mediated quinolone resistance genes, only qnrD is found in all six lakes. The class I integron (intI1) is also found to be a very important media for antibiotic resistance gene propagation in urban lakes. The results of redundancy analysis and variation partitioning analysis showed that antibiotic and co-selection with heavy metals were the major factors driving the propagation of antibiotic resistance genes in six urban lakes. The heavily eutrophic Nanhu Lake and Shahu Lake which located in a high density building area with heavy human activities had the higher relative abundance of total antibiotic resistance genes. Our study could provide a useful reference for antibiotic resistance gene abundance in urban lakes with high anthropic impact.

  3. Decreased expression of LamB and Odp1 complex is crucial for antibiotic resistance in Escherichia coli.

    Science.gov (United States)

    Lin, Xiang-min; Yang, Man-jun; Li, Hui; Wang, Chao; Peng, Xuan-Xian

    2014-02-26

    We previously revealed a negative regulation of LamB in chlortetracycline-resistant Escherichia coli strain. In the present study, we first showed that the negative regulation, which was characterized by decreased abundance of LamB with elevated growth of its gene-deleted mutant in medium with antibiotics, was a general response in resistance to different classes of antibiotics using 2-DE based proteomics or/and genetically gene-deletion mutant of LamB. Then, we revealed the interaction of LamB and Odp1 which catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2, and found the decrease of the complex in antibiotic-resistant strains with a minimum inhibitory concentration dose-dependent manner. Further spectrofluorometry assay indicated that LamB served as a porin to influx an antibiotic. Finally, we showed that the decreased expression of LamB and Odp1 was detected in almost of all 34 multidrug-resistant strains, which suggested that LamB and Odp1 were biomarkers for identification of antibiotic-resistant E. coli. Our results indicated that the interaction of an outer membrane protein with an energy metabolic enzyme constructed an efficient pathway to resist antibiotics. These findings provide novel insights into the mechanisms of antibiotic resistance. Our data indicate that the negative regulation by LamB is widely detected in antibiotic-resistant E. coli. LamB serves as a porin to influx an antibiotic and is interacted with Odp1. The complex decreases in antibiotic-resistant strains with a MIC dose-dependent manner. Our findings indicate that interaction of outer membrane protein with energy metabolic enzyme constructs an efficient pathway to resist antibiotics and provides novel insights into the mechanisms of antibiotic resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. At the Nexus of Antibiotics and Metals: The Impact of Cu and Zn on Antibiotic Activity and Resistance.

    Science.gov (United States)

    Poole, Keith

    2017-10-01

    Environmental influences on antibiotic activity and resistance can wreak havoc with in vivo antibiotic efficacy and, ultimately, antimicrobial chemotherapy. In nature, bacteria encounter a variety of metal ions, particularly copper (Cu) and zinc (Zn), as contaminants in soil and water, as feed additives in agriculture, as clinically-used antimicrobials, and as components of human antibacterial responses. Importantly, there is a growing body of evidence for Cu/Zn driving antibiotic resistance development in metal-exposed bacteria, owing to metal selection of genetic elements harbouring both metal and antibiotic resistance genes, and metal recruitment of antibiotic resistance mechanisms. Many classes of antibiotics also form complexes with metal cations, including Cu and Zn, and this can hinder (or enhance) antibiotic activity. This review highlights the ways in which Cu/Zn influence antibiotic resistance development and antibiotic activity, and in so doing impact in vivo antibiotic efficacy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Antibiotics Resistance - Carbapenemase-producing germs in livestock populations

    OpenAIRE

    German Federal Institute for Risk Assessment

    2014-01-01

    Carbapenems are antibiotics authorised for the treatment of humans and which were categorised by the World Health Organization as critically important antimicrobials for the treatment of humans. Reserve antibiotics of this kind are only supposed to be used when standard antibiotics no longer show any effects, i.e. for only stricted indications. A mechanism that leads to a resistance of bacteria to carbapenems is the formation of certain enzymes called carbapenemases. What then happens is that...

  6. Antibiotic resistance pattern of bacterial isolates in neonatal care unit

    Directory of Open Access Journals (Sweden)

    S Shrestha

    2010-12-01

    Full Text Available INTRODUCTION: Bacterial infections account for a huge proportion of neonatal deaths worldwide. The problem of antibiotic resistance among common bacterial pathogens mainly the gram negative bacteria is emerging globally which is of more serious concern in developing countries like Nepal. METHODS: A one year retrospective hospital based study was carried out to analyze the results of neonatal blood, cerebrospinal fluid, urine, stool and surface cultures and to look into the sensitivity pattern of the commonly used antibiotics. RESULTS: The positive yield of blood, urine, eye swab and CSF cultures were 19.56%, 38.5%, 60% and 0.36% respectively. The most common isolates in the blood culture were coagulase negative Staphylococcus, Acinetobacter, Enterobacter and non-haemolytic Streptococcus. A significant percent of the isolates were resistant to the first line antibiotics. Among the gram negative isolates more than 30% are resistant to cefotaxime and more than 50% are resistant to gentamicin. During the one year period we had Nursery outbreaks of methicillin resistant Staphylococcus aureus and Salmonella infections. With the help of environmental cultures we were able to trace the source and intervene appropriately. CONCLUSIONS: Continuous surveillance for antibiotic susceptibility, rational use of antibiotics and the strategy of antibiotic cycling can provide some answers to the emerging problem of antibiotic resistance.

  7. Antibiotic resistance pattern of bacterial isolates in neonatal care unit.

    Science.gov (United States)

    Shrestha, S; Adhikari, N; Rai, B K; Shreepaili, A

    2010-01-01

    Bacterial infections account for a huge proportion of neonatal deaths worldwide. The problem of antibiotic resistance among common bacterial pathogens mainly the gram negative bacteria is emerging globally which is of more serious concern in developing countries like Nepal. A one year retrospective hospital based study was carried out to analyze the results of neonatal blood, cerebrospinal fluid, urine, stool and surface cultures and to look into the sensitivity pattern of the commonly used antibiotics. The positive yield of blood, urine, eye swab and CSF cultures were 19.56%, 38.5%, 60% and 0.36% respectively. The most common isolates in the blood culture were coagulase negative Staphylococcus, Acinetobacter, Enterobacter and non-haemolytic Streptococcus. A significant percent of the isolates were resistant to the first line antibiotics. Among the gram negative isolates more than 30% are resistant to cefotaxime and more than 50% are resistant to gentamicin. During the one year period we had Nursery outbreaks of methicillin resistant Staphylococcus aureus and Salmonella infections. With the help of environmental cultures we were able to trace the source and intervene appropriately. Continuous surveillance for antibiotic susceptibility, rational use of antibiotics and the strategy of antibiotic cycling can provide some answers to the emerging problem of antibiotic resistance.

  8. Resistance Elasticity of Antibiotic Demand in Intensive Care.

    Science.gov (United States)

    Heister, Thomas; Hagist, Christian; Kaier, Klaus

    2017-07-01

    The emergence and spread of antimicrobial resistance (AMR) is still an unresolved problem worldwide. In intensive care units (ICUs), first-line antibiotic therapy is highly standardized and widely empiric while treatment failure because of AMR often has severe consequences. Simultaneously, there is a limited number of reserve antibiotics, whose prices and/or side effects are substantially higher than first-line therapy. This paper explores the implications of resistance-induced substitution effects in ICUs. The extent of such substitution effects is shown in a dynamic fixed effect regression analysis using a panel of 66 German ICUs with monthly antibiotic use and resistance data between 2001 and 2012. Our findings support the hypothesis that demand for reserve antibiotics substantially increases when resistance towards first-line agents rises. For some analyses the lagged effect of resistance is also significant, supporting the conjecture that part of the substitution effect is caused by physicians changing antibiotic choices in empiric treatment by adapting their resistance expectation to new information on resistance prevalence. The available information about resistance rates allows physicians to efficiently balance the trade-off between exacerbating resistance and ensuring treatment success. However, resistance-induced substitution effects are not free of charge. These effects should be considered an indirect burden of AMR. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Transferable Antibiotic Resistances in Marketed Edible Grasshoppers (Locusta migratoria migratorioides).

    Science.gov (United States)

    Osimani, Andrea; Garofalo, Cristiana; Aquilanti, Lucia; Milanović, Vesna; Cardinali, Federica; Taccari, Manuela; Pasquini, Marina; Tavoletti, Stefano; Clementi, Francesca

    2017-05-01

    Grasshoppers are the most commonly eaten insects by humans worldwide, as they are rich in proteins and micronutrients. This study aimed to assess the occurrence of transferable antibiotic resistance genes in commercialized edible grasshoppers. To this end, the prevalence of 12 selected genes [aac(6')-Ie aph(2″)-Ia, blaZ, erm(A), erm(B), erm(C), mecA, tet(M), tet(O), tet(S), tet(K), vanA, vanB] coding for resistance to antibiotics conventionally used in clinical practice was determined. The majority of samples were positive for tet(M) (70.0%), tet(K) (83.3%) and blaZ (83.3%). A low percentage of samples were positive for erm(B) (16.7%), erm(C) (26.7%), and aac(6')-Ie aph(2″)-Ia (13.3%), whereas no samples were positive for erm(A), vanA, vanB, tet(O), and mecA. Cluster analysis identified 4 main clusters, allowing a separation of samples on the basis of their country of origin. © 2017 Institute of Food Technologists®.

  10. Strategies for the prevention and containment of antibiotic resistance ...

    African Journals Online (AJOL)

    Antibiotic resistance may emerge by antibiotic selection pressure but is perpetuated by diverse risk factors and maintained within environments as a result of poor infection control. Population-specific drug pharmacokinetics and pharmacodynamics also play a role. The WHO, US, UK and EU have initiated strategies for the ...

  11. Antibiotic resistance and ndvB gene expression among biofilm ...

    African Journals Online (AJOL)

    A novel antibiotic resistant mechanism among biofilms is glucan-mediated sequestration in which ndvB gene encodes a glucosyltransferase involved in the formation of this glucans. We studied the biofilm formation and antibiotic susceptibility pattern of P. aeruginosa isolated from clinical samples, and measured the ...

  12. [Antibiotic resistance: recommendations from the Advisory Council for Health Research

    NARCIS (Netherlands)

    Hoogkamp-Korstanje, J.A.A.

    2001-01-01

    The Advisory Council for Health Research (RGO) advised the Dutch Minister of Health on research into the epidemiology, prevention and research of antibiotic resistance in the Netherlands. Good antimicrobial practice, insight into antibiotic use, implementation of measures to prevent development of

  13. Composting swine slurry to reduce indicators and antibiotic resistance genes

    Science.gov (United States)

    Over the last twenty years there have been considerable increases in the incidence of human infections with bacteria that are resistant to commonly used antibiotics. This has precipitated concerns about the use of antibiotics in livestock production. Composting of swine manure has several advantages...

  14. Antibiotic Resistance and Virulence Properties in Escherichia coli ...

    African Journals Online (AJOL)

    This study determined E. coli resistance to commonly used antibiotics together with their virulence properties in Ile-Ife, Nigeria. A total of 137 E. coli isolates from cases of urinary tract infection were tested for their sensitivity to commonly used antibiotics and possession of virulence factors using standard methods.

  15. Are Sewage Treatment Plants Promoting Antibiotic Resistance?

    Science.gov (United States)

    1. Introduction 1.1. How bacteria exhibit resistance 1.1.1. Resistance to -lactams 1.1.2. Resistance to sulphonamides and trimethoprim 1.1.3. Resistance to macrolides 1.1.4. Resistance to fluoroquinolones 1.1.5. Resistance to tetracyclines 1.1.6. Resistance to nitroimidaz...

  16. Antibiotic resistance - the interplay between antibiotic use in animals and human beings

    DEFF Research Database (Denmark)

    Singer, R.S.; Finch, R.; Wegener, Henrik Caspar

    2003-01-01

    meant the problem of antibiotic resistance is fast escalating into a global health crisis. There is no doubt that misuse of these drugs in human beings has contributed to the increasing rates of resistance, but recently the use of antibiotics in food animals and its consequent effect on resistance...... levels in people has also come under scrutiny. Antimicrobials are used therapeutically and prophylactically in animals. More controversially, antimicrobials are also used as growth promoters to improve the ability of the animal to convert feed into body mass. Some argue that the impact of use....... There is a growing concern over the transmission of resistant bacteria via the food chain. Many questions will be difficult to resolve, such as how do you distinguish the fraction of resistance in human beings that originated from animals? If we wait to see evidence that a significant amount of antibiotic resistance...

  17. Environmental cycle of antibiotic resistance encoded genes: A systematic review

    Directory of Open Access Journals (Sweden)

    R. ghanbari

    2017-12-01

    Full Text Available Antibiotic-resistant bacteria and genes enter the environment in different ways. The release of these factors into the environment has increased concerns related to public health. The aim of the study was to evaluate the antibiotic resistance genes (ARGs in the environmental resources. In this systematic review, the data were extracted from valid sources of information including ScienceDirect, PubMed, Google Scholar and SID. Evaluation and selection of articles were conducted on the basis of the PRISMA checklist. A total of 39 articles were included in the study, which were chosen from a total of 1249 papers. The inclusion criterion was the identification of genes encoding antibiotic resistance against the eight important groups of antibiotics determined by using the PCR technique in the environmental sources including municipal and hospital wastewater treatment plants, animal and agricultural wastes, effluents from treatment plants, natural waters, sediments, and drinking waters. In this study, 113 genes encoding antibiotic resistance to eight groups of antibiotics (beta-lactams, aminoglycosides, tetracyclines, macrolides, sulfonamides, chloramphenicol, glycopeptides and quinolones were identified in various environments. Antibiotic resistance genes were found in all the investigated environments. The investigation of microorganisms carrying these genes shows that most of the bacteria especially gram-negative bacteria are effective in the acquisition and the dissemination of these pollutants in the environment. Discharging the raw wastewaters and effluents from wastewater treatments acts as major routes in the dissemination of ARGs into environment sources and can pose hazards to public health.

  18. Antibiotic resistance in bacterial pathogens causing meningitis in ...

    African Journals Online (AJOL)

    Antibiotic resistance in bacterial pathogens causing meningitis in children at Harare Central Hospital, Zimbabwe. M Gudza-Mugabe, R.T. Mavenyengwa, M.P. Mapingure, S Mtapuri-Zinyowera, A Tarupiwa, V.J. Robertson ...

  19. Mathematical studies on nosocomial spread of antibiotic-resistant bacteria

    NARCIS (Netherlands)

    Gurieva, T.V.

    2017-01-01

    Infections with antibiotic-resistant bacteria are a worldwide problem in hospitals and their rates remain high in many countries despite efforts to reduce the rates. Infection prevention is complicated by asymptomatic carriers. Using mathematical modelling, different intervention strategies were

  20. Molecular Detection of Virulence Genes and Antibiotic Resistance ...

    African Journals Online (AJOL)

    Pathogen, E. coli O157:H7, virulence genes, antibiotic-resistance, beef meat. Correspondence: ... box to the laboratory for further processing. Isolation and identification of ... Technologies (IDT) Inc, U.S.A. The sequences and annealing ...

  1. Isolation of antibiotic-resistant pathogenic and potentially ...

    African Journals Online (AJOL)

    2010-09-13

    Sep 13, 2010 ... The aim of the present study is to determine the pathogenic and potentially ... Keywords: pathogenic bacteria; antibiotic resistance; carpets; mosques; Tripoli; Libya .... During the process of praying, a Muslim is obliged to go.

  2. Phenotypic and genotypic detection of antibiotic resistance of ...

    African Journals Online (AJOL)

    aeruginosa isolated from urinary tract infections. Hisham A Abbas1 ... This high resistance is alarming and necessitates applying strict antibiotic prescription policies. Keywords: ..... ginosa at children's medical center hospital. Journal of Med-.

  3. Detection of antibiotic resistance in probiotics of dietary supplements

    KAUST Repository

    Wong, Aloysius Tze; Ngu, Davey Yueh Saint; Dan, Lydia Annabel; Ooi, Amanda Siok Lee; Lim, Renee Lay Hong

    2015-01-01

    in food and health products. Since probiotic bacteria act as reservoir for antibiotic resistant determinants, the transfer of these genes to pathogens sharing the same intestinal habitat is thus conceivable considering the fact that dietary supplements

  4. Emerging antibiotic resistance in bacteria with special reference to ...

    Indian Academy of Sciences (India)

    Prakash

    utility of antibiotics in the control of infections has been indicated. [Raghunath D 2008 ..... 6.4 Protozoa. Plasmodium falciparum has become resistant to chloroquin ... The partial success of a polysaccharide vaccine against S. aureus in ...

  5. Diversity and antibiotic resistance of uropathogenic bacteria from ...

    African Journals Online (AJOL)

    J.-L.A. Moroh

    Background: Urinary tract infections (UTI) are one of the major causes of ... were processed to obtain the profile prevalence of UTI, the rate of bacterial resistance to antibiotics, the ..... tance patterns of outpatient pediatric urinary tract infections.

  6. Antibiotic Application and Emergence of Multiple Antibiotic Resistance (MAR) in Global Catfish Aquaculture.

    Science.gov (United States)

    Chuah, Li-Oon; Effarizah, M E; Goni, Abatcha Mustapha; Rusul, Gulam

    2016-06-01

    Catfish is one of the most cultivated species worldwide. Antibiotics are usually used in catfish farming as therapeutic and prophylactic agents. In the USA, only oxytetracycline, a combination of sulfadimethoxine and ormetoprim, and florfenicol are approved by the Food Drug Administration for specific fish species (e.g., catfish and salmonids) and their specific diseases. Misuse of antibiotics as prophylactic agents in disease prevention, however, is common and contributes in the development of antibiotic resistance. Various studies had reported on antibiotic residues and/or resistance in farmed species, feral fish, water column, sediments, and, in a lesser content, among farm workers. Ninety percent of the world aquaculture production is carried out in developing countries, which lack regulations and enforcement on the use of antibiotics. Hence, efforts are needed to promote the development and enforcement of such a regulatory structure. Alternatives to antibiotics such as antibacterial vaccines, bacteriophages and their lysins, and probiotics have been applied to curtail the increasing emergence of antibiotic-resistant bacteria due to the imprudent application of antibiotics in aquaculture.

  7. Antibiotic resistance of microorganisms in agricultural soils in Russia

    Science.gov (United States)

    Danilova, Natasha; Galitskaya, Polina; Selivanovskaya, Svetlana

    2017-04-01

    Antibiotics are medicines widely used to treat and prevent bacterial infections not only in human medicine but also in veterinary. Besides, in animal husbandry antibiotics are often used in for stimulation of animal's growth. Many antibiotics used for veterinary purposes are weakly absorbed in the animal's gut. So up to 90% of the administered antibiotics are excreted with manure and urine. Therefore use of manure as an organic fertilizer leads to formation and spreading of antibiotic resistance among soil microbes. Another reason of such spreading is the horizontal transfer of genes encoding antibiotic resistance from manure to soil microflora. The level of antibiotic resistance genes pollution of soils has not been properly studied yet. The aim of this study was to estimate the contamination of agricultural soils by antibiotic resistant genes. 30 samples of agricultural soils were selected around of Kazan city (Tatarstan Republic) with 1.3 Mio citizens. Since tetracycline is reported to be the most wide spread veterinary antibiotic in Russia, we estimated the level of soil contamination by tet(X) gene encoding tetracycline decomposition in microbial cell. Real time PCR method with specific primers was used as a method of investigation. Particle size type distribution of 31% of soil samples was estimated to be sandy clay, and 69% of soil samples - to silty clay. Content of dissoluble organic carbon ranged from 0,02 mg g -1 (sample 20) to 0,46 mg g -1 (sample 16). Respiration activity and microbial biomass of soils were estimated to be 0,80-5,28 CO2 C mg g -1 h-1 and 263,51-935,77 µg kg - 1 respectively. The values presented are typical for soils of Tatarstan Republic. In terms of the antibiotic resistant gene content, 27 of 30 samples investigated contained tet(X) gene, while 52% of the samples were highly contaminated, 34% of samples were middle contaminated and 14% of samples - weakly contaminated.

  8. Children as agents of change in combatting antibiotic resistance.

    Science.gov (United States)

    Molnar, Andreea

    2017-01-01

    Antibiotic resistance is a worldwide problem and changes are needed in the way antibiotics are used. The value of engaging children as key contributors in health care campaigns to increase the appropriate use of antibiotics has not been fully recognized. Little is known about how to design educational materials for children in order to enable them to be agents of change in their communities. Science education needs to improve the way it engages children so as to give them the tools needed to make responsible decisions on antibiotic use.

  9. Antibiotic resistance and virulence genes in coliform water isolates.

    Science.gov (United States)

    Stange, C; Sidhu, J P S; Tiehm, A; Toze, S

    2016-11-01

    Widespread fecal pollution of surface water may present a major health risk and a significant pathway for dissemination of antibiotic resistance bacteria. The River Rhine is one of the longest and most important rivers in Europe and an important raw water source for drinking water production. A total of 100 coliform isolates obtained from River Rhine (Germany) were examined for their susceptibility to seven antimicrobial agents. Resistances against amoxicillin, trimethoprim/sulfamethoxazole and tetracycline were detected in 48%, 11% and 9% of isolates respectively. The antibiotic resistance could be traced back to the resistance genes bla TEM , bla SHV , ampC, sul1, sul2, dfrA1, tet(A) and tet(B). Whereby, the ampC gene represents a special case, because its presence is not inevitably linked to a phenotypic antibiotic resistance. Multiple antibiotics resistance was often accompanied by the occurrence of class 1 or 2 integrons. E. coli isolates belonging to phylogenetic groups A and B1 (commensal) were more predominant (57%) compared to B2 and D groups (43%) which are known to carry virulent genes. Additionally, six E. coli virulence genes were also detected. However, the prevalence of virulence genes in the E. coli isolates was low (not exceeding 4.3% per gene) and no diarrheagenic E. coli pathotypes were detected. This study demonstrates that surface water is an important reservoir of ARGs for a number of antibiotic classes such as sulfonamide, trimethoprim, beta-lactam-antibiotics and tetracycline. The occurrence of antibiotic resistance in coliform bacteria isolated from River Rhine provides evidence for the need to develop management strategies to limit the spread of antibiotic resistant bacteria in aquatic environment. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Nanostructured coatings for controlling bacterial biofilms and antibiotic resistance

    OpenAIRE

    Ivanova, Kristina Dimitrova

    2017-01-01

    The accelerated emergence of drug resistant bacteria is one of the most serious problems in healthcare and the difficulties in finding new antibiotics make it even more challenging. To overcome the action of antibiotics bacteria develop effective resistance mechanisms including the formation of biofilms. Biofilms are bacterial communities of cells embedded in a self-produced polymeric matrix commonly found on medical devices such as indwelling catheters. When pathogens adopt this mode of grow...

  11. Effects on combination of antibiotic-resistant bifidobacteria and corresponding antibiotics of survival of irradiated mice

    International Nuclear Information System (INIS)

    Korshunov, V.M.; Pinegin, B.V.; Ivanova, N.P.; Maltsev, V.N.

    1982-01-01

    Elimination of intestinal dysbacteriosis in irradiated animals by combining antibiotics and peparations of bifidobacteria resistant to these antibiotics prolonging the life of these animals was investigated. Broad spectrum antibiotics are used to treat intestinal dysbacteriosis. Bifidobacterial preparations are used to restore the microbial cenosis and their administration is started after antibiotics are discontinued. There are some flaws to deferred administration of bifidobacteria, since the process of colonization of the intestine with commercial bifidobacterial preparations is rather lengthy, and there is slow elevation of bifidobacterium level in the intestinal tract, whereas exogenous recontamination of the intestine by conditionally pathogenic bacteria is possible after antibiotic therapy is discontinued. Use of antibiotics alone could be the cause of intestinal dysbacteriosis

  12. Occurrence and Distribution of Antibiotic-resistant Bacteria and Transfer of Resistance Genes in Lake Taihu

    OpenAIRE

    Yin, Qian; Yue, Dongmei; Peng, Yuke; Liu, Ying; Xiao, Lin

    2013-01-01

    The overuse of antibiotics has accelerated antibiotic resistance in the natural environment, especially fresh water, generating a potential risk for public health around the world. In this study, antibiotic resistance in Lake Taihu was investigated and this was the first thorough data obtained through culture-dependent methods. High percentages of resistance to streptomycin and ampicillin among bacterial isolates were detected, followed by tetracycline and chloramphenicol. Especially high lev...

  13. Taxing Meat: Taking Responsibility for One's Contribution to Antibiotic Resistance.

    Science.gov (United States)

    Giubilini, Alberto; Birkl, Patrick; Douglas, Thomas; Savulescu, Julian; Maslen, Hannah

    2017-04-01

    Antibiotic use in animal farming is one of the main drivers of antibiotic resistance both in animals and in humans. In this paper we propose that one feasible and fair way to address this problem is to tax animal products obtained with the use of antibiotics. We argue that such tax is supported both by (a) deontological arguments, which are based on the duty individuals have to compensate society for the antibiotic resistance to which they are contributing through consumption of animal products obtained with the use of antibiotics; and (b) a cost-benefit analysis of taxing such animal products and of using revenue from the tax to fund alternatives to use of antibiotics in animal farming. Finally, we argue that such a tax would be fair because individuals who consume animal products obtained with the use of antibiotics can be held morally responsible, i.e. blameworthy, for their contribution to antibiotic resistance, in spite of the fact that each individual contribution is imperceptible.

  14. Resistance to antibiotics in Lacid acid bacteria - strain Lactococcus

    Directory of Open Access Journals (Sweden)

    Filipić Brankica

    2015-01-01

    Full Text Available Lactic acid bacteria (LAB are widely used in the food industry, especially in the production of fermented dairy products and meat. The most studied species among Lis Lactococcus lactis. L. lactis strains are of great importance in the production of fermented dairy products such as yogurt, butter, fresh cheese and some kind of semi-hard cheese. Although L. lactis acquired the „Generally Regarded As Safe“ (GRAS status, many investigations indicated that lactococci may act as reservoirs of antibiotic resistance genes, which could be transferred to other bacterial species in human gastrointestinal tract includ­ing pathogens. The genome analysis of L. lactis indicated the presence of at least 40 putative drug transporter genes, and only four multidrug resistance (MDR transporters are functionally characterized: LmrA, LmrP, LmrCD i CmbT. LmrA is the first described MDR transporter in prokaryotes. LmrCD is responsible for resistance to cholate, which is an integral part of human bile and LmrCD is important for intestinal survival of lactococci that are used as probiotics. Secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines. CmbT protein has an effect on the host cell resistance to lincomycin, sulfadiazine, streptomycin, rifampicin, puromycin and sulfametox­azole. Since the food chain is an important way of transmitting resistance genes in human and animal population, it is of great importance to study the mechanisms of resistance in lactococci and other LAB, intended for the food industry. [Projekat Ministarstva nauke Republike Srbije, br. 173019: Izučavanje gena i molekularnih mehanizama u osnovi probiotičke aktivnosti bakterija mlečne kiseline izolovanih sa područja Zapadnog Balkana

  15. Antibiotics in animal feed and their role in resistance development

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar

    2003-01-01

    Animals and humans constitute overlapping reservoirs of resistance, and consequently use of antimicrobials in animals can impact on public health. For example, the occurrence of vancomycin-resistant enterococci in food-animals is associated with the use of avoparcin, a glycopeptide antibiotic used...... as a feed additive for the growth promotion of animals. Vancomycin-resistant enterococci and vancomycin resistance determinants can therefore spread from animals to humans. The bans on avoparcin and other antibiotics as growth promoters in the EU have provided scientists with a unique opportunity......, the effects on animal health and productivity have been very minor....

  16. Antibiotic Resistance Pattern and Molecular Epidemiology of ...

    African Journals Online (AJOL)

    2099 ... Veterinary Medicine, Seoul National University 151-742, Korea, 3Institute of Basic Medical Sciences, Khyber Medical University, .... Culture sensitivity data for 16 antibiotics were recorded .... occupancy and cross-transmission of MRSA.

  17. Klebsiella pneumoniae antibiotic resistance identified by atomic ...

    Indian Academy of Sciences (India)

    Vincenzo Ierardi

    2017-10-03

    Oct 3, 2017 ... back of its high resolution capability, the AFM can analyse the cell .... tains Meropenem, which belongs to the subgroup of car- bapenem. ..... antibiotics using AFM cantilevers as nanomechanical sensors. Nat. Nanotech.

  18. Public Beliefs about Antibiotics, Infection and Resistance: A Qualitative Study

    Directory of Open Access Journals (Sweden)

    Helen Madden

    2013-11-01

    Full Text Available We aimed to gain an in-depth understanding of public views and ways of talking about antibiotics. Four focus groups were held with members of the public. In addition, 39 households were recruited and interviews, diaries of medicine taking, diaries of any contact with medication were used to explore understanding and use of medication. Discussions related to antibiotics were identified and analyzed. Participants in this study were worried about adverse effects of antibiotics, particularly for recurrent infections. Some were concerned that antibiotics upset the body’s “balance”, and many used strategies to try to prevent and treat infections without antibiotics. They rarely used military metaphors about infection (e.g., describing bacteria as invading armies but instead spoke of clearing infections. They had little understanding of the concept of antibiotic resistance but they thought that over-using antibiotics was unwise because it would reduce their future effectiveness. Previous studies tend to focus on problems such as lack of knowledge, or belief in the curative powers of antibiotics for viral illness, and neglect the concerns that people have about antibiotics, and the fact that many people try to avoid them. We suggest that these concerns about antibiotics form a resource for educating patients, for health promotion and social marketing strategies.

  19. Antibiotic tolerance and resistance in biofilms

    DEFF Research Database (Denmark)

    Ciofu, Oana; Tolker-Nielsen, Tim

    2010-01-01

    One of the most important features of microbial biofilms is their tolerance to antimicrobial agents and components of the host immune system. The difficulty of treating biofilm infections with antibiotics is a major clinical problem. Although antibiotics may decrease the number of bacteria...... in biofilms, they will not completely eradicate the bacteria in vivo which may have important clinical consequences in form of relapses of the infection....

  20. Recognition determinants for proteins and antibiotics within 23S rRNA

    DEFF Research Database (Denmark)

    Douthwaite, Stephen Roger; Voldborg, Bjørn Gunnar Rude; Hansen, Lykke Haastrup

    1995-01-01

    Ribosomal RNAs fold into phylogenetically conserved secondary and tertiary structures that determine their function in protein synthesis. We have investigated Escherichia coli 23S rRNA to identify structural elements that interact with antibiotic and protein ligands. Using a combination of molecu......Ribosomal RNAs fold into phylogenetically conserved secondary and tertiary structures that determine their function in protein synthesis. We have investigated Escherichia coli 23S rRNA to identify structural elements that interact with antibiotic and protein ligands. Using a combination......-proteins L10.(L12)4 and L11 and is inhibited by interaction with the antibiotic thiostrepton. The peptidyltransferase center within domain V is inhibited by macrolide, lincosamide, and streptogramin B antibiotics, which interact with the rRNA around nucleotide A2058. Drug resistance is conferred by mutations...

  1. Investigating antibiotic resistance in non-clinical environments

    Directory of Open Access Journals (Sweden)

    Fiona eWalsh

    2013-02-01

    Full Text Available There have been many calls for more information about the natural resistome and these have also highlighted the importance of understanding the soil resistome in the preservation of antibiotics for the treatment of infections. However, to date there have been few studies which have investigated the culturable soil resistome, which highlights the difficulties faced by microbiologists in designing these experiments to produce meaningful data. The World Health Organization definition of resistance is the most fitting to non-clinical environmental studies: Antimicrobial resistance is resistance of a microorganism to an antimicrobial medicine to which it was previously sensitive. The ideal investigation of non-clinical environments for antibiotic resistance of clinical relevance would be using standardized guidelines and breakpoints. This review outlines different definitions and methodologies used to understand antibiotic resistance and suggests how this can be performed outside of the clinical environment.

  2. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options

    Science.gov (United States)

    Lee, Chang-Ro; Lee, Jung Hun; Park, Moonhee; Park, Kwang Seung; Bae, Il Kwon; Kim, Young Bae; Cha, Chang-Jun; Jeong, Byeong Chul; Lee, Sang Hee

    2017-01-01

    Acinetobacter baumannii is undoubtedly one of the most successful pathogens responsible for hospital-acquired nosocomial infections in the modern healthcare system. Due to the prevalence of infections and outbreaks caused by multi-drug resistant A. baumannii, few antibiotics are effective for treating infections caused by this pathogen. To overcome this problem, knowledge of the pathogenesis and antibiotic resistance mechanisms of A. baumannii is important. In this review, we summarize current studies on the virulence factors that contribute to A. baumannii pathogenesis, including porins, capsular polysaccharides, lipopolysaccharides, phospholipases, outer membrane vesicles, metal acquisition systems, and protein secretion systems. Mechanisms of antibiotic resistance of this organism, including acquirement of β-lactamases, up-regulation of multidrug efflux pumps, modification of aminoglycosides, permeability defects, and alteration of target sites, are also discussed. Lastly, novel prospective treatment options for infections caused by multi-drug resistant A. baumannii are summarized. PMID:28348979

  3. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study

    International Nuclear Information System (INIS)

    Cheng, Weixiao; Li, Jianan; Wu, Ying; Xu, Like; Su, Chao; Qian, Yanyun; Zhu, Yong-Guan; Chen, Hong

    2016-01-01

    Highlights: • TetQ had the highest relative abundance and tetG was the most persistent gene. • The anaerobic digestion has no effective removal of most ARGs. • The abundance of ARGs in soils and fishpond was higher than that of control system. • Positive correlations were observed between the total ARGs and TN, TP and TOC. - Abstract: This study aims to determine abundance and persistence of antibiotics and antibiotic resistance genes (ARGs) in eco-agricultural system (EAS), which starts from swine feces to anaerobic digestion products, then application of anaerobic digestion solid residue (ADSR) and anaerobic digestion liquid residue (ADLR) to the soil to grow ryegrass, one of swine feed. Oxytetracycline had the highest concentration in manure reaching up to 138.7 mg/kg. Most of antibiotics could be effectively eliminated by anaerobic digestion and removal rates ranged from 11% to 86%. ARGs abundance fluctuated within EAS. TetQ had the highest relative abundance and the relative abundance of tetG had the least variation within the system, which indicates that tetG is persistent in the agricultural environment and requires more attention. Compared to the relative abundance in manure, tetC and tetM increased in biogas residue while three ribosomal protection proteins genes (tetO, tetQ, tetW) decreased (p 0.05). Most ARGs in downstream components (soils and fishpond) of EAS showed significantly higher relative abundance than the control agricultural system (p < 0.05), except for tetG and sulI.

  4. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Weixiao; Li, Jianan; Wu, Ying; Xu, Like; Su, Chao; Qian, Yanyun [Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhu, Yong-Guan [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Chen, Hong, E-mail: chen_hong@zju.edu.cn [Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-03-05

    Highlights: • TetQ had the highest relative abundance and tetG was the most persistent gene. • The anaerobic digestion has no effective removal of most ARGs. • The abundance of ARGs in soils and fishpond was higher than that of control system. • Positive correlations were observed between the total ARGs and TN, TP and TOC. - Abstract: This study aims to determine abundance and persistence of antibiotics and antibiotic resistance genes (ARGs) in eco-agricultural system (EAS), which starts from swine feces to anaerobic digestion products, then application of anaerobic digestion solid residue (ADSR) and anaerobic digestion liquid residue (ADLR) to the soil to grow ryegrass, one of swine feed. Oxytetracycline had the highest concentration in manure reaching up to 138.7 mg/kg. Most of antibiotics could be effectively eliminated by anaerobic digestion and removal rates ranged from 11% to 86%. ARGs abundance fluctuated within EAS. TetQ had the highest relative abundance and the relative abundance of tetG had the least variation within the system, which indicates that tetG is persistent in the agricultural environment and requires more attention. Compared to the relative abundance in manure, tetC and tetM increased in biogas residue while three ribosomal protection proteins genes (tetO, tetQ, tetW) decreased (p < 0.05), with other genes showing no significant change after anaerobic fermentation (p > 0.05). Most ARGs in downstream components (soils and fishpond) of EAS showed significantly higher relative abundance than the control agricultural system (p < 0.05), except for tetG and sulI.

  5. ANTIBIOTIC RESISTANCE IN THE OPPORTUNISTIC PATHOGEN STENOTROPHOMONAS MALTOPHILIA

    Directory of Open Access Journals (Sweden)

    María Blanca Sánchez

    2015-06-01

    Full Text Available Stenotrophomonas maltophilia is an environmental bacterium found in the soil, associated with plants and animals, and in aquatic environments. It is also an opportunistic pathogen now causing an increasing number of nosocomial infections. The treatment of S. maltophilia is quite difficult given its intrinsic resistance to a number of antibiotics, and because it is able to acquire new resistances via horizontal gene transfer and mutations. Certainly, strains resistant to quinolones, cotrimoxale and/or cephalosporins - antibiotics commonly used to treat S. maltophilia infections - have emerged. The increasing number of available S. maltophilia genomes has allowed the identification and annotation of a large number of antimicrobial and heavy metal resistance genes. Most encode inactivating enzymes and efflux pumps, but information on their role in intrinsic and acquired resistance is limited. Non-typical antibiotic resistance mechanisms that also form part of the intrinsic resistome have been identified via mutant library screening. These include non-typical antibiotic resistance genes, such as bacterial metabolism genes, and non-inheritable resistant phenotypes, such as biofilm formation and persistence. Their relationships with resistance are complex and require further study.

  6. Increases of Antibiotic Resistance in Excessive Use of Antibiotics in Smallholder Dairy Farms in Northern Thailand

    Directory of Open Access Journals (Sweden)

    W. Suriyasathaporn

    2012-09-01

    Full Text Available Antibiotic resistance patterns of bacterial isolates from both quarter teat-tip swabs and their quarter milk samples were evaluated in smallholder dairy farms in northern Thailand with excessive use of antibiotics (HIGH compared with normal use (NORM. Results from teat-tip swab samples showed that the percentage of Bacillus spp. resistance to overall antibiotics was significantly lower in the NORM group than that of the HIGH group, whereas, the resistance percentage of coagulase-negative staphylococci in the NORM group was higher than that of the HIGH one. The overall mastitis-causing bacteria isolated from milk samples were environmental streptococci (13.8%, coagulase-negative staphylococci (9.9%, Staphylococcus aureus (5.4%, and Corynebacterium bovis (4.5%. Both staphylococci and streptococci had significantly higher percentages of resistance to cloxacillin and oxacillin in the HIGH group when compared to the NORM one. An occurrence of vancomycin-resistant bacteria was also observed in the HIGH group. In conclusion, the smallholder dairy farms with excessive use of antibiotics had a higher probability of antibiotic-resistant pattern than the farms with normal use.

  7. SURVEILLANCE AND CONTROL OF ANTIBIOTIC RESISTANCE IN THE MEDITERRANEAN REGION

    Directory of Open Access Journals (Sweden)

    Walter Ricciardi

    2016-07-01

    Full Text Available Antibiotic resistance is one of the most relevant problems in the healthcare: the growth of resistant micro-organisms in healthcare settings is a worrisome threat, raising length to stay (LOS, morbidity and mortality in those patients. The importance of the antibiotic resistance and its spread around the world, gave rise to the activation of several surveillance systems, based especially on the collection of laboratory data to local or national level. The objective of this work is to carry out a review of the scientific literature existing on the topic and scientific activities related to surveillance on antibiotic resistance in countries bordering the Mediterranean Sea. Recent Data from European Centre for Disease Prevention and Control (November 2015 show, for different combinations bacterium-drug, an increase of resistance from North to South and from West to East of Europe; it is particularly worrying the phenomenon of resistance carried out by some gram negative, specifically Klebsiella pneumoniae and Escherichia coli to third-generation cephalosporin, often combined in opposition to fluoroquinolones and amino glycosides. Is particularly relevant the incidence of resistance to carbapenems by strains of Enterobacteriaceae (Klebsiella included. The resistance exerted by MRSA (Methicillin-resistant Staphylococcus aureus continues to be relevant, albeit showing some decline in recent years. The incidence of resistance carried on by Streptococcus pneumoniae is stable and is mainly relevant to macrolides. Finally, a significant increase in recording relatively exercised by Enterococcus faecium to Vancomycin. Detecting, preventing, and controlling antibiotic resistance requires strategic, coordinated, and sustained efforts. It also depends on the engagement of governments, academia, industry, healthcare providers, the general public, and the agricultural community, as well as international partners. Committing to combating antibiotic-resistant

  8. Adaptive Landscapes of Resistance Genes Change as Antibiotic Concentrations Change.

    Science.gov (United States)

    Mira, Portia M; Meza, Juan C; Nandipati, Anna; Barlow, Miriam

    2015-10-01

    Most studies on the evolution of antibiotic resistance are focused on selection for resistance at lethal antibiotic concentrations, which has allowed the detection of mutant strains that show strong phenotypic traits. However, solely focusing on lethal concentrations of antibiotics narrowly limits our perspective of antibiotic resistance evolution. New high-resolution competition assays have shown that resistant bacteria are selected at relatively low concentrations of antibiotics. This finding is important because sublethal concentrations of antibiotics are found widely in patients undergoing antibiotic therapies, and in nonmedical conditions such as wastewater treatment plants, and food and water used in agriculture and farming. To understand the impacts of sublethal concentrations on selection, we measured 30 adaptive landscapes for a set of TEM β-lactamases containing all combinations of the four amino acid substitutions that exist in TEM-50 for 15 β-lactam antibiotics at multiple concentrations. We found that there are many evolutionary pathways within this collection of landscapes that lead to nearly every TEM-genotype that we studied. While it is known that the pathways change depending on the type of β-lactam, this study demonstrates that the landscapes including fitness optima also change dramatically as the concentrations of antibiotics change. Based on these results we conclude that the presence of multiple concentrations of β-lactams in an environment result in many different adaptive landscapes through which pathways to nearly every genotype are available. Ultimately this may increase the diversity of genotypes in microbial populations. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Considering resistance in systematic reviews of antibiotic treatment.

    Science.gov (United States)

    Leibovici, Leonard; Soares-Weiser, Karla; Paul, Mical; Goldberg, Elad; Herxheimer, Andrew; Garner, Paul

    2003-10-01

    Microorganisms resistant to antibiotic drugs are a threat to the health and chances of survival of patients. Systematic reviews on antibiotic drugs that ignore the topic of resistance present readers with a skewed view, emphasizing short-term efficacy or effectiveness while ignoring long-term consequences. To examine whether systematic reviews of antibiotic treatment consider resistance; if not, to find out whether data on resistance were reported in the original trials; and based on that, to offer a framework for taking resistance into account in systematic reviews. The Cochrane Database of Systematic Reviews (the Cochrane Library, 2001, issue 2); and MEDLINE, 1996-2000. (i) Systematic reviews or meta-analyses of antimicrobial therapy, published during 1996-2000. (ii) Randomized, controlled trials abstracted in systematic reviews that addressed a topic highly relevant to antibiotic resistance. We examined each systematic review, and each article, to see whether the implications of resistance were discussed; and whether data on resistance were collected. Out of 111 systematic reviews, only 44 (40%) discussed resistance. Ten reviews (9%) planned or performed collection of data on the response of patients with susceptible or resistant isolates. In 22 systematic reviews (20%), collection of data on induction of resistance was planned or performed. The topic of 41 reviews was judged highly relevant to resistance, and these reviews extracted data from 337 articles, out of which we retrieved 279 articles (83%). In 201 (72%) articles, resistance was discussed or data pertaining to it were collected. Ninety-seven articles (35%) gave actual data on resistance of pathogens to the study drugs, 71 articles (25%) data on efficacy of antibiotic drugs in patients with susceptible and resistant pathogens, and 55 articles (20%) provided data on infection or colonization with resistant strains during treatment. Most systematic reviews on antibiotic treatment ignored the issue of

  10. Occurrence and Distribution of Antibiotic-resistant Bacteria and Transfer of Resistance Genes in Lake Taihu

    Science.gov (United States)

    Yin, Qian; Yue, Dongmei; Peng, Yuke; Liu, Ying; Xiao, Lin

    2013-01-01

    The overuse of antibiotics has accelerated antibiotic resistance in the natural environment, especially fresh water, generating a potential risk for public health around the world. In this study, antibiotic resistance in Lake Taihu was investigated and this was the first thorough data obtained through culture-dependent methods. High percentages of resistance to streptomycin and ampicillin among bacterial isolates were detected, followed by tetracycline and chloramphenicol. Especially high levels of ampicillin resistance in the western and northern regions were illustrated. Bacterial identification of the isolates selected for further study indicated the prevalence of some opportunistic pathogens and 62.0% of the 78 isolates exhibited multiple antibiotic resistance. The presence of ESBLs genes was in the following sequence: blaTEM > blaSHV > blaCTMX and 38.5% of the isolates had a class I integrase gene. Of all tested strains, 80.8% were able to transfer antibiotic resistance through conjugation. We also concluded that some new families of human-associated ESBLs and AmpC genes can be found in natural environmental isolates. The prevalence of antibiotic resistance and the dissemination of transferable antibiotic resistance in bacterial isolates (especially in opportunistic pathogens) was alarming and clearly indicated the urgency of realizing the health risks of antibiotic resistance to human and animal populations who are dependent on Lake Taihu for water consumption. PMID:24240317

  11. Antibiotic prophylaxis in the era of multidrug-resistant bacteria.

    Science.gov (United States)

    Wittekamp, Bastiaan H J; Bonten, Marc J M

    2012-06-01

    The prophylactic use of antibiotics can only be justified when clinical benefits on relevant patient outcomes, such as morbidity or mortality, cost-effectiveness, and absence of immediate emergence of antibiotic resistance have been unequivocally demonstrated. In some intensive care unit (ICU) patients, antibiotic prophylaxis is used as part of selective digestive tract decontamination (SDD) and selective oropharyngeal decontamination (SOD). Recent trials in ICUs with low levels of antibiotic resistance strongly suggest that both regimens reduce the incidence of ICU-acquired infections and improve patient survival. Naturally, the unique microbial ecology of such settings reduce generalizability of results. Therefore, the routine use of SOD and SDD remains highly controversial, especially in ICUs with higher levels of antibiotic resistance. Moreover, convincing evidence is still missing on several important aspects related to efficacy and safety. Despite numerous trials, effects of SDD and SOD on antibiotic resistance during and after decolonization treatment have still been insufficiently investigated, and existing results are contradicting. Furthermore, the effects of both regimens on the non-culturable part of the intestinal flora remain unknown. Finally, cost-effectiveness has not been thoroughly investigated, and prices of the antimicrobial agents that have been used have increased dramatically in recent years. In this review, important knowledge gaps that so far prevent the widespread use of SDD and SOD will be addressed.

  12. Profile of sensitivity and resistance to antibiotics of Staphylococcus ...

    African Journals Online (AJOL)

    Staphylococcus aureus is a bacterial specie that opposed more resistance again many antibiotics. This study aimed to determine the resistance profile of Staphylococcus aureus isolated from biological patient's liquids. A total of 303 samples including urine and vaginal pus samples from human were collected.

  13. Microbial profile, antibiotic sensitivity and heat resistance of bacterial ...

    African Journals Online (AJOL)

    Aim: This study was aimed at determining the prevalence, antibiotic resistance and heat resistance profile of bacterial isolates obtained from ready to eat roasted beef (suya) sold in Abuja, Nigeria. Methods and Results: Fifty samples of suya were purchased from different vendors within the Federal Capital Territory and ...

  14. Prevalence, antibiotic-resistance properties and enterotoxin gene ...

    African Journals Online (AJOL)

    Prevalence, antibiotic-resistance properties and enterotoxin gene profile of Bacillus cereus strains isolated from milk-based baby foods. ... Conclusion: Considerable prevalence of resistant and toxigenic B. cereus and high consumption of milk-based infant foods in Iran, represent an important public health issue which ...

  15. Antibiotic resistant Salmonella and Escherichia coli isolated from ...

    African Journals Online (AJOL)

    Results: A hundred and four indigenous chicken rectal swabs were analysed, of which 67.3% were contaminated with Escherichia coli and 12.5% with Salmonella typhimurium. Seventy Escherichia coli isolates showed resistance phenotypes to one, two or more antibiotics. The most common antimicrobial resistance pattern ...

  16. Antibiotic Resistant Microbiota in the Swine Intestinal Tract

    Science.gov (United States)

    The healthy swine intestine is populated by upwards of 500 bacterial species, mainly obligate anaerobes. Our research focuses on the roles of these commensal bacteria in antimicrobial resistance and on interventions to reduce the prevalence of antibiotic resistant bacteria. In comparisons of intes...

  17. Antibiotic resistance profile of staphylococci from clinical sources ...

    African Journals Online (AJOL)

    Infants, children and the aged are among the groups most vulnerable to microbial infections more so when these microbial agents become resistant to antimicrobials. The antibiotic resistant profile of Staphylococcus aureus and selected coagulase negative staphylococci were determined by standard methods. Of the 178 ...

  18. A study of the intestinal carriage of antibiotic resistant ...

    African Journals Online (AJOL)

    Results: 14.0% of the faecal samples yielded S. aureus with the carriage rate among the subjects being found to be highest at about 1 month approximately in subjected ages. Sixty-five percent of the isolates were found to be resistant to more than three different antibiotics with more than 50% being resistant to penicillin, ...

  19. Antibiotic Resistance in Intensive Care Units: Dynamics of Colonization

    NARCIS (Netherlands)

    Nijssen, S.

    2006-01-01

    The dynamics of colonization of antibiotic-resistant bacteria in hospital settings are complex and depend on bacteria and healthcare worker related characteristics. Many factors influence colonization and in addition these factors interact with each other as well. Knowledge of local resistance

  20. Nationwide survey of Helicobacter pylori antibiotic resistance in Thailand.

    Science.gov (United States)

    Vilaichone, Ratha-Korn; Gumnarai, Pornpen; Ratanachu-Ek, Thawee; Mahachai, Varocha

    2013-12-01

    The objectives of this study are to survey the antibiotic-resistant pattern of Helicobacter pylori infection in different geographical locations in Thailand and to determine factors associated with antibiotic resistance. Dyspeptic patients undergoing upper gastrointestinal endoscopy from the Northern, Northeastern, Central, and Southern regions of Thailand between January 2004 and December 2012 were enrolled in this study. Two antral gastric biopsies were obtained for culture; susceptibility tests were performed using E-test. A total of 3964 were enrolled, and 1350 patients (34.1%) were infected with H. pylori as identified by rapid urease test. Cultures were positive in 619 isolates. E-test for amoxicillin, clarithromycin, metronidazole, and tetracycline were successful in 400 isolates and for levofloxacin and ciprofloxacin in 208 isolates. Antibiotic resistance was present in 50.3% including amoxicillin 5.2%, tetracycline 1.7%, clarithromycin 3.7%, metronidazole 36%, ciprofloxacin 7.7%, levofloxacin 7.2%, and multi-drugs in 4.2%. Clarithromycin resistance was significantly more common in those older than 40 years (i.e., 100% versus 0%; P = 0.04). The prevalence of metronidazole resistant in Southern Thailand was significantly higher than in the Northeastern region (66.7% versus 33.3% P = 0.04). Metronidazole resistance remains the most common antibiotic resistant type of H. pylori in Thailand. The pattern of H. pylori antibiotic resistance over 9 years demonstrated a fall in clarithromycin resistance such that currently age >40 years is a predictor for clarithromycin resistance in Thailand. Quinolone resistance is a growing problem. © 2013.

  1. Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands

    NARCIS (Netherlands)

    Sabri, N.A.; Schmitt, H.; Zaan, Van der B.; Gerritsen, H.W.; Zuidema, T.; Rijnaarts, H.H.M.; Langenhoff, A.A.M.

    2018-01-01

    Antibiotics are being used intensively for humans and livestock worldwide and have led to the presence of antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment. Wastewater treatment plants (WWTPs) have been identified as a point source for ARB&Gs, and

  2. Antibiotic-Impregnated Central Venous Catheters Do Not Change Antibiotic Resistance Patterns.

    Science.gov (United States)

    Turnbull, Isaiah R; Buckman, Sara A; Horn, Christopher B; Bochicchio, Grant V; Mazuski, John E

    2018-01-01

    Antibiotic-impregnated central venous catheters (CVCs) decrease the incidence of infection in high-risk patients. However, use of these catheters carries the hypothetical risk of inducing antibiotic resistance. We hypothesized that routine use of minocycline and rifampin-impregnated catheters (MR-CVC) in a single intensive care unit (ICU) would change the resistance profile for Staphylococcus aureus. We reviewed antibiotic susceptibilities of S. aureus isolates obtained from blood cultures in a large urban teaching hospital from 2002-2015. Resistance patterns were compared before and after implementation of MR-CVC use in the surgical ICU (SICU) in August 2006. We also compared resistance patterns of S. aureus obtained in other ICUs and in non-ICU patients, in whom MR-CVCs were not used. Data for rifampin, oxacillin, and clindamycin were available for 9,703 cultures; tetracycline resistance data were available for 4,627 cultures. After implementation of MR-CVC use in the SICU, rifampin resistance remained unchanged, with rates the same as in other ICU and non-ICU populations (3%). After six years of use of MR-CVCs in the SICU, the rate of tetracycline resistance was unchanged in all facilities (1%-3%). The use of MR-CVCs was not associated with any change in S. aureus oxacillin-resistance rates in the SICU (66% vs. 60%). However, there was a significant decrease in S. aureus clindamycin resistance (59% vs. 34%; p resistance of S. aureus isolates to rifampin or tetracyclines.

  3. Excretion of Antibiotic Resistance Genes by Dairy Calves Fed Milk Replacers with Varying Doses of Antibiotics

    Science.gov (United States)

    Thames, Callie H.; Pruden, Amy; James, Robert E.; Ray, Partha P.; Knowlton, Katharine F.

    2012-01-01

    Elevated levels of antibiotic resistance genes (ARGs) in soil and water have been linked to livestock farms and in some cases feed antibiotics may select for antibiotic resistant gut microbiota. The purpose of this study was to examine the establishment of ARGs in the feces of calves receiving milk replacer containing no antibiotics versus subtherapeutic or therapeutic doses of tetracycline and neomycin. The effect of antibiotics on calf health was also of interest. Twenty-eight male and female dairy calves were assigned to one of the three antibiotic treatment groups at birth and fecal samples were collected at weeks 6, 7 (prior to weaning), and 12 (5 weeks after weaning). ARGs corresponding to the tetracycline (tetC, tetG, tetO, tetW, and tetX), macrolide (ermB, ermF), and sulfonamide (sul1, sul2) classes of antibiotics along with the class I integron gene, intI1, were monitored by quantitative polymerase chain reaction as potential indicators of direct selection, co-selection, or horizontal gene transfer of ARGs. Surprisingly, there was no significant effect of antibiotic treatment on the absolute abundance (gene copies per gram wet manure) of any of the ARGs except ermF, which was lower in the antibiotic-treated calf manure, presumably because a significant portion of host bacterial cells carrying ermF were not resistant to tetracycline or neomycin. However, relative abundance (gene copies normalized to 16S rRNA genes) of tetO was higher in calves fed the highest dose of antibiotic than in the other treatments. All genes, except tetC and intI1, were detectable in feces from 6 weeks onward, and tetW and tetG significantly increased (P calves. Overall, the results provide new insight into the colonization of calf gut flora with ARGs in the early weeks. Although feed antibiotics exerted little effect on the ARGs monitored in this study, the fact that they also provided no health benefit suggests that the greater than conventional nutritional intake applied

  4. Antibiotic resistance potential of the healthy preterm infant gut microbiome

    Directory of Open Access Journals (Sweden)

    Graham Rose

    2017-01-01

    Full Text Available Background Few studies have investigated the gut microbiome of infants, fewer still preterm infants. In this study we sought to quantify and interrogate the resistome within a cohort of premature infants using shotgun metagenomic sequencing. We describe the gut microbiomes from preterm but healthy infants, characterising the taxonomic diversity identified and frequency of antibiotic resistance genes detected. Results Dominant clinically important species identified within the microbiomes included C. perfringens, K. pneumoniae and members of the Staphylococci and Enterobacter genera. Screening at the gene level we identified an average of 13 antimicrobial resistance genes per preterm infant, ranging across eight different antibiotic classes, including aminoglycosides and fluoroquinolones. Some antibiotic resistance genes were associated with clinically relevant bacteria, including the identification of mecA and high levels of Staphylococci within some infants. We were able to demonstrate that in a third of the infants the S. aureus identified was unrelated using MLST or metagenome assembly, but low abundance prevented such analysis within the remaining samples. Conclusions We found that the healthy preterm infant gut microbiomes in this study harboured a significant diversity of antibiotic resistance genes. This broad picture of resistances and the wider taxonomic diversity identified raises further caution to the use of antibiotics without consideration of the resident microbial communities.

  5. Sponge microbiota are a reservoir of functional antibiotic resistance genes

    Directory of Open Access Journals (Sweden)

    Dennis Versluis

    2016-11-01

    Full Text Available Wide application of antibiotics has contributed to the evolution of multi-drug resistant human pathogens, resulting in poorer treatment outcomes for infections. In the marine environment, seawater samples have been investigated as a resistance reservoir; however, no studies have methodically examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional resistance genes in the sponges Aplysina aerophoba, Petrosia ficiformis and Corticium candelabrum. We obtained 37 insert sequences facilitating resistance to D-cycloserine (n=6, gentamicin (n=1, amikacin (n=7, trimethoprim (n=17, chloramphenicol (n=1, rifampicin (n=2 and ampicillin (n=3. Fifteen of 37 inserts harboured resistance genes that shared <90% amino acid identity with known gene products, whereas on 13 inserts no resistance gene could be identified with high confidence, in which case we predicted resistance to be mainly mediated by antibiotic efflux. One marine-specific ampicillin-resistance-conferring β-lactamase was identified in the genus Pseudovibrio with 41% global amino acid identity to the closest β-lactamase with demonstrated functionality, and subsequently classified into a new family termed PSV. Taken together, our results show that sponge microbiota host diverse and novel resistance genes that may be harnessed by phylogenetically distinct bacteria.

  6. Effects of combination of antibiotic-resistant bifidobacteria and corresponding antibiotics on survival of irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Korshunov, V.M.; Pinegin, B.V.; Ivanova, N.P.; Mal' tsev, V.N.

    1982-05-01

    Broad-spectrum antibiotics are used to treat intestinal dysbacteriosis of diverse etiology, including postradiation dysbacteriosis. Antibiotic therapy is instrumental in decontaminating the intestine. In addition to pathogenic microorganisms, there is disappearance of lactobacilli and bifidobacteria which perform several important and useful functions. For this reason, in addition to antibiotics, bifidobacterial preparations are used to restore the microbial cenosis and administration thereof is started after antibiotics are discontinued. There are some flaws to deferred administration of bifidobacteria, since the process of colonization of the intestine with commercial bifidobacterial preparations is rather lengthy, and there is slow elevation of bididobacterium level in the intestinal tract, whereas exogenous recontamination of the intestine by conditionally pathogenic bacteria is possible after antibiotic therapy is discontinued. On the other hand, use of antibiotics alone could, in turn, be the cause of intestinal dysbacteriosis. Our objective was to eliminate intestinal dysbacteriosis in irradiated animals by means of combining antibiotics and preparations of bifidobacteria resistant to these antibiotics, and thus prolong the life of these animals.

  7. Characterization of Antibiotics and Antibiotic Resistance Genes on an Ecological Farm System

    Directory of Open Access Journals (Sweden)

    Songhe Zhang

    2015-01-01

    Full Text Available There is a growing concern worldwide about the prevalence of antibiotics and antibiotic resistance genes (ARGs on the farm. In this study, we investigated the distribution of seven antibiotics and ten ARGs in fresh and dried pig feces, in biogas slurry, and in grape-planting soil from an ecological farm. Antibiotics including sulfamethazine, norfloxacin, ofloxacin, tetracycline, oxytetracycline, and chlortetracycline were detected in these samples (except for sulfamethoxazole in dried feces. In general, antibiotics levels in samples were in the sequence: biogas slurry > fresh feces > soil or dried feces. Results of ecological risk assessments revealed that among the seven antibiotics chlortetracycline showed the highest ecological risk. Among the ten ARGs, sulI and tetO were the most prevalent on this ecological farm. There were positive correlations between certain ARGs and the corresponding antibiotics on this ecological farm. Therefore, continuous monitoring of antibiotics and their corresponding ARGs should be conducted in the agroecosystem near the concentrated animal farming operation systems.

  8. Macrolide Resistance Mediated by a Bifidobacterium breve Membrane Protein

    OpenAIRE

    Margolles, Abelardo; Moreno, José Antonio; van Sinderen, Douwe; de los Reyes-Gavilán, Clara G.

    2005-01-01

    A gene coding for a hypothetical membrane protein from Bifidobacterium breve was expressed in Lactococcus lactis. Immunoblotting demonstrated that this protein is located in the membrane. Phenotypical changes in sensitivity towards 21 antibiotics were determined. The membrane protein-expressing cells showed higher levels of resistance to several macrolides.

  9. Anthropogenic antibiotic resistance genes mobilization to the polar regions.

    Science.gov (United States)

    Hernández, Jorge; González-Acuña, Daniel

    2016-01-01

    Anthropogenic influences in the southern polar region have been rare, but lately microorganisms associated with humans have reached Antarctica, possibly from military bases, fishing boats, scientific expeditions, and/or ship-borne tourism. Studies of seawater in areas of human intervention and proximal to fresh penguin feces revealed the presence of Escherichia coli strains least resistant to antibiotics in penguins, whereas E. coli from seawater elsewhere showed resistance to one or more of the following antibiotics: ampicillin, tetracycline, streptomycin, and trim-sulfa. In seawater samples, bacteria were found carrying extended-spectrum β-lactamase (ESBL)-type CTX-M genes in which multilocus sequencing typing (MLST) showed different sequence types (STs), previously reported in humans. In the Arctic, on the contrary, people have been present for a long time, and the presence of antibiotic resistance genes (ARGs) appears to be much more wide-spread than was previously reported. Studies of E coli from Arctic birds (Bering Strait) revealed reduced susceptibility to antibiotics, but one globally spreading clone of E. coli genotype O25b-ST131, carrying genes of ESBL-type CTX-M, was identified. In the few years between sample collections in the same area, differences in resistance pattern were observed, with E. coli from birds showing resistance to a maximum of five different antibiotics. Presence of resistance-type ESBLs (TEM, SHV, and CTX-M) in E. coli and Klebsiella pneumoniae was also confirmed by specified PCR methods. MLST revealed that those bacteria carried STs that connect them to previously described strains in humans. In conclusion, bacteria previously related to humans could be found in relatively pristine environments, and presently human-associated, antibiotic-resistant bacteria have reached a high global level of distribution that they are now found even in the polar regions.

  10. Rapid determination of antibiotic resistance in E. coli using dielectrophoresis

    International Nuclear Information System (INIS)

    Hoettges, Kai F; Dale, Jeremy W; Hughes, Michael P

    2007-01-01

    In recent years, infections due to antibiotic-resistant strains of bacteria such as methillicin-resistant Staphylococcus aureus and ciprofloxacin-resistant Escherichia coli are on the rise, and with them the demand for rapid antibiotic testing is also rising. Conventional tests, such as disc diffusion testing, require a primary sample to be tested in the presence of a number of antibiotics to verify which antibiotics suppress growth, which take approximately 24 h to complete and potentially place the patient at severe risk. In this paper we describe the use of dielectrophoresis as a rapid marker of cell death, by detecting changes in the electrophysiology of the cell caused by the administration of an antibiotic. In contrast to other markers, the electrophysiology of the cell changes rapidly during cell death allowing live cells to be distinguished from dead (or dying) cells without the need for culturing. Using polymyxin B as an example antibiotic, our studies indicate that significant changes in cell characteristics can be observed as soon as 1 h passes after isolating a culture from nutrient broth

  11. A new antibiotic kills pathogens without detectable resistance.

    Science.gov (United States)

    Ling, Losee L; Schneider, Tanja; Peoples, Aaron J; Spoering, Amy L; Engels, Ina; Conlon, Brian P; Mueller, Anna; Schäberle, Till F; Hughes, Dallas E; Epstein, Slava; Jones, Michael; Lazarides, Linos; Steadman, Victoria A; Cohen, Douglas R; Felix, Cintia R; Fetterman, K Ashley; Millett, William P; Nitti, Anthony G; Zullo, Ashley M; Chen, Chao; Lewis, Kim

    2015-01-22

    Antibiotic resistance is spreading faster than the introduction of new compounds into clinical practice, causing a public health crisis. Most antibiotics were produced by screening soil microorganisms, but this limited resource of cultivable bacteria was overmined by the 1960s. Synthetic approaches to produce antibiotics have been unable to replace this platform. Uncultured bacteria make up approximately 99% of all species in external environments, and are an untapped source of new antibiotics. We developed several methods to grow uncultured organisms by cultivation in situ or by using specific growth factors. Here we report a new antibiotic that we term teixobactin, discovered in a screen of uncultured bacteria. Teixobactin inhibits cell wall synthesis by binding to a highly conserved motif of lipid II (precursor of peptidoglycan) and lipid III (precursor of cell wall teichoic acid). We did not obtain any mutants of Staphylococcus aureus or Mycobacterium tuberculosis resistant to teixobactin. The properties of this compound suggest a path towards developing antibiotics that are likely to avoid development of resistance.

  12. Induction of a stable sigma factor SigR by translation-inhibiting antibiotics confers resistance to antibiotics

    OpenAIRE

    Yoo, Ji-Sun; Oh, Gyeong-Seok; Ryoo, Sungweon; Roe, Jung-Hye

    2016-01-01

    Antibiotic-producing streptomycetes are rich sources of resistance mechanisms against endogenous and exogenous antibiotics. An ECF sigma factor ?R (SigR) is known to govern the thiol-oxidative stress response in Streptomyces coelicolor. Amplification of this response is achieved by producing an unstable isoform of ?R called ?R?. In this work, we present evidence that antibiotics induce the SigR regulon via a redox-independent pathway, leading to antibiotic resistance. The translation-inhibiti...

  13. Genomic and metagenomic technologies to explore the antibiotic resistance mobilome.

    Science.gov (United States)

    Martínez, José L; Coque, Teresa M; Lanza, Val F; de la Cruz, Fernando; Baquero, Fernando

    2017-01-01

    Antibiotic resistance is a relevant problem for human health that requires global approaches to establish a deep understanding of the processes of acquisition, stabilization, and spread of resistance among human bacterial pathogens. Since natural (nonclinical) ecosystems are reservoirs of resistance genes, a health-integrated study of the epidemiology of antibiotic resistance requires the exploration of such ecosystems with the aim of determining the role they may play in the selection, evolution, and spread of antibiotic resistance genes, involving the so-called resistance mobilome. High-throughput sequencing techniques allow an unprecedented opportunity to describe the genetic composition of a given microbiome without the need to subculture the organisms present inside. However, bioinformatic methods for analyzing this bulk of data, mainly with respect to binning each resistance gene with the organism hosting it, are still in their infancy. Here, we discuss how current genomic methodologies can serve to analyze the resistance mobilome and its linkage with different bacterial genomes and metagenomes. In addition, we describe the drawbacks of current methodologies for analyzing the resistance mobilome, mainly in cases of complex microbiotas, and discuss the possibility of implementing novel tools to improve our current metagenomic toolbox. © 2016 New York Academy of Sciences.

  14. World alliance against antibiotic resistance: The WAAAR declaration against antibiotic resistance.

    Science.gov (United States)

    Carlet, Jean

    2015-01-01

    We must change how antibiotics are used and adopt proactive strategies, similar to those used to save endangered species. Preservation of the efficacy of antibiotics and to stabilization of antibiotic-susceptible bacterial ecosystems should be global goals. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  15. Development of an antibiotic marker-free platform for heterologous protein production in Streptomyces.

    Science.gov (United States)

    Sevillano, Laura; Díaz, Margarita; Santamaría, Ramón I

    2017-09-26

    The industrial use of enzymes produced by microorganisms is continuously growing due to the need for sustainable solutions. Nevertheless, many of the plasmids used for recombinant production of proteins in bacteria are based on the use of antibiotic resistance genes as selection markers. The safety concerns and legal requirements surrounding the increased use of antibiotic resistance genes have made the development of new antibiotic-free approaches essential. In this work, a system completely free of antibiotic resistance genes and useful for the production of high yields of proteins in Streptomyces is described. This system is based on the separation of the two components of the yefM/yoeBsl (antitoxin/toxin) operon; the toxin (yoeBsl) gene, responsible for host death, is integrated into the genome and the antitoxin gene (yefMsl), which inactivates the toxin, is located in the expression plasmid. To develop this system, the toxin gene was integrated into the genome of a strain lacking the complete operon, and the antibiotic resistance gene integrated along with the toxin was eliminated by Cre recombinase to generate a final host strain free of any antibiotic resistance marker. In the same way, the antibiotic resistance gene from the final expression plasmid was removed by Dre recombinase. The usefulness of this system was analysed by checking the production of two hydrolases from different Streptomyces. Production of both proteins, with potential industrial use, was high and stable over time after strain storage and after serial subcultures. These results support the robustness and stability of the positive selection system developed. The total absence of antibiotic resistance genes makes this system a powerful tool for using Streptomyces as a host to produce proteins at the industrial level. This work is the first Streptomyces antibiotic marker-free system to be described. Graphical abstract Antibiotic marker-free platform for protein expression in Streptomyces

  16. The routine use of antibiotics to promote animal growth does little to benefit protein undernutrition in the developing world

    DEFF Research Database (Denmark)

    Collignon, P.; Wegener, Henrik Caspar; Braam, P.

    2005-01-01

    Some persons argue that the routine addition of antibiotics to animal feed will help alleviate protein undernutrition in developing countries by increasing meat production. In contrast, we estimate that, if all routine antibiotic use in animal feed were ceased, there would be negligible effects...... in these countries. Poultry and pork production are unlikely to decrease by more than 2%. Average daily protein supply would decrease by no more than 0.1 g per person (or 0.2% of total protein intake). Eliminating the routine use of in-feed antibiotics will improve human and animal health, by reducing...... the development and spread of antibiotic-resistant bacteria....

  17. Antibiotic Resistant Salmonella and Vibrio Associated with Farmed Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Sanjoy Banerjee

    2012-01-01

    Full Text Available Salmonella and Vibrio species were isolated and identified from Litopenaeus vannamei cultured in shrimp farms. Shrimp samples showed occurrence of 3.3% of Salmonella and 48.3% of Vibrio. The isolates were also screened for antibiotic resistance to oxolinic acid, sulphonamides, tetracycline, sulfamethoxazole/trimethoprim, norfloxacin, ampicillin, doxycycline hydrochloride, erythromycin, chloramphenicol, and nitrofurantoin. Salmonella enterica serovar Corvallis isolated from shrimp showed individual and multiple antibiotic resistance patterns. Five Vibrio species having individual and multiple antibiotic resistance were also identified. They were Vibrio cholerae (18.3%, V. mimicus (16.7%, V. parahaemolyticus (10%, V. vulnificus (6.7%, and V. alginolyticus (1.7%. Farm owners should be concerned about the presence of these pathogenic bacteria which also contributes to human health risk and should adopt best management practices for responsible aquaculture to ensure the quality of shrimp.

  18. Prediction of antibiotic resistance: time for a new preclinical paradigm?

    DEFF Research Database (Denmark)

    Sommer, Morten Otto Alexander; Munck, Christian; Toft-Kehler, Rasmus Vendler

    2017-01-01

    Predicting the future is difficult, especially for evolutionary processes that are influenced by numerous unknown factors. Still, this is what is required of drug developers when they assess the risk of resistance arising against a new antibiotic candidate during preclinical development. In this ......Predicting the future is difficult, especially for evolutionary processes that are influenced by numerous unknown factors. Still, this is what is required of drug developers when they assess the risk of resistance arising against a new antibiotic candidate during preclinical development....... In this Opinion article, we argue that the traditional procedures that are used for the prediction of antibiotic resistance today could be markedly improved by including a broader analysis of bacterial fitness, infection dynamics, horizontal gene transfer and other factors. This will lead to more informed...

  19. Antibiotic resistance of microorganisms in agricultural soils in Russia

    Science.gov (United States)

    Danilova, N. V.; Galitskaya, P. Yu; Selivanovskaya, S. Yu

    2018-01-01

    Antibiotics are medicines that are widely used in livestock production not only for the prevention and treatment of infectious diseases, but also for accelerating the growth of animals. The application of manure for fertilizing agricultural soils leads to the entry into the soil ecosystem not only of the antibiotics themselves, but also the resistance genes to them. In this study, 30 samples of arable soils were tested for the presence of the tet(X) gene, which encodes bacterial resistance to antibiotics of the tetracycline group. Using real-time PCR, it was found that 27 out of 30 soil samples contained tet(X). 52% of these samples were heavily contaminated, 34% had a medium level of contamination and 14% were slightly contaminated by the resistance gene tet(X).

  20. Impact of antibiotic restriction on resistance levels of Escherichia coli

    DEFF Research Database (Denmark)

    Boel, Jonas; Andreasen, Viggo; Jarløv, Jens Otto

    2016-01-01

    as a retrospective controlled interrupted time series (ITS) at two university teaching hospitals, intervention and control, with 736 and 552 beds, respectively. The study period was between January 2008 and September 2014. We used ITS analysis to determine significant changes in antibiotic use and resistance levels......% CI -177, -126)] and fluoroquinolones [-44.5 DDDs/1000 bed-days (95% CI -58.9, -30.1)]. Resistance of E. coli showed a significant change in slope for cefuroxime [-0.13 percentage points/month (95% CI -0.21, -0.057)] and ciprofloxacin [-0.15 percentage points/month (95% CI -0.26, -0.038)]. CONCLUSIONS......OBJECTIVES: We evaluated the effect of an antibiotic stewardship programme (ASP) on the use of antibiotics and resistance levels of Escherichia coli using a method that allowed direct comparison between an intervention hospital and a control hospital. METHODS: The study was conducted...

  1. Antibiotic resistance in hospitals: a ward-specific random effect model in a low antibiotic consumption environment.

    Science.gov (United States)

    Aldrin, Magne; Raastad, Ragnhild; Tvete, Ingunn Fride; Berild, Dag; Frigessi, Arnoldo; Leegaard, Truls; Monnet, Dominique L; Walberg, Mette; Müller, Fredrik

    2013-04-15

    Association between previous antibiotic use and emergence of antibiotic resistance has been reported for several microorganisms. The relationship has been extensively studied, and although the causes of antibiotic resistance are multi-factorial, clear evidence of antibiotic use as a major risk factor exists. Most studies are carried out in countries with high consumption of antibiotics and corresponding high levels of antibiotic resistance, and currently, little is known whether and at what level the associations are detectable in a low antibiotic consumption environment. We conduct an ecological, retrospective study aimed at determining the impact of antibiotic consumption on antibiotic-resistant Pseudomonas aeruginosa in three hospitals in Norway, a country with low levels of antibiotic use. We construct a sophisticated statistical model to capture such low signals. To reduce noise, we conduct our study at hospital ward level. We propose a random effect Poisson or binomial regression model, with a reparametrisation that allows us to reduce the number of parameters. Inference is likelihood based. Through scenario simulation, we study the potential effects of reduced or increased antibiotic use. Results clearly indicate that the effects of consumption on resistance are present under conditions with relatively low use of antibiotic agents. This strengthens the recommendation on prudent use of antibiotics, even when consumption is relatively low. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Spontaneous nisin-resistant Listeria monocytogenes mutants with increased expression of a putative penicillin-binding protein and their sensitivity to various antibiotics

    DEFF Research Database (Denmark)

    Gravesen, Anne; Sorensen, K.; Aarestrup, Frank Møller

    2001-01-01

    -molecular-weight penicillin-binding proteins (PBPs), a histidine protein kinase, a protein of unknown function, and ClpB (putative functions from homology), The three former proteins had increased expression in a total of six out of 10 independent mutants originating from five different wildtype strains, indicating...

  3. Antibiotic and antiseptic resistance: impact on public health.

    Science.gov (United States)

    Levy, S B

    2000-10-01

    More and more we are moving patients from hospitals to homes for continued treatment. Vancomycin and triclosan were used for 30 years before any resistance emerged, because their applications were strictly limited. Today, after greatly increased use, resistance to both antibiotics and antibacterials has appeared. Of importance there are genetic links between resistance to antibiotics and to antibacterials. Health professionals and the public need to be educated about the rational use of drugs that affect the microbial world. The Alliance for the Prudent Use of Antibiotics, an international organization established in 1981 with members in more than 100 countries, has adopted education as its prime mission. Via its web site (www.apua.org) and linked information on reservoirs of antibiotic resistance (ROAR) among nonpathogenic bacteria, it reaches both providers and consumers. The message is simple: bacteria are needed for our survival. The vast majority of bacteria perform important functions that are crucial for our lives. Prudent use of both antibiotics and antibacterials must be championed to achieve and maintain the balanced microbial environment in which we have entered and evolved.

  4. Antibiotic Resistance Escherichia coli isolated from Faecal of Healthy Human

    OpenAIRE

    , S. Budiarti

    2011-01-01

    The objective of this research was to examine antibiotic resistant of Escherechia coli as intestinal normal şora, isolated from healthy human. The samples were collected from faeces of new born children, children under 3 and 5years-old, and human adult. Bacteria were isolated at Eosin Methylen Blue solid media followed by biochemistry reaction for physiological E.coli identiŞcation. Antibiotic resistant test was carried out using Kirby-Bauer method. The result showed that 95 % bacterial strai...

  5. Determination of the Antibiotic Resistance Profile of Student Cell Phones

    Directory of Open Access Journals (Sweden)

    Lisa Ann Blankinship

    2012-08-01

    Full Text Available Sampling of common use items (e.g., student cell phones for bacterial presence, identification, and antibiotic resistance profiling helps students to recognize the need for routine cleaning of personal items and encourages thoughtful use of currently available medications. This multilab period project can be used to teach or reinforce several methods from general microbiology including aseptic technique, isolation streak, serial dilution, spread plating, Kirby Bauer testing, unknown identification, and media production. The data generated can be saved and added to each semester, thus providing a data set that reflects a local trend of antibiotic resistance.      

  6. Primary Antibiotic Resistance of Helicobacter pylori in China.

    Science.gov (United States)

    Hu, Yi; Zhu, Yin; Lu, Nong-Hua

    2017-05-01

    Antibiotic resistance is the most important factor leading to the failure of eradication regimens; thus, it is important to obtain regional antibiotic resistance information. This review focuses on the prevalence of Helicobacter pylori primary resistance to clarithromycin, metronidazole, amoxicillin, levofloxacin, tetracycline, and furazolidone in China. We searched the PubMed, EMBASE, the China National Knowledge Infrastructure, and Chinese Biomedical databases from the earliest date of each database to October 2016. The search terms included the following: H. pylori, antibiotic (including clarithromycin, metronidazole, amoxicillin, levofloxacin, tetracycline, and furazolidone) resistance with or without China or different regions of China. The data analysis was performed using MedCalc 15.2.2. Each article was weighted according to the number of isolated H. pylori strains. A pooled proportion analysis was performed. Twenty-three studies (14 studies in English and 9 in Chinese) were included in this review. A total of 6274, 6418, 3921, 5468, 2802, and 275 H. pylori strains were included in this review to evaluate the prevalence of H. pylori primary resistance to clarithromycin, metronidazole, levofloxacin, amoxicillin, tetracycline, and furazolidone, respectively. Overall, the primary resistance rates of clarithromycin, metronidazole, levofloxacin, amoxicillin, tetracycline, and furazolidone were 28.9, 63.8, 28.0, 3.1, 3.9, and 1.7%, respectively. In China, the prevalence of H. pylori primary resistance to clarithromycin, metronidazole, and levofloxacin was high and increased over time, whereas the resistance rates to amoxicillin, tetracycline, and furazolidone were low and stable over time.

  7. Multiple antibiotics resistant among environmental isolates of ...

    African Journals Online (AJOL)

    In this study we assessed the functionality of integrons, melanin-like pigment and biofilm formation on multidrug resistance among environmental isolates of Stenotrophomonas maltophilia. Marked resistances were noted against aztreonam (60%), cefepime (68%), ceftazidime (77%), ciprofloxacin (72%), gentamicin (65%), ...

  8. Antibiotic Resistance of Vibrio cholerae Isolates from Kashan, Iran

    Directory of Open Access Journals (Sweden)

    Afzali H.MD,

    2016-03-01

    Full Text Available Abstract Aims: Cholera is an acute diarrheal disease that can lead to severe dehydration and death. Antibiotic resistance is a big challenge in infective disease like Cholera. The present study aimed to understand the characteristics and trends of antibiotic resistance of V. cholerae isolations in and around Kashan, Iran. Instrument & Methods: In this descriptive cross-sectional study, samples were gathered using census method from 1998 to 2013 in Kashan, Iran. 1132 fecal samples of patients with acute diarrhea and 237 samples of suspected water samples were taken. The serotypes and biotypes were determined by an enzymatic method. Antibiotic susceptibility test was performed by using Disk Diffusion Method. Data were analyzed using SPSS 23 software. Fisher-exact and Chi-square tests were used to compare the statistical parameters. Findings: 96 fecal samples (8.5% and 18 water samples (7.6% were positive for Vibrio cholerae. Non-agglutinating (Nag isolates (75.4% were more common than serotype Inaba (13.2% and Ogawa (11.4%. Nag serotypes were mostly resistant to cefixime (44% and ampicillin (33%. In contaminated water samples also the most frequent cases were Nag serotype (50%. Nag serotype showed 22.2% of resistance to ampicillin and nitrofurantoin. Conclusion: Vibrio cholerae isolates in Kashan, Iran, are highly resistant to antibiotics, especially Nag serotypes.

  9. Antibiotic resistance of Verotoxigenic Escherichia coli isolated from vegetables

    Directory of Open Access Journals (Sweden)

    mojtaba boniadian

    2017-01-01

    Full Text Available Introduction: Human gastrointestinal disease caused by verotoxigenic Escherichia coli has been diagnosed for recent decades. Escherichia coli O157:H7 is the most important serotype of verotoxigenic Escherichia coli that cause hemolytic uremic syndrome and hemorrhagic colitis in humans. This study was conducted to determine the occurrence of verotoxigenic E. coli and antibiotic resistance of the isolates from vegetables. Materials and methods: A total of 500 fresh vegetable samples were collected randomly from retail shops in Shahrekord, Iran. E. coli was isolated and identified using bacteriological and biochemical tests. PCR method was used to identify the rbfE, stx1, stx2 and eae genes. Also, antibiotic resistance of the isolates was determined by disk diffusion method. Results: The results represented that among 25 isolates possess virulence genes, 40, 12 and 4% of the isolates contained eaeA, STx2, and both genes, respectively. But none of them contained H7, STx1, and rfbE genes. The antibiotic resistance pattern demonstrated that the isolates were highly resistant to Gentamycin and cefotoxime. Discussion and conclusion: The results of this study showed that the presence of verotoxigenic E.coli in vegetables; and high resistance of the isolates to antibiotics could be hazardous for public health.

  10. Staphylococcus aureus phage types and their correlation to antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Mehndiratta P

    2010-10-01

    Full Text Available Context: Staphylococcus aureus is one of the most devastating human pathogen. The organism has a differential ability to spread and cause outbreak of infections. Characterization of these strains is important to control the spread of infection in the hospitals as well as in the community. Aim: To identify the currently existing phage groups of Staphylococcus aureus, their prevalence and resistance to antibiotics. Materials and Methods: Study was undertaken on 252 Staphylococcus aureus strains isolated from clinical samples. Strains were phage typed and their resistance to antibiotics was determined following standard microbiological procedures. Statistical Analysis: Chi square test was used to compare the antibiotic susceptibility between methicillin resistant Staph. aureus (MRSA and methicillin sensitive S. aureus (MSSA strains. Results: Prevalence of MRSA and MSSA strains was found to be 29.36% and 70.65% respectively. Of these 17.56% of MRSA and 40.44% of MSSA strains were community acquired. All the MSSA strains belonging to phage type 81 from the community were sensitive to all the antibiotics tested including clindamycin and were resistant to penicillin. Forty five percent strains of phage group III and 39% of non-typable MRSA strains from the hospital were resistant to multiple antibiotics. Conclusion: The study revealed that predominant phage group amongst MRSA strains was phage group III and amongst MSSA from the community was phage group NA (phage type 81. MSSA strains isolated from the community differed significantly from hospital strains in their phage type and antibiotic susceptibility. A good correlation was observed between community acquired strains of phage type 81 and sensitivity to gentamycin and clindamycin.

  11. Strategies to Combat Antibiotic Resistance in the Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Fateme Barancheshme

    2018-01-01

    Full Text Available The main goal of this manuscript is to review different treatment strategies and mechanisms for combating the antibiotic resistant bacteria (ARB and antibiotic resistant genes (ARGs in the wastewater environment. The high amount of antibiotics is released into the wastewater that may promote selection of ARB and ARGs which find their way into natural environments. Emerging microbial pathogens and increasing antibiotic resistance among them is a global public health issue. The propagation and spread of ARB and ARGs in the environment may result in an increase of antibiotic resistant microbial pathogens which is a worldwide environmental and public health concern. A proper treatment of wastewater is essential before its discharge into rivers, lake, or sewage system to prevent the spread of ARB and ARGs into the environment. This review discusses various treatment options applied for combating the spread of ARB and ARGs in wastewater treatment plants (WWTPs. It was reported that low-energy anaerobic–aerobic treatment reactors, constructed wetlands, and disinfection processes have shown good removal efficiencies. Nanomaterials and biochar combined with other treatment methods and coagulation process are very recent strategies regarding ARB and ARGs removal and need more investigation and research. Based on current studies a wide-ranging removal efficiency of ARGs can be achieved depending on the type of genes present and treatment processes used, still, there are gaps that need to be further investigated. In order to find solutions to control dissemination of antibiotic resistance in the environment, it is important to (1 study innovative strategies in large scale and over a long time to reach an actual evaluation, (2 develop risk assessment studies to precisely understand occurrence and abundance of ARB/ARGs so that their potential risks to human health can be determined, and (3 consider operating and environmental factors that affect the

  12. Evolutionary Origin of Antibiotic Resistance, A Historical Perspective

    Directory of Open Access Journals (Sweden)

    Yamile Adriana Celis Bustos

    2017-07-01

    Full Text Available Antimicrobial resistance is a natural aspect of bacterial evolution that can result from mutations or acquisition of foreign genes. Various views on the origin of this resistance explain the ability of these organisms to acquire new features. Lamarck andDarwin’s theories of evolution have led to experiments designed to explore the origin of bacterial variation and the emergence of new features. These experiments show that antimicrobial resistance is related to mutations in chromosomal genes and/or transfer of extrachromosomal genetic elements that can be expressed based on the antibiotic pressure exerted. The main experiments and findings that seek to explain the phenomenon of antibiotic resistance are reviewed here in.

  13. PRESENCE OF ENTEROCOCCI IN COW MILK AND THEIR ANTIBIOTIC RESISTANCE

    Directory of Open Access Journals (Sweden)

    Miroslav Kročko

    2010-05-01

    Full Text Available Enterococci represent an important part of contaminate microflora in raw milk and dairy products. They constitute significant part of nosocomial pathogens with a remarkable capacity of expressing resistance to several antimicrobial  agents. We aimed to assess occurrence and antibiotic resistance of enterococci in the raw milk samples and pasteurized milk samples. In this study total bacterial count, psychrotrophic count and count of enterococci were determine in raw milk cistern samples, storage tank milk samples and milk samples after pasteurization. A collection of 46 enterococcal isolates were identified and screened for their antibiotic resistance. Isolates of E. faecalis were dominant in raw milk samples (56.5 %. Sensitive to teicoplanine (30 mcg/disk were 97.9 % of enterococcal isolates and 15.2 % isolates were resistant to vankomycin (30 mcg/disk.  

  14. FARME DB: a functional antibiotic resistance element database

    OpenAIRE

    Wallace, James C.; Port, Jesse A.; Smith, Marissa N.; Faustman, Elaine M.

    2017-01-01

    Antibiotic resistance (AR) is a major global public health threat but few resources exist that catalog AR genes outside of a clinical context. Current AR sequence databases are assembled almost exclusively from genomic sequences derived from clinical bacterial isolates and thus do not include many microbial sequences derived from environmental samples that confer resistance in functional metagenomic studies. These environmental metagenomic sequences often show little or no similarity to AR se...

  15. Detection of antibiotic resistance in clinical bacterial strains from pets

    OpenAIRE

    Poeta, P.; Rodrigues, J.

    2008-01-01

    The identification of different bacterial strains and the occurrence of antibiotic resistance were investigated in several infection processes of pets as skin abscess with purulent discharge, bronco alveolar fluid, earwax, urine, mammary, and eye fluid. Streptococcus spp. and Staphylococcus spp. were the most detected in the different samples. A high frequency of antimicrobial resistance has been observed and this could reflect the wide use of antimicrobials in pets, making the effectiveness ...

  16. A model of antibiotic-resistant bacterial epidemics in hospitals

    OpenAIRE

    Webb, Glenn F.; D'Agata, Erika M. C.; Magal, Pierre; Ruan, Shigui

    2005-01-01

    The emergence of drug-resistant strains of bacteria is an increasing threat to society, especially in hospital settings. Many antibiotics that were formerly effective in combating bacterial infections in hospital patients are no longer effective because of the evolution of resistant strains, which compromises medical care worldwide. In this article, we formulate a two-level population model to quantify key elements in nosocomial (hospital-acquired) infections. At the bacteria level, patients ...

  17. Old and New Glycopeptide Antibiotics: Action and Resistance

    OpenAIRE

    Binda, Elisa; Marinelli, Flavia; Marcone, Giorgia Letizia

    2014-01-01

    Glycopeptides are considered antibiotics of last resort for the treatment of life-threatening infections caused by relevant Gram-positive human pathogens, such as Staphylococcus aureus, Enterococcus spp. and Clostridium difficile. The emergence of glycopeptide-resistant clinical isolates, first among enterococci and then in staphylococci, has prompted research for second generation glycopeptides and a flurry of activity aimed at understanding resistance mechanisms and their evolution. Glycop...

  18. Antibiotic resistance in human peri-implantitis microbiota

    NARCIS (Netherlands)

    Rams, Thomas E.; Degener, John E.; van Winkelhoff, Arie J.

    ObjectivesBecause antimicrobial therapy is often employed in the treatment of infectious dental implant complications, this study determined the occurrence of in vitro antibiotic resistance among putative peri-implantitis bacterial pathogens. MethodsSubmucosal biofilm specimens were cultured from

  19. Simulation Study for Transfer of Antibiotic Resistance via Mutator Subpopulation

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Aarestrup, Frank Møller

    Evolution of antibiotic resistance in bacterial populations is an increasing problem having fatal consequences for treatment of diseases. Therefore it is very important to understand this evolution. Traditionally evolution is considered to happen by single point mutations, where each mutant must...

  20. The use of antibiotics and implications for antimicrobial resistance development

    NARCIS (Netherlands)

    Loon, Harald-Jan van

    2004-01-01

    Antibiotic resistance has reached pandemic proportions and the increasing incidences have alarmed medical healthcare associations world wide. Some thirty years ago it was almost all infectious diseases were conquered, but over the last decades we have witnessed the re-emergence of known contagious

  1. Stalking Antibiotic-Resistant Bacteria in Common Vegetables

    Science.gov (United States)

    Brock, David; Boeke, Caroline; Josowitz, Rebecca; Loya, Katherine

    2004-01-01

    The study developed a simple experimental protocol for studying antibiotic resistant bacteria that will allow students to determine the proportion of such bacteria found on common fruit and vegetable crops. This protocol can open up the world of environmental science and show how human behavior can dramatically alter ecosystems.

  2. Antibiotic resistant pattern of environmental isolates of Listeria ...

    African Journals Online (AJOL)

    Incidence of Listeria monocytogenes in cow manure, agricultural soil, and common vegetables sold in major markets in Ado-Ekiti, Nigeria was determined. Antibiotic resistant pattern of the isolates was examined by paper disk assay. A total of 196 environmental samples were cultured on a selective medium out of which ...

  3. Prevalence, antibiotic-resistance properties and enterotoxin gene ...

    African Journals Online (AJOL)

    milk-based infant foods in Iran, represent an important public health issue which should be considered ... Keywords: Prevalence, Bacillus cereus, Antibiotic resistance, Enterotoxigenic genes, Milk-based infant food. Tropical Journal of Pharmaceutical Research is indexed by Science ..... and cereals collected in Korea.

  4. Molecular Detection of Virulence Genes and Antibiotic Resistance ...

    African Journals Online (AJOL)

    Escherichia coli O157:H7 is an important food-borne pathogen that can cause diarrhea, haemorrhagic colitis and haemolytic uremic syndrome. This study was conducted to investigate the prevalence, virulence genes and antibiotic resistance patterns of E. coli O157:H7 in raw beef meat sold in Abeokuta, South west Nigeria ...

  5. Antibiotic Resistance in Urinary Tract Infections in College Students

    Science.gov (United States)

    Olson, Ronald P.; Haith, Karen

    2012-01-01

    Objective: To determine resistance to antibiotics of "Escherichia coli" in uncomplicated urinary tract infections (uUTIs) in female college students. Participants: Symptomatic patients presenting to a student health service from September 2008 to December 2009. Methods: Clean catch midstream urine samples were tested for urinalysis (UA) and…

  6. Molecular Mechanisms of Antibiotic Resistance in Helicobacter pylori

    NARCIS (Netherlands)

    M.M. Gerrits (Monique)

    2004-01-01

    textabstractAn estimated 4 to 5 million individuals in the Netherlands are actively infected with Helicobacter pylori. Eradication of this bacterium becomes more difficult as the prevalence of antibiotic resistance is increasing worldwide. Most H. pylori infections are now diagnosed by

  7. Antibiotic resistance in children with complicated urinary tract infection

    International Nuclear Information System (INIS)

    Yildiz, B.; Kural, N.; Yarar, C.; Ak, I.; Akcar, N.

    2007-01-01

    Objective was to determine the resistance of antibiotics for complicated urinary tract infection (UTI), including urinary tract anomaly (UTA), for empirical antibiotic therapy of complicated UTI. Four hundred and twenty two urine isolates were obtained from 113 patients with recurrent UTI, who used prophylactic antibiotics between February 1999 and November 2004 in the Eskisehir Osmangazi University, Eskisehir, Turkey. Reflux was found to be most important predisposing factor for recurrent UTI (31.9%). Renal scar was detected more in patients with UTA than without UTA (59.2% versus 12.4%, p<0.05). Gram-negative organisms were dominant in patients with and without UTA (91.5% and 79.2%). Enterococci and Candida spp. were more prevalent in children with UTA than without UTA (p<0.001). Isolates were significantly more resistant to ampicillin, trimethoprim-sulfamethoxazole, amikacin, co-amoxiclav, ticarcillin-clvalanate and piperacillin-tazobactam in patients with UTA than without UTA. We found low resistance to ciprofloxacin and nitrofurantoin in UTI with and without UTA. Enterococci spp. was highly resistance to ampicillin and amikacin in patients with UTA. Aztreonam, meropenem and ciprofloxacin seemed to be the best choice for treatment of UTI with UTA due to Escherichia coli and Klebsiella spp. Nitrofurantoin and nalidixic acid may be first choice antibiotics for prophylaxis in UTI with and without UTA. The UTI with UTA caused by Enterococci spp. might not benefit from a combination of amikacin and ampicillin, it could be treated with glycopeptides. (author)

  8. Monitoring Antibiotic Residues and Corresponding Antibiotic Resistance Genes in an Agroecosystem

    Directory of Open Access Journals (Sweden)

    Yasser M. Awad

    2015-01-01

    Full Text Available Antibiotic resistance genes (ARGs have been commonly reported due to the overuse worldwide of antibiotics. Antibiotic overuse disturbs the environment and threatens public human health. The objective of this study was to measure the residual concentrations of veterinary antibiotics in the tetracycline group (TCs, including tetracycline (TC and chlortetracycline (CTC, as well as those in the sulfonamide group (SAs, including sulfamethazine (SMT, sulfamethoxazole (SMX, and sulfathiazole (STZ. We also isolated the corresponding ARGs in the agroecosystem. Four sediment samples and two rice paddy soil samples were collected from sites near a swine composting facility along the Naerincheon River in Hongcheon, Korea. High performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS was employed with a solid-phase extraction method to measure the concentration of each antibiotic. ARGs were identified by the qualitative polymerase chain-reaction using synthetic primers. SAs and their corresponding ARGs were highly detected in sediment samples whereas TCs were not detected except for sediments sample #1. ARGs for TCs and SAs were detected in rice paddy soils, while ARGs for TCs were only found in sediment #2 and #4. Continuous monitoring of antibiotic residue and its comprehensive impact on the environment is needed to ensure environmental health.

  9. ORIGINAL ARTICLE MULTIPLE ANTIBIOTIC RESISTANCE (MAR ...

    African Journals Online (AJOL)

    boaz

    ABSRACT. Background/Objectives: Pseudomonas and Klebsiella infections are important nosocomial infections because of the attendant significant morbidity, mortality and socio-economic impact. These infections are difficult to treat due to the innate and acquired resistance mediated by the organisms' genome and other ...

  10. Species Distribution and Antibiotic Resistance in Coagulase ...

    African Journals Online (AJOL)

    Purpose: The antimicrobial susceptibility of 149 coagulase-negative staphylococci (CoNS) isolates from faecal samples of children in Ile-Ife, Nigeria, was evaluated in order to determine their contribution to antimicrobial resistance in the community. Methods: The isolates were identified to the species level by conventional ...

  11. Effects of Metals on Antibiotic Resistance and Conjugal Plasmid Transfer in Soil Bacterial Communities

    DEFF Research Database (Denmark)

    Song, Jianxiao

    Antibiotic resistance currently represents one of the biggest challenges for human health and in recent years the environmental dimension of antibiotic resistance has been increasingly recognized. The soil environment serves as an important reservoir of antibiotic resistance determinants. In addi...... adaptation to metal stress did not significantly increase the permissiveness of the soil bacterial community towards conjugal plasmid transfer........ In addition to direct selection of antibiotic resistance by antibiotics, metals may co-select for antibiotic resistance via different mechanisms causing environmental selection of antibiotic resistance in metal contaminated soils. Horizontal gene transfer of mobile genetic elements (MGEs) like plasmids...... is generally considered one of the most important co-selection mechanisms as multiple resistance genes can be located on the same MGE. This PhD thesis focused on the impact of metals (Cu and Zn) on the development of antibiotic resistance in bacterial communities in soils exposed to different degrees...

  12. Vancomycin-resistant enterococci: validation of susceptibility testing and in vitro activity of novel antibiotics

    DEFF Research Database (Denmark)

    Rathe, Mathias; Lise, Kristensen,; Ellermann-Eriksen, Svend

    Vancomycin-resistant enterococci: validation of susceptibility testing and in vitro activity of novel antibiotics......Vancomycin-resistant enterococci: validation of susceptibility testing and in vitro activity of novel antibiotics...

  13. The Gut as Reservoir of Antibiotic Resistance: Microbial Diversity of Tetracycline Resistance in Mother and Infant

    DEFF Research Database (Denmark)

    de Vries, Lisbeth Elvira; Valles, Yvonne; Agersø, Yvonne

    2011-01-01

    The microbiota in the human gastrointestinal tract (GIT) is highly exposed to antibiotics, and may be an important reservoir of resistant strains and transferable resistance genes. Maternal GIT strains can be transmitted to the offspring, and resistances could be acquired from birth. This is a ca...

  14. Phage Conversion for β-Lactam Antibiotic Resistance of Staphylococcus aureus from Foods.

    Science.gov (United States)

    Lee, Young-Duck; Park, Jong-Hyun

    2016-02-01

    Temperate phages have been suggested to carry virulence factors and other lysogenic conversion genes that play important roles in pathogenicity. In this study, phage TEM123 in wild-type Staphylococcus aureus from food sources was analyzed with respect to its morphology, genome sequence, and antibiotic resistance conversion ability. Phage TEM123 from a mitomycin C-induced lysate of S. aureus was isolated from foods. Morphological analysis under a transmission electron microscope revealed that it belonged to the family Siphoviridae. The genome of phage TEM123 consisted of a double-stranded DNA of 43,786 bp with a G+C content of 34.06%. A bioinformatics analysis of the phage genome identified 43 putative open reading frames (ORFs). ORF1 encoded a protein that was nearly identical to the metallo-β-lactamase enzymes that degrade β-lactam antibiotics. After transduction to S. aureus with phage TEM123, the metallo-β-lactamase gene was confirmed in the transductant by PCR and sequencing analyses. In a β-lactam antibiotic susceptibility test, the transductant was more highly resistant to β-lactam antibiotics than S. aureus S133. Phage TEM123 might play a role in the transfer of β-lactam antibiotic resistance determinants in S. aureus. Therefore, we suggest that the prophage of S. aureus with its exotoxin is a risk factor for food safety in the food chain through lateral gene transfer.

  15. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria.

    Science.gov (United States)

    Yosef, Ido; Manor, Miriam; Kiro, Ruth; Qimron, Udi

    2015-06-09

    The increasing threat of pathogen resistance to antibiotics requires the development of novel antimicrobial strategies. Here we present a proof of concept for a genetic strategy that aims to sensitize bacteria to antibiotics and selectively kill antibiotic-resistant bacteria. We use temperate phages to deliver a functional clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system into the genome of antibiotic-resistant bacteria. The delivered CRISPR-Cas system destroys both antibiotic resistance-conferring plasmids and genetically modified lytic phages. This linkage between antibiotic sensitization and protection from lytic phages is a key feature of the strategy. It allows programming of lytic phages to kill only antibiotic-resistant bacteria while protecting antibiotic-sensitized bacteria. Phages designed according to this strategy may be used on hospital surfaces and hand sanitizers to facilitate replacement of antibiotic-resistant pathogens with sensitive ones.

  16. Antibiotic and antiseptic resistance genes are linked on a novel mobile genetic element: Tn6087

    Science.gov (United States)

    Ciric, Lena; Mullany, Peter; Roberts, Adam P.

    2011-01-01

    Objectives Tn916-like elements are one of the most common types of integrative and conjugative element (ICE). In this study we aimed to determine whether novel accessory genes, i.e. genes whose products are not involved in mobility or regulation, were present on a Tn916-like element (Tn6087) isolated from Streptococcus oralis from the human oral cavity. Methods A minocycline-resistant isolate was analysed using restriction fragment length polymorphism (RFLP) analysis on amplicons derived from Tn916 and DNA sequencing to determine whether there were genetic differences in Tn6087 compared with Tn916. Mutational analysis was used to determine whether the novel accessory gene found was responsible for an observed extra phenotype. Results A novel Tn916-like element, Tn6087, is described that encodes both antibiotic and antiseptic resistance. The antiseptic resistance protein is encoded by a novel small multidrug resistance gene, designated qrg, that was shown to encode resistance to cetyltrimethylammonium bromide (CTAB), also known as cetrimide bromide. Conclusions This is the first Tn916-like element described that confers both antibiotic and antiseptic resistance, suggesting that selection of either antibiotic or antiseptic resistance will also select for the other and further highlights the need for prudent use of both types of compound. PMID:21816764

  17. The antibiotic resistance ?mobilome?: searching for the link between environment and clinic

    OpenAIRE

    Perry, Julie A.; Wright, Gerard D.

    2013-01-01

    Antibiotic resistance is an ancient problem, owing to the co-evolution of antibiotic-producing and target organisms in the soil and other environments over millennia. The environmental “resistome” is the collection of all genes that directly or indirectly contribute to antibiotic resistance. Many of these resistance determinants originate in antibiotic-producing organisms (where they serve to mediate self-immunity), while others become resistance determinants only when mobilized and over-expr...

  18. Antibiotic-Resistant Enteric Bacteria in Environmental Waters

    Directory of Open Access Journals (Sweden)

    Lisa M. Casanova

    2016-11-01

    Full Text Available Sources of antibiotic resistant organisms, including concentrated animal feeding operations (CAFOs, may lead to environmental surface and groundwater contamination with resistant enteric bacteria of public health concern. The objective of this research is to determine whether Salmonella, Escherichia coli, Yersinia enterocolitica, and enterococci resistant to clinically relevant antibiotics are present in surface and groundwater sources in two eastern North Carolina counties, Craven and Wayne. 100 surface and groundwater sites were sampled for Salmonella, E. coli, and enterococci, and the bacteria isolated from these samples were tested for susceptibility to clinically relevant antibiotics. Salmonella were detected at low levels in some surface but not groundwater. E. coli were in surface waters but not ground in both counties. Enterococci were present in surface water and a small number of groundwater sites. Yersinia was not found. Bacterial densities were similar in both counties. For Salmonella in surface water, the most frequent type of resistance was to sulfamethoxazole. There was no ciprofloxacin resistance. There were a few surface water E. coli isolates resistant to chloramphenicol, gentamicin, and ampicillin. Enterococci in surface water had very low levels of resistance to vancomycin, chloramphenicol, ampicillin, and streptomycin. E. coli and enterococci are present more frequently and at higher levels in surface water than Salmonella, but groundwater contamination with any of these organisms was rare, and low levels of resistance can be found sporadically. Resistant bacteria are relatively uncommon in these eastern N.C. surface and groundwaters, but they could pose a risk of human exposure via ingestion or primary contact recreation.

  19. New Technologies for Rapid Bacterial Identification and Antibiotic Resistance Profiling.

    Science.gov (United States)

    Kelley, Shana O

    2017-04-01

    Conventional approaches to bacterial identification and drug susceptibility testing typically rely on culture-based approaches that take 2 to 7 days to return results. The long turnaround times contribute to the spread of infectious disease, negative patient outcomes, and the misuse of antibiotics that can contribute to antibiotic resistance. To provide new solutions enabling faster bacterial analysis, a variety of approaches are under development that leverage single-cell analysis, microfluidic concentration and detection strategies, and ultrasensitive readout mechanisms. This review discusses recent advances in this area and the potential of new technologies to enable more effective management of infectious disease.

  20. Determination of Serotypes and Antibiotic Resistance in Streptococcus Pneumoniae

    Directory of Open Access Journals (Sweden)

    Deniz Akgun Karapinar

    2016-01-01

    Full Text Available Aim: In this study, the distribution of serogroup/serotype and antibiotic susceptibility testing of Streptococcus pneumoniae strains, recovered from pediatric and adult patients were evaluated. Material and Method: A total of 80 clinical isolates recovered from 19 pediatric and 61 adult patients were performed by latex aglutination method and antibiotic susceptibility tests in Istanbul University, Istanbul Faculty of Medicine, Medical Microbiology Laboratories. Results: Sixty-two strains (76 %, were serogroup/serotyped and 18 (23 % strains couldn%u2019t serogroup/serotyped. The most frequent identified serogroups were 19, 14, 23, 6, 4 in pediatrics, and 3, 19, 23 and 9 in adults. In adults, serogroups 3, 9, 5, 8, 18, 1, 15 were determined, but these serogroups weren%u2019t found in pediatrics. Vaccine serotypes rates were found as 53 % in pediatric and as 85 % in adults. The serogroups 2, 7, 10, 11, 12, 17, 20, 22, 33 were not detected, which are available in vaccine serotypes. Only 1 (1 % strain was found to exhibit low level resistance to penicillin and high level resistance wasn%u2019t found in any strain. Resistant results for trimethoprim-sulfamethoxazole, erythromycin, chloramphenicol and ofloxacin were found as 45 (56 %, 22 (27.5 %, 7 (9 %, 2 (2.5 %, respectively. All strains were found susceptible to vancomycin, linezolid and levofloxacin. The most resistant serogroups were 19, 23, 9 and 14 in the tested antibiotics. Multidrug resistance was found in 9 (11 % strains and these strains were found as serogroups 19, 23, 9, 6 and 14. Discussion: The epidemiological studies are important that the distribution of serotype and antibiotic resistance vary depending on many factors like age, and geographic region.

  1. Multiple Antibiotic Resistance Patterns of Escherichia coli Isolates from Swine Farms

    OpenAIRE

    Mathew, A. G.; Saxton, A. M.; Upchurch, W. G.; Chattin, S. E.

    1999-01-01

    Antibiotic resistance of Escherichia coli from sows and pigs was determined to compare patterns between pigs of various ages and degrees of antibiotic use. Resistance patterns differed between farm types and pigs of differing ages, indicating that pig age and degree of antibiotic use affect resistance of fecal E. coli.

  2. Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis.

    Science.gov (United States)

    Yang, Yuyi; Song, Wenjuan; Lin, Hui; Wang, Weibo; Du, Linna; Xing, Wei

    2018-04-10

    Lakes are an important source of freshwater, containing nearly 90% of the liquid surface fresh water worldwide. Long retention times in lakes mean pollutants from discharges slowly circulate around the lakes and may lead to high ecological risk for ecosystem and human health. In recent decades, antibiotics and antibiotic resistance genes (ARGs) have been regarded as emerging pollutants. The occurrence and distribution of antibiotics and ARGs in global freshwater lakes are summarized to show the pollution level of antibiotics and ARGs and to identify some of the potential risks to ecosystem and human health. Fifty-seven antibiotics were reported at least once in the studied lakes. Our meta-analysis shows that sulfamethoxazole, sulfamerazine, sulfameter, tetracycline, oxytetracycline, erythromycin, and roxithromycin were found at high concentrations in both lake water and lake sediment. There is no significant difference in the concentration of sulfonamides in lake water from China and that from other countries worldwide; however, there was a significant difference in quinolones. Erythromycin had the lowest predicted hazardous concentration for 5% of the species (HC 5 ) and the highest ecological risk in lakes. There was no significant difference in the concentration of sulfonamide resistance genes (sul1 and sul2) in lake water and river water. There is surprisingly limited research on the role of aquatic biota in propagation of ARGs in freshwater lakes. As an environment that is susceptible to cumulative build-up of pollutants, lakes provide an important environment to study the fate of antibiotics and transport of ARGs with a broad range of niches including bacterial community, aquatic plants and animals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Pattern of antibiotic resistant mastitis in dairy cows

    Directory of Open Access Journals (Sweden)

    D. Chandrasekaran

    2014-06-01

    Full Text Available Aim: To study the prevalence of drug resistant mastitis and their pattern of antibiotic resistance in dairy cows from Tamil Nadu. Materials and Methods: Isolation and identification of resistant pathogens were performed from acute clinical mastitis samples. Based on culture, isolation and sensitivity tests, cows with resistant mastitis were grouped as; Group I: Escherichia coli (n=119, Group II: Staphylococcus aureus (n=104 and Group III: Methicillin-resistant Staphylococcal aureus (MRSA (n=12. The isolates were tested using agar disc diffusion method for their antimicrobial susceptibility and modified resazurin assay microdilution technique for minimum inhibitory concentration (MIC to 8 antimicrobial drugs. The organisms were also confirmed for their identity by performing PCR on the bacterial pellet targeting the specific genes such as 16s-23s rRNA, mecA and blaZ respectively for the resistant pathogens and also confirmed by sequencing. Results: Antibiotic resistant mastitis was detected in 235 out of 401 cows accounting to 56.1%. The predominant resistant causative pathogen was E. coli (50.64% followed by S. aureus (44.25% and MRSA (5.11%. In vitro antibiotic sensitivity test and MIC breakpoints, E. coli, S. aureus and MRSA organisms showed more sensitivity to enrofloxacin, amoxicillin + sulbactam, gentamicin and ceftriaxone and had highest resistant to penicillin followed by amoxicillin, oxytetracycline and methicillin. E. coli and S. aureus isolates were found to be resistant to 1 or 2 antimicrobials, whereas most of the MRSA isolates were found to be multi-drug resistant i.e resistance to 3 or more of antimicrobials. Out of 235 milk samples, the specific target gene 16s-23s rRNA (E. coli , 16s-23s rRNA (S. aureus and MRSA (mecA and blaZ could be amplified from 119, 104 and 12 isolates with a percentage positivity of 50.64 (119/235, 89.64 (104/116 and 10.34 (12/116 respectively. Conclusion: Prevalence of antimicrobial resistance (AMR in

  4. The Structure of Fitness Landscapes in Antibiotic-Resistant Bacteria

    Science.gov (United States)

    Deris, Barrett; Kim, Minsu; Zhang, Zhongge; Okano, Hiroyuki; Hermsen, Rutger; Gore, Jeff; Hwa, Terence

    2014-03-01

    To predict the emergence of antibiotic resistance, quantitative relations must be established between the fitness of drug-resistant organisms and the molecular mechanisms conferring resistance. We have investigated E. coli strains expressing resistance to translation-inhibiting antibiotics. We show that resistance expression and drug inhibition are linked in a positive feedback loop arising from an innate, global effect of drug-inhibited growth on gene expression. This feedback leads generically to plateau-shaped fitness landscapes and concomitantly, for strains expressing at least moderate degrees of drug resistance, gives rise to an abrupt drop in growth rates of cultures at threshold drug concentrations. A simple quantitative model of bacterial growth based on this innate feedback accurately predicts experimental observations without ad hoc parameter fitting. We describe how drug-inhibited growth rate and the threshold drug concentration (the minimum inhibitory concentration, or MIC) depend on the few biochemical parameters that characterize the molecular details of growth inhibition and drug resistance (e.g., the drug-target dissociation constant). And finally, we discuss how these parameters can shape fitness landscapes to determine evolutionary dynamics and evolvability.

  5. Where antibiotic resistance mutations meet quorum-sensing

    Directory of Open Access Journals (Sweden)

    Rok Krašovec

    2014-06-01

    Full Text Available We do not need to rehearse the grim story of the global rise of antibiotic resistant microbes. But what if it were possible to control the rate with which antibiotic resistance evolves by de novo mutation? It seems that some bacteria may already do exactly that: they modify the rate at which they mutate to antibiotic resistance dependent on their biological environment. In our recent study [Krašovec, et al. Nat. Commun. (2014, 5, 3742] we find that this modification depends on the density of the bacterial population and cell-cell interactions (rather than, for instance, the level of stress. Specifically, the wild-type strains of Escherichia coli we used will, in minimal glucose media, modify their rate of mutation to rifampicin resistance according to the density of wild-type cells. Intriguingly, the higher the density, the lower the mutation rate (Figure 1. Why this novel density-dependent ‘mutation rate plasticity’ (DD-MRP occurs is a question at several levels. Answers are currently fragmentary, but involve the quorum-sensing gene luxS and its role in the activated methyl cycle.

  6. Antibiotic resistance plasmids of Staphylococcus aureus and their clinical importance

    International Nuclear Information System (INIS)

    Lacey, R.W.

    1975-01-01

    A variety of plasmids were isolated physically, and most antibiotic resistance is thought to be plasmid mediated. A number of characters (e.g., resistance to erythromycin or methicillin, and production of pigment) are determined by genes that do not give clear indications of either plasmid or chromosomal location. Although the formation of a particular plasmid is probably, even in bacterial terms, a very rare event, once formed such an element can spread rapidly among the bacterial population. The spectacular increase in the incidence of penicillinase-producing hospital strains in the late 1940's could have been due in part to this process. Evidence is stronger, however, for the intercell transfer of recently isolated plasmids coding for resistance to fusidic acid (and penicillinase production), or for neomycin, or for tetracycline resistance. Study of bacterial plasmids can resolve fundamental biochemical problems, and give some insight into the life of the cell at the molecular level. But the immediate application of the study of staphylococcal plasmids may be directed towards improving the effectiveness of antibiotic therapy. The most important aspect of future anti-staphylococcal chemotherapy should thus be the limitation of the use of antibiotics, particularly for application to the skin and nose. (U.S.)

  7. Inactivation Effect of Antibiotic-Resistant Gene Using Chlorine Disinfection

    Directory of Open Access Journals (Sweden)

    Takashi Furukawa

    2017-07-01

    Full Text Available The aim of this study was to elucidate the inactivation effects on the antibiotic-resistance gene (vanA of vancomycin-resistant enterococci (VRE using chlorination, a disinfection method widely used in various water treatment facilities. Suspensions of VRE were prepared by adding VRE to phosphate-buffered saline, or the sterilized secondary effluent of a wastewater treatment plant. The inactivation experiments were carried out at several chlorine concentrations and stirring time. Enterococci concentration and presence of vanA were determined. The enterococci concentration decreased as chlorine concentrations and stirring times increased, with more than 7.0 log reduction occurring under the following conditions: 40 min stirring at 0.5 mg Cl2/L, 20 min stirring at 1.0 mg Cl2/L, and 3 min stirring at 3.0 mg Cl2/L. In the inactivation experiment using VRE suspended in secondary effluent, the culturable enterococci required much higher chlorine concentration and longer treatment time for complete disinfection than the cases of suspension of VRE. However, vanA was detected in all chlorinated suspensions of VRE, even in samples where no enterococcal colonies were present on the medium agar plate. The chlorine disinfection was not able to destroy antibiotic-resistance genes, though it can inactivate and decrease bacterial counts of antibiotic-resistant bacteria (ARB. Therefore, it was suggested that remaining ARB and/or antibiotic-resistance gene in inactivated bacterial cells after chlorine disinfection tank could be discharged into water environments.

  8. Environmental factors influencing the development and spread of antibiotic resistance.

    Science.gov (United States)

    Bengtsson-Palme, Johan; Kristiansson, Erik; Larsson, D G Joakim

    2018-01-01

    Antibiotic resistance and its wider implications present us with a growing healthcare crisis. Recent research points to the environment as an important component for the transmission of resistant bacteria and in the emergence of resistant pathogens. However, a deeper understanding of the evolutionary and ecological processes that lead to clinical appearance of resistance genes is still lacking, as is knowledge of environmental dispersal barriers. This calls for better models of how resistance genes evolve, are mobilized, transferred and disseminated in the environment. Here, we attempt to define the ecological and evolutionary environmental factors that contribute to resistance development and transmission. Although mobilization of resistance genes likely occurs continuously, the great majority of such genetic events do not lead to the establishment of novel resistance factors in bacterial populations, unless there is a selection pressure for maintaining them or their fitness costs are negligible. To enable preventative measures it is therefore critical to investigate under what conditions and to what extent environmental selection for resistance takes place. In addition, understanding dispersal barriers is not only key to evaluate risks, but also to prevent resistant pathogens, as well as novel resistance genes, from reaching humans. © FEMS 2017.

  9. Sponge Microbiota are a Reservoir of Functional Antibiotic Resistance Genes

    DEFF Research Database (Denmark)

    Versluis, Dennis; de Evgrafov, Mari Cristina Rodriguez; Sommer, Morten Otto Alexander

    2016-01-01

    examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional...... resistance genes in the sponges Aplysina aerophoba, Petrosia ficiformis, and Corticium candelabrum. We obtained 37 insert sequences facilitating resistance to D-cycloserine (n = 6), gentamicin (n = 1), amikacin (n = 7), trimethoprim (n = 17), chloramphenicol (n = 1), rifampicin (n = 2) and ampicillin (n = 3......-resistance-conferring β-lactamase was identified in the genus Pseudovibrio with 41% global amino acid identity to the closest β-lactamase with demonstrated functionality, and subsequently classified into a new family termed PSV. Taken together, our results show that sponge microbiota host diverse and novel resistance...

  10. Antibiotic Resistance Patterns in Invasive Group B Streptococcal Isolates

    Directory of Open Access Journals (Sweden)

    Mei L. Castor

    2008-01-01

    Full Text Available Antibiotics are used for both group B streptococcal (GBS prevention and treatment. Active population-based surveillance for invasive GBS disease was conducted in four states during 1996—2003. Of 3813 case-isolates, 91.0% (3471 were serotyped, 77.1% (2937 had susceptibility testing, and 46.6% (3471 had both. All were sensitive to penicillin, ampicillin, cefazolin, cefotaxime, and vancomycin. Clindamycin and erythromycin resistance was 12.7% and 25.6%, respectively, and associated with serotype V (P<.001. Clindamycin resistance increased from 10.5% to 15.0% (X2 for trend 12.70; P<.001; inducible clindamycin resistance was associated with the erm genotype. Erythromycin resistance increased from 15.8% to 32.8% (X2 for trend 55.46; P<.001. While GBS remains susceptible to beta-lactams, resistance to alternative agents such as erythromycin and clindamycin is an increasing concern.

  11. Antibiotic resistance patterns of pediatric community-acquired urinary infections

    Directory of Open Access Journals (Sweden)

    Eliana Biondi Medeiros Guidoni

    Full Text Available Knowledge about antimicrobial resistance patterns of the etiological agents of urinary tract infections (UTIs is essential for appropriate therapy. Urinary isolates from symptomatic UTI cases attended at Santa Casa University Hospital of São Paulo from August 1986 to December 1989 and August 2004 to December 2005 were identified by conventional methods. Antimicrobial resistance testing was performed by Kirby Bauer's disc diffusion method. Among the 257 children, E. coli was found in 77%. A high prevalence of resistance was observed against ampicillin and TMP/SMX (55% and 51%. The antibiotic resistance rates for E. coli were: nitrofurantoin (6%, nalidixic acid (14%, 1st generation cephalosporin (13%, 3rd generation cephalosporins (5%, aminoglycosides (2%, norfloxacin (9% and ciprofloxacin (4%. We found that E. coli was the predominant bacterial pathogen of community-acquired UTIs. We also detected increasing resistance to TMP/SMX among UTI pathogens in this population.

  12. Structural characterization of Staphylococcus aureus biotin protein ligase and interaction partners: An antibiotic target

    OpenAIRE

    Pendini, Nicole R; Yap, Min Y; Polyak, Steven W; Cowieson, Nathan P; Abell, Andrew; Booker, Grant W; Wallace, John C; Wilce, Jacqueline A; Wilce, Matthew C J

    2013-01-01

    The essential metabolic enzyme biotin protein ligase (BPL) is a potential target for the development of new antibiotics required to combat drug-resistant pathogens. Staphylococcus aureus BPL (SaBPL) is a bifunctional protein, possessing both biotin ligase and transcription repressor activities. This positions BPL as a key regulator of several important metabolic pathways. Here, we report the structural analysis of both holo- and apo-forms of SaBPL using X-ray crystallography. We also present ...

  13. Development of Methods for Genetic Assessment of Antibiotic Resistance In Animal Herds

    DEFF Research Database (Denmark)

    Schmidt, Gunilla Veslemøy

    with a parallel selection for resistant bacteria. Since the hazards related to antibiotic resistance development have been recognized, the prudent use of antibiotics has been in focus, especially concerning their use in animal production. For many years antibiotics have been, and still are, recklessly used...... in the animal production especially in the form of growth promoters. Due to the associated risks of resistant zoonotic bacteria transmission from animals to humans, it is of interest to keep antibiotic use and antibiotic resistance under strict surveillance.This PhD study was based on the development of real......-time PCR (qPCR) assays that supply an easy and rapid method for quantifying antibiotic resistance levels in animal herds. The pig production is accountable for a large portion of the antibiotics used for food producing animals in Denmark. Therefore, the antibiotic resistance genes included in this study...

  14. Antibiotic resistance of Helicobacter pylori in Mashhad, Iran

    International Nuclear Information System (INIS)

    Zendedel, A.; Almasi, V.; Moradimoghadam, F.; Zivarifar, H.

    2013-01-01

    Objective: To evaluate Helicobacter pylori resistance to amoxicillin, clarithromycin, metronidazole and tetracycline in Mashhad, Iran. Methods: The cross-sectional study was done from January to May 2008 in Mashhad, involving 185 patients who had been indicated for endoscopy and lesions had been found. Biopsy samples were assessed with histological evaluation, rapid urease test, and culture. Antibiotic resistance was assessed by the disc diffusion method. Data was analysed with SPSS 11.5 using chi-square and Fisher exact test. P values of < 0.05 were regarded as statistically significant. Results: Of the total patients, histological evaluations were positive in 124 (67%). Compared with histology, sensitivity and specificity of rapid urease test were 96.7% and 100%, respectively. In 82 (66.1%) patients with positive cultures, antibiotic resistance was found in 14 (17.1%) for clarithromycin; 53 (64.6%) for metronidazole; and 8 (9.8%) for amoxicillin. No resistance was observed for tetracycline. Moreover, 9 (64%) patients with resistance to clarithromycin had co-resistance to metronidazole. Conclusion: Metronidazole is not recommended for treatment of Helicobacter pylori as a first-line drug. Also, considering the sensitivity and specificity of rapid urease test, we suggest this method as a suitable alternative for histology. (author)

  15. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments.

    Science.gov (United States)

    Port, Jesse A; Cullen, Alison C; Wallace, James C; Smith, Marissa N; Faustman, Elaine M

    2014-03-01

    High-throughput genomic technologies offer new approaches for environmental health monitoring, including metagenomic surveillance of antibiotic resistance determinants (ARDs). Although natural environments serve as reservoirs for antibiotic resistance genes that can be transferred to pathogenic and human commensal bacteria, monitoring of these determinants has been infrequent and incomplete. Furthermore, surveillance efforts have not been integrated into public health decision making. We used a metagenomic epidemiology-based approach to develop an ARD index that quantifies antibiotic resistance potential, and we analyzed this index for common modal patterns across environmental samples. We also explored how metagenomic data such as this index could be conceptually framed within an early risk management context. We analyzed 25 published data sets from shotgun pyrosequencing projects. The samples consisted of microbial community DNA collected from marine and freshwater environments across a gradient of human impact. We used principal component analysis to identify index patterns across samples. We observed significant differences in the overall index and index subcategory levels when comparing ecosystems more proximal versus distal to human impact. The selection of different sequence similarity thresholds strongly influenced the index measurements. Unique index subcategory modes distinguished the different metagenomes. Broad-scale screening of ARD potential using this index revealed utility for framing environmental health monitoring and surveillance. This approach holds promise as a screening tool for establishing baseline ARD levels that can be used to inform and prioritize decision making regarding management of ARD sources and human exposure routes. Port JA, Cullen AC, Wallace JC, Smith MN, Faustman EM. 2014. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments. Environ Health Perspect 122:222–228; http://dx.doi.org/10.1289/ehp

  16. Mechanisms of antibiotic resistance to enrofloxacin in uropathogenic Escherichia coli in dog.

    Science.gov (United States)

    Piras, Cristian; Soggiu, Alessio; Greco, Viviana; Martino, Piera Anna; Del Chierico, Federica; Putignani, Lorenza; Urbani, Andrea; Nally, Jarlath E; Bonizzi, Luigi; Roncada, Paola

    2015-09-08

    Escherichia coli (E. coli) urinary tract infections (UTIs) are becoming a serious problem both for pets and humans (zoonosis) due to the close contact and to the increasing resistance to antibiotics. This study has been performed in order to unravel the mechanism of induced enrofloxacin resistance in canine E. coli isolates that represent a good tool to study this pathology. The isolated E. coli has been induced with enrofloxacin and studied through 2D DIGE and shotgun MS. Discovered differentially expressed proteins are principally involved in antibiotic resistance and linked to oxidative stress response, to DNA protection and to membrane permeability. Moreover, since enrofloxacin is an inhibitor of DNA gyrase, the overexpression of DNA starvation/stationary phase protection protein (Dsp) could be a central point to discover the mechanism of this clone to counteract the effects of enrofloxacin. In parallel, the dramatic decrease of the synthesis of the outer membrane protein W, which represents one of the main gates for enrofloxacin entrance, could explain additional mechanism of E. coli defense against this antibiotic. All 2D DIGE and MS data have been deposited into the ProteomeXchange Consortium with identifier PXD002000 and DOI http://dx.doi.org/10.6019/PXD002000. This article is part of a Special Issue entitled: HUPO 2014. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Detection and characterisation of genes encoding antibiotic resistance in the cultivable oral microflora.

    OpenAIRE

    Villedieu, A.

    2006-01-01

    The emergence of antibiotic-resistant bacteria has become a major threat to public health. The increased use of antibiotics has selected for the dissemination of antibiotic resistance genes between organisms from different species and different genera. There is a large body of evidence that the indigenous microbiota can act as a reservoir of antibiotic-resistant bacteria. However little is known about the molecular basis for this in bacteria from the oral cavity. Therefore the aim of this wor...

  18. Can Clays in Livestock Feed Promote Antibiotic Resistance and Virulence in Pathogenic Bacteria?

    OpenAIRE

    Rodr?guez-Rojas, Alexandro; Rodr?guez-Beltr?n, Jer?nimo; Valverde, Jos? Ram?n; Bl?zquez, Jes?s

    2015-01-01

    The use of antibiotics in animal husbandry has long been associated with the appearance of antibiotic resistance and virulence factor determinants. Nonetheless, the number of cases of human infection involving resistant or virulent microorganisms that originate in farms is increasing. While many antibiotics have been banned as dietary supplements in some countries, other additives thought to be innocuous in terms of the development and spread of antibiotic resistance are used as growth promot...

  19. Antibiotic resistance patterns of outpatient pediatric urinary tract infections.

    Science.gov (United States)

    Edlin, Rachel S; Shapiro, Daniel J; Hersh, Adam L; Copp, Hillary L

    2013-07-01

    We characterize the current national patterns of antibiotic resistance of outpatient pediatric urinary tract infection. We examined outpatient urinary isolates from patients younger than 18 years in 2009 using The Surveillance Network®, a database with antibiotic susceptibility results and patient demographic data from 195 United States hospitals. We determined the prevalence and antibiotic resistance patterns for the 6 most common uropathogens, ie Escherichia coli, Proteus mirabilis, Klebsiella, Enterobacter, Pseudomonas aeruginosa and Enterococcus. We compared differences in uropathogen prevalence between males and females using chi-square analysis. We identified 25,418 outpatient urinary isolates. E. coli was the most common uropathogen overall but the prevalence of E. coli was higher among females (83%) than males (50%, p Resistance among E. coli was highest for trimethoprim-sulfamethoxazole (24%) but lower for nitrofurantoin (less than 1%) and cephalothin (15%). Compared to 2002 Surveillance Network data, E. coli resistance rates increased for trimethoprim-sulfamethoxazole (from 23% to 31% in males and from 20% to 23% in females) and ciprofloxacin (from 1% to 10% and from 0.6% to 4%, respectively). E. coli remains the most common pediatric uropathogen. Although widely used, trimethoprim-sulfamethoxazole is a poor empirical choice for pediatric urinary tract infections in many areas due to high resistance rates. First-generation cephalosporins and nitrofurantoin are appropriate narrow-spectrum alternatives given their low resistance rates. Local antibiograms should be used to assist with empirical urinary tract infection treatment. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Changing Priorities in Vaccinology: Antibiotic Resistance Moving to the Top

    Directory of Open Access Journals (Sweden)

    Aldo Tagliabue

    2018-05-01

    Full Text Available Antimicrobial resistance (AMR is currently the most alarming issue for human health. AMR already causes 700,000 deaths/year. It is estimated that 10 million deaths due to AMR will occur every year after 2050. This equals the number of people dying of cancer every year in present times. International institutions such as G20, World Bank, World Health Organization (WHO, UN General Assembly, European Union, and the UK and USA governments are calling for new antibiotics. To underline this emergency, a list of antibiotic-resistant “priority pathogens” has been published by WHO. It contains 12 families of bacteria that represent the greatest danger for human health. Resistance to multiple antibiotics is particularly relevant for the Gram-negative bacteria present in the list. The ability of these bacteria to develop mechanisms to resist treatment could be transmitted with genetic material, allowing other bacteria to become drug resistant. Although the search for new antimicrobial drugs remains a top priority, the pipeline for new antibiotics is not promising, and alternative solutions are needed. A possible answer to AMR is vaccination. In fact, while antibiotic resistance emerges rapidly, vaccines can lead to a much longer lasting control of infections. New technologies, such as the high-throughput cloning of human B cells from convalescent or vaccinated people, allow for finding new protective antigens (Ags that could not be identified with conventional technologies. Antibodies produced by convalescent B cell clones can be screened for their ability to bind, block, and kill bacteria, using novel high-throughput microscopy platforms that rapidly capture digital images, or by conventional technologies such as bactericidal, opsono-phagocytosis and FACS assays. Selected antibodies expressed by recombinant DNA techniques can be used for passive immunization in animal models and tested for protection. Antibodies providing the best protection can be

  1. Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance.

    Science.gov (United States)

    Mezzatesta, Maria Lina; Gona, Floriana; Stefani, Stefania

    2012-07-01

    Species of the Enterobacter cloacae complex are widely encountered in nature, but they can act as pathogens. The biochemical and molecular studies on E. cloacae have shown genomic heterogeneity, comprising six species: Enterobacter cloacae, Enterobacter asburiae, Enterobacter hormaechei, Enterobacter kobei, Enterobacter ludwigii and Enterobacter nimipressuralis, E. cloacae and E. hormaechei are the most frequently isolated in human clinical specimens. Phenotypic identification of all species belonging to this taxon is usually difficult and not always reliable; therefore, molecular methods are often used. Although the E. cloacae complex strains are among the most common Enterobacter spp. causing nosocomial bloodstream infections in the last decade, little is known about their virulence-associated properties. By contrast, much has been published on the antibiotic-resistance features of these microorganisms. In fact, they are capable of overproducing AmpC β-lactamases by derepression of a chromosomal gene or by the acquisition of a transferable ampC gene on plasmids conferring the antibiotic resistance. Many other resistance determinants that are able to render ineffective almost all antibiotic families have been recently acquired. Most studies on antimicrobial susceptibility are focused on E. cloacae, E. hormaechei and E. asburiae; these studies reported small variations between the species, and the only significant differences had no discriminating features.

  2. Antibiotic combination therapy can select for broad-spectrum multidrug resistance in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Paulander, Wilhelm; Marvig, Rasmus L.

    2016-01-01

    with the resistance evolved after single-drug exposure. Combination therapy selected for mutants that displayed broad-spectrum resistance, and a major resistance mechanism was mutational inactivation of the repressor gene mexR that regulates the multidrug efflux operon mexAB–oprM. Deregulation of this operon led...... to a broad-spectrum resistance phenotype that decreased susceptibility to the combination of drugs applied during selection as well as to unrelated antibiotic classes. Mutants isolated after single-drug exposure displayed narrow-spectrum resistance and carried mutations in the MexCD–OprJ efflux pump...... regulator gene nfxB conferring ciprofloxacin resistance, or in the gene encoding the non-essential penicillin-binding protein DacB conferring ceftazidime resistance. Reconstruction of resistance mutations by allelic replacement and in vitro fitness assays revealed that in contrast to single antibiotic use...

  3. Increasing transmission of antibiotic resistance from animals to humans

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Frimodt-Møller, Niels

    2011-01-01

    The importance of the animal reservoir for emergence of antimicrobial resistance in bacteria in humans is difficult to estimate. In this article we give our estimate of the importance and also highlight on which points we have become wiser during recent years. We conclude that it still is the human...... usage of antibiotics which contributes most to resistance observed in humans, but also that the contribution from animals is large and larger than estimated just a few years ago. This indicates the need to implement restriction on antimicrobial usage for both humans and animals....

  4. Increasing transmission of antibiotic resistance from animals to humans

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Frimodt-Møller, Niels

    2011-01-01

    usage of antibiotics which contributes most to resistance observed in humans, but also that the contribution from animals is large and larger than estimated just a few years ago. This indicates the need to implement restriction on antimicrobial usage for both humans and animals.......The importance of the animal reservoir for emergence of antimicrobial resistance in bacteria in humans is difficult to estimate. In this article we give our estimate of the importance and also highlight on which points we have become wiser during recent years. We conclude that it still is the human...

  5. Calcined Eggshell Waste for Mitigating Soil Antibiotic-Resistant Bacteria/Antibiotic Resistance Gene Dissemination and Accumulation in Bell Pepper.

    Science.gov (United States)

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Li, Xu; Schwab, Arthur P; Wan, Jinzhong; Liu, Manqiang; Tian, Da; Liu, Kuan; Wu, Jun; Jiang, Xin

    2016-07-13

    The combined accumulation of antibiotics, heavy metals, antibiotic-resistant bacteria (ARB)/antibiotic resistance genes (ARGs) in vegetables has become a new threat to human health. This is the first study to investigate the feasibility of calcined eggshells modified by aluminum sulfate as novel agricultural wastes to impede mixed contaminants from transferring to bell pepper (Capsicum annuum L.). In this work, calcined eggshell amendment mitigated mixed pollutant accumulation in bell pepper significantly, enhanced the dissipation of soil tetracycline, sulfadiazine, roxithromycin, and chloramphenicol, decreased the water-soluble fractions of antibiotics, and declined the diversity of ARB/ARGs inside the vegetable. Moreover, quantitative polymerase chain reaction analysis detected that ARG levels in the bell pepper fruits significantly decreased to 10(-10) copies/16S copies, indicating limited risk of ARGs transferring along the food chain. Furthermore, the restoration of soil microbial biological function suggests that calcined eggshell is an environmentally friendly amendment to control the dissemination of soil ARB/ARGs in the soil-vegetable system.

  6. Novel Antibiotic Resistance Determinants from Agricultural Soil Exposed to Antibiotics Widely Used in Human Medicine and Animal Farming

    OpenAIRE

    Lau, Calvin Ho-Fung; van Engelen, Kalene; Gordon, Stephen; Renaud, Justin; Topp, Edward

    2017-01-01

    Antibiotic resistance has emerged globally as one of the biggest threats to human and animal health. Although the excessive use of antibiotics is recognized as accelerating the selection for resistance, there is a growing body of evidence suggesting that natural environments are “hot spots” for the development of both ancient and contemporary resistance mechanisms. Given that pharmaceuticals can be entrained onto agricultural land through anthropogenic activities, this could be a potential dr...

  7. Antibiotic treatments of a methicillin-resistant Staphylococcus pseudintermedius infection in a dog: a case presentation.

    Science.gov (United States)

    Decristophoris, P; Mauri, F; Albanese, F; Carnelli, A; Vanzetti, T; Zinsstag, J

    2011-09-01

    We report the antibiotic treatments administered to a female dog with mastitis and successive pyoderma. Microbiological investigations allowed the identification of Staphylococcus pseudintermedius after 54 days of various antibiotic treatments. The isolate carried the mecA gene and was resistant to 9 of 15 tested antibiotics. Consistent antibiotic treatment of the infection was possible only after accurate microbiological diagnosis.

  8. Bactericidal antibiotic-phytochemical combinations against methicillin resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Bhone Myint Kyaw

    2012-09-01

    Full Text Available Methicillin resistant Staphylococcus aureus (MRSA infection is a global concern nowadays. Due to its multi-drug resistant nature, treatment with conventional antibiotics does not assure desired clinical outcomes. Therefore, there is a need to find new compounds and/or alternative methods to get arsenal against the pathogen. Combination therapies using conventional antibiotics and phytochemicals fulfill both requirements. In this study, the efficacy of different phytochemicals in combination with selected antibiotics was tested against 12 strains of S. aureus (ATCC MRSA 43300, ATCC methicillin sensitive S. aureus or MSSA 29213 and 10 MRSA clinical strains collected from National University Hospital, Singapore. Out of the six phytochemicals used, tannic acid was synergistic with fusidic acid, minocycline, cefotaxime and rifampicin against most of strains tested and additive with ofloxacin and vancomycin. Quercetin showed synergism with minocycline, fusidic acid and rifampicin against most of the strains. Gallic acid ethyl ester showed additivity against all strains in combination with all antibiotics under investigation except with vancomycin where it showed indifference effect. Eugenol, menthone and caffeic acid showed indifference results against all strains in combination with all antibiotics. Interestingly, no antagonism was observed within these interactions. Based on the fractional inhibitory concentration indices, synergistic pairs were further examined by time-kill assays to confirm the accuracy and killing rate of the combinations over time. The two methods concurred with each other with 92% accuracy and the combinatory pairs were effective throughout the 24 hours of assay. The study suggests a possible incorporation of effective phytochemicals in combination therapies for MRSA infections.

  9. ANTIBIOTIC RESISTANCE OF HELICOBACTER PYLORI AMONG CHILDREN AND THERAPY SELECTION

    Directory of Open Access Journals (Sweden)

    Ye.A. Kornienko

    2006-01-01

    Full Text Available The reason for the low therapy efficiency of many gastrobduodenal diseases is the increasing resistance to the antibiotics helicobacter pylori (Н. pylori, which is conditioned by the mutations of its various genes. The most practical importance is attributed to the 23s RRNA mutations, underlying resistance to claritromicin. According to the international consensus maastrichtb3, the scheme of treatment with the inhibitor of the proton pump, claritromicin and metronidasol is recommended as the 1st line therapy. The present work assesses the resistance of Н. pylori to claritromicin aided by pcrbdiagnostics of the 23s RRNA mutation of rna in the biopsy material of the mucous coat of stomach and standard treatment scheme efficiency if compared with the onebantibiotic scheme – amoxicillin, bismuth and inhibitor of the proton pump. 68 children with Н. pylori bassociated diseases have been examined. The frequency of resistance of Н. pylori to claritromicin made up 28%. The standard 10bday long scheme of treatment was efficient among 14% of the patients, the 7bday long schemes with amoxicillin, bismuth and omeprazole were efficient among 40% of the patients, the 10bday long schemes with amoxicillin, bismuth and omeprazole were efficient among 75% of the patients; with omeprazole replaced by esomeprazole the efficiency was observed among 83% of the patients along with the good treatment tolerance.Key words: helicobacter pylori, antibiotic resistance, eradication.

  10. Increasing antibiotic resistance in preservative-tolerant bacterial strains isolated from cosmetic products.

    Science.gov (United States)

    Orús, Pilar; Gomez-Perez, Laura; Leranoz, Sonia; Berlanga, Mercedes

    2015-03-01

    To ensure the microbiological quality, consumer safety and organoleptic properties of cosmetic products, manufacturers need to comply with defined standards using several preservatives and disinfectants. A drawback regarding the use of these preservatives is the possibility of generating cross-insusceptibility to other disinfectants or preservatives, as well as cross resistance to antibiotics. Therefore, the objective of this study was to understand the adaptive mechanisms of Enterobacter gergoviae, Pseudomonas putida and Burkholderia cepacia that are involved in recurrent contamination in cosmetic products containing preservatives. Diminished susceptibility to formaldehyde-donors was detected in isolates but not to other preservatives commonly used in the cosmetics industry, although increasing resistance to different antibiotics (β-lactams, quinolones, rifampicin, and tetracycline) was demonstrated in these strains when compared with the wild-type strain. The outer membrane protein modifications and efflux mechanism activities responsible for the resistance trait were evaluated. The development of antibiotic-resistant microorganisms due to the selective pressure from preservatives included in cosmetic products could be a risk for the emergence and spread of bacterial resistance in the environment. Nevertheless, the large contribution of disinfection and preservation cannot be denied in cosmetic products. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  11. Staphylococcus aureus Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance.

    Directory of Open Access Journals (Sweden)

    Patricia Reed

    2015-05-01

    Full Text Available Many important cellular processes are performed by molecular machines, composed of multiple proteins that physically interact to execute biological functions. An example is the bacterial peptidoglycan (PG synthesis machine, responsible for the synthesis of the main component of the cell wall and the target of many contemporary antibiotics. One approach for the identification of essential components of a cellular machine involves the determination of its minimal protein composition. Staphylococcus aureus is a Gram-positive pathogen, renowned for its resistance to many commonly used antibiotics and prevalence in hospitals. Its genome encodes a low number of proteins with PG synthesis activity (9 proteins, when compared to other model organisms, and is therefore a good model for the study of a minimal PG synthesis machine. We deleted seven of the nine genes encoding PG synthesis enzymes from the S. aureus genome without affecting normal growth or cell morphology, generating a strain capable of PG biosynthesis catalyzed only by two penicillin-binding proteins, PBP1 and the bi-functional PBP2. However, multiple PBPs are important in clinically relevant environments, as bacteria with a minimal PG synthesis machinery became highly susceptible to cell wall-targeting antibiotics, host lytic enzymes and displayed impaired virulence in a Drosophila infection model which is dependent on the presence of specific peptidoglycan receptor proteins, namely PGRP-SA. The fact that S. aureus can grow and divide with only two active PG synthesizing enzymes shows that most of these enzymes are redundant in vitro and identifies the minimal PG synthesis machinery of S. aureus. However a complex molecular machine is important in environments other than in vitro growth as the expendable PG synthesis enzymes play an important role in the pathogenicity and antibiotic resistance of S. aureus.

  12. Antibiotic resistance among Ureaplasma spp. isolates: cause for concern?

    Science.gov (United States)

    Beeton, M L; Spiller, O B

    2017-02-01

    There is growing global concern regarding the rise of antibiotic-resistant organisms. Many of these reports have focused on various Gram-positive and Gram-negative pathogens, with little attention to the genus Ureaplasma. Ureaplasma spp. are associated with numerous infectious diseases affecting pregnant women, neonates and the immunocompromised. Treatment options are extremely limited due to high levels of intrinsic resistance resulting from the unique physiology of these organisms and further restricted in cases of the developing fetus or neonate, often limiting therapeutic options to predominantly macrolides or rarely fluoroquinolones. The increasing presence of macrolide- and fluoroquinolone-resistant strains among neonatal infections may result in pan-drug resistance and potentially untreatable conditions. Here, we review the requirements for accurate measurement of antimicrobial susceptibility, provide a comprehensive review of the antimicrobial resistance (AMR) for Ureaplasma species in the literature and contextualize these results relative to some investigators' reliance on commercial kits that are not CLSI compliant when determining AMR. The dramatic variation in the resistance patterns and impact of high levels of AMR amongst neonatal populations suggests the need for continued surveillance. Commercial kits represent an excellent tool for initial antibiotic susceptibility determination and screening. However, AMR reporting must utilize internationally standardized methods, as high-titre samples, or Mycoplasma hominis-contaminated samples routinely give false AMR results. Furthermore, there is a requirement for future reports to determine the underlying AMR mechanisms and determine whether expanding AMR is due to spontaneous mutation, transmission of resistance genes on mobile elements or selection and expansion of resistant clones. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy

  13. Bacterial infections in Lilongwe, Malawi: aetiology and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Makoka Mwai H

    2012-03-01

    Full Text Available Abstract Background Life-threatening infections present major challenges for health systems in Malawi and the developing world because routine microbiologic culture and sensitivity testing are not performed due to lack of capacity. Use of empirical antimicrobial therapy without regular microbiologic surveillance is unable to provide adequate treatment in the face of emerging antimicrobial resistance. This study was conducted to determine antimicrobial susceptibility patterns in order to inform treatment choices and generate hospital-wide baseline data. Methods Culture and susceptibility testing was performed on various specimens from patients presenting with possible infectious diseases at Kamuzu Central Hospital, Lilongwe, Malawi. Results Between July 2006 and December 2007 3104 specimens from 2458 patients were evaluated, with 60.1% from the adult medical service. Common presentations were sepsis, meningitis, pneumonia and abscess. An etiologic agent was detected in 13% of patients. The most common organisms detected from blood cultures were Staphylococcus aureus, Escherichia coli, Salmonella species and Streptococcus pneumoniae, whereas Streptococcus pneumoniae and Cryptococcus neoformans were most frequently detected from cerebrospinal fluid. Haemophilus influenzae was rarely isolated. Resistance to commonly used antibiotics was observed in up to 80% of the isolates while antibiotics that were not commonly in use maintained susceptibility. Conclusions There is widespread resistance to almost all of the antibiotics that are empirically used in Malawi. Antibiotics that have not been widely introduced in Malawi show better laboratory performance. Choices for empirical therapy in Malawi should be revised accordingly. A microbiologic surveillance system should be established and prudent use of antimicrobials promoted to improve patient care.

  14. Reusing Treated Wastewater: Consideration of the Safety Aspects Associated with Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Pei-Ying Hong

    2018-02-01

    Full Text Available As more countries engage in water reuse, either intended or de facto, there is an urgent need to more comprehensively evaluate resulting environmental and public health concerns. While antibiotic-resistant bacteria (ARB and antibiotic resistance genes (ARGs are increasingly coming under the spotlight, as emerging contaminants, existing water reuse regulations and guidelines do not adequately address these concerns. This perspectives paper seeks to frame the various challenges that need to be resolved to identify meaningful and realistic target types and levels of antibiotic resistance benchmarks for water reuse. First, there is the need for standardized and agreed-upon methodologies to identify and quantify ARB and ARGs. Second, even if methodologies are available, identifying which ARB and ARGs to monitor that would best relate to the occurrence of disease burden remains unknown. Third, a framework tailored to assessing the risks associated with ARB and ARGs during reuse is urgently needed. Fourth, similar to protecting drinking water sources, strategies to prevent dissemination of ARB and ARGs via wastewater treatment and reuse are required to ensure that appropriate barriers are emplaced. Finally, current wastewater treatment technologies could benefit from modification or retrofit to more effectively remove ARB and ARGs while also producing a high quality product for water and resource recovery. This perspectives paper highlights the need to consider ARB and ARGs when evaluating the overall safety aspects of water reuse and ways by which this may be accomplished.

  15. Reusing Treated Wastewater: Consideration of the Safety Aspects Associated with Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying

    2018-02-27

    As more countries engage in water reuse, either intended or de facto, there is an urgent need to more comprehensively evaluate resulting environmental and public health concerns. While antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are increasingly coming under the spotlight, as emerging contaminants, existing water reuse regulations and guidelines do not adequately address these concerns. This perspectives paper seeks to frame the various challenges that need to be resolved to identify meaningful and realistic target types and levels of antibiotic resistance benchmarks for water reuse. First, there is the need for standardized and agreed-upon methodologies to identify and quantify ARB and ARGs. Second, even if methodologies are available, identifying which ARB and ARGs to monitor that would best relate to the occurrence of disease burden remains unknown. Third, a framework tailored to assessing the risks associated with ARB and ARGs during reuse is urgently needed. Fourth, similar to protecting drinking water sources, strategies to prevent dissemination of ARB and ARGs via wastewater treatment and reuse are required to ensure that appropriate barriers are emplaced. Finally, current wastewater treatment technologies could benefit from modification or retrofit to more effectively remove ARB and ARGs while also producing a high quality product for water and resource recovery. This perspectives paper highlights the need to consider ARB and ARGs when evaluating the overall safety aspects of water reuse and ways by which this may be accomplished.

  16. Antibiotic resistance and molecular epidemiology of Staphylococcus aureus in Nigeria

    Directory of Open Access Journals (Sweden)

    Oyedara Omotayo

    2011-05-01

    Full Text Available Abstract Background Staphylococcus aureus is an important pathogen causing a wide range of infections in the hospital and community setting. In order to have adequate information for treatment of S. aureus infections, it is crucial to understand the trends in the antibiotic-resistance patterns. In addition, the occurrence and changes in types of S. aureus, clonal identities, and their geographic spread is essential for the establishment of adequate infection control programmes. In this study, 68 S. aureus isolates obtained from clinical and non-clinical sources in Nigeria between January and April 2009 were characterized using phenotypic and molecular methods. Results All the S. aureus isolates were susceptible to teicoplanin, vancomycin, phosphomycin, fusidic acid, rifampicin, daptomycin, mupirocin, linezolid and tigecycline. Sixteen percent of the isolates were resistant to oxacillin, while 55% and 72% of isolates were resistant to tetracycline and trimethoprim/sulphamethoxazole (cotrimoxazole, respectively (Table 1. There was excellent correlation between the broth microdilution assay and detection of antibiotic resistance genes by the multiplex PCR, in the determination of S. aureus resistance to erythromycin, gentamicin, methicillin and tetracycline. A total of 28 spa types were identified in the study, and the predominant spa type among the methicillin-susceptible S. aureus (MSSA isolates was t084 (13 isolates. The t037-ST241-SCCmecIII type was the only clone identified in Maiduguri (North-East Nigeria while in South-West Nigeria, diversity among the MRSA isolates (t451-ST8-SCCmecV; t008-ST94-SCCmecIV; t002-ST5-SCCmecV; t064-ST8-SCCmecV was observed. The toxin genes seh and etd were detected in isolates affiliated with clonal complexes CC1, CC80 and sequence type ST25, respectively. The proportion of PVL-positive isolates among MSSA was high (40%. Most of the PVL-positive MSSA isolates were obtained from wound infections and associated

  17. Cefditoren and ceftriaxone enhance complement-mediated immunity in the presence of specific antibodies against antibiotic-resistant pneumococcal strains.

    Directory of Open Access Journals (Sweden)

    Elisa Ramos-Sevillano

    Full Text Available BACKGROUND: Specific antibodies mediate humoral and cellular protection against invading pathogens such as Streptococcus pneumoniae by activating complement mediated immunity, promoting phagocytosis and stimulating bacterial clearance. The emergence of pneumococcal strains with high levels of antibiotic resistance is of great concern worldwide and a serious threat for public health. METHODOLOGY/PRINCIPAL FINDINGS: Flow cytometry was used to determine whether complement-mediated immunity against three antibiotic-resistant S. pneumoniae clinical isolates is enhanced in the presence of sub-inhibitory concentrations of cefditoren and ceftriaxone. The binding of acute phase proteins such as C-reactive protein and serum amyloid P component, and of complement component C1q, to pneumococci was enhanced in the presence of serum plus either of these antibiotics. Both antibiotics therefore trigger the activation of the classical complement pathway against S. pneumoniae. C3b deposition was also increased in the presence of specific anti-pneumococcal antibodies and sub-inhibitory concentrations of cefditoren and ceftriaxone confirming that the presence of these antibiotics enhances complement-mediated immunity to S. pneumoniae. CONCLUSIONS/SIGNIFICANCE: Using cefditoren and ceftriaxone to promote the binding of acute phase proteins and C1q to pneumococci, and to increase C3b deposition, when anti-pneumococcal antibodies are present, might help reduce the impact of antibiotic resistance in S. pneumoniae infections.

  18. First case of Helicobacter pylori infection resistant to seven antibiotics in Iran

    Directory of Open Access Journals (Sweden)

    Amin Talebi Bezmin Abadi

    2014-10-01

    Full Text Available Treatment of Helicobacter pylori infection with common antibiotics is typically recommended for several digestive conditions, including peptic ulcers. However, reports of resistant H. pylori isolates are increasing, and unfortunately, these do not respond to currently available therapeutic regimens. We report the case of a 31-year-old woman with two peptic ulcers in the duodenal antrum. An H. pylori strain was isolated, and tested for antibiotic resistance using agar dilution and disk diffusion. The isolated strain was found to be resistant to all seven antibiotics that were tested. Therefore, constant monitoring for antibiotic resistance should be performed prior to initiating antibiotic therapy.

  19. Impact of Rapid Susceptibility Testing and Antibiotic Selection Strategy on the Emergence and Spread of Antibiotic Resistance in Gonorrhea.

    Science.gov (United States)

    Tuite, Ashleigh R; Gift, Thomas L; Chesson, Harrell W; Hsu, Katherine; Salomon, Joshua A; Grad, Yonatan H

    2017-11-27

    Increasing antibiotic resistance limits treatment options for gonorrhea. We examined the impact of a hypothetical point-of-care (POC) test reporting antibiotic susceptibility profiles on slowing resistance spread. A mathematical model describing gonorrhea transmission incorporated resistance emergence probabilities and fitness costs associated with resistance based on characteristics of ciprofloxacin (A), azithromycin (B), and ceftriaxone (C). We evaluated time to 1% and 5% prevalence of resistant strains among all isolates with the following: (1) empiric treatment (B and C), and treatment guided by POC tests determining susceptibility to (2) A only and (3) all 3 antibiotics. Continued empiric treatment without POC testing was projected to result in >5% of isolates being resistant to both B and C within 15 years. Use of either POC test in 10% of identified cases delayed this by 5 years. The 3 antibiotic POC test delayed the time to reach 1% prevalence of triply-resistant strains by 6 years, whereas the A-only test resulted in no delay. Results were less sensitive to assumptions about fitness costs and test characteristics with increasing test uptake. Rapid diagnostics reporting antibiotic susceptibility may extend the usefulness of existing antibiotics for gonorrhea treatment, but ongoing monitoring of resistance patterns will be critical. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  20. Do antibiotic residues in soils play a role in amplification and transmission of antibiotic resistant bacteria in cattle populations?

    Directory of Open Access Journals (Sweden)

    Douglas Ruben Call

    2013-07-01

    Full Text Available When we consider factors that contribute to the emergence, amplification, and persistence of antibiotic resistant bacteria, the conventional assumption is that antibiotic use is the primary driver in these processes and that selection occurs primarily in the patient or animal. Evidence suggests that this may not always be the case. Experimental trials show that parenteral administration of a third-generation cephalosporin (ceftiofur in cattle has limited or short-term effects on the prevalence of ceftiofur-resistant bacteria in the gastrointestinal tract. While this response may be sufficient to explain a pattern of widespread resistance to cephalosporins, approximately two-thirds of ceftiofur metabolites are excreted in the urine raising the possibility that environmental selection plays an important additive role in the amplification and maintenance of antibiotic resistant E. coli on farms. Consequently, we present a rationale for an environmental selection hypothesis whereby excreted antibiotic residues such as ceftiofur are a significant contributor to the proliferation of antibiotic resistant bacteria in food animal systems. We also present a mathematical model of our hypothesized system as a guide for designing experiments to test this hypothesis. If supported for antibiotics such as ceftiofur, then there may be new approaches to combat the proliferation of antibiotic resistance beyond the prudent use mantra.

  1. Impact of anthropogenic activities on the dissemination of antibiotic resistance across ecological boundaries.

    Science.gov (United States)

    Tripathi, Vijay; Cytryn, Eddie

    2017-02-28

    Antibiotics are considered to be one of the major medical breakthroughs in history. Nonetheless, over the past four decades, antibiotic resistance has reached alarming levels worldwide and this trend is expected to continue to increase, leading some experts to forecast the coming of a 'post-antibiotic' era. Although antibiotic resistance in pathogens is traditionally linked to clinical environments, there is a rising concern that the global propagation of antibiotic resistance is also associated with environmental reservoirs that are linked to anthropogenic activities such as animal husbandry, agronomic practices and wastewater treatment. It is hypothesized that the emergence and dissemination of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) within and between environmental microbial communities can ultimately contribute to the acquisition of antibiotic resistance in human pathogens. Nonetheless, the scope of this phenomenon is not clear due to the complexity of microbial communities in the environment and methodological constraints that limit comprehensive in situ evaluation of microbial genomes. This review summarizes the current state of knowledge regarding antibiotic resistance in non-clinical environments, specifically focusing on the dissemination of antibiotic resistance across ecological boundaries and the contribution of this phenomenon to global antibiotic resistance. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology

    OpenAIRE

    Gibson, Molly K; Forsberg, Kevin J; Dantas, Gautam

    2014-01-01

    Antibiotic resistance is a dire clinical problem with important ecological dimensions. While antibiotic resistance in human pathogens continues to rise at alarming rates, the impact of environmental resistance on human health is still unclear. To investigate the relationship between human-associated and environmental resistomes, we analyzed functional metagenomic selections for resistance against 18 clinically relevant antibiotics from soil and human gut microbiota as well as a set of multidr...

  3. Changes in Bacterial Resistance Patterns of Pediatric Urinary Tract Infections and Rationale for Empirical Antibiotic Therapy

    OpenAIRE

    İbrahim Gökçe; Neslihan Çiçek; Serçin Güven; Ülger Altuntaş; Neşe Bıyıklı; Nurdan Yıldız; Harika Alpay

    2017-01-01

    Background: The causative agent spectrum and resistance patterns of urinary tract infections in children are affected by many factors. Aims: To demonstrate antibiotic resistance in urinary tract infections and changing ratio in antibiotic resistance by years. Study Design: Retrospective cross-sectional study. Methods: We analysed antibiotic resistance patterns of isolated Gram (-) bacteria during the years 2011-2014 (study period 2) in children with urinary tract infections. We...

  4. Identification of antibiotic resistant bacteria community and a GeoChip based study of resistome in urban watersheds.

    Science.gov (United States)

    Low, Adrian; Ng, Charmaine; He, Jianzhong

    2016-12-01

    pumps with antimicrobial biosynthesis genes suggest that natural production of antimicrobials may act as a selective pressure of transporter proteins in the absence of antibiotics from anthropogenic sources. In conclusion, distinct antibiotic resistant bacteria phylotypes and a variety of ARGs were present in the non-point sources urban watersheds of different land-use profiles, suggesting that ARG risk assessments and monitoring studies need to include these types of watersheds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. [Bacterial efflux pumps - their role in antibiotic resistance and potential inhibitors].

    Science.gov (United States)

    Hricová, Kristýna; Kolář, Milan

    2014-12-01

    Efflux pumps capable of actively draining antibiotic agents from bacterial cells may be considered one of potential mechanisms of the development of antimicrobial resistance. The most important group of efflux pumps capable of removing several types of antibiotics include RND (resistance - nodulation - division) pumps. These are three proteins that cross the bacterial cell wall, allowing direct expulsion of the agent out from the bacterial cell. The most investigated efflux pumps are the AcrAB-TolC system in Escherichia coli and the MexAB-OprM system in Pseudomonas aeruginosa. Moreover, efflux pumps are able to export other than antibacterial agents such as disinfectants, thus decreasing their effectiveness. One potential approach to inactivation of an efflux pump is to use the so-called efflux pump inhibitors (EPIs). Potential inhibitors tested in vitro involve, for example, phenylalanyl-arginyl-b-naphthylamide (PAbN), carbonyl cyanide m-chlorophenylhydrazone (CCCP) or agents of the phenothiazine class.

  6. Self-Medication with Antibiotics, Attitude and Knowledge of Antibiotic Resistance among Community Residents and Undergraduate Students in Northwest Nigeria

    Directory of Open Access Journals (Sweden)

    Olumide Ajibola

    2018-04-01

    Full Text Available This study set out to evaluate self-medicated antibiotics and knowledge of antibiotic resistance among undergraduate students and community members in northern Nigeria. Antibiotic consumption pattern, source of prescription, illnesses commonly treated, attitude towards antibiotics, and knowledge of antibiotic resistance were explored using a structured questionnaire. Responses were analyzed and summarized using descriptive statistics. Of the 1230 respondents from undergraduate students and community members, prescription of antibiotics by a physician was 33% and 57%, respectively, amongst undergraduate students and community members. We tested the respondents’ knowledge of antibiotic resistance (ABR and found that undergraduate students displayed less knowledge that self-medication could lead to ABR (32.6% and 42.2% respectively. Self-medication with antibiotics is highly prevalent in Northwest Nigeria, with most medicines being purchased from un-licensed stores without prescription from a physician. We also observed a significant gap in respondents’ knowledge of ABR. There is an urgent need for public health authorities in Nigeria to enforce existing laws on antibiotics sales and enlighten the people on the dangers of ABR.

  7. Supplementary Material for: Detection of antibiotic resistance in probiotics of dietary supplements

    KAUST Repository

    Wong, Aloysius Tze; Ngu, Davey; Dan, Lydia; Ooi, Amanda Siok Lee; Lim, Renee

    2015-01-01

    , streptomycin and ciprofloxacin antibiotics. Additionally, we also report a discrepancy between the enumerated viable bacteria amounts and the claims of the manufacturers. Conclusions This short report has highlighted the present of antibiotic resistance

  8. The Antibiotic Resistant Target Seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery

    DEFF Research Database (Denmark)

    Alanjary, Mohammad; Kronmiller, Brent; Adamek, Martina

    2017-01-01

    and identifying gene clusters for compounds active against specific and novel targets. Here we introduce the 'Antibiotic Resistant Target Seeker' (ARTS) available at https://arts.ziemertlab.com. ARTS allows for specific and efficient genome mining for antibiotics with interesting and novel targets. The aim...

  9. The importance of lag time extension in determining bacterial resistance to\\ud antibiotics

    OpenAIRE

    Li, Bing; Qiu, Yong; Shi, Hanchang; Yin, Huabing

    2016-01-01

    It is widely appreciated that widespread antibiotic resistance has significantly reduced the utility of today’s antibiotics. Many antibiotics now fail to cure infectious diseases, although they are classified as effective bactericidal agents based on antibiotic susceptibility tests. Here, via kinetic growth assays, we evaluated the effects of 12 commonly used antibiotics on the lag phase of a range of pure environmental isolates and sludge bacterial communities of high diversity. We show that...

  10. Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system.

    Science.gov (United States)

    Li, Jianan; Cheng, Weixiao; Xu, Like; Strong, P J; Chen, Hong

    2015-03-01

    In this study, we determined the abundance of 8 antibiotics (3 tetracyclines, 4 sulfonamides, and 1 trimethoprim), 12 antibiotic-resistant genes (10 tet, 2 sul), 4 antibiotic-resistant bacteria (tetracycline, sulfamethoxazole, and combined resistance), and class 1 integron integrase gene (intI1) in the effluent of residential areas, hospitals, and municipal wastewater treatment plant (WWTP) systems. The concentrations of total/individual targets (antibiotics, genes, and bacteria) varied remarkably among different samples, but the hospital samples generally had a lower abundance than the residential area samples. The WWTP demonstrated removal efficiencies of 50.8% tetracyclines, 66.8% sulfonamides, 0.5 logs to 2.5 logs tet genes, and less than 1 log of sul and intI1 genes, as well as 0.5 log to 1 log removal for target bacteria. Except for the total tetracycline concentration and the proportion of tetracycline-resistant bacteria (R (2) = 0.330, P antibiotics and the corresponding resistant bacteria (P > 0.05). In contrast, various relationships were identified between antibiotics and antibiotic resistance genes (P antibiotic-resistant bacteria (P < 0.01).

  11. Structural characterization of Staphylococcus aureus biotin protein ligase and interaction partners: an antibiotic target.

    Science.gov (United States)

    Pendini, Nicole R; Yap, Min Y; Traore, D A K; Polyak, Steven W; Cowieson, Nathan P; Abell, Andrew; Booker, Grant W; Wallace, John C; Wilce, Jacqueline A; Wilce, Matthew C J

    2013-06-01

    The essential metabolic enzyme biotin protein ligase (BPL) is a potential target for the development of new antibiotics required to combat drug-resistant pathogens. Staphylococcus aureus BPL (SaBPL) is a bifunctional protein, possessing both biotin ligase and transcription repressor activities. This positions BPL as a key regulator of several important metabolic pathways. Here, we report the structural analysis of both holo- and apo-forms of SaBPL using X-ray crystallography. We also present small-angle X-ray scattering data of SaBPL in complex with its biotin-carboxyl carrier protein substrate as well as the SaBPL:DNA complex that underlies repression. This has revealed the molecular basis of ligand (biotinyl-5'-AMP) binding and conformational changes associated with catalysis and repressor function. These data provide new information to better understand the bifunctional activities of SaBPL and to inform future strategies for antibiotic discovery. © 2013 The Protein Society.

  12. Reversing Bacterial Resistance to Antibiotics by Phage-Mediated Delivery of Dominant Sensitive Genes

    OpenAIRE

    Edgar, Rotem; Friedman, Nir; Molshanski-Mor, Shahar; Qimron, Udi

    2012-01-01

    Pathogen resistance to antibiotics is a rapidly growing problem, leading to an urgent need for novel antimicrobial agents. Unfortunately, development of new antibiotics faces numerous obstacles, and a method that resensitizes pathogens to approved antibiotics therefore holds key advantages. We present a proof of principle for a system that restores antibiotic efficiency by reversing pathogen resistance. This system uses temperate phages to introduce, by lysogenization, the genes rpsL and gyrA...

  13. Vanillin selectively modulates the action of antibiotics against resistant bacteria.

    Science.gov (United States)

    Bezerra, Camila Fonseca; Camilo, Cicera Janaine; do Nascimento Silva, Maria Karollyna; de Freitas, Thiago Sampaio; Ribeiro-Filho, Jaime; Coutinho, Henrique Douglas Melo

    2017-12-01

    The treatment of infections caused by microorganisms that are resistant to antibiotics represent one of the main challenges of medicine today, especially due to the inefficacy of long-term drug therapy. In the search for new alternatives to treat these infections, many researchers have been looking for new substances derived from natural products to replace, or be used in combination with conventional antibiotics. Vanillin is a phenolic compound whose antimicrobial activity has been used in the elimination of pathogens present in fruits and vegetables. However, its antibacterial and modulating properties remain to be characterized. Therefore, this work aimed to evaluate the antibacterial activity and analyze the modulator activity of vanillin in association with conventional antibiotics. The antimicrobial activity of vanillin was evaluated using the microdilution method to determine the Minimum Inhibitory Concentration (MIC) Standard strains of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and multi-resistant strains of Escherichia coli 06, Staphylococcus aureus 10, Pseudomonas aeruginosa 24 were used in this study. The antibiotic modulating effect was analyzed by combining vanillin with Norfloxacin, Imipenem, Gentamicin, Erythromycin and Tetracycline against the following multiresistant bacteria strains: Escherichia coli 06, Staphylococcus aureus 10 and Pseudomonas aeruginosa 24. Data were analyzed using the ANOVA test of two tracks followed by the post hoc Bonferroni test. Vanillin presented CIMs ≥1024μg/mL against all tested strains demonstrating that it did not present significant antibacterial activity. However, modulated the activity of gentamicin and imipenem against S. aureus and E. coli, causing a synergistic effect, but did not affect the activity of norfloxacin, tetracycline and erythromycin against these same microorganisms. A synergistic effect was also obtained from the association of vanillin with norfloxacin against P

  14. Awareness of antibiotic resistance and antibiotic prescribing in UTI treatment: a qualitative study among primary care physicians in Sweden.

    Science.gov (United States)

    Björkman, Ingeborg; Berg, Johanna; Viberg, Nina; Stålsby Lundborg, Cecilia

    2013-03-01

    To improve education and information for general practitioners in relation to rational antibiotic prescribing for urinary tract infection (UTI), it is important to be aware of GPs' views of resistance and how it influences their choice of UTI treatment. The aim of this study was to explore variations in views of resistance and UTI treatment decisions among general practitioners (GPs) in a county in Sweden. Qualitative, semi-structured interviews were analysed with a phenomenographic approach and content analysis. Primary care in Kronoberg, a county in southern Sweden. Subjects. A purposeful sample of 20 GPs from 15 of 25 health centres in the county. The variation of perceptions of antibiotic resistance in UTI treatment. How UTIs were treated according to the GPs. Three different ways of viewing resistance in UTI treatment were identified. These were: (A) No problem, I have never seen resistance, (B) The problem is bigger somewhere else, and (C) The development of antibiotic resistance is serious and we must be careful. Moreover, GPs' perceptions of antibiotic resistance were mirrored in how they reported their treatment of UTIs in practice. There was a hierarchal scale of how GPs viewed resistance as an issue in UTI treatment. Only GPs who expressed concerns about resistance followed prescribing guidelines completely. This offers valuable insights into the planning and most likely the outcome of awareness or educational activities aimed at changed antibiotic prescribing behaviour.

  15. Effect of silver nanoparticles and antibiotics on antibiotic resistance genes in anaerobic digestion.

    Science.gov (United States)

    Miller, Jennifer H; Novak, John T; Knocke, William R; Young, Katherine; Hong, Yanjuan; Vikesland, Peter J; Hull, Matthew S; Pruden, Amy

    2013-05-01

    Water resource recovery facilities have been described as creating breeding ground conditions for the selection, transfer, and dissemination of antibiotic resistance genes (ARGs) among various bacteria. The objective of this study was to determine the effect of direct addition of antibiotic and silver nanoparticles (Ag NPs, or nanosilver) on the occurrence of ARGs in thermophilic anaerobic digesters. Test thermophilic digesters were amended with environmentally-relevant concentrations of Ag NP (0.01, 0.1, and 1.0 mg-Ag/L; corresponding to approximately 0.7, 7.0, and 70 mg-Ag/kg total solids) and sulfamethoxazole (SMX) that span susceptible to resistant classifications (1, 5, and 50 mg/L) as potential selection pressures for ARGs. Tetracycline (tet(O), tet(W)) and sulfonamide (sulI, sulII) ARGs and the integrase enzyme gene (intI1) associated with Class 1 integrons were measured in raw sludge, test thermophilic digesters, a control thermophilic digester, and a control mesophilic digester. There was no apparent effect of Ag NPs on thermophilic anaerobic digester performance. The maximum SMX addition (50 mg/L) resulted in accumulation of volatile fatty acids and low pH, alkalinity, and volatile solids reduction. There was no significant difference between ARG gene copy numbers (absolute or normalized to 16S rRNA genes) in amended thermophilic digesters and the control thermophilic digester. Antibiotic resistance gene copy numbers in digested sludge ranged from 10(3) to 10(6) copies per microL (approximately 8 x10(1) to 8 x 10(4) copies per microg) of sludge as result of a 1-log reduction of ARGs (2-log reduction for intI1). Quantities of the five ARGs in raw sludge ranged from 10(4) to 10(8) copies per microL (approximately 4 x 10(2) to 4 x 10(6) per microg) of sludge. Test and control thermophilic digesters (53 degrees C, 12-day solids retention time [SRT]) consistently reduced but did not eliminate levels of all analyzed genes. The mesophilic digester (37 degrees C

  16. In silico analysis of different generation β lactams antibiotics with penicillin binding protein-2 of Neisseria meningitidis for curing meningococcal disease.

    Science.gov (United States)

    Tripathi, Vijay; Tripathi, Pooja; Srivastava, Navita; Gupta, Dwijendra

    2014-12-01

    Neisseria meningitidis is a gram negative, diplococcic pathogen responsible for the meningococcal disease and fulminant septicemia. Penicillin-binding proteins-2 (PBPs) is crucial for the cell wall biosynthesis during cell proliferation of N. meningitidis and these are the target for β-lactam antibiotics. For many years penicillin has been recognized as the antibiotic for meningococcal disease but the meningococcus has seemed to be antibiotic resistance. In the present work we have verified the molecular interaction of Penicillin binding protein-2 N. meningitidis to different generation of β-lactam antibiotics and concluded that the third generation of β-lactam antibiotics shows efficient binding with Penicillin binding protein-2 of N. meningitidis. On the basis of binding efficiency and inhibition constant, ceftazidime emerged as the most efficient antibiotic amongst the other advanced β-lactam antibiotics against Penicillin-binding protein-2 of N. meningitidis.

  17. The etiology of neonatal sepsis and patterns of antibiotic resistance

    International Nuclear Information System (INIS)

    Waheed, M.; Laeeq, A.; Maqbool, S.

    2003-01-01

    Objective: To study the patterns of causative bacteria and antibiotic resistance in neonatal sepsis. Results: Among 228 cases included in the study, the male to female ratio was 2.1 to 1. The gestational age was less than 36 weeks in 68 (30%) cases and low birth weight babies were 143 (62.6%). History of birth asphyxia was present in 103 (45%) cases. There were 142 (62.3%) cases of early onset ( 7 days). Out of 233 positive blood cultures Escherichia coli was found to be commonest (47.8%, n =111, p<0.05) both in early onset (47.8%, n=68, p <0.05) and late onset sepsis (47.3%,n=43, p<0.05). Staphylococcus aureus was the most common among gram positive organism. Resistance to cefotaxime, ceftazidime and amikacin was 34% to 80% and to ciprofloxacin 13% to 72%. A total of 64 cases (28%) died. Mortality was four times higher in early onset sespis. Conclusion: Gram negative bacteria are the commenst cause of neonatal sepsis. The resistance to the commonly used antibiotics is alarmingly high. Mortality is four times higher in early one set sepsis. (author)

  18. Induction of bacterial antibiotic resistance by mutagenic halogenated nitrogenous disinfection byproducts

    International Nuclear Information System (INIS)

    Lv, Lu; Yu, Xin; Xu, Qian; Ye, Chengsong

    2015-01-01

    Halogenated nitrogenous disinfection byproducts (N-DBPs) raise concerns regarding their mutagenicity and carcinogenicity threatening public health. However, environmental consequence of their mutagenicity has received less attention. In this study, the effect of halogenated N-DBPs on bacterial antibiotic resistance (BAR) was investigated. After exposure to bromoacetamide (BAcAm), trichloroacetonitrile (TCAN) or tribromonitromethane (TBNM), the resistance of Pseudomonas aeruginosa PAO1 to both individual and multiple antibiotics (ciprofloxacin, gentamicin, polymyxin B, rifampin, tetracycline, ciprofloxacin + gentamicin and ciprofloxacin + tetracycline) was increased, which was predominantly ascribed to the overexpression of efflux pumps. The mechanism of this effect was demonstrated to be mutagenesis through sequencing and analyzing antibiotic resistance genes. The same induction phenomena also appeared in Escherichia coli, suggesting this effect may be universal to waterborne pathogens. Therefore, more attention should be given to halogenated N-DBPs, as they could increase not only genotoxicological risks but also epidemiological risks of drinking water. - Highlights: • The halogenated N-DBPs could induce bacterial antibiotic resistance. • Both individual and multiple resistances could be induced. • Efflux mechanism played an important role in the induced antibiotic resistance. • The halogenated N-DBPs induced bacterial antibiotic resistance via mutagenesis. • Effects of N-DBPs on antibiotic resistance may be universal to waterborne pathogens. - Halogenated N-DBPs could increase antibiotic resistance, even multidrug resistance via mutagenesis, contributing to the enrichment of antibiotic resistant bacteria in drinking water

  19. Prevalence of Antibiotic-Resistant Escherichia coli in Drinking Water Sources in Hangzhou City

    Directory of Open Access Journals (Sweden)

    Zhaojun Chen

    2017-06-01

    Full Text Available This study investigated the distribution of antibiotic resistant Escherichia coli (E. coli and examined the possible relationship between water quality parameters and antibiotic resistance from two different drinking water sources (the Qiantang River and the Dongtiao Stream in Hangzhou city of China. E. coli isolates were tested for their susceptibility to 18 antibiotics. Most of the isolates were resistant to tetracycline (TE, followed by ampicillin (AM, piperacillin (PIP, trimethoprim/sulfamethoxazole (SXT, and chloramphenicol (C. The antibiotic resistance rate of E. coli isolates from two water sources was similar; For E. coli isolates from the Qiantang River, their antibiotic resistance rates decreased from up- to downstream. Seasonally, the dry and wet season had little impact on antibiotic resistance. Spearman's rank correlation revealed significant correlation between resistance to TE and phenicols or ciprofloxacin (CIP, as well as quinolones (ciprofloxacin and levofloxacin and cephalosporins or gentamicin (GM. Pearson's chi-square tests found certain water parameters such as nutrient concentration were strongly associated with resistance to some of the antibiotics. In addition, tet genes were detected from all 82 TE-resistant E. coli isolates, and most of the isolates (81.87% contained multiple tet genes, which displayed 14 different combinations. Collectively, this study provided baseline data on antibiotic resistance of drinking water sources in Hangzhou city, which indicates drinking water sources could be the reservoir of antibiotic resistance, potentially presenting a public health risk.

  20. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes.

    Science.gov (United States)

    Czekalski, Nadine; Sigdel, Radhika; Birtel, Julia; Matthews, Blake; Bürgmann, Helmut

    2015-08-01

    Antibiotic resistance genes (ARGs) are emerging environmental contaminants, known to be continuously discharged into the aquatic environment via human and animal waste. Freshwater aquatic environments represent potential reservoirs for ARG and potentially allow sewage-derived ARG to persist and spread in the environment. This may create increased opportunities for an eventual contact with, and gene transfer to, human and animal pathogens via the food chain or drinking water. However, assessment of this risk requires a better understanding of the level and variability of the natural resistance background and the extent of the human impact. We have analyzed water samples from 21 Swiss lakes, taken at sampling points that were not under the direct influence of local contamination sources and analyzed the relative abundance of ARG using quantitative real-time PCR. Copy numbers of genes mediating resistance to three different broad-spectrum antibiotic classes (sulfonamides: sul1, sul2, tetracyclines: tet(B), tet(M), tet(W) and fluoroquinolones: qnrA) were normalized to copy numbers of bacterial 16S rRNA genes. We used multiple linear regression to assess if ARG abundance is related to human activities in the catchment, microbial community composition and the eutrophication status of the lakes. Sul genes were detected in all sampled lakes, whereas only four lakes contained quantifiable numbers of tet genes, and qnrA remained below detection in all lakes. Our data indicate higher abundance of sul1 in lakes with increasing number and capacity of wastewater treatment plants (WWTPs) in the catchment. sul2 abundance was rather related to long water residence times and eutrophication status. Our study demonstrates the potential of freshwater lakes to preserve antibiotic resistance genes, and provides a reference for ARG abundance from lake systems with low human impact as a baseline for assessing ARG contamination in lake water. Copyright © 2015 Elsevier Ltd. All rights

  1. Occurrence of antibiotic resistance and characterization of resistant genes and integrons in Enterobacteriaceae isolated from integrated fish farms south China

    Science.gov (United States)

    Su, Hao-Chang; Ying, Guang-Guo; Tao, Ran; Zhang, Rui-Quan; Fogarty, Lisa R.; Kolpin, Dana W.

    2011-01-01

    Antibiotics are still widely applied in animal husbandry to prevent diseases and used as feed additives to promote animal growth. This could result in antibiotic resistance to bacteria and antibiotic residues in animals. In this paper, Enterobacteriaceae isolated from four integrated fish farms in Zhongshan, South China were tested for antibiotic resistance, tetracycline resistance genes, sulfonamide resistance genes, and class 1 integrons. The Kirby-Bauer disk diffusion method and polymerase chain reaction (PCR) assays were carried out to test antibiotic susceptibility and resistance genes, respectively. Relatively high antibiotic resistance frequencies were found, especially for ampicillin (80%), tetracycline (52%), and trimethoprim (50%). Out of 203 Enterobacteriaceae isolates, 98.5% were resistant to one or more antibiotics tested. Multiple antibiotic resistance (MAR) was found highest in animal manures with a MAR index of 0.56. Tetracycline resistance genes (tet(A), tet(C)) and sulfonamide resistance genes (sul2) were detected in more than 50% of the isolates. The intI1 gene was found in 170 isolates (83.7%). Both classic and non-classic class 1 integrons were found. Four genes, aadA5, aadA22, dfr2, and dfrA17, were detected. To our knowledge, this is the first report for molecular characterization of antibiotic resistance genes in Enterobacteriaceae isolated from integrated fish farms in China and the first time that gene cassette array dfrA17-aadA5 has been detected in such fish farms. Results of this study indicated that fish farms may be a reservoir of highly diverse and abundant antibiotic resistant genes and gene cassettes. Integrons may play a key role in multiple antibiotic resistances posing potential health risks to the general public and aquaculture.

  2. On the contribution of reclaimed wastewater irrigation to the potential exposure of humans to antibiotics, antibiotic resistant bacteria and antibiotic resistance genes - NEREUS COST Action ES1403 position paper

    DEFF Research Database (Denmark)

    Piña, Benjamin; Bayona, Josep M.; Christou, Anastasis

    2018-01-01

    Antibiotic resistance (AR) is becoming a worldwide threat due to the increasing occurrence of antibiotic-resistant pathogenic bacterial strains. There is a general consensus about the potential implications of the use of antibiotics in livestock on the onset of antibiotic resistant bacteria (ARB......), mainly through meat consumption. However, the ever-increasing use of reclaimed wastewater (RWW) in agriculture may also contribute significantly to the non-accounted exposure to antibiotics, ARB, and antibiotic resistance genes (ARGs). This position paper aims at evaluating the current knowledge...... concerning the occurrence of antibiotics, ARBs, and ARGs in edible parts of different common crops irrigated with RWW. We will discuss which regulations on the use of RWW may contribute to the minimization of the prevalence of these contaminants in crops, and provide recommendations on how to minimize...

  3. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance

    DEFF Research Database (Denmark)

    Ashbolt, Nicholas J.; Amézquita, Alejandro; Backhaus, Thomas

    2013-01-01

    to enable human health risk assessments (HHRA) that focus on the role of the environment in the failure of antibiotic treatment caused by antibiotic-resistant pathogens. Methods: The authors participated in a workshop held 4-8 March 2012 in Québec, Canada, to define the scope and objectives...... of an environmental assessment of antibiotic-resistance risks to human health. We focused on key elements of environmental-resistance-development "hot spots," exposure assessment (unrelated to food), and dose response to characterize risks that may improve antibiotic-resistance management options. Discussion: Various...... novel aspects to traditional risk assessments were identified to enable an assessment of environmental antibiotic resistance. These include a) accounting for an added selective pressure on the environmental resistome that, over time, allows for development of antibiotic-resistant bacteria (ARB); b...

  4. Effect of Prophylactic Antibiotic Use in the Development of Antibiotic Resistance in Children with Recurrent Urinary Tract Infections

    Directory of Open Access Journals (Sweden)

    Mehmet Karacı

    2017-09-01

    Full Text Available Aim: Although prophylactic antibiotic treatment is still debatable, it is currently in use in recurrent urinary tract infections (UTIs. In the present study, we aimed to observe if prophylactic antibiotic use had any effect on the development of antibiotic resistance in patients with recurrent UTIs who we followed up in our clinic. Methods: The present study was performed on patients aged between one month and 16 years, who had recurrent UTIs, and were followed up by the Department of Pediatrics at Bülent Ecevit University Medical School. Patient files were retrospectively reviewed, and 50 patients who received antibiotic prophylaxis and 100 patients without prophylaxis were enrolled in the study. Urinary tests, subsequent urinary culture results, and antibiotic resistances were compared between the groups. Results: The mean age was 42.7±44.2 months. The most frequently cultured isolated bacterium was Escherichia coli (E. coli (58.4%. No difference was determined in bacteria in cultures between prophylaxis receivers and non-receivers. Isolation rate of E. coli was higher in urinary cultures in females than in males (p<0.001. When antibiotic resistance of all urinary culture-isolated bacteria was compared between the two groups, there was no statistically significant difference. However, an increased resistance against amoxicillin/clavulanic acid, ceftriaxone, and piperacillin was determined in prophylaxis group in whom E. coli was grown. In this study, general antibiotic resistance was most frequently observed against ampicillin (71.9%. Conclusion: In the present study, we observed that prophylaxis did not contribute so much to resistance other than E. coli. We recommend not preferring antibiotics which have increased resistance in our institution especially in children receiving prophylaxis for empirical treatment.

  5. Biofilm processes in treating mariculture wastewater may be a reservoir of antibiotic resistance genes

    International Nuclear Information System (INIS)

    Li, Shuai; Zhang, Shenghua; Ye, Chengsong; Lin, Wenfang; Zhang, Menglu; Chen, Lihua; Li, Jinmei; Yu, Xin

    2017-01-01

    Antibiotics are heavily used in Chinese mariculture, but only a small portion of the added antibiotics are absorbed by living creatures. Biofilm processes are universally used in mariculture wastewater treatment. In this study, removal of antibiotics (norfloxacin, rifampicin, and oxytetracycline) from wastewater by moving bed biofilm reactors (MBBRs) and the influence of antibiotics on reactor biofilm were investigated. The results demonstrated that there was no significant effect of sub-μg/L–sub-mg/L concentrations of antibiotics on TOC removal. Moreover, the relative abundance of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARB) in MBBR biofilm increased because of selective pressure of antibiotics. In addition, antibiotics decreased the diversity of the biofilm bacterial community and altered bacterial community structure. These findings provide an empirical basis for the development of appropriate practices for mariculture, and suggest that disinfection and advanced oxidation should be applied to eliminate antibiotics, ARGs, and ARB from mariculture wastewater. - Highlights: • The removal of antibiotics by Moving Bed Biofilm Reactors (MBBR) was investigated. • Biofilm process such as MBBR had little effect on the removal of the antibiotics. • The antibiotics decreased the diversity of biofilm bacterial community and altered bacterial community structure. • Biofilm processes in treating mariculture wastewater may be a reservoir of antibiotic resistance genes.

  6. Impact of extensive antibiotic treatment on faecal carriage of antibiotic-resistant enterobacteria in children in a low resistance prevalence setting

    Science.gov (United States)

    Brandtzaeg, Petter; Høiby, E. Arne; Bohlin, Jon; Samuelsen, Ørjan; Steinbakk, Martin; Abrahamsen, Tore G.; Müller, Fredrik; Gammelsrud, Karianne Wiger

    2017-01-01

    We prospectively studied the consequences of extensive antibiotic treatment on faecal carriage of antibiotic-resistant enterobacteria in a cohort of children with cystic fibrosis (CF) and a cohort of children with cancer compared to healthy children with no or low antibiotic exposure. The study was conducted in Norway in a low resistance prevalence setting. Sixty longitudinally collected faecal samples from children with CF (n = 32), 88 samples from children with cancer (n = 45) and 127 samples from healthy children (n = 70) were examined. A direct MIC-gradient strip method was used to detect resistant Enterobacteriaceae by applying Etest strips directly onto agar-plates swabbed with faecal samples. Whole genome sequencing (WGS) data were analysed to identify resistance mechanisms in 28 multidrug-resistant Escherichia coli isolates. The prevalence of resistance to third-generation cephalosporins, gentamicin and ciprofloxacin was low in all the study groups. At inclusion the prevalence of ampicillin-resistant E. coli and trimethoprim-sulfamethoxazole-resistant E. coli in the CF group compared to healthy controls was 58.6% vs. 28.4% (p = 0.005) and 48.3% vs. 14.9% (p = 0.001), respectively, with a similar prevalence at the end of the study. The prevalence of resistant enterobacteria was not significantly different in the children with cancer compared to the healthy children, not even at the end of the study when the children with cancer had been treated with repeated courses of broad-spectrum antibiotics. Children with cancer were mainly treated with intravenous antibiotics, while the CF group mainly received peroral treatment. Our observations indicate that the mode of administration of antibiotics and the general level of antimicrobial resistance in the community may have an impact on emergence of resistance in intestinal enterobacteria during antibiotic treatment. The WGS analyses detected acquired resistance genes and/or chromosomal mutations that explained the

  7. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis.

    Science.gov (United States)

    Tacconelli, Evelina; Carrara, Elena; Savoldi, Alessia; Harbarth, Stephan; Mendelson, Marc; Monnet, Dominique L; Pulcini, Céline; Kahlmeter, Gunnar; Kluytmans, Jan; Carmeli, Yehuda; Ouellette, Marc; Outterson, Kevin; Patel, Jean; Cavaleri, Marco; Cox, Edward M; Houchens, Chris R; Grayson, M Lindsay; Hansen, Paul; Singh, Nalini; Theuretzbacher, Ursula; Magrini, Nicola

    2018-03-01

    The spread of antibiotic-resistant bacteria poses a substantial threat to morbidity and mortality worldwide. Due to its large public health and societal implications, multidrug-resistant tuberculosis has been long regarded by WHO as a global priority for investment in new drugs. In 2016, WHO was requested by member states to create a priority list of other antibiotic-resistant bacteria to support research and development of effective drugs. We used a multicriteria decision analysis method to prioritise antibiotic-resistant bacteria; this method involved the identification of relevant criteria to assess priority against which each antibiotic-resistant bacterium was rated. The final priority ranking of the antibiotic-resistant bacteria was established after a preference-based survey was used to obtain expert weighting of criteria. We selected 20 bacterial species with 25 patterns of acquired resistance and ten criteria to assess priority: mortality, health-care burden, community burden, prevalence of resistance, 10-year trend of resistance, transmissibility, preventability in the community setting, preventability in the health-care setting, treatability, and pipeline. We stratified the priority list into three tiers (critical, high, and medium priority), using the 33rd percentile of the bacterium's total scores as the cutoff. Critical-priority bacteria included carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa, and carbapenem-resistant and third-generation cephalosporin-resistant Enterobacteriaceae. The highest ranked Gram-positive bacteria (high priority) were vancomycin-resistant Enterococcus faecium and meticillin-resistant Staphylococcus aureus. Of the bacteria typically responsible for community-acquired infections, clarithromycin-resistant Helicobacter pylori, and fluoroquinolone-resistant Campylobacter spp, Neisseria gonorrhoeae, and Salmonella typhi were included in the high-priority tier. Future development strategies should focus on

  8. Fate of antibiotic resistance genes within the microbial communities of three waste water treatment plants

    OpenAIRE

    Di Cesare, Andrea; Eckert, Ester; D'Urso, Silvia; Doppelbauer, Julia; Corno, Gianluca

    2016-01-01

    Although Waste Water Treatment Plant (WWTP) are designed to reduce the biological pollution of urban waters, they lack a specific action against antibiotic resistance bacteria (ARB) or antibiotic resistance genes (ARGs). Nowadays, it is well documented that WWTPs constitute a reservoir of antibiotic resistances and, in some cases, they can be a favorable environment for the selection of ARB. This represent a serious concern for the public health, because the effluents of the WWTPs can be reus...

  9. Disruption of the Gut Microbiome: Clostridium difficile Infection and the Threat of Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Priscilla A. Johanesen

    2015-12-01

    Full Text Available Clostridium difficile is well recognized as the leading cause of antibiotic-associated diarrhea, having a significant impact in both health-care and community settings. Central to predisposition to C. difficile infection is disruption of the gut microbiome by antibiotics. Being a Gram-positive anaerobe, C. difficile is intrinsically resistant to a number of antibiotics. Mobile elements encoding antibiotic resistance determinants have also been characterized in this pathogen. While resistance to antibiotics currently used to treat C. difficile infection has not yet been detected, it may be only a matter of time before this occurs, as has been seen with other bacterial pathogens. This review will discuss C. difficile disease pathogenesis, the impact of antibiotic use on inducing disease susceptibility, and the role of antibiotic resistance and mobile elements in C. difficile epidemiology.

  10. Treatment of acute otitis media - challenges in the era of antibiotic resistance.

    Science.gov (United States)

    Dagan, R

    2000-12-08

    The last decade is characterized by the increase in antibiotic resistance among respiratory bacterial pathogens in the presence of only modest progress in the development of new antibacterial agents to overcome this resistance. A series of recent studies show clearly that the increased resistance among the main AOM pathogens (namely Streptococcus pneumoniae and Haemophilus influenzae) is associated with a dramatic decrease in bacteriologic response to antibiotic treatment, which in turn has an impact on clinical response. Thus, the individual patient is affected by the increasing antibiotic resistance. Moreover, the society as a whole is now also affected because the carriage and spread of antibiotic resistant AOM pathogens is remarkably impacted by antibiotic treatment. New studies show the remarkable ability of antibiotics to rapidly promote nasopharyngeal carriage and spread of antibiotic-resistant AOM pathogens. In these studies, the increase in carriage of antibiotic resistant S. pneumoniae is shown already after 3-4 days from initiation of antibiotic treatment and may last for weeks to months after treatment. Children carrying antibiotic-resistant organisms transmit those organisms to their family and to their day care centers and thus a vicious cycle is created in which increased antibiotic resistance with decreased response leads to increased antibiotic use, which in turn leads to further increase in resistance. New antibiotics are not likely to improve this situation. It is clear that the challenge in the next decade is to prevent AOM rather than to treat it. Efforts to prevent AOM include improved environmental factors, immunization with bacterial and viral vaccines and some creative measures such as prevention of colonization and attachment to epithelium of AOM pathogens. Whether these efforts will prove successful or, even if successful, will only modify the clinical and bacteriologic picture presenting new challenges, only time will tell.

  11. Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture.

    Science.gov (United States)

    Johnson, Timothy A; Stedtfeld, Robert D; Wang, Qiong; Cole, James R; Hashsham, Syed A; Looft, Torey; Zhu, Yong-Guan; Tiedje, James M

    2016-04-12

    Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance genes if

  12. Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest.

    Science.gov (United States)

    Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Topp, Edward

    2013-09-01

    Consumption of vegetables represents a route of direct human exposure to bacteria found in soil. The present study evaluated the complement of bacteria resistant to various antibiotics on vegetables often eaten raw (tomato, cucumber, pepper, carrot, radish, lettuce) and how this might vary with growth in soil fertilized inorganically or with dairy or swine manure. Vegetables were sown into field plots immediately following fertilization and harvested when of marketable quality. Vegetable and soil samples were evaluated for viable antibiotic-resistant bacteria by plate count on Chromocult medium supplemented with antibiotics at clinical breakpoint concentrations. DNA was extracted from soil and vegetables and evaluated by PCR for the presence of 46 gene targets associated with plasmid incompatibility groups, integrons, or antibiotic resistance genes. Soil receiving manure was enriched in antibiotic-resistant bacteria and various antibiotic resistance determinants. There was no coherent corresponding increase in the abundance of antibiotic-resistant bacteria enumerated from any vegetable grown in manure-fertilized soil. Numerous antibiotic resistance determinants were detected in DNA extracted from vegetables grown in unmanured soil. A smaller number of determinants were additionally detected on vegetables grown only in manured and not in unmanured soil. Overall, consumption of raw vegetables represents a route of human exposure to antibiotic-resistant bacteria and resistance determinants naturally present in soil. However, the detection of some determinants on vegetables grown only in freshly manured soil reinforces the advisability of pretreating manure through composting or other stabilization processes or mandating offset times between manuring and harvesting vegetables for human consumption.

  13. FECAL SOURCE TRACKING BY ANTIBIOTIC RESISTANCE ANALYSIS ON A WATERSHED EXHIBITING LOW RESISTANCE

    Science.gov (United States)

    The ongoing development of microbial source tracking has made it possible to identify contamination sources with varying accuracy, depending on the method used. The purpose of this study was done to test the efficiency of the antibiotic resistance analysis (ARA) method under low ...

  14. High Levels of Antibiotic Resistance but No Antibiotic Production Detected Along a Gypsum Gradient in Great Onyx Cave, KY, USA

    Directory of Open Access Journals (Sweden)

    Kathleen Lavoie

    2017-09-01

    Full Text Available A preliminary study of antibiotic production and antibiotic resistance was conducted in Great Onyx Cave in Mammoth Cave National Park, KY, to determine if gypsum (CaSO4∙2H2O affects these bacterial activities. The cave crosses through the width of Flint Ridge, and passages under the sandstone caprock are dry with different amounts of gypsum. The Great Kentucky Desert hypothesis posits that gypsum limits the distribution of invertebrates in the central areas of Great Onyx Cave. Twenty-four bacterial isolates were cultivated from swabs and soils. Using three methods (soil crumb, soil crumb with indicator bacteria, and the cross-streak method using isolated bacteria we did not detect any production of antibiotics. Antibiotic resistance was widespread, with all 24 isolates resistant to a minimum of two antibiotics of seven tested, with three isolates resistant to all. Antibiotic resistance was high and not correlated with depth into the cave or the amount of gypsum. The Great Kentucky Desert hypothesis of the negative effects of gypsum seems to have no impact on bacterial activity.

  15. Antibiotic-resistant fecal bacteria, antibiotics, and mercury in surface waters of Oakland County, Michigan, 2005-2006

    Science.gov (United States)

    Fogarty, Lisa R.; Duris, Joseph W.; Crowley, Suzanne L.; Hardigan, Nicole

    2007-01-01

    Water samples collected from 20 stream sites in Oakland and Macomb Counties, Mich., were analyzed to learn more about the occurrence of cephalosporin-resistant Escherichia coli (E. coli) and vancomycin-resistant enterococci (VRE) and the co-occurrence of antibiotics and mercury in area streams. Fecal indicator bacteria concentrations exceeded the Michigan recreational water-quality standard of 300 E. coli colony forming units (CFU) per 100 milliliters of water in 19 of 35 stream-water samples collected in Oakland County. A gene commonly associated with enterococci from humans was detected in samples from Paint Creek at Rochester and Evans Ditch at Southfield, indicating that human fecal waste is a possible source of fecal contamination at these sites. E. coli resistant to the cephalosporin antibiotics (cefoxitin and/ or ceftriaxone) were found at all sites on at least one occasion. The highest percentages of E. coli isolates resistant to cefoxitin and ceftriaxone were 71 percent (Clinton River at Auburn Hills) and 19 percent (Sashabaw Creek near Drayton Plains), respectively. Cephalosporin-resistant E. coli was detected more frequently in samples from intensively urbanized or industrialized areas than in samples from less urbanized areas. VRE were not detected in any sample collected in this study. Multiple antibiotics (azithromycin, erythromycin, ofloxacin, sulfamethoxazole, and trimethoprim) were detected in water samples from the Clinton River at Auburn Hills, and tylosin (an antibiotic used in veterinary medicine and livestock production that belongs to the macrolide group, along with erythromycin) was detected in one water sample from Paint Creek at Rochester. Concentrations of total mercury were as high as 19.8 nanograms per liter (Evans Ditch at Southfield). There was no relation among percentage of antibiotic-resistant bacteria and measured concentrations of antibiotics or mercury in the water. Genetic elements capable of exchanging multiple antibiotic-resistance

  16. NOVEL ANTIBIOTIC RESISTANCE DETERMINANTS FROM AGRICULTURAL SOIL EXPOSED TO ANTIBIOTICS WIDELY USED IN HUMAN MEDICINE AND ANIMAL FARMING.

    Science.gov (United States)

    Lau, Calvin Ho-Fung; van Engelen, Kalene; Gordon, Stephen; Renaud, Justin; Topp, Edward

    2017-06-16

    Antibiotic resistance has emerged globally as one of the biggest threats to human and animal health. Although the excessive use of antibiotics is recognized for accelerating the selection for resistance, there is a growing body of evidence suggesting that natural environments are "hotspots" for the development of both ancient and contemporary resistance mechanisms. Given that pharmaceuticals can be entrained onto agricultural land through anthropogenic activities, this could be a potential driver for the emergence and dissemination of resistance in soil bacteria. Using functional metagenomics, we interrogated the "resistome" of bacterial communities found in a collection of Canadian agricultural soil, some of which had been receiving antibiotics widely used in human medicine (macrolides) or food animal production (sulfamethazine, chlortetracycline and tylosin) for up to 16 years. Of the 34 new antibiotic resistance genes (ARGs) recovered, the majority were predicted to encode for (multi)drug efflux systems, while a few share little to no homology with established resistance determinants. We characterized several novel gene products, including putative enzymes that can confer high-level resistance against aminoglycosides, sulfonamides, and broad range of beta-lactams, with respect to their resistance mechanisms and clinical significance. By coupling high-resolution proteomics analysis with functional metagenomics, we discovered an unusual peptide, PPP AZI 4 , encoded within an alternative open-reading frame not predicted by bioinformatics tools. Expression of the proline-rich PPP AZI 4 can promote resistance against different macrolides but not other ribosomal-targeting antibiotics, implicating a new macrolide-specific resistance mechanism that could be fundamentally linked to the evolutionary design of this peptide. IMPORTANCE Antibiotic resistance is a clinical phenomenon with an evolutionary link to the microbial pangenome. Genes and protogenes encoding for

  17. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment.

    Science.gov (United States)

    Gomez, James E; Kaufmann-Malaga, Benjamin B; Wivagg, Carl N; Kim, Peter B; Silvis, Melanie R; Renedo, Nikolai; Ioerger, Thomas R; Ahmad, Rushdy; Livny, Jonathan; Fishbein, Skye; Sacchettini, James C; Carr, Steven A; Hung, Deborah T

    2017-02-21

    Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mutations affect ribosome assembly and cause large-scale transcriptomic and proteomic changes, including the downregulation of the catalase KatG, an activating enzyme required for isoniazid sensitivity, and upregulation of WhiB7, a transcription factor involved in innate antibiotic resistance. Importantly, while these ribosomal mutations have a fitness cost in antibiotic-free medium, in a multidrug environment they promote the evolution of high-level, target-based resistance. Further, suppressor mutations can then be easily acquired to restore wild-type growth. Thus, ribosomal mutations can serve as stepping-stones in an evolutionary path leading to the emergence of high-level, multidrug resistance.

  18. Evidence of increased antibiotic resistance in phylogenetically-diverse Aeromonas isolates from semi-intensive fish ponds treated with antibiotics

    Directory of Open Access Journals (Sweden)

    Hemant J Patil

    2016-11-01

    Full Text Available The genus Aeromonas is ubiquitous in aquatic environments encompassing a broad range of fish and human pathogens. Aeromonas strains are known for their enhanced capacity to acquire and exchange antibiotic resistance genes and therefore, are frequently targeted as indicator bacteria for monitoring antimicrobial resistance in aquatic environments. This study evaluated temporal trends in Aeromonas diversity and antibiotic resistance in two adjacent semi-intensive aquaculture facilities to ascertain effects of antibiotic treatment on antimicrobial resistance. In the first facility, sulfadiazine-trimethoprim was added prophylactically upon fingerling stocking and water column-associated Aeromonas were monitored periodically over an eleven-month fish-fattening cycle to assess temporal dynamics in taxonomy and antibiotic resistance. In the second facility, Aeromonas were isolated from fish skin ulcers sampled over a three-year period and from pond water samples to assess associations between pathogenic strains to those in the water column. A total of 1200 Aeromonas spp. were isolated, initially screened for sulfadiazine resistance and further screened against five additional antibiotics. In both facilities, strong correlations were observed between sulfadiazine resistance and trimethoprim and tetracycline resistances, whereas correlations between sulfadiazine resistance and ceftriaxone, gentamycin and chloramphenicol resistances were low. Abundance of multi-drug resistant strains as well as sul1, tetA and intI1 gene-harboring strains was significantly higher in profiles sampled during the fish cycle than those isolated prior to stocking and these genes were extremely abundant in the pathogenic strains. Five phylogenetically-distinct Aeromonas clusters were revealed using partial rpoD gene sequence analysis. Interestingly, prior to fingerling stocking the diversity of water column strains was high, and representatives from all five clusters were

  19. Staphylococcus aureus carriage rates and antibiotic resistance patterns in patients with acne vulgaris.

    Science.gov (United States)

    Delost, Gregory R; Delost, Maria E; Armile, James; Lloyd, Jenifer

    2016-04-01

    Overuse of antibiotics has led to the development of antibiotic-resistant strains of Staphylococcus aureus, which are occurring more frequently within the community. We sought to determine whether long-term antibiotic therapy for acne alter the carriage rate and antibiotic resistance profiles of S aureus. This was a prospective, cross-sectional, quasiexperimental study. Samples of anterior nares were obtained from dermatology patients given a diagnosis of acne vulgaris (n = 263) who were treated with antibiotics (n = 142) or who were not treated with antibiotics (n = 121). Specimens were tested for the presence of S aureus by growth on mannitol salt agar and then isolated on 5% sheep blood agar. Identification was confirmed based on colonial morphology, Gram stain, catalase, and coagulase testing. Antibiotic susceptibility testing was performed using the VITEK 2 system (bioMerieux, Marcy-l'Étoile, France). The S aureus carriage rate was significantly lower in patients with acne treated with antibiotics (6.3%) compared with those not treated with antibiotics (15.7%; P = .016). The percentage of S aureus isolates resistant to 1 or more antibiotics did not significantly differ between the 2 groups (P = .434). Cross-sectional study, patient compliance, and effects of prior acne treatments are limitations. Treatment of patients with acne using antibiotics decreases the S aureus carriage rate but does not significantly alter the antibiotic resistance rates. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  20. Antibiotic usage and resistance in different regions of the Dutch community.

    NARCIS (Netherlands)

    Bruinsma, N.; Filius, P.M.; Smet, P.A.G.M. de; Degener, J.E.; Endtz, P.; Bogaard, A.E. van den; Stobberingh, E.E.

    2002-01-01

    Regional differences of antibiotic use and antibiotic resistance in the fecal indicator bacteria Escherichia coli and enterococci were determined in different cities in the south, west, and north of The Netherlands. In 1999, differences in antibiotic consumption were observed between the different

  1. Antibiotic usage and resistance in different regions of the Dutch community

    NARCIS (Netherlands)

    Bruinsma, N; Filius, PMG; De Smet, PAGM; Degener, J; Endtz, P; Van den Bogaard, AE; Stobberingh, EE

    2002-01-01

    Regional differences of antibiotic use and antibiotic resistance in the fecal indicator bacteria Escherichia coli and enterococci were determined in different cities in the south, west, and north of The Netherlands. In 1999, differences in antibiotic consumption were observed between the different

  2. Awareness of antibiotic use and antimicrobial resistance in the Iraqi community in Jordan.

    Science.gov (United States)

    Darwish, Dana A; Abdelmalek, Suzanne; Abu Dayyih, Wael; Hamadi, Salim

    2014-05-14

    Antimicrobial resistance is a serious global health concern. It has considerable implications on societies' health and resources. In Jordan, there is a large Iraqi community due to the ongoing turmoil in Iraq. Unfortunately, health awareness and practices of this community are under-investigated due to scarcity of research. This paper assesses the awareness of antibiotic use and antimicrobial resistance in the Iraqi community residing in Amman, Jordan. Their level of interaction with health care professionals regarding antibiotics and differences in their antibiotic use between Iraq and Jordan are also discussed. A cross-sectional questionnaire-based survey involving randomly selected Iraqis residing in Amman, Jordan was conducted. The study involved 508 participants. Sixty-two percent of participants agreed with buying antibiotics without a prescription, 29% agreed with obtaining antibiotics from friends or relatives, and 46% agreed with keeping leftover antibiotics for future use. Furthermore, 60% disagreed with not completing an antibiotic course and almost 90% of the sample listed viral diseases as an indication for antibiotics. Forty-four percent of participants abided by physicians' instructions on antibiotic use. Half of the participants believed that pharmacists provided instructions on antibiotics all the time, whereas physicians were perceived to do so by 29% of participants. Gaps exist in knowledge of antibiotic use and reasons for antimicrobial resistance among Iraqis residing in Jordan. These gaps should serve in planning educational campaigns to raise the community's awareness of responsible antibiotic use. Law enforcement to restrict access to antibiotics is also pivotal to tackle their misuse.

  3. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli.

    Science.gov (United States)

    Tazzyman, Samuel J; Hall, Alex R

    2015-03-17

    The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under phage parasitism, the likelihood that antibiotic-resistant genetic backgrounds spread depends on their initial frequency, mutation rate and intrinsic growth rate relative to drug-susceptible genotypes, because these parameters determine relative rates of phage-resistance evolution on different genetic backgrounds. Moreover, the average cost of antibiotic resistance in terms of intrinsic growth in the antibiotic-free experimental environment was small relative to the benefits of an increased mutation rate in the presence of phages. This is consistent with our theoretical work indicating that, under phage selection, typical costs of antibiotic resistance can be outweighed by realistic increases in mutability if drug resistance and hypermutability are genetically linked, as is frequently observed in clinical isolates. This suggests the long-term distribution of antibiotic resistance depends on the relative rates at which different lineages adapt to other types of selection, which in the case of phage parasitism is probably extremely common, as well as costs of resistance inferred by classical in vitro methods.

  4. Genomic sequencing of a strain of Acinetobacter baumannii and potential mechanisms to antibiotics resistance.

    Science.gov (United States)

    Zhao, Lei; Li, Hongru; Zhu, Ziwen; Wakefield, Mark R; Fang, Yujiang; Ye, Ying

    2017-06-01

    Acinetobacter baumannii has been becoming a great challenge to clinicians due to their resistance to almost all available antibiotics. In this study, we sequenced the genome from a multiple antibiotics resistant Acinetobacter baumannii stain which was named A. baumannii-1isolated from China by SMRT sequencing technology to explore its potential mechanisms to antibiotic resistance. We found that several mechanisms might contribute to the antibiotic resistance of Acinetobacter baumannii. Specifically, we found that SNP in genes associated with nucleotide excision repair and ABC transporter might contribute to its resistance to multiple antibiotics; we also found that specific genes associated with bacterial DNA integration and recombination, DNA-mediated transposition and response to antibiotics might contribute to its resistance to multiple antibiotics; Furthermore, specific genes associated with penicillin and cephalosporin biosynthetic pathway and specific genes associated with CHDL and MBL β-lactamase genes might contribute to its resistance to multiple antibiotics. Thus, the detailed mechanisms by which Acinetobacter baumannii show extensive resistance to multiple antibiotics are very complicated. Such a study might be helpful to develop new strategies to control Acinetobacter baumannii infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Removal of antibiotic-resistant bacteria and antibiotic resistance genes affected by varying degrees of fouling on anaerobic microfiltration membranes

    KAUST Repository

    Cheng, Hong; Hong, Pei-Ying

    2017-01-01

    An anaerobic membrane bioreactor was retrofitted with polyvinylidene fluoride (PVDF) microfiltration membrane units, each of which was fouled to a different extent. The membranes with different degrees of fouling were evaluated for their efficiencies in removing three antibiotic-resistant bacteria (ARB), namely, blaNDM-1-positive Escherichia coli PI-7, blaCTX-M-15-positive Klebsiella pneumoniae L7, and blaOXA-48-positive E. coli UPEC-RIY-4, as well as their associated plasmid-borne antibiotic resistance genes (ARGs). The results showed that the log removal values (LRVs) of ARGs correlated positively with the extent of membrane fouling and ranged from 1.9 to 3.9. New membranes with a minimal foulant layer could remove more than 5 log units of ARB. However, as the membranes progressed to subcritical fouling, the LRVs of ARB decreased at increasing operating transmembrane pressures (TMPs). The LRV recovered back to 5 when the membrane was critically fouled, and the achieved LRV remained stable at different operating TMPs. Furthermore, characterization of the surface attributed the removal of both the ARB and ARGs to adsorption, which was facilitated by an increasing hydrophobicity and a decreasing surface ζ potential as the membranes fouled. Our results indicate that both the TMP and the foulant layer synergistically affected ARB removal, but the foulant layer was the main factor that contributed to ARG removal.

  6. Removal of antibiotic-resistant bacteria and antibiotic resistance genes affected by varying degrees of fouling on anaerobic microfiltration membranes

    KAUST Repository

    Cheng, Hong

    2017-09-28

    An anaerobic membrane bioreactor was retrofitted with polyvinylidene fluoride (PVDF) microfiltration membrane units, each of which was fouled to a different extent. The membranes with different degrees of fouling were evaluated for their efficiencies in removing three antibiotic-resistant bacteria (ARB), namely, blaNDM-1-positive Escherichia coli PI-7, blaCTX-M-15-positive Klebsiella pneumoniae L7, and blaOXA-48-positive E. coli UPEC-RIY-4, as well as their associated plasmid-borne antibiotic resistance genes (ARGs). The results showed that the log removal values (LRVs) of ARGs correlated positively with the extent of membrane fouling and ranged from 1.9 to 3.9. New membranes with a minimal foulant layer could remove more than 5 log units of ARB. However, as the membranes progressed to subcritical fouling, the LRVs of ARB decreased at increasing operating transmembrane pressures (TMPs). The LRV recovered back to 5 when the membrane was critically fouled, and the achieved LRV remained stable at different operating TMPs. Furthermore, characterization of the surface attributed the removal of both the ARB and ARGs to adsorption, which was facilitated by an increasing hydrophobicity and a decreasing surface ζ potential as the membranes fouled. Our results indicate that both the TMP and the foulant layer synergistically affected ARB removal, but the foulant layer was the main factor that contributed to ARG removal.

  7. Removal of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes Affected by Varying Degrees of Fouling on Anaerobic Microfiltration Membranes.

    Science.gov (United States)

    Cheng, Hong; Hong, Pei-Ying

    2017-11-07

    An anaerobic membrane bioreactor was retrofitted with polyvinylidene fluoride (PVDF) microfiltration membrane units, each of which was fouled to a different extent. The membranes with different degrees of fouling were evaluated for their efficiencies in removing three antibiotic-resistant bacteria (ARB), namely, bla NDM-1 -positive Escherichia coli PI-7, bla CTX-M-15 -positive Klebsiella pneumoniae L7, and bla OXA-48 -positive E. coli UPEC-RIY-4, as well as their associated plasmid-borne antibiotic resistance genes (ARGs). The results showed that the log removal values (LRVs) of ARGs correlated positively with the extent of membrane fouling and ranged from 1.9 to 3.9. New membranes with a minimal foulant layer could remove more than 5 log units of ARB. However, as the membranes progressed to subcritical fouling, the LRVs of ARB decreased at increasing operating transmembrane pressures (TMPs). The LRV recovered back to 5 when the membrane was critically fouled, and the achieved LRV remained stable at different operating TMPs. Furthermore, characterization of the surface attributed the removal of both the ARB and ARGs to adsorption, which was facilitated by an increasing hydrophobicity and a decreasing surface ζ potential as the membranes fouled. Our results indicate that both the TMP and the foulant layer synergistically affected ARB removal, but the foulant layer was the main factor that contributed to ARG removal.

  8. The path of least resistance: paying for antibiotics in non-human uses.

    Science.gov (United States)

    Hollis, Aidan; Ahmed, Ziana

    2014-11-01

    Antibiotic resistance is a critical threat to human and animal health. Despite the importance of antibiotics, regulators continue to allow antibiotics to be used in low-value applications--subtherapeutic dosing in animals, and spraying tobacco plants for blue mold, for example--where the benefits are unlikely to outweigh the costs in terms of increased resistance. We explore the application of a user fee in non-human uses of antibiotics. Such a fee would efficiently deter low value uses while also providing funding to support the development of the urgently needed new antibiotics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Mutation of environmental mycobacteria to resist silver nanoparticles also confers resistance to a common antibiotic.

    Science.gov (United States)

    Larimer, Curtis; Islam, Mohammad Shyful; Ojha, Anil; Nettleship, Ian

    2014-08-01

    Non-tuberculous mycobacteria are a threat to human health, gaining entry to the body through contaminated water systems, where they form persistent biofilms despite extensive attempts at disinfection. Silver is a natural antibacterial agent and in nanoparticle form activity is increased by a high surface area. Silver nanoparticles (AgNPs) have been used as alternative disinfectants in circulating water systems, washing machines and even clothing. However, nanoparticles, like any other antibiotic that has a pervasive durable presence, carry the risk of creating a resistant population. In this study Mycobacterium smegmatis strain mc(2)155 was cultured in AgNP enriched agar such that only a small population survived. Surviving cultures were isolated and re-exposed to AgNPs and AgNO3 and resistance to silver was compared to a negative control. After only a single exposure, mutant M. smegmatis populations were resistant to AgNPs and AgNO3. Further, the silver resistant mutants were exposed to antibiotics to determine if general resistance had been conferred. The minimum inhibitory concentration of isoniazid was four times higher for silver resistant mutants than for strain mc(2)155. However, core resistance was not conferred to other toxic metal ions. The mutants had lower resistance to CuSO4 and ZnSO4 than the mc(2)155 strain.

  10. Antibiotics

    Science.gov (United States)

    Antibiotics are powerful medicines that fight bacterial infections. Used properly, antibiotics can save lives. They either kill bacteria or ... natural defenses can usually take it from there. Antibiotics do not fight infections caused by viruses, such ...

  11. Use of and microbial resistance to antibiotics in China: a path to reducing antimicrobial resistance.

    Science.gov (United States)

    Cui, Dan; Liu, Xinliang; Hawkey, Peter; Li, Hao; Wang, Quan; Mao, Zongfu; Sun, Jing

    2017-12-01

    We analyzed China's current use of and microbial resistance to antibiotics, and possible means of reducing antimicrobial resistance. Interventions like executive orders within clinical settings and educational approach with vertical approaches rather than an integrated strategy to curb the use of antimicrobials remain limited. An underlying problem is the system of incentives that has resulted in the intensification of inappropriate use by health professionals and patients. There is an urgent need to explore the relationship between financial and non-financial incentives for providers and patients, to eliminate inappropriate incentives. China's national health reforms have created an opportunity to contain inappropriate use of antibiotics through more comprehensive and integrated strategies. Containment of microbial resistance may be achieved by strengthening surveillance at national, regional and hospital levels; eliminating detrimental incentives within the health system; and changing prescribing behaviors to a wider health systems approach, to achieve long-term, equitable and sustainable results and coordinate stakeholders' actions through transparent sharing of information.

  12. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Science.gov (United States)

    Walsh, Fiona; Duffy, Brion

    2013-01-01

    Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  13. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Directory of Open Access Journals (Sweden)

    Fiona Walsh

    Full Text Available Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR resistance genes were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  14. A probabilistic approach to assess antibiotic resistance development risks in environmental compartments and its application to an intensive aquaculture production scenario

    NARCIS (Netherlands)

    Rico, Andreu; Jacobs, Rianne; Brink, Van den Paul J.; Tello, Alfredo

    2017-01-01

    Estimating antibiotic pollution and antibiotic resistance development risks in environmental compartments is important to design management strategies that advance our stewardship of antibiotics. In this study we propose a modelling approach to estimate the risk of antibiotic resistance development

  15. A probabilistic approach to assess antibiotic resistance development risks in environmental compartments and its application to an intensive aquaculture production scenario.

    NARCIS (Netherlands)

    Rico, Andreu; Jacobs, Rianne; Van den Brink, Paul J; Tello, Alfredo

    2017-01-01

    Estimating antibiotic pollution and antibiotic resistance development risks in environmental compartments is important to design management strategies that advance our stewardship of antibiotics. In this study we propose a modelling approach to estimate the risk of antibiotic resistance development

  16. The transport of antibiotic resistance genes and residues in groundwater near swine production facilities

    Science.gov (United States)

    Lin, Y. F.; Yannarell, A. C.; Mackie, R. I.; Krapac, I. G.; Chee-Sanford, J. S.; Koike, S.

    2008-12-01

    The use of antibiotics at concentrated animal feeding operations (CAFOs) for disease prevention, disease treatment, and growth promotion can contribute to the spread of antibiotic compounds, their breakdown products, and antibiotic resistant bacteria and/or the genes that confer resistance. In addition, constitutive use of antibiotics at sub-therapeutic levels can select for antibiotic resistance among the bacteria that inhabit animal intestinal tracts, onsite manure treatment facilities, and any environments receiving significant inputs of manure (e.g. through waste lagoon leakage or fertilizer amendments to farm soils). If the antibiotic resistant organisms persist in these new environments, or if they participate in genetic exchanges with the native microflora, then CAFOs may constitute a significant reservoir for the spread of antibiotic resistance to the environment at large. Our results have demonstrated that leakage from waste treatment lagoons can influence the presence and persistence of tetracycline resistance genes in the shallow aquifer adjacent to swine CAFOs, and molecular phylogeny allowed us to distinguish "native" tetracycline resistance genes in control groundwater wells from manure-associated genes introduced from the lagoon. We have also been able to detect the presence of erythromycin resistance genes in CAFO surface and groundwater even though erythromycin is strictly reserved for use in humans and thus is not utilized at any of these sites. Ongoing research, including modeling of particle transport in groundwater, will help to determine the potential spatial and temporal extent of CAFO-derived antibiotic resistance.

  17. Current perspectives on the dynamics of antibiotic resistance in different reservoirs.

    Science.gov (United States)

    Caniça, Manuela; Manageiro, Vera; Jones-Dias, Daniela; Clemente, Lurdes; Gomes-Neves, Eduarda; Poeta, Patrícia; Dias, Elsa; Ferreira, Eugénia

    2015-09-01

    Antibiotic resistance consists of a dynamic web. In this review, we describe the path by which different antibiotic residues and antibiotic resistance genes disseminate among relevant reservoirs (human, animal, and environmental settings), evaluating how these events contribute to the current scenario of antibiotic resistance. The relationship between the spread of resistance and the contribution of different genetic elements and events is revisited, exploring examples of the processes by which successful mobile resistance genes spread across different niches. The importance of classic and next generation molecular approaches, as well as action plans and policies which might aid in the fight against antibiotic resistance, are also reviewed. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Adaptive Laboratory Evolution of Antibiotic Resistance Using Different Selection Regimes Lead to Similar Phenotypes and Genotypes

    DEFF Research Database (Denmark)

    Jahn, Leonie Johanna; Munck, Christian; Ellabaan, Mostafa M Hashim

    2017-01-01

    independently of the selection regime. Yet, lineages that underwent evolution under mild selection displayed a growth advantage independently of the acquired level of antibiotic resistance compared to lineages adapted under maximal selection in a drug gradient. Our data suggests that even though different......Antibiotic resistance is a global threat to human health, wherefore it is crucial to study the mechanisms of antibiotic resistance as well as its emergence and dissemination. One way to analyze the acquisition of de novo mutations conferring antibiotic resistance is adaptive laboratory evolution....... However, various evolution methods exist that utilize different population sizes, selection strengths, and bottlenecks. While evolution in increasing drug gradients guarantees high-level antibiotic resistance promising to identify the most potent resistance conferring mutations, other selection regimes...

  19. Graphene oxide in the water environment could affect tetracycline-antibiotic resistance.

    Science.gov (United States)

    Guo, Mei-Ting; Zhang, Guo-Sheng

    2017-09-01

    In recent years, the influence of new materials like nanoparticles in the water environment on biological substances has been widely studied. Antibiotic resistance genes (ARGs) represent a new type of pollutant in the environment. Graphene oxide (GO), as a nano material, because of its unique structure, may have an impact on antibiotic resistance bacteria (ARB) and ARGs; however the research in this area is rarely reported. Therefore, this study mainly investigated the effects of GO on bacterial antibiotic resistance. The results showed that GO had a limited effect on ARB inactivation. A high concentration of GO (>10 mg/L) can damage resistant plasmids to reduce bacterial resistance to antibiotics, but low concentrations of GO (antibiotic resistance needs further investigation. Copyright © 2017. Published by Elsevier Ltd.

  20. Antibiotic resistance in stream: monitoring, modeling and effluent control by photocatalytic disinfection

    OpenAIRE

    Antonio, Fiorentino

    2015-01-01

    2013-2014 Since the 1940s, the ever-increasing use of antibiotics for human, veterinary and agricultural purposes, contributes to their continuous release into the environment due to incomplete metabolism or due to disposal of unused antibiotics. The concern for the release of antibiotics into the environment isrelated to the development of antibiotic resistance genes (ARGs) and bacteria (ARB), which reduce the therapeutic potential against human and animal pathogens. Urban wastewater trea...

  1. Determinants of between-country differences in ambulatory antibiotic use and antibiotic resistance in Europe: a longitudinal observational study.

    Science.gov (United States)

    Blommaert, A; Marais, C; Hens, N; Coenen, S; Muller, A; Goossens, H; Beutels, P

    2014-02-01

    To identify key determinants explaining country-year variations in antibiotic use and resistance. Ambulatory antibiotic use data [in defined daily doses per 1000 inhabitants per day (DIDs)] for 19 European countries from 1999 to 2007 were collected, along with 181 variables describing countries in terms of their agriculture, culture, demography, disease burden, education, healthcare organization and socioeconomics. After assessing data availability, overlap and relevance, multiple imputation generalized estimating equations were applied with a stepwise selection procedure to select significant determinants of global antibiotic use (expressed in DIDs), relative use of subgroups (amoxicillin and co-amoxiclav) and resistance of Escherichia coli and Streptococcus pneumoniae. Relative humidity, healthcare expenditure proportional to gross domestic product, feelings of distrust, proportion of population aged >65 years and availability of treatment guidelines were associated with higher total antibiotic use expressed in DIDs. Restrictions on marketing activities towards prescribers, population density, number of antibiotics, educational attainment and degree of atheism were associated with a lower number of total DIDs used. Relative prescribing of amoxicillin and co-amoxiclav was mainly determined by healthcare system choices [e.g. general practitioner (GP) registration and restricted marketing]. Specific antibiotic use was found to be a significant determinant of resistance for some but not all drug/organism combinations. Incentives to stimulate GP gatekeeping were associated with lower levels of resistance, and life expectancy at age 65+ and atheism were associated with more resistance. Myriad factors influence antibiotic use and resistance at the country level and an important part of these can be modified by policy choices.

  2. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters.

    Science.gov (United States)

    Miller, Jennifer H; Novak, John T; Knocke, William R; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene

  3. Evolution by Pervasive Gene Fusion in Antibiotic Resistance and Antibiotic Synthesizing Genes

    Directory of Open Access Journals (Sweden)

    Orla Coleman

    2015-03-01

    Full Text Available Phylogenetic (tree-based approaches to understanding evolutionary history are unable to incorporate convergent evolutionary events where two genes merge into one. In this study, as exemplars of what can be achieved when a tree is not assumed a priori, we have analysed the evolutionary histories of polyketide synthase genes and antibiotic resistance genes and have shown that their history is replete with convergent events as well as divergent events. We demonstrate that the overall histories of these genes more closely resembles the remodelling that might be seen with the children’s toy Lego, than the standard model of the phylogenetic tree. This work demonstrates further that genes can act as public goods, available for re-use and incorporation into other genetic goods.

  4. Molecular study on some antibiotic resistant genes in Salmonella spp. isolates

    Science.gov (United States)

    Nabi, Ari Q.

    2017-09-01

    Studying the genes related with antimicrobial resistance in Salmonella spp. is a crucial step toward a correct and faster treatment of infections caused by the pathogen. In this work Integron mediated antibiotic resistant gene IntI1 (Class I Integrase IntI1) and some plasmid mediated antibiotic resistance genes (Qnr) were scanned among the isolated non-Typhoid Salmonellae strains with known resistance to some important antimicrobial drugs using Sybr Green real time PCR. The aim of the study was to correlate the multiple antibiotics and antimicrobial resistance of Salmonella spp. with the presence of integrase (IntI1) gene and plasmid mediated quinolone resistant genes. Results revealed the presence of Class I Integrase gene in 76% of the isolates with confirmed multiple antibiotic resistances. Moreover, about 32% of the multiple antibiotic resistant serotypes showed a positive R-PCR for plasmid mediated qnrA gene encoding for nalidixic acid and ciprofloxacin resistance. No positive results could be revealed form R-PCRs targeting qnrB or qnrS. In light of these results we can conclude that the presence of at least one of the qnr genes and/or the presence of Integrase Class I gene were responsible for the multiple antibiotic resistance to for nalidixic acid and ciprofloxacin from the studied Salmonella spp. and further studies required to identify the genes related with multiple antibiotic resistance of the pathogen.

  5. Evidence of Increased Antibiotic Resistance in Phylogenetically-Diverse Aeromonas Isolates from Semi-Intensive Fish Ponds Treated with Antibiotics.

    Science.gov (United States)

    Patil, Hemant J; Benet-Perelberg, Ayana; Naor, Alon; Smirnov, Margarita; Ofek, Tamir; Nasser, Ahmed; Minz, Dror; Cytryn, Eddie

    2016-01-01

    The genus Aeromonas is ubiquitous in aquatic environments encompassing a broad range of fish and human pathogens. Aeromonas strains are known for their enhanced capacity to acquire and exchange antibiotic resistance genes and therefore, are frequently targeted as indicator bacteria for monitoring antimicrobial resistance in aquatic environments. This study evaluated temporal trends in Aeromonas diversity and antibiotic resistance in two adjacent semi-intensive aquaculture facilities to ascertain the effects of antibiotic treatment on antimicrobial resistance. In the first facility, sulfadiazine-trimethoprim was added prophylactically to fingerling stocks and water column-associated Aeromonas were monitored periodically over an 11-month fish fattening cycle to assess temporal dynamics in taxonomy and antibiotic resistance. In the second facility, Aeromonas were isolated from fish skin ulcers sampled over a 3-year period and from pond water samples to assess associations between pathogenic strains to those in the water column. A total of 1200 Aeromonas isolates were initially screened for sulfadiazine resistance and further screened against five additional antimicrobials. In both facilities, strong correlations were observed between sulfadiazine resistance and trimethoprim and tetracycline resistances, whereas correlations between sulfadiazine resistance and ceftriaxone, gentamicin, and chloramphenicol resistances were low. Multidrug resistant strains as well as sul1, tetA , and intI1 gene-harboring strains were significantly higher in profiles sampled during the fish cycle than those isolated prior to stocking and these genes were extremely abundant in the pathogenic strains. Five phylogenetically distinct Aeromonas clusters were identified using partial rpoD gene sequence analysis. Interestingly, prior to fingerling stocking the diversity of water column strains was high, and representatives from all five clusters were identified, including an A. salmonicida

  6. Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug-resistant Enterococcus faecium

    NARCIS (Netherlands)

    Paganelli, Fernanda L.; van de Kamer, Tim; Brouwer, Ellen C.; Leavis, Helen L.; Woodford, Neil; Bonten, Marc J M; Willems, Rob J L; Hendrickx, Antoni P A

    Enterococcus faecium is a multidrug-resistant (MDR) nosocomial pathogen causing significant morbidity in debilitated patients. New antimicrobials are needed to treat antibiotic-resistant E. faecium infections in hospitalised patients. E. faecium incorporates lipoteichoic acid (LTA)

  7. Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products.

    Science.gov (United States)

    D'Aimmo, Maria Rosaria; Modesto, Monica; Biavati, Bruno

    2007-04-01

    The outlines of antibiotic resistance of some probiotic microorganisms were studied. This study was conducted with the double purpose of verifying their ability to survive if they are taken simultaneously with an antibiotic therapy and to increase the selective properties of suitable media for the isolation of samples containing mixed bacterial populations. We isolated from commercial dairy and pharmaceutical products, 34 strains declared as probiotics, belonging to the genera Bifidobacterium and Lactobacillus, and 21 strains of starter culture bacteria. All the microorganisms have been compared by electrophoresis of the soluble proteins for the purpose of identifying them. A Multiplex-PCR with genus- and species-specific primers was used to detect for Bifidobacterium animalis subsp. lactis presence. All bifidobacteria were B. animalis subsp. lactis except one Bifidobacterium longum. Sometimes the identification showed that the used strain was not the one indicated on the label. The lactobacilli were Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus delbrueckii subsp. bulgaricus. The streptococci were all Streptococcus thermophilus. The minimal inhibitory concentration (MIC) of 24 common antibiotic substances has been valued by the broth microdilution method. All tested strains were susceptible to ampicillin, bacitracin, clindamycin, dicloxacillin, erytromycin, novobiocin, penicillin G, rifampicin (MIC(90) ranging from 0.01 to 4 microg/ml); resistant to aztreonam, cycloserin, kanamycin, nalidixic acid, polymyxin B and spectinomycin (MIC(90) ranging from 64 to >1000 microg/ml). The susceptibility to cephalothin, chloramphenicol, gentamicin, lincomycin, metronidazole, neomycin, paromomycin, streptomycin, tetracycline and vancomycin was variable and depending on the species.

  8. Development of antibiotic marker-free creeping bentgrass resistance against herbicides.

    Science.gov (United States)

    Lee, Ki-Won; Kim, Ki-Yong; Kim, Kyung-Hee; Lee, Byung-Hyun; Kim, Jin-Seog; Lee, Sang-Hoon

    2011-01-01

    Herbicide-resistant creeping bentgrass plants (Agrostis stolonifera L.) without antibiotic-resistant markers were produced by Agrobacterium-mediated transformation. Embryogenic callus tissues were infected with Agrobacterium tumefaciens EHA105, harboring the bar and the CP4-EPSPS genes for bialaphos and glyphosate resistance. Phosphinothricin-resistant calli and plants were selected. Soil-grown plants were obtained at 14-16 weeks after transformation. Genetic transformation of the selected, regenerated plants was validated by PCR. Southern blot analysis revealed that at least one copy of the transgene was integrated into the genome of the transgenic plants. Transgene expression was confirmed by Northern blot. CP4-EPSPS protein was detected by ELISA. Transgenic plants remained green and healthy when sprayed with Basta, containing 0.5% glufosinate ammonium or glyphosate. The optimized Agrobacterium-mediated transformation method resulted in an average of 9.4% transgenic plants. The results of the present study suggest that the optimized marker-free technique could be used as an effective and reliable method for routine transformation, which may facilitate the development of varieties of new antibiotic-free grass species.

  9. Antibiotic Resistance Profile for Staphylococcus Species Recovered from Milk

    International Nuclear Information System (INIS)

    Gad EL-Rab, S.F.; Osman, K.M.; Kamel, M.A.

    2017-01-01

    A total of 220 milk samples from buffaloes and cows (150 from buffaloes and 70 from cows) were investigated. Samples were cultured on Baird Parker media for isolation of Staphylococcus, especially S.aureus from apparently normal, clinical and subclinical mastitis cases. The total isolates were 42(19%) from raw milk samples (27 from buffaloes and 15 from cows) 220. The aim of this study is to characterize phenotypically Staphylococcus spp. The collected samples were taken from selected are as to increase the range of information available about antibiotic resistance profile. This enhances formulating strategies to reduce the spread of this bacterium and also avoiding its health hazard on animals and human beings

  10. Situational analysis of antibiotic use and resistance in Ghana

    DEFF Research Database (Denmark)

    Yevutsey, Saviour Kwame; Buabeng, Kwame Ohene; Aikins, Moses

    2017-01-01

    also reviewed. An interview guide was used to elicit responses from selected officials from these sectors. RESULTS: Laws and guidelines to control the use of antimicrobials in humans were available but not for animals. There was no National Antimicrobial Policy (NAP). A health practice regulatory law...... Treatment Guidelines (STG), Essential Medicines List (EML) and the National Health Insurance Scheme Medicines List (NHISML) provide restrictions regarding levels of prescribing of antimicrobials. However, existing guidelines on antibiotic use are mostly not adhered to. The use of Automatic Stop Orders...... and resistance in Ghana, with focus on policy and regulation. METHODS: Relevant policy documents, reports, regulations and enactments were reviewed. PubMed and Google search engines were used to extract relevant published papers. Websites of stakeholders such as Ministry of Health (MOH) and its agencies were...

  11. Antibiotic Resistance in Children with Recurrent or Complicated Urinary Tract Infection

    Directory of Open Access Journals (Sweden)

    Nidal S Younish

    2009-01-01

    Pediatric urine culture isolates are becoming increasingly resistant to commonly used antibiotics. Empirical treatment with Trimethoprim-Sulfamethoxazole (TMP-SMX or Cephalexin as the initial drug is ineffective. Nitrofurantoin and Nalidixic acid can be considered as the first line antibiotics for prophylaxis and or treatment of patients with recurrent UTI, while Meropenam and Ciprofloxacin can be used empirically in treating patients with complicated UTI. Key words: Antibiotic resistance, Complicated, Recurrent, Urinary tract infection

  12. Antimicrobial Chemicals Are Associated with Elevated Antibiotic Resistance Genes in the Indoor Dust Microbiome.

    Science.gov (United States)

    Hartmann, Erica M; Hickey, Roxana; Hsu, Tiffany; Betancourt Román, Clarisse M; Chen, Jing; Schwager, Randall; Kline, Jeff; Brown, G Z; Halden, Rolf U; Huttenhower, Curtis; Green, Jessica L

    2016-09-20

    Antibiotic resistance is increasingly widespread, largely due to human influence. Here, we explore the relationship between antibiotic resistance genes and the antimicrobial chemicals triclosan, triclocarban, and methyl-, ethyl-, propyl-, and butylparaben in the dust microbiome. Dust samples from a mixed-use athletic and educational facility were subjected to microbial and chemical analyses using a combination of 16S rRNA amplicon sequencing, shotgun metagenome sequencing, and liquid chromatography tandem mass spectrometry. The dust resistome was characterized by identifying antibiotic resistance genes annotated in the Comprehensive Antibiotic Resistance Database (CARD) from the metagenomes of each sample using the Short, Better Representative Extract Data set (ShortBRED). The three most highly abundant antibiotic resistance genes were tet(W), blaSRT-1, and erm(B). The complete dust resistome was then compared against the measured concentrations of antimicrobial chemicals, which for triclosan ranged from 0.5 to 1970 ng/g dust. We observed six significant positive associations between the concentration of an antimicrobial chemical and the relative abundance of an antibiotic resistance gene, including one between the ubiquitous antimicrobial triclosan and erm(X), a 23S rRNA methyltransferase implicated in resistance to several antibiotics. This study is the first to look for an association between antibiotic resistance genes and antimicrobial chemicals in dust.

  13. Prevalence of Antibiotic Resistance in Escherichia coli Isolated from Poultry Meat Supply in Isfahan

    Directory of Open Access Journals (Sweden)

    Farhad Safarpordehkordi

    2014-08-01

    Conclusions: Despite the high contamination rate of chicken meat with Escherichia coli, majority of isolates had high resistance to common antibiotics. Complete cooking of meat and avoid indiscriminate prescribing of antibiotics, preventing the occurrence of food poisoning due to resistant Escherichia coli.

  14. Unwanted souvenirs : Travel-related acquisition of antibiotic-resistant Enterobacteriaceae and enteric pathogens

    NARCIS (Netherlands)

    van Hattem, J.M.

    2018-01-01

    The emergence of antibiotic resistance is threatening our ability to treat common infections. To determine which intervention strategies are most effective in combatting antibiotic resistance, insights in the complex interaction between humans, animals, the food chain and the environment are needed.

  15. [From the discovery of antibiotics to emerging highly drug-resistant bacteria].

    Science.gov (United States)

    Meunier, Olivier

    2015-01-01

    The discovery of antibiotics has enabled serious infections to be treated. However, bacteria resistant to several families of antibiotics and the emergence of new highly drug-resistant bacteria constitute a public health issue in France and across the world. Actions to prevent their transmission are being put in place. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria

    Science.gov (United States)

    The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater- and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hotspot for pr...

  17. Antibiotic overusage and resistance: A cross-sectional survey among pediatric dentists

    Directory of Open Access Journals (Sweden)

    Sapna Konde

    2016-01-01

    Full Text Available Introduction: Most human orofacial infections originate from odontogenic infections and prescribing antibiotics has become a ubiquitous phenomenon. The World Health Organization (WHO has recognized the inappropriate, indiscriminate, and irrational use of antibiotics leading to antibiotic resistance as a global problem. Objective: The objective of this survey is to compare the antibiotic prescription pattern and the awareness of antibiotic resistance among Bachelor of Dental Surgery (BDS practitioners and pediatric dentists. Materials and methods: A hundred BDS practitioners and 100 pediatric dentists included in the study were given a questionnaire containing both open-ended and closed-ended questions. The questionnaire comprised information pertaining to antibiotic prescription for most common oral conditions, commonly prescribed antibiotics, their dosage, etc. Results: The majority of the practitioners prescribed antibiotics for managing oral diseases. On comparing the prescription patterns between the BDS practitioners and pediatric dentists, there was an overprescription in the BDS group for many conditions, which was statistically significant. Amoxicillin was the most commonly prescribed drug in both the groups. In the presence of an anaerobic infection, the most preferred drug was a combination of amoxicillin and clavulanic acid with metronidazole. With regard to the duration of antibiotic prescription, 74% BDS practitioners prescribed antibiotics as a 3-day course and 60% pediatric dentists resorted to a 5-day course, which was statistically significant. The awareness regarding antibiotic prophylaxis and antibiotic resistance was found to be adequate in both the groups. However, there was a general lack of awareness with regard to the guidelines for antibiotic prescribing in both the groups. Conclusion: Practitioners should prescribe antibiotics in accordance with the guidelines to curb antibiotic resistance, an emerging public health

  18. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture

    OpenAIRE

    Seiler, Claudia; Berendonk, Thomas U.

    2012-01-01

    The use of antibiotic agents as growth promoters was banned in animal husbandry to prevent the selection and spread of antibiotic resistance. However, in addition to antibiotic agents, heavy metals used in animal farming and aquaculture might promote the spread of antibiotic resistance via co-selection. To investigate which heavy metals are likely to co-select for antibiotic resistance in soil and water, the available data on heavy metal pollution, heavy metal toxicity, heavy metal tolerance ...

  19. Increasing awareness about antibiotic use and resistance: a hands-on project for high school students.

    Science.gov (United States)

    Fonseca, Maria João; Santos, Catarina L; Costa, Patrício; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Health-promoting education is essential to foster an informed society able to make decisions about socio-scientific issues based on scientifically sustained criteria. Antibiotic resistance is currently a major public health issue. Considering that irrational antibiotic use has been associated with the development and widespread of antibiotic resistant bacteria, educational interventions to promote prudent antibiotic consumption are required. This study focuses on the outcomes of an interventional program implemented at the University of Porto, Portugal, to promote awareness about antibiotic resistance at high school levels (15-17 year old). The project Microbiology recipes: antibiotics à la carte articulates a set of wet and dry lab activities designed to promote the participants' understanding of concepts and processes underlying antibiotics' production and activity, such as the notion of mechanisms of action of antibiotics. Following a mix-method approach based on a pre-/post design, the effectiveness of this project was assessed by gathering data from surveys, direct observation and analysis of artifacts of 42 high school students (aged 15 and 16 years). The results indicate that the participants developed a more comprehensive picture of antibiotic resistance. The project was shown to promote more sophisticated conceptualizations of bacteria and antibiotics, increased awareness about the perils of antibiotic resistance, and enhanced consciousness towards measures that can be undertaken to mitigate the problem. The participants regarded their experiences as enjoyable and useful, and believed that the project contributed to improve their understanding and raise their interest about the issues discussed. Furthermore, there were also improvements in their procedural skills concerning the laboratory techniques performed. This study evidences the possibility of increasing high school students' awareness about the consequences of antibiotic resistance and the

  20. Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water.

    Science.gov (United States)

    Calomiris, J J; Armstrong, J L; Seidler, R J

    1984-06-01

    Bacterial isolates from the drinking water system of an Oregon coastal community were examined to assess the association of metal tolerance with multiple antibiotic resistance. Positive correlations between tolerance to high levels of Cu2+, Pb2+, and Zn2+ and multiple antibiotic resistance were noted among bacteria from distribution waters but not among bacteria from raw waters. Tolerances to higher levels of Al3+ and Sn2+ were demonstrated more often by raw water isolates which were not typically multiple antibiotic resistant. A similar incidence of tolerance to Cd2+ was demonstrated by isolates of both water types and was not associated with multiple antibiotic resistance. These results suggest that simultaneous selection phenomena occurred in distribution water for bacteria which exhibited unique patterns of tolerance to Cu2+, Pb2+, and Zn2+ and antibiotic resistance.

  1. HEAVY METAL AND ANTIBIOTIC RESISTANCE BACTERIA IN MARINE SEDIMENT OF PAHANG COASTAL WATER

    Directory of Open Access Journals (Sweden)

    Zaima Azira

    2018-01-01

    Full Text Available The presence of heavy metal and antibiotic resistance bacteria in the marine sediment may indicate heavy metal pollution and antibiotic abuse present in the environment. In this study, a total of 89 bacteria isolated from sediment collected in Teluk Chempedak and Pantai Batu Hitam of Pahang coastal water underwent heavy metal resistance test against Chromium, Cadmium, Nickel, Copper and Cobalt. Previously, these isolates were found to exhibit antibiotic resistance capabilities to at least 5 antibiotics tested. Heavy metal resistance pattern for isolates from Teluk Chempedak was in the form of Cr > Ni >Co >Cd = Cu while for isolates from Pantai Batu Hitam showed a pattern of Cr = Ni >Co >Cu >Cd. Further investigation on the identity of selected isolates that exhibited both antibiotic and heavy metals resistance capabilities using 16S rRNA gene sequences revealed isolates with closest similarities to Staphylococcus saprophyticus and Brevundimonas vesicularis..

  2. Antibiotic resistance and plasmid carriage among Escherichia coli isolates from chicken meat in Malaysia

    International Nuclear Information System (INIS)

    Tin Tin Myaing; Saleha, A.A.; Arifah, A.K.; Raha, A.R.

    2005-01-01

    Escherichia coli isolates from 131 raw chicken meat samples were tested for susceptibility to 12 antibiotics. Plasmids were isolated from many samples and their DNA molecular weight calculated. An 81.7% plasmid occurrence rate was observed among the isolates, ranging from 0 to 8 in number and with sizes from 1.2 to 118.6 MDa. Plasmids were detected in 93.8% of E. coIi isolates resistant to all 12 antibiotics, and in 90.5% of E. coli isolates resistant to 11. Three (2.8%) isolates harboured 8 plasmids and were resistant to all 12 antibiotics. Antibiotic resistant genes in bacteria are usually carried in extrachromosomal DNA and it is postulated that E. coli with a high number of plasmids possesses wider resistance to antibiotics. (author)

  3. Australian consumer perspectives, attitudes and behaviours on antibiotic use and antibiotic resistance: a qualitative study with implications for public health policy and practice.

    Science.gov (United States)

    Lum, Elaine P M; Page, Katie; Nissen, Lisa; Doust, Jenny; Graves, Nicholas

    2017-10-10

    Consumers receive over 27 million antibiotic prescriptions annually in Australian primary healthcare. Hence, consumers are a key group to engage in the fight against antibiotic resistance. There is a paucity of research pertaining to consumers in the Australian healthcare environment. This study aimed to investigate the perspectives, attitudes and behaviours of Australian consumers on antibiotic use and antibiotic resistance, to inform national programs for reducing inappropriate antibiotic consumption. Semi-structured interviews with 32 consumers recruited via convenience and snowball sampling from a university population in South East Queensland. Interview transcripts were deductively and inductively coded. Main themes were identified using iterative thematic analysis. Three themes emerged from the analysis, to elucidate factors affecting antibiotic use: (a) prescription type; (b) consumer attitudes, behaviours, skills and knowledge; and (c) consumer engagement with antibiotic resistance. Consumers held mixed views regarding the use of delayed antibiotic prescriptions, and were often not made aware of the use of repeat antibiotic prescriptions. Consumers with regular general practitioners were more likely to have shared expectations regarding minimising the use of antibiotics. Even so, advice or information mediated by general practitioners was influential with all consumers; and helped to prevent inappropriate antibiotic use behaviours. Consumers were not aware of the free Return of Unwanted Medicines service offered by pharmacies and disposed of leftover antibiotics through household waste. To engage with mitigating antibiotic resistance, consumers required specific information. Previous public health campaigns raising awareness of antibiotics were largely not seen by this sample of consumers. Australian consumers have specific information needs regarding prescribed antibiotics to enable appropriate antibiotic use behaviours. Consumers also have expectations

  4. Australian consumer perspectives, attitudes and behaviours on antibiotic use and antibiotic resistance: a qualitative study with implications for public health policy and practice

    Directory of Open Access Journals (Sweden)

    Elaine P. M. Lum

    2017-10-01

    Full Text Available Abstract Background Consumers receive over 27 million antibiotic prescriptions annually in Australian primary healthcare. Hence, consumers are a key group to engage in the fight against antibiotic resistance. There is a paucity of research pertaining to consumers in the Australian healthcare environment. This study aimed to investigate the perspectives, attitudes and behaviours of Australian consumers on antibiotic use and antibiotic resistance, to inform national programs for reducing inappropriate antibiotic consumption. Method Semi-structured interviews with 32 consumers recruited via convenience and snowball sampling from a university population in South East Queensland. Interview transcripts were deductively and inductively coded. Main themes were identified using iterative thematic analysis. Results Three themes emerged from the analysis, to elucidate factors affecting antibiotic use: (a prescription type; (b consumer attitudes, behaviours, skills and knowledge; and (c consumer engagement with antibiotic resistance. Consumers held mixed views regarding the use of delayed antibiotic prescriptions, and were often not made aware of the use of repeat antibiotic prescriptions. Consumers with regular general practitioners were more likely to have shared expectations regarding minimising the use of antibiotics. Even so, advice or information mediated by general practitioners was influential with all consumers; and helped to prevent inappropriate antibiotic use behaviours. Consumers were not aware of the free Return of Unwanted Medicines service offered by pharmacies and disposed of leftover antibiotics through household waste. To engage with mitigating antibiotic resistance, consumers required specific information. Previous public health campaigns raising awareness of antibiotics were largely not seen by this sample of consumers. Conclusions Australian consumers have specific information needs regarding prescribed antibiotics to enable

  5. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Optimization of wetland substrates and hydraulic loading.

    Science.gov (United States)

    Chen, Jun; Wei, Xiao-Dong; Liu, You-Sheng; Ying, Guang-Guo; Liu, Shuang-Shuang; He, Liang-Ying; Su, Hao-Chang; Hu, Li-Xin; Chen, Fan-Rong; Yang, Yong-Qiang

    2016-09-15

    This study aimed to assess removal potential of antibiotics and antibiotic resistance genes (ARGs) in raw domestic wastewater by various mesocosm-scale horizontal subsurface-flow constructed wetlands (CWs) planted Cyperus alternifolius L. with different design parameters. Twelve CWs with three hydraulic loading rates (HLR 10, 20 and 30cm/day) and four substrates (oyster shell, zeolite, medical stone and ceramic) were set up in order to select the best optimized wetland. The result showed that 7 target antibiotics compounds including erythromycin-H2O, lincomycin, monensin, ofloxacin, sulfamerazine, sulfamethazine and novobiocin were detected, and all selected 18 genes (three sulfonamide resistance genes (sul1, sul2 and sul3), four tetracycline resistance genes (tetG, tetM, tetO and tetX), two macrolide resistance genes (ermB and ermC), three quinolone resistance genes (qnrB, qnrD and qnrS) and four chloramphenicol resistance genes (cmlA, fexA, fexB and floR)) and two integrase genes (int1 and int2) were positively detected in the domestic wastewaters. The aqueous removal rates of the total antibiotics ranged from17.9 to 98.5%, while those for the total ARGs varied between 50.0 and 85.8% by the mesocosm-scale CWs. After considering their aqueous removal rates in combination with their mass removals, the CW with zeolite as the substrate and HLR of 20cm/day was selected as the best choice. Combined chemical and biological analyses indicate that both microbial degradation and physical sorption processes were responsible for the fate of antibiotics and ARGs in the wetlands. The findings from this study suggest constructed wetlands could be a promising technology for the removal of emerging contaminants such as antibiotics and ARGs in domestic wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Antibiotic resistance patterns of community-acquired urinary tract infections in children with vesicoureteral reflux receiving prophylactic antibiotic therapy.

    Science.gov (United States)

    Cheng, Chi-Hui; Tsai, Ming-Horng; Huang, Yhu-Chering; Su, Lin-Hui; Tsau, Yong-Kwei; Lin, Chi-Jen; Chiu, Cheng-Hsun; Lin, Tzou-Yien

    2008-12-01

    The goal was to examine bacterial antimicrobial resistance of recurrent urinary tract infections in children receiving antibiotic prophylaxis because of primary vesicoureteral reflux. We reviewed data retrospectively for children with documented vesicoureteral reflux in 2 hospitals during a 5-year follow-up period. The patients were receiving co-trimoxazole, cephalexin, or cefaclor prophylaxis or prophylaxis with a sequence of different antibiotics (alternative monotherapy). Demographic data, degree of vesicoureteral reflux, prophylactic antibiotics prescribed, and antibiotic sensitivity results of first urinary tract infections and breakthrough urinary tract infections were recorded. Three hundred twenty-four patients underwent antibiotic prophylaxis (109 with co-trimoxazole, 100 with cephalexin, 44 with cefaclor, and 71 with alternative monotherapy) in one hospital and 96 children underwent co-trimoxazole prophylaxis in the other hospital. Breakthrough urinary tract infections occurred in patients from both hospitals (20.4% and 25%, respectively). Escherichia coli infection was significantly less common in children receiving antibiotic prophylaxis, compared with their initial episodes of urinary tract infection, at both hospitals. Children receiving cephalosporin prophylaxis were more likely to have an extended-spectrum beta-lactamase-producing organism for breakthrough urinary tract infections, compared with children with co-trimoxazole prophylaxis. Antimicrobial susceptibilities to almost all antibiotics decreased with cephalosporin prophylaxis when recurrent urinary tract infections developed. The extent of decreased susceptibilities was also severe for prophylaxis with a sequence of different antibiotics. However, antimicrobial susceptibilities decreased minimally in co-trimoxazole prophylaxis groups. Children receiving cephalosporin prophylaxis are more likely to have extended-spectrum beta-lactamase-producing bacteria or multidrug-resistant uropathogens

  7. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli.

    Science.gov (United States)

    Urfer, Matthias; Bogdanovic, Jasmina; Lo Monte, Fabio; Moehle, Kerstin; Zerbe, Katja; Omasits, Ulrich; Ahrens, Christian H; Pessi, Gabriella; Eberl, Leo; Robinson, John A

    2016-01-22

    Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Potentiating antibiotics in drug-resistant clinical isolates via stimuli-activated superoxide generation.

    Science.gov (United States)

    Courtney, Colleen M; Goodman, Samuel M; Nagy, Toni A; Levy, Max; Bhusal, Pallavi; Madinger, Nancy E; Detweiler, Corrella S; Nagpal, Prashant; Chatterjee, Anushree

    2017-10-01

    The rise of multidrug-resistant (MDR) bacteria is a growing concern to global health and is exacerbated by the lack of new antibiotics. To treat already pervasive MDR infections, new classes of antibiotics or antibiotic adjuvants are needed. Reactive oxygen species (ROS) have been shown to play a role during antibacterial action; however, it is not yet understood whether ROS contribute directly to or are an outcome of bacterial lethality caused by antibiotics. We show that a light-activated nanoparticle, designed to produce tunable flux of specific ROS, superoxide, potentiates the activity of antibiotics in clinical MDR isolates of Escherichia coli , Salmonella enterica , and Klebsiella pneumoniae . Despite the high degree of antibiotic resistance in these isolates, we observed a synergistic interaction between both bactericidal and bacteriostatic antibiotics with varied mechanisms of action and our superoxide-producing nanoparticles in more than 75% of combinations. As a result of this potentiation, the effective antibiotic concentration of the clinical isolates was reduced up to 1000-fold below their respective sensitive/resistant breakpoint. Further, superoxide-generating nanoparticles in combination with ciprofloxacin reduced bacterial load in epithelial cells infected with S. enterica serovar Typhimurium and increased Caenorhabditis elegans survival upon infection with S. enterica serovar Enteriditis, compared to antibiotic alone. This demonstration highlights the ability to engineer superoxide generation to potentiate antibiotic activity and combat highly drug-resistant bacterial pathogens.

  9. Phenotypic and Genotypic Antibiotic Resistance of Salmonella from Chicken Carcasses Marketed at Ibague, Colombia

    Directory of Open Access Journals (Sweden)

    D Cortes Vélez

    Full Text Available ABSTRACT Salmonella enterica is responsible for alimentary toxic infections associated with the consumption of contaminated poultry products and the antimicrobial resistant patterns of Salmonella circulating in the Tolima region are currently unknown. To address this issue, both the phenotype and genotype antibiotic resistance patterns of 47 Salmonella isolated from raw chicken carcasses sold at the Ibague city were analyzed by the disc diffusion, microdilution and PCR assays. All 47 Salmonella isolates showed resistance to five or more antimicrobial agents. Resistance to Ampicillin (AMP, Amikacin (AMK, Gentamicin (GEN, Tobramycin (TOB, Cefazoline (CFZ, Cefoxitin (FOX, Nitrofurantoin (NIT, Trimethoprim-Sulfamethoxazole (SXT, Tetracycline (TET, Ciprofloxacin (CIP and Enrofloxacin (ENR was observed in 42.35% of Salmonella isolates. All tested S. Paratyphi B var Java isolates showed resistance to at least 12 antibiotics. S. Hvittingfoss showed resistance to 5 antibiotics, whereas S. Muenster showed resistance to seven antibiotics. Amplification of a number of antibiotic resistance genes showed that blaTEM (100% correlated well with resistance to Ampicilin and Cephalosporin, whereas aadB (87% correlated well with resistance to Aminoglycosides. It is concluded that Salmonella isolated from raw chicken meat marketed at Ibague showed MDR by both phenotypic and genotypic methods and they may represent an important threat to human health. Additional studies are needed to establish the relationship between antibiotic resistance in Salmonella from poultry products and clinical isolates.

  10. Sampling and Pooling Methods for Capturing Herd Level Antibiotic Resistance in Swine Feces using qPCR and CFU Approaches

    DEFF Research Database (Denmark)

    Schmidt, Gunilla Veslemøy; Mellerup, Anders; Christiansen, Lasse Engbo

    2015-01-01

    The aim of this article was to define the sampling level and method combination that captures antibiotic resistance at pig herd level utilizing qPCR antibiotic resistance gene quantification and culture-based quantification of antibiotic resistant coliform indicator bacteria. Fourteen qPCR assays...... for commonly detected antibiotic resistance genes were developed, and used to quantify antibiotic resistance genes in total DNA from swine fecal samples that were obtained using different sampling and pooling methods. In parallel, the number of antibiotic resistant coliform indicator bacteria was determined...... in the same swine fecal samples. The results showed that the qPCR assays were capable of detecting differences in antibiotic resistance levels in individual animals that the coliform bacteria colony forming units (CFU) could not. Also, the qPCR assays more accurately quantified antibiotic resistance genes...

  11. Multiple Pathways of Genome Plasticity Leading to Development of Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Didier Mazel

    2013-05-01

    Full Text Available The emergence of multi-resistant bacterial strains is a major source of concern and has been correlated with the widespread use of antibiotics. The origins of resistance are intensively studied and many mechanisms involved in resistance have been identified, such as exogenous gene acquisition by horizontal gene transfer (HGT, mutations in the targeted functions, and more recently, antibiotic tolerance through persistence. In this review, we focus on factors leading to integron rearrangements and gene capture facilitating antibiotic resistance acquisition, maintenance and spread. The role of stress responses, such as the SOS response, is discussed.

  12. Current scenario of antibiotic resistance and latest strategies to overcome it

    Directory of Open Access Journals (Sweden)

    Mohankumar J Megha

    2014-09-01

    Full Text Available Antibiotic resistance in microorganisms has become a critical health issue these days and has evolved to become a worldwide health threat. Over a decade, the resistance level of bacteria has increased many folds due to various factors, accounting to the added pressure on the environmental resistome. Infections that are resistant to these antibiotics show potentially devastating effects on public health, often affecting developing countries. This review focuses on the present scenario of antibiotic resistance and enlists some of the strategies to combat this global community threat.

  13. Study of antibiotic resistance of staph aureus and coagulase negative staphylococci isolated from patient samples

    Directory of Open Access Journals (Sweden)

    M Anvary

    2006-04-01

    Full Text Available Introduction: Drug resistant Staphylococci are the most important agents of nosocomial infections. In this survey, effect of different antibiotics on these bacteria and their drug resistance was investigated. Methods: The study included 500 strains of Staphylococci. Minimum Inhibitory Concentrations of all antibiotics was determined by the broth macro dilution technique and standard methods from the National Committee for Clinical Laboratory Standards. Result : Oxacillin resistance of S. aureus was 14.2% and that of coagulase-negative staphylococci was 53.4%. The activity of different antibiotics is presented in detail. Conclusion: Surveillance of strains resistant to methicillin is necessary.

  14. Drug Resistance Mechanisms of Mycoplasma pneumoniae to Macrolide Antibiotics

    Directory of Open Access Journals (Sweden)

    Xijie Liu

    2014-01-01

    Full Text Available Throat swabs from children with suspected Mycoplasma pneumoniae (M. pneumoniae infection were cultured for the presence of M. pneumoniae and its species specificity using the 16S rRNA gene. Seventy-six M. pneumoniae strains isolated from 580 swabs showed that 70 were erythromycin resistant with minimum inhibitory concentrations (MIC around 32–512 mg/L. Fifty M. pneumoniae strains (46 resistant, 4 sensitive were tested for sensitivity to tetracycline, ciprofloxacin, and gentamicin. Tetracycline and ciprofloxacin had some effect, and gentamicin had an effect on the majority of M. pneumoniae strains. Domains II and V of the 23S rRNA gene and the ribosomal protein L4 and L22 genes, both of which are considered to be associated with macrolide resistance, were sequenced and the sequences were compared with the corresponding sequences in M129 registered with NCBI and the FH strain. The 70 resistant strains all showed a 2063 or 2064 site mutation in domain V of the 23S rRNA but no mutations in domain II. Site mutations of L4 or L22 can be observed in either resistant or sensitive strains, although it is not known whether this is associated with drug resistance.

  15. Distribution and degradation of common antibiotics and linkage to antibiotic resistance genes in the environment of Shenzhen, China

    Science.gov (United States)

    Sun, J.; Qiu, W.; Zheng, C.

    2017-12-01

    Antibiotics, as emerging contaminants, have been widely detected in environmental matrices in China and worldwide, such as wastewater treatment plants (WWTPs), hospital effluents, livestock farms, river water and sediment, soil, groundwater, and seawater. Thus, there exist significant concerns about their potential risks to human and ecosystem health. Compared to other countries, research on antibiotics in China is mainly focused on the watershed level, and there is a lack of information on emission inventory and environmental fate of antibiotics in China. In this study, we investigated the distribution of 21 frequently detected antibiotics in the five representative rivers in Shenzhen, China. Our monitoring results showed that the concentration of the 21 antibiotic contaminants in river waters and sediments ranges from 0.004ng/L to 0.378μg/L and from 0.005ng/kg to 2.089ng/kg, respectively. The data also revealed that the level of antibiotics in the five rivers exhibits strong temporal and spatial variations, and the antibiotic content in dry season is significantly higher than that in flood season. The bacterial resistance rates in sediments were found to be related to antibiotic usages, especially for those antibiotics used in the most recent period. Our degradation experiment results showed that the optimal conditions for the removal of enrofloxacin and pefloxacin were as follows: pH at 3 and the concentration of H2O2 and Fe2+ were 20mM and 0.25mM, respectively. This study can provide basic data useful for addressing the water environmental problems in Shenzhen and for dealing with national pollution control of antibiotics as emerging contaminants.

  16. Identification of antibiotic resistance genes in the multidrug-resistant Acinetobacter baumannii strain, MDR-SHH02, using whole-genome sequencing.

    Science.gov (United States)

    Wang, Hualiang; Wang, Jinghua; Yu, Peijuan; Ge, Ping; Jiang, Yanqun; Xu, Rong; Chen, Rong; Liu, Xuejie

    2017-02-01

    This study aimed to investigate antibiotic resistance genes in the multidrug-resistant (MDR) Acinetobacter baumannii (A. baumanii) strain, MDR-SHH02, using whole‑genome sequencing (WGS). The antibiotic resistance of MDR-SHH02 isolated from a patient with breast cancer to 19 types of antibiotics was determined using the Kirby‑Bauer method. WGS of MDR-SHH02 was then performed. Following quality control and transcriptome assembly, functional annotation of genes was conducted, and the phylogenetic tree of MDR-SHH02, along with another 5 A. baumanii species and 2 Acinetobacter species, was constructed using PHYLIP 3.695 and FigTree v1.4.2. Furthermore, pathogenicity islands (PAIs) were predicted by the pathogenicity island database. Potential antibiotic resistance genes in MDR-SHH02 were predicted based on the information in the Antibiotic Resistance Genes Database (ARDB). MDR-SHH02 was found to be resistant to all of the tested antibiotics. The total draft genome length of MDR-SHH02 was 4,003,808 bp. There were 74.25% of coding sequences to be annotated into 21 of the Clusters of Orthologous Groups (COGs) of protein terms, such as 'transcription' and 'amino acid transport and metabolism'. Furthermore, there were 45 PAIs homologous to the sequence MDRSHH02000806. Additionally, a total of 12 gene sequences in MDR-SHH02 were highly similar to the sequences of antibiotic resistance genes in ARDB, including genes encoding aminoglycoside‑modifying enzymes [e.g., aac(3)-Ia, ant(2'')‑Ia, aph33ib and aph(3')-Ia], β-lactamase genes (bl2b_tem and bl2b_tem1), sulfonamide-resistant dihydropteroate synthase genes (sul1 and sul2), catb3 and tetb. These results suggest that numerous genes mediate resistance to various antibiotics in MDR-SHH02, and provide a clinical guidance for the personalized therapy of A. baumannii-infected patients.

  17. Antibiotic resistance--consequences for animal health, welfare, and food production.

    Science.gov (United States)

    Bengtsson, Björn; Greko, Christina

    2014-05-01

    Most of the literature on the consequences of emergence and spread of bacteria resistant to antibiotics among animals relate to the potential impact on public health. But antibiotics are used to treat sick animals, and resistance in animal pathogens may lead to therapy failure. This has received little scientific attention, and therefore, in this article, we discuss examples that illustrate the possible impact of resistance on animal health and consequences thereof. For all animals, there may be a negative effect on health and welfare when diseases cannot be treated. Other consequences will vary depending on why and how different animal species are kept. Animals kept as companions or for sports often receive advanced care, and antibiotic resistance can lead to negative social and economic consequences for the owners. Further, spread of hospital-acquired infections can have an economic impact on the affected premises. As to animals kept for food production, antibiotics are not needed to promote growth, but, if infectious diseases cannot be treated when they occur, this can have a negative effect on the productivity and economy of affected businesses. Antibiotic resistance in animal bacteria can also have positive consequences by creating incentives for adoption of alternative regimes for treatment and prevention. It is probable that new antibiotic classes placed on the market in the future will not reach veterinary medicine, which further emphasizes the need to preserve the efficacy of currently available antibiotics through antibiotic stewardship. A cornerstone in this work is prevention, as healthy animals do not need antibiotics.

  18. PREVALENCE AND ANTIBIOTIC RESISTANCE OF FOOD BORNE BACTERIAL CONTAMINATION IN SOME EGYPTIAN FOOD food

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-09-01

    Full Text Available This study was undertaken to investigate the prevalence and antibiotic resistance of food borne bacterial contamination in some Egyptian food. Total viable bacteria and total coliform bacteriawere isolated from different sources of food; carbohydrates (bread, flour and basbousa, vegetables (outer and inner tissues of potato and outer and inner tissues of cucumber and proteins (mincedmeat, cheese and milk. The study resulted in maximum value of total viable bacteria found in outer tissue of potato 68X104±1.0, while the minimum value found in inner tissues of potato andcucumber. The study resulted in total coliform was maximum value in minced meat 6.4X103±0.3. Basbousa and inner tissue of potato and cucumber were free from coliforms. The ability of isolatesto producing proteolytic enzymes was tested, we found that 326 isolate (63.92% from all isolates had this ability, thus we selected most 2 potent proteolytic isolates. The two isolates were identifiedas Bacillus cereus and Escherichia coli. The identification confirmed by microlog 34.20 system and 16SrRNA for two isolates and the same result was founded. Sensitivity tested for the most potentproteolytic species to 12 of the most commonly used antibiotics in the Egyptian pharmacy. The results showed that all species were sensitive to most of antibiotics, except B. cereus which was strongly susceptible to azteronam and ceftazidim. The data showed that raw meat, cooked food products, and raw milk were most commonly contaminated with foodborne pathogens and many pathogens were resistant to different antibiotics. The study provided useful information for assessment of the possible risk posed to consumers, which has significant public health impact.

  19. Antibiotic resistance in bacteria Staphylococcus spp. isolated from samples of raw sheep's milk

    Directory of Open Access Journals (Sweden)

    Milan Vasiľ

    2016-12-01

    Full Text Available From samples of raw sheep's milk were determined results of bacteriological examination from two herds in region of Eastern Slovakia in three years lasting study. The occurrence of Staphylococcus spp. 41.6% (124 was determined from 298 samples. The seven species of staphylococci were on a regular basis isolated: S. epidermidis (34, S. chromogenes (26, S. aureus (16. Alternately have been recorded S. warneri (16, S. schleiferi (15, S. haemolyticus (9 and S. xylosus (8. All isolated pathogens were tested by in vitro test on Mueller-Hinton agar by disc methods on resistance to 10 types of antibiotics.  Highest value of resistance was determined to Penicilin 21.0%, Neomycin 10.5% and Novobiocin 9.7%. Lower resistance was in to Oxacilin 7.2% and Amoxicilin 6.5%. Minimal resistance was founded to Cefoxitin 0.8%, Linkomycin 2.4%, Erytromycin, and Streptomycin 3.2%. Was founded total resistance (21.0% to all antibiotics in S. epidermidis (34 during the three years, S. chromogenes (26 showed resistance to 8 types of antibiotics (12.9%, S. aureus (16 to 6 antibiotics (10.5% and S. warneri (16 to 4 antibiotics (5.6%. It was confirmed that sheep's milk remains a major source of staphylococci. Bacteria in comparison with isolates from cows' raw milk, showed lower values of resistance, but were resistant to more than two antibiotics. Recorded occurrence of resistance in staphylococci may be connected with a minimum use of antibiotics in the treatment of mastitis and other diseases in sheep herds. Reported resistance to the tested antibiotics became the basis for the recommendation to use preparations to treat mastitis in sheep principally by the detection of resistance to antibiotics contained.

  20. Quantifying Attachment and Antibiotic Resistance of from Conventional and Organic Swine Manure.

    Science.gov (United States)

    Zwonitzer, Martha R; Soupir, Michelle L; Jarboe, Laura R; Smith, Douglas R

    2016-03-01

    Broad-spectrum antibiotics are often administered to swine, contributing to the occurrence of antibiotic-resistant bacteria in their manure. During land application, the bacteria in swine manure preferentially attach to particles in the soil, affecting their transport in overland flow. However, a quantitative understanding of these attachment mechanisms is lacking, and their relationship to antibiotic resistance is unknown. The objective of this study is to examine the relationships between antibiotic resistance and attachment to very fine silica sand in collected from swine manure. A total of 556 isolates were collected from six farms, two organic and four conventional (antibiotics fed prophylactically). Antibiotic resistance was quantified using 13 antibiotics at three minimum inhibitory concentrations: resistant, intermediate, and susceptible. Of the 556 isolates used in the antibiotic resistance assays, 491 were subjected to an attachment assay. Results show that isolates from conventional systems were significantly more resistant to amoxicillin, ampicillin, chlortetracycline, erythromycin, kanamycin, neomycin, streptomycin, tetracycline, and tylosin ( < 0.001). Results also indicate that isolated from conventional systems attached to very fine silica sand at significantly higher levels than those from organic systems ( < 0.001). Statistical analysis showed that a significant relationship did not exist between antibiotic resistance levels and attachment in from conventional systems but did for organic systems ( < 0.001). Better quantification of these relationships is critical to understanding the behavior of in the environment and preventing exposure of human populations to antibiotic-resistant bacteria. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Evidence for a complex relationship between antibiotics and antibiotic-resistant Escherichia coli: from medical center patients to a receiving environment.

    Science.gov (United States)

    Oberlé, Kenny; Capdeville, Marion-Justine; Berthe, Thierry; Budzinski, Hélène; Petit, Fabienne

    2012-02-07

    The aim of this study was to investigate the relationship between antibiotics and antibiotic-resistant fecal bacteria (E. coli) in water along a medical center-wastewater treatment plant-river continuum (4 km). A multiresidue chemical analysis methodology, using solid phase extraction coupled with liquid chromatography tandem mass spectrometry, was performed to detect whether low levels of contamination by 34 antibiotics were related to antibiotic resistance of E. coli and antibiotic use. The contamination of water by antibiotics and antibiotic-resistant E. coli decreased along the continuum. Although amoxicillin was predominantly prescribed, only ofloxacin (1 ng·L(-1)) and sulfamethoxazole (4 ng·L(-1)) persisted in the river. At the retirement home, in the medical center, even though no tetracycline and sulfamethoxazole were consumed, the highest occurrences of antibiotic resistance were in classes of quinolones (42.0%), sulfonamides (24.0%), tetracyclines (38.0%), and penicillins (38.0%), mainly due to the presence of multiple antibiotic-resistance genes on class 1 integrons. Along the continuum, the occurrence of E. coli resistant to antibiotics and those carrying class 1 integrons decreased in water samples (p-value antibiotic compounds (ofloxacin, sulfamethoxazole) were found, but they did not correspond to the major resistances (tetracycline, amoxicillin) of E. coli.

  2. Tracking acquired antibiotic resistance in commensal bacteria of Galápagos land iguanas: no man, no resistance.

    Science.gov (United States)

    Thaller, Maria Cristina; Migliore, Luciana; Marquez, Cruz; Tapia, Washington; Cedeño, Virna; Rossolini, Gian Maria; Gentile, Gabriele

    2010-02-01

    Antibiotic resistance, evolving and spreading among bacterial pathogens, poses a serious threat to human health. Antibiotic use for clinical, veterinary and agricultural practices provides the major selective pressure for emergence and persistence of acquired resistance determinants. However, resistance has also been found in the absence of antibiotic exposure, such as in bacteria from wildlife, raising a question about the mechanisms of emergence and persistence of resistant strains under similar conditions, and the implications for resistance control strategies. Since previous studies yielded some contrasting results, possibly due to differences in the ecological landscapes of the studied wildlife, we further investigated this issue in wildlife from a remote setting of the Galapagos archipelago. Screening for acquired antibiotic resistance was carried out in commensal enterobacteria from Conolophus pallidus, the terrestrial iguana of Isla Santa Fe, where: i) the abiotic conditions ensure to microbes good survival possibilities in the environment; ii) the animal density and their habits favour microbial circulation between individuals; and iii) there is no history of antibiotic exposure and the impact of humans and introduced animal species is minimal except for restricted areas. Results revealed that acquired antibiotic resistance traits were exceedingly rare among bacteria, occurring only as non-dominant strains from an area of minor human impact. Where both the exposure to antibiotics and the anthropic pressure are minimal, acquired antibiotic resistance traits are not normally found in bacteria from wildlife, even if the ecological landscape is highly favourable to bacterial circulation among animals. Monitoring antibiotic resistance in wildlife from remote areas could also be a useful tool to evaluate the impact of anthropic pressure.

  3. Tracking acquired antibiotic resistance in commensal bacteria of Galápagos land iguanas: no man, no resistance.

    Directory of Open Access Journals (Sweden)

    Maria Cristina Thaller

    Full Text Available BACKGROUND: Antibiotic resistance, evolving and spreading among bacterial pathogens, poses a serious threat to human health. Antibiotic use for clinical, veterinary and agricultural practices provides the major selective pressure for emergence and persistence of acquired resistance determinants. However, resistance has also been found in the absence of antibiotic exposure, such as in bacteria from wildlife, raising a question about the mechanisms of emergence and persistence of resistant strains under similar conditions, and the implications for resistance control strategies. Since previous studies yielded some contrasting results, possibly due to differences in the ecological landscapes of the studied wildlife, we further investigated this issue in wildlife from a remote setting of the Galapagos archipelago. METHODOLOGY/PRINCIPAL FINDINGS: Screening for acquired antibiotic resistance was carried out in commensal enterobacteria from Conolophus pallidus, the terrestrial iguana of Isla Santa Fe, where: i the abiotic conditions ensure to microbes good survival possibilities in the environment; ii the animal density and their habits favour microbial circulation between individuals; and iii there is no history of antibiotic exposure and the impact of humans and introduced animal species is minimal except for restricted areas. Results revealed that acquired antibiotic resistance traits were exceedingly rare among bacteria, occurring only as non-dominant strains from an area of minor human impact. CONCLUSIONS/SIGNIFICANCE: Where both the exposure to antibiotics and the anthropic pressure are minimal, acquired antibiotic resistance traits are not normally found in bacteria from wildlife, even if the ecological landscape is highly favourable to bacterial circulation among animals. Monitoring antibiotic resistance in wildlife from remote areas could also be a useful tool to evaluate the impact of anthropic pressure.

  4. Transport and transformation of genetic information in the critical zone: The case of antibiotic resistance genes

    Science.gov (United States)

    Zhu, Y. G.

    2015-12-01

    In addition to material and energy flows, the dynamics and functions of the Earth's critical zone are intensively mediated by biological actions performed by diverse organisms. These biological actions are modulated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions, such as nutrient turnover and pollutant biodegradation. Although geobiology, as an interdisciplinary research area, is playing and vital role in linking biological and geochemical processes at different temporal and spatial scales, the distribution and transport of functional genes have rarely been investigated from the Earth's critical zone perspectives. To illustrate the framework of studies on the transport and transformation of genetic information in the critical zone, antibiotic resistance is taken as an example. Antibiotic resistance genes are considered as a group of emerging contaminants, and their emergence and spread within the critical zone on one hand are induced by anthropogenic activities, and on other hand are threatening human health worldwide. The transport and transformation of antibiotic resistance genes are controlled by both horizontal gene transfer between bacterial cells and the movement of bacteria harboring antibiotic resistance genes. In this paper, the fate and behavior of antibiotic resistance genes will be discussed in the following aspects: 1) general overview of environmental antibiotic resistance; 2) high through quantification of the resistome in various environmental media; 3) pathways of resistance gene flow within the critical zone; and 4) potential strategies in mitigating antibiotic resistance, particularly from the critical zone perspectives.

  5. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species

    Directory of Open Access Journals (Sweden)

    Chiara eDevirgiliis

    2013-10-01

    Full Text Available Lactobacilli represent a major Lactic Acid Bacteria (LAB component within the complex microbiota of fermented foods obtained from meat, dairy and vegetable sources. Lactococci, on the other hand, are typical of milk and fermented dairy products, which in turn represent the vast majority of fermented products. As is the case for all species originating from the environment, foodborne lactobacilli and lactococci consist of natural, uncharacterized strains, whose biodiversity depends on geographical origin, seasonality, animal feeding/plant growth conditions. Although a few species of opportunistic pathogens have been described in lactobacilli and lactococci, they are mostly non-pathogenic, Gram-positive bacteria displaying probiotic features. Since antibiotic resistant (AR strains do not constitute an immediate threat to human health, scientific interest for detailed studies on AR genes in these species has been greatly hindered. However, increasing evidence points at a crucial role for foodborne LAB as reservoir of potentially transmissible AR genes, underlining the need for further, more detailed studies aimed at identifying possible strategies to avoid AR spread to pathogens through fermented food consumption. The availability of a growing number of sequenced bacterial genomes has been very helpful in identifying the presence/distribution of mobile elements associated with AR genes, but open questions and knowledge gaps still need to be filled, underlining the need for systematic and datasharing approaches to implement both surveillance and mechanistic studies on transferability of AR genes. In the present review we report an update of the recent literature on AR in lactobacilli and lactococci following the 2006 EU-wide ban of the use of antibiotics as feed additives in animal farming, and we discuss the limits of the present knowledge in evaluating possible risks for human health.

  6. Prevalence of Antibiotic Resistance in Commensal Escherichia Coli among the Children in Rural Hill Communities of North East India

    OpenAIRE

    Lepcha, Yangchen; Pradhan, Nilu; Gajamer, Varsha; Singh, Samer; Das, Saurav; Tiwari, Ashish; Singh, Ashish

    2018-01-01

    Commensal bacteria are the representative of the reservoir of antibiotic resistance genes present in a community. Merely a few community-based studies on the prevalence of antibiotic resistance in commensal bacteria have been conducted so far in Southeast Asia and other parts of India. Northeastern India is still untapped regarding the surveillance of antibiotic-resistant genes and prevalence in commensal bacteria. In the present work, the prevalence of antibiotic resistance in commensal Esch...

  7. Influence of the combined administration of antibiotic-resistant bifidobacteria and the corresponding antibiotics on the survival of irradiated mice

    International Nuclear Information System (INIS)

    Korshunov, V.M.; Pinegin, B.V.; Ivanova, N.P.; Mal'tsev, V.N.

    1982-01-01

    Mice irradiated with a dose of 700 R were injected with a certain antibiotic (kanamycin, gentamycin, ampicillim and antibiotic resistant bifidobacteria) according to three different schemes. According to the first scheme antibiotic is in ected during the period from 1 to 7-th day, bifidobacteria-on 1, 6, 5, 7, 10, 15, 20 and 25-th day after irradiation, according to the second scheme antibiotic and bifidobacteria were injected from the fifth up to 0-th day after irradiation according to the 3-d scheme antibiotics and bifidobacteria were injected from the first up to 21-st day with 48 h interval. The largest increase in survival rate percent of irradiated animals was observed during combined injection of preparations according to the third scheme. The least medicinal effect was noted during injection of antibiotic and bifidobacteria aceording to the second scheme. Antibiotics and bifidobacteria injected separately increased survival rate of irradiated mice but at a lesser degree as compared with their combined use

  8. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field

    DEFF Research Database (Denmark)

    Berg, J.; Tom-Petersen, A.; Nybroe, O.

    2005-01-01

    -amendment significantly increased the frequency of Cu-resistant isolates. A panel of isolates were characterized by Gram-reaction, amplified ribosomal DNA restriction analysis and resistance profiling against seven antibiotics. More than 95% of the Cu-resistant isolates were Gram-negative. Cu-resistant Gram...

  9. Functional Characterization of Bacteria Isolated from Ancient Arctic Soil Exposes Diverse Resistance Mechanisms to Modern Antibiotics

    Science.gov (United States)

    Perron, Gabriel G.; Whyte, Lyle; Turnbaugh, Peter J.; Goordial, Jacqueline; Hanage, William P.; Dantas, Gautam; Desai, Michael M.

    2015-01-01

    Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes. PMID:25807523

  10. Distribution of quinolones, sulfonamides, tetracyclines in aquatic environment and antibiotic resistance in Indochina

    Directory of Open Access Journals (Sweden)

    Satoru eSuzuki

    2012-02-01

    Full Text Available Southeast Asia has become the center of rapid industrial development and economic growth. However, this growth has far outpaced investment in public infrastructure, leading to the unregulated release of many pollutants, including wastewater-related contaminants such as antibiotics. Antibiotics are of major concern because they can easily be released into the environment from numerous sources, and can subsequently induce development of antibiotic-resistant bacteria. Recent studies have shown that for some categories of drugs this source-to-environment antibiotic resistance relationship is more complex. This review summarizes current understanding regarding the presence of quinolones, sulfonamides, and tetracyclines in aquatic environments of Indochina and the prevalence of bacteria resistant to them. Several noteworthy findings are discussed: 1 quinolone contamination and the occurrence of quinolone resistance are not correlated; 2 occurrence of the sul sulfonamide resistance gene varies geographically; and 3 microbial diversity might be related to the rate of oxytetracycline resistance.

  11. Ten years of antibiotic consumption in ambulatory care: Trends in prescribing practice and antibiotic resistance in Austria

    Directory of Open Access Journals (Sweden)

    Apfalter Petra

    2009-05-01

    Full Text Available Abstract Background The primary aims of this study were (i to determine the quantity and pattern of antibiotic use in Austria between 1998 and 2007 and (ii to analyze antibiotic resistance rates in relation to antibiotic consumption in important clinical situations in order to provide data for empirical therapeutic regimens for key indications. Methods Consumption data and resistance data were obtained via the Austrian surveillance networks European Antimicrobial Resistance Surveillance System (EARSS and European Surveillance on Antimicrobial Consumption (ESAC. The EARSS collects data on isolates from blood and cerebrospinal fluid obtained predominantly in the hospital setting. The Anatomical Therapeutic Chemical (ATC classification and the Defined Daily Dose (DDD measurement units were assigned to the data. The number of DDDs and packages per 1,000 inhabitants (PID were used to calculate the level of antibiotic consumption. Antibiotic resistance was expressed in resistance rates, i.e., the percentage of resistant isolates compared to all isolates of one bacterial species. Results The overall antibiotic consumption measured in DIDs increased by 10% between 1998 and 2007, whereas PIDs decreased by 3%. The consumption of substances within the drug utilization 90% segment (measured in PID increased for ciprofloxacin (+118.9, clindamycin (+76.3, amoxicillin/clavulanic acid (+61.9%, cefpodoxime (+31.6, azithromycin (+24.7; and decreased for erythromycin (-79.5%, trimethoprim (-56,1%, norfloxacin (-48.8%, doxycycline (-44.6, cefaclor (-35.1%, penicillin (-34.0%, amoxicillin (-22.5, minocycline (-21.9% and clarithromycin (-9.9%. Starting in 2001, an increase in the percentage of invasive E. coli isolates resistant to aminopenicillins (from 35% to 53%, fluoroquinolones (from 7% to 25.5% and third-generation cephalosporins (from 0% to 8.8% was observed. The percentage of nonsusceptible or intermediate penicillin-resistant pneumococcal isolates remained

  12. History Teaches Us That Confronting Antibiotic Resistance Requires Stronger Global Collective Action.

    Science.gov (United States)

    Podolsky, Scott H; Bud, Robert; Gradmann, Christoph; Hobaek, Bård; Kirchhelle, Claas; Mitvedt, Tore; Santesmases, María Jesús; Thoms, Ulrike; Berild, Dag; Kveim Lie, Anne

    2015-01-01

    Antibiotic development and usage, and antibiotic resistance in particular, are today considered global concerns, simultaneously mandating local and global perspectives and actions. Yet such global considerations have not always been part of antibiotic policy formation, and those who attempt to formulate a globally coordinated response to antibiotic resistance will need to confront a history of heterogeneous, often uncoordinated, and at times conflicting reform efforts, whose legacies remain apparent today. Historical analysis permits us to highlight such entrenched trends and processes, helping to frame contemporary efforts to improve access, conservation and innovation. © 2015 American Society of Law, Medicine & Ethics, Inc.

  13. Activation of Antibiotic Production in Bacillus spp. by Cumulative Drug Resistance Mutations.

    Science.gov (United States)

    Tojo, Shigeo; Tanaka, Yukinori; Ochi, Kozo

    2015-12-01

    Bacillus subtilis strains produce a wide range of antibiotics, including ribosomal and nonribosomal peptide antibiotics, as well as bacilysocin and neotrehalosadiamine. Mutations in B. subtilis strain 168 that conferred resistance to drugs such as streptomycin and rifampin resulted in overproduction of the dipeptide antibiotic bacilysin. Cumulative drug resistance mutations, such as mutations in the mthA and rpsL genes, which confer low- and high-level resistance, respectively, to streptomycin, and mutations in rpoB, which confer resistance to rifampin, resulted in cells that overproduced bacilysin. Transcriptional analysis demonstrated that the enhanced transcription of biosynthesis genes was responsible for the overproduction of bacilysin. This approach was effective also in activating the cryptic genes of Bacillus amyloliquefaciens, leading to actual production of antibiotic(s). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection

    Science.gov (United States)

    Gupta, Akash; Saleh, Neveen M.; Das, Riddha; Landis, Ryan F.; Bigdeli, Arafeh; Motamedchaboki, Khatereh; Rosa Campos, Alexandre; Pomeroy, Kenneth; Mahmoudi, Morteza; Rotello, Vincent M.

    2017-06-01

    Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. Antibiotic treatment of resistant infections further contributes to the rapidly increasing number of antibiotic-resistant species and strains. Synthetic macromolecules such as nanoparticles (NPs) exhibit broad-spectrum activity against MDR species, however lack of specificity towards bacteria relative to their mammalian hosts limits their widespread therapeutic application. Here, we demonstrate synergistic antimicrobial therapy using hydrophobically functionalized NPs and fluoroquinolone antibiotics for treatment of MDR bacterial strains. An 8-16-fold decrease in antibiotic dosage is achieved in presence of engineered NPs to combat MDR strains. This strategy demonstrates the potential of using NPs to ‘revive’ antibiotics that have been rendered ineffective due to the development of resistance by pathogenic bacteria.

  15. Host-dependent Induction of Transient Antibiotic Resistance: A Prelude to Treatment Failure

    Directory of Open Access Journals (Sweden)

    Jessica Z. Kubicek-Sutherland

    2015-09-01

    Full Text Available Current antibiotic testing does not include the potential influence of host cell environment on microbial susceptibility and antibiotic resistance, hindering appropriate therapeutic intervention. We devised a strategy to identify the presence of host–pathogen interactions that alter antibiotic efficacy in vivo. Our findings revealed a bacterial mechanism that promotes antibiotic resistance in vivo at concentrations of drug that far exceed dosages determined by standardized antimicrobial testing. This mechanism has escaped prior detection because it is reversible and operates within a subset of host tissues and cells. Bacterial pathogens are thereby protected while their survival promotes the emergence of permanent drug resistance. This host-dependent mechanism of transient antibiotic resistance is applicable to multiple pathogens and has implications for the development of more effective antimicrobial therapies.

  16. Antibiotic resistance in triclosan heterotrophic plate count bacteria from sewage water / Ilsé Coetzee

    OpenAIRE

    Coetzee, Ilsé

    2015-01-01

    The concentration of triclosan in antiseptics, disinfectants and preservatives in products exceeds the minimal lethal levels. Extensive use of triclosan and antibiotics results in bacterial resistance to their active ingredients. The precise relationship between use and resistance, however, has been challenging to define. The aim of the study was to identify and determine antibiotic resistance profiles of triclosan tolerant heterotrophic plate count bacteria isolates from sewag...

  17. Tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence

    Science.gov (United States)

    McKinney, C.W.; Loftin, K.A.; Meyer, M.T.; Davis, J.G.; Pruden, A.

    2010-01-01

    Although livestock operations are known to harbor elevated levels of antibiotic resistant bacteria, few studies have examined the potential of livestock waste lagoons to reduce antibiotic resistance genes (ARGs). The purpose of this study was to determine the prevalence and examine the behavior of tetracycline [tet(O) and tet(W)] and sulfonamide [sul(I) and su/(II)] ARGsin a broad cross-section of livestock lagoons within the same semiarid western watershed. ARGs were monitored for one year in the water and the settled solids of eight lagoon systems by quantitative polymerase chain reaction. In addition, antibiotic residues and various bulk water quality constituents were analyzed. It was found that the lagoons of the chicken layer operation had the lowest concentrations of both tet and sul ARGs and low total antibiotic concentrations, whereas su ARGs were highest in the swine lagoons, which generally corresponded to the highest total antibiotic concentrations. A marginal benefit of organic and small dairy operations also was observed compared to conventional and large dairies, respectively. In all lagoons, su ARGs were observed to be generally more recalcitrant than tet ARGs. Also, positive correlations of various bulk water quality constituents were identified with tet ARGs but not sul ARGs. Significant positive correlations were identified between several metals and tet ARGs, but Pearson's correlation coefficients were mostly lower than those determined between antibiotic residues and ARGs. This study represents a quantitative characterization of ARGs in lagoons across a variety of livestock operations and provides insight into potential options for managing antibiotic resistance emanating from agricultural activities. ?? 2010 American Chemical Society.

  18. Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs

    Directory of Open Access Journals (Sweden)

    Geisla Mary Silva Soares

    2012-06-01

    Full Text Available Antibiotics are important adjuncts in the treatment of infectious diseases, including periodontitis. The most severe criticisms to the indiscriminate use of these drugs are their side effects and, especially, the development of bacterial resistance. The knowledge of the biological mechanisms involved with the antibiotic usage would help the medical and dental communities to overcome these two problems. Therefore, the aim of this manuscript was to review the mechanisms of action of the antibiotics most commonly used in the periodontal treatment (i.e. penicillin, tetracycline, macrolide and metronidazole and the main mechanisms of bacterial resistance to these drugs. Antimicrobial resistance can be classified into three groups: intrinsic, mutational and acquired. Penicillin, tetracycline and erythromycin are broad-spectrum drugs, effective against gram-positive and gram-negative microorganisms. Bacterial resistance to penicillin may occur due to diminished permeability of the bacterial cell to the antibiotic; alteration of the penicillin-binding proteins, or production of β-lactamases. However, a very small proportion of the subgingival microbiota is resistant to penicillins. Bacteria become resistant to tetracyclines or macrolides by limiting their access to the cell, by altering the ribosome in order to prevent effective binding of the drug, or by producing tetracycline/macrolide-inactivating enzymes. Periodontal pathogens may become resistant to these drugs. Finally, metronidazole can be considered a prodrug in the sense that it requires metabolic activation by strict anaerobe microorganisms. Acquired resistance to this drug has rarely been reported. Due to these low rates of resistance and to its high activity against the gram-negative anaerobic bacterial species, metronidazole is a promising drug for treating periodontal infections.

  19. Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes.

    Science.gov (United States)

    Edgar, Rotem; Friedman, Nir; Molshanski-Mor, Shahar; Qimron, Udi

    2012-02-01

    Pathogen resistance to antibiotics is a rapidly growing problem, leading to an urgent need for novel antimicrobial agents. Unfortunately, development of new antibiotics faces numerous obstacles, and a method that resensitizes pathogens to approved antibiotics therefore holds key advantages. We present a proof of principle for a system that restores antibiotic efficiency by reversing pathogen resistance. This system uses temperate phages to introduce, by lysogenization, the genes rpsL and gyrA conferring sensitivity in a dominant fashion to two antibiotics, streptomycin and nalidixic acid, respectively. Unique selective pressure is generated to enrich for bacteria that harbor the phages carrying the sensitizing constructs. This selection pressure is based on a toxic compound, tellurite, and therefore does not forfeit any antibiotic for the sensitization procedure. We further demonstrate a possible way of reducing undesirable recombination events by synthesizing dominant sensitive genes with major barriers to homologous recombination. Such synthesis does not significantly reduce the gene's sensitization ability. Unlike conventional bacteriophage therapy, the system does not rely on the phage's ability to kill pathogens in the infected host, but instead, on its ability to deliver genetic constructs into the bacteria and thus render them sensitive to antibiotics prior to host infection. We believe that transfer of the sensitizing cassette by the constructed phage will significantly enrich for antibiotic-treatable pathogens on hospital surfaces. Broad usage of the proposed system, in contrast to antibiotics and phage therapy, will potentially change the nature of nosocomial infections toward being more susceptible to antibiotics rather than more resistant.

  20. The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity.

    Science.gov (United States)

    Raivio, Tracy L; Leblanc, Shannon K D; Price, Nancy L

    2013-06-01

    The Cpx envelope stress response mediates adaptation to stresses that cause envelope protein misfolding. Adaptation is partly conferred through increased expression of protein folding and degradation factors. The Cpx response also plays a conserved role in the regulation of virulence determinant expression and impacts antibiotic resistance. We sought to identify adaptive mechanisms that may be involved in these important functions by characterizing changes in the transcriptome of two different Escherichia coli strains when the Cpx response is induced. We show that, while there is considerable strain- and condition-specific variability in the Cpx response, the regulon is enriched for proteins and functions that are inner membrane associated under all conditions. Genes that were changed by Cpx pathway induction under all conditions were involved in a number of cellular functions and included several intergenic regions, suggesting that posttranscriptional regulation is important during Cpx-mediated adaptation. Some Cpx-regulated genes are centrally involved in energetics and play a role in antibiotic resistance. We show that a number of small, uncharacterized envelope proteins are Cpx regulated and at least two of these affect phenotypes associated with membrane integrity. Altogether, our work suggests new mechanisms of Cpx-mediated envelope stress adaptation and antibiotic resistance.

  1. Use of phages against antibiotic-resistant Staphylococcus aureus isolated from bovine mastitis.

    Science.gov (United States)

    Dias, R S; Eller, M R; Duarte, V S; Pereira, Â L; Silva, C C; Mantovani, H C; Oliveira, L L; Silva, E de A M; De Paula, S O

    2013-08-01

    Bovine mastitis is the primary disease of dairy cattle worldwide and it causes large economic losses. Among several microorganisms that are the causative agents of this disease, Staphylococcus aureus is the most prevalent. Although antibiotic therapy is still the most widely used procedure for the treatment of bovine mastitis, alternative means of treatment are necessary due to the presence of antibiotic residues in milk, which is a growing concern because of its interference with the production of milk derivatives and the selection of resistant bacterial strains. The use of bacteriophages as a tool for the control of pathogens is an alternative treatment to antibiotic therapy. In this work, to obtain phages with the potential for use in phage therapy as a treatment for mastitis, we isolated and identified the bacteria from the milk of mastitis-positive cows. A total of 19% of the animals from small and medium farms of the Zona da Mata Mineira, Brazil, was positive for bovine mastitis, and bacteria of the genus Staphylococcus were the most prevalent pathogens. The majority of the S. aureus isolates tested was resistant to penicillin and ampicillin. In parallel, we isolated 10 bacteriophages able to infect some of these S. aureus isolates. We determined that these phages contained DNA genomes of approximately 175 kb in length, and the protein profiles indicated the presence of 4 major proteins. Electron microscopy revealed that the phages are caudate and belong to the Myoviridae family. The isolates exhibited interesting features for their use in phage therapy such as a high lytic potential, a wide range of hosts, and thermostability, all of which favor their use in the field.

  2. Antibiotic and synergistic effect of Leu-Lys rich peptide against antibiotic resistant microorganisms isolated from patients with cholelithiasis.

    Science.gov (United States)

    Jeong, Nari; Kim, Jin-Young; Park, Seong-Cheol; Lee, Jong-Kook; Gopal, Ramamourthy; Yoo, Suyeon; Son, Byoung Kwan; Hahm, Joon Soo; Park, Yoonkyung; Hahm, Kyung-Soo

    2010-09-03

    Pseudomonas aeruginosa has eventually developed resistance against flomoxef sodium, isepamicin and cefpiramide. Therefore, in this study, the antibacterial activity and synergistic effects of the amphipathic-derived P5-18mer antimicrobial peptide were tested against pathogens associated with cholelithiasis that have developed resistance against commonly used antibiotics. The results were then compared with the activities of the amphipathic-derived peptide, P5-18mer, melittin and common antibiotics. Growth inhibition of planktonic bacteria was tested using the National Committee for Clinical Laboratory Standards (NCCLS). The bactericidal activity of the antimicrobial peptides was measured using time-kill curves. Synergistic effects were evaluated by testing the effects of P5-18mer alone and in combination with flomoxef sodium, isepamicin or cefpiramide at 0.5xMIC. P5-18mer peptide displayed strong activity against pathogens and flomoxef sodium, isepamicin and cefpiramide-resistant bacteria cell lines obtained from a patient with gallstones; however, it did not exert cytotoxicity against the human keratinocyte HaCat cell line. In addition, the results of time-kill curves indicated that P5-18mer peptide exerted bactericidal activity against four strains of P. aeruginosa. Finally, the use of P5-18mer and antibiotics exerted synergistic effects against cell lines that were resistant to commonly used antibiotics. These results indicate that this class of peptides has a rapid microbicidal effect on flomoxef sodium, isepamicin and cefpiramide-resistant strains of P. aeruginosa. Therefore, these peptides may be used as a lead drug for the treatment of acquired pathogens from patients with cholelithiasis who are affected with antibiotic-resistant bacteria. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Antibiotic resistance determinants in a Pseudomonas putida strain isolated from a hospital.

    Directory of Open Access Journals (Sweden)

    Lázaro Molina

    Full Text Available Environmental microbes harbor an enormous pool of antibiotic and biocide resistance genes that can impact the resistance profiles of animal and human pathogens via horizontal gene transfer. Pseudomonas putida strains are ubiquitous in soil and water but have been seldom isolated from humans. We have established a collection of P. putida strains isolated from in-patients in different hospitals in France. One of the isolated strains (HB3267 kills insects and is resistant to the majority of the antibiotics used in laboratories and hospitals, including aminoglycosides, ß-lactams, cationic peptides, chromoprotein enediyne antibiotics, dihydrofolate reductase inhibitors, fluoroquinolones and quinolones, glycopeptide antibiotics, macrolides, polyketides and sulfonamides. Similar to other P. putida clinical isolates the strain was sensitive to amikacin. To shed light on the broad pattern of antibiotic resistance, which is rarely found in clinical isolates of this species, the genome of this strain was sequenced and analysed. The study revealed that the determinants of multiple resistance are both chromosomally-borne as well as located on the pPC9 plasmid. Further analysis indicated that pPC9 has recruited antibiotic and biocide resistance genes from environmental microorganisms as well as from opportunistic and true human pathogens. The pPC9 plasmid is not self-transmissible, but can be mobilized by other bacterial plasmids making it capable of spreading antibiotic resistant determinants to new hosts.

  4. Antibiotic-resistant Escherichia coli in migratory birds inhabiting remote Alaska

    Science.gov (United States)

    Ramey, Andy M.; Hernandez, Jorge; Tyrlöv, Veronica; Uher-Koch, Brian D.; Schmutz, Joel A.; Atterby, Clara; Järhult, Josef D.; Bonnedahl, Jonas

    2018-01-01

    We explored the abundance of antibiotic-resistant Escherichia coli among migratory birds at remote sites in Alaska and used a comparative approach to speculate on plausible explanations for differences in detection among species. At a remote island site, we detected antibiotic-resistant E. coli phenotypes in samples collected from glaucous-winged gulls (Larus glaucescens), a species often associated with foraging at landfills, but not in samples collected from black-legged kittiwakes (Rissa tridactyla), a more pelagic gull that typically inhabits remote areas year-round. We did not find evidence for antibiotic-resistant E. coli among 347 samples collected primarily from waterfowl at a second remote site in western Alaska. Our results provide evidence that glaucous-winged gulls may be more likely to be infected with antibiotic-resistant E. coli at remote breeding sites as compared to sympatric black-legged kittiwakes. This could be a function of the tendency of glaucous-winged gulls to forage at landfills where antibiotic-resistant bacterial infections may be acquired and subsequently dispersed. The low overall detection of antibiotic-resistant E. coli in migratory birds sampled at remote sites in Alaska is consistent with the premise that anthropogenic inputs into the local environment or the relative lack thereof influences the prevalence of antibiotic-resistant bacteria among birds inhabiting the area.

  5. Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China

    International Nuclear Information System (INIS)

    Tao Ran; Ying Guangguo; Su Haochang; Zhou Hongwei; Sidhu, Jatinder P.S.

    2010-01-01

    This study investigated antibiotic resistance profiles and tetracycline resistance genes in Enterobacteriaceae family isolates from the Pearl rivers. The Enterobacteriaceae isolates were tested for susceptibility to seven antibiotics ampicillin, chloramphenicol, ciprofloxacin, levofloxacin, sulphamethoxazole/trimethoprim, tetracycline and trimethoprim. In Liuxi reservoir, with an exception to ampicillin resistant strains (11%) no other antibiotic resistance bacterial strains were detected. However, multiple drug resistance in bacterial isolates from the other sites of Pearl rivers was observed which is possibly due to sewage discharge and input from other anthropogenic sources along the rivers. Four tetracycline resistance genes tet A, tet B, tet C and tet D were detected in the isolates from the rivers. The genes tet A and tet B were widely detected with the detection frequencies of 43% and 40% respectively. Ciprofloxacin and levofloxacin resistant enteric bacteria were also isolated from the pig and duck manures which suggest a wider distribution of human specific drugs in the environment. This investigation provided a baseline data on antibiotic resistance profiles and tetracycline resistance genes in the Pearl rivers delta. - High rates of antibiotic resistance in Enterobacteriaceae from river water are attributed to wastewater contamination.

  6. Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China

    Energy Technology Data Exchange (ETDEWEB)

    Tao Ran [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Ying Guangguo, E-mail: guangguo.ying@gmail.co [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Su Haochang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Zhou Hongwei [Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, 1838 North Guangzhou Street, Baiyun District, Guangzhou 510515 (China); Sidhu, Jatinder P.S. [CSIRO Land and Water, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia QLD 4067 (Australia)

    2010-06-15

    This study investigated antibiotic resistance profiles and tetracycline resistance genes in Enterobacteriaceae family isolates from the Pearl rivers. The Enterobacteriaceae isolates were tested for susceptibility to seven antibiotics ampicillin, chloramphenicol, ciprofloxacin, levofloxacin, sulphamethoxazole/trimethoprim, tetracycline and trimethoprim. In Liuxi reservoir, with an exception to ampicillin resistant strains (11%) no other antibiotic resistance bacterial strains were detected. However, multiple drug resistance in bacterial isolates from the other sites of Pearl rivers was observed which is possibly due to sewage discharge and input from other anthropogenic sources along the rivers. Four tetracycline resistance genes tet A, tet B, tet C and tet D were detected in the isolates from the rivers. The genes tet A and tet B were widely detected with the detection frequencies of 43% and 40% respectively. Ciprofloxacin and levofloxacin resistant enteric bacteria were also isolated from the pig and duck manures which suggest a wider distribution of human specific drugs in the environment. This investigation provided a baseline data on antibiotic resistance profiles and tetracycline resistance genes in the Pearl rivers delta. - High rates of antibiotic resistance in Enterobacteriaceae from river water are attributed to wastewater contamination.

  7. Effects of UV light disinfection on antibiotic-resistant coliforms in wastewater effluents

    International Nuclear Information System (INIS)

    Meckes, M.C.

    1982-01-01

    Total coliforms and total coliforms resistant to streptomycin, tetracycline, or chloramphenicol were isolated from filtered activated sludge effluents before and after UV light irradiation. Although the UV irradiation effectively disinfected the wastewater effluent, the percentage of the total surviving coliform population resistant to tetracycline or chloramphenicol was significantly higher than the percentage of the total coliform population resistant to those antibiotics before UV irradiation. This finding was attributed to the mechanism of R-factor mediated resistance to tetracycline. No significant difference was noted for the percentage of the surviving total coliform population resistant to streptomycin before or after UV irradiation. Multiple drug resistant to patterns of 300 total coliform isolates revealed that 82% were resistant to two or more antibiotics. Furthermore, 46% of these isolates were capable of transferring antibiotic resistance to a sensitive strain of Escherichia coli

  8. The role of efflux pumps in Bacteroides fragilis resistance to antibiotics.

    Science.gov (United States)

    Ghotaslou, Reza; Yekani, Mina; Memar, Mohammad Yousef

    2018-05-01

    The resistance of Bacteroides fragilis to the most antimicrobial agents has been reported in the world. Identification of the microbial resistance mechanisms can play an important role in controlling these resistances. Currently, B. fragilis is resistant to most antibiotics. The multi-drug efflux pumps have been shown to underlie the antimicrobial resistance in B. fragilis strains. Two types of these efflux pumps including RND and MATE can be regarded as main structures responsible for antibiotic resistance. Therefore, the strategy for suppressing of this efflux system may be useful in the treatment and control of the multidrug-resistant B. fragilis. The purpose of this study is to review the B. fragilis efflux pumps and their functions in the resistance to antibiotics. Copyright © 2018 Elsevier GmbH. All rights reserved.

  9. 'Struggling to be a defender of health' -a qualitative study on the pharmacists' perceptions of their role in antibiotic consumption and antibiotic resistance in Romania.

    Science.gov (United States)

    Ghiga, I; Stålsby Lundborg, C

    2016-01-01

    Antibiotic resistance is a serious global public health problem directly correlated to high antibiotic consumption. Romania is one of the European countries with the highest rates of antibiotic consumption, non-prescription antibiotics use and resistance of several pathogens to antibiotics. Pharmacists are an important stakeholder in respect to antibiotic management and context specific research on this topic is needed. The aim of the research is to increase the understanding of how community pharmacists in Romania perceive their roles in respect to antibiotic consumption and antibiotic resistance. Semi-structured interviews with 18 pharmacists were conducted to explore the perceptions and attitudes of pharmacists towards their roles on antibiotics consumption and antibiotic resistance. Manifest and latent qualitative content analysis was used to analyse interview transcripts. Three sub-themes emerged from the analysis. 'Maintaining equilibrium between ethics, law and economy' expresses how pharmacists often feel when trying to fulfil their duties considering all the dimensions of the pharmacist profession.' Antibiotic resistance problem rooted in a low social capital environment' reflects the pharmacists' perceptions of the deep causes of antibiotic resistance and the underlying problems that perpetuate the status quo and impact their role in relation to this problem. Wanting to fulfil their educational role illustrates how the pharmacists feel they could best contribute to improving the present situation. The overarching theme 'Undervalued medicines' professionals struggling with agency related and structural barriers to meet their deontological duties'- meaning the ethical responsibilities that come with the pharmacy practice, reflects that the pharmacists see their roles as being challenged by several barriers. A health system and societal context perspective is helpful in order to understand the pharmacists' roles in respect to antibiotic consumption and

  10. Supplementary Material for: Detection of antibiotic resistance in probiotics of dietary supplements

    KAUST Repository

    Wong, Aloysius Tze

    2015-01-01

    Abstract Background Probiotics are live microorganisms that confer nutrition- and health-promoting benefits if consumed in adequate amounts. Concomitant with the demand for natural approaches to maintaining health is an increase in inclusion of probiotics in food and health products. Since probiotic bacteria act as reservoir for antibiotic resistant determinants, the transfer of these genes to pathogens sharing the same intestinal habitat is thus conceivable considering the fact that dietary supplements contain high amounts of often heterogeneous populations of probiotics. Such events can confer pathogens protection against commonly-used drugs. Despite numerous reports of antibiotic resistant probiotics in food and biological sources, the antibiogram of probiotics from dietary supplements remained elusive. Findings Here, we screened five commercially available dietary supplements for resistance towards antibiotics of different classes. Probiotics of all batches of products were resistant towards vancomycin while batch-dependent resistance towards streptomycin, aztreonam, gentamycin and/or ciprofloxacin antibiotics was detected for probiotics of brands Bi and Bn, Bg, and L. Isolates of brand Cn was also resistant towards gentamycin, streptomycin and ciprofloxacin antibiotics. Additionally, we also report a discrepancy between the enumerated viable bacteria amounts and the claims of the manufacturers. Conclusions This short report has highlighted the present of antibiotic resistance in probiotic bacteria from dietary supplements and therefore serves as a platform for further screenings and for in-depth characterization of the resistant determinants and the molecular machinery that confers the resistance.

  11. Antibiotic resistance in the food chain: A developing country-perspective

    Directory of Open Access Journals (Sweden)

    Luria Leslie Founou

    2016-11-01

    Full Text Available Antibiotics are now endangered species facing extinction due to the worldwide emergence of antibiotic resistance (ABR. Food animals are considered as key reservoirs of antibiotic-resistant bacteria with the use of antibiotics in the food production industry having contributed to the actual global challenge of ABR. There are no geographic boundaries to impede the worldwide spread of ABR. If preventive and containment measures are not applied locally, nationally and regionally, the limited interventions in one country, continent and for instance, in the developing world, could compromise the efficacy and endanger ABR containment policies implemented in other parts of the world, the best-managed high-resource countries included. Multifaceted, comprehensive and integrated measures complying with the One Health approach are imperative to ensure food safety and security, effectively combat infectious diseases, curb the emergence and spread of ABR, and preserve the efficacy of antibiotics for future generations. Countries should follow the World Health Organization, World Organization for Animal Health, and the Food and Agriculture Organization of the United Nations recommendations to implement national action plans encompassing human, (food animal, and environmental sectors to improve policies, interventions and activities that address the prevention and containment of ABR from farm-to-fork. This review covers (i the origin of antibiotic resistance, (ii pathways by which bacteria spread to humans from farm-to-fork, (iii differences in levels of antibiotic resistance between developed and developing countries, and (iv prevention and containment measures of antibiotic resistance in the food chain.

  12. Antibiotic Resistance in the Food Chain: A Developing Country-Perspective.

    Science.gov (United States)

    Founou, Luria Leslie; Founou, Raspail Carrel; Essack, Sabiha Yusuf

    2016-01-01

    Antibiotics are now "endangered species" facing extinction due to the worldwide emergence of antibiotic resistance (ABR). Food animals are considered as key reservoirs of antibiotic-resistant bacteria with the use of antibiotics in the food production industry having contributed to the actual global challenge of ABR. There are no geographic boundaries to impede the worldwide spread of ABR. If preventive and containment measures are not applied locally, nationally and regionally, the limited interventions in one country, continent and for instance, in the developing world, could compromise the efficacy and endanger ABR containment policies implemented in other parts of the world, the best-managed high-resource countries included. Multifaceted, comprehensive, and integrated measures complying with the One Health approach are imperative to ensure food safety and security, effectively combat infectious diseases, curb the emergence and spread of ABR, and preserve the efficacy of antibiotics for future generations. Countries should follow the World Health Organization, World Organization for Animal Health, and the Food and Agriculture Organization of the United Nations recommendations to implement national action plans encompassing human, (food) animal, and environmental sectors to improve policies, interventions and activities that address the prevention and containment of ABR from farm-to-fork. This review covers (i) the origin of antibiotic resistance, (ii) pathways by which bacteria spread to humans from farm-to-fork, (iii) differences in levels of antibiotic resistance between developed and developing countries, and (iv) prevention and containment measures of antibiotic resistance in the food chain.

  13. Microbiological and biochemical studies on certain antibiotic-resistant bacteria isolated from certain clinical specimens

    International Nuclear Information System (INIS)

    Nada, H.M.AL.M.

    2008-01-01

    . Determination of B-lactamase and AmpC-B-lactamase enzyme production were carried out by two methods. Cefotaxime, ceftazidime, cefoperazone, cefoxitin and aztreonam were used with and without amoxycillin clavulanic acid to detect the presence of extended-spectrum B-lactamase (ESBL) harbouring isolates by using double-disk diffusion synergy test (DDST). Combined disk method was used also to detect the presence of ESBL harbouring isolates by using cefoperazone (CFP) and cefoperazone sulbactam (SCF) among the tested strains. Agar dilution method was used to determine minimum inhibitory concentration (MIC) of ampicillin sulbactam, cefoperazone, gentamycin and levofloxacin alone and in combination (Ampicillin sulbactam with both of gentamycin and levofloxacin) and (cefoperazone with both of gentamycin and levofloxacin). Fractional inhibitory concentration (FIC) for the combined antibiotics were calculated according to checkerboard method and synergistic effect were determined. Some resistant isolates were subjected to molecular studies including plasmid profile (Kleb.52 Morg.60 and Ps.72 ) by using a high pure plasmid isolation kit and protein pattern of Ps.72 before and after irradiation in the presence of different antibiotics alone (cefoperazone, gentamycin and ampicillin sulbactam) or in combined (cefoperazone with gentamycin and ampicillin sulbactam with gentamycin)The result of the present investigation showed that, 9 multi-drug resistant isolates were identified as; 2 isolates Escherichia coli, 2 isolates Pseudomonas aeruginosa, 1 isolate Citrobacter freundii, 1 isolate Morganella morganii all were isolated from urine samples

  14. Microbiological and biochemical studies on certain antibiotic-resistant bacteria isolated from certain clinical specimens

    Energy Technology Data Exchange (ETDEWEB)

    Nada, H M.AL.M. [National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    2008-07-01

    . Determination of B-lactamase and AmpC-B-lactamase enzyme production were carried out by two methods. Cefotaxime, ceftazidime, cefoperazone, cefoxitin and aztreonam were used with and without amoxycillin clavulanic acid to detect the presence of extended-spectrum B-lactamase (ESBL) harbouring isolates by using double-disk diffusion synergy test (DDST). Combined disk method was used also to detect the presence of ESBL harbouring isolates by using cefoperazone (CFP) and cefoperazone sulbactam (SCF) among the tested strains. Agar dilution method was used to determine minimum inhibitory concentration (MIC) of ampicillin sulbactam, cefoperazone, gentamycin and levofloxacin alone and in combination (Ampicillin sulbactam with both of gentamycin and levofloxacin) and (cefoperazone with both of gentamycin and levofloxacin). Fractional inhibitory concentration (FIC) for the combined antibiotics were calculated according to checkerboard method and synergistic effect were determined. Some resistant isolates were subjected to molecular studies including plasmid profile (Kleb.52 Morg.60 and Ps.72 ) by using a high pure plasmid isolation kit and protein pattern of Ps.72 before and after irradiation in the presence of different antibiotics alone (cefoperazone, gentamycin and ampicillin sulbactam) or in combined (cefoperazone with gentamycin and ampicillin sulbactam with gentamycin)The result of the present investigation showed that, 9 multi-drug resistant isolates were identified as; 2 isolates Escherichia coli, 2 isolates Pseudomonas aeruginosa, 1 isolate Citrobacter freundii, 1 isolate Morganella morganii all were isolated from urine samples.

  15. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations.

    Science.gov (United States)

    Jutkina, J; Marathe, N P; Flach, C-F; Larsson, D G J

    2018-03-01

    There is a rising concern that antibiotics, and possibly other antimicrobial agents, can promote horizontal transfer of antibiotic resistance genes. For most types of antimicrobials their ability to induce conjugation below minimal inhibitory concentrations (MICs) is still unknown. Our aim was therefore to explore the potential of commonly used antibiotics and antibacterial biocides to induce horizontal transfer of antibiotic resistance. Effects of a wide range of sub-MIC concentrations of the antibiotics cefotaxime, ciprofloxacin, gentamicin, erythromycin, sulfamethoxazole, trimethoprim and the antibacterial biocides chlorhexidine digluconate, hexadecyltrimethylammoniumchloride and triclosan were investigated using a previously optimized culture-based assay with a complex bacterial community as a donor of mobile resistance elements and a traceable Escherichia coli strain as a recipient. Chlorhexidine (24.4μg/L), triclosan (0.1mg/L), gentamicin (0.1mg/L) and sulfamethoxazole (1mg/L) significantly increased the frequencies of transfer of antibiotic resistance whereas similar effects were not observed for any other tested antimicrobial compounds. This corresponds to 200 times below the MIC of the recipient for chlorhexidine, 1/20 of the MIC for triclosan, 1/16 of the MIC for sulfamethoxazole and right below the MIC for gentamicin. To our best knowledge, this is the first study showing that triclosan and chlorhexidine could stimulate the horizontal transfer of antibiotic resistance. Together with recent research showing that tetracycline is a potent inducer of conjugation, our results indicate that several antimicrobials including both common antibiotics and antibacterial biocides at low concentrations could contribute to antibiotic resistance development by facilitating the spread of antibiotic resistance between bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Antibiotic resistance: the challenge from an industry perspective.

    Science.gov (United States)

    Tillotson, Glenn S

    2009-03-01

    Trained in medical microbiology and infectious diseases in the UK, Glenn Tillotson has over 20 years pharmaceutical experience in various areas, including clinical research, marketing, scientific communications, strategic development and global launch programs. Mainly in the field of anti-infectives, Tillotson has been instrumental in the development of ciprofloxacin and moxifloxacin, as well as other drugs in the Bayer portfolio. After leaving Bayer, he worked as a consultant microbiologist and, in 2003, consulted with Genesoft to help with the commercialization and launch of gemifloxacin, leading to the development of Oscient following the merger of Genesoft and Genome Therapeutics. From late 2003 to early 2006, he focused his efforts on the launch of gemifloxacin into US clinical practice, as well as comarketing and business development deals globally. In April 2006, Tillotson joined Replidyne Inc. as Executive Director of Scientific Affairs working on faropenem, REP 8839 and REP 3123. Presently, Tillotson is Head of Medical Affairs at ViroPharma Inc., where he oversees educational, publication and other related activities for Vancocin(®), maribavir and Cinryze™. Most recently, Tillotson was a member of the Scientific Steering Committee for the International Society of Chemotherapy's Symposium on Clostridium difficile in Leipzig, Germany. Here, he talks with Expert Review of Clinical Pharmacology about the challenge of antibiotic resistance from an industry perspective.

  17. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river.

    Science.gov (United States)

    Xu, Jian; Xu, Yan; Wang, Hongmei; Guo, Changsheng; Qiu, Huiyun; He, Yan; Zhang, Yuan; Li, Xiaochen; Meng, Wei

    2015-01-01

    The extensive use of antibiotics has caused the contamination of both antibiotics and antibiotic resistance genes (ARGs) in the environment. In this study, the abundance and distribution of antibiotics and ARGs from a sewage treatment plant (STP) and its effluent-receiving river in Beijing China were characterized. Three classes of antibiotics including tetracycline, sulfonamide and quinolone were quantified by LC-MS/MS. In the secondary effluent they were detected at 195, 2001 and 3866 ng L(-1), respectively, which were higher than in the receiving river water. A total of 13 ARGs (6 tet genes: tetA, tetB, tetE, tetW, tetM and tetZ, 3 sulfonamide genes: sul1, sul2 and sul3, and 4 quinolone genes: gryA, parC, qnrC and qnrD) were determined by quantitative PCR. For all ARGs, sulfonamide resistance genes were present at relatively high concentrations in all samples, with the highest ARG concentration above 10(-1). ARGs remained relatively stable along each sewage treatment process. The abundances of detected ARGs from the STP were also higher than its receiving river. Bivariate correlation analysis showed that relative tet gene copies (tetB/16S-rRNA and tetW/16S-rRNA) were strongly correlated with the concentrations of tetracycline residues (r(2)>0.8, pgenes. A negative correlation between the relative abundance of quinolone resistance gene (qnrC/16S-rRNA) and the concentrations of enrofloxacin (ENR) was also determined. The difference of ARGs levels in the raw influent and secondary effluent suggested that the STP treatment process may induce to increase the abundance of resistance genes. The results showed that the sewage was an important repository of the resistance genes, which need to be effectively treated before discharge into the natural water body. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Overcoming antibiotic resistance: Is siderophore Trojan horse conjugation an answer to evolving resistance in microbial pathogens?

    Science.gov (United States)

    Dhusia, Kalyani; Bajpai, Archana; Ramteke, P W

    2018-01-10

    Comparative study of siderophore biosynthesis pathway in pathogens provides potential targets for antibiotics and host drug delivery as a part of computationally feasible microbial therapy. Iron acquisition using siderophore models is an essential and well established model in all microorganisms and microbial infections a known to cause great havoc to both plant and animal. Rapid development of antibiotic resistance in bacterial as well as fungal pathogens has drawn us at a verge where one has to get rid of the traditional way of obstructing pathogen using single or multiple antibiotic/chemical inhibitors or drugs. 'Trojan horse' strategy is an answer to this imperative call where antibiotic are by far sneaked into the pathogenic cell via the siderophore receptors at cell and outer membrane. This antibiotic once gets inside, generates a 'black hole' scenario within the opportunistic pathogens via iron scarcity. For pathogens whose siderophore are not compatible to smuggle drug due to their complex conformation and stiff valence bonds, there is another approach. By means of the siderophore biosynthesis pathways, potential targets for inhibition of these siderophores in pathogenic bacteria could be achieved and thus control pathogenic virulence. Method to design artificial exogenous siderophores for pathogens that would compete and succeed the battle of intake is also covered with this review. These manipulated siderophore would enter pathogenic cell like any other siderophore but will not disperse iron due to which iron inadequacy and hence pathogens control be accomplished. The aim of this review is to offer strategies to overcome the microbial infections/pathogens using siderophore. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria.

    Science.gov (United States)

    Adelowo, Olawale O; Fagade, Obasola E; Agersø, Yvonne

    2014-09-12

    This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Minimum inhibitory concentration (MIC) distributions of the isolates were determined using the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resistance was: tetracycline 81%, sulphamethoxazole 67%, streptomycin 56%, trimethoprim 47 %, ciprofloxacin 42%, ampicillin 36%, spectinomycin 28%, nalidixic acid 25%, chloramphenicol 22%, neomycin 14%, gentamicin 8%, amoxicillin-clavulanate, ceftiofur, cefotaxime, colistin, florfenicol and apramycin 0%. Resistance genes found among the isolates include bla-TEM (85%), sul2 (67%), sul3 (17%), aadA (65%), strA (70%), strB (61%), catA1 (25%), cmlA1 (13%), tetA (21%) and tetB (17%). Class 1 and 2 integrons were found in five (14%) and six (17%) isolates, respectively, while one isolate was positive for both classes of integrons. Seven out of eight isolates with resistance to ciprofloxacin and MIC ≤ 32 mg/L to nalidixic acid contained qnrS genes. Our findings provided additional evidence that the poultry production environment in Nigeria represents an important reservoir of antibiotic resistance genes such as qnrS that may spread from livestock production farms to human populations via manure and water.

  20. Antibiotic Resistance Factors and Alternatives to Antimicrobial Growth Factors within Animal Husbandry

    OpenAIRE

    Reyes, Emory

    2014-01-01

    The repercussions of antibiotic resistance in humans give scientists a vivid picture of the effectsof microbial evolution. These repercussions can be felt economically and scientifically as thedemand for stronger antibiotics grows stronger, yet the availability for such an effect remainslow. Citizens must pay more money in order to access antibiotics from their healthcareproviders; however, if treatment is not completed, bacteria become increasingly immune toantibiotics, closing off pathways ...

  1. Antibiotic resistant pattern of methicillin resistant and sensitive Staphylococcus aureus isolated from patients durining 2009-2010, Ahvaz, Iran.

    Directory of Open Access Journals (Sweden)

    N Parhizgari

    2013-12-01

    Full Text Available Abstract Background & aim: Staphylococcus aureus is one of the most important nosocomial infecting agents resistant to commonly used antibiotics. Nowadays, methicillin-resistant S. aureus (MRSA is considered one of the main causes of nosocomial infections. The aim of this study was to identify the antibiotic resistance pattern of methicicllin- resistant and susceptible strains in Ahwaz, Iran. Methods: In the present cross - sectional study, a number of 255 clinically suspected cases of Staphylococcus aureus were collected during a 19 month period. The bacteria were investigated using standard biochemical tests such as catalase, mannitol fermentation, coagulase and Dnase. Sensitive strains were confirmed by disk diffusion method compared to commonly used antibiotics. The collected data were analyzed using descriptive statistical tests. Results: of 255 suspected cases, 180 were confirmed as S.aureus, a total of 59 strains of S. aureus (2/37 percent were resistant to methicillin. Resistance to S. aureus strains resistant to methicillin included: chloramphenicol (3.38%, rifampin (45.76%, norfloxacin (89.83%, gentamicin (89.83%, ciprofloxacin, (91.52%, azithromycin, (88.13%, cotrimoxazole (86.44% and all isolates strains were sensitive to vancomycin and nitrofurantoin. A total of 10 different patterns of antibiotic resistance in methicillin-resistant Staphylococcus aureus strains were identified. Conclusion: Expression of new resistance factor in nosocomial infection is one of the major challenges in treating these infections. This study showed a high prevalence of resistance against some class of antibiotics in MRSA isolated from Imam Khomeini and Golestan hospital of Ahwaz, Iran. Key words: Nosocomial infection, Methicillin Resistant Staphylococcus aureus (MRSA, Antibiotic Resistant Pattern

  2. Characterization of antibiotic resistant enterococci isolated from untreated waters for human consumption in Portugal.

    Science.gov (United States)

    Macedo, Ana S; Freitas, Ana R; Abreu, Cristina; Machado, Elisabete; Peixe, Luísa; Sousa, João C; Novais, Carla

    2011-01-31

    Untreated drinking water is frequently overlooked as a source of antibiotic resistance in developed countries. To gain further insight on this topic, we isolated the indicator bacteria Enterococcus spp. from water samples collected in wells, fountains and natural springs supplying different communities across Portugal, and characterized their antibiotic resistance profile with both phenotypic and genetic approaches. We found various rates of resistance to seven antibiotic families. Over 50% of the isolates were resistant to at least ciprofloxacin, tetracyclines or quinupristin-dalfopristin and 57% were multidrug resistant to ≥3 antibiotics from different families. Multiple enterococcal species (E. faecalis, E. faecium, E. hirae, E. casseliflavus and other Enterococcus spp) from different water samples harbored genes encoding resistance to tetracyclines, erythromycin or gentamicin [tet(M)-46%, tet(L)-14%, tet(S)-5%, erm(B)-22%, aac(6´)-Ie-aph(2″)-12%] and putative virulence factors [gel-28%, asa1-16%]. The present study positions untreated drinking water within the spectrum of ecological niches that may be reservoirs of or vehicles for antibiotic resistant enterococci/genes. These findings are worthy of attention as spread of antibiotic resistant enterococci to humans and animals through water ingestion cannot be dismissed. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water.

    Science.gov (United States)

    Vaz-Moreira, Ivone; Nunes, Olga C; Manaia, Célia M

    2011-08-15

    Sphingomonadaceae (n = 86) were isolated from a drinking water treatment plant (n = 6), tap water (n = 55), cup fillers for dental chairs (n = 21), and a water demineralization filter (n = 4). The bacterial isolates were identified based on analysis of the 16S rRNA gene sequence, and intraspecies variation was assessed on the basis of atpD gene sequence analysis. The isolates were identified as members of the genera Sphingomonas (n = 27), Sphingobium (n = 28), Novosphingobium (n = 12), Sphingopyxis (n = 7), and Blastomonas (n = 12). The patterns of susceptibility to five classes of antibiotics were analyzed and compared for the different sites of isolation and taxonomic groups. Colistin resistance was observed to be intrinsic (92%). The highest antibiotic resistance prevalence values were observed in members of the genera Sphingomonas and Sphingobium and for beta-lactams, ciprofloxacin, and cotrimoxazole. In tap water and in water from dental chairs, antibiotic resistance was more prevalent than in the other samples, mainly due to the predominance of isolates of the genera Sphingomonas and Sphingobium. These two genera presented distinct patterns of association with antibiotic resistance, suggesting different paths of resistance development. Antibiotic resistance patterns were often related to the species rather than to the site or strain, suggesting the importance of vertical resistance transmission in these bacteria. This is the first study demonstrating that members of the family Sphingomonadaceae are potential reservoirs of antibiotic resistance in drinking water.

  4. Diversity and Antibiotic Resistance Patterns of Sphingomonadaceae Isolates from Drinking Water▿

    Science.gov (United States)

    Vaz-Moreira, Ivone; Nunes, Olga C.; Manaia, Célia M.

    2011-01-01

    Sphingomonadaceae (n = 86) were isolated from a drinking water treatment plant (n = 6), tap water (n = 55), cup fillers for dental chairs (n = 21), and a water demineralization filter (n = 4). The bacterial isolates were identified based on analysis of the 16S rRNA gene sequence, and intraspecies variation was assessed on the basis of atpD gene sequence analysis. The isolates were identified as members of the genera Sphingomonas (n = 27), Sphingobium (n = 28), Novosphingobium (n = 12), Sphingopyxis (n = 7), and Blastomonas (n = 12). The patterns of susceptibility to five classes of antibiotics were analyzed and compared for the different sites of isolation and taxonomic groups. Colistin resistance was observed to be intrinsic (92%). The highest antibiotic resistance prevalence values were observed in members of the genera Sphingomonas and Sphingobium and for beta-lactams, ciprofloxacin, and cotrimoxazole. In tap water and in water from dental chairs, antibiotic resistance was more prevalent than in the other samples, mainly due to the predominance of isolates of the genera Sphingomonas and Sphingobium. These two genera presented distinct patterns of association with antibiotic resistance, suggesting different paths of resistance development. Antibiotic resistance patterns were often related to the species rather than to the site or strain, suggesting the importance of vertical resistance transmission in these bacteria. This is the first study demonstrating that members of the family Sphingomonadaceae are potential reservoirs of antibiotic resistance in drinking water. PMID:21705522

  5. Prescribing antibiotics to pediatric dengue: increasing risk of bacterial resistance

    Directory of Open Access Journals (Sweden)

    Dhanunjaya Sandopa

    2018-03-01

    Full Text Available Background Use of antibiotics to treat self-limiting viral infections like dengue fever (DF without any co-morbid conditions in pediatric patients is common practice in India, and a major contribution of the inappropriate use of antibiotics in the country. Objective To provide an analysis of diagnosis, grading, and prescribing of antibiotics in pediatric inpatients with DF in a tertiary care teaching hospital in India. Methods Data from case sheets of all pediatric inpatients (n=370 diagnosed with DF without co-morbid conditions were collected with regards to diagnosis, grading, presence, and appropriateness of antibiotic usage according to the 2009 WHO Guidelines, the National Vector Borne Disease Control Program (NVBDCP of India Guidelines, and the Hospital Infection Society (HIS Guidelines. Results Platelet count determination (50% of the cases was the major diagnostic method for dengue. Inappropriate grading of DF was seen in 20% of patients. Almost 75% of the 370 dengue cases were prescribed antibiotics for the expressed purpose of avoiding hospital-acquired infections. A single antibiotic was given in 225 cases (60.81%, 2 antibiotics in 33 (8.91 % cases, and 3 antibiotics in 9 (2.43% cases. Conclusions From the results it is clear that antibiotics were prescribed to treat DF where the antibiotics do not have any role. DF is a self-limiting viral infection that can be treated with proper management of hemodynamic status with IV fluids. To avoid the usage of antibiotics in the treatment of dengue, awareness has to be created in healthcare professionals regarding the treatment guidelines for dengue and appropriate use of antibiotics to avoid hospital acquired infections.

  6. Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products.

    Science.gov (United States)

    Guo, Huiling; Pan, Lin; Li, Lina; Lu, Jie; Kwok, Laiyu; Menghe, Bilige; Zhang, Heping; Zhang, Wenyi

    2017-03-01

    Lactobacilli are widely used as starter cultures or probiotics in yoghurt, cheese, beer, wine, pickles, preserved food, and silage. They are generally recognized as safe (GRAS). However, recent studies have shown that some lactic acid bacteria (LAB) strains carry antibiotic resistance genes and are resistant to antibiotics. Some of them may even transfer their intrinsic antibiotic resistance genes to other LAB or pathogens via horizontal gene transfer, thus threatening human health. A total of 33 Lactobacillus strains was isolated from fermented milk collected from different areas of China. We analyzed (1) their levels of antibiotic resistance using a standardized dilution method, (2) their antibiotic resistance gene profiles by polymerase chain reaction (PCR) using gene-specific primers, and (3) the transferability of some of the detected resistance markers by a filter mating assay. All Lactobacillus strains were found to be resistant to vancomycin, but susceptible to gentamicin, linezolid, neomycin, erythromycin, and clindamycin. Their susceptibilities to tetracycline, kanamycin, ciprofloxacin, streptomycin, quinupristin/dalfopristin, trimethoprim, ampicillin, rifampicin, and chloramphenicol was different. Results from our PCR analysis revealed 19 vancomycin, 10 ciprofloxacin, and 1 tetracycline-resistant bacteria that carried the van(X), van(E), gyr(A), and tet(M) genes, respectively. Finally, no transferal of the monitored antibiotic resistance genes was observed in the filter mating assay. Taken together, our study generated the antibiotic resistance profiles of some milk-originated lactobacilli isolates and preliminarily assessed their risk of transferring antibiotic gene to other bacteria. The study may provide important data concerning the safe use of LAB. © 2017 Institute of Food Technologists®.

  7. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection

    Science.gov (United States)

    2016-01-01

    Clostridium difficile epidemiology has changed in recent years, with the emergence of highly virulent types associated with severe infections, high rates of recurrences and mortality. Antibiotic resistance plays an important role in driving these epidemiological changes and the emergence of new types. While clindamycin resistance was driving historical endemic types, new types are associated with resistance to fluoroquinolones. Furthermore, resistance to multiple antibiotics is a common feature of the newly emergent strains and, in general, of many epidemic isolates. A reduced susceptibility to antibiotics used for C. difficile infection (CDI) treatment, in particular to metronidazole, has recently been described in several studies. Furthermore, an increased number of strains show resistance to rifamycins, used for the treatment of relapsing CDI. Several mechanisms of resistance have been identified in C. difficile, including acquisition of genetic elements and alterations of the antibiotic target sites. The C. difficile genome contains a plethora of mobile genetic elements, many of them involved in antibiotic resistance. Transfer of genetic elements among C. difficile strains or between C. difficile and other bacterial species can occur through different mechanisms that facilitate their spread. Investigations of the fitness cost in C. difficile indicate that both genetic elements and mutations in the molecular targets of antibiotics can be maintained regardless of the burden imposed on fitness, suggesting that resistances may persist in the C. difficile population also in absence of antibiotic selective pressure. The rapid evolution of antibiotic resistance and its composite nature complicate strategies in the treatment and prevention of CDI. The rapid identification of new phenotypic and genotypic traits, the implementation of effective antimicrobial stewardship and infection control programs, and the development of alternative therapies are needed to prevent and

  8. Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance.

    Directory of Open Access Journals (Sweden)

    Daniel Nichol

    2015-09-01

    Full Text Available The increasing rate of antibiotic resistance and slowing discovery of novel antibiotic treatments presents a growing threat to public health. Here, we consider a simple model of evolution in asexually reproducing populations which considers adaptation as a biased random walk on a fitness landscape. This model associates the global properties of the fitness landscape with the algebraic properties of a Markov chain transition matrix and allows us to derive general results on the non-commutativity and irreversibility of natural selection as well as antibiotic cycling strategies. Using this formalism, we analyze 15 empirical fitness landscapes of E. coli under selection by different β-lactam antibiotics and demonstrate that the emergence of resistance to a given antibiotic can be either hindered or promoted by different sequences of drug application. Specifically, we demonstrate that the majority, approximately 70%, of sequential drug treatments with 2-4 drugs promote resistance to the final antibiotic. Further, we derive optimal drug application sequences with which we can probabilistically 'steer' the population through genotype space to avoid the emergence of resistance. This suggests a new strategy in the war against antibiotic-resistant organisms: drug sequencing to shepherd evolution through genotype space to states from which resistance cannot emerge and by which to maximize the chance of successful therapy.

  9. Tracking Change: A Look at the Ecological Footprint of Antibiotics and Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    David M. Patrick

    2013-03-01

    Full Text Available Among the class of pollutants considered as ‘emerging contaminants’, antibiotic compounds including drugs used in medical therapy, biocides and disinfectants merit special consideration because their bioactivity in the environment is the result of their functional design. Antibiotics can alter the structure and function of microbial communities in the receiving environment and facilitate the development and spread of resistance in critical species of bacteria including pathogens. Methanogenesis, nitrogen transformation and sulphate reduction are among the key ecosystem processes performed by bacteria in nature that can also be affected by the impacts of environmental contamination by antibiotics. Together, the effects of the development of resistance in bacteria involved in maintaining overall ecosystem health and the development of resistance in human, animal and fish pathogens, make serious contributions to the risks associated with environmental pollution by antibiotics. In this brief review, we discuss the multiple impacts on human and ecosystem health of environmental contamination by antibiotic compounds.

  10. Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use.

    Science.gov (United States)

    Campoccia, Davide; Montanaro, Lucio; Speziale, Pietro; Arciola, Carla Renata

    2010-09-01

    Antibiotic-loaded biomaterials are currently part of standard medical procedures for both local treatment and prevention of implant infections. The achievement of local delivery of significant quantities of active drugs directly at the site of infection, bypassing or reducing the risks of systemic effects, represents a strong point in favor of this approach. When the aim is to resolve an existing infection, controlled local release of antibiotics can be properly targeted based on the characteristics of the bacterial isolate obtained from the infection site. Under these circumstances the choice of the antibiotic is rational and this local administration route offers new unprecedented possibilities for an efficacious in situ treatment, avoiding the adverse effects of conventional systemic chemotherapies. Although the idea of self sterilizing implants is appealing, controversial is the use of antibiotic-loaded biomaterials in uninfected tissues to prevent implant infections. Systems designed for prolonged release of prophylactic inhibitory or subinhibitory amounts of antibiotics, in absence of strict harmonized guidelines, raise concerns for their still weakly proved efficacy but, even more, for their possible contribution to enhancing biofilm formation and selecting resistant mutants. This consideration holds especially true if the antibiotic-loaded represents the first-line treatment against multiresistant strains. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. The role of active efflux in