WorldWideScience

Sample records for antibiosis

  1. Antibiosis functions during interactions of Trichoderma afroharzianum and Trichoderma gamsii with plant pathogenic Rhizoctonia and Pythium.

    Science.gov (United States)

    Zhang, Xinjian; Harvey, Paul R; Stummer, Belinda E; Warren, Rosemary A; Zhang, Guangzhi; Guo, Kai; Li, Jishun; Yang, Hetong

    2015-09-01

    Trichoderma afroharzianum is one of the best characterized Trichoderma species, and strains have been utilized as plant disease suppressive inoculants. In contrast, Trichoderma gamsii has only recently been described, and there is limited knowledge of its disease suppressive efficacies. Comparative studies of changes in gene expression during interactions of these species with their target plant pathogens will provide fundamental information on pathogen antibiosis functions. In the present study, we used complementary DNA amplified fragment length polymorphism (cDNA-AFLP) analysis to investigate changes in transcript profiling of T. afroharzianum strain LTR-2 and T. gamsii strain Tk7a during in vitro interactions with plant pathogenic Rhizoctonia solani and Pythium irregulare. Considerable differences were resolved in the overall expression profiles of strains LTR-2 and Tk7a when challenged with either plant pathogen. In strain LTR-2, previously reported mycoparasitism-related genes such as chitinase, polyketide synthase, and non-ribosomal peptide synthetase were found to be differentially expressed. This was not so for strain Tk7a, with the only previously reported antibiosis-associated genes being small secreted cysteine-rich proteins. Although only one differentially expressed gene was common to both strains LTR-2 and Tk7a, numerous genes reportedly associated with pathogen antibiosis processes were differentially expressed in both strains, including degradative enzymes and membrane transport proteins. A number of novel potential antibiosis-related transcripts were found from strains LTR-2 and Tk7a and remain to be identified. The expression kinetics of 20 Trichoderma (10 from strain LTR-2, 10 from strain Tk7a) transcript-derived fragments (TDFs) were quantified by quantitative reverse transcription PCR (RT-qPCR) at pre- and post-mycelia contact stages of Trichoderma-prey interactions, thereby confirming differential gene expression. Collectively, this research

  2. Assesing Bemisia tabaci (Genn. biotype B resistance in soybean genotypes: Antixenosis and antibiosis Evaluación de la resistencia de genotipos de soya a Bemisia tabaci (Genn. biotipo B: Antixenosis y antibiosis

    Directory of Open Access Journals (Sweden)

    José Paulo Gonçalves Franco da Silva

    2012-12-01

    Full Text Available Since it was first reported in Brazil in the 1990s, the B biotype of silverleaf whitefly (Bemisia tabaci Genn., Hemiptera: Aleyrodidae has been recognized as an important pest in soybeans (Glycine max L., reducing the productivity of this legume species in some areas of the country. As an alternative to chemical control, the use of resistant genotypes represents an important tool for integrated pest management (IPM. This study evaluated the performance of 10 soybean genotypes prior to whitefly infestation, by testing attractiveness and preference for oviposition in the greenhouse and antibiosis in the laboratory. In a multiple-choice test, 'IAC-17' was the least attractive to insects. In a no-choice test, 'IAC-17' was the least attractive for egg deposition, indicating the occurrence of non-preference for oviposition on this genotype. Trichome density was positively correlated with the oviposition site and may be associated with the resistance of 'IAC-17' to infestation. The genotypes 'IAC-PL1', 'IAC-19', 'Conquista', 'IAC-24' and 'IAC-17' extended the insect's life cycle, indicating the occurrence of a small degree of antibiosis and/or non-preference for feeding.Desde que se registró por primera vez en Brasil en la década de 1990, el biotipo B de la mosca-blanca (Bemisia tabaci Genn., Hemiptera: Aleyrodidae, se reconoce como una importante plaga de la soya (Glycine max L. y es lo que reduce la productividad de estas especies de leguminosas en algunas zonas del pais. Como una alternativa al control químico, el uso de genotipos resistentes representa una herramienta importante para la gestión integrada de plagas (MIP. Este trabajo evaluó el comportamiento de 10 genotipos de soya frente al ataque de la mosca-blanca, por medio de ensayos de atractividad y preferencia para ovipostura en invernaderos y antibiosis en laboratorio. En una prueba de elección multiple, 'IAC-17' fue el menos atractivo para los insectos. En una prueba sin elecci

  3. A re-appraisal of the conventional history of antibiosis and Penicillin.

    Science.gov (United States)

    Arseculeratne, S N; Arseculeratne, G

    2017-05-01

    The popular perception of the history of antibiosis and penicillin is that Alexander Fleming was the sole researcher on penicillin. The literature, however, has documentation of preceding persons who reported definitively on these topics, from the late 19 th century. Divergent reports on "firsts" in the discovery of antimicrobial activity of Penicillium and on the use of penicillin as a therapeutic agent, are present. This review adds knowledge from diverse sources, and restores historical priorities to the conventional story of Penicillin. © 2017 Blackwell Verlag GmbH.

  4. Antibiosis in Soybean Genotypes and the Resistance Levels to Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Souza, B H S; Silva, A G; Janini, J C; Boica Júnior, A L

    2014-12-01

    The southern armyworm (SAW) Spodoptera eridania (Cramer) is one of the most common armyworm species defoliating soybeans. Preliminary screening trials have indicated that some soybean genotypes exhibit resistance to SAW. Therefore, in this study, we evaluated the development of SAW larvae fed on ten soybean genotypes in order to identify genotypes with antibiosis-type resistance. Neonate SAW larvae were daily fed with young leaves collected from plants at the vegetative growth stages V4-V5. Larval development and survival were recorded. Genotypes PI 227687 and PI 227682 delayed larval, pupal, and larva-adult development and yielded larvae with the lowest weight and survival and pupae with the lowest weight. Genotypes IAC 100 and DM 339 also negatively affected larval and pupal development and larval survival but at a lower level. Based on our results, the soybean lines PI 227687 and PI 227682 could be used as sources of genes for soybean breeding programs aiming to develop high yield, SAW-resistant cultivars. Moreover, further trials must be carried out under field conditions to validate if the commercial cultivars IAC 100 and DM 339, which expressed moderate levels of antibiosis-type resistance in the laboratory, are effective in suppressing SAW larvae populations.

  5. Wheat Antixenosis, Antibiosis, and Tolerance to Infestation by Delphacodes kuscheli (Hemiptera: Delphacidae), a Vector of "Mal de Rio Cuarto" in Argentina

    Czech Academy of Sciences Publication Activity Database

    Brentassi, M.E.; Corrales, C.; Snape, J.W.; Dixon, Anthony F. G.; Castro, A.M.

    2009-01-01

    Roč. 102, - (2009), s. 1801-1807 ISSN 0022-0493 Institutional research plan: CEZ:AV0Z60870520 Keywords : Delphaeodes kuscheli * wheat * antibiosis * antixenosis * tolerance Subject RIV: EG - Zoology Impact factor: 1.296, year: 2009

  6. Antibiosis resistance in national uniform wheat yield trials against rhopalosiphum padi (L.)

    International Nuclear Information System (INIS)

    Akhtar, N.; Ashfaque, M.; Gillani, W.A.; Ata-ul-Mohsin; Tahfeen, A.; Begum, I.

    2010-01-01

    The germplasm of National Uniform Wheat Yield Trials (Normal) (2003-04) were screened against Rhopalosiphum padi L., bird cherry oat aphid at National Agricultural Research Centre, Islamabad. Twenty National Uniform Wheat Yield Trials (NUWYT) , Normal and 12 (NUWYT) rain fed varieties/ lines were evaluated for seedling bulk test to know the resistant, moderately resistant and susceptible wheat varieties/ lines. These results revealed that varieties Diamond and Margalla-99 and lines V-99022, 99B2278 and 7-03 were partially resistant, two lines V-00125 and SD-66 were susceptible and three varieties and ten lines were moderately resistant in seedling bulk test. For antibiosis studies, 10 varieties/ lines out of 20 were selected to know the effect of host plants on the fecundity of R. padi. Two varieties Wafaq-2007 and Diamond were the least preferred for fecundity and one line VOO125 was highly preferred for fecundity. (author)

  7. An Interspecies Signaling System Mediated by Fusaric Acid Has Parallel Effects on Antifungal Metabolite Production by Pseudomonas protegens Strain Pf-5 and Antibiosis of Fusarium spp.

    Science.gov (United States)

    Quecine, Maria Carolina; Kidarsa, Teresa A.; Goebel, Neal C.; Shaffer, Brenda T.; Henkels, Marcella D.; Zabriskie, T. Mark

    2015-01-01

    Pseudomonas protegens strain Pf-5 is a rhizosphere bacterium that suppresses soilborne plant diseases and produces at least seven different secondary metabolites with antifungal properties. We derived mutants of Pf-5 with single and multiple mutations in biosynthesis genes for seven antifungal metabolites: 2,4-diacetylphoroglucinol (DAPG), pyrrolnitrin, pyoluteorin, hydrogen cyanide, rhizoxin, orfamide A, and toxoflavin. These mutants were tested for inhibition of the pathogens Fusarium verticillioides and Fusarium oxysporum f. sp. pisi. Rhizoxin, pyrrolnitrin, and DAPG were found to be primarily responsible for fungal antagonism by Pf-5. Previously, other workers showed that the mycotoxin fusaric acid, which is produced by many Fusarium species, including F. verticillioides, inhibited the production of DAPG by Pseudomonas spp. In this study, amendment of culture media with fusaric acid decreased DAPG production, increased pyoluteorin production, and had no consistent influence on pyrrolnitrin or orfamide A production by Pf-5. Fusaric acid also altered the transcription of biosynthetic genes, indicating that the mycotoxin influenced antibiotic production by Pf-5 at the transcriptional level. Addition of fusaric acid to the culture medium reduced antibiosis of F. verticillioides by Pf-5 and derivative strains that produce DAPG but had no effect on antibiosis by Pf-5 derivatives that suppressed F. verticillioides due to pyrrolnitrin or rhizoxin production. Our results demonstrated the importance of three compounds, rhizoxin, pyrrolnitrin, and DAPG, in suppression of Fusarium spp. by Pf-5 and confirmed that an interspecies signaling system mediated by fusaric acid had parallel effects on antifungal metabolite production and antibiosis by the bacterial biological control organism. PMID:26655755

  8. An Interspecies Signaling System Mediated by Fusaric Acid Has Parallel Effects on Antifungal Metabolite Production by Pseudomonas protegens Strain Pf-5 and Antibiosis of Fusarium spp.

    Science.gov (United States)

    Quecine, Maria Carolina; Kidarsa, Teresa A; Goebel, Neal C; Shaffer, Brenda T; Henkels, Marcella D; Zabriskie, T Mark; Loper, Joyce E

    2015-12-11

    Pseudomonas protegens strain Pf-5 is a rhizosphere bacterium that suppresses soilborne plant diseases and produces at least seven different secondary metabolites with antifungal properties. We derived mutants of Pf-5 with single and multiple mutations in biosynthesis genes for seven antifungal metabolites: 2,4-diacetylphoroglucinol (DAPG), pyrrolnitrin, pyoluteorin, hydrogen cyanide, rhizoxin, orfamide A, and toxoflavin. These mutants were tested for inhibition of the pathogens Fusarium verticillioides and Fusarium oxysporum f. sp. pisi. Rhizoxin, pyrrolnitrin, and DAPG were found to be primarily responsible for fungal antagonism by Pf-5. Previously, other workers showed that the mycotoxin fusaric acid, which is produced by many Fusarium species, including F. verticillioides, inhibited the production of DAPG by Pseudomonas spp. In this study, amendment of culture media with fusaric acid decreased DAPG production, increased pyoluteorin production, and had no consistent influence on pyrrolnitrin or orfamide A production by Pf-5. Fusaric acid also altered the transcription of biosynthetic genes, indicating that the mycotoxin influenced antibiotic production by Pf-5 at the transcriptional level. Addition of fusaric acid to the culture medium reduced antibiosis of F. verticillioides by Pf-5 and derivative strains that produce DAPG but had no effect on antibiosis by Pf-5 derivatives that suppressed F. verticillioides due to pyrrolnitrin or rhizoxin production. Our results demonstrated the importance of three compounds, rhizoxin, pyrrolnitrin, and DAPG, in suppression of Fusarium spp. by Pf-5 and confirmed that an interspecies signaling system mediated by fusaric acid had parallel effects on antifungal metabolite production and antibiosis by the bacterial biological control organism. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Antixenosis and Antibiosis Resistance in Rice Cultivars against Chilo suppressalis (Walker) (Lepidoptera: Crambidae).

    Science.gov (United States)

    Tabari, M A; Fathi, S A A; Nouri-Ganbalani, G; Moumeni, A; Razmjou, J

    2017-08-01

    The striped stem borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae), is an important pest afflicting rice in most rice-growing countries in the world. Deliniating the categories of resistance in rice genotypes under field conditions could be helpful in managment of this pest. Two categories of resistance, antixenosis and antibiosis, were examined in ten popular and diverse rice genotypes of different origin that had been selected for their resistance to the striped stem borer in a previous study. Significant differences were found between genotypes for the number of egg masses, number of eggs, preference index, larval and pupal weight, larval development time, larval survival rate, larval mine length, and leaf trichome density. It was found that the rice genotypes Novator, A7801, and Nemat had the more pronounced antixenosis-type resistance, whereas AB1 and Shirodi had better antiobiosis-type resistance. Interestingly, the rice genotype AN-74 for which Nemat is the parental line showed both types of resistance and could be effectively used in an integrated pest management of the rice striped stem borer.

  10. Antibiosis of Trichoderma spp strains native to northeastern Mexico against the pathogenic fungus Macrophomina phaseolina

    Science.gov (United States)

    Mendoza, José Luis Hernández; Pérez, María Isabel Sánchez; Prieto, Juan Manuel González; Velásquez, Jesús DiCarlo Quiroz; Olivares, Jesús Gerardo García; Langarica, Homar Rene Gill

    2015-01-01

    Abstract Sampling of agricultural soils from the Mexican northeastern region was performed to detect Trichoderma spp., genetically characterize it, and assess its potential use as a biologic control agent against Macrophomina phaseolina. M. phaseolina is a phytopathogen that attacks over 500 species of cultivated plants and causes heavy losses in the regional sorghum crop. Sampling was performed immediately after sorghum or corn harvest in an area that was approximately 170 km from the Mexico-USA border. Sixteen isolates were obtained in total. Using colony morphology and sequencing the internal transcribed spacers (ITS) 1 and 4 of 18S rDNA, 14 strains were identified as Trichoderma harzianum, T. koningiopsis and T. virens. Subsequently, their antagonistic activity against M. phaseolina was evaluated in vitro, and 11 isolates showed antagonism by competition and stopped M. phaseolina growth. In 4 of these isolates, the antibiosis phenomenon was observed through the formation of an intermediate band without growth between colonies. One strain, HTE808, was identified as Trichoderma koningiopsis and grew rapidly; when it came into contact with the M. phaseolina colony, it continued to grow and sporulated until it covered the entire petri dish. Microscopic examination confirmed that it has a high level of hyperparasitism and is thus considered to have high potential for use in the control of this phytopathogen. PMID:26691467

  11. Folliculitis et perifolliculitis capitis abscedens et suffodiens controlled with a combination therapy: Systemic antibiosis (Metronidazole Plus Clindamycin, dermatosurgical approach, and high-dose isotretinoin

    Directory of Open Access Journals (Sweden)

    Georgi Tchernev

    2011-01-01

    Full Text Available Folliculitis et perifolliculitis capitis abscedens et suffodiens is a rare disease of unknown etiology. It is a suppurative process that involves the scalp, eventually resulting in extensive scarring and irreversible alopecia. The condition is also known as ′acne necrotica miliaris′ or ′Proprionibacterium′ folliculitis. Most often the disease affects men of African-American or African-Caribbean descent between 20 and 40 years of age. The clinical picture is determined by fluctuating painful fistule-forming conglomerates of abscesses in the region of the occipital scalp. The cause of scalp folliculitis is not well understood. It is generally considered to be an inflammatory reaction to components of the hair follicle, particularly the micro-organisms. These include: bacteria (especially Propionibacterium acnes, but in severe cases, also Staphylococcus aureus, Yeasts (Malassezia species and mites (Demodex folliculorum. The initial histopathologic finding is an exclusively neutrophilic infiltration followed by a granulomatous infiltrate. The treatment of the disease is usually difficult and often disappointing. Successful treatment with isotretinoin 1 mg/kg body mass could be achieved only after regular systematic administration in the course of 3-4 months. Here we describe a patient with eruptive purulent form of the disease, which has been controlled with combination therapy: systemic antibiosis with metronidazole and clindamycin, dermatosurgical removal of single nodular formations, and isotretinoin 1 mg/kg body mass for 3-5 months.

  12. Xylem Resin in the Resistance of the Pinaceae to Bark Beetles

    Science.gov (United States)

    Richard H. Smith

    1972-01-01

    Xylem resin of Pinaceae is closely linked with their resistance and suseptibility to tree-killing bark beetles. This review of the literature on attacking adults suggests that all three resistance mechanisms proposed by Painter -- preference, antibiosis, and tolerance -- are active in this relationship: preference by attraction, repellency, and synergism; antibiosis...

  13. Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifolii) in Medicago truncatula

    KAUST Repository

    Kamphuis, L. G.; Lichtenzveig, J.; Peng, K.; Guo, S.-M.; Klingler, John; Siddique, K. H. M.; Gao, L.-L.; Singh, K. B.

    2013-01-01

    Aphids cause significant yield losses in agricultural crops worldwide. Medicago truncatula, a model legume, cultivated pasture species in Australia and close relative of alfalfa (Medicago sativa), was used to study the defence response against Therioaphis trifolii f. maculate [spotted alfalfa aphid (SAA)]. Aphid performance and plant damage were compared among three accessions. A20 is highly susceptible, A17 has moderate resistance, and Jester is strongly resistant. Subsequent analyses using A17 and A20, reciprocal F1s and an A17×A20 recombinant inbred line (RIL) population revealed that this moderate resistance is phloem mediated and involves antibiosis and tolerance but not antixenosis. Electrical penetration graph analysis also identified a novel waveform termed extended potential drop, which occurred following SAA infestation of M. truncatula. Genetic dissection using the RIL population revealed three quantitative trait loci on chromosomes 3, 6, and 7 involved in distinct modes of aphid defence including antibiosis and tolerance. An antibiosis locus resides on linkage group 3 (LG3) and is derived from A17, whereas a plant tolerance and antibiosis locus resides on LG6 and is derived from A20, which exhibits strong temporary tolerance. The loci identified reside in regions harbouring classical resistance genes, and introgression of these loci in current medic cultivars may help provide durable resistance to SAA, while elucidation of their molecular mechanisms may provide valuable insight into other aphid–plant interactions.

  14. Arabidopsis thaliana resistance to insects, mediated by an earthworm-produced organic soil amendment.

    Science.gov (United States)

    Cardoza, Yasmin J

    2011-02-01

    Vermicompost is an organic soil amendment produced by earthworm digestion of organic waste. Studies show that plants grown in soil amended with vermicompost grow faster, are more productive and are less susceptible to a number of arthropod pests. In light of these studies, the present study was designed to determine the type of insect resistance (antixenosis or antibiosis) present in plants grown in vermicompost-amended potting soil. Additionally, the potential role of microarthropods, entomopathogenic organisms and non-pathogenic microbial flora found in vermicompost on insect resistance induction was investigated. Findings show that vermicompost from two different sources (Raleigh, North Carolina, and Portland, Oregon) were both effective in causing Arabidopsis plants to be resistant to the generalist herbivore Helicoverpa zea (Boddie). However, while the Raleigh (Ral) vermicompost plant resistance was expressed as both non-preference (antixenosis) and milder (lower weight and slower development) toxic effect (antibiosis) resistance, Oregon (OSC) vermicompost plant resistance was expressed as acute antibiosis, resulting in lower weights and higher mortality rates. Vermicompost causes plants to have non-preference (antixenosis) and toxic (antibiosis) effects on insects. This resistance affects insect development and survival on plants grown in vermicompost-amended soil. Microarthropods and entomopathogens do not appear to have a role in the resistance, but it is likely that resistance is due to interactions between the microbial communities in vermicompost with plant roots, as is evident from vermicompost sterilization assays conducted in this study. Copyright © 2010 Society of Chemical Industry.

  15. Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifolii) in Medicago truncatula

    KAUST Repository

    Kamphuis, L. G.

    2013-09-21

    Aphids cause significant yield losses in agricultural crops worldwide. Medicago truncatula, a model legume, cultivated pasture species in Australia and close relative of alfalfa (Medicago sativa), was used to study the defence response against Therioaphis trifolii f. maculate [spotted alfalfa aphid (SAA)]. Aphid performance and plant damage were compared among three accessions. A20 is highly susceptible, A17 has moderate resistance, and Jester is strongly resistant. Subsequent analyses using A17 and A20, reciprocal F1s and an A17×A20 recombinant inbred line (RIL) population revealed that this moderate resistance is phloem mediated and involves antibiosis and tolerance but not antixenosis. Electrical penetration graph analysis also identified a novel waveform termed extended potential drop, which occurred following SAA infestation of M. truncatula. Genetic dissection using the RIL population revealed three quantitative trait loci on chromosomes 3, 6, and 7 involved in distinct modes of aphid defence including antibiosis and tolerance. An antibiosis locus resides on linkage group 3 (LG3) and is derived from A17, whereas a plant tolerance and antibiosis locus resides on LG6 and is derived from A20, which exhibits strong temporary tolerance. The loci identified reside in regions harbouring classical resistance genes, and introgression of these loci in current medic cultivars may help provide durable resistance to SAA, while elucidation of their molecular mechanisms may provide valuable insight into other aphid–plant interactions.

  16. Mechanisms of Oryza sativa (Poaceae) resistance to Tagosodes orizicolus (Homoptera: Delphacidae) under greenhouse condition in Venezuela.

    Science.gov (United States)

    González, Alex; Labrín, Natalia; Alvarez, Rosa M; Jayaro, Yorman; Gamboa, Carlos; Reyes, Edicta; Barrientos, Venancio

    2012-03-01

    Tagosodes orizicolus is one of the main plagues of rice in tropical America causing two types of damages, the direct one, feeding and oviposition effect, and an indirect one, by the transmission of the "Rice hoja blanca virus". During 2006-2007 we carried out research under greenhouse conditions at Fundaci6n Danac, Venezuela, in order to determine the mechanisms of antixenosis, antibiosis and tolerance to T. orizicolus, which could be acting in commercial varieties and advanced lines of the rice genetic breeding programs of INIA and Fundaci6n Danac. The method of free feeding was used for the antixenosis evaluation, whereas the method of forced feeding was used for antibiosis evaluation (effect on survival and oviposition). Additionally, we used the indirect method based on biomass depression to estimate the tolerance. Some of the evaluated traits included: grade of damage, number of insects settling on rice plants, percentage of sogata mortality at the mature state, number of eggs in the leaf midrib and an index of tolerance. The results showed that rice genotypes possess different combinations of resistance mechanisms, as well as different grades of reactions. The susceptible control 'Bluebonnet 50' was consistently susceptible across experiments and the resistant control 'Makalioka' had high antixenosis and high antibiosis based on survival and oviposition. The rest of the genotypes presented lower or higher degrees of antixenosis and antibiosis for survival and oviposition. The genotype 'FD0241-M-17-6-1-1-1-1' was identified with possible tolerance to the direct damage of sogata.

  17. Characterization of Resistance to Cephus cinctus (Hymenoptera: Cephidae) in Barley Germplasm.

    Science.gov (United States)

    Varella, Andrea C; Talbert, Luther E; Achhami, Buddhi B; Blake, Nancy K; Hofland, Megan L; Sherman, Jamie D; Lamb, Peggy F; Reddy, Gadi V P; Weaver, David K

    2018-04-02

    Most barley cultivars have some degree of resistance to the wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae). Damage caused by WSS is currently observed in fields of barley grown in the Northern Great Plains, but the impact of WSS damage among cultivars due to genetic differences within the barley germplasm is not known. Specifically, little is known about the mechanisms underlying WSS resistance in barley. We characterized WSS resistance in a subset of the spring barley CAP (Coordinated Agricultural Project) germplasm panel containing 193 current and historically important breeding lines from six North American breeding programs. Panel lines were grown in WSS infested fields for two consecutive years. Lines were characterized for stem solidness, stem cutting, WSS infestation (antixenosis), larval mortality (antibiosis), and parasitism (indirect plant defense). Variation in resistance to WSS in barley was compared to observations made for solid-stemmed resistant and hollow-stemmed susceptible wheat lines. Results indicate that both antibiosis and antixenosis are involved in the resistance of barley to the WSS, but antibiosis seems to be more prevalent. Almost all of the barley lines had greater larval mortality than the hollow-stemmed wheat lines, and only a few barley lines had mortality as low as that observed in the solid-stemmed wheat line. Since barley lines lack solid stems, it is apparent that barley has a different form of antibiosis. Our results provide information for use of barley in rotation to control the WSS and may provide a basis for identification of new approaches for improving WSS resistance in wheat.

  18. Resistance and susceptibility of alfalfa (Medicago sativa L.) cultivars to the aphid Therioaphis maculata (Homoptera:Aphididae): insect biology and cultivar evaluation

    Institute of Scientific and Technical Information of China (English)

    ALEXANDRE DE ALMEIDA E SILVA; ELENICE MOURO VARANDA; JOS(E) RICARDO BAROSELA

    2006-01-01

    Biology of the aphid Therioaphis maculata was studied on alfalfa (Medicago sativa L.), including four resistant (Mesa-Sirsa, CUF101, Baker and Lahontan) and two susceptible (ARC and Caliverde) alfalfa cultivars, and one of the most cropped Brazilian cultivars, Crioula. Under controlled conditions, antibiosis (i.e., reduced longevity, fecundity and increased mortality of the aphid) was observed mainly on the resistant alfalfa cultivars,except on Lahontan. Crioula seemed to be tolerant to aphids. Present data support geographic limitation usage of cultivars, and we suggest Baker and Mesa-Sirsa as sources of antibiosis,and provide biological information of a tropical T. maculata biotype on alfalfa.

  19. Mechanisms of Oryza sativa (Poaceae resistance to Tagosodes orizicolus (Homoptera: Delphacidae under greenhouse condition in Venezuela

    Directory of Open Access Journals (Sweden)

    Alex González

    2012-03-01

    Full Text Available Tagosodes orizicolus is one of the main plagues of rice in tropical America causing two types of damages, the direct one, feeding and oviposition effect, and an indirect one, by the transmission of the “Rice hoja blanca virus”. During 2006-2007 we carried out research under greenhouse conditions at Fundación Danac, Venezuela, in order to determine the mechanisms of antixenosis, antibiosis and tolerance to T. orizicolus, which could be acting in commercial varieties and advanced lines of the rice genetic breeding programs of INIA and Fundación Danac. The method of free feeding was used for the antixenosis evaluation, whereas the method of forced feeding was used for antibiosis evaluation (effect on survival and oviposition. Additionally, we used the indirect method based on biomass depression to estimate the tolerance. Some of the evaluated traits included: grade of damage, number of insects settling on rice plants, percentage of sogata mortality at the mature state, number of eggs in the leaf midrib and an index of tolerance. The results showed that rice genotypes possess different combinations of resistance mechanisms, as well as different grades of reactions. The susceptible control ‘Bluebonnet 50’ was consistently susceptible across experiments and the resistant control ‘Makalioka’ had high antixenosis and high antibiosis based on survival and oviposition. The rest of the genotypes presented lower or higher degrees of antixenosis and antibiosis for survival and viposition. The genotype ‘FD0241-M-17-6-1-1-1-1’ was identified with possible tolerance to the direct damage of sogata.Tagosodes orizicolus es una de las principales plagas del cultivo del arroz en América tropical causando dos tipos de daños a la planta, el directo, por efecto de la alimentación y oviposición; el indirecto, por la transmisión del virus de la hoja blanca del arroz. Durante el período 2006-2007 se llevó a cabo una investigación bajo condiciones

  20. Antagonistic studies and hyphal interactions of the new antagonist Aspergillus piperis against some phytopathogenic fungi in vitro in comparison with Trichoderma harzianum.

    Science.gov (United States)

    El-Debaiky, Samah A

    2017-12-01

    The present study represents, for the first time, the detailed studies about the hyphal interactions of Aspergillus piperis, as a new antagonist, against some isolated plant pathogenic fungi (Alternaria alternata, Alternaria solani, Botrytis cinerea, Sclerotium cepivorum and Sclerotinia sclerotiorum) in vitro. The bio-controlling capability of A. piperis against the tested phytopathogens was tested using the dual culture method. This experiment revealed that A. piperis had antagonistic activity and reduced the growth of the tested phytopathogens and grew over their mycelia in the paired plates. Also, several antagonistic mechanisms were recorded, in this study, between A. piperis and the tested phytopathogens using the microscopic examination. The bio-controlling activity and the antagonistic mechanisms exhibited by the new antagonist, A. piperis were compared with those obtained by the common antagonist, Trichoderma harzianum against the same phytopathogens. The obtained results showed that, A. piperis was more effective than T. harzianum in inhibiting all the tested species in the dual culture plates. The best result was 81.85% inhibition percentage against S. sclerotiorum by A. piperis while, T. harzianum exhibits only 45.18%. Moreover, several antagonistic mechanisms and hyphal interactions were investigated among the hyphae of both A.piperis and T. harzianum and the hyphae of the tested phytopathogens. These mechanisms were summarized as; mycoparasitism (coiling and penetration of the hyphae) and antibiosis in the form of lysis of the hyphal cells and spores, denaturation and breaking of the hyphae. The indirect interaction (antibiosis) and the direct mycoparasitism were observed by A. piperis against all the tested phytopathogens, but it attacked the hyphae and conidiophores of A. alternata by only the antibiosis interaction. The microscopic examination revealed also that T. harzianum attacked the tested phytopathogens by both antibiosis and mycoparasitism

  1. Epiphytic Ba

    African Journals Online (AJOL)

    around each epiphytic bacteria tested was used ---:-.';( days before ..... fungus Gaeumannomyces gramznzs var. trztzcz following wheat ... laboratory studies indicate that antibiosis is one ... of an introduced biocontrol agent (Trichoderma.

  2. ipomoea batatas (l

    African Journals Online (AJOL)

    preferred customer

    ISSN: 0379–2897. CHARACTERIZATION OF FUNGAL EXTRACTS FROM TRICHODERMA ISOLATES: .... agents include mycoparasitism, antibiosis, com- petition, lytic enzyme ..... isolates formed coiled structures around the hyphae of the test ...

  3. Evaluation of bio-agent formulations to control Fusarium wilt of tomato

    African Journals Online (AJOL)

    ONOS

    2010-09-06

    Sep 6, 2010 ... studied with emphasis on biological control using fungi or ... mechanisms such as antibiosis, competition, suppression, ... Fusarium wilt pathogen such as Trichoderma harzianum, .... sphere around soil and above plants.

  4. Gamma (60CO) radiation effects on arcelin protein and evaluation of bean lineages against Acanthoscelides obtectus (Say) and Zabrotes subfasciatus (Boh.) (Col.: Bruchidae)

    International Nuclear Information System (INIS)

    Botelho, Ana Claudia Girardo

    2006-01-01

    The resistance of arcelin carrying seeds of bean lineages (Phaseolus vulgaris L.) against the bean weevils Acanthoscelides obtectus (Say, 1831) and Zabrotes subfasciatus (Bohemann, 1833) (Coleoptera: Bruchidae), and the influence of gamma radiation ( 60 CO) on the manifestation of arcelin resistance to Z. subfasciatus were verified. Laboratorial tests, in choice and non-choice tests, with wild specimens carrying Arc-1, Arc-2, Arc-3, Arc-4, Raz-56 and Raz-59 (with Arc-5 alleles) and commercial lineages as control IAC - Carioca and IAC - Arua were conducted. Statistical design was completely randomized, with five repetitions, with 10 g of grains from each lineage samples by portion. Attractiveness, oviposition, emergence, mortality, adults' weigh and longevity, developing period, sexual rate, seeds' weigh loss, infestation and fecundity (Z. subfasciatus) were observed. Gamma radiation doses irradiations, in general, haven't affected the resistance manifestation of lineages carrying arcelin protein variants against the Z. subfasciatus bean weevil, thus, joint application use of both control methods can be recommended. Raz-56 lineage showed high resistance of the antibiosis types and non-preference for oviposition and feeding to Z. subfasciatus, while Raz-59 showed antibiosis and non-preference for feeding, and both (Raz-56 and Raz-59) showed intermediate resistance to A. obtectus, against which lineage Arc-2 was the most harmful to its development, expressing non-preference to feeding and/or antibiosis. (author)

  5. Gamma ({sup 60}CO) radiation effects on arcelin protein and evaluation of bean lineages against Acanthoscelides obtectus (Say) and Zabrotes subfasciatus (Boh.) (Col.: Bruchidae);Efeito da radiacao gama ({sup 60}CO) sobre a proteina arcelina e avaliacao de linhagens de feijoeiro a Acanthoscelides obtectus (Say) and Zabrotes subfasciatus (Boh.) (Col.: Bruchidae)

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Ana Claudia Girardo

    2006-07-01

    The resistance of arcelin carrying seeds of bean lineages (Phaseolus vulgaris L.) against the bean weevils Acanthoscelides obtectus (Say, 1831) and Zabrotes subfasciatus (Bohemann, 1833) (Coleoptera: Bruchidae), and the influence of gamma radiation ({sup 60}CO) on the manifestation of arcelin resistance to Z. subfasciatus were verified. Laboratorial tests, in choice and non-choice tests, with wild specimens carrying Arc-1, Arc-2, Arc-3, Arc-4, Raz-56 and Raz-59 (with Arc-5 alleles) and commercial lineages as control IAC - Carioca and IAC - Arua were conducted. Statistical design was completely randomized, with five repetitions, with 10 g of grains from each lineage samples by portion. Attractiveness, oviposition, emergence, mortality, adults' weigh and longevity, developing period, sexual rate, seeds' weigh loss, infestation and fecundity (Z. subfasciatus) were observed. Gamma radiation doses irradiations, in general, haven't affected the resistance manifestation of lineages carrying arcelin protein variants against the Z. subfasciatus bean weevil, thus, joint application use of both control methods can be recommended. Raz-56 lineage showed high resistance of the antibiosis types and non-preference for oviposition and feeding to Z. subfasciatus, while Raz-59 showed antibiosis and non-preference for feeding, and both (Raz-56 and Raz-59) showed intermediate resistance to A. obtectus, against which lineage Arc-2 was the most harmful to its development, expressing non-preference to feeding and/or antibiosis. (author)

  6. Resistance of Wheat Accessions to the English Grain Aphid Sitobion avenae

    Science.gov (United States)

    Hu, Xiang-Shun; Liu, Ying-Jie; Wang, Yu-Han; Wang, Zhe; Yu, Xin-lin; Wang, Bo; Zhang, Gai-Sheng; Liu, Xiao-Feng; Hu, Zu-Qing; Zhao, Hui-Yan; Liu, Tong-Xian

    2016-01-01

    The English grain aphid, Sitobion avenae, is a major pest species of wheat crops; however, certain varieties may have stronger resistance to infestation than others. Here, we investigated 3 classical resistance mechanisms (antixenosis, antibiosis, and tolerance) by 14 wheat varieties/lines to S. avenae under laboratory and field conditions. Under laboratory conditions, alatae given the choice between 2 wheat varieties, strongly discriminated against certain varieties. Specifically, the ‘Amigo’ variety had the lowest palatability to S. avenae alatae of all varieties. ‘Tm’ (Triticum monococcum), ‘Astron,’ ‘Xanthus,’ ‘Ww2730,’ and ‘Batis’ varieties also had lower palatability than other varieties. Thus, these accessions may use antibiosis as the resistant mechanism. In contrast, under field conditions, there were no significant differences in the number of alatae detected on the 14 wheat varieties. One synthetic line (98-10-30, a cross between of Triticum aestivum (var. Chris) and Triticum turgidum (var. durum) hybridization) had low aphid numbers but high yield loss, indicating that it has high antibiosis, but poor tolerance. In comparison, ‘Amigo,’ ‘Xiaoyan22,’ and some ‘186Tm’ samples had high aphid numbers but low yield loss rates, indicating they have low antibiosis, but good tolerance. Aphid population size and wheat yield loss rates greatly varied in different fields and years for ‘98-10-35,’ ‘Xiaoyan22,’ ‘Tp,’ ‘Tam200,’ ‘PI high,’ and other ‘186Tm’ samples, which were hybrid offspring of T. aestivum and wheat related species. Thus, these germplasm should be considered for use in future studies. Overall, S. avenae is best adapted to ‘Xinong1376,’ because it was the most palatable variety, with the greatest yield loss rates of all 14 wheat varieties. However, individual varieties/lines influenced aphid populations differently in different years. Therefore, we strongly recommend a combination of

  7. Uji ketahanan galur padi terhadap wereng coklat biotipe 3 melalui population build-up

    Directory of Open Access Journals (Sweden)

    Baehaki Suherlan Effendi

    2015-09-01

    Full Text Available Screening of rice lines resistance to brown planthopper (BPH through mass screening, filtering line resistance and the population build-up are essential for the release of resistant rice varieties. In addition, the stages of the endurance are important in determining the stability of resistance, as well as the type of resistant. The research was carried out in the screen house at Indonesian Center for Rice Research in 2007. The BPH used in the research was the off spring of BPH biotype 3 that had been rearing on IR42 (bph2 variety since 1994. The result of this research showed that 22.2% of 18 lines/varieties were moderately resistant to BPH biotype 3ft namely BP4130-1f-13-3-2*B, BP4188-7f-1-2-2*B, BP2870-4e- Kn-22-2-1-5*B, and Pulut Lewok. On the population build-up test, the above lines/varieties were moderately resistant to BPH biotype 3pb. The low FPLI values were found in BP4130-1f-13-3-2*B and Pulut Lewok. The highest tolerance index was found on BP4130-1f- 13-3-2*B and Pulut Lewok followed by BP2870-4e-Kn-22-2-1-5*B and BP4188-7f-1-2-2*B. Pulut Lewok has the highest antibiosis index and is not significantly different to BP4130-1f-13-3-2*B, while BP4188-7f-1-2-2*B was lowest. Although Pulut Lewok has antibiosis defense mechanism, it is not tolerant to BPH biotype 3. The BP4130-1f-13-3-2*B line have both antibiosis and tolerant to BPH biotype 3. BP4188-7f-1-2-2*B line has tolerance character, but does not have character of antibiosis to BPH biotype 3.

  8. Bioprospecting for culturable actinobacteria with antimicrobial ...

    African Journals Online (AJOL)

    Strains of Fusarium sp. H24, Trichoderma harzianum H5 and Colletotrichum ... Antibiosis was indicated by visually observable growth inhibition of the ... Table 1: Antimicrobial activity of seven selected strains against fungi and bacterial strains.

  9. Management of Fusarium Wilt using mycolytic enzymes produced by ...

    African Journals Online (AJOL)

    Aghomotsegin

    Trichoderma strain to manage the Fusarium wilt disease of Cicer aritenum under in vitro conditions. We also studied ... antibiosis, competition, parasitism and cell lysis can ideally be ... hydrolytic enzymes associated with fungal cell wall lysis,.

  10. 8340 Volume 13 No. 5 December 2013 IMPACT OF SOIL ...

    African Journals Online (AJOL)

    2013-12-05

    Dec 5, 2013 ... other dietary necessities that are consumed by families across the region [2, 3, 4]. ... sticker) – Trichoderma is a fungus used in suppressing soil borne plant .... fungi through antibiosis, mycoparasitism and competition [23].

  11. In vitro inhibition of pathogenic Verticillium dahliae, causal agent of ...

    African Journals Online (AJOL)

    SAM

    2014-08-13

    Aug 13, 2014 ... In addition, plant pathogens directly affected through antibiosis and ... Trichoderma strains for antagonistic activity on the fungal pathogen V. ... Five soil sub samples were taken from the area around the healthy potato roots ...

  12. Biological control of Rhizoctonia solani on potato by Verticillium ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... V. biguttatum isolates affected R. solani by antibiosis and parasitism. All isolates of V. ... After the coiling around of R. solani hyphae, V. ... is an important fungal pathogen ... Gliocladium spp., Trichoderma spp. and Verticillium.

  13. Short communication

    African Journals Online (AJOL)

    Human01

    concentrations (0.5; 1.0 and 1.5%) of Funginil (Trichoderma harzianum formulation) against Botrytis gladiolorum .... places of India viz., in and around Delhi, Ghazia- bad (Uttar ..... fungi are assumed as an antibiosis, mycopara- sitism and ...

  14. Determination of the resistance types to Spodoptera cosmioides (Walker (Lepidoptera: Noctuidae in soybean genotypes

    Directory of Open Access Journals (Sweden)

    Arlindo Leal Boiça Júnior

    2015-04-01

    Full Text Available The aim of this work was to evaluate the resistance types in soybean genotypes to Spodoptera cosmioides (Walker in laboratory. Soybean genotypes assessed were as follows: ‘IAC 100’ (resistance standard, ‘BR16’ (susceptible standard, ‘Dowling’, PI 227687, PI 274454, ‘IGRA RA 626 RR’, PI 227682, ‘BRSGO 8360’, ‘IGRA RA 516 RR’ and ‘P 98Y11 RR’. Free-choice and no-choice feeding non-preference tests were done using two newly-hatched larvae per genotype or one third-instar larva per genotype in both tests. Larvae attractiveness was evaluated in different times, and at the end of the experiments the leaf area consumed was quantified. In the antibiosis test, newly-hatched larvae were individualized into Petri dishes, where leaflets of the genotypes were offered over the larval stage, and the following biological parameters were assessed: period and viability of larvae, pupae and overall (larvae + pupae, weight of larvae and pupae, sex ratio and adults longevity. Overall, in the feeding preference tests, significant differences were not found in leaf consumption among the genotypes. In the antibiosis assay, genotypes PI 227687, PI 227682 and ‘IAC 100’ caused 100% larval mortality and the lowest weight of larvae, ranging between 37.65 and 85.56 mg. All soybean genotypes evaluated do not exhibit feeding non-preference type resistance to S. cosmioides, and PI 227687, PI 227682 and ‘IAC 100’ highlighted for possessing antibiosis.

  15. Identification of distinct quantitative trait loci associated with defence against the closely related aphids Acyrthosiphon pisum and A. kondoi in Medicago truncatula

    KAUST Repository

    Guo, Su-Min; Kamphuis, Lars G.; Gao, Ling-Ling; Klingler, John P.; Lichtenzveig, Judith; Edwards, Owain; Singh, Karam B.

    2012-01-01

    and the more resistant line Jester. The results show that PA resistance in A17 involves both antibiosis and tolerance, and that resistance is phloem based. Quantitative trait locus (QTL) analysis using a recombinant inbred line (RIL) population (n=114) from a

  16. 411 Pre and Post-Emergence Damping-Off of Chrysophyllum ...

    African Journals Online (AJOL)

    User

    The study assessed the fungi associated with seed and seedlings of. Chrysophyllum albidum ... Fusarium oxysponum, Aspergillus flavus and Trichoderma species were implicated as ..... establish themselves in the soil and quickly spread across the germination trays. ... Plant Colonization and Antibiosis against Soil Borne.

  17. Trichoderma as an endophyte

    Science.gov (United States)

    Trichoderma species have been studied for many years for their usefulness in plant disease management. For much of this time, studies focused on the attributes of Trichoderma as a soil saprophyte possessing abilities such as mycoparasitism and antibiosis that directly impact pathogens. The ability...

  18. Characterization of bacterial isolates from rotting potato tuber tissue showing antagonism to Dickeya sp. biovar 3 in vitro and in planta

    NARCIS (Netherlands)

    Czajkowski, R.L.; De Boer, W.J.; Van Veen, J.A.; Van der Wolf, J.M.

    2012-01-01

    Possibilities for biocontrol of biovar 3 Dickeya sp. in potato were investigated, using bacteria from rotting potato tissue isolated by dilution plating on nonselective agar media. In a plate assay, 649 isolates were screened for antibiosis against Dickeya sp. IPO2222 and for the production of

  19. Evaluation of some bioagents and botanicals in in vitro control of ...

    African Journals Online (AJOL)

    SERVER

    2008-04-03

    Apr 3, 2008 ... Bacillus subtilis, Trichoderma harzianum and Trichoderma pseudokoningii were inoculated as dixenic culture with the ... The fungi toxicity of four plant extracts was compared with the ... extract in the Petri plates and swirled round five times for even dispersion .... microbes by antibiosis (Prescott et al., 2002).

  20. Antibiosis in Ascia monuste orseis Godart (Lepidoptera: Pieridae ...

    African Journals Online (AJOL)

    Flávio Gonçalves

    (Sinapis arvensis), wild radish (Raphanus raphanistrum), cabbage (Brassica oleracea var. capitata), cauliflower. (Brassica oleracea var. botrytis) and Chinese ..... seeds: Phytochemical characterization and antioxidant potential. Food Chem. 101: 549-558. Filgueira FAR (2008). Novo manual de olericultura: Agrotecnologia.

  1. Induction of soybean resistance to the Mexican bean beetle (Coleoptera: Coccinellidae)

    Science.gov (United States)

    A.L. Iverson; R.B. Hammond; L.R. Iverson

    2001-01-01

    We tested chemical and insect feeding-induced insect resistance on soybean plants.The chemical induction effects of jasmonic acid (JA) and salicylic acid (SA) were investigated. We also evaluated the effects of plants stressed with previous insect herbivory. A larval antibiosis screening technique (LAST) and a preference test were performed in petri dishes using...

  2. Bacterial spot and early blight biocontrol by epiphytic bacteria in tomato plants

    Directory of Open Access Journals (Sweden)

    Roberto Lanna Filho

    2010-12-01

    Full Text Available The objective of this work was to evaluate in vitro and in vivo biocontrol of bacterial spot (Xanthomonas vesicatoria and early blight (Alternaria solani by the epiphytic bacteria Paenibacillus macerans and Bacillus pumilus. Tomato plants were previously sprayed with epiphytic bacteria, benzalkonium chloride and PBS buffer and, after four days, they were inoculated with A. solani and X. vesicatoria. To determine the phytopathogenic bacteria population, leaflet samples were collected from each treatment every 24 hours, for seven days, and plated on semi-selective medium. The effect of epiphytic bacteria over phytopathogens was performed by the antibiosis test and antagonistic activity measured by inhibition zone diameter. The epiphytic and benzalkonium chloride drastically reduced the severity of early blight and bacterial spot in comparison to the control (PBS. In detached leaflets, the epiphytic bacteria reduced in 70% the number of phytopathogenic bacteria cells in the phylloplane. The antibiosis test showed that the epiphytic bacteria efficiently inhibit the phytopathogens growth. In all the bioassays, the epiphytic bacteria protect tomato plants against the phytopathogens

  3. Popcorn genotypes resistance to fall armyworm

    Directory of Open Access Journals (Sweden)

    Nádia Cristina de Oliveira

    2018-02-01

    Full Text Available ABSTRACT: The aim of this study was to evaluate popcorn genotypes for resistance to the fall armyworm, Spodoptera frugiperda. The experiment used a completely randomized design with 30 replicates. The popcorn genotypes Aelton, Arzm 05 083, Beija-Flor, Colombiana, Composto Chico, Composto Gaúcha, Márcia, Mateus, Ufvm Barão Viçosa, Vanin, and Viviane were evaluated,along with the common maize variety Zapalote Chico. Newly hatched fall armyworm larvae were individually assessed with regard to biological development and consumption of food. The data were subjected to multivariate analyses of variance and genetic divergence among genotypes was evaluated through the clustering methods of Tocher based on generalized Mahalanobis distances and canonical variable analyses. Seven popcorn genotypes, namely, Aelton, Arzm 05 083, Composto Chico, Composto Gaúcha, Márcia, Mateus, and Viviane,were shown to form a cluster (cluster I that had antibiosis as the mechanism of resistance to the pest. Cluster I genotypes and the Zapalote Chico genotype could be used for stacking genes for antibiosis and non-preference resistance.

  4. Toblerols: Cyclopropanol-Containing Polyketide Modulators of Antibiosis in Methylobacteria.

    Science.gov (United States)

    Ueoka, Reiko; Bortfeld-Miller, Miriam; Morinaka, Brandon I; Vorholt, Julia A; Piel, Jörn

    2018-01-22

    Trans-AT polyketide synthases (PKSs) are a family of biosynthetically versatile modular type I PKSs that generate bioactive polyketides of impressive structural diversity. In this study, we detected, in the genome of several bacteria a cryptic, architecturally unusual trans-AT PKS gene cluster which eluded automated PKS prediction. Genomic mining of one of these strains, the model methylotroph Methylobacterium extorquens AM1, revealed unique epoxide- and cyclopropanol-containing polyketides named toblerols. Relative and absolute stereochemistry were determined by NMR experiments, chemical derivatization, and the comparison of CD data between the derivatized natural product and a synthesized model compound. Biosynthetic data suggest that the cyclopropanol moiety is generated by carbon-carbon shortening of a more extended precursor. Surprisingly, a knock-out strain impaired in polyketide production showed strong inhibitory activity against other methylobacteria in contrast to the wild-type producer. The activity was inhibited by complementation with toblerols, thus suggesting that these compounds modulate an as-yet unknown methylobacterial antibiotic. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Microbial community composition affects soil fungistasis.

    Science.gov (United States)

    de Boer, Wietse; Verheggen, Patrick; Klein Gunnewiek, Paulien J A; Kowalchuk, George A; van Veen, Johannes A

    2003-02-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis.

  6. Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action

    Directory of Open Access Journals (Sweden)

    Aviva eGafni

    2015-03-01

    Full Text Available Epiphytic yeasts, which colonize plant surfaces, may possess activity that can be harnessed to help plants defend themselves against various pathogens. Due to their unique characteristics, epiphytic yeasts belonging to the genus Pseudozyma hold great potential for use as biocontrol agents. We identified a unique, biologically active isolate of the epiphytic yeast Pseudozyma aphidis that is capable of inhibiting Botrytis cinerea via a dual mode of action, namely induced resistance and antibiosis. Here, we show that strain L12 of P. aphidis can reduce the severity of powdery mildew caused by Podosphaera xanthii on cucumber plants with an efficacy of 75%. Confocal and scanning electron microscopy analyses demonstrated P. aphidis proliferation on infected tissue and its production of long hyphae that parasitize the powdery mildew hyphae and spores as an ectoparasite. We also show that crude extract of P. aphidis metabolites can inhibit P. xanthii spore germination in planta. Our results suggest that in addition to its antibiosis mode of action, P. aphidis may also act as an ectoparasite on P. xanthii. These results indicate that P. aphidis strain L12 has the potential to control powdery mildew.

  7. Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action.

    Science.gov (United States)

    Gafni, Aviva; Calderon, Claudia E; Harris, Raviv; Buxdorf, Kobi; Dafa-Berger, Avis; Zeilinger-Reichert, Einat; Levy, Maggie

    2015-01-01

    Epiphytic yeasts, which colonize plant surfaces, may possess activity that can be harnessed to help plants defend themselves against various pathogens. Due to their unique characteristics, epiphytic yeasts belonging to the genus Pseudozyma hold great potential for use as biocontrol agents. We identified a unique, biologically active isolate of the epiphytic yeast Pseudozyma aphidis that is capable of inhibiting Botrytis cinerea via a dual mode of action, namely induced resistance and antibiosis. Here, we show that strain L12 of P. aphidis can reduce the severity of powdery mildew caused by Podosphaera xanthii on cucumber plants with an efficacy of 75%. Confocal and scanning electron microscopy analyses demonstrated P. aphidis proliferation on infected tissue and its production of long hyphae that parasitize the powdery mildew hyphae and spores as an ectoparasite. We also show that crude extract of P. aphidis metabolites can inhibit P. xanthii spore germination in planta. Our results suggest that in addition to its antibiosis as mode of action, P. aphidis may also act as an ectoparasite on P. xanthii. These results indicate that P. aphidis strain L12 has the potential to control powdery mildew.

  8. The Antagonism Mechanism Of Trichoderma spp. Towards Fusarium solani Mold

    OpenAIRE

    Utami Sri Hastuti; Indriana Rahmawati

    2016-01-01

    The antagonism ability of seven Trichoderma isolates towards F.solani have been observed and tested by dual culture technique. The antagonism mechanism observed by microscopic observation with light microscope and Scanning Electron Microscopy (SEM). The research result showed seven species of Trichoderma molds have different antagonism ability towards F.solani each other. The antagonism mechanism observed by light microscope and Scanning Electron Microscopy were mycoparasitism, antibiosis, an...

  9. In vitro antagonistic activity of fungi isolated from sclerotia on potato tubers against Rhizoctonia solani

    OpenAIRE

    DEMİRCİ, Erkol; DANE, Elif; EKEN, Cafer

    2011-01-01

    Forty-five fungal isolates were obtained from sclerotia of Rhizoctonia solani on potato tubers in Erzurum, Turkey. The interaction between fungal isolates and R. solani was studied in dual culture technique. Some fungal isolates affected R. solani by antibiosis and/or parasitism. Results of the antagonism tests showed that Acremonium sp., Gliocladium viride, Paecilomyces marquandii, Paecilomyces sulphurellus, Penicillium camemberti, Penicillium expansum, Penicillium frequentans (ME-50), Penic...

  10. Search for endophytic diazotrophs in barley seeds

    Directory of Open Access Journals (Sweden)

    Myriam S. Zawoznik

    2014-06-01

    Full Text Available Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no antibiosis effects against Azospirillum brasilense Az39, a recognized PGPR.

  11. The Antagonism Mechanism Of Trichoderma spp. Towards Fusarium solani Mold

    Directory of Open Access Journals (Sweden)

    Utami Sri Hastuti

    2016-09-01

    Full Text Available The antagonism ability of seven Trichoderma isolates towards F.solani have been observed and tested by dual culture technique. The antagonism mechanism observed by microscopic observation with light microscope and Scanning Electron Microscopy (SEM. The research result showed seven species of Trichoderma molds have different antagonism ability towards F.solani each other. The antagonism mechanism observed by light microscope and Scanning Electron Microscopy were mycoparasitism, antibiosis, and competition.

  12. Alternatives to Antibiotics in Animal Agriculture: An Ecoimmunological View

    OpenAIRE

    Sang, Yongming; Blecha, Frank

    2014-01-01

    Ecological immunology (or ecoimmunology) is a new discipline in animal health and immunology that extends immunologists’ views into a natural context where animals and humans have co-evolved. Antibiotic resistance and tolerance (ART) in bacteria are manifested in antibiosis-surviving subsets of resisters and persisters. ART has emerged though natural evolutionary consequences enriched by human nosocomial and agricultural practices, in particular, wide use of antibiotics that overwhelms other ...

  13. Reevaluating the conceptual framework for applied research on host-plant resistance.

    Science.gov (United States)

    Stout, Michael J

    2013-06-01

    Applied research on host-plant resistance to arthropod pests has been guided over the past 60 years by a framework originally developed by Reginald Painter in his 1951 book, Insect Resistance in Crop Plants. Painter divided the "phenomena" of resistance into three "mechanisms," nonpreference (later renamed antixenosis), antibiosis, and tolerance. The weaknesses of this framework are discussed. In particular, this trichotomous framework does not encompass all known mechanisms of resistance, and the antixenosis and antibiosis categories are ambiguous and inseparable in practice. These features have perhaps led to a simplistic approach to understanding arthropod resistance in crop plants. A dichotomous scheme is proposed as a replacement, with a major division between resistance (plant traits that limit injury to the plant) and tolerance (plant traits that reduce amount of yield loss per unit injury), and the resistance category subdivided into constitutive/inducible and direct/indirect subcategories. The most important benefits of adopting this dichotomous scheme are to more closely align the basic and applied literatures on plant resistance and to encourage a more mechanistic approach to studying plant resistance in crop plants. A more mechanistic approach will be needed to develop novel approaches for integrating plant resistance into pest management programs. © 2012 Institute of Zoology, Chinese Academy of Sciences.

  14. Resistance of maize to the maize weevil: I. Antibiosis | Derera ...

    African Journals Online (AJOL)

    La progéniture F1 a été comptée à un intervalle de deux jours jusqu'à ce que toute la progéniture ait émergé. Certains hybrides à effects néfastes sur la biologie des charançons (antibiose), comme des hybrides ont été differents significativement pour la mortalité des adultes (0 à 89%), l'émergence de la progéniture (1 à ...

  15. Socially mediated induction and suppression of antibiosis during bacterial coexistence

    NARCIS (Netherlands)

    Abrudan, Monica I.; Smakman, Fokko; Grimbergen, Ard Jan; Westhoff, Sanne; Miller, Eric L.; van Wezel, Gilles P.; Rozen, Daniel E.

    2015-01-01

    Despite their importance for humans, there is little consensus on the function of antibiotics in nature for the bacteria that produce them. Classical explanations suggest that bacteria use antibiotics as weapons to kill or inhibit competitors, whereas a recent alternative hypothesis states that

  16. Some structures of marine natural products

    Energy Technology Data Exchange (ETDEWEB)

    Finer-Moore, J.S.

    1979-07-01

    Applications of x-ray crystallographic methods to marine chemistry are discussed. Results of research on a biosynthetic problem: diterpenes from Dictyotaceae are discussed under the following section headings: history of the problem; dictyoxepin; dictyodial; and dictyolactone. Studies on marine ecology are reported under the following headings: symbiosis and antibiosis; metabolites from opisthobranch molluscs, including, dolabelladiene, 9-isocyanopupukeanane and 2-isocyanopupukeanane, and crispatone; metabolites of goronians and soft corals, including zooxanthellae and the metabolism of coelenterates, ophirin, sinularene, and erectene. (JGB)

  17. Antibiosis among selected paspalum taxa to the fall armyworm (Lepidoptera: Noctuidae)

    Science.gov (United States)

    Twenty six accessions of the warm-season perennial grass, Paspalum spp., were evaluated for response to the fall armyworm Spodoptera frugiperda (J. E. Smith), an important pest of turfgrass. In growth chamber, excised clipping studies, P. vaginatum 03-539-31 and P. vaginatum 03-525-22 were the most ...

  18. β-1,3-glucanases expression of Beauveria bassiana in culture with extract of the phytopathogenic Peronospora variabilis and Fusarium oxysporum

    OpenAIRE

    Montoya, W. Jhoel; Nolasco, Oscar P.; Acuña, Rosalyn K.; Gutiérrez, Ana I. F.

    2016-01-01

    The fungus Beauveria bassiana Vuill. is well known for its ability entomopathogenic but there is also references to be an antagonist fungus, one of the possible ways of their antagonism it is antibiosis as is known the presence of hydrolytic enzymes in their genome. The main enzymes expressed against phytopathogenic are β-1,3-glucanases, since the cell wall of the phytopathogenic like fungi and oomycetes consists mostly polymers of β-1,3 glucans. The expression of exo-1,3-beta glucanase [XM_0...

  19. CAPTURA, ACTIVIDAD BIOLÓGICA E IDENTIFICACION DE VOLÁTILES DE LA INTERACCIÓN Trichoderma asperellum - Sclerotium rolfsii.

    OpenAIRE

    Ruiz Rosales, Arely

    2015-01-01

    Trichoderma asperellum presenta mecanismos de acción de micoparasitismo y antibiosis con compuestos no volátiles, para competir por espacio y nutrientes, pero se desconoce si produce compuestos volátiles (CV) que presenten actividad antifúngica sobre Sclerotium rolfsii. Los objetivos de este trabajo fueron: a) capturar los CV producidos durante la interacción de T. asperellum-S. rolfsii, b) determinar el efecto de CV generados en la interacción T. asperellum-S. rolfsii, sobre la producción de...

  20. Trichoderma species from the cacao agroecosystem with biocontrol potential of Moniliophthora roreri

    Directory of Open Access Journals (Sweden)

    Omar Reyes-Figueroa

    2016-01-01

    Full Text Available La moniliasis del cacao ( Moniliophthora roreri es la principal limitante parasítica de la producción de cacao ( Theobroma cacao en México. Una alternativa sostenible para el control de la enfermedad es el uso del hongo Trichoderma . El objetivo del presente estudio fue seleccionar aislamientos nativos de Trichoderma con las mejores características antagónicas y fisiológicas in vitro, para el control de M. roreri . Para ello, se caracterizaron 50 aislamientos de Trichoderma , obtenidos del agroecosistema cacao. El crecimiento micelial y la producción de conidios a 25, 30 y 35 °C se consideraron variables fisiológicas. El micoparasitismo, antibiosis y antagonismo potencial fueron las variables antagónicas. Se encontraron diferencias significativas ( P = 0.0001 en todas las variables evaluadas . El intervalo de temperatura óptima para el crecimiento micelial y producción de conidios fue de 25 a 30 °C. El micoparasitismo varió de 0 a 100 % y solo los aislamientos de seis especies mostraron esta característica. La antibiosis osciló entre 6.8 y 55.5 %, y el antagonismo potencial varió de 3.4 a 69 %. Trichoderma virens (TTC017 y T. harzianum (TTC090, TTC039, TTC073 mostraron el mejor biocontrol potencial in vitro , por lo que son cepas prometedoras para futuras investigaciones sobre control biológico de la moniliasis del cacao.

  1. Biological effects of rice harbouring Bph14 and Bph15 on brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Li, Jie; Chen, Qiuhong; Wang, Liangquan; Liu, Jia; Shang, Keke; Hua, Hongxia

    2011-05-01

    Brown planthopper (Nilaparvata lugens Stål; BPH) resistance genes Bph14 and Bph15 have been introgressed singly or pyramided into rice variety Minghui 63 (MH63). The antibiosis and antixenosis effects of these rice lines on BPH and the expression of five P450 genes of BPH regulated by these rice lines were investigated in this study. The resistance level of rice lines harbouring resistance genes was improved compared with MH63. MH63::14 (carrying Bph14) had negative effects on the development of males, honeydew excretion of females, the female ratio and the copulation rate compared with MH63. MH63::14 also exhibited antixenosis action against BPH nymphs, female adults and oviposition. Besides these negative effects, MH63::15 (carrying Bph15) could also retard the development of females, lower the fecundity and shorten the lifespan of females. The antixenosis action of MH63::15 was stronger than that of MH63::14. When Bph14 and Bph15 were pyramided, antibiosis and antixenosis effects were significantly enhanced relative to single-introgression lines. Among the five P450 genes of BPH, expression of three genes was upregulated, one gene was downregulated and one gene was unchanged by resistant hosts. Both Bph14 and Bph15 could improve resistance levels of MH63. MH63::15 and MH63::14&15 had greater potential to control BPH infestations than MH63::14. Copyright © 2011 Society of Chemical Industry.

  2. Evaluación de extractos vegetales para el control de la broca del café (Hypothenemus hampei, ferrari)

    OpenAIRE

    Niño Osorio, Jaime; Correa N., Yaned Milena; Mosquera M., Oscar M.; Bustamante Peláez, Angélica María

    2007-01-01

    Este trabajo describe la evaluación por antibiosis de la actividad antibroca de 21 extractos metanólicos de las plantas recolectadas en la Reserva Natural Bremen-La Popa (Quindío). Los bioensayos se realizaron bajo condiciones controladas (23 ± 3 ºC; 75 ± 5 % H.R.), utilizando como unidad experimental (UE) un tubo eppendorf al interior del cual se transfirió un grano de café pergamino impregnado del respectivo extracto a 1000 mg/L y una hembra adulta de broca. Se hicieron 90 UE por cada extra...

  3. Role of Antibiosis in Competition of Erwinia Strains in Potato Infection Courts

    Science.gov (United States)

    Axelrood, Paige E.; Rella, Manuela; Schroth, Milton N.

    1988-01-01

    Erwinia carotovora subsp. betavasculorum strains produced a bactericidal antibiotic in vitro that inhibited a wide spectrum of gram-negative and gram-positive bacteria. The optimum temperature for production was 24°C, and the addition of glycerol to culture media enhanced antibiotic production. Antibiotic production by these strains in the infection court of potato was the principal determinant enabling it to gain ascendancy over competing antibiotic-sensitive Erwinia carotovora subsp. carotovora strains. There was a complete correlation between antibiotic production by E. carotovora subsp. betavasculorum in vitro and inhibition of competing E. carotovora subsp. carotovora strains in planta. Inhibition of the latter by the former was apparent after 10 h of incubation in potato tuber wounds. Population densities of sensitive E. carotovora subsp. carotovora strains in mixed potato tuber infections with E. carotovora subsp. betavasculorum were approximately 106-fold lower after 48 h of incubation than in corresponding single sensitive strain infections. E. carotovora subsp. carotovora were not inhibited in tuber infections that were incubated anaerobically. This correlated with the absence of antibiotic production during anaerobic incubation in vitro. Antibiotic-resistant strains of E. carotovora subsp. carotovora were not inhibited in planta or in vitro by E. carotovora subsp. betavasculorum. Moreover, isogenic antibiotic-negative (Ant−) mutant E. carotovora subsp. betavasculorum strains were not inhibitory to sensitive E. carotovora subsp. carotovora strains in tuber infections. PMID:16347633

  4. Induction of resistance by silicon in wheat plants to alate and apterous morphs of Sitobion avenae (Hemiptera: Aphididae).

    Science.gov (United States)

    Dias, P A S; Sampaio, M V; Rodrigues, M P; Korndörfer, A P; Oliveira, R S; Ferreira, S E; Korndörfer, G H

    2014-08-01

    Despite the knowledge about the effects of silicon augmenting antibiosis and nonpreference of plants by apterous aphids, few studies exist on such effects with alate aphids. This study evaluated the effects of silicon fertilization on the biology of alate and apterous morphs of Sitobion avenae (F.) (Hemiptera: Aphididae), and the effect on nonpreference by S. avenae alates for wheat plants with or without silicon fertilization. A method for rearing aphids on detached leaves was evaluated comparing the biology of apterous aphids reared on wheat leaf sections and on whole plants with and without silicon fertilization. Because the use of detached leaves was a reliable method, the effect of silicon fertilization on the biology of apterous and alate S. avenae was assessed using wheat leaf sections. Biological data of aphids were used to calculate a fertility life table. Finally, the effect of silicon fertilization on the nonpreference of alate aphids was carried out for both vegetative and reproductive phases of wheat. Thirty alate aphids were released in the center of a cage, and the number of aphids per whole plant with or without silicon fertilization was observed. Silicon fertilization induced antibiosis resistance in wheat plants to apterous morphs as shown by reduced fecundity, reproductive period, longevity, intrinsic rate of increase, and net reproductive rate; however, alates were unaffected. Plants that received silicon fertilization had fewer alate aphids in both the vegetative and reproductive phases. Thus, silicon fertilization can reduce colonization by alates, enhancing nonpreference resistance, and population growth of apterous S. avenae in wheat plants.

  5. Genetic divergence of bean genotypes to infestation of Zabrotes subfasciatus (Bohemann (Coleoptera: Bruchidae

    Directory of Open Access Journals (Sweden)

    Eduardo Neves Costa

    2013-12-01

    Full Text Available The aim of this work was to evaluate the genetics divergence of bean genotypes in relation to the oviposition, feeding and development of Zabrotes subfasciatus, determining the degrees of resistance to the weevil. The genotypes used were: IAC Carioca-Tybatã, IAC Fortaleza, IAPAR 81, IAC Carioca-Eté, IAC Galante, IAC Harmonia, IAC Una, IAC Diplomata, BRS Supremo and RAZ 49. Tests were performed in laboratory under controlled humidity, temperature and photophase conditions. In free choice test, 10 g of bean genotypes seeds were distributed in circular openings placed equidistant from each other in aluminum trays, where 70 couples were released. The attractiveness was evaluated 24 hours and seven days after the experiment started, and then the number of eggs was evaluated. In non choice test, 10 g of seeds were used where seven couples of Z. subfasciatus, 24 hours-old, were released, remaining seven days, and after the adults retreat, the total number eggs, viable and unviable eggs, the number and percentage of emerged adults, weight, longevity and period from egg to adult of males and females, sex ratio, dry mass and dry mass consumed by insect were evaluated. In the genotype IAC Harmonia was observed the lower oviposition; RAZ 49 was the most non preference-type resistant for feeding and/or antibiosis-type resistant; BRS Supremo, IAC Carioca-Eté and IAPAR 81 are no preference for feeding and/or antibiosis-type moderate resistant; IAC Galante is susceptible and the other genotypes are highly susceptible to Z. subfasciatus

  6. Identification of distinct quantitative trait loci associated with defence against the closely related aphids Acyrthosiphon pisum and A. kondoi in Medicago truncatula

    KAUST Repository

    Guo, Su-Min

    2012-03-21

    Aphids are a major family of plant insect pests. Medicago truncatula and Acyrthosiphon pisum (pea aphid, PA) are model species with a suite of resources available to help dissect the mechanism underlying plant-aphid interactions. A previous study focused on monogenic and relatively strong resistance in M. truncatula to PA and other aphid species. In this study a moderate resistance to PA was characterized in detail in the M. truncatula line A17 and compared with the highly susceptible line A20 and the more resistant line Jester. The results show that PA resistance in A17 involves both antibiosis and tolerance, and that resistance is phloem based. Quantitative trait locus (QTL) analysis using a recombinant inbred line (RIL) population (n=114) from a cross between A17 and A20 revealed that one locus, which co-segregated with AIN (Acyrthosiphon-induced necrosis) on chromosome 3, is responsible for the reduction of aphid biomass (indicator of antibiosis) for both PA and bluegreen aphid (BGA, A. kondoi), albeit to a lesser degree for PA than BGA. Interestingly, two independent loci on chromosomes 5 and 3 were identified for the plant biomass reduction (indicator of plant tolerance) by PA and BGA, respectively, demonstrating that the plant\\'s tolerance response to these two closely related aphid species is distinct. Together with previously identified major resistant (R) genes, the QTLs identified in this study are powerful tools to understand fully the spectrum of plant defence against sap-sucking insects and provide opportunities for breeders to generate effective and sustainable strategies for aphid control. 2012 The Author.

  7. Expresión de β-1,3-Glucanasas de Beauveria bassiana en cultivo con extracto de los fitopatógenos Peronospora variabilis y Fusarium oxysporum

    OpenAIRE

    Montoya Espinoza, W. Jhoel; Nolasco Cárdenas, Oscar P; Acuña Payano, Rosalyn K; Gutiérrez, Ana I. F

    2016-01-01

    El hongo Beauveria bassiana Vuill. es muy conocido por su capacidad entomopatógena, pero también existe referencias de ser un hongo antagonista, una de las posibles formas de su antagonismo es la antibiosis debido a la presencia de enzimas hidrolíticas en su genoma. Las principales enzimas expresadas contra fitopatógenos son las β-1,3-glucanasas, ya que la pared celular de los fitopatógenos como hongos y oomycetes está constituida en su mayoría por polímeros de β-1,3-glucanos. Se evaluó por q...

  8. Antagonismo in vitro de cepas de Trichoderma spp. frente a Sarocladium oryzae (Sawada) W. Gams & D. Hawksworth

    OpenAIRE

    Martínez, Benedicto; Obret, Yalainne; Pérez, Simón; Reyes, Yusimy

    2014-01-01

    Se evaluaron 27 aislamientos de Trichoderma spp. frente a dos de Sarocladium oryzae (Sawada) W. Gams & D. Hawksworth (S. o-2 y S. o-4) utilizando la técnica de cultivo dual, comparando el crecimiento de las colonias de Sarocladium para determinar los modos de acción, en diferentes fases de la interacción. El análisis estadístico de los datos se realizó mediante la prueba T- Student. El 81,48% de los aislamientos de Trichoderma presentó competencia por el sustrato, el 25,93% antibiosis y el 11...

  9. Mapping and pyramiding of two major genes for resistance to the brown planthopper (Nilaparvata lugens [Stål]) in the rice cultivar ADR52.

    Science.gov (United States)

    Myint, Khin Khin Marlar; Fujita, Daisuke; Matsumura, Masaya; Sonoda, Tomohiro; Yoshimura, Atsushi; Yasui, Hideshi

    2012-02-01

    The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most serious and destructive pests of rice, and can be found throughout the rice-growing areas of Asia. To date, more than 24 major BPH-resistance genes have been reported in several Oryza sativa ssp. indica cultivars and wild relatives. Here, we report the genetic basis of the high level of BPH resistance derived from an Indian rice cultivar, ADR52, which was previously identified as resistant to the whitebacked planthopper (Sogatella furcifera [Horváth]). An F(2) population derived from a cross between ADR52 and a susceptible cultivar, Taichung 65 (T65), was used for quantitative trait locus (QTL) analysis. Antibiosis testing showed that multiple loci controlled the high level of BPH resistance in this F(2) population. Further linkage analysis using backcross populations resulted in the identification of BPH-resistance (antibiosis) gene loci from ADR52. BPH25 co-segregated with marker S00310 on the distal end of the short arm of chromosome 6, and BPH26 co-segregated with marker RM5479 on the long arm of chromosome 12. To characterize the virulence of the most recently migrated BPH strain in Japan, preliminary near-isogenic lines (pre-NILs) and a preliminary pyramided line (pre-PYL) carrying BPH25 and BPH26 were evaluated. Although both pre-NILs were susceptible to the virulent BPH strain, the pre-PYL exhibited a high level of resistance. The pyramiding of resistance genes is therefore likely to be effective for increasing the durability of resistance against the new virulent BPH strain in Japan.

  10. Aislamiento de microorganismos para control biológico de Moniliophthora roreri

    Directory of Open Access Journals (Sweden)

    Liliana Yanet Suárez Contreras

    2013-12-01

    Full Text Available Moniliophthora roreri es un hongo que causa la moniliasis, una enfermedad de la mazorca en el cultivo de cacao (Theobroma cacao, con pérdidas hasta del 60% de la cosecha. El control biológico utilizando microorganismos endófitos surge como una alternativa para el manejo de esta enfermedad. En la presente investigación se evaluaron microorganismos con potencial para control biológico de M. roreri en Norte de Santander, Colombia. Para el efecto, se aisló e identificó este fitopatógeno y se utilizaron protocolos de desinfección de los posibles microorganismos antagonistas con siembras por diluciones seriadas, selección de los géneros microbianos con mayor potencial antagónico y evaluación de las cepas por la prueba de plato dual para evaluar el efecto biocontrolador de los hongos y la antibiosis para bacterias. Se tomaron muestras en los municipios de Cúcuta, Sardinata, El Tarra, Tibú y El Zulia, de las cuales se aislaron 17 cepas del fitopatógeno y 20 entre hongos y bacterias. De éstas se seleccionaron cuatro cepas de hongos y tres de bacterias por su capacidad antagónica contra M. roreri. Los mejores porcentajes de inhibición de crecimiento radial (PICR se alcanzaron con Paecilomyces sp. (HC002 vs M. roreri, con una media de 80.72%, seguido del tratamiento con Paecilomyces sp. (HZ002 vs M. roreri con 79.45%. Se demostró que el hongo Paecilomyces sp. también tiene un alto potencial antagónico in vitro frente a M. roreri. Al evaluar la antibiosis de las bacterias aisladas, se encontró que Bacillus brevis (BZ005 fue la más efectiva en todos los sitios del estudio, con porcentajes superiores a 89%.

  11. Development of 25 near-isogenic lines (NILs) with ten BPH resistance genes in rice (Oryza sativa L.): production, resistance spectrum, and molecular analysis.

    Science.gov (United States)

    Jena, Kshirod K; Hechanova, Sherry Lou; Verdeprado, Holden; Prahalada, G D; Kim, Sung-Ryul

    2017-11-01

    A first set of 25 NILs carrying ten BPH resistance genes and their pyramids was developed in the background of indica variety IR24 for insect resistance breeding in rice. Brown planthopper (Nilaparvata lugens Stal.) is one of the most destructive insect pests in rice. Development of near-isogenic lines (NILs) is an important strategy for genetic analysis of brown planthopper (BPH) resistance (R) genes and their deployment against diverse BPH populations. A set of 25 NILs with 9 single R genes and 16 multiple R gene combinations consisting of 11 two-gene pyramids and 5 three-gene pyramids in the genetic background of the susceptible indica rice cultivar IR24 was developed through marker-assisted selection. The linked DNA markers for each of the R genes were used for foreground selection and confirming the introgressed regions of the BPH R genes. Modified seed box screening and feeding rate of BPH were used to evaluate the spectrum of resistance. BPH reaction of each of the NILs carrying different single genes was variable at the antibiosis level with the four BPH populations of the Philippines. The NILs with two- to three-pyramided genes showed a stronger level of antibiosis (49.3-99.0%) against BPH populations compared with NILs with a single R gene NILs (42.0-83.5%) and IR24 (10.0%). Background genotyping by high-density SNPs markers revealed that most of the chromosome regions of the NILs (BC 3 F 5 ) had IR24 genome recovery of 82.0-94.2%. Six major agronomic data of the NILs showed a phenotypically comparable agronomic performance with IR24. These newly developed NILs will be useful as new genetic resources for BPH resistance breeding and are valuable sources of genes in monitoring against the emerging BPH biotypes in different rice-growing countries.

  12. Screening of antagonistic activity of microorganisms against Colletotrichum acutatum and Colletotrichum gloeosporioides

    Directory of Open Access Journals (Sweden)

    Živković Svetlana

    2010-01-01

    Full Text Available The antagonistic activities of five biocontrol agents: Trichoderma harzianum, Gliocladium roseum, Bacillus subtilis, Streptomyces noursei and Streptomyces natalensis, were tested in vitro against Colletotrichum acutatum and Colletotrichum gloeosporioides, the causal agents of anthracnose disease in fruit crops. The microbial antagonists inhibited mycelial growth in the dual culture assay and conidial germination of Colletotrichum isolates. The two Streptomyces species exhibited the strongest antagonism against isolates of C. acutatum and C. gloeosporioides. Microscopic examination showed that the most common mode of action was antibiosis. The results of this study identify T. harzianum, G. roseum, B. subtilis, S. natalensis and S. noursei as promising biological control agents for further testing against anthracnose disease in fruits. .

  13. Resistance of Four Canola Genotypes Against Cabbage Aphid Brevicoryne brassicae (L.

    Directory of Open Access Journals (Sweden)

    S.H. MousaviAnzabi

    2017-12-01

    Full Text Available Introduction: Canola (Brassica napus L. is one of the prominent oil seed plants in Iran. This plant has good agricultural and food nourishment properties, such as resistant to drought, cold and salinity stresses and low level of cholesterol. Cabbage waxy aphid Brevicorynebrassicae (L. is the most important and cosmopolitan pest of cruciferous crops. This aphid is reduced 9 to 77% grain yields and up to 11% oil content. Developing environmental-friendly methods, such as deploying insect-resistant varieties to pest control was advised by scientists. Resistant varieties decrease production costs and can be integrated with other pest control policies in IPM programs. In a greenhouse experiment plants of cabbage, cauliflower wassusceptible host plant and broccoli, turnip, rapeseed, showed resistance to cabbage aphid. With the aim of identifying the existence of resistance resources, a laboratory study was conducted to evaluate the effects of seven canola genotypes on biological parameters of cabbage aphid. Detected resistant variety could be used as a resistance source. Material and Methods: In order to resistancy evaluation of canola, genotypes contain “RGS”,“Hyola-308”,“Hyola-401” and “Sarigol” to cabbage aphid, two experiments was conducted under field and greenhouse conditions in Kahriz region of West Azerbaijan province in 2010.In this study infestation index and tolerance in Field conditions and antibiosis study in greenhouse conditions was evaluated.To study antibiosis, genotypes were planted in pots with 10 replications based on completely random design and cabbage aphid population intrinsic rate of increase (rm was calculated. As followed: (Lotka 1924: 1= other population parameters computed by Carey (1993 method. Field experiment contains10 replications wereperformed based on complete randomized blocks experimental designs that five of them were under natural infestation and five others, free of infestation (control. To

  14. Characterization of cowpea genotype resistance to Callosobruchus maculatus

    Directory of Open Access Journals (Sweden)

    Maria de Jesus Passos de Castro

    2013-09-01

    Full Text Available The objective of this work was to characterize the resistance of 50 cowpea (Vigna unguiculata genotypes to Callosobruchus maculatus. A completely randomized design with five replicates per treatment (genotype was used. No-choice tests were performed using the 50 cowpea genotypes to evaluate the preference for oviposition and the development of the weevil. The genotypes IT85 F-2687, MN05-841 B-49, MNC99-508-1, MNC99-510-8, TVu 1593, Canapuzinho-1-2, and Sanzi Sambili show non-preference-type resistance (oviposition and feeding. IT81 D-1045 Ereto and IT81 D-1045 Enramador exhibit antibiosis against C. maculatus and descend from resistant genitors, which grants them potential to be used in future crossings to obtain cowpea varieties with higher levels of resistance.

  15. Potencial de pseudomonas spp. fluorescentes para biocontrole de alternaria ricini em mamoneira Potential of fluorescent pseudomonas spp. For biological control of alternaria ricini on castorbean

    Directory of Open Access Journals (Sweden)

    Francisco de A.G. da Silva

    1998-06-01

    Full Text Available The potential of fluorescent Pseudomonas spp. to control Alternaria leaf spot on castorbean, caused by Alternaria ricini, was studied under greenhouse conditions. Two periods for antagonist applications were tested: 48h before and simultaneously to the pathogen inoculation. Among the antagonists tested JA4 and BJ22 were the most effectives showing disease severity reduction of 20.9% and 17.8% respectively, when applied simultaneously. The effect of Pseudomonas spp. on the micelial growth and sporulation was also studied throughout three different methods (funel, streak and celophane. Inhibition of micelial growth and sporulation was observed. There was no correlation between in vitro and in vivo data. Antibiosis was showed as a mode of action for Pseudomonas spp. in relation to Alternaria ricini. Ultrastructural studies confirmed the inhibition of spore germination by the bacteria.

  16. Genetic and biochemical basis of Gall Midge resistance in some cultivars of Indica Rice. Final report for the period 1 October 1980 - 30 November 1986

    International Nuclear Information System (INIS)

    Reddy, G.M.

    1986-01-01

    The stability of high productivity of modern rice varieties is greatly affected by insect pests. Rice gall midge is a serious insect pest of rice that is prevalent in several south eastern asian countries. Gall midge resistance has been mainly attributed to antibiosis. No progress has so far been made in identifying the exact biochemical nature of resistance. In Indica subspecies the understanding of chemical nature of disease would be helpful in the control of the disease and also in breeding programme aimed at developing resistance varieties. Studies were undertaken to establish the biochemical basis of resistance. Biochemical characterization of resistant and susceptible varieties were carried out. The parameters considered were: total sugar and reducing sugar content, total phenol content, amino acid profile, post infectional changes in sugar and phenol, isozyme studies. 2 figs, 6 tabs

  17. Antagonistic action of Lactobacillus spp. against Staphylococcus aureus in cheese from Mompox - Colombia

    Directory of Open Access Journals (Sweden)

    Piedad M. Montero Castillo

    2015-06-01

    Full Text Available In the food industry, food preservation techniquesthat do not use chemical products are becoming more common.Therefore, the aim of this research was to evaluate the antagonisticactivity (antibiosis of lactic-acid bacterial strains againstpathogenic microorganisms. Lactic-acid bacterial strains wereisolated from layered cheese and a commercial product (yogurt;and the same was done with pathogenic bacteria solely fromlayered cheese. The lactic-acid bacterial strains were identified asspecies from the Lactobacilli family, while the pathogenic bacteriafrom layered cheese were identified as Micrococcaceae familyspecies (Staphylococcus aureus. Subsequently, in the sameculture medium, bacteria of each species were sowed in order todetermine the inhibitory activity ability of the Lactic Acid Bacteria(BAL As a result, the highly antagonistic activity of the Lactobacilli(inhibition halos were larger than 0.5 centimeters in diameteragainst isolated pathogenic microorganisms was demonstrated.

  18. Genetic and biochemical basis of Gall Midge resistance in some cultivars of Indica Rice. Final report for the period 1 October 1980 - 30 November 1986

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, G M [Osmania Univ., Hyderabad (India). Dept. of Genetics

    1987-12-31

    The stability of high productivity of modern rice varieties is greatly affected by insect pests. Rice gall midge is a serious insect pest of rice that is prevalent in several south eastern asian countries. Gall midge resistance has been mainly attributed to antibiosis. No progress has so far been made in identifying the exact biochemical nature of resistance. In Indica subspecies the understanding of chemical nature of disease would be helpful in the control of the disease and also in breeding programme aimed at developing resistance varieties. Studies were undertaken to establish the biochemical basis of resistance. Biochemical characterization of resistant and susceptible varieties were carried out. The parameters considered were: total sugar and reducing sugar content, total phenol content, amino acid profile, post infectional changes in sugar and phenol, isozyme studies. 2 figs, 6 tabs.

  19. Comparison of Resistance Index Some Potato Cultivars to the Colorado Potato Beetle, Leptinotarsa decemlineata (Say (Col.: Chrysomelidae

    Directory of Open Access Journals (Sweden)

    A. Ghassemi-Kahrizeh

    2016-03-01

    Full Text Available Introduction: Potato, Solanum tuberosum L. is an important crop with 5.24 million tons of production on 210,000 hectares of irrigated land in Iran. Several pests attack the potato crop which among them the Colorado potato beetle, Leptinotarsa decemlineata (Say, is the most important defoliating pest of potato throughout the world and Iran and considerably reduce crop yield. Growers rely on pesticides to control this pest in the field but this insect is well known for its rapid resistance development to pesticides, so that it has developed field resistance to nearly all insecticides used against it and it is now resistant to more than 40 chemical insecticides. The problems of insecticide resistance, combined with continuing environmental concerns associated with chemical pesticide use, have provided a considerable stimulus over the past 50 years for the development of alternative control methods. Host plant resistance is considered to be an important part of integrated pest management (IPM system of this pest, which is compatible with sustainable control methods and can reduce the use of chemical insecticides .With the aim of identifying the existence of resistance resources, a study was conducted to evaluate and comparison the resistance index (PRI of 33 potatocultivarsto the Colorado potato beetle. Detected resistant variety (ies could be used as a resistance source for IPM programs of this pest. Materials and Methods: Greenhouse and field experiments were conducted to compare resistance index (PRI of 33 potato cultivars to the Colorado potato beetle, Leptinotarsa decemlineata (Say, in Naghadeh region during 2007-2008. In a choice test, the numbers of attracted beetles to each cultivar was determined as antixenosis index in the field. Also, Percentage of larval and pupal mortality were determined and used as the antibiosis index under greenhouse conditions. To evaluate the tolerance index, infested and non infested plots were planted and

  20. Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum

    NARCIS (Netherlands)

    Dijksterhuis, J; Sanders, M; Gorris, L G; Smid, E J

    Interaction of Fusarium oxysporum and Paenibacillus polymyxa starts with polar attachment of bacteria to the fungal hyphae followed by the formation of a large cluster of non-motile cells embedded in an extracellular matrix in which the bacteria develop endospores. Enumeration of fungal viable

  1. Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1.

    Science.gov (United States)

    Mukherjee, Prasun K; Kenerley, Charles M

    2010-04-01

    Mycoparasitic strains of Trichoderma are applied as commercial biofungicides for control of soilborne plant pathogens. Although the majority of commercial biofungicides are Trichoderma based, chemical pesticides, which are ecological and environmental hazards, still dominate the market. This is because biofungicides are not as effective or consistent as chemical fungicides. Efforts to improve these products have been limited by a lack of understanding of the genetic regulation of biocontrol activities. In this study, using gene knockout and complementation, we identified the VELVET protein Vel1 as a key regulator of biocontrol, as well as morphogenetic traits, in Trichoderma virens, a commercial biocontrol agent. Mutants with mutations in vel1 were defective in secondary metabolism (antibiosis), mycoparasitism, and biocontrol efficacy. In nutrient-rich media they also lacked two types of spores important for survival and development of formulation products: conidia (on agar) and chlamydospores (in liquid shake cultures). These findings provide an opportunity for genetic enhancement of biocontrol and industrial strains of Trichoderma, since Vel1 is very highly conserved across three Trichoderma species.

  2. Regulation of Morphogenesis and Biocontrol Properties in Trichoderma virens by a VELVET Protein, Vel1▿ †

    Science.gov (United States)

    Mukherjee, Prasun K.; Kenerley, Charles M.

    2010-01-01

    Mycoparasitic strains of Trichoderma are applied as commercial biofungicides for control of soilborne plant pathogens. Although the majority of commercial biofungicides are Trichoderma based, chemical pesticides, which are ecological and environmental hazards, still dominate the market. This is because biofungicides are not as effective or consistent as chemical fungicides. Efforts to improve these products have been limited by a lack of understanding of the genetic regulation of biocontrol activities. In this study, using gene knockout and complementation, we identified the VELVET protein Vel1 as a key regulator of biocontrol, as well as morphogenetic traits, in Trichoderma virens, a commercial biocontrol agent. Mutants with mutations in vel1 were defective in secondary metabolism (antibiosis), mycoparasitism, and biocontrol efficacy. In nutrient-rich media they also lacked two types of spores important for survival and development of formulation products: conidia (on agar) and chlamydospores (in liquid shake cultures). These findings provide an opportunity for genetic enhancement of biocontrol and industrial strains of Trichoderma, since Vel1 is very highly conserved across three Trichoderma species. PMID:20154111

  3. Penapisan Cendawan Antagonis Indigenos Rizosfer Jahe dan Uji Daya Hambatnya terhadap Fusarium oxysporum f. sp. zingiberi

    Directory of Open Access Journals (Sweden)

    Nurbailis Nurbailis

    2015-02-01

    Full Text Available Ginger rot disease caused by Fusarium oxysporum f. sp. zingiberi is difficult to control because the pathogen is soil borne and is able to form clamidospore as resting structure. The aim of this study was to obtain indigenous antagonistic fungi from ginger rhizosphere which is potential for suppressing the growth of F. oxysporum f. sp. zingiberi. Fungi isolated from ginger rhizosphere were subjected for antagonism assay using dual culture method. Fungi isolates showed capability to inhibit F. oxysporum f. sp. zingiberii were then identified based on morphology characters. Eleven isolates were successfully isolated, but only 9 isolates showed the potentials of suppressing the growth of F. oxysporum f. sp.  zingiberi. All 9 isolates i.e. AB4, GC1, BB1, AB1, AB2, K12, GC3, K11 and GC2 had antibiosis activity, and 3 isolates among them i.e. AB2, BB1 and K11 showed competition mechanism. Based on morphology characters the isolates were identified as Penicillium spp. (4 isolates, Trichoderma spp. (3 isolates, and Aspergillus spp. (2 isolates.

  4. Response of Bemisia tabaci Genn. (Hemiptera: Aleyrodidae) biotype B to genotypes of pepper Capsicum annuum (Solanales: Solanaceae).

    Science.gov (United States)

    Ballina-Gomez, H; Ruiz-Sanchez, E; Chan-Cupul, W; Latournerie-Moreno, L; Hernández-Alvarado, L; Islas-Flores, I; Zuñiga-Aguilar, J J

    2013-04-01

    Bemisia tabaci Genn. biotype B is a widely distributed plant pest that represents one of the major constraints for horticultural crop production. The purpose of the present work was to evaluate the oviposition preference, survivorship, and development of B. tabaci biotype B on semi-cultivated genotypes of Capsicum annuum from southeast Mexico. In free-choice experiments to evaluate the oviposition preference, lower number of eggs laid by B. tabaci biotype B was observed in the genotypes Maax and Xcat´ik relative to that in the commercial genotype Parado. Egg hatchability was significantly lower in Pico Paloma, Bolita, Blanco, Chawa, Payaso, and Xcat´ik than in the rest of the genotypes, including the commercial genotype Jalapeño. Likewise, survivorship of nymphs was significantly lower in Pico Paloma, Bolita, and Blanco than in the remaining genotypes. Nymph developmental time and the period of development from egg to adult were the shortest in Amaxito. Therefore, sources of resistance to B. tabaci biotype B by antibiosis (accumulation of plant defense compounds) might be found in the semi-cultivated genotypes Pico Paloma, Bolita, and Blanco.

  5. Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants.

    Science.gov (United States)

    Thakur, Abhinay; Kaur, Sanehdeep; Kaur, Amarjeet; Singh, Varinder

    2013-04-01

    Endophytic fungi, which live within host plant tissues without causing any visible symptom of disease, are important mediators of plant-herbivore interactions. These endophytes enhance resistance of host plant against insect herbivores mainly by productions of various alkaloid based defensive compounds in the plant tissue or through alterations of plant nutritional quality. Two endophytic fungi, i.e., Nigrospora sp. and Cladosporium sp., were isolated from Tinospora cordifolia (Thunb.) Miers, a traditional indian medicinal plant. Cauliflower (Brassica oleracea L.) plants were inoculated with these two endophytic fungi. The effect of endophyte infected and uninfected cauliflower plants were measured on the survival and development of Spodoptera litura (Fab.), a polyphagous pest. Endophyte infected cauliflower plants showed resistance to S. litura in the form of significant increase in larval and pupal mortality in both the fungi. Inhibitory effects of endophytic fungi also were observed on adult emergence, longevity, reproductive potential, as well as hatchability of eggs. Thus, it is concluded that antibiosis to S. litura could be imparted by artificial inoculation of endophytes and this could be used to develop alternative ecologically safe control strategies.

  6. Compatibility study of Trichoderma harzianum Rifai and rice fungicides, and effects on three fungal plant pathogens

    Directory of Open Access Journals (Sweden)

    Manuel Francisco Rodríguez Saldaña

    2017-04-01

    Full Text Available This research took place at the Provincial Plant Sanitation Laboratory, in Camaguey, Cuba, between September 2013 and September 2015. The in vitro compatibility and antagonistic capacity of Trichoderma harzianum Rifai (strain A-34 on rice pathogens (Bipolaris oryzae Breda de Haan, Sarocladium oryzae (Sawada w., Gams and D. Hawksworth and Magnaporthe grisea (Hebert Barr, was determined against pesticides used on rice. Assessment using traditional methods of microbiological isolation of mycelial growth, sporulation and conidial germination of the antagonist, to determine if the action mechanisms (antibiosis, competence, parasitism against fungal pathogens, was made between 24 and 216 hours of application. A bifactorial design in dual culture was used for statistical analysis, along with scales for determination of microbial antagonistic capacity. Active ingredients tebuconazol + procloraz, trifloxistrobin+ ciproconazole, and epoxiconazole + kresoxim-methyl, affected mycelial growth of the antagonist. Moreover, the antagonist against active ingredients carbendazim, copper oxychloride, azoxystrobin and tebuconazo + triadimenol showed mycelial growth, sporulation and pathogen interaction, affecting their growth by means of coiling, penetration, granulation, and cell lysis, between 96 and 216 hours.

  7. Isolation and characterization of mesophilic, oxalate-degrading Streptomyces from plant rhizosphere and forest soils

    Science.gov (United States)

    Sahin, Nurettin

    2004-10-01

    The present work was aimed at the isolation of additional new pure cultures of oxalate-degrading Streptomyces and its preliminary characterization for further work in the field of oxalate metabolism and taxonomic studies. Mesophilic, oxalate-degrading Streptomyces were enriched and isolated from plant rhizosphere and forest soil samples. Strains were examined for cultural, morphological (spore chain morphology, spore mass colour, diffusible and melanin pigment production), physiological (antibiosis, growth in the presence of inhibitory compounds, assimilation of organic acids and enzyme substrates) and chemotaxonomic characters (cellular lipid components and diagnostic cell-wall diamino acid). The taxonomic data obtained were analysed by using the simple matching (SSM) and Jaccard (SJ) coefficients, clustering was achieved using the UPGMA algorithm. All strains were able to utilize sodium-, potassium-, calcium- and ammonium-oxalate salts. Based on the results of numerical taxonomy, isolates were grouped into five cluster groups with a ≥70% SSM similarity level. Streptomyces rochei was the most common of the cluster groups, with a Willcox probability of P>0.8. Streptomyces antibioticus, S. anulatus, S. fulvissimus, S. halstedii and S. violaceusniger are newly reported as oxalate-utilizing Streptomyces.

  8. Potential of bulb-associated bacteria for biocontrol of hyacinth soft rot caused by Dickeya zeae.

    Science.gov (United States)

    Jafra, S; Przysowa, J; Gwizdek-Wiśniewska, A; van der Wolf, J M

    2009-01-01

    Dickeya zeae is a pectinolytic bacterium responsible for soft rot disease in flower bulb crops. In this study, the possibility of controlling soft rot disease in hyacinth by using antagonistic bacteria isolated from hyacinth bulbs was explored. Bacterial isolates with potential for biocontrol were selected on the basis of antibiosis against D. zeae, siderophore production, and the N-acyl homoserine lactones (AHLs)-inactivation. In in vitro assays, 35 out of 565 hyacinth-associated bacterial isolates produced antimicrobial substances against D. zeae, whereas 20 degraded AHLs, and 35 produced siderophores. Isolates of interest were identified by 16S rDNA sequence analysis and reaction in BIOLOG tests. Twenty-six isolates that differed in characteristics were selected for pathogenicity testing on hyacinth cultivars, Pink Pearl and Carnegie. Two strains identified as Rahnella aquatilis and one as Erwinia persicinus significantly reduced tissue maceration caused by D. zeae 2019 on hyacinth bulbs, but not on leaves. Hyacinth bulbs harbour bacteria belonging to different taxonomic groups that are antagonistic to D. zeae, and some can attenuate decay of bulb tissue. Selected hyacinth-associated bacterial isolates have potential for control of soft rot disease caused by D. zeae in hyacinth bulb production.

  9. Assessment of the Role of Local Strawberry Rhizosphere—Associated Streptomycetes on the Bacterially—Induced Growth and Botrytis cinerea Infection Resistance of the Fruit

    Directory of Open Access Journals (Sweden)

    D. İpek Kurtböke

    2010-12-01

    Full Text Available The future need for sustainable agriculture will be met in part by wider use of biological control of plant pathogens over conventional fungicides hazardous to the environment and to public health. Control strategies involving both (i direct use of microorganisms antagonistic to the phytopathogen, and (ii use of bioactive compounds (secondary metabolites/antibiotic compounds from microorganisms on the phytopathogen were both adapted in order to investigate the ability of streptomycetes isolated from the rhizosphere of strawberry plants to promote the growth of the fruit and suppress Botrytis cinerea causing strawberry rot on the Sunshine Coast, Queensland, Australia. In vitro studies showed that 25/39 streptomycetes isolated from strawberry field soils inhibited B. cinerea growth by antifungal activity, ranging from antibiosis to volatile compound production. However, when non-volatile antifungal compounds were extracted and applied aerially to the actively growing strawberry fruits infected with B. cinerea, a significant disease reduction was not recorded. On the other hand, plant and fruit growth was promoted by the presence of actively growing streptomycetes in container media. Findings might indicate that live streptomycete inoculum can be used as growth promoting agent in container media for this economically important crop.

  10. Evaluation of Clonostachys rosea for Control of Plant-Parasitic Nematodes in Soil and in Roots of Carrot and Wheat.

    Science.gov (United States)

    Iqbal, Mudassir; Dubey, Mukesh; McEwan, Kerstin; Menzel, Uwe; Franko, Mikael Andersson; Viketoft, Maria; Jensen, Dan Funck; Karlsson, Magnus

    2018-01-01

    Biological control is a promising approach to reduce plant diseases caused by nematodes. We tested the effect of the fungus Clonostachys rosea strain IK726 inoculation on nematode community composition in a naturally nematode infested soil in a pot experiment, and the effect of C. rosea on plant health. The numbers of plant-parasitic nematode genera extracted from soil and plant roots decreased by 40 to 73% when C. rosea was applied, while genera of nonparasitic nematodes were not affected. Soil inoculation of C. rosea increased fresh shoot weight and shoot length of wheat plants by 20 and 24%, respectively, while only shoot dry weight increased by 48% in carrots. Light microscopy of in vitro C. rosea-nematode interactions did not reveal evidence of direct parasitism. However, culture filtrates of C. rosea growing in potato dextrose broth, malt extract broth and synthetic nutrient broth exhibited toxicity toward nematodes and immobilized 57, 62, and 100% of the nematodes, respectively, within 48 h. This study demonstrates that C. rosea can control plant-parasitic nematodes and thereby improve plant growth. The most likely mechanism responsible for the antagonism is antibiosis through production of nematicidal compounds, rather than direct parasitism.

  11. Role of killer factors in the inhibitory activity of bio-control yeasts against Penicillium expansum and Aspergillus ochraceus

    Directory of Open Access Journals (Sweden)

    Ciro da Silva Portes

    2013-08-01

    Full Text Available This work evaluated the antagonism of killer positive yeast strains (isolated from 11 samples of different frozen fruit pulps against the strains of Penicillium expansum and Aspergillus ochraceus. Of the total 41 killer yeasts tested in YM agar, 19 showed antibiosis against P. expansum and A. ochraceus, with inhibition zone ranging from 10 to 18 mm and 10 to 19 mm, respectively. In the following step, the extracellular activity of Kluyveromyces sp. FP4(13 was tested performing the assay in YM broth. The antifungal activity of Kluyveromyces sp. FP4(13 cell-free culture supernatant (25ºC/96 h was more effective against the conidia germination, showing inhibition rates of 93.33 and 86.44% for P. expansum and A. ochraceus, respectively. The micelial growth inhibition was 28.45 and 21.0%, respectively. The antagonism showed by the selected yeasts could be used as a promising alternative tool to reduce and control the postharvest fungal spoilage of the fruits. However, further studies should be carried out in order to better elucidate the role of innocuous characters in antagonistic microorganisms, as well as the purification and characterization of new killer toxins.

  12. Antagonistic potential of Gliocladium virens and Trichoderma longibrachiatum to phytopathogenic fungi.

    Science.gov (United States)

    Sreenivasaprasad, S; Manibhushanrao, K

    1990-01-01

    Three isolates of Gliocladium virens (G1, G2 and G3) and two of Trichoderma longibrachiatum (T1 and T2) were screened against isolates of three soilborne plant pathogens namely Rhizoctonia solani, Sclerotium rolfsii and Pythium aphanidermatum. G. virens exhibited stronger hyperparasitism and wider biological spectrum than T. longibrachiatum. Further, similarities as well as variation was observed in the ability of the various isolates to invade the test pathogens in dual culture. For the hyperparasites, acidic pH range (5.0 to 5.5) favoured both growth and spore germination. The hyperparasites made direct contact with the pathogens followed by varied modes of attack invariably leading to cell disruption. Antagonists, G1 and G3 revealed strong antibiosis while T2 showed moderate effect. All the isolates produced enhanced levels of lytic enzymes adaptively and there were marked differences among them. However, no correlation was observed between these attributes and the hyperparasitic potential of the various isolates in dual culture. The relevance and the role of enzymes and toxic metabolite(s) in the antagonism of G. virens and T. longibrachiatum to these pathogens are discussed.

  13. Khamir Antagonis untuk Pengendalian Penyakit Antraknosa pada Buah Avokad Selama Penyimpanan

    Directory of Open Access Journals (Sweden)

    Yuli Fitriati

    2014-08-01

    Full Text Available Anthracnose caused by Colletotrichum gloeosporioides is an important disease in avocado fruit during storage. An effective, cheap, and safe control method is necessary as an alternative to subtitute the use of fungicides in postharvest disease control. This research aimed to identify yeast antagonist from avocados that are effective in controlling anthracnose disease on avocado fruit. Research was started with isolation of C. gloeosporioides and yeast from avocado fruit, followed by in vivo bioassay, antibiosis assay, and chitinolitic activity assay. In vivo bioassay was done by dipping avocado fruit on yeast cell suspension. As many as 23 yeasts isolates was obtained from avocado fruits. Eight yeast isolates (A28, A32, A33, A34, A35, A36, A37, A38 showed very effective for inhibiting anthracnose disease in avocado fruit at concentration of 106 mL-1 and 107 mL-1. However, only four isolates were chosen for further characterization based on morphological and molecular identification. Two species of yeast was identified as Pichia anomala, i.e. isolates A33 and A37 and Candida intermedia, i.e. isolates A35 and A36.

  14. Antibiosis and bmyB Gene Presence As Prevalent Traits for the Selection of Efficient Bacillus Biocontrol Agents against Crown Gall Disease

    Directory of Open Access Journals (Sweden)

    Olfa Frikha-Gargouri

    2017-08-01

    Full Text Available This study aimed to improve the screening method for the selection of Bacillus biocontrol agents against crown gall disease. The relationship between the strain biocontrol ability and their in vitro studied traits was investigated to identify the most important factors to be considered for the selection of effective biocontrol agents. In fact, previous selection procedure relying only on in vitro antibacterial activity was shown to be not suitable in some cases. A direct plant-protection strategy was performed to screen the 32 Bacillus biocontrol agent candidates. Moreover, potential in vitro biocontrol traits were investigated including biofilm formation, motility, hemolytic activity, detection of lipopeptide biosynthetic genes (sfp, ituC and bmyB and production of antibacterial compounds. The obtained results indicated high correlations of the efficiency of the biocontrol with the reduction of gall weight (p = 0.000 and the antibacterial activity in vitro (p = 0.000. Moreover, there was strong correlations of the efficiency of the biocontrol (p = 0.004 and the reduction in gall weight (p = 0.000 with the presence of the bmyB gene. This gene directs the synthesis of the lipopeptide bacillomycin belonging to the iturinic family of lipopeptides. These results were also confirmed by the two-way hierarchical cluster analysis and the correspondence analysis showing the relatedness of these four variables. According to the obtained results a new screening procedure of Bacillus biocontrol agents against crown gall disease could be advanced consisting on two step selection procedure. The first consists on selecting strains with high antibacterial activity in vitro or those harbouring the bmyB gene. Further selection has to be performed on tomato plants in vivo. Moreover, based on the results of the biocontrol assay, five potent strains exhibiting high biocontrol abilities were selected. They were identified as Bacillus subtilis or Bacillus amyloliquefaciens. These strains were found to produce either surfactin or surfactin and iturin lipopeptides. In conclusion, our study presented a new and effective method to evaluate the biocontrol ability of antagonistic Bacillus strains against crown gall disease that could increase the efficiency of screening method of biocontrol agents. Besides, the selected strains could be used as novel biocontrol agents against pathogenic Agrobacterium tumefaciens strains.

  15. Selección de rizobacterias por su antagonismo frente a microorganismos patógenos de cucurbitáceas /Screening of rhizobacteria for their antagonism against microbial pathogens of cucurbits.

    Directory of Open Access Journals (Sweden)

    Gilda Jiménez Montejo

    2014-04-01

    Full Text Available Resumen:El desarrollo de inoculantes microbianos a partir de aislamientos de rizobacterias con potencial para el control biológico de enfermedades de los cultivos agrícolas requiere de una rigurosa selección. Se obtuvieron aislamientos bacterianos de la rizosfera de papa (Solanum tuberosum L. y de maíz (Zea mays L. y de semillas de frijol (Phaseolus vulgaris L.. Las colonias que mostraron in vitro halos de inhibición de los patógenos de cucurbitáceas: Xanthomonas cucurbitae, Acidovorax avenae subsp. citrull y Fusarium oxysporum, se seleccionaron como antagonistas. A partir de las características morfológicas, fisiológicas y bioquímicas las cepas antagonistas F16/95 y Xph se identificaron con la especie Bacillus subtilis y la cepa 14A como Pseudomonas putida. Las pruebas presuntivas de producción de antibiocinas in vitro sugirieron modos de acción de las rizobacterias relacionados con antibiosis y competencia por el hierro mediante la producción de sideróforos. Los resultados indicaron el potencial de las cepas de rizobacterias antagonistas Bacillus subtilis (F16/95, Xph y Pesudomonas putida 14A para el control biológico de enfermedades de las cucurbitáceas./Abstract:

  16. Sinorhizobium meliloti can protect Medicago truncatula against Phoma medicaginis attack

    Directory of Open Access Journals (Sweden)

    Moncef MRABET

    2011-09-01

    Full Text Available The Sinorhizobium meliloti microsymbiont of Medicago spp. was used in an antibiosis test against Phoma medicaginis and in bioprotection assays of Medicago truncatula JA17 from the pathogen. Among 17 S. meliloti strains isolated from root nodules of M. truncatula and Medicago laciniata grown in Tunisian soils, six showed up to 60% growth inhibition of five P. medicaginis strains isolated from infected field-grown M. truncatula. Two S. meliloti strains with differing in vitro effects on P. medicaginis, 10.16/R6 antagonist and 5M6 non antagonist, were used in a bioprotection assay of M. truncatula JA17 from the pathogen. The inoculation of P. medicaginis caused complete root and stem rotting, and the mortality of all treated plantlets. Inoculation of the antagonist S. meliloti strain 10.16/R6 to M. truncatula JA17 infected with P. medicaginis was associated with a significant 65% decrease of vegetative rotting length, an 80% decrease of plant mortality, an increase of root length, and enhancement of root and shoot biomass comparatively to control plantlets treated with P. medicaginis. The inoculation of the non antagonistic S. meliloti strain 5M6 slightly decreased disease and slightly increased plant growth parameters.

  17. Coevolution of antibiotic production and counter-resistance in soil bacteria.

    Science.gov (United States)

    Laskaris, Paris; Tolba, Sahar; Calvo-Bado, Leo; Wellington, Elizabeth M; Wellington, Liz

    2010-03-01

    We present evidence for the coexistence and coevolution of antibiotic resistance and biosynthesis genes in soil bacteria. The distribution of the streptomycin (strA) and viomycin (vph) resistance genes was examined in Streptomyces isolates. strA and vph were found either within a biosynthetic gene cluster or independently. Streptomyces griseus strains possessing the streptomycin cluster formed part of a clonal complex. All S. griseus strains possessing solely strA belonged to two clades; both were closely related to the streptomycin producers. Other more distantly related S. griseus strains did not contain strA. S. griseus strains with only vph also formed two clades, but they were more distantly related to the producers and to one another. The expression of the strA gene was constitutive in a resistance-only strain whereas streptomycin producers showed peak strA expression in late log phase that correlates with the switch on of streptomycin biosynthesis. While there is evidence that antibiotics have diverse roles in nature, our data clearly support the coevolution of resistance in the presence of antibiotic biosynthetic capability within closely related soil dwelling bacteria. This reinforces the view that, for some antibiotics at least, the primary role is one of antibiosis during competition in soil for resources.

  18. A Three-Way Transcriptomic Interaction Study of a Biocontrol Agent (Clonostachys rosea), a Fungal Pathogen (Helminthosporium solani), and a Potato Host (Solanum tuberosum).

    Science.gov (United States)

    Lysøe, Erik; Dees, Merete W; Brurberg, May Bente

    2017-08-01

    Helminthosporium solani causes silver scurf, which affects the quality of potato. The biocontrol agent Clonostachys rosea greatly limited the severity of silver scurf symptoms and amount of H. solani genomic DNA in laboratory experiments. Transcriptomic analysis during interaction showed that H. solani gene expression was highly reduced when coinoculated with the biocontrol agent C. rosea, whereas gene expression of C. rosea was clearly boosted as a response to the pathogen. The most notable upregulated C. rosea genes were those encoding proteins involved in cellular response to oxidative stress, proteases, G-protein signaling, and the methyltransferase LaeA. The most notable potato response to both fungi was downregulation of defense-related genes and mitogen-activated protein kinase kinase kinases. At a later stage, this shifted, and most potato defense genes were turned on, especially those involved in terpenoid biosynthesis when H. solani was present. Some biocontrol-activated defense-related genes in potato were upregulated during early interaction with C. rosea alone that were not triggered by H. solani alone. Our results indicate that the reductions of silver scurf using C. rosea are probably due to a combination of mechanisms, including mycoparasitism, biocontrol-activated stimulation of plant defense mechanisms, microbial competition for nutrients, space, and antibiosis.

  19. Antagonistic activity Trichoderma harzianum Rifai on the causal agent of rice blast (Pyricularia grisea Sacc.

    Directory of Open Access Journals (Sweden)

    Ernesto Juniors Pérez Torres

    2017-10-01

    Full Text Available With the objective to evaluate the antagonistic activity of T. harzianum (strain A-34 on the causal agent of rice blast (P. grisea, were developed several in vitro experiments. It was evaluated the biocontrol mechanisms such as competition through mounted the percent inhibition of radial growth of hyphae of P. grisea from 24 to 240 hours and the antagonistic capacity. In addition, was evaluated micoparasitism to inclination the observation of events Microscopy winding, penetration, vacuolization, lysis, and antibiosis by observing 24 hours a confrontation between the hyphae of the phytopathogenic fungus and biological control agent. It was obtained at 120 hours 100 % inhibition of micelial growth of causal agent, what corresponded with the degree 1 of antagonistic capacity (scale and is recorded as a hyperparasitic action on P. grisea. It was evidenced an antibiotic effect of metabolites produced by T. harzianum (strain A-34 to 24 hours of confrontation, where there was time interaction between the hyphae of microorganisms with 14,3 % inhibition, also was evidence the micoparasitism events by penetration, vacuolization and lysis in the cells of phytopathogenic fungus. These results demonstrated the ability of T. harzianum (strain A-34 on causal agent of rice blast (P. grisea.

  20. Compatibilidad de Trichoderma harzianum Rifai con fungicidas del arroz y su efecto sobre tres fitopatógenos fúngicos

    Directory of Open Access Journals (Sweden)

    Manuel Francisco Rodríguez Saldaña

    2016-04-01

    Full Text Available Resumen La investigación se realizó en el Laboratorio Provincial de Sanidad Vegetal en Camagüey, en la etapa comprendida de septiembre de 2013 a septiembre de 2015, en condiciones in vitro donde se determinó la compatibilidad y capacidad antagónica frente a pesticidas usados en el arroz, de Trichoderma harzianum Rifai cepa A-34 sobre los patógenos del arroz (Bipolaris oryzae Breda de Haan, Saracladium oryzae (Sawada w. Gams & D.Hawksworth y Magnaporthe grisea (Hebert Barr. Las evaluaciones mediante métodos tradicionales de aislamiento microbiológico del crecimiento micelial, la esporulación y la germinación conidial del antagonista para determinar si ejerce los mecanismos de acción de antibiosis, competencia, y parasitismo ante los patógenos fúngicos se efectuaron a partir desde las 24 hasta las 216 horas empleando. Para el análisis estadístico se empleó un diseño bifactorial en el cultivo dual, además de las escalas para la determinación de la capacidad antagónica de los microorganismos. Los ingredientes activos tebuconazol + procloraz, trifloxistrobin+ ciproconazol, y epoxiconazol + kresoxim- metil, afectaron el crecimiento micelial del antagonista, por otra parte el antagonista frente a los ingredientes activos carbendazim, oxicloruro de cobre, azoxistrobina y tebuconazol + triadimenol tuvo crecimiento micelial, esporulación e interacción con los patógenos afectándose el crecimiento de los mismos a través de los mecanismos de acción de enrollamiento, penetración, granulación , y lisis celular desde las 96 hasta las 216 horas. Trichoderma harzianum Rifai compatibility with fungicides and its effect on three fungal plant rice pathogens. ABSTRACT The research was conducted at the Provincial Laboratory of Plant Protection in Camagüey, in the fall period September 2013 to September 2015, under in vitro conditions where compatibility and antagonistic capacity was determined against used in rice pesticides, Trichoderma

  1. Discovery of three woolly apple aphid Eriosoma lanigerum (Hemiptera: Aphididae) biotypes in Australia: the role of antixenosis and antibiosis in apple tree resistance

    Czech Academy of Sciences Publication Activity Database

    Costa, Arnaud; Williams, D. G.; Powell, K. S.

    2014-01-01

    Roč. 53, č. 3 (2014), s. 280-287 ISSN 2052-1758 Institutional support: RVO:60077344 Keywords : aphid * apple * biotype Subject RIV: EH - Ecology, Behaviour http://onlinelibrary.wiley.com/doi/10.1111/aen.12074/pdf

  2. Restriction fragment length polymorphism markers associated with silk maysin, antibiosis to corn earworm (Lepidoptera: Noctuidae) larvae, in a dent and sweet corn cross.

    Science.gov (United States)

    Guo, B Z; Zhang, Z J; Li, R G; Widstrom, N W; Snook, M E; Lynch, R E; Plaisted, D

    2001-04-01

    Maysin, a C-glycosylflavone in maize silk, has insecticidal activity against corn earworm, Helicoverpa zea (Boddie), larvae. Sweet corn, Zea mays L., is a vulnerable crop to ear-feeding insects and requires pesticide protection from ear damage. This study was conducted to identify maize chromosome regions associated with silk maysin concentration and eventually to transfer and develop high silk maysin sweet corn lines with marker-assisted selection (MAS). Using an F2 population derived from SC102 (high maysin dent corn) and B31857 (low maysin sh2 sweet corn), we detected two major quantitative trait loci (QTL). It was estimated that 25.6% of the silk maysin variance was associated with segregation in the genomic region of npi286 (flanking to p1) on chromosome 1S. We also demonstrated that a1 on chromosome 3L had major contribution to silk maysin (accounted for 15.7% of the variance). Locus a1 has a recessive gene action for high maysin with the presence of functional p1 allele. Markers umc66a (near c2) and umc105a on chromosome 9S also were detected in this analysis with minor contribution. A multiple-locus model, which included npi286, a1, csu3 (Bin 1.05), umc245 (Bin 7.05), agrr21 (Bin 8.09), umc105a, and the epistatic interactions npi286 x a1, a1 x agrr21, csu3 x umc245, and umc105a x umc245, accounted for 76.3% of the total silk maysin variance. Tester crosses showed that at the a1 locus, SC102 has functional A1 alleles and B31857 has homozygous recessive a1 alleles. Individuals of (SC102 x B31857) x B31857 were examined with MAS and plants with p1 allele from SC102 and homozygous a1 alleles from B31857 had consistent high silk maysin. Marker-assisted selection seems to be a suitable method to transfer silk maysin to sweet corn lines to reduce pesticide application.

  3. Immobilization of silver nanoparticles in Zr-based MOFs: induction of apoptosis in cancer cells

    Science.gov (United States)

    Han, Congcong; Yang, Jian; Gu, Jinlou

    2018-03-01

    Silver nanoparticles (AgNPs) are a potential class of nanomaterial for antibiosis and chemotherapeutic effects against human carcinoma cells. However, the DNA-damaging ability of free AgNPs pose the critical issues in their biomedical applications. Herein, we demonstrated a facile method to capture Ag+ ions and reduce them into active AgNPs within Zr-based metal-organic frameworks (MOFs) of UiO-66 with a mild reductant of DMF (AgNPs@UiO-66(DMF)). The average diameters of UiO-66 carriers and AgNPs were facilely controlled to be 140 and 10 nm, respectively. The obtained UiO-66 nanocarriers exhibited excellent biocompatibility and could be effectively endocytosed by cancer cells. Additionally, the AgNPs@UiO-66(DMF) could rapidly release Ag+ ions and efficiently inhibit the growth of cancer cells. The half maximal inhibitory concentration (IC50) values of the encapsulated AgNPs were calculated to be 2.7 and 2.45 μg mL-1 for SMMC-7721 and HeLa cells, respectively, which were much lower than those of free AgNPs in the reported works. Therefore, the developed AgNPs@UiO-66(DMF) not only maintained the therapeutic effect against cancer cells but also reduced the dosage of free AgNPs in chemotherapy treatment. [Figure not available: see fulltext.

  4. Microbial antagonism as a potential solution for controlling selected root pathogens of crops

    Science.gov (United States)

    Cooper, Sarah; Agnew, Linda; Pereg, Lily

    2016-04-01

    Root pathogens of crops can cause large reduction in yield, however, there is a limited range of effective methods to control such pathogens. Soilborne pathogens that infect roots often need to survive in the rhizosphere, where there is high competition from other organisms. In such hot spots of microbial activity and growth, supported by root exudates, microbes have evolved antagonistic mechanisms that give them competitive advantages in winning the limited resources. Among these mechanisms is antibiosis, with production of some significant antifungal compounds including, antibiotics, volatile organic compounds, hydrogen cyanide and lytic enzymes. Some of these mechanisms may suppress disease through controlling the growth of root pathogens. In this project we isolated various fungi and bacteria that suppress the growth of cotton pathogens in vitro. The pathogen-suppressive microbes were isolated from cotton production soils that are under different management strategies, with and without the use of organic amendments. The potential of pathogen-suppressing microbes for controlling the black root rot disease, caused by the soilborne pathogen Thielaviopsis basicola, was confirmed using soil assays. We identified isolates with potential use as inoculant for cotton production in Australia. Having isolated a diverse group of antagonistic microbes enhances the probability that some would survive well in the soil and provide an alternative approach to address the problem of root disease affecting agricultural crops.

  5. Bacterial selection for biological control of plant disease: criterion determination and validation

    Directory of Open Access Journals (Sweden)

    Monalize Salete Mota

    Full Text Available Abstract This study aimed to evaluate the biocontrol potential of bacteria isolated from different plant species and soils. The production of compounds related to phytopathogen biocontrol and/or promotion of plant growth in bacterial isolates was evaluated by measuring the production of antimicrobial compounds (ammonia and antibiosis and hydrolytic enzymes (amylases, lipases, proteases, and chitinases and phosphate solubilization. Of the 1219 bacterial isolates, 92% produced one or more of the eight compounds evaluated, but only 1% of the isolates produced all the compounds. Proteolytic activity was most frequently observed among the bacterial isolates. Among the compounds which often determine the success of biocontrol, 43% produced compounds which inhibit mycelial growth of Monilinia fructicola, but only 11% hydrolyzed chitin. Bacteria from different plant species (rhizosphere or phylloplane exhibited differences in the ability to produce the compounds evaluated. Most bacterial isolates with biocontrol potential were isolated from rhizospheric soil. The most efficient bacteria (producing at least five compounds related to phytopathogen biocontrol and/or plant growth, 86 in total, were evaluated for their biocontrol potential by observing their ability to kill juvenile Mesocriconema xenoplax. Thus, we clearly observed that bacteria that produced more compounds related to phytopathogen biocontrol and/or plant growth had a higher efficacy for nematode biocontrol, which validated the selection strategy used.

  6. Visible-light induced photocatalysis of AgCl@Ag/titanate nanotubes/nitrogen-doped reduced graphite oxide composites

    Science.gov (United States)

    Pan, Hongfei; Zhao, Xiaona; Fu, Zhanming; Tu, Wenmao; Fang, Pengfei; Zhang, Haining

    2018-06-01

    High recombination rate of photogenerated electron-hole pairs and relatively narrow photoresponsive range of TiO2-based photocatalysts are the remaining challenges for their practical applications. To address such challenges, photocatalysts consisting of AgCl covered Ag nanoparticles (AgCl@Ag), titanate nanotubes (TiNT), and nitrogen-doped reduced graphite oxide (rGON) are fabricated through alkaline hydrothermal process, followed by deposition and in situ surface-oxidation of silver nanoparticles. In the synthesized photocatalysts, the titanate nanotubes have average length of about 100 nm with inner diameters of about 5 nm and the size of the formed silver nanoparticles is in the range of 50-100 nm. The synthesized photocatalyst degrades almost all the model organic pollutant Rhodamine B in 35 min and remains 90% of photocatalytic efficiency after 5 degradation cycles under visible light irradiation. Since the oxidant FeCl3 applied for oxidation of surface Ag to AgCl is difficult to be completely removed due to the high adsorption capacity of TiNT and rGON, the effect of reside Fe atoms on photocatalytic activity is evaluated and the results reveal that the residue Fe atom only affect the initial photodegradation performance. Nevertheless, the results demonstrate that the formed composite catalyst is a promising candidate for antibiosis and remediation in aquatic environmental contamination.

  7. Selection of endophytic fungi from comfrey (Symphytum officinale L.) for in vitro biological control of the phytopathogen Sclerotinia sclerotiorum (Lib.).

    Science.gov (United States)

    Rocha, Rafaeli; da Luz, Daniela Eleutério; Engels, Cibelle; Pileggi, Sônia Alvim Veiga; de Souza Jaccoud Filho, David; Matiello, Rodrigo Rodrigues; Pileggi, Marcos

    2009-01-01

    Biological control consists of using one organism to attack another that may cause economic damage to crops. Integrated Pest Management (IPM) is a very common strategy. The white mold produced by Sclerotinia sclerotiorum (Lib.) causes considerable damage to bean crops. This fungus is a soil inhabitant, the symptoms of which are characterized by water-soaked lesions covered by a white cottony fungal growth on the soil surface and/or the host plant. Possible biological control agents taken from plants are being investigated as phytopathogen inhibitors. These are endophytic microorganisms that inhabit the intercellular spaces of vegetal tissues and are often responsible for antimicrobial production. The objective of the present study was to select endophytic fungi isolated from comfrey (Symphytum officinale L.) leaves with in vitro antagonist potential against the phytopathogenic fungus S. sclerotiorum. Twelve isolates of endophytic fungi and a pathogenic strain of S. sclerotiorum were used in the challenge method. With the aid of this method, four endophytes with the best antagonistic activity against S. sclerotiorum were selected. Pathogen growth inhibition zones were considered indicative of antibiosis. The percentages of pathogenic mycelia growth were measured both with and without the antagonist, resulting in growth reductions of 46.7% to 50.0% for S. sclerotiorum. These analyses were performed by evaluating the endophytic/pathogenic mycelia growth in mm/day over an eight-day period of antagonistic tests.

  8. Evaluación de Hongos Antagonistas De Botrytis cinerea Pers., en Plantaciones de Mora, Costa Rica

    Directory of Open Access Journals (Sweden)

    María Angélica Marín-Chacón

    2017-01-01

    Full Text Available Se realizó el aislamiento, identificación y evaluación in vitro y en campo de hongos antagonistas de Botrytis cinerea Pers., en plantaciones de mora. La obtención de organismos antagonistas se hizo en Cartago en las localidades de La Luchita, Bajo Canet, Jardín y División durante el 2012. De los frutos se obtuvo un grupo de 43 aislamientos pertenecientes a 10 géneros distintos de los hongos: Aspergillus sp., Bispora sp., Cladosporium spp., Colletotrichum sp., Curvularia sp., Macrophoma sp., Paecilomyces spp., Pestalotia spp., Rhizoctonia sp., y Trichoderma spp. A todos los aislamientos se les realizaron pruebas de capacidad antagónica, mediante la técnica de cultivos duales, competencia por sustrato y antibiosis. Se seleccionaron solamente los aislamientos que superaron un 70% del PIC, y estos fueron 4 aislamientos (BC1, J14, J2.2 y J2.1 del género Trichoderma spp. Para las pruebas de campo se utilizaron 3 aislamientos (BC1, J2.2 y J2.1 del presente trabajo y 3 (BV1, SM13B y SM18 del mismo género previamente aislados. Las pruebas de campo se realizaron en el 2013. Los aislamientos de Trichoderma spp., que tuvieron estadísticamente (p≤0,0001 mayor efecto sobre B. cinerea fueron BV1 y BC1, los cuales dieron menos frutos enfermos.

  9. Biological aspects of Bemisia tabaci (Genn.) B biotype (Hemiptera: Aleyrodidae) on six bean genotypes

    International Nuclear Information System (INIS)

    Oriani, Maria A. de G.

    2008-01-01

    The silverleaf whitefly is one of the most harmful pests that attack bean crops, mainly for extracting large quantities of phloem sap and transmitting the bean golden mosaic virus. Resistant germplasm plants can be an important method for controlling this pest. The biological aspects of Bemisia tabaci B biotype on bean (Phaseolus vulgaris) genotypes were evaluated. The tests were conducted under laboratory conditions, with the following genotypes: Arc 1, Arc 3s, Arc 5s, G13028, G11056 and Porrillo 70. The bean plants in a stage IV-1 were infested during one day with silverleaf white flies. Afterwards the eggs and nymphs were observed until adult emergence. Longevity and fecundity of emerged insects were also evaluated. The longest development time occurred for nymphs fed on Arc 3s genotype (26.5 days), following by G11056 (25.9 days) and G13028 (25.3 days). The development period was 5.5 days longer in Arc 3s when compared with Porrillo 70. Also, the wild genotypes Arc 3s and G11056 showed higher mortality rates (94.7% and 83.1%, respectively), which may suggest antibiosis and/or feeding non preference resistance type. For this reason, although longevity and fecundity were not influenced when the whitefly fed on resistant genotypes (Arc 3s, G11056, G13028 and Arc 5s), those genotypes can be used for bean breeding program towards B. tabaci B biotype. (author)

  10. Morphological, Physiological, and Taxonomic Characterization of Actinobacterial Isolates Living as Endophytes of Cacao Pods and Cacao Seeds.

    Science.gov (United States)

    Tchinda, Romaric Armel Mouafo; Boudjeko, Thaddée; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Tsala, Éric; Monga, Ernest; Beaulieu, Carole

    2016-01-01

    Vascular plants are commonly colonized by endophytic actinobacteria. However, very little is known about the relationship between these microorganisms and cacao fruits. In order to determine the physiological and taxonomic relationships between the members of this community, actinobacteria were isolated from cacao fruits and seeds. Among the 49 isolates recovered, 11 morphologically distinct isolates were selected for further characterization. Sequencing of the 16S rRNA gene allowed the partition of the selected isolates into three phylogenetic clades. Most of the selected endophytic isolates belonged to the Streptomyces violaceusniger clade. Physiological characterization was carried out and a similarity index was used to cluster the isolates. However, clustering based on physiological properties did not match phylogenetic lineages. Isolates were also characterized for traits commonly associated with plant growth-promoting bacteria, including antibiosis and auxin biosynthesis. All isolates exhibited resistance to geldanamycin, whereas only two isolates were shown to produce this antibiotic. Endophytes were inoculated on radish seedlings and most isolates were found to possess plant growth-promoting abilities. These endophytic actinobacteria inhibited the growth of various plant pathogenic fungi and/or bacteria. The present study showed that S. violaceusniger clade members represent a significant part of the actinobacterial community living as endophytes in cacao fruits and seeds. While several members of this clade are known to be geldanamycin producers and efficient biocontrol agents of plant diseases, we herein established the endophytic lifestyle of some of these microorganisms, demonstrating their potential as plant health agents.

  11. Investigation of fungal root colonizers of the invasive plant Vincetoxicum rossicum and co-occurring local native plants in a field and woodland area in Southern Ontario

    Directory of Open Access Journals (Sweden)

    Cindy Bongard

    2013-06-01

    Full Text Available Fungal communities forming associations with plant roots have generally been described as ranging from symbiotic to parasitic. Disruptions to these associations consequently can have significant impacts on native plant communities. We examined how invasion by Vincetoxicum rossicum, a plant native to Europe, can alter both the arbuscular mycorrhizal fungi, as well as the general fungal communities associating with native plant roots in both field and woodland sites in Southern Ontario. In two different sites in the Greater Toronto Area, we took advantage of invasion by V. rossicum and neighbouring uninvaded sites to investigate the fungal communities associating with local plant roots, including goldenrod (Solidago spp., wild red raspberry (Rubus idaeus, Canada anemone (Anemone canadensis, meadow rue (Thalictrum dioicum, and wild ginger (Asarum canadense. Fungi colonizing roots were characterized with terminal restriction fragment length polymorphism (T-RFLP analysis of amplified total fungal (TF and arbuscular mycorrhizal fungal (AMF ribosomal fragments. We saw a significant effect of the presence of this invader on the diversity of TF phylotypes colonizing native plant roots, and a composition shift of both the TF and AMF community in native roots in both sites. In native communities invaded by V. rossicum, a significant increase in richness and colonization density of TF suggests that invaders such as V. rossicum may be able to influence the composition of soil fungi available to natives, possibly via mechanisms such as increased carbon provision or antibiosis attributable to unique root exudates.

  12. Marine Isolates of Trichoderma spp. as Potential Halotolerant Agents of Biological Control for Arid-Zone Agriculture ▿ †

    Science.gov (United States)

    Gal-Hemed, Inbal; Atanasova, Lea; Komon-Zelazowska, Monika; Druzhinina, Irina S.; Viterbo, Ada; Yarden, Oded

    2011-01-01

    The scarcity of fresh water in the Mediterranean region necessitates the search for halotolerant agents of biological control of plant diseases that can be applied in arid-zone agriculture irrigated with saline water. Among 29 Trichoderma strains previously isolated from Mediterranean Psammocinia sp. sponges, the greatest number of isolates belong to the Trichoderma longibrachiatum-Hypocrea orientalis species pair (9), H. atroviridis/T. atroviride (9), and T. harzianum species complex (7), all of which are known for high mycoparasitic potential. In addition, one isolate of T. asperelloides and two putative new species, Trichoderma sp. O.Y. 14707 and O.Y. 2407, from Longibrachiatum and Strictipilosa clades, respectively, have been identified. In vitro salinity assays showed that the ability to tolerate increasing osmotic pressure (halotolerance) is a strain- or clade-specific property rather than a feature of a species. Only a few isolates were found to be sensitive to increased salinity, while others either were halotolerant or even demonstrated improved growth in increasingly saline conditions. In vitro antibiosis assays revealed strong antagonistic activity toward phytopathogens due to the production of both soluble and volatile metabolites. Two marine-derived Trichoderma isolates, identified as T. atroviride and T. asperelloides, respectively, effectively reduced Rhizoctonia solani damping-off disease on beans and also induced defense responses in cucumber seedlings against Pseudomonas syringae pv. lachrimans. This is the first inclusive evaluation of marine fungi as potential biocontrol agents. PMID:21666030

  13. Functional role of an endophytic Bacillus amyloliquefaciens in enhancing growth and disease protection of invasive English ivy (Hedera helix L.)

    Science.gov (United States)

    Soares, Marcos Antonio; Li, Jai-Yan; Bergen, Marshall; da Silva, Joaquim Manoel; Kowalski, Kurt P.; White, James Francis

    2015-01-01

    BackgroundWe hypothesize that invasive English ivy (Hedera helix) harbors endophytic microbes that promote plant growth and survival. To evaluate this hypothesis, we examined endophytic bacteria in English ivy and evaluated effects on the host plant.MethodsEndophytic bacteria were isolated from multiple populations of English ivy in New Brunswick, NJ. Bacteria were identified as a single species Bacillus amyloliquefaciens. One strain of B. amyloliquefaciens, strain C6c, was characterized for indoleacetic acid (IAA) production, secretion of hydrolytic enzymes, phosphate solubilization, and antibiosis against pathogens. PCR was used to amplify lipopeptide genes and their secretion into culture media was detected by MALDI-TOF mass spectrometry. Capability to promote growth of English ivy was evaluated in greenhouse experiments. The capacity of C6c to protect plants from disease was evaluated by exposing B+ (bacterium inoculated) and B− (non-inoculated) plants to the necrotrophic pathogen Alternaria tenuissima.ResultsB. amyloliquefaciens C6c systemically colonized leaves, petioles, and seeds of English ivy. C6c synthesized IAA and inhibited plant pathogens. MALDI-TOF mass spectrometry analysis revealed secretion of antifungal lipopeptides surfactin, iturin, bacillomycin, and fengycin. C6c promoted the growth of English ivy in low and high soil nitrogen conditions. This endophytic bacterium efficiently controlled disease caused by Alternaria tenuissima.ConclusionsThis study suggests that B. amyloliquefaciens plays an important role in enhancing growth and disease protection of English ivy.

  14. Microflora en semillas de frijol

    Directory of Open Access Journals (Sweden)

    Jos\\u00E9 B. Membre\\u00F1o

    2001-01-01

    Full Text Available Microflora en semillas de frijol (Phaseolus vulgaris L.. Se estudió la microflora bacteriana presente en semillas de frijol y su relación con Xanthomonas campestris pv. phaseoli (Xcp, en 118 genotipos procedentes de VIDAC-98, INTA- Nicaragua, TARS-USDA e Isabela-P.R. Se utilizaron cinco métodos de aislamiento: semilla desinfectada con hipoclorito de sodio, semilla en caldo nutritivo refrigerada por una hora, dispersión de 0,1 ml de suspensión de semillas en medio sólido, siembra líquida de 1 ml de suspensión y semilla en caldo nutritivo, agitado y refrigerado por 24 horas. Se aislaron 104 colonias amarillas de 41 genotipos. Treinta y seis colonias fueron KOH positivo (Gram negativo, 68 negativo (Gram positivo y 34 hidrolizaron almidón. Las colonias de pigmentación amarilla resultaron no patogénicas bajo condiciones de invernadero. Estas se identificaron con el sistema BIOLOG como: Pantoea agglomerans (25, Xanthomonas campestris (2, Enterobacter agglomerans (2, Sphingomonas paucimobilis (2, Pseudomonas fluorescens y Flavimonas oryzihabitans. En adición, los genotipos portaron colonias con pigmentación distinta a la amarilla. En las pruebas de antagonismo se identificaron colonias con actividad de deoxyribonucleasa y de antibiosis a Xcp. De éstas, 15 colonias inhibieron a Xcp significativamente. Se identificaron los hongos Rhizoctonia solani, Penicillium spp., Fusarium spp., Aspergillus flavus, Rhizopus nigricans y Macrophomina phaseolina en un 52,9 % del total de genotipos evaluados

  15. Rhizobacterially induced protection of watermelon against Didymella bryoniae.

    Science.gov (United States)

    Nga, N T T; Giau, N T; Long, N T; Lübeck, M; Shetty, N P; de Neergaard, E; Thuy, T T T; Kim, P V; Jørgensen, H J L

    2010-08-01

    To identify rhizobacteria from the Mekong Delta of Vietnam, which can systemically protect watermelon against Didymella bryoniae and elucidate the mechanisms involved in the protection conferred by isolate Pseudomonas aeruginosa 23(1-1). Bacteria were isolated from watermelon roots and their antagonistic ability tested in vitro. Of 190 strains, 68 were able to inhibit D. bryoniae by production of antibiotics. Four strains were able to reduce foliar infection by D. bryoniae when applied to watermelon seeds before sowing. Strain Ps. aeruginosa 23(1-1) was chosen for investigations of the mechanisms involved in protection and ability to control disease under field conditions. In the field, the bacterium was able to significantly reduce disease in two consecutive seasons and increase yield. Furthermore, it colonized watermelon plants endophytically, with higher numbers in plants infected by D. bryoniae than in noninoculated plants. To elucidate the mechanisms involved in protection, the infection biology of the pathogen was studied in bacterially treated and control plants. Pseudomonas aeruginosa 23(1-1) treatment inhibited pathogen penetration and this was associated with hydrogen peroxide accumulation, increased peroxidase activity and occurrence of new peroxidase isoforms, thus indicating that resistance was induced. The endophytic bacterium Ps. aeruginosa 23(1-1) can control D. bryoniae in watermelon by antibiosis and induced resistance under greenhouse and field conditions. These findings suggest that rhizobacteria from native soils in Vietnam can be used to control gummy stem blight of watermelon through various mechanisms including induction of resistance.

  16. Biological aspects of Bemisia tabaci (Genn.) B biotype (Hemiptera: Aleyrodidae) on six bean genotypes; Aspectos biologicos de Bemisia tabaci (Genn.) biotipo B (Hemiptera: Aleyrodidae) em seis genotipos de feijoeiro

    Energy Technology Data Exchange (ETDEWEB)

    Oriani, Maria A. de G. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Ecologia e Biologia Evolutiva; Vendramin, Jose D. [Universidade de Sao Paulo (USP), Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz (ESALQ). Dept. de Entomologia, Fitopatologia e Zoologia Agricola; Brunherotto, Rogerio [Fundacao Municipal de Ensino Superior de Braganca Paulista, SP (Brazil)

    2008-03-15

    The silverleaf whitefly is one of the most harmful pests that attack bean crops, mainly for extracting large quantities of phloem sap and transmitting the bean golden mosaic virus. Resistant germplasm plants can be an important method for controlling this pest. The biological aspects of Bemisia tabaci B biotype on bean (Phaseolus vulgaris) genotypes were evaluated. The tests were conducted under laboratory conditions, with the following genotypes: Arc 1, Arc 3s, Arc 5s, G13028, G11056 and Porrillo 70. The bean plants in a stage IV-1 were infested during one day with silverleaf white flies. Afterwards the eggs and nymphs were observed until adult emergence. Longevity and fecundity of emerged insects were also evaluated. The longest development time occurred for nymphs fed on Arc 3s genotype (26.5 days), following by G11056 (25.9 days) and G13028 (25.3 days). The development period was 5.5 days longer in Arc 3s when compared with Porrillo 70. Also, the wild genotypes Arc 3s and G11056 showed higher mortality rates (94.7% and 83.1%, respectively), which may suggest antibiosis and/or feeding non preference resistance type. For this reason, although longevity and fecundity were not influenced when the whitefly fed on resistant genotypes (Arc 3s, G11056, G13028 and Arc 5s), those genotypes can be used for bean breeding program towards B. tabaci B biotype. (author)

  17. RFLP-facilitated investigation of the quantitative resistance of rice to brown planthopper ( Nilaparvata lugens).

    Science.gov (United States)

    Xu, X. F.; Mei, H. W.; Luo, L. J.; Cheng, X. N.; Li, Z. K.

    2002-02-01

    Quantitative trait loci (QTLs), conferring quantitative resistance to rice brown planthopper (BPH), were investigated using 160 F(11) recombinant inbred lines (RILs) from the Lemont/Teqing cross, a complete RFLP map, and replicated phenotyping of seedbox inoculation. The paternal indica parent, Teqing, was more-resistant to BPH than the maternal japonica parent, Lemont. The RILs showed transgressive segregation for resistance to BPH. Seven main-effect QTLs and many epistatic QTL pairs were identified and mapped on the 12 rice chromosomes. Collectively, the main-effect and epistatic QTLs accounted for over 70% of the total variation in damage scores. Teqing has the resistance allele at four main-effect QTLs, and the Lemont allele resulted in resistance at the other three. Of the main-effect QTLs identified, QBphr5b was mapped to the vicinity of gl1, a major gene controlling leaf and stem pubescence. The Teqing allele controlling leaf and stem pubescence was associated with resistance, while the Lemont allele for glabrous stem and leaves was associated with susceptibility, indicating that this gene may have contributed to resistance through antixenosis. Similar to the reported BPH resistance genes, the other six detected main-effect QTLs were all mapped to regions where major disease resistance genes locate, suggesting they might have contributed either to antibiosis or tolerance. Our results indicated that marker-aided pyramiding of major resistance genes and QTLs should provide effective and stable control over this devastating pest.

  18. An inter-species signaling system mediated by fusaric acid has parallel effects on antifungal metabolite production by Pseudomonas protegens Pf-5 and antibiosis of Fusarium spp.

    Science.gov (United States)

    Pseudomonas protegens strain Pf-5 is a rhizosphere bacterium that acts as a biocontrol agent of soilborne plant diseases, and produces at least seven different secondary metabolites with antifungal properties. We derived site-directed mutants of Pf-5 with single and multiple mutations in the biosynt...

  19. Functional role of bacteria from invasive Phragmites australis in promotion of host growth

    Science.gov (United States)

    Soares, M. A.; Li, H-Y; Kowalski, Kurt P.; Bergen, M.; Torres, M. S.; White, J. F.

    2016-01-01

    We hypothesize that bacterial endophytes may enhance the competitiveness and invasiveness of Phragmites australis. To evaluate this hypothesis, endophytic bacteria were isolated from P. australis. The majority of the shoot meristem isolates represent species from phyla Firmicutes, Proteobacteria, and Actinobacteria. We chose one species from each phylum to characterize further and to conduct growth promotion experiments in Phragmites. Bacteria tested include Bacillus amyloliquefaciens A9a, Achromobacter spanius B1, and Microbacterium oxydans B2. Isolates were characterized for known growth promotional traits, including indole acetic acid (IAA) production, secretion of hydrolytic enzymes, phosphate solubilization, and antibiosis activity. Potentially defensive antimicrobial lipopeptides were assayed for through application of co-culturing experiments and mass spectrometer analysis. B. amyloliquefaciens A9a and M. oxydans B2 produced IAA. B. amyloliquefaciens A9a secreted antifungal lipopeptides. Capability to promote growth of P. australis under low nitrogen conditions was evaluated in greenhouse experiments. All three isolates were found to increase the growth of P. australis under low soil nitrogen conditions and showed increased absorption of isotopic nitrogen into plants. This suggests that the Phragmites microbes we evaluated most likely promote growth of Phragmites by enhanced scavenging of nitrogenous compounds from the rhizosphere and transfer to host roots. Collectively, our results support the hypothesis that endophytic bacteria play a role in enhancing growth of P. australis in natural populations. Gaining a better understanding of the precise contributions and mechanisms of endophytes in enabling P. australis to develop high densities rapidly could lead to new symbiosis-based strategies for management and control of the host.

  20. Ethylene Contributes to maize insect resistance1-Mediated Maize Defense against the Phloem Sap-Sucking Corn Leaf Aphid1[OPEN

    Science.gov (United States)

    Louis, Joe; Basu, Saumik; Varsani, Suresh; Castano-Duque, Lina; Jiang, Victoria; Williams, W. Paul; Felton, Gary W.; Luthe, Dawn S.

    2015-01-01

    Signaling networks among multiple phytohormones fine-tune plant defense responses to insect herbivore attack. Previously, it was reported that the synergistic combination of ethylene (ET) and jasmonic acid (JA) was required for accumulation of the maize insect resistance1 (mir1) gene product, a cysteine (Cys) proteinase that is a key defensive protein against chewing insect pests in maize (Zea mays). However, this study suggests that mir1-mediated resistance to corn leaf aphid (CLA; Rhopalosiphum maidis), a phloem sap-sucking insect pest, is independent of JA but regulated by the ET-signaling pathway. Feeding by CLA triggers the rapid accumulation of mir1 transcripts in the resistant maize genotype, Mp708. Furthermore, Mp708 provided elevated levels of antibiosis (limits aphid population)- and antixenosis (deters aphid settling)-mediated resistance to CLA compared with B73 and Tx601 maize susceptible inbred lines. Synthetic diet aphid feeding trial bioassays with recombinant Mir1-Cys Protease demonstrates that Mir1-Cys Protease provides direct toxicity to CLA. Furthermore, foliar feeding by CLA rapidly sends defensive signal(s) to the roots that trigger belowground accumulation of the mir1, signifying a potential role of long-distance signaling in maize defense against the phloem-feeding insects. Collectively, our data indicate that ET-regulated mir1 transcript accumulation, uncoupled from JA, contributed to heightened resistance to CLA in maize. In addition, our results underscore the significance of ET acting as a central node in regulating mir1 expression to different feeding guilds of insect herbivores. PMID:26253737

  1. NÃO PREFERÊNCIA PARA ALIMENTAÇÃO E ASPECTOS BIOLÓGICOS DE Spodoptera eridania EM CULTIVARES DE FEIJÃO-CAUPI

    Directory of Open Access Journals (Sweden)

    BRUNO HENRIQUE SARDINHA DE SOUZA

    2012-01-01

    Full Text Available The aim of this paper was to evaluate the no-preference for feeding and biological aspects of Spodoptera eridania fed on cowpea cultivars BR17 Gurgueia, BRS Urubuquara, BRS Nova Era, Sempre Verde, BRS Milênio and BR3 Tracuateua. In free-choice test, leaf discs were placed in Petri dishes where one third instar larvae per cultivar was released, whereas in no-choice test one leaf disc was placed per Petri dish where one caterpillar per cultivar was released, evaluating their attractiveness after 1, 3, 5, 10, 15, 30, 60, 120, 360 and 720 minutes, as well as the leaf area consumed. Randomized blocks and complete randomized blocks design were used for free-choice and no-choice tests, respectively, with six treatments and 10 replications. The evaluation of the biological parameters of S. eridania was carried out in Petri dishes where recently hatched caterpillars were transferred in the proportion of one per dish, and the leafs of the cultivars were offered to them during the whole larval period, and we evaluated: periods and viabilities of larvae and pupae, overall viability, weight of larvae and pupae, sex ratio, longevity and overall cycle. Complete randomized design was used with six treatments and 30 replications. In no- preference for feeding free-choice test the cultivars Sempre Verde and BR17 Gurgueia were the most and the least consumed, respectively. Regarding the effects of cowpea cultivars on larval viability we can infer that BRS Urubuquara and Sempre Verde show antibiosis-type resistance to S. eridania.

  2. Endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis are influenced by soil mercury contamination.

    Science.gov (United States)

    Pietro-Souza, William; Mello, Ivani Souza; Vendruscullo, Suzana Junges; Silva, Gilvan Ferreira da; Cunha, Cátia Nunes da; White, James Francis; Soares, Marcos Antônio

    2017-01-01

    The endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis were examined with respect to soil mercury (Hg) contamination. Plants were collected in places with and without Hg+2 for isolation and identification of their endophytic root fungi. We evaluated frequency of colonization, number of isolates and richness, indices of diversity and similarity, functional traits (hydrolytic enzymes, siderophores, indoleacetic acid, antibiosis and metal tolerance) and growth promotion of Aeschynomene fluminensis inoculated with endophytic fungi on soil with mercury. The frequency of colonization, structure and community function, as well as the abundant distribution of taxa of endophytic fungi were influenced by mercury contamination, with higher endophytic fungi in hosts in soil with mercury. The presence or absence of mercury in the soil changes the profile of the functional characteristics of the endophytic fungal community. On the other hand, tolerance of lineages to multiple metals is not associated with contamination. A. fluminensis depends on its endophytic fungi, since plants free of endophytic fungi grew less than expected due to mercury toxicity. In contrast plants containing certain endophytic fungi showed good growth in soil containing mercury, even exceeding growth of plants cultivated in soil without mercury. The data obtained confirm the hypothesis that soil contamination by mercury alters community structure of root endophytic fungi in terms of composition, abundance and species richness. The inoculation of A. fluminensis with certain strains of stress tolerant endophytic fungi contribute to colonization and establishment of the host and may be used in processes that aim to improve phytoremediation of soils with toxic concentrations of mercury.

  3. Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants.

    Science.gov (United States)

    Sen, Ruchira; Ishak, Heather D; Estrada, Dora; Dowd, Scot E; Hong, Eunki; Mueller, Ulrich G

    2009-10-20

    In many host-microbe mutualisms, hosts use beneficial metabolites supplied by microbial symbionts. Fungus-growing (attine) ants are thought to form such a mutualism with Pseudonocardia bacteria to derive antibiotics that specifically suppress the coevolving pathogen Escovopsis, which infects the ants' fungal gardens and reduces growth. Here we test 4 key assumptions of this Pseudonocardia-Escovopsis coevolution model. Culture-dependent and culture-independent (tag-encoded 454-pyrosequencing) surveys reveal that several Pseudonocardia species and occasionally Amycolatopsis (a close relative of Pseudonocardia) co-occur on workers from a single nest, contradicting the assumption of a single pseudonocardiaceous strain per nest. Pseudonocardia can occur on males, suggesting that Pseudonocardia could also be horizontally transmitted during mating. Pseudonocardia and Amycolatopsis secretions kill or strongly suppress ant-cultivated fungi, contradicting the previous finding of a growth-enhancing effect of Pseudonocardia on the cultivars. Attine ants therefore may harm their own cultivar if they apply pseudonocardiaceous secretions to actively growing gardens. Pseudonocardia and Amycolatopsis isolates also show nonspecific antifungal activities against saprotrophic, endophytic, entomopathogenic, and garden-pathogenic fungi, contrary to the original report of specific antibiosis against Escovopsis alone. We conclude that attine-associated pseudonocardiaceous bacteria do not exhibit derived antibiotic properties to specifically suppress Escovopsis. We evaluate hypotheses on nonadaptive and adaptive functions of attine integumental bacteria, and develop an alternate conceptual framework to replace the prevailing Pseudonocardia-Escovopsis coevolution model. If association with Pseudonocardia is adaptive to attine ants, alternate roles of such microbes could include the protection of ants or sanitation of the nest.

  4. CSF lactate alone is not a reliable indicator of bacterial ventriculitis in patients with ventriculostomies.

    Science.gov (United States)

    Hill, Emily; Bleck, Thomas P; Singh, Kamaljit; Ouyang, Bichun; Busl, Katharina M

    2017-06-01

    In a febrile patient with a ventriculostomy, diagnosing or excluding bacterial or microbial ventriculitis is difficult, as conventional markers in analysis of cerebrospinal fluid (CSF) are not applicable due to presence of blood and inflammation. CSF lactate has been shown to be a useful indicator of bacterial meningitis in CSF obtained via lumbar puncture, but little and heterogenous data exist on patients with ventriculostomies. We reviewed all CSF analyses obtained via ventriculostomy in patients admitted to our tertiary medical center between 2008 and 2013, and constructed receiver operating characteristic (ROC) curves to evaluate the accuracy of CSF lactate concentration in discriminating a positive CSF culture from a negative one in setting of ventriculostomy and prophylactic antibiosis. Among 467 CSF lactate values, there were 22 corresponding CSF cultures with bacterial growth. Sensitivities and specificities for CSF lactate at threshold values 3, 4, 5 and 6mmol/L showed sensitivity and specificity greater than 70% for CSF lactate threshold 4mmol/L. The lowest threshold value of 3mmol/L resulted in higher sensitivity of 81.8%, and the highest chosen threshold value resulted in high specificity of 94.2%, but these values had poor corresponding specificity and sensitivity, respectively. The area under the curve was 0.82 (95% CI 0.72, 0.91). Our data from a large sample of CSF studies in patients with ventriculostomy indicate that no single value of CSF lactate provided both sensitivity and specificity high enough to be regarded as reliable test. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Biocontrol Potential of Streptomyces hydrogenans strain DH16 Towards Alternaria brassicicola to Control Damping Off and Black Leaf Spot of Raphanus sativus

    Directory of Open Access Journals (Sweden)

    Rajesh Kumari Manhas

    2016-12-01

    Full Text Available Biocontrol agents and their bioactive metabolites provide one of the best alternatives to decrease the use of chemical pesticides. In light of this, the present investigation reports the biocontrol potential of Streptomyces hydrogenans DH16 and its metabolites towards Alternaria brassicicola, causal agent of black leaf spot and damping off of seedlings of crucifers. In vitro antibiosis of strain against pathogen revealed complete suppression of mycelial growth of pathogen, grown in potato dextrose broth supplemented with culture supernatant (20% v/v of Streptomyces hydrogenans DH16. Microscopic examination of the fungal growth showed severe morphological abnormalities in the mycelium caused by antifungal metabolites. In vivo studies showed the efficacy of streptomycete cells and culture supernatant as seed dressings to control damping off of Raphanus sativus seedlings. Treatment of pathogen infested seeds with culture supernatant (10% and streptomycete cells significantly improved seed germination (75-80% and vigour index (1167-1538. Furthermore, potential of cells and culture supernatant as foliar treatment to control black leaf spot was also evaluated. Clearly visible symptoms of disease were observed in the control plants with 66.81% disease incidence and retarded growth of root system. However, disease incidence reduced to 6.78 and 1.47% in plants treated with antagonist and its metabolites, respectively. Additionally, treatment of seeds and plants with streptomycete stimulated various growth traits of plants over uninoculated control plants in the absence of pathogen challenge. These results indicate that S. hydrogenans and its culture metabolites can be developed as biofungicides as seed dressings to control seed borne pathogens, and as sprays to control black leaf spot of crucifers.

  6. Detrimental and neutral effects of a wild grass-fungal endophyte symbiotum on insect preference and performance.

    Science.gov (United States)

    Clement, Stephen L; Hu, Jinguo; Stewart, Alan V; Wang, Bingrui; Elberson, Leslie R

    2011-01-01

    Seed-borne Epichloë/Neotyphodium Glenn, Bacon, Hanlin (Ascomycota: Hypocreales: Clavicipitaceae) fungal endophytes in temperate grasses can provide protection against insect attack with the degree of host resistance related to the grass-endophyte symbiotum and the insect species involved in an interaction. Few experimental studies with wild grass-endophyte symbiota, compared to endophyte-infected agricultural grasses, have tested for anti-insect benefits, let alone for resistance against more than one insect species. This study quantified the preference and performance of the bird cherry oat-aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae) and the cereal leaf beetle, Oulema melanopus (L.) (Coleoptera: Chrysomelidae), two important pests of forage and cereal grasses, on Neotyphodium-infected (E+) and uninfected (E-) plants of the wild grass Alpine timothy, Phleum alpinum L. (Poales: Poaceae). The experiments tested for both constitutive and wound-induced resistance in E+ plants to characterize possible plasticity of defense responses by a wild E+ grass. The aphid, R. padi preferred E- over E+ test plants in choice experiments and E+ undamaged test plants constitutively expressed antibiosis resistance to this aphid by suppressing population growth. Prior damage of E+ test plants did not induce higher levels of resistance to R. padi. By contrast, the beetle, O. melanopus showed no preference for E+ or E- test plants and endophyte infection did not adversely affect the survival and development of larvae. These results extend the phenomenon of variable effects of E+ wild grasses on the preference and performance of phytophagous insects. The wild grass- Neotyphodium symbiotum in this study broadens the number of wild E+ grasses available for expanded explorations into the effects of endophyte metabolites on insect herbivory.

  7. Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation.

    Science.gov (United States)

    Zhao, Yan; Huang, Jin; Wang, Zhizheng; Jing, Shengli; Wang, Yang; Ouyang, Yidan; Cai, Baodong; Xin, Xiu-Fang; Liu, Xin; Zhang, Chunxiao; Pan, Yufang; Ma, Rui; Li, Qiaofeng; Jiang, Weihua; Zeng, Ya; Shangguan, Xinxin; Wang, Huiying; Du, Bo; Zhu, Lili; Xu, Xun; Feng, Yu-Qi; He, Sheng Yang; Chen, Rongzhi; Zhang, Qifa; He, Guangcun

    2016-10-24

    Brown planthopper (BPH), Nilaparvata lugens Stål, is one of the most devastating insect pests of rice (Oryza sativa L.). Currently, 30 BPH-resistance genes have been genetically defined, most of which are clustered on specific chromosome regions. Here, we describe molecular cloning and characterization of a BPH-resistance gene, BPH9, mapped on the long arm of rice chromosome 12 (12L). BPH9 encodes a rare type of nucleotide-binding and leucine-rich repeat (NLR)-containing protein that localizes to the endomembrane system and causes a cell death phenotype. BPH9 activates salicylic acid- and jasmonic acid-signaling pathways in rice plants and confers both antixenosis and antibiosis to BPH. We further demonstrated that the eight BPH-resistance genes that are clustered on chromosome 12L, including the widely used BPH1, are allelic with each other. To honor the priority in the literature, we thus designated this locus as BPH1/9 These eight genes can be classified into four allelotypes, BPH1/9-1, -2, -7, and -9 These allelotypes confer varying levels of resistance to different biotypes of BPH. The coding region of BPH1/9 shows a high level of diversity in rice germplasm. Homologous fragments of the nucleotide-binding (NB) and leucine-rich repeat (LRR) domains exist, which might have served as a repository for generating allele diversity. Our findings reveal a rice plant strategy for modifying the genetic information to gain the upper hand in the struggle against insect herbivores. Further exploration of natural allelic variation and artificial shuffling within this gene may allow breeding to be tailored to control emerging biotypes of BPH.

  8. Interspecific variation in resistance of two host tree species to spruce budworm

    Science.gov (United States)

    Fuentealba, Alvaro; Bauce, Éric

    2016-01-01

    Woody plants regularly sustain biomass losses to herbivorous insects. Consequently, they have developed various resistance mechanisms to cope with insect attack. However, these mechanisms of defense and how they are affected by resource availability are not well understood. The present study aimed at evaluating and comparing the natural resistance (antibiosis and tolerance) of balsam fir (Abies balsamea [L.] Mill.) and white spruce (Picea glauca [Moench) Voss] to spruce budworm, Choristoneura fumiferana (Clem.), and how drainage site quality as a component of resource availability affects the expression of resistance over time (6 years). Our results showed that there are differences in natural resistance between the two tree species to spruce budworm, but it was not significantly affected by drainage quality. Balsam fir exhibited higher foliar toxic secondary compounds concentrations than white spruce in all drainage classes, resulting in lower male pupal mass, survival and longer male developmental time. This, however, did not prevent spruce budworm from consuming more foliage in balsam fir than in white spruce. This response suggests that either natural levels of measured secondary compounds do not provide sufficient toxicity to reduce defoliation, or spruce budworm has developed compensatory mechanisms, which allow it to utilize food resources more efficiently or minimize the toxic effects that are produced by its host's defensive compounds. Larvae exhibited lower pupal mass and higher mortality in rapidly drained and subhygric sites. Drainage class also affected the amount of foliage destroyed but its impact varied over the years and was probably influenced by climatic variables. These results demonstrate the complexity of predicting the effect of resource availability on tree defenses, especially when other confounding environmental factors can affect tree resource allocation and utilization.

  9. Comparison of the neurotoxicities between volatile organic compounds and fragrant organic compounds on human neuroblastoma SK-N-SH cells and primary cultured rat neurons

    Directory of Open Access Journals (Sweden)

    Yasue Yamada

    2015-01-01

    Full Text Available These are many volatile organic compounds (VOCs that are synthesized, produced from petroleum or derived from natural compounds, mostly plants. Fragrant and volatile organic compounds from plants have been used as food additives, medicines and aromatherapy. Several clinical and pathological studies have shown that chronic abuse of VOCs, mainly toluene, causes several neuropsychiatric disorders. Little is known about the mechanisms of neurotoxicity of the solvents. n-Octanal, nonanal, and 2-ethyl-1-hexanol, which are used catalyzers or intermediates of chemical reactions, are released into the environment. Essential oils have the functions of self-defense, sterilization, and antibiosis in plants. When volatile organic compounds enter the body, there is the possibility that they will pass through the blood–brain barrier (BBB and affect the central nervous system (CNS. However, the direct effects of volatile organic compounds on neural function and their toxicities are still unclear. We compared the toxicities of n-octanal, nonanal and 2-ethyl-1-hexanol with those of five naturally derived fragrant organic compounds (FOCs, linalool, cis-3-hexen-1-ol, isoamyl alcohol, n-propyl alcohol and n-phenethyl alcohol. MTT assay of human neuroblastoma SK-N-SH cells showed that the IC50 values of linalool, cis-3-hexen-1-ol, isoamyl alcohol, n-propyl alcohol and phenethyl alcohol were 1.33, 2.3, >5, >5, and 2.39 mM, respectively, and the IC50 values of toluene, n-octanal, nonanal and 2-ethyl-1-hexanol were 850, 37.2, 8.31 and 15.1 μM, respectively. FOCs showed lower toxicities than those of VOCs. These results indicate that FOCs are safer than other compounds.

  10. Prospective study to compare antibiosis versus the association of N-acetylcysteine, D-mannose and Morinda citrifolia fruit extract in preventing urinary tract infections in patients submitted to urodynamic investigation

    Directory of Open Access Journals (Sweden)

    Giovanni Palleschi

    2017-03-01

    Full Text Available Background: The abuse of antimicrobical drugs has increased the resistance of microorganisms to treatments, thus to make urinary tract infections (UTIs more difficult to eradicate. Among natural substances used to prevent UTI, literature has provided preliminary data of the beneficial effects of D-mannose, N-acetylcysteine, and Morinda citrifolia fruit extract, due to their complementary mechanism of action which contributes respectively to limit bacteria adhesion to the urothelium, to destroy bacterial pathogenic biofilm, and to the anti-inflammatory and analgesic activity. The purpose of this study was to compare the administration of an association of D-mannose, N-acetylcysteine (NAC and Morinda citrifolia extract versus antibiotic therapy in the prophylaxis of UTIs potentially associated with urological mini-invasive diagnostics procedures, in clinical model of the urodynamic investigation. Methods: 80 patients eligible for urodynamic examination, 42 men and 38 women, have been prospectively enrolled in the study and randomised in two groups (A and B of 40 individuals. Patients of group A followed antibiotic therapy with Prulifloxacine, by mouth 400 mg/day for 5 days, while patients of the group B followed the association of mannose and NAC therapy, two vials/day for 7 days. Ten days after the urodynamic study, the patients were submitted to urine examination and urine culture. Results: The follow up assessment didn't show statistical significant difference between the two groups regarding the incidence of UTI. Conclusions: The association of mannose and NAC therapy resulted similar to the antibiotic therapy in preventing UTIs in patients submitted to urodynamic examination. This result leads to consider the possible use of these nutraceutical agents as a good alternative in the prophylaxis of the UTI afterwards urological procedures in urodynamics.

  11. Resistance of irradiated and non-irradiated corn grain genotypes against the weevil Sitophilus zeamais Mots., 1855 (Coleoptera: Curculionidae)

    International Nuclear Information System (INIS)

    Oliveira, Carolina Natali de

    2005-01-01

    The resistance of 13 /////com grain genotypes was evaluated against the attack of Sitophilus zeamais (Mots.) by means of a no-choice test; 6 of them were selected (AGN 2012, AGN 30AOO, AGN 31A31, AGN 25A23, AGN 32A43, and AGN 35A42) and then submitted to a free-choice test where attractiveness and non preference for oviposition were assessed. The grain from the selected genotypes were later treated with Cobalt-60 gamma radiation at the doses of 0.0; 0.5; 1.0; and 1.5 kGy and submitted to the same tests. Based on the results, it was verified that genotypes AGN 2012 (30.6 eggs), AGN 31A31 (33.6 eggs), and AGN 30AOO (34.8 eggs) showed a non-preference for oviposition type of resistance, while non-preference for feeding and/or antibiosis were observed in the first two genotypes only. Genotypes AGN 25A23, AGN 32A43, and AGN 35A42 were the most susceptible to com weevil. The increasing gamma radiation ( 60 Co) doses reduced the mean mass of adults in genotype AGN 2012; however, the same parameter increased in genotype AGN 35A42; when treated at the dose of 1.5 kGy, genotypes AGN 2012 and AGN 31A31 showed a reduction in their mean masses of adults, while genotypes AGN 30AOO and AGN 35A42 showed higher mean mass of adults values. The increasing gamma radiation doses ( 60 Co) provided a reduction in mean grain dry mass consumed by the weevil; however, it was concluded that irradiation did not break com grain resistance and can be used for S. zeamais disinfestation prior to storage. (author)

  12. The large universal Pantoea plasmid LPP-1 plays a major role in biological and ecological diversification

    Directory of Open Access Journals (Sweden)

    De Maayer Pieter

    2012-11-01

    Full Text Available Abstract Background Pantoea spp. are frequently isolated from a wide range of ecological niches and have various biological roles, as plant epi- or endophytes, biocontrol agents, plant-growth promoters or as pathogens of both plant and animal hosts. This suggests that members of this genus have undergone extensive genotypic diversification. One means by which this occurs among bacteria is through the acquisition and maintenance of plasmids. Here, we have analyzed and compared the sequences of a large plasmid common to all sequenced Pantoea spp. Results and discussion The Large PantoeaPlasmids (LPP-1 of twenty strains encompassing seven different Pantoea species, including pathogens and endo-/epiphytes of a wide range of plant hosts as well as insect-associated strains, were compared. The LPP-1 plasmid sequences range in size from ~281 to 794 kb and carry between 238 and 750 protein coding sequences (CDS. A core set of 46 proteins, encompassing 2.2% of the total pan-plasmid (2,095 CDS, conserved among all LPP-1 plasmid sequences, includes those required for thiamine and pigment biosynthesis. Phylogenetic analysis reveals that these plasmids have arisen from an ancestral plasmid, which has undergone extensive diversification. Analysis of the proteins encoded on LPP-1 also showed that these plasmids contribute to a wide range of Pantoea phenotypes, including the transport and catabolism of various substrates, inorganic ion assimilation, resistance to antibiotics and heavy metals, colonization and persistence in the host and environment, pathogenesis and antibiosis. Conclusions LPP-1 is universal to all Pantoea spp. whose genomes have been sequenced to date and is derived from an ancestral plasmid. LPP-1 encodes a large array of proteins that have played a major role in the adaptation of the different Pantoea spp. to their various ecological niches and their specialization as pathogens, biocontrol agents or benign saprophytes found in many diverse

  13. The microbe-free plant: fact or artefact?

    Directory of Open Access Journals (Sweden)

    Laila P. Pamela Partida-Martinez

    2011-12-01

    Full Text Available Plant-microbe interactions are ubiquitous. Plants are often colonized by pathogens but even more commonly engaged in neutral or mutualistic interactions with microbes: below-ground microbial plant associates are mycorrhizal fungi, Rhizobia and rhizosphere bacteria, above-ground plant parts are colonized by bacterial and fungal endophytes and by microbes in the phyllosphere. We emphasize here that a completely microbe-free plant is an exotic exception rather than the biologically relevant rule. The complex interplay of such microbial communities with the host plant affects plant nutrition, growth rate, resistance to biotic and abiotic stress, and plant survival and distribution. The mechanisms involved reach from nutrient acquisition, the production of plant hormones or direct antibiosis to effects on host resistance genes or interactions at higher trophic levels. Plant-associated microbes are heterotrophic and cause costs to their host plant, whereas the benefits depend on the environment. Thus, the outcome of the interaction is highly context-dependent. Considering the microbe-free plant as the ‘normal’ or control stage significantly impairs research into important phenomena such as (1 phenotypic and epigenetic plasticity, (2 the ‘normal’ ecological outcome of a given interaction and (3 the evolution of plants. For the future, we suggest cultivation-independent screening methods using direct PCR from plant tissue of more than one fungal and bacterial gene to collect data on the true microbial diversity in wild plants. The patterns found could be correlated to host species and environmental conditions, in order to formulate testable hypotheses on the biological roles of plant endophytes in nature. Experimental approaches should compare different host-endophyte combinations under various environmental conditions and study at the genetic, transcriptional and physiological level the parameters that shift the interaction along the mutualism

  14. Trichoderma ROLE IN AGROFORESTRY-CACAOTAL SYSTEMS AS AN ANTAGONAL AGENT

    Directory of Open Access Journals (Sweden)

    Úrsula del Carmen López-Ferrer

    2017-05-01

    Full Text Available Agricultural and cocoa agroforestry systems are important for food production and biodiversity conservation. Among this diversity there is a group of fungi of the genus Trichoderma that present antagonistic effects against phytopathogens and this action can be used as a form of biological control of plant pathogens. In the agroforestry-cacao system the diseases with the highest frequency and with the greatest impact on cocoa production (Theobroma cacao are black rot (Phytophthora spp., Broom broom (Moniliophthora perniciosa and moniliasis (Moniliophthora roreri. The objective of this work was to perform an analysis of the main theoretical and practical aspects about the genus Trichoderma and its role in agriculture as an antagonistic agent. One of the microscopic features in the delimitation of the genus, especially by the presence of structures called phalid. The antagonistic mechanisms used by Trichoderma spp. Are described as competition, antibiosis and mycoparasitism. Mycoparasitism is having a relevance on the implications of extracellular enzymes such as chitinases, cellulases, β-1-3-glucanases and proteases that lyse or digest the walls of fungi, Moniliophthora roreri disease. This fungus can inhibit the growth of other fungi and bacteria by producing several volatile and non-volatile secondary metabolites. On the other hand, it participates in the production of regulators of growth and stimulation of the division, differentiation and cellular growth in the plant by the elicitor agent. Trichoderma species that are commercialized for biological control, growth promoter and biofertilizer are T. viride, T. polysporum and T. harzianum. The T. virens and T. harzianum species are most used for the antagonistic control of M. roreri, Phytophthora spp., and M. perniciosa in agroforestry-cacao systems (Theobroma cacao L. with optimal results to the inhibitory effect for these diseases.

  15. Evaluation of potential antagonistism in yeasts, seeking biocontrol of spoilage by Penicillium expansumAvaliação do potencial antagônico de leveduras, visando biocontrole de deterioração por Penicillium expansum

    Directory of Open Access Journals (Sweden)

    Kei-ichi Harada

    2011-12-01

    Full Text Available Considerable losses during apple fruit storage occur due to microbiological diseases, mainly caused by Penicillium expansum, which in addition to fruit pulp deterioration produces patulin, a mycotoxin with carcinogenic and teratogenic activity. Biological control of post-harvest disease by antagonist yeasts focused on killer toxins is an appreciable alternative to the chemical fungicides, due to the low possibility of toxic residues demonstrated during fermentative processes. Twenty out of 44 yeasts (16 isolated from fruits, 10 from corn silage and 18 from laboratory anthill, showed antagonism against spores of P. expansum. The assay in solid medium pointed the strongest nutrient competition antagonism by D. hansenii strain C1 (31 mm inhibition diameter, while D. hansenii strain C7 (15 mm showed higher antibiosis and parasitism pattern. In the following step the extracellular activity was tested performing the assay with culture supernatant in Yeast Medium agar, where C. guilliermondii P3 was more effective against conidia germination (inhibition rate of 58.15% while P. ohmeri showed better inhibition on micelial growth (66.17%. The antibiosis showed by both yeasts could suggest probable mechanism associated with killer phenomenon, once both strains were killer positive against sensitive reference strains (S. cerevisiae NCYC 1006 and P. kluyveri CAY-15. In order to enhance the production of antifungal substance, these yeasts were cultivated with P. expansum, but the difference between culture supernatant obtained from yeasts cultivated alone and with mould was not significant (P > 0.05. The results demonstrated that the yeasts application constitute a promising tool, enhancing the biological control of P. expansum in post-harvest diseases of apple fruit.As perdas consideráveis no armazenamento de maçãs decorrem principalmente de desordens microbiológicas, causadas por Penicillium expansum, que além de colonizar o fruto e causar dano

  16. Efficacy of the saponin component of Impatiens capensis Meerb.in preventing urushiol-induced contact dermatitis.

    Science.gov (United States)

    Motz, Vicki A; Bowers, Christopher P; Kneubehl, Alexander R; Lendrum, Elizabeth C; Young, Linda M; Kinder, David H

    2015-03-13

    Many different tribes of American Indians used jewelweed, Impatiens capensis Meerb, as a plant mash to reduce development of poison ivy dermatitis. Saponins are a natural soapy constituent found within plants. A 2012 study suggested that saponins may be present in jewelweed which could be responsible for its efficacy in preventing rash development following contact with Toxicodendron radicans (L.) Kuntze (poison ivy). This study validated this hypothesis and demonstrated additional biological activity of the jewelweed saponin containing extract. Fresh I. capensis leaves were extracted with methanol and further partitioned between ethyl acetate and water, with a final separation between water and n-butanol, to obtain a saponin containing extract. The presence of saponins in the extract was demonstrated by the observation of foaming and using a vanillin colorimetric assay for total saponins. Efficacy of the saponin containing extracts in rash reduction was tested by brushing poison ivy (PI) onto the forearms of volunteers (N=23) in six locations and treating these PI exposed areas with distilled water (control), saponin containing extracts, fresh plant mashes, and soaps made with and without plant extracts. Saponin containing extracts were further tested for biological activity against both gram negative and gram positive bacteria and against cancer cell lines A-375, HT-29, and MCF-7. Additionally, because saponins have been shown to have a stimulatory effect in cardiac muscle 2 µl saponin extract was applied superficially to black worms, Lumbriculus variegatus (N=5). Both saponin containing extracts and all soaps tested were effective in reducing poison ivy dermatitis; thus, saponin content correlates with PI rash prevention. No apparent antibiosis was observed against any bacteria tested; however, dose response cytotoxicity was documented against MCF-7 breast cancer cells and cytostatic activity was seen against the HT-29 colon cancer cell lines. Lumbriculus

  17. Bacteriocins: molecules of fundamental impact on the microbial ecology and potential food biopreservatives

    Directory of Open Access Journals (Sweden)

    Evandro Leite de Souza

    2005-07-01

    Full Text Available Bacteriocins are proteic molecules synthesized for various lineages of Gram-positive and Gram-negative bacteria when exposed to stressful conditions. Bacteriocins have been characterized as molecules of high antimicrobial property even at low concentrations, provoking the microbial survival inhibition by antibiosis. These substances have their synthesis mediated for genetic mechanisms and develop their lethal action on the microbial cell by multiples mechanisms that can act of isolated or concomitant way culminating with microbial cell killing. This molecules class presents characteristic of stability to heat, low pH, refrigeration and freezing, and resistance to weak organics solvents, salts and enzymes. On the other hand, they are very sensitive to proteolytic enzymes action. Bacteriocins could appear as potential agents to be applied in food conservation systems in order to provide microbiologically stable foods.Bacteriocinas são moléculas protéicas sintetizadas por várias linhagens de bactérias Gram-positivas e Gram-negativas quando submetidas a condições de stress. São ainda caracterizadas como moléculas de alto poder antimicrobiano mesmo em baixas concentrações, provocando a inibição da sobrevivência microbiana através de uma ação de antibiose. As bacteriocinas têm seu processo de síntese mediado por mecanismos genéticos, e desenvolvem sua ação letal sobre a célula microbiana por intermédio de múltiplos mecanismos que podem agir de forma isolada ou concomitante culminando com a morte da célula microbiana. Estas moléculas apresentam características de estabilidade ao calor, baixo pH, refrigeração, congelamento, resistência a ácidos orgânicos fracos, sais e enzimas, porém são muito sensíveis à enzimas proteolíticas. Assim, as bacteriocinas podem aparecer como potenciais agentes para serem aplicados em sistemas de conservação de alimentos com objetivo de prover alimentos microbiologicamente estáveis.

  18. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria.

    Science.gov (United States)

    Sagova-Mareckova, Marketa; Ulanova, Dana; Sanderova, Petra; Omelka, Marek; Kamenik, Zdenek; Olsovska, Jana; Kopecky, Jan

    2015-04-01

    Distribution and evolutionary history of resistance genes in environmental actinobacteria provide information on intensity of antibiosis and evolution of specific secondary metabolic pathways at a given site. To this day, actinobacteria producing biologically active compounds were isolated mostly from soil but only a limited range of soil environments were commonly sampled. Consequently, soil remains an unexplored environment in search for novel producers and related evolutionary questions. Ninety actinobacteria strains isolated at contrasting soil sites were characterized phylogenetically by 16S rRNA gene, for presence of erm and ABC transporter resistance genes and antibiotic production. An analogous analysis was performed in silico with 246 and 31 strains from Integrated Microbial Genomes (JGI_IMG) database selected by the presence of ABC transporter genes and erm genes, respectively. In the isolates, distances of erm gene sequences were significantly correlated to phylogenetic distances based on 16S rRNA genes, while ABC transporter gene distances were not. The phylogenetic distance of isolates was significantly correlated to soil pH and organic matter content of isolation sites. In the analysis of JGI_IMG datasets the correlation between phylogeny of resistance genes and the strain phylogeny based on 16S rRNA genes or five housekeeping genes was observed for both the erm genes and ABC transporter genes in both actinobacteria and streptomycetes. However, in the analysis of sequences from genomes where both resistance genes occurred together the correlation was observed for both ABC transporter and erm genes in actinobacteria but in streptomycetes only in the erm gene. The type of erm resistance gene sequences was influenced by linkage to 16S rRNA gene sequences and site characteristics. The phylogeny of ABC transporter gene was correlated to 16S rRNA genes mainly above the genus level. The results support the concept of new specific secondary metabolite

  19. Influência da antibiose exercida por actinomicetos às estirpes de Bradyrhizobium SPP., na nodulação da soja Influence of antibiosis produced by actinomycetes on strains of Bradyrhizobium SPP. on soybean nodulation

    Directory of Open Access Journals (Sweden)

    João Carlos Pereira

    1999-01-01

    Full Text Available Este trabalho teve por objetivo avaliar o espectro antibiótico de actinomicetos provenientes de solos de Cerrados e a sua influência na nodulação da soja. As estirpes BR 29, BR 33, BR 40, BR 85, BR 86, BR 96, 47/587, 3B-7 e 4A-5 de Bradyrhizobium spp. apresentaram comportamento diferenciado em relação à resistência natural aos antibióticos produzidos por 204 actinomicetos. As estirpes BR 29 e BR 96 foram sensíveis a 5,2 e 9,9% dos antibióticos produzidos, respectivamente, enquanto a BR 33 apresentou sensibilidade a 20,3%. O antagonismo exercido pelos actinomicetos exclusivamente à BR 29 e BR 33 foi de 1,6 e 5,7%, respectivamente. Esse efeito não foi observado nas estirpes BR 40 e BR 96. Inoculações simples e em mistura das estirpes na presença de actinomicetos influenciaram a nodulação da soja. A co-inoculação da BR 33 e BR 29 com o isolado 370 reduziu o percentual de ocorrência média, nos nódulos, da BR 29, de 94,1% para 83,7%, com conseqüente aumento da BR 33 de 6,7% para 17,2%. Os resultados evidenciam a importância de estudos ecológicos desses microrganismos, visando avaliar o seu papel no estabelecimento de uma nodulação eficiente.The aim of this work was to evaluate the antibiotic spectrum of actinomycetes from Cerrado soils and their influence on soybean nodulation. Strains BR 29, BR 33, BR 40, BR 85, BR 86, BR 96, 47/587, 3B-7 and 4A-5 of Bradyrhizobium spp. were characterized by their natural resistence to antibiotics produced by 204 actinomycete isolates. The strains BR 29 and BR 96 of B. elkanii were sensitive to 5.2% and 9.9% the products of actinomycete isolates, respectively, while BR 33 was sensitive up to 20.3%. The antagonistic effects caused by actinomycete exclusively to BR 29 and BR 33 were 1.6% and 5.7% respectively. This effect was not observed for strains BR 40 and BR 96. Single and multistrains inoculations in the presence or absence of actinomycetes affected soybean nodulation. On double strain inoculations, with BR 33 and BR 29 mixed with actinomycete 370 there was a decrease in nodule occupancy by BR 29 from 94.1% to 83.7% with concomitant increase in the occupying of BR 33 from 6.7% to 17.2%. The results indicate the importance of ecological studies on actinomycetes population in order to access their role in the establishment of efficient nodulation.

  20. Pyramids of QTLs enhance host-plant resistance and Bt-mediated resistance to leaf-chewing insects in soybean.

    Science.gov (United States)

    Ortega, María A; All, John N; Boerma, H Roger; Parrott, Wayne A

    2016-04-01

    QTL-M and QTL-E enhance soybean resistance to insects. Pyramiding these QTLs with cry1Ac increases protection against Bt-tolerant pests, presenting an opportunity to effectively deploy Bt with host-plant resistance genes. Plant resistance to leaf-chewing insects minimizes the need for insecticide applications, reducing crop production costs and pesticide concerns. In soybean [Glycine max (L.) Merr.], resistance to a broad range of leaf-chewing insects is found in PI 229358 and PI 227687. PI 229358's resistance is conferred by three quantitative trait loci (QTLs): M, G, and H. PI 227687's resistance is conferred by QTL-E. The letters indicate the soybean Linkage groups (LGs) on which the QTLs are located. This study aimed to determine if pyramiding PI 229358 and PI 227687 QTLs would enhance soybean resistance to leaf-chewing insects, and if pyramiding these QTLs with Bt (cry1Ac) enhances resistance against Bt-tolerant pests. The near-isogenic lines (NILs): Benning(ME), Benning(MGHE), and Benning(ME+cry1Ac) were developed. Benning(ME) and Benning(MGHE) were evaluated in detached-leaf and greenhouse assays with soybean looper [SBL, Chrysodeixis includens (Walker)], corn earworm [CEW, Helicoverpa zea (Boddie)], fall armyworm [FAW, Spodoptera frugiperda (J.E. Smith)], and velvetbean caterpillar [VBC, Anticarsia gemmatalis (Hübner)]; and in field-cage assays with SBL. Benning(ME+cry1Ac) was tested in detached-leaf assays against SBL, VBC, and Southern armyworm [SAW, Spodoptera eridania (Cramer)]. In the detached-leaf assay, Benning(ME) showed the strongest antibiosis against CEW, FAW, and VBC. In field-cage conditions, Benning(ME) and Benning(MGHE) suffered 61 % less defoliation than Benning. Benning(ME+cry1Ac) was more resistant than Benning(ME) and Benning (cry1Ac) against SBL and SAW. Agriculturally relevant levels of resistance in soybean can be achieved with just two loci, QTL-M and QTL-E. ME+cry1Ac could present an opportunity to protect the durability of Bt

  1. Distribution and life strategies of two bacterial populations in a eutrophic lake

    Science.gov (United States)

    Weinbauer; Hofle

    1998-10-01

    Monoclonal antibodies and epifluorescence microscopy were used to determine the depth distribution of two indigenous bacterial populations in the stratified Lake Plusssee and characterize their life strategies. Populations of Comamonas acidovorans PX54 showed a depth distribution with maximum abundances in the oxic epilimnion, whereas Aeromonas hydrophila PU7718 showed a depth distribution with maximum abundances in the anoxic thermocline layer (metalimnion), i. e., in the water layer with the highest microbial activity. Resistance of PX54 to protist grazing and high metabolic versatility and growth rate of PU7718 were the most important life strategy traits for explaining the depth distribution of the two bacterial populations. Maximum abundance of PX54 was 16,000 cells per ml, and maximum abundance of PU7718 was 20,000 cells per ml. Determination of bacterial productivity in dilution cultures with different-size fractions of dissolved organic matter (DOM) from lake water indicates that low-molecular-weight (LMW) DOM is less bioreactive than total DOM (TDOM). The abundance and growth rate of PU7718 were highest in the TDOM fractions, whereas those of PX54 were highest in the LMW DOM fraction, demonstrating that PX54 can grow well on the less bioreactive DOM fraction. We estimated that 13 to 24% of the entire bacterial community and 14% of PU7718 were removed by viral lysis, whereas no significant effect of viral lysis on PX54 could be detected. Growth rates of PX54 (0.11 to 0.13 h-1) were higher than those of the entire bacterial community (0.04 to 0.08 h-1) but lower than those of PU7718 (0.26 to 0.31 h-1). In undiluted cultures, the growth rates were significantly lower, pointing to density effects such as resource limitation or antibiosis, and the effects were stronger for PU7718 and the entire bacterial community than for PX54. Life strategy characterizations based on data from literature and this study revealed that the fast-growing and metabolically

  2. Interactions among filamentous fungi Aspergillus niger, Fusarium verticillioides and Clonostachys rosea: fungal biomass, diversity of secreted metabolites and fumonisin production.

    Science.gov (United States)

    Chatterjee, Subhankar; Kuang, Yi; Splivallo, Richard; Chatterjee, Paramita; Karlovsky, Petr

    2016-05-10

    Interactions among fungi colonizing dead organic matter involve exploitation competition and interference competition. Major mechanism of interference competition is antibiosis caused by secreted secondary metabolites. The effect of competition on secondary metabolite production by fungi is however poorly understood. Fungal biomass was rarely monitored in interaction studies; it is not known whether dominance in pairwise interactions follows congruent patterns. Pairwise interactions of three fungal species with different life styles were studied. The saprophyte Aspergillus niger (A.n.), the plant pathogen Fusarium verticillioides (F.v.), and the mycoparasite Clonostachys rosea (C.r.) were grown in single and dual cultures in minimal medium with asparagine as nitrogen source. Competitive fitness shifted with time: in dual C.r./F.v. cultures after 10 d F.v. grew well while C.r. was suppressed; after 20 d C.r. recovered while F.v. became suppressed; and after 30 d most F.v. was destroyed. At certain time points fungal competitive fitness exhibited a rock-paper-scissors pattern: F.v. > A.n., A.n. > C.r., and C.r. > F.v. Most metabolites secreted to the medium at early stages in single and dual cultures were not found at later times. Many metabolites occurring in supernatants of single cultures were suppressed in dual cultures and many new metabolites not occurring in single cultures were found in dual cultures. A. niger showed the greatest ability to suppress the accumulation of metabolites produced by the other fungi. A. niger was also the species with the largest capacity of transforming metabolites produced by other fungi. Fumonisin production by F. verticillioides was suppressed in co-cultures with C. rosea but fumonisin B1 was not degraded by C. rosea nor did it affect the growth of C. rosea up to a concentration of 160 μg/ml. Competitive fitness in pairwise interactions among fungi is incongruent, indicating that species-specific factors and/or effects are

  3. Histone acetyltransferase TGF-1 regulates Trichoderma atroviride secondary metabolism and mycoparasitism.

    Science.gov (United States)

    Gómez-Rodríguez, Elida Yazmín; Uresti-Rivera, Edith Elena; Patrón-Soberano, Olga Araceli; Islas-Osuna, María Auxiliadora; Flores-Martínez, Alberto; Riego-Ruiz, Lina; Rosales-Saavedra, María Teresa; Casas-Flores, Sergio

    2018-01-01

    Some filamentous fungi of the Trichoderma genus are used as biocontrol agents against airborne and soilborne phytopathogens. The proposed mechanism by which Trichoderma spp. antagonizes phytopathogens is through the release of lytic enzymes, antimicrobial compounds, mycoparasitism, and the induction of systemic disease-resistance in plants. Here we analyzed the role of TGF-1 (Trichoderma Gcn Five-1), a histone acetyltransferase of Trichoderma atroviride, in mycoparasitism and antibiosis against the phytopathogen Rhizoctonia solani. Trichostatin A (TSA), a histone deacetylase inhibitor that promotes histone acetylation, slightly affected T. atroviride and R. solani growth, but not the growth of the mycoparasite over R. solani. Application of TSA to the liquid medium induced synthesis of antimicrobial compounds. Expression analysis of the mycoparasitism-related genes ech-42 and prb-1, which encode an endochitinase and a proteinase, as well as the secondary metabolism-related genes pbs-1 and tps-1, which encode a peptaibol synthetase and a terpene synthase, respectively, showed that they were regulated by TSA. A T. atroviride strain harboring a deletion of tgf-1 gene showed slow growth, thinner and less branched hyphae than the wild-type strain, whereas its ability to coil around the R. solani hyphae was not affected. Δtgf-1 presented a diminished capacity to grow over R. solani, but the ability of its mycelium -free culture filtrates (MFCF) to inhibit the phytopathogen growth was enhanced. Intriguingly, addition of TSA to the culture medium reverted the enhanced inhibition growth of Δtgf-1 MFCF on R. solani at levels compared to the wild-type MFCF grown in medium amended with TSA. The presence of R. solani mycelium in the culture medium induced similar proteinase activity in a Δtgf-1 compared to the wild-type, whereas the chitinolytic activity was higher in a Δtgf-1 mutant in the absence of R. solani, compared to the parental strain. Expression of mycoparasitism

  4. Histone acetyltransferase TGF-1 regulates Trichoderma atroviride secondary metabolism and mycoparasitism.

    Directory of Open Access Journals (Sweden)

    Elida Yazmín Gómez-Rodríguez

    Full Text Available Some filamentous fungi of the Trichoderma genus are used as biocontrol agents against airborne and soilborne phytopathogens. The proposed mechanism by which Trichoderma spp. antagonizes phytopathogens is through the release of lytic enzymes, antimicrobial compounds, mycoparasitism, and the induction of systemic disease-resistance in plants. Here we analyzed the role of TGF-1 (Trichoderma Gcn Five-1, a histone acetyltransferase of Trichoderma atroviride, in mycoparasitism and antibiosis against the phytopathogen Rhizoctonia solani. Trichostatin A (TSA, a histone deacetylase inhibitor that promotes histone acetylation, slightly affected T. atroviride and R. solani growth, but not the growth of the mycoparasite over R. solani. Application of TSA to the liquid medium induced synthesis of antimicrobial compounds. Expression analysis of the mycoparasitism-related genes ech-42 and prb-1, which encode an endochitinase and a proteinase, as well as the secondary metabolism-related genes pbs-1 and tps-1, which encode a peptaibol synthetase and a terpene synthase, respectively, showed that they were regulated by TSA. A T. atroviride strain harboring a deletion of tgf-1 gene showed slow growth, thinner and less branched hyphae than the wild-type strain, whereas its ability to coil around the R. solani hyphae was not affected. Δtgf-1 presented a diminished capacity to grow over R. solani, but the ability of its mycelium -free culture filtrates (MFCF to inhibit the phytopathogen growth was enhanced. Intriguingly, addition of TSA to the culture medium reverted the enhanced inhibition growth of Δtgf-1 MFCF on R. solani at levels compared to the wild-type MFCF grown in medium amended with TSA. The presence of R. solani mycelium in the culture medium induced similar proteinase activity in a Δtgf-1 compared to the wild-type, whereas the chitinolytic activity was higher in a Δtgf-1 mutant in the absence of R. solani, compared to the parental strain. Expression

  5. Penicillium expansum versus antagonist yeasts and patulin degradation in vitro

    Directory of Open Access Journals (Sweden)

    Alexandre Rodrigo Coelho

    2007-07-01

    Full Text Available Taking into account the preliminary antagonistic/biodegradation property showed by Pichia membranifaciens and Sporobolomyces roseus, which decreased the initial patulin concentration of 588.4 to 290.0 µg/mL, ability of P. ohmeri 158 in biocontrol against Penicillium expansum and patulin decrease in vitro was performed. The culture supernatant of P. ohmeri 158 was effective against 66.17% micelial growth, indicating antibiosis related with the killer phenomenon. The initial patulin concentration of 223 µg in the presence of P. ohmeri 158 cells was decreased over 83% of the original concentration, when incubated at 25ºC/2 days and > 99% after 5 days incubation time, with undetectable patulin level after 15 days. The initial pH 4.0 decreased to pH 3.3 along 15 days experiment, suggesting that patulin decrease was an active process and a consequence of yeast metabolism. The results suggested that P. ohmeri 158 could be a promising alternative for the inhibition of P. expansum growth and patulin degradation.Considerando o antagonismo e degradação de patulina detectados em Pichia membranifaciens e Sporobolomyces roseus no estudo preliminar, este trabalho avaliou o efeito antagônico de Pichia ohmeri 158 no desenvolvimento de Penicillium expansum e a degradação de patulina "in vitro". O sobrenadante do cultivo de P. ohmeri 158 inibiu 66,17% do desenvolvimento micelial, indicando antibiose relacionada ao fator killer. A concentração inicial de patulina (223 µg na presença de células íntegras de P. ohmeri foi reduzida em mais de 83% após dois dias de incubação a 25ºC e superior a 99% após 5 dias, com níveis indetectáveis no 15º dia. O decréscimo do pH 4,0 inicial para pH 3,3 sugeriu que a eliminação de patulina é um processo ativo e uma conseqüência do metabolismo da levedura. Os resultados obtidos concluem que P. ohmeri 158 é uma alternativa promissora na inibição do desenvolvimento de P. expansum e na degradação de

  6. The formation of microorganism communities in the soil under the effect of chitosan and runner bean (Phaseolus coccineus L. cultivation

    Directory of Open Access Journals (Sweden)

    Danuta Pięta

    2013-12-01

    Full Text Available The subject of the studies was the soil with introduced solutions containing 0,1% chitosan. These materials were obtained from the Institute of Chemical Fibres in L6d2 (in the form of a microcrystalline gel and also from the Department of Food Biochemistry and Chemistry of the University of Agriculture in Lublin (in a liquid form,i.e.dissolved in acetic acid. In order to set an experiment in a growth chamber, grey brown podzolic soil formed from loesses and taken from a mechanically treated belt of black fallow was used. The soil (1000 g was watered every 8 days with 100 ml of examined chitosan solutions per pot. Control soil was watered with sterile distilled water. Seven days after each watering, soil samples were taken for microbiological analysis. Then 25 runner bean seeds were sown into each pot. After six weeks of plants' growth the experiment was finished and the number of plants was counted, their healthiness determined and soil microbiological analysis was performed. Regardless of chitosan form introduced to the soil it stimulated the growth of bacteria and fungi, since in these experimental combinations was found a significantly higher number of microorganisms as compared with the control. A particular high increase in the number of microorganism colonies was observed with simultaneous growth of plants and the application of chitosan. A considerable increase of fungi colonies from the Trichoderma genus was found in the soil treated with chitosan in the form ofboth a microcrystalline gel and a liquid. The species of this genus are considered to be antagonists; it affects pathogenic fungi through competition, antibiosis and over-parasitism. An increase in colonies of saprophytic microorganisms, including antagonistic ones of Bacillus spp. and Pseudomonas spp. was observed in the soil treated with chitosan . On the other hand, in the soil after the growth of bean and treated watered with chitosan only few colonies of Fusarium oxysporum f

  7. Biological Control of Mango Dieback Disease Caused by Lasiodiplodia theobromae Using Streptomycete and Non-streptomycete Actinobacteria in the United Arab Emirates

    Science.gov (United States)

    Kamil, Fatima H.; Saeed, Esam E.; El-Tarabily, Khaled A.; AbuQamar, Synan F.

    2018-01-01

    Dieback caused by the fungus Lasiodiplodia theobromae is an important disease on mango plantations in the United Arab Emirates (UAE). In this study, 53 actinobacterial isolates were obtained from mango rhizosphere soil in the UAE, of which 35 (66%) were classified as streptomycetes (SA) and 18 (34%) as non-streptomycetes (NSA). Among these isolates, 19 (12 SA and 7 NSA) showed antagonistic activities against L. theobromae associated with either the production of diffusible antifungal metabolites, extracellular cell-wall-degrading enzymes (CWDEs), or both. Using a “novel” mango fruit bioassay, all isolates were screened in vivo for their abilities to reduce lesion severity on fruits inoculated with L. theobromae. Three isolates, two belonging to Streptomyces and one to Micromonospora spp., showed the strongest inhibitory effect against this pathogen in vitro and were therefore selected for tests on mango seedlings. Our results revealed that the antifungal action of S. samsunensis UAE1 was related to antibiosis, and the production of CWDEs (i.e., chitinase) and siderophores; whilst S. cavourensis UAE1 and M. tulbaghiae UAE1 were considered to be associated with antibiotic- and CWDE-production, respectively. Pre-inoculation in greenhouse experiments with the most promising actinobacterial isolates resulted in very high levels of disease protection in mango seedlings subsequently inoculated with the pathogen. This was evident by the dramatic reduction in the estimated disease severity indices of the mango dieback of individual biocontrol agent (BCA) applications compared with the pathogen alone, confirming their potential in the management of mango dieback disease. L. theobromae-infected mango seedlings treated with S. samsunensis showed significantly reduced number of defoliated leaves and conidia counts of L. theobromae by 2- and 4-fold, respectively, in comparison to the other two BCA applications. This indicates that the synergistic antifungal effects of S

  8. Inhibition coefficient and molecular diversity of multi stress tolerant Trichoderma as potential biocontrol agent against Sclerotium rolfsii Sacc.

    Science.gov (United States)

    Hirpara, Darshna G; Gajera, H P; Hirapara, Jaydeep G; Golakiya, B A

    2017-11-01

    Trichoderma is one of the most exploited biocontrol agent for the management of plant diseases. Twenty strains of Trichoderma (six of T. harzianum, four of T. viride, three of T. virens, three of T. koningii, each one of T. hamatum, T. reesei, T. parceramosum and Trichoderma spp.) subjected to in vitro antagonism up to 12days after inoculation against Sclerotium rolfsii Sacc. causing stem rot in groundnut. A new concept was developed to determine inhibition coefficient representing pathogen biology and biocontrol related biophysical variables. Results explained differential inhibition coefficient of test pathogen by Trichoderma antagonists. The inhibition coefficient of test pathogen was examined highest (91.13%) by T. virens NBAII Tvs12 followed by T. virens MTCC 794 (89.33%) and T. koningii MTCC 796 (62.39%). Microscopic study confirmed biocontrol mechanism as mycoparasitism for Tvs12 and antibiosis for T. koningii MTCC 796. The sclerotial biogenesis of test pathogen was elevated during weak antagonism and diminished in interactions with strong antagonists. The inhibition coefficient of S. rolfsii was significantly negatively correlated with sclerotia formation and lipid peroxidation during the antagonism. Trichoderma strains were screened for fungicides (carbendazim and tebuconazole, thiram and mancozeb) and abiotic stress (drought and salt) tolerance. Results indicated that T. koningii MTCC 796 efficiently grew better than the other strains with maximum radial growth under adverse conditions. The genetic variability among the Trichoderma was determined using 34 gene specific markers which amplified 146 alleles. The SSR similarities explained substantial diversity (15 to 87%) across Trichoderma strains and pathogen S. rolfsii. Principal coordinates analysis (PCA) were comparable to the cluster analysis and first three most informative PC components explained 64.45% of the total variation. In PCA, potent antagonists appear to be distinct from other strains. Five

  9. Metabolitos secundarios, letalidad y actividad antimicrobiana de los extractos de tres corales y tres moluscos marinos de Sucre, Venezuela

    Directory of Open Access Journals (Sweden)

    Gabriel Ordaz

    2010-06-01

    lethality rate (LC50=46.8μg/ml. Compared to the octocorals, mollusks extracts displayed more activity and a greater action spectrum against different bacterial strains, whereas octocorals also inhibited some fungi strains growth. Staphylococcus aureus was the most susceptible to the antimicrobial power of the extracts (66.7%, whereas Pseudomonas aeruginosa, Candida albicans and Aspergillus niger were not affected. The antibiosis shown by marine organisms extracts indicates that some of their biosynthesized metabolites are physiologically active, and may have possible cytotoxic potential or as a source of antibiotic components. Rev. Biol. Trop. 58 (2: 677-688. Epub 2010 June 02.

  10. Effect of arcelin protein on the biology of Zabrotes subfasciatus (Boheman 1833, in dry beans Efeito da proteína arcelina na biologia de Zabrotes subfasciatus (Boheman 1833, em feijoeiro

    Directory of Open Access Journals (Sweden)

    Flávia Rabelo Barbosa

    1999-10-01

    Full Text Available Arcelin is a seed protein found in wild beans (Phaseolus vulgaris which gives resistance to Mexican bean weevil, Zabrotes subfasciatus (Boheman 1833 (Coleoptera: Bruchidae. Studies were carried out with the objective of estimating the effect of four alleles of protein arcelin (Arc1, Arc2, Arc3 and Arc4 on the biology of Z. subfasciatus. The experiment was carried out in laboratory at Embrapa-Centro Nacional de Pesquisa de Arroz e Feijão, in Santo Antônio de Goiás, GO, Brazil, under non controlled conditions. The highest levels of antibiosis to Z. subfasciatus were observed in Arc1, with reduction in the number of eggs, number of emerged adults, adults longevity. In the line Arc2 only reduction in the number of emerged adults was observed. The lines Arc3 and Arc4 showed low efficiency on the reduction of progeny of Z. subfasciatus and effects in the longevity and egg-adult cycle were not detected. Insect sexual ratio was not altered by the presence of Arc1, Arc2, Arc3 and Arc4 in the seeds.A arcelina é uma proteína encontrada em feijões silvestres (Phaseolus vulgaris e que confere resistência ao caruncho-do-feijão, Zabrotes subfasciatus (Boheman 1833 (Coleoptera: Bruchidae. Estudos foram conduzidos com o objetivo de conhecer o efeito de quatro alelos da proteína arcelina (Arc1, Arc2, Arc3 e Arc4, na biologia de Z. subfasciatus. O experimento foi conduzido no laboratório da Embrapa-Centro Nacional de Pesquisa de Arroz e Feijão, no município de Santo Antônio de Goiás, GO, em condições não controladas. O mais alto nível de antibiose a Z. subfasciatus foi constatado na linhagem portadora do alelo Arc1, observando-se redução do número de ovos produzidos, redução do número de adultos emergidos, redução da longevidade de adultos. Na linhagem Arc2 constatou-se redução apenas no número de adultos emergidos. As linhagens Arc3 e Arc4 apresentaram baixa eficiência na redução da progênie de Z. subfasciatus, não observando

  11. Controle biológico da mancha-aquosa do melão por compostos bioativos produzidos por Bacillus spp. Biocontrol of bacterial fruit blotch of melon by bioactive compounds produced by Bacillus spp.

    Directory of Open Access Journals (Sweden)

    Elizama Roza Santos

    2006-09-01

    presence of bioactive compounds produced during fermentations. All treatments were different from the control (P = 0.05% but they did not differ among them. The B. megaterium pv. cerealis RAB7 reduced disease incidence (89.1%, disease index (92.7%, increased the incubation period from 9.8 to 11.9 days and reduced the area under disease progress curve from 3.36 to 0.17. In the in vitro tests, all strains showed antibiosis against Aac and the bioactive compounds were partially characterized as lipopeptides.

  12. Aspectos biológicos de Dione juno juno (Cramer (Lepidoptera: Nymphalidae em genótipos de maracujazeiro Biological aspects of Dione juno juno (Cramer (Lepidoptera: Nymphalidae on passion fruit genotypes

    Directory of Open Access Journals (Sweden)

    Arlindo Leal Boiça Júnior

    2008-03-01

    . edulis f. flavicarpa Deg. ('Sul Brasil', P. edulis f. flavicarpa, P. edulis f. flavicarpa ('Maguary FB-100' and P. foetida L. Fifty larvae from eggs collected in the field were used per genotype. Larvae were kept on passion fruits branches inside PVC tubes until pupation. Daily observations were performed and branches were replaced whenever necessary. The following parameters were evaluated: duration and viability of larval and pupal phases, larval and pupal weight and adult longevity. The experiment was arranged in randomized blocks design with seven treatments and ten replications. Data were subjected to an ANOVA and means were compared by Tukey test at 5% of probability. The least adequate genotypes for D. juno juno development were P. alata , P. serrato-digitata and P. foetida, showing a high level of antibiosis, while P. edulis, P. edulis f. flavicarpa, 'Maguary FB-100' and 'Sul Brasil' were the most suitable.

  13. Selection of endophytic fungi from comfrey (Symphytum officinale L. for in vitro biological control of the phytopathogen Sclerotinia sclerotiorum (Lib. Seleção de fungos endofíticos de confrei (Symphytum officinale L., buscando controle biológico in vitro do fitopatógeno Sclerotinia sclerotiorum (Lib.

    Directory of Open Access Journals (Sweden)

    Rafaeli Rocha

    2009-03-01

    Full Text Available Biological control consists of using one organism to attack another that may cause economic damage to crops. Integrated Pest Management (IPM is a very common strategy. The white mold produced by Sclerotiniasclerotiorum (Lib. causes considerable damage to bean crops. This fungus is a soil inhabitant, the symptoms of which are characterized by water-soaked lesions covered by a white cottony fungal growth on the soil surface and/or the host plant. Possible biological control agents taken from plants are being investigated as phytopathogen inhibitors. These are endophytic microorganisms that inhabit the intercellular spaces of vegetal tissues and are often responsible for antimicrobial production. The objective of the present study was to select endophytic fungi isolated from comfrey (Symphytumofficinale L. leaves with in vitro antagonist potential against the phytopathogenic fungus S. sclerotiorum. Twelve isolates of endophytic fungi and a pathogenic strain of S. sclerotiorum were used in the challenge method. With the aid of this method, four endophytes with the best antagonistic activity against S. sclerotiorum were selected. Pathogen growth inhibition zones were considered indicative of antibiosis. The percentages of pathogenic mycelia growth were measured both with and without the antagonist, resulting in growth reductions of 46.7% to 50.0% for S. sclerotiorum. These analyses were performed by evaluating the endophytic/pathogenic mycelia growth in mm/day over an eight-day period of antagonistic tests.O controle biológico consiste no uso de organismos que atacam outros que causam danos a culturas de plantas. Esta é uma estratégia muito utilizada no Controle Integrado de Pragas (CIP. O mofo branco, causado por Sclerotiniasclerotiorum (Lib., causa danos em culturas de feijão. Este fungo é encontrado no solo e seus sintomas são caracterizados por lesões úmidas cobertas por micélios algodonosos, crescidos a partir do solo e/ou da planta

  14. Rationale for one stage exchange of infected hip replacement using uncemented implants and antibiotic impregnated bone graft.

    Science.gov (United States)

    Winkler, Heinz

    2009-09-04

    biomechanical properties. Efficient cementing techniques will result in tight bonding with the underlying bone, making eventual removal time consuming and possibly associated with further damage to the osseous structures. All these issues are likely to make uncemented revisions more desirable. Allograft bone may be impregnated with high loads of antibiotics using special incubation techniques. The storage capacities and pharmacological kinetics of the resulting antibiotic bone compound (ABC) are more advantageous than the ones of antibiotic loaded cement. ABC provides local concentrations exceeding those of cement by more than a 100fold and efficient release is prolonged for several weeks. The same time they are likely to restore bone stock, which usually is compromised after removal of an infected endoprosthesis. ABC may be combined with uncemented implants for improved long term results and easy removal in case of a failure. Specifications of appropriate designs are outlined. Based on these considerations new protocols for one stage exchange of infected TJR have been established. Bone voids surrounding the implants may be filled with antibiotic impregnated bone graft; uncemented implants may be fixed in original bone. Recent studies indicate an overall success rate of more than 90% without any adverse side effects. Incorporation of allografts appears as after grafting with unimpregnated bone grafts. Antibiotic loaded bone graft seems to provide sufficient local antibiosis for protection against colonisation of uncemented implants, the eluted amounts of antibiotics are likely to eliminate biofilm remnants, dead space management is more complete and defects may be reconstructed efficiently. Uncemented implants provide improved long term results in case of success and facilitated re-revision in case of failure. One stage revision using ABC together with uncemented implants such should be at least comparably save as multiple stage procedures, taking advantage of the obvious

  15. Métodos de analise dos danos da lagarta da espiga¹, em médias de gerações envolvendo IAC Maya e Zapalote Chico Method for analysis of damage of the corn earworm heliothis zea in generation means from IAC Maya and Zapalote Chico

    Directory of Open Access Journals (Sweden)

    Jorge Alberto Marques Rezende

    1982-01-01

    utilizing the revised scale described by WIDSTROM (27. The data obtained was analised by two different ways. The grades were distributed at first in two different classes: grades 0 and 1 and grades > 2. The grades were afterwards distributed in the following two classes: grades 0 and grades > 1. The chi-square test was applied to verify which of the two types of classes adjusts better with their respective expected ratios. The results showed that when the grades were divided in the classes 0+1 and > 2 the data were more uniform within each treatment. The analysis of variance for each damage class separately, presented F values highly significant for the classes zero and zero plus one, whereas for the classes > 1 and > 2 the damage averages were very similar and the F values were not significant. The class zero plus one had F value higher and the coefficient of variation smaller than the class zero. The ZC 2451 corn compared to the variety IAC Maya XII, exibited good resistance to the corn earworm, under the field conditions of Campinas, State of São Paulo, Brazil. This resistance is of the type non preference and or antibiosis, because there was a higher percentage of ears of ZC 2451 free of earworm damage.