WorldWideScience

Sample records for antibiotic peptide gramicidin

  1. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    NARCIS (Netherlands)

    Rijs, A. M.; Kabelac, M.; Abo-Riziq, A.; Hobza, P.; de Vries, M. S.

    2011-01-01

    We report double-resonant IR/UV ion-dip spectroscopy of neutral gramicidin peptides in the gas phase. The IR spectra of gramicidin A and C, recorded in both the 1000 cm(-1) to 1800 cm(-1) and the 2700 to 3750 cm(-1) region, allow structural analysis. By studying this broad IR range, various local in

  2. Analyzing Heat Capacity Profiles of Peptide-Containing Membranes: Cluster Formation of Gramicidin A

    OpenAIRE

    Ivanova, V.; Makarov, I.; Schaeffer, T.; Heimburg, T.

    2003-01-01

    The analysis of peptide and protein partitioning in lipid membranes is of high relevance for the understanding of biomembrane function. We used statistical thermodynamics analysis to demonstrate the effect of peptide mixing behavior on heat capacity profiles of lipid membranes with the aim to predict peptide aggregation from cP-profiles. This analysis was applied to interpret calorimetric data on the interaction of the antibiotic peptide gramicidin A with lipid membranes. The shape of the hea...

  3. Structure, toxicity and antibiotic activity of gramicidin S and derivatives.

    Science.gov (United States)

    Swierstra, J; Kapoerchan, V; Knijnenburg, A; van Belkum, A; Overhand, M

    2016-05-01

    Development of new antibiotics is declining whereas antibiotic resistance is rising, heralding a post-antibiotic era. Antimicrobial peptides such as gramicidin S (GS), exclusively topically used due to its hemolytic side-effect, could still be interesting as therapeutic compounds. By modifying the amino-acid composition of GS, we synthesized GS analogues. We now show that derivative VK7 has a lower MIC (7.8-31.2 μg/ml, median 15.6 μg/ml) against strains of multi-drug resistant (MDR) Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa than GS has (3.9-62.5 μg/ml, median 31.3 μg/ml). Low MICs for both VK7 and GS were observed for Staphylococcus aureus and Enterococcus faecium. VK7 showed reduced haemolysis and less lactate dehydrogenase release. All compounds were fully bactericidal at MIC values. Modification of GS enables production of novel derivatives potentially useful for systemic treatment of human infections. PMID:26886453

  4. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Rijs, A. M.; Kabeláč, Martin; Abo-Riziq, A.; Hobza, Pavel; de Vries, M. S.

    2011-01-01

    Roč. 12, č. 10 (2011), s. 1816-1821. ISSN 1439-4235 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550808 Institutional research plan: CEZ:AV0Z40550506 Keywords : density functional calculations * gramicidin * IR spectroscopy * protein folding Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.412, year: 2011

  5. Gramicidin A: A New Mission for an Old Antibiotic

    Directory of Open Access Journals (Sweden)

    Justin M David

    2015-01-01

    Full Text Available Gramicidin A (GA is a channel-forming ionophore that renders biological membranes permeable to specific cations which disrupts cellular ionic homeostasis.  It is a well-known antibiotic, however it’s potential as a therapeutic agent for cancer has not been widely evaluated.  In two recently published studies, we showed that GA treatment is toxic to cell lines and tumor xenografts derived from renal cell carcinoma (RCC, a devastating disease that is highly resistant to conventional therapy.  GA was found to possess the qualities of both a cytotoxic drug and a targeted angiogenesis inhibitor, and this combination significantly compromised RCC growth in vitro and in vivo.  In this review, we summarize our recent research on GA, discuss the possible mechanisms whereby it exerts its anti-tumor effects, and share our perspectives on the future opportunities and challenges to the use of GA as a new anticancer agent.

  6. Gramicidin A Mutants with Antibiotic Activity against Both Gram-Positive and Gram-Negative Bacteria.

    Science.gov (United States)

    Zerfas, Breanna L; Joo, Yechaan; Gao, Jianmin

    2016-03-17

    Antimicrobial peptides (AMPs) have shown potential as alternatives to traditional antibiotics for fighting infections caused by antibiotic-resistant bacteria. One promising example of this is gramicidin A (gA). In its wild-type sequence, gA is active by permeating the plasma membrane of Gram-positive bacteria. However, gA is toxic to human red blood cells at similar concentrations to those required for it to exert its antimicrobial effects. Installing cationic side chains into gA has been shown to lower its hemolytic activity while maintaining the antimicrobial potency. In this study, we present the synthesis and the antibiotic activity of a new series of gA mutants that display cationic side chains. Specifically, by synthesizing alkylated lysine derivatives through reductive amination, we were able to create a broad selection of structures with varied activities towards Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). Importantly, some of the new mutants were observed to have an unprecedented activity towards important Gram-negative pathogens, including Escherichia coli, Klebsiella pneumoniae and Psuedomonas aeruginosa. PMID:26918268

  7. Enhanced Eryptosis Following Gramicidin Exposure

    OpenAIRE

    Abaid Malik; Rosi Bissinger; Guoxing Liu; Guilai Liu; Florian Lang

    2015-01-01

    The peptide antibiotic and ionophore gramicidin has previously been shown to trigger apoptosis of nucleated cells. In analogy to apoptosis, the suicidal death of erythrocytes or eryptosis involves cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress, increase of cytosolic Ca2+ activity ([Ca2+] i ), and ceramide. The present study explored, whether gramicidin triggers eryptosis. To this end ...

  8. Inverted analogs of the antibiotic gramicidin S with an improved biological profile

    NARCIS (Netherlands)

    Kapoerchan, V.V.; Knijnenburg, A.D.; Keizer, P.; Spalburg, E.; Neeling, A.J. de; Mars-Groenendijk, R.H.; Noort, D.; Otero, J.M.; Llamas-Saiz, A.L.; Raaij, M.J. van; Marel, G.A. van der; Overkleeft, H.S.; Overhand, M.

    2012-01-01

    A series of gramicidin S derivatives 4-15 are presented that have four ornithine residues as polar protonated side chains and two central hydrophobic amino acids with unaltered turn regions. These peptides were screened against human erthrocytes and our standard panel of Gram negative- and Gram posi

  9. Solvent effects on the conformation of the transmembrane peptide gramicidin A: insights from electrospray ionization mass spectrometry.

    OpenAIRE

    Bouchard, M.; Benjamin, D R; Tito, P; Robinson, C. V.; Dobson, C.M.

    2000-01-01

    The binding of sodium ions to the transmembrane channel peptide gramicidin A has permitted the use of electrospray ionization mass spectrometry to study its conformation in different solvent environments. The mass spectra of the peptide in the various solvents suggest that different conformations of gramicidin A differ in their ability to bind metal ions. The data are consistent with monomeric behavior of gramicidin A in trifluoroethanol and dimethyl sulfoxide solutions, but reveal the presen...

  10. The Effects of Gramicidin on the Structure of Phospholipid Assemblies

    OpenAIRE

    Szule, J. A.; Rand, R. P.

    2003-01-01

    Gramicidin is an antibiotic peptide that can be incorporated into the monolayers of cell membranes. Dimerization through hydrogen bonding between gramicidin monomers in opposing leaflets of the membrane results in the formation of an iontophoretic channel. Surrounding phospholipids influence the gating properties of this channel. Conversely, gramicidin incorporation has been shown to affect the structure of spontaneously formed lipid assemblies. Using small-angle x-ray diffraction and model s...

  11. Enhanced Eryptosis Following Gramicidin Exposure

    Directory of Open Access Journals (Sweden)

    Abaid Malik

    2015-04-01

    Full Text Available The peptide antibiotic and ionophore gramicidin has previously been shown to trigger apoptosis of nucleated cells. In analogy to apoptosis, the suicidal death of erythrocytes or eryptosis involves cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress, increase of cytosolic Ca2+ activity ([Ca2+]i, and ceramide. The present study explored, whether gramicidin triggers eryptosis. To this end phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, red blood cell distribution width (RDW from electronic particle counting, reactive oxidant species (ROS from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA fluorescence, [Ca2+]i from Fluo3- and Fluo4 fluorescence, and ceramide abundance from binding of specific antibodies. As a result, a 24 h exposure of human erythrocytes to gramicidin significantly increased the percentage of annexin-V-binding cells (≥1 µg/mL, forward scatter (≥0.5 µg/mL and hemolysis. Gramicidin enhanced ROS activity, [Ca2+]i and ceramide abundance at the erythrocyte surface. The stimulation of annexin-V-binding by gramicidin was significantly blunted but not abolished by removal of extracellular Ca2+. In conclusion, gramicidin stimulates phospholipid scrambling of the erythrocyte cell membrane, an effect at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance. Despite increase of [Ca2+]i, gramicidin increases cell volume and slightly reduces RWD.

  12. Enhanced eryptosis following gramicidin exposure.

    Science.gov (United States)

    Malik, Abaid; Bissinger, Rosi; Liu, Guoxing; Liu, Guilai; Lang, Florian

    2015-05-01

    The peptide antibiotic and ionophore gramicidin has previously been shown to trigger apoptosis of nucleated cells. In analogy to apoptosis, the suicidal death of erythrocytes or eryptosis involves cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress, increase of cytosolic Ca2+ activity ([Ca2+]i), and ceramide. The present study explored, whether gramicidin triggers eryptosis. To this end phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, red blood cell distribution width (RDW) from electronic particle counting, reactive oxidant species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, [Ca2+]i from Fluo3- and Fluo4 fluorescence, and ceramide abundance from binding of specific antibodies. As a result, a 24 h exposure of human erythrocytes to gramicidin significantly increased the percentage of annexin-V-binding cells (≥1 µg/mL), forward scatter (≥0.5 µg/mL) and hemolysis. Gramicidin enhanced ROS activity, [Ca2+]i and ceramide abundance at the erythrocyte surface. The stimulation of annexin-V-binding by gramicidin was significantly blunted but not abolished by removal of extracellular Ca2+. In conclusion, gramicidin stimulates phospholipid scrambling of the erythrocyte cell membrane, an effect at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance. Despite increase of [Ca2+]i, gramicidin increases cell volume and slightly reduces RWD. PMID:25915718

  13. NMR Studies of Lipid Lateral Diffusion in the DMPC/Gramicidin D/Water System: Peptide Aggregation and Obstruction Effects

    OpenAIRE

    Orädd, Greger; Lindblom, Göran

    2004-01-01

    The PFG-NMR method has been used in macroscopically oriented bilayers to investigate the effect of the peptide gramicidin D on the lateral diffusion of dimyristoylphosphatidylcholine. By varying both the temperature (21–35°C) and the gramicidin content (0–5 mol %) we have introduced solid obstacles into the lipid liquid crystalline bilayer. It was shown that the obstruction effect exerted by the peptide can be described with several different theoretical models, each based on different premis...

  14. Solvent determined conformation of gramicidin affects the ability of the peptide to induce hexagonal HH phase formation in dioleoylphosphatidylcholine model membranes

    NARCIS (Netherlands)

    Tournois, H.; Killian, J.A.; Urry, D.W.; Bokking, O.R.; Gier, J. de; Kruijff, B. de

    1987-01-01

    It is shown by 31P-NMR and small angle X-ray scattering that induction of an hexagonal HH phase in dioleoylphosphatidylcholine model membranes by external addition of gramicidin A′ depends on the solvent which is used to solubilize the peptide. Addition of gramicidin from dimethylsulfoxide or triflu

  15. Solvent determined conformation of gramicidin affects the ability of the peptide to induce hexagonal HH phase formation in dioleoylphosphatidylcholine model membranes

    OpenAIRE

    Tournois, H.; Killian, J A; Urry, D W; Bokking, O.R.; de Gier, J.; Kruijff, B. de

    1987-01-01

    It is shown by 31P-NMR and small angle X-ray scattering that induction of an hexagonal HH phase in dioleoylphosphatidylcholine model membranes by external addition of gramicidin A′ depends on the solvent which is used to solubilize the peptide. Addition of gramicidin from dimethylsulfoxide or trifluoroethanol solution leads to HH phase formation whereas addition of the peptide from ethanol does not. This solvent dependence is shown by circular dichroism to be correlated with the peptide confo...

  16. Orientation and lipid-peptide interactions of gramicidin A in lipid membranes: Polarized attenuated total reflection infrared spectroscopy and spin-label electron spin resonance

    OpenAIRE

    Kota, Z.; Pali, T.; Marsh, D.

    2004-01-01

    Gramicidin A was incorporated at a peptide/lipid ratio of 1:10 mol/mol in aligned bilayers of dimyristoyl phosphatidylcholine (DMPC), phosphatidylserine (DMPS), phosphatidylglycerol (DMPG), and phosphatidylethanolamine (DMPE), from trifluoroethanol. Orientations of the peptide and lipid chains were determined by polarized attenuated total reflection infrared spectroscopy. Lipid-peptide interactions with gramicidin A in DMPC bilayers were studied with different spin-labeled lipid species by us...

  17. Orientation and Lipid-Peptide Interactions of Gramicidin A in Lipid Membranes: Polarized Attenuated Total Reflection Infrared Spectroscopy and Spin-Label Electron Spin Resonance

    Science.gov (United States)

    Kóta, Zoltán; Páli, Tibor; Marsh, Derek

    2004-01-01

    Gramicidin A was incorporated at a peptide/lipid ratio of 1:10 mol/mol in aligned bilayers of dimyristoyl phosphatidylcholine (DMPC), phosphatidylserine (DMPS), phosphatidylglycerol (DMPG), and phosphatidylethanolamine (DMPE), from trifluoroethanol. Orientations of the peptide and lipid chains were determined by polarized attenuated total reflection infrared spectroscopy. Lipid-peptide interactions with gramicidin A in DMPC bilayers were studied with different spin-labeled lipid species by using electron spin resonance spectroscopy. In DMPC membranes, the orientation of the lipid chains is comparable to that in the absence of peptide, in both gel and fluid phases. In gel-phase DMPC, the effective tilt of the peptide exceeds that of the lipid chains, but in the fluid phase both are similar. For gramicidin A in DMPS, DMPG, and DMPE, the degree of orientation of the peptide and lipid chains is less than in DMPC. In the fluid phase of DMPS, DMPG, and DMPE, gramicidin A is also less well oriented than are the lipid chains. In DMPE especially, gramicidin A is largely disordered. In DMPC membranes, three to four lipids per monomer experience direct motional restriction on interaction with gramicidin A. This is approximately half the number of lipids expected to contact the intramembranous perimeter of the gramicidin A monomer. A selectivity for certain negatively charged lipids is found in the interaction with gramicidin A in DMPC. These results are discussed in terms of the integration of gramicidin A channels in lipid bilayers, and of the interactions of lipids with integral membrane proteins. PMID:14990479

  18. Arginine regulation of gramicidin S biosynthesis.

    OpenAIRE

    Poirier, A.; Demain, A L

    1981-01-01

    Several amino acids are known to affect the gramicidin S producer Bacillus brevis ATCC 9999 with respect ot growth, soluble gramicidin S synthetase formation, antibiotic production, or a combination of these. Our studies confirmed that arginine has paradoxical effects on the B. brevis fermentation; it markedly increased growth and antibiotic production, yet decreased the soluble heavy gramicidin S synthetase activity. We found that arginine did not repress heavy gramicidin S synthetase. The a...

  19. Kinetics profiling of gramicidin S synthetase A, a member of nonribosomal peptide synthetases.

    Science.gov (United States)

    Sun, Xun; Li, Hao; Alfermann, Jonas; Mootz, Henning D; Yang, Haw

    2014-12-23

    Nonribosomal peptide synthetases (NRPS) incorporate assorted amino acid substrates into complex natural products. The substrate is activated via the formation of a reactive aminoacyl adenylate and is subsequently attached to the protein template via a thioester bond. The reactive nature of such intermediates, however, leads to side reactions that also break down the high-energy anhydride bond. The off-pathway kinetics or their relative weights compared to that of the on-pathway counterpart remains generally elusive. Here, we introduce multiplatform kinetics profiling to quantify the relative weights of on- and off-pathway reactions. Using the well-defined stoichiometry of thioester formation, we integrate a mass spectrometry (MS) kinetics assay, a high-performance liquid chromatography (HPLC) assay, and an ATP-pyrophosphate (PPi) exchange assay to map out a highly efficient on-pathway kinetics profile of the substrate activation and intermediate uploading (>98% relative weight) for wide-type gramicidin S synthetase A (GrsA) and a 87% rate profile for a cysteine-free GrsA mutant. Our kinetics profiling approach complements the existing enzyme-coupled byproduct-release assays, unraveling new mechanistic insights of substrate activation/channeling in NRPS enzymes. PMID:25437123

  20. An interaction between gramicidin and the sigma subunit of RNA polymerase.

    OpenAIRE

    Fisher, R.; Blumenthal, T

    1982-01-01

    Gramicidin, a peptide antibiotic produced by Bacillus brevis, inhibits initiation of transcription by RNA polymerase (nucleosidetriphosphate:RNA nucleotidyltransferase, EC 2.7.7.6). We show here that the presence of gramicidin causes an increase in the rate of cleavage of the sigma subunit of Escherichia coli RNA polymerase by trypsin, although it does not alter the cleavage rate of any of the core subunits. Furthermore, whereas isolated sigma is cleaved much faster than is sigma in holoenzym...

  1. Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa.

    Science.gov (United States)

    Berditsch, Marina; Jäger, Thomas; Strempel, Nikola; Schwartz, Thomas; Overhage, Jörg; Ulrich, Anne S

    2015-09-01

    Multidrug-resistant Pseudomonas aeruginosa is a major cause of severe hospital-acquired infections. Currently, polymyxin B (PMB) is a last-resort antibiotic for the treatment of infections caused by Gram-negative bacteria, despite its undesirable side effects. The delivery of drug combinations has been shown to reduce the required therapeutic doses of antibacterial agents and thereby their toxicity if a synergistic effect is present. In this study, we investigated the synergy between two cyclic antimicrobial peptides, PMB and gramicidin S (GS), against different P. aeruginosa isolates, using a quantitative checkerboard assay with resazurin as a growth indicator. Among the 28 strains that we studied, 20 strains showed a distinct synergistic effect, represented by a fractional inhibitory concentration index (FICI) of ≤0.5. Remarkably, several clinical P. aeruginosa isolates that grew as small-colony variants revealed a nonsynergistic effect, as indicated by FICIs between >0.5 and ≤0.70. In addition to inhibiting the growth of planktonic bacteria, the peptide combinations significantly decreased static biofilm growth compared with treatment with the individual peptides. There was also a faster and more prolonged effect when the combination of PMB and GS was used compared with single-peptide treatments on the metabolic activity of pregrown biofilms. The results of the present study define a synergistic interaction between two cyclic membrane-active peptides toward 17 multidrug-resistant P. aeruginosa and biofilms of P. aeruginosa strain PAO1. Thus, the application of PMB and GS in combination is a promising option for a topical medication and in the prevention of acute and chronic infections caused by multidrug-resistant or biofilm-forming P. aeruginosa. PMID:26077259

  2. Second harmonic generation from tryptophan-rich short peptides: W(n)K(m) and gramicidin A.

    Science.gov (United States)

    Duboisset, J; Matar, G; Besson, F; Ficheux, D; Benichou, E; Russier-Antoine, I; Jonin, Ch; Brevet, P F

    2014-09-01

    We report the first hyperpolarizability of a series of tryptophan-rich short peptides with the respective sequence KWK, KWWK, KWWWK, KWWKWWK, where W and K stand for tryptophan and lysine. The measurements were performed with the technique of hyper-Rayleigh scattering in the bulk of an aqueous Tris buffer solution at a pH of 8.5 and a salt concentration of 150 mM at the non-resonant fundamental wavelength of 784 nm. The first hyperpolarizability of the different peptides follows a simple additive model scaling with the number of tryptophan residues contained in the peptide. However, it appears that the first hyperpolarizability response of a single tryptophan residue in the peptide strongly differs from that of an isolated tryptophan. Hence, it is therefore demonstrated that the local environment of the tryptophan residues within the peptide strongly influences its nonlinear optical response. A comparison with the first hyperpolarizability of the natural peptide gramicidin A measured in trifluoroethanol (TFE) further confirms the key role of the local environment on the first hyperpolarizability of tryptophan residues in peptides. PMID:25144248

  3. Antibacterial action of gramicidin S and tyrocidines in relation to active transport, in vitro transcription, and spore outgrowth.

    OpenAIRE

    Danders, W; Marahiel, M A; Krause, M.; Kosui, N; Kato, T.; Izumiya, N; Kleinkauf, H

    1982-01-01

    The cyclopeptide antibiotic gramicidin S or tyrocidine in concentrations of 2 to 4 mumol/mg of membrane protein inhibited the active transport of [3H]alanine and [3H]uridine in membrane vesicles isolated from Bacillus brevis and Bacillus subtilis. We used one analog of gramicidin S and two of tyrocidine A to study the relationship between peptide structure and antibacterial action as seen in inhibiting active transport and in vitro transcription and in delaying spore outgrowth. The data showe...

  4. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis.

    Science.gov (United States)

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian; Ulrich, Anne S

    2015-06-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly (13)C/(15)N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive (13)C/(15)N-labeled amino acids. The most cost-effective production of (13)C/(15)N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% (13)C-glycerol and 0.5% (15)N-ammonium sulfate, supplemented with only 0.025% of (13)C/(15)N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  5. Functional and structural insights on self-assembled nanofiber-based novel antibacterial ointment from antimicrobial peptides, bacitracin and gramicidin S.

    Science.gov (United States)

    Mandal, Santi M; Roy, Anupam; Mahata, Denial; Migliolo, Ludovico; Nolasco, Diego O; Franco, Octavio L

    2014-11-01

    A novel antibacterial ointment using bacitracin, specific for Gram-positive bacteria, and gramicidin S, a highly toxic antibacterial peptide, was here developed showing broad-spectrum antibacterial activities against pathogenic strains with less toxicity after self-assembly into nanofiber structures. Such structures were confirmed with scanning electron microscopy and CD analyses. In addition, in silico studies using docking associated with molecular dynamics were carried out to obtain information about fiber structural oligomerization. Thus, the bacitracin and gramicidin S-based self-assembled nanopeptide ribbon may be a successful ointment formulation for bacterial infection control. PMID:24894183

  6. Gramicidin Channels: Versatile Tools

    Science.gov (United States)

    Andersen, Olaf S.; Koeppe, Roger E., II; Roux, Benoît

    Gramicidin channels are miniproteins in which two tryptophan-rich subunits associate by means of transbilayer dimerization to form the conducting channels. That is, in contrast to other ion channels, gramicidin channels do not open and close; they appear and disappear. Each subunit in the bilayer-spanning channel is tied to the bilayer/solution interface through hydrogen bonds that involve the indole NH groups as donors andwater or the phospholipid backbone as acceptors. The channel's permeability characteristics are well-defined: gramicidin channels are selective for monovalent cations, with no measurable permeability to anions or polyvalent cations; ions and water move through a pore whose wall is formed by the peptide backbone; and the single-channel conductance and cation selectivity vary when the amino acid sequence is varied, even though the permeating ions make no contact with the amino acid side chains. Given the plethora of available experimental information—for not only the wild-type channels but also for channels formed by amino acid-substituted gramicidin analogues—gramicidin channels continue to provide important insights into the microphysics of ion permeation through bilayer-spanning channels. For similar reasons, gramicidin channels constitute a system of choice for evaluating computational strategies for obtaining mechanistic insights into ion permeation through the more complex channels formed by integral membrane proteins.

  7. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    developed from a cecropin-mellitin hybrid peptide and proved effective in killing colistin resistant Gram-negative A. baumannii in vitro. The molecule was improved with regard to toxicity, as measured by hemolytic ability. Further, this peptide is capable of specifically killing non-growing cells of...... colistin resistant A. baumannii, also known as persisters. Using D. melanogaster as an in vivo efficacy model it was demonstrated that the Lantibiotic NAI- 107, currently undergoing pre-clinical studies, rescues D. melanogaster from MRSA infection with similar efficacy to last resort antimicrobial...

  8. Isothermal Titration Calorimetry Studies of the Binding of a Rationally Designed Analogue of the Antimicrobial Peptide Gramicidin S to Phospholipid Bilayer Membranes†

    OpenAIRE

    Abraham, Thomas; Lewis, Ruthven N. A. H.; Hodges, Robert S.; McElhaney, Ronald N.

    2005-01-01

    The binding of the positively charged antimicrobial peptide cyclo[VKLdKVdYPLKVKLdYP] (GS14dK4) to various lipid bilayer model membranes was investigated using isothermal titration calorimetry. GS14dK4 is a diastereomeric lysine ring-size analogue of the naturally occurring antimicrobial peptide gramicidin S which exhibits enhanced antimicrobial and markedly reduced hemolytic activities compared with GS itself. Large unilamellar vesicles composed of various zwitterionic (1-palmitoyl-2-oleoyl-s...

  9. Membrane-bound structure and alignment of the antimicrobial {beta}-sheet peptide gramicidin S derived from angular and distance constraints by solid state 19F-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Jesus; Grage, Stephan L. [University of Jena, Department of Molecular Biology (Germany); Kondejewski, Leslie H. [University of Alberta, Protein Engineering Network of Centres of Excellence (Canada); Hodges, Robert S.; McElhaney, Ronald N. [University of Alberta, Department of Biochemistry (Canada); Ulrich, Anne S. [University of Jena, Department of Molecular Biology (Germany)

    2001-11-15

    The antimicrobial properties of the cyclic {beta}-sheet peptide gramicidin S are attributed to its destabilizing effect on lipid membranes. Here we present the membrane-bound structure and alignment of a derivative of this peptide, based on angular and distance constraints. Solid-state {sup 19}F-NMR was used to study a {sup 19}F-labelled gramicidin S analogue in dimyristoylphosphatidylcholine bilayers at a lipid:peptide ratio of 80:1 and above. Two equivalent leucine side chains were replaced by the non-natural amino acid 4F-phenylglycine, which serves as a highly sensitive reporter on the structure and dynamics of the peptide backbone. Using a modified CPMG multipulse sequence, the distance between the two {sup 19}F-labels was measured from their homonuclear dipolar coupling as 6 A, in good agreement with the known backbone structure of natural gramicidin S in solution. By analyzing the anisotropic chemical shift of the {sup 19}F-labels in macroscopically oriented membrane samples, we determined the alignment of the peptide in the bilayer and described its temperature-dependent mobility. In the gel phase, the {sup 19}F-labelled gramicidin S is aligned symmetrically with respect to the membrane normal, i.e., with its cyclic {beta}-sheet backbone lying flat in the plane of the bilayer, which is fully consistent with its amphiphilic character. Upon raising the temperature to the liquid crystalline state, a considerable narrowing of the {sup 19}F-NMR chemical shift dispersion is observed, which is attributed the onset of global rotation of the peptide and further wobbling motions. This study demonstrates the potential of the {sup 19}F nucleus to describe suitably labelled polypeptides in membranes, requiring only little material and short NMR acquisition times.

  10. Mapping of the detergent-exposed surface of membrane proteins and peptides by 1H solution NMR in detergent: Application to the gramicidin A ion channel

    International Nuclear Information System (INIS)

    The present work evaluates the use of intermolecular polypeptide-detergent 1H through-space connectivities to determine the bilayer exposed-surface and the bilayer topography of membrane polypeptides solubilized in non- deuterated detergents. For this purpose, the membrane peptide gramicidin A, solubilized in non-deuterated sodium dodecylsulfate as its dimeric β6,3 helix channel conformation was used. For this peptide, a high-resolution 3D structure, as well as reasonable assumptions concerning its membrane arrangement, exist. Band-selective 2D NOESY, ROESY and 3D NOESY-NOESY experiments were used to detect detergent-polypeptide through-space correlations in the presence of an excess of the non-deuterated detergent. The observed intermolecular NOEs appear to be strongly temperature- dependent. Based on the known 3D structure of the gramicidin channel, the detergent-polypeptide through-space correlations appear to be selective for 1H located on the hydrophobic surface of gramicidin A with very few contributions from interior 1H or water-exposed 1H. It is suggested that this method can be of general use to evaluate the bilayer-exposed surface and topography of membrane peptides and small proteins

  11. Mapping of the detergent-exposed surface of membrane proteins and peptides by 1H solution NMR in detergent: Application to the gramicidin A ion channel

    Energy Technology Data Exchange (ETDEWEB)

    Seigneuret, Michel [Universite Paris 6, LPBC (URA 2056) (France); Le guerneve, Christine [INRA-IPV (France)

    1999-01-15

    The present work evaluates the use of intermolecular polypeptide-detergent 1H through-space connectivities to determine the bilayer exposed-surface and the bilayer topography of membrane polypeptides solubilized in non- deuterated detergents. For this purpose, the membrane peptide gramicidin A, solubilized in non-deuterated sodium dodecylsulfate as its dimeric {beta}6,3 helix channel conformation was used. For this peptide, a high-resolution 3D structure, as well as reasonable assumptions concerning its membrane arrangement, exist. Band-selective 2D NOESY, ROESY and 3D NOESY-NOESY experiments were used to detect detergent-polypeptide through-space correlations in the presence of an excess of the non-deuterated detergent. The observed intermolecular NOEs appear to be strongly temperature- dependent. Based on the known 3D structure of the gramicidin channel, the detergent-polypeptide through-space correlations appear to be selective for 1H located on the hydrophobic surface of gramicidin A with very few contributions from interior 1H or water-exposed 1H. It is suggested that this method can be of general use to evaluate the bilayer-exposed surface and topography of membrane peptides and small proteins.

  12. Electrospray Ionization-Mass Spectrometry and Tandem Mass Spectrometry Reveal Self-Association and Metal-Ion Binding of Hydrophobic Peptides: A Study of the Gramicidin Dimer

    OpenAIRE

    Chitta, Raghu K.; Gross, Michael L.

    2004-01-01

    Gramicidin is a membrane pentadecapeptide that acts as a channel, allowing the passage of monovalent metal ions and assisting in bacterial cell death. The active form is a noncovalently bound dimer. One means to study the self-assembly of this peptide has been to compare the state of the peptide in various solvents ranging from hydrophilic (e.g., trifluoroethanol) to hydrophobic (e.g., n-propanol). In this article, we report the use of electrospray mass spectrometry to study the self-associat...

  13. Structures and IR spectra of the Gramicidin S peptide: pushing the quest for low-energy conformations.

    Science.gov (United States)

    Joshi, Kaustubh; Semrouni, David; Ohanessian, Gilles; Clavaguéra, Carine

    2012-01-12

    An extensive molecular modeling study was carried out on the doubly protonated cyclic decapeptide Gramicidin S following several recent gas-phase experiments. Our computational strategy includes replica-exchange molecular dynamics simulations with the new generation force field AMOEBA for exploration and density functional calculations using several functionals for refinement of structures and computation of IR spectra. This procedure yields low-energy structures of which three are proposed to correspond to the three conformers detected in low-temperature IR experiments. The most stable structure has C(2) symmetry and four strong β-sheet interactions between Orn and Val residues. Furthermore, all the other peptidic N-H bonds are involved in seven-membered C(7) motifs. The computed IR spectra of the three conformers are in good agreement with the experimental ones in the 1400-2000 cm(-1) range. In the 3000-3600 cm(-1) region, the computed spectrum is also in good agreement with experiment for the main conformer, and predictions are made of structure-specific signatures for the other two conformers. The accuracy of several density functionals is discussed in detail. These results point out that efficient potential energy surface explorations coupled to appropriate density functional theory (DFT) calculations are able to reveal the structures of molecules as large and flexible as decapeptides. PMID:22087728

  14. Orientation of gramicidin A transmembrane channel. Infrared dichroism study of gramicidin in vesicles.

    OpenAIRE

    Nabedryk, E.; Gingold, M P; Breton, J

    1982-01-01

    Polarized infrared spectroscopy has been used to investigate the orientation of gramicidin A incorporated in dimyristoylphosphatidylcholine liposomes. Dichroism measurements of the major lipid (C = O ester, PO2-, CH2) and peptide (amide A, I, II) bands were performed on liposomes (with or without gramicidin) oriented by air-drying. The mean orientation of the lipid groups and of the pi LD helix chain in the gramicidin has been determined. It can be inferred from infrared frequencies of gramic...

  15. Wavelength-selective fluorescence in ion channels formed by gramicidin A in membranes

    Indian Academy of Sciences (India)

    Amitabha Chattopadhyay; Satinder S Rawat

    2007-03-01

    Gramicidins are linear peptides that form ion channels that are specific for monovalent cations in membranes. The tryptophan residues in the gramicidin channel play a crucial role in the organization and function of the channel. The natural mixture of gramicidins, denoted as gramicidin A', consists of mostly gramicidin A, but also contains gramicidins B, C and D as minor components. We have previously shown that the tryptophan residues in ion channels formed by the naturally occurring peptide, gramicidin A', display wavelength-dependent fluorescence characteristics due to the motionally restricted environment in which they are localized. In order to check the influence of ground-state heterogeneity in the observed wavelength-selective fluorescence of gramicidin A' in membranes, we performed similar experiments with pure gramicidin A in model membranes. Our results show that the observed wavelength-selective fluorescence characteristics of naturally occurring gramicidin A' are not due to groundstate heterogeneity.

  16. ANTIMICROBIAL PEPTIDES: AN EFFECTIVE ALTERNATIVE FOR ANTIBIOTIC THERAPY

    Directory of Open Access Journals (Sweden)

    KK PULICHERLA

    2013-01-01

    Full Text Available Extensive use of classical antibiotics has led to the growing emergence of many resistant strains of pathogenic bacteria. Evidence has suggested that cationic antimicrobial peptides (AMP’s are of greatest potential to represent a new class of antibiotics. These peptides have a good scope in current antibiotic research. During the past two decades several AMPs have been isolated from a wide variety of animals (both vertebrates and invertebrates, and plants as well as from bacteria and fungi. These are relatively small (<10kDa, cationic and amphipathic peptides of variable length, sequence and structure. These peptides exhibit broad-spectrum activity against a wide range of microorganisms including gram-positive and gram-negative bacteria, protozoa, yeast, fungi and viruses. Most of these peptides are believed to act by disrupting the plasma membrane leading to the lysis of the cell. Antimicrobial peptides encompass a wide variety of structural motifs such as α -helical peptides, β -sheet peptides, looped peptides and extended peptides. Preparations enriched by a specific protein are rarely easily obtained from natural host cells. Hence, recombinant protein production is frequently the sole applicable procedure. Several fusion strategies have been developed for the expression and purification of small antimicrobial peptides (AMPs in recombinant bacterial expression systems which were produced by cloning. This article aims to review in brief the sources of antimicrobial peptides, diversity in structural features, mode of action, production strategies and insight into the current data on their antimicrobial activity followed by a brief comment on the peptides that have entered clinical trials.

  17. The pore dimensions of gramicidin A.

    OpenAIRE

    Smart, O S; Goodfellow, J. M.; Wallace, B.A.

    1993-01-01

    The ion channel forming peptide gramicidin A adopts a number of distinct conformations in different environments. We have developed a new method to analyze and display the pore dimensions of ion channels. The procedure is applied to two x-ray crystal structures of gramicidin that adopt distinct antiparallel double helical dimer conformations and a nuclear magnetic resonance (NMR) structure for the beta6.3 NH2-terminal to NH2-terminal dimer. The results are discussed with reference to ion cond...

  18. Role of Tryptophan Residues in Gramicidin Channel Organization and Function

    OpenAIRE

    Chattopadhyay, Amitabha; RAWAT, SATINDER S.; Greathouse, Denise V.; Kelkar, Devaki A.; Koeppe, Roger E.

    2008-01-01

    The linear peptide gramicidin forms prototypical ion channels specific for monovalent cations and has been used extensively to study the organization, dynamics, and function of membrane-spanning channels. The tryptophan residues in gramicidin channels are crucial for maintaining the structure and function of the channel. We explored the structural basis for the reduction in channel conductance in the case of single-tryptophan analogs of gramicidin with three Trp → hydrophobic substitutions us...

  19. Molecular cloning of an ornithine-activating fragment of the gramicidin S synthetase 2 gene from Bacillus brevis and its expression in Escherichia coli.

    OpenAIRE

    Krause, M.; Marahiel, M A; von Döhren, H; Kleinkauf, H

    1985-01-01

    Partially digested chromosomal DNA of Bacillus brevis ATCC 9999, a producer of the cyclic peptide antibiotic gramicidin S, was ligated into the BamHI site of the Escherichia coli expression vector pUR2-Bam. The ligated molecules were used to transfer E. coli to ampicillin resistance. Of 5 X 10(3) colonies tested by in situ immunoassay for a cross-reaction with antibodies against the gramicidin S synthetase 2, 6 colonies were found to be immunoreactive. A clone designated MK2, which had a 3.9-...

  20. Gramicidin channel kinetics under tension.

    OpenAIRE

    Goulian, M; Mesquita, O. N.; Fygenson, D K; Nielsen, C; Andersen, O S; Libchaber, A.

    1998-01-01

    We have measured the effect of tension on dimerization kinetics of the channel-forming peptide gramicidin A. By aspirating large unilamellar vesicles into a micropipette electrode, we are able to simultaneously monitor membrane tension and electrical activity. We find that the dimer formation rate increases by a factor of 5 as tension ranges from 0 to 4 dyn/cm. The dimer lifetime also increases with tension. This behavior is well described by a phenomenological model of membrane elasticity in...

  1. Modeling and Simulating Asymmetrical Conductance Changes in Gramicidin Pores

    OpenAIRE

    Xu Shixin; Chen Minxin; Majd Sheereen; Yue Xingye; Liu Chun

    2014-01-01

    Gramicidin A is a small and well characterized peptide that forms an ion channel in lipid membranes. An important feature of gramicidin A (gA) pore is that its conductance is affected by the electric charges near the its entrance. This property has led to the application of gramicidin A as a biochemical sensor for monitoring and quantifying a number of chemical and enzymatic reactions. Here, a mathematical model of conductance changes of gramicidin A pores in response to the presence of elect...

  2. Protein stability and conformational rearrangements in lipid bilayers: linear gramicidin, a model system.

    OpenAIRE

    Cotten, M; Xu, F.; Cross, T A

    1997-01-01

    The replacement of four tryptophans in gramicidin A by four phenylalanines (gramicidin M) causes no change in the molecular fold of this dimeric peptide in a low dielectric isotropic organic solvent, but the molecular folds are dramatically different in a lipid bilayer environment. The indoles of gramicidin A interact with the anisotropic bilayer environment to induce a change in the molecular fold. The double-helical fold of gramicidin M, as opposed to the single-stranded structure of gramic...

  3. Importance of Indole N-H Hydrogen Bonding in the Organization and Dynamics of Gramicidin Channels

    OpenAIRE

    Chaudhuri, Arunima; Haldar, Sourav; Sun, Haiyan; Koeppe, Roger E.; Chattopadhyay, Amitabha

    2013-01-01

    The linear ion channel peptide gramicidin represents an excellent model for exploring the principles underlying membrane protein structure and function, especially with respect to tryptophan residues. The tryptophan residues in gramicidin channels are crucial for the structure and function of the channel. In order to test the importance of indole hydrogen bonding for the biophysical properties of gramicidin channels, we monitored the effect of N-methylation of gramicidin tryptophans, using a ...

  4. High-throughput discovery of broad-spectrum peptide antibiotics

    OpenAIRE

    Rathinakumar, Ramesh; Wimley, William C.

    2010-01-01

    Membrane-permeabilizing peptide antibiotics are an underutilized weapon in the battle against drug-resistant microorganisms. This is true, in part, because of the bottleneck caused by the lack of explicit design principles and the paucity of simple high-throughput methods for selection. In this work, we characterize the requirements for broad-spectrum antimicrobial activity by membrane permeabilization and find that different microbial membranes have very different susceptibilities to permeab...

  5. The Antimicrobial Activity of Gramicidin A Is Associated with Hydroxyl Radical Formation

    OpenAIRE

    Liou, Je-Wen; Hung, Yu-Jiun; Yang, Chin-Hao; Chen, Yi-Cheng

    2015-01-01

    Gramicidin A is an antimicrobial peptide that destroys gram-positive bacteria. The bactericidal mechanism of antimicrobial peptides has been linked to membrane permeation and metabolism disruption as well as interruption of DNA and protein functions. However, the exact bacterial killing mechanism of gramicidin A is not clearly understood. In the present study, we examined the antimicrobial activity of gramicidin A on Staphylococcus aureus using biochemical and biophysical methods, including h...

  6. Tetrahydrofuran amino acid-containing gramicidin S analogues with improved biological profiles.

    Science.gov (United States)

    Pal, Sudip; Singh, Gajendra; Singh, Shyam; Tripathi, Jitendra Kumar; Ghosh, Jimut Kanti; Sinha, Sudhir; Ampapathi, Ravi Sankar; Chakraborty, Tushar Kanti

    2015-06-28

    Gramicidin S (GS) is a cyclic cationic antimicrobial peptide (CAP) with a wide spectrum of antibiotic activities whose usage has been limited to topical applications owing to its cytotoxic side effects. We have synthesized tetrahydrofuran amino acid (Taa)-containing GS analogues, and we have carried out conformational analysis and explored their structure activity relationships by evaluating their antitubercular, antibacterial and cytotoxic properties. Two of these analogues showed impressive as well as selective activity against Mycobacterium tuberculosis (MTB) without toxicity towards mammalian Vero cells or human RBCs, and are promising as potential leads. PMID:26008215

  7. Effect of gramicidin A on the dipole potential of phospholipid membranes.

    OpenAIRE

    Shapovalov, V L; Kotova, E A; Rokitskaya, T I; Antonenko, Y N

    1999-01-01

    The effect of channel-forming peptide gramicidin A on the dipole potential of phospholipid monolayers and bilayers has been studied. Surface pressure and surface potential isotherms of monolayers have been measured with a Langmuir trough equipped with a Wilhelmy balance and a surface potential meter (Kelvin probe). Gramicidin has been shown to shift pressure-area isotherms of phospholipids and to reduce their monolayer surface potentials. Both effects increase with the increase in gramicidin ...

  8. Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin.

    OpenAIRE

    Harroun, T A; Heller, W T; Weiss, T M; Yang, L; Huang, H W

    1999-01-01

    We present a quantitative analysis of the effects of hydrophobic matching and membrane-mediated protein-protein interactions exhibited by gramicidin embedded in dimyristoylphosphatidylcholine (DMPC) and dilauroylphosphatidylcholine (DLPC) bilayers (Harroun et al., 1999. Biophys. J. 76:937-945). Incorporating gramicidin, at 1:10 peptide/lipid molar ratio, decreases the phosphate-to-phosphate (PtP) peak separation in the DMPC bilayer from 35.3 A without gramicidin to 32.7 A. In contrast, the sa...

  9. Deuterium NMR Studies of the Structure and Dynamics of Gramicidin.

    Science.gov (United States)

    Hing, Andrew William

    1990-01-01

    The structure and dynamics of the membrane peptide gramicidin are investigated by deuterium NMR. A specific structural and dynamical question about the peptide backbone of gramicidin is investigated by deuterating the alpha carbon of the third alanine residue. Deuterium NMR experiments performed on this analog in oriented lipid bilayers indicate that the c_alpha- ^2H bond makes an angle relative to the helical axis that is in agreement with the bond angle predicted by the beta^{6.3} helical model. A second structural and dynamical question about the peptide backbone of gramicidin is investigated by deuterating the formyl group of two different analogs. Deuterium NMR experiments performed on these analogs show that the spectra of the two analogs are very similar. However, the analog possessing D-leucine as the second residue also appears to exist in a second, minor conformation which does not seem to exist for the analog possessing glycine as the second residue.

  10. Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics.

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    Full Text Available BACKGROUND: Cathelicidins are a family of antimicrobial peptides acting as multifunctional effector molecules of innate immunity, which are firstly found in mammalians. Recently, several cathelicidins have also been found from chickens and fishes. No cathelicidins from other non-mammalian vertebrates have been reported. PRINCIPAL FINDINGS: In this work, a cathelicidin-like antimicrobial peptide named cathelicidin-BF has been purified from the snake venoms of Bungarus fasciatus and its cDNA sequence was cloned from the cDNA library, which confirm the presence of cathelicidin in reptiles. As other cathelicidins, the precursor of cathelicidin-BF has cathelin-like domain at the N terminus and carry the mature cathelicidin-BF at the C terminus, but it has an atypical acidic fragment insertion between the cathelin-like domain and the C-terminus. The acidic fragment is similar to acidic domains of amphibian antimicrobial precursors. Phylogenetic analysis revealed that the snake cathelicidin had the nearest evolution relationship with platypus cathelicidin. The secondary structure of cathelicidin-BF investigated by CD and NMR spectroscopy in the presence of the helicogenic solvent TFE is an amphipathic alpha-helical conformation as many other cathelicidins. The antimicrobial activities of cathelicidin BF against forty strains of microorganisms were tested. Cathelicidin-BF efficiently killed bacteria and some fungal species including clinically isolated drug-resistance microorganisms. It was especially active against Gram-negative bacteria. Furthermore, it could exert antimicrobial activity against some saprophytic fungus. No hemolytic and cytotoxic activity was observed at the dose of up to 400 microg/ml. Cathelicidin-BF could exist stably in the mice plasma for at least 2.5 hours. CONCLUSION: Discovery of snake cathelicidin with atypical structural and functional characterization offers new insights on the evolution of cathelicidins. Potent, broad

  11. Extra amino group-containing gramicidin S analogs possessing outer membrane-permeabilizing activity

    OpenAIRE

    Kawai, Masao; Tanaka, Ryoji; Yamamura, Hatsuo; Yasuda, Keiko; Narita, Shizuto; Umemoto, Hiroshi; Ando, Setsuko; Katsu, Takashi; ヤマムラ, ハツオ; 山村, 初雄

    2003-01-01

    Novel (2S,4R)- and (2S,4S)-4-aminoproline residue-containing analogs of the cyclic decapeptide antibiotic gramicidin S were synthesized, which exhibited marked permeabilizing activity on the outer membrane of gram-negative bacteria.

  12. Modeling and Simulating Asymmetrical Conductance Changes in Gramicidin Pores

    Directory of Open Access Journals (Sweden)

    Xu Shixin

    2014-01-01

    Full Text Available Gramicidin A is a small and well characterized peptide that forms an ion channel in lipid membranes. An important feature of gramicidin A (gA pore is that its conductance is affected by the electric charges near the its entrance. This property has led to the application of gramicidin A as a biochemical sensor for monitoring and quantifying a number of chemical and enzymatic reactions. Here, a mathematical model of conductance changes of gramicidin A pores in response to the presence of electrical charges near its entrance, either on membrane surface or attached to gramicidin A itself, is presented. In this numerical simulation, a two dimensional computational domain is set to mimic the structure of a gramicidin A channel in the bilayer surrounded by electrolyte. The transport of ions through the channel is modeled by the Poisson-Nernst-Planck (PNP equations that are solved by Finite Element Method (FEM. Preliminary numerical simulations of this mathematical model are in qualitative agreement with the experimental results in the literature. In addition to the model and simulations, we also present the analysis of the stability of the solution to the boundary conditions and the convergence of FEM method for the two dimensional PNP equations in our model.

  13. Membrane-mediated repulsion between gramicidin pores

    OpenAIRE

    Constantin, Doru

    2015-01-01

    International audience We investigated the X-ray scattering signal of highly aligned multilayers of the zwitterionic lipid 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine containing pores formed by the antimicrobial peptide gramicidin as a function of the peptide/lipid ratio. We are able to obtain information on the structure factor of the pore fluid, which then yields the interaction potential between pores in the plane of the bilayers. Aside from a hard core with a radius close to the geo...

  14. Membrane Organization and Dynamics of ‘Inner Pair’ and ‘Outer Pair’ Tryptophan Residues in Gramicidin Channels

    OpenAIRE

    Haldar, Sourav; Chaudhuri, Arunima; Gu, Hong; Koeppe, Roger E.; Kombrabail, Mamata; Krishnamoorthy, G.; Chattopadhyay, Amitabha

    2012-01-01

    The linear ion channel peptide gramicidin serves as an excellent prototype for monitoring the organization, dynamics and function of membrane-spanning channels. The tryptophan residues in gramicidin channels are crucial for establishing and maintaining the structure and function of the channel in the membrane bilayer. In order to address the basis of differential importance of tryptophan residues in gramicidin channel, we monitored the effects of pairwise substitution of two of the four grami...

  15. Interfacial properties of gramicidin and gramicidin-lipid mixtures measured with static and dynamic monolayer techniques.

    OpenAIRE

    Tournois, H.; Gieles, P; Demel, R.; de Gier, J.; Kruijff, B. de

    1989-01-01

    Gramicidin films at the air/water interface are shown to exhibit a phase transition at 225 A2/molecule which might be caused by either cluster formation, reorientation of molecules, conformational changes or multilayer formation. It is further shown that coupling of a charged group on either NH2- or COOH-terminus or elongation of the peptide by two amino acids, only slightly affects the surface area characteristics whereas modification of the tryptophans or even replacement of a single trypto...

  16. Structure of gramicidin A.

    OpenAIRE

    Wallace, B.A.

    1986-01-01

    Gramicidin A, a hydrophobic linear polypeptide, forms channels in phospholipid membranes that are specific for monovalent cations. Nuclear Magnetic Resonance (NMR) spectroscopy provided the first direct physical evidence that the channel conformation in membranes is an amino terminal-to-amino terminal helical dimer, and circular dichroism (CD) spectroscopy has shown the sensitivity of its conformation to different environments and the structural consequences of ion binding. The three-dimensio...

  17. Synthesis and biological evaluation of novel gramicidin s analogues

    NARCIS (Netherlands)

    Tuin, A.W.; Palachanis, D.K.; Buizert, A.; Grotenbreg, G.M.; Spalburg, E.; Neeling, A.J. de; Mars-Groenendijk, R.H.; Noort, D.; Marel, G.A. van der; Overkleeft, H.S.; Overhand, M.

    2009-01-01

    The synthesis of three new analogues of the cyclic cationic antimicrobial peptide Gramicidin S is described. These derivatives contain a modified turn region in which the DPhe-Pro motif has been replaced by a constrained furanoid sugar amino acid or a flexible linear aminoethoxy acetic acid moiety.

  18. Molecular Dynamics Simulated Annealing Study of Gramicidin A in Water and the Hydrophobic Environment

    Science.gov (United States)

    Mori, Takaharu; Okamoto, Yuko

    2008-03-01

    Gramicidin A is a hydrophobic 15-residue peptide with alternating D- and L-amino acids, and it forms various conformations depending on its environment. For example, gramicidin A adopts a random coil or helical conformations, such as &4.4circ;-helix, &6.3circ;-helix, and double-stranded helix in organic solvents. To investigate the structural and dynamical properties of gramicidin A in water and the hydrophobic environment, we performed molecular dynamics simulated annealing simulations with implicit solvent based on a generalized Born model. From the simulations, it was found that gramicidin A has a strong tendency to form a random-coil structure in water, while in the hydrophobic environment it becomes compact and can fold into right- and left-handed conformations of β-helix structures. We discuss the folding mechanism of the β-helix conformation of gramicidin A.

  19. Comparing Selection on S. aureus between Antimicrobial Peptides and Common Antibiotics

    OpenAIRE

    Dobson, Adam J.; Purves, Joanne; Kamysz, Wojciech; Rolff, Jens

    2013-01-01

    With a diminishing number of effective antibiotics, there has been interest in developing antimicrobial peptides (AMPs) as drugs. However, any new drug faces potential bacterial resistance evolution. Here, we experimentally compare resistance evolution in Staphylococcus aureus selected by three AMPs (from mammals, amphibians and insects), a combination of two AMPs, and two antibiotics: the powerful last-resort vancomycin and the classic streptomycin. We find that resistance evolves readily ag...

  20. The conducting form of gramicidin A is a right-handed double-stranded double helix

    OpenAIRE

    Burkhart, B. M.; Li, N.; Langs, D A; Pangborn, W A; Duax, W L

    1998-01-01

    The linear pentadecapeptide antibiotic, gramicidin D, is a naturally occurring product of Bacillus brevis known to form ion channels in synthetic and natural membranes. The x-ray crystal structures of the right-handed double-stranded double-helical dimers (DSDHℛ) reported here agree with 15N-NMR and CD data on the functional gramicidin D channel in lipid bilayers. These structures demonstrate single-file ion transfer through the channels. The results also indicate that previous crystal struct...

  1. Binding of alkaline cations to the double-helical form of gramicidin.

    OpenAIRE

    Chen, Y; Wallace, B.A.

    1996-01-01

    Gramicidin is a polypeptide antibiotic that forms monovalent cation-specific channels in membrane environments. In organic solvents and in lipids containing unsaturated fatty acid chains, it forms a double-helical "pore" structure, in which two monomers are intertwined. This form of gramicidin can bind two cations inside its lumen, and the crystal structures of both an ion complex and an ion-free form have been determined. In this study, we have used circular dichroism (CD) spectroscopy to ex...

  2. Enterotoxicity of a nonribosomal peptide causes antibiotic-associated colitis.

    Science.gov (United States)

    Schneditz, Georg; Rentner, Jana; Roier, Sandro; Pletz, Jakob; Herzog, Kathrin A T; Bücker, Roland; Troeger, Hanno; Schild, Stefan; Weber, Hansjörg; Breinbauer, Rolf; Gorkiewicz, Gregor; Högenauer, Christoph; Zechner, Ellen L

    2014-09-01

    Antibiotic therapy disrupts the human intestinal microbiota. In some patients rapid overgrowth of the enteric bacterium Klebsiella oxytoca results in antibiotic-associated hemorrhagic colitis (AAHC). We isolated and identified a toxin produced by K. oxytoca as the pyrrolobenzodiazepine tilivalline and demonstrated its causative action in the pathogenesis of colitis in an animal model. Tilivalline induced apoptosis in cultured human cells in vitro and disrupted epithelial barrier function, consistent with the mucosal damage associated with colitis observed in human AAHC and the corresponding animal model. Our findings reveal the presence of pyrrolobenzodiazepines in the intestinal microbiota and provide a mechanism for colitis caused by a resident pathobiont. The data link pyrrolobenzodiazepines to human disease and identify tilivalline as a target for diagnosis and neutralizing strategies in prevention and treatment of colitis. PMID:25157164

  3. Challenges and Future Prospects of Antibiotic Therapy: From Peptides to Phages Utilization

    Directory of Open Access Journals (Sweden)

    Santi M. Mandal

    2014-05-01

    Full Text Available Bacterial infections are raising serious concern across the globe. The effectiveness of conventional antibiotics is decreasing due to global emergence of multi-drug-resistant (MDR bacterial pathogens. This process seems to be primarily caused by an indiscriminate and inappropriate use of antibiotics in non-infected patients and in the food industry. New classes of antibiotics with different actions against MDR pathogens need to be developed urgently. In this context, this review focuses on several ways and future directions to search for the next generation of safe and effective antibiotics compounds including antimicrobial peptides, phage therapy, phytochemicals, metalloantibiotics, LPS and efflux pump inhibitors to control the infections caused by MDR pathogens.

  4. Gramicidin Channels Are Internally Gated

    OpenAIRE

    Jones, Tyson L.; Fu, Riqiang; Nielson, Frederick; Cross, Timothy A.; Busath, David D

    2010-01-01

    Gramicidin channels are archetypal molecular subjects for solid-state NMR studies and investigations of single-channel or cation conductance. Until now, the transitions between on and off conductance states have been thought, based on multichannel studies, to represent monomer ↔ dimer reactions. Here we use a single-molecule deposition method (vesicle fusion to a planar bilayer) to show that gramicidin dimer channels do not normally dissociate when conductance terminates. Furthermore, the obs...

  5. Gramicidin D enhances the antibacterial activity of fluoride

    OpenAIRE

    Nelson1, James W.; ZHOU, ZHIYUAN; Breaker, Ronald R.

    2014-01-01

    Fluoride is a toxic anion found in many natural environments. One of the major bacterial defenses against fluoride is the cell envelope, which limits passage of the membrane-impermeant fluoride anion. Accordingly, compounds that enhance the permeability of bacterial membranes to fluoride should also enhance fluoride toxicity. In this study, we demonstrate that the pore-forming antibiotic gramicidin D increases fluoride uptake in B. subtilis and that the antibacterial activity of this compound...

  6. Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp.

    OpenAIRE

    Ezra, D; Castillo, UF; Strobel, GA; Hess, WM; Porter, H; Jensen, JB; Condron, MAM; Teplow, DB; J. Sears; Maranta, M; Hunter, M; Weber, B.; Yaver, D

    2004-01-01

    Coronamycin is a complex of novel peptide antibiotics with activity against pythiaceous fungi and the human fungal pathogen Cryptococcus neoformans. It is also active against the malarial parasite, Plasmodium falciparum, with an IC50 of 9.0 ng ml-1. Coronamycin is produced by a verticillate Streptomyces sp. isolated as an endophyte from an epiphytic vine, Monstera sp., found in the Manu region of the upper Amazon of Peru. Bioassay-guided fractionation of the fermentation broths of this endoph...

  7. The antimicrobial activity of gramicidin A is associated with hydroxyl radical formation.

    Science.gov (United States)

    Liou, Je-Wen; Hung, Yu-Jiun; Yang, Chin-Hao; Chen, Yi-Cheng

    2015-01-01

    Gramicidin A is an antimicrobial peptide that destroys gram-positive bacteria. The bactericidal mechanism of antimicrobial peptides has been linked to membrane permeation and metabolism disruption as well as interruption of DNA and protein functions. However, the exact bacterial killing mechanism of gramicidin A is not clearly understood. In the present study, we examined the antimicrobial activity of gramicidin A on Staphylococcus aureus using biochemical and biophysical methods, including hydroxyl radical and NAD+/NADH cycling assays, atomic force microscopy, and Fourier transform infrared spectroscopy. Gramicidin A induced membrane permeabilization and changed the composition of the membrane. The morphology of Staphylococcus aureus during gramicidin A destruction was divided into four stages: pore formation, water permeability, bacterial flattening, and lysis. Changes in membrane composition included the destruction of membrane lipids, proteins, and carbohydrates. Most interestingly, we demonstrated that gramicidin A not only caused membrane permeabilization but also induced the formation of hydroxyl radicals, which are a possible end product of the transient depletion of NADH from the tricarboxylic acid cycle. The latter may be the main cause of complete Staphylococcus aureus killing. This new finding may provide insight into the underlying bactericidal mechanism of gA. PMID:25622083

  8. The antimicrobial activity of gramicidin A is associated with hydroxyl radical formation.

    Directory of Open Access Journals (Sweden)

    Je-Wen Liou

    Full Text Available Gramicidin A is an antimicrobial peptide that destroys gram-positive bacteria. The bactericidal mechanism of antimicrobial peptides has been linked to membrane permeation and metabolism disruption as well as interruption of DNA and protein functions. However, the exact bacterial killing mechanism of gramicidin A is not clearly understood. In the present study, we examined the antimicrobial activity of gramicidin A on Staphylococcus aureus using biochemical and biophysical methods, including hydroxyl radical and NAD+/NADH cycling assays, atomic force microscopy, and Fourier transform infrared spectroscopy. Gramicidin A induced membrane permeabilization and changed the composition of the membrane. The morphology of Staphylococcus aureus during gramicidin A destruction was divided into four stages: pore formation, water permeability, bacterial flattening, and lysis. Changes in membrane composition included the destruction of membrane lipids, proteins, and carbohydrates. Most interestingly, we demonstrated that gramicidin A not only caused membrane permeabilization but also induced the formation of hydroxyl radicals, which are a possible end product of the transient depletion of NADH from the tricarboxylic acid cycle. The latter may be the main cause of complete Staphylococcus aureus killing. This new finding may provide insight into the underlying bactericidal mechanism of gA.

  9. Production of peptide antibiotics by Bacillus sp. GU 057 indigenously isolated from saline soil.

    Science.gov (United States)

    Amin, Adnan; Khan, Muhammad Ayaz; Ehsanullah, Malik; Haroon, Uzma; Azam, Sheikh Muhammad Farooq; Hameed, Abdul

    2012-10-01

    A total of 112 soil samples were taken from differents areas of district D.I.Khan and Kohat (KPK) Pakistan and screened for production of antibiotics against the Micrococcus luteus and Staphylococcus aureus. Widest zone of inhibition (18mm) was produced by microorganism isolated from saline soil. The strain was later identified as Bacillus GU057 by standard biochemical assays. Maximum activity (18mm inhibition zone) was observed against Staphylococcus aureus after 48 hours of incubation at pH 8 and 4% concentration of glucose. The antibiotic was identified by autobiography as bacitracin. The Bacillus strain GU057 was confirmed as good peptide antibiotic producer and can effectively be indulged as biocontrol agent. PMID:24031962

  10. Production of peptide antibiotics by Bacillus sp: GU 057 indigenously isolated from saline soil

    Directory of Open Access Journals (Sweden)

    Adnan Amin

    2012-12-01

    Full Text Available A total of 112 soil samples were taken from differents areas of district D.I.Khan and Kohat (KPK Pakistan and screened for production of antibiotics against the Micrococcus luteus and Staphylococcus aureus. Widest zone of inhibition (18mm was produced by microorganism isolated from saline soil. The strain was later identified as Bacillus GU057 by standard biochemical assays. Maximum activity (18mm inhibition zone was observed against Staphylococcus aureus after 48 hours of incubation at pH 8 and 4% concentration of glucose. The antibiotic was identified by autobiography as bacitracin. The Bacillus strain GU057 was confirmed as good peptide antibiotic producer and can effectively be indulged as biocontrol agent.

  11. Carbon nanotube as a gramicidin analogue

    Science.gov (United States)

    Hilder, Tamsyn A.; Chung, Shin-Ho

    2011-01-01

    We have designed a carbon nanotube that is selectively permeable to monovalent cations, binds divalent cations and rejects anions. The nanotubes, with an effective radius of 4.53 Å and length of 36 Å, are terminated with hydrogen atoms and are exohydrogenated in two regions near the entrance and exit. Using molecular and stochastic dynamics simulations we examine the free energy, current-voltage-concentration profiles and ion binding sites. The characteristics of this channel are comparable to the antibiotic gramicidin-A, but the potassium current is six times larger. At 40 mM calcium concentration the current is reduced from 26 pA to 4 pA due to a calcium ion binding at the channel entrance.

  12. Antibiotics

    Science.gov (United States)

    Antibiotics are powerful medicines that fight bacterial infections. Used properly, antibiotics can save lives. They either kill bacteria or ... natural defenses can usually take it from there. Antibiotics do not fight infections caused by viruses, such ...

  13. Structure of gramicidin D-RbCl complex at atomic resolution from low-temperature synchrotron data: interactions of double-stranded gramicidin channel contents and cations with channel wall

    Energy Technology Data Exchange (ETDEWEB)

    Glówka, M.L.; Olczak, A.; Bojarska, J.; Szczesio, M.; Duax, W.L.; Burkhart, B.M.; Pangborn, W.A.; Langs, D.A.; Wawrzak, Z. (Poland); (NWU); (Hauptman)

    2010-03-05

    Gramicidin D (gD) is a naturally occurring ionophoric antibiotic that forms membrane channels specific for monovalent cations. The crystal structure of the RbCl complex of gD has been determined at 1.14 {angstrom} resolution from low-temperature (100 K) synchrotron-radiation data with a final R of 16%. The structure was refined with anisotropic temperature factors for all non-H atoms and with partial occupancies for many of them. The asymmetric unit in the crystal contains four crystallographically independent molecules that form two right-handed antiparallel double-stranded dimers. There are seven distinct rubidium-binding sites in each dimeric channel. The occupancy factors of Rb cations are between 0.11 and 0.35 and the total ion contents of the two crystallographically independent channels are 1.59 and 1.22 ions, respectively. Although each channel is 'chemically symmetrical', the side-chain conformations, the distributions of rubidium cations and their binding sites in the two independent channels are not. Cations are 'coordinated' by delocalized {pi}-electrons of three to five carbonyl groups that together with peptide backbone chains form the gramicidin channel walls. The water:cation ratio in the channel interior is four or five:one, and five or six waters separate Rb cations during their passage through the channel.

  14. Biosynthesis of isotopically labeled gramicidins and tyrocidins by Bacillus brevis

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, T.C. Bas; Schinzel, Susan [Max-Planck-Institut fuer Biochemie (Germany); Bechinger, Burkhard [Universite Strasbourg, Faculte de chimie, Institut Le Bel (France)], E-mail: bechinger@chimie.u-strasbg.fr

    2003-05-15

    The three-dimensional structure of bilayer-associated gramicidin A is available from a structural data base. This and related peptides are, therefore, ideal model compounds to use during the implementation and development of new NMR techniques for the structural investigations of membrane proteins. As these methods rely on the isotopic labelling of single, selected or all sites, we have, investigated and optimised biochemical protocols using different strains of the Gram-positive bacterium Bacillus brevis. With newly developed schemes for isotopic labelling large amounts of gramicidin and tyrocidin enriched with stable isotopes such as {sup 15}N or {sup 15}N/{sup 13}C have been obtained at low cost. A variety of analytical and spectroscopic techniques, including HPLC, mass spectrometry and NMR spectroscopy are used to characterise the resulting products.

  15. Total Synthesis of the Posttranslationally Modified Polyazole Peptide Antibiotic Plantazolicin A.

    Science.gov (United States)

    Wada, Hiroki; Williams, Huw E L; Moody, Christopher J

    2015-12-01

    The power of rhodium-carbene methodology in chemistry is demonstrated by the synthesis of a structurally complex polyazole antibiotic. Plantazolicin A, a novel soil-bacterium metabolite, comprises a linear array of 10 five-membered rings in two pentacyclic regions that derive from ribosomal peptide synthesis followed by extensive posttranslational modification. The compound possesses potent antimicrobial activity, and is selectively active against the anthrax-causing organism. A conceptually different synthesis of plantazolicin A is reported in which the key steps are the use of rhodium(II)-catalyzed reactions of diazocarbonyl compounds to generate up to six of the seven oxazole rings of the antibiotic. NMR spectroscopic studies and molecular modeling reveal a likely dynamic hairpin conformation with a hinge region around the two isoleucine residues. The compound has modest activity against methicillin-resistant Staphylococcus aureus (MRSA). PMID:26473502

  16. Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options.

    Directory of Open Access Journals (Sweden)

    Jianghui Wang

    Full Text Available BACKGROUND: To overcome the increasing resistance of pathogens to existing antibiotics the 10×'20 Initiative declared the urgent need for a global commitment to develop 10 new antimicrobial drugs by the year 2020. Naturally occurring animal antibiotics are an obvious place to start. The recently sequenced genomes of mammals that are divergent from human and mouse, including the tammar wallaby and the platypus, provide an opportunity to discover novel antimicrobials. Marsupials and monotremes are ideal potential sources of new antimicrobials because they give birth to underdeveloped immunologically naïve young that develop outside the sterile confines of a uterus in harsh pathogen-laden environments. While their adaptive immune system develops innate immune factors produced either by the mother or by the young must play a key role in protecting the immune-compromised young. In this study we focus on the cathelicidins, a key family of antimicrobial peptide genes. PRINCIPAL FINDING: We identified 14 cathelicidin genes in the tammar wallaby genome and 8 in the platypus genome. The tammar genes were expressed in the mammary gland during early lactation before the adaptive immune system of the young develops, as well as in the skin of the pouch young. Both platypus and tammar peptides were effective in killing a broad range of bacterial pathogens. One potent peptide, expressed in the early stages of tammar lactation, effectively killed multidrug-resistant clinical isolates of Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. CONCLUSIONS AND SIGNIFICANCE: Marsupial and monotreme young are protected by antimicrobial peptides that are potent, broad spectrum and salt resistant. The genomes of our distant relatives may hold the key for the development of novel drugs to combat multidrug-resistant pathogens.

  17. Synthesis and biological evaluation of asymmetric gramicidin S analogues containing modified D-phenylalanine residues

    NARCIS (Netherlands)

    van der Knaap, Matthijs; Engels, Eefje; Busscher, Henk J.; Otero, Jose M.; Llamas-Saiz, Antonio L.; van Raaij, Mark J.; Mars-Groenendijk, Roos H.; Noort, Daan; van der Marel, Gijsbert A.; Overkleeft, Herman S.; Overhand, Mark

    2009-01-01

    The synthesis of new analogues of the cationic antimicrobial peptide gramicidin S, having a modified D-phenylalanine residue, their antibacterial properties against several Gram positive and negative strains, as well as their hemolytic activity is reported. (C) 2009 Elsevier Ltd. All rights reserved

  18. Synthesis and biological evaluation of asymmetric gramicidin S analogues containing modified d-phenylalanine residues

    NARCIS (Netherlands)

    Knaap, M. van der; Engels, E.; Busscher, H.J.; Otero, J.M.; Llamas-Saiz, A.L.; Raaij, M.J. van; Mars-Groenendijk, R.H.; Noort, D.; Marel, G.A. van der; Overkleeft, H.S.; Overhand, M.

    2009-01-01

    The synthesis of new analogues of the cationic antimicrobial peptide gramicidin S, having a modified d-phenylalanine residue, their antibacterial properties against several Gram positive and negative strains, as well as their hemolytic activity is reported. © 2009 Elsevier Ltd. All rights reserved.

  19. Direct surfactin-gramicidin S antagonism supports detoxification in mixed producer cultures of Bacillus subtilis and Aneurinibacillus migulanus.

    Science.gov (United States)

    Rautenbach, Marina; Eyéghé-Bickong, Hans André; Vlok, Nicolas Maré; Stander, Marietjie; de Beer, Abré

    2012-12-01

    Antibiotic production as a defence mechanism is a characteristic of a wide variety of organisms. In natural evolutionary adaptation, cellular events such as sporulation, biofilm formation and resistance to antibiotics enable some micro-organisms to survive environmental and antibiotic stress conditions. The two antimicrobial cyclic peptides in this study, gramicidin S (GS) from Aneurinibacillus migulanus and the lipopeptide surfactin (Srf) from Bacillus subtilis, have been shown to affect both membrane and intercellular components of target organisms. Many functions, other than that of antimicrobial activity, have been assigned to Srf. We present evidence that an additional function may exist for Srf, namely that of a detoxifying agent that protects its producer from the lytic activity of GS. We observed that Srf producers were more resistant to GS and could be co-cultured with the GS producer. Furthermore, exogenous Srf antagonized the activity of GS against both Srf-producing and non-producing bacterial strains. A molecular interaction between the anionic Srf and the cationic GS was observed with circular dichroism and electrospray MS. Our results indicate that the formation of an inactive complex between GS and Srf supports resistance towards GS, with the anionic Srf forming a chemical barrier to protect its producer. This direct detoxification combined with the induction of protective stress responses in B. subtilis by Srf confers resistance toward GS from A. migulanus and allows survival in mixed cultures. PMID:23103974

  20. 99mTc-Alafosfalin: an antibiotic peptide infection imaging agent

    International Nuclear Information System (INIS)

    The radiolabeled antibiotic peptide 99mTc-alafosfalin was assessed as an infection imaging agent in a rat model by comparison with 99mTc-DTPA and 99mTc-leukocytes. 99mTc-alafosfalin was prepared via an instant cold kit and 99mTc-leukocytes were prepared using 99mTc-stannous fluoride colloid in an ex vivo labeling procedure of whole blood. In separate experiments, the three radiotracers were administered to rats infected with staphylococcus aureus. Quantitative biodistribution studies were performed as well as scintigraphic images and histopathology. 99mTc-alafosfalin is a stable product, obtained in high radiochemical purity (>95%). This agent was mainly renally excreted, with low liver, spleen and bone uptake, and resulted in a mean ratio of infected/non-infected thighs of 4.3/1.0 at 4 hr post radiotracer injection. 99mTc-DTPA gave a corresponding ratio of 1.9/1.0 and 99mTc-leukocytes gave 20.0/1.0 at the same time point. An in vitro assay found the level of 99mTc-alafosfalin binding to staphylococcus aureas higher than 99mTc-DTPA (10% versus 1% respectively). 99mTc-alafosfalin accumulates at sites of infection in a rat model better than the perfusion molecule 99mTc-DTPA, yet less than 99mTc-leukocytes. The distribution characteristics of this 99mTc-antibiotic peptide would be an advantage in imaging abdominal and soft tissue infection

  1. Effect of pyrrolidinium based ionic liquid on the channel form of gramicidin in lipid vesicles.

    Science.gov (United States)

    Singh, Upendra Kumar; Dohare, Neeraj; Mishra, Prabhash; Singh, Prashant; Bohidar, Himadri B; Patel, Rajan

    2015-08-01

    The present work is focused on the interaction between membrane bound gramicidin and 1-butyl-1-methyl-2-oxopyrrolidinium bromide (BMOP) ionic liquid. Ionic liquids (ILs) are solvents that are often liquid at room temperature and composed of organic cation and appropriate anion. The gramicidin peptide forms prototypical ion channels for cations, which have been extensively used to study the organization, dynamics, and function of membrane spanning channels. The interaction was studied by circular dichroism, steady state, time-resolved fluorescence spectroscopy in combination with dynamic surface tension and field emission scanning electron microscopic methods (FESEM). The results obtained from circular dichroism shows that the BMOP interacts with the channel form of gramicidin in lipid vesicle without any considerable effect on its conformation. The Red-edge excitation shift (REES) also supported the above findings. In addition, the fluorescence studies suggested that BMOP makes ground state complex with ion channel, which was further supported by time resolved measurements. Furthermore, dynamic surface tension analysis shows the faster adsorption of BMOP with membrane bound gramicidin at the air-water interface. Additionally, FESEM results indicated that BMOP forms a film around the membrane bound gramicidin at higher concentration. These results are potentially useful to analyze the effect of ionic liquids on the behaviour of membrane proteins. PMID:26025771

  2. Heterologous expression in Escherichia coli of the first module of the nonribosomal peptide synthetase for chloroeremomycin, a vancomycin-type glycopeptide antibiotic

    OpenAIRE

    Trauger, John W.; Walsh, Christopher T.

    2000-01-01

    The gene cluster from Amycolotopsis orientalis responsible for biosynthesis of the vancomycin-type glycopeptide antibiotic chloroeremomycin was recently sequenced, indicating that this antibiotic derives from a seven-residue peptide synthesized by a three-subunit (CepA, CepB, and CepC) modular nonribosomal peptide synthetase. Expression of all or parts of the peptide synthetase in Escherichia coli would facilitate biochemical characterization of its substrate specificity, an important step to...

  3. Biosynthetic engineering of nonribosomal peptide synthetases.

    Science.gov (United States)

    Kries, Hajo

    2016-09-01

    From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium-dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27465074

  4. Cathelicidins from the bullfrog Rana catesbeiana provides novel template for peptide antibiotic design.

    Directory of Open Access Journals (Sweden)

    Guiying Ling

    Full Text Available Cathelicidins, a class of gene-encoded effector molecules of vertebrate innate immunity, provide a first line of defense against microbial invasions. Although cathelicidins from mammals, birds, reptiles and fishes have been extensively studied, little is known about cathelicidins from amphibians. Here we report the identification and characterization of two cathelicidins (cathelicidin-RC1 and cathelicidin-RC2 from the bullfrog Rana catesbeiana. The cDNA sequences (677 and 700 bp, respectively encoding the two peptides were successfully cloned from the constructed lung cDNA library of R. catesbeiana. And the deduced mature peptides are composed of 28 and 33 residues, respectively. Structural analysis indicated that cathelicidin-RC1 mainly assumes an amphipathic alpha-helical conformation, while cathelicidin-RC2 could not form stable amphipathic structure. Antimicrobial and bacterial killing kinetic analysis indicated that the synthetic cathelicidin-RC1 possesses potent, broad-spectrum and rapid antimicrobial potency, while cathelicidin-RC2 exhibited very weak antimicrobial activity. Besides, the antimicrobial activity of cathelicidin-RC1 is salt-independent and highly stable. Scanning electron microscopy (SEM analysis indicated that cathelicidin-RC1 kills microorganisms through the disruption of microbial membrane. Moreover, cathelicidin-RC1 exhibited low cytotoxic activity against mammalian normal or tumor cell lines, and low hemolytic activity against human erythrocytes. The potent, broad-spectrum and rapid antimicrobial activity combined with the salt-independence, high stability, low cytotoxic and hemolytic activities make cathelicidin-RC1 an ideal template for the development of novel peptide antibiotics.

  5. Membrane Protein Crystallization in Lipidic Mesophases. Hosting Lipid Effects on the Crystallization and Structure of a Transmembrane Peptide

    Energy Technology Data Exchange (ETDEWEB)

    Hfer, Nicole; Aragao, David; Lyons, Joseph A.; Caffrey, Martin (Trinity)

    2011-09-28

    Gramicidin is an apolar pentadecapeptide antibiotic consisting of alternating d- and l-amino acids. It functions, in part, by creating pores in membranes of susceptible cells rendering them leaky to monovalent cations. The peptide should be able to traverse the host membrane either as a double-stranded, intertwined double helix (DSDH) or as a head-to-head single-stranded helix (HHSH). Current structure models are based on macromolecular X-ray crystallography (MX) and nuclear magnetic resonance (NMR). However, the HHSH form has only been observed by NMR. The shape and size of the different gramicidin conformations differ. We speculated therefore that reconstituting it into a lipidic mesophase with bilayers of different microstructures would preferentially stabilize one form over the other. By using such mesophases for in meso crystallogenesis, the expectation was that at least one would generate crystals of gramicidin in the HHSH form for structure determination by MX. This was tested using commercial and in-house synthesized lipids that support in meso crystallogenesis. Lipid acyl chain lengths were varied from 14 to 18 carbons to provide mesophases with a range of bilayer thicknesses. Unexpectedly, all lipids produced high-quality, structure-grade crystals with gramicidin only in the DSDH conformation.

  6. Conducting gramicidin channel activity in phospholipid monolayers.

    OpenAIRE

    A. Nelson

    2001-01-01

    Potential step amperometry (chronoamperometry) of the Tl(I)/Tl(Hg) electrochemical reduction process has been used to investigate the underlying mechanisms of gramicidin activity in phospholipid monolayers. The experiments were carried out at gramicidin-modified dioleoyl phosphatidylcholine (DOPC)-coated electrodes. Application of a potential step to the coated electrode system results in a current transient that can be divided into two regions. An initial exponential decay of current corresp...

  7. Temperature dependence of gramicidin channel conductance

    Science.gov (United States)

    Song, Hyundeok; Beck, Thomas

    2010-03-01

    The gramicidin channel is the smallest known biological ion channel, and it exhibits cation selectivity. Recently, Dr. John Cuppoletti's group at the University of Cincinnati has shown that the gramicidin channel can function at high temperatures with significant currents. This finding may have implications for fuel cell technologies. In order to explore the effect of temperature on channel conductance, we examined the gramicidin system at 300K, 330K, and 360K by computer simulation. Two forms of gramicidin, the head-to-head helical dimer and the intertwined double helix, were examined. Both the decrease of the free energy barrier and the increase of the diffusion of potassium ions inside the gramicidin channel at high temperatures imply an increase of current. We found that higher temperatures also affect the lifetime of hydrogen bonds, the distribution of the bending angle, the distribution of the distance between dimers, and the size of the pore radius for the helical dimer structure. These finding may be related to the gating of the gramicidin channel.

  8. Antibiotic activity and structural analysis of the scorpion-derived antimicrobial peptide IsCT and its analogs.

    Science.gov (United States)

    Lee, Kyungik; Shin, Song Yub; Kim, Kyoungho; Lim, Shin Saeng; Hahm, Kyung-Soo; Kim, Yangmee

    2004-10-15

    IsCT is a non-cell-selective antimicrobial peptide isolated from the scorpion Opisthacanthus madagascariensis that has potent cytolytic activity against both mammalian and bacterial cells. To investigate the structure-activity relationships of IsCT and to design novel peptide antibiotics with bacterial cell selectivity, we synthesized several analogs of IsCT and determined their three-dimensional structures in solution by 2D-NMR spectroscopy. IsCT has a linear alpha-helical structure from Gly3 to Phe13, and [K7]-IsCT has a linear alpha-helical structure from Leu2 to Phe13. [K7, P8, K11]-IsCT, which has a bend in its middle region, exhibited the highest antibacterial activity without hemolytic activity, suggesting that its proline-induced bend is an important determinant of this selectivity. Tryptophan fluorescence showed that the high selectivity of [K7, P8, K11]-IsCT toward bacterial cells is closely correlated with its highly selective interaction with negatively charged phospholipids. Its potent activity against antibiotic-resistant bacteria suggests that [K7, P8, K11]-IsCT may serve as a promising lead candidate in the development of new peptide antibiotics. PMID:15369808

  9. Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections.

    Science.gov (United States)

    Mansour, Sarah C; de la Fuente-Núñez, César; Hancock, Robert E W

    2015-05-01

    Host defense (antimicrobial) peptides, produced by all complex organisms, typically contain an abundance of positively charged and hydrophobic amino acid residues. A small synthetic peptide termed innate defense regulator (IDR-)1018 was derived by substantial modification of the bovine neutrophil host defense peptide bactenecin. Here, we review its intriguing properties that include anti-infective, anti-inflammatory, wound healing, and anti-biofilm activities. It was initially developed as an immune modulator with an ability to selectively enhance chemokine production and polarize cellular differentiation while suppressing/balancing the pro-inflammatory response. In this regard, it has demonstrated in vivo activity in murine models including enhancement of wound healing and an ability to protect against Staphylococcus aureus, multidrug resistant Mycobacterium tuberculosis, herpes virus, and inflammatory disorders, including cerebral malaria and neuronal damage in a pre-term birth model. More recently, IDR-1018 was shown, in a broad-spectrum fashion, to selectively target bacterial biofilms, which are adaptively resistant to many antibiotics and represent the most common growth state of bacteria in human infections. Furthermore, IDR-1018 demonstrated synergy with conventional antibiotics to both prevent biofilm formation and treat pre-existing biofilms. These data are consistent with a strong potential as an adjunctive therapy against antibiotic-resistant infections. PMID:25358509

  10. Antibiotics.

    Science.gov (United States)

    Hariprasad, Seenu M; Mieler, William F

    2016-01-01

    The Endophthalmitis Vitrectomy Study (EVS) provided ophthalmologists with evidence-based management strategies to deal with endophthalmitis for the first time. However, since the completion of the EVS, numerous unresolved issues remain. The use of oral antibiotics has important implications for the ophthalmologist, particularly in the prophylaxis and/or management of postoperative, posttraumatic, or bleb-associated bacterial endophthalmitis. One can reasonably conclude that significant intraocular penetration of an antibiotic after oral administration may be a property unique to the newer-generation fluoroquinolones. Prophylactic use of mupirocin nasal ointment resulted in significant reduction of conjunctival flora with or without preoperative topical 5% povidone-iodine preparation. Ocular fungal infections have traditionally been very difficult to treat due to limited therapeutic options both systemically and intravitreally. Because of its broad spectrum of coverage, low MIC90 levels for the organisms of concern, good tolerability, and excellent bioavailability, voriconazole through various routes of administration may be useful to the ophthalmologist in the primary treatment of or as an adjunct to the current management of ocular fungal infections. PMID:26501865

  11. Effect of the excipient concentration on the pharmacokinetics of PM181104, a novel antimicrobial thiazolyl cyclic peptide antibiotic, following intravenous administration to mice

    OpenAIRE

    Vijayaphanikumar Yemparala; Damre, Anagha A; Venkat Manohar; Kishori Sharan Singh; Mahajan, Girish B.; Satish N. Sawant; Tanaji Deokule; Sivaramakrishnan, H.

    2014-01-01

    Thiazolyl cyclic peptide antibiotics are known for their poor aqueous solubility and unfavorable pharmacokinetics (PK) and hence pose challenging tasks in developing these antibiotics as clinical candidates. In the current paper, we report a possible way to address these challenges with exemplification of our antibiotic PM181104. The approach was to prepare formulations with known excipients, Polysorbate 80 (Tween 80, T-80) and PEG 400 through their varied stiochiometric combination in approp...

  12. Gramicidin induces the formation of non-bilayer structures in phosphatidylcholine dispersions in a fatty acid chain length dependent way

    NARCIS (Netherlands)

    Echteld, C.J.A. van; Kruijff, B. de; Verkleij, A.J.; Leunissen-Bijvelt, J.; Gier, J. de

    1982-01-01

    The hydrophobic peptide gramicidin is shown by 31P-NMR, freeze-fracture electron microscopy and small-angle X-ray diffraction, to induce a hexogonal HII-phase lipid organization when incorporated in liquid crystalline saturated and unsaturated synthetic and natural phosphatidylcholines if the length

  13. Modeling negative ion defect migration through the gramicidin A channel.

    Science.gov (United States)

    Nemukhin, Alexander V; Kaliman, Ilya A; Moskovsky, Alexander A

    2009-08-01

    The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin A channel, including proton migration, reorientation of the water file and negative ion defect migration, are presented. The negative ion defect migration mechanism was hypothesized in experimental studies but was not considered previously in molecular dynamics simulations. The model system consisted of the peptide chains constructed on the base of the structure PDBID:1JNO, the inner file of nine water molecules and external clusters of water molecules placed at both ends of the channel. Potential energy functions were computed with the CHARMM/PM6/TIP3P parameters. The results obtained for proton migration and water file reorientation are basically consistent with those reported previously by Pómès and Roux (Biophys J 82:2304, 2002) within the similar approach. For the newly considered mechanism of negative ion defect migration from the channel center to the end of the water file we obtain the energy 3.8 kcal mol(-1) which is not considerably different from the activation energy of water reorientation, 5.4 kcal mol(-1). Therefore this mechanism may principally compete for the rate-limiting step in proton conduction in gramicidin. PMID:19198898

  14. 99Tcm-Alafosfalin: a potential new antibiotic peptide for imaging bacterial infection

    International Nuclear Information System (INIS)

    Full text: Alafosfalin (ALA; L-alanyl-L-1-aminoethylphosphonic acid) is a phosphonodipeptide that selectively inhibits peptidoglycan (cell wall) biosynthesis in both gram-negative and gram-positive bacteria. As it accumulates at sites of infection, the radiolabelled antibiotic peptide may be of use in localising sites of infection. The aims of this study were to prepare an instant cold kit of alafosfalin, and to examine the suitability of this agent for imaging localised infection in rodent models as compared to 67Ga-citrate and 99Tcm-citric acid. ALA was successfully labelled with 99Tcm to give 95.4±1.9% radiochemical purity (n = 3). Infections were induced in rats by the intramuscular injection of Staphylococcus aureus (1 x 108 cfu(0.1 ml-1) into their right thigh and allowed to develop for 24 h. 99Tcm-ALA was then injected into the infected rats intravenously, quantitative biodistribution studies and scintigraphy were obtained at 1 and 4 hours post injection. Histological examination of infected right thigh muscle confirmed the presence of an abscess with bacterial colonies. The mean ratio of activity of infected versus non-infected thighs for 99Tcm-alafosfalin was 2.8 and 4.3 at 1 and 4h respectively, which was equal to 67Ga-citrate and better than 99Tcm-citric acid. The scans also showed an increase in uptake but this was relatively diffuse. Further research using other phosphonopeptides may result in even better imaging qualities. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  15. Collision-induced dissociation of noncovalent complexes between vancomycin antibiotics and peptide ligand stereoisomers: evidence for molecular recognition in the gas phase

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J. D.; Delforge, D; Remacle, J;

    1999-01-01

    In solution, the antibiotics of the vancomycin group bind stereospecifically to peptides with the C-terminal sequence: -L-Lys-D-Ala-D-Ala, Substitution by a L-Ala at either of the two C-terminal residues causes a dramatic decrease in the binding affinity to the antibiotics. This solution behavior...... ions consisting of an antibiotic, a -L-Ala peptide, a -D-Ala stereoisomer, one ligand isotopically labelled. Upon CID of the negatively charged mixed cluster ions a stereoselective loss of the assumed "nonspecifically" bound -L-Ala ligand was observed. (Int J Mass Spectrom 188 (1999) 63-85) (C) 1999...

  16. Novel gramicidin formulations in cationic lipid as broad-spectrum microbicidal agents

    OpenAIRE

    Ragioto DA; Carrasco LD; Carmona-Ribeiro AM

    2014-01-01

    Danielle AMT Ragioto, Letícia DM Carrasco, Ana M Carmona-Ribeiro Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil Abstract: Dioctadecyldimethylammonium bromide (DODAB) is an antimicrobial lipid that can be dispersed as large closed bilayers (LV) or bilayer disks (BF). Gramicidin (Gr) is an antimicrobial peptide assembling as channels in membranes and increasing their permeability towards ca...

  17. Single channels of 9, 11, 13, 15-destryptophyl-phenylalanyl-gramicidin A.

    OpenAIRE

    Heitz, F.; Spach, G; Trudelle, Y

    1982-01-01

    Analysis of the single-channel behavior of an analogue of gramicidin A in which all four tryptophyl residues are substituted by phenylalanyl suggests that the nature of the side chains may play an important role in the ion translocation process. Indeed, while infrared spectroscopy indicates that both peptides have very similar backbone conformations, they have different single-channel characteristics. The unit conductance of the analogue is much smaller than that of the natural product. Moreo...

  18. N-Terminally Glutamate-Substituted Analogue of Gramicidin A as Protonophore and Selective Mitochondrial Uncoupler

    OpenAIRE

    Alexandra I Sorochkina; Egor Y Plotnikov; Rokitskaya, Tatyana I.; Kovalchuk, Sergei I.; Elena A Kotova; Sergei V Sychev; Zorov, Dmitry B.; Antonenko, Yuri N.

    2012-01-01

    Limited uncoupling of oxidative phosphorylation could be beneficial for cells by preventing excessive generation of reactive oxygen species. Typical uncouplers are weak organic acids capable of permeating across membranes with a narrow gap between efficacy and toxicity. Aimed at designing a nontoxic uncoupler, the protonatable amino acid residue Glu was substituted for Val at the N-terminus of the pentadecapeptide gramicidin A (gA). The modified peptide [Glu1]gA exhibited high uncoupling acti...

  19. Computer Simulation Studies of Gramicidin Channel

    Science.gov (United States)

    Song, Hyundeok; Beck, Thomas

    2009-04-01

    Ion channels are large membrane proteins, and their function is to facilitate the passage of ions across biological membranes. Recently, Dr. John Cuppoletti's group at UC showed that the gramicidin channel could function at high temperatures (360 -- 390K) with significant currents. This finding may have large implications for fuel cell technology. In this project, we will examine the experimental system by computer simulation. We will investigate how the temperature affects the current and differences in magnitude of the currents between two forms of Gramicidin, A and D. This research will help to elucidate the underlying molecular mechanism in this promising new technology.

  20. Combined effect of a peptide–morpholino oligonucleotide conjugate and a cell-penetrating peptide as an antibiotic

    OpenAIRE

    Wesolowski, Donna; Alonso, Dulce; Altman, Sidney

    2013-01-01

    A cell-penetrating peptide (CPP)–morpholino oligonucleotide (MO) conjugate (PMO) that has an antibiotic effect in culture had some contaminating CPPs in earlier preparations. The mixed conjugate had gene-specific and gene-nonspecific effects. An improved purification procedure separates the PMO from the free CPP and MO. The gene-specific effects are a result of the PMO, and the nonspecific effects are a result of the unlinked, unreacted CPP. The PMO and the CPP can be mixed together, as has b...

  1. Biosynthesis of Chloro-β-Hydroxytyrosine, a Nonproteinogenic Amino Acid of the Peptidic Backbone of Glycopeptide Antibiotics

    OpenAIRE

    Puk, Oliver; Bischoff, Daniel; Kittel, Claudia; Pelzer, Stefan; Weist, Stefan; Stegmann, Efthimia; Roderich D. Süssmuth; Wohlleben, Wolfgang

    2004-01-01

    The role of the putative P450 monooxygenase OxyD and the chlorination time point in the biosynthesis of the glycopeptide antibiotic balhimycin produced by Amycolatopsis balhimycina were analyzed. The oxyD gene is located directly downstream of the bhp (perhydrolase) and bpsD (nonribosomal peptide synthetase D) genes, which are involved in the synthesis of the balhimycin building block β-hydroxytyrosine (β-HT). Reverse transcriptase experiments revealed that bhp, bpsD, and oxyD form an operon....

  2. Distinguishing gramicidin D conformers through two-dimensional infrared spectroscopy of vibrational excitons

    Science.gov (United States)

    Stevenson, Paul; Tokmakoff, Andrei

    2015-06-01

    Gramicidin D is a short peptide which dimerizes to form helical pores, adopting one of two conformations in the process. These conformations differ primarily in number of residues per turn and the hydrogen-bond registry between rungs of the helix. Using amide I 2D infrared (IR) and FTIR, we have demonstrated that it is possible to distinguish between the different conformers of gramicidin D in solution. We show that the spectra observed for this helical peptide bear no resemblance to the spectra of α- or 310-helices and that while the FTIR spectra appear similar to spectra of β-sheets, 2D IR reveals that the observed resonances arise from vibrational modes unlike those observed in β-sheets. We also present an idealized model which reproduces the experimental data with high fidelity. This model is able to explain the polarization-dependence of the experimental 2D IR data. Using this model, we show the coupling between the rungs of the helix dominates the spectra, and as a consequence of this, the number of residues per turn can greatly influence the amide I spectra of gramicidin D.

  3. Ancient Antimicrobial Peptides Kill Antibiotic-Resistant Pathogens: Australian Mammals Provide New Options

    OpenAIRE

    Wang, Jianghui; Wong, Emily S.W.; Whitley, Jane C; Jian LI; Stringer, Jessica M.; Short, Kirsty R.; Renfree, Marilyn B; Belov, Katherine; Cocks, Benjamin G.

    2011-01-01

    Background To overcome the increasing resistance of pathogens to existing antibiotics the 10×'20 Initiative declared the urgent need for a global commitment to develop 10 new antimicrobial drugs by the year 2020. Naturally occurring animal antibiotics are an obvious place to start. The recently sequenced genomes of mammals that are divergent from human and mouse, including the tammar wallaby and the platypus, provide an opportunity to discover novel antimicrobials. Marsupials and monotremes a...

  4. Mass spectrometric and bioinformatics approaches to characterizing of cyclic non-ribosomal peptides and ribosomally encoded peptide antibiotic

    OpenAIRE

    Liu, Wei-Ting

    2009-01-01

    Natural products are a crucial component in drug discovery because of their considerable pharmaceutical properties. Cyclic non-ribosomally peptides are one category of natural products featured by containing non-standard amino acids and lactam or lactone structures, thus increasing the complexity of the resulting tandem mass spectrometry data. Cyclosporin, microcystins and nodularins all are well-known examples and have notable pharmacologically importance. In this current work, by collaborat...

  5. Tryptophan Contributions to the Empirical Free-Energy Profile in Gramicidin A/M Heterodimer Channels

    OpenAIRE

    Durrant, Jacob Devin; Caywood, Devin; Busath, David D

    2006-01-01

    Gramicidin A/gramicidin M heterodimer conductances were measured in planar lipid bilayers and found to form two distinguishable populations about halfway between the gramicidin A and gramicidin M homodimer conductances. This implies that the principle difference in the gramicidin A and gramicidin M transport free-energy profiles occurs at the channel center, where it would produce similar effects on the rate-limiting barrier for the two heterodimers. Kinetic analysis based on this and nearly ...

  6. Interaction of gramicidin with DPPC/DODAB bilayer fragments.

    Science.gov (United States)

    Carvalho, Camilla A; Olivares-Ortega, Constanza; Soto-Arriaza, Marco A; Carmona-Ribeiro, Ana M

    2012-12-01

    The interaction between the antimicrobial peptide gramicidin (Gr) and dipalmitoylphosphatidylcholine (DPPC)/dioctadecyldimethylammonium bromide (DODAB) 1:1 large unilamellar vesicles (LVs) or bilayer fragments (BFs) was evaluated by means of several techniques. The major methods were: 1) Gr intrinsic fluorescence and circular dichroism (CD) spectroscopy; 2) dynamic light scattering for sizing and zeta-potential analysis; 3) determination of the bilayer phase transition from extrinsic fluorescence of bilayer probes; 4) pictures of the dispersions for evaluation of coloidal stability over a range of time and NaCl concentration. For Gr in LVs, the Gr dimeric channel conformation is suggested from: 1) CD and intrinsic fluorescence spectra similar to those in trifluoroethanol (TFE); 2) KCl or glucose permeation through the LVs/Gr bilayer. For Gr in BFs, the intertwined dimeric, non-channel Gr conformation is evidenced by CD and intrinsic fluorescence spectra similar to those in ethanol. Both LVs and BFs shield Gr tryptophans against quenching by acrylamide but the Stern-Volmer quenching constant was slightly higher for Gr in BFs confirming that the peptide is more exposed to the water phase in BFs than in LVs. The DPPC/DODAB/Gr supramolecular assemblies may predict the behavior of other antimicrobial peptides in assemblies with lipids. PMID:22960286

  7. Constant helical pitch of the gramicidin channel in phospholipid bilayers.

    OpenAIRE

    Katsaras, J.; Prosser, R S; Stinson, R H; Davis, J H

    1992-01-01

    X-ray diffraction has been applied in measuring the helical pitch of the gramicidin channel in oriented bilayers of dilauroylphosphatidylcholine (DLPC) and dimyristoylphosphatidylcholine (DMPC) at a polypeptide concentration of 9.1 mol %. The diffraction data show the helical pitch of gramicidin to be 4.7 +/- 0.2 A in both gel and liquid-crystalline phase bilayers, with and without monovalent cations. In addition, the width of the reflection due to the pitch of the helical gramicidin channel ...

  8. Gramicidin tryptophans mediate formamidinium-induced channel stabilization.

    OpenAIRE

    Seoh, S A; Busath, D

    1995-01-01

    Compared with alkali metal cations, formamidinium ions stabilize the gramicidin A channel molecule in monoolein bilayers (Seoh and Busath, 1993a). A similar effect is observed with N-acetyl gramicidin channel molecules in spite of the modified forces at the dimeric junction (Seoh and Busath, 1993b). Here we use electrophysiological measurements with tryptophan-to-phenylalanine-substituted gramicidin analogs to show that the formamidinium-induced channel molecule stabilization is eliminated wh...

  9. Novel phospholipase A2 inhibitors from python serum are potent peptide antibiotics.

    Science.gov (United States)

    Samy, Ramar Perumal; Thwin, Maung Maung; Stiles, Brad G; Satyanarayana-Jois, Seetharama; Chinnathambi, Arunachalam; Zayed, M E; Alharbi, Sulaiman Ali; Siveen, Kodappully Sivaraman; Sikka, Sakshi; Kumar, Alan Prem; Sethi, Gautam; Lim, Lina Hsiu Kim

    2015-04-01

    Antimicrobial peptides (AMPs) play a vital role in defense against resistant bacteria. In this study, eight different AMPs synthesized from Python reticulatus serum protein were tested for bactericidal activity against various Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Burkholderia pseudomallei (KHW and TES strains), and Proteus vulgaris) using a disc-diffusion method (20 μg/disc). Among the tested peptides, phospholipase A2 inhibitory peptide (PIP)-18[59-76], β-Asp65-PIP[59-67], D-Ala66-PNT.II, and D60,65E-PIP[59-67] displayed the most potent bactericidal activity against all tested pathogens in a dose-dependent manner (100-6.8 μg/ml), with a remarkable activity noted against S. aureus at 6.8 μg/ml dose within 6 h of incubation. Determination of minimum inhibitory concentrations (MICs) by a micro-broth dilution method at 100-3.125 μg/ml revealed that PIP-18[59-76], β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides exerted a potent inhibitory effect against S. aureus and B. pseudomallei (KHW) (MICs 3.125 μg/ml), while a much less inhibitory potency (MICs 12.5 μg/ml) was noted for β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides against B. pseudomallei (TES). Higher doses of peptides had no effect on the other two strains (i.e., Klebsiella pneumoniae and Streptococcus pneumoniae). Overall, PIP-18[59-76] possessed higher antimicrobial activity than that of chloramphenicol (CHL), ceftazidime (CF) and streptomycin (ST) (30 μg/disc). When the two most active peptides, PIP-18[59-76] and β-Asp65-PIP[59-67], were applied topically at a 150 mg/kg dose for testing wound healing activity in a mouse model of S. aureus infection, the former accelerates faster wound healing than the latter peptide at 14 days post-treatment. The western blot data suggest that the topical application of peptides (PIP-18[59-67] and β-Asp65-PIP[59-67]) modulates NF-kB mediated wound repair in mice with relatively little haemolytic (100-1.56 μg/ml) and cytotoxic (1000

  10. Mechanistic insight into gramicidin-based detection of protein-ligand interactions via sensitized photoinactivation

    Energy Technology Data Exchange (ETDEWEB)

    Rokitskaya, Tatyana I; Kotova, Elena A; Antonenko, Yuri N [Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991 (Russian Federation); Macrae, Michael X; Blake, Steven; Yang, Jerry [Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, CA 92093-0358 (United States); Egorova, Natalya S, E-mail: jerryyang@ucsd.ed, E-mail: antonen@genebee.msu.s [Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow (Russian Federation)

    2010-11-17

    Among the many challenges for the development of ion channel-based sensors is the poor understanding of how to engineer modified transmembrane pores with tailored functionality that can respond to external stimuli. Here, we use the method of sensitized photoinactivation of gramicidin A (gA) channels in planar bilayer lipid membranes to help elucidate the underlying mechanistic details for changes in macroscopic transmembrane ionic current observed upon interaction of C-terminally attached gA ligands with specific proteins in solution. Three different systems were studied: (i) carbonic anhydrase (CA) and gA-sulfonamide, (ii) PSD-95 protein (belonging to the 'PDZ domain-containing protein') and a gA analog carrying the KGGHRRSARYLESSV peptide sequence at the C-terminus, and (iii) an anti-biotin antibody and gA-biotin. The results challenge a previously proposed mechanistic hypothesis suggesting that protein-induced current suppression is due to steric blockage of the ion passage through gA channels, while they reveal new insight for consideration in alternative mechanistic models. Additionally, we demonstrate that the length of a linker between the ligand and the gA channel may be less important for gramicidin-based detection of monovalent compared to multivalent protein-ligand interactions. These studies collectively shed new light on the mechanism of protein-induced current alterations in bilayer recordings of gA derivatives, which may be important in the design of new gramicidin-based sensors.

  11. Mechanistic insight into gramicidin-based detection of protein-ligand interactions via sensitized photoinactivation

    Science.gov (United States)

    Rokitskaya, Tatyana I.; Macrae, Michael X.; Blake, Steven; Egorova, Natalya S.; Kotova, Elena A.; Yang, Jerry; Antonenko, Yuri N.

    2010-11-01

    Among the many challenges for the development of ion channel-based sensors is the poor understanding of how to engineer modified transmembrane pores with tailored functionality that can respond to external stimuli. Here, we use the method of sensitized photoinactivation of gramicidin A (gA) channels in planar bilayer lipid membranes to help elucidate the underlying mechanistic details for changes in macroscopic transmembrane ionic current observed upon interaction of C-terminally attached gA ligands with specific proteins in solution. Three different systems were studied: (i) carbonic anhydrase (CA) and gA-sulfonamide, (ii) PSD-95 protein (belonging to the 'PDZ domain-containing protein') and a gA analog carrying the KGGHRRSARYLESSV peptide sequence at the C-terminus, and (iii) an anti-biotin antibody and gA-biotin. The results challenge a previously proposed mechanistic hypothesis suggesting that protein-induced current suppression is due to steric blockage of the ion passage through gA channels, while they reveal new insight for consideration in alternative mechanistic models. Additionally, we demonstrate that the length of a linker between the ligand and the gA channel may be less important for gramicidin-based detection of monovalent compared to multivalent protein-ligand interactions. These studies collectively shed new light on the mechanism of protein-induced current alterations in bilayer recordings of gA derivatives, which may be important in the design of new gramicidin-based sensors.

  12. Production of peptide antibiotics by Bacillus sp. GU 057 indigenously isolated from saline soil

    OpenAIRE

    Adnan Amin; Muhammad Ayaz Khan; Malik Ehsanullah; Uzma Haroon; Sheikh Muhammad Farooq Azam; Abdul Hameed

    2012-01-01

    A total of 112 soil samples were taken from differents areas of district D.I.Khan and Kohat (KPK) Pakistan and screened for production of antibiotics against the Micrococcus luteus and Staphylococcus aureus. Widest zone of inhibition (18mm) was produced by microorganism isolated from saline soil. The strain was later identified as Bacillus GU057 by standard biochemical assays. Maximum activity (18mm inhibition zone) was observed against Staphylococcus aureus after 48 hours of incubation at pH...

  13. Folding simulations of gramicidin A into the β-helix conformations: Simulated annealing molecular dynamics study

    Science.gov (United States)

    Mori, Takaharu; Okamoto, Yuko

    2009-10-01

    Gramicidin A is a linear hydrophobic 15-residue peptide which consists of alternating D- and L-amino acids and forms a unique tertiary structure, called the β6.3-helix, to act as a cation-selective ion channel in the natural conditions. In order to investigate the intrinsic ability of the gramicidin A monomer to form secondary structures, we performed the folding simulation of gramicidin A using a simulated annealing molecular dynamics (MD) method in vacuum mimicking the low-dielectric, homogeneous membrane environment. The initial conformation was a fully extended one. From the 200 different MD runs, we obtained a right-handed β4.4-helix as the lowest-potential-energy structure, and left-handed β4.4-helix, right-handed and left-handed β6.3-helix as local-minimum energy states. These results are in accord with those of the experiments of gramicidin A in homogeneous organic solvent. Our simulations showed a slight right-hand sense in the lower-energy conformations and a quite β-sheet-forming tendency throughout almost the entire sequence. In order to examine the stability of the obtained right-handed β6.3-helix and β4.4-helix structures in more realistic membrane environment, we have also performed all-atom MD simulations in explicit water, ion, and lipid molecules, starting from these β-helix structures. The results suggested that β6.3-helix is more stable than β4.4-helix in the inhomogeneous, explicit membrane environment, where the pore water and the hydrogen bonds between Trp side-chains and lipid-head groups have a role to further stabilize the β6.3-helix conformation.

  14. Gramicidin induces the formation of non-bilayer structures in phosphatidylcholine dispersions in a fatty acid chain length dependent way

    OpenAIRE

    Echteld, C. J. A. Van; Kruijff, B. de; Verkleij, A. J.; Leunissen-Bijvelt, J.; de Gier, J.

    1982-01-01

    The hydrophobic peptide gramicidin is shown by 31P-NMR, freeze-fracture electron microscopy and small-angle X-ray diffraction, to induce a hexogonal HII-phase lipid organization when incorporated in liquid crystalline saturated and unsaturated synthetic and natural phosphatidylcholines if the length of the fatty acids exceeds a 16 carbon atoms chain. The amount of hexagonally organized lipid increases with increasing fatty acid chain length. With phosphatidylcholines possessing shorter fatty ...

  15. Investigation of the antibacterial activity and the biosynthesis gene cluster of the peptide antibiotic feglymycin

    OpenAIRE

    Rausch, Saskia

    2012-01-01

    Feglymycin ist ein aus Streptomyces sp. DSM 11171 isoliertes, lineares 13mer-Peptid, das zu einem hohen Anteil aus den nicht-proteinogenen Aminosäuren Hpg (4-Hydroxyphenylglycine) und Dpg (3,5-Dihydroxyphenylglycine) besteht. Zudem besitzt es eine interessante, alternierende Abfolge von D- und L- Aminosäuren und strukturelle Ähnlichkeiten mit den Glycopeptiden der Vancomycin-Gruppe von Antibiotika und den Glycodepsipeptid-Antibiotika Ramoplanin und Enduracidin. Außerdem besitzt Feglymycin ein...

  16. Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin.

    OpenAIRE

    Harroun, T A; Heller, W T; Weiss, T M; Yang, L; Huang, H W

    1999-01-01

    Hydrophobic matching, in which transmembrane proteins cause the surrounding lipid bilayer to adjust its hydrocarbon thickness to match the length of the hydrophobic surface of the protein, is a commonly accepted idea in membrane biophysics. To test this idea, gramicidin (gD) was embedded in 1, 2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and 1, 2-myristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers at the peptide/lipid molar ratio of 1:10. Circular dichroism (CD) was measured to ensure tha...

  17. 13C solid-state NMR of gramicidin A in a lipid membrane.

    OpenAIRE

    Quist, P O

    1998-01-01

    The natural-abundance 13C NMR spectrum of gramicidin A in a lipid membrane was acquired under magic-angle spinning conditions. With fast sample spinning (15 kHz) at approximately 65 degrees C the peaks from several of the aliphatic, beta-, alpha-, aromatic, and carbonyl carbons in the peptide could be resolved. The resolution in the 13C spectrum was superior that observed with 1H NMR under similar conditions. The 13C linewidths were in the range 30-100 Hz, except for the alpha- and beta-carbo...

  18. PCR-based site-specific mutagenesis of peptide antibiotics FALL-39 and its biologic activities

    Institute of Scientific and Technical Information of China (English)

    Yun-xia YANG; Yun FENG; Bo-yao WANG; Qi WU

    2004-01-01

    AIM: To construct PGEX-1λT-FALL-39 expression vector and its mutant vector, and study the relationship of function and structure. METHODS: A cDNA encoding mature FALL-39 was cloned from SPCA- 1 cell mRNA and the prokaryotic expression vector PGEX- 1λT-FALL-39 was constructed. Two kinds of polymerase chain reaction (PCR) for the site-direction mutagenesis were used to construct FALL-39 mutant expression vector, FALL-39-Lys-32 and FALL-39-Lys-24. Minimal effective concentration, minimal inhibitory concentration, and minimal bactericidal concentration were used to assay the antibacterial activities of these peptides. Effects of different solution on the antibacterial activity of FALL-39 and FALL-39-Lys-32 were observed by CFU determination. The hemolytic effects of these peptides were also examined on human red blood cells. RESULTS: Two site-specific mutants FALL-39-Lys-32 and FALL-39-Lys24 were obtained by PCR-induced mutagenesis. In comparison with two-step PCR which required two pairs of primers, one step PCR which required one pair of primers is a simple and efficient method for the PCR based site-specific mutagenesis. Using the prokaryotic expression system, the E coli-based products of recombinant FALL39 and its mutant peptides were also obtained. The antibacterial assay showed that FALL-39-Lys-32 and FALL-39-Lys24 were more potential in the antibacterial activity against E coli ML35p and Pseltdomonas aeruginosa ATCC27853 than that of FALL-39, and no increase in hemolysis was observed at the antibacterial concentrations. The antibacterial activity of FALL-39-Lys-32 against E coli was more potent than that of FALL-39 in NaCl-containing LB medium, while its activity was almost the same as FALL-39 in SO2-4 containing Medium E. CONCLUSION: PCR-based mutagensis is a useful model system for studying the structure and function relationship of antimicrobial peptides. Keeping α-helical conformation of FALL-39 and increasing net positive charge can increase the

  19. Novel gramicidin formulations in cationic lipid as broad-spectrum microbicidal agents

    Directory of Open Access Journals (Sweden)

    Ragioto DA

    2014-06-01

    Full Text Available Danielle AMT Ragioto, Letícia DM Carrasco, Ana M Carmona-Ribeiro Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil Abstract: Dioctadecyldimethylammonium bromide (DODAB is an antimicrobial lipid that can be dispersed as large closed bilayers (LV or bilayer disks (BF. Gramicidin (Gr is an antimicrobial peptide assembling as channels in membranes and increasing their permeability towards cations. In mammalian cells, DODAB and Gr have the drawbacks of Gram-positive resistance and high toxicity, respectively. In this study, DODAB bilayers incorporating Gr showed good antimicrobial activity and low toxicity. Techniques employed were spectroscopy, photon correlation spectroscopy for sizing and evaluation of the surface potential at the shear plane, turbidimetric detection of dissipation of osmotic gradients in LV/Gr, determination of bacterial cell lysis, and counting of colony-forming units. There was quantitative incorporation of Gr and development of functional channels in LV. Gr increased the bilayer charge density in LV but did not affect the BF charge density, with localization of Gr at the BF borders. DODAB/Gr formulations substantially reduce Gr toxicity against eukaryotic cells and advantageously broaden the antimicrobial activity spectrum, effectively killing Escherichia coli and Staphylococcus aureus bacteria with occurrence of cell lysis. Keywords: antimicrobial peptides, cationic bilayers, bilayer fragments, dioctadecyldimethylammonium bromide, gramicidin A, self-assembly

  20. Antimicrobial Peptide from the Wild Bee Hylaeus signatus Venom and Its Analogues: Structure-Activity Study and Synergistic Effect with Antibiotics.

    Science.gov (United States)

    Nešuta, Ondřej; Hexnerová, Rozálie; Buděšínský, Miloš; Slaninová, Jiřina; Bednárová, Lucie; Hadravová, Romana; Straka, Jakub; Veverka, Václav; Čeřovský, Václav

    2016-04-22

    Venoms of hymenopteran insects have attracted considerable interest as a source of cationic antimicrobial peptides (AMPs). In the venom of the solitary bee Hylaeus signatus (Hymenoptera: Colletidae), we identified a new hexadecapeptide of sequence Gly-Ile-Met-Ser-Ser-Leu-Met-Lys-Lys-Leu-Ala-Ala-His-Ile-Ala-Lys-NH2. Named HYL, it belongs to the category of α-helical amphipathic AMPs. HYL exhibited weak antimicrobial activity against several strains of pathogenic bacteria and moderate activity against Candida albicans, but its hemolytic activity against human red blood cells was low. We prepared a set of HYL analogues to evaluate the effects of structural modifications on its biological activity and to increase its potency against pathogenic bacteria. This produced several analogues exhibiting significantly greater activity compared to HYL against strains of both Staphylococcus aureus and Pseudomonas aeruginosa even as their hemolytic activity remained low. Studying synergism of HYL peptides and conventional antibiotics showed the peptides act synergistically and preferentially in combination with rifampicin. Fluorescent dye propidium iodide uptake showed the tested peptides were able to facilitate entrance of antibiotics into the cytoplasm by permeabilization of the outer and inner bacterial cell membrane of P. aeruginosa. Transmission electron microscopy revealed that treatment of P. aeruginosa with one of the HYL analogues caused total disintegration of bacterial cells. NMR spectroscopy was used to elucidate the structure-activity relationship for the effect of amino acid residue substitution in HYL. PMID:26998557

  1. Effect of gramicidin on percutaneous permeation of a model drug

    OpenAIRE

    Chi H Lee; Choi, Hoo-Kyun

    2000-01-01

    This study investigated the enhancement effect of gramicidin, a cationic ionophore, on percutaneous absorption of a model drug, benzoic acid (BA), through rat abdominal skin. The mechanisms by which gramicidin increased skin permeability to BA were also investigated. Degree of hydration measured by the Karl Fisher method, the concentration gradient measured by cryostat analysis, and lipid concentration measured by the. Fiske-Subbarow method were evaluated and compared. The results showed that...

  2. Monitoring Gramicidin Conformations in Membranes: A Fluorescence Approach

    OpenAIRE

    RAWAT, SATINDER S.; Kelkar, Devaki A.; Chattopadhyay, Amitabha

    2004-01-01

    We have monitored the membrane-bound channel and nonchannel conformations of gramicidin utilizing red-edge excitation shift (REES), and related fluorescence parameters. In particular, we have used fluorescence lifetime, polarization, quenching, chemical modification, and membrane penetration depth analysis in addition to REES measurements to distinguish these two conformations. Our results show that REES of gramicidin tryptophans can be effectively used to distinguish conformations of membran...

  3. Uniformly oriented gramicidin channels embedded in thick monodomain lecithin multilayers.

    OpenAIRE

    Huang, H W; Olah, G A

    1987-01-01

    Phosphatidylcholine multilayers, containing 20% water by total sample weight and gramicidin/lipid molar ratios up to 1:40 were aligned by low temperature annealing (less than 60 degrees C) and mechanical stressing. We were able to obtain large (greater than 80 micron thick X 40 mm2 area) monodomain defect-free multilayers containing approximately 10(17) uniformly oriented gramicidin channels. The alignment of lipid multilayers was monitored by conoscopy and polarized microscopy. The smectic d...

  4. Conformational analysis of gramicidin-gramicidin interactions at the air/water interface suggests that gramicidin aggregates into tube-like structures similar as found in the gramicidin-induced hexagonal HII phase

    OpenAIRE

    Brasserua, R.; Killian, J A; Kruijff, B. de; Ruysschaert, J M

    1987-01-01

    The energetics of interaction and the type of aggregate structure in lateral assemblies of up to five gramicidin molecules in the β6.3 helical conformation at the air/water interface was calculated using conformational analysis procedures. It was found that within the aggregate two types of gramicidin interaction occur. One leading to a linear organization with a mean interaction energy between monomers of −6 kcal/mol and one in a perpendicular direction leading to a circularly organization w...

  5. Effect of Gramicidin on Methanogenesis by Various Methanogenic Bacteria

    OpenAIRE

    Jarrell, Ken F.; Hamilton, Elizabeth A.

    1985-01-01

    Methanogenesis by Methanobacterium thermoautotrophicum strains was extremely sensitive to gramicidin, total inhibition being observed at 0.2 μg/ml. In contrast, methane synthesis by Methanococcus voltae, Methanogenium marisnigri, Methanosarcina mazei, and Methanospirillum hungatei were resistant to the highest concentrations of gramicidin tested (40 μg/ml), although spheroplasts of Methanospirillum hungatei were extremely sensitive. Other species tested showed intermediate sensitivity to gram...

  6. Cell-penetrating peptide and antibiotic combination therapy: a potential alternative to combat drug resistance in methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Randhawa, Harmandeep Kaur; Gautam, Ankur; Sharma, Minakshi; Bhatia, Rakesh; Varshney, Grish C; Raghava, Gajendra Pal Singh; Nandanwar, Hemraj

    2016-05-01

    The diverse pattern of resistance by methicillin-resistant Staphylococcus aureus (MRSA) is the major obstacle in the treatment of its infections. The key reason of resistance is the poor membrane permeability of drug molecules. Over the last decade, cell-penetrating peptides (CPPs) have emerged as efficient drug delivery vehicles and have been exploited to improve the intracellular delivery of numerous therapeutic molecules in preclinical studies. Therefore, to overcome the drug resistance, we have investigated for the first time the effects of two CPPs (P3 and P8) in combination with four antibiotics (viz. oxacillin, erythromycin, norfloxacin, and vancomycin) against MRSA strains. We found that both CPPs internalized into the MRSA efficiently at very low concentration (oxacillin, norfloxacin, and vancomycin to susceptible levels (generally <1 μg/mL) for almost all five clinical isolates. Further, the bacterial cell death was confirmed by scanning electron microscopy as well as propidium iodide uptake assay. Simultaneously, time-kill kinetics revealed the increased uptake of antibiotics. In summary, CPPs assist to restore the effectiveness of antibiotics at much lower concentration, eliminate the antibiotic toxicity, and represent the CPP-antibiotic combination therapy as a potential novel weapon to combat MRSA infections. PMID:26837216

  7. Interdomain and Intermodule Organization in Epimerization Domain Containing Nonribosomal Peptide Synthetases.

    Science.gov (United States)

    Chen, Wei-Hung; Li, Kunhua; Guntaka, Naga Sandhya; Bruner, Steven D

    2016-08-19

    Nonribosomal peptide synthetases are large, complex multidomain enzymes responsible for the biosynthesis of a wide range of peptidic natural products. Inherent to synthetase chemistry is the thioester templated mechanism that relies on protein/protein interactions and interdomain dynamics. Several questions related to structure and mechanism remain to be addressed, including the incorporation of accessory domains and intermodule interactions. The inclusion of nonproteinogenic d-amino acids into peptide frameworks is a common and important modification for bioactive nonribosomal peptides. Epimerization domains, embedded in nonribosomal peptide synthetases assembly lines, catalyze the l- to d-amino acid conversion. Here we report the structure of the epimerization domain/peptidyl carrier protein didomain construct from the first module of the cyclic peptide antibiotic gramicidin synthetase. Both holo (phosphopantethiene post-translationally modified) and apo structures were determined, each representing catalytically relevant conformations of the two domains. The structures provide insight into domain-domain recognition, substrate delivery during the assembly line process, in addition to the structural organization of homologous condensation domains, canonical players in all synthetase modules. PMID:27294598

  8. Influence of gramicidin on the dynamics of DMPC studied by incoherent elastic neutron scattering

    Science.gov (United States)

    Wanderlingh, U.; D'Angelo, G.; Conti Nibali, V.; Gonzalez, M.; Crupi, C.; Mondelli, C.

    2008-03-01

    By using the fixed energy window method in incoherent elastic neutron scattering, molecular motions in the 150 ps timescale in highly oriented multilayers of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) membranes in excess of water (D2O) have been studied as a function of temperature, in the range from 27 to 325 K. The same system in partially deuterated form and with the addition of a pore-forming peptide (gramicidin) has also been investigated. By proper orientation of the membrane plane with respect to the scattering wavevector Q, information on in plane and out of plane motions of lipid membranes have been derived. Two relevant dynamical transitions were observed at T = 297 K and at T = 270 K. The former is related to the structural main transition from gel to liquid phase of the phospholipid bilayer, while the latter is related to a transition of the aqueous solvent. The inclusion of gramicidin shifts the main transition down to 294 K and the second transition up to 276 K. In both cases the observed dynamical transitions show an enhanced mobility in the direction normal to the membrane plane.

  9. Influence of gramicidin on the dynamics of DMPC studied by incoherent elastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wanderlingh, U; D' Angelo, G; Nibali, V Conti; Crupi, C [Dipartimento di Fisica, Universita di Messina, Salita Sperone 31, I-98166 S Agata, Messina (Italy); Gonzalez, M [Institut Laue Langevin, 6 rue Jules Horowitz, BP 156, F-38042 Grenoble (France); Mondelli, C [CNR-INFM, CRS-Soft and Institut Laue Langevin, Grenoble (France)], E-mail: gdangelo@unime.it

    2008-03-12

    By using the fixed energy window method in incoherent elastic neutron scattering, molecular motions in the 150 ps timescale in highly oriented multilayers of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) membranes in excess of water (D{sub 2}O) have been studied as a function of temperature, in the range from 27 to 325 K. The same system in partially deuterated form and with the addition of a pore-forming peptide (gramicidin) has also been investigated. By proper orientation of the membrane plane with respect to the scattering wavevector Q, information on in plane and out of plane motions of lipid membranes have been derived. Two relevant dynamical transitions were observed at T = 297 K and at T = 270 K. The former is related to the structural main transition from gel to liquid phase of the phospholipid bilayer, while the latter is related to a transition of the aqueous solvent. The inclusion of gramicidin shifts the main transition down to 294 K and the second transition up to 276 K. In both cases the observed dynamical transitions show an enhanced mobility in the direction normal to the membrane plane.

  10. Synthetic Channel-forming Peptides and Ion Selectivity

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Introduction Peptides made up of alternating L- and D- amino acids can form β-helices as in gramicidin A or cyclic peptides that aggregate to form tubes[1]. In both cases the structures are hollow with all the side chains projecting outwards. Kennedy et al. [2] postulated that peptides having the (LLLD)n configuration could form helices with every fourth side chain projecting inward.It is a fact that synthetic N-formyl-( LeuSerLeuGly)6-OH, when added to a lipid bilayer, dimerizes, to form ion channels having conductances greater than that of gramicidin.

  11. Nonmammalian Vertebrate Antibiotic Peptides

    Czech Academy of Sciences Publication Activity Database

    Šíma, Petr; Trebichavský, Ilja; Sigler, Karel

    2003-01-01

    Roč. 48, č. 6 (2003), s. 709-724. ISSN 0015-5632 R&D Projects: GA ČR GA524/01/0917; GA ČR GA301/02/1232; GA AV ČR IBS5020202 Institutional research plan: CEZ:AV0Z5020903 Keywords : immunoglobulin * t-cell receptors * molecules mhc Subject RIV: EE - Microbiology, Virology Impact factor: 0.857, year: 2003

  12. 2-Amino-3-(Oxirane-2,3-Dicarboxamido)-Propanoyl-Valine, an Effective Peptide Antibiotic from the Epiphyte Pantoea agglomerans 48b/90 ▿

    OpenAIRE

    Sammer, Ulrike F.; Völksch, Beate; Möllmann, Ute; Schmidtke, Michaela; Spiteller, Peter; Spiteller, Michael; Spiteller, Dieter

    2009-01-01

    The epiphyte Pantoea agglomerans 48b/90, which has been isolated from soybean leaves, belongs to the Enterobacteriaceae, as does the plant pathogen Erwinia amylovora, which causes fire blight on rosaceous plants such as apples and leads to severe economic losses. Since P. agglomerans efficiently antagonizes phytopathogenic bacteria, the P. agglomerans strain C9-1 is used as a biocontrol agent (BlightBan C9-1). Here we describe the bioassay-guided isolation of a peptide antibiotic that is high...

  13. High-resolution polypeptide structure and dynamics in anisotropic environments: The gramicidin channel

    Energy Technology Data Exchange (ETDEWEB)

    Cross, T.A.; Lee, K.C.; Ketchem, R.R.; Hu, W.; Lazo, N.D.; Huo, S. [Florida State Univ., Tallahassee, FL (United States)

    1994-12-01

    To understand the details of macromolecular function, high-resolution structural and dynamic detail is essential. The polypeptide fold of the gramicidin channel has been effectively modeled for the past 20 years, yet the functional changes in conductance and channel lifetime associated with amino acid substitutions cannot be predicted. To accomplish this goal, high-resolution electrostatic modeling and the precise orientation of all dipoles are required. Furthermore, an enhanced knowledge of the complex molecular environment of this membrane-bound peptide is needed. An aqueous environment is relatively uniform and achiral. The membrane environment is very heterogenous and chiral. A knowledge of the interactions, specific and nonspecific, between peptide and lipid will aid in developing a better understanding of this environment. To accomplish this goal, it is necessary to study the peptide in an extended lipid bilayer, rather than in a vesicular or micellar form. These latter environments are likely to possess increased dynamics, increased water penetration, and distorted interactions between the polypeptide and membrane surface. To perform NMR studies on bilayer bound peptides, solid state NMR methods are required, and for specific site information, isotopic labels are incorporated using solid phase peptide synthesis.

  14. Proposed Mechanism for HII Phase Induction by Gramicidin in Model Membranes and Its Relation to Channel Formation

    OpenAIRE

    Killian, J. Antoinette; de Kruijff, Ben

    1988-01-01

    A model is proposed for the molecular mechanism of HII phase induction by gramicidin in model membranes. The model describes the sequence of events that occurs upon hydration of a mixed lipid/gramicidin film, relating them to gramicidin channel formation and to relevant literature on gramicidin and lipid structure.

  15. Heterologous expression in Escherichia coli of the first module of the nonribosomal peptide synthetase for chloroeremomycin, a vancomycin-type glycopeptide antibiotic.

    Science.gov (United States)

    Trauger, J W; Walsh, C T

    2000-03-28

    The gene cluster from Amycolotopsis orientalis responsible for biosynthesis of the vancomycin-type glycopeptide antibiotic chloroeremomycin was recently sequenced, indicating that this antibiotic derives from a seven-residue peptide synthesized by a three-subunit (CepA, CepB, and CepC) modular nonribosomal peptide synthetase. Expression of all or parts of the peptide synthetase in Escherichia coli would facilitate biochemical characterization of its substrate specificity, an important step toward the development of more potent glycopeptides by combinatorial biosynthesis. To determine whether CepA, a three-module 3,158-residue peptide synthetase expected to assemble the first three residues of the heptapeptide precursor, could be heterologously expressed in E. coli and converted to active, holo form by posttranslational priming with a phosphopantetheinyltransferase, we expressed two CepA fragments (CepA1-575 and CepA1-1596) as well as full-length CepA (CepA1-3158). All three constructs were expressed in soluble form. We find that the CepA1-575 fragment, containing adenylation and peptidyl carrier protein domains (A1-PCP1), specifically adenylates l-leucine and d-leucine in a 6:1 ratio, and it can be converted to holo form by the phosphopantetheinyltransferase Sfp; also, we find that holo-CepA1-575 can be covalently aminoacylated with l-leucine on the peptidyl carrier protein 1 domain. However, no amino acid-dependent adenylation or aminoacylation activity was detected for the larger CepA constructs with l-leucine or other expected amino acid substrates, suggesting severe folding problems in the multidomain proteins. PMID:10716695

  16. Development of agar diffusion method for dosage of gramicidin

    Directory of Open Access Journals (Sweden)

    Ana Gabriela Reis Solano

    2011-09-01

    Full Text Available Gramicidin, an antimicrobial peptide active against Gram positive bacteria, is commonly used in pharmaceutical preparations for topical use. Considering that only the turbidimetric method has been described in the literature, the present study sought to develop and validate an agar diffusion method for the dosage of gramicidin. The method was developed and validated using the Kocuria rhizophila ATCC 9341 as a test microorganism. Two designs were used: a 3x3 parallel-line model, and a 5x1 standard curve. The validation demonstrated that the method follows the linear model (r²= 0.994, presenting a significant regression between the zone diameter of growth inhibition and the logarithm of the concentration within the range of 5 to 25.3 µg/mL. The results obtained for both designs were precise, having a relative standard deviation (R.S.D. for intra-day precision of 0.81 for the 3x3 assay and 1.90 for the 5x1 assay. For the inter-day precision, the R.S.D. was 1.35 for the 3x3 and 2.64 for the 5x1. The accuracy was verified and results confirmed to be accurate, having a tolerance interval of 95%, which lay within permitted limits and appropriate trueness. In addition, the method was considered selective, with limit of detection and upper and lower limits of quantification of 2.00, 5.00 and 25.3 µg/mL, respectively. No difference in precision between the designs used in the agar diffusion method was evident (p>0.05. The method proved to be appropriate for the microbiological dosage of the raw material gramicidin.A gramicidina, um peptídeo antimicrobiano ativo contra bactérias Gram positivo, é utilizada em preparações farmacêuticas de uso tópico. Neste trabalho procurou-se desenvolver e validar outro método para o doseamento de gramicidina tendo em vista que somente o método turbidimétrico é descrito. O método de difusão em ágar foi desenvolvido e validado utilizando como microrganismo teste Kocuria rhizophila ATCC 9341. Foram utilizados

  17. NQRS Data for Gramicidin A (Subst. No. 2507)

    Science.gov (United States)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for Gramicidin A (Subst. No. 2507)

  18. Conformational analysis of gramicidin-gramicidin interactions at the air/water interface suggests that gramicidin aggregates into tube-like structures similar as found in the gramicidin-induced hexagonal HII phase

    NARCIS (Netherlands)

    Brasserua, R.; Killian, J.A.; Kruijff, B. de; Ruysschaert, J.M.

    1987-01-01

    The energetics of interaction and the type of aggregate structure in lateral assemblies of up to five gramicidin molecules in the β6.3 helical conformation at the air/water interface was calculated using conformational analysis procedures. It was found that within the aggregate two types of gramicid

  19. Subtle differences in molecular recognition between modified glycopeptide antibiotics and bacterial receptor peptides identified by electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J. D.; Staroske, T; Roepstorff, P; Williams, DH; Heck, AJR

    showing that electrospray ionization mass spectrometry (ESI-MS) can be used in the rapid quantitative analysis of mixtures of vancomycin-group antibiotics and their bacterial cell-wall receptors allowing the identification of even subtle differences in binding constants. Differences in affinities are...

  20. Identification of a New Peptide Deformylase Gene From Enterococcus faecium and Establishment of a New Screening Model Targeted on PDF for Novel Antibiotics

    Institute of Scientific and Technical Information of China (English)

    XIAN-BING TANG; SHU-YI SI; YUE-QIN ZHANG

    2004-01-01

    To identify a new peptide deformylase (PDF) gene (Genebank Accession AY238515) from Enterococcus faecium and to establish a new screening model targeted on PDF. Methods A new PDF gene was identified by BLAST analysis and PCR and was subsequently over-expressed in the prokaryotic expression host E.coli Bl21(DE3). Over-expressed protein was purified for enzymatic assay by metal affinity chromatography and a new screening model was established for novel antibiotics. Result A new PDF gene of Enterococcus faecium was identified successfully. Ten positive samples were picked up from 8000 compound library and the microbial fermentation broth samples. Conclusion A new PDF of gene Enterococcus faecium was first identified and the model had a high efficacy. Positive samples screened may be antibacterial agents of broad spectrum.

  1. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp.

    Science.gov (United States)

    Shi, Wei-Ling; Chen, Xiu-Lan; Wang, Li-Xia; Gong, Zhi-Ting; Li, Shuyu; Li, Chun-Long; Xie, Bin-Bin; Zhang, Wei; Shi, Mei; Li, Chuanyou; Zhang, Yu-Zhong; Song, Xiao-Yan

    2016-04-01

    Trichodermaspp. are well known biocontrol agents that produce a variety of antibiotics. Peptaibols are a class of linear peptide antibiotics mainly produced byTrichoderma Alamethicin, the most studied peptaibol, is reported as toxic to plants at certain concentrations, while the mechanisms involved are unclear. We illustrated the toxic mechanisms of peptaibols by studying the growth-inhibitory effect of Trichokonin VI (TK VI), a peptaibol fromTrichoderma longibrachiatumSMF2, onArabidopsisprimary roots. TK VI inhibited root growth by suppressing cell division and cell elongation, and disrupting root stem cell niche maintenance. TK VI increased auxin content and disrupted auxin response gradients in root tips. Further, we screened theArabidopsisTK VI-resistant mutanttkr1tkr1harbors a point mutation inGORK, which encodes gated outwardly rectifying K(+)channel proteins. This mutation alleviated TK VI-induced suppression of K(+)efflux in roots, thereby stabilizing the auxin gradient. Thetkr1mutant also resisted the phytotoxicity of alamethicin. Our results indicate that GORK channels play a key role in peptaibol-plant interaction and that there is an inter-relationship between GORK channels and maintenance of auxin homeostasis. The cellular and molecular insight into the peptaibol-induced inhibition of plant root growth advances our understanding ofTrichoderma-plant interactions. PMID:26850879

  2. The insect pathogen Serratia marcescens Db10 uses a hybrid non-ribosomal peptide synthetase-polyketide synthase to produce the antibiotic althiomycin.

    Directory of Open Access Journals (Sweden)

    Amy J Gerc

    Full Text Available There is a continuing need to discover new bioactive natural products, such as antibiotics, in genetically-amenable micro-organisms. We observed that the enteric insect pathogen, Serratia marcescens Db10, produced a diffusible compound that inhibited the growth of Bacillis subtilis and Staphyloccocus aureus. Mapping the genetic locus required for this activity revealed a putative natural product biosynthetic gene cluster, further defined to a six-gene operon named alb1-alb6. Bioinformatic analysis of the proteins encoded by alb1-6 predicted a hybrid non-ribosomal peptide synthetase-polyketide synthase (NRPS-PKS assembly line (Alb4/5/6, tailoring enzymes (Alb2/3 and an export/resistance protein (Alb1, and suggested that the machinery assembled althiomycin or a related molecule. Althiomycin is a ribosome-inhibiting antibiotic whose biosynthetic machinery had been elusive for decades. Chromatographic and spectroscopic analyses confirmed that wild type S. marcescens produced althiomycin and that production was eliminated on disruption of the alb gene cluster. Construction of mutants with in-frame deletions of specific alb genes demonstrated that Alb2-Alb5 were essential for althiomycin production, whereas Alb6 was required for maximal production of the antibiotic. A phosphopantetheinyl transferase enzyme required for althiomycin biosynthesis was also identified. Expression of Alb1, a predicted major facilitator superfamily efflux pump, conferred althiomycin resistance on another, sensitive, strain of S. marcescens. This is the first report of althiomycin production outside of the Myxobacteria or Streptomyces and paves the way for future exploitation of the biosynthetic machinery, since S. marcescens represents a convenient and tractable producing organism.

  3. On the conductance heterogeneity in membrane channels formed by gramicidin A. A cooperative study.

    OpenAIRE

    Busath, D D; Andersen, O S; Koeppe, R E

    1987-01-01

    The relative frequency of low-conductance variants of gramicidin A channels in lipid bilayers was determined in parallel experiments in two different laboratories. A common gramicidin stock solution was tested in both labs and, initially, gave rise to significantly different proportions (9% v. 23%) of "mini" channels in the two labs. The lipid and gramicidin solutions were exchanged to identify the source of the difference: When using solutions prepared in lab A (Andersen), lab B (Busath) obs...

  4. Valence selectivity of the gramicidin channel: a molecular dynamics free energy perturbation study.

    OpenAIRE

    Roux, B

    1996-01-01

    The valence selectivity of the gramicidin channel is examined using computer simulations based on atomic models. The channel interior is modeled using a gramicidin-like periodic poly (L,D)-alanine beta-helix. Free energy perturbation calculations are performed to obtain the relative affinity of K+ and Cl- for the channel. It is observed that the interior of the gramicidin channel provides an energetically favorable interaction site for a cation but not for an anion. Relative to solvation in b...

  5. Solvent history dependence of gramicidin A conformations in hydrated lipid bilayers.

    OpenAIRE

    LoGrasso, P V; Moll, F; Cross, T A

    1988-01-01

    Reconstituted lipid bilayers of dimyristoylphosphatidylcholine (DMPC) and gramicidin A' have been prepared by cosolubilizing gramicidin and DMPC in one of three organic solvent systems followed by vacuum drying and hydration. The conformational state of gramicidin as characterized by 23Na NMR, circular dichroism, and solid state 15N NMR is dependent upon the cosolubilizing solvent system. In particular, two conformational states are described; a state in which Na+ has minimal interactions wit...

  6. Gramicidin conformational changes during riboflavin photosensitized oxidation in solution and the effect of N-methylation of tryptophan residues.

    Science.gov (United States)

    Fuentealba, Denis; López, Jhon J; Palominos, Marco; Salas, Cristian O; Soto-Arriaza, Marco A

    2015-04-01

    In the present work, we evaluated the role of gramicidin conformation in its photosensitized oxidation in organic solvents when irradiated in the presence of riboflavin. Gramicidin conformation has been described as monomeric in trifluoroethanol and as an intertwined dimer in methanol. Gramicidin showed extensive photo-oxidation upon irradiation in the presence of riboflavin in both solvents, and tryptophan residues were identified to be involved. We synthesized a gramicidin derivative methylated at position 1 of the indole ring of tryptophan to assess its effect on gramicidin conformation and photo-oxidation. Methylated gramicidin showed very similar absorption and emission spectra to gramicidin, but different conformations were identified by circular dichroism spectra. Upon irradiation, N-methylated tryptophan residues in the gramicidin derivative were not easily photo-oxidized by riboflavin compared to gramicidin. Circular dichroism spectra for gramicidin in methanol changed significantly upon irradiation in the presence of riboflavin indicating a change in conformation, while in trifluoroethanol no such changes were observed. Time-resolved fluorescence and anisotropy studies showed that oxidized gramicidin in methanol had shorter fluorescence lifetimes and a shorter rotational correlation time compared to non-irradiated gramicidin. Additionally, SDS-PAGE analysis showed a marked change in the electrophoretic pattern, whereas the high-molecular-weight bands disappeared upon irradiation. We interpret all these results in terms of a riboflavin photosensitized shift in gramicidin conformation from intertwined to monomeric. PMID:25611022

  7. A subdomain swap strategy for reengineering nonribosomal peptides.

    Science.gov (United States)

    Kries, Hajo; Niquille, David L; Hilvert, Donald

    2015-05-21

    Nonribosomal peptide synthetases (NRPSs) protect microorganisms from environmental threats by producing diverse siderophores, antibiotics, and other peptide natural products. Their modular molecular structure is also attractive from the standpoint of biosynthetic engineering. Here we evaluate a methodology for swapping module specificities of these mega-enzymes that takes advantage of flavodoxin-like subdomains involved in substrate recognition. Nine subdomains encoding diverse specificities were transplanted into the Phe-specific GrsA initiation module of gramicidin S synthetase. All chimeras could be purified as soluble protein. One construct based on a Val-specific subdomain showed sizable adenylation activity and functioned as a Val-Pro diketopiperazine synthetase upon addition of the proline-specific GrsB1 module. These results suggest that subdomain swapping could be a viable alternative to previous NRPS design approaches targeting binding pockets, domains, or entire modules. The short length of the swapped sequence stretch may facilitate straightforward exploitation of the wealth of existing NRPS modules for combinatorial biosynthesis. PMID:26000750

  8. Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M.

    Science.gov (United States)

    Martin, Nathaniel I; Hu, Haijing; Moake, Matthew M; Churey, John J; Whittal, Randy; Worobo, Randy W; Vederas, John C

    2003-04-11

    Mattacin is a nonribosomally synthesized, decapeptide antibiotic produced by Paenibacillus kobensis M. The producing strain was isolated from a soil/manure sample and identified using 16 S rRNA sequence homology along with chemical and morphological characterization. An efficient production and isolation procedure was developed to afford pure mattacin. Structure elucidation using a combination of chemical degradation, multidimensional NMR studies (COSY, HMBC, HMQC, ROESY), and mass spectrometric (MALDI MS/MS) analyses showed that mattacin is identical to polymyxin M, an uncommon antibiotic reported previously in certain Bacillus species by Russian investigators. Mattacin (polymyxin M) is cyclic and possesses an amide linkage between the C-terminal threonine and the side chain amino group of the diaminobutyric acid residue at position 4. It contains an (S)-6-methyloctanoic acid moiety attached as an amide at the N-terminal amino group, one D-leucine, six L-alpha,gamma-diaminobutyric acid, and three L-threonine residues. Transfer NOE experiments on the conformational preferences of mattacin when bound to lipid A and microcalorimetry studies on binding to lipopolysaccharide showed that its behavior was very similar to that observed in previous studies of polymyxin B (a commercial antibiotic), suggesting an identical mechanism of action. It was capable of inhibiting the growth of a wide variety of Gram-positive and Gram-negative bacteria, including several human and plant pathogens with activity comparable with purified polymyxin B. The biosynthesis of mattacin was also examined briefly using transpositional mutagenesis by which 10 production mutants were obtained, revealing a set of genes involved in production. PMID:12569104

  9. Gramicidin-mediated currents at very low permeant ion concentrations.

    OpenAIRE

    Hainsworth, A H; Hladky, S B

    1987-01-01

    Current-voltage relations have been measured for the fluxes of caesium ions through pores formed by gramicidin in lipid bilayer membranes. The ionic currents have been separated from capacitative currents using a bridge circuit with an integrator as null-detector. The conductances during brief voltage pulses were small enough to avoid the effects of diffusion polarization and the ionic strength was raised using choline chloride or magnesium sulfate to reduce the effects of double-layer polari...

  10. Anomalous volume change of gramicidin A in ethanol solutions

    Science.gov (United States)

    Derechin, M.; Hayashi, D. M.; Jordan, B. E.

    1975-01-01

    Results of studies aimed at clarifying the failure of gramicidin A (GA) to sediment in early experiments are analyzed. In the present work, no sedimentation was observed in pure pentanol or ethanol, while normal sedimentation was observed in ethanol-water mixtures. It is concluded that GA exists in two conformations that differ in volume. Since the apparent specific volume in absolute ethanol sinks to its lowest values on increasing concentration, the GA molecule probably unfolds completely in conditions favorable for dimerization.

  11. The first crystal structure of a gramicidin complex with sodium: high-resolution study of a nonstoichiometric gramicidin D-NaI complex

    Energy Technology Data Exchange (ETDEWEB)

    Olczak, A.; Glówka, M.L.; Szczesio, M.; Bojarska, J.; Wawrzak, Z.; Duax, W.L. (Poland); (NWU); (HWMRI)

    2010-11-15

    The crystal structure of the nonstoichiometric complex of gramicidin D with NaI has been studied using synchrotron radiation at 100 K. The limiting resolution was 1.25 {angstrom} and the R factor was 16% for 19,883 observed reflections. The general architecture of the antiparallel two-stranded gramicidin dimers in the studied crystal was a right-handed antiparallel double-stranded form that closely resembles the structures of other right-handed species published to date. However, there were several surprising observations. In addition to the significantly different composition of linear gramicidins identified in the crystal structure, including the absence of the gramicidin C form, only two cationic sites were found in each of the two independent dimers (channels), which were partially occupied by sodium, compared with the seven sites found in the RbCl complex of gramicidin. The sum of the partial occupancies of Na{sup +} was only 1.26 per two dimers and was confirmed by the similar content of iodine ions (1.21 ions distributed over seven sites), which was easily visible from their anomalous signal. Another surprising observation was the significant asymmetry of the distributions and occupancies of cations in the gramicidin dimers, which was in contrast to those observed in the high-resolution structures of the complexes of heavier alkali metals with gramicidin D, especially that of rubidium.

  12. Photodynamic inactivation of gramicidin channels in bilayer lipid membranes: protective efficacy of singlet oxygen quenchers depends on photosensitizer location.

    Science.gov (United States)

    Rokitskaya, T I; Firsov, A M; Kotova, E A; Antonenko, Y N

    2015-06-01

    The impact of double bonds in fatty acyl tails of unsaturated lipids on the photodynamic inactivation of ion channels formed by the pentadecapeptide gramicidin A in a planar bilayer lipid membrane was studied. The presence of unsaturated acyl tails protected gramicidin A against photodynamic inactivation, with efficacy depending on the depth of a photosensitizer in the membrane. The protective effect of double bonds was maximal with membrane-embedded chlorin e6-monoethylenediamine monoamide dimethyl ester, and minimal - in the case of water-soluble tri-sulfonated aluminum phthalocyanine (AlPcS3) known to reside at the membrane surface. By contrast, the protective effect of the hydrophilic singlet oxygen scavenger ascorbate was maximal for AlPcS3 and minimal for amide of chlorin e6 dimethyl ester. The depth of photosensitizer position in the lipid bilayer was estimated from the quenching of photosensitizer fluorescence by iodide. Thus, the protective effect of a singlet oxygen scavenger against photodynamic inactivation of the membrane-inserted peptide is enhanced upon location of the photosensitizer and scavenger molecules in close vicinity to each other. PMID:26531019

  13. Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase.

    Science.gov (United States)

    Reimer, Janice M; Aloise, Martin N; Harrison, Paul M; Schmeing, T Martin

    2016-01-14

    Nonribosomal peptide synthetases (NRPSs) are very large proteins that produce small peptide molecules with wide-ranging biological activities, including environmentally friendly chemicals and many widely used therapeutics. NRPSs are macromolecular machines, with modular assembly-line logic, a complex catalytic cycle, moving parts and many active sites. In addition to the core domains required to link the substrates, they often include specialized tailoring domains, which introduce chemical modifications and allow the product to access a large expanse of chemical space. It is still unknown how the NRPS tailoring domains are structurally accommodated into megaenzymes or how they have adapted to function in nonribosomal peptide synthesis. Here we present a series of crystal structures of the initiation module of an antibiotic-producing NRPS, linear gramicidin synthetase. This module includes the specialized tailoring formylation domain, and states are captured that represent every major step of the assembly-line synthesis in the initiation module. The transitions between conformations are large in scale, with both the peptidyl carrier protein domain and the adenylation subdomain undergoing huge movements to transport substrate between distal active sites. The structures highlight the great versatility of NRPSs, as small domains repurpose and recycle their limited interfaces to interact with their various binding partners. Understanding tailoring domains is important if NRPSs are to be utilized in the production of novel therapeutics. PMID:26762462

  14. Effective lipid-detergent system for study of membrane active peptides in fluid liposomes.

    Science.gov (United States)

    Sychev, Sergei V; Sukhanov, Stanislav V; Telezhinskaya, Irina N; Ovchinnikova, Tatiana V

    2016-02-01

    The structure of peptide antibiotic gramicidin A (gA) was studied in phosphatidylcholin liposomes modified by nonionic detergent Triton X-100. First, the detergent : lipid ratio at which the saturation of lipid membrane by Triton X-100 occurs (Re (sat)), was determined by light scattering. Measurements of steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene at sublytic concentrations of detergent showed that after saturation of the membrane by Triton X-100 microviscosity of lipid bilayer is reduced by 20%. The equilibrium conformational state of gA in phosphatidylcholine liposomes at Re (sat) was studied by CD spectroscopy. It was found that the conformational state of this channel-forming peptide changed crucially when Triton X-100 induced transition to more fluid membranes. The gA single-channel measurements were made with Triton X-100 containing bilayers. Tentative assignment of the channel type and gA structures was made by correlation of CD data with conductance histograms. Lipid-detergent system with variable viscosity developed in this work can be used to study the structure and folding of other membrane-active peptides. PMID:26751806

  15. Stimulation of cation transport in mitochondria by gramicidin and truncated derivatives

    International Nuclear Information System (INIS)

    Gramicidin and the truncated derivatives desformylgramicidin (desfor) and des(formylvalyl)gramicidin (desval) stimulate monovalent cation transport in rat liver mitochondria. Cation fluxes were compared indirectly from the effect of cations on the membrane potential at steady state (state 4) or from the associated stimulation of electron transport. Rb+ transport was measured directly from the uptake of 86Rb. The truncated gramicidins show enhanced selectivity for K+ and Rb+ when compared to gramicidin. Moreover, the pattern of selectivity within the alkali cation series is altered. The cation fluxes through the truncated derivatives are more strongly dependent on the cation concentration. The presence of high concentrations of permeating cation enhances the transport of other cations through the truncated derivative channels, suggesting that cations are required for stabilizing the channel structure. In high concentrations of KCl, desfor and desval are nearly as effective as gramicidin in collapsing the mitochondrial membrane potential, and consequently, in the uncoupling of oxidative phosphorylation and enhancement of ATP hydrolysis. Preliminary experiments with liposomes show that 86Rb exchange is stimulated by desfor and desval almost to the same extend at gramicidin. These results strongly suggest that the truncated gramicidins form a novel conducting channel which differs from the gramicidin head-to-head, single-stranded β6.3-helical dimer (channel) in its conductance characteristic and its structure. On the basis of the secondary structure of the truncated derivatives, the authors suggest that the antiparallel double-stranded helix dimer (pore) is a likely alternative structure for this novel channel

  16. Gramicidin Induce Local Non-Uniform Distribution of Lipids in Multi-Component Membrane Domains

    Science.gov (United States)

    Mao, Yu; Hussain, Fazle; Huang, Juyang

    2015-03-01

    In lipid membranes, gramicidin form trans-membrane channels that are specific for monovalent cations. We performed Molecular Dynamics simulations of gramicidin in coexisting liquid-ordered (Lo) and liquid disordered (Ld) domains using GROMACS. The lipid compositions of Lo and Ld domains are DOPC/DSPC/Cholesterol = 6.5/52.6/40.9 and 74.4/10.6/15, respectively. In the Ld domain, the membrane thickness matches the hydrophobic length of gramicidin quite well, and water molecules can diffuse through the gramicidin channels. However, in the Lo lipid domain, the bilayer thickness is far greater than the hydrophobic length of gramicidin and majority of gramicidin do not form conducting channel. The simulation result explained our experimental finding that gramicidin partition favorably into the Ld domains. The calculated radial distribution functions of lipids indicate that gramicidin recruit a layer of short DOPC surrounding each protein and keep cholesterol and taller DSPC away from the protein-bilayer interface. Our result indicates that membrane proteins are capable of inducing non-uniform distributions of lipids and creating a local bilayer environment, which favors protein function.

  17. Paenilamicin: structure and biosynthesis of a hybrid nonribosomal peptide/polyketide antibiotic from the bee pathogen Paenibacillus larvae.

    Science.gov (United States)

    Müller, Sebastian; Garcia-Gonzalez, Eva; Mainz, Andi; Hertlein, Gillian; Heid, Nina C; Mösker, Eva; van den Elst, Hans; Overkleeft, Herman S; Genersch, Elke; Süssmuth, Roderich D

    2014-09-26

    The spore-forming bacterium Paenibacillus larvae is the causative agent of American Foulbrood (AFB), a fatal disease of honey bees that occurs worldwide. Previously, we identified a complex hybrid nonribosomal peptide/polyketide synthesis (NRPS/PKS) gene cluster in the genome of P. larvae. Herein, we present the isolation and structure elucidation of the antibacterial and antifungal products of this gene cluster, termed paenilamicins. The unique structures of the paenilamicins give deep insight into the underlying complex hybrid NRPS/PKS biosynthetic machinery. Bee larval co-infection assays reveal that the paenilamicins are employed by P. larvae in fighting ecological niche competitors and are not directly involved in killing the bee larvae. Their antibacterial and antifungal activities qualify the paenilamicins as attractive candidates for drug development. PMID:25080172

  18. Gramicidin S production by Bacillus brevis in simulated microgravity

    Science.gov (United States)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Koenig, D. W.; Demain, A. L.

    1997-01-01

    In a continuing study of microbial secondary metabolism in simulated microgravity, we have examined gramicidin S (GS) production by Bacillus brevis strain Nagano in NASA High Aspect Rotating Vessels (HARVs), which are designed to simulate some aspects of microgravity. Growth and GS production were found to occur under simulated microgravity. When performance under simulated microgravity was compared with that under normal gravity conditions in the bioreactors, GS production was found to be unaffected by simulated microgravity. The repressive effect of glycerol in flask fermentations was not observed in the HARV. Thus the negative effect of glycerol on specific GS formation is dependent on shear and/or vessel geometry, not gravity.

  19. Reactive derivatives of gramicidin enable light- and ion-modulated ion channels

    Science.gov (United States)

    Macrae, Michael X.; Blake, Steven; Mayer, Thomas; Mayer, Michael; Yang, Jerry

    2009-08-01

    Detection of chemical processes on a single molecule scale is the ultimate goal of sensitive analytical assays. We have explored methods to detect chemical analytes in solution using synthetic derivatives of gramicidin A (gA). We exploited the functional properties of an ion channel-forming peptideg--gA--to report changes in the local environment near the opening of these semi-synthetic nanopores upon exposure to specific external stimuli. These peptide-based nanosensors detect reaction-induced changes in the chemical or physical properties of functional groups presented at the opening of the pore. This paper discusses the development of gA-based sensors for detecting external factors such as metal ions in solution or for detecting specific wavelengths of light. We propose that gA-based ion channel sensors offer tremendous potential for ultra sensitive functional detection since a single chemical modification of each individual sensing element can lead to readily detectable changes in channel conductance.

  20. Probing Peptide and Protein Insertion in a Biomimetic S-Layer Supported Lipid Membrane Platform

    Directory of Open Access Journals (Sweden)

    Samar Damiati

    2015-01-01

    Full Text Available The most important aspect of synthetic lipid membrane architectures is their ability to study functional membrane-active peptides and membrane proteins in an environment close to nature. Here, we report on the generation and performance of a biomimetic platform, the S-layer supported lipid membrane (SsLM, to investigate the structural and electrical characteristics of the membrane-active peptide gramicidin and the transmembrane protein α-hemolysin in real-time using a quartz crystal microbalance with dissipation monitoring in combination with electrochemical impedance spectroscopy. A shift in membrane resistance is caused by the interaction of α-hemolysin and gramicidin with SsLMs, even if only an attachment onto, or functional channels through the lipid membrane, respectively, are formed. Moreover, the obtained results did not indicate the formation of functional α-hemolysin pores, but evidence for functional incorporation of gramicidin into this biomimetic architecture is provided.

  1. Importance of the tryptophans of gramicidin for its lipid structure modulating activity in lysophosphatidylcholine and phosphatidylethanolamine model membranes. A comparative study employing gramicidin analogs and a synthetic α-helical hydrophobic polypeptide

    OpenAIRE

    Aranda, F J; Killian, J A; Kruijff, B. de

    1987-01-01

    The importance of the tryptophan residues of gramicidin for the lipid structure modulating activity of this pentadecapeptide was investigated by studying the interaction of gramicidin analogs A, B, C (which have a tryptophan, phenylalanine and tyrosine in position 11, respectively) and tryptophan-N-formylated gramicidin (in which the four tryptophan residues have been formylated) with several phospholipid systems. In addition in α-helical model pentadecapeptide (P15) was studied to further te...

  2. Peptide and protein loading into porous silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Prestidge, C.A.; Barnes, T.J.; Mierczynska-Vasilev, A.; Kempson, I.; Peddie, F. [Ian Wark Research Institute, University of South Australia, Mawson Lakes (Australia); Barnett, C. [Medica Ltd, Malvern, Worcestershire, UK WR14 3SZ (United Kingdom)

    2008-02-15

    The influence of peptide/protein size and hydrophobicity on the physical and chemical aspects of loading within porous silicon (pSi) wafer samples has been determined using Atomic Force Microscopy (AFM) and Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS). Both Gramicidin A (a small hydrophobic peptide) and Papain (a larger hydrophilic protein) were observed (ToF-SIMS) to penetrate across the entire pSi layer, even at low loading levels. AFM surface imaging of pSi wafers during peptide/protein loading showed that surface roughness increased with Papain loading, but decreased with Gramicidin A loading. For Papain, the loading methodology was also found to influence loading efficiency. These differences indicate more pronounced surface adsorption of Papain. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Effect of the dipole potential of a bilayer lipid membrane on gramicidin channel dissociation kinetics.

    OpenAIRE

    Rokitskaya, T I; Antonenko, Y N; Kotova, E A

    1997-01-01

    A technique of measuring of the light-induced transients of the gramicidin-mediated electric current across a membrane in the presence of a photosensitizer has been applied for the study of the effect of agents modifying the dipole potential of a bilayer lipid membrane (phloretin, 6-ketocholestanol, and RH421) on the processes of the gramicidin channel dissociation and formation. It is shown that phloretin, known to lower the dipole potential, decelerates the flash-induced decrease in the cur...

  4. Solvent history dependence of gramicidin-lipid interactions: a Raman and infrared spectroscopic study.

    OpenAIRE

    Bouchard, M.; Auger, M.

    1993-01-01

    We have investigated the interactions between gramicidin and a model membrane composed of one phospholipid, dimyristoylphosphatidylcholine, as a function of the cosolubilization solvent and incubation time used in the sample preparation. Three organic solvents have been used; trifluoroethanol, a mixture of methanol/chloroform (1:1 v/v), and ethanol. Using Fourier transform infrared spectroscopy, we have demonstrated that the conformation adopted by gramicidin in the membrane is dependent upon...

  5. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. I. Structure of the molecular complex.

    OpenAIRE

    Chiu, S. W.; Subramaniam, S.; Jakobsson, E.

    1999-01-01

    This paper reports on a simulation of a gramicidin channel inserted into a fluid phase DMPC bilayer with 100 lipid molecules. Two lipid molecules per leaflet were removed to insert the gramicidin, so the resulting preparation had 96 lipid molecules and 3209 water molecules. Constant surface tension boundary conditions were employed. Like previous simulations with a lower lipid/gramicidin ratio (Woolf, T. B., and B. Roux. 1996. Proteins: Struct., Funct., Genet. 24:92-114), it is found that try...

  6. Deuterium NMR of 2HCO-Val1...gramicidin A and 2HCO-Val1-D-Leu2...gramicidin A in oriented DMPC bilayers

    International Nuclear Information System (INIS)

    Deuterium NMR is used to study the structure and dynamics of the formyl C-2H bond in selectively deuterated gramicidin molecules. Specifically, the functionally different analogues 2HCO-Val1...gramicidin A and 2HCO-Val1-D-Leu2...gramicidin A are studied by 2H NMR so that any conformational or dynamical differences between the two analogues can be correlated with their difference in lifetime. These analogues are first synthesized, purified, and characterized and then incorporated into oriented bilayers of dimyristoylphosphatidylcholine sandwiched between glass coverslips. Phosphorous NMR line shapes obtained from these samples are consistent with the presence of the bilayer phase and indicate that the disorder exhibited by the lipid matrix is approximately of the same type and degree for both analogues. Deuterium NMR line shapes obtained from these samples indicate that the motional axis of the formyl group of gramicidin is parallel to the coverslip normal, that the distribution of motional axis orientations has a width of 7-9 degrees, and that a similar, major conformational and dynamical state exists for the formyl C-2H bond of both analogues. In this state, if the only motion present is fast axial rotation, then the experimentally derived angle between the formyl C-2H bond and the motional axis is consistent with the presence of a right-handed, single-stranded, beta 6.3 helical dimer but is not consistent with the presence of a left-handed, single-stranded, beta 6.3 helical dimer. However, if fast axial rotation is not the only motion present, then the left-handed, single-stranded, beta 6.3 helical dimer cannot be absolutely excluded as a possibility. Also, a second, minor conformational and dynamical state appears to be present in the spectrum of 2HCO-Val1-D-Leu2...gramicidin A but is not observed in the spectrum of 2HCO-Val1...gramicidin A

  7. Antibiotics Quiz

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  8. N-terminally glutamate-substituted analogue of gramicidin A as protonophore and selective mitochondrial uncoupler.

    Directory of Open Access Journals (Sweden)

    Alexandra I Sorochkina

    Full Text Available Limited uncoupling of oxidative phosphorylation could be beneficial for cells by preventing excessive generation of reactive oxygen species. Typical uncouplers are weak organic acids capable of permeating across membranes with a narrow gap between efficacy and toxicity. Aimed at designing a nontoxic uncoupler, the protonatable amino acid residue Glu was substituted for Val at the N-terminus of the pentadecapeptide gramicidin A (gA. The modified peptide [Glu1]gA exhibited high uncoupling activity in isolated mitochondria, in particular, abolishing membrane potential at the inner mitochondrial membrane with the same or even larger efficacy as gA. With mitochondria in cell culture, the depolarizing activity of [Glu1]gA was observed at concentrations by an order of magnitude lower than those of gA. On the contrary, [Glu1]gA was much less potent in forming proton channels in planar lipid bilayers than gA. Remarkably, at uncoupling concentrations, [Glu1]gA did not alter cell morphology and was nontoxic in MTT test, in contrast to gA showing high toxicity. The difference in the behavior of [Glu1]gA and gA in natural and artificial membranes could be ascribed to increased capability of [Glu1]gA to permeate through membranes and/or redistribute between different membranes. Based on the protective role of mild uncoupling, [Glu1]gA and some other proton-conducting gA analogues may be considered as prototypes of prospective therapeutic agents.

  9. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations

    Science.gov (United States)

    Timko, Jeff; Kuyucak, Serdar

    2012-11-01

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K+ ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K+ ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K+ ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K+ ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  10. N-terminally glutamate-substituted analogue of gramicidin A as protonophore and selective mitochondrial uncoupler.

    Science.gov (United States)

    Sorochkina, Alexandra I; Plotnikov, Egor Y; Rokitskaya, Tatyana I; Kovalchuk, Sergei I; Kotova, Elena A; Sychev, Sergei V; Zorov, Dmitry B; Antonenko, Yuri N

    2012-01-01

    Limited uncoupling of oxidative phosphorylation could be beneficial for cells by preventing excessive generation of reactive oxygen species. Typical uncouplers are weak organic acids capable of permeating across membranes with a narrow gap between efficacy and toxicity. Aimed at designing a nontoxic uncoupler, the protonatable amino acid residue Glu was substituted for Val at the N-terminus of the pentadecapeptide gramicidin A (gA). The modified peptide [Glu1]gA exhibited high uncoupling activity in isolated mitochondria, in particular, abolishing membrane potential at the inner mitochondrial membrane with the same or even larger efficacy as gA. With mitochondria in cell culture, the depolarizing activity of [Glu1]gA was observed at concentrations by an order of magnitude lower than those of gA. On the contrary, [Glu1]gA was much less potent in forming proton channels in planar lipid bilayers than gA. Remarkably, at uncoupling concentrations, [Glu1]gA did not alter cell morphology and was nontoxic in MTT test, in contrast to gA showing high toxicity. The difference in the behavior of [Glu1]gA and gA in natural and artificial membranes could be ascribed to increased capability of [Glu1]gA to permeate through membranes and/or redistribute between different membranes. Based on the protective role of mild uncoupling, [Glu1]gA and some other proton-conducting gA analogues may be considered as prototypes of prospective therapeutic agents. PMID:22911866

  11. Antibiotic Resistance

    Science.gov (United States)

    Antibiotics are medicines that fight bacterial infections. Used properly, they can save lives. But there is a growing problem of antibiotic resistance. It happens when bacteria change and become able to resist the effects of an antibiotic. Using antibiotics can lead to resistance. ...

  12. Synthesis and Analytics of Rigidified Peptide Architectures: Neuropeptide Y Dipeptide Scan, Ring-Chain-Equilibria of Iminopeptides, Thiazole Amino Acids for Thiopeptide Antibiotics

    OpenAIRE

    Enck, Sebastian

    2010-01-01

    The architectures (three-dimensional shapes) of peptides determine their respective biological functions. Therefore, the correct alignment of functionalities in a structure by constraining the flexibility is a key process in evolution as well as in medicinal chemistry in order to increase binding affinity and selectivity. The rigidification of a peptide chain can have local effects (incorporation of the amino acid proline) or it ...

  13. Importance of the tryptophans of gramicidin for its lipid structure modulating activity in lysophosphatidylcholine and phosphatidylethanolamine model membranes. A comparative study employing gramicidin analogs and a synthetic α-helical hydrophobic polypeptide

    NARCIS (Netherlands)

    Aranda, F.J.; Killian, J.A.; Kruijff, B. de

    1987-01-01

    The importance of the tryptophan residues of gramicidin for the lipid structure modulating activity of this pentadecapeptide was investigated by studying the interaction of gramicidin analogs A, B, C (which have a tryptophan, phenylalanine and tyrosine in position 11, respectively) and tryptophan-N-

  14. Squalamine: an aminosterol antibiotic from the shark.

    OpenAIRE

    Moore, K.S.; Wehrli, S; Roder, H; Rogers, M.; Forrest, J N; McCrimmon, D; Zasloff, M.

    1993-01-01

    In recent years, a variety of low molecular weight antibiotics have been isolated from diverse animal species. These agents, which include peptides, lipids, and alkaloids, exhibit antibiotic activity against environmental microbes and are thought to play a role in innate immunity. We report here the discovery of a broad-spectrum steroidal antibiotic isolated from tissues of the dogfish shark Squalus acanthias. This water-soluble antibiotic, which we have named squalamine, exhibits potent bact...

  15. Probing conformational changes of gramicidin ion channels by single-molecule patch-clamp fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Harms, Gregory S.; Orr, Galya; Montal, Mauricio; Thrall, Brian D.; Colson, Steve D.; Lu, H Peter

    2003-09-01

    Stochastic and inhomogeneous conformational changes often regulate the dynamics of ion channels. Such inhomogeneity makes it difficult, if not impossible; to be characterized not only by ensemble-averaged experiments by also by single-channel patch recording that does not specifically probe the associated conformational changes. Here, we report on our work using a new approach combining single-molecule fluorescence spectroscopy and single-channel patch recording to investigate conformational changes of individual gramicidin ion channels. We observed fluorescence self-quenching and single-pair fluorescence resonance energy transfer (spFRET) from dye-labeled gramicidin dimmers within the channel was open. We also observed that the efficiency of self-quenching and spFRETS is widely distributed when the channel is closed. Our results strongly suggest a hitherto undetectable correlation of multiple conformational states of the gramicidin channel associated with closed and open states under physiologically-related conditions.

  16. 5-A Fourier map of gramicidin A phased by deuterium-hydrogen solvent difference neutron diffraction.

    OpenAIRE

    Koeppe, R E; Schoenborn, B P

    1984-01-01

    Crystals of ion-free gramicidin A (P212121: a = 24.61, b = 32.28, c = 32.52) have been investigated using neutron diffraction. A difference analysis of crystals soaked in ethanol/H2O as opposed to ethanol-d6/D2O has led to single isomorphous replacement Fourier projections of the structure at 5-A resolution. The gramicidin dimer appears to be a 32-A-long cylinder oriented parallel to the c-axis in these crystals.

  17. Advancement of biosynthesis gene for non ribosome-bound Sulfur-containing peptide antibiotics%非核糖体含硫多肽类抗生素生物合成基因的研究进展

    Institute of Scientific and Technical Information of China (English)

    张欣城; 周珮

    2005-01-01

    非核糖体含硫多肽类(non-ribosomal thiopeptide)抗生素是多肽类抗生素中的一个重要家族,包括硫链茵丝肽(Thiostrepton)、那西肽(Nosihepted)、短杆菌肽S(Gramicidin S)和环孢霉素(Cyclosporine)等。

  18. Nonstoichiometric complex of gramicidin D with KI at 0.80 [angstrom] resolution

    Energy Technology Data Exchange (ETDEWEB)

    Olczak, A.; Glowka, M.L.; Szczesio, M.; Bojarsk, J.; Duax, W.L.; Burkhart, B.M.; Wawrzak, Z. (UOT); (NWU); (HWMRI)

    2010-03-08

    The crystal structure of a nonstoichiometric complex of gramicidin D (gD) with KI has been determined at 100 K using synchrotron radiation. The final R factor was 0.106 for 83 988 observed reflections (Friedel pairs were not merged) collected to 0.80 {angstrom}. The structure consists of four independent pentadecapeptides and numerous solvent molecules and salt ions. The general architecture of the antiparallel double-stranded gramicidin dimers in the crystal (a right-handed antiparallel DS{beta}H{sub R} form) closely resembles that of previously published cation complexes of gD. However, a significantly different mixture of gramicidin isomers is found in the crystal of the KI complex, including partial occupancy of phenylalanine at position 11. Only three sites in each of the two crystallographically independent channels are partially occupied by potassium cations instead of the commonly observed seven sites. The sum of the partial occupancies of K{sup +} (1.10 per two dimers) is consistent with the sum of the iodide occupancies (1.095 over eight sites), which is also confirmed by the anomalous signal of the iodide. There was a significant asymmetry of the distribution and occupancies of cations in the crystallographically independent gramicidin channels, in contrast to the distribution found in the rubidium chloride complex with gD.

  19. Gramicidin S derivatives containing cis- and trans-morpholine amino acids (MAAS) as turn mimetics

    NARCIS (Netherlands)

    Kapoerchan, V.V.; Spalburg, E.; Neeling, A.J. de; Mars-Groenendijk, R.H.; Noort, D.; Otero, J.M. de; Ferraces-Casais, P.; Llamas-Saiz, A.L.; Raaij, M.J. van; Doorn, J. van; Marel, G.A. van der; Overkleeft, H.S.; Overhand, M.

    2010-01-01

    The cyclic decapeptide gramicidin S (GS) was used as a model for the evaluation of four turn mimetics. For this purpose, one of the D-Phe-Pro two-residue turn motifs in the rigid cyclic β-hairp0in structure of GS was replaced with morpholine amino acids (MAA 2-5), differing in stereochemistry and le

  20. Tuning hydrophobicity of highly cationic tetradecameric Gramicidin S analogues using adamantane amino acids

    NARCIS (Netherlands)

    Knijnenburg, A.D.; Kapoerchan, V.V.; Spalburg, E.; Neeling, A.J. de; Mars-Groenendijk, R.H.; Noort, D.; Marel, G.A. van der; Overkleeft, H.S.; Overhand, M.

    2010-01-01

    Ring extended Gramicidin S analogues containing adamantane amino acids and six cationic residues were designed and evaluated. Systematic replacement of the hydrophobic residues with adamantane amino acids resulted in a small set of compounds with varying amphipathic character. It was found that the

  1. Synthetic antibiofilm peptides.

    Science.gov (United States)

    de la Fuente-Núñez, César; Cardoso, Marlon Henrique; de Souza Cândido, Elizabete; Franco, Octavio Luiz; Hancock, Robert E W

    2016-05-01

    Bacteria predominantly exist as multicellular aggregates known as biofilms that are associated with at least two thirds of all infections and exhibit increased adaptive resistance to conventional antibiotic therapies. Therefore, biofilms are major contributors to the global health problem of antibiotic resistance, and novel approaches to counter them are urgently needed. Small molecules of the innate immune system called host defense peptides (HDPs) have emerged as promising templates for the design of potent, broad-spectrum antibiofilm agents. Here, we review recent developments in the new field of synthetic antibiofilm peptides, including mechanistic insights, synergistic interactions with available antibiotics, and their potential as novel antimicrobials against persistent infections caused by biofilms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26724202

  2. 23Na-nuclear magnetic resonance investigation of gramicidin-induced ion transport through membranes under equilibrium conditions.

    OpenAIRE

    Buster, D C; Hinton, J F; Millett, F S; Shungu, D C

    1988-01-01

    A technique for investigating the gramicidin-facilitated transport of Na+ ions across lipid bilayers of large unilamellar vesicles under the condition of ionic equilibrium has been developed using a combination of heat incubation of the gramicidin with the vesicles and 23Na-nuclear magnetic resonance (NMR) spectroscopy. Isolation of the two 23Na-NMR signals from the intra- and extravesicular Na+ with the shift reagent, dysprosium (III) tripolyphosphate, allows the equilibrium flux of Na+ thro...

  3. Lipid-dependent effects of halothane on gramicidin channel kinetics: A new role for lipid packing stress

    OpenAIRE

    Weinrich, Michael; Rostovtseva, Tatiana K.; Bezrukov, Sergey M.

    2009-01-01

    We find that the sensitivity of gramicidin A channels to the anesthetic halothane is highly lipid dependent. Specifically, exposure of membranes made of lamellar DOPC to halothane in concentrations close to clinically relevant reduces channel life-times by an order of magnitude. At the same time, gramicidin channels in membranes of non-lamellar DOPE are little, if at all, affected by halothane. We attribute this difference in channel behavior to a difference in the stress of lipid packing int...

  4. Low conductance gramicidin A channels are head-to-head dimers of beta 6.3-helices.

    OpenAIRE

    Busath, D; Szabo, G.

    1988-01-01

    Weakly conductive, atypical channels were observed to form from highly purified Val1-gramicidin A in planar lipid bilayer membranes. The structure of these low-conductance channels (minis) was investigated by a detailed study of their channel forming characteristics. The possibility that minis originate from primary structural analogs or degradation products of gramicidin was considered and ruled out. In particular, spontaneous conductance changes in single channels demonstrated that minis ca...

  5. Topical antibiotics in the management of corneal ulcer

    Directory of Open Access Journals (Sweden)

    Reddy P

    1988-01-01

    Full Text Available A total of 82 patients suffering from corneal ulcer were treated with framycetin 0.5%, gentamicin 3 mg./ml, chloramphenicol 0.4% and a neomycin combination containing Polymixin B sulphate 5000 u, neomycin sulphate 1700 u and gramicidin 0.025 mg/mL in a Randomised comparative study. The commonest organism isolated was Staphylococcus followed by Pneumococcus, Streptococcus and Pseudomonas. The in vitro sensitivity of these isolates to framycetin was higher than that to others Framycetin produced both earlier and a greater degree of improvement in mean score of signs and symptoms than the other antibiotics. It can thus be concluded that framycetin has a better profile of antibacterial activity and clinical efficacy than some other commonly used topical antibiotics in the treatment of corneal ulcer.

  6. Forgotten antibiotics

    DEFF Research Database (Denmark)

    Pulcini, Céline; Bush, Karen; Craig, William A;

    2012-01-01

    disease specialists in Europe, the United States, Canada, and Australia. An international expert panel selected systemic antibacterial drugs for their potential to treat infections caused by resistant bacteria or their unique value for specific criteria. Twenty-two of the 33 selected antibiotics were...... available in fewer than 20 of 38 countries. Economic motives were the major cause for discontinuation of marketing of these antibiotics. Fourteen of 33 antibiotics are potentially active against either resistant Gram-positive or Gram-negative bacteria. Urgent measures are then needed to ensure better...

  7. Antibiotic Resistance

    Science.gov (United States)

    ... Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products For Consumers Home For Consumers Consumer Information by Audience For Women Antibiotic Resistance Share Tweet Linkedin Pin it More ...

  8. Molecular dynamics study of free energy profiles for organic cations in gramicidin A channels.

    OpenAIRE

    Hao, Y.; Pear, M R; Busath, D D

    1997-01-01

    The free energy profiles for four organic cations in right-handed single-helix gramicidin A dimers were computed by using umbrella sampling molecular dynamics with CHARMM. Ion-water column translocations were facilitated by using a novel "water-tunnel" approach. The overlapping pieces of free energy profile for adjacent windows were selected from three trajectories that differed in initial ion rotation and were aligned by the method of umbrella potential differences. Neglected long-range elec...

  9. Streaming potentials in gramicidin channels measured with ion-selective microelectrodes.

    OpenAIRE

    Tripathi, S; Hladky, S B

    1998-01-01

    Streaming potentials have been measured for gramicidin channels with a new method employing ion-selective microelectrodes. It is shown that ideally ion-selective electrodes placed at the membrane surface record the true streaming potential. Using this method for ion concentrations below 100 mM, approximately seven water molecules are transported whenever a sodium, potassium, or cesium ion, passes through the channel. This new method confirms earlier measurements (Rosenberg, P.A., and A. Finke...

  10. Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes

    DEFF Research Database (Denmark)

    Lundbæk, Jens August; Collingwood, S.A.; Ingolfsson, H.I.;

    2010-01-01

    Membrane protein function is regulated by the host lipid bilayer composition. This regulation may depend on specific chemical interactions between proteins and individual molecules in the bilayer, as well as on non-specific interactions between proteins and the bilayer behaving as a physical enti...... use of gramicidin channels as molecular force probes for studying this mechanism, with a unique ability to discriminate between consequences of changes in monolayer curvature and bilayer elastic moduli....

  11. Continuum electrostatics fails to describe ion permeation in the gramicidin channel.

    OpenAIRE

    Edwards, Scott; Corry, Ben; Kuyucak, Serdar; Chung, Shin-Ho

    2002-01-01

    We investigate the validity of continuum electrostatics in the gramicidin A channel using a recently determined high-resolution structure. The potential and electric field acting on ions in and around the channel are computed by solving Poisson's equation. These are then used in Brownian dynamics simulations to obtain concentration profiles and the current passing through the channel. We show that regardless of the effective dielectric constant used for water in the channel or the channel pro...

  12. Density-functional theory study of gramicidin A ion channel geometry and electronic properties

    OpenAIRE

    Todorović, Milica; Bowler, David R.; Gillan, Michael J.; Miyazaki, Tsuyoshi

    2013-01-01

    Understanding the mechanisms underlying ion channel function from the atomic-scale requires accurate ab initio modelling as well as careful experiments. Here, we present a density functional theory (DFT) study of the ion channel gramicidin A, whose inner pore conducts only monovalent cations and whose conductance has been shown to depend on the side chains of the amino acids in the channel. We investigate the ground-state geometry and electronic properties of the channel in vacuum, focusing o...

  13. Effects of cholesterol or gramicidin on slow and fast motions of phospholipids in oriented bilayers.

    OpenAIRE

    Peng, Z. Y.; Simplaceanu, V; Dowd, S R; Ho, C.

    1989-01-01

    Nuclear spin-lattice relaxation both in the rotating frame and in the laboratory frame is used to investigate the slow and fast molecular motions of phospholipids in oriented bilayers in the liquid crystalline phase. The bilayers are prepared from a perdeuterated phospholipid labeled with a pair of 19F atoms at the 7 position of the 2-sn acyl chain. Phospholipid-cholesterol or phospholipid-gramicidin interactions are characterized by measuring the relaxation rates as a function of the bilayer...

  14. Water permeation through gramicidin A: Desformylation and the double helix: A molecular dynamics study

    OpenAIRE

    de Groot, B.; Tieleman, D.; Pohl, P.; Grubmueller, H.

    2002-01-01

    Multinanosecond molecular dynamics simulations of gramicidin A embedded in a dimyristoylphosphatidylcholine bilayer show a remarkable structural stability for both experimentally determined conformations: the head-to-head helical dimer and the double helix. Water permeability was found to be much higher in the double helical conformation, which is explained by lower hydrogen bond-mediated enthalpic barriers at the channel entrance and its larger pore size. Free-energy perturbation calculation...

  15. Ion movement through gramicidin A channels. Interfacial polarization effects on single-channel current measurements.

    OpenAIRE

    Andersen, O S

    1983-01-01

    Gramicidin A single-channel current-voltage characteristics were studied at low permeant ion concentrations and very high applied potentials. The purpose of these experiments was to elucidate the basis for the small, but definite, voltage dependence observed under these circumstances. It was found that this residual voltage dependence is a reflection of interfacial polarization effects, similar to those proposed by Walz et al. (Biophys. J. 9:1150-1159). It will be concluded that there exists ...

  16. Antibiotic Resistance

    DEFF Research Database (Denmark)

    Munck, Christian

    morbidity and mortality as well as an increase in the cost of treatment. Understanding how bacteria respond to antibiotic exposure gives the foundations for a rational approach to counteract antimicrobial resistance. In the work presented in this thesis, I explore the two fundamental sources of...... antimicrobial resistance: (1) adaptive mutations and (2) horizontal acquisition of resistance genes from antibiotic gene reservoirs. By studying the geno- and phenotypic changes of E. coli in response to single and drug-pair exposures, I uncover the evolutionary trajectories leading to adaptive resistance. I...... to rationally design drug combinations that limit the evolution of antibiotic resistance due to counteracting evolutionary trajectories. My results highlight that an in-depth knowledge about the genetic responses to the individual antimicrobial compounds enables the prediction of responses to drug...

  17. Polycyclic peptide therapeutics.

    Science.gov (United States)

    Baeriswyl, Vanessa; Heinis, Christian

    2013-03-01

    Owing to their excellent binding properties, high stability, and low off-target toxicity, polycyclic peptides are an attractive molecule format for the development of therapeutics. Currently, only a handful of polycyclic peptides are used in the clinic; examples include the antibiotic vancomycin, the anticancer drugs actinomycin D and romidepsin, and the analgesic agent ziconotide. All clinically used polycyclic peptide drugs are derived from natural sources, such as soil bacteria in the case of vancomycin, actinomycin D and romidepsin, or the venom of a fish-hunting coil snail in the case of ziconotide. Unfortunately, nature provides peptide macrocyclic ligands for only a small fraction of therapeutic targets. For the generation of ligands of targets of choice, researchers have inserted artificial binding sites into natural polycyclic peptide scaffolds, such as cystine knot proteins, using rational design or directed evolution approaches. More recently, large combinatorial libraries of genetically encoded bicyclic peptides have been generated de novo and screened by phage display. In this Minireview, the properties of existing polycyclic peptide drugs are discussed and related to their interesting molecular architectures. Furthermore, technologies that allow the development of unnatural polycyclic peptide ligands are discussed. Recent application of these technologies has generated promising results, suggesting that polycyclic peptide therapeutics could potentially be developed for a broad range of diseases. PMID:23355488

  18. Molecular Dynamics Study of Gramicidin A in Lipid Bilayer: Electrostatic Map and Ion Conduction

    Science.gov (United States)

    Saito, Hiroaki; Iwayama, Masashi; Kawaguchi, Kazutomo; Mizukami, Taku; Miyakawa, Takeshi; Takasu, Masako; Nagao, Hidemi

    The electrostatic potential (ESP) of gramicidin A (GA) in the DMPC lipid bilayers with/without an external uniform electrostatic field was investigated by molecular dynamics (MD) simulation. We found that the ESP profile with an external electrostatic field became step shape. The water and polar groups of the lipid and GA are rearranged in order to restore a flat ESP in the water bulk and GA channel interior. The reorientation of the polar head group enhances the ESP difference between each hydration regions of the membrane, and this should yield an increase of ion conductance through the GA channel.

  19. Analysis of Ion Transport through a Single Channel of Gramicidin A in Bilayer Lipid Membranes.

    Science.gov (United States)

    Kubota, Shintaro; Shirai, Osamu; Kitazumi, Yuki; Kano, Kenji

    2016-01-01

    Ion transport through a single channel of gramicidin A (GA) within the bilayer lipid membrane (BLM) between two aqueous phases (W1 and W2) has been analyzed based on the electroneutrality principle. The single-channel current increases in proportion to the magnitude of the applied membrane potential and is also dependent on the permeability coefficients of electrolyte ions (K(+) and Cl(-)). By varying the ratio of the concentration of KCl in W1 to that in W2, the ratio of the diffusion coefficient of K(+) in the BLM to that of Cl(-) in the BLM can be evaluated. PMID:26860564

  20. Recent development of peptide self-assembly

    Institute of Scientific and Technical Information of China (English)

    Xiubo Zhao; Fang Pan; Jian R. Lu

    2008-01-01

    Amino acids are the building blocks to build peptides and proteins. Recent development in peptide synthesis has however enabled us to mimic this natural process by preparing various long and short peptides possessing different conformations and biological functions. The self-assembly of short designed peptides into molecular nanostructures is becoming a growing interest in nanobiotechnology. Self-assembled peptides exhibit several attractive features for applications in tissue regeneration, drug delivery, biological surface engineering as well as in food science, cosmetic industry and antibiotics. The aim of this review is to introduce the readers to a number of representative studies on peptide self-assembly.

  1. Broad spectrum antibiotic compounds and use thereof

    Energy Technology Data Exchange (ETDEWEB)

    Koglin, Alexander; Strieker, Matthias

    2016-07-05

    The discovery of a non-ribosomal peptide synthetase (NRPS) gene cluster in the genome of Clostridium thermocellum that produces a secondary metabolite that is assembled outside of the host membrane is described. Also described is the identification of homologous NRPS gene clusters from several additional microorganisms. The secondary metabolites produced by the NRPS gene clusters exhibit broad spectrum antibiotic activity. Thus, antibiotic compounds produced by the NRPS gene clusters, and analogs thereof, their use for inhibiting bacterial growth, and methods of making the antibiotic compounds are described.

  2. Nonstatistical UV Fragmentation of Gas-Phase Peptides Reveals Conformers and Their Structural Features.

    Science.gov (United States)

    Kopysov, Vladimir; Makarov, Alexander; Boyarkin, Oleg V

    2016-03-17

    Solving the 3D structure of a biomolecule requires recognition of its conformers and measurements of their individual structural identities, which can be compared with calculations. We employ the phenomenon of nonstatistical photofragmentation, detected by a combination of UV cold ion spectroscopy and high-resolution mass spectrometry, to identify the main conformers of gas-phase peptides and to recover individual UV absorption and mass spectra of all of these conformers in a single laser scan. We first validate this approach with a benchmark dipeptide, Tyr-Ala, and then apply it to a decapeptide, gramicidin S. The revealed characteristic structural difference between the conformers of the latter identifies some of the previously calculated structures of gramicidin S as the most likely geometries of its remaining unsolved conformer. PMID:26950179

  3. A one-dimensional continuum elastic model for membrane-embedded gramicidin dimer dissociation.

    Directory of Open Access Journals (Sweden)

    Joseph N Stember

    Full Text Available Membrane elastic properties, which are subject to alteration by compounds such as cholesterol, lipid metabolites and other amphiphiles, as well as pharmaceuticals, can have important effects on membrane proteins. A useful tool for measuring some of these effects is the gramicidin A channels, which are formed by transmembrane dimerization of non-conducting subunits that reside in each bilayer leaflet. The length of the conducting channels is less than the bilayer thickness, meaning that channel formation is associated with a local bilayer deformation. Electrophysiological studies have shown that the dimer becomes increasingly destabilized as the hydrophobic mismatch between the channel and the host bilayer increases. That is, the bilayer imposes a disjoining force on the channel, which grows larger with increasing hydrophobic mismatch. The energetic analysis of the channel-bilayer coupling is usually pursued assuming that each subunit, as well as the subunit-subunit interface, is rigid. Here we relax the latter assumption and explore how the bilayer junction responds to changes in this disjoining force using a simple one-dimensional energetic model, which reproduces key features of the bilayer regulation of gramicidin channel lifetimes.

  4. Can gramicidin ion channel affect the dipole potential of neighboring phospholipid headgroups?

    Science.gov (United States)

    Becucci, Lucia; Guidelli, Rolando

    2015-12-01

    The cyclic voltammetry behavior of a mercury-supported tethered bilayer lipid membrane (tBLM) incorporating gramicidin A was investigated in aqueous 0.1 M KCl at pH 6.8, 5.4 and 3. The distal leaflet of the lipid bilayer consisted of dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylserine (DOPS), dioleoylphosphatidic acid or a DOPC/cholesterol mixture. In passing from pH 6.8 to pH 3, the midpoint potential between the negative current peak, due to K(+) inflow into the spacer, and the positive current peak, due to K(+) ejection into the aqueous solution, shifts toward more positive potentials, while the separation between these two peaks decreases. This behavior is interpreted quantitatively on the basis of a model relying on tBLM structural features estimated independently in previous works. The only adjustable parameter is the rate constant for cation translocation across a potential energy barrier located in the hydrocarbon tail region. The behavior is ascribed to a dragging of the lipid headgroups adjacent to the gramicidin channel mouth toward the hydrocarbon tail region, with a resulting decrease in the negative charge of the DOPC phosphate group, or of the DOPS carboxyl group, with decreasing pH. PMID:26190793

  5. Phase equilibria and molecular packing in the N,N-dimethyldodecylamine oxide/gramicidin D/water system studied by 2H nuclear magnetic resonance spectroscopy.

    OpenAIRE

    Orädd, G; Lindblom, G; Arvidson, G; Gunnarsson, K.

    1995-01-01

    A partial phase diagram of the system N,N-dimethyldodecylamine oxide (DDAO)/water/gramicidin D was determined by 2H-NMR. Both 2H2O and perdeuterated DDAO (DDAO-d31) were studied by solid state NMR techniques. Addition of gramicidin D to the micellar (L1), normal hexagonal (HI) and cubic (I) phases of DDAO induces phase separations, giving two-phase regions, which all contain a lamellar (L alpha) phase. The L alpha phase containing gramicidin is characterized by larger order parameters for DDA...

  6. Equilibrium binding constants for Tl+ with gramicidins A, B and C in a lysophosphatidylcholine environment determined by 205Tl nuclear magnetic resonance spectroscopy.

    OpenAIRE

    Hinton, J F; Koeppe, R E; Shungu, D; Whaley, W L; Paczkowski, J A; Millett, F S

    1986-01-01

    Nuclear Magnetic Resonance (NMR) 205Tl spectroscopy has been used to monitor the binding of Tl+ to gramicidins A, B, and C packaged in aqueous dispersions of lysophosphatidylcholine. For 5 mM gramicidin dimer in the presence of 100 mM lysophosphatidylcholine, only approximately 50% or less of the gramicidin appears to be accessible to Tl+. Analysis of the 205Tl chemical shift as a function of Tl+ concentration over the 0.65-50 mM range indicates that only one Tl+ ion can be bound by gramicidi...

  7. Ring-extended gramicidin S analogs Containing cis δ-sugar amino acid turn mimetics with varying ring size

    NARCIS (Netherlands)

    Knijnenburg, A.D.; Spalburg, E.; Neeling, A.J. de; Mars-Groenendijk, R.H.; Noort, D.; Grotenbreg, G.M.; Marel, G.A. van der; Overkleeft, H.S.; Overhand, M.

    2012-01-01

    This article presents a series of ring-extended gramicidin S derivatives, 9-14, that have four ornithine residues as polar protonated side chains and one modified turn region containing a mono-functionalized cis-δ-oxetane, δ-furanoid, or δ-pyranoid sugar amino acid residue. Of the GS analogs evaluat

  8. Ring-extended derivatives of gramicidin S with furanoid sugar amino acids in the turn region have enhanced antimicrobial activity

    NARCIS (Netherlands)

    Knijnenburg, A.D.; Spalburg, E.; Neeling, A.J. de; Mars-Groenendijk, R.H.; Noort, D.; Grotenbreg, G.M.; Marel, G.A. van der; Overkleeft, H.S.; Overhand, M.

    2009-01-01

    (Chemical Equation Presented) A series of ring-extended gramicidin S (GS) derivatives containing furanoid sugar amino acids were evaluated. Although the extended GS derivatives have a less well-defined secondary structure as determined by NMR and CD, some derivatives show an improved biological prof

  9. Trisubstituted (E)-Alkene Dipeptide Isosteres as β-Turn Promoters in the Gramicidin S Cyclodecapeptide Scaffold

    OpenAIRE

    Xiao, Jingbo; Weisblum, Bernard; Wipf, Peter

    2006-01-01

    A concise synthesis of a gramicidin S analogue with trisubstituted (E)-alkene dipeptide isostere (TEADI) replacements at both DPhe-Pro positions was realized. Conformational analysis demonstrated that TEADIs can serve as type II β-turn promoters in a cyclic scaffold and successfully mimic a proline residue.

  10. Beyond Antibiotics?

    Directory of Open Access Journals (Sweden)

    LE Nicolle

    2006-01-01

    Full Text Available The AMMI Canada meeting in March 2006 hosted a symposium exploring the potential alternatives to antibiotics for the prevention and treatment of infection. Four papers summarizing talks from that session are published in this issue of the Journal (1-4. These reviews address the scientific underpinnings for a number of proposed concepts, and summarize the current status of clinical use. The approaches - probiotics, bacteriophage therapy, and manipulation of innate immunity - are all intriguing but are still removed from immediate practical applications.

  11. Deuterium NMR of Val1...(2-2H)Ala3...gramicidin A in oriented DMPC bilayers

    International Nuclear Information System (INIS)

    Deuterium NMR is used to study the selectively labeled Val1...(2-2H)Ala3...gramicidin A molecule to investigate the structure and dynamics of the C alpha-2H bond in the Ala3 residue of gramicidin. Val1...(2-2H)Ala3...gramicidin A is synthesized, purified, and characterized and then incorporated into oriented bilayers of dimyristoylphosphatidylcholine sandwiched between glass coverslips. Phosphorus NMR line shapes obtained from this sample are consistent with the presence of the bilayer phase and indicate that no nonbilayer phases are present in significant amounts. Deuterium NMR line shapes obtained from this sample indicate that the motional axis of the gramicidin Ala3 residue is parallel to the coverslip normal, that the distribution of motional axis orientations has a width of 2 degrees, and that only one major conformational and dynamical state of the Ala3 C alpha-2H bond is observed on the NMR time scale. Furthermore, the Ala3 C alpha-2H bond angle relative to the motional axis is 19-20 degrees if fast axial rotation is assumed to be the only motion present but is less than or equal to 19-20 degrees in the absence of such an assumption. This result indicates that various double-stranded, helical dimer models are very unlikely to represent the structure of gramicidin in the sample studied but that the single-stranded, beta 6.3 helical dimer models are consistent with the experimental data. However, a definitive distinction between the left-handed, single-stranded, beta 6.3 helical dimer model and the right-handed, single-stranded, beta 6.3 helical dimer model cannot be made on the basis of the experimental data obtained in this study

  12. Biofilm Induced Tolerance Towards Antimicrobial Peptides

    DEFF Research Database (Denmark)

    Folkesson, Anders; Haagensen, Janus Anders Juul; Zampaloni, Claudia;

    2008-01-01

    presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of...

  13. Colistin : Revival of an Old Polymyxin Antibiotic

    NARCIS (Netherlands)

    Dijkmans, Anneke C.; Wilms, Erik B.; Kamerling, Ingrid M. C.; Birkhoff, Willem; Ortiz-Zacarias, Natalia V.; van Nieuwkoop, Cees; Verbrugh, Henri A.; Touw, Daan J.

    2015-01-01

    Colistin (polymyxin E) is a positively charged deca-peptide antibiotic that disrupts the integrity of the outer membrane of the cell wall of gram-negative bacteria by binding to the lipid A moiety of lipopolysaccharides, resulting in cell death. The endotoxic activity of lipopolysaccharides is simul

  14. Crystallizing Transmembrane Peptides in Lipidic Mesophases

    Energy Technology Data Exchange (ETDEWEB)

    Höfer, Nicole; Aragão, David; Caffrey, Martin (Trinity)

    2011-09-28

    Structure determination of membrane proteins by crystallographic means has been facilitated by crystallization in lipidic mesophases. It has been suggested, however, that this so-called in meso method, as originally implemented, would not apply to small protein targets having {le}4 transmembrane crossings. In our study, the hypothesis that the inherent flexibility of the mesophase would enable crystallogenesis of small proteins was tested using a transmembrane pentadecapeptide, linear gramicidin, which produced structure-grade crystals. This result suggests that the in meso method should be considered as a viable means for high-resolution structure determination of integral membrane peptides, many of which are predicted to be coded for in the human genome.

  15. Perspectives and Peptides of the Next Generation

    Science.gov (United States)

    Brogden, Kim A.

    Shortly after their discovery, antimicrobial peptides from prokaryotes and eukaryotes were recognized as the next potential generation of pharmaceuticals to treat antibiotic-resistant bacterial infections and septic shock, to preserve food, or to sanitize surfaces. Initial research focused on identifying the spectrum of antimicrobial agents, determining the range of antimicrobial activities against bacterial, fungal, and viral pathogens, and assessing the antimicrobial activity of synthetic peptides versus their natural counterparts. Subsequent research then focused on the mechanisms of antimicrobial peptide activity in model membrane systems not only to identify the mechanisms of antimicrobial peptide activity in microorganisms but also to discern differences in cytotoxicity for prokaryotic and eukaryotic cells. Recent, contemporary work now focuses on current and future efforts to construct hybrid peptides, peptide congeners, stabilized peptides, peptide conjugates, and immobilized peptides for unique and specific applications to control the growth of microorganisms in vitro and in vivo.

  16. Toxins and antimicrobial peptides: interactions with membranes

    Science.gov (United States)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of melittin and human cathelicidin embedded in bilayer vesicles. Collectively, our results provide clues to the functional structures of the engineered and toxic peptides and may impact the design of synthetic antibiotic peptides that can be used against the growing number of antibiotic-resistant pathogens.

  17. Complete Genome Sequence of Aneurinibacillus migulanus E1, a Gramicidin S- and d-Phenylalanyl-l-Propyl Diketopiperazine-Deficient Mutant.

    Science.gov (United States)

    Belbahri, Lassaad; Alenezi, Faizah N; Luptakova, Lenka; Rateb, Mostafa E; Woodward, Steve

    2015-01-01

    We report here the complete genome sequence of the Aneurinibacillus migulanus E1 mutant deficient in gramicidin S (GS) and d-phenylalanyl-l-propyl diketopiperazine (DKP) formation. The genome consists of a circular chromosome (6,301,904 bp, 43.20% G+C content) without any plasmid. The complete genome sequence enables further investigation of the biosynthetic mechanism and the biological function of gramicidin S. PMID:26679577

  18. Facts about Antibiotic Resistance

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  19. Antibiotic / Antimicrobial Resistance Glossary

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  20. Molecular dynamics study of electrostatic potential along lipid bilayer with gramicidin A

    Science.gov (United States)

    Saito, Hiroaki; Nishimura, Megumi; Takagi, Hiroyuki; Miyakawa, Takeshi; Kawaguchi, Kazutomo; Nagao, Hidemi

    2013-02-01

    The structure and electrostatic potential profile of the DMPC lipid bilayers with a gramicidin A (GA) were studied by molecular dynamics (MD) simulation. The MD simulation reproduced the effect of GA on the membrane structure; the area per lipid decreases and membrane thickness increases, and the observed membrane structures correspond to the experimental data. The polar headgroup of lipid was found to orient toward the membrane normal as the lipid approaches the GA. The observed electrostatic potential map showed that the electrostatic potential around the region of GA gate was lower than the others at the same level of the membrane normal and the values of electrostatic potential in the pore region of GA were negative. These results indicate that a cation in the aqueous region of membrane can be electrostatically led to the GA entrance and penetrate the GA channel following the gradient of ion concentration.

  1. Natural antimicrobial peptides as promising anti-HIV candidates

    Science.gov (United States)

    Wang, Guangshun

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection remains to be one of the major global health problems. It is thus necessary to identify novel therapeutic molecules to combat HIV-1. Natural antimicrobial peptides (AMPs) have been recognized as promising templates for developing topical microbicides. This review systematically discusses over 80 anti-HIV peptides annotated in the antimicrobial peptide database (http://aps.unmc.edu/AP). Such peptides have been discovered from bacteria, plants, and animals. Examples include gramicidin and bacteriocins from bacteria, cyclotides from plants, melittins and cecropins from insects, piscidins from fish, ascaphins, caerins, dermaseptins, esculentins, and maximins from amphibians, and cathelicidins and defensins from vertebrates. These peptides appear to work by different mechanisms and could block viral entry in multiple ways. As additional advantages, such anti-HIV peptides may possess other desired features such as antibacterial, antiparasital, spermicidal, and anticancer activity. With continued optimization of peptide stability, production, formulation and delivery methods, it is anticipated that some of these compounds may eventually become new anti-HIV drugs. PMID:26834391

  2. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    Science.gov (United States)

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria. PMID:22029522

  3. Design and Application of Antimicrobial Peptide Conjugates.

    Science.gov (United States)

    Reinhardt, Andre; Neundorf, Ines

    2016-01-01

    Antimicrobial peptides (AMPs) are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT) or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry. PMID:27187357

  4. Design and Application of Antimicrobial Peptide Conjugates

    Directory of Open Access Journals (Sweden)

    Andre Reinhardt

    2016-05-01

    Full Text Available Antimicrobial peptides (AMPs are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry.

  5. Squalamine: an aminosterol antibiotic from the shark.

    Science.gov (United States)

    Moore, K S; Wehrli, S; Roder, H; Rogers, M; Forrest, J N; McCrimmon, D; Zasloff, M

    1993-02-15

    In recent years, a variety of low molecular weight antibiotics have been isolated from diverse animal species. These agents, which include peptides, lipids, and alkaloids, exhibit antibiotic activity against environmental microbes and are thought to play a role in innate immunity. We report here the discovery of a broad-spectrum steroidal antibiotic isolated from tissues of the dogfish shark Squalus acanthias. This water-soluble antibiotic, which we have named squalamine, exhibits potent bactericidal activity against both Gram-negative and Gram-positive bacteria. In addition, squalamine is fungicidal and induces osmotic lysis of protozoa. The chemical structure of the antibiotic 3 beta-N-1-(N-[3-(4-aminobutyl)]- 1,3-diaminopropane)-7 alpha,24 zeta-dihydroxy-5 alpha-cholestane 24-sulfate has been determined by fast atom bombardment mass spectroscopy and NMR. Squalamine is a cationic steroid characterized by a condensation of an anionic bile salt intermediate with spermidine. The discovery of squalamine in the shark implicates a steroid as a potential host-defense agent in vertebrates and provides insights into the chemical design of a family of broad-spectrum antibiotics. PMID:8433993

  6. Computational Investigation of the Effect of Lipid Membranes on Ion Permeation in Gramicidin A

    Directory of Open Access Journals (Sweden)

    Jeffry Setiadi

    2016-03-01

    Full Text Available Membrane proteins are embedded in a lipid bilayer and interact with the lipid molecules in subtle ways. This can be studied experimentally by examining the effect of different lipid bilayers on the function of membrane proteins. Understanding the causes of the functional effects of lipids is difficult to dissect experimentally but more amenable to a computational approach. Here we perform molecular dynamics simulations and free energy calculations to study the effect of two lipid types (POPC and NODS on the conductance of the gramicidin A (gA channel. A larger energy barrier is found for the K+ potential of mean force in gA embedded in POPC compared to that in NODS, which is consistent with the enhanced experimental conductance of cations in gA embedded in NODS. Further analysis of the contributions to the potential energy of K+ reveals that gA and water molecules in gA make similar contributions in both bilayers but there are significant differences between the two bilayers when the lipid molecules and interfacial waters are considered. It is shown that the stronger dipole moments of the POPC head groups create a thicker layer of interfacial waters with better orientation, which ultimately is responsible for the larger energy barrier in the K+ PMF in POPC.

  7. Computational Investigation of the Effect of Lipid Membranes on Ion Permeation in Gramicidin A.

    Science.gov (United States)

    Setiadi, Jeffry; Kuyucak, Serdar

    2016-01-01

    Membrane proteins are embedded in a lipid bilayer and interact with the lipid molecules in subtle ways. This can be studied experimentally by examining the effect of different lipid bilayers on the function of membrane proteins. Understanding the causes of the functional effects of lipids is difficult to dissect experimentally but more amenable to a computational approach. Here we perform molecular dynamics simulations and free energy calculations to study the effect of two lipid types (POPC and NODS) on the conductance of the gramicidin A (gA) channel. A larger energy barrier is found for the K⁺ potential of mean force in gA embedded in POPC compared to that in NODS, which is consistent with the enhanced experimental conductance of cations in gA embedded in NODS. Further analysis of the contributions to the potential energy of K⁺ reveals that gA and water molecules in gA make similar contributions in both bilayers but there are significant differences between the two bilayers when the lipid molecules and interfacial waters are considered. It is shown that the stronger dipole moments of the POPC head groups create a thicker layer of interfacial waters with better orientation, which ultimately is responsible for the larger energy barrier in the K⁺ PMF in POPC. PMID:26999229

  8. Strengthening Control of Antibiotics

    Institute of Scientific and Technical Information of China (English)

    EthelLu

    2005-01-01

    IT is a well-known fact that buy-ng guns is much easier than purchasing antibiotics in the United States. In China, however, the situation is different. According to a recent WHO survey,about 80 percent of Chinese inpatients take antibiotic medicines, and 58 percent of them are prescribed multifunctional antibiotics,

  9. Know When Antibiotics Work

    Centers for Disease Control (CDC) Podcasts

    2015-04-15

    This podcast provides a brief background about antibiotics and quick tips to help prevent antibiotic resistance.  Created: 4/15/2015 by Division of Bacterial Diseases (DBD), National Center for Immunization and Respiratory Disease (NCIRD), Get Smart: Know When Antibiotics Work Program.   Date Released: 4/16/2015.

  10. Antibiotic resistant in microorganisms

    Science.gov (United States)

    Antimicrobial agents are necessary for use in veterinary medicine including the production of food producing animals. Antibiotic use is indicated for the treatment of bacterial target organisms and/or disease for which the antibiotic was developed. However, an unintended consequence of antibiotic ...

  11. Peptide dendrimers

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Šebestík, Jaroslav; Ježek, Jan

    2005-01-01

    Roč. 11, - (2005), 757-788. ISSN 1075-2617 R&D Projects: GA ČR(CZ) GA203/03/1362 Institutional research plan: CEZ:AV0Z40550506 Keywords : multiple antigen peptides * peptide dendrimers * synthetic vaccine * multipleantigenic peptides Subject RIV: CC - Organic Chemistry Impact factor: 1.803, year: 2005

  12. Side Chain Hydrophobicity Modulates Therapeutic Activity and Membrane Selectivity of Antimicrobial Peptide Mastoparan-X

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Etzerodt, Thomas Povl; Gjetting, Torben;

    2014-01-01

    The discovery of new anti-infective compounds is stagnating and multi-resistant bacteria continue to emerge, threatening to end the "antibiotic era''. Antimicrobial peptides (AMPs) and lipo-peptides such as daptomycin offer themselves as a new potential class of antibiotics; however, further opti...

  13. High-speed magic angle spinning solid-state 1H nuclear magnetic resonance study of the conformation of gramicidin A in lipid bilayers.

    OpenAIRE

    Bouchard, M.; Davis, J H; Auger, M.

    1995-01-01

    One- and two-dimensional solid-state 1H nuclear magnetic resonance spectra of gramicidin A incorporated in a dimyristoylphosphatidylcholine membrane have been obtained with use of high-speed magic angle spinning. By rotating the sample at 13 kHz, it is possible to observe signals in the 1H spectra between 6.0 and 9.0 ppm attributable to the aromatic protons of the tryptophan residues and the formyl group proton of gramicidin A. Two-dimensional solid-state COSY spectra provided information for...

  14. Amphiphilic Peptide Interactions with Complex Biological Membranes : Effect of peptide properties on antimicrobial and anti-inflammatory effects

    OpenAIRE

    Singh, Shalini

    2016-01-01

    With increasing problem of resistance development in bacteria against conventional antibiotics, as well as problems associated with diseases either triggered or enhanced by infection, there is an urgent need to identify new types of effective therapeutics for the treatment of infectious diseases and its consequences. Antimicrobial and anti-inflammatory peptides have attracted considerable interest as potential new antibiotics in this context. While antimicrobial function of such peptides is b...

  15. Comment on ``Free energy simulations of single and double ion occupancy in gramicidin A'' [J. Chem. Phys. 126, 105103 (2007)

    Science.gov (United States)

    Roux, Benoît; Andersen, Olaf S.; Allen, Toby W.

    2008-06-01

    In a recent article published by Bastug and Kuyucak [J. Chem. Phys.126, 105103 (2007)] investigated the microscopic factors affecting double ion occupancy in the gramicidin channel. The analysis relied largely on the one-dimensional potential of mean force of ions along the axis of the channel (the so-called free energy profile of the ion along the channel axis), as well as on the calculation of the equilibrium association constant of the ions in the channel binding sites. It is the purpose of this communication to clarify this issue.

  16. Molecular dynamics study of free energy profiles for organic cations in gramicidin A channels.

    Science.gov (United States)

    Hao, Y; Pear, M R; Busath, D D

    1997-10-01

    The free energy profiles for four organic cations in right-handed single-helix gramicidin A dimers were computed by using umbrella sampling molecular dynamics with CHARMM. Ion-water column translocations were facilitated by using a novel "water-tunnel" approach. The overlapping pieces of free energy profile for adjacent windows were selected from three trajectories that differed in initial ion rotation and were aligned by the method of umbrella potential differences. Neglected long-range electrostatic energies from the bulk water and the bilayer were computed with DelPhi and added to the profile. The approach was corroborated for the formamidinium-guanidinium pair by using perturbation dynamics at axial positions 0, 6, 12, and 15 A from the channel center. The barrier to ethylammonium entry was prohibitive at 21 kcal/mol, whereas for methylammonium it was 5.5 kcal/mol, and the profile was quite flat through the channel, roughly consistent with conductance measurements. The profile for formamidinium was very similar to that of methylammonium. Guanidinium had a high entry barrier (deltaF = +8.6 kcal/mol) and a narrow deep central well (deltaF = -2.6 kcal/mol), qualitatively consistent with predictions from voltage-dependent potassium current block measurements. Its deep central well, contrasting with the flat profile for formamidinium, was verified with perturbation dynamics and was correlated with its high propensity to form hydrogen bonds with the channel at the dimer junction (not shared by the other three cations). Analysis of the ensemble average radial forces on the ions demonstrates that all four ions undergo compressive forces in the channel that are at maximum at the center of the monomer and relieved at the dimer junction, illustrating increased flexibility of the channel walls in the center of the channel. PMID:9336167

  17. The Influence of Lipid Bilayer Physicochemical Properties on Gramicidin A Conformer Preferences.

    Science.gov (United States)

    Patrick, John W; Gamez, Roberto C; Russell, David H

    2016-04-26

    The conformational preferences adopted by gramicidin A (GA) dimers inserted into phospholipid bilayers are reported as a function of the bilayer cholesterol content, temperature, and incubation time. Through use of vesicle capture-freeze drying methodology, GA dimers were captured in lipid bilayers and the conformational preferences of the complex were analyzed using ion mobility-mass spectrometry. Perturbations that affect the physicochemical interactions in the lipid bilayer such as cholesterol incorporation, temperature, and incubation time directly alter the conformer preferences of the complex. Regardless of bilayer cholesterol concentration, the antiparallel double helix (ADH) conformation was observed to be most abundant for GA dimers in bilayers composed of lipids with 12 to 22 carbon acyl chains. Incorporation of cholesterol into lipid bilayers yields increased bilayer thickness and rigidity, and an increased abundance of parallel double helix (PDH) and single-stranded head-to-head (SSHH) dimers were observed. Bilayers prepared using 1,2-dilauroyl-sn-glycero-3-phosphocholine, a lipid with 12 carbon acyl chains, yielded a nascent conformer that decreased in abundance as a function of bilayer cholesterol content. High resolution ion mobility-mass spectrometry data revealed two peaks in the ADH region suggesting that ADH populations are composed of two distinct conformers. The conformer preferences of GA dimers from 1,2-distearoyl-sn-glycero-3-phosphocholine bilayers were significantly different for samples incubated at 4°C vs. 60°C; increased cholesterol content yielded more PDH and SSHH at 60°C. The addition of cholesterol as well as incubating samples of 1,2-distearoyl-sn-glycero-3-phosphocholine at 60°C for 24-72 h yielded an increase in PDH and SSHH abundance. PMID:27119642

  18. Protective role of E. coli outer membrane vesicles against antibiotics.

    Science.gov (United States)

    Kulkarni, Heramb M; Nagaraj, R; Jagannadham, Medicharla V

    2015-12-01

    The outer membrane vesicles (OMVs) from bacteria are known to posses both defensive and protective functions and thus participate in community related functions. In the present study, outer membrane vesicles have been shown to protect the producer bacterium and two other bacterial species from the growth inhibitory effects of some antibiotics. The OMVs isolated from E. coli MG1655 protected the bacteria against membrane-active antibiotics colistin, melittin. The OMVs of E. coli MG1655 could also protect P. aeruginosa NCTC6751 and A. radiodioresistens MMC5 against these membrane-active antibiotics. However, OMVs could not protect any of these bacteria against the other antibiotics ciprofloxacin, streptomycin and trimethoprim. Hence, OMVs appears to protect the bacterial community against membrane-active antibiotics and not other antibiotics, which have different mechanism of actions. The OMVs of E. coli MG1655 sequester the antibiotic colistin, whereas their protein components degrade the antimicrobial peptide melittin. Proteomic analysis of OMVs revealed the presence of proteases and peptidases which appear to be involved in this process. Thus, the protection of bacteria by OMVs against antibiotics is situation dependent and the mechanism differs for different situations. These studies suggest that OMVs of bacteria form a common defense for the bacterial community against specific antibiotics. PMID:26640046

  19. Salt-resistant short antimicrobial peptides.

    Science.gov (United States)

    Mohanram, Harini; Bhattacharjya, Surajit

    2016-05-01

    Antimicrobial peptides (AMPs) are promising leads for the development of antibiotics against drug resistant bacterial pathogens. However, in vivo applications of AMPs remain obscure due to salt and serum mediated inactivation. The high cost of chemical synthesis of AMPs also impedes potential clinical application. Consequently, short AMPs resistant toward salt and serum inactivation are desirable for the development of peptide antibiotics. In this work, we designed a 12-residue amphipathic helical peptide RR12 (R-R-L-I-R-L-I-L-R-L-L-R-amide) and two Trp containing analogs of RR12 namely RR12Wpolar (R-R-L-I-W-L-I-L-R-L-L-R-amide), and RR12Whydro (R-R-L-I-R-L-W-L-R-L-L-R-amide). Designed peptides demonstrated potent antibacterial activity; MIC ranging from 2 to 8 μM, in the presence of sodium chloride (150 mM and 300 mM). Antibacterial activity of these peptides was also detected in the presence of human serum. Designed peptides, in particular RR12 and RR12Whydro, were only poorly hemolytic. As a mode of action; these peptides demonstrated efficient permeabilization of bacterial cell membrane and lysis of cell structure. We further investigated interactions of the designed peptides with lipopolysaccharide (LPS), the major component of the outer membrane permeability barrier of Gram-negative bacteria. Designed peptides adopted helical conformations in complex with LPS. Binding of peptides with LPS has yielded dissociation the aggregated structures of LPS. Collectively, these designed peptides hold ability to be developed for salt-resistant antimicrobial compounds. Most importantly, current work provides insights for designing salt-resistant antimicrobial peptides. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 345-356, 2016. PMID:26849911

  20. Frontline antibiotic therapy.

    Science.gov (United States)

    MacGowan, Alasdair; Albur, Maha

    2013-06-01

    The need to use front-line antibiotics wisely has never been greater. Antibiotic resistance and multi-drug resistant infection, driven by antibiotic use, remain major public health and professional concerns. To overcome these infection problems, use of older antibiotics active against multi drug-resistant pathogens is increasing - for example, colistin, fosfomycin, pivmecillinam, pristinamycin, temocillin and oral tetracyclines. The number of new antibacterials reaching clinical practice has reduced significantly in the last 20 years, most being focused on therapy of Gram-positive infection - eg linezolid, daptomycin, telavancin and ceftaroline. Recent guidance on antibiotic stewardship in NHS trusts in England is likely to provide a backdrop to antibiotic use in hospitals in the next 5 years. PMID:23760700

  1. High Antibiotic Consumption

    DEFF Research Database (Denmark)

    Malo, Sara; José Rabanaque, María; Feja, Cristina;

    2014-01-01

    a high proportion of antibiotics not recommended as first choice in primary health care. In conclusion, heavy antibiotic users consisted mainly of children and old adults. Inappropriate overuse of antibiotics (high quantity, high frequency, and inappropriate antibiotic choice) leads to a substantial...... individuals with highest consumption) were responsible for 21% of the total DDD consumed and received ≥6 packages per year. Elderly adults (≥60 years) and small children (0-9 years) were those exposed to the highest volume of antibiotics and with the most frequent exposure, respectively. Heavy users received...... risk of the emergence and spread of resistant bacteria, and interventions to reduce overuse of antibiotics should therefore primarily be targeted children and elderly people....

  2. Understanding Antibiotic Resistance

    OpenAIRE

    Goulart-Touma, Christiane

    2014-01-01

    The evolution of antibiotic resistance among bacteria threatens our continued ability to treat infectious diseases. The need for sustainable strategies to cure bacterial infections has never been greater. So far, all attempts to restore susceptibility after resistance arises have been unsuccessful, including restrictions on prescribing antibiotics (Andersson DI et al.2011) and antibiotic cycling (Andersson DI et al. 2005, Bergstrom CT et al. 2004). Part of the problem may be that those effor...

  3. Effect of Gating Modifier Toxins on Membrane Thickness: Implications for Toxin Effect on Gramicidin and Mechanosensitive Channels

    Directory of Open Access Journals (Sweden)

    Shin-Ho Chung

    2013-02-01

    Full Text Available Various gating modifier toxins partition into membranes and interfere with the gating mechanisms of biological ion channels. For example, GsMTx4 potentiates gramicidin and several bacterial mechanosensitive channels whose gating kinetics are sensitive to mechanical properties of the membrane, whereas binding of HpTx2 shifts the voltage-activity curve of the voltage-gated potassium channel Kv4.2 to the right. The detailed process by which the toxin partitions into membranes has been difficult to probe using molecular dynamics due to the limited time scale accessible. Here we develop a protocol that allows the spontaneous assembly of a polypeptide toxin into membranes in atomistic molecular dynamics simulations of tens of nanoseconds. The protocol is applied to GsMTx4 and HpTx2. Both toxins, released in water at the start of the simulation, spontaneously bind into the lipid bilayer within 50 ns, with their hydrophobic patch penetrated into the bilayer beyond the phosphate groups of the lipids. It is found that the bilayer is about 2 Å thinner upon the binding of a GsMTx4 monomer. Such a thinning effect of GsMTx4 on membranes may explain its potentiation effect on gramicidin and mechanosensitive channels.

  4. Antibiotics: Miracle Drugs

    Centers for Disease Control (CDC) Podcasts

    2015-04-16

    The overuse of antibiotics has led to the development of resistance among bacteria, making antibiotics ineffective in treating certain conditions. This podcast discusses the importance of talking to your healthcare professional about whether or not antibiotics will be beneficial if you’ve been diagnosed with an infectious disease.  Created: 4/16/2015 by Division of Bacterial Diseases (DBD), National Center for Immunization and Respiratory Disease (NCIRD), Get Smart: Know When Antibiotics Work Program.   Date Released: 4/16/2015.

  5. Structure of polysaccharide antibiotics

    International Nuclear Information System (INIS)

    Study of the structure of antibiotics having two or several sugars in their molecule. One may distinguish: the polysaccharide antibiotics themselves, made up of two or several sugars either with or without nitrogen, such as streptomycin, neomycins, paromomycine, kanamycin, chalcomycin; the hetero-polysaccharide antibiotics made up of one saccharide part linked to an aglycone of various type through a glucoside: macrolide, pigment, pyrimidine purine. Amongst these latter are: erythromycin, magnamycin, spiramycin, oleandomycin, cinerubin and amicetin. The sugars can either play a direct role in biochemical reactions or act as a dissolving agent, as far as the anti-microbe power of these antibiotics is concerned. (author)

  6. High-Quality Draft Genome Sequence of Aneurinibacillus migulanus ATCC 9999T (DSM 2895), a Gramicidin S-Producing Bacterium Isolated from Garden Soil.

    Science.gov (United States)

    Wang, Jie-Ping; Liu, Bo; Liu, Guo-Hong; Ge, Ci-Bin; Xiao, Rong-Feng; Zheng, Xue-Fang; Shi, Huai

    2015-01-01

    Aneurinibacillus migulanus ATCC 9999(T) (DSM 2895) is a Gram-positive, round-spore-forming, and gramicidin S-producing bacterium. Here, we report the 6.35-Mb high-quality draft genome sequence of A. migulanus ATCC 9999(T), which will provide useful information for the genomic taxonomy and phylogenomics of Bacillus-like bacteria. PMID:26494674

  7. The future of antibiotics.

    Science.gov (United States)

    Spellberg, Brad

    2014-01-01

    Antibiotic resistance continues to spread even as society is experiencing a market failure of new antibiotic research and development (R&D). Scientific, economic, and regulatory barriers all contribute to the antibiotic market failure. Scientific solutions to rekindle R&D include finding new screening strategies to identify novel antibiotic scaffolds and transforming the way we think about treating infections, such that the goal is to disarm the pathogen without killing it or modulate the host response to the organism without targeting the organism for destruction. Future economic strategies are likely to focus on 'push' incentives offered by public-private partnerships as well as increasing pricing by focusing development on areas of high unmet need. Such strategies can also help protect new antibiotics from overuse after marketing. Regulatory reform is needed to re-establish feasible and meaningful traditional antibiotic pathways, to create novel limited-use pathways that focus on highly resistant infections, and to harmonize regulatory standards across nations. We need new antibiotics with which to treat our patients. But we also need to protect those new antibiotics from misuse when they become available. If we want to break the cycle of resistance and change the current landscape, disruptive approaches that challenge long-standing dogma will be needed. PMID:25043962

  8. Immunomodulatory actions of antibiotics

    Directory of Open Access Journals (Sweden)

    Minić Svetlana

    2009-01-01

    Full Text Available Introduction. Antimicrob drugs and immune system interaction has been studied since the pioneer works of Metchnikoff. After the introduction of antibiotics in clinical practice this area has attracted little attention of investigators, because of the lack of standards. This is the reason that the studying of the influence of antibiotics on immune system is still at its beginning. Aim: To point out the immunomodulatory action of some antibiotics on certain components of immune system. Methods and results. The literaure findings show that antibiotics exspress immunomodulatory action on some components of immune system such as fagocytes (polymorphonucleary, macrophages, monocytes, cytokines, immunoglobulines, and on cellular immunity. The principles of antibiotics action on phagocyte are the inhibition of chemotaxis and oxidants production. Macrolides applied for a short time enchance the phagocytic functions while their long use leads to immunosupression. Some cephalosporines and rifampicin in therapeutic doses inhibit the oxydative metabolism of macrophages. Tetracyclines, clindamycines, chloramphenicol and tobramycin inhibit the synthesis of superoxyd anione. The action of some antibiotics on cytokine and specific antibodies is also important. Cellular immunity can be affected as well. After administration of certain antibiotics it takes 1-2 weeks to reestablish normal cellular immunity, and for other even more. Conclusion. There is still no clear standing on real effects of antibiotics on the immune system. Clinicians should search for more information from this new-old field of investigation in order to give more adequate therapy to patients.

  9. Structure and supramolecular architecture of membrane channel-forming peptides.

    Science.gov (United States)

    Spach, G; Duclohier, H; Molle, G; Valleton, J M

    1989-01-01

    Peptides gathering together to induce channels in lipid bilayers may be classified in several categories according to the spatial structures involved. For example, gramicidin A forms intramolecular tubes, alamethicin, bundles of helical rods with intermolecular pores, porins (being proteins, properly speaking) are rich in beta-sheets that may form barrels, whereas cyclic peptides might stack together resulting in the formation of pores. The chemical structure of these compounds is now well characterized. The transmembrane electrical signals that they transmit are also typical of the particular supramolecular configurations (or architecture). Investigations in this field are thus relevant to structure-function relationship studies due to the availability of natural or synthetic analogues allowing the measurement of the influence of physico-chemical parameters upon the energy profiles of the pores. Consequently, questions such as the existence and probabilities of conductance substrates, their voltage-dependence and their ion or molecular selectivity can be tackled. Today, the loosest aspect of these studies lies in the actual molecular conformations and architecture in the membranes of the peptide aggregates, the knowledge of which remains imprecise, even 'at rest' in the best-studied cases. This review attempts to point out still unresolved questions and to propose some plausible approaches concerning, for example: 1) the configurations of the molecular aggregates responsible for ion transfer; 2) the mechanisms for channel-opening and closing (gating); 3) the eventual cooperative phenomena between channels, via the bilayer or interfacial components. Possible applications of these structures will be tentatively outlined. PMID:2470416

  10. Stimuli-Responsive Codelivery of Oligonucleotides and Drugs by Self-Assembled Peptide Nanoparticles.

    Science.gov (United States)

    Sigg, Severin J; Postupalenko, Viktoriia; Duskey, Jason T; Palivan, Cornelia G; Meier, Wolfgang

    2016-03-14

    Ever more emerging combined treatments exploiting synergistic effects of drug combinations demand smart, responsive codelivery carriers to reveal their full potential. In this study, a multifunctional stimuli-responsive amphiphilic peptide was designed and synthesized to self-assemble into nanoparticles capable of co-bearing and -releasing hydrophobic drugs and antisense oligonucleotides for combined therapies. The rational design was based on a hydrophobic l-tryptophan-d-leucine repeating unit derived from a truncated sequence of gramicidin A (gT), to entrap hydrophobic cargo, which is combined with a hydrophilic moiety of histidines to provide electrostatic affinity to nucleotides. Stimuli-responsiveness was implemented by linking the hydrophobic and hydrophilic sequence through an artificial amino acid bearing a disulfide functional group (H3SSgT). Stimuli-responsive peptides self-assembled in spherical nanoparticles in sizes (100-200 nm) generally considered as preferable for drug delivery applications. Responsive peptide nanoparticles revealed notable nucleotide condensing abilities while maintaining the ability to load hydrophobic cargo. The disulfide cleavage site introduced in the peptide sequence induced responsiveness to physiological concentrations of reducing agent, serving to release the incorporated molecules. Furthermore, the peptide nanoparticles, singly loaded or coloaded with boron-dipyrromethene (BODIPY) and/or antisense oligonucleotides, were efficiently taken up by cells. Such amphiphilic peptides that led to noncytotoxic, reduction-responsive nanoparticles capable of codelivering hydrophobic and nucleic acid payloads simultaneously provide potential toward combined treatment strategies to exploit synergistic effects. PMID:26871486

  11. Accurate Evaluation of Ion Conductivity of the Gramicidin A Channel Using a Polarizable Force Field without Any Corrections.

    Science.gov (United States)

    Peng, Xiangda; Zhang, Yuebin; Chu, Huiying; Li, Yan; Zhang, Dinglin; Cao, Liaoran; Li, Guohui

    2016-06-14

    Classical molecular dynamic (MD) simulation of membrane proteins faces significant challenges in accurately reproducing and predicting experimental observables such as ion conductance and permeability due to its incapability of precisely describing the electronic interactions in heterogeneous systems. In this work, the free energy profiles of K(+) and Na(+) permeating through the gramicidin A channel are characterized by using the AMOEBA polarizable force field with a total sampling time of 1 μs. Our results indicated that by explicitly introducing the multipole terms and polarization into the electrostatic potentials, the permeation free energy barrier of K(+) through the gA channel is considerably reduced compared to the overestimated results obtained from the fixed-charge model. Moreover, the estimated maximum conductance, without any corrections, for both K(+) and Na(+) passing through the gA channel are much closer to the experimental results than any classical MD simulations, demonstrating the power of AMOEBA in investigating the membrane proteins. PMID:27171823

  12. Targeting Antibiotic Resistance.

    Science.gov (United States)

    Chellat, Mathieu F; Raguž, Luka; Riedl, Rainer

    2016-06-01

    Finding strategies against the development of antibiotic resistance is a major global challenge for the life sciences community and for public health. The past decades have seen a dramatic worldwide increase in human-pathogenic bacteria that are resistant to one or multiple antibiotics. More and more infections caused by resistant microorganisms fail to respond to conventional treatment, and in some cases, even last-resort antibiotics have lost their power. In addition, industry pipelines for the development of novel antibiotics have run dry over the past decades. A recent world health day by the World Health Organization titled "Combat drug resistance: no action today means no cure tomorrow" triggered an increase in research activity, and several promising strategies have been developed to restore treatment options against infections by resistant bacterial pathogens. PMID:27000559

  13. Antibiotics for uncomplicated diverticulitis

    DEFF Research Database (Denmark)

    Shabanzadeh, Daniel M; Wille-Jørgensen, Peer

    2012-01-01

    Diverticulitis is an inflammatory complication to the very common condition diverticulosis. Uncomplicated diverticulitis has traditionally been treated with antibiotics with reference to the microbiology, extrapolation from trials on complicated intra-abdominal infections and clinical experience....

  14. Antibiotic induced meningitis.

    OpenAIRE

    1994-01-01

    Three patients with antibiotic induced meningitis, one following penicillin with seven episodes, are reported on--the first well documented description of penicillin induced meningitis. In this patient episodes of headache and nuchal rigidity appeared with and without CSF pleocytosis. Two patients had a total of five episodes of antibiotic induced meningitis after trimethoprim-sulphamethoxazole (co-trimoxazole) administration. The features common to all three patients were myalgia, confusion ...

  15. Antibiotic Precautions in Athletes

    OpenAIRE

    Fayock, Kristopher; Voltz, Matthew; Sandella, Bradley; Close, Jeremy; Lunser, Matthew; Okon, Joshua

    2014-01-01

    Context: Antibiotics are the mainstay of treatment for bacterial infections in patients of all ages. Athletes who maximally train are at risk for illness and various infections. Routinely used antibiotics have been linked to tendon injuries, cardiac arrhythmias, diarrhea, photosensitivity, cartilage issues, and decreased performance. Evidence Acquisition: Relevant articles published from 1989 to 2012 obtained through searching MEDLINE and OVID. Also, the Food and Drug Administration website w...

  16. [Analysis of antibiotic usage].

    Science.gov (United States)

    Balpataki, R; Balogh, J; Zelkó, R; Vincze, Z

    2001-01-01

    Economic analysis is founded on the assumption that resources are limited and that should be used in a way that maximizes the benefits gained. Pharmacoeconomics extends these assumptions to drug treatment. Therefore, a full pharmacoeconomic analysis must consider two or more alternative treatments and should be founded on measurement of incremental cost, incremental efficacy, and the value of successful outcome. Antibiotic policy based only on administrative restrictions is failed, instead of it disease formularies and infectologist consultation system are needed. Equally important are various programmes that encourage the cost-conscious use of the antibiotics chosen. Some of the methods evaluated in the literature include: streamlining from combination therapy to a single agent, early switching from parenteral to oral therapy, initiating treatment with oral agents, administering parenteral antibiotic at home from outset of therapy, and antibiotic streamlining programmes that are partnered with infectious disease physicians. The solution is the rational and adequate use of antibiotics, based on the modern theory and practice of antibiotic policy and infection control, that cannot be carried out without the activities of experts in this field. PMID:11769090

  17. Phenotypic Resistance to Antibiotics

    Directory of Open Access Journals (Sweden)

    Jose L. Martinez

    2013-04-01

    Full Text Available The development of antibiotic resistance is usually associated with genetic changes, either to the acquisition of resistance genes, or to mutations in elements relevant for the activity of the antibiotic. However, in some situations resistance can be achieved without any genetic alteration; this is called phenotypic resistance. Non-inherited resistance is associated to specific processes such as growth in biofilms, a stationary growth phase or persistence. These situations might occur during infection but they are not usually considered in classical susceptibility tests at the clinical microbiology laboratories. Recent work has also shown that the susceptibility to antibiotics is highly dependent on the bacterial metabolism and that global metabolic regulators can modulate this phenotype. This modulation includes situations in which bacteria can be more resistant or more susceptible to antibiotics. Understanding these processes will thus help in establishing novel therapeutic approaches based on the actual susceptibility shown by bacteria during infection, which might differ from that determined in the laboratory. In this review, we discuss different examples of phenotypic resistance and the mechanisms that regulate the crosstalk between bacterial metabolism and the susceptibility to antibiotics. Finally, information on strategies currently under development for diminishing the phenotypic resistance to antibiotics of bacterial pathogens is presented.

  18. [Prophylactic antibiotics in neurosurgery].

    Science.gov (United States)

    Iacob, G; Iacob, Simona; Cojocaru, Inimioara

    2007-01-01

    Because of a low risk of infection (around 2-3%), prophylactic use of antibiotics in neurosurgery is a controversial issue. Some neurosurgeons consider that there are strong arguments against the use of antimicrobials (promotion of antibiotic-resistant strains of bacteria, superinfection and adverse drug reactions) and meticulous aseptic techniques could be more usefully than prophylactic antibiotics. On the other hand, despite of being rare, the consequences of a neurosurgical infection can be dramatic and may result in a rapid death, caused by meningitis, cerebritis, abscess formation or sepsis. Clinical studies emphasized that the most important factors influencing the choice of antibiotic prophylaxis in neurosurgery is the patient's immune status, virulence of the pathogens and the type of surgery ("clean contaminated"--procedure that crosses the cranial sinuses, "clean non-implant"--procedure that does not cross the cranial sinuses, CSF shunt surgery, skull fracture). Prophylaxis has become the standard of care for contaminated and clean-contaminated surgery, also for surgery involving insertion of artificial devices. The antibiotic (first/second generation of cephalosporins or vancomycin in allergic patients) should recover only the cutaneous possibly contaminating flora (S. aureus, S. epidermidis) and should be administrated 30' before the surgical incision, intravenously in a single dose. Most studies pointed that identification of the risk factors for infections, correct asepsis and minimal prophylactic antibiotic regimen, help neurosurgeons to improve patient care and to decrease mortality without selecting resistant bacteria. PMID:18293694

  19. Strategies to Minimize Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Sang Hee Lee

    2013-09-01

    Full Text Available Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs and various data such as pharmacokinetic (PK and pharmacodynamic (PD properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST, clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care, the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing. The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics.

  20. Response to ``Comment on `Free energy simulations of single and double ion occupancy in gramicidin A' '' [J. Chem. Phys. 128, 227101 (2008)

    Science.gov (United States)

    Baştuğ, Turgut; Kuyucak, Serdar

    2008-06-01

    We respond to the criticism that one-dimensional (1D) construction of the potential of mean force (PMF) of ions in channels is flowed. Comparison of the 1D PMF results in the gramicidin A channel with independent free energy difference calculations obtained by using the free energy perturbation and thermodynamic integration methods shows complete agreement, thus providing a justifications for the 1D PMF approximation.

  1. 2H-nuclear magnetic resonance investigations on phospholipid acyl chain order and dynamics in the gramicidin-induced hexagonal HII phase.

    OpenAIRE

    Chupin, V.; Killian, J A; Kruijff, B. de

    1987-01-01

    The following results are reported in this paper: The interaction of gramicidin with [11,11-2H2]dioleoylphosphatidylcholine (DOPC) and [11,11-2H2]dioleoylphosphatidylethanolamine (DOPE) at different stages of hydration was studied by 2H- and 31P-nuclear magnetic resonance. In the L alpha phase in excess water the acyl chains of phosphatidylethanolamine (PE) are more ordered than phosphatidylcholine (PC) most likely as the result of the lower headgroup hydration of the former lipid. In excess ...

  2. X-ray scattering with momentum transfer in the plane of membrane. Application to gramicidin organization.

    OpenAIRE

    He, K.; Ludtke, S J; Wu, Y.; Huang, H W

    1993-01-01

    We demonstrate a technique for measuring x-ray (or neutron) scattering with the momentum transfer confined in the plane of membrane, for the purpose of studying lateral organization of proteins and peptides in membrane. Unlike freeze-fracture electron microscopy or atomic force microscopy which requires the membrane to be frozen or fixed, in-plane x-ray scattering can be performed with the membrane maintained in the liquid crystalline state. As an example, the controversial question of whethe...

  3. Ecological antibiotic policy.

    Science.gov (United States)

    Høiby, N

    2000-09-01

    Development of resistance to antibiotics is a major problem worldwide. The normal oropharyngeal flora, the intestinal flora and the skin flora play important roles in this development. Within a few days after the onset of antibiotic therapy, resistant Escherichia coli, Haemophilus influenzae and Staphylococcus epidermidis can be detected in the normal flora of volunteers or patients. Horizontal spread of the resistance genes to other species, e.g. Salmonella spp., Staphylococcus aureus and Streptococcus pneumoniae, occurs by conjugation or transformation. An ecologically sound antibiotic policy favours the use of antibiotics with little or no impact on the normal flora. Prodrug antibiotics which are not active against the bacteria in the mouth and the intestine (before absorption) and which are not excreted to a significant degree via the intestine, saliva or skin are therefore preferred. Prodrugs such as pivampicillin, bacampicillin, pivmecillinam and cefuroxime axetil are favourable from an ecological point of view. Experience from Scandinavia supports this, since resistance to mecillinam after 20 years of use is low (about 5%) and stable. PMID:11051626

  4. The multifaceted roles of antibiotics and antibiotic resistance in nature

    Directory of Open Access Journals (Sweden)

    Saswati eSengupta

    2013-03-01

    Full Text Available Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic-resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic-resistance in pathogens. In the natural milieu, antibiotics are often found to be present in subinhibitory concentrations acting as signalling molecules supporting quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host-parasite interactions (e.g., phagocytosis, adherence to the target cell and so on. The evolutionary and ecological aspects of antibiotics and antibiotic-resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behaviour of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and genes that confer resistance to antibiotics in

  5. Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products

    NARCIS (Netherlands)

    Medema, Marnix; Paalvast, Yared; Nguyen, D.D.; Melnik, A.; Dorrestein, P.C.; Takano, Eriko; Breitling, Rainer

    2014-01-01

    Nonribosomally and ribosomally synthesized bioactive peptides constitute a source of molecules of great biomedical importance, including antibiotics such as penicillin, immunosuppressants such as cyclosporine, and cytostatics such as bleomycin. Recently, an innovative mass-spectrometry-based strateg

  6. Diversity, evolution and medical applications of insect antimicrobial peptides

    OpenAIRE

    Mylonakis, Eleftherios; Podsiadlowski, Lars; Muhammed, Maged; Vilcinskas, Andreas

    2016-01-01

    Antimicrobial peptides (AMPs) are short proteins with antimicrobial activity. A large portion of known AMPs originate from insects, and the number and diversity of these molecules in different species varies considerably. Insect AMPs represent a potential source of alternative antibiotics to address the limitation of current antibiotics, which has been caused by the emergence and spread of multidrug-resistant pathogens. To get more insight into AMPs, we investigated the diversity and evolutio...

  7. [Antibiotical prophylaxy in gynecology].

    Science.gov (United States)

    Záhumenský, J; Menzlová, E; Zmrhal, J; Kučera, E

    2013-08-01

    Gynecological surgery is considered to be clear with possible contamination by gram-positive cocci from the skin, gram-negatives from the perineum or groins or polymicrobial biocenosis from vagina, depending on the surgical approach. Antibiotical prophylaxy enforces the natural mechanisms of immunity and helps to exclude present infection. There were presented many studies comparing useful effect of prophylaxis in gynecological surgery. The benefits of antibiotical prophylaxy before IUD insertion, before the cervical surgery and before hysteroscopies were not verified. On the other hand the prophylaxy of vaginal surgery including vaginal hysterectomy decreases the number of postoperative febrile complications. The positive influence of prophylaxis before the simple laparoscopy and laparoscopy without bowel injury or the opening of the vagina was not evidently verified. In abdominal hysterectomy the antibiotical prophylaxy decreases the incidence of postoperative complications significantly. The administration of 2 g of cefazolin can be recommended. In procedures taking more than 3 hours the repeated administration of cefazolin is suitable. New urogynecological procedures, using mesh implants, were not sufficiently evaluated as for postoperative infections and the posible antibiotical effect. The presence of implant in possibly non sterile area should be considered as high risc of postoperative complications. PMID:24040985

  8. Antibiotics in interventional radiology

    International Nuclear Information System (INIS)

    The range and number of interventional procedures is rapidly increasing each year. A major complication associated with many procedures is infection, which can result in serious adverse outcomes for the patient. Consequently, antibiotics are amongst the most common pharmaceuticals used by the interventionist, particularly for non-vascular procedures, yet almost no randomized controlled trial data exist to inform our decision when formulating appropriate antibiotic prophylaxis regimens. The purpose of this review is to provide an update on the utilization of antibiotics for common interventional radiology procedures, focusing on timing and duration of antibiotic prophylaxis. - Highlights: • Prophylaxis when necessary should be given immediately prior to the procedure for optimum effect. • Where possible single agents with a narrow spectrum of activity should be used. • Account should be taken of the clinical circumstances of the patient, including surgical history. • Continuous review of agents is necessary, ideally with input from the local microbiology department. • The importance of maximum sterile precautions cannot be overstated

  9. In Vitro Antimalarial Activity of Novel Semisynthetic Nocathiacin I Antibiotics

    OpenAIRE

    Sharma, Indu; Sullivan, Margery; McCutchan, Thomas F.

    2015-01-01

    Presently, the arsenal of antimalarial drugs is limited and needs to be replenished. We evaluated the potential antimalarial activity of two water-soluble derivatives of nocathiacin (BMS461996 and BMS411886) against the asexual blood stages of Plasmodium falciparum. Nocathiacins are a thiazolyl peptide group of antibiotics, are structurally related to thiostrepton, have potent activity against a wide spectrum of multidrug-resistant Gram-positive bacteria, and inhibit protein synthesis. The in...

  10. Polylactide-polyglycolide antibiotic implants.

    Science.gov (United States)

    Garvin, Kevin; Feschuk, Connie

    2005-08-01

    Surgeons continually struggle to reduce orthopaedic infections, but no current treatment offers minimum side effects with maximum effectiveness. Antibiotics mixed in plaster of paris have been successful in treating large bony defects in patients with chronic osteomyelitis, and have the advantage of being well tolerated and absorbed by the body. Antibiotics impregnated in polymethylmethacrylate (PMMA) have offered local antibiotic delivery with some success. However, the effect of the antibiotic on the bone cement, the inconsistent elution of the antibiotic, and the need to remove the PMMA implant drives the need for a better system of antibiotic delivery. Polymers or copolymers of antibiotic-impregnated polylactic acid, polyglycolic acid or polyparadioxanone may provide an absorbable system for localized antibiotic delivery. Similar biodegradable systems used to treat small bone fractures have been successful with minimal side effects. In vitro studies have shown promising results of antibiotic elution from bioabsorbable microspheres and beads. Animal in vivo tests have shown that antibiotic impregnated polymers can successfully treat induced osteomyelitis in rabbits and dogs. These studies have provided consistent reproducible results, and now it is time to plan human trials to assess the efficacy of antibiotic microspheres implanted in infected bone and to plan in vivo and in vitro animal testing to investigate the feasibility of antibiotic-polymer-coated components. PMID:16056034

  11. Induced Bacterial Cross-Resistance toward Host Antimicrobial Peptides: A Worrying Phenomenon

    OpenAIRE

    Fleitas, Osmel; Franco, Octávio L.

    2016-01-01

    Bacterial resistance to conventional antibiotics has reached alarming levels, threatening to return to the pre-antibiotic era. Therefore, the search for new antimicrobial compounds that overcome the resistance phenomenon has become a priority. Antimicrobial peptides (AMPs) appear as one of the most promising antibiotic medicines. However, in recent years several AMP-resistance mechanisms have been described. Moreover, the AMP-resistance phenomenon has become more complex due to its associatio...

  12. Environmental pollution by antibiotics and by antibiotic resistance determinants

    International Nuclear Information System (INIS)

    Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. - The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.

  13. Investigation of Ion Channel Activities of Gramicidin A in the Presence of Ionic Liquids Using Model Cell Membranes.

    Science.gov (United States)

    Ryu, Hyunil; Lee, Hwankyu; Iwata, Seigo; Choi, Sangbaek; Kim, Moon Ki; Kim, Young-Rok; Maruta, Shinsaku; Kim, Sun Min; Jeon, Tae-Joon

    2015-01-01

    Ionic liquids (ILs) are considered to be green solvents because of their non-volatility. Although ILs are relatively safe in the atmospheric environment, they may be toxic in other environments. Our previous research showed that the cytotoxicity of ILs to biological organisms is attributable to interference with cell membranes by IL insertion. However, the effects of ILs on ion channels, which play important roles in cell homeostasis, have not been comprehensively studied to date. In this work, we studied the interactions between ILs and lipid bilayer membranes with gramicidin A ion channels. We used two methods, namely electrical and fluorescence measurements of ions that permeate the membrane. The lifetimes of channels were increased by all the ILs tested in this work via stabilizing the compressed structure of the lipid bilayer and the rate of ion flux through gA channels was decreased by changing the membrane surface charge. The former effect, which increased the rate of ion flux, was dominant at high salt concentrations, whereas the latter, which decreased the rate of ion flux, was dominant at low salt concentrations. The effects of ILs increased with increasing concentration and alkyl chain length. The experimental results were further studied using molecular dynamics simulations. PMID:26189604

  14. Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning.

    Science.gov (United States)

    Barbosa-Santillán, Liliana I; Sánchez-Escobar, Juan J; Calixto-Romo, M Angeles; Barbosa-Santillán, Luis F

    2016-01-01

    We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2. PMID:27366202

  15. Pneumococcal resistance to antibiotics.

    OpenAIRE

    Klugman, K P

    1990-01-01

    The geographic distribution of pneumococci resistant to one or more of the antibiotics penicillin, erythromycin, trimethoprim-sulfamethoxazole, and tetracycline appears to be expanding, and there exist foci of resistance to chloramphenicol and rifampin. Multiply resistant pneumococci are being encountered more commonly and are more often community acquired. Factors associated with infection caused by resistant pneumococci include young age, duration of hospitalization, infection with a pneumo...

  16. Antibiotics in dental practice

    OpenAIRE

    2007-01-01

    The oral cavity and it surrounding tissue are habitats for many bacteria. Therefore a rationale for the use of antibacterial agents rises. During my time as a dental student, me often meet conditions were antibiotics are pointed out as the treatment of chose, as indicated or not recommended. According to Norwegian drug regulations (Tørisen 2007) dentists have: The right to requisition necessary medical agents in connection with dental treatment and prevention and treatment of diseases in the...

  17. A Chemical-Genomic Screen of Neglected Antibiotics Reveals Illicit Transport of Kasugamycin and Blasticidin S.

    Science.gov (United States)

    Shiver, Anthony L; Osadnik, Hendrik; Kritikos, George; Li, Bo; Krogan, Nevan; Typas, Athanasios; Gross, Carol A

    2016-06-01

    Fighting antibiotic resistance requires a deeper understanding of the genetic factors that determine the antibiotic susceptibility of bacteria. Here we describe a chemical-genomic screen in Escherichia coli K-12 that was designed to discover new aspects of antibiotic resistance by focusing on a set of 26 antibiotics and other stresses with poorly characterized mode-of-action and determinants of resistance. We show that the screen identifies new resistance determinants for these antibiotics including a common signature from two antimicrobials, kasugamycin and blasticidin S, used to treat crop diseases like rice blast and fire blight. Following this signature, we further investigated the mechanistic basis for susceptibility to kasugamycin and blasticidin S in E. coli using both genetic and biochemical approaches. We provide evidence that these compounds hijack an overlapping set of peptide ABC-importers to enter the bacterial cell. Loss of uptake may be an underappreciated mechanism for the development of kasugamycin resistance in bacterial plant pathogens. PMID:27355376

  18. A Chemical-Genomic Screen of Neglected Antibiotics Reveals Illicit Transport of Kasugamycin and Blasticidin S.

    Directory of Open Access Journals (Sweden)

    Anthony L Shiver

    2016-06-01

    Full Text Available Fighting antibiotic resistance requires a deeper understanding of the genetic factors that determine the antibiotic susceptibility of bacteria. Here we describe a chemical-genomic screen in Escherichia coli K-12 that was designed to discover new aspects of antibiotic resistance by focusing on a set of 26 antibiotics and other stresses with poorly characterized mode-of-action and determinants of resistance. We show that the screen identifies new resistance determinants for these antibiotics including a common signature from two antimicrobials, kasugamycin and blasticidin S, used to treat crop diseases like rice blast and fire blight. Following this signature, we further investigated the mechanistic basis for susceptibility to kasugamycin and blasticidin S in E. coli using both genetic and biochemical approaches. We provide evidence that these compounds hijack an overlapping set of peptide ABC-importers to enter the bacterial cell. Loss of uptake may be an underappreciated mechanism for the development of kasugamycin resistance in bacterial plant pathogens.

  19. Anisotropic membrane curvature sensing by antibacterial peptides

    CERN Document Server

    Gómez-Llobregat, Jordi; Lindén, Martin

    2014-01-01

    Many proteins and peptides have an intrinsic capacity to sense and induce membrane curvature, and play crucial roles for organizing and remodeling cell membranes. However, the molecular driving forces behind these processes are not well understood. Here, we describe a new approach to study curvature sensing, by simulating the direction-dependent interactions of single molecules with a buckled lipid bilayer. We analyze three antimicrobial peptides, a class of membrane-associated molecules that specifically target and destabilize bacterial membranes, and find qualitatively different sensing characteristics that would be difficult to resolve with other methods. These findings provide new insights into the microscopic mechanisms of antimicrobial peptides, which might aid the development of new antibiotics. Our approach is generally applicable to a wide range of curvature sensing molecules, and our results provide strong motivation to develop new experimental methods to track position and orientation of membrane p...

  20. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain......Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... diseases like Crohn's disease and atopic dermatitis. AMPs are attractive candidates for development of novel antibiotics due to their in vivo activity profile and some peptides may serve as templates for further drug development Udgivelsesdato: 2008...

  1. Peptide conversations in Gram-positive bacteria.

    Science.gov (United States)

    Monnet, Véronique; Juillard, Vincent; Gardan, Rozenn

    2016-05-01

    Within Gram-positive bacteria, the expression of target genes is controlled at the population level via signaling peptides, also known as pheromones. Pheromones control a wide range of functions, including competence, virulence, and others that remain unknown. Until now, their role in bacterial gene regulation has probably been underestimated; indeed, bacteria are able to produce, by ribosomal synthesis or surface protein degradation, an extraordinary variety of peptides which are released outside bacteria and among which, some are pheromones that mediate cell-to-cell communication. The review aims at giving an updated overview of these peptide-dependant communication pathways. More specifically, it follows the whole peptide circuit from the peptide production and secretion in the extracellular medium to its interaction with sensors at bacterial surface or re-import into the bacteria where it plays its regulation role. In recent years, as we have accumulated more knowledge about these systems, it has become apparent that they are more complex than they first appeared. For this reason, more research on peptide-dependant pathways is needed to develop new strategies for controlling functions of interest in Gram-positive bacteria. In particular, such research could lead to alternatives to the use of antibiotics against pathogenic bacteria. In perspective, the review identifies new research questions that emerge in this field and that have to be addressed. PMID:25198780

  2. Optimizing Antibiotic Use in Nursing Homes Through Antibiotic Stewardship.

    Science.gov (United States)

    Sloane, Philip D; Huslage, Kirk; Kistler, Christine E; Zimmerman, Sheryl

    2016-01-01

    Antibiotic stewardship is becoming a requirement for nursing homes. Programs should be interdisciplinary and multifaceted; should have support from nursing home administrators; and should aim to promote antibiotics only when needed, not just in case. Recommended components include use of evidence-based guidelines; ongoing monitoring of antibiotic prescriptions, cultures, and study results; monitoring of health outcomes; use of nursing home-specific antibiograms; regular reporting and feedback to medical providers and nurses; and education of residents and families. PMID:27621341

  3. Temporin-SHf, a New Type of Phe-rich and Hydrophobic Ultrashort Antimicrobial Peptide*

    OpenAIRE

    Abbassi, Feten; Lequin, Olivier; Piesse, Christophe; Goasdoué, Nicole; Foulon, Thierry; Nicolas, Pierre; Ladram, Ali

    2010-01-01

    Because issues of cost and bioavailability have hampered the development of gene-encoded antimicrobial peptides to combat infectious diseases, short linear peptides with high microbial cell selectivity have been recently considered as antibiotic substitutes. A new type of short antimicrobial peptide, designated temporin-SHf, was isolated and cloned from the skin of the frog Pelophylax saharica. Temporin-SHf has a highly hydrophobic sequence (FFFLSRIFa) and possesses the highest percentage of ...

  4. Endogenous pulmonary antibiotics.

    Science.gov (United States)

    Gibbons, M A; Bowdish, D M; Davidson, D J; Sallenave, J M; Simpson, A J

    2006-05-01

    The human lung produces a variety of peptides and proteins which have intrinsic antimicrobial activity. In general these molecules have broad spectra of antimicrobial activity, kill micro-organisms rapidly, and evade resistance generated by pathogens. In recent years it has become increasingly apparent that the antimicrobial peptides (AMPs) simultaneously possess immunomodulatory functions, suggesting complex roles for these molecules in regulating the clearance of, and immune response to, invading pathogens. These collective properties have stimulated considerable interest in the potential clinical application of endogenous AMPs. This article outlines the biology of AMPs, their pattern of expression in the lung, and their functions, with reference to both antimicrobial and immunomodulatory activity. We then consider the biological importance of AMPs, before concentrating on the potential to use AMPs to therapeutic effect. The principles discussed in the article apply to innate immune defence throughout the body, but particular emphasis is placed on AMPs in the lung and the potential application to pulmonary infection. PMID:16722137

  5. Selected antimicrobial peptides inhibit in vitro growth of Campylobacter spp.

    Science.gov (United States)

    Novel alternatives to traditional antibiotics are urgently needed for food-animal production. A goal of our laboratory is to develop and evaluate antimicrobial peptides (AMP) to control and reduce foodborne pathogens in poultry. AMP have been found in most every class of living organism where they h...

  6. Bioinformatics Tools for the Discovery of New Nonribosomal Peptides

    DEFF Research Database (Denmark)

    Leclère, Valérie; Weber, Tilmann; Jacques, Philippe;

    2016-01-01

    -dimensional structure of the peptides can be compared with the structural patterns of all known NRPs. The presented workflow leads to an efficient and rapid screening of genomic data generated by high throughput technologies. The exploration of such sequenced genomes may lead to the discovery of new drugs (i.......e., antibiotics against multi-resistant pathogens or anti-tumors)....

  7. Antibiotic prevention of postcataract endophthalmitis

    DEFF Research Database (Denmark)

    Kessel, Line; Flesner, Per; Andresen, Jens;

    2015-01-01

    Endophthalmitis is one of the most feared complications after cataract surgery. The aim of this systematic review was to evaluate the effect of intracameral and topical antibiotics on the prevention of endophthalmitis after cataract surgery. A systematic literature review in the MEDLINE, CINAHL......, Cochrane Library and EMBASE databases revealed one randomized trial and 17 observational studies concerning the prophylactic effect of intracameral antibiotic administration on the rate of endophthalmitis after cataract surgery. The effect of topical antibiotics on endophthalmitis rate was reported by one...... with the use of intracameral antibiotic administration of cefazolin, cefuroxime and moxifloxacin, whereas no effect was found with the use of topical antibiotics or intracameral vancomycin. Endophthalmitis occurred on average in one of 2855 surgeries when intracameral antibiotics were used compared to...

  8. Antibiotics in otorhinolaryngology practice

    Directory of Open Access Journals (Sweden)

    Stefan-Mikić Sandra

    2002-01-01

    Full Text Available Introduction This study investigated utilization of antibacterial agents at the Ear, Nose and Throat Department of the Outpatient Service of the Health Center Novi Sad - Liman and at the Ear, Nose and Throat Clinic of the Clinical Center Novi Sad, in the period February - March 2001. Material and methods All antibacterial agents were classified as group J, regarding Anatomic-Therapeutic-Chemical Classification. Data on drug utilization were presented in Defined Daily Doses (DDD. Patients who were under observation were all treated with antibiotics. Results In regard to prescribed treatment in the Ear, Nose and Throat Department of the Outpatient Service of the Health Center Novi Sad - Liman, most outpatients were treated with macrolide antibiotics - in 26.21%; combination of penicillin and beta-lactamase inhibitors in 20.83% and pyranosides in 16.12%. At the Ear, Nose and Throat Clinic of the Clinical Center Novi Sad, macrolides and lincosamines were most frequently used - in 20.46%; cephalosporins in 19.87% and penicillins susceptible to beta-lactamase in 18.85%. It is extremely positive and in agreement with current pharmacotherapeutic principles that in both institutions peroral ampicillins have not been prescribed. Aminoglycosides have been prescribed in less than 1% of patients of the Ear, Nose and Throat Department of the Outpatient Service of the Health Center Novi Sad - Liman, whereas they were much more frequently prescribed at the Ear, Nose and Throat Clinic of the Clinical Center Novi Sad - in 11.25%. Although there is a positive postantibiotic effect in regard to these antibiotics and it is recommended to use them once a day, in both examined institutions aminoglycosides were given twice a day. In regard to bacterial identification it was done in 80.76% of patients of the Ear, Nose and Throat Department of the Outpatient Service of the Health Center Novi Sad - Liman, while in the Ear, Nose and Throat Clinic of the Clinical Center

  9. The synthesis of a novel octapeptidolipid antibiotic

    International Nuclear Information System (INIS)

    The bacillomycins comprise a group of antifungal polypeptide antibiotic compounds closely related in terms of their physico-chemical properties, amino acid and β-amino fatty acid compositions. Iturin A, which belongs to the bacillomycins, consists of seven amino acids. Attempts to produce a β-NC15 fatty acid in acceptable yield proved unsuccessful and was later discarded in favour of the preparation of a β-NC14 fatty acid. The different experimental procedures used and results obtained when preparing both fatty acids are detailed. The method developed in preparing the β-NC14 fatty acid affords a new general synthetic route for the production of β-amino fatty acids in good yield. The strategy considered in selecting which amino acid to commence the peptide synthesis with, the use in the Merrifield procedure of N-protected amino acids, coupling reagents, deprotecting and cleaving agents, and the HPLC purification procedures used for the linear and cyclic octapeptides, are all described. The 1H-NMR spectrum of the synthetic cyclic compound compared favourably with the spectrum of natural iturin A and these results are also presented. This dissertation presents the total synthesis of a novel octapeptidolipid antifungal antibiotic (iturin A analogue), utilising the Merrifield solid phase procedure. The biological activity of the synthesised and purified linear and cyclic iturin A analogues were compared with that of bacillomycin S. The test for biological activity and results obtained are described and illustrated with photographic plates

  10. Epithelial antimicrobial peptides in host defense against infection

    Directory of Open Access Journals (Sweden)

    Bals Robert

    2000-10-01

    Full Text Available Abstract One component of host defense at mucosal surfaces seems to be epithelium-derived antimicrobial peptides. Antimicrobial peptides are classified on the basis of their structure and amino acid motifs. Peptides of the defensin, cathelicidin, and histatin classes are found in humans. In the airways, α-defensins and the cathelicidin LL-37/hCAP-18 originate from neutrophils. β-Defensins and LL-37/hCAP-18 are produced by the respiratory epithelium and the alveolar macrophage and secreted into the airway surface fluid. Beside their direct antimicrobial function, antimicrobial peptides have multiple roles as mediators of inflammation with effects on epithelial and inflammatory cells, influencing such diverse processes as proliferation, immune induction, wound healing, cytokine release, chemotaxis, protease-antiprotease balance, and redox homeostasis. Further, antimicrobial peptides qualify as prototypes of innovative drugs that might be used as antibiotics, anti-lipopolysaccharide drugs, or modifiers of inflammation.

  11. Antibiotics and oral contraceptives.

    Science.gov (United States)

    Rubin, D F

    1981-04-01

    Dermatologists often prescribe oral tetracycline for the control of acne, primarily, and to a much lesser extent, for the treatment of cutaneous infections. A number of the patients taking tetracycline are also taking birth control pills. A recent article in the British Medical Journal (1980;1:293) indicates that this combination can lead to a failure of the (OC) oral contraceptive. Such failure had been associated with ampicillin as well. It is believed that the mechanism for this was the disturbance in normal gut flora, with consequent effects on bacterial hydrolysis of steroid conjugates. This would interrupt the enterohepatic circulation of contraceptive steroids, resulting in a less than normal concentration of circulating steroids. It was recommended that women taking low-dose OCs take extra precautions against pregnancy during any cycle in which antibiotics are given. In regard to our care of and responsibilities to our patients, and in an era when malpractice suits for all types of reasons are more common, it certainly behooves dermatologists to recognize and be concerned about this potential consequence of prescribing oral antibiotics. PMID:7212735

  12. Inter- and intramolecular distance measurements by solid-state MAS NMR: Determination of gramicidin A channel dimer structure in hydrated phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fu Riqiang; Cotten, Myriam; Cross, Timothy A. [Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory (United States)

    2000-03-15

    Distance constraints are an important complement to orientational constraints. While a high-resolution monomer structure of the ion channel forming polypeptide, gramicidin A, has been solved with 120 orientational constraints, the precise geometry of the dimer interface has not been characterized. Here, using both {sup 13}C and {sup 15}N labeled gramicidin A samples in hydrated phospholipid bilayers, both inter- and intramolecular distances have been measured with a recently developed simultaneous frequency and amplitude modulation (SFAM) solid-state NMR scheme. Using this approach {sup 15}N-{sup 13}C{sub 1} residual dipolar couplings across a hydrogen bond as small as 20 {+-} 2 Hz have been characterized. While such distances are on the order of 4.2 {+-} 0.2 A, the spectroscopy is complicated by rapid global motion of the molecular structure about the bilayer normal and channel axis. Consequently, the nominal 40 Hz dipolar coupling is averaged depending on the orientation of the internuclear vector with respect to the motional axis. The intermolecular distance confirmed the previously described monomeric structure, while the intramolecular distance across the monomer-monomer interface defined this junction and confirmed the previous model of this interface.

  13. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen;

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2, wh...

  14. Temporizin and Temporizin-1 Peptides as Novel Candidates for Eliminating Trypanosoma cruzi.

    Science.gov (United States)

    Souza, André L A; Faria, Robson X; Calabrese, Kátia S; Hardoim, Daiane J; Taniwaki, Noemi; Alves, Luiz A; De Simone, Salvatore G

    2016-01-01

    Tropical diseases caused by parasitic infections continue to cause socioeconomic distress worldwide. Among these, Chagas disease has become a great concern because of globalization. Caused by Trypanosoma cruzi, there is an increasing need to discover new, more effective methods to manage infections that minimize disease onset. Antimicrobial peptides represent a possible solution to this challenge. As effector molecules of the innate immune response against pathogens, they are the first line of defense found in all multi-cellular organisms. In amphibians, temporins are a large family of antimicrobial peptides found in skin secretions. Their functional roles and modes of action present unique properties that indicate possible candidates for therapeutic applications. Here, we investigated the trypanocide activity of temporizin and temporizin-1. Temporizin is an artificial, hybrid peptide containing the N-terminal region of temporin A, the pore-forming region of gramicidin and a C-terminus consisting of alternating leucine and lysine. Temporizin-1 is a modification of temporizin with a reduction in the region responsible for insertion into membranes. Their activities were evaluated in a cell permeabilization assay by flow cytometry, an LDH release assay, electron microscopy, an MTT assay and patch clamp experiments. Both temporizin and temporizin-1 demonstrated toxicity against T. cruzi with temporizin displaying slightly more potency. At concentrations up to 100 μg/ ml, both peptides exhibited low toxicity in J774 cells, a macrophage lineage cell line, and no toxicity was observed in mouse primary peritoneal macrophages. In contrast, the peptides showed some toxicity in rat adenoma GH3 cells and Jurkat human lymphoma cells with temporizin-1 displaying lower toxicity. In summary, a shortened form of the hybrid temporizin peptide, temporizin-1, was efficient at killing T. cruzi and it has low toxicity in wild-type mammalian cells. These data suggest that temporizin-1

  15. Temporizin and Temporizin-1 Peptides as Novel Candidates for Eliminating Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    André L A Souza

    Full Text Available Tropical diseases caused by parasitic infections continue to cause socioeconomic distress worldwide. Among these, Chagas disease has become a great concern because of globalization. Caused by Trypanosoma cruzi, there is an increasing need to discover new, more effective methods to manage infections that minimize disease onset. Antimicrobial peptides represent a possible solution to this challenge. As effector molecules of the innate immune response against pathogens, they are the first line of defense found in all multi-cellular organisms. In amphibians, temporins are a large family of antimicrobial peptides found in skin secretions. Their functional roles and modes of action present unique properties that indicate possible candidates for therapeutic applications. Here, we investigated the trypanocide activity of temporizin and temporizin-1. Temporizin is an artificial, hybrid peptide containing the N-terminal region of temporin A, the pore-forming region of gramicidin and a C-terminus consisting of alternating leucine and lysine. Temporizin-1 is a modification of temporizin with a reduction in the region responsible for insertion into membranes. Their activities were evaluated in a cell permeabilization assay by flow cytometry, an LDH release assay, electron microscopy, an MTT assay and patch clamp experiments. Both temporizin and temporizin-1 demonstrated toxicity against T. cruzi with temporizin displaying slightly more potency. At concentrations up to 100 μg/ ml, both peptides exhibited low toxicity in J774 cells, a macrophage lineage cell line, and no toxicity was observed in mouse primary peritoneal macrophages. In contrast, the peptides showed some toxicity in rat adenoma GH3 cells and Jurkat human lymphoma cells with temporizin-1 displaying lower toxicity. In summary, a shortened form of the hybrid temporizin peptide, temporizin-1, was efficient at killing T. cruzi and it has low toxicity in wild-type mammalian cells. These data suggest

  16. Temporizin and Temporizin-1 Peptides as Novel Candidates for Eliminating Trypanosoma cruzi

    Science.gov (United States)

    Calabrese, Kátia S.; Hardoim, Daiane J.; Taniwaki, Noemi; Alves, Luiz A.; De Simone, Salvatore G.

    2016-01-01

    Tropical diseases caused by parasitic infections continue to cause socioeconomic distress worldwide. Among these, Chagas disease has become a great concern because of globalization. Caused by Trypanosoma cruzi, there is an increasing need to discover new, more effective methods to manage infections that minimize disease onset. Antimicrobial peptides represent a possible solution to this challenge. As effector molecules of the innate immune response against pathogens, they are the first line of defense found in all multi-cellular organisms. In amphibians, temporins are a large family of antimicrobial peptides found in skin secretions. Their functional roles and modes of action present unique properties that indicate possible candidates for therapeutic applications. Here, we investigated the trypanocide activity of temporizin and temporizin-1. Temporizin is an artificial, hybrid peptide containing the N-terminal region of temporin A, the pore-forming region of gramicidin and a C-terminus consisting of alternating leucine and lysine. Temporizin-1 is a modification of temporizin with a reduction in the region responsible for insertion into membranes. Their activities were evaluated in a cell permeabilization assay by flow cytometry, an LDH release assay, electron microscopy, an MTT assay and patch clamp experiments. Both temporizin and temporizin-1 demonstrated toxicity against T. cruzi with temporizin displaying slightly more potency. At concentrations up to 100 μg/ ml, both peptides exhibited low toxicity in J774 cells, a macrophage lineage cell line, and no toxicity was observed in mouse primary peritoneal macrophages. In contrast, the peptides showed some toxicity in rat adenoma GH3 cells and Jurkat human lymphoma cells with temporizin-1 displaying lower toxicity. In summary, a shortened form of the hybrid temporizin peptide, temporizin-1, was efficient at killing T. cruzi and it has low toxicity in wild-type mammalian cells. These data suggest that temporizin-1

  17. [Antibiotic stability in magistral collyria].

    Science.gov (United States)

    Tihărău, A; Voiculescu, E; Vancea, S; Teodorescu, A; Cherecheş, S

    1990-01-01

    The paper presents the results of a study on physicochemical and and microbiological stability of collyria with such antibiotics as: Kanamicin, Oxacilin, Colistin, Erythromycin and Rifampicin. The authors insist on the necessity of preparing the ophthalmic solution with the antibiotics studies, with solvent for eye drops as provided for by RF IX and keeping at +4 degrees C, at dark. PMID:2101048

  18. Antibiotic Prophylaxis in Pediatric Dentistry

    OpenAIRE

    Davydova N.V.; Suyetenkov D.Ye.; Firsova I.V.; Oleynikova N.M.

    2011-01-01

    Identify options for the indications for antibiotic prophylaxis in children's dental reception. The analysis of publications shows that the basis of current trends prevention of postoperative wound infection in pediatric surgery should be measures aimed at eliminating or reducing the influence of risk factors, as well as the use of antibiotic prophylaxis

  19. Antibiotic Prophylaxis in Pediatric Dentistry

    Directory of Open Access Journals (Sweden)

    Davydova N.V.

    2011-03-01

    Full Text Available Identify options for the indications for antibiotic prophylaxis in children's dental reception. The analysis of publications shows that the basis of current trends prevention of postoperative wound infection in pediatric surgery should be measures aimed at eliminating or reducing the influence of risk factors, as well as the use of antibiotic prophylaxis

  20. The Antibiotic Resistance Problem Revisited

    Science.gov (United States)

    Lawson, Michael A.

    2008-01-01

    The term "antibiotic" was first proposed by Vuillemin in 1889 but was first used in the current sense by Walksman in 1941. An antibiotic is defined as a "derivative produced by the metabolism of microorganisms that possess antibacterial activity at low concentrations and is not toxic to the host." In this article, the author describes how…

  1. 高效液相色谱-串联质谱法测定养殖环境沉积物中多肽类抗生素残留量%Determination of Peptide Antibiotics Residues in Sediment From Aquaculture Environment by High Performance Liquid Chromatography-Tandem Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    钱卓真; 罗冬莲; 罗方方; 叶玫; 汤水粉

    2016-01-01

    A new method for the determination of peptide antibiotics in sediment from aquaculture environment by high performance liquid chromatography-tandem mass spectrometry was developed. The target analytes in sediments were ultrasonically extracted twice with citrate buffer solution and methol mixture (3∶ 4, V/ V), followed by complexation with 0. 5 g of Na2 EDTA, purification with 5 mL of methyl isobutyl ketone, and clean-up with HLB-SPE column. The analytes were separated on a MGII C18 column by gradient elution with 0. 1% formaic acid-0. 1% formaic acid acetonitrile as mobile phase, detected in multiple reaction monitoring (MRM) with electrospray ionization (ESI) under positive ion mode, and quantified by external standard method. The calibration curves were linear (R2 >0. 999) over a concentration range of 10 -10000μg / L for colistin and bacitracin and 4-4000 μg / L for virginiamycin M1 . The limits of detection (S / N = 3) were 5 μg / kg for colistin and bacitracin and 2 μg / kg for virginiamycin M1 . The limits of quantification (S / N=10) was 10 μg / kg for colistin and bacitracin and 4 μg / kg for virginiamycin M1 . At three spiked levels, the recoveries ranged from 79. 7% to 91. 6% (RSD=1. 9% -10. 8% ), showing high sensitivity, good reproducibility and wide applicability.%建立了测定水产养殖环境沉积物中多肽类抗生素残留量的高效液相色谱串联质谱法。沉积物经10 mL甲醇-柠檬酸-Na2 HPO4溶液(3∶4, V/ V)超声提取2次,0.5 g 乙二胺四乙酸二钠络合除杂,5 mL 甲基异丁基甲酮净化,HLB 固相萃取柱进一步富集净化,MGII C18色谱柱分离,0.1%甲酸与0.1%甲酸-乙腈梯度洗脱,ESI+电离,多反应监测模式(MRM)监测,外标法定量。粘菌素和杆菌肽在10~10000μg/ L 范围内,维吉尼霉素 M1在4~4000μg/ L 范围内,线性回归系数均大于0.999,方法检出限为2~5μg/ kg,方法定量限为4~10μg/ kg。在3个浓度添加水平下,多肽类抗生素回收率79.7%~91.6%,

  2. The Prehistory of Antibiotic Resistance.

    Science.gov (United States)

    Perry, Julie; Waglechner, Nicholas; Wright, Gerard

    2016-01-01

    Antibiotic resistance is a global problem that is reaching crisis levels. The global collection of resistance genes in clinical and environmental samples is the antibiotic "resistome," and is subject to the selective pressure of human activity. The origin of many modern resistance genes in pathogens is likely environmental bacteria, including antibiotic producing organisms that have existed for millennia. Recent work has uncovered resistance in ancient permafrost, isolated caves, and in human specimens preserved for hundreds of years. Together with bioinformatic analyses on modern-day sequences, these studies predict an ancient origin of resistance that long precedes the use of antibiotics in the clinic. Understanding the history of antibiotic resistance is important in predicting its future evolution. PMID:27252395

  3. Antibiotic tolerance and microbial biofilms

    DEFF Research Database (Denmark)

    Folkesson, Anders

    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We study the dynamics of antibiotic action within hydrodynamic flow chamber biofilms of Escherichia coli and Pseudomonas aeruginosa using isogenic mutants and fluorescent gene...... expression reporters and we address the question of how biofilm organization affects antibiotic susceptibility. The dynamics of microbial killing is monitored by viable count determination, and confocal laser microscopy. Our work shows that the apparent increased antibiotic tolerance is due to the formation...... of antibiotic tolerant subpopulations within the biofilm. The formation of these subpopulations is highly variable and dependent on the antibiotic used, the biofilm structural organization and the induction of specific tolerance mechanisms....

  4. Antibiotics for acute maxillary sinusitis

    DEFF Research Database (Denmark)

    Ahovuo-Saloranta, Anneli; Borisenko, Oleg V; Kovanen, Niina;

    2008-01-01

    antibiotics from different classes for acute maxillary sinusitis in adults. We included trials with clinically diagnosed acute sinusitis, whether or not confirmed by radiography or bacterial culture. DATA COLLECTION AND ANALYSIS: At least two review authors independently screened search results, extracted......BACKGROUND: Expert opinions vary on the appropriate role of antibiotics for sinusitis, one of the most commonly diagnosed conditions among adults in ambulatory care. OBJECTIVES: We examined whether antibiotics are effective in treating acute sinusitis, and if so, which antibiotic classes are the...... most effective. SEARCH STRATEGY: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, 2007, Issue 3); MEDLINE (1950 to May 2007) and EMBASE (1974 to June 2007). SELECTION CRITERIA: Randomized controlled trials (RCTs) comparing antibiotics with placebo or...

  5. Interaction between antimicrobial peptides and mycobacteria.

    Science.gov (United States)

    Gutsmann, Thomas

    2016-05-01

    Mycobacteria can cause different severe health problems, including tuberculosis (TB). The treatment of TB with conventional antibiotics is successful, however, the number of multi-drug and extensively-drug resistant Mycobacterium tuberculosis strains increases. Moreover, many classical antimycobacterial antibiotics have severe side effects. Therefore, antimicrobial peptides (AMPs) seem to be good candidates for new therapeutic strategies. On the one hand AMPs can be used as a single drug or in combination with conventional antibiotics to directly kill mycobacteria, or on the other hand to act as immunstimulatory agents. This review summarizes the findings on the role of endogenous human AMPs being involved in TB, the antimycobacterial activity of various AMPs, and the molecular modes of action. Most active AMPs interact with the mycobacterial cell envelope and in particular with the mycomembrane and the plasma membrane. The mycomembrane is a very rigid membrane probably leading to a lower activity of the AMPs against mycobacteria as compared to other Gram-negative or Gram-positive bacteria. For some AMPs also other targets have been identified. Because of the complex environment of intracellular mycobacteria being trapped in the phagosome, within the macrophage, within the granuloma, within the lung, the external administration of AMPs in the latent phase of TB is a challenge. However, in the acute phase the AMPs can attack mycobacteria in a direct way. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26851776

  6. Antibiotic Resistance of Shigella Species in Iran

    OpenAIRE

    A.Mehr-Movahed; J. Nikkhah

    1987-01-01

    Antibiotic resistance in Shigella species has been showing a rising trend all over the world. This study was performed to discover the state of antibiotic resistance of Shigella species with regards to six common antibiotics in use in Iran.

  7. Human commensals producing a novel antibiotic impair pathogen colonization.

    Science.gov (United States)

    Zipperer, Alexander; Konnerth, Martin C; Laux, Claudia; Berscheid, Anne; Janek, Daniela; Weidenmaier, Christopher; Burian, Marc; Schilling, Nadine A; Slavetinsky, Christoph; Marschal, Matthias; Willmann, Matthias; Kalbacher, Hubert; Schittek, Birgit; Brötz-Oesterhelt, Heike; Grond, Stephanie; Peschel, Andreas; Krismer, Bernhard

    2016-07-28

    The vast majority of systemic bacterial infections are caused by facultative, often antibiotic-resistant, pathogens colonizing human body surfaces. Nasal carriage of Staphylococcus aureus predisposes to invasive infection, but the mechanisms that permit or interfere with pathogen colonization are largely unknown. Whereas soil microbes are known to compete by production of antibiotics, such processes have rarely been reported for human microbiota. We show that nasal Staphylococcus lugdunensis strains produce lugdunin, a novel thiazolidine-containing cyclic peptide antibiotic that prohibits colonization by S. aureus, and a rare example of a non-ribosomally synthesized bioactive compound from human-associated bacteria. Lugdunin is bactericidal against major pathogens, effective in animal models, and not prone to causing development of resistance in S. aureus. Notably, human nasal colonization by S. lugdunensis was associated with a significantly reduced S. aureus carriage rate, suggesting that lugdunin or lugdunin-producing commensal bacteria could be valuable for preventing staphylococcal infections. Moreover, human microbiota should be considered as a source for new antibiotics. PMID:27466123

  8. Clinical relevance of intestinal peptide uptake

    Institute of Scientific and Technical Information of China (English)

    Hugh; James; Freeman

    2015-01-01

    AIM: To determine available information on an independent peptide transporter 1(Pep T1) and its potential relevance to treatment, this evaluation was completed.METHODS: Fully published English language literature articles sourced through Pub Med related to protein digestion and absorption, specifically human peptide and amino acid transport, were accessed and reviewed.Papers from 1970 to the present, with particular emphasis on the past decade, were examined. In addition,abstracted information translated to English in Pub Med was also included. Finally, studies and reviews relevant to nutrient or drug uptake, particularly in human intestine were included for evaluation. This work represents a summary of all of these studies with particular reference to peptide transporter mediated assimilation of nutrients and pharmacologically active medications.RESULTS: Assimilation of dietary protein in humans involves gastric and pancreatic enzyme hydrolysis to luminal oligopeptides and free amino acids. During the ensuing intestinal phase, these hydrolytic products are transported into the epithelial cell and, eventually, the portal vein. A critical component of this process is the uptake of intact di-peptides and tri-peptides by an independent Pep T1. A number of "peptide-mimetic" pharmaceutical agents may also be transported through this carrier, important for uptake of different antibiotics, antiviral agents and angiotensin-converting enzyme inhibitors. In addition, specific peptide products of intestinal bacteria may also be transported by Pep T1, with initiation and persistence of an immune response including increased cytokine production and associated intestinal inflammatory changes. Interestingly, these inflammatory changes may also be attenuated with orallyadministered anti-inflammatory tripeptides administered as site-specific nanoparticles and taken up by this Pep T1 transport protein. CONCLUSION: Further evaluation of the role of this transporter in treatment of

  9. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Roderick I. Mackie

    2013-07-01

    Full Text Available Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  10. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  11. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined.......To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  12. Diversity, evolution and medical applications of insect antimicrobial peptides.

    Science.gov (United States)

    Mylonakis, Eleftherios; Podsiadlowski, Lars; Muhammed, Maged; Vilcinskas, Andreas

    2016-05-26

    Antimicrobial peptides (AMPs) are short proteins with antimicrobial activity. A large portion of known AMPs originate from insects, and the number and diversity of these molecules in different species varies considerably. Insect AMPs represent a potential source of alternative antibiotics to address the limitation of current antibiotics, which has been caused by the emergence and spread of multidrug-resistant pathogens. To get more insight into AMPs, we investigated the diversity and evolution of insect AMPs by mapping their phylogenetic distribution, allowing us to predict the evolutionary origins of selected AMP families and to identify evolutionarily conserved and taxon-specific families. Furthermore, we highlight the use of the nematode Caenorhabditis elegans as a whole-animal model in high-throughput screening methods to identify AMPs with efficacy against human pathogens, including Acinetobacter baumanii and methicillin-resistant Staphylococcus aureus We also discuss the potential medical applications of AMPs, including their use as alternatives for conventional antibiotics in ectopic therapies, their combined use with antibiotics to restore the susceptibility of multidrug-resistant pathogens, and their use as templates for the rational design of peptidomimetic drugs that overcome the disadvantages of therapeutic peptides.The article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160593

  13. Systemic antibiotic therapy in periodontics

    Directory of Open Access Journals (Sweden)

    Anoop Kapoor

    2012-01-01

    Full Text Available Systemic antibiotics in conjunction with scaling and root planing (SRP, can offer an additional benefit over SRP alone in the treatment of periodontitis, in terms of clinical attachment loss (CAL and pocket depth change, and reduced risk of additional CAL loss. However, antibiotics are not innocuous drugs. Their use should be justified on the basis of a clearly established need and should not be substituted for adequate local treatment. The aim of this review is to discuss the rationale, proper selection, dosage and duration for antibiotic therapy so as to optimize the usefulness of drug therapy.

  14. Antibiotics as CECs: An Overview of the Hazards Posed by Antibiotics and Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Geoffrey Ivan Scott

    2016-04-01

    Full Text Available ABSTRACTMonitoring programs have traditionally monitored legacy contaminants but are shifting focus to Contaminants of Emerging Concern (CECs. CECs present many challenges for monitoring and assessment, because measurement methods don't always exist nor have toxicological studies been fully conducted to place results in proper context. Also some CECs affect metabolic pathways to produce adverse outcomes that are not assessed through traditional toxicological evaluations. Antibiotics are CECs that pose significant environmental risks including development of both toxic effects at high doses and antibiotic resistance at doses well below the Minimum Inhibitory Concentration (MIC which kill bacteria and have been found in nearly half of all sites monitored in the US. Antimicrobial resistance has generally been attributed to the use of antibiotics in medicine for humans and livestock as well as aquaculture operations. The objective of this study was to assess the extent and magnitude of antibiotics in the environment and estimate their potential hazards in the environment. Antibiotics concentrations were measured in a number of monitoring studies which included Waste Water Treatment Plants (WWTP effluent, surface waters, sediments and biota. A number of studies reported levels of Antibiotic Resistant Microbes (ARM in surface waters and some studies found specific ARM genes (e.g. the blaM-1 gene in E. coli which may pose additional environmental risk. High levels of this gene were found to survive WWTP disinfection and accumulated in sediment at levels 100-1000 times higher than in the sewerage effluent, posing potential risks for gene transfer to other bacteria.in aquatic and marine ecosystems. Antibiotic risk assessment approaches were developed based on the use of MICs and MIC Ratios [High (Antibiotic Resistant/Low (Antibiotic Sensitive MIC] for each antibiotic indicating the range of bacterial adaptability to each antibiotic to help define the No

  15. Prophylactic antibiotics versus post- operative antibiotics in herniorraphy

    Directory of Open Access Journals (Sweden)

    Abedulla Khan Kayamkani

    2015-07-01

    Full Text Available Postoperative surgical site infections are a major source of illness.  Infection results in longer hospital stay and higher costs.  Uses of preoperative antibiotics have been standardized and are being used routinely in most clinical surgeries and include controversial areas like breast surgery and herniorraphy. Objective of the study is to find out the benefit of prophylactic use of antibiotics in the management of herniorraphy.This project was carried out in a multispeciality tertiary care teaching hospital from 1st-30th April in 2002. Group 1 patients were treated prophylactically half an hour before surgery with single dose of I.V. antibiotics (injection.  Ampicillin 1gm + injection.  Gentamicin 80mg. Group 2 patients were treated post surgery with capsule. Ampicillin 500mg 4 times a day for 7 days and injection. Gentamicin twice a day for first 4 days. In case of group 1 patients only one out of 20 patients (5% was infected.  Whereas in-group 2 patients 5 out of 20 patients (25% were infected. The cost of prophylactic antibiotic treatment was Rs. 25.56 per patient.  The postoperative antibiotic treatment cost was Rs. 220.4 per patient.  That means postoperative treatment is around 8.62 times costlier than prophylactic treatment.             From this study it is evident that prophylactic (preoperative treatment is better than postoperative treatment with antibiotics.

  16. Solid peptide nanoparticles--structural characterization and quantification of cargo encapsulation.

    Science.gov (United States)

    Dittrich, Christian; Meier, Wolfgang

    2010-12-01

    CD3ac, an uncharged and strongly hydrophobic 10 amino acid peptide (Ac-LK(Ac)-LK(Ac)-LK(Ac)-LW-DL-LW-DL-LW-DL-LW-NH2) was synthesized and purified. The peptide readily dissolves in ethanol and--upon solvent exchange to water--assembles into solid spherical particles with diameters of around 500 nm and low size-polydispersity. CD3ac self-assembles in a convenient one-step-process in the absence of a templating two-phase solvent system or any other templating agents. Circular dichroism reveals a gramicidin-like secondary structure, which can be attributed to the presence of D-leucine, whereas LCD3ac, a peptide of identical constitution yet composed entirely of L-amino acids precipitates amorphously. The unacetylated derivative of LCD3ac (LCD3) displays α-helical character in circular dichroism. During the process of bead formation, CD3ac can take up and enrich water-soluble and--insoluble cargo compounds, which is exemplified by the encapsulation of rose bengal (RB) and 5-carboxy-fluorescein (CF), two xanthene derivatives. We confirmed their presence in CD3ac beads by confocal fluorescence microscopy and quantified the encapsulation efficiency by absorption measurements of dissolved RB-containing peptide bead suspensions. Loaded CD3ac beads consist of up to 40 mol-% RB, which corresponds to a logarithmic partition coefficient of 2.95. To the best of our knowledge CD3ac is the first peptide synthesized by Fmoc chemistry which forms solid particles in the nano- and micrometer size range and holds promise for drug delivery applications. PMID:21166104

  17. Mission Critical: Preventing Antibiotic Resistance

    Science.gov (United States)

    ... Remember antibiotics have side effects. Prevent infections by practicing good hand hygiene and getting recommended vaccines. View ... program that includes, at a minimum, this checklist : Leadership commitment: Dedicate necessary human, financial, and IT resources. ...

  18. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.;

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... to antibiotics. Biofilm growth is associated with an increased level of mutations as well as with quorum-sensing-regulated mechanisms. Conventional resistance mechanisms such as chromosomal beta-lactamase, upregulated efflux pumps and mutations in antibiotic target molecules in bacteria also contribute...... to the survival of biofilms. Biofilms can be prevented by early aggressive antibiotic prophylaxis or therapy and they can be treated by chronic suppressive therapy. A promising strategy may be the use of enzymes that can dissolve the biofilm matrix (e.g. DNase and alginate lyase) as well as quorum...

  19. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  20. Peptider holder krabben rask

    DEFF Research Database (Denmark)

    Buchmann, Kurt

    Antimikrobielle Peptider har hos mere primitive dyr en vigtig funktion i organismernes immunforsvar Udgivelsesdato: 1. februar......Antimikrobielle Peptider har hos mere primitive dyr en vigtig funktion i organismernes immunforsvar Udgivelsesdato: 1. februar...

  1. Antibiotic associated diarrhoea: Infectious causes

    OpenAIRE

    Ayyagari A; Agarwal J; Garg A

    2003-01-01

    Nearly 25% of antibiotic associated diarrhoeas (AAD) is caused by Clostridium difficile, making it the commonest identified and treatable pathogen. Other pathogens implicated infrequently include Clostridium perfringens, Staphylococcus aureus, Klebsiella oxytoca, Candida spp. and Salmonella spp. Most mild cases of AAD are due to non-infectious causes which include reduced break down of primary bile acids and decrease metabolism of carbohydrates, allergic or toxic effects of antibiotic ...

  2. Systemic antibiotic therapy in periodontics

    OpenAIRE

    Anoop Kapoor; Ranjan Malhotra; Vishakha Grover; Deepak Grover

    2012-01-01

    Systemic antibiotics in conjunction with scaling and root planing (SRP), can offer an additional benefit over SRP alone in the treatment of periodontitis, in terms of clinical attachment loss (CAL) and pocket depth change, and reduced risk of additional CAL loss. However, antibiotics are not innocuous drugs. Their use should be justified on the basis of a clearly established need and should not be substituted for adequate local treatment. The aim of this review is to discuss the rationale, pr...

  3. Antibiotic resistance in wild birds

    OpenAIRE

    Bonnedahl, Jonas; Järhult, Josef D.

    2014-01-01

    Wild birds have been postulated as sentinels, reservoirs, and potential spreaders of antibiotic resistance. Antibiotic-resistant bacteria have been isolated from a multitude of wild bird species. Several studies strongly indicate transmission of resistant bacteria from human rest products to wild birds. There is evidence suggesting that wild birds can spread resistant bacteria through migration and that resistant bacteria can be transmitted from birds to humans and vice versa. Through further...

  4. Branched Peptide, B2088, Disrupts the Supramolecular Organization of Lipopolysaccharides and Sensitizes the Gram-negative Bacteria

    Science.gov (United States)

    Lakshminarayanan, Rajamani; Tan, Wei Xiang; Aung, Thet Tun; Goh, Eunice Tze Leng; Muruganantham, Nandhakumar; Li, Jianguo; Chang, Jamie Ya Ting; Dikshit, Neha; Saraswathi, Padmanabhan; Lim, Rayne Rui; Kang, Tse Siang; Balamuralidhar, Vanniarajan; Sukumaran, Bindu; Verma, Chandra S.; Sivaraman, Jayaraman; Chaurasia, Shyam Sunder; Liu, Shouping; Beuerman, Roger W.

    2016-05-01

    Dissecting the complexities of branched peptide-lipopolysaccharides (LPS) interactions provide rationale for the development of non-cytotoxic antibiotic adjuvants. Using various biophysical methods, we show that the branched peptide, B2088, binds to lipid A and disrupts the supramolecular organization of LPS. The disruption of outer membrane in an intact bacterium was demonstrated by fluorescence spectroscopy and checkerboard assays, the latter confirming strong to moderate synergism between B2088 and various classes of antibiotics. The potency of synergistic combinations of B2088 and antibiotics was further established by time-kill kinetics, mammalian cell culture infections model and in vivo model of bacterial keratitis. Importantly, B2088 did not show any cytotoxicity to corneal epithelial cells for at least 96 h continuous exposure or hemolytic activity even at 20 mg/ml. Peptide congeners containing norvaline, phenylalanine and tyrosine (instead of valine in B2088) displayed better synergism compared to other substitutions. We propose that high affinity and subsequent disruption of the supramolecular assembly of LPS by the branched peptides are vital for the development of non-cytotoxic antibiotic adjuvants that can enhance the accessibility of conventional antibiotics to the intracellular targets, decrease the antibiotic consumption and holds promise in averting antibiotic resistance.

  5. [Self-medication with antibiotics in Poland

    NARCIS (Netherlands)

    Olczak, A.; Grzesiowski, P.; Hryniewicz, W.; Haaijer-Ruskamp, F.M.

    2006-01-01

    Antibiotic resistance, the important public health threat, depends on antibiotic overuse/misuse. Self-medication with antibiotics is of serious medical concern. The aim of the study, as a part of SAR project (Self-medication with antibiotic in Europe) was to survey the incidence of this phenomenon.

  6. Expedient antibiotics production: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bienkowski, P.R.; Byers, C.H.; Lee, D.D.

    1988-05-01

    The literature on the manufacture, separation and purification, and clinical uses of antibiotics was reviewed, and a bibliography of the pertinent material was completed. Five antimicrobial drugs, penicillin V and G, (and amoxicillin with clavulanic acid), Cephalexin (a cephalosporin), tetracycline and oxytetracycline, Bacitracin (topical), and sulfonamide (chemically produced) were identified for emergency production. Plants that manufacture antibiotics in the continental United States, Mexico, and Puerto Rico have been identified along with potential alternate sites such as those where SCP, enzyme, and fermentation ethanol are produced. Detailed process flow sheets and process descriptions have been derived from the literature and documented. This investigation revealed that a typical antibiotic-manufacturing facility is composed of two main sections: (1) a highly specialized, but generic, fermentation unit and (2) a multistep, complex separation and purification unit which is specific to a particular antibiotic product. The fermentation section requires specialized equipment for operation in a sterile environment which is not usually available in other industries. The emergency production of antibiotics under austere conditions will be feasible only if a substantial reduction in the complexity and degree of separation and purity normally required can be realized. Detailed instructions were developed to assist state and federal officials who would be directing the resumption of antibiotic production after a nuclear attack. 182 refs., 54 figs., 26 tabs.

  7. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  8. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  9. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  10. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  11. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  12. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  13. Snake Cathelicidin NA-CATH and Smaller Helical Antimicrobial Peptides Are Effective against Burkholderia thailandensis.

    Directory of Open Access Journals (Sweden)

    Ryan J Blower

    Full Text Available Burkholderia thailandensis is a Gram-negative soil bacterium used as a model organism for B. pseudomallei, the causative agent of melioidosis and an organism classified category B priority pathogen and a Tier 1 select agent for its potential use as a biological weapon. Burkholderia species are reportedly "highly resistant" to antimicrobial agents, including cyclic peptide antibiotics, due to multiple resistance systems, a hypothesis we decided to test using antimicrobial (host defense peptides. In this study, a number of cationic antimicrobial peptides (CAMPs were tested in vitro against B. thailandensis for both antimicrobial activity and inhibition of biofilm formation. Here, we report that the Chinese cobra (Naja atra cathelicidin NA-CATH was significantly antimicrobial against B. thailandensis. Additional cathelicidins, including the human cathelicidin LL-37, a sheep cathelicidin SMAP-29, and some smaller ATRA peptide derivatives of NA-CATH were also effective. The D-enantiomer of one small peptide (ATRA-1A was found to be antimicrobial as well, with EC50 in the range of the L-enantiomer. Our results also demonstrate that human alpha-defensins (HNP-1 & -2 and a short beta-defensin-derived peptide (Peptide 4 of hBD-3 were not bactericidal against B. thailandensis. We also found that the cathelicidin peptides, including LL-37, NA-CATH, and SMAP-29, possessed significant ability to prevent biofilm formation of B. thailandensis. Additionally, we show that LL-37 and its D-enantiomer D-LL-37 can disperse pre-formed biofilms. These results demonstrate that although B. thailandensis is highly resistant to many antibiotics, cyclic peptide antibiotics such as polymyxin B, and defensing peptides, some antimicrobial peptides including the elapid snake cathelicidin NA-CATH exert significant antimicrobial and antibiofilm activity towards B. thailandensis.

  14. Antibiotic resistance determinants in a Pseudomonas putida strain isolated from a hospital.

    Directory of Open Access Journals (Sweden)

    Lázaro Molina

    Full Text Available Environmental microbes harbor an enormous pool of antibiotic and biocide resistance genes that can impact the resistance profiles of animal and human pathogens via horizontal gene transfer. Pseudomonas putida strains are ubiquitous in soil and water but have been seldom isolated from humans. We have established a collection of P. putida strains isolated from in-patients in different hospitals in France. One of the isolated strains (HB3267 kills insects and is resistant to the majority of the antibiotics used in laboratories and hospitals, including aminoglycosides, ß-lactams, cationic peptides, chromoprotein enediyne antibiotics, dihydrofolate reductase inhibitors, fluoroquinolones and quinolones, glycopeptide antibiotics, macrolides, polyketides and sulfonamides. Similar to other P. putida clinical isolates the strain was sensitive to amikacin. To shed light on the broad pattern of antibiotic resistance, which is rarely found in clinical isolates of this species, the genome of this strain was sequenced and analysed. The study revealed that the determinants of multiple resistance are both chromosomally-borne as well as located on the pPC9 plasmid. Further analysis indicated that pPC9 has recruited antibiotic and biocide resistance genes from environmental microorganisms as well as from opportunistic and true human pathogens. The pPC9 plasmid is not self-transmissible, but can be mobilized by other bacterial plasmids making it capable of spreading antibiotic resistant determinants to new hosts.

  15. Antibiotic resistance determinants in a Pseudomonas putida strain isolated from a hospital.

    Science.gov (United States)

    Molina, Lázaro; Udaondo, Zulema; Duque, Estrella; Fernández, Matilde; Molina-Santiago, Carlos; Roca, Amalia; Porcel, Mario; de la Torre, Jesús; Segura, Ana; Plesiat, Patrick; Jeannot, Katy; Ramos, Juan-Luis

    2014-01-01

    Environmental microbes harbor an enormous pool of antibiotic and biocide resistance genes that can impact the resistance profiles of animal and human pathogens via horizontal gene transfer. Pseudomonas putida strains are ubiquitous in soil and water but have been seldom isolated from humans. We have established a collection of P. putida strains isolated from in-patients in different hospitals in France. One of the isolated strains (HB3267) kills insects and is resistant to the majority of the antibiotics used in laboratories and hospitals, including aminoglycosides, ß-lactams, cationic peptides, chromoprotein enediyne antibiotics, dihydrofolate reductase inhibitors, fluoroquinolones and quinolones, glycopeptide antibiotics, macrolides, polyketides and sulfonamides. Similar to other P. putida clinical isolates the strain was sensitive to amikacin. To shed light on the broad pattern of antibiotic resistance, which is rarely found in clinical isolates of this species, the genome of this strain was sequenced and analysed. The study revealed that the determinants of multiple resistance are both chromosomally-borne as well as located on the pPC9 plasmid. Further analysis indicated that pPC9 has recruited antibiotic and biocide resistance genes from environmental microorganisms as well as from opportunistic and true human pathogens. The pPC9 plasmid is not self-transmissible, but can be mobilized by other bacterial plasmids making it capable of spreading antibiotic resistant determinants to new hosts. PMID:24465371

  16. Structural specificity of mucosal-cell transport and metabolism of peptide drugs: implication for oral peptide drug delivery

    Science.gov (United States)

    Bai, J. P.; Amidon, G. L.

    1992-01-01

    The brush border membrane of intestinal mucosal cells contains a peptide carrier system with rather broad substrate specificity and various endo- and exopeptidase activities. Small peptide (di-/tripeptide)-type drugs with or without an N-terminal alpha-amino group, including beta-lactam antibiotics and angiotensin-converting enzyme (ACE) inhibitors, are transported by the peptide transporter. Polypeptide drugs are hydrolyzed by brush border membrane proteolytic enzymes to di-/tripeptides and amino acids. Therefore, while the intestinal brush border membrane has a carrier system facilitating the absorption of di-/tripeptide drugs, it is a major barrier limiting oral availability of polypeptide drugs. In this paper, the specificity of peptide transport and metabolism in the intestinal brush border membrane is reviewed.

  17. Macrolide antibiotics and the airway: antibiotic or non-antibiotic effects?

    LENUS (Irish Health Repository)

    Murphy, D M

    2010-03-01

    The macrolides are a class of antibiotics widely prescribed in infectious disease. More recently, there has been considerable interest in potential indications for these agents, in addition to their simple antibacterial indications, in a number of lung pathophysiologies.

  18. Proteins and Peptides in Biomimetic Polymeric Membranes

    DEFF Research Database (Denmark)

    Perez, Alfredo Gonzalez

    2013-01-01

    other kind of nonbiological amphiphilic molecules. An interesting possibility could be the use of self-assembled proteins in a lipid-free membrane mimicking the capside of some viruses. The membrane proteins that have been more actively used in combination with block copolymer membranes are gramicidin A...

  19. Antibiotic use in Lithuania, 2003 - 2008

    OpenAIRE

    Beržanskytė, Aušra

    2009-01-01

    Antimicrobial resistance is mainly caused by inappropriate and abundant use of antibiotics. To enlighten the most relevant problematic areas in antibiotic use, where the decisions should be made, the different levels were analysed in this study: the self-medication with antibiotics of the population, ambulatory and also hospital antibiotic use. The results showed that wrong perception about antibiotics is characteristic to Lithuanian population, as there is lack of privity, while traditions o...

  20. Antibiotics: Use and misuse in pediatric dentistry

    Directory of Open Access Journals (Sweden)

    F C Peedikayil

    2011-01-01

    Full Text Available Antibiotics are commonly used in dentistry for prophylactic as well as for therapeutic purposes. Most often antibiotics are used in unwarranted situations, which may give rise to resistant bacterial strains. Dentists want to make their patients well and to prevent unpleasant complications. These desires, coupled with the belief that many oral problems are infectious, stimulate the prescribing of antibiotics. Good knowledge about the indications of antibiotics is the need of the hour in prescribing antibiotics for dental conditions.

  1. Structural pattern matching of nonribosomal peptides

    Directory of Open Access Journals (Sweden)

    Leclère Valérie

    2009-03-01

    Full Text Available Abstract Background Nonribosomal peptides (NRPs, bioactive secondary metabolites produced by many microorganisms, show a broad range of important biological activities (e.g. antibiotics, immunosuppressants, antitumor agents. NRPs are mainly composed of amino acids but their primary structure is not always linear and can contain cycles or branchings. Furthermore, there are several hundred different monomers that can be incorporated into NRPs. The NORINE database, the first resource entirely dedicated to NRPs, currently stores more than 700 NRPs annotated with their monomeric peptide structure encoded by undirected labeled graphs. This opens a way to a systematic analysis of structural patterns occurring in NRPs. Such studies can investigate the functional role of some monomeric chains, or analyse NRPs that have been computationally predicted from the synthetase protein sequence. A basic operation in such analyses is the search for a given structural pattern in the database. Results We developed an efficient method that allows for a quick search for a structural pattern in the NORINE database. The method identifies all peptides containing a pattern substructure of a given size. This amounts to solving a variant of the maximum common subgraph problem on pattern and peptide graphs, which is done by computing cliques in an appropriate compatibility graph. Conclusion The method has been incorporated into the NORINE database, available at http://bioinfo.lifl.fr/norine. Less than one second is needed to search for a pattern in the entire database.

  2. Insights into the chemical logic and enzymatic machinery of NRPS assembly lines.

    Science.gov (United States)

    Walsh, Christopher T

    2016-02-01

    Appreciation that some cyclic peptide antibiotics such as gramicidin S and tyrocidine were nonribosomally synthesized has been known for 50 years. The past two decades of research including advances in bacterial genetics, genomics, protein biochemistry and mass spectrometry have codified the principles of assembly line enzymology for hundreds of nonribosomal peptides and in parallel for thousands of polyketides. The advances in understanding the strategies used for chain initiation, elongation and termination from these assembly lines have revitalized natural product biosynthetic communities. PMID:26175103

  3. Optimization of expression conditions for a novel NZ2114-derived antimicrobial peptide-MP1102 under the control of the GAP promoter in Pichia pastoris X-33

    OpenAIRE

    Mao, Ruoyu; Teng, Da; Wang, Xiumin; Zhang, Yong; Jiao, Jian; Cao, Xintao; wang, Jianhua

    2015-01-01

    Background The infections caused by antibiotic multidrug-resistant bacteria seriously threaten human health. To prevent and cure the infections caused by multidrug-resistant bacteria, new antimicrobial agents are required. Antimicrobial peptides are ideal therapy candidates for antibiotic-resistant pathogens. However, due to high production costs, novel methods of large-scale production are urgently needed. Results The novel plectasin-derived antimicrobial peptide-MP1102 gene was constitutive...

  4. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria

    DEFF Research Database (Denmark)

    Ebbensgaard, Anna Elisabeth; Mordhorst, Hanne; Overgaard, Michael Toft;

    2015-01-01

    The rapid emergence of resistance to classical antibiotics has increased the interest in novel antimicrobial compounds. Antimicrobial peptides (AMPs) represent an attractive alternative to classical antibiotics and a number of different studies have reported antimicrobial activity data of various...... AMPs, but there is only limited comparative data available. The mode of action for many AMPs is largely unknown even though several models have suggested that the lipopolysaccharides (LPS) play a crucial role in the attraction and attachment of the AMP to the bacterial membrane in Gram...... among the different peptides. Further, the antimicrobial activity of a selection of cationic AMPs was investigated in various E. coli LPS mutants....

  5. Management Options For Reducing The Release Of Antibiotics And Antibiotic Resistance Genes To The Environment

    Science.gov (United States)

    Background: There is growing concern worldwide about the role of polluted soil and water - 77 environments in the development and dissemination of antibiotic resistance. 78 Objective: To identify management options for reducing the spread of antibiotics and 79 antibiotic resist...

  6. Background antibiotic resistance patterns in antibiotic-free pastured poultry production

    Science.gov (United States)

    Antibiotic resistance (AR) is a significant public health issue, and agroecosystems are often viewed as major environmental sources of antibiotic resistant foodborne pathogens. While the use of antibiotics in agroecosystems can potentially increase AR, appropriate background resistance levels in th...

  7. Antibiotic allergy in cystic fibrosis.

    Science.gov (United States)

    Parmar, J S; Nasser, S

    2005-06-01

    Allergic reactions to antibiotics are more common in cystic fibrosis (CF) than in the general population. This in part is due to the improving survival in adults with CF and the increased use of high dose intravenous antibiotics. While some are immediate anaphylaxis type (IgE mediated) reactions, the majority are late onset and may have non-specific features such as rash and fever. Piperacillin has consistently been found to have the highest rate of reported reactions (30-50%). There is a low risk of cross reactions between penicillins and other non-beta-lactam classes of antibiotics in penicillin skin prick positive patients. Carbapenems should only be used with extreme caution in patients with positive skin prick tests to penicillin. However, aztreonam can be used safely in patients who are penicillin allergic with positive skin prick reactions. The aminoglycosides are a relatively uncommon cause of allergic reactions, but patients who react to one member of the family may cross react with other aminoglycosides. Desensitisation relies on the incremental introduction of small quantities of the allergen and has been used for penicillins, ceftazidime, tobramycin and ciprofloxacin and must be repeated before each course. Personalized cards should be regularly updated for patients who develop allergic reactions. Written instructions on the emergency treatment of allergic reactions should be provided to patients self-administering intravenous antibiotics at home. Further research is required to identify risk factors and predictors for antibiotic allergy. PMID:15923254

  8. [Plant signaling peptides. Cysteine-rich peptides].

    Science.gov (United States)

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation. PMID:26281357

  9. The mycosubtilin synthetase of Bacillus subtilis ATCC6633 : A multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase

    NARCIS (Netherlands)

    Duitman, EH; Hamoen, LW; Rembold, M; Venema, G; Seitz, H; Saenger, W; Bernhard, F; Reinhardt, R; Schmidt, M; Ullrich, C; Stein, T; Leenders, F; Vater, J

    1999-01-01

    Bacillus subtilis strain ATCC6633 has been identified as a producer of mycosubtilin, a potent antifungal peptide antibiotic. Mycosubtilin, which belongs to the iturin family of lipopeptide antibiotics, is characterized by a p-amino fatty acid moiety linked to the circular heptapeptide Asn-Tyr-Asn-Cl

  10. Molecular cloning, expression and in vitro analysis of soluble cationic synthetic antimicrobial peptide from salt-inducible Escherichia coli GJ1158

    Directory of Open Access Journals (Sweden)

    Jawahar Babu Peravali

    2013-01-01

    Full Text Available Antimicrobial peptides are the upcoming therapeutic molecules as alternative drugs to the existing antibiotics owing to their potent action against pathogenic microorganisms. In this study, to obtain an antimicrobial peptide with a broad range of activity, the synthetic cationic antimicrobial peptide was designed by using in silico tools viz., antimicrobial peptide database, protparam, hierarchical neural network. Later, the peptide was translated back into a core nucleotide sequence and the gene for the peptide was constructed by overlapping PCR. The amplified gene was cloned into pRSET–A vector and transformed into salt inducible expression host E. coli GJ1158. The expression results show high yields of soluble recombinant fusion peptide (0.52 g/L from salt-inducible E. coli. The recombinant peptide was purified by the IMAC purification system and cleaved by enterokinase. The digested product was further purified and 0.12 g/L of biologically active recombinant cationic antimicrobial peptide was obtained. In vitro analysis of the purified peptide demonstrated high antimicrobial activity against both Gram positive and Gram negative bacteria devoid of hemolytic activity. Therefore, this synthetic cationic antimicrobial peptide could serves as an promising agent over chemical antibiotics. In this study, a synthetic cationic antimicrobial peptide was designed, cloned and expressed from salt-inducible E. coli GJ1158 using cost effective media in the large scale production of antimicrobial peptide and its biological activity was analysed against different Gram positive and negative organisms.

  11. Fungal Biotransformation of Tetracycline Antibiotics.

    Science.gov (United States)

    Shang, Zhuo; Salim, Angela A; Khalil, Zeinab; Bernhardt, Paul V; Capon, Robert J

    2016-08-01

    The commercial antibiotics tetracycline (3), minocycline (4), chlortetracycline (5), oxytetracycline (6), and doxycycline (7) were biotransformed by a marine-derived fungus Paecilomyces sp. to yield seco-cyclines A-H (9-14, 18 and 19) and hemi-cyclines A-E (20-24). Structures were assigned by detailed spectroscopic analysis, and in the case of 10 X-ray crystallography. Parallel mechanisms account for substrate-product specificity, where 3-5 yield seco-cyclines and 6 and 7 yield hemi-cyclines. The susceptibility of 3-7 to fungal biotransformation is indicative of an unexpected potential for tetracycline "degradation" (i.e., antibiotic resistance) in fungal genomes. Significantly, the fungal-derived tetracycline-like viridicatumtoxins are resistant to fungal biotransformation, providing chemical insights that could inform the development of new tetracycline antibiotics resistant to enzymatic degradation. PMID:27419475

  12. Identification and characterization of a novel antimicrobial peptide from the venom of the ant Tetramorium bicarinatum.

    Science.gov (United States)

    Rifflet, Aline; Gavalda, Sabine; Téné, Nathan; Orivel, Jérôme; Leprince, Jérôme; Guilhaudis, Laure; Génin, Eric; Vétillard, Angélique; Treilhou, Michel

    2012-12-01

    A novel antimicrobial peptide, named Bicarinalin, has been isolated from the venom of the ant Tetramorium bicarinatum. Its amino acid sequence has been determined by de novo sequencing using mass spectrometry and by Edman degradation. Bicarinalin contained 20 amino acid residues and was C-terminally amidated as the majority of antimicrobial peptides isolated to date from insect venoms. Interestingly, this peptide had a linear structure and exhibited no meaningful similarity with any known peptides. Antibacterial activities against Staphylococcus aureus and S. xylosus strains were evaluated using a synthetic replicate. Bicarinalin had a potent and broad antibacterial activity of the same magnitude as Melittin and other hymenopteran antimicrobial peptides such as Pilosulin or Defensin. Moreover, this antimicrobial peptide has a weak hemolytic activity compared to Melittin on erythrocytes, suggesting potential for development into an anti-infective agent for use against emerging antibiotic-resistant pathogens. PMID:22960382

  13. Short antimicrobial peptides as cosmetic ingredients to deter dermatological pathogens

    OpenAIRE

    Rahnamaeian, Mohammad; Vilcinskas, Andreas

    2015-01-01

    Antimicrobial peptides (AMPs) are components of the innate immune system in many species of animals. Their diverse spectrum of activity against microbial pathogens, both as innate defense molecules and immunomodulators, makes them attractive candidates for the development of a new generation of antibiotics. Although the potential immunogenicity of AMPs means they are not suitable for injection and their susceptibility to digestive peptidases is likely to reduce their oral efficacy, they are i...

  14. Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium.

    OpenAIRE

    Parra-Lopez, C; Baer, M. T.; Groisman, E A

    1993-01-01

    The innate immunity of vertebrates and invertebrates to microbial infection is mediated in part by small cationic peptides with antimicrobial activity. Successful pathogens have evolved mechanisms to withstand the antibiotic activity of these molecules. We have isolated a set of genes from Salmonella typhimurium which are required for virulence and resistance to the antimicrobial peptides melittin and protamine. Sequence analysis of a 5.7 kb segment from the wild-type plasmid conferring resis...

  15. Evaluation of antibacterial activity of peptide fractions derived from Iranian scorpion Hemiscorpius lepturus

    OpenAIRE

    Kamran Pooshang Bagheri; shabnam radbakhsh; Delavar Shahbazzadeh; Amir Mahmoodzadeh

    2013-01-01

    Background and aim: Continuous appearance of antibiotic resistance bacteria can cause significant complications and mortality. In this regard, tracing for new antimicrobial agents is of great significance. During the past decades, many studies have documented isolation of Antimicrobial Peptides (AMPs) from different sources. These peptides which are responsible for hinnate immunity were purified from human, vertebrates, invertebrates, insects, venomous animals, and plants. This study aimed to...

  16. NRPquest: Coupling Mass Spectrometry and Genome Mining for Nonribosomal Peptide Discovery

    OpenAIRE

    Mohimani, Hosein; Liu, Wei-Ting; Kersten, Roland D.; Moore, Bradley S.; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2014-01-01

    Nonribosomal peptides (NRPs) such as vancomycin and daptomycin are among the most effective antibiotics. While NRPs are biomedically important, the computational techniques for sequencing these peptides are still in their infancy. The recent emergence of mass spectrometry techniques for NRP analysis (capable of sequencing an NRP from small amounts of nonpurified material) revealed an enormous diversity of NRPs. However, as many NRPs have nonlinear structure (e.g., cyclic or branched-cyclic pe...

  17. Antibiotics and the resistant microbiome

    DEFF Research Database (Denmark)

    Sommer, Morten; Dantas, Gautam

    2011-01-01

    . Less appreciated are the concomitant changes in the human microbiome in response to these assaults and their contribution to clinical resistance problems. Studies have shown that pervasive changes to the human microbiota result from antibiotic treatment and that resistant strains can persist for years....... Additionally, culture-independent functional characterization of the resistance genes from the microbiome has demonstrated a close evolutionary relationship between resistance genes in the microbiome and in pathogens. Application of these techniques and novel cultivation methods are expected to significantly...... expand our understanding of the interplay between antibiotics and the microbiome....

  18. Antibiotic allergy in cystic fibrosis

    OpenAIRE

    Parmar, J.; Nasser, S.

    2005-01-01

    Allergic reactions to antibiotics are more common in cystic fibrosis (CF) than in the general population. This in part is due to the improving survival in adults with CF and the increased use of high dose intravenous antibiotics. While some are immediate anaphylaxis type (IgE mediated) reactions, the majority are late onset and may have non-specific features such as rash and fever. Piperacillin has consistently been found to have the highest rate of reported reactions (30–50%). There is a low...

  19. NisT, the Transporter of the Lantibiotic Nisin, Can Transport Fully Modified, Dehydrated, and Unmodified Prenisin and Fusions of the Leader Peptide with Non-lantibiotic Peptides

    NARCIS (Netherlands)

    Kuipers, Anneke; Boef, Esther de; Rink, Rick; Fekken, Susan; Kluskens, Leon D.; Driessen, Arnold J.M.; Leenhouts, Kees; Kuipers, Oscar P.; Moll, Gert N.

    2004-01-01

    Lantibiotics are lanthionine-containing peptide antibiotics. Nisin, encoded by nisA, is a pentacyclic lantibiotic produced by some Lactococcus lactis strains. Its thioether rings are posttranslationally introduced by a membrane-bound enzyme complex. This complex is composed of three enzymes: NisB, w

  20. Biofilm induced tolerance towards antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Anders Folkesson

    Full Text Available Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically regulated tolerant subpopulation formation and not caused by a general biofilm property. No significant difference in survival was detected when the strains were challenged with ciprofloxacin. Our data show that biofilm formation confers increased colistin tolerance to cells within the biofilm structure, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms.

  1. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    Energy Technology Data Exchange (ETDEWEB)

    Economou, Nicoleta J.; Zentner, Isaac J. [Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 (United States); Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian [Brookhaven National Laboratory, Upton, NY 11973 (United States); Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J. [Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 (United States)

    2013-04-01

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance.

  2. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    International Nuclear Information System (INIS)

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance

  3. Probiotic approach to prevent antibiotic resistance.

    Science.gov (United States)

    Ouwehand, Arthur C; Forssten, Sofia; Hibberd, Ashley A; Lyra, Anna; Stahl, Buffy

    2016-06-01

    Probiotics are live microorganisms, mainly belonging to the genera Lactobacillus and Bifidobacterium, although also strain of other species are commercialized, that have a beneficial effect on the host. From the perspective of antibiotic use, probiotics have been observed to reduce the risk of certain infectious disease such as certain types of diarrhea and respiratory tract infection. This may be accompanied with a reduced need of antibiotics for secondary infections. Antibiotics tend to be effective against most common diseases, but increasingly resistance is being observed among pathogens. Probiotics are specifically selected to not contribute to the spread of antibiotic resistance and not carry transferable antibiotic resistance. Concomitant use of probiotics with antibiotics has been observed to reduce the incidence, duration and/or severity of antibiotic-associated diarrhea. This contributes to better adherence to the antibiotic prescription and thereby reduces the evolution of resistance. To what extent probiotics directly reduce the spread of antibiotic resistance is still much under investigation; but maintaining a balanced microbiota during antibiotic use may certainly provide opportunities for reducing the spread of resistances. Key messages Probiotics may reduce the risk for certain infectious diseases and thereby reduce the need for antibiotics. Probiotics may reduce the risk for antibiotic-associated diarrhea Probiotics do not contribute to the spread of antibiotic resistance and may even reduce it. PMID:27092975

  4. Plant signalling peptides

    OpenAIRE

    Wiśniewska, Justyna; Trejgell, Alina; Tretyn, Andrzej

    2003-01-01

    Biochemical and genetic studies have identified peptides that play crucial roles in plant growth and development, including defence mechanisms in response to wounding by pests, the control of cell division and expansion, and pollen self-incompatibility. The first two signalling peptides to be described in plants were tomato systemin and phytosulfokine (PSK). There is also biochemical evidence that natriuretic peptide-like molecules, immunologically-relatedt o those found ...

  5. Use of Antibiotics in Children

    DEFF Research Database (Denmark)

    Pottegård, Anton; Broe, Anne; Aabenhus, Rune;

    2015-01-01

    Background: We aimed to describe the use of systemic antibiotics among children in Denmark. Methods: National data on drug use in Denmark were extracted from the Danish National Prescription Database. We used prescription data for all children in Denmark aged 0 to 11 years from January 1, 2000 to...

  6. ANTIBIOTIC THERAPY FOR ENT INFECTIONS

    Directory of Open Access Journals (Sweden)

    A. B. Turovsky

    2014-07-01

    Full Text Available The paper outlines basic principles of and new approaches to antibiotic therapy for ENT and upper respiratory tract infections, from point of view of the authors, on the basis of the data available in Russian and foreign literature.

  7. Antibiotics and the burn patient.

    Science.gov (United States)

    Ravat, François; Le-Floch, Ronan; Vinsonneau, Christophe; Ainaud, Pierre; Bertin-Maghit, Marc; Carsin, Hervé; Perro, Gérard

    2011-02-01

    Infection is a major problem in burn care and especially when it is due to bacteria with hospital-acquired multi-resistance to antibiotics. Moreover, when these bacteria are Gram-negative organisms, the most effective molecules are 20 years old and there is little hope of any new product available even in the distant future. Therefore, it is obvious that currently available antibiotics should not be misused. With this aim in mind, the following review was conducted by a group of experts from the French Society for Burn Injuries (SFETB). It examined key points addressing the management of antibiotics for burn patients: when to use or not, time of onset, bactericidia, combination, adaptation, de-escalation, treatment duration and regimen based on pharmacokinetic and pharmacodynamic characteristics of these compounds. The authors also considered antibioprophylaxis and some other key points such as: infection diagnosis criteria, bacterial inoculae and local treatment. French guidelines for the use of antibiotics in burn patients have been designed up from this work. PMID:20510518

  8. Do We Need New Antibiotics?

    Czech Academy of Sciences Publication Activity Database

    Spížek, Jaroslav; Novotná, Jitka; Janata, Jiří

    Seoul : COEX Convention and Exhibition Center , 2009. s. 218-218. [Annual World Congress of Industrial Biotechnology 2009 /2./. 05.04.2009-07.04.2009, Seoul] R&D Projects: GA AV ČR IAA500200810 Institutional research plan: CEZ:AV0Z50200510 Keywords : antibiotics Subject RIV: EE - Microbiology, Virology

  9. Antibiotic associated diarrhoea: Infectious causes

    Directory of Open Access Journals (Sweden)

    Ayyagari A

    2003-01-01

    Full Text Available Nearly 25% of antibiotic associated diarrhoeas (AAD is caused by Clostridium difficile, making it the commonest identified and treatable pathogen. Other pathogens implicated infrequently include Clostridium perfringens, Staphylococcus aureus, Klebsiella oxytoca, Candida spp. and Salmonella spp. Most mild cases of AAD are due to non-infectious causes which include reduced break down of primary bile acids and decrease metabolism of carbohydrates, allergic or toxic effects of antibiotic on intestinal mucosa and pharmacological effect on gut motility. The antibiotics most frequently associated with C. difficile associated diarrhoea are clindamycin, cephalosporin, ampicillin and amoxicillin. Clinical presentation may vary from mild diarrhoea to severe colitis and pseudomembranous colitis associated with high morbidity and mortality. The most sensitive and specific diagnostic test for C. difficile infection is tissue culture assay for cytotoxicity of toxin B. Commercial ELISA kits are available. Though less sensitive, they are easy to perform and are rapid. Withdrawal of precipitating antibiotic is all that is needed for control of mild to moderate cases. For severe cases of AAD, oral metronidazole is the first line of treatment, and oral vancomycin is the second choice. Probiotics have been used for recurrent cases.

  10. Antibiotic resistance pattern in uropathogens

    OpenAIRE

    Gupta V; Yadav A; Joshi R

    2002-01-01

    Uropathogenic strains from inpatient and outpatient departments were studied from April 1997 to March 1999 for their susceptibility profiles. The various isolates were Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Acinetobacter baumanii and Enterococcus faecalis. Antibiotic susceptibility pattern of these isolates revealed that for outpatients, first generation cephalosporins, nitrofurantoin, norfloxacin/ciprofloxacin were effective for treatment of urina...

  11. A study of antibiotic prescribing

    DEFF Research Database (Denmark)

    Jaruseviciene, L.; Radzeviciene-Jurgute, R.; Jurgutis, A.; Lazarus, J.V.; Ovhed, I.; Strandberg, E.L.; Bjerrum, L.

    2012-01-01

    clinically or pharmacologically. Methods. 22 Lithuanian and 29 Russian GPs participated in five focus group discussions. Thematic analysis was used to analyse the data. Results. We identified four main thematic categories: patients' faith in antibiotics as medication for upper respiratory tract infections...

  12. Antibiotics, Formula Feeding Might Change Baby's 'Microbiome'

    Science.gov (United States)

    ... nih.gov/medlineplus/news/fullstory_159392.html Antibiotics, Formula Feeding Might Change Baby's 'Microbiome' C-section birth ... microbiomes" are altered by cesarean births, antibiotics and formula feeding. "The microbiome is really important in how ...

  13. Antibiotic 'Report Card' Drills Guidelines into Dentists

    Science.gov (United States)

    ... 160702.html Antibiotic 'Report Card' Drills Guidelines Into Dentists Seeing their prescription rates leads some to change ... 30, 2016 TUESDAY, Aug. 30, 2016 (HealthDay News) -- Dentists are less likely to prescribe antibiotics for patients ...

  14. FDA Bolsters Warnings about Class of Antibiotics

    Science.gov (United States)

    ... html FDA Bolsters Warnings About Class of Antibiotics Fluoroquinolones such as Cipro, Levaquin should be reserved for ... label warnings on a class of antibiotics called fluoroquinolones because the drugs can lead to disabling side ...

  15. Danger of Antibiotic Overuse (For Parents)

    Science.gov (United States)

    ... don’t work against them. This is called bacterial resistance or antibiotic resistance. Treating these resistant bacteria requires ... child gets sick? To minimize the risk of bacterial resistance, keep these tips in mind: Take antibiotics only ...

  16. Antibiotic and Antimicrobial Resistance: Threat Report 2013

    Science.gov (United States)

    ... this? Submit What's this? Submit Button Antibiotic Resistance Threats in the United States, 2013 Recommend on Facebook Tweet Share Compartir This report, Antibiotic resistance threats in the United States, 2013 gives a first- ...

  17. Antibiotics: Use and misuse in pediatric dentistry

    OpenAIRE

    F C Peedikayil

    2011-01-01

    Antibiotics are commonly used in dentistry for prophylactic as well as for therapeutic purposes. Most often antibiotics are used in unwarranted situations, which may give rise to resistant bacterial strains. Dentists want to make their patients well and to prevent unpleasant complications. These desires, coupled with the belief that many oral problems are infectious, stimulate the prescribing of antibiotics. Good knowledge about the indications of antibiotics is the need of the hour in prescr...

  18. Combining Biofilm-Controlling Compounds and Antibiotics as a Promising New Way to Control Biofilm Infections

    OpenAIRE

    Andréia Bergamo Estrela; Wolf-Rainer Abraham

    2010-01-01

    Many bacteria grow on surfaces forming biofilms. In this structure, they are well protected and often high dosages of antibiotics cannot clear infectious biofilms. The formation and stabilization of biofilms are mediated by diffusible autoinducers (e.g. N-acyl homoserine lactones, small peptides, furanosyl borate diester). Metabolites interfering with this process have been identified in plants, animals and microbes, and synthetic analogues are known. Additionally, this seems to be not the on...

  19. Antibiotic Resistance of Shigella Species in Iran

    Directory of Open Access Journals (Sweden)

    A.Mehr-Movahed

    1987-07-01

    Full Text Available Antibiotic resistance in Shigella species has been showing a rising trend all over the world. This study was performed to discover the state of antibiotic resistance of Shigella species with regards to six common antibiotics in use in Iran.

  20. Insulin C-peptide test

    Science.gov (United States)

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin produced by the body and insulin injected ...

  1. DRAMP: a comprehensive data repository of antimicrobial peptides.

    Science.gov (United States)

    Fan, Linlin; Sun, Jian; Zhou, Meifeng; Zhou, Jie; Lao, Xingzhen; Zheng, Heng; Xu, Hanmei

    2016-01-01

    The growing problem of antibiotic-resistant microorganisms results in an urgent need for substitutes to conventional antibiotics with novel modes of action and effective activities. Antimicrobial peptides (AMPs), produced by a wide variety of living organisms acting as a defense mechanism against invading pathogenic microbes, are considered to be such promising alternatives. AMPs display a broad spectrum of antimicrobial activity and a low propensity for developing resistance. Therefore, a thorough understanding of AMPs is essential to exploit them as antimicrobial drugs. Considering this, we developed a comprehensive user-friendly data repository of antimicrobial peptides (DRAMP), which holds 17349 antimicrobial sequences, including 4571 general AMPs, 12704 patented sequences and 74 peptides in drug development. Entries in the database have detailed annotations, especially detailed antimicrobial activity data (shown as target organism with MIC value) and structure information. Annotations also include accession numbers crosslinking to Pubmed, Swiss-prot and Protein Data Bank (PDB). The website of the database comes with easy-to-operate browsing as well as searching with sorting and filtering functionalities. Several useful sequence analysis tools are provided, including similarity search, sequence alignment and conserved domain search (CD-Search). DRAMP should be a useful resource for the development of novel antimicrobial peptide drugs. PMID:27075512

  2. Reversible antibiotic tolerance induced in Staphylococcus aureus by concurrent drug exposure

    DEFF Research Database (Denmark)

    Haaber, Jakob Krause; Friberg, Cathrine; McCreary, Mark;

    2015-01-01

    antibiotic that targets the coinfecting pathogen. While investigating factors that affect bacterial antibiotic sensitivity, we discovered that susceptibility of S. aureus to vancomycin is reduced by concurrent exposure to colistin, a cationic peptide antimicrobial employed to treat infections by Gram......-negative pathogens. We show that colistin-induced vancomycin tolerance persists only as long as the inducer is present and is accompanied by gene expression changes similar to those resulting from mutations that produce stably inherited reduction of vancomycin sensitivity (vancomycin-intermediate S. aureus [VISA......] strains). As colistin-induced vancomycin tolerance is reversible, it may not be detected by routine sensitivity testing and may be responsible for treatment failure at vancomycin doses expected to be clinically effective based on such routine testing. IMPORTANCE: Commonly, antibiotic resistance is...

  3. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from a...

  4. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.; Jørgensen, M.; Larsson, C.; Buchardt, O.; Stanly, C.J.; Norden, B.; Nielsen, P.E.; Ørum, H.

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields.......Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  5. Prediction of Biofilm Inhibiting Peptides: An In silico Approach

    Science.gov (United States)

    Gupta, Sudheer; Sharma, Ashok K.; Jaiswal, Shubham K.; Sharma, Vineet K.

    2016-01-01

    Approximately 75% of microbial infections found in humans are caused by microbial biofilms. These biofilms are resistant to host immune system and most of the currently available antibiotics. Small peptides are extensively studied for their role as anti-microbial peptides, however, only a limited studies have shown their potential as inhibitors of biofilm. Therefore, to develop a unique computational method aimed at the prediction of biofilm inhibiting peptides, the experimentally validated biofilm inhibiting peptides sequences were used to extract sequence based features and to identify unique sequence motifs. Biofilm inhibiting peptides were observed to be abundant in positively charged and aromatic amino acids, and also showed selective abundance of some dipeptides and sequence motifs. These individual sequence based features were utilized to construct Support Vector Machine-based prediction models and additionally by including sequence motifs information, the hybrid models were constructed. Using 10-fold cross validation, the hybrid model displayed the accuracy and Matthews Correlation Coefficient (MCC) of 97.83% and 0.87, respectively. On the validation dataset, the hybrid model showed the accuracy and MCC value of 97.19% and 0.84, respectively. The validated model and other tools developed for the prediction of biofilm inhibiting peptides are available freely as web server at http://metagenomics.iiserb.ac.in/biofin/ and http://metabiosys.iiserb.ac.in/biofin/. PMID:27379078

  6. Molecular Dynamics of Peptide Folding at Aqueous Interfaces

    Science.gov (United States)

    Pohorille, Andrew; Chipot, Christophe; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Even though most monomeric peptides are disordered in water they can adopt sequence-dependent, ordered structures, such as a-helices, at aqueous interfaces. This property is relevant to cellular signaling, membrane fusion, and the action of toxins and antibiotics. The mechanism of folding nonpolar peptides at the water-hexane interface was studied in the example of an 11-mer, of poly-L-leucine. Initially placed as a random coil on the water side of the interface, the peptide folded into an a-helix in 36 ns. Simultaneously, the peptide translocated into the hexane side of the interface. Folding was not sequential and involved a 3/10-helix as an intermediate. The folded peptide was either parallel to the interface or had its C-terminus exposed to water. An 11-mer, LQQLLQQLLQL, composed of leucine (L) and glutamine (G), was taken as a model amphiphilic peptide. It rapidly adopted an amphiphilic, disordered structure at the interface. Further folding proceeded through a series of amphiphilic intermediates.

  7. Nanoparticle-mediated delivery of the antimicrobial peptide plectasin against Staphylococcus aureus in infected epithelial cells

    DEFF Research Database (Denmark)

    Water, Jorrit Jeroen; Smart, Simon; Franzyk, Henrik;

    2015-01-01

    high plectasin encapsulation efficiency (71-90%) and mediated release of the peptide over 24h. The antimicrobial efficacy of the peptide-loaded nanoparticles was investigated using bronchiolar epithelial Calu-3 cell monolayers infected with S. aureus. The plectasin-loaded nanoparticles displayed......A number of pathogenic bacterial strains, such as Staphylococcus aureus, are difficult to kill with conventional antibiotics due to intracellular persistence in host airway epithelium. Designing drug delivery systems to deliver potent antimicrobial peptides (AMPs) intracellularly to the airway...

  8. Excretion of Antibiotic Resistance Genes by Dairy Calves Fed Milk Replacers with Varying Doses of Antibiotics

    OpenAIRE

    Thames, Callie H; Pruden, Amy; James, Robert E.; Ray, Partha P.; Knowlton, Katharine F.

    2012-01-01

    Elevated levels of antibiotic resistance genes (ARGs) in soil and water have been linked to livestock farms and in some cases feed antibiotics may select for antibiotic resistant gut microbiota. The purpose of this study was to examine the establishment of ARGs in the feces of calves receiving milk replacer containing no antibiotics versus subtherapeutic or therapeutic doses of tetracycline and neomycin. The effect of antibiotics on calf health was also of interest. Twenty-eight male and fema...

  9. A molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide

    Science.gov (United States)

    Rodina, N. P.; Yudenko, A. N.; Terterov, I. N.; Eliseev, I. E.

    2013-08-01

    Antimicrobial peptides are a class of small, usually positively charged amphiphilic peptides that are used by the innate immune system to combat bacterial infection in multicellular eukaryotes. Antimicrobial peptides are known for their broad-spectrum antimicrobial activity and thus can be used as a basis for a development of new antibiotics against multidrug-resistant bacteria. The most challengeous task on the way to a therapeutic use of antimicrobial peptides is a rational design of new peptides with enhanced activity and reduced toxicity. Here we report a molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide D51. This peptide was earlier designed by Loose et al. using a linguistic model of natural antimicrobial peptides. Molecular dynamics simulation of the peptide folding in explicit solvent shows fast formation of two antiparallel beta strands connected by a beta-turn that is confirmed by circular dichroism measurements. Obtained from simulation amphipatic conformation of the peptide is analysed and possible mechanism of it's interaction with bacterial membranes together with ways to enhance it's antibacterial activity are suggested.

  10. A molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide

    International Nuclear Information System (INIS)

    Antimicrobial peptides are a class of small, usually positively charged amphiphilic peptides that are used by the innate immune system to combat bacterial infection in multicellular eukaryotes. Antimicrobial peptides are known for their broad-spectrum antimicrobial activity and thus can be used as a basis for a development of new antibiotics against multidrug-resistant bacteria. The most challengeous task on the way to a therapeutic use of antimicrobial peptides is a rational design of new peptides with enhanced activity and reduced toxicity. Here we report a molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide D51. This peptide was earlier designed by Loose et al. using a linguistic model of natural antimicrobial peptides. Molecular dynamics simulation of the peptide folding in explicit solvent shows fast formation of two antiparallel beta strands connected by a beta-turn that is confirmed by circular dichroism measurements. Obtained from simulation amphipatic conformation of the peptide is analysed and possible mechanism of it's interaction with bacterial membranes together with ways to enhance it's antibacterial activity are suggested

  11. Antimicrobial Activity of Novel Synthetic Peptides Derived from Indolicidin and Ranalexin against Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Hassan Mahmood Jindal

    Full Text Available Antimicrobial peptides (AMPs represent promising alternatives to conventional antibiotics in order to defeat multidrug-resistant bacteria such as Streptococcus pneumoniae. In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml. These four hybrid peptides also showed broad spectrum antibacterial activity (7.81µg/ml against S. aureus, methicillin resistant S. aureus (MRSA, and E. coli. Furthermore, the time killing assay results showed that the hybrid peptides were able to eliminate S. pneumoniae within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxic effects of peptides were tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic effects at their MIC values. The in silico molecular docking study was carried out to investigate the binding properties of peptides with three pneumococcal virulent targets by Autodock Vina. RN7IN6 showed a strong affinity to target proteins; autolysin, pneumolysin, and pneumococcal surface protein A (PspA based on rigid docking studies. Our results suggest that the hybrid peptides could be suitable candidates for antibacterial drug development.

  12. Membrane interactions of synthetic peptides with antimicrobial potential: effect of electrostatic interactions and amphiphilicity.

    Science.gov (United States)

    Fillion, Matthieu; Valois-Paillard, Geneviève; Lorin, Aurélien; Noël, Mathieu; Voyer, Normand; Auger, Michèle

    2015-03-01

    Cationic antimicrobial peptides are considered promising candidates to complement currently used antibiotics, which are less effective against increasingly resistant pathogens. To determine the mechanism of action of these peptides, a better understanding of each molecular determinant involved in their membrane interactions is of great importance. In this study, we have focused on the role of electrostatic interactions and amphiphilicity on the membrane interactions since the large majority of natural antimicrobial peptides are cationic. Therefore, cationic and anionic peptides have been prepared based on a model 14-mer peptide. The latter is a synthetic peptide composed of ten leucines and four phenylalanines, which are modified by the addition of the crown ether. Infrared spectroscopy results indicate that the position of substitution is the main determinant involved in the secondary structure adopted by the peptides, and not the charge of the substituted residues. Fluorescence vesicle leakage assays indicate, however, differences between the ability of cationic and anionic peptides to induce calcein release in zwitterionic and anionic lipid vesicles, suggesting an importance of electrostatic interactions and repulsions. Finally, (31)P NMR results indicate that the vesicle morphologies is not significantly affected by the interactions with both cationic and anionic peptides but that their effect on lipid bilayers is mainly determined by their secondary structure. This study therefore indicates that the membrane interactions of model 14-mer peptides are mainly governed by their secondary structure, which depends on the position of substitution, and not the charge of the residues. PMID:25422123

  13. Surface modeling of soil antibiotics.

    Science.gov (United States)

    Shi, Wen-jiao; Yue, Tian-xiang; Du, Zheng-ping; Wang, Zong; Li, Xue-wen

    2016-02-01

    Large numbers of livestock and poultry feces are continuously applied into soils in intensive vegetable cultivation areas, and then some veterinary antibiotics are persistent existed in soils and cause health risk. For the spatial heterogeneity of antibiotic residues, developing a suitable technique to interpolate soil antibiotic residues is still a challenge. In this study, we developed an effective interpolator, high accuracy surface modeling (HASM) combined vegetable types, to predict the spatial patterns of soil antibiotics, using 100 surface soil samples collected from an intensive vegetable cultivation area located in east of China, and the fluoroquinolones (FQs), including ciprofloxacin (CFX), enrofloxacin (EFX) and norfloxacin (NFX), were analyzed as the target antibiotics. The results show that vegetable type is an effective factor to be combined to improve the interpolator performance. HASM achieves less mean absolute errors (MAEs) and root mean square errors (RMSEs) for total FQs (NFX+CFX+EFX), NFX, CFX and EFX than kriging with external drift (KED), stratified kriging (StK), ordinary kriging (OK) and inverse distance weighting (IDW). The MAE of HASM for FQs is 55.1 μg/kg, and the MAEs of KED, StK, OK and IDW are 99.0 μg/kg, 102.8 μg/kg, 106.3 μg/kg and 108.7 μg/kg, respectively. Further, RMSE simulated by HASM for FQs (CFX, EFX and NFX) are 106.2 μg/kg (88.6 μg/kg, 20.4 μg/kg and 39.2 μg/kg), and less 30% (27%, 22% and 36%), 33% (27%, 27% and 43%), 38% (34%, 23% and 41%) and 42% (32%, 35% and 51%) than the ones by KED, StK, OK and IDW, respectively. HASM also provides better maps with more details and more consistent maximum and minimum values of soil antibiotics compared with the measured data. The better performance can be concluded that HASM takes the vegetable type information as global approximate information, and takes local sampling data as its optimum control constraints. PMID:26613514

  14. Phytochemicals that modulate amino acid and peptide catabolism by caprine rumen microbes

    Science.gov (United States)

    Background: Microbe-derived ionophores and macrolide antibiotics are often added to ruminant diets, and growth promotion and feed efficiency are among the benefits. One mechanism is inhibition of microbes that catabolize amino acids or peptides and produce ammonia. Plants also produce antimicrobial ...

  15. Antimicrobial and Biophysical Properties of Surfactant Supplemented with an Antimicrobial Peptide for Treatment of Bacterial Pneumonia

    NARCIS (Netherlands)

    Banaschewski, Brandon J H; Veldhuizen, Edwin J A; Keating, Eleonora; Haagsman, Henk P; Zuo, Yi Y; Yamashita, Cory M; Veldhuizen, Ruud A W

    2015-01-01

    BACKGROUND: Antibiotic resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a "perfect storm" for multi-drug resistant bacterial infections. Antimicrobial peptides (AMPs) have been sugges

  16. Use of antibiotics in plant agriculture.

    Science.gov (United States)

    Stockwell, V O; Duffy, B

    2012-04-01

    Antibiotics are essential for control of bacterial diseases of plants, especially fire blight of pear and apple and bacterial spot of peach. Streptomycin is used in several countries; the use of oxytetracycline, oxolinic acid and gentamicin is limited to only a few countries. Springtime antibiotic sprays suppress pathogen growth on flowers and leaf surfaces before infection; after infection, antibiotics are ineffective. Antibiotics are applied when disease risk is high, and consequently the majority of orchards are not treated annually. In 2009 in the United States, 16,465 kg (active ingredient) was applied to orchards, which is 0.12% of the total antibiotics used in animal agriculture. Antibiotics are active on plants for less than a week, and significant residues have not been found on harvested fruit. Antibiotics have been indispensable for crop protection in the United States for more than 50 years without reports of adverse effects on human health or persistent impacts on the environment. PMID:22849276

  17. Biosynthesis of Enediyne Antitumor Antibiotics

    OpenAIRE

    Van Lanen, Steven G.; Shen, Ben

    2008-01-01

    The enediyne polyketides are secondary metabolites isolated from a variety of Actinomycetes. All members share very potent anticancer and antibiotic activity, and prospects for the clinical application of the enediynes has been validated with the recent marketing of two enediyne derivatives as anticancer agents. The biosynthesis of these compounds is of interest because of the numerous structural features that are unique to the enediyne family. The gene cluster for five enediynes has now been...

  18. Uncialamycin, a new enediyne antibiotic.

    Science.gov (United States)

    Davies, Julian; Wang, Hao; Taylor, Terry; Warabi, Kaoru; Huang, Xin-Hui; Andersen, Raymond J

    2005-11-10

    [structure: see text] Laboratory cultures of an undescribed streptomycete obtained from the surface of a British Columbia lichen produce uncialamycin (1), a new enediyne antibiotic. The structure of uncialamycin (1) has been elucidated by analysis of spectroscopic data. Uncialamycin (1) exhibits potent in vitro antibacterial activity against gram-positive and gram-negative human pathogens, including Burkholderia cepacia, a major cause of morbidity and mortality in patients with cystic fibrosis. PMID:16268546

  19. Minocycline: far beyond an antibiotic

    OpenAIRE

    Garrido-Mesa, N; Zarzuelo, A; Gálvez, J

    2013-01-01

    Minocycline is a second-generation, semi-synthetic tetracycline that has been in therapeutic use for over 30 years because of its antibiotic properties against both gram-positive and gram-negative bacteria. It is mainly used in the treatment of acne vulgaris and some sexually transmitted diseases. Recently, it has been reported that tetracyclines can exert a variety of biological actions that are independent of their anti-microbial activity, including anti-inflammatory and anti-apoptotic acti...

  20. Bacterial infections: antibiotics and decontamination.

    Science.gov (United States)

    Gould, Dinah

    Infectious disease is caused by bacteria, viruses, fungi, protozoa and micro-organisms including the mycoplasmas, rickettsiae and chlamydiae. Most of the infections commonly encountered in the UK are caused either by bacteria or viruses. This article describes bacterial structure and function to explain how antibiotics work and the processes of decontamination such as cleaning, disinfection and sterilisation, which are important in infection control. PMID:15224613

  1. Antibiotic inhibition of the movement of tRNA substrates through a peptidyl transferase cavity

    DEFF Research Database (Denmark)

    Porse, B T; Rodriguez-Fonseca, C; Leviev, I;

    1996-01-01

    The present review attempts to deal with movement of tRNA substrates through the peptidyl transferase centre on the large ribosomal subunit and to explain how this movement is interrupted by antibiotics. It builds on the concept of hybrid tRNA states forming on ribosomes and on the observed...... movement of the 5' end of P-site-bound tRNA relative to the ribosome that occurs on peptide bond formation. The 3' ends of the tRNAs enter, and move through, a catalytic cavity where antibiotics are considered to act by at least three primary mechanisms: (i) they interfere with the entry of the aminoacyl...... moiety into the catalytic cavity before peptide bond formation; (ii) they inhibit movement of the nascent peptide along the peptide channel, a process that may generally involve destabilization of the peptidyl tRNA, and (iii) they prevent movement of the newly deacylated tRNA between the P/P and hybrid P...

  2. Effect of Cordyceps sinensis mycelium on serum vasoactive intestinal peptide and substance P in mice with intestinal dysbacteriosis

    OpenAIRE

    Kai-zhong DONG; Fu, Si-Wu; Sheng, Li; You-jun MI; Su, Lu

    2015-01-01

    Objective To observe the effect of Cordyceps sinensis mycelium on serum vasoactive intestinal peptide (VIP) and substance P (SP) in mice with dysbacteriosis induced by antibiotics. Methods Forty-eight healthy SPF BALB/c mice were randomly divided into the normal control group (normal drink), the dysbacteriosis model group (induced by oral administration of 0.5 g/L ceftriaxone sodium), the natural recovery group (oral sterile water to replace antibiotic after reproduction of dysbacteriosis), a...

  3. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    Introduction: A frightening increase in the number of isolated multidrug resistant bacterial strains linked to the decline in novel antimicrobial drugs entering the market is a great cause for concern. Cationic antimicrobial peptides (AMPs) have lately been introduced as a potential new class of...... antimicrobial drugs, and computational methods utilizing molecular descriptors can significantly accelerate the development of new peptide drug candidates. Areas covered: This paper gives a broad overview of peptide and amino-acid scale descriptors available for AMP modeling and highlights which of these are...

  4. The causes and consequences of antibiotic resistance evolution in microbial pathogens

    DEFF Research Database (Denmark)

    Jochumsen, Nicholas

    The evolution of antimicrobial resistance in bacterial pathogens is a growing global health problem that is gradually making the successful treatment of infectious diseases more difficult. Antimicrobial peptides have been proposed as promising candidates for future drug development as they retain...... activity against bacteria resistant to conventional antibiotics and because resistance evolution is expected to be unlikely since the peptides have complex modes of action due to their interaction with the bacterial membrane. The work presented in this thesis has involved studies to increase our...... understanding of the regulation of cationic antimicrobial peptide (CAMP) tolerance, the genetic basis for the evolution of resistance to the CAMP colistin and how this knowledge can provide insights into the features underlying the evolution of complex resistance mechanisms. The opportunistic pathogen...

  5. First Observation of Charge Reduction and Desorption Kinetics of Multiply Protonated Peptides Soft Landed onto Self-Assembled Monolayer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hadjar, Omar; Futrell, Jean H.; Laskin, Julia

    2007-12-13

    The kinetics of charge reduction and desorption of different species produced by soft-landing of mass-selected ions was studied using in situ secondary ion mass spectrometry (SIMS) in a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). The improved SIMS capability described in this work utilizes an in-line 8 keV Cs+ ion gun and allows us to interrogate the surface both during the ion deposition and after the deposition is terminated. As a model system doubly protonated ions of Gramicidin S were deposited onto a fluorinated self-assembled monolayer (FSAM) surface. Our results demonstrate for the first time that various peptide-related peaks in FT-ICR SIMS spectra follow very different kinetics. We obtained unique kinetics signatures for doubly protonated, singly protonated and neutral peptides retained on the surface and followed their evolution as a function of time. The experimental results are in excellent agreement with a kinetic model that takes into account charge reduction and thermal desorption of different species from the surface.

  6. Antibiotics as CECs: An Overview of the Hazards Posed by Antibiotics and Antibiotic Resistance

    OpenAIRE

    Geoffrey Ivan Scott; Porter, Dwayne E.; R. Sean Norman; C. Hart Scott; Miguel Ignacio Uyaguari-Diaz; Keith eMaruya; Steve B. Weisberg; Fulton, Michael H.; Ed F. Wirth; Janet eMooore; Pennington , Paul L.; Daniel eSchlenk; Cobb, George P.; Denslow, Nancy D.

    2016-01-01

    ABSTRACTMonitoring programs have traditionally monitored legacy contaminants but are shifting focus to Contaminants of Emerging Concern (CECs). CECs present many challenges for monitoring and assessment, because measurement methods don't always exist nor have toxicological studies been fully conducted to place results in proper context. Also some CECs affect metabolic pathways to produce adverse outcomes that are not assessed through traditional toxicological evaluations. Antibiotics are CEC...

  7. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.;

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  8. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    ErkkiRuoslahti

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular “zip code” of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  9. Effect of the Surface on Charge Reduction and Desorption Kinetics of Soft Landed Peptide Ions

    Energy Technology Data Exchange (ETDEWEB)

    Hadjar, Omar; Wang, Peng; Futrell, Jean H.; Laskin, Julia

    2009-06-01

    Charge reduction and desorption kinetics of ions and neutral molecules produced by soft-landing of mass-selected singly and doubly protonated Gramicidin S (GS) on different surfaces was studied using time dependant in situ secondary ion mass spectrometry (SIMS) integrated in a specially designed Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) research instrument. Soft-landing targets utilized in this study included inert self-assembled monolayers (SAMs) of 1-dodecane thiol (HSAM) and its fluorinated analog (FSAM) on gold and hydrophilic carboxyl-terminated (COOH-SAM) and amine-terminated (NH2-SAM) SAM surfaces. We observed efficient neutralization of soft-landed ions on the COOH-SAM surface, partial retention of only one proton on the HSAM surface and efficient retention of two protons on the FSAM surface. Slow desorption rates measured experimentally indicate fairly strong binding between peptide molecules and SAM surfaces with the binding energy of 20-25 kcal/mol.

  10. Introduction to Peptide Synthesis

    OpenAIRE

    Stawikowski, Maciej; Fields, Gregg B.

    2002-01-01

    A number of synthetic peptides are significant commercial or pharmaceutical products, ranging from the dipeptide sugar-substitute aspartame to clinically used hormones, such as oxytocin, adrenocorticotropic hormone, and calcitonin. This unit provides an overview of the field of synthetic peptides and proteins. It discusses selecting the solid support and common coupling reagents. Additional information is provided regarding common side reactions and synthesizing modified residues.

  11. Design of embedded-hybrid antimicrobial peptides with enhanced cell selectivity and anti-biofilm activity.

    Directory of Open Access Journals (Sweden)

    Wei Xu

    Full Text Available Antimicrobial peptides have attracted considerable attention because of their broad-spectrum antimicrobial activity and their low prognostic to induce antibiotic resistance which is the most common source of failure in bacterial infection treatment along with biofilms. The method to design hybrid peptide integrating different functional domains of peptides has many advantages. In this study, we designed an embedded-hybrid peptide R-FV-I16 by replacing a functional defective sequence RR7 with the anti-biofilm sequence FV7 embedded in the middle position of peptide RI16. The results demonstrated that the synthetic hybrid the peptide R-FV-I16 had potent antimicrobial activity over a wide range of Gram-negative and Gram-positive bacteria, as well as anti-biofilm activity. More importantly, R-FV-I16 showed lower hemolytic activity and cytotoxicity. Fluorescent assays demonstrated that R-FV-I16 depolarized the outer and the inner bacterial membranes, while scanning electron microscopy and transmission electron microscopy further indicated that this peptide killed bacterial cells by disrupting the cell membrane, thereby damaging membrane integrity. Results from SEM also provided evidence that R-FV-I16 inherited anti-biofilm activity from the functional peptide sequence FV7. Embedded-hybrid peptides could provide a new pattern for combining different functional domains and showing an effective avenue to screen for novel antimicrobial agents.

  12. Tailored Antibiotic Combination Powders for Inhaled Rotational Antibiotic Therapy.

    Science.gov (United States)

    Lee, Sie Huey; Teo, Jeanette; Heng, Desmond; Ng, Wai Kiong; Zhao, Yanli; Tan, Reginald B H

    2016-04-01

    Respiratory lung infections due to multidrug-resistant (MDR) superbugs are on a global upsurge and have very grim clinical outcomes. Their MDR profile makes therapeutic options extremely limited. Although a highly toxic antibiotic, colistin, is favored today as a "last-line" therapeutic against these hard-to-treat MDR pathogens, it is fast losing its effectiveness. This work therefore seeks to identify and tailor-make useful combination regimens (that are potentially rotatable and synergistic) as attractive alternative strategies to address the rising rates of drug resistance. Three potentially rotatable ternary dry powder inhaler constructs (each involving colistin and 2 other different-classed antibiotics chosen from rifampicin, meropenem, and tigecycline) were identified (with distinct complementary killing mechanisms), coformulated via spray drying, evaluated on their aerosol performance using a Next-Generation Impactor and tested for their efficacies against a number of MDR pathogens. The powder particles were of respirable size (d50, 3.1 ± 0.3 μm-3.4 ± 0.1 μm) and predominantly crumpled in morphology. When dispersed via a model dry powder inhaler (Aerolizer(®)) at 60 L/min, the powders showed concomitant in vitro deposition with fine particle fractions of ∼53%-70%. All formulations were successfully tested in the laboratory to be highly effective against the MDR pathogens. In addition, a favorable synergistic interaction was detected across all 3 formulations when tested against MDR Pseudomonas aeruginosa. PMID:27019964

  13. Response to "Antibiotic Use and Resistance"

    DEFF Research Database (Denmark)

    Malo, Sara; Rabanaque, María José; Feja, Christina; Lallana, María Jesús; Aguilar, Isabel; Bjerrum, Lars

    2014-01-01

    As mentioned, antibiotic consumption in heavy users, especially in children, is really striking. Certainly, our results revealed an antibiotic use in this age group higher than published in previous studies, and in line with different reports repeatedly presenting the high antibiotic consumption...... existing in Spain compared with other European countries (1). Determinants involved in antibiotic prescribing are numerous and varied. It is true that therapeutic failures lead to repeated courses of antibiotic treatment. However, it is not probably the only reason. Frequent and high consumption of...... antibiotics, as observed in heavy users, could also be due to factors related to the GP, patient and parents' expectations or the influence exerted by the pharmaceutical industry (2). This article is protected by copyright. All rights reserved....

  14. Factors Affecting the Cost Effectiveness of Antibiotics

    Directory of Open Access Journals (Sweden)

    Steven Simoens

    2011-01-01

    Full Text Available In an era of spiraling health care costs and limited resources, policy makers and health care payers are concerned about the cost effectiveness of antibiotics. The aim of this study is to draw on published economic evaluations with a view to identify and illustrate the factors affecting the cost effectiveness of antibiotic treatment of bacterial infections. The findings indicate that the cost effectiveness of antibiotics is influenced by factors relating to the characteristics and the use of antibiotics (i.e., diagnosis, comparative costs and comparative effectiveness, resistance, patient compliance with treatment, and treatment failure and by external factors (i.e., funding source, clinical pharmacy interventions, and guideline implementation interventions. Physicians need to take into account these factors when prescribing an antibiotic and assess whether a specific antibiotic treatment adds sufficient value to justify its costs.

  15. Selective ciprofloxacin antibiotic detection by fluorescent siderophore pyoverdin.

    Science.gov (United States)

    Pawar, Madhuri K; Tayade, Kundan C; Sahoo, Suban K; Mahulikar, Pramod P; Kuwar, Anil S; Chaudhari, Bhushan L

    2016-07-15

    Fluorescent siderophore pyoverdin (PVD) was produced from a soil isolate Pseudomonas monteilii strain MKP 213. The PVD was purified near to homogeneity and applied for the fluorescent chemosensing of various antibiotics in aqueous solution (pH=7.0). Upon addition of ciprofloxacin, PVD showed new UV-vis absorption bands at 252 and 321nm due to an internal charge transfer mechanism. Also, the addition of ciprofloxacin induced a highly selective fluorescence enhancement of PVD with a 13nm blue shift from 458 to 445nm. The combination of a long peptide chain along with the chromophore unit of PVD generates a converging cleft for ciprofloxacin recognition with LOD and LOQ of 7.13μM and 21.6μM, respectively without interference from other studied antibiotics. The association constant (Ka) of PVD with ciprofloxacin was calculated to be as low as 1.40×10(5)M(-1) using Benesi-Hildebrand plot depicting its significance in detection. The pharmaceutical tablet analysis measures the sensing with negligible matrix effect and quantitative recovery. PMID:26971273

  16. The application of antimicrobial peptides as growth and health promoters for swine.

    Science.gov (United States)

    Xiao, Hao; Shao, Fangyuan; Wu, Miaomiao; Ren, Wenkai; Xiong, Xia; Tan, Bie; Yin, Yulong

    2015-01-01

    With the widespread ban on the use of antibiotics in swine feed, alternative measures need to be sought to maintain swine health and performance. Antimicrobial peptides (AMPs) are part of the nonspecific defense system and are natural antibiotics produced by plants, insects, mammalians, and micro-organisms as well as by chemical synthesis. Due to their broad microbicidal activity against various fungi, bacteria and enveloped viruses, AMPs are a potential alternative to conventional antibiotics for use in swine production. This review focuses on the structure and mechanism of action of AMPs, as well as their effects on performance, immune function and intestinal health in pigs. The aim is to provide support for the application of AMPs as feed additives replacing antibiotics in swine nutrition. PMID:26019864

  17. Naphthyridinomycin, a DNA-reactive antibiotic.

    OpenAIRE

    Zmijewski, M J; Miller-Hatch, K; Goebel, M.

    1982-01-01

    Naphthyridinomycin is a novel quinone antibiotic that is produced in liquid shake cultures by Streptomyces lusitanus. Fermentation studies have shown that this antibiotic is produced maximally after 96 h of cell growth. L-[methyl-3H]methionine efficiently labels naphthyridinomycin when it is added to a fermentation mixture 24 h before culture is harvested. Unlabeled and radioactively labeled naphthyridinomycin were used to determine the mechanism of action of this unique antibiotic. Naphthyri...

  18. Antibiotics for the Treatment of Hepatic Encephalopathy

    OpenAIRE

    Patidar, Kavish R.; Bajaj, Jasmohan S.

    2013-01-01

    The treatment of hepatic encephalopathy (HE) is complex and therapeutic regimens vary according to the acuity of presentation and the goals of therapy. Most treatments for HE rely on manipulating the intestinal milieu and therefore antibiotics that act on the gut form a key treatment strategy. Prominent antibiotics studied in HE are neomycin, metronidazole, vancomycin and rifaximin. For the management of the acute episode, all antibiotics have been tested. However the limited numbers studied,...

  19. DETECTION OF ANTIBIOTIC RESIDUES IN RAW MILK

    Directory of Open Access Journals (Sweden)

    G. Karim

    1978-06-01

    Full Text Available Milk and milk products containing antibiotics especially penicillin may present a health hazard to individuals who are super sensitized to penicillin. A total of 620 samples of raw milk which were delivered to Tehran pasteurization plant were examined. 294 samples were antibiotic-negative and 326 samples showed to contain antibiotic. Considering the results obtained, certain recommendations were made to prevent public health hazards and economic losses.

  20. Superbugs and antibiotics in the newborn

    OpenAIRE

    Alessandro Borghesi; Mauro Stronati

    2015-01-01

    Antibiotic resistance has become an urgent and global issue, with 700,000 deaths attributable to multidrug-resistance occurring each year worldwide. The overuse of antibiotics, both in animal industry and in clinical settings, and the generated selective pressure, are the main factors implicated in the emergence of resistant strains. The Centers for Disease Control and Prevention (CDC) have pointed out that more than half of hospital patients receive an antibiotic during their stay, and nearl...

  1. Antibiotic Resistance in Childhood with Pneumococcal Infection

    OpenAIRE

    Ali Gunes

    2013-01-01

    Aim: Resistance to antibiotics is better. Between should not be in capitals. Antibiotics resistant has been increasing in pneumococci that cause serious diseases such as pneumonia, meningitis in recent years. The resistance rates vary between geographic regions. In this study, we aimed to determine antibiotic resistance rates in pneumococcal infections in our region. Material and Method: This study included 31 pneumococcal strains isolated from blood, CSF and urine samples of patients with me...

  2. Antibiotic research and development: business as usual?

    Science.gov (United States)

    Harbarth, S; Theuretzbacher, U; Hackett, J

    2015-01-01

    The global burden of antibiotic resistance is tremendous and, without new anti-infective strategies, will continue to increase in the coming decades. Despite the growing need for new antibiotics, few pharmaceutical companies today retain active antibacterial drug discovery programmes. One reason is that it is scientifically challenging to discover new antibiotics that are active against the antibiotic-resistant bacteria of current clinical concern. However, the main hurdle is diminishing economic incentives. Increased global calls to minimize the overuse of antibiotics, the cost of meeting regulatory requirements and the low prices of currently marketed antibiotics are strong deterrents to antibacterial drug development programmes. New economic models that create incentives for the discovery of new antibiotics and yet reconcile these incentives with responsible antibiotic use are long overdue. DRIVE-AB is a €9.4 million public-private consortium, funded by the EU Innovative Medicines Initiative, that aims to define a standard for the responsible use of antibiotics and to develop, test and recommend new economic models to incentivize investment in producing new anti-infective agents. PMID:25673635

  3. Antimicrobial peptides as novel anti-tuberculosis therapeutics.

    Science.gov (United States)

    Silva, João P; Appelberg, Rui; Gama, Francisco Miguel

    2016-01-01

    Tuberculosis (TB), a disease caused by the human pathogen Mycobacterium tuberculosis, has recently joined HIV/AIDS as the world's deadliest infectious disease, affecting around 9.6 million people worldwide in 2014. Of those, about 1.2 million died from the disease. Resistance acquisition to existing antibiotics, with the subsequent emergence of Multi-Drug Resistant mycobacteria strains, together with an increasing economic burden, has urged the development of new anti-TB drugs. In this scope, antimicrobial peptides (AMPs), which are small, cationic and amphipathic peptides that make part of the innate immune system, now arise as promising candidates for TB treatment. In this review, we analyze the potential of AMPs for this application. We address the mechanisms of action, advantages and disadvantages over conventional antibiotics and how problems associated with its use may be overcome to boost their therapeutic potential. Additionally, we address the challenges of translational development from benchside to bedside, evaluate the current development pipeline and analyze the expected global impact from a socio-economic standpoint. The quest for more efficient and more compliant anti-TB drugs, associated with the great therapeutic potential of emerging AMPs and the rising peptide market, provide an optimal environment for the emergence of AMPs as promising therapies. Still, their pharmacological properties need to be enhanced and manufacturing-associated issues need to be addressed. PMID:27235189

  4. Effects of imidazolium-based ionic liquids on the stability and dynamics of gramicidin A and lipid bilayers at different salt concentrations.

    Science.gov (United States)

    Lee, Hwankyu; Kim, Sun Min; Jeon, Tae-Joon

    2015-09-01

    Gramicidin A (gA) dimers with bilayers, which consist of phospholipids and ionic liquids (ILs) at different molar ratios, were simulated at different salt concentrations of 0.15 and 1M NaCl. Bilayer thickness is larger than the length of a gA dimer, and hence lipids around the gA dimer are significantly disordered to adapt to the gA dimer, yielding membrane curvature. As the IL concentration increases, the bilayer thickness decreases and becomes closer to the gA length, leading to less membrane curvature. Also, ILs significantly increase lateral diffusivities of the gA dimer and lipids at 0.15M NaCl, but not at 1M NaCl because strong electrostatic interactions between salt ions and lipid head groups suppress an increase in the lateral mobility of the bilayer at high salt concentration. These findings help explain the conflicting experimental results that showed the increased ion permeability in electrophysiological experiments at 1M NaCl, but the reduced ion permeability in fluorescent experiments at 0.15M NaCl. ILs disorder lipids and make bilayers thinner, which yields less membrane curvature around the gA dimer and thus stabilizes the gA dimer, leading to the increased ion permeability. This IL effect predominantly occurs at 1M NaCl, where ILs only slightly increase the bilayer dynamics because of the strong electrostatic interactions between salt ions and lipids. In contrast, at 0.15M NaCl, ILs do not only stabilize the curved bilayer but also significantly increase the lateral mobility of gA dimers and lipids, which can reduce gA-induced pore formation, leading to the decreased ion permeability. PMID:26188795

  5. Deliberations on the impact of antibiotic contamination on dissemination of antibiotic resistance genes in aquatic environments

    OpenAIRE

    Berglund, Björn

    2014-01-01

    The great success of antibiotics in treating bacterial infectious diseases has been hampered by the increasing prevalence of antibiotic resistant bacteria. Not only does antibiotic resistance threaten to increase the difficulty in treating bacterial infectious diseases, but it could also make medical procedures such as routine surgery and organ transplantations very dangerous to perform. Traditionally, antibiotic resistance has been regarded as a strictly clinical problem and studies of the p...

  6. Antibiotic Resistance in Wastewater : Methicillin-resistant Staphylococcus aureus (MRSA)and antibiotic resistance genes

    OpenAIRE

    Börjesson, Stefan

    2009-01-01

    A large part of the antibiotics consumed ends up in wastewater, and in the wastewater the antibiotics may exert selective pressure for or maintain resistance among microorganisms. Antibiotic resistant bacteria and genes encoding antibiotic resistance are commonly detected in wastewater, often at higher rates and concentrations compared to surface water. Wastewater can also provide favourable conditions for the growth of a diverse bacterial community, which constitutes a basis for the selectio...

  7. [Health economics and antibiotic therapy].

    Science.gov (United States)

    Leclercq, P; Bigdéli, M

    1995-01-01

    In the field of antibiotic therapy, particularly the methods of economic evaluation hold one's attention within the wide range of health economics' applications. Several tools allow a comparison of the outcomes of alternative strategies and thereby guide choices to the most appropriate solutions. After a brief recall of the methods classically used to evaluate health care strategy, the authors stress the importance and difficulty of fixing and applying a correct and satisfactory procedure for evaluation. An evaluation example of antibiotic therapy allows to illustrate the application of the principles confronting a field in which competition is intense and economic stakes stay large--a fact which naturally yields to seek after objective decision making criteria. The health care policies drawn by public authorities as well as the marketing strategies of the health sector trade are partly based on such evaluations. If these techniques are not intended for the practitioner in the first place, they should not be indifferent to him since they influence health authorities and thereby indirectly affect the therapeutic freedom of the physician. PMID:7481251

  8. Molecular modelling of betalactamic antibiotic

    Directory of Open Access Journals (Sweden)

    Elso Manuel Cruz Cruz

    2010-02-01

    Full Text Available Background: The antibacterial properties of a compound are the result of its molecular structure. To establish the structural and electronic characteristics makes possible to understand the mechanisms of its action and becomes paramount for the rational design new drugs. Objective: To model some of the molecular properties of betalactamic antibiotics and inhibitors of the betalactamases and to relate them with their pharmacological actions. Method: The molecular structures were optimized with PM3• semiempiric calculus. The structure of the betalactamic ring in the different compounds was compared. The molecular properties were calculated according to the Density Functional Theory at a B3LYP/6-31G(d level. The density of the atomic charges and the frontier orbitals were analyzed. Results There are variations in the calculated properties that make possible to define two groups of compounds: one for the monobactams and the inhibitors of the betalactamases, with less planarity in the ring and less reactivity and another one with the penicillins, cephalosporins and carbapenems, planer, more structurally stable and reactive. Conclusions: The modelled molecular properties of the betalactamic antibiotics and inhibitors of the betalactamases show agreement with its pharmacological action.

  9. Selective algicidal action of peptides against harmful algal bloom species.

    Science.gov (United States)

    Park, Seong-Cheol; Lee, Jong-Kook; Kim, Si Wouk; Park, Yoonkyung

    2011-01-01

    Recently, harmful algal bloom (HAB), also termed "red tide", has been recognized as a serious problem in marine environments according to climate changes worldwide. Many novel materials or methods to prevent HAB have not yet been employed except for clay dispersion, in which can the resulting sedimentation on the seafloor can also cause alteration in marine ecology or secondary environmental pollution. In the current study, we investigated that antimicrobial peptide have a potential in controlling HAB without cytotoxicity to harmless marine organisms. Here, antimicrobial peptides are proposed as new algicidal compounds in combating HAB cells. HPA3 and HPA3NT3 peptides which exert potent antimicrobial activity via pore forming action in plasma membrane showed that HPA3NT3 reduced the motility of algal cells, disrupted their plasma membrane, and induced the efflux of intracellular components. Against raphidoflagellate such as Heterosigma akashiwo, Chattonella sp., and C. marina, it displayed a rapid lysing action in cell membranes at 1~4 µM within 2 min. Comparatively, its lysing effects occurred at 8 µM within 1 h in dinoflagellate such as Cochlodium polykrikoides, Prorocentrum micans, and P. minimum. Moreover, its lysing action induced the lysis of chloroplasts and loss of chlorophyll a. In the contrary, this peptide was not effective against Skeletonema costatum, harmless algal cell, even at 256 µM, moreover, it killed only H. akashiwo or C. marina in co-cultivation with S. costatum, indicating to its selective algicidal activity between harmful and harmless algal cells. The peptide was non-hemolytic against red blood cells of Sebastes schlegeli, the black rockfish, at 120 µM. HAB cells were quickly and selectively lysed following treatment of antimicrobial peptides without cytotoxicity to harmless marine organisms. Thus, the antibiotic peptides examined in our study appear to have much potential in effectively controlling HAB with minimal impact on marine

  10. Selective algicidal action of peptides against harmful algal bloom species.

    Directory of Open Access Journals (Sweden)

    Seong-Cheol Park

    Full Text Available Recently, harmful algal bloom (HAB, also termed "red tide", has been recognized as a serious problem in marine environments according to climate changes worldwide. Many novel materials or methods to prevent HAB have not yet been employed except for clay dispersion, in which can the resulting sedimentation on the seafloor can also cause alteration in marine ecology or secondary environmental pollution. In the current study, we investigated that antimicrobial peptide have a potential in controlling HAB without cytotoxicity to harmless marine organisms. Here, antimicrobial peptides are proposed as new algicidal compounds in combating HAB cells. HPA3 and HPA3NT3 peptides which exert potent antimicrobial activity via pore forming action in plasma membrane showed that HPA3NT3 reduced the motility of algal cells, disrupted their plasma membrane, and induced the efflux of intracellular components. Against raphidoflagellate such as Heterosigma akashiwo, Chattonella sp., and C. marina, it displayed a rapid lysing action in cell membranes at 1~4 µM within 2 min. Comparatively, its lysing effects occurred at 8 µM within 1 h in dinoflagellate such as Cochlodium polykrikoides, Prorocentrum micans, and P. minimum. Moreover, its lysing action induced the lysis of chloroplasts and loss of chlorophyll a. In the contrary, this peptide was not effective against Skeletonema costatum, harmless algal cell, even at 256 µM, moreover, it killed only H. akashiwo or C. marina in co-cultivation with S. costatum, indicating to its selective algicidal activity between harmful and harmless algal cells. The peptide was non-hemolytic against red blood cells of Sebastes schlegeli, the black rockfish, at 120 µM. HAB cells were quickly and selectively lysed following treatment of antimicrobial peptides without cytotoxicity to harmless marine organisms. Thus, the antibiotic peptides examined in our study appear to have much potential in effectively controlling HAB with minimal

  11. Antimicrobial Peptides from Plants

    Science.gov (United States)

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  12. Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    James P. Tam

    2015-11-01

    Full Text Available Plant antimicrobial peptides (AMPs have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic, lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.

  13. Electromembrane extraction of peptides.

    Science.gov (United States)

    Balchen, Marte; Reubsaet, Léon; Pedersen-Bjergaard, Stig

    2008-06-20

    Rapid extraction of eight different peptides using electromembrane extraction (EME) was demonstrated for the first time. During an extraction time of 5 min, the model peptides migrated from a 500 microL aqueous acidic sample solution, through a thin supported liquid membrane (SLM) of an organic liquid sustained in the pores in the wall of a porous hollow fiber, and into a 25 microL aqueous acidic acceptor solution present inside the lumen of the hollow fiber. The driving force of the extraction was a 50 V potential sustained across the SLM, with the positive electrode in the sample and the negative electrode in the acceptor solution. The nature and the composition of the SLM were highly important for the EME process, and a mixture of 1-octanol and 15% di(2-ethylhexyl) phosphate was found to work properly. Using 1mM HCl as background electrolyte in the sample and 100 mM HCl in the acceptor solution, and agitation at 1050 rpm, enrichment up to 11 times was achieved. Recoveries were found to be dependent on the structure of the peptide, indicating that the polarity and the number of ionized groups were important parameters affecting the extraction efficiency. The experimental findings suggested that electromembrane extraction of peptides is possible and may be a valuable tool for future extraction of peptides. PMID:18479691

  14. Superbugs and antibiotics in the newborn

    Directory of Open Access Journals (Sweden)

    Alessandro Borghesi

    2015-10-01

    Full Text Available Antibiotic resistance has become an urgent and global issue, with 700,000 deaths attributable to multidrug-resistance occurring each year worldwide. The overuse of antibiotics, both in animal industry and in clinical settings, and the generated selective pressure, are the main factors implicated in the emergence of resistant strains. The Centers for Disease Control and Prevention (CDC have pointed out that more than half of hospital patients receive an antibiotic during their stay, and nearly a third receive a broad-spectrum antibiotic. In neonatal units, previous antibiotic exposure to third-generation cephalosporin and carbapenem were identified as independent risk factors for infection caused by multi-drug resistant strains. While resistant ‘superbugs’ emerge, the arsenal to fight these microorganisms is progressively shrinking, as the number of newly discovered antibiotics approved by the Food and Drug administration each year is dropping. In face of global spread of antibiotic resistance and of the limited development of new drugs, policies and rules are under study by agencies (CDC, World Health Organization and governments, in order to: i facilitate and foster the discovery of new antibiotic compounds; ii develop new, alternative therapies able to potentiate or modulate the host immune response or to abrogate the resistance and virulence factors in the microorganisms; and iii prevent the emergence of resistance through antibiotic stewardship programs, educational programs, and reduction of antibiotic use in livestock; the field of neonatal medicine will need its own, newborn-tailored, antibiotic stewardship programs to be implemented in the NICUs. Proceedings of the 11th International Workshop on Neonatology and Satellite Meetings · Cagliari (Italy · October 26th-31st, 2015 · From the womb to the adultGuest Editors: Vassilios Fanos (Cagliari, Italy, Michele Mussap (Genoa, Italy, Antonio Del Vecchio (Bari, Italy, Bo Sun (Shanghai

  15. Optimizing antibiotic selection in treating COPD exacerbations

    Directory of Open Access Journals (Sweden)

    Attiya Siddiqi

    2008-03-01

    Full Text Available Attiya Siddiqi, Sanjay SethiDivision of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Veterans Affairs Western New York Health Care System and University of Buffalo, State University of New York, Buffalo, New York, USAAbstract: Our understanding of the etiology, pathogenesis and consequences of acute exacerbations of chronic obstructive pulmonary disease (COPD has increased substantially in the last decade. Several new lines of evidence demonstrate that bacterial isolation from sputum during acute exacerbation in many instances reflects a cause-effect relationship. Placebo-controlled antibiotic trials in exacerbations of COPD demonstrate significant clinical benefits of antibiotic treatment in moderate and severe episodes. However, in the multitude of antibiotic comparison trials, the choice of antibiotics does not appear to affect the clinical outcome, which can be explained by several methodological limitations of these trials. Recently, comparison trials with nontraditional end-points have shown differences among antibiotics in the treatment of exacerbations of COPD. Observational studies that have examined clinical outcome of exacerbations have repeatedly demonstrated certain clinical characteristics to be associated with treatment failure or early relapse. Optimal antibiotic selection for exacerbations has therefore incorporated quantifying the risk for a poor outcome of the exacerbation and choosing antibiotics differently for low risk and high risk patients, reserving the broader spectrum drugs for the high risk patients. Though improved outcomes in exacerbations with antibiotic choice based on such risk stratification has not yet been demonstrated in prospective controlled trials, this approach takes into account concerns of disease heterogeneity, antibiotic resistance and judicious antibiotic use in exacerbations.Keywords: COPD, exacerbation, bronchitis, antibiotics

  16. Complete Genome Sequence of Streptomyces venezuelae ATCC 15439, Producer of the Methymycin/Pikromycin Family of Macrolide Antibiotics, Using PacBio Technology

    Science.gov (United States)

    He, Jingxuan; Sundararajan, Anitha; Devitt, Nicholas P.; Schilkey, Faye D.; Ramaraj, Thiruvarangan

    2016-01-01

    Here, we report the complete genome sequence of Streptomyces venezuelae ATCC 15439, a producer of the methymycin/pikromycin family of macrolide antibiotics and a model host for natural product studies, obtained exclusively using PacBio sequencing technology. The 9.03-Mbp genome harbors 8,775 genes and 11 polyketide and nonribosomal peptide natural product gene clusters. PMID:27151802

  17. DAMPD: A manually curated antimicrobial peptide database

    KAUST Repository

    Seshadri Sundararajan, Vijayaraghava

    2011-11-21

    The demand for antimicrobial peptides (AMPs) is rising because of the increased occurrence of pathogens that are tolerant or resistant to conventional antibiotics. Since naturally occurring AMPs could serve as templates for the development of new anti-infectious agents to which pathogens are not resistant, a resource that contains relevant information on AMP is of great interest. To that extent, we developed the Dragon Antimicrobial Peptide Database (DAMPD, http://apps.sanbi.ac.za/dampd) that contains 1232 manually curated AMPs. DAMPD is an update and a replacement of the ANTIMIC database. In DAMPD an integrated interface allows in a simple fashion querying based on taxonomy, species, AMP family, citation, keywords and a combination of search terms and fields (Advanced Search). A number of tools such as Blast, ClustalW, HMMER, Hydrocalculator, SignalP, AMP predictor, as well as a number of other resources that provide additional information about the results are also provided and integrated into DAMPD to augment biological analysis of AMPs. The Author(s) 2011. Published by Oxford University Press.

  18. Status Report from the Scientific Panel on Antibiotic Use in Dermatology of the American Acne and Rosacea Society: Part 1: Antibiotic Prescribing Patterns, Sources of Antibiotic Exposure, Antibiotic Consumption and Emergence of Antibiotic Resistance, Impact of Alterations in Antibiotic Prescribing, and Clinical Sequelae of Antibiotic Use.

    Science.gov (United States)

    Del Rosso, James Q; Webster, Guy F; Rosen, Ted; Thiboutot, Diane; Leyden, James J; Gallo, Richard; Walker, Clay; Zhanel, George; Eichenfield, Lawrence

    2016-04-01

    Oral and topical antibiotics are commonly prescribed in dermatologie practice, often for noninfectious disorders, such as acne vulgaris and rosacea. Concerns related to antibiotic exposure from both medical and nonmedical sources require that clinicians consider in each case why and how antibiotics are being used and to make appropriate adjustments to limit antibiotic exposure whenever possible. This first article of a three-part series discusses prescribing patterns in dermatology, provides an overview of sources of antibiotic exposure, reviews the relative correlations between the magnitude of antibiotic consumption and emergence of antibiotic resistance patterns, evaluates the impact of alterations in antibiotic prescribing, and discusses the potential relevance and clinical sequelae of antibiotic use, with emphasis on how antibiotics are used in dermatology. PMID:27462384

  19. Topical and oral antibiotics for acne vulgaris.

    Science.gov (United States)

    Del Rosso, James Q

    2016-06-01

    Antibiotics, both oral and topical, have been an integral component of the management of acne vulgaris (AV) for approximately 6 decades. Originally thought to be effective for AV due to their ability to inhibit proliferation of Propionibacterium acnes, it is now believed that at least some antibiotics also exert anti-inflammatory effects that provide additional therapeutic benefit. To add, an increase in strains of P acnes and other exposed bacteria that are less sensitive to antibiotics used to treat AV have emerged, with resistance directly correlated geographically with the magnitude of antibiotic use. Although antibiotics still remain part of the therapeutic armamentarium for AV treatment, current recommendations support the following when used to treat AV: 1) monotherapy use should be avoided; 2) use benzoyl peroxide concomitantly to reduce emergence of resistant P acnes strains; 3) oral antibiotics should be used in combination with a topical regimen for moderate-to-severe inflammatory AV; and 4) use oral antibiotics over a limited duration to achieve control of inflammatory AV with an exit plan in place to discontinue their use as soon as possible. When selecting an oral antibiotic to treat AV, potential adverse effects are important to consider. PMID:27416309

  20. [Modification of antibiotic resistance in microbial symbiosis].

    Science.gov (United States)

    Aznabaeva, L M; Usviatsov, B Ia; Bukharin, O V

    2010-01-01

    In antibiotic therapy it is necessary to use drugs active against the pathogen in its association with the host normal microflora. The aim of the study was to investigate modification of antibiotic resistance under conditions of the pathogen association with the representatives of the host normal microflora and to develop the microbiological criteria for determining effectiveness of antibacterials. Modification of microbial antibiotic resistance was investigated in 408 associations. Various changes in the antibiotic resistance of the strains were revealed: synergism, antagonism and indifference. On the basis of the results it was concluded that in the choice of the antibiotic active against Staphylococcus aureus and Streptococcus pyogenes the preference should be given to oxacillin, gentamicin and levomycetin, since the resistance of the pathogens to these antibiotics under the association conditions did not increase, which could contribute to their destruction, whereas the resistance of the normoflora increased or did not change, which was important for its retention in the biocenosis. The data on changeability of the antibiotic resistance of the microbial strains under the association conditions made it possible to develop microbiological criteria for determining effectiveness of antibiotics in the treatment of inflammatory diseases of microbial etiology (RF Patent No. 2231554). PMID:21033469

  1. Antibiotics: Pharmacists Can Make the Difference

    Centers for Disease Control (CDC) Podcasts

    2015-04-16

    In this podcast, a pharmacist counsels a frustrated father about appropriate antibiotic use and symptomatic relief options for his son's cold.  Created: 4/16/2015 by Division of Bacterial Diseases (DBD), National Center for Immunization and Respiratory Disease (NCIRD), Get Smart: Know When Antibiotics Work Program.   Date Released: 4/16/2015.

  2. Mining metagenomic datasets for antibiotic resistance genes

    Science.gov (United States)

    Antibiotics are medicines that are used to kill, slow down, or prevent the growth of susceptible bacteria. They became widely used in the mid 20th century for controlling disease in humans, animals, and plants, and for a variety of industrial purposes. Antibiotic resistance is a broad term. There ...

  3. Antibiotic resistance: a physicist’s view

    Science.gov (United States)

    Allen, Rosalind; Waclaw, Bartłomiej

    2016-08-01

    The problem of antibiotic resistance poses challenges across many disciplines. One such challenge is to understand the fundamental science of how antibiotics work, and how resistance to them can emerge. This is an area where physicists can make important contributions. Here, we highlight cases where this is already happening, and suggest directions for further physics involvement in antimicrobial research.

  4. Antibiotic tolerance and resistance in biofilms

    DEFF Research Database (Denmark)

    Ciofu, Oana; Tolker-Nielsen, Tim

    One of the most important features of microbial biofilms is their tolerance to antimicrobial agents and components of the host immune system. The difficulty of treating biofilm infections with antibiotics is a major clinical problem. Although antibiotics may decrease the number of bacteria in...

  5. Snort Sniffle Sneeze: No Antibiotics Please

    Centers for Disease Control (CDC) Podcasts

    2009-09-29

    Antibiotics aren't always the answer for sneezes or sore throats. This podcast discusses ways to feel better without antibiotics.  Created: 9/29/2009 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 9/29/2009.

  6. Antibiotic RX in Hospitals: Proceed with Caution

    Centers for Disease Control (CDC) Podcasts

    2014-03-04

    This podcast is based on the March 2014 CDC Vital Signs report. Antibiotics save lives, but poor prescribing practices can put patients at risk for health problems. Learn how to protect patients by protecting antibiotics.  Created: 3/4/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 3/4/2014.

  7. Analysis of antibiotic consumption in burn patients.

    Science.gov (United States)

    Soleymanzadeh-Moghadam, Somayeh; Azimi, Leila; Amani, Laleh; Rastegar Lari, Aida; Alinejad, Faranak; Rastegar Lari, Abdolaziz

    2015-01-01

    Infection control is very important in burn care units, because burn wound infection is one of the main causes of morbidity and mortality among burn patients. Thus, the appropriate prescription of antibiotics can be helpful, but unreasonable prescription can have detrimental consequences, including greater expenses to patients and community alike. The aim of this study was to determine the effect of antibiotic therapy on the emergence of antibiotic-resistant bacteria. 525 strains of Pseudomonas aeruginosa, Acinetobacter baumannii and Staphylococcus aureus were isolated from 335 hospitalized burn patients. Antibiotic susceptibility tests were performed after identification the strains. The records of patients were audited to find the antibiotic used. The results indicated that P. aeruginosa is the most prevalent Gram-negative bacteria. Further, it showed a relation between abuse of antibiotics and emergence of antibiotic resistance. Control of resistance to antibiotics by appropriate prescription practices not only facilitates prevention of infection caused by multi-drug resistant (MDR) microorganisms, but it can also decrease the cost of treatment. PMID:26124986

  8. Analysis of antibiotic consumption in burn patients

    Directory of Open Access Journals (Sweden)

    Soleymanzadeh-Moghadam, Somayeh

    2015-06-01

    Full Text Available Infection control is very important in burn care units, because burn wound infection is one of the main causes of morbidity and mortality among burn patients. Thus, the appropriate prescription of antibiotics can be helpful, but unreasonable prescription can have detrimental consequences, including greater expenses to patients and community alike. The aim of this study was to determine the effect of antibiotic therapy on the emergence of antibiotic-resistant bacteria. 525 strains of and were isolated from 335 hospitalized burn patients. Antibiotic susceptibility tests were performed after identification the strains. The records of patients were audited to find the antibiotic used.The results indicated that is the most prevalent Gram-negative bacteria. Further, it showed a relation between abuse of antibiotics and emergence of antibiotic resistance. Control of resistance to antibiotics by appropriate prescription practices not only facilitates prevention of infection caused by multi-drug resistant (MDR microorganisms, but it can also decrease the cost of treatment.

  9. Antibiotic prophylaxis in clean general surgery

    International Nuclear Information System (INIS)

    To find out the incidence of surgical site infection in clean general surgery cases operated without prophylactic antibiotics. One hundred and twenty-four clean surgical cases operated without antibiotic prophylaxis between July 2003 and December 2004, were studied and these were compared with similar number of cases who received antibiotics. The data was collected and analyzed using software SPSS (version 10.0). Chi-square and student-t test were used to analyze the association between antibiotics and wound infection. The most frequent operation was repair of various hernias, 69.3% in group A and 75% in group B. More operations were carried out between 21-30 years, 38.7% in group A and 41.9% in group B. Surgical site infection occurred in one patient (0.8%) in each group. Chi-square test (0.636) applied to group A and B showed no association of infection and administration/ no administration of antibiotics (p > 0.25). The t-test applied on group A and B (t=0) also showed no significant difference between administration of antibiotics/ no-antibiotics and infection (p > 0.25). The use of prophylactic antibiotic in clean, non implant and elective cases is unnecessary. (author)

  10. Antibiotic research and development: business as usual?

    NARCIS (Netherlands)

    Harbarth, S.; Theuretzbacher, U.; Hackett, J.; Hulscher, M.

    2015-01-01

    The global burden of antibiotic resistance is tremendous and, without new anti-infective strategies, will continue to increase in the coming decades. Despite the growing need for new antibiotics, few pharmaceutical companies today retain active antibacterial drug discovery programmes. One reason is

  11. Biomimetic peptide nanosensors.

    Science.gov (United States)

    Cui, Yue; Kim, Sang N; Naik, Rajesh R; McAlpine, Michael C

    2012-05-15

    The development of a miniaturized sensing platform tailored for sensitive and selective detection of a variety of biochemical analytes could offer transformative fundamental and technological opportunities. Due to their high surface-to-volume ratios, nanoscale materials are extremely sensitive sensors. Likewise, peptides represent robust substrates for selective recognition due to the potential for broad chemical diversity within their relatively compact size. Here we explore the possibilities of linking peptides to nanosensors for the selective detection of biochemical targets. Such systems raise a number of interesting fundamental challenges: What are the peptide sequences, and how can rational design be used to derive selective binders? What nanomaterials should be used, and what are some strategies for assembling hybrid nanosensors? What role does molecular modeling play in elucidating response mechanisms? What is the resulting performance of these sensors, in terms of sensitivity, selectivity, and response time? What are some potential applications? This Account will highlight our early attempts to address these research challenges. Specifically, we use natural peptide sequences or sequences identified from phage display as capture elements. The sensors are based on a variety of nanomaterials including nanowires, graphene, and carbon nanotubes. We couple peptides to the nanomaterial surfaces via traditional surface functionalization methods or self-assembly. Molecular modeling provides detailed insights into the hybrid nanostructure, as well as the sensor detection mechanisms. The peptide nanosensors can distinguish chemically camouflaged mixtures of vapors and detect chemical warfare agents with sensitivities as low as parts-per-billion levels. Finally, we anticipate future uses of this technology in biomedicine: for example, devices based on these sensors could detect disease from the molecular components in human breath. Overall, these results provide a

  12. Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    ShawnLewenza

    2013-02-01

    Full Text Available Extracellular DNA (eDNA is in the environment, bodily fluids, in the matrix of biofilms, and accumulates at infection sites. Extracellular DNA can function as a nutrient source, a universal biofilm matrix component and an innate immune effector in extracellular DNA traps. In biofilms, eDNA is required for attachment, aggregation and stabilization of microcolonies. We have recently shown that eDNA can sequester divalent metal cations, which has interesting implications on antibiotic resistance. Extracellular DNA binds metal cations and thus activates the Mg2+-responsive PhoPQ and PmrAB two-component systems. In Pseudomonas aeruginosa and many other Gram-negative bacteria, the PhoPQ/PmrAB systems control various genes required for virulence and resisting killing by antimicrobial peptides, including the pmr genes (PA3552-PA3559 that are responsible for the addition of aminoarabinose to lipid A. The PA4773-PA4775 genes are a second DNA-induced cluster and are required for the production of spermidine on the outer surface, which protects the outer membrane from antimicrobial peptide treatment. Both modifications mask the negative surface charges and limit membrane damage by antimicrobial peptides. DNA-enriched biofilms or planktonic cultures have increased antibiotic resistance phenotypes to antimicrobial peptides and aminoglycosides. These dual antibiotic resistance and immune evasion strategies may be expressed in DNA-rich environments and contribute to long-term survival.

  13. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  14. Cationic Antimicrobial Peptide Cytotoxicity

    OpenAIRE

    Laverty, Garry; Gilmore, Brendan

    2014-01-01

    Fluorescence microscopy serves as a valuable tool for assessing the structural integrity and viability of eukaryotic cells. Through the use of calcein AM and the DNA stain 4,6-diamidino-2 phenylindole (DAPI), cell viability and membrane integrity can be qualified. Our group has previously shown the ultra-short cationic antimicrobial peptide H-OOWW-NH2; the amphibian derived 27-mer peptide Maximin-4and the ultra-short lipopeptide C12-OOWW-NH2 to be effective against a range of bacterial biofil...

  15. Maximins S, a novel group of antimicrobial peptides from toad Bombina maxima.

    Science.gov (United States)

    Wang, Ting; Zhang, Jie; Shen, Ji-Hong; Jin, Yang; Lee, Wen-Hui; Zhang, Yun

    2005-02-18

    Amphibian skin secretions are rich in antimicrobial peptides acting as important components of innate defense system against invading microorganisms. A novel type of peptide, designated as maximin S, was deduced by random sequencing of 793 clones from a constructed Bombina maxima skin cDNA library. The putative primary structures of maximin S peptides can be grouped into five species, in which maximin S1 has 14 amino acid residues and the rest of maximin S peptides (S2-S5) all have 18 amino acid residues. Unlike most of the amphibian antimicrobial peptides so far identified, the newly characterized four maximin S precursors are composed of maximin S1 and different combinations of tandem repeated maximin S2-S5 linked by internal peptides. Except maximin S1, the predicted secondary structures of maximin S2-S5 show a similar amphipathic alpha-helical structure. MALDI-TOF mass spectrometry analysis of partially isolated skin secretions of the toad indicates that most of the deduced maximin S peptides are expressed. Two deduced maximin S peptides (S1, S4) were synthesized and their antimicrobial activities were tested. Maximin S4 only had an antibiotic activity against mycoplasma and had no antibacterial or antifungal activity toward tested strains. Maximin S1 had no activity under the same conditions. PMID:15649437

  16. The 'liaisons dangereuses' between iron and antibiotics.

    Science.gov (United States)

    Ezraty, Benjamin; Barras, Frédéric

    2016-05-01

    The decline in the rate of new antibiotic discovery is of growing concern, and new antibacterial strategies must now be explored. This review brings together research in two fields (metals in biology and antibiotics) in the hope that collaboration between scientists working in these two areas will lead to major advances in understanding and the development of new approaches to tackling microbial pathogens. Metals have been used as antiseptics for centuries. In this review, we focus on iron, an essential trace element that can nevertheless be toxic to bacteria. We review the many situations in which iron and antibiotics have combinatorial effects when used together. Understanding the molecular relationships between iron and antibiotics, from pure chemistry to gene reprogramming via biochemical competition, is important not only to increase basic knowledge, but also for the development of treatments against pathogens, with a view to optimizing antibiotic efficacy. PMID:26945776

  17. Biosynthesis of enediyne antitumor antibiotics.

    Science.gov (United States)

    Van Lanen, Steven G; Shen, Ben

    2008-01-01

    The enediyne polyketides are secondary metabolites isolated from a variety of Actinomycetes. All members share very potent anticancer and antibiotic activity, and prospects for the clinical application of the enediynes has been validated with the recent marketing of two enediyne derivatives as anticancer agents. The biosynthesis of these compounds is of interest because of the numerous structural features that are unique to the enediyne family. The gene cluster for five enediynes has now been cloned and sequenced, providing the foundation to understand natures' means to biosynthesize such complex, exotic molecules. Presented here is a review of the current progress in delineating the biosynthesis of the enediynes with an emphasis on the model enediyne, C-1027. PMID:18397168

  18. Prophylactic antibiotics in transurethral prostatectomy

    DEFF Research Database (Denmark)

    Qvist, N; Christiansen, H.M.; Ehlers, D

    1984-01-01

    The study included 88 patients with sterile urine prior to transurethral prostatectomy. Forty-five received a preoperative dose of 2 g of cefotaxime (Claforan) and the remaining 43 were given 10 ml of 0.9% NaCl. The two groups did not differ in frequency of postoperative urinary infection (greate...... of infection and the few side effects of the infections that did occur, prophylactic treatment with an antibiotic is not indicated for transurethral prostatectomy in patients with sterile urine.......The study included 88 patients with sterile urine prior to transurethral prostatectomy. Forty-five received a preoperative dose of 2 g of cefotaxime (Claforan) and the remaining 43 were given 10 ml of 0.9% NaCl. The two groups did not differ in frequency of postoperative urinary infection (greater...

  19. Antibiotic resistance pattern in uropathogens

    Directory of Open Access Journals (Sweden)

    Gupta V

    2002-01-01

    Full Text Available Uropathogenic strains from inpatient and outpatient departments were studied from April 1997 to March 1999 for their susceptibility profiles. The various isolates were Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Acinetobacter baumanii and Enterococcus faecalis. Antibiotic susceptibility pattern of these isolates revealed that for outpatients, first generation cephalosporins, nitrofurantoin, norfloxacin/ciprofloxacin were effective for treatment of urinary tract infection but for inpatients, parenteral therapy with newer aminoglycosides and third generation cephalosporins need to be advocated as the organisms for nosocomial UTI exhibit a high degree of drug resistance. Trimethoprim and sulphamethoxazole combination was not found to be effective for the treatment of urinary tract infections as all the uropathogens from inpatients and outpatients showed high degree of resistance to co-trimoxazole. Culture and sensitivity of the isolates from urine samples should be done as a routine before advocating the therapy.

  20. Antibiotics in Animal Feed Contribute to Drug-Resistant Germs

    Science.gov (United States)

    ... medlineplus/news/fullstory_158316.html Antibiotics in Animal Feed Contribute to Drug-Resistant Germs: Study Individual farm ... HealthDay News) -- Use of antibiotics in farm animal feed is helping drive the worldwide increase in antibiotic- ...

  1. Enabling factors for antibiotic prescribing for upper respiratory tract infections

    DEFF Research Database (Denmark)

    Jaruseviciene, Lina; Radzeviciene Jurgute, Ruta; Bjerrum, Lars;

    2013-01-01

    necessity for political leadership to encourage clinically grounded antibiotic use; over-the-counter sale of antibiotics; designation of antibiotics as reimbursable medications; supervision by external oversight institutions; lack of guidelines for the treatment of upper respiratory tract infections; and...

  2. Identification of Antibiotic Use Pattern as an Effort to Control Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Ivan S. Pradipta

    2012-03-01

    Full Text Available The objective of this study is to determine quantity and pattern of antibiotic use in hospitalized patients at one of Bandung’s private hospital that can give benefit in control of antibiotic resistance and procurement planning of antibiotic. Data of antibiotic consumption were obtained from hospital pharmacy department on February–September 2011. Data were processed using the ATC/DDD and DU90% method. There were 390,98 DDD/100 bed days and 381,34 DDD/100 bed days total of an-tbiotic use in 2009 and 2010. Thirty nine antibiotic were consumed in 2009 within 11 kind of antibiotics in DU90% segment (ceftriaxone, amoxicillin, cefotaxime, ciprofloxacin, levofloxacin, metronidazole, cefixime, doxycycline, thiamphenicol, cefodoxime, cefalexin and 44 antibiotic were consumed in 2010 within 18 kind of antibiotics in DU90% segment (ceftriaxone, ciprofloxacin, amoxicillin, cefixime, levofloxacin, cefadroxil, cefotaxime, metronidazole, thiamphenicol, doxycycline, clindamycin, chloramphenicol, amikacin, sulbactam, gentamycin, streptomycin, cefoperazone, canamycin. There were decline of antibiotic use that followed decline number of bed days/year in 2009–2010, but in both antibiotic kind and quantity of DU90% antibiotic group were increased.

  3. Abiotic degradation of antibiotic ionophores

    International Nuclear Information System (INIS)

    Hydrolytic and photolytic degradation were investigated for the ionophore antibiotics lasalocid, monensin, salinomycin, and narasin. The hydrolysis study was carried out by dissolving the ionophores in solutions of pH 4, 7, and 9, followed by incubation at three temperatures of 6, 22, and 28 °C for maximum 34 days. Using LC–MS/MS for chemical analysis, lasalocid was not found to hydrolyse in any of the tested environments. Monensin, salinomycin, and narasin were all stable in neutral or alkaline solution but hydrolysed in the solution with a pH of 4. Half-lives at 25 °C were calculated to be 13, 0.6, and 0.7 days for monensin, salinomycin, and narasin, respectively. Absorbance spectra from each compound indicated that only lasalocid is degraded by photolysis (half-life below 1 h) due to an absorbance maximum around 303 nm, and monensin, salinomycin, and narasin are resistant to direct photolysis because they absorb light of environmentally irrelevant wavelengths. -- Highlights: •Constants for calculation of hydrolysis rates are estimated. •At 25 °C and a pH of 4, monensin hydrolyses with a half-life (t1/2) of 13 days. •Salinomycin and narasin hydrolyse with t1/2 of half a day at 25 °C and a pH of 4. •Lasalocid does not hydrolyse, but is likely to be susceptible to direct photolysis. •Monensin, salinomycin and narasin are not susceptible to direct photolysis. -- Antibiotic ionophores were found to undergo either hydrolysis in acidic environments (monensin, salinomycin, and narasin) or photolysis (lasalocid)

  4. Systems, not pills: The options market for antibiotics seeks to rejuvenate the antibiotic pipeline.

    Science.gov (United States)

    Brogan, David M; Mossialos, Elias

    2016-02-01

    Over the past decade, there has been a growing recognition of the increasing growth of antibiotic resistant bacteria and a relative decline in the production of novel antibacterial therapies. The combination of these two forces poses a potentially grave threat to global health, in both developed and developing countries. Current market forces do not provide appropriate incentives to stimulate new antibiotic development, thus we propose a new incentive mechanism: the Options Market for Antibiotics. This mechanism, modelled on the principle of financial call options, allows payers to buy the right, in early stages of development, to purchase antibiotics at a discounted price if and when they ever make it to market approval. This paper demonstrates the effect of such a model on the expected Net Present Value of a typical antibacterial project. As part of an integrated strategy to confront the impending antibiotic crisis, the Options Market for Antibiotics may effectively stimulate corporate and public investment into antibiotic research and development. PMID:26808335

  5. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac p...... competent endocrine cells. The structurally related atrial natriuretic peptide will be mentioned where appropriate, whereas C-type natriuretic peptide will not be considered as a cardiac peptide of relevance in mammalian physiology....... characterized. An ongoing characterization of the molecular heterogeneity will help appreciate the biosynthetic capacity of the endocrine heart and could introduce new diagnostic possibilities. Notably, different biosynthetic products may not be equal markers of the same pathophysiological processes. An...... inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  6. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...... inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...... competent endocrine cells. The structurally related atrial natriuretic peptide will be mentioned where appropriate, whereas C-type natriuretic peptide will not be considered as a cardiac peptide of relevance in mammalian physiology....

  7. Bacterial resistance to antimicrobial peptides: an evolving phenomenon.

    Science.gov (United States)

    Fleitas, Osmel; Agbale, Caleb M; Franco, Octavio L

    2016-01-01

    Bacterial resistance to conventional antibiotics is currently a real problem all over the world, making novel antimicrobial compounds a real research priority. Some of the most promising compounds found to date are antimicrobial peptides (AMPs). The benefits of these drugs include their broad spectrum of activity that affects several microbial processes, making the emergence of resistance less likely. However, bacterial resistance to AMPs is an evolving phenomenon that compromises the therapeutic potential of these compounds. Therefore, it is mandatory to understand bacterial mechanisms of resistance to AMPs in depth, in order to develop more powerful AMPs that overcome the bacterial resistance response. PMID:27100488

  8. Short antimicrobial peptides as cosmetic ingredients to deter dermatological pathogens.

    Science.gov (United States)

    Rahnamaeian, Mohammad; Vilcinskas, Andreas

    2015-11-01

    Antimicrobial peptides (AMPs) are components of the innate immune system in many species of animals. Their diverse spectrum of activity against microbial pathogens, both as innate defense molecules and immunomodulators, makes them attractive candidates for the development of a new generation of antibiotics. Although the potential immunogenicity of AMPs means they are not suitable for injection and their susceptibility to digestive peptidases is likely to reduce their oral efficacy, they are ideal for topical formulations such as lotions, creams, shampoos, and wound dressings and could therefore be valuable products for the cosmetic industry. In this context, short AMPs (care products. PMID:26307444

  9. Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India

    Directory of Open Access Journals (Sweden)

    Marothi Yogyata

    2010-07-01

    Full Text Available Abstract Background Concerns have been raised about the public health implications of the presence of antibiotic residues in the aquatic environment and their effect on the development of bacterial resistance. While there is information on antibiotic residue levels in hospital effluent from some other countries, information on antibiotic residue levels in effluent from Indian hospitals is not available. Also, concurrent studies on antibiotic prescription quantity in a hospital and antibiotic residue levels and resistant bacteria in the effluent of the same hospital are few. Therefore, we quantified antibiotic residues in waters associated with a hospital in India and assessed their association, if any, with quantities of antibiotic prescribed in the hospital and the susceptibility of Escherichia coli found in the hospital effluent. Methods This cross-sectional study was conducted in a teaching hospital outside the city of Ujjain in India. Seven antibiotics - amoxicillin, ceftriaxone, amikacin, ofloxacin, ciprofloxacin, norfloxacin and levofloxacin - were selected. Prescribed quantities were obtained from hospital records. The samples of the hospital associated water were analysed for the above mentioned antibiotics using well developed and validated liquid chromatography/tandem mass spectrometry technique after selectively isolating the analytes from the matrix using solid phase extraction. Escherichia coli isolates from these waters were tested for antibiotic susceptibility, by standard Kirby Bauer disc diffusion method using Clinical and Laboratory Standard Institute breakpoints. Results Ciprofloxacin was the highest prescribed antibiotic in the hospital and its residue levels in the hospital wastewater were also the highest. In samples of the municipal water supply and the groundwater, no antibiotics were detected. There was a positive correlation between the quantity of antibiotics prescribed in the hospital and antibiotic residue levels in

  10. 抗菌肽histatherin研究进展%Research Progress of Antimicrobial Peptide Histatherin

    Institute of Scientific and Technical Information of China (English)

    高帅; 鞠志花; 宿烽; 王长法

    2011-01-01

    抗菌肽产于机体组织、具有广谱抗菌活性和独特抗菌的机制.对抗菌肽的研究有助于开发抗菌肽药物、进行动物抗性育种和培育抗菌肽转基因动物.论文对一种新的牛抗菌肽histatherin的研究进展进行概述.%As the drug-resistance and challenge to food safety caused by the abuse of antibiotics is becoming serious , more and more attentions have been attracted to the antimicrobial peptides, which has characteristics of antimicrobial mechanism and wide antimicrobial spectrum. The research on antimicrobial peptides will contribute to antimicrobial peptides drug development, resistive breeding, and transgenic animal breeding. This article introduced the studies about a new bovine antimicrobial peptide-histatherin.

  11. Di/tri-peptide transporters as drug delivery targets

    DEFF Research Database (Denmark)

    Nielsen, C U; Brodin, Birger

    2003-01-01

    -dependent, and the transporters thus belong to the Proton-dependent Oligopeptide Transporter (POT)-family. The transporters are not drug targets per se, however due to their uniquely broad substrate specificity; they have proved to be relevant drug targets at the level of drug transport. Drug molecules such as...... oral active beta-lactam antibiotics, bestatin, prodrugs of aciclovir and ganciclovir have oral bioavailabilities, which largely are a result of their interaction with PepT1. In the last few years an increasing number of studies concerned with regulation of di/tri-peptide transporter capacity have...... the level of increased gene transcription. PepT1-mediated transport is up-regulated by short-term exposure to receptor agonists such as EGF, insulin, leptin, and clonidine, and down-regulated by VIP. Overall, the regulation of di/tri-peptide transport may be contributed to 1) changes in apical proton...

  12. Get Smart: Know When Antibiotics Work - Sinus Infection (Sinusitis)

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  13. Get Smart: Know When Antibiotics Work - Influenza (Flu)

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  14. Get Smart: Know When Antibiotics Work - Ear Infections

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  15. Get Smart: Know When Antibiotics Work - Urinary Tract Infection

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  16. Get Smart: Know When Antibiotics Work - Sore Throat

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  17. Get Smart: Know When Antibiotics Work - Symptom Relief

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  18. Get Smart: Know When Antibiotics Work - What You Can Do

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  19. Synthesis and biological evaluation of analogues of the antibiotic pantocin B.

    Science.gov (United States)

    Sutton, A E; Clardy, J

    2001-10-17

    Strains of the bacteria Erwinia herbicola produce antibiotics that effectively control E. amylovora, the bacterial pathogen responsible for the plant disease fire blight. Pantocin B was the first of these antibiotics to be characterized, and a flexible synthesis of various analogues is reported. Embedded in the "pseudo-tripeptide" backbone of pantocin B are a methylenediamine and a methyl sulfone, both unusual structural features in natural products. The peptidic nature of pantocin B facilitated a series of structure-activity relationship studies that probed the roles of these functional groups in determining the biological activity of pantocin B. A clear demarcation of the roles between the N- and C-terminal portions of the antibiotic was determined as a result of the structure-activity relationship studies. The N-terminal L-alanyl group is needed for cellular import but not for interaction with the intracellular target, the arginine biosynthetic enzyme N-acetylornithine aminotransferase. The methylenediamine and methyl sulfone portions were found to be essential for antibiotic activity, presumably due to extensive interactions with N-acetylornithine aminotransferase. PMID:11592872

  20. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    Science.gov (United States)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  1. "Practical knowledge" and perceptions of antibiotics and antibiotic resistance among drugsellers in Tanzanian private drugstores

    Directory of Open Access Journals (Sweden)

    Tomson Göran

    2010-09-01

    Full Text Available Abstract Background Studies indicate that antibiotics are sold against regulation and without prescription in private drugstores in rural Tanzania. The objective of the study was to explore and describe antibiotics sale and dispensing practices and link it to drugseller knowledge and perceptions of antibiotics and antibiotic resistance. Methods Exit customers of private drugstores in eight districts were interviewed about the drugstore encounter and drugs bought. Drugsellers filled in a questionnaire with closed- and open-ended questions about antibiotics and resistance. Data were analyzed using mixed quantitative and qualitative methods. Results Of 350 interviewed exit customers, 24% had bought antibiotics. Thirty percent had seen a health worker before coming and almost all of these had a prescription. Antibiotics were dispensed mainly for cough, stomachache, genital complaints and diarrhea but not for malaria or headache. Dispensed drugs were assessed as relevant for the symptoms or disease presented in 83% of all cases and 51% for antibiotics specifically. Non-prescribed drugs were assessed as more relevant than the prescribed. The knowledge level of the drugseller was ranked as high or very high by 75% of the respondents. Seventy-five drugsellers from three districts participated. Seventy-nine percent stated that diseases caused by bacteria can be treated with antibiotics but 24% of these also said that antibiotics can be used for treating viral disease. Most (85% said that STI can be treated with antibiotics while 1% said the same about headache, 4% general weakness and 3% 'all diseases'. Seventy-two percent had heard of antibiotic resistance. When describing what an antibiotic is, the respondents used six different kinds of keywords. Descriptions of what antibiotic resistance is and how it occurs were quite rational from a biomedical point of view with some exceptions. They gave rise to five categories and one theme: Perceiving antibiotic

  2. [Antibiotic resistance of bacteria to 6 antibiotics in secondary effluents of municipal wastewater treatment plants].

    Science.gov (United States)

    Lu, Sun-Qin; Li, Yi; Huang, Jing-Jing; Wei, Bin; Hu, Hong-Ying

    2011-11-01

    Prevalence of antibiotic-resistant bacteria in wastewater effluents is concerned as an emerging contaminant. To estimate antibiotic resistance in secondary effluents of municipal wastewater treatment plants, antibiotic tolerance of heterotrophic bacteria, proportion of antibiotic-resistant bacteria and hemi-inhibitory concentrations of six antibiotics (penicillin, ampicillin, cefalexin, chloramphenicol, tetracycline and rifampicin) were determined at two wastewater treatment plants (WWTPs) in Beijing. The results showed that proportions of ampicillin-resistant bacteria in WWTP-G and chloramphenicol-resistant bacteria in WWTP-Q were highest to 59% and 44%, respectively. The concentrations of ampicillin-resistant bacteria in the effluents of WWTP-G and WWTP-Q were as high as 4.0 x 10(3) CFU x mL(-1) and 3.5 x 10(4) CFU x mL(-1), respectively; the concentrations of chloramphenicol-resistant bacteria were 4.9 x 10(2) CFU x mL(-1) and 4.6 x 10(4) CFU x mL(-1), respectively. The data also indicated that the hemi-inhibitory concentrations of heterotrophic bacteria to 6 antibiotics were much higher than common concentrations of antibiotics in sewages, which suggested that antibiotic-resistant bacteria could exist over a long period in the effluents with low concentrations of antibiotics. Antibiotic-resistant bacteria could be a potential microbial risk during sewage effluent reuse or emission into environmental waters. PMID:22295644

  3. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics

    Directory of Open Access Journals (Sweden)

    Björn Berglund

    2015-09-01

    Full Text Available Antibiotic resistance is a growing problem which threatens modern healthcare globally. Resistance has traditionally been viewed as a clinical problem, but recently non-clinical environments have been highlighted as an important factor in the dissemination of antibiotic resistance genes (ARGs. Horizontal gene transfer (HGT events are likely to be common in aquatic environments; integrons in particular are well suited for mediating environmental dissemination of ARGs. A growing body of evidence suggests that ARGs are ubiquitous in natural environments. Particularly, elevated levels of ARGs and integrons in aquatic environments are correlated to proximity to anthropogenic activities. The source of this increase is likely to be routine discharge of antibiotics and resistance genes, for example, via wastewater or run-off from livestock facilities and agriculture. While very high levels of antibiotic contamination are likely to select for resistant bacteria directly, the role of sub-inhibitory concentrations of antibiotics in environmental antibiotic resistance dissemination remains unclear. In vitro studies have shown that low levels of antibiotics can select for resistant mutants and also facilitate HGT, indicating the need for caution. Overall, it is becoming increasingly clear that the environment plays an important role in dissemination of antibiotic resistance; further studies are needed to elucidate key aspects of this process. Importantly, the levels of environmental antibiotic contamination at which resistant bacteria are selected for and HGT is facilitated at should be determined. This would enable better risk analyses and facilitate measures for preventing dissemination and development of antibiotic resistance in the environment.

  4. Fungal treatment for the removal of antibiotics and antibiotic resistance genes in veterinary hospital wastewater.

    Science.gov (United States)

    Lucas, D; Badia-Fabregat, M; Vicent, T; Caminal, G; Rodríguez-Mozaz, S; Balcázar, J L; Barceló, D

    2016-06-01

    The emergence and spread of antibiotic resistance represents one of the most important public health concerns and has been linked to the widespread use of antibiotics in veterinary and human medicine. The overall elimination of antibiotics in conventional wastewater treatment plants is quite low; therefore, residual amounts of these compounds are continuously discharged to receiving surface waters, which may promote the emergence of antibiotic resistance. In this study, the ability of a fungal treatment as an alternative wastewater treatment for the elimination of forty-seven antibiotics belonging to seven different groups (β-lactams, fluoroquinolones, macrolides, metronidazoles, sulfonamides, tetracyclines, and trimethoprim) was evaluated. 77% of antibiotics were removed after the fungal treatment, which is higher than removal obtained in conventional treatment plants. Moreover, the effect of fungal treatment on the removal of some antibiotic resistance genes (ARGs) was evaluated. The fungal treatment was also efficient in removing ARGs, such as ermB (resistance to macrolides), tetW (resistance to tetracyclines), blaTEM (resistance to β-lactams), sulI (resistance to sulfonamides) and qnrS (reduced susceptibility to fluoroquinolones). However, it was not possible to establish a clear link between concentrations of antibiotics and corresponding ARGs in wastewater, which leads to the conclusion that there are other factors that should be taken into consideration besides the antibiotic concentrations that reach aquatic ecosystems in order to explain the emergence and spread of antibiotic resistance. PMID:26991378

  5. Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code.

    Science.gov (United States)

    Liu, Anne; Tran, Lillian; Becket, Elinne; Lee, Kim; Chinn, Laney; Park, Eunice; Tran, Katherine; Miller, Jeffrey H

    2010-04-01

    We have defined a sensitivity profile for 22 antibiotics by extending previous work testing the entire KEIO collection of close to 4,000 single-gene knockouts in Escherichia coli for increased susceptibility to 1 of 14 different antibiotics (ciprofloxacin, rifampin [rifampicin], vancomycin, ampicillin, sulfamethoxazole, gentamicin, metronidazole, streptomycin, fusidic acid, tetracycline, chloramphenicol, nitrofurantoin, erythromycin, and triclosan). We screened one or more subinhibitory concentrations of each antibiotic, generating more than 80,000 data points and allowing a reduction of the entire collection to a set of 283 strains that display significantly increased sensitivity to at least one of the antibiotics. We used this reduced set of strains to determine a profile for eight additional antibiotics (spectinomycin, cephradine, aztreonem, colistin, neomycin, enoxacin, tobramycin, and cefoxitin). The profiles for the 22 antibiotics represent a growing catalog of sensitivity fingerprints that can be separated into two components, multidrug-resistant mutants and those mutants that confer relatively specific sensitivity to the antibiotic or type of antibiotic tested. The latter group can be represented by a set of 20 to 60 strains that can be used for the rapid typing of antibiotics by generating a virtual bar code readout of the specific sensitivities. Taken together, these data reveal the complexity of intrinsic resistance and provide additional targets for the design of codrugs (or combinations of drugs) that potentiate existing antibiotics. PMID:20065048

  6. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    Science.gov (United States)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore

  7. Antimicrobial peptides from frog skin: biodiversity and therapeutic promises.

    Science.gov (United States)

    Ladram, Ali; Nicolas, Pierre

    2016-01-01

    More than a thousand antimicrobial peptides (AMPs) have been reported in the last decades arising from the skin secretion of amphibian species. Generally, each frog species can express its own repertoire of AMPs (typically, 10-20 peptides) with differing sequences, sizes, and spectrum of action, which implies very rapid divergence, even between closely related species. Frog skin AMPs are highly potent against antibiotic-resistant bacteria, protozoa, yeasts, and fungi by permeating and destroying their plasma membrane and/or inactivating intracellular targets. These peptides have attracted considerable interest as a therapeutic alternative to conventional anti-infective agents. However, efforts to obtain a new generation of drugs using these peptides are still challenging because of high associated R&D costs due to their large size (up to 46 residues) and cytotoxicity. This review deals with the biodiversity of frog skin AMPs and assesses the therapeutic possibilities of temporins, the shortest AMPs found in the frog skin, with 8-17 residues. Such short sequences are easily amenable to optimization of the structure and to solution-phase synthesis that offer reduced costs over solid-phase chemistry. PMID:27100511

  8. Potential use of Bacillus thuringiensis bacteriocins to control antibiotic-resistant bacteria associated with mastitis in dairy goats.

    Science.gov (United States)

    Gutiérrez-Chávez, A J; Martínez-Ortega, E A; Valencia-Posadas, M; León-Galván, M F; de la Fuente-Salcido, N M; Bideshi, D K; Barboza-Corona, J E

    2016-01-01

    Mastitis caused by microbial infections in dairy goats reduces milk yield, modifies milk composition, and potentially contributes to morbidity in herds and consumers of dairy products. Microorganisms associated with mastitis in dairy goats are commonly controlled with antibiotics, but it is known that continued use of these chemical agents promotes antibiotic resistance among bacterial populations. Recently, it has been shown that bacteriocins of Bacillus thuringiensis inhibit growth of food-borne pathogens and also bacteria associated with bovine mastitis. However, there is no report on their ability to inhibit microorganisms linked to mastitis in dairy goats. In this study, using 16S rDNA and ITS regions of rDNA, we identified nine bacterial isolates and an encapsulated yeast associated with mastitis in dairy goats. Enterococcus durans, Brevibacillus sp., and Staphylococcus epidermidis 2 were resistant to, respectively, 75, ~67, ~42, and ~42 % of the antibiotics screened. In addition, 60 % of the bacterial isolates were resistant to penicillin, ampicillin, vancomycin, and dicloxacillin. Importantly, 60 % of the isolates were inhibited by the bacteriocins, but S. epidermidis 1, Enterobacter sp., Escherichia vulneris, and Cryptococcus neoformans were not susceptible to these antimicrobial peptides. Using Brevibacillus sp. and Staphylococcus chromogenes as indicator bacteria, we show that peptides of ~10 kDa that correspond to the molecular mass of bacteriocins used in this study are responsible for the inhibitory activity. Our results demonstrate that multiple antibiotic-resistant bacteria associated with subclinical mastitis in dairy goats from Guanajuato, Mexico, are susceptible to bacteriocins produced by B. thuringiensis. PMID:26022411

  9. Peptide iodination on phenylalanine residues

    International Nuclear Information System (INIS)

    Peptide labelling with radioactive isotopes is always a compromise between peptide chemistry, labelling chemistry, and biological receptor tolerance. Therefore new ways for isotope introduction are always useful. The present contribution describes the introduction of iodine isotopes onto synthetic polypeptides by means of the Gattermann/ Sandmeyer reactions. Peptides containing the nitrophenylalanyl residue are reduced to the corresponding aminophenylalanyl, diazolized to the diazonium phenylalanyl peptide and converted to the iodophenylalanyl peptide in the presence of copper. Two examples are presented: angiotensin II and enkephalin. In both cases, the iodophenylalanyl residue is well accepted by the biological target. (author). 13 refs.; 4 figs

  10. The mycosubtilin synthetase of Bacillus subtilis ATCC6633: A multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase

    OpenAIRE

    Duitman, Erwin H.; Hamoen, Leendert W.; Rembold, Martina; Venema, Gerard; Seitz, Harald; Saenger, Wolfram; Bernhard, Frank; Reinhardt, Richard; Schmidt, Manuel; Ullrich, Christian; Stein, Torsten; Leenders, Frank; Vater, Joachim

    1999-01-01

    Bacillus subtilis strain ATCC6633 has been identified as a producer of mycosubtilin, a potent antifungal peptide antibiotic. Mycosubtilin, which belongs to the iturin family of lipopeptide antibiotics, is characterized by a β-amino fatty acid moiety linked to the circular heptapeptide Asn-Tyr-Asn-Gln-Pro-Ser-Asn, with the second, third, and sixth position present in the D-configuration. The gene cluster from B. subtilis ATCC6633 specifying the biosynthesis of mycosubtilin was identified. The ...

  11. Radiolabelled peptides for oncological diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Boerman, Otto C.; Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Queen Mary University of London, Centre for Molecular Oncology, Barts Cancer Institute, London (United Kingdom)

    2012-02-15

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The {sup 111}In-labelled somatostatin analogue octreotide (OctreoScan trademark) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours. (orig.)

  12. Isolation, purification and identification of three peptaibols from Trichoderma koningii with antibiotic activity against Ralstonia solancearum

    Institute of Scientific and Technical Information of China (English)

    SHEN Qing-tao; CHEN Xiu-lan; SUN Cai-yun; ZHANG Yu-zhong

    2004-01-01

    @@ The use of microorganisms for biological purposes has become an effective alternative to control plant pathogens. Trichoderma koningii Smf2 was chosen from eight Trichoderma strains for its thermostatic metabolites with antibiotic activity against Ralstonia solancearum Smith. Exclusion chromatography (LH20) was used twice to partially purify targeted metabolites combined with biological test. LC/ESI-MS, a powerful tool for rapid identification and sequence determination of peptides, identified these metabolites as three peptaibols named Trichokonin Ⅵ, Ⅶ and Ⅷ, and their sequences were confirmed with NMR.

  13. Effects of antibiotic treatment of nonlactating dairy cows on antibiotic resistance patterns of bovine mastitis pathogens.

    OpenAIRE

    Berghash, S R; Davidson, J. N.; Armstrong, J. C.; Dunny, G M

    1983-01-01

    Antibiotic resistance patterns of the major groups of bovine mastitis pathogens (Streptococcus agalactiae, other streptococci, Staphylococcus aureus, and Staphylococcus epidermidis) were examined by determining the minimum inhibitory concentration (MIC) of 13 different antibiotics against bacterial isolates from dairy cattle. The bacterial strains were obtained from milk samples from each cow in 21 New York state dairy herd surveys. In 12 herd surveys (high antibiotic-use group), all 365 cows...

  14. Metagenomic exploration of antibiotic resistance in soil.

    Science.gov (United States)

    Monier, Jean-Michel; Demanèche, Sandrine; Delmont, Tom O; Mathieu, Alban; Vogel, Timothy M; Simonet, Pascal

    2011-06-01

    The ongoing development of metagenomic approaches is providing the means to explore antibiotic resistance in nature and address questions that could not be answered previously with conventional culture-based strategies. The number of available environmental metagenomic sequence datasets is rapidly expanding and henceforth offer the ability to gain a more comprehensive understanding of antibiotic resistance at the global scale. Although there is now evidence that the environment constitutes a vast reservoir of antibiotic resistance gene determinants (ARGDs) and that the majority of ARGDs acquired by human pathogens may have an environmental origin, a better understanding of their diversity, prevalence and ecological significance may help predict the emergence and spreading of newly acquired resistances. Recent applications of metagenomic approaches to the study of ARGDs in natural environments such as soil should help overcome challenges concerning expanding antibiotic resistances. PMID:21601510

  15. Race against time to develop new antibiotics

    OpenAIRE

    2011-01-01

    The second part of a series of three news features on antimicrobial resistance looks at how the antibiotics pipeline is drying up while resistance to existing drugs is increasing. Theresa Braine reports.

  16. What Can Be Done about Antibiotic Resistance?

    Science.gov (United States)

    ... WHO issued its Global Strategy for Containment of Antimicrobial Resistance , a document aimed at policy-makers that urges ... of existing antibiotics by modifying them so the bacterial enzymes that cause resistance cannot attack them. Alternately, "decoy" molecules can be ...

  17. Do antibiotics decrease effectiveness of oral contraceptives?

    Science.gov (United States)

    Cottet, C

    1996-09-01

    The number of accidental pregnancies occurring in oral contraceptive (OC) users who are concurrently taking certain antibiotics and antifungal agents exceeds the 1% failure rate associated with OCs, suggesting some form of drug interaction. Two mechanisms of action have been proposed to explain this phenomenon. First, drugs such as rifampin and griseofulvin induce liver enzymes that break down the estrogen and progestin contained in OCs, reducing plasma hormone levels. Second, changes in the intestinal bacterial flora induced by penicillin and tetracycline may reduce the gut's absorption of hormones, also compromising efficacy. Since rifampin and griseofulvin are the medications most frequently implicated in accidental pregnancies in OC users, the induction of liver enzymes is the more probable, potent cause of failure. Although the risk of pregnancy due to OC-antibiotic interactions is extremely small, OC users prescribed antibiotics should be warned to use condoms or spermicides until the antibiotics are discontinued. PMID:9006212

  18. Antibiotics May Blunt Breast-Feeding's Benefits

    Science.gov (United States)

    ... fighting infection because of the immunity offered in mother's milk," said Dr. William Muinos, a pediatric gastroenterologist at Nicklaus Children's Hospital in Miami. Antibiotics kill the bacteria in the gut, he said. "If ...

  19. Too Many People Still Take Unneeded Antibiotics

    Science.gov (United States)

    ... of short-term respiratory conditions, such as colds, bronchitis, sore throats, and sinus and ear infections, the researchers reported. "About half of antibiotic prescriptions for acute respiratory conditions were unnecessary," Fleming-Dutra said. In ...

  20. Get Smart: Know When Antibiotics Work

    Centers for Disease Control (CDC) Podcasts

    2008-09-10

    This podcast answers questions from the public about appropriate antibiotic use.  Created: 9/10/2008 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 9/15/2008.