WorldWideScience

Sample records for antibacterial peptide fallaxin

  1. Structure–activity study of the antibacterial peptide fallaxin

    OpenAIRE

    Nielsen, Sandra L.; Frimodt-Møller, Niels; Birthe B Kragelund; Hansen, Paul R.

    2007-01-01

    Fallaxin is a 25-mer antibacterial peptide amide, which was recently isolated from the West Indian mountain chicken frog Leptodactylus fallax. Fallaxin has been shown to inhibit the growth of several Gram-negative bacteria including Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Here, we report a structure–activity study of fallaxin based on 65 analogs, including a complete alanine scan and a full set of N- and C-terminal truncated analogs. The fall...

  2. Structure-activity study of the antibacterial peptide fallaxin

    DEFF Research Database (Denmark)

    Søndergaard, Sandra Lerche; Frimodt-Møller, Niels; Kragelund, Birthe Brandt; Hansen, Paul Robert

    2007-01-01

    Fallaxin is a 25-mer antibacterial peptide amide, which was recently isolated from the West Indian mountain chicken frog Leptodactylus fallax. Fallaxin has been shown to inhibit the growth of several Gram-negative bacteria including Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, and...

  3. Amphibian antimicrobial peptide fallaxin analogue FL9 affects virulence gene expression and DNA replication in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Gottschalk, Sanne; Gottlieb, Caroline Trebbien; Vestergaard, Martin;

    2015-01-01

    the MIC, FL9 bound DNA, inhibited DNA synthesis and induced the SOS DNA damage response, whereas at concentrations above the MIC the interaction between S. aureus and FL9 led to membrane disruption. The antibacterial activity of the peptide was maintained over a wide range of NaCl and MgCl2 concentrations...

  4. Protein and lipid interactions of mammalian antibacterial peptides

    OpenAIRE

    Wang, Yuqin

    2001-01-01

    Gene-encoded antibacterial peptides are multifunctional effector molecules and play an important role in host innate immunity. Upon stimulation, the mature active peptides are released from inactive precursors. Cathelicidins constitute a family of antibacterial peptides, which share a conserved N-terminal cathelin-like region followed by a variable C-terminal antibacterial domain. In addition to its antibacterial activity, LL-37, the only cathelicidin found in human, is ...

  5. Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning.

    Science.gov (United States)

    Barbosa-Santillán, Liliana I; Sánchez-Escobar, Juan J; Calixto-Romo, M Angeles; Barbosa-Santillán, Luis F

    2016-01-01

    We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2. PMID:27366202

  6. Characterization of Selective Antibacterial Peptides by Polarity Index

    Directory of Open Access Journals (Sweden)

    C. Polanco

    2012-01-01

    Full Text Available In the recent decades, antibacterial peptides have occupied a strategic position for pharmaceutical drug applications and became subject of intense research activities since they are used to strengthen the immune system of all living organisms by protecting them from pathogenic bacteria. This work proposes a simple and easy statistical/computational method through a peptide polarity index measure by which an antibacterial peptide subgroup can be efficiently identified, that is, characterized by a high toxicity to bacterial membranes but presents a low toxicity to mammal cells. These peptides also have the feature not to adopt to an alpha-helicoidal structure in aqueous solution. The double-blind test carried out to the whole Antimicrobial Peptide Database (November 2011 showed an accuracy of 90% applying the polarity index method for the identification of such antibacterial peptide groups.

  7. Induction, selection and antibacterial activity of the antibacterial peptides from lepldopteran insect cultured cell lines

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We induced 3 cell lines that were in vitro cultured from Lepidoptera with heat inactivated Escherichia coil DH5α to stimulate the antibacterial peptide followed by antibacterial activity assay,induction dynamic research and Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Tricine SDS-PAGE) experiment.The antibacterial activity of the induced BTI-Tn-5B1 cell line was the highest,and the antibacterial activity increased gradually to the highest level in 16 hours after stimulation.A new antibacterial peptide with a molecular weight of about 8000 Da was preferentially induced in Trichoplusia ni BTI-Tn-5B1 ceils in 16 hours after stimulation.Antibacterial activity assays indicated that it had inhibition against Staphylococcus aureus,Escherichia coli K12D31 and Salmonella derby.It has especially strong inhibition against Gram-negative bacteria such as Escherichia coli KI2D31 and Salmonella derby.

  8. Prediction of Antibacterial Activity from Physicochemical Properties of Antimicrobial Peptides

    NARCIS (Netherlands)

    de Sousa Pereira Simoes de Melo, Manuel; Ferre, Rafael; Feliu, Lidia; Bardaji, Eduard; Planas, Marta; Castanho, Miguel A. R. B.

    2011-01-01

    Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible co

  9. Anisotropic membrane curvature sensing by antibacterial peptides

    CERN Document Server

    Gómez-Llobregat, Jordi; Lindén, Martin

    2014-01-01

    Many proteins and peptides have an intrinsic capacity to sense and induce membrane curvature, and play crucial roles for organizing and remodeling cell membranes. However, the molecular driving forces behind these processes are not well understood. Here, we describe a new approach to study curvature sensing, by simulating the direction-dependent interactions of single molecules with a buckled lipid bilayer. We analyze three antimicrobial peptides, a class of membrane-associated molecules that specifically target and destabilize bacterial membranes, and find qualitatively different sensing characteristics that would be difficult to resolve with other methods. These findings provide new insights into the microscopic mechanisms of antimicrobial peptides, which might aid the development of new antibiotics. Our approach is generally applicable to a wide range of curvature sensing molecules, and our results provide strong motivation to develop new experimental methods to track position and orientation of membrane p...

  10. Antibacterial Peptide Nucleic Acid-Antimicrobial Peptide (PNA-AMP) Conjugates

    DEFF Research Database (Denmark)

    Hansen, Anna Mette; Bonke, Gitte; Larsen, Camilla Josephine; Yavari, Niloofar; Nielsen, Peter E.; Franzyk, Henrik

    2016-01-01

    )-Tat48-60, BF-2A-RXR, and drosocin-RXR are capable of transporting PNA effectively into E. coli (MICs of 1-4 μM). Importantly, presence of the inner-membrane peptide transporter SbmA was not required for antibacterial activity of PNA-AMP conjugates containing Pep-1-K, KLW-9,13-a, or drosocin-RXR (MICs...

  11. K1K8: an Hp1404-derived antibacterial peptide.

    Science.gov (United States)

    Li, Zhongjie; Liu, Gaomin; Meng, Lanxia; Yu, Weiwei; Xu, Xiaobo; Li, Wenxin; Wu, Yingliang; Cao, Zhijian

    2016-06-01

    As an alternative class of antimicrobial agents used to overcome drug-resistant infections, antimicrobial peptides (AMPs) have recently gained significant attention. In this study, we designed an improved antimicrobial peptide, K1K8, based on the molecular template of Hp1404. Compared to the wild-type Hp1404, K1K8 showed an improved antibacterial spectrum in vitro, a lower hemolytic activity, and an enhanced serum stability. Importantly, K1K8 also decreased methicillin-resistant Staphylococcus aureus (MRSA) bacterial counts in the wounded region in a mouse skin infection model. Interestingly, K1K8 did not induce bacterial resistance or non-specific immune response reactions. Moreover, the peptide killed bacterial cells mainly by disrupting the bacterial membrane. In summary, K1K8 has the potential to be used as an improved anti-infection agent for topical use, which opens an avenue that potential anti-infection drugs may be designed and developed from the molecular templates of AMPs. PMID:26952110

  12. Design and synthesis of cationic antibacterial peptide based on Leucrocin I sequence, antibacterial peptide from crocodile (Crocodylus siamensis) white blood cell extracts.

    Science.gov (United States)

    Yaraksa, Nualyai; Anunthawan, Thitiporn; Theansungnoen, Tinnakorn; Daduang, Sakda; Araki, Tomohiro; Dhiravisit, Apisak; Thammasirirak, Sompong

    2014-03-01

    Leucrocin I is an antibacterial peptide isolated from crocodile (Crocodylus siamensis) white blood cell extracts. Based on Leucrocin I sequence, cationic peptide, NY15, was designed, synthesized and evaluated for antibacterial activity against Bacillus sphaericus TISTR 678, Bacillus megaterium (clinical isolate), Vibrio cholerae (clinical isolate), Salmonella typhi (clinical isolate), Salmonella typhi ATCC 5784 and Escherichia coli 0157:H7. The efficacy of the peptide made from all L-amino acids was also compared with all D-amino acids. The peptide made from all D-amino acids was more active than the corresponding L-enantiomer. In our detailed study, the interaction between peptides and the cell membrane of Vibrio cholerae as part of their killing mechanism was studied by fluorescence and electron microscopy. The results show that the membrane was the target of action of the peptides. Finally, the cytotoxicity assays revealed that both L-NY15 and D-NY15 peptides are non-toxic to mammalian cells at bacteriolytic concentrations. PMID:24192554

  13. Antibacterial activity of a newly developed peptide-modified lysin against Acinetobacter baumannii and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Hang eYang

    2015-12-01

    Full Text Available The global emergence of multidrug-resistant (MDR bacteria is a growing threat to public health worldwide. Natural bacteriophage lysins are promising alternatives in the treatment of infections caused by Gram-positive pathogens, but not Gram-negative ones, like Acinetobacter baumannii and Pseudomonas aeruginosa, due to the barriers posed by their outer membranes. Recently, modifying a natural lysin with an antimicrobial peptide was found able to break the barriers, and to kill Gram-negative pathogens. Herein, a new peptide-modified lysin (PlyA was constructed by fusing the cecropin A peptide residues 1–8 (KWKLFKKI with the OBPgp279 lysin and its antibacterial activity was studied. PlyA showed good and broad antibacterial activities against logarithmic phase A. baumannii and P. aeruginosa, but much reduced activities against the cells in stationary phase. Addition of outer membrane permeabilizers (EDTA and citric acid could enhance the antibacterial activity of PlyA against stationary phase cells. Finally, no antibacterial activity of PlyA could be observed in some bio-matrices, such as culture media, milk, and sera. In conclusion, we reported here a novel peptide-modified lysin with significant antibacterial activity against both logarithmic (without OMPs and stationary phase (with OMPs A. baumannii and P. aeruginosa cells in buffer, but further optimization is needed to achieve broad activity in diverse bio-matrices.

  14. Evidence of Antibacterial Activities in Peptide Fractions Originating from Snow Crab (Chionoecetes opilio) By-Products.

    Science.gov (United States)

    Beaulieu, Lucie; Thibodeau, Jacinthe; Desbiens, Michel; Saint-Louis, Richard; Zatylny-Gaudin, Céline; Thibault, Sharon

    2010-10-01

    Antibacterial peptide fractions generated via proteolytic processing of snow crab by-products exhibited activity against Gram-negative and Gram-positive bacteria. Among the bacterial strains tested, peptide fractions demonstrated inhibitory activity against the Gram-negative bacteria such as Aeromonas caviae, Aeromonas hydrophila, Campylobacter jejuni, Listonella anguillarum, Morganella morganii, Shewanella putrefasciens, Vibrio parahaemolyticus and Vibrio vulnificus and against a few Gram-positive bacteria such as Listeria monocytogenes, Staphylococcus epidermidis and Streptococcus agalactiae. The principal bioactive peptide fraction was comprised mainly of proteins and minerals (74.3 and 15.5%, respectively). Lipids were not detected. The amino acid content revealed that arginine (4.6%), glutamic acid (5.3%) and tyrosine (4.8%) residues were represented in the highest composition in the antibacterial peptide fraction. The optimal inhibitory activity was observed at alkaline pH. The V. vulnificus strain, most sensitive to the peptide fraction, was used to develop purification methods. The most promising chromatography resins selected for purification, in order to isolate peptides of interest and to carry out their detailed biochemical characterization, were the SP-Sepharose™ Fast Flow cation exchanger and the Phenyl Sepharose™ High Performance hydrophobic interaction media. The partially purified antibacterial peptide fraction was analyzed for minimum inhibitory concentration (MIC) determination, and the value obtained was 25 μg ml(-1). Following mass spectrometry analysis, the active peptide fraction seems to be a complex of molecules comprised of several amino acids and other organic compounds. In addition, copper was the main metal found in the active peptide fraction. Results indicate the production of antibacterial molecules from crustacean by-products that support further applications for high-value bioproducts in several areas such as food and health

  15. Antibacterial Peptides: Opportunities for the Prevention and Treatment of Dental Caries.

    Science.gov (United States)

    Pepperney, Adam; Chikindas, Michael L

    2011-06-01

    Dental caries is a multifactorial disease that is a growing and costly global health concern. The onset of disease is a consequence of an ecological imbalance within the dental plaque biofilm that favors specific acidogenic and aciduric caries pathogens, namely Streptococcus mutans and Streptococcus sobrinus. It is now recognized by the scientific and medical community that it is neither possible nor desirable to totally eliminate dental plaque. Conversely, the chemical biocides most commonly used for caries prevention and treatment indiscriminately attack all plaque microorganisms. These treatments also suffer from other drawbacks such as bad taste, irritability, and staining. Furthermore, the public demand for safe and natural personal hygiene products continues to rise. Therefore, there are opportunities that exist to develop new strategies for the treatment of this disease. As an alternative to conventional antibiotics, antibacterial peptides have been explored greatly over the last three decades for many different therapeutic uses. There are currently tens of hundreds of antibacterial peptides characterized across the evolutionary spectrum, and among these, many demonstrate physical and/or biological properties that may be suitable for a more targeted approach to the selective control or elimination of putative caries pathogens. Additionally, many peptides, such as nisin, are odorless, colorless, and tasteless and do not cause irritation or staining. This review focuses on antibacterial peptides for their potential role in the treatment and prevention of dental caries and suggests candidates that need to be explored further. Practical considerations for the development of antibacterial peptides as oral treatments are also discussed. PMID:26781572

  16. Antibacterial Peptide CecropinB2 Production via Various Host and Construct Systems

    Directory of Open Access Journals (Sweden)

    Wei-Shiang Lai

    2016-01-01

    Full Text Available Cecropin is a cationic antibacterial peptide composed of 35–39 residues. This peptide has been identified as possessing strong antibacterial activity and low toxicity against eukaryotic cells, and it has been claimed that some types of the cecropin family of peptides are capable of killing cancer cells. In this study, the host effect of cloning antibacterial peptide cecropinB2 was investigated. Three different host expression systems were chosen, i.e., Escherichia coli, Bacillus subtilis and Pichia pastoris. Two gene constructs, cecropinB2 (cecB2 and intein-cecropinB2 (INT-cecB2, were applied. Signal peptide and propeptide from Armigeres subalbatus were also attached to the gene construct. The results showed that the best host for cloning cecropinB2 was P. pastoris SMD1168 harboring the gene of pGAPzαC-prepro-cecB2 via Western blot confirmation. The cecropinB2 that was purified using immobilized-metal affinity chromatography resin showed strong antibacterial activity against the Gram-negative strains, including the multi-drug-resistant bacteria Acinetobacter baumannii.

  17. Characterization of the novel antibacterial peptide Leucrocin from crocodile (Crocodylus siamensis) white blood cell extracts.

    Science.gov (United States)

    Pata, Supawadee; Yaraksa, Nualyai; Daduang, Sakda; Temsiripong, Yosapong; Svasti, Jisnuson; Araki, Tomohiro; Thammasirirak, Sompong

    2011-05-01

    Four novel antibacterial peptides, Leucrocin I-IV from Siamese crocodile white blood cell extracts were purified by reverse phase high performance liquid chromatography (RP-HPLC). Leucrocins exhibit strong antibacterial activity towards Staphylococcus epidermidis, Salmonella typhi and Vibrio cholerae. The peptides were 7-10 residues in length with different primary structure. The amino acid sequence of Leucrocin I is NGVQPKY with molecular mass around 806.99 Da and Leucrocin II is NAGSLLSGWG with molecular mass around 956.3 Da. Further, the interaction between peptides and bacterial membranes as part of their killing mechanism was studied by fluorescence and electron microscopy. The outer membrane and cytoplasmic membrane was the target of action of Leucrocins as assayed in model membrane by release of β-galactosidase due to the membrane permeabilization. Finally, the hemolytic effect was tested against human red blood cell. Leucrocin I, III and IV showed less toxicity against human red blood cells than Leucrocin II. PMID:21184776

  18. Optimization of antibacterial peptides by genetic algorithms and cheminformatics

    DEFF Research Database (Denmark)

    Fjell, Christopher D.; Jenssen, Håvard; Cheung, Warren A.;

    2011-01-01

    47 of the top rated 50 peptides chosen from an in silico library of nearly 100 000 sequences. Here, we report a method of generating candidate peptide sequences using the heuristic evolutionary programming method of genetic algorithms (GA), which provided a large (19-fold) improvement in...

  19. RV-23, a Melittin-Related Peptide with Cell-Selective Antibacterial Activity and High Hemocompatibility.

    Science.gov (United States)

    Zhang, Shi-Kun; Ma, Qian; Li, Su-Bo; Gao, Hong-Wei; Tan, Ying-Xia; Gong, Feng; Ji, Shou-Ping

    2016-06-28

    RV-23 is a melittin-related antibacterial peptide (MRP) with lower cytotoxicity than either melittin or AR-23, another MRP. The aim of this study was to explore the mechanism of RV- 23's antibacterial selectivity and its hemocompatibility. The results showed that all the peptides exhibited lytic activity against Staphylococcus aureus and Escherichia coli, with RV-23 showing the highest potency. Moreover, RV-23 had lower cytotoxicity than melittin or AR-23 at their minimal inhibitory concentration. In addition, CD experiments showed that melittin, RV-23, and AR-23 all had a typical α-helical structure, and RV-23 had the lowest α-helix content. The structural information showed that RV-23 has the lowest hydrophobicity and highest hydrophobic moment. Because hydrophobicity and α-helix content are believed to correlate with hemolysis, the results indicate that the selective lytic activity against bacteria of RV-23 may be due to its low hydrophobicity and α-helicity, which lead to low cytotoxicity without affecting antibacterial activity. Furthermore, RV-23 did not affect the structure and function of blood components such as red blood cells, platelets, albumin, and the blood coagulation system. In conclusion, RV-23 is a cell-selective antibacterial peptide with high hemocompatibility due to its unique structure. PMID:26975766

  20. Antibacterial Peptides from Plants: What They Are and How They Probably Work

    Directory of Open Access Journals (Sweden)

    Patrícia Barbosa Pelegrini

    2011-01-01

    Full Text Available Plant antibacterial peptides have been isolated from a wide variety of species. They consist of several protein groups with different features, such as the overall charge of the molecule, the content of disulphide bonds, and structural stability under environmental stress. Although the three-dimensional structures of several classes of plant peptides are well determined, the mechanism of action of some of these molecules is still not well defined. However, further studies may provide new evidences for their function on bacterial cell wall. Therefore, this paper focuses on plant peptides that show activity against plant-pathogenic and human-pathogenic bacteria. Furthermore, we describe the folding of several peptides and similarities among their three-dimensional structures. Some hypotheses for their mechanisms of action and attack on the bacterial membrane surface are also proposed.

  1. Antibacterial Activity of Recombinant Pig Intestinal Parasite Cecropin P4 Peptide Secreted from Pichia pastoris

    OpenAIRE

    Song, Ki-Duk; Lee, Woon-Kyu

    2014-01-01

    Cecropins (Cec) are antibacterial peptides and their expression is induced in a pig intestinal parasite Ascaris suum by bacterial infection. To explore the usefulness of its activity as an antibiotic, CecP4 cDNA was prepared and cloned into the pPICZ B expression vector and followed by the integration into AOX1 locus in Pichia pastoris. The supernatants from cell culture were collected after methanol induction and concentrated for the test of antimicrobial activity. The recombinant P. patoris...

  2. A Simple Method for Primary Screening of Antibacterial Peptides in Plant Seeds

    Directory of Open Access Journals (Sweden)

    A Aliahmadi

    2011-06-01

    Full Text Available Background and Objectives: Regarding the importance of finding new antibacterial drugs, screening of plants as a promising resource are now conducted worldwide. In this study, we report the application of a simple previously described method for screening of different plant seeds in order to find the best resources of plant antimicrobial peptides.Materials and Methods: Total water soluble protein of 10 different plant seeds were extracted and subjected to SDS-PAGE and subsequent agar-overlay bioassays. Standard strains of Staphylococcus aureus, Enterococcus faecium and Escherichia coli were included in the bioassays. This method also was used for total proteins precipitated by Ammonium sulphate which ensure the protein nature of the test substances. Molecular size and the amounts of effective peptides were estimated using Tricin-SDS-PAGE and densitometry.Results: Two different plant seeds showed noticeable antibacterial activities against tested Gram positive bacteria and a moderate inhibitory effect on Gram negative ones. Based on the results of Tricin-SDS-PAGE analysis which were carried out in parallel to bioassays, it was concluded that effective antibacterial substances are peptides with molecular weight of slightly larger than 5 kDa.Conclusion: On the basis of results of agar-overlay experiments and by screening of 10 different herbal seeds, we could introduce seeds of M. sativa L. and Onobrychis sativa Lam., as great sources of putative plant antibacterial peptides. The proposed screening method can be used for screening of large number of different plant seeds and even other parts of the plant body, regarding some necessary modification in total water soluble protein extraction steps.

  3. Acaloleptins A: inducible antibacterial peptides from larvae of the beetle, Acalolepta luxuriosa.

    Science.gov (United States)

    Imamura, M; Wada, S; Koizumi, N; Kadotani, T; Yaoi, K; Sato, R; Iwahana, H

    1999-01-01

    We purified and characterized three structurally related antibacterial peptides with a molecular mass of 8 kDa (acaloleptins A1, A2, and A3) from the hemolymph of immunized larvae of the Udo longicorn beetle, Acalolepta luxuriosa. These peptides have the same 6 N-terminal amino acid residues and show potent antibacterial activity against some Gram-negative bacteria. The three peptides are thought to be isoforms. Reverse phase HPLC analysis of the hemolymph of immunized and naive larvae showed that acaloleptins A1, A2, and A3 were inducible and suggested that all three peptides were produced in a single insect. We determined the complete amino acid sequence of acaloleptin A1: Acaloleptin A1 consists of 71 amino acid residues and shares significant sequence similarity with coleoptericin and holotricin 2, which were isolated from other coleopteran insects. Furthermore, the 29 C-terminal residues of acaloleptin A1 had 40% identity with the 30 C-terminal residues of hymenoptaecin found in honeybees. Arch. Insect Biochem. PMID:10077828

  4. A novel short anionic antibacterial peptide isolated from the skin of Xenopus laevis with broad antibacterial activity and inhibitory activity against breast cancer cell.

    Science.gov (United States)

    Li, Siming; Hao, Linlin; Bao, Wanguo; Zhang, Ping; Su, Dan; Cheng, Yunyun; Nie, Linyan; Wang, Gang; Hou, Feng; Yang, Yang

    2016-07-01

    A vastarray of bioactive peptides from amphibian skin secretions is attracting increasing attention due to the growing problem of bacteria resistant to conventional antibiotics. In this report, a small molecular antibacterial peptide, named Xenopus laevis antibacterial peptide-P1 (XLAsp-P1), was isolated from the skin of Xenopus laevis using reversed-phase high-performance liquid chromatography. The primary structure of XLAsp-P1, which has been proved to be a novel peptide by BLAST search in AMP database, was DEDDD with a molecular weight of 607.7 Da analysed by Edman degradation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). The highlight of XLAsp-P1 is the strong in vitro potency against a variety of Gram-positive and Gram-negative bacteria with minimum inhibitory concentrations (MICs) starting at 10 μg/mL and potent inhibitory activity against breast cancer cell at tested concentrations from 5 to 50 μg/mL. In addition, only 6.2 % of red blood cells was haemolytic when incubated with 64 μg/mL (higher than MICs of all bacterial strain) of XLAsp-P1. The antimicrobial mechanism for this novel peptide was the destruction of the cell membrane investigated by transmission electron microscopy. All these showed that XLAsp-P1 is a novel short anionic antibacterial peptide with broad antibacterial activity and inhibitory activity against breast cancer cell. PMID:26952034

  5. THE CHARACTERISTICS OF BIOACTIVE PEPTIDES AND ANTIBACTERIAL ACTIVITY OF HONEY BEE (Apis nigrocincta) SMITH VENOM, ENDEMIC TO SULAWESI

    OpenAIRE

    Mokosuli Yermia Semuel; Rudi Alexander Repi

    2015-01-01

    Apis nigrocincta Smith is a species of honey bee cavity nesting, endemic to Sulawesi. Research that aims to find the composition of the bioactive content of peptides and antibacterial activity of honey bee venom A. nigrocincta Smith has been conducted. Honey bee venom composition was analyzed using Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) Method and Spectrophotometer UV-Vis Method. Analysis of antibacterial activity, was conducted using a modified agar diffusion m...

  6. Inducing and isolation of antibacterial peptides from oriental fruit fly, Bactrocera dorsalis Hendel

    Institute of Scientific and Technical Information of China (English)

    XIANG-LI DANG; JIN-HUAN TIAN; HUI-YU YI; WEN-XIAN WANG; MIN ZHENG; YI-FENG LI; YANG CAO; SHUO-YANG WEN

    2006-01-01

    One antibacterial activity fraction from an immunized dipteran insect, Bactrocera dorsalis, was isolated and purified by prepurification, ion-exchange chromatography, gel filtration chromatography and reverse-phase high performance liquid chromatography (HPLC). The final purified fraction was checked on the Smart system HPLC and was judged as a pure fraction. The results of physical and biological analysis revealed that this fraction is heat stable and showed strong activities against Gram-positive bacterial growth. It possesses antibicrobial peptide properties and is worth further investigation.

  7. Antibacterial and leishmanicidal activities of temporin-SHd, a 17-residue long membrane-damaging peptide.

    Science.gov (United States)

    Abbassi, Feten; Raja, Zahid; Oury, Bruno; Gazanion, Elodie; Piesse, Christophe; Sereno, Denis; Nicolas, Pierre; Foulon, Thierry; Ladram, Ali

    2013-02-01

    Temporins are a family of short antimicrobial peptides (8-17 residues) that mostly show potent activity against Gram-positive bacteria. Herein, we demonstrate that temporin-SHd, a 17-residue peptide with a net charge of +2 (FLPAALAGIGGILGKLF(amide)), expressed a broad spectrum of antimicrobial activity. This peptide displayed potent antibacterial activities against Gram-negative and Gram-positive bacteria, including multi-drug resistant Staphylococcus aureus strains, as well as antiparasitic activity against promastigote and the intracellular stage (amastigote) of Leishmania infantum, at concentration not toxic for the macrophages. Temporin-SHd that is structured in a non-amphipathic α-helix in anionic membrane-mimetic environments, strongly and selectively perturbs anionic bilayer membranes by interacting with the polar head groups and acyl region of the phospholipids, with formation of regions of two coexisting phases: one phase rich in peptide and the other lipid-rich. The disruption of lipid packing within the bilayer may lead to the formation of transient pores and membrane permeation/disruption once a threshold peptide accumulation is reached. To our knowledge, Temporin-SHd represents the first known 17-residue long temporin expressing such broad spectrum of antimicrobial activity including members of the trypanosomatidae family. Additionally, since only a few shorter members (13 residues) of the temporin family are known to display antileishmanial activity (temporins-TA, -TB and -SHa), SHd is an interesting tool to analyze the antiparasitic mechanism of action of temporins. PMID:23116712

  8. Collagencin, an antibacterial peptide from fish collagen: Activity, structure and interaction dynamics with membrane.

    Science.gov (United States)

    Ennaas, Nadia; Hammami, Riadh; Gomaa, Ahmed; Bédard, François; Biron, Éric; Subirade, Muriel; Beaulieu, Lucie; Fliss, Ismail

    2016-04-29

    In this study, we first report characterization of collagencin, an antimicrobial peptide identified from fish collagen hydrolysate. The peptide completely inhibited the growth of Staphylococcus aureus at 1.88 mM. Although non-toxic up to 470 μM, collagencin was hemolytic at higher concentrations. The secondary structure of collagencin was mainly composed by β-sheet and β-turn as determined by CD measurements and molecular dynamics. The peptide is likely to form β-sheet structure under hydrophobic environments and interacts with both anionic (phosphatidylglycerol) and zwitterionic (phosphoethanolamine and phosphatidylcholine) lipids as shown with CD spectroscopy and molecular dynamics. The peptide formed several hydrogen bonds with both POPG and POPE lipids and remained at membrane-water interface, suggesting that collagencin antibacterial action follows a carpet mechanism. Collagenous fish wastes could be processed by enzymatic hydrolysis and transformed into products of high value having functional or biological properties. Marine collagens are a promising source of antimicrobial peptides with new implications in food safety and human health. PMID:27038545

  9. Antibacterial and antiproliferative peptides in synbiotic yogurt-Release and stability during refrigerated storage.

    Science.gov (United States)

    Sah, B N P; Vasiljevic, T; McKechnie, S; Donkor, O N

    2016-06-01

    The search for alternative therapeutics is on the rise due to the extensive increase in bacterial resistance to various conventional antibiotics and side effects of conventional cancer therapies. Bioactive peptides released from natural sources such as dairy foods by lactic acid bacteria have received attention as a potential source of biotherapeutic peptides. However, liberation of peptides in yogurt depends on proteolytic activities of the cultures used. Thus, this research was conducted to establish generation of inhibitory peptides in yogurt against pathogenic bacteria and cancer cells during storage at 4°C for 28d. Water-soluble crude peptide extracts were prepared by high-speed centrifugation of plain and probiotic yogurts supplemented with or without pineapple peel powder (PPP). The inhibition zones against Escherichia coli and Staphylococcus aureus by PPP-fortified probiotic yogurt at 28d of storage were, respectively, 25.89 and 11.72mm in diameter, significantly higher than that of nonsupplemented control yogurts. Antiproliferative activity against HT29 colon cancer cells was also significantly higher in probiotic yogurt with PPP than in nonsupplemented probiotic yogurt. Overall, crude water-soluble peptide extracts of the probiotic yogurt with PPP possessed stronger inhibitory activities against bacteria and cancer cells than controls, and these activities were maintained during storage. However, activities were lowered substantially during in vitro gastrointestinal digestion. These findings support the possibility of utilizing dairy-derived bioactive peptides in the development of a superior alternative to the current generation of antibacterial and anticancer agents, as well as a functional ingredient in foods, nutraceuticals, and pharmaceuticals. PMID:26995128

  10. Production and characterization of a new antibacterial peptide obtained from Aeribacillus pallidus SAT4

    Directory of Open Access Journals (Sweden)

    Syed Aun Muhammad

    2015-12-01

    Full Text Available A novel thermophilic bacterial strain of the genus Aeribacillus was isolated from Thar Dessert Pakistan. This strain showed significant antibacterial activity against Micrococcus luteus, Staphylococcus aureus, and Pseudomonas aeruginosa. The strain coded as ‘SAT4’ resembled with Aeribacillus pallidus in the morphological, biochemical and molecular tests. The production of antibacterial metabolites by SAT4 was optimized. These active metabolites were precipitated by 50% ammonium sulphate and purified through sephadex G-75 gel permeation chromatography and reverse phase HPLC. The molecular weight of 37 kDa was examined by SDS-PAGE. The structural elucidation of the purified product was studied by FTIR, 1H and 13C NMR. The X-ray diffractions study showed that the crystals belonged to the primitive orthorhombic lattice (a = 12.137, b = 13.421, c = 14.097 Å and 3D structure (proposed name: Aeritracin was determined. This new peptide antibacterial molecule can get a position in pharmaceutical and biotechnological industrial research.

  11. Antibacterial agents based on the cyclic D,L-α-peptide architecture

    Science.gov (United States)

    Fernandez-Lopez, Sara; Kim, Hui-Sun; Choi, Ellen C.; Delgado, Mercedes; Granja, Juan R.; Khasanov, Alisher; Kraehenbuehl, Karin; Long, Georgina; Weinberger, Dana A.; Wilcoxen, Keith M.; Ghadiri, M. Reza

    2001-07-01

    The rapid emergence of bacterial infections that are resistant to many drugs underscores the need for new therapeutic agents. Here we report that six- and eight-residue cyclic D,L-α-peptides act preferentially on Gram-positive and/or Gram-negative bacterial membranes compared to mammalian cells, increase membrane permeability, collapse transmembrane ion potentials, and cause rapid cell death. The effectiveness of this class of materials as selective antibacterial agents is highlighted by the high efficacy observed against lethal methicillin-resistant Staphylococcus aureus infections in mice. Cyclic D,L-α-peptides are proteolytically stable, easy to synthesize, and can be derived from a potentially vast membrane-active sequence space. The unique abiotic structure of the cyclic peptides and their quick bactericidal action may also contribute to limit temporal acquirement of drug resistant bacteria. The low molecular weight D,L-α-peptides offer an attractive complement to the current arsenal of naturally derived antibiotics, and hold considerable potential in combating a variety of existing and emerging infectious diseases.

  12. Temporin-SHa peptides grafted on gold surfaces display antibacterial activity.

    Science.gov (United States)

    Lombana, Andres; Raja, Zahid; Casale, Sandra; Pradier, Claire-Marie; Foulon, Thierry; Ladram, Ali; Humblot, Vincent

    2014-07-01

    Development of resistant bacteria onto biomaterials is a major problem leading to nosocomial infections. Antimicrobial peptides are good candidates for the generation of antimicrobial surfaces because of their broad-spectrum activity and their original mechanism of action (i.e. rapid lysis of the bacterial membrane) making them less susceptible to the development of bacterial resistance. In this study, we report on the covalent immobilisation of temporin-SHa on a gold surface modified by a thiolated self-assembled monolayer. Temporin-SHa (FLSGIVGMLGKLF amide) is a small hydrophobic and low cationic antimicrobial peptide with potent and very broad-spectrum activity against Gram-positive and Gram-negative bacteria, yeasts and parasites. We have analysed the influence of the binding mode of temporin-SHa on the antibacterial efficiency by using a covalent binding either via the peptide NH2 groups (random grafting of α- and ε-NH2 to the surface) or via its C-terminal end (oriented grafting using the analogue temporin-SHa-COOH). The surface functionalization was characterised by IR spectroscopy (polarisation modulation reflection absorption IR spectroscopy) while antibacterial activity against Listeria ivanovii was assessed by microscopy techniques, such as atomic force microscopy and scanning electron microscopy equipped with a field emission gun. Our results revealed that temporin-SHa retains its antimicrobial activity after covalent grafting. A higher amount of bound temporin-SHa is observed for the C-terminally oriented grafting compared with the random grafting (NH2 groups). Temporin-SHa therefore represents an attractive candidate as antimicrobial coating agent. PMID:24919960

  13. THE CHARACTERISTICS OF BIOACTIVE PEPTIDES AND ANTIBACTERIAL ACTIVITY OF HONEY BEE (Apis nigrocincta SMITH VENOM, ENDEMIC TO SULAWESI

    Directory of Open Access Journals (Sweden)

    Mokosuli Yermia Semuel

    2015-11-01

    Full Text Available Apis nigrocincta Smith is a species of honey bee cavity nesting, endemic to Sulawesi. Research that aims to find the composition of the bioactive content of peptides and antibacterial activity of honey bee venom A. nigrocincta Smith has been conducted. Honey bee venom composition was analyzed using Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE Method and Spectrophotometer UV-Vis Method. Analysis of antibacterial activity, was conducted using a modified agar diffusion method. The results showed that the venom of the honey bee Apis nigrocincta Smith has five bands of molecules with a molecular weight i.e. 33.54kDa; 21 kDa and 15.43 kDa. The peptide detected were hyaluronidase, fosfolipase A, mellitin, lysofosfolipase or antigen 5. Antibacterial activity was higher than the control ampisilin and antibiotic streptomycin.

  14. Antibacterial Peptides of The Ovine Reproductive Tract%绵羊生殖道抗菌肽

    Institute of Scientific and Technical Information of China (English)

    陈琛; 王新华; 薄新文

    2009-01-01

    The female sheep reproductive tracts were freshly collected from a local meat processing plant and used as experimental materials. Two antibacterial peptides were isolated and characterized from female sheep reproductive tracts by two consecutive chromatographic steps. The peptide isolation procedures included acetic acid extraction, dialyzed, gel filtration chromatography on Sephadex G-50, and reverse phase high-performance liquid chromatography (RP-HPLC). Their molecular mass were 4 820.47 u and 4 012.5 u, respectively, analyzed by MALDI-TOF-MS. The partial N-terminal amino acid sequences of two peptides were determined as AYVLDEPKP and YDSGA, respectively, by Edman degradation. The antimicrobial activity was tested during each purification step by the radial diffusion plate assay and broth microdilution method. These two peptides showed good antimicrobial activities against reference strains of G~+(S. Aureus ATCC2592 and Streptococcu ATCC55121), G~-(E. Coli ATCC25922) and fungi(C. Albicans ATCC2002). The peptides did not show active hemolytic activity against rabbit blood red cells and had no significant effects on human blood coagulation system. The discovery of antibacterial peptides in sheep reproductive system reveals that antibacterial peptides may play a role in innate immunity against microorganisms in a wide range of animal species.%以屠宰场收集的新鲜、健康、雌性绵羊牛殖器官为原材料.采用乙酸浸提、透析、Sephadex G-50凝胶过滤层析和反相高效液相色谱(RP-HPLC)等方法分离纯化绵羊生殖道抗菌肽.以G+、G-和真菌为抗菌活性检测指示菌株,利用薄层琼脂糖孔穴扩散法、微量肉汤稀释法进行抗菌活性检测.对分离纯化所得纯品进行分子质量质谱测定、纯度鉴定、N端测序,并对其性质进行研究.结果表明:分离纯化所得两个绵羊生殖道抗菌肽分子质量分别为4820.47 u和4012.5 u,N端部分氨基酸序列分别

  15. Purification and characterization of a novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae.

    Science.gov (United States)

    Park, Soon-Ik; Kim, Jong-Wan; Yoe, Sung Moon

    2015-09-01

    In this study, we induced and purified a novel antimicrobial peptide exhibiting activity against Gram-positive bacteria from the immunized hemolymph of Hermetia illucens larvae. The immunized hemolymph was extracted, and the novel defensin-like peptide 4 (DLP4) was purified using solid-phase extraction and reverse-phase chromatography. The purified DLP4 demonstrated a molecular weight of 4267 Da, as determined using the matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) method. From analysis of DLP4 by N-terminal amino acid sequencing using Edman degradation, combined with MALDI-TOF and rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR), the amino acid sequence of the mature peptide was determined to be ATCDLLSPFKVGHAACAAHCIARGKRGGWCDKRAVCNCRK. In NCBI BLAST, the amino acid sequence of DPL4 was found to be 75% identical to the Phlebotomus duboscqi defensin. Analysis of the minimal inhibitory concentration (MIC) revealed that DLP4 have antibacterial effects against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA). The expression of DLP4 transcripts in several tissues after bacterial challenge was measured by quantitative real-time PCR. Expression of the DLP4 gene hardly occurred throughout the body before immunization, but was mostly evident in the fat body after immunization. PMID:25956195

  16. Helical 1:1 α/Sulfono-γ-AA Heterogeneous Peptides with Antibacterial Activity.

    Science.gov (United States)

    She, Fengyu; Nimmagadda, Alekhya; Teng, Peng; Su, Ma; Zuo, Xiaobing; Cai, Jianfeng

    2016-05-01

    As one of the greatest threats facing the 21st century, antibiotic resistance is now a major public health concern. Host-defense peptides (HDPs) offer an alternative approach to combat emerging multi-drug-resistant bacteria. It is known that helical HDPs such as magainin 2 and its analogs adopt cationic amphipathic conformations upon interaction with bacterial membranes, leading to membrane disruption and subsequent bacterial cell death. We have previously shown that amphipathic sulfono-γ-AApeptides could mimic magainin 2 and exhibit bactericidal activity. In this article, we demonstrate for the first time that amphipathic helical 1:1 α/sulfono-γ-AA heterogeneous peptides, in which regular amino acids and sulfono-γ-AApeptide building blocks are alternatively present in a 1:1 pattern, display potent antibacterial activity against both Gram-positive and Gram-negative bacterial pathogens. Small angle X-ray scattering (SAXS) suggests that the lead sequences adopt defined helical structures. The subsequent studies including fluorescence microscopy and time-kill experiments indicate that these hybrid peptides exert antimicrobial activity by mimicking the mechanism of HDPs. Our findings may lead to the development of HDP-mimicking antimicrobial peptidomimetics that combat drug-resistant bacterial pathogens. In addition, our results also demonstrate the effective design of a new class of helical foldamer, which could be employed to interrogate other important biological targets such as protein-protein interactions in the future. PMID:27030636

  17. Antibacterial Activity of Recombinant Pig Intestinal Parasite Cecropin P4 Peptide Secreted from Pichia pastoris.

    Science.gov (United States)

    Song, Ki-Duk; Lee, Woon-Kyu

    2014-02-01

    Cecropins (Cec) are antibacterial peptides and their expression is induced in a pig intestinal parasite Ascaris suum by bacterial infection. To explore the usefulness of its activity as an antibiotic, CecP4 cDNA was prepared and cloned into the pPICZ B expression vector and followed by the integration into AOX1 locus in Pichia pastoris. The supernatants from cell culture were collected after methanol induction and concentrated for the test of antimicrobial activity. The recombinant P. patoris having CecP4 showed antimicrobial activity when tested against Staphyllococcus aureus in disc diffusion assay. We selected one of the CecP4 clones (CecP4-2) and performed further studies with it. The growth of recombinant P. pastoris was optimized using various concentration of methanol, and it was found that 2% methanol in the culture induced more antibacterial activity, compared to 1% methanol. We extended the test of antimicrobial activity by applying the concentrated supernatant of CecP4 culture to Pseudomonas aeruginosa and E. coli respectively. Recombinant CecP4 also showed antimicrobial activity against both Pseudomona and E. coli, suggesting the broad spectrum of its antimicrobial activity. After improvements for the scale-up, it will be feasible to use recombinant CecP4 for supplementation to the feed to control microbial infections in young animals, such as piglets. PMID:25049952

  18. Production of antibacterial peptide from bee venom via a new strategy for heterologous expression.

    Science.gov (United States)

    Hou, Chunsheng; Guo, Liqiong; Lin, Junfang; You, Linfeng; Wu, Wuhua

    2014-12-01

    Honey bee is important economic insect that not only pollinates fruits and crops but also provides products with various physiological activities. Bee venom is a functional agent that is widely applied in clinical treatment and pharmacy. Secapin is one of these agents that have a significant role in therapy. The functions of secapin from the bee venom have been documented, but little information is known about its heterologous expression under natural condition. Moreover, few scholars verified experimentally the functions of secapin from bee venom in vitro. In this study, we successfully constructed a heterologous expression vector, which is different from conventional expression system. A transgenic approach was established for transformation of secapin gene from the venom of Apis mellifera carnica (Ac-sec) into the edible fungi, Coprinus cinereus. Ac-sec was encoded by a 234 bp nucleotide that contained a signal peptide domain and two potential phosphorylation sites. The sequence exhibited highly homology with various secapins characterized from honey bee and related species. Southern blot data indicated that Ac-sec was present as single or multiple copy loci in the C. cinereus genome. By co-transformation and double-layer active assay, Ac-sec was expressed successfully in C. cinereus and the antibacterial activity of the recombinants was identified, showing notable antibacterial activities on different bacteria. Although Ac-sec is from the venom of Apidae, phylogenetic analysis demonstrated that Ac-sec was more closely related to that of Vespid than to bee species from Apidae. The molecular characteristics of Ac-sec and the potential roles of small peptides in biology were discussed. PMID:25189650

  19. Stable isotope-assisted NMR characterization of interaction between lipid A and sarcotoxin IA, a cecropin-type antibacterial peptide

    International Nuclear Information System (INIS)

    Highlights: ► Recombinant sarcotoxin IA was successfully produced with 13C- and 15N-labeling. ► Sarcotoxin IA adopts an N-terminal α-helix upon binding to lipid A-embedding micelles. ► Two lysine residues are involved in lipid A-mediated antibacterial activities. -- Abstract: Sarcotoxin IA is a 39-residue cecropin-type peptide from Sarcophaga peregrina. This peptide exhibits antibacterial activity against Gram-negative bacteria through its interaction with lipid A, a core component of lipopolysaccharides. To acquire detailed structural information on this specific interaction, we performed NMR analysis using bacterially expressed sarcotoxin IA analogs with 13C- and 15N-labeling along with lipid A-embedding micelles composed of dodecylphosphocholine. By inspecting the stable isotope-assisted NMR data, we revealed that the N-terminal segment (Leu3–Arg18) of sarcotoxin IA formed an amphiphilic α-helix upon its interaction with the aqueous micelles. Furthermore, chemical shift perturbation data indicated that the amino acid residues displayed on this α-helix were involved in the specific interaction with lipid A. On the basis of these data, we successfully identified Lys4 and Lys5 as key residues in the interaction with lipid A and the consequent antibacterial activity. Therefore, these results provide unique information for designing chemotherapeutics based on antibacterial peptide structures

  20. A Peptide-Based Mechano-sensitive, Proteolytically Stable Hydrogel with Remarkable Antibacterial Properties.

    Science.gov (United States)

    Baral, Abhishek; Roy, Subhasish; Ghosh, Srabanti; Hermida-Merino, Daniel; Hamley, Ian W; Banerjee, Arindam

    2016-02-23

    A long-chain amino acid containing dipeptide has been found to form a hydrogel in phosphate buffer whose pH ranges from 6.0 to 8.8. The hydrogel formed at pH 7.46 has been characterized by small-angle X-ray scattering (SAXS), wide-angle powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM) imaging and rheological analyses. The microscopic imaging studies suggest the formation of a nanofibrillar three-dimensional (3D) network for the hydrogel. As observed visually and confirmed rheologically, the hydrogel at pH 7.46 exhibits thixotropy. This thixotropic property can be exploited to inject the peptide. Furthermore, the hydrogel exhibits remarkable antibacterial activity against Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, which are responsible for many common diseases. The hydrogel has practical applicability due to its biocompatibility with human red blood cells and human fibroblast cells. Interestingly, this hydrogel shows high resistance toward proteolytic enzymes, making it a new potential antimicrobial agent for future applications. It has also been observed that a small change in molecular structure of the gelator peptide not only turns the gelator into a nongelator molecule under similar conditions, but it also has a significant negative impact on its bactericidal character. PMID:26818698

  1. Purification and characterization of four antibacterial peptides from protamex hydrolysate of Atlantic mackerel (Scomber scombrus) by-products.

    Science.gov (United States)

    Ennaas, Nadia; Hammami, Riadh; Beaulieu, Lucie; Fliss, Ismail

    2015-07-01

    Proteins from fish by-product sources are valuable source of bioactive peptides and show promise as functional foods ingredients. The objective of the present study was to isolate and characterize antibacterial peptides from protamex hydrolysates of Atlantic mackerel (Scomber scombrus) by-products. Four sequences SIFIQRFTT (P4), RKSGDPLGR (P8.1), AKPGDGAGSGPR (P8.2) and GLPGPLGPAGPK (P11) were identified in peptide fractions separated using RP-HPLC. At 200 μg mL(-1), while peptides P8.1, P8.2 and P11 exhibited partial inhibition, P4 totally inhibited tested Gram-positive (Listeria innocua) and Gram-negative (Escherichia coli) bacterial strains. These results suggest that the protein hydrolysate derived from mackerel by-products could be used as an antimicrobial ingredient in both functional food and nutraceutical applications. PMID:25934151

  2. Integration of antimicrobial peptides with gold nanoparticles as unique non-viral vectors for gene delivery to mesenchymal stem cells with antibacterial activity.

    Science.gov (United States)

    Peng, Li-Hua; Huang, Yan-Fen; Zhang, Chen-Zhen; Niu, Jie; Chen, Ying; Chu, Yang; Jiang, Zhi-Hong; Gao, Jian-Qing; Mao, Zheng-Wei

    2016-10-01

    Gold nanoparticles (AuNPs) have emerged as attractive non-viral gene vectors. However their application in regenerative medicine is still limited partially due to a lack of an intrinsic capacity to transfect difficult-to-transfect cells such as primary cells or stem cells. In current study, we report the synthesis of antimicrobial peptide conjugated cationic AuNPs (AuNPs@PEP) as highly efficient carriers for gene delivery to stem cells with antibacterial ability. The AuNPs@PEP integrate the advantages of cationic AuNPs and antibacterial peptides: the presence of cationic AuNPs can effectively condense DNA and the antimicrobial peptides are essential for the cellular & nucleus entry enhancement to achieve high transfection efficiency and antibacterial ability. As a result, antimicrobial peptides conjugated AuNPs significantly promoted the gene transfection efficiency in rat mesenchymal stem cells than pristine AuNPs, with a similar extent to those expressed by TAT (a well-known cell-penetrating peptide) modified AuNPs. More interestingly, the combinational system has better antibacterial ability than free antimicrobial peptides in vitro and in vivo, possibly due to the high density of peptides on the surface of AuNPs. Finally we present the concept-proving results that AuPs@PEP can be used as a carrier for in vivo gene activation in tissue regeneration, suggesting its potential as a multifunctional system with both gene delivery and antibacterial abilities in clinic. PMID:27376562

  3. A miniature mimic of host defense peptides with systemic antibacterial efficacy

    International Nuclear Information System (INIS)

    Oligomers of acylated lysines (OAKs) are synthetic mimics of host defense peptides (HDPs) with promising antimicrobial properties. Here we challenged the OAK concept for its ability to generate both systemically efficient and economically viable lead compounds for fighting multidrug-resistant bacteria. We describe the design and characterization of a miniature OAK composed of only 3 lysyls and 2 acyls (designated C12(ω7)K-β12) that preferentially targets gram-positive species by a bacteriostatic mode of action. To gain insight into the mechanism of action, we examined the interaction of OAK with various potential targets, including phospholipid bilayers, using surface plasmon resonance, and Langmuir monolayers, using insertion assays, epifluorescence microscopy, and grazing incidence X-ray diffraction, in a complementary manner. Collectively, the data support the notion that C12(ω7)K-β12 damages the plasma-membrane architecture similarly to HDPs, that is, following a near-classic 2-step interaction including high-affinity electrostatic adhesion and a subsequent shallow insertion that was limited to the phospholipid head group region. Notably, preliminary acute toxicity and efficacy studies performed with mouse models of infection have consolidated the potential of OAK for treating bacterial infections, including systemic treatments of methicillin-resistant Staphylococcus aureus. Such simple yet robust chemicals might be useful for various antibacterial applications while circumventing potential adverse effects associated with cytolytic compounds.

  4. Modulating the activity of short arginine-tryptophan containing antibacterial peptides with N-terminal metallocenoyl groups

    Directory of Open Access Journals (Sweden)

    H. Bauke Albada

    2012-10-01

    Full Text Available A series of small synthetic arginine and tryptophan containing peptides was prepared and analyzed for their antibacterial activity. The effect of N-terminal substitution with metallocenoyl groups such as ferrocene (FcCO and ruthenocene (RcCO was investigated. Antibacterial activity in different media, growth inhibition, and killing kinetics of the most active peptides were determined. The toxicity of selected derivatives was determined against erythrocytes and three human cancer cell lines. It was shown that the replacement of an N-terminal arginine residue with a metallocenoyl moiety modulates the activity of WRWRW-peptides against Gram-positive and Gram-negative bacteria. MIC values of 2–6 µM for RcCO-W(RW2 and 1–11 µM for (RW3 were determined. Interestingly, W(RW2-peptides derivatized with ferrocene were significantly less active than those derivatized with ruthenocene which have similar structural but different electronic properties, suggesting a major influence of the latter. The high activities observed for the RcCO-W(RW2- and (RW3-peptides led to an investigation of the origin of activity of these peptides using several important activity-related parameters. Firstly, killing kinetics of the RcCO-W(RW2-peptide versus killing kinetics of the (RW3 derivative showed faster reduction of the colony forming units for the RcCO-W(RW2-peptide, although MIC values indicated higher activity for the (RW3-peptide. This was confirmed by growth inhibition studies. Secondly, hemolysis studies revealed that both peptides did not lead to significant destruction of erythrocytes, even up to 500 µg/mL for (RW3 and 250 µg/mL for RcCO-W(RW2. In addition, toxicity against three human cancer cell lines (HepG2, HT29, MCF7 showed that the (RW3-peptide had an IC50 value of ~140 µM and the RcW(RW2 one of ~90 µM, indicating a potentially interesting therapeutic window. Both the killing kinetics and growth inhibition studies presented in this work point to a

  5. Valorization of cruor slaughterhouse by-product by enzymatic hydrolysis for the production of antibacterial peptides: focus on α 1-32 family peptides mechanism and kinetics modeling.

    Science.gov (United States)

    Hedhili, K; Dimitrov, K; Vauchel, P; Sila, A; Chataigné, G; Dhulster, P; Nedjar, N

    2015-10-01

    Bovine hemoglobin is the major component of the cruor (slaughterhouse by-product) and can be considered as an important source of active peptides that could be obtained by pepsic hydrolysis. The kinetics of appearance and disappearance of several antibacterial peptides from α 1-32 family during hydrolysis of synthesized α 1-32 peptide, of purified bovine hemoglobin and of cruor was studied, and reaction scheme for the hydrolysis of α 1-32 family peptides from these three sources was determined. On this basis, a mathematical model was proposed to predict the concentration of each peptide of interest of this family depending on hydrolysis time, and also on temperature (in the range 15-37 °C), pH (in the range 3.5-5.5) and enzyme to substrate ratio (in the range 1/50-1/200 for the synthesized peptide and 1/5-1/20 for purified bovine hemoglobin and cruor). Apparent rate constants of reactions were determined by applying the model on a set of experimental data and it was shown that they depended on the temperature according to Arrhenius's law, that their dependence on the pH was linear, and that enzyme to substrate ratio influence was limited (in the studied range). PMID:26099509

  6. Antibacterial activity of novel cationic peptides against clinical isolates of multi-drug resistant Staphylococcus pseudintermedius from infected dogs.

    Science.gov (United States)

    Mohamed, Mohamed F; Hammac, G Kenitra; Guptill, Lynn; Seleem, Mohamed N

    2014-01-01

    Staphylococcus pseudintermedius is a major cause of skin and soft tissue infections in companion animals and has zoonotic potential. Additionally, methicillin-resistant S. pseudintermedius (MRSP) has emerged with resistance to virtually all classes of antimicrobials. Thus, novel treatment options with new modes of action are required. Here, we investigated the antimicrobial activity of six synthetic short peptides against clinical isolates of methicillin-susceptible and MRSP isolated from infected dogs. All six peptides demonstrated potent anti-staphylococcal activity regardless of existing resistance phenotype. The most effective peptides were RRIKA (with modified C terminus to increase amphipathicity and hydrophobicity) and WR-12 (α-helical peptide consisting exclusively of arginine and tryptophan) with minimum inhibitory concentration50 (MIC50) of 1 µM and MIC90 of 2 µM. RR (short anti-inflammatory peptide) and IK8 "D isoform" demonstrated good antimicrobial activity with MIC50 of 4 µM and MIC90 of 8 µM. Penetratin and (KFF)3K (two cell penetrating peptides) were the least effective with MIC50 of 8 µM and MIC90 of 16 µM. Killing kinetics revealed a major advantage of peptides over conventional antibiotics, demonstrating potent bactericidal activity within minutes. Studies with propidium iodide and transmission electron microscopy revealed that peptides damaged the bacterial membrane leading to leakage of cytoplasmic contents and consequently, cell death. A potent synergistic increase in the antibacterial effect of the cell penetrating peptide (KFF)3K was noticed when combined with other peptides and with antibiotics. In addition, all peptides displayed synergistic interactions when combined together. Furthermore, peptides demonstrated good therapeutic indices with minimal toxicity toward mammalian cells. Resistance to peptides did not evolve after 10 passages of S. pseudintermedius at sub-inhibitory concentration. However, the MICs of amikacin and

  7. Functional and structural insights on self-assembled nanofiber-based novel antibacterial ointment from antimicrobial peptides, bacitracin and gramicidin S.

    Science.gov (United States)

    Mandal, Santi M; Roy, Anupam; Mahata, Denial; Migliolo, Ludovico; Nolasco, Diego O; Franco, Octavio L

    2014-11-01

    A novel antibacterial ointment using bacitracin, specific for Gram-positive bacteria, and gramicidin S, a highly toxic antibacterial peptide, was here developed showing broad-spectrum antibacterial activities against pathogenic strains with less toxicity after self-assembly into nanofiber structures. Such structures were confirmed with scanning electron microscopy and CD analyses. In addition, in silico studies using docking associated with molecular dynamics were carried out to obtain information about fiber structural oligomerization. Thus, the bacitracin and gramicidin S-based self-assembled nanopeptide ribbon may be a successful ointment formulation for bacterial infection control. PMID:24894183

  8. Mechanism of antibacterial action of a synthetic peptide with an Ala-peptoid residue based on the scorpion-derived antimicrobial peptide IsCT.

    Science.gov (United States)

    Lim, Shin Saeng; Yoon, Sang-Pil; Park, Yoonkyoung; Zhu, Wan Long; Park, Il-Seon; Hahm, Kyung-Soo; Shin, Song Yub

    2006-09-01

    A novel bacterial cell-selective antimicrobial peptide, IsCT-P (ILKKIWKPIKKLF-NH(2)), was designed based on the scorpion-derived alpha-helical antimicrobial peptide, IsCT. Here, we investigated the effect of substituting Pro(8) of IsCT-P with the Ala-peptoid residue (N-methylglycine) on the peptide's structure and mechanism of action. Circular dichroism analysis revealed that the modified peptide, IsCT-a, has a much lower alpha-helicity than IsCT-P in membrane mimicking conditions, suggesting the peptoid residue provides much more structural flexibility than the proline residue. IsCT-a was also much less effective than IsCT-P at causing leakage of fluorescent dye entrapped within negatively charged vesicles and at dissipating the membrane potential of Staphylococcus aureus. Collectively, our results suggest that the antibacterial action of IsCT-a is due to the inhibition of intracellular targets rather than the disruption and depolarization of bacterial cell membranes. PMID:16871429

  9. Antibacterial activity of peptides derived from the C-terminal region of a hemolytic lectin, CEL-III, from the marine invertebrate Cucumaria echinata.

    Science.gov (United States)

    Hatakeyama, Tomomitsu; Suenaga, Tomoko; Eto, Seiichiro; Niidome, Takuro; Aoyagi, Haruhiko

    2004-01-01

    Several synthetic peptides derived from the C-terminal domain sequence of a hemolytic lectin, CEL-III, were examined as to their action on bacteria and artificial lipid membranes. Peptide P332 (KGVIFAKASVSVKVTASLSK-NH(2)), corresponding to the sequence from residue 332, exhibited strong antibacterial activity toward Gram-positive bacteria. Replacement of each Lys in P332 by Ala markedly decreased the activity. However, when all Lys were replaced by Arg, the antibacterial activity increased, indicating the importance of positively charged residues at these positions. Replacement of Val by Leu also led to higher antibacterial activity, especially toward Gram-negative bacteria. The antibacterial activity of these peptides was correlated with their membrane-permeabilizing activity toward the bacterial inner membrane and artificial lipid vesicles, indicating that the antibacterial action is due to perturbation of bacterial cell membranes, leading to enhancement of their permeability. These results also suggest that the hydrophobic region of CEL-III, from which P332 and its analogs were derived, may play some role in the interaction with target cell membranes to trigger hemolysis. PMID:14999010

  10. Novel short antibacterial and antifungal peptides with low cytotoxicity: Efficacy and action mechanisms

    International Nuclear Information System (INIS)

    Research highlights: → Short antimicrobial peptides with nine and eleven residues were developed. → These peptides show strong bactericidal activity against clinically important bacterial and fungal pathogens. → These peptides exhibit high stability in the presence of salts, and low cytotoxicity. → These peptides exert their action by disrupting membrane lipids. -- Abstract: Short antimicrobial peptides with nine and eleven residues were developed against several clinically important bacterial and fungal pathogens (specifically Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Fusarium solani). Twelve analogues of previously reported peptides BP76 (KKLFKKILKFL) and Pac-525 (KWRRWVRWI) were designed, synthesized, and tested for their antimicrobial activities. Two of our eleven amino acid peptides, P11-5 (GKLFKKILKIL) and P11-6 (KKLIKKILKIL), have very low MICs of 3.1-12.5 μg ml-1 against all five pathogens. The MICs of these two peptides against S. aureus, C. albicans and F. solani are four to ten times lower than the corresponding MICs of the reference peptide BP76. P9-4 (KWRRWIRWL), our newly designed nine-amino acid analogue, also has particularly low MICs of 3.1-6.2 μg ml-1 against four of the tested pathogens; these MICs are two to eight times lower than those reported for Pac-525 (6.2-50 μg ml-1).These new peptides (P11-5, P11-6 and P9-4) also exhibit improved stability in the presence of salts, and have low cytotoxicity as shown by the hemolysis and MTT assays. From the results of field-emission scanning electron microscopy, membrane depolarization and dye-leakage assays, we propose that these peptides exert their action by disrupting membrane lipids. Molecular dynamics simulation studies confirm that P11-6 peptide maintains relatively stable helical structure and exerts more perturbation action on the order of acyl tail of lipid bilayer.

  11. Novel short antibacterial and antifungal peptides with low cytotoxicity: Efficacy and action mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiaobao; Zhou, Chuncai; Li, Peng [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore (Singapore); Xu, Weixin [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore (Singapore); Cao, Ye; Ling, Hua; Ning Chen, Wei; Ming Li, Chang; Xu, Rong [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore (Singapore); Lamrani, Mouad [Menicon Co., Ltd. Immeuble Espace Cordeliers, 2, rue President Carnot, 69002 Lyon (France); Mu, Yuguang, E-mail: ygmu@ntu.edu.sg [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore (Singapore); Leong, Susanna Su Jan [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore (Singapore); Wook Chang, Matthew, E-mail: matthewchang@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore (Singapore); Chan-Park, Mary B., E-mail: mbechan@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore (Singapore)

    2010-07-30

    Research highlights: {yields} Short antimicrobial peptides with nine and eleven residues were developed. {yields} These peptides show strong bactericidal activity against clinically important bacterial and fungal pathogens. {yields} These peptides exhibit high stability in the presence of salts, and low cytotoxicity. {yields} These peptides exert their action by disrupting membrane lipids. -- Abstract: Short antimicrobial peptides with nine and eleven residues were developed against several clinically important bacterial and fungal pathogens (specifically Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Fusarium solani). Twelve analogues of previously reported peptides BP76 (KKLFKKILKFL) and Pac-525 (KWRRWVRWI) were designed, synthesized, and tested for their antimicrobial activities. Two of our eleven amino acid peptides, P11-5 (GKLFKKILKIL) and P11-6 (KKLIKKILKIL), have very low MICs of 3.1-12.5 {mu}g ml{sup -1} against all five pathogens. The MICs of these two peptides against S. aureus, C. albicans and F. solani are four to ten times lower than the corresponding MICs of the reference peptide BP76. P9-4 (KWRRWIRWL), our newly designed nine-amino acid analogue, also has particularly low MICs of 3.1-6.2 {mu}g ml{sup -1} against four of the tested pathogens; these MICs are two to eight times lower than those reported for Pac-525 (6.2-50 {mu}g ml{sup -1}).These new peptides (P11-5, P11-6 and P9-4) also exhibit improved stability in the presence of salts, and have low cytotoxicity as shown by the hemolysis and MTT assays. From the results of field-emission scanning electron microscopy, membrane depolarization and dye-leakage assays, we propose that these peptides exert their action by disrupting membrane lipids. Molecular dynamics simulation studies confirm that P11-6 peptide maintains relatively stable helical structure and exerts more perturbation action on the order of acyl tail of lipid bilayer.

  12. Comparative Study on Test Methods for Antibacterial Activities of Antibacterial Peptides from Spleen of Japanese Eel (Anguilla japonica)%日本鳗鲡脾脏抗菌肽抗菌活性检测方法的比较

    Institute of Scientific and Technical Information of China (English)

    梁英; 黄文树; 关瑞章

    2014-01-01

    The study was to establish a simple and sensitive test method for antibacterial activity analysis in the separation and purification of antibacterial peptides from the spleen of Japanese eel ( Anguilla japonica) . Exper-iment by using spleen protein of molecular mass<10 ku from Japanese eel as antibacterial peptide samples, to compare the sensitivity, advantages and disadvantages of three test methods. In these three test methods, two conventional methods were agar plate fovea diffusion method and microporous liquid culture method and anoth-er was trace liquid culture method, for testing antibacterial activities of antibacterial peptides against three com-mon pathogenic bacterial strains of eel, including Edwardsiella tarda, Aeromonas sp. and Aeromonas hy-drophila. The results showed that compared with the agar plate fovea diffusion method and microporous liquid culture method, the trace liquid culture method had the advantages of simple operation and easy to observe re-sult. Furthermore, this method with the best sensitivity and using the least sample quantity could be suitable for testing antibacterial activities in the separation and purification of antibacterial peptides from the spleen of eel, especially for identifying antibacterial activity of the a few and single fraction obtained in late stage of separa-tion and purification. This study suggests that the trace liquid culture method is suitable for testing antibacterial activities of antibacterial peptides from the spleen of Japanese eel.%本试验旨在建立一种在日本鳗鲡脾脏抗菌肽分离纯化过程中简便、灵敏的检测其抗菌活性的方法。试验以日本鳗鲡脾脏分子质量小于10 ku的蛋白质为抗菌肽样品,选择琼脂板孔穴扩散法和微孔液体培养法2种传统方法及微量液体培养法为检测方法,比较这3种方法在抗菌肽对3种鳗鲡常见致病菌株(迟钝爱德华菌、气单胞菌、嗜水气单胞菌)抗菌活性检测中的灵

  13. Evaluation of antibacterial activity of peptide fractions derived from Iranian scorpion Hemiscorpius lepturus

    OpenAIRE

    Kamran Pooshang Bagheri; shabnam radbakhsh; Delavar Shahbazzadeh; Amir Mahmoodzadeh

    2013-01-01

    Background and aim: Continuous appearance of antibiotic resistance bacteria can cause significant complications and mortality. In this regard, tracing for new antimicrobial agents is of great significance. During the past decades, many studies have documented isolation of Antimicrobial Peptides (AMPs) from different sources. These peptides which are responsible for hinnate immunity were purified from human, vertebrates, invertebrates, insects, venomous animals, and plants. This study aimed to...

  14. Neutralization of endotoxin in vitro and in vivo by Bac7(1-35), a proline-rich antibacterial peptide.

    Science.gov (United States)

    Ghiselli, Roberto; Giacometti, Andrea; Cirioni, Oscar; Circo, Raffaella; Mocchegiani, Federico; Skerlavaj, Barbara; D'Amato, Giuseppina; Scalise, Giorgio; Zanetti, Margherita; Saba, Vittorio

    2003-06-01

    Lipopolysaccharides (LPS), or endotoxins, are structural components of gram-negative bacteria implicated in the pathogenesis of septic shock. In this study the antiendotoxin activity of Bac7(1-35), a synthetic peptide based on the sequence of a proline-rich antibacterial peptide from bovine neutrophils, was investigated in vitro and in an experimental rat model of gram-negative septic shock. The ability of Bac7(1-35) to bind LPS from Escherichia coli O111:B4 was determined using a sensitive Limulus chromogenic assay. In the in vivo study, adult male Wistar rats were given an intraperitoneal injection of 1 x 10(9) colony-forming units of E. coli ATCC 25922. All animals were randomized to receive intraperitoneally 1 mg/kg Bac7(1-35), or isotonic sodium chloride solution (control group C1), 60 mg/kg of piperacillin and 1 mg/kg polymyxin B, 1 mg/kg of polymyxin B plus 60 mg/kg of piperacillin, and 1 mg/kg of Bac7(1-35) plus 60 mg/kg of piperacillin. Each group included 15 animals. Bac7(1-35) was found to completely inhibit the LPS procoagulant activity at approximately 10 microM peptide concentration, as determined by in vitro LAL chromogenic assay. Treatment with Bac7(1-35) resulted in significant decrease in plasma endotoxin levels and lethality rates compared with saline injected control animals. No statistically significant differences were noted between Bac7(1-35) and polymyxin B in reducing all variables measured. These results provide evidence for the ability of Bac7(1-35) to effectively bind LPS and protect animals from lethal effects of this molecule, and point to its potential use for the treatment of endotoxin-induced septic shock. PMID:12785015

  15. Antibacterial Effects of a Cell-Penetrating Peptide Isolated from Kefir.

    Science.gov (United States)

    Miao, Jianyin; Guo, Haoxian; Chen, Feilong; Zhao, Lichao; He, Liping; Ou, Yangwen; Huang, Manman; Zhang, Yi; Guo, Baoyan; Cao, Yong; Huang, Qingrong

    2016-04-27

    Kefir is a traditional fermented milk beverage used throughout the world for centuries. A cell-penetrating peptide, F3, was isolated from kefir by Sephadex G-50 gel filtration, DEAE-52 ion exchange, and reverse-phase high-performance liquid chromatography. F3 was determined to be a low molecular weight peptide containing one leucine and one tyrosine with two phosphate radicals. This peptide displayed antimicrobial activity across a broad spectrum of organisms including several Gram-positive and Gram-negative bacteria as well as fungi, with minimal inhibitory concentration (MIC) values ranging from 125 to 500 μg/mL. Cellular penetration and accumulation of F3 were determined by confocal laser scanning microscopy. The peptide was able to penetrate the cellular membrane of Escherichia coli and Staphylococcus aureus. Changes in cell morphology were observed by scanning electron microscopy (SEM). The results indicate that peptide F3 may be a good candidate for use as an effective biological preservative in agriculture and the food industry. PMID:27003578

  16. Modulation of Backbone Flexibility for Effective Dissociation of Antibacterial and Hemolytic Activity in Cyclic Peptides.

    Science.gov (United States)

    Oddo, Alberto; Thomsen, Thomas T; Britt, Hannah M; Løbner-Olesen, Anders; Thulstrup, Peter W; Sanderson, John M; Hansen, Paul R

    2016-08-11

    Bacterial resistance to antibiotic therapy is on the rise and threatens to evolve into a worldwide emergency: alternative solutions to current therapies are urgently needed. Cationic amphipathic peptides are potent membrane-active agents that hold promise as the next-generation therapy for multidrug-resistant infections. The peptides' behavior upon encountering the bacterial cell wall is crucial, and much effort has been dedicated to the investigation and optimization of this amphipathicity-driven interaction. In this study we examined the interaction of a novel series of nine-membered flexible cyclic AMPs with liposomes mimicking the characteristics of bacterial membranes. Employed techniques included circular dichroism and marker release assays, as well as microbiological experiments. Our analysis was aimed at correlating ring flexibility with their antimicrobial, hemolytic, and membrane activity. By doing so, we obtained useful insights to guide the optimization of cyclic antimicrobial peptides via modulation of their backbone flexibility without loss of activity. PMID:27563396

  17. Purification and characterization of a scorpion defensin, a 4kDa antibacterial peptide presenting structural similarities with insect defensins and scorpion toxins.

    Science.gov (United States)

    Cociancich, S; Goyffon, M; Bontems, F; Bulet, P; Bouet, F; Menez, A; Hoffmann, J

    1993-07-15

    Insect defensins are a group of inducible small-sized antibacterial peptides with three intramolecular disulfide bridges. NMR studies have recently shown that they share striking structural similarities with scorpion toxins. We have investigated in a scorpion species, Leiurus quinquestriatus, the potential presence of antibacterial molecules and report the isolation and structural characterization of a novel insect defensin homologue, which we refer to as scorpion defensin. This peptide shows a remarkably high degree of sequence homology with a defensin recently characterized in a species belonging to the ancient insect order of the Odonata with which it defines a novel ancient subclass of defensins. The scorpion defensin has in common with the scorpion toxins a consensus sequence Cys-[...]-Cys-Xaa-Xaa-Xaa-Cys-[...]-Gly-Xaa-Cys-[...]-Cys-Xaa-Cys present in all scorpion toxins characterized so far. PMID:8333834

  18. Investigation of the antibacterial activity and the biosynthesis gene cluster of the peptide antibiotic feglymycin

    OpenAIRE

    Rausch, Saskia

    2012-01-01

    Feglymycin ist ein aus Streptomyces sp. DSM 11171 isoliertes, lineares 13mer-Peptid, das zu einem hohen Anteil aus den nicht-proteinogenen Aminosäuren Hpg (4-Hydroxyphenylglycine) und Dpg (3,5-Dihydroxyphenylglycine) besteht. Zudem besitzt es eine interessante, alternierende Abfolge von D- und L- Aminosäuren und strukturelle Ähnlichkeiten mit den Glycopeptiden der Vancomycin-Gruppe von Antibiotika und den Glycodepsipeptid-Antibiotika Ramoplanin und Enduracidin. Außerdem besitzt Feglymycin ein...

  19. Expression of Antimicrobial Peptide Dybowskin-2CAMa in Pichia pastoris and Characterization of its Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Lili Jin

    2013-08-01

    Full Text Available In this study we used a yeast expression system to express a new antimicrobial peptide dybowskin-2CAMa from the skin cDNA library of Rana amurenisis. The entire coding region of the dybowskin-2CAMa was cloned into the plasmid pPICZ&alpha-A and then transformed into competent P. pastoris X33. The expressed dybowskin-2CAMa was purified from the culture supernatant by Sephadex G-25 and YMC*GEL ODS-A chromatography followed by C18 reverse phased HPLC. The purified peptide exhibited a single band of about 2 kDa when resolved by Tricine-SDS-PAGE. Its exact molecular weight was 2456.46 Da which was consistent with the value predicted from its deduced amino acid sequence. Antimicrobial activity assay showed that the recombinant dybowskin-2CAMa could inhibit the growth of a broad spectrum of bacteria, while displaying very low level of hemolytic activity (&le4% relative to Triton X-100, even at concentration of up to 500 &mug/mL.

  20. The Cyclic Antibacterial Peptide Enterocin AS-48: Isolation, Mode of Action, and Possible Food Applications

    Directory of Open Access Journals (Sweden)

    María José Grande Burgos

    2014-12-01

    Full Text Available Enterocin AS-48 is a circular bacteriocin produced by Enterococcus. It contains a 70 amino acid-residue chain circularized by a head-to-tail peptide bond. The conformation of enterocin AS-48 is arranged into five alpha-helices with a compact globular structure. Enterocin AS-48 has a wide inhibitory spectrum on Gram-positive bacteria. Sensitivity of Gram-negative bacteria increases in combination with outer-membrane permeabilizing treatments. Eukaryotic cells are bacteriocin-resistant. This cationic peptide inserts into bacterial membranes and causes membrane permeabilization, leading ultimately to cell death. Microarray analysis revealed sets of up-regulated and down-regulated genes in Bacillus cereus cells treated with sublethal bacteriocin concentration. Enterocin AS-48 can be purified in two steps or prepared as lyophilized powder from cultures in whey-based substrates. The potential applications of enterocin AS-48 as a food biopreservative have been corroborated against foodborne pathogens and/or toxigenic bacteria (Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella enterica and spoilage bacteria (Alicyclobacillus acidoterrestris, Bacillus spp., Paenibacillus spp., Geobacillus stearothermophilus, Brochothrix thermosphacta, Staphylococcus carnosus, Lactobacillus sakei and other spoilage lactic acid bacteria. The efficacy of enterocin AS-48 in food systems increases greatly in combination with chemical preservatives, essential oils, phenolic compounds, and physico-chemical treatments such as sublethal heat, high-intensity pulsed-electric fields or high hydrostatic pressure.

  1. Hepcidin is an antibacterial, stress-inducible peptide of the biliary system.

    Directory of Open Access Journals (Sweden)

    Pavel Strnad

    Full Text Available BACKGROUND/AIMS: Hepcidin (gene name HAMP, an IL-6-inducible acute phase peptide with antimicrobial properties, is the key negative regulator of iron metabolism. Liver is the primary source of HAMP synthesis, but it is also produced by other tissues such as kidney or heart and is found in body fluids such as urine or cerebrospinal fluid. While the role of hepcidin in biliary system is unknown, a recent study demonstrated that conditional gp130-knockout mice display diminished hepcidin levels and increased rate of biliary infections. METHODS: Expression and localization of HAMP in biliary system was analyzed by real time RT-PCR, in-situ hybridization, immunostaining and -blotting, while prohepcidin levels in human bile were determined by ELISA. RESULTS: Hepcidin was detected in mouse/human gallbladder and bile duct epithelia. Biliary HAMP is stress-inducible, in that it is increased in biliary cell lines upon IL-6 stimulation and in gallbladder mucosa of patients with acute cholecystitis. Hepcidin is also present in the bile and elevated prohepcidin levels were observed in bile of primary sclerosing cholangitis (PSC patients with concurrent bacterial cholangitis compared to PSC subjects without bacterial infection (median values 22.3 vs. 8.9; p = 0.03. In PSC-cholangitis subjects, bile prohepcidin levels positively correlated with C-reactive protein and bilirubin levels (r = 0.48 and r = 0.71, respectively. In vitro, hepcidin enhanced the antimicrobial capacity of human bile (p<0.05. CONCLUSION: Hepcidin is a stress-inducible peptide of the biliary epithelia and a potential marker of biliary stress. In the bile, hepcidin may serve local functions such as protection from bacterial infections.

  2. Rational design, synthesis, and biological evaluation of lactam-bridged gramicidin A analogues: discovery of a low-hemolytic antibacterial peptide.

    Science.gov (United States)

    Mao, Ji; Kuranaga, Takefumi; Hamamoto, Hiroshi; Sekimizu, Kazuhisa; Inoue, Masayuki

    2015-03-01

    A linear peptide, gramicidin A (GA), folds into a β(6.3) -helix, functions as an ion channel in the cell membrane, and exerts antibacterial activity. Herein we describe the rational design, synthesis, and biological evaluation of lactam-bridged GA analogues. The GA analogue with a 27-membered macrolactam was found to adopt a stable β(6.3) -helical conformation and exhibits higher ion-exchange activity than GA. Furthermore, this GA analogue retains the potent antibiotic activity of GA, but its hemolytic activity and toxicity toward mammalian cells are significantly lower than those of GA. This study thus dissociates the antibacterial and hemolytic/cytotoxic activities of GA, and charts a rational path forward for the development of new ion-channel-based antibiotics. PMID:25510221

  3. Inducible immune factors of the vector mosquito Anopheles gambiae: biochemical purification of a defensin antibacterial peptide and molecular cloning of preprodefensin cDNA.

    Science.gov (United States)

    Richman, A M; Bulet, P; Hetru, C; Barillas-Mury, C; Hoffmann, J A; Kafalos, F C

    1996-08-01

    Larvae of the mosquito vector of human malaria, Anopheles gambiae, were inoculated with bacteria and extracts were biochemically fractionated by reverse-phase HPLC. Multiple induced polypeptides and antibacterial activities were observed following bacterial infection, including a member of the insect defensin family of antibacterial proteins. A cDNA encoding An. gambiae preprodefensin was isolated using PCR primers based on phylogenetically conserved sequences. The mature peptide is highly conserved, but the signal and propeptide segments are not, relative to corresponding defensin sequences of other insects. Defensin expression is induced in response to bacterial infection, in both adult and larval stages. In contrast, pupae express defensin mRNA constitutively. Defensin expression may prove a valuable molecular marker to monitor the An. gambiae host response to infection by parasitic protozoa of medical importance. PMID:8799739

  4. The Antibacterial Activity of Peptides FromPorphyra yezoensis%条斑紫菜蛋白酶解多肽的抑菌活性

    Institute of Scientific and Technical Information of China (English)

    宋惠平; 于佳; 李钐; 魏玉西; 王文秀; 许丽娜; 韩丹

    2015-01-01

    Enriched in proteins and with similar amino acid compositions to the terrestrial vegetables, Porphyra has become an important economic marine algae with high nutritional and medical values in China. In order to obtain peptides holding antibacterial activity,Porphyra yezoensis was utilized as raw material and water, NaCl, HCl and NaOH were used as the solvents. Water-dissolved, salt-dissolved, acid-dissolved and alkaline-dissolved proteins were prepared by the extraction, ammonium sulfate salting-out, dialysis and freeze-drying, respectively. The four types of proteins were hydrolyzed respectively by pepsin, papain, neutral protease, trypsin, acid protease and compound protease under the optimum conditions for each enzyme. Twenty-four hydrolysates were selected to evaluate the antibacterial activity toStaphylococcus aureus, Micrococcus tetragenus, Bacillus subtilisandEscherichia colithat were used as the indicator bacteria. Moreover, the proteins were divided into 7 portions by fractional precipitation with different saturation degree of ammonium sulfate; and their hydrolysates were fractioned to peptide fragments with different molecular weights by ultrafiltration. The best antibacterial peptides were evaluated by comparing the inhibitory effects of hydrolysates to the indicator bacteria. The result showed that the zymolyte of water-soluble proteins hydrolyzed by pepsin presented the strongest antibacterial activity. Thus, antimicrobial peptides were achieved via fraction precipitation by ammonium sulfate for the proteins, ultrafiltration for their zymolyte, and the ammonium sulfate saturation at 40%-50%, and the range of molecular-weight was less than 5 kDa. In addition, factors (such as temperature, medium pH and antimicrobial peptides concentration) that affect the antibacterial activities were also studied. The results indicated that the antimicrobial peptides fromPorphyra yezoensis possessed good thermal and acid-base stability, which may be candidate for a

  5. Chitosan nanoparticles loaded with the antimicrobial peptide temporin B exert a long-term antibacterial activity in vitro against clinical isolates of Staphylococcus epidermidis

    Directory of Open Access Journals (Sweden)

    Anna Maria Piras

    2015-04-01

    Full Text Available Nowadays, the alarming rise in multidrug-resistant microorganisms urgently demands for suitable alternatives to current antibiotics. In this regard, antimicrobial peptides (AMPs have received growing interest due to their broad spectrum of activities, potent antimicrobial properties, unique mechanisms of action and low tendency to induce resistance. However, their pharmaceutical development is hampered by potential toxicity, relatively low stability and manufacturing costs. In the present study, we tested the hypothesis that the encapsulation of the frog-skin derived AMP temporin B (TB into chitosan nanoparticles (CS-NPs could increase peptide’s antibacterial activity, while reducing its toxic potential. TB-loaded CS-NPs with good dimensional features were prepared, based on the ionotropic gelation between CS and sodium tripolyphosphate. The encapsulation efficiency of TB in the formulation was up to 75%. Release kinetic studies highlighted a linear release of the peptide from the nanocarrier, in the adopted experimental conditions. Interestingly, the encapsulation of TB in CS-NPs demonstrated to reduce significantly the peptide’s cytotoxicity against mammalian cells. Additionally, the nanocarrier evidenced a sustained antibacterial action against various strains of Staphylococcus epidermidis for at least 4 days, with up to 4-log reduction in the number of viable bacteria compared to plain CS-NPs at the end of the observational period. Of note, the antimicrobial evaluation tests demonstrated that while the intrinsic antimicrobial activity of CS ensured a burst effect, the gradual release of TB further reduced the viable bacterial count, preventing the regrowth of the residual cells and ensuring a long-lasting antibacterial effect. The developed nanocarrier is eligible for the administration of several AMPs of therapeutic interest with physical-chemical characteristics analogue to those of TB.

  6. Budesonide suppresses pulmonary antibacterial host defense by down-regulating cathelicidin-related antimicrobial peptide in allergic inflammation mice and in lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Wang Peng

    2013-02-01

    Full Text Available Abstract Background Glucocorticoids are widely regarded as the most effective treatment for asthma. However, the direct impact of glucocorticoids on the innate immune system and antibacterial host defense during asthma remain unclear. Understanding the mechanisms underlying this process is critical to the clinical application of glucocorticoids for asthma therapy. After sensitization and challenge with ovalbumin (OVA, BALB/c mice were treated with inhaled budesonide and infected with Pseudomonas aeruginosa (P. aeruginosa. The number of viable bacteria in enflamed lungs was evaluated, and levels of interleukin-4 (IL-4 and interferon-γ (IFN-γ in serum were measured. A lung epithelial cell line was pretreated with budesonide. Levels of cathelicidin-related antimicrobial peptide (CRAMP were measured by immunohistochemistry and western blot analysis. Intracellular bacteria were observed in lung epithelial cells. Results Inhaled budesonide enhanced lung infection in allergic mice exposed to P. aeruginosa and increased the number of viable bacteria in lung tissue. Higher levels of IL-4 and lower levels of IFN-γ were observed in the serum. Budesonide decreased the expression of CRAMP, increased the number of internalized P. aeruginosa in OVA-challenged mice and in lung epithelial cell lines. These data indicate that inhaled budesonide can suppress pulmonary antibacterial host defense by down-regulating CRAMP in allergic inflammation mice and in cells in vitro. Conclusions Inhaled budesonide suppressed pulmonary antibacterial host defense in an asthmatic mouse model and in lung epithelium cells in vitro. This effect was dependent on the down-regulation of CRAMP.

  7. Structural exploration of antibacterial activity and hemolytic profiles of non-natural analogs of the antimicrobial peptide mastoparan mp-8

    OpenAIRE

    Carreño, Luisa Fernanda; Lozano, José Manuel

    2013-01-01

    In this work the relevance of a systematic replacement of peptide-bonds on the Mastoparan MP-8 antimicrobial peptide to afford 27 new pseudopeptide analogues is reported. Results allowed to determine that pseudopeptides ψ-38617 (INLKALAALAKd-[CH2NH]-RLL), ψ-38629(INLKAd-[CH2NH]-LAALAKRLL) and ψ-38630 (INLK-[CH2NH]-ALAALAKRLL), showed an enhanced anti gam-negative bacterial properties, regarding the native Mastoparan MP-8 peptide, but maintaining a comparable activity against gram-positive bac...

  8. Cleavage Specificity of Mycobacterium tuberculosis ClpP1P2 Protease and Identification of Novel Peptide Substrates and Boronate Inhibitors with Anti-bacterial Activity*

    Science.gov (United States)

    Akopian, Tatos; Kandror, Olga; Tsu, Christopher; Lai, Jack H.; Wu, Wengen; Liu, Yuxin; Zhao, Peng; Park, Annie; Wolf, Lisa; Dick, Lawrence R.; Rubin, Eric J.; Bachovchin, William; Goldberg, Alfred L.

    2015-01-01

    The ClpP1P2 protease complex is essential for viability in Mycobacteria tuberculosis and is an attractive drug target. Using a fluorogenic tripeptide library (Ac-X3X2X1-aminomethylcoumarin) and by determining specificity constants (kcat/Km), we show that ClpP1P2 prefers Met ≫ Leu > Phe > Ala in the X1 position, basic residues or Trp in the X2 position, and Pro ≫ Ala > Trp in the X3 position. We identified peptide substrates that are hydrolyzed up to 1000 times faster than the standard ClpP substrate. These positional preferences were consistent with cleavage sites in the protein GFPssrA by ClpXP1P2. Studies of ClpP1P2 with inactive ClpP1 or ClpP2 indicated that ClpP1 was responsible for nearly all the peptidase activity, whereas both ClpP1 and ClpP2 contributed to protein degradation. Substrate-based peptide boronates were synthesized that inhibit ClpP1P2 peptidase activity in the submicromolar range. Some of them inhibited the growth of Mtb cells in the low micromolar range indicating that cleavage specificity of Mtb ClpP1P2 can be used to design novel anti-bacterial agents. PMID:25759383

  9. 库伦驴血液白细胞抗菌肽提取及其对牛乳腺炎主要致病菌的抗菌活性研究%Antibacterial activity of antibacterial peptides from Kulun Donkey blood leukocytes against the major pathogens responsible for bovine mastitis

    Institute of Scientific and Technical Information of China (English)

    布日额; 吴金花; 卢雅生

    2011-01-01

    Objective To verify the in vitro activity of antibacterial peptides from Kulun Donkey blood leukocytes a-gain.st bovine mastitis caused by Streptococcus agalactiae, Staphylococcus aureus, and Escherichiacoli. Methods Antibacterial peptides were extracted from Kulun Donkey blood leukocytes using acetic acid extraction. Drug susceptibility test strips were prepared and antibacterial activity was determined using the agar plate method. Results Antibacterial peptides from Kulun Donkey blood leukocytes had activity against bovine mastitis caused by S. Agalactiae, S. Aureus, and E. Coli. The bacterial inhibition ring diameter was 14 mm, 15 mm, and 17mm, respectively, with 43. 60 mg/ml antibacterial peptides 24 h after incubation. Conclusion Antibacterial peptides from Kulun Donkey blood leukocytes inhibited the bacterial activity of S. Agalactiae. S. Aureus, and E. Coli. These peptides could be used to treat bovine mastitis caused by these pathogens.%目的 验证库伦驴血液白细胞抗菌肽对牛乳腺炎无乳链球菌、金黄色葡萄球菌及大肠埃希菌的体外抗菌活性.方法 利用乙酸萃取法提取库伦驴血液白细胞抗菌肽,制备药敏试纸片,用平皿药敏纸片法检测其抗菌活性. 结果 库伦驴血液白细胞抗菌肽对无乳链球菌、金黄色葡萄球菌及大肠埃希菌具有抑菌效果,43.60 mg/ml抗菌肽作用24 h抑菌环直径分别为14、15和17 mm. 结论 库伦驴白细胞抗菌肽对无乳链球菌、金黄色葡萄球菌、大肠埃希菌有抑菌活性,可用于上述致病菌感染所致奶牛乳腺炎的治疗.

  10. Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide.

    Science.gov (United States)

    Malina, Amir; Shai, Yechiel

    2005-09-15

    Many studies have shown that an amphipathic structure and a threshold of hydrophobicity of the peptidic chain are crucial for the biological function of AMPs (antimicrobial peptides). However, the factors that dictate their cell selectivity are not yet clear. In the present study, we show that the attachment of aliphatic acids with different lengths (10, 12, 14 or 16 carbon atoms) to the N-terminus of a biologically inactive cationic peptide is sufficient to endow the resulting lipopeptides with lytic activity against different cells. Mode-of-action studies were performed with model phospholipid membranes mimicking those of bacterial, mammalian and fungal cells. These include determination of the structure in solution and membranes by using CD and ATR-FTIR (attenuated total reflectance Fourier-transform infrared) spectroscopy, membrane leakage experiments and by visualizing bacterial and fungal damage via transmission electron microscopy. The results obtained reveal that: (i) the short lipopeptides (10 and 12 carbons atoms) are non-haemolytic, active towards both bacteria and fungi and monomeric in solution. (ii) The long lipopeptides (14 and 16 carbons atoms) are highly antifungal, haemolytic only at concentrations above their MIC (minimal inhibitory concentration) values and aggregate in solution. (iii) All the lipopeptides adopt a partial alpha-helical structure in 1% lysophosphatidylcholine and bacterial and mammalian model membranes. However, the two short lipopeptides contain a significant fraction of random coil in fungal membranes, in agreement with their reduced antifungal activity. (iv) All the lipopeptides have a membranolytic effect on all types of cells assayed. Overall, the results reveal that the length of the aliphatic chain is sufficient to control the pathogen specificity of the lipopeptides, most probably by controlling both the overall hydrophobicity and the oligomeric state of the lipopeptides in solution. Besides providing us with basic

  11. EFFECT OF MUSCA DOMESTICA ANTIBACTERIAL PEPTIDES ON THE PROLIFERATION, INVASION AND MIGRATION OF HEPG2 CELLS%家蝇幼虫抗菌肽对肝癌HepG2细胞增殖、侵袭及迁移的影响∗

    Institute of Scientific and Technical Information of China (English)

    邢佳欣; 刘娟娟; 聂守民; 郭姗; 赵瑞君; 程璟侠

    2016-01-01

    In order to study the antitumor function of the housefly antibacterial peptide in a more comprehensive way, this article studied the antitumor function of housefly antimicrobial peptides on the tumor cell proliferation, invasion and migration. To induce antibacterial peptides, we use the needle to prick housefly then go through a process of low temperature centrifugal, solid phase extraction and freeze⁃drying to obtain antibacterial peptides crude extract, and then adjust antibacterial peptides to different concentrations to inhibit CCK8, cell migration and invasion experiment. The experiment show that housefly antimicrobial peptide can inhibit HepG2 cells proliferation, and the dose⁃response characteristics is closely effected by its concentration. Low concentration of antibacterial peptides (60μg/mL) can also effectively inhibit the migration and invasion of HepG2 cells. In conclusion, the crude extractings of antibacterial peptides from housefly larvae can inhibit the proliferation, invasion and migration of HepG2 cells.%为了更全面的探究家蝇抗菌肽的抗肿瘤作用,本文从肿瘤细胞增殖、侵袭、迁移的角度研究家蝇幼虫抗菌肽对肿瘤细胞的抑制作用。通过针刺诱导家蝇三龄幼虫、低温离心、固相萃取后冻干获取抗菌肽粗提物,将所获抗菌肽调整至不同浓度进行CCK8细胞增殖实验。并通过细胞划痕实验和细胞侵袭实验判断家蝇抗菌肽对肝癌HepG2细胞迁移和侵袭的影响。实验结果显示家蝇抗菌肽能够明显抑制肝癌HepG2细胞的增殖,且作用效果与浓度呈剂量依赖特点。低浓度的抗菌肽(60μg/mL)能有效抑制肝癌HepG2细胞迁移及侵袭。

  12. Effects of Single Amino Acid Substitution on the Biophysical Properties and Biological Activities of an Amphipathic α-Helical Antibacterial Peptide Against Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Juanjuan Tan

    2014-07-01

    Full Text Available An antimicrobial peptide, known as V13K, was utilized as the framework to study the effects of charge, hydrophobicity and helicity on the biophysical properties and biological activities of α-helical peptides. Six amino acids (Lys, Glu, Gly, Ser, Ala, and Leu were individually used to substitute the original hydrophobic valine at the selected sixteenth location on the non-polar face of V13K. The results showed that the single amino acid substitutions changed the hydrophobicity of peptide analogs as monitored by RP-HPLC, but did not cause significant changes on peptide secondary structures both in a benign buffer and in a hydrophobic environment. The biological activities of the analogs exhibited a hydrophobicity-dependent behavior. The mechanism of peptide interaction with the outer membrane and cytoplasmic membrane of Gram-negative bacteria was investigated. We demonstrated that this single amino acid substitution method has valuable potential for the rational design of antimicrobial peptides with enhanced activities.

  13. Separation, Purification and Biological Activity Detection of Antibacterial Peptide Produced by Streptococcus lactis%乳酸链球菌抗菌肽的分离纯化及生物活性检测

    Institute of Scientific and Technical Information of China (English)

    盛博文; 杨海君; 关向杰

    2012-01-01

    This study aimed to separate and purify the Streptococcus lactis -antimicrobial peptides which had wide antimicrobial properties by gel filtration chromatography and HPLC. Staphyiococcus aureus (ATCC25923), Escherkkia coli (ATCC25922), Pseudomonas aeruginosa, Bacillus subtilh, Yersinia and Enterococcw fat calls were used to research the bactericidal mechanism and antibacterial spectrum of the Streptococcus lactis -antimicrobial peptide . The results showed that a species of Streptococcus /aeas-antimicrobial peptides which had killing effects on all bacterial cells except Pseudomonas aerugiiwsa was obtained by separation and purification. The microporous structure of Staphyiococcus aureus (ATCC25923) was observed by transmission electron microscopy when Ihe Streptococcus lactis -antimicrobial peptide was added. The transmission electron microscopy results showed that the Streptococcus lactis -antimicrobial peptide caused the Staphyiococcus aureus (ATCC25923) cells broken, swelling and leakage .accompanied cytoplasmic diluted, cell membrane boundaries blurred or even completely dissolved, and made them apoptosis ultimately.%通过凝胶过滤层析及制备型高效液相色谱法,从乳酸链球菌发酵液中筛选分离出了具有广谱抗菌活性的物质,利用金黄色葡萄球菌( ATCC25923)、大肠杆菌(ATCC25922)、绿脓杆菌、枯草芽孢杆菌、耶尔森菌.粪肠球菌对该活性物质的抗菌谱及杀菌机理进行了研究.结果表明:经过分离纯化,得到的较纯的活性物质为乳酸链球抗菌肽,该物质除了对绿脓杆菌没有杀伤作用, 对其他5种细菌均具有杀伤作用.透射电镜观察结果显示,金黄色葡萄球菌(ATCC25923)经抗菌肽处理后,细胞出现破损或肿胀,有部分细胞内容物外泄,并伴有细胞质稀释的现象,细胞膜界限模糊不清,细胞膜甚至完全溶解.由于细胞内容物外渗,最终导致菌体死亡.

  14. A Diverse Family of Host-Defense Peptides (Piscidins) Exhibit Specialized Anti-Bacterial and Anti-Protozoal Activities in Fishes.

    Science.gov (United States)

    Salger, Scott A; Cassady, Katherine R; Reading, Benjamin J; Noga, Edward J

    2016-01-01

    Conventional antibiotics and other chemical-based drugs are currently one of the most common methods used to control disease-related mortality in animal agriculture. Use of the innate immune system to decrease disease related mortalities is a novel alternative to conventional drugs. One component of the innate immune system is the host-defense peptides, also known as antimicrobial peptides. Host-defense peptides are typically small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and/or protozoal pathogens. Piscidins are host-defense peptides first discovered in the hybrid striped bass (white bass, Morone chrysops, x striped bass, M. saxatilis). In this paper we identify four new piscidin isoforms in the hybrid striped bass and describe their tissue distributions. We also determine the progenitor species of origin of each piscidin (orthology) and propose a revised nomenclature for this newly described piscidin family based on a three class system. The Class I piscidins (22 amino acids in length; striped bass and white bass piscidin 1 and piscidin 3) show broad-spectrum activity against bacteria and ciliated protozoans, while the Class III piscidins (55 amino acids in length; striped bass and white bass piscidin 6 and striped bass piscidin 7) primarily show anti-protozoal activity. The Class II piscidins (44-46 amino acids in length; striped bass and white bass piscidin 4 and white bass piscidin 5) have a level of activity against bacteria and protozoans intermediate to Classes I and III. Knowledge of piscidin function and activity may help in the future development of disease-resistant lines of striped bass and white bass that could be used to produce superior hybrids for aquaculture. PMID:27552222

  15. Similarity analysis, synthesis, and bioassay of antibacterial cyclic peptidomimetics

    Directory of Open Access Journals (Sweden)

    Workalemahu M. Berhanu

    2012-07-01

    Full Text Available The chemical similarity of antibacterial cyclic peptides and peptidomimetics was studied in order to identify new promising cyclic scaffolds. A large descriptor space coupled with cluster analysis was employed to digitize known antibacterial structures and to gauge the potential of new peptidomimetic macrocycles, which were conveniently synthesized by acylbenzotriazole methodology. Some of the synthesized compounds were tested against an array of microorganisms and showed antibacterial activity against Bordetella bronchistepica, Micrococcus luteus, and Salmonella typhimurium.

  16. Similarity analysis, synthesis, and bioassay of antibacterial cyclic peptidomimetics

    Science.gov (United States)

    Berhanu, Workalemahu M; Ibrahim, Mohamed A; Pillai, Girinath G; Oliferenko, Alexander A; Khelashvili, Levan; Jabeen, Farukh; Mirza, Bushra; Ansari, Farzana Latif; ul-Haq, Ihsan; El-Feky, Said A

    2012-01-01

    Summary The chemical similarity of antibacterial cyclic peptides and peptidomimetics was studied in order to identify new promising cyclic scaffolds. A large descriptor space coupled with cluster analysis was employed to digitize known antibacterial structures and to gauge the potential of new peptidomimetic macrocycles, which were conveniently synthesized by acylbenzotriazole methodology. Some of the synthesized compounds were tested against an array of microorganisms and showed antibacterial activity against Bordetella bronchistepica, Micrococcus luteus, and Salmonella typhimurium. PMID:23019443

  17. Antibacterials in Household Products

    Science.gov (United States)

    ... products such as soaps, detergents, health and skincare products and household cleaners. How do antibacterials work? ♦ Antibacterials may be ... contain triclosan or other biocide agents? Antibacterials in household products Are there any risks associated with triclosan-containing ...

  18. Antibacterial effect of protamine assayed by impedimetry

    DEFF Research Database (Denmark)

    Johansen, Charlotte; Gill, T.; Gram, Lone

    1995-01-01

    Impedimetric measurements were used to assay the antibacterial effect of protamine. A good linear correlation between the impedance detection time and the initial cell counts was obtained (r = 0 . 99, n = 2). As basic peptides may cause clumping of cells, this correlation curve was used when...

  19. 两种合成抗菌肽的结构及抗菌作用机理%Solution structure and antibacterial mechanism of two synthetic antimicrobial peptides

    Institute of Scientific and Technical Information of China (English)

    杨林; 范美华; 刘雪珠; 武梅; 石戈; 廖智

    2011-01-01

    Mytilin-derived-peptide-1 (MDP-1) and mytilin-derived-peptide-2 (MDP-2) are two truncated decapeptides with reversed sequence synthesized corresponding to the residues 20-29 of mytilin-1 (GenBank Accession No. FJ973154) from M. Coruscus. The objective of this study is to characterize the structural basis of these two peptides for their antimicrobial activities and functional differences, and to investigate the inhibitory mechanism of MDPs on Escherichia coli and Sarcina lutea. The structures of MDP-1 and MDP-2 in solution were determined by 'H 2D NMR methods; the antibactericidal effects of MDPs on E. Coli and S. Lutea were observed by transmitted electron microscopy (TEM). Both MDP-1 and MDP-2 have a well-defined loop structure stabilized by two additional disulfide bridges, which resemble the-hairpin structure of mytilin-1 model. The surface profile of MDPs' structureswas characterized by protruding charged residues surrounded by hydrophobic residues. TEM analysis showed that MDPs destroyed cytoplasmic membrane and cell wall of bacteria and the interface between the cell wall and membrane was blurred. Furthermore, some holes were observed in treated bacteria, which resulted in cell death. Structural comparison between MDP-1 and MDP-2 shows that the distribution of positively charged amino acids on the loop of MDPs is topologically different significantly, which might be the reason why MDP-2 has higher activity than MDP-1. Furthermore, TEM results suggested that the bactericidal mechanisms of MDPs against E. Coli and S. Lutea were similar. Both MDP-1 and MDP-2 could attach to the negatively charged bacterial wall by positively charged amino acid residues and destroy the bacteria membrane in a pore-forming manner, thus cause the contents of the cells to release and eventually cell death.%为深入了解两种新型人工抗菌肽mytilin-derived-peptide-1 (MDP-1)和mytilin-derived-peptide-2 (MDP-2)的溶液结构和抗菌机理并探讨两种抗菌肽之间活性

  20. New short analogues of Bac2A: Synthesis, analysis and antibacterial activity

    Czech Academy of Sciences Publication Activity Database

    Dimitrov, N.; Dzimbova, T.; Sázelová, Petra; Kitayska, T.; Radeva, G.; Kenarova, A.; Kašička, Václav; Pajpanova, T.

    Sofia: Bulgarian Peptide Society, 2015 - (Naydenova, E.; Pajpanova, T.; Danalev, D.), s. 286-287 ISBN 978-619-90427-2-4. [Peptides 2014. European Peptide Symposium /33./. Sofia (BG), 31.08.2014-05.09.2014] Institutional support: RVO:61388963 Keywords : peptides * antibacterial activity * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation http://bulpepsoc.info/wp-content/uploads/2015/06/PEPTIDES-2014-electronic-version.pdf

  1. Actinopyga lecanora Hydrolysates as Natural Antibacterial Agents

    OpenAIRE

    Raheleh Ghanbari; Afshin Ebrahimpour; Azizah Abdul-Hamid; Amin Ismail; Nazamid Saari

    2012-01-01

    Actinopyga lecanora, a type of sea cucumber commonly known as stone fish with relatively high protein content, was explored as raw material for bioactive peptides production. Six proteolytic enzymes, namely alcalase, papain, pepsin, trypsin, bromelain and flavourzyme were used to hydrolyze A. lecanora at different times and their respective degrees of hydrolysis (DH) were calculated. Subsequently, antibacterial activity of the A. lecanora hydrolysates, against some common pathogenic Gram posi...

  2. Antimicrobial peptides in human skin disease

    OpenAIRE

    Kenshi, Yamasaki; Richard, L. Gallo

    2007-01-01

    The skin continuously encounters microbial pathogens. To defend against this, cells of the epidermis and dermis have evolved several innate strategies to prevent infection. Antimicrobial peptides are one of the primary mechanisms used by the skin in the early stages of immune defense. In general, antimicrobial peptides have broad antibacterial activity against gram-positive and negative bacteria and also show antifungal and antiviral activity. The antimicrobial activity of most peptides occur...

  3. Antimicrobial peptide melittin against Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice

    OpenAIRE

    SHI, Wei; Li, Caiyun; Li, Man; Zong, Xicui; Han, Dongju; Chen, Yuqing

    2016-01-01

    Xanthomonas oryzae pv. oryzae is a destructive bacterial disease of rice, and the development of an environmentally safe bactericide is urgently needed. Antimicrobial peptides, as antibacterial sources, may play important roles in bactericide development. In the present study, we found that the antimicrobial peptide melittin had the desired antibacterial activity against X. oryzae pv. oryzae. The antibacterial mechanism was investigated by examining its effects on cell membranes, energy metab...

  4. Actinopyga lecanora Hydrolysates as Natural Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    Raheleh Ghanbari

    2012-12-01

    Full Text Available Actinopyga lecanora, a type of sea cucumber commonly known as stone fish with relatively high protein content, was explored as raw material for bioactive peptides production. Six proteolytic enzymes, namely alcalase, papain, pepsin, trypsin, bromelain and flavourzyme were used to hydrolyze A. lecanora at different times and their respective degrees of hydrolysis (DH were calculated. Subsequently, antibacterial activity of the A. lecanora hydrolysates, against some common pathogenic Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus and Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas sp. were evaluated. Papain hydrolysis showed the highest DH value (89.44%, followed by alcalase hydrolysis (83.35%. Bromelain hydrolysate after one and seven hours of hydrolysis exhibited the highest antibacterial activities against Pseudomonas sp., P. aeruginosa and E. coli at 51.85%, 30.07% and 30.45%, respectively compared to the other hydrolysates. Protein hydrolysate generated by papain after 8 h hydrolysis showed maximum antibacterial activity against S. aureus at 20.19%. The potent hydrolysates were further fractionated using RP-HPLC and antibacterial activity of the collected fractions from each hydrolysate were evaluated, wherein among them only three fractions from the bromelain hydrolysates exhibited inhibitory activities against Pseudomonas sp., P. aeruginosa and E. coli at 24%, 25.5% and 27.1%, respectively and one fraction of papain hydrolysate showed antibacterial activity of 33.1% against S. aureus. The evaluation of the relationship between DH and antibacterial activities of papain and bromelain hydrolysates revealed a meaningful correlation of four and six order functions.

  5. New cationic amphiphilic compounds as potential antibacterial agents

    NARCIS (Netherlands)

    Visser, Peter Christian de

    2006-01-01

    Het onderwerp van het in dit proefschrift beschreven onderzoek is de ontwikkeling van nieuwe verbindingen met antibacteriële activiteit gericht tegen Gram-negatieve bacteriën. Deze verbindingen zijn afgeleid van kationische antimicrobiële peptides (CAPs), een klasse van antibiotica die volgens ander

  6. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring.

    KAUST Repository

    Rydberg, Hanna A

    2014-04-18

    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  7. PROPERTIES OF ANTIBACTERIAL MEDICATIONS

    Directory of Open Access Journals (Sweden)

    Boyko N. N.

    2014-01-01

    Full Text Available The possibility to use vector algebra theory for quantitative description of antibacterial medications and comparison of their properties has been shown. Mathematic formulas for description of medications’ antibacterial action basing on data of simple to use well method have been presented. This method allows evaluation of medications’ antibacterial activity and opportunity to choose the most active ones, as well as compare them with each other. It is noted that medications of natural origin are inferior to those of synthetic origin as for their antibacterial activity, and new galenic medications possess the most antimicrobial properties. The prospects of this method for pharmacoeconomic analysis of medications conducted in order to chose optimal cost/quality ratio has been demonstrated.

  8. Effects of Antibacterial Peptide Agent on Meat Quality, Contents of Free Amino Acids and Microelements in Breast Muscle of Barred Plymouth Rock Chickens%抗菌肽制剂对芦花鸡胸肌肉质性状、游离氨基酸及微量元素含量的影响

    Institute of Scientific and Technical Information of China (English)

    郭丽君; 牛淑玲; 马倩; 赵衍铜; 柏明娜; 韩文瑜; 冯新; 王贵平; 张晶

    2012-01-01

    本文旨在探讨抗菌肽制剂对芦花鸡胸肌肉质性状、游离氨基酸及微量元素含量的影响.试验采用单因子设计方案,选取1日龄健康芦花鸡450只,随机分为3组,每组3个重复,每个重复50只鸡(公母各占1/2).Ⅰ组(对照组)饲喂基础饲粮,Ⅱ、Ⅲ组分别饲喂在基础饲粮中添加抗菌肽及抗菌肽+酵母菌制剂的试验饲粮,试验期90 d.结果表明:1)Ⅱ、Ⅲ组芦花鸡胸肌滴水损失较Ⅰ组有降低趋势,但差异不显著(P>0.05),肌纤维直径均较Ⅰ组极显著降低(P<0.01).Ⅱ组肌纤维密度较Ⅰ组显著提高(P<0.05),Ⅲ组较Ⅰ组极显著提高(P<0.01).2)Ⅱ、Ⅲ组胸肌必需氨基酸含量和游离氨基酸总量与对照组无显著差异(P>0.05).3)Ⅱ、Ⅲ组胸肌硒含量均较Ⅰ组有极显著的提高(P<0.01),Ⅲ组亦显著提高了锰含量(P<0.05),对其他微量元素含量无显著影响(P>0.05).综上所述,抗菌肽+酵母菌制剂对芦花鸡胸肌肉质性状、游离氨基酸及微量元素含量的作用效果较好,且优于单独使用抗菌肽.%This study was conducted to investigate the effects of antibacterial peptide agent (ABPA) on meat quality, contents of free amino acids and microelements in breast muscle of barred plymouth rock chickens. U-sing a single factor design, a total of 450 one-day-old barred plymouth rock chickens were randomly allocated to 3 groups with 3 replicates per group and 50 chickens (half male and half female) in each replicate. The experiment lasted for 90 days. Chickens in group I (control group) were fed a basal diet, and the other chickens in groups II and III were fed with the basal diet supplemented with antibacterial peptide (ABP) and antibacterial peptides plus yeast (ABPY) , respectively. The results showed as follows; 1) compared with the control group, drip loss in groups II and HI had a decrease tendency, but there was no significant difference (P >0. 05). The muscle fiber diameter in groups II

  9. The Current Status of Application of Marine-derived Antibacterial Peptide in the Beauty Industry%海洋生物抗菌肽在美容业的应用研究现状

    Institute of Scientific and Technical Information of China (English)

    陈刚; 肖蕾; 刘晨光

    2015-01-01

    Antimicrobial peptides ( AMPs ) are small molecular weight proteins with broad spectrum antimicrobial activity against bacteria, viruses, and fungi. There is a huge amount of antimicrobial peptides available in marine organisms because of their unique immune mechanism that resist the invasion of bacteria and pathogens. Marine organisms are an important resource for the development of natural antimicrobial peptides. The research status of AMPs and their future industrial perspectives of application in the beauty industry were summarized.%抗菌肽是一类对真菌、细菌和病毒有广谱抗菌活性的小分子蛋白质。海洋生物依靠体内独特的免疫机制抵抗入侵细菌或病原体,因此內源性抗菌肽丰富,成为开发天然抗菌肽的重要资源。本文综述了海洋生物抗菌肽的研究现状及在美容产品中的应用潜力。海洋生物抗菌肽主要来源于海洋脊椎动物及海洋非脊椎动物。它在作为天然化妆品的防腐剂及治疗痤疮方面应用前景广阔。

  10. Salt-resistant short antimicrobial peptides.

    Science.gov (United States)

    Mohanram, Harini; Bhattacharjya, Surajit

    2016-05-01

    Antimicrobial peptides (AMPs) are promising leads for the development of antibiotics against drug resistant bacterial pathogens. However, in vivo applications of AMPs remain obscure due to salt and serum mediated inactivation. The high cost of chemical synthesis of AMPs also impedes potential clinical application. Consequently, short AMPs resistant toward salt and serum inactivation are desirable for the development of peptide antibiotics. In this work, we designed a 12-residue amphipathic helical peptide RR12 (R-R-L-I-R-L-I-L-R-L-L-R-amide) and two Trp containing analogs of RR12 namely RR12Wpolar (R-R-L-I-W-L-I-L-R-L-L-R-amide), and RR12Whydro (R-R-L-I-R-L-W-L-R-L-L-R-amide). Designed peptides demonstrated potent antibacterial activity; MIC ranging from 2 to 8 μM, in the presence of sodium chloride (150 mM and 300 mM). Antibacterial activity of these peptides was also detected in the presence of human serum. Designed peptides, in particular RR12 and RR12Whydro, were only poorly hemolytic. As a mode of action; these peptides demonstrated efficient permeabilization of bacterial cell membrane and lysis of cell structure. We further investigated interactions of the designed peptides with lipopolysaccharide (LPS), the major component of the outer membrane permeability barrier of Gram-negative bacteria. Designed peptides adopted helical conformations in complex with LPS. Binding of peptides with LPS has yielded dissociation the aggregated structures of LPS. Collectively, these designed peptides hold ability to be developed for salt-resistant antimicrobial compounds. Most importantly, current work provides insights for designing salt-resistant antimicrobial peptides. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 345-356, 2016. PMID:26849911

  11. Antibacterial Activity of Melittin Derived from Honey Bee Venom

    OpenAIRE

    Mohsen Momenzadeh; Delavar Shahbazzadeh1; Mohammad Dakhili; Mohammad Reza Zolfaghari; Kamran Pooshang Bagheri

    2014-01-01

    Abstract Background and objective: Bacterial peritonitis is one of the nosocomial infections that is due to direct invasion of bacteria to peritoneal membrane. Resistance to antibiotic is of great significance in this disease and could be led to morbidity and mortality of patients. During the past decade, tracing for natural antimicrobial peptide is more considered. Among them, melittin has been extracted from honey bee venom and its antibacterial activity is being examined. The main goal...

  12. Herbal Antibacterials: A Review

    Directory of Open Access Journals (Sweden)

    Chirag Modi

    2012-02-01

    Full Text Available Plants are rich source of antibacterial agents because they produce wide array of bioactive molecules, most of which probably evolved as chemical defense against predation or infection. A major part of the total population in developing countries still uses traditional folk medicine obtained from plant resources With an estimation of WHO that as many as 80% of world population living in rural areas rely on herbal traditional medicines as their primary health care, the study on properties and uses of medicinal plants are getting growing interests. In recent years this interest to evaluate plants possessing antibacterial activity for various diseases is growing. Different solvent extracts (aqueous, alcohol and ethanol of leaves, flower and seed of various plants selected based on an ethnobotanical survey from India were subjected to in vitro antibacterial activity assay against Gram-positive and Gram-negative bacteria employing different diffusion method. Based on local use of common diseases and Ethnobotanical knowledge, an attempt has been made to assess the antibacterial properties of selected medicinal plants viz. Argemone mexicana (Shialkanta, Aster lanceolatus (White panicle, Capparis thonningii and Capparis tomentosa (Woolly caper bush, Cardiospermum halicacabum (Balloonvine, Cassia alata (Herpetic alata, Centaurea sclerolepis, Cinnamomum zeylanicum (Cinnamon, Curcuma longa (Turmeric, Cymbopogon nervatus, Ficus religiosa (Peepal, Indigofera aspalathoides (Ajara, Marrubium vulgare (Horehound, Medicago Spp.(Medick, Burclover, Morus alba (Mulberry, Ocimum sanctum (Tulsi, Origanum marjorana (Marjoram, Oxalis corniculata (Amli, Piper nigrum (Kala mirch, Plectranthus amboinicus (Indian borage, Patharchur, Plumeria acutifolia (Kachuchi, Salvadora persica (Piludi, Salvia repens and Syzygium aromaticum (Clove for potential antibacterial activity against some important bacterial strains, namely Bacillus subtilis, Bacillus cereus, Staphylococcus

  13. Cationic polymers and their self-assembly for antibacterial applications.

    Science.gov (United States)

    Deka, Smriti Rekha; Sharma, Ashwani Kumar; Kumar, Pradee

    2015-01-01

    The present article focuses on the amphiphilic cationic polymers as antibacterial agents. These polymers undergo self-assembly in aqueous conditions and impart biological activity by efficiently interacting with the bacterial cell wall, hence, used in preparing chemical disinfectants and biocides. Both cationic charge as well as hydrophobic segments facilitate interactions with the bacterial cell surface and initiate its disruption. The perturbation in transmembrane potential causes leakage of cytosolic contents followed by cell death. Out of two categories of macromolecules, peptide oligomers and cationic polymers, which have extensively been used as antibacterials, we have elaborated on the current advances made in the area of cationic polymer-based (naturally occurring and commonly employed synthetic polymers and their modified analogs) antibacterial agents. The development of polymer-based antibacterials has helped in addressing challenges posed by the drug-resistant bacterial infections. These polymers provide a new platform to combat such infections in the most efficient manner. This review presents concise discussion on the amphiphilic cationic polymers and their modified analogs having low hemolytic activity and excellent antibacterial activity against array of fungi, bacteria and other microorganisms. PMID:25858132

  14. Peptide dendrimers

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Šebestík, Jaroslav; Ježek, Jan

    2005-01-01

    Roč. 11, - (2005), 757-788. ISSN 1075-2617 R&D Projects: GA ČR(CZ) GA203/03/1362 Institutional research plan: CEZ:AV0Z40550506 Keywords : multiple antigen peptides * peptide dendrimers * synthetic vaccine * multipleantigenic peptides Subject RIV: CC - Organic Chemistry Impact factor: 1.803, year: 2005

  15. Antibacterial Applications of Nanodiamonds

    Directory of Open Access Journals (Sweden)

    Sabine Szunerits

    2016-04-01

    Full Text Available Bacterial infectious diseases, sharing clinical characteristics such as chronic inflammation and tissue damage, pose a major threat to human health. The steady increase of multidrug-resistant bacteria infections adds up to the current problems modern healthcare is facing. The treatment of bacterial infections with multi-resistant germs is very difficult, as the development of new antimicrobial drugs is hardly catching up with the development of antibiotic resistant pathogens. These and other considerations have generated an increased interest in the development of viable alternatives to antibiotics. A promising strategy is the use of nanomaterials with antibacterial character and of nanostructures displaying anti-adhesive activity against biofilms. Glycan-modified nanodiamonds (NDs revealed themselves to be of great promise as useful nanostructures for combating microbial infections. This review summarizes the current efforts in the synthesis of glycan-modified ND particles and evaluation of their antibacterial and anti-biofilm activities.

  16. Antibacterial Applications of Nanodiamonds

    Science.gov (United States)

    Szunerits, Sabine; Barras, Alexandre; Boukherroub, Rabah

    2016-01-01

    Bacterial infectious diseases, sharing clinical characteristics such as chronic inflammation and tissue damage, pose a major threat to human health. The steady increase of multidrug-resistant bacteria infections adds up to the current problems modern healthcare is facing. The treatment of bacterial infections with multi-resistant germs is very difficult, as the development of new antimicrobial drugs is hardly catching up with the development of antibiotic resistant pathogens. These and other considerations have generated an increased interest in the development of viable alternatives to antibiotics. A promising strategy is the use of nanomaterials with antibacterial character and of nanostructures displaying anti-adhesive activity against biofilms. Glycan-modified nanodiamonds (NDs) revealed themselves to be of great promise as useful nanostructures for combating microbial infections. This review summarizes the current efforts in the synthesis of glycan-modified ND particles and evaluation of their antibacterial and anti-biofilm activities. PMID:27077871

  17. Antibacterial Au nanostructured surfaces

    Science.gov (United States)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was information (ESI) available. See DOI: 10.1039/c5nr06157a

  18. Herbal Antibacterials: A Review

    OpenAIRE

    Chirag Modi; Shailesh Mody; Hitesh Patel; Ghanshyam Dudhatra; Avinash Kumar; Madhavi Awale

    2012-01-01

    Plants are rich source of antibacterial agents because they produce wide array of bioactive molecules, most of which probably evolved as chemical defense against predation or infection. A major part of the total population in developing countries still uses traditional folk medicine obtained from plant resources With an estimation of WHO that as many as 80% of world population living in rural areas rely on herbal traditional medicines as their primary health care, the study on properties and...

  19. Antibacterial activity of Pterocarpus santalinus

    OpenAIRE

    Manjunatha B

    2006-01-01

    Antibacterial activity of leaf and stem bark of Pterocarpus santalinus (Fabaceae) was investigated. The antibacterial activity was tested against both Gram-positive and Gram-negative organisms. Among the two extracts tested, stem bark extract exhibited broad-spectrum antibacterial activity against the tested organisms. The stem bark extract showed maximum activity against Enterobacter aerogenes, Alcaligenes faecalis, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Bacillus cere...

  20. Lasso peptide, a highly stable structure and designable multifunctional backbone.

    Science.gov (United States)

    Zhao, Ning; Pan, Yongxu; Cheng, Zhen; Liu, Hongguang

    2016-06-01

    Lasso peptide belongs to a new class of natural product with highly compact and stable structure. It has varieties of biological activities, among which the most important one is its antibacterial efficacy. Novel lasso peptides have been constantly discovered and analyzed by advanced techniques, and the biosynthesis or even chemical synthesis of lasso peptide has been studied after learning its constituent amino acids and maturation process. Structural identification of lasso peptide provides information for elucidating the mechanisms of its antibacterial activity and basis for further modifications. Ring of lasso peptide is the key to both its highly compact and stable structure and its intrinsic antibacterial property. The loop has been considered as suitable modification region of lasso peptide, such as V11-S18 of MccJ25 being modifiable without disrupting the lasso structure in biosynthesis. The tail is the immunity protein that can export lasso peptide out of its produced strain and serve as a self-protection mechanism at the same time. Most of currently known lasso peptides are non-pathogenic, which implies that the modified lasso peptides are promising candidates for medical applications. Arginine, glycine, and aspartic acid as a ligands of cancer-specific receptor have been grafted to the loop of lasso peptide without losing its bioactivity, and many other targets are expected to be used for lasso peptide modification. Multi-molecular modification and large-scale production need to be studied and solved in future for designing and using multifunctional lasso peptide based on its extraordinary stable structure. PMID:27074719

  1. Antibacterial effect of antimicrobial peptide from skin secretions of Andrias davidianus on the wound of Pseudomonas aeruginosa infection in mice%大鲵皮肤分泌液中抗菌肽对铜绿假单胞菌感染小鼠创面的抗菌作用

    Institute of Scientific and Technical Information of China (English)

    王利锋; 李学英; 王大忠

    2011-01-01

    观察大鲵皮肤分泌液中抗菌肽对铜绿假单胞菌感染小鼠创面的抗菌作用.方法用5%醋酸浸提和Sephadex G -50、G-25凝胶过滤层析等方法分离抗菌肽;采用Tricine - SDS - PAGE电泳鉴定,抑菌圈法检测抗菌活性;切除30只ICR小鼠背部1 cm×1 cm全层皮肤,涂抹铜绿假单胞菌菌液制成感染模型,随机均分为对照组、磺胺米隆组和抗菌肽组,伤后3h分别用生理盐水、100 g·L-1磺胺米隆、0.5g·L-1抗菌肽的纱布湿敷.伤前和伤后3d抽血观察白细胞的变化;伤后每天观察小鼠创面的感染情况、精神状态和体重变化;14 d后观察小鼠的存活情况.结果检测到大鲵皮肤分泌液中抗菌肽的相对分子质量约为4.3×103Da,对铜绿假单胞菌的抗菌活性较强;术后3组小鼠的白细胞计数均减少;对照组小鼠相比其他两组活动减少,创面潮湿、分泌物较多,磺胺米隆组、抗菌肽组的创面结痂、干燥、无明显分泌物;对照组小鼠的体重在第6天开始下降,明显少于其他两组(P<0.05);而无菌对照组的小鼠无死亡,重量持续增加.14 d后对照组存活率明显少于磺胺米隆组和抗菌肽组(P<0.05).结论大鲵皮肤分泌液中抗菌肽对铜绿假单胞菌感染的ICR小鼠创面有较强的抗感染作用,可明显降低其死亡率.%OBJECTIVE To investigate the antibacterial effect of antimicrobial peptide from the skin secretions of the Andrias davidianus on the wound of Pseudomonas aeruginma infection in mice. METHODS This antimicrobial peptide was purified by 5% acetic acid extraction and Sephadex G - 50, G - 25 gel filtration chromatography. The samples were characterized by Tricine - SDS - PAGE electrophoresis and the antimicrobial activity was determined. Thirty ICR mice were enrolled in the study,and the Pseudomonas aerugi-nosa infection model was reproduced by excision of the full layer of dorsal skin with an area of 1 cm x 1 cm. Then they were

  2. Antibacterial activities of antineoplastic agents.

    OpenAIRE

    Bodet, C A; Jorgensen, J H; Drutz, D J

    1985-01-01

    Fourteen antineoplastic agents were examined for in vitro antibacterial activity against 101 aerobic and anaerobic bacterial isolates representing indigenous human microflora and selected opportunistic pathogens. Only 5-fluorouracil, mitomycin, and etoposide demonstrated inhibitory effects at achievable plasma concentrations, while the remaining drugs lacked appreciable antibacterial activities.

  3. Carbon Nanomaterials as Antibacterial Colloids

    Directory of Open Access Journals (Sweden)

    Michael Maas

    2016-07-01

    Full Text Available Carbon nanomaterials like graphene, carbon nanotubes, fullerenes and the various forms of diamond have attracted great attention for their vast potential regarding applications in electrical engineering and as biomaterials. The study of the antibacterial properties of carbon nanomaterials provides fundamental information on the possible toxicity and environmental impact of these materials. Furthermore, as a result of the increasing prevalence of resistant bacteria strains, the development of novel antibacterial materials is of great importance. This article reviews current research efforts on characterizing the antibacterial activity of carbon nanomaterials from the perspective of colloid and interface science. Building on these fundamental findings, recent functionalization strategies for enhancing the antibacterial effect of carbon nanomaterials are described. The review concludes with a comprehensive outlook that summarizes the most important discoveries and trends regarding antibacterial carbon nanomaterials.

  4. De-novo design of antimicrobial peptides for plant protection.

    Directory of Open Access Journals (Sweden)

    Benjamin Zeitler

    Full Text Available This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of "healthy" food, these peptides might serve as templates for novel antibacterial and antifungal agents.

  5. Setting and Revising Antibacterial Susceptibility Breakpoints

    OpenAIRE

    Turnidge, John; PATERSON, DAVID L.

    2007-01-01

    Clinical microbiology laboratories need to communicate results of antibacterial susceptibility testing to prescribers. Sophisticated prescribers who are knowledgeable of the pharmacokinetics and pharmacodynamics of antibacterials may desire no more information than the MIC of the drug in question. However, most prescribers require interpretation of antibacterial susceptibility testing results. Breakpoints can assist in determining if an antibacterial is potentially useful in the treatment of ...

  6. Milk proteins as precursors of bioactive peptides

    Directory of Open Access Journals (Sweden)

    Marta Dziuba

    2009-03-01

    Full Text Available Milk proteins, a source of bioactive peptides, are the subject of numerous research studies aiming to, among others, evaluate their properties as precursors of biologically active peptides. Physiologically active peptides released from their precursors may interact with selected receptors and affect the overall condition and health of humans. By relying on the BIOPEP database of proteins and bioactive peptides, developed by the Department of Food Biochemistry at the University of Warmia and Mazury in Olsztyn (www.uwm.edu.pl/biochemia, the profiles of potential activity of milk proteins were determined and the function of those proteins as bioactive peptide precursors was evaluated based on a quantitative criterion, i.e. the occurrence frequency of bioactive fragments (A. The study revealed that milk proteins are mainly a source of peptides with the following types of activity: antihypertensive (Amax = 0.225, immunomodulating (0.024, smooth muscle contracting (0.011, antioxidative (0.029, dipeptidyl peptidase IV inhibitors (0.148, opioid (0.073, opioid antagonistic (0.053, bonding and transporting metals and metal ions (0.024, antibacterial and antiviral (0.024, and antithrombotic (0.029. The enzymes capable of releasing bioactive peptides from precursor proteins were determined for every type of activity. The results of the experiment indicate that milk proteins such as lactoferrin, α-lactalbumin, β-casein and κ-casein hydrolysed by trypsin can be a relatively abundant source of biologically active peptides.

  7. Antibacterial activity of Pterocarpus santalinus

    Directory of Open Access Journals (Sweden)

    Manjunatha B

    2006-01-01

    Full Text Available Antibacterial activity of leaf and stem bark of Pterocarpus santalinus (Fabaceae was investigated. The antibacterial activity was tested against both Gram-positive and Gram-negative organisms. Among the two extracts tested, stem bark extract exhibited broad-spectrum antibacterial activity against the tested organisms. The stem bark extract showed maximum activity against Enterobacter aerogenes, Alcaligenes faecalis, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Bacillus cereus, Bacillus subtilis, Staphylococcus aureus . The leaf extract showed maximum activity against Escherichia coli, Alcaligenes faecalis, Enterobacter aerogenes and Pseudomonas aeruginosa . Both extracts exhibited concentration dependent activity.

  8. Antimicrobial Activity of Novel Synthetic Peptides Derived from Indolicidin and Ranalexin against Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Hassan Mahmood Jindal

    Full Text Available Antimicrobial peptides (AMPs represent promising alternatives to conventional antibiotics in order to defeat multidrug-resistant bacteria such as Streptococcus pneumoniae. In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml. These four hybrid peptides also showed broad spectrum antibacterial activity (7.81µg/ml against S. aureus, methicillin resistant S. aureus (MRSA, and E. coli. Furthermore, the time killing assay results showed that the hybrid peptides were able to eliminate S. pneumoniae within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxic effects of peptides were tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic effects at their MIC values. The in silico molecular docking study was carried out to investigate the binding properties of peptides with three pneumococcal virulent targets by Autodock Vina. RN7IN6 showed a strong affinity to target proteins; autolysin, pneumolysin, and pneumococcal surface protein A (PspA based on rigid docking studies. Our results suggest that the hybrid peptides could be suitable candidates for antibacterial drug development.

  9. Identification and characterization of a novel antimicrobial peptide from the venom of the ant Tetramorium bicarinatum.

    Science.gov (United States)

    Rifflet, Aline; Gavalda, Sabine; Téné, Nathan; Orivel, Jérôme; Leprince, Jérôme; Guilhaudis, Laure; Génin, Eric; Vétillard, Angélique; Treilhou, Michel

    2012-12-01

    A novel antimicrobial peptide, named Bicarinalin, has been isolated from the venom of the ant Tetramorium bicarinatum. Its amino acid sequence has been determined by de novo sequencing using mass spectrometry and by Edman degradation. Bicarinalin contained 20 amino acid residues and was C-terminally amidated as the majority of antimicrobial peptides isolated to date from insect venoms. Interestingly, this peptide had a linear structure and exhibited no meaningful similarity with any known peptides. Antibacterial activities against Staphylococcus aureus and S. xylosus strains were evaluated using a synthetic replicate. Bicarinalin had a potent and broad antibacterial activity of the same magnitude as Melittin and other hymenopteran antimicrobial peptides such as Pilosulin or Defensin. Moreover, this antimicrobial peptide has a weak hemolytic activity compared to Melittin on erythrocytes, suggesting potential for development into an anti-infective agent for use against emerging antibiotic-resistant pathogens. PMID:22960382

  10. Phenotype microarray profiling of the antibacterial activity of red cabbage

    Directory of Open Access Journals (Sweden)

    Hafidh RR

    2012-06-01

    Full Text Available Background: Functional food can be a potent source of wide array of biocomonents with antimicrobial activity. We investigated the antibacterial activity of red cabbage (RC extract on Gram negative and positive ATCC strains. Most intersting, we, for the first time, explored and analysed the complete phenotypic profile of RC-treated bacteria using Omnilog Phenotype Microarray. Results: This study revealed that the phenotype microarray (PM screen was a valuable tool in the search for compounds and their antibacterial mechanisms that can inhibit bacterial growth by affecting certain metabolic pathways. It was shown that RC exerted remarkable antibacterial effect on S. aureus and E. coli bacteria, and PM showed a wide range phenotypic profile of the exerted RC antibacterial activity. RC targeted the peptide, carbon, nutriontional assembly, and sulfur metbolic pathways altogether. The peptidoglycan synthesis pathway was inferred to be targeted by RC extract at a metabolic point different from other available cell wall-targeting drugs; these could be hot targets for the discovery of new therapy for many problematic microbes.Conclusions: Taken together, the phenotype microarray for functional food and medicinal plants can be a very useful tool for profiling their antimicrobial activity. Moreover, extracts of functional food can exert antibacterial activity by hitting a wide range of metabolic pathways, at the same time leading to very difficult condition for bacteria to rapidly develop resistance. Therefore, using functional foods or medicinal plants as such, or as extracts, can be superior on mono-targeting antibiotics if the optimal concentrations and conditions of these functional foods were sought.

  11. Analysis of the Inheritance and Expression of Antibacterial Peptide Gene Shiva A in Transgenic Citrus(Citrus sinensis) during Its Asexual Propagation%抗菌肽Shiva A基因在转基因柑橘无性繁殖后代中的遗传与表达分析

    Institute of Scientific and Technical Information of China (English)

    许兰珍; 何永睿; 彭爱红; 雷天刚; 刘小丰; 邹修平; 姚利晓; 陈善春

    2013-01-01

    In order to further clarify the genetic stability and the target traits of the foreign gene in the progeny of transgenic citrus,the asexual reproduction plants of transgenic Newhall navel orange(Citrus sinensis Osbeck)containing bivalent antibacterial peptide gene(Shiva A-cecropin B) were studied.In this study,the genetic stability of Shiva A gene in To,T1,T2 and T3 progenies of transgenic citrus varieties were analyzed by PCR,Southern hybridization,Real-time quantitative PCR and greenhouse disease index statistic to Xathomonas axonopodis pv.Citri(Hasse) Dye.The results showed that the antimicrobial peptides Shiva A gene was existed and expressed in To,T1,T2 and T3 plants.This meant target gene could be stably inherited from one generation to another through asexual propagating.There was difference of Shiva A gene copy number between transgenic To and its asexual propagation.Southern bloting analysis showed that To generation had two hybridizations,but its progenies had only one hybridization consistent with To generation.It could be speculated that the T0 generation plant was a transgenic multicellular mixed cytochimera.In addition,Realtime quantitative PCR results showed that,even if Shiva A gene in the To generation genome was double copy numbers,but its expression level was lower than a single copy of the T1,T2 and T3 generation.Therefore,in this study,exogenous gene expression and transgene copy number was a negative correlation.The results of this study provide some basic date and the material for extending the stable phenotype of transgenic citrus strains in carrying out the safety evaluation of transgenic plants.%为进一步明确外源基因在转基因柑橘无性繁殖后代中的遗传稳定性及目标性状表现,本研究以转双价抗菌肽基因(ShivaA-cecropinB)纽荷尔脐橙(Citrus Sinensis Osbeck)无性繁殖后代植株为材料,通过PCR扩增,Southern杂交和实时定量PCR检测,以及温室抗病性评价分析等,对抗菌肽ShivaA基

  12. Antimicrobial beta-peptides and alpha-peptoids

    DEFF Research Database (Denmark)

    Godballe, Troels; Nilsson, Line L.; Petersen, Pernille D.;

    2011-01-01

    The field of drug discovery and development has seen tremendous activity over the past decade to better tackle the increasing occurrence of drugresistant bacterial infections and to alleviate some of the pressure we put on the last-resort drugs on the market. One of the new and promising drug...... candidates is derived from naturally occurring antimicrobial peptides. However, despite promising results in early-stage clinical trials, these molecules have faced some difficulties securing FDA approval, which can be linked to their poor metabolic stability. Hence, mimetics of these antimicrobial peptides...... have been suggested as new templates for antibacterial compound design, because these mimetics are resistant against degradation by proteases. This review will discuss the structural features of two different types of mimetics, b-peptides and a-peptoids, in relation to their antibacterial activity and...

  13. Triterpene sapogenin-polyarginine conjugates exhibit promising antibacterial activity against Gram-positive strains.

    Science.gov (United States)

    Na, Heiya; Li, Xiangpeng; Zou, Cunbin; Wang, Chenhong; Wang, Chao; Liu, Keliang

    2016-07-01

    Triterpene sapogenins are a group of biologically active compounds with antibacterial activity. However, the limited solubility and poor bioavailability of triterpene sapogenins restrict their therapeutic application. Polyarginine peptides are small cationic peptides with high affinities for multiple negatively charged cell membranes and possess moderate antibacterial activities. In this study, we designed and synthesized a series of sapogenin-polyarginine conjugates in which the triterpene sapogenin moiety was covalently appended to the positively charged polyarginine via click chemistry. A clear synergistic effect was found, and the conjugates exhibited potent and selective antibacterial activity against Gram-positive strains. Among them, BAc-R3 was the most promising compound, which was also proven to be nontoxic toward mammalian cells as well as stable in plasma. The mechanism of BAc-R3 primarily involves an interaction with the bacterial membrane, similar to that of antimicrobial peptides (AMPs). This scaffold design opens an avenue for the further development of novel antibiotics comprised of the combination of a peptide and a natural product. PMID:27209170

  14. Design and Application of Antimicrobial Peptide Conjugates.

    Science.gov (United States)

    Reinhardt, Andre; Neundorf, Ines

    2016-01-01

    Antimicrobial peptides (AMPs) are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT) or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry. PMID:27187357

  15. Design and Application of Antimicrobial Peptide Conjugates

    Directory of Open Access Journals (Sweden)

    Andre Reinhardt

    2016-05-01

    Full Text Available Antimicrobial peptides (AMPs are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry.

  16. Antibacterial Mechanism of Copper-bearing Antibacterial Stainless Steel against E.Coli

    Institute of Scientific and Technical Information of China (English)

    Li NAN; Weichao YANG; Yongqian LIU; Hui XU; Ying LI; Manqi L(U); Ke YANG

    2008-01-01

    A preliminary study was made on the antibacterial mechanism of copper-bearing antibacterial stainless steels against E.coli through experiments of microbiology such as EDTA (ethylenediaminetetraacetic acid) complex- ing, DNA smearing and AFM (atomic force microscope) observation. It was measured that the antibacterial stainless steels showed excellent antibacterial functions with antibacterial rate to E.coli over 99.99%. The antibacterial rate was weak if the bacteria solution was complexed by EDTA, indicating that the copper ions play a dominant role in the antibacterial effect of the antibacterial stainless steels. The electrophoresis experi- ment did not show the phenomenon of DNA smearing for E.coli after contacting antibacterial stainless steels, which meant that DNA of E.coli was not obviously damaged. It was observed by AFM that the morphology of E.coli changed a lot after contacting antibacterial stainless steels, such as cell walls being seriously changed and lots of contents in the cells being leaked.

  17. Antibacterial Cleaning Products and Drug Resistance

    OpenAIRE

    Aiello, Allison E.; Marshall, Bonnie; Levy, Stuart B.; Della-Latta, Phyllis; Lin, Susan X.; Larson, Elaine

    2005-01-01

    We examined whether household use of antibacterial cleaning and hygiene products is an emerging risk factor for carriage of antimicrobial drug–resistant bacteria on hands of household members. Households (N = 224) were randomized to use of antibacterial or nonantibacterial cleaning and hygiene products for 1 year. Logistic regression was used to assess the influence of antibacterial product use in homes. Antibacterial product use did not lead to a significant increase in antimicrobial drug re...

  18. Antibacterial Properties of an Austenitic Antibacterial Stainless Steel and Its Security for Human Body

    Institute of Scientific and Technical Information of China (English)

    Ke YANG; Manqi L(U)

    2007-01-01

    An austenitic antibacterial stainless steel is reported in this paper. The very fine and dispersive ε-Cu precipitations in the matrix of the antibacterial steel after the antibacterial treatment endow the steel with antibacterial function. The antibacterial function is strong, long-term and broad-spectrum, and can be maintained even after repeated wear and long time dipping in water. The steel is safe for human body and could be used widely in daily application.

  19. Antibacterial Resistance Leadership Group: Open for Business

    OpenAIRE

    Chambers, Henry F.; Bartlett, John G.; Bonomo, Robert A.; Chiou, Christine; Cosgrove, Sara E.; CROSS, HEATHER R.; Daum, Robert S.; Downing, Michele; Evans, Scott R.; Knisely, Jane; Kreiswirth, Barry N.; Lautenbach, Ebbing; Mickley, Brenda S.; Patel, Robin; Pettigrew, Melinda M.

    2014-01-01

    The Antibacterial Resistance Leadership Group (ARLG) is tasked with prioritizing, designing, implementing, and conducting clinical studies to address antibacterial resistance. This article outlines clinical research resources and opportunities made available by ARLG and encourages submission of proposals that address antibacterial resistance.

  20. A novel insect defensin mediates the inducible antibacterial activity in larvae of the dragonfly Aeschna cyanea (Paleoptera, Odonata)

    NARCIS (Netherlands)

    Bulet, P.; Cociancich, S.; Reuland, M.; Sauber, F.; Bischoff, Rainer; Hegy, G.; Van Dorsselaer, A.; Hetru, C.; Hoffmann, J.A.

    1992-01-01

    The injection of low doses of bacteria into the aquatic larvae of dragonflies (Aeschna cyanea, Odonata, Paleoptera) induces the appearance in their hemolymph of a potent antibacterial activity. We have isolated a 38-residue peptide from this hemolymph which is strongly active against Gram-positive b

  1. Covalent modification of a ten-residue cationic antimicrobial peptide with levofloxacin

    Science.gov (United States)

    Rodriguez, Carlos; Papanastasiou, Emilios; Juba, Melanie; Bishop, Barney

    2014-09-01

    The rampant spread of antibiotic resistant bacteria has spurred interest in alternative strategies for developing next-generation antibacterial therapies. As such, there has been growing interest in cationic antimicrobial peptides (CAMPs) and their therapeutic applications. Modification of CAMPs via conjugation to auxiliary compounds, including small molecule drugs, is a new approach to developing effective, broad-spectrum antibacterial agents with novel physicochemical properties and versatile antibacterial mechanisms. Here, we’ve explored design parameters for engineering CAMPs conjugated to small molecules with favorable physicochemical and antibacterial properties by covalently affixing a fluoroquinolone antibiotic, levofloxacin, to the ten-residue CAMP Pep-4. Relative to the unmodified Pep-4, the conjugate was found to demonstrate substantially increased antibacterial potency under high salt concentrations. Historically, it has been observed that most CAMPs lose antibacterial effectiveness in such high ionic strength environments, a fact that has presented a challenge to their development as therapeutics. Physicochemical studies revealed that P4LC was more hydrophobic than Pep-4, while mechanistic findings indicated that the conjugate was more effective at disrupting bacterial membrane integrity. Although the inherent antibacterial effect of the incorporated levofloxacin molecules did not appear to be substantially realized in this conjugate, these findings nevertheless suggest that covalent attachment of small molecule antibiotics with favorable physicochemical properties to CAMPs could be a promising strategy for enhancing peptide performance and overall therapeutic potential. These results have broader applicability to the development of future CAMP-antibiotic conjugates for potential therapeutic applications.

  2. Covalent modification of a ten-residue cationic antimicrobial peptide with levofloxacin

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Rodriguez

    2014-09-01

    Full Text Available The rampant spread of antibiotic resistant bacteria has spurred interest in alternative strategies for developing next-generation antibacterial therapies. As such, there has been growing interest in cationic antimicrobial peptides (CAMPs and their therapeutic applications. Modification of CAMPs via conjugation to auxiliary compounds, including small molecule drugs, is a new approach to developing effective, broad-spectrum antibacterial agents with novel physicochemical properties and versatile antibacterial mechanisms. Here, we’ve explored design parameters for engineering CAMPs conjugated to small molecules with favorable physicochemical and antibacterial properties by covalently affixing a fluoroquinolone antibiotic, levofloxacin, to the ten-residue CAMP Pep-4. Relative to the unmodified Pep-4, the conjugate was found to demonstrate substantially increased antibacterial potency under high salt concentrations. Historically, it has been observed that most CAMPs lose antibacterial effectiveness in such high ionic strength environments, a fact that has presented a challenge to their development as therapeutics. Physicochemical studies revealed that P4LC was more hydrophobic than Pep-4, while mechanistic findings indicated that the conjugate was more effective at disrupting bacterial membrane integrity. Although the inherent antibacterial effect of the incorporated levofloxacin molecules did not appear to be substantially realized in this conjugate, these findings nevertheless suggest that covalent attachment of small molecule antibiotics with favorable physicochemical properties to CAMPs could be a promising strategy for enhancing peptide performance and overall therapeutic potential. These results have broader applicability to the development of future CAMP-antibiotic conjugates for potential therapeutic applications.

  3. Short cationic lipopeptides as effective antibacterial agents: Design, physicochemical properties and biological evaluation.

    Science.gov (United States)

    Azmi, Fazren; Elliott, Alysha G; Marasini, Nirmal; Ramu, Soumya; Ziora, Zyta; Kavanagh, Angela M; Blaskovich, Mark A T; Cooper, Matthew A; Skwarczynski, Mariusz; Toth, Istvan

    2016-05-15

    The spread of drug-resistant bacteria has imparted a sense of urgency in the search for new antibiotics. In an effort to develop a new generation of antibacterial agents, we have designed de novo charged lipopeptides inspired by natural antimicrobial peptides. These short lipopeptides are composed of cationic lysine and hydrophobic lipoamino acids that replicate the amphiphilic properties of natural antimicrobial peptides. The resultant lipopeptides were found to self-assemble into nanoparticles. Some were effective against a variety of Gram-positive bacteria, including strains resistant to methicillin, daptomycin and/or vancomycin. The lipopeptides were not toxic to human kidney and liver cell lines and were highly resistant to tryptic degradation. Transmission electron microscopy analysis of bacteria cells treated with lipopeptide showed membrane-damage and lysis with extrusion of cytosolic contents. With such properties in mind, these lipopeptides have the potential to be developed as new antibacterial agents against drug-resistant Gram-positive bacteria. PMID:27048775

  4. Molecular cloning, recombinant expression and antibacterial activity analysis of hepcidin from Simensis crocodile (Crocodylus siamensis).

    Science.gov (United States)

    Hao, Juan; Li, Yan-Wei; Xie, Ming-Quan; Li, An-Xing

    2012-01-01

    Hepcidin, a cysteine-rich cationic antibacterial peptide, plays an important role in human defense against pathogen infection. However, its role in reptile immune response and whether it is involved in antibacterial immune have not yet been proven. In order to study the antibacterial activity of Crocodylus siamensis hepcidin (Cshepc), a common reptile which lives in topic region of Southeast Asia, a cDNA sequence of Cshepc was cloned, which included an open reading frame (ORF) of 300 bp encoding a 99 amino acid preprohepcidin. Cshepc has eight cysteines formed four conserved disulfide bridges, similarly to that of human's. Sequence analysis showed that Cshepc mature peptide was more conserved than that of preprohepcidin. Tissue expression analysis indicated that Cshepc transcripts were highly expressed in the liver, muscle and heart of C. siamensis. Recombinant expressed hepcidin could significantly inhibit the growth of the Gram-negative bacteria Escherichia coli and Aeromonas sobria as well as the Gram-positive bacterium Staphylococcus aureus, and Bacillus subtilis in vitro, suggesting that Cshepc, like human hepcidin could play a role in the antibacterial function in hosts innate immune response. PMID:22967859

  5. α-Peptide/ß-Peptoid Chimeras

    DEFF Research Database (Denmark)

    Olsen, Christian Adam; Bonke, Gitte; Vedel, Line;

    2007-01-01

    We describe the synthesis and characterization of the first generation of oligomers consisting of alternating repeats of a-amino acids and chiral N-alkyl-ß-alanine (ß-peptoid) residues. These chimeras are stable toward proteolysis, non-hemolytic, and possess antibacterial activity comparable to...... well-known antimicrobial agents. Moreover, the chimeras exhibit length-dependent, concentration-dependent, solvent-dependent, and ion-strength-dependent ellipticity, indicating the presence of a secondary structure in solution. Thus, a-peptide/ß-peptoid oligomers represent a promising novel...

  6. Antibacterial potency screening of Capparis zeylanica Linn

    Institute of Scientific and Technical Information of China (English)

    Rezaul Haque; Wahedul Islam; Selina Parween

    2016-01-01

    Objective: To conduct the antibacterial potency and minimum inhibitory concentration of extracts (n-hexane, acetone, chloroform and methanol) obtained from the root, leaf and stem of Capparis zeylanica. Methods: The powdered leaf, root and stem samples were Soxhlet extracted sequentially in n-hexane, acetone, chloroform and methanol. Antibacterial potency was evaluated by following the agar diffusion method and amoxicillin disc was used as a control. Results: In vitro antibacterial activity against 12 bacteria was performed with crude extracts. Among them, all the bacteria showed the moderate activity but chloroform and methanolic extracts showed promising antibacterial potency against Staphylococcus aureus, Sarcina lutea, Bacillus megaterium, Bacillus subtilis, Salmonella typhi and Shigella dysenteriae (leaf > root > stem). This activity was evaluated using disc diffusion method with a standard antibiotic, 30 µg/disc of amoxicillin. Conclusions: Strong antibacterial potency of chloroform and methanolic extracts provides new antibacterial compounds.

  7. EVALUATION OF ANTIBACTERIAL STUDIES IN HARSINGAAR

    Directory of Open Access Journals (Sweden)

    Ashish Kant Jain

    2013-07-01

    Full Text Available Plants are rich source of antibacterial agents, which could be control human diseases. Present investigation was an undertaken to evaluate the antibacterial of Harsinger (Nyctanthes arbortristis Linn against five important human pathogenic bacteria i.e. Escherichia coli, Staphylococcus aureus, Proteus vulgaris, Salmonella typhimurium and Pseudomonas aueruginosa by filter paper disc diffusion method. Dried leaves of Nyctanthes arbortristis were collected, washed, shade dried and powdered. Aqueous and methanol extracts were prepared and evaluate their antibacterial activity. The significant result of antibacterial activity was observed in aqueous as well as methanol leaves extract. The strongest antibacterial activity of aqueous leaves extract was observed in Pseudomonas aeruginosa with (22.00 mm zone of inhibition while the methanol leaves extract showed strongest antibacterial activity against Staphylococcus aureus with (28.00 mm maximum zone of inhibition.

  8. Purification Technology and Antimicrobial Activity Analysis of Antimicrobial Peptide from Ovotransferrin

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tie-hua; ZHENG Jian; YE Hai-qing; YU Ya-li; ZHAO Ping; LIU Jing-bo

    2011-01-01

    Antibacterial peptides mixture purified from Ovotransferrin by pepsin digest was used as the raw material.Peptide sections with good antibacterial activity were determined after bacteriostasis experiments, its molecular weight and amino acid composition were analyzed. The results of experiments indicate that with Sephadex G-50 and distilled water as mobile phase, detection wavelength 220 nm, flow rate 1.5 mL/min, sample density 0.2 g/mL, and volume 0.2 mL are the optimal conditions. Bacteriostasis experiments of the fraction of purified peaks were carried out and the result was: peak 1>peak 3>peak 2; the molecular weight of peak 1 was about 3015 by high performance liquid chromatography; active peptide possessed positive charges by amino acid analysis, its cationic characteristics are in accordance with the nature of antimicrobial peptides.

  9. Bacillus anthracis and antibacterial agents.

    Science.gov (United States)

    Bryskier, A

    2002-08-01

    Anthrax is one of the oldest threats to humankind, and remains endemic in animals in many parts of the world. Human cases are infrequent, and some result from biological warfare. This review summarizes the current knowledge on the antibacterial activity of available antibiotics. For potential use in the most severe cases of anthrax, antibacterials need to exhibit potent in vitro activity, intracellular bioactivity, and suitable locations in lymph nodes. In animal models, it has been shown that doxycycline and fluoroquinolones are the most active compounds. There is a lack of data for animal models for macrolides and ketolides, some of them exhibiting good in vitro activity. However, systemic anthrax (inhalation or gastrointestinal) is mainly due to anthrax toxin, and therapy directed against intoxication is needed as basic treatment. PMID:12197869

  10. Washable and antibacterial superhydrophbic fabric

    Science.gov (United States)

    Ou, Junfei; Wang, Zhile; Wang, Fajun; Xue, Mingshan; Li, Wen; Amirfazli, Alidad

    2016-02-01

    Inspired by the high adherence of mussel and the excellent water repellency of lotus leaf, superhydrophobic fabric is fabricated via the sequential deposition of polydopamine, Ag2O, and 1H,1H,2H,2H-perfluorodecanethiol, which shows excellent washability and high anti-bacterial activity due to the strong interfacial interaction and the surface silver species as well as the non-wettability, respectively.

  11. Antibacterial potential of diamond nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Beranová, Jana; Seydlová, Gabriela; Kozak, Halyna; Benada, Oldřich; Fišer, Radovan; Artemenko, Anna; Konopásek, Ivo; Kromka, Alexander

    Ostrava: Tanger, 2014. ISBN 978-80-87294-55-0. [International Conference NANOCON /6./. 05.11.2014-07.11.2014, Brno] R&D Projects: GA ČR GAP108/12/0910 Institutional support: RVO:68378271 ; RVO:61388971 Keywords : diamond nanoparticles * antibacterial properties * Escherichia coli * Bacillus subtilis * DLS * XPS Subject RIV: BM - Solid Matter Physics ; Magnetism; EE - Microbiology, Virology (MBU-M)

  12. Natural antibacterial characteristics of honey

    OpenAIRE

    Pešić-Mikulec Dragana M.; Dugalić-Vrndić Nada; Baltić Milan Ž.

    2004-01-01

    Honey was used as a medicine in traditional medicine of the Ancient Times ever since the age of Hippocrates. Scientifically based investigations of the medicinal qualities of honey date back to the 19th century. There have been constant polemics, about the medicinal characteristics of honey and parameters that cause them, among scientists and apiculture experts. In this paper, we processed much data from literature, which indicate the antibacterial characteristics of honey through the experim...

  13. Indirect conductimetric assay of antibacterial activities.

    Science.gov (United States)

    Sawai, J; Doi, R; Maekawa, Y; Yoshikawa, T; Kojima, H

    2002-11-01

    The applicability of indirect conductimetric assays for evaluation of antibacterial activity was examined. The minimal inhibitory concentration (MIC) obtained by the indirect method was consistent with that by the direct conductimetric assay and the turbidity method. The indirect assay allows use of growth media, which cannot be used in the direct conductimetric assay, making it possible to evaluate the antibacterial activity of insoluble or slightly soluble materials with high turbidity, such as antibacterial ceramic powders. PMID:12407467

  14. Antibacterial phenolics from the mangrove Lumnitzera racemosa

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, L.; Wahidullah, S.; PrabhaDevi

    and antifungal assays were performed using Agar well diffusion method2, 3 and MIC was determined by tube dilution method using Himedia Mueller-Hinton broth4. Streptomycin and nystatin were used as antibacterial and antifungal positive controls while solvent... reported the enhancement of antibacterial activity on mixing of quercetin with quercitrin, morin or rutin. There are conflicting reports on the antibacterial activity of quercetin probably owing to inter and intra-assay variation in susceptibility...

  15. Antibacterial and Antifungal Compounds from Marine Fungi

    OpenAIRE

    Lijian Xu; Wei Meng; Cong Cao; Jian Wang; Wenjun Shan; Qinggui Wang

    2015-01-01

    This paper reviews 116 new compounds with antifungal or antibacterial activities as well as 169 other known antimicrobial compounds, with a specific focus on January 2010 through March 2015. Furthermore, the phylogeny of the fungi producing these antibacterial or antifungal compounds was analyzed. The new methods used to isolate marine fungi that possess antibacterial or antifungal activities as well as the relationship between structure and activity are shown in this review.

  16. Lysozyme-Based Antibacterial Nanomotors.

    Science.gov (United States)

    Kiristi, Melek; Singh, Virendra V; Esteban-Fernández de Ávila, Berta; Uygun, Murat; Soto, Fernando; Aktaş Uygun, Deniz; Wang, Joseph

    2015-09-22

    An effective and rapid bacterial killing nanotechnology strategy based on lysozyme-modified fuel-free nanomotors is demonstrated. The efficient antibacterial property of lysozyme, associated with the cleavage of glycosidic bonds of peptidoglycans present in the bacteria cell wall, has been combined with ultrasound (US)-propelled porous gold nanowire (p-AuNW) motors as biocompatible dynamic bacteria nanofighters. Coupling the antibacterial activity of the enzyme with the rapid movement of these p-AuNWs, along with the corresponding fluid dynamics, promotes enzyme-bacteria interactions and prevents surface aggregation of dead bacteria, resulting in a greatly enhanced bacteria-killing capability. The large active surface area of these nanoporous motors offers a significantly higher enzyme loading capacity compared to nonporous AuNWs, which results in a higher antimicrobial activity against Gram-positive and Gram-negative bacteria. Detailed characterization studies and control experiments provide useful insights into the underlying factors controlling the antibacterial performance of the new dynamic bacteria nanofighters. Rapid and effective killing of the Gram-positive Micrococcus lysodeikticus bacteria (69-84% within 1-5 min) is demonstrated. PMID:26308491

  17. Molecular dynamics investigation of the influence of anionic and zwitterionic interfaces on antimicrobial peptides' structure: implications for peptide toxicity and activity

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Kaznessis, Yiannis N

    2006-01-01

    Molecular dynamics simulations of three related helical antimicrobial peptides have been carried out in zwitterionic diphosphocholine (DPC) micelles and anionic sodiumdodecylsulfate (SDS) micelles. These systems can be considered as model mammalian and bacterial membrane interfaces, respectively...... properties. Based on the simulations, we argue that secondary structure stability often leads to toxic properties. We also propose that G10 and T7 operate by the carpet mechanism of cell lysis. Toxicity of peptides operating by the carpet mechanism can be attenuated by reducing the peptide helical content...... amphipathic peptide structures, which bind weakly to the micelle. Simulations in SDS were carried out to compare the influence of membrane electrostatics on peptide structure. All three peptides bound strongly to SDS, and retained helical form. This corresponds well with their equally potent antibacterial...

  18. Enhanced membrane pore information by multimeric/oligomeric antimicrobial peptides

    OpenAIRE

    Arnusch, C.J.; Branderhorst, H.M.; de Kruijff, B.; Liskamp, R. M. J.; Breukink, E.J.; Pieters, R. J.

    2007-01-01

    The pore-forming antibacterial peptide magainin 2 was made divalent, tetravalent, and octavalent via a copper(I)-mediated 1-3 dipolar cycloaddition reaction (“click” chemistry). This series of poreforming compounds was tested in vitro for their ability to form pores in large unilamillar vesicles (LUVs). A large increase in the pore-forming capability was especially observed with the tetravalent and octavalent magainin compounds in the LUVs consisting of DOPC, and the octavalent magainin compo...

  19. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Hong; Lee, Ik Hwan; Nam, Seung Taek; Hong, Ji; Zhang, Peng [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of); Hwang, Jae Sam [Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon 441-707 (Korea, Republic of); Seok, Heon [Department of Biomedical Engineering, Jungwon University, Goesan, Chungcheongbukdo 367-700 (Korea, Republic of); Choi, Hyemin; Lee, Dong Gun [School of Life Sciences, KNU Creative Bioresearch Group (BK21 Plus Program), College of Natural Sciences, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu 702-701 (Korea, Republic of); Kim, Jae Il [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kim, Ho, E-mail: hokim@daejin.ac.kr [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of)

    2014-06-06

    Highlights: • 11-mer peptide Lumbricusin, a defensin like peptide, is isolated from earthworm. • We here demonstrated that Lumbricusin has neurotropic and neuroprotective effects. • p27 degradation by Lumbricusin mediates effects of Lumbricusin on neuronal cells. - Abstract: We recently isolated a polypeptide from the earthworm Lumbricus terrestris that is structurally similar to defensin, a well-known antibacterial peptide. An 11-mer antibacterial peptide (NH{sub 2}-RNRRWCIDQQA), designated Lumbricusin, was synthesized based on the amino acid sequence of the isolated polypeptide. Since we previously reported that CopA3, a dung beetle peptide, enhanced neuronal cell proliferation, we here examined whether Lumbricusin exerted neurotropic and/or neuroprotective effects. Lumbricusin treatment induced a time-dependent increase (∼51%) in the proliferation of human neuroblastoma SH-SY5Y cells. Lumbricusin also significantly inhibited the apoptosis and decreased viability induced by treatment with 6-hydroxy dopamine, a Parkinson’s disease-mimicking agent. Immunoblot analyses revealed that Lumbricusin treatment increased ubiquitination of p27{sup Kip1} protein, a negative regulator of cell-cycle progression, in SH-SY5Y cells, and markedly promoted its degradation. Notably, adenoviral-mediated over-expression of p27{sup Kip1} significantly blocked the antiapoptotic effect of Lumbricusin in 6-hydroxy dopamine-treated SH-SY5Y cells. These results suggest that promotion of p27{sup Kip1} degradation may be the main mechanism underlying the neuroprotective and neurotropic effects of Lumbricusin.

  20. Potent Antibacterial Antisense Peptide-Peptide Nucleic Acid Conjugates Against Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Ghosal, Anubrata; Nielsen, Peter E

    2012-01-01

    inhibition of P. aeruginosa strains PA01, PA14, and LESB58 at 1-2¿µM concentrations without any indication of bacterial membrane disruption (even at 20¿µM), and resulted in specific reduction of the targeted mRNA levels. One of the four compounds showed clear bactericidal activity while the other...

  1. Antibacterial activity of the venom of Heterometrus xanthopus

    Directory of Open Access Journals (Sweden)

    Umair Ahmed

    2012-01-01

    Full Text Available Heterometrus xanthopus (Scorpion is one of the most venomous and ancient arthropods. Its venom contains anti-microbial peptides like hadrurin, scorpine, Pandinin 1, and Pandinin 2 that are able to effectively kill multidrug-resistant pathogens. The present study was conducted to evaluate the anti-bacterial activity of H. xanthopus venom. Six Gram-positive and Gram-negative bacterial strains were tested against 1/100, 1/10, and 1/1 fractions of distilled water diluted and crude venom. 1/100 and 1/10 dilutions were not successful in any of the six bacterial strains studied while the 1/1 dilution was effective on Bacillus subtilis ATCC 6633, Salmonella typhimurium ATCC 14028, and Pseudomonas aeruginosa ATCC 27853 with highest zone of inhibition were obtained on B. subtilis. Crude venom was effective against Enterococcus faecalis ATCC 14506, B. subtilis, S. typhimurium, and P. aeruginosa. The most effective results were observed on B. subtilis.

  2. Antibacterial activity of the venom of Heterometrus xanthopus.

    Science.gov (United States)

    Ahmed, Umair; Mujaddad-Ur-Rehman, Malik; Khalid, Nauman; Fawad, Sardar Atiq; Fatima, Anees

    2012-01-01

    Heterometrus xanthopus (Scorpion) is one of the most venomous and ancient arthropods. Its venom contains anti-microbial peptides like hadrurin, scorpine, Pandinin 1, and Pandinin 2 that are able to effectively kill multidrug-resistant pathogens. The present study was conducted to evaluate the anti-bacterial activity of H. xanthopus venom. Six Gram-positive and Gram-negative bacterial strains were tested against 1/100, 1/10, and 1/1 fractions of distilled water diluted and crude venom. 1/100 and 1/10 dilutions were not successful in any of the six bacterial strains studied while the 1/1 dilution was effective on Bacillus subtilis ATCC 6633, Salmonella typhimurium ATCC 14028, and Pseudomonas aeruginosa ATCC 27853 with highest zone of inhibition were obtained on B. subtilis. Crude venom was effective against Enterococcus faecalis ATCC 14506, B. subtilis, S. typhimurium, and P. aeruginosa. The most effective results were observed on B. subtilis. PMID:23087515

  3. Antibacterial Activity of Melittin Derived from Honey Bee Venom

    Directory of Open Access Journals (Sweden)

    Mohsen Momenzadeh

    2014-01-01

    Full Text Available Abstract Background and objective: Bacterial peritonitis is one of the nosocomial infections that is due to direct invasion of bacteria to peritoneal membrane. Resistance to antibiotic is of great significance in this disease and could be led to morbidity and mortality of patients. During the past decade, tracing for natural antimicrobial peptide is more considered. Among them, melittin has been extracted from honey bee venom and its antibacterial activity is being examined. The main goal of this study was isolation of melittin from honey bee venom and evaluation of its antibacterial activity against the agents of bacterial peritonitis. Materials and methods: Honey bee venom prepared using electrical stimulation and the quality of venom confirmed by SDS-PAGE. Melittin isolated from the venom using a linear gradient of acetonitrile and C18 column by Reverse Phase-High Performance Chromatography (RP-HPLC. Minimal Inhibition and Bactericidal concentration for melittin examined on Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Results: Honey bee venom composed of twenty distinct fraction in which melittin was the major one. Melittin inhibited Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa growth at 0.39, 6.25, and 12.5 µg and was bactericide at 1.56, 25, and >50 µg respectively. Conclusion: Melittin specifically invade the corresponding bacteria and induce significant inhibitory and bactericidal activity against the main agents of bacterial peritonitis. Complementary studies in animal model would be overcome bacterial drug resistance issue specifically in bacterial peritonitis.

  4. Cinobufagin Modulates Human Innate Immune Responses and Triggers Antibacterial Activity.

    Science.gov (United States)

    Xie, Shanshan; Spelmink, Laura; Codemo, Mario; Subramanian, Karthik; Pütsep, Katrin; Henriques-Normark, Birgitta; Olliver, Marie

    2016-01-01

    The traditional Chinese medicine Chan-Su is widely used for treatment of cancer and cardiovascular diseases, but also as a remedy for infections such as furunculosis, tonsillitis and acute pharyngitis. The clinical use of Chan-Su suggests that it has anti-infective effects, however, the mechanism of action is incompletely understood. In particular, the effect on the human immune system is poorly defined. Here, we describe previously unrecognized immunomodulatory activities of cinobufagin (CBG), a major bioactive component of Chan-Su. Using human monocyte-derived dendritic cells (DCs), we show that LPS-induced maturation and production of a number of cytokines was potently inhibited by CBG, which also had a pro-apoptotic effect, associated with activation of caspase-3. Interestingly, CBG triggered caspase-1 activation and significantly enhanced IL-1β production in LPS-stimulated cells. Finally, we demonstrate that CBG upregulates gene expression of the antimicrobial peptides (AMPs) hBD-2 and hBD-3 in DCs, and induces secretion of HNP1-3 and hCAP-18/LL-37 from neutrophils, potentiating neutrophil antibacterial activity. Taken together, our data indicate that CBG modulates the inflammatory phenotype of DCs in response to LPS, and triggers an antibacterial innate immune response, thus proposing possible mechanisms for the clinical effects of Chan-Su in anti-infective therapy. PMID:27529866

  5. Antibacterial activity of selected Myanmar medicinal plants

    International Nuclear Information System (INIS)

    Thirteen plants which are traditionally used for the treatment of dysentery and diarrhoea in Myanmar were selected and tested for antibacterial activity by using agar disc diffusion technique. Polar and nonpolar solvents were employed for extraction of plants. The minimum inhibitory concentration (MIC) of the extracts with the most significant predominant activity were evaluated by plate dilution method. The plants Eugenia jambolana, Quisqualis indica, Leucaena glauca and Euphorbia splendens var. 1 were found to show significant antibacterial activity. It was also observed that extracts using nonpolar solvents did not show any antibacterial activity and extracts using polar solvents showed antibacterial activity on tested bacteria, indicating that the active chemical compound responsible for the antibacterial action must be a polar soluble compound. (author)

  6. Antibacterial activity on electrospun poly(lactide-co-glycolide) based membranes via Magainin II grafting

    Energy Technology Data Exchange (ETDEWEB)

    Yüksel, Emre; Karakeçili, Ayşe, E-mail: akarakecili@eng.ankara.edu.tr

    2014-12-01

    An antimicrobial peptide (AMP), Magainin II (Mag II) was covalently immobilized on poly(lactide-co-glycolide) (PLGA) and PLGA/gelatin electrospun fibrous membranes. The surface immobilization was characterized by X-ray Photoelectron Spectroscopy (XPS). Scanning Electron Microscopy (SEM) and Atomic Force Microscopy studies showed that the surface morphology of the fibers at micron scale was not affected by the immobilization process. The antibacterial activity of the bound Mag II was tested against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Bacterial adhesion tests, SEM and confocal analyses revealed that the attachment and survival of bacteria were inhibited on Mag II functionalized membranes. AMP immobilization strategy was introduced as a new perspective for the modulation of antibacterial properties on PLGA based materials prepared by electrospinning. - Highlights: • PLGA and PLGA/gelatin fibrous membranes were prepared by electrospinning. • Antimicrobial peptide Mag II was successfully immobilized on PLGA based membranes. • The antibacterial activity was tested against E. coli and S. aureus. • Bacterial adhesion was inhibited on Mag II functionalized membranes.

  7. Antibacterial activity on electrospun poly(lactide-co-glycolide) based membranes via Magainin II grafting

    International Nuclear Information System (INIS)

    An antimicrobial peptide (AMP), Magainin II (Mag II) was covalently immobilized on poly(lactide-co-glycolide) (PLGA) and PLGA/gelatin electrospun fibrous membranes. The surface immobilization was characterized by X-ray Photoelectron Spectroscopy (XPS). Scanning Electron Microscopy (SEM) and Atomic Force Microscopy studies showed that the surface morphology of the fibers at micron scale was not affected by the immobilization process. The antibacterial activity of the bound Mag II was tested against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Bacterial adhesion tests, SEM and confocal analyses revealed that the attachment and survival of bacteria were inhibited on Mag II functionalized membranes. AMP immobilization strategy was introduced as a new perspective for the modulation of antibacterial properties on PLGA based materials prepared by electrospinning. - Highlights: • PLGA and PLGA/gelatin fibrous membranes were prepared by electrospinning. • Antimicrobial peptide Mag II was successfully immobilized on PLGA based membranes. • The antibacterial activity was tested against E. coli and S. aureus. • Bacterial adhesion was inhibited on Mag II functionalized membranes

  8. Sustained Release of Antibacterial Lipopeptides from Biodegradable Polymers against Oral Pathogens.

    Science.gov (United States)

    Eckhard, Lea H; Houri-Haddad, Yael; Sol, Asaf; Zeharia, Rotem; Shai, Yechiel; Beyth, Shaul; Domb, Abraham J; Bachrach, Gilad; Beyth, Nurit

    2016-01-01

    The development of antibacterial drugs to overcome various pathogenic species, which inhabit the oral cavity, faces several challenges, such as salivary flow and enzymatic activity that restrict dosage retention. Owing to their amphipathic nature, antimicrobial peptides (AMPs) serve as the first line of defense of the innate immune system. The ability to synthesize different types of AMPs enables exploitation of their advantages as alternatives to antibiotics. Sustained release of AMPs incorporated in biodegradable polymers can be advantageous in maintaining high levels of the peptides. In this study, four potent ultra-short lipopeptides, conjugated to an aliphatic acid chain (16C) were incorporated in two different biodegradable polymers: poly (lactic acid co castor oil) (PLACO) and ricinoleic acid-based poly (ester-anhydride) (P(SA-RA)) for sustained release. The lipopeptide and polymer formulations were tested for antibacterial activity during one week, by turbidometric measurements of bacterial outgrowth, anti-biofilm activity by live/dead staining, biocompatibility by hemolysis and XTT colorimetric assays, mode of action by fluorescence-activated cell sorting (FACS) and release profile by a fluorometric assay. The results show that an antibacterial and anti-biofilm effect, as well as membrane disruption, can be achieved by the use of a formulation of lipopeptide incorporated in biodegradable polymer. PMID:27606830

  9. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen;

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2, wh...

  10. Natural antimicrobial peptides as promising anti-HIV candidates

    Science.gov (United States)

    Wang, Guangshun

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection remains to be one of the major global health problems. It is thus necessary to identify novel therapeutic molecules to combat HIV-1. Natural antimicrobial peptides (AMPs) have been recognized as promising templates for developing topical microbicides. This review systematically discusses over 80 anti-HIV peptides annotated in the antimicrobial peptide database (http://aps.unmc.edu/AP). Such peptides have been discovered from bacteria, plants, and animals. Examples include gramicidin and bacteriocins from bacteria, cyclotides from plants, melittins and cecropins from insects, piscidins from fish, ascaphins, caerins, dermaseptins, esculentins, and maximins from amphibians, and cathelicidins and defensins from vertebrates. These peptides appear to work by different mechanisms and could block viral entry in multiple ways. As additional advantages, such anti-HIV peptides may possess other desired features such as antibacterial, antiparasital, spermicidal, and anticancer activity. With continued optimization of peptide stability, production, formulation and delivery methods, it is anticipated that some of these compounds may eventually become new anti-HIV drugs. PMID:26834391

  11. Antibacterial Resistance in African Catfish Aquaculture: a Review

    OpenAIRE

    Madubuike U. ANYANWU; Chah, Kennedy F.

    2016-01-01

    Antibacterial resistance (AR) is currently one of the greatest threats to mankind as it constitutes health crisis. Extensive use of antibacterial agents in human and veterinary medicine, and farm crops have resulted in emergence of antibacterial-resistant organisms in different environmental settings including aquaculture. Antibacterial resistance in aquaculture is a serious global concern because antibacterial resistance genes (ARGs) can be transferred easily from aquaculture setting to othe...

  12. Antibacterial action of gramicidin S and tyrocidines in relation to active transport, in vitro transcription, and spore outgrowth.

    OpenAIRE

    Danders, W; Marahiel, M A; Krause, M.; Kosui, N; Kato, T.; Izumiya, N; Kleinkauf, H

    1982-01-01

    The cyclopeptide antibiotic gramicidin S or tyrocidine in concentrations of 2 to 4 mumol/mg of membrane protein inhibited the active transport of [3H]alanine and [3H]uridine in membrane vesicles isolated from Bacillus brevis and Bacillus subtilis. We used one analog of gramicidin S and two of tyrocidine A to study the relationship between peptide structure and antibacterial action as seen in inhibiting active transport and in vitro transcription and in delaying spore outgrowth. The data showe...

  13. Applications of Circular Dichroism for Structural Analysis of Gelatin and Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Yoonkyung Park

    2012-03-01

    Full Text Available Circular dichroism (CD is a useful technique for monitoring changes in the conformation of antimicrobial peptides or gelatin. In this study, interactions between cationic peptides and gelatin were observed without affecting the triple helical content of the gelatin, which was more strongly affected by anionic surfactant. The peptides did not adopt a secondary structure in the presence of aqueous solution or Tween 80, but a peptide secondary structure formed upon the addition of sodium dodecyl sulfate (SDS. The peptides bound to the phosphate group of lipopolysaccharide (LPS and displayed an alpha-helical conformation while (KW4 adopted a folded conformation. Further, the peptides did not specifically interact with the fungal cell wall components of mannan or laminarin. Tryptophan blue shift assay indicated that these peptides interacted with SDS, LPS, and gelatin but not with Tween 80, mannan, or laminarin. The peptides also displayed antibacterial activity against P. aeruginosa without cytotoxicity against HaCaT cells at MIC, except for HPA3NT3-analog peptide. In this study, we used a CD spectroscopic method to demonstrate the feasibility of peptide characterization in numerous environments. The CD method can thus be used as a screening method of gelatin-peptide interactions for use in wound healing applications.

  14. Antibacterial phenylpropanoid glycosides from Paulownia tomentosa Steud.

    Science.gov (United States)

    Kang, K H; Jang, S K; Kim, B K; Park, M K

    1994-12-01

    The butanol extract of Paulownia tomentosa stem showed antibacterial activity against Staphylococcus aureus (SG511, 285 and 503), Streptococcus pyogenes (A308 and A77) and Streptococcus faecium MD8b etc. The most active compound of the extract was identified to be campneoside I, which had a minimal inhibitory concentration (MIC) of 150 micrograms/ml against Streptococcus and Staphylococcus species. From such antibacterial activity, the methoxy group of campneoside I was postulated to be the essential element for the antibacterial activity. PMID:10319161

  15. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined.......To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  16. Optical control of antibacterial activity

    Science.gov (United States)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  17. Antibacterial activity of Parmelia perlata

    Institute of Scientific and Technical Information of China (English)

    Alwar Vidyalakshmi; Kandaswamy Kruthika

    2012-01-01

    Objective: To test efficacy of Parmelia perlata (P. perlata), which is used in traditional medicine for rapid wound healing against test bacteria that cause wound infections. Methods: Different solvents such as methanol, ethyl acetate and acetone were used for extraction of P. perlata. The sensitivity of the test bacteria to solvent extracts of P. perlata was tested by measuring the zone of inhibition on growth media and by determining the minimal inhibitory concentration and minimal bactericidal concentration. Results: Methanol, ethyl acetate and acetone extracts of P.perlata have shown inhibitory activity against Staphylococcus aureus (S.aureus). Conclusions: The results of the present study indicate that P. perlata has potential antibacterial compounds againstS.aureus that causes multitude of skin infections among human beings. Development of drugs from natural compounds can help us to combat antibiotic-resistant bacteria.

  18. Dendritic nanocomposite for delivery of antibacterial agent

    Institute of Scientific and Technical Information of China (English)

    Pureti Madhu Kumar; PSrinivasa Babu; Shaik Rasheed; Ramadoss Karthikeyan

    2013-01-01

    Objective: To develop and explore the use of PEGylated poly (propylene imine) dendritic architecture for the delivery of an anti bacterial bioactive, Trimethoprim. Methods: For this study, PEGylated poly(propylene imine) dendritic architecture was synthesized and loaded with Trimethoprim and targeted to the resistant producing strains of both gram positive and gram negative. The antibacterial activity was carried out by agar well-diffusion method to compare zone of inhibition with standard drug and plain PPI dendrimer. Results: The study showed that the Trimethoprim loaded dendrimer has significant antibacterial activity than the plain PPI dendrimer, but standard drug was not shown zone of inhibition upon both microorganisms butKlebsiella pneumoniae (K. pneumoniae) the pure drug showed activity. Conclusions: In this study antibacterial activity of synthesized system is also relatively safer and holds potential to deliver any other antibacterial agent to the resistant producing strains.

  19. Antibacterial activity of polyphenols of Garcinia indica

    OpenAIRE

    Lakshmi, C.; K Akshaya Kumar; T J Dennis; T. S. S. P. N. S. Sanath Kumar

    2011-01-01

    The aim of present work is to study the antibacterial activity of polyphenols isolated from the ethyl acetate soluble of methanol extract of stem bark of Garcinia indica against Staphylococcus aureus, Salmonella typhi and Escherichia coli by paper disc method. The results showed good antibacterial activity against S. aureus at higher concentrations, moderate at lower concentrations, against S. typhi moderate at higher concentrations but no activity against E. coli even at higher concentration...

  20. Antibacterial Activity of Polyphenols of Garcinia Indica

    OpenAIRE

    Lakshmi, C.; Kumar, K. Akshaya; T J Dennis; Kumar, T. S. S. P. N. S. Sanath

    2011-01-01

    The aim of present work is to study the antibacterial activity of polyphenols isolated from the ethyl acetate soluble of methanol extract of stem bark of Garcinia indica against Staphylococcus aureus, Salmonella typhi and Escherichia coli by paper disc method. The results showed good antibacterial activity against S. aureus at higher concentrations, moderate at lower concentrations, against S. typhi moderate at higher concentrations but no activity against E. coli even at higher concentration...

  1. Antibacterial Effect of Human Amnion Membrane

    OpenAIRE

    Kashani, L. (MD; Okhly, M. (BSc); Ghaemi, EA. (PhD); N. Behnampour; Kashani, E. (MD; Okhly, HO. (BSc); Fendereski, S. (BSc); Bazoori, M. (BSc; Falsafi, L. (MSc)

    2015-01-01

    Background and Objective: Along with antibiotics, the use of biological methods to combat bacteria is notably considered. A natural barrier such as amniotic membrane is one of the ways of dealing with bacterial infections. The aim of this study was to determine the antibacterial effect of human amniotic membrane. Materials and Methods: This descriptive study was performed in Dezyani teaching Hospital of Gorgan University of Medical Sciences, Iran. To evaluate the antibacterial activity agains...

  2. Antibacterial Targets in Fatty Acid Biosynthesis

    OpenAIRE

    Wright, H. Tonie; Reynolds, Kevin A.

    2007-01-01

    The fatty acid biosynthesis pathway is an attractive but still largely unexploited target for development of new anti-bacterial agents. The extended use of the anti-tuberculosis drug isoniazid and the antiseptic triclosan, which are inhibitors of fatty acid biosynthesis, validates this pathway as a target for anti-bacterial development. Differences in subcellular organization of the bacterial and eukaryotic multi-enzyme fatty acid synthase systems offer the prospect of inhibitors with host vs...

  3. Antibacterial activity of mushroom Osmoporus odoratus

    Directory of Open Access Journals (Sweden)

    Sivakumar R

    2006-01-01

    Full Text Available The petroleum ether, chloroform, acetone and water extracts of mushroom Osmoporus odoratus were selected for examine the antibacterial activity against Staphylococcus aureus, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa by disc diffusion method using Muller Hinton agar media. And the extracts were compared with that of standard ampicillin (30 µg and chloramphenicol (30 µg. The water extract alone showed antibacterial activity against the tested organisms and the results were comparable with that of ampicillin rather than chloramphenicol.

  4. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  5. Peptider holder krabben rask

    DEFF Research Database (Denmark)

    Buchmann, Kurt

    Antimikrobielle Peptider har hos mere primitive dyr en vigtig funktion i organismernes immunforsvar Udgivelsesdato: 1. februar......Antimikrobielle Peptider har hos mere primitive dyr en vigtig funktion i organismernes immunforsvar Udgivelsesdato: 1. februar...

  6. Diversity of peptide toxins from stinging ant venoms.

    Science.gov (United States)

    Aili, Samira R; Touchard, Axel; Escoubas, Pierre; Padula, Matthew P; Orivel, Jérôme; Dejean, Alain; Nicholson, Graham M

    2014-12-15

    Ants (Hymenoptera: Formicidae) represent a taxonomically diverse group of arthropods comprising nearly 13,000 extant species. Sixteen ant subfamilies have individuals that possess a stinger and use their venom for purposes such as a defence against predators, competitors and microbial pathogens, for predation, as well as for social communication. They exhibit a range of activities including antimicrobial, haemolytic, cytolytic, paralytic, insecticidal and pain-producing pharmacologies. While ant venoms are known to be rich in alkaloids and hydrocarbons, ant venoms rich in peptides are becoming more common, yet remain understudied. Recent advances in mass spectrometry techniques have begun to reveal the true complexity of ant venom peptide composition. In the few venoms explored thus far, most peptide toxins appear to occur as small polycationic linear toxins, with antibacterial properties and insecticidal activity. Unlike other venomous animals, a number of ant venoms also contain a range of homodimeric and heterodimeric peptides with one or two interchain disulfide bonds possessing pore-forming, allergenic and paralytic actions. However, ant venoms seem to have only a small number of monomeric disulfide-linked peptides. The present review details the structure and pharmacology of known ant venom peptide toxins and their potential as a source of novel bioinsecticides and therapeutic agents. PMID:25448389

  7. PCR-based site-specific mutagenesis of peptide antibiotics FALL-39 and its biologic activities

    Institute of Scientific and Technical Information of China (English)

    Yun-xia YANG; Yun FENG; Bo-yao WANG; Qi WU

    2004-01-01

    AIM: To construct PGEX-1λT-FALL-39 expression vector and its mutant vector, and study the relationship of function and structure. METHODS: A cDNA encoding mature FALL-39 was cloned from SPCA- 1 cell mRNA and the prokaryotic expression vector PGEX- 1λT-FALL-39 was constructed. Two kinds of polymerase chain reaction (PCR) for the site-direction mutagenesis were used to construct FALL-39 mutant expression vector, FALL-39-Lys-32 and FALL-39-Lys-24. Minimal effective concentration, minimal inhibitory concentration, and minimal bactericidal concentration were used to assay the antibacterial activities of these peptides. Effects of different solution on the antibacterial activity of FALL-39 and FALL-39-Lys-32 were observed by CFU determination. The hemolytic effects of these peptides were also examined on human red blood cells. RESULTS: Two site-specific mutants FALL-39-Lys-32 and FALL-39-Lys24 were obtained by PCR-induced mutagenesis. In comparison with two-step PCR which required two pairs of primers, one step PCR which required one pair of primers is a simple and efficient method for the PCR based site-specific mutagenesis. Using the prokaryotic expression system, the E coli-based products of recombinant FALL39 and its mutant peptides were also obtained. The antibacterial assay showed that FALL-39-Lys-32 and FALL-39-Lys24 were more potential in the antibacterial activity against E coli ML35p and Pseltdomonas aeruginosa ATCC27853 than that of FALL-39, and no increase in hemolysis was observed at the antibacterial concentrations. The antibacterial activity of FALL-39-Lys-32 against E coli was more potent than that of FALL-39 in NaCl-containing LB medium, while its activity was almost the same as FALL-39 in SO2-4 containing Medium E. CONCLUSION: PCR-based mutagensis is a useful model system for studying the structure and function relationship of antimicrobial peptides. Keeping α-helical conformation of FALL-39 and increasing net positive charge can increase the

  8. A molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide

    Science.gov (United States)

    Rodina, N. P.; Yudenko, A. N.; Terterov, I. N.; Eliseev, I. E.

    2013-08-01

    Antimicrobial peptides are a class of small, usually positively charged amphiphilic peptides that are used by the innate immune system to combat bacterial infection in multicellular eukaryotes. Antimicrobial peptides are known for their broad-spectrum antimicrobial activity and thus can be used as a basis for a development of new antibiotics against multidrug-resistant bacteria. The most challengeous task on the way to a therapeutic use of antimicrobial peptides is a rational design of new peptides with enhanced activity and reduced toxicity. Here we report a molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide D51. This peptide was earlier designed by Loose et al. using a linguistic model of natural antimicrobial peptides. Molecular dynamics simulation of the peptide folding in explicit solvent shows fast formation of two antiparallel beta strands connected by a beta-turn that is confirmed by circular dichroism measurements. Obtained from simulation amphipatic conformation of the peptide is analysed and possible mechanism of it's interaction with bacterial membranes together with ways to enhance it's antibacterial activity are suggested.

  9. Characterisation and cytomodulatory properties of peptides from Mozzarella di Bufala Campana cheese whey.

    Science.gov (United States)

    De Simone, Carmela; Picariello, Gianluca; Mamone, Gianfranco; Stiuso, Paola; Dicitore, Alessandra; Vanacore, Daniela; Chianese, Lina; Addeo, Francesco; Ferranti, Pasquale

    2009-03-01

    Bioactive peptides are present in a latent state, encrypted within the amino acid sequence of milk proteins, requiring enzymatic proteolysis for their release. They can be produced by gastrointestinal digestion or food processing, thus they can be present in fermented milks, cheese and also in the by-products of dairy industry such as waste whey. The spectrum of biological activity covered by milk-derived peptides is extremely wide, including antibacterial, immunostimulating, antihypertensive, antithrombotic and opioid actions. However, the characterisation of milk-derived peptides with classical analytical methodologies is severely challenged by the complexity of the milk protein fraction and by the wide dynamic range of relative peptide abundance in both dairy products and by-products. Here we report the characterisation of the peptide fraction released in the whey during the different production stages of Mozzarella di Bufala Campana cheese. The peptide extracts were separated by RP HPLC and analysed by MS in order to identify the peptides produced and to trace the pathway of formation of potential bioactive peptides. The antioxidant properties and the modulatory effect on the cell cycle exerted by the peptide extracts were also studied in CaCo2 cell line. We found that a significant antiproliferative effect on CaCo2 was exerted by Mozzarella di Bufala waste whey peptides. PMID:19035578

  10. A molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide

    International Nuclear Information System (INIS)

    Antimicrobial peptides are a class of small, usually positively charged amphiphilic peptides that are used by the innate immune system to combat bacterial infection in multicellular eukaryotes. Antimicrobial peptides are known for their broad-spectrum antimicrobial activity and thus can be used as a basis for a development of new antibiotics against multidrug-resistant bacteria. The most challengeous task on the way to a therapeutic use of antimicrobial peptides is a rational design of new peptides with enhanced activity and reduced toxicity. Here we report a molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide D51. This peptide was earlier designed by Loose et al. using a linguistic model of natural antimicrobial peptides. Molecular dynamics simulation of the peptide folding in explicit solvent shows fast formation of two antiparallel beta strands connected by a beta-turn that is confirmed by circular dichroism measurements. Obtained from simulation amphipatic conformation of the peptide is analysed and possible mechanism of it's interaction with bacterial membranes together with ways to enhance it's antibacterial activity are suggested

  11. Human Lactoferrin and Peptides Derived from a Surface-Exposed Helical Region Reduce Experimental Escherichia coli Urinary Tract Infection in Mice

    OpenAIRE

    Håversen, Liliana A.; Engberg, Inga; Baltzer, Lars; Dolphin, Gunnar; Hanson, Lars Å.; Mattsby-Baltzer, Inger

    2000-01-01

    Lactoferrin (LF) is a multifunctional immunoregulatory protein that has been associated with host defense at mucosal surfaces through its antibacterial properties. The antibacterial and anti-inflammatory properties of LF were further explored with an animal model of experimental urinary tract infection. Bovine LF (bLF), human LF (hLF), and synthetic peptide sequences based on the antibacterial region of hLF (amino acid residues 16 to 40 [HLD1] and 18 to 40 [HLD2]) were given orally to female ...

  12. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  13. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  14. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  15. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  16. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  17. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  18. Multiaction antibacterial nanofibrous membranes fabricated by electrospinning: an excellent system for antibacterial applications

    International Nuclear Information System (INIS)

    In this paper, novel multiaction antibacterial nanofibrous membranes containing apatite, Ag, AgBr and TiO2 as four active components were fabricated by an electrospinning technique. In this antibacterial membrane, each component serves a different function: the hydroxyapatite acts as the adsorption material for capturing bacteria, the Ag nanoparticles act as the release-active antibacterial agent, the AgBr nanoparticles act as the visible sensitive and release-active antibacterial agent, and the TiO2 acts as the UV sensitive antibacterial material and substrate for other functional components. Using E. coli as the typical testing organism, such multicomponent membranes exhibit excellent antimicrobial activity under UV light, visible light or in a dark environment. The significant antibacterial properties may be due to the synergetic action of the four major functional components, and the unique porous structure and high surface area of the nanofibrous membrane. It takes only 20 min for the bacteria to be completely (99.9%) destroyed under visible light. Even in a dark environment, about 50 min is enough to kill all of the bacteria. Compared to the four component system in powder form reported previously, the addition of the electrospun membrane could significantly improve the antibacterial inactivation of E. coli under the same evaluation conditions. Besides the superior antimicrobial capability, the permanence of the antibacterial activity of the prepared free-standing membranes was also demonstrated in repeated applications.

  19. Membrane interaction and secondary structure of de novo designed arginine-and tryptophan peptides with dual function

    KAUST Repository

    Rydberg, Hanna A.

    2012-10-01

    Cell-penetrating peptides and antimicrobial peptides are two classes of positively charged membrane active peptides with several properties in common. The challenge is to combine knowledge about the membrane interaction mechanisms and structural properties of the two classes to design peptides with membrane-specific actions, useful either as transporters of cargo or as antibacterial substances. Membrane active peptides are commonly rich in arginine and tryptophan. We have previously designed a series of arg/trp peptides and investigated how the position and number of tryptophans affect cellular uptake. Here we explore the antimicrobial properties and the interaction with lipid model membranes of these peptides, using minimal inhibitory concentrations assay (MIC), circular dichroism (CD) and linear dichroism (LD). The results show that the arg/trp peptides inhibit the growth of the two gram positive strains Staphylococcus aureus and Staphylococcus pyogenes, with some individual variations depending on the position of the tryptophans. No inhibition of the gram negative strains Proteus mirabilis or Pseudomonas aeruginosa was noticed. CD indicated that when bound to lipid vesicles one of the peptides forms an α-helical like structure, whereas the other five exhibited rather random coiled structures. LD indicated that all six peptides were somehow aligned parallel with the membrane surface. Our results do not reveal any obvious connection between membrane interaction and antimicrobial effect for the studied peptides. By contrast cell-penetrating properties can be coupled to both the secondary structure and the degree of order of the peptides. © 2012 Elsevier Inc.

  20. Interaction of antimicrobial peptide Plantaricin149a and four analogs with lipid bilayers and bacterial membranes

    Directory of Open Access Journals (Sweden)

    José Luiz de Souza Lopes

    2013-12-01

    Full Text Available The amidated analog of Plantaricin149, an antimicrobial peptide from Lactobacillus plantarum NRIC 149, directly interacts with negatively charged liposomes and bacterial membranes, leading to their lysis. In this study, four Pln149-analogs were synthesized with different hydrophobic groups at their N-terminus with the goal of evaluating the effect of the modifications at this region in the peptide's antimicrobial properties. The interaction of these peptides with membrane models, surface activity, their hemolytic effect on red blood cells, and antibacterial activity against microorganisms were evaluated. The analogs presented similar action of Plantaricin149a; three of them with no hemolytic effect (< 5% until 0.5 mM, in addition to the induction of a helical element when binding to negative liposomes. The N-terminus difference between the analogs and Plantaricin149a retained the antibacterial effect on S. aureus and P. aeruginosa for all peptides (MIC50 of 19 µM and 155 µM to Plantaricin149a, respectively but resulted in a different mechanism of action against the microorganisms, that was bactericidal for Plantaricin149a and bacteriostatic for the analogs. This difference was confirmed by a reduction in leakage action for the analogs. The lytic activity of Plantaricin149a is suggested to be a result of the peptide-lipid interactions from the amphipathic helix and the hydrophobic residues at the N-terminus of the antimicrobial peptide.

  1. Prulifloxacin: a new antibacterial fluoroquinolone.

    Science.gov (United States)

    Prats, Guillem; Rossi, Vilma; Salvatori, Enrica; Mirelis, Beatriz

    2006-02-01

    In the last few years, the antimicrobial activity, efficacy and relative safety of fluoroquinolones have made them attractive for the treatment of community-acquired and nosocomial infections. Prulifloxacin is a new fluoroquinolone antibacterial agent with a broad spectrum of activity against Gram-positive and -negative bacteria. Prulifloxacin is available for oral use, and after absorption is metabolized in to the active form, ulifloxacin. It exhibits good penetration in target tissues and a long elimination half-life, allowing once-daily administration. A number of randomized, controlled clinical trials carried out in Europe demonstrated the efficacy of prulifloxacin in the treatment of urinary tract (acute uncomplicated and complicated) and respiratory tract infections (acute exacerbations of chronic bronchitis), in comparison with the most widely used drugs such as ciprofloxacin, co-amoxiclav and pefloxacin. Prulifloxacin was generally well tolerated. The most frequent adverse reactions observed in clinical trials were gastric pain, diarrhea, nausea and skin rash. This review focuses on the characteristics of prulifloxacin, summarizing the relevant preclinical and clinical data. PMID:16441207

  2. Tunable, antibacterial activity of silicone polyether surfactants.

    Science.gov (United States)

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity. PMID:26057244

  3. Antibacterial Effect of Human Amnion Membrane

    Directory of Open Access Journals (Sweden)

    Kashani, L. (MD

    2015-01-01

    Full Text Available Background and Objective: Along with antibiotics, the use of biological methods to combat bacteria is notably considered. A natural barrier such as amniotic membrane is one of the ways of dealing with bacterial infections. The aim of this study was to determine the antibacterial effect of human amniotic membrane. Materials and Methods: This descriptive study was performed in Dezyani teaching Hospital of Gorgan University of Medical Sciences, Iran. To evaluate the antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli bacteria, 20 amniotic membranes were obtained from postpartum mothers and examined by repeated dilution, diffusion and extraction techniques. Data were collected by observation method and described by mean and standard deviation. Results: The antibacterial activity was found in 15% of the samples against Staphylococcus Aureus and Pseudomonas aeruginosa, while no antibacterial activity was found against E. coli. Given the 15% positive responses, "Diffusion" and "repeated dilution" techniques were more effective in investigating the antibacterial effect of amniotic membrane. Conclusion: The results show the probability of antimicrobial effect of amniotic membrane tissue and it seems that this property can be affected by many factors.

  4. Antibacterial resistance: Current problems and possible solutions

    Directory of Open Access Journals (Sweden)

    Sharma Rashmi

    2005-03-01

    Full Text Available Antimicrobial resistance is a natural biological phenomenon of response of microbes to the selective pressure of an antimicrobial drug. Resistance may be inherent, which explains the phenomenon of opportunistic infection or acquired. Concern about the resistance increased in the late 1990′s and since then, many governmental and agency reports have been published regarding the agricultural use of antibacterials, advising less use of antibacterials, appropriate choice of antibacterials and regimens, prevention of cross-infection and development of new antibacterials. The emergence of multidrug resistant strains of Gram-negative bacteria (Pseudomonas, Klebsiella, Enterobacter, Acinetobacter, Salmonella species and Gram-positve organisms (Staphylococcus, Enterococcus, Streptococcus species is the more worrisome in the present therapeutic scenario. Multidrug - resistant tuberculosis is another serious public health problems. Resistance to some agents can be overcome by modifying the dosage regimens (e.g., using high-dose therapy or inhibiting the resistance mechanism (e.g., beta-lactamase inhibitors, whereas other mechanisms of resistance can only be overcome by using an agent from a different class. It is urgently required to ban the sale of antibiotics without prescription, to use antibiotics more judiciously in hospitals by intensive teaching of the principles of the use of antibiotics and to establish better control measures for nosocomial infections. Thus, it is highly recommended that practicing physicians should become aware of the magnitude of existing problem of antibacterial resistance and help in fighting this deadly threat by rational prescribing.

  5. [Plant signaling peptides. Cysteine-rich peptides].

    Science.gov (United States)

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation. PMID:26281357

  6. MgO nanoparticles as antibacterial agent: preparation and activity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhen-Xing, E-mail: tangzhenxing@126.com [Department of Food Science, Anqing, Vocational and Technical College, Anqing, Anhui (China); Lv, Bin-Feng [Date Palm Research Center, King Faisal University, (Saudi Arabia)

    2014-07-15

    Bacterial pollution is a great risk for human health. Nanotechnology offers a way to develop new inorganic antibacterial agents. Nano-inorganic metal oxide has a potential to reduce bacterial contamination. MgO is an important inorganic oxide and has been widely used in many fields. Many studies have shown that MgO nanoparticles have good antibacterial activity. Therefore, in this paper, the main synthesis methods, antibacterial activity and antibacterial mechanisms of MgO nanoparticles are reviewed. (author)

  7. MgO nanoparticles as antibacterial agent: preparation and activity

    Directory of Open Access Journals (Sweden)

    Zhen-Xing Tang

    2014-09-01

    Full Text Available Bacterial pollution is a great risk for human health. Nanotechnology offers a way to develop new inorganic antibacterial agents. Nano-inorganic metal oxide has a potential to reduce bacterial contamination. MgO is an important inorganic oxide and has been widely used in many fields. Many studies have shown that MgO nanoparticles have good antibacterial activity. Therefore, in this paper, the main synthesis methods, antibacterial activity and antibacterial mechanisms of MgO nanoparticles are reviewed.

  8. Effective antibacterials: at what cost? The economics of antibacterial resistance and its control.

    Science.gov (United States)

    White, Anthony R

    2011-09-01

    The original and successful business model of return on investment being sufficiently attractive to the pharmaceutical industry to encourage development of new antibacterial molecules and related diagnostics has been compromised by increasing development costs and regulatory hurdles, resulting in a decreasing chance of success and financial return. The supply of new effective agents is diminishing along with the number of companies engaged in antibacterial research and development. The BSAC Working Party on The Urgent Need:Regenerating Antibacterial Drug Discovery and Development identified the need to establish, communicate and apply the true health and economic value of antibacterials, along with the adoption of meaningful incentives, as part of the future model for antibacterial development. Robust data are needed on the cost of resistance and ineffective treatment of bacterial infection, along with national and local holistic analyses of the cost-benefit of antibacterials. An understanding of the true health and economic value of antibacterials and the cost of resistance across healthcare systems needs to be generated, communicated and used in order to set a pricing and reimbursement structure that is commensurate with value. The development and economic model of antibacterial use needs to be rebuilt based on this value through dialogue with the various stakeholders, including the pharmaceutical industry, and alternative incentives from 'push' to 'pull' and funding models, such as public/private partnerships, agreed. A research and development model that succeeds in developing and delivering new antibacterial agents that address the health needs of society from start to finish, 'from cradle to grave', must be established. PMID:21700625

  9. Antibacterial Activity of Punica granatum Linn.

    Directory of Open Access Journals (Sweden)

    Kenan Tunç

    2013-08-01

    Full Text Available In this study, it was investigated that the extracts (ethanol, aceton, methanol, ethyl acetat obtained from fruit peels of the plant to whether has antibacterial effect against Streptococcus mitis CNCTC 4/77, Streptococcus salivarius CNCTC 64/59, Streptococcus mutans CNCTC 8/77, Staphylococcus epidermidis ATCC 12228, Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922, Salmonella abony NCTC 6017, Salmonella typhimurium ATCC 14028, Enterococcus faecalis ATCC 29212, Bacillus subtilis ATCC 6633 bacteria strains in vitro. The antibacterial activity of extracts was evaluated according to disc diffusion method. It has been determined that pomegranate peel's extract had the highest inhibition zone diameters ( 18-30 mm against S. epidermidis and S. aureus bacteria strains. The antibacterial activity of plant against Streptococcus mitis is determined in this study for the first time.

  10. Enhanced membrane pore formation by multimeric/oligomeric antimicrobial peptides.

    Science.gov (United States)

    Arnusch, Christopher J; Branderhorst, Hilbert; de Kruijff, Ben; Liskamp, Rob M J; Breukink, Eefjan; Pieters, Roland J

    2007-11-20

    The pore-forming antibacterial peptide magainin 2 was made divalent, tetravalent, and octavalent via a copper(I)-mediated 1-3 dipolar cycloaddition reaction ("click" chemistry). This series of pore-forming compounds was tested in vitro for their ability to form pores in large unilamillar vesicles (LUVs). A large increase in the pore-forming capability was especially observed with the tetravalent and octavalent magainin compounds in the LUVs consisting of DOPC, and the octavalent magainin compound showed a marked increase with the DOPC/DOPG LUVs. Activity was observed in the low nanomolar range for these compounds. PMID:17944489

  11. Plant signalling peptides

    OpenAIRE

    Wiśniewska, Justyna; Trejgell, Alina; Tretyn, Andrzej

    2003-01-01

    Biochemical and genetic studies have identified peptides that play crucial roles in plant growth and development, including defence mechanisms in response to wounding by pests, the control of cell division and expansion, and pollen self-incompatibility. The first two signalling peptides to be described in plants were tomato systemin and phytosulfokine (PSK). There is also biochemical evidence that natriuretic peptide-like molecules, immunologically-relatedt o those found ...

  12. Nisin adsorption on hydrophilic and hydrophobic surfaces: evidence of its interactions and antibacterial activity.

    Science.gov (United States)

    Karam, Layal; Jama, Charafeddine; Nuns, Nicolas; Mamede, Anne-Sophie; Dhulster, Pascal; Chihib, Nour-Eddine

    2013-06-01

    Study of peptides adsorption on surfaces remains a current challenge in literature. A complementary approach, combining X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to investigate the antimicrobial peptide nisin adsorption on hydrophilic and hydrophobic surfaces. The native low density polyethylene was used as hydrophobic support and it was grafted with acrylic acid to render it hydrophilic. XPS permitted to confirm nisin adsorption and to determine its amount on the surfaces. ToF-SIMS permitted to identify the adsorbed bacteriocin type and to observe its distribution and orientation behavior on both types of surfaces. Nisin was more oriented by its hydrophobic side to the hydrophobic substrate and by its hydrophilic side to the outer layers of the adsorbed peptide, in contrast to what was observed on the hydrophilic substrate. A correlation was found between XPS and ToF-SIMS results, the types of interactions on both surfaces and the observed antibacterial activity. Such interfacial studies are crucial for better understanding the peptides interactions and adsorption on surfaces and must be considered when setting up antimicrobial surfaces. PMID:23625525

  13. Polycyclic peptide therapeutics.

    Science.gov (United States)

    Baeriswyl, Vanessa; Heinis, Christian

    2013-03-01

    Owing to their excellent binding properties, high stability, and low off-target toxicity, polycyclic peptides are an attractive molecule format for the development of therapeutics. Currently, only a handful of polycyclic peptides are used in the clinic; examples include the antibiotic vancomycin, the anticancer drugs actinomycin D and romidepsin, and the analgesic agent ziconotide. All clinically used polycyclic peptide drugs are derived from natural sources, such as soil bacteria in the case of vancomycin, actinomycin D and romidepsin, or the venom of a fish-hunting coil snail in the case of ziconotide. Unfortunately, nature provides peptide macrocyclic ligands for only a small fraction of therapeutic targets. For the generation of ligands of targets of choice, researchers have inserted artificial binding sites into natural polycyclic peptide scaffolds, such as cystine knot proteins, using rational design or directed evolution approaches. More recently, large combinatorial libraries of genetically encoded bicyclic peptides have been generated de novo and screened by phage display. In this Minireview, the properties of existing polycyclic peptide drugs are discussed and related to their interesting molecular architectures. Furthermore, technologies that allow the development of unnatural polycyclic peptide ligands are discussed. Recent application of these technologies has generated promising results, suggesting that polycyclic peptide therapeutics could potentially be developed for a broad range of diseases. PMID:23355488

  14. Antimicrobial properties of analgesic kyotorphin peptides unraveled through atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Marta M.B.; Franquelim, Henri G.; Torcato, Ines M. [Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa (Portugal); Ramu, Vasanthakumar G.; Heras, Montserrat; Bardaji, Eduard R. [Laboratori d' Innovacio en Processos i Productes de Sintesi Organica (LIPPSO), Departament de Quimica, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain); Castanho, Miguel A.R.B., E-mail: macastanho@fm.ul.pt [Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa (Portugal)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer New kyotorphin derivatives have antimicrobial properties against S. aureus. Black-Right-Pointing-Pointer Atomic force microscopy show membrane disturbing effects of KTP-NH{sub 2} and IbKTP-NH{sub 2}. Black-Right-Pointing-Pointer None of the KTP derivatives are hemolytic. Black-Right-Pointing-Pointer The minimal peptidic sequence with antimicrobial activity is Tyr-Arg, if amidated. -- Abstract: Antimicrobial peptides (AMPs) are promising candidates as alternatives to conventional antibiotics for the treatment of resistant pathogens. In the last decades, new AMPs have been found from the cleavage of intact proteins with no antibacterial activity themselves. Bovine hemoglobin hydrolysis, for instance, results in AMPs and the minimal antimicrobial peptide sequence was defined as Tyr-Arg plus a positively charged amino acid residue. The Tyr-Arg dipeptide alone, known as kyotorphin (KTP), is an endogenous analgesic neuropeptide but has no antimicrobial activity itself. In previous studies new KTP derivatives combining C-terminal amidation and Ibuprofen (Ib) - KTP-NH{sub 2}, IbKTP, IbKTP-NH{sub 2} - were designed in order to improve KTP brain targeting. Those modifications succeeded in enhancing peptide-cell membrane affinity towards fluid anionic lipids and higher analgesic activity after systemic injection resulted therefrom. Here, we investigated if this affinity for anionic lipid membranes also translates into antimicrobial activity because bacteria have anionic membranes. Atomic force microscopy revealed that KTP derivatives perturbed Staphylococcus aureus membrane structure by inducing membrane blebbing, disruption and lysis. In addition, these peptides bind to red blood cells but are non-hemolytic. From the KTP derivatives tested, amidated KTP proves to be the most active antibacterial agent. The combination of analgesia and antibacterial activities with absence of toxicity is highly appealing from the clinical point of view

  15. Antimicrobial properties of analgesic kyotorphin peptides unraveled through atomic force microscopy

    International Nuclear Information System (INIS)

    Highlights: ► New kyotorphin derivatives have antimicrobial properties against S. aureus. ► Atomic force microscopy show membrane disturbing effects of KTP–NH2 and IbKTP–NH2. ► None of the KTP derivatives are hemolytic. ► The minimal peptidic sequence with antimicrobial activity is Tyr-Arg, if amidated. -- Abstract: Antimicrobial peptides (AMPs) are promising candidates as alternatives to conventional antibiotics for the treatment of resistant pathogens. In the last decades, new AMPs have been found from the cleavage of intact proteins with no antibacterial activity themselves. Bovine hemoglobin hydrolysis, for instance, results in AMPs and the minimal antimicrobial peptide sequence was defined as Tyr-Arg plus a positively charged amino acid residue. The Tyr-Arg dipeptide alone, known as kyotorphin (KTP), is an endogenous analgesic neuropeptide but has no antimicrobial activity itself. In previous studies new KTP derivatives combining C-terminal amidation and Ibuprofen (Ib) – KTP–NH2, IbKTP, IbKTP–NH2 – were designed in order to improve KTP brain targeting. Those modifications succeeded in enhancing peptide-cell membrane affinity towards fluid anionic lipids and higher analgesic activity after systemic injection resulted therefrom. Here, we investigated if this affinity for anionic lipid membranes also translates into antimicrobial activity because bacteria have anionic membranes. Atomic force microscopy revealed that KTP derivatives perturbed Staphylococcus aureus membrane structure by inducing membrane blebbing, disruption and lysis. In addition, these peptides bind to red blood cells but are non-hemolytic. From the KTP derivatives tested, amidated KTP proves to be the most active antibacterial agent. The combination of analgesia and antibacterial activities with absence of toxicity is highly appealing from the clinical point of view and broadens the therapeutic potential and application of kyotorphin peptides.

  16. Antimicrobial peptide melittin against Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice.

    Science.gov (United States)

    Shi, Wei; Li, Caiyun; Li, Man; Zong, Xicui; Han, Dongju; Chen, Yuqing

    2016-06-01

    Xanthomonas oryzae pv. oryzae is a destructive bacterial disease of rice, and the development of an environmentally safe bactericide is urgently needed. Antimicrobial peptides, as antibacterial sources, may play important roles in bactericide development. In the present study, we found that the antimicrobial peptide melittin had the desired antibacterial activity against X. oryzae pv. oryzae. The antibacterial mechanism was investigated by examining its effects on cell membranes, energy metabolism, and nucleic acid, and protein synthesis. The antibacterial effects arose from its ability to interact with the bacterial cell wall and disrupt the cytoplasmic membrane by making holes and channels, resulting in the leakage of the cytoplasmic content. Additionally, melittin is able to permeabilize bacterial membranes and reach the cytoplasm, indicating that there are multiple mechanisms of antimicrobial action. DNA/RNA binding assay suggests that melittin may inhibit macromolecular biosynthesis by binding intracellular targets, such as DNA or RNA, and that those two modes eventually lead to bacterial cell death. Melittin can inhibit X. oryzae pv. oryzae from spreading, alleviating the disease symptoms, which indicated that melittin may have potential applications in plant protection. PMID:26948237

  17. Antimicrobial peptide from eusocial bee Halictus sexcinctus interacting with model membranes

    Czech Academy of Sciences Publication Activity Database

    Pazderková, Markéta; Kočišová, E.; Pazderka, T.; Souček, P.; Maloň, Petr; Kopecký, V. Jr.; Bednárová, Lucie

    Cluj-Napoca: -, Publishing House Napoca Star - (Nagy-Póra, K.; Chis, V.; Astilean, S.; Cozar, O.). s. 220-220 ISBN 978-973-647-912-0. [EUCMOS 2012. European congress on molecular spectroscopy /31./. 26.08.2012-31.08.2012, Cluj-Napoca] R&D Projects: GA ČR GAP208/10/0376 Institutional research plan: CEZ:AV0Z40550506 Keywords : circular dichroism * FTIR * antibacterial peptides * halictine * liposome Subject RIV: CF - Physical ; Theoretical Chemistry

  18. Effects of 'casoparan', a peptide isolated from casein hydrolysates with mastoparan-like properties

    OpenAIRE

    Silva, Maria C. C. de Sousa e; Juliano, Maria A; Luiz Juliano; Valéria Cavallaro; Ivo Lebrun

    1992-01-01

    Casein, a protein found in milk of several species, is divided into different chains from 19 to 25 kDa. Casein is also considered as a source of amino acids and generating peptides with biological activities such as opiate, immunostimulating, antibacterial, peptidase inhibitors, among others. In this work, Sephadex G-10 chromatography followed by high-performance liquid chromatography isolation purified NZCase TT, an industrial culture media for tetanus toxin production. In the first step, fo...

  19. Insulin C-peptide test

    Science.gov (United States)

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin produced by the body and insulin injected ...

  20. Characterization of antibacterial silver coated yarns.

    Science.gov (United States)

    Pollini, M; Russo, M; Licciulli, A; Sannino, A; Maffezzoli, A

    2009-11-01

    Surface treatments of textile fibers and fabrics significantly increase their performances for specific biomedical applications. Nowadays, silver is the most used antibacterial agent with a number of advantages. Among them, it is worth to note the high degree of biocompatibility, an excellent resistance to sterilization conditions, antibacterial properties with respect to different bacteria associated with a long-term of antibacterial efficiency. However, there are only a few antibacterial fibres available, mainly synthetic with high production cost and limited effectiveness. Cotton yarns with antimicrobial properties are most suitable for wound healing applications and other medical treatments thanks to their excellent moisture absorbance while synthetic based fibres are most suitable for industrial applications such as automotive tapestry and air filters. The silver-coated fibers were developed applying an innovative and low cost silver deposition technique for natural and synthetic fibers or yarns. The structure and morphology of the silver nanoclusters on the fibers was observed by scanning electron microscopy (SEM), atomic force microscopy analysis (AFM) and XRD analysis, and quantitatively confirmed by thermogravimetric analysis (TGA) measurements. Good silver coating stability has been confirmed performing several industrial washing. Antimicrobial tests with Escherichia coli were performed. PMID:19526328

  1. Radiation modified cotton fibrils for antibacterial applications

    International Nuclear Information System (INIS)

    Full text: Quaternary ammonium groups, well known antibacterial agents, have been incorporated covalently onto cotton fabric via radiation induced grafting of (2-(Acryloyloxy)ethyl)trimethylammonium chloride (AETC) on to cotton fabric by mutual irradiation grafting technique using 60Co-gamma radiation source in presence of 2- Hydroxyethylmethacrylate (HEMA). Various experimental parameters have been optimized for development of antibacterial grafted cotton fabric. Grafting extent increased with dose but was an inverse function of dose rate. Grafting yield increased linearly with HEMA concentration but was not affected by AETC concentration in feed. N2 ambient was most effective during grafting. The grafted sample show significantly higher water uptake and water retention properties. Antibacterial activity of polymer, co-polymer and grafted samples were tested against four bacteria S. aureus, E.coli, B.cereus and P.fluorescens. The minimum bactericidal concentration (MBC) of poly(AETC) was in range 0.0025-0.2% depending on the bacteria. MBC followed the order S.aureus ∼ B.cereus< E.coli< P.fluorescens. The co-polymer of AETC and HEMA was found to be effective against S.aureus and B.cereus only. Antibacterial assay showed variations in activity between pure polymer and grafted cotton. The activity of grafted samples was less in comparison pure polymer, which may be due to its bound state on cotton

  2. Antibacterial properties of polyaniline-silver films

    Czech Academy of Sciences Publication Activity Database

    Kuceková, Z.; Kašpárková, V.; Humpolíček, P.; Ševčíková, P.; Stejskal, Jaroslav

    2013-01-01

    Roč. 67, č. 8 (2013), s. 1103-1108. ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : polyaniline * silver * antibacterial properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.193, year: 2013

  3. Synthetic and Antibacterial Studies of Quinolinylchalcones

    Science.gov (United States)

    Azad, Muhammad; Munawar, Munawar Ali; Athar, Makshoof

    A series of quinolinyl chalcones have been prepared by the condensation of N-substituted-3-acetyl-4-hydroxyquinolin-2(1H)-ones with different aromatic aldehydes using conventional heating and ultrasound-assisted methods. The percentage yields are considerably increased in ultrasound-assisted method. The prepared chalcone derivatives were assayed for antibacterial and cytotoxicity and were found to be active.

  4. DRUG-INTERACTIONS WITH QUINOLONE ANTIBACTERIALS

    NARCIS (Netherlands)

    BROUWERS, JRBJ

    1992-01-01

    The quinolone antibacterials are prone to many interactions with other drugs. Quinolone absorption is markedly reduced with antacids containing aluminium, magnesium and/or calcium and therapeutic failure may result. Other metallic ion-containing drugs, such as sucralfate, iron salts, and zinc salts,

  5. Antibacterial paperboard packaging using microfibrillated cellulose.

    Science.gov (United States)

    Lavoine, Nathalie; Desloges, Isabelle; Manship, Brigitte; Bras, Julien

    2015-09-01

    The industry and consumers are focusing more and more on the development of biodegradable and lightweight food-packaging materials, which could better preserve the quality of the food and improve its shelf-life. In an attempt to meet these requirements, this study presents a novel bio-substrate able to contain active bio-molecules for future food-packaging applications. Based on a paperboard substrate, the development of an antibacterial bio-packaging material is, therein, achieved using a chlorhexidine digluconate (CHX) solution as a model of an antibacterial molecule, mixed with microfibrillated cellulose (MFC) and used as coating onto paperboard samples. AFM and FE-SEM analyses were performed to underline the nanoporous MFC network able to trap and to progressively release the CHX molecules. The release study of CHX was conducted in an aqueous medium and showed a lower proportion (20 %) of CHX released when using MFC. This led to the constant release of low amounts of CHX over 40 h. Antibacterial tests were carried out to assess the preservation of the antibacterial activity of the samples after the release studies. Samples remained active against Bacillus subtilis, with better results being obtained when MFC was used. The preservation of the quality of a model food was finally evaluated paving the way for future promising applications in the food packaging industry. PMID:26344972

  6. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from a...

  7. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.; Jørgensen, M.; Larsson, C.; Buchardt, O.; Stanly, C.J.; Norden, B.; Nielsen, P.E.; Ørum, H.

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields.......Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  8. Maximins S, a novel group of antimicrobial peptides from toad Bombina maxima.

    Science.gov (United States)

    Wang, Ting; Zhang, Jie; Shen, Ji-Hong; Jin, Yang; Lee, Wen-Hui; Zhang, Yun

    2005-02-18

    Amphibian skin secretions are rich in antimicrobial peptides acting as important components of innate defense system against invading microorganisms. A novel type of peptide, designated as maximin S, was deduced by random sequencing of 793 clones from a constructed Bombina maxima skin cDNA library. The putative primary structures of maximin S peptides can be grouped into five species, in which maximin S1 has 14 amino acid residues and the rest of maximin S peptides (S2-S5) all have 18 amino acid residues. Unlike most of the amphibian antimicrobial peptides so far identified, the newly characterized four maximin S precursors are composed of maximin S1 and different combinations of tandem repeated maximin S2-S5 linked by internal peptides. Except maximin S1, the predicted secondary structures of maximin S2-S5 show a similar amphipathic alpha-helical structure. MALDI-TOF mass spectrometry analysis of partially isolated skin secretions of the toad indicates that most of the deduced maximin S peptides are expressed. Two deduced maximin S peptides (S1, S4) were synthesized and their antimicrobial activities were tested. Maximin S4 only had an antibiotic activity against mycoplasma and had no antibacterial or antifungal activity toward tested strains. Maximin S1 had no activity under the same conditions. PMID:15649437

  9. In vitro and in vivo evaluation of BMAP-derived peptides for the treatment of cystic fibrosis-related pulmonary infections.

    Science.gov (United States)

    Mardirossian, Mario; Pompilio, Arianna; Crocetta, Valentina; De Nicola, Serena; Guida, Filomena; Degasperi, Margherita; Gennaro, Renato; Di Bonaventura, Giovanni; Scocchi, Marco

    2016-09-01

    Patients with cystic fibrosis require pharmacological treatment against chronic lung infections. The alpha-helical antimicrobial peptides BMAP-27 and BMAP-28 have shown to be highly active in vitro against planktonic and sessile forms of multidrug-resistant Pseudomonas aeruginosa, Staphylococcus aureus, and Stenotrophomonas maltophilia cystic fibrosis strains. To develop small antibacterial peptides for therapeutic use, we tested shortened/modified BMAP fragments, and selected the one with the highest in vitro antibacterial activity and lowest in vivo acute pulmonary toxicity. All the new peptides have shown to roughly maintain their antibacterial activity in vitro. The 1-18 N-terminal fragment of BMAP-27, showing MIC90 of 16 µg/ml against P. aeruginosa isolates and strain-dependent anti-biofilm effects, showed the lowest pulmonary toxicity in mice. However, when tested in a murine model of acute lung infection by P. aeruginosa, BMAP-27(1-18) did not show any curative effect. If exposed to murine broncho-alveolar lavage fluid BMAP-27(1-18) was degraded within 10 min, suggesting it is not stable in pulmonary environment, probably due to murine proteases. Our results indicate that shortened BMAP peptides could represent a starting point for antibacterial drugs, but they also indicate that they need a further optimization for effective in vivo use. PMID:27270571

  10. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    Introduction: A frightening increase in the number of isolated multidrug resistant bacterial strains linked to the decline in novel antimicrobial drugs entering the market is a great cause for concern. Cationic antimicrobial peptides (AMPs) have lately been introduced as a potential new class of...... antimicrobial drugs, and computational methods utilizing molecular descriptors can significantly accelerate the development of new peptide drug candidates. Areas covered: This paper gives a broad overview of peptide and amino-acid scale descriptors available for AMP modeling and highlights which of these are...

  11. Evaluation of in vitro antibacterial effect of room curing polymethylmethacrylate material adding nano-silver base inorganic antibacterial agents

    International Nuclear Information System (INIS)

    Objective: To investigate the antibacterial effect of room curing polymethylmethacrylate (PMMA) material adding nano-silver base inorganic antibacterial agent and to detect the changes of its mechanical property. Methods: Nano-silver base inorganic antibacterial agent was added to the room curing PMMA material in the range of 0.5% -3.0% at an interval of 0.5% by ball milling specimen. Antibacterial rates of the specimens were detected by film method. Bending strength, impact strength, and wear resistance of the specimens were respectively detected on electronic universal testing machine, impact test machine and friction and wear test machine. Results: The antibacterial rates of Streptococcus mutans and Candida albicans were more than 50% when antibiotics content was 1.0% . The antibacterial rates of Streptococcus mutans and Candida albicans were more than 90% when the antibiotics content was 2.5% . The three mechanical properties were increased compared with control group when the antibacterial agents were in the range of 1.0% -1.5% . Then the three mechanical properties were decreased with the increasing of antimicrobial concentration. When the antibiotics content was 2.0% , the wear resistance had significant difference compared with control group (P<0.05); when the antibiotics content was 2.5% , the bending strength and impact strength had significant difference compared with control group (P<0.05). Conclusion: The antibacterial effect of room curing PMMA adding nano-silver base inorganic antibacterial agent is ideal. The antibacterial rate is increased gradually with the increasing content of antibacterial agents. There is no significant effect on the mechanical properties of room curing PMMA material, but the antibacterial effects are satisfied when the content of antibacterial agents is 2.0% . (authors)

  12. ANTIBACTERIAL PROPERTIES AND DRYING EFFECTS OF FLAX DENIM AND ANTIBACTERIAL PROPERTIES OF NONWOVEN FLAX FABRIC

    Directory of Open Access Journals (Sweden)

    David T.W. Chun

    2010-02-01

    Full Text Available A modification of “AATCC Test Method 100-1999” was used for assaying for bacteriostatic/antibacterial properties of denim containing various flax concentrations. Since no direct evidence that increasing the flax content of fabric imparted the fabric with increased bacteriostatic properties was found against the control bacteria, Staphylococcus aureus and Klebsiella pneumoniae, other possible explanations for the long held presumption that flax fabric exhibited antibacterial properties was sought. Because the appearance of having antibacterial or bacteriostatic properties might be imitated if the flax content would decrease the time fabric would be moist enough for bacterial growth, the effect of drying was evaluated. When flax fabric was saturated and the moisture lost during incubation was measured, there was no improved drying associated with increased flax content. When untreated nonwoven flax was evaluated as possibly containing more ‘antibacterial’ or bacteriostatic components than scoured nonwoven flax material, the population densities increased. This increase suggests that the unscoured nonwoven flax contain compo-nents that support bacterial growth to the extent that bacteriostatic or antibacterial components, if any, are overwhelmed by the components that support bacterial growth. In tests involving the control bacteria, Staphylococcus aureus and Klebsiella pneumoniae, increasing the flax content of flax fabric did not demonstrate increased antibacterial properties.

  13. In vitro and in vivo efficacy, toxicity, bio-distribution and resistance selection of a novel antibacterial drug candidate.

    Science.gov (United States)

    Brunetti, Jlenia; Falciani, Chiara; Roscia, Giulia; Pollini, Simona; Bindi, Stefano; Scali, Silvia; Arrieta, Unai Cossio; Gómez-Vallejo, Vanessa; Quercini, Leila; Ibba, Elisa; Prato, Marco; Rossolini, Gian Maria; Llop, Jordi; Bracci, Luisa; Pini, Alessandro

    2016-01-01

    A synthetic antimicrobial peptide was identified as a possible candidate for the development of a new antibacterial drug. The peptide, SET-M33L, showed a MIC90 below 1.5 μM and 3 μM for Pseudomonas aeruginosa and Klebsiella pneumoniae, respectively. In in vivo models of P. aeruginosa infections, the peptide and its pegylated form (SET-M33L-PEG) enabled a survival percentage of 60-80% in sepsis and lung infections when injected twice i.v. at 5 mg/Kg, and completely healed skin infections when administered topically. Plasma clearance showed different kinetics for SET-M33L and SET-M33L-PEG, the latter having greater persistence two hours after injection. Bio-distribution in organs did not show significant differences in uptake of the two peptides. Unlike colistin, SET-M33L did not select resistant mutants in bacterial cultures and also proved non genotoxic and to have much lower in vivo toxicity than antimicrobial peptides already used in clinical practice. The characterizations reported here are part of a preclinical development plan that should bring the molecule to clinical trial in the next few years. PMID:27169671

  14. Light-activated polymethylmethacrylate nanofibers with antibacterial activity.

    Science.gov (United States)

    Elashnikov, Roman; Lyutakov, Oleksiy; Ulbrich, Pavel; Svorcik, Vaclav

    2016-07-01

    The creation of an antibacterial material with triggerable properties enables us to avoid the overuse or misuse of antibacterial substances and, thus, prevent the emergence of resistant bacterial strains. As a potential light-activated antibacterial material, polymethylmethacrylate (PMMA) nanofibers doped with silver nanoparticles (AgNPs) and meso-tetraphenylporphyrin (TPP) were prepared by electrospinning. TPP was chosen as an effectively reactive oxygen species (ROS) producer. Antibacterial tests on Staphylococcus epidermidis (S. epidermidis) and Enterococcus faecalis (E. faecalis) showed the excellent light-triggerable antibacterial activity of the doped materials. Upon light irradiation at the wavelength corresponding to the TPP absorption peak (405nm), antibacterial activity dramatically increased, mostly due to the release of AgNPs from the polymer matrix. Furthermore, under prolonged light irradiation, the AgNPs/TPP/PMMA nanofibers, displayed enhanced longevity and photothermal stability. Thus, our results suggest that the proposed material is a promising option for the photodynamic inactivation of bacteria. PMID:27127048

  15. Diversity and antibacterial activity of phyllosticta species

    Directory of Open Access Journals (Sweden)

    E. Chukeatirote

    2015-01-01

    Full Text Available Phyllosticta fungi are widely distributed and appear to have different lifestyles. Although some Phyllosticta species are known to cause plant diseases, others are useful due to their bioactive metabolites. In this study, we screened and isolated the Phyllosticta fungi from several plant specimens. In total, 67 Phyllosticta isolates were identified based on their distinct morphological characteristics. Of these, 18 isolates were pathogens and 49 isolates were endophytes. Besides, 61 isolates (91% were identified as P. capitalensis indicating its widespread distribution. Thirty Phyllosticta isolates were then selected for studying their antibacterial activity. For this, the fungal strains were cultured in potato dextrose broth and cultivated at 27 C for 2 weeks. The fungal mycelia were removed and the culture supernatants were extracted using ethyl acetate. Antibacterial activity screening was then carried out using an agar disc diffusion assay. Our data showed that most Phyllosticta crude extracts (87% were active and could inhibit at least one of the testing bacteria.

  16. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.;

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  17. Antibacterial biodegradable Mg-Ag alloys

    Directory of Open Access Journals (Sweden)

    D Tie

    2013-06-01

    Full Text Available The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4 and aging (T6 heat treatment.The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase. After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver. Mg(OH2 and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product. Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release. In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7, revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility. Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231 and Staphylococcus epidermidis (DSMZ 3269, and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%. In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials.

  18. Antibacterial nanofiber materials activated by light

    Czech Academy of Sciences Publication Activity Database

    Jesenská, S.; Plištil, L.; Kubát, Pavel; Lang, Kamil; Brožová, Libuše; Popelka, Štěpán; Szatmáry, Lórant; Mosinger, Jiří

    99A, č. 4 (2011), s. 676-683. ISSN 1549-3296 R&D Projects: GA ČR GAP208/10/1678 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : antibacterial nanofiber materials * photoactive * singlet oxygen Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.625, year: 2011

  19. Chemical Composition and Antibacterial Effects of

    OpenAIRE

    SS Saei Dehkordi; H Tajik; Moradi, M; A Jafari Dehkordi; Ghasemi, S.

    2009-01-01

    Introduction & Objective: Rosmarinus officinalis L. as a member of the Lamiaceae family and lysozyme as a natural antibacterial agent is important in food microbiology, because of its characteristics. The aim of the present study was to determine the chemical composition and anti-listerial activity of Rosmarinus officinalis essential oil (REO) alone and in combination with lysozyme for enhancement of anti-listerial activity of both substances. Materials & Methods: Rosmarinus officinalis ...

  20. Honey: its medicinal property and antibacterial activity

    OpenAIRE

    Mandal, Manisha Deb; Mandal, Shyamapada

    2011-01-01

    Indeed, medicinal importance of honey has been documented in the world's oldest medical literatures, and since the ancient times, it has been known to possess antimicrobial property as well as wound-healing activity. The healing property of honey is due to the fact that it offers antibacterial activity, maintains a moist wound condition, and its high viscosity helps to provide a protective barrier to prevent infection. Its immunomodulatory property is relevant to wound repair too. The antimic...

  1. Long-circulating bacteriophage as antibacterial agents.

    OpenAIRE

    Merril, C.R.; B. Biswas; Carlton, R; Jensen, N C; Creed, G J; Zullo, S; Adhya, S

    1996-01-01

    The increased prevalence of multidrug-resistant bacterial pathogens motivated us to attempt to enhance the therapeutic efficacy of bacteriophages. The therapeutic application of phages as antibacterial agents was impeded by several factors: (i) the failure to recognize the relatively narrow host range of phages; (ii) the presence of toxins in crude phage lysates; and (iii) a lack of appreciation for the capacity of mammalian host defense systems, particularly the organs of the reticuloendothe...

  2. Investigation of the antibacterial activity of pioglitazone

    Directory of Open Access Journals (Sweden)

    Alzoubi KH

    2011-09-01

    Full Text Available Majed M Masadeh1, Nizar M Mhaidat2, Sayer I Al-Azzam2, Karem H Alzoubi21Department of Pharmaceutical Technology; 2Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, JordanPurpose: To evaluate the antibacterial potential of pioglitazone, a member of the thiazolidinediones class of drugs, against Gram-positive (Streptococcus pneumoniae and Gram-negative (Escherichia coli and Klebsiella pneumoniae bacteria.Methods: Susceptibility testing was done using the antibiotic disk diffusion method and the minimal inhibitory concentration (MIC of pioglitazone was measured according to the broth micro incubation standard method.Results: Pioglitazone induced a dose-dependent antibacterial activity in which the optimal concentration was 80 µM. Furthermore, results indicated that while E. coli was sensitive (MIC = 31.25 ± 3.87 mg/L to pioglitazone-induced cytotoxicity, S. pneumoniae and K. pneumoniae were resistant (MIC = 62.5 ± 3.77 mg/L and MIC = 62.5 ± 4.14 mg/L, respectively. Moreover, pretreatment of bacteria with a suboptimal concentration of pioglitazone (40 µM before adding amoxicillin, cephalexin, co-trimoxazole, or ciprofloxacin enhanced the antibacterial activity of all agents except co-trimoxazole. This enhancing effect was particularly seen against K. pneumoniae.Conclusion: These results indicate the possibility of a new and potentially important pioglitazone effect and the authors’ ongoing studies aim to illustrate the mechanism(s by which this antibacterial effect is induced.Keywords: pioglitazone, susceptibility testing, antibiotics, diabetes 

  3. The antibacterial paradox: essential drugs, effectiveness, and cost.

    OpenAIRE

    Fasehun, F.

    1999-01-01

    The concept proposed by WHO of an essential drugs list that should comprise drugs corresponding to the health needs of the majority of the people has been embraced by countries, which have adapted it to their needs. In this study, the essential antibacterial drug lists of 16 countries chosen from the six WHO regions are reviewed. Most of these countries include 73% of WHO-recommended essential antibacterials on their lists. However, most are lacking reserve antibacterials, and even some main ...

  4. Synthesis, SAR and antibacterial studies on novel chalcone oxazolidinone hybrids.

    Science.gov (United States)

    Selvakumar, N; Kumar, G Sunil; Azhagan, A Malar; Rajulu, G Govinda; Sharma, Shikha; Kumar, M Sitaram; Das, Jagattaran; Iqbal, Javed; Trehan, Sanjay

    2007-04-01

    With an intention to synergise the antibacterial activity of chalcones and oxazolidinones, several hybrid compounds possessing both chalcone and oxazolidinone moieties were synthesized and tested for antibacterial activity. The hybrid molecules containing heterocycles instead of aromatic ring were found to be active. A SAR study with various heterocycles resulted in a lead molecule 20, which was converted to one of the potent antibacterial compounds 27. PMID:17150281

  5. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    ErkkiRuoslahti

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular “zip code” of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  6. Introduction to Peptide Synthesis

    OpenAIRE

    Stawikowski, Maciej; Fields, Gregg B.

    2002-01-01

    A number of synthetic peptides are significant commercial or pharmaceutical products, ranging from the dipeptide sugar-substitute aspartame to clinically used hormones, such as oxytocin, adrenocorticotropic hormone, and calcitonin. This unit provides an overview of the field of synthetic peptides and proteins. It discusses selecting the solid support and common coupling reagents. Additional information is provided regarding common side reactions and synthesizing modified residues.

  7. EVALUATION OF ANTIBACTERIAL ACTIVITY OF CAFFEINE

    Directory of Open Access Journals (Sweden)

    Pawar Pruthviraj

    2011-04-01

    Full Text Available The present study was carried out with water soluble portion and pure solvent of the acetone, ethanol, methanol, acetonitrile, water extracts of leaves and leaf buds of Camellia sinensis (green tea, and beans of Coffea arabica (coffee. Caffeine (3,7-dihydro-1, 3,7-trimethyl-1H-purine-2,6-dione was isolated from both plants using a liquid-liquid extraction method, detected on thin layer chromatography (TLC plates in comparison with standard caffeine, which served as a positive control. After performing the gross behavioral study, the Antibacterial activity was evaluated against Gram-negative bacteria included; Escherichia coli, Proteus mirabilis, Klebsiella pneumonia and Pseudomonas aeruginosa Both compounds at a concentration of 2 mg/ml showed similar antibacterial activities against all tested bacteria, except for P. mirabilis, and the highest inhibitory effect was observed against P. aeruginosa using a modified agar diffusion method. The minimal inhibitory concentration (MIC of caffeine was determined using a broth microdilution method in 96 multi-well microtitre plates. MIC values ranged from 65.5 to 250.0 µg/ml for the caffeine isolated from coffee and 65.5 to 500.0 µg/ml for green tea caffeine. Combination results showed additive effects against most pathogenic bacteria especially for P. aeruginosa, using both antibacterial assays.

  8. Bioactive peptides released by in vitro digestion of standard and hydrolyzed infant formulas.

    Science.gov (United States)

    Wada, Yasuaki; Lönnerdal, Bo

    2015-11-01

    Hydrolyzed infant formulas serve as appropriate nutritional sources for infants afflicted with cow's milk allergy, and milk proteins in hydrolyzed formulas are industrially hydrolyzed extensively or partially. To investigate whether industrial hydrolysis may modulate the digestive trajectory of milk proteins, thereby releasing different profiles of bioactive peptides compared with standard formulas, both standard and hydrolyzed formulas were subjected to in vitro digestion and formation of bioactive peptides were compared. One standard, one extensively hydrolyzed, and one partially hydrolyzed infant formula were digested in vitro with pepsin and pancreatin, taking into account the higher gastric pH of infants, and the digesta were subjected to peptidomic analysis. The standard formula released a larger variety of bioactive peptides than from the hydrolyzed formulas, indicating that industrial hydrolysis of milk proteins may generally attenuate their indigenous bioactivities such as antibacterial, immuno-regulatory, and anti-oxidative activities. Conversely, industrial hydrolysis may facilitate the formation of bioactive peptides from hydrophobic proteins/regions such as β-LG and the "strategic zone" of β-CN, which encrypt bioactive peptides including a dipeptidyl dipeptidase-4-inhibitory, hypocholesterolemic, and opioid peptides. Infants fed hydrolyzed infant formulas may be influenced by milk protein-derived bioactive peptides in a manner different from those fed standard formula. PMID:26385395

  9. A toy model of prebiotic peptide evolution: the possible role of relative amino acid abundances.

    Science.gov (United States)

    Polanco, Carlos; Buhse, Thomas; Samaniego, José Lino; Castañón González, Jorge Alberto

    2013-01-01

    This paper presents a mathematical-computational toy model based on the assumed dynamic principles of prebiotic peptide evolution. Starting from a pool of amino acid monomers, the model describes in a generalized manner the generation of peptides and their sequential information. The model integrates the intrinsic and dynamic key elements of the initiation of biopolymerization, such as the relative amino acid abundances and polarities, as well as the oligomer reversibility, i.e. fragmentation and recombination, and peptide self-replication. Our modeling results suggest that the relative amino acid abundances, as indicated by Miller-Urey type electric discharge experiments, played a principal role in the early sequential information of peptide profiles. Moreover, the computed profiles display an astonishing similarity to peptide profiles observed in so-called biological common ancestors found in the following three microorganisms; E. coli, M. jannaschii, and S. cereviasiae. The prebiotic peptide fingerprint was obtained by the so-called polarity index method that was earlier reported as a tool for the identification of cationic amphipathic antibacterial short peptides. PMID:23741717

  10. Antibacterial Resistance in African Catfish Aquaculture: a Review

    Directory of Open Access Journals (Sweden)

    Madubuike U. ANYANWU

    2016-03-01

    Full Text Available Antibacterial resistance (AR is currently one of the greatest threats to mankind as it constitutes health crisis. Extensive use of antibacterial agents in human and veterinary medicine, and farm crops have resulted in emergence of antibacterial-resistant organisms in different environmental settings including aquaculture. Antibacterial resistance in aquaculture is a serious global concern because antibacterial resistance genes (ARGs can be transferred easily from aquaculture setting to other ecosystems and the food chain. African catfish (ACF aquaculture has increased at a phenomenal rate through a continuous process of intensification, expansion and diversification. Risk of bacterial diseases has also increased and consequently there is increased use of antibacterial agents for treatment. Antibacterial resistance in ACF aquaculture has huge impact on the food chain and thus represents risk to public and animal health. In “one health” approach of curbing AR, knowledge of the sources, mechanisms and magnitude of AR in ACF aquaculture and its potential impact on the food chain is important in designing and prioritizing monitoring programs that may generate data that would be relevant for performing quantitative risk assessments, implementation of antibacterial stewardship plans, and developing effective treatment strategies for the control of ACF disease and reducing risk to public health. This review provides insight on the sources, mechanisms, prevalence and impact of antibacterial resistance in ACF aquaculture environment, a setting where the impact of AR is neglected or underestimated.

  11. Investigations into methods to improve the antibacterial activity of Acticoat.

    Science.gov (United States)

    Ravensdale, Joshua; Wood, Fiona; O'Brien, Francis; Gregg, Keith

    2016-05-01

    Multiple studies have shown that the antibacterial dressing Acticoat can inhibit growth of bacteria but is unable to completely clear a wound of infection, which could leave patients vulnerable to sepsis. Agar inoculated with four different Staphylococcus aureus strains and overlain with Acticoat showed growth inhibition beneath and within a 1 mm perimeter of the dressing after 24 h. When lifted from inoculated agar and briefly blotted onto fresh agar plates, Acticoat transferred viable bacteria. Scanning electron microscopy of the surface of Acticoat that overlaid meticillin-resistant S. aureus for 24, 48 and 72 h showed dense clusters of apparently undamaged bacteria distributed across the mesh. The number of bacteria growing on inoculated pig skin, underneath and on the surface of Acticoat, was lower than on controls for the first 8 h, but after 24 h the number of bacteria on the skin was 2.3-fold greater than the untreated controls. In contrast, after 24 h the number of bacteria surviving on the surface of the Acticoat was 11.9 % of controls. Acticoat moistened with 10 % glycerol plus antimicrobial peptides (AMPs) mel12-26 or bac8c (50 μg ml- 1) reduced the numbers of bacteria on the dressing and on the skin underneath to below 10 % and 0.01 % of the controls, respectively. When lysozyme (1 mg ml- 1) was added to Acticoat wetted with glycerol and the AMP bac8c, the dressing was able to prevent the survival of bacteria on densely inoculated pig skin and on the surface of Acticoat for up to 24 h. In effect, biocompatible solvents and AMPs significantly enhance the bactericidal efficacy of Acticoat. PMID:26944631

  12. Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications

    Directory of Open Access Journals (Sweden)

    Emer Shannon

    2016-04-01

    Full Text Available The marine environment is home to a taxonomically diverse ecosystem. Organisms such as algae, molluscs, sponges, corals, and tunicates have evolved to survive the high concentrations of infectious and surface-fouling bacteria that are indigenous to ocean waters. Both macroalgae (seaweeds and microalgae (diatoms contain pharmacologically active compounds such as phlorotannins, fatty acids, polysaccharides, peptides, and terpenes which combat bacterial invasion. The resistance of pathogenic bacteria to existing antibiotics has become a global epidemic. Marine algae derivatives have shown promise as candidates in novel, antibacterial drug discovery. The efficacy of these compounds, their mechanism of action, applications as antibiotics, disinfectants, and inhibitors of foodborne pathogenic and spoilage bacteria are reviewed in this article.

  13. Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications

    Science.gov (United States)

    Shannon, Emer; Abu-Ghannam, Nissreen

    2016-01-01

    The marine environment is home to a taxonomically diverse ecosystem. Organisms such as algae, molluscs, sponges, corals, and tunicates have evolved to survive the high concentrations of infectious and surface-fouling bacteria that are indigenous to ocean waters. Both macroalgae (seaweeds) and microalgae (diatoms) contain pharmacologically active compounds such as phlorotannins, fatty acids, polysaccharides, peptides, and terpenes which combat bacterial invasion. The resistance of pathogenic bacteria to existing antibiotics has become a global epidemic. Marine algae derivatives have shown promise as candidates in novel, antibacterial drug discovery. The efficacy of these compounds, their mechanism of action, applications as antibiotics, disinfectants, and inhibitors of foodborne pathogenic and spoilage bacteria are reviewed in this article. PMID:27110798

  14. Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications.

    Science.gov (United States)

    Shannon, Emer; Abu-Ghannam, Nissreen

    2016-04-01

    The marine environment is home to a taxonomically diverse ecosystem. Organisms such as algae, molluscs, sponges, corals, and tunicates have evolved to survive the high concentrations of infectious and surface-fouling bacteria that are indigenous to ocean waters. Both macroalgae (seaweeds) and microalgae (diatoms) contain pharmacologically active compounds such as phlorotannins, fatty acids, polysaccharides, peptides, and terpenes which combat bacterial invasion. The resistance of pathogenic bacteria to existing antibiotics has become a global epidemic. Marine algae derivatives have shown promise as candidates in novel, antibacterial drug discovery. The efficacy of these compounds, their mechanism of action, applications as antibiotics, disinfectants, and inhibitors of foodborne pathogenic and spoilage bacteria are reviewed in this article. PMID:27110798

  15. Antimicrobial Peptides from Plants

    Science.gov (United States)

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  16. Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    James P. Tam

    2015-11-01

    Full Text Available Plant antimicrobial peptides (AMPs have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic, lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.

  17. Electromembrane extraction of peptides.

    Science.gov (United States)

    Balchen, Marte; Reubsaet, Léon; Pedersen-Bjergaard, Stig

    2008-06-20

    Rapid extraction of eight different peptides using electromembrane extraction (EME) was demonstrated for the first time. During an extraction time of 5 min, the model peptides migrated from a 500 microL aqueous acidic sample solution, through a thin supported liquid membrane (SLM) of an organic liquid sustained in the pores in the wall of a porous hollow fiber, and into a 25 microL aqueous acidic acceptor solution present inside the lumen of the hollow fiber. The driving force of the extraction was a 50 V potential sustained across the SLM, with the positive electrode in the sample and the negative electrode in the acceptor solution. The nature and the composition of the SLM were highly important for the EME process, and a mixture of 1-octanol and 15% di(2-ethylhexyl) phosphate was found to work properly. Using 1mM HCl as background electrolyte in the sample and 100 mM HCl in the acceptor solution, and agitation at 1050 rpm, enrichment up to 11 times was achieved. Recoveries were found to be dependent on the structure of the peptide, indicating that the polarity and the number of ionized groups were important parameters affecting the extraction efficiency. The experimental findings suggested that electromembrane extraction of peptides is possible and may be a valuable tool for future extraction of peptides. PMID:18479691

  18. Two Novel Antibacterial Flavonoids from Myrsine Africana L.

    Institute of Scientific and Technical Information of China (English)

    KANG,Lu; ZHOU,Jian-Xia; SHEN,Zheng-Wu

    2007-01-01

    Two novel flavonoids, myrsininone A (1), an isoflavone and myrsininone B (2), a flavanone, with very strong antibacterial activities, were isolated from the stems of Myrsine africana L. Their structures were elucidated by extensive spectroscopic analyses. The antibacterial activities were determined by modified Resazuric MIC methods.

  19. Cationic amphiphilic non-hemolytic polyacrylates with superior antibacterial activity.

    Science.gov (United States)

    Punia, Ashish; He, Edward; Lee, Kevin; Banerjee, Probal; Yang, Nan-Loh

    2014-07-01

    Acrylic copolymers with appropriate compositions of counits having cationic charge with 2-carbon and 6-carbon spacer arms can show superior antibacterial activities with concomitant very low hemolytic effect. These amphiphilic copolymers represent one of the most promising synthetic polymer antibacterial systems reported. PMID:24854366

  20. Antibacterial activity of mushroom Osmoporus odoratus

    OpenAIRE

    Sivakumar R; Vetrichelvan T; Rajendran N; Devi M; Sundaramoorthi K; Shankar ASK; Shanmugam S

    2006-01-01

    The petroleum ether, chloroform, acetone and water extracts of mushroom Osmoporus odoratus were selected for examine the antibacterial activity against Staphylococcus aureus, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa by disc diffusion method using Muller Hinton agar media. And the extracts were compared with that of standard ampicillin (30 µg) and chloramphenicol (30 µg). The water extract alone showed antibacterial activity aga...

  1. Facilitating Antibacterial Drug Development in a Time of Great Need.

    Science.gov (United States)

    Cox, Edward; Cavaleri, Marco; Eichler, Hans-Georg; Woodcock, Janet; Borio, Luciana

    2016-08-15

    The continued development of new antibacterial drugs is critical to meet patient and public health needs. In this editorial, authors from the US Food and Drug Administration and European Medicines Agency reflect on the role of public-private partnerships and the development of clinical trials networks as agents to guide and perform quality studies of antibacterial drugs. PMID:27481949

  2. Soluble Eggshell Mebrane Protein:Antibacterial Property and Biodegradability

    Institute of Scientific and Technical Information of China (English)

    YI Feng; YU Jian; LI Qiang; GUO Zhaoxia

    2007-01-01

    The antibacterial property and biodegradability of soluble eggshell membrane protein (SEP)are reported. Unlike the natural eggshell membrane (ESM), SEP does not possess antibacterial property against E.coli. The biodegradation tests with trypsin show that both ESM and SEP are biodegradable.

  3. Protein Interactions in Genome Maintenance as Novel Antibacterial Targets

    OpenAIRE

    Marceau, Aimee H; Bernstein, Douglas A.; Walsh, Brian W.; Shapiro, Walker; Simmons, Lyle A.; Keck, James L.

    2013-01-01

    Antibacterial compounds typically act by directly inhibiting essential bacterial enzyme activities. Although this general mechanism of action has fueled traditional antibiotic discovery efforts for decades, new antibiotic development has not kept pace with the emergence of drug resistant bacterial strains. These limitations have severely restricted the therapeutic tools available for treating bacterial infections. Here we test an alternative antibacterial lead-compound identification strategy...

  4. In Vitro Antibacterial Activity of Ibuprofen and Acetaminophen

    OpenAIRE

    AL-Janabi, Ali Abdul Hussein S.

    2010-01-01

    Background: Ibuprofen and acetaminophen are common chemical agents that have anti-inflammatory, antipyretic, and analgesic activity. Aims: To detect any potential antibacterial effects of ibuprofen and acetaminophen on pathogenic bacteria. Materials and methods: Ibuprofen and acetaminophen were tested for antibacterial activity against seven isolates of bacteria including gram positive bacteria (Staphylococci aureus and Bacillus subtilis) and gram negative bacteria (E. coli, Enterobacter a...

  5. Starvation- and Stationary-phase-induced resistance to the antimicrobial peptide polymyxin B in Salmonella typhimurium is RpoS (sigma(S)) independent and occurs through both phoP-dependent and -independent pathways.

    OpenAIRE

    McLeod, G I; Spector, M P

    1996-01-01

    A common stress encountered by Salmonella serovars involves exposure to membrane-permeabilizing antimicrobial peptides and proteins such as defensins, cationic antibacterial proteins, and polymyxins. We wanted to determine if starvation induces cross-resistance to the membrane-permeabilizing antimicrobial peptide polymyxin B (PmB). We report here that starved and stationary-phase (Luria-Bertani [LB] medium) cells exhibited ca. 200- to 1,500-fold-higher (cross-)resistance to a 60-min PmB chall...

  6. Synthetic antibiofilm peptides.

    Science.gov (United States)

    de la Fuente-Núñez, César; Cardoso, Marlon Henrique; de Souza Cândido, Elizabete; Franco, Octavio Luiz; Hancock, Robert E W

    2016-05-01

    Bacteria predominantly exist as multicellular aggregates known as biofilms that are associated with at least two thirds of all infections and exhibit increased adaptive resistance to conventional antibiotic therapies. Therefore, biofilms are major contributors to the global health problem of antibiotic resistance, and novel approaches to counter them are urgently needed. Small molecules of the innate immune system called host defense peptides (HDPs) have emerged as promising templates for the design of potent, broad-spectrum antibiofilm agents. Here, we review recent developments in the new field of synthetic antibiofilm peptides, including mechanistic insights, synergistic interactions with available antibiotics, and their potential as novel antimicrobials against persistent infections caused by biofilms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26724202

  7. Improved bioactivity of antimicrobial peptides by addition of amino-terminal copper and nickel (ATCUN) binding motifs.

    Science.gov (United States)

    Libardo, M Daben; Cervantes, Jorge L; Salazar, Juan C; Angeles-Boza, Alfredo M

    2014-08-01

    Antimicrobial peptides (AMPs) are promising candidates to help circumvent antibiotic resistance, which is an increasing clinical problem. Amino-terminal copper and nickel (ATCUN) binding motifs are known to actively form reactive oxygen species (ROS) upon metal binding. The combination of these two peptidic constructs could lead to a novel class of dual-acting antimicrobial agents. To test this hypothesis, a set of ATCUN binding motifs were screened for their ability to induce ROS formation, and the most potent were then used to modify AMPs with different modes of action. ATCUN binding motif-containing derivatives of anoplin (GLLKRIKTLL-NH2), pro-apoptotic peptide (PAP; KLAKLAKKLAKLAK-NH2), and sh-buforin (RAGLQFPVGRVHRLLRK-NH2) were synthesized and found to be more active than the parent AMPs against a panel of clinically relevant bacteria. The lower minimum inhibitory concentration (MIC) values for the ATCUN-anoplin peptides are attributed to the higher pore-forming activity along with their ability to cause ROS-induced membrane damage. The addition of the ATCUN motifs to PAP also increases its ability to disrupt membranes. DNA damage is the major contributor to the activity of the ATCUN-sh-buforin peptides. Our findings indicate that the addition of ATCUN motifs to AMPs is a simple strategy that leads to AMPs with higher antibacterial activity and possibly to more potent, usable antibacterial agents. PMID:24803240

  8. Characterization of an abaecin-like antimicrobial peptide identified from a Pteromalus puparum cDNA clone.

    Science.gov (United States)

    Shen, Xiaojing; Ye, Gongyin; Cheng, Xiongying; Yu, Chunyan; Altosaar, Illimar; Hu, Cui

    2010-09-01

    Abaecin is a major antimicrobial peptide, initially identified from the honeybee. In our effort to discover new antimicrobial peptides from the endoparasitoid wasp Pteromalus puparum, we identified an antibacterial cDNA clone that codes a fragment with high amino acid sequence similarity to abaecin. The proline-rich peptide (YVPPVQKPHPNGPKFPTFP, named PP30) was chemically synthesized and characterized in this study. Antimicrobial assays indicated that the cationic peptide was active against both Gram-negative and positive bacteria, but not active against fungi tested. No hemolytic activity was observed against human erythrocytes after 1h incubation at concentration of 125 microM or below. The antibacterial activity of PP30 against Escherichia coli was attenuated in the presence of increasing concentrations of NaCl. Transmission electron microscopic (TEM) examination of PP30-treated E. coli cells showed morphological changes in the cells and extensive damage to the cell membranes. The circular dichroism (CD) spectroscopy studies indicated that PP30 formed random coil structures in phosphate buffer (pH 7.4), 50% TFE and 25 mM SDS solution. Expression analysis of the gene coding for the peptide indicated that its expression was upregulated upon bacterial infection, indicating that the gene may play a role in preventing potential infection by microorganisms during parasitization in Pieris rapae. PMID:20466006

  9. Biomimetic peptide nanosensors.

    Science.gov (United States)

    Cui, Yue; Kim, Sang N; Naik, Rajesh R; McAlpine, Michael C

    2012-05-15

    The development of a miniaturized sensing platform tailored for sensitive and selective detection of a variety of biochemical analytes could offer transformative fundamental and technological opportunities. Due to their high surface-to-volume ratios, nanoscale materials are extremely sensitive sensors. Likewise, peptides represent robust substrates for selective recognition due to the potential for broad chemical diversity within their relatively compact size. Here we explore the possibilities of linking peptides to nanosensors for the selective detection of biochemical targets. Such systems raise a number of interesting fundamental challenges: What are the peptide sequences, and how can rational design be used to derive selective binders? What nanomaterials should be used, and what are some strategies for assembling hybrid nanosensors? What role does molecular modeling play in elucidating response mechanisms? What is the resulting performance of these sensors, in terms of sensitivity, selectivity, and response time? What are some potential applications? This Account will highlight our early attempts to address these research challenges. Specifically, we use natural peptide sequences or sequences identified from phage display as capture elements. The sensors are based on a variety of nanomaterials including nanowires, graphene, and carbon nanotubes. We couple peptides to the nanomaterial surfaces via traditional surface functionalization methods or self-assembly. Molecular modeling provides detailed insights into the hybrid nanostructure, as well as the sensor detection mechanisms. The peptide nanosensors can distinguish chemically camouflaged mixtures of vapors and detect chemical warfare agents with sensitivities as low as parts-per-billion levels. Finally, we anticipate future uses of this technology in biomedicine: for example, devices based on these sensors could detect disease from the molecular components in human breath. Overall, these results provide a

  10. In Vitro Antibacterial Activity of Essential Oils against Streptococcus pyogenes.

    Science.gov (United States)

    Sfeir, Julien; Lefrançois, Corinne; Baudoux, Dominique; Derbré, Séverine; Licznar, Patricia

    2013-01-01

    Streptococcus pyogenes plays an important role in the pathogenesis of tonsillitis. The present study was conducted to evaluate the in vitro antibacterial activities of 18 essential oils chemotypes from aromatic medicinal plants against S. pyogenes. Antibacterial activity of essential oils was investigated using disc diffusion method. Minimum Inhibitory Concentration of essential oils showing an important antibacterial activity was measured using broth dilution method. Out of 18 essential oils tested, 14 showed antibacterial activity against S. pyogenes. Among them Cinnamomum verum, Cymbopogon citratus, Thymus vulgaris CT thymol, Origanum compactum, and Satureja montana essential oils exhibited significant antibacterial activity. The in vitro results reported here suggest that, for patients suffering from bacterial throat infections, if aromatherapy is used, these essential oils, considered as potential antimicrobial agents, should be preferred. PMID:23662123

  11. The Antibacterial Applications of Graphene and Its Derivatives.

    Science.gov (United States)

    Shi, Lin; Chen, Jiongrun; Teng, Lijing; Wang, Lin; Zhu, Guanglin; Liu, Sa; Luo, Zhengtang; Shi, Xuetao; Wang, Yingjun; Ren, Li

    2016-08-01

    Graphene materials have unique structures and outstanding thermal, optical, mechanical and electronic properties. In the last decade, these materials have attracted substantial interest in the field of nanomaterials, with applications ranging from biosensors to biomedicine. Among these applications, great advances have been made in the field of antibacterial agents. Here, recent advancements in the use of graphene and its derivatives as antibacterial agents are reviewed. Graphene is used in three forms: the pristine form; mixed with other antibacterial agents, such as Ag and chitosan; or with a base material, such as poly (N-vinylcarbazole) (PVK) and poly (lactic acid) (PLA). The main mechanisms proposed to explain the antibacterial behaviors of graphene and its derivatives are the membrane stress hypothesis, the oxidative stress hypothesis, the entrapment hypothesis, the electron transfer hypothesis and the photothermal hypothesis. This review describes contributions to improving these promising materials for antibacterial applications. PMID:27389848

  12. Synthesis and antibacterial evaluation of macrocyclic diarylheptanoid derivatives.

    Science.gov (United States)

    Lin, Hao; Bruhn, David F; Maddox, Marcus M; Singh, Aman P; Lee, Richard E; Sun, Dianqing

    2016-08-15

    Bacterial infections, caused by Mycobacterium tuberculosis and other problematic bacterial pathogens, continue to pose a significant threat to global public health. As such, new chemotype antibacterial agents are desperately needed to fuel and strengthen the antibacterial drug discovery and development pipeline. As part of our antibacterial research program to develop natural product-inspired new antibacterial agents, here we report synthesis, antibacterial evaluation, and structure-activity relationship studies of an extended chemical library of macrocyclic diarylheptanoids with diverse amine, amide, urea, and sulfonamide functionalities. Results of this study have produced macrocyclic geranylamine and 4-fluorophenethylamine substituted derivatives, exhibiting moderate to good activity against M. tuberculosis and selected Gram-positive bacterial pathogens. PMID:27406794

  13. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor.

    Science.gov (United States)

    Ahmed, Khan Behlol Ayaz; Raman, Thiagarajan; Veerappan, Anbazhagan

    2016-11-01

    Nanoparticles are being widely used as antibacterial agents with metal nanoparticles emerging as the most efficient antibacterial agents. There have been many studies which have reported the mechanism of antibacterial activity of nanoparticles on bacteria. In this review we aim to emphasize on all the possible mechanisms which are involved in the antibacterial activity of nanoparticles and also to understand their mode of action and role as bacterial enzyme inhibitor by comparing their antibacterial mechanism to that of antibiotics with enzyme inhibition as a major mechanism. With the emergence of widespread antibiotic resistance, nanoparticles offer a better alternative to our conventional arsenal of antibiotics. Once the biological safety of these nanoparticles is addressed, these nanoparticles can be of great medical importance in our fight against bacterial infections. PMID:27524096

  14. In Vitro Antibacterial Activity of Essential Oils against Streptococcus pyogenes

    Directory of Open Access Journals (Sweden)

    Julien Sfeir

    2013-01-01

    Full Text Available Streptococcus pyogenes plays an important role in the pathogenesis of tonsillitis. The present study was conducted to evaluate the in vitro antibacterial activities of 18 essential oils chemotypes from aromatic medicinal plants against S. pyogenes. Antibacterial activity of essential oils was investigated using disc diffusion method. Minimum Inhibitory Concentration of essential oils showing an important antibacterial activity was measured using broth dilution method. Out of 18 essential oils tested, 14 showed antibacterial activity against S. pyogenes. Among them Cinnamomum verum, Cymbopogon citratus, Thymus vulgaris CT thymol, Origanum compactum, and Satureja montana essential oils exhibited significant antibacterial activity. The in vitro results reported here suggest that, for patients suffering from bacterial throat infections, if aromatherapy is used, these essential oils, considered as potential antimicrobial agents, should be preferred.

  15. Antibacterial biodegradable Mg-Ag alloys

    OpenAIRE

    D Tie; F Feyerabend; W-D Müller; Schade, R; Liefeith, K; KU Kainer; Willumeit, R.

    2013-01-01

    The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solut...

  16. Antibacterial Mg-Ag biodegradable alloys

    OpenAIRE

    Tie, Di

    2013-01-01

    The use of magnesium alloys as degradable metals for biomedical applications is topic of ongoing research. As a further aspect, the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed to combine the favourable properties of magnesium with the wellknown antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag which contain 1.87%, 3.82% and 6.00% silver by weight respectively were casted and processed with solution and ...

  17. Antioxidant and antibacterial properties of capsaicine microemulsions

    OpenAIRE

    CRISTIAN DIMA; GIGI COMAN; MIHAELA COTÂRLEŢ; PETRU ALEXE; ŞTEFAN DIMA

    2013-01-01

    The aim of this study was to prepare capsaicin microemulsions and to assess their antioxidant and antibacterial properties. Pseudoternare phase diagrams were made and were highlighted O/W/S/CoS weight ratios corresponding to microemulsion states. The oil phase (O) was soybean oil and for the aqueous phase (W) was used a mixture of water and glycerol in a ratio of 4:1 (wt/wt). As a surfactant (S) was used Tween 40 and cosurfactant (CoS) was ethanol in the mass ratio S:CoS = 2:1. Viscosimetr...

  18. Chemical and antibacterial constituents of Skimmia anquetelia.

    Science.gov (United States)

    Sharma, Rajni Kant; Negi, Devendra Singh; Gibbons, Simon; Otsuka, Hideaki

    2008-02-01

    Investigation of the leaves of Skimmia anquetelia (Rutaceae) led to the isolation of a new coumarin glucoside 7,8-dihdroxy-6-[3'-beta- D-glucopyranosyloxy-2'(xi)-hydroxy-3'-methylbutyl]-coumarin ( 1) together with five known coumarins: 6-(2,3-dihydroxy-3-methylbutyl)-7-methoxycoumarin ( 2), skimmin ( 3), osthol ( 4), esculetin ( 5) and scopuletin ( 6). The antibacterial activity of compounds 1 and 3 was also investigated against the plant bacterial pathogens Agrobacterium tumifaciens, Pseudomonas syringae and Pactobacterium carotovorum. Structures were determined on the basis of analyses of spectral evidence including 1D, 2 D NMR (COSY, HMQC, HMBC and NOESY) and mass spectroscopy. PMID:18240101

  19. Synthesis and Antibacterial Activity of Thiophenes

    Directory of Open Access Journals (Sweden)

    Wedad M. Al-Adiwish

    2012-01-01

    Full Text Available 2-[Bis(methylthiomethylene]propanedinitrile 1a reacted in one-pot successively with piperidine, sodium sulfide, chloroacetonitrile, and potassium carbonate to afford 3-amino-5-(1-piperidinyl-2,4-thiophenedicarbonitrile 2a. Similar reaction using the last three reagents with ethyl 2-cyano-3,3-bis(methylthioacrylate 1b produced ethyl 4-amino-5-cyano-2-(methylthiothiophene-3-carboxylate 2b. The synthesized compounds were characterized by using FT-IR, 1H-NMR, 13C-NMR, and mass spectral data. Antibacterial activities of the synthesized compounds are also reported.

  20. Detection of the antibacterial activity of chitosan

    OpenAIRE

    Mayer, Gerd; Claußen, Tatjana; Heisig, Peter

    2007-01-01

    Using three bacterial strains the antibacterial activity of Chitoskin®, a chitosan-containing wound-dressing, was investigated by determining the viable bacterial cell count in liquid cultures in the absence and presence of Chitoskin®. Results were compared to those obtained for cellulose and silver-laminated cellulose.While the pure cellulose wound-dressing had no impact on the bacterial growth, Chitoskin® and, to an even greater extend, silver-laminated cellulose reduced the viable cell cou...

  1. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  2. Cationic Antimicrobial Peptide Cytotoxicity

    OpenAIRE

    Laverty, Garry; Gilmore, Brendan

    2014-01-01

    Fluorescence microscopy serves as a valuable tool for assessing the structural integrity and viability of eukaryotic cells. Through the use of calcein AM and the DNA stain 4,6-diamidino-2 phenylindole (DAPI), cell viability and membrane integrity can be qualified. Our group has previously shown the ultra-short cationic antimicrobial peptide H-OOWW-NH2; the amphibian derived 27-mer peptide Maximin-4and the ultra-short lipopeptide C12-OOWW-NH2 to be effective against a range of bacterial biofil...

  3. Avian Antimicrobial Host Defense Peptides: From Biology to Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Guolong Zhang

    2014-02-01

    Full Text Available Host defense peptides (HDPs are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens.

  4. Avian antimicrobial host defense peptides: from biology to therapeutic applications.

    Science.gov (United States)

    Zhang, Guolong; Sunkara, Lakshmi T

    2014-01-01

    Host defense peptides (HDPs) are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens. PMID:24583933

  5. Peptide Extracts from Cultures of Certain Lactobacilli Inhibit Helicobacter pylori.

    Science.gov (United States)

    De Vuyst, Luc; Vincent, Pascal; Makras, Eleftherios; Leroy, Frédéric; Pot, Bruno

    2010-03-01

    Helicobacter pylori inhibition by probiotic lactobacilli has been observed in vitro and in vivo. Carefully selected probiotic Lactobacillus strains could therefore play an important role in the treatment of H. pylori infection and eradication. However, the underlying mechanism for this inhibition is not clear. The aim of this study was to examine if peptide extracts, containing bacteriocins or other antibacterial peptides, from six Lactobacillus cultures (Lactobacillus acidophilus La1, Lactobacillus amylovorus DCE 471, Lactobacillus casei YIT 9029, Lactobacillus gasseri K7, Lactobacillus johnsonii La1, and Lactobacillus rhamnosus GG) contribute to the inhibition of H. pylori. Peptide extracts from cultures of Lact. amylovorus DCE 471 and Lact. johnsonii La1 were most active, reducing the viability of H. pylori ATCC 43504 with more than 2 log units within 4 h of incubation (P amylovorus DCE 471 and Lact. johnsonii La1 were the most inhibitory, while the three other extracts resulted in a much lower inhibition of H. pylori. Protease-treated extracts were inactive towards H. pylori, confirming the proteinaceous nature of the inhibitory substance. PMID:26780898

  6. Alteration of the mode of antibacterial action of a defensin by the amino-terminal loop substitution

    International Nuclear Information System (INIS)

    Highlights: ► Al-M is an engineered fungal defensin with the n-loop of an insect defensin. ► Al-M adopts a native defensin-like structure with high antibacterial potency. ► Al-M kills bacteria through a membrane disruptive mechanism. ► This work sheds light on the functional evolution of CSαβ-type defensins. -- Abstract: Ancient invertebrate-type and classical insect-type defensins (AITDs and CITDs) are two groups of evolutionarily related antimicrobial peptides (AMPs) that adopt a conserved cysteine-stabilized α-helical and β-sheet (CSαβ) fold with a different amino-terminal loop (n-loop) size and diverse modes of antibacterial action. Although they both are identified as inhibitors of cell wall biosynthesis, only CITDs evolved membrane disruptive ability by peptide oligomerization to form pores. To understand how this occurred, we modified micasin, a fungus-derived AITDs with a non-membrane disruptive mechanism, by substituting its n-loop with that of an insect-derived CITDs. After air oxidization, the synthetic hybrid defensin (termed Al-M) was structurally identified by circular dichroism (CD) and functionally evaluated by antibacterial and membrane permeability assays and electronic microscopic observation. Results showed that Al-M folded into a native-like defensin structure, as determined by its CD spectrum that is similar to that of micasin. Al-M was highly efficacious against the Gram-positive bacterium Bacillus megaterium with a lethal concentration of 1.76 μM. As expected, in contrast to micasin, Al-M killed the bacteria through a membrane disruptive mechanism of action. The alteration in modes of action supports a key role of the n-loop extension in assembling functional surface of CITDs for membrane disruption. Our work provides mechanical evidence for evolutionary relationship between AITDs and CITDs.

  7. Alteration of the mode of antibacterial action of a defensin by the amino-terminal loop substitution

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bin [Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, 100101 Beijing (China); Zhu, Shunyi, E-mail: Zhusy@ioz.ac.cn [Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, 100101 Beijing (China)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer Al-M is an engineered fungal defensin with the n-loop of an insect defensin. Black-Right-Pointing-Pointer Al-M adopts a native defensin-like structure with high antibacterial potency. Black-Right-Pointing-Pointer Al-M kills bacteria through a membrane disruptive mechanism. Black-Right-Pointing-Pointer This work sheds light on the functional evolution of CS{alpha}{beta}-type defensins. -- Abstract: Ancient invertebrate-type and classical insect-type defensins (AITDs and CITDs) are two groups of evolutionarily related antimicrobial peptides (AMPs) that adopt a conserved cysteine-stabilized {alpha}-helical and {beta}-sheet (CS{alpha}{beta}) fold with a different amino-terminal loop (n-loop) size and diverse modes of antibacterial action. Although they both are identified as inhibitors of cell wall biosynthesis, only CITDs evolved membrane disruptive ability by peptide oligomerization to form pores. To understand how this occurred, we modified micasin, a fungus-derived AITDs with a non-membrane disruptive mechanism, by substituting its n-loop with that of an insect-derived CITDs. After air oxidization, the synthetic hybrid defensin (termed Al-M) was structurally identified by circular dichroism (CD) and functionally evaluated by antibacterial and membrane permeability assays and electronic microscopic observation. Results showed that Al-M folded into a native-like defensin structure, as determined by its CD spectrum that is similar to that of micasin. Al-M was highly efficacious against the Gram-positive bacterium Bacillus megaterium with a lethal concentration of 1.76 {mu}M. As expected, in contrast to micasin, Al-M killed the bacteria through a membrane disruptive mechanism of action. The alteration in modes of action supports a key role of the n-loop extension in assembling functional surface of CITDs for membrane disruption. Our work provides mechanical evidence for evolutionary relationship between AITDs and CITDs.

  8. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac p...... competent endocrine cells. The structurally related atrial natriuretic peptide will be mentioned where appropriate, whereas C-type natriuretic peptide will not be considered as a cardiac peptide of relevance in mammalian physiology....... characterized. An ongoing characterization of the molecular heterogeneity will help appreciate the biosynthetic capacity of the endocrine heart and could introduce new diagnostic possibilities. Notably, different biosynthetic products may not be equal markers of the same pathophysiological processes. An...... inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  9. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...... inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...... competent endocrine cells. The structurally related atrial natriuretic peptide will be mentioned where appropriate, whereas C-type natriuretic peptide will not be considered as a cardiac peptide of relevance in mammalian physiology....

  10. Antibacterial, Antifungal and Cytotoxic Activities of Tuberous Roots of Amorphophallus campanulatus

    OpenAIRE

    Khan, Alam; Rahman, Moizur; Islam, Shariful

    2007-01-01

    Antibacterial, antifungal and cytotoxic activities of ethanol extract of tuberous roots of Amorphophallus campanulatus were studied. Disc diffusion technique was used to determine in vitro antibacterial and antifungal activities. Cytotoxicity was determined against brine shrimp nauplii. In addition, minimum inhibitory concentration (MIC) was determined using serial dilution technique to determine antibacterial potency. The extract showed significant antibacterial activities against four gram-...

  11. Silver Nanoparticles as Potential Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    Gianluigi Franci

    2015-05-01

    Full Text Available Multi-drug resistance is a growing problem in the treatment of infectious diseases and the widespread use of broad-spectrum antibiotics has produced antibiotic resistance for many human bacterial pathogens. Advances in nanotechnology have opened new horizons in nanomedicine, allowing the synthesis of nanoparticles that can be assembled into complex architectures. Novel studies and technologies are devoted to understanding the mechanisms of disease for the design of new drugs, but unfortunately infectious diseases continue to be a major health burden worldwide. Since ancient times, silver was known for its anti-bacterial effects and for centuries it has been used for prevention and control of disparate infections. Currently nanotechnology and nanomaterials are fully integrated in common applications and objects that we use every day. In addition, the silver nanoparticles are attracting much interest because of their potent antibacterial activity. Many studies have also shown an important activity of silver nanoparticles against bacterial biofilms. This review aims to summarize the emerging efforts to address current challenges and solutions in the treatment of infectious diseases, particularly the use of nanosilver antimicrobials.

  12. Quaternary Ammonium Polyethyleneimine: Antibacterial Activity Ira

    International Nuclear Information System (INIS)

    Quaternary ammonium polyethyleneimine- (QA-PEI-) based nanoparticles were synthesized using two synthetic methods, reductive amination and N-alkylation. According to the first method, QA-PEI nanoparticles were synthesized by cross-linking with glutaraldehyde followed by reductive amination with octanal and further N-methylation with methyl iodide. The second method is based on crosslinking with dialkyl halide followed by N-alkylation with octyl halide and further N-methylation with methyl iodide. QA-PEI nanoparticles completely inhibited bacterial growth (>106 bacteria), including both Gram-positive, that is, Staphylococcus aureus at 80 μ/mL, and Gram-negative, that is, Escherichia coli at 320 μ/mL. Activity analysis revealed that the degree of alkylation and N-methylation of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl alkylated QA-PEI alkylated at 1 : 1 mole ratio (primary amine of PEI monomer units/alkylating agent). Also, cytotoxicity studies on MAT-LyLu and MBT cell lines were performed with QA-PEI nanoparticles. These findings confirm previous reports that poly cations bearing quaternary ammonium moieties inhibit bacterial growth in vitro and have a potential use as additives in medical devices which need antibacterial properties.

  13. Silver nanoparticles as potential antibacterial agents.

    Science.gov (United States)

    Franci, Gianluigi; Falanga, Annarita; Galdiero, Stefania; Palomba, Luciana; Rai, Mahendra; Morelli, Giancarlo; Galdiero, Massimiliano

    2015-01-01

    Multi-drug resistance is a growing problem in the treatment of infectious diseases and the widespread use of broad-spectrum antibiotics has produced antibiotic resistance for many human bacterial pathogens. Advances in nanotechnology have opened new horizons in nanomedicine, allowing the synthesis of nanoparticles that can be assembled into complex architectures. Novel studies and technologies are devoted to understanding the mechanisms of disease for the design of new drugs, but unfortunately infectious diseases continue to be a major health burden worldwide. Since ancient times, silver was known for its anti-bacterial effects and for centuries it has been used for prevention and control of disparate infections. Currently nanotechnology and nanomaterials are fully integrated in common applications and objects that we use every day. In addition, the silver nanoparticles are attracting much interest because of their potent antibacterial activity. Many studies have also shown an important activity of silver nanoparticles against bacterial biofilms. This review aims to summarize the emerging efforts to address current challenges and solutions in the treatment of infectious diseases, particularly the use of nanosilver antimicrobials. PMID:25993417

  14. Antibacterial ceramic for sandbox. Sunabayo kokin ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, K. (Ishizuka Glass Co. Ltd. Nagoya (Japan))

    1993-10-01

    Sands in sandboxes in parks have been called into question of being contaminated by colon bacilli and spawns from ascarides. This paper introduces an antibacterial ceramic for sandbox developed as a new material effective to help reduce the contamination. The ceramic uses natural sand as the main raw material, which is added with borax and silver to contain silver ions that have bacteria and fungus resistance and deodorizing effect. The ceramic has an average grain size ranging from 0.5 mm to 0.7 mm, and is so devised as to match specific gravity, grain size and shape of the sand, hence no separation and segregation can occur. The result of weatherability and antibacterial strength tests on sand for a sandbox mixed with the ceramic at 1% suggests that its efficacy lasts for about three years. Its actual use is under observation. Its efficacy has been verified in a test that measures a survival factor of spawns from dog ascardides contacted with aqueous solution containing the ceramic at 1%. Safety and sanitation tests have proved the ceramic a highly safe product that conforms to the food sanitation law. 5 refs., 3 figs., 3 tabs.

  15. Photodynamic antibacterial effect of graphene quantum dots.

    Science.gov (United States)

    Ristic, Biljana Z; Milenkovic, Marina M; Dakic, Ivana R; Todorovic-Markovic, Biljana M; Milosavljevic, Momir S; Budimir, Milica D; Paunovic, Verica G; Dramicanin, Miroslav D; Markovic, Zoran M; Trajkovic, Vladimir S

    2014-05-01

    Synthesis of new antibacterial agents is becoming increasingly important in light of the emerging antibiotic resistance. In the present study we report that electrochemically produced graphene quantum dots (GQD), a new class of carbon nanoparticles, generate reactive oxygen species when photoexcited (470 nm, 1 W), and kill two strains of pathogenic bacteria, methicillin-resistant Staphylococcus aureus and Escherichia coli. Bacterial killing was demonstrated by the reduction in number of bacterial colonies in a standard plate count method, the increase in propidium iodide uptake confirming the cell membrane damage, as well as by morphological defects visualized by atomic force microscopy. The induction of oxidative stress in bacteria exposed to photoexcited GQD was confirmed by staining with a redox-sensitive fluorochrome dihydrorhodamine 123. Neither GQD nor light exposure alone were able to cause oxidative stress and reduce the viability of bacteria. Importantly, mouse spleen cells were markedly less sensitive in the same experimental conditions, thus indicating a fairly selective antibacterial photodynamic action of GQD. PMID:24612819

  16. Five Ochna species have high antibacterial activity and more than ten antibacterial compounds

    Directory of Open Access Journals (Sweden)

    Jacobus N. Eloff

    2012-01-01

    Full Text Available New measures to control infections in humans and other animals are continuously being sought because of the increasing resistance of bacteria to antibiotics. In a wide tree screening survey of the antimicrobial activity of extracts of tree leaves (www.up.ac.za/phyto, Ochna pulchra, a small tree found widely in southern Africa, had good antibacterial activity. We therefore investigated the antibacterial activity of acetone leaf extracts of some other available Ochna spp. Antibacterial activity and the number of antibacterial compounds in acetone leaf extracts of Ochna natalitia, Ochna pretoriensis, O. pulchra, Ochna gamostigmata and Ochna serullata were determined with a tetrazolium violet serial microplate dilution assay and bioautography against Staphylococcus aureus, Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa, bacteria commonly associated with nosocomial infections. The percentage yields of the extracts varied from 2.5% to 8%. The minimum inhibitory concentrations of the five species ranged from 40 µg/mL to 1250 µg/mL. E. coli was sensitive to all the extracts. The O. pretoriensis extract was the most active with minimum inhibitory concentrations of 0.065 mg/mL and 0.039 mg/mL against E. coli and E. faecalis, respectively. The O. pretoriensis extract also had the highest total activities of 923 mL/g and 1538 mL/g, indicating that the acetone extract from 1 g of dried plant material could be diluted to 923 mL or 1538 mL and would still kill these bacteria. Based on the bioautography results, the two most active species, O. pretoriensis and O. pulchra, contained at least 10 antibacterial compounds with similar Rf values. Some of these antibacterial compounds were polar and others were non-polar. Variation in the chemical composition of the species

  17. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    Science.gov (United States)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  18. ANTIBACTERIAL ACTIVITY OF GINGER OIL AGAINST FOOD BORN PATHOGENS

    International Nuclear Information System (INIS)

    This study was carried out to investigate the antibacterial activity of ginger oil against Food Born pathogens and the effect of heating, microwave heating and gamma irradiation on microbiological quality and antibacterial activity of ginger oil. Growth and survival of A. hydrophila and L. monocytogenes in broth media and carrot juice with different concentrations of ginger oil was also studied. Gram-negative bacteria were more resistant than gram-positive bacteria. Heating at 800C for 10 min did not change the antibacterial activity of ginger oil, whereas heating at 1000C for 5 min and autoclaving at 1210C for 15 min caused slight reduction in antibacterial activity in most microorganisms tested. Heating by microwave of ginger oil destroyed its antibacterial activity against B. cereus although it still works against other microorganisms tested. The dose 6 kGy caused slight reduction in antibacterial activity of ginger oil, whereas the dose 10 kGy caused markedly reduction in antibacterial activity of ginger oil against most microorganisms tested. Ginger oil was more effective on L. monocytogenes as compared with its effect on A. hydrophila in tryptone soya broth at 40C or 250C. Supplementation of ginger oil with carrot juice was more effective on A. hydrophila and L. monocytogenes than in tryptone soya broth and this effect was increased with increasing the time of incubation and the concentration of ginger oil. These results support the notion that plant essential oils may have an important role as pharmaceuticals and food preservatives

  19. Antibacterial effects of Solanum tuberosum peel ethanol extract in vitro

    Directory of Open Access Journals (Sweden)

    Amanpour Raana

    2015-04-01

    Full Text Available Introduction: Today, medicinal plants are being widely used due to being natural, available, and cheaper than synthetic drugs and having minimum side effects. Since there were reports about the antibacterial properties of Solanum tuberosum (SE, the aim of this study was to investigate the antibacterial effects of SE ethanol extract in vitro condition on Streptococcus pyogenes, Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella pneumoniae. Methods: Ethanol extract of SE peel was prepared by maceration method. Initially, antibacterial activity of ethanol extract of SE was qualitatively determined by disk diffusion test; then, the minimum inhibitory concentration and minimum bactericidal concentration were qualitatively determined by micro-dilution method. Results: SE peel extract had antibacterial properties and its effect was more pronounced on gram-positive bacteria, especially S. aureus (0.62±0.00 mg/ml. The extract had antibacterial activity on gram-negative bacteria, P. aeruginosa, too (8.33±2.88 mg/ml. Conclusion: SE peel extract has antibacterial activity and its effect on gram-positive bacteria was more pronounced than the investigated gram-negative bacteria. Therefore, it is suggested that SE peel constituent compounds be determined and to determine the exact mechanism of its antibacterial properties, and more comprehensive research be done to apply it, clinically.

  20. Antibacterial Activity of Dental Cements Containing Quaternary Ammonium Polyethylenimine Nanoparticles

    International Nuclear Information System (INIS)

    Glass ionomer cements (GICs) are commonly used for cementing full cast crown restorations. Regrettably, although the dental cements fill the gap between the tooth and the crown, bacterial micro leakage may occur, resulting in secondary caries. As micro leakage cannot be completely prevented, GCS possessing antibacterial properties are in demand. In the present study the antibacterial activity of insoluble, cross-linked quaternary ammonium polyethylenimine (Qp) nanoparticles incorporated at 1% w/w in two clinically available GCS were studied. The antibacterial activity was tested against Streptococcus mutans and Lactobacillus casei using the direct contact test (Dct) and the agar diffusion test (Ad). Using the direct contact test, antibacterial activity (P<0.05) was found in both tested GICs with incorporated QPEI nanoparticles, the effect lasting for at least one month. However, the ADT showed no inhibition halo in the test bacteria, indicating that the antimicrobial nanoparticles do not diffuse into the agar. The results show that the incorporation of QPEI nanoparticles in glass ionomer cements has a long-lasting antibacterial effect against Streptococcus mutans and Lactobacillus casei. Changing the antibacterial properties of glass ionomer cements by incorporating QPEI antibacterial nanoparticles may prolong the clinical performance of dental crowns.

  1. Antibacterial Effect of Diclofenac Sodium on Enterococcus faecalis

    Directory of Open Access Journals (Sweden)

    Amin Salemmilani

    2013-01-01

    Full Text Available Objective: Non-steroidal anti-inflammatory drugs (NSAIDs have shown antibacterial activity in some recent studies. The aim of this study was to evaluate the antibacterial effect of diclofenac against Enterococcus faecalis (E. faecalis as a resistant endodontic bacterium in comparison with ibuprofen, calcium hydroxide and amoxicillin.Materials and Methods: The antibacterial activity of materials was evaluated using agar diffusion test and tube dilution method. Mixtures of 400 mg/ml of materials were prepared. The bacteria were seeded on 10 Muller-Hinton agar culture plates. Thirty microliter of each test material was placed in each well punched in agar plates. After incubation, the zone of bacterial inhibition was measured. Minimum inhibitory concentration (MIC of the test materials was determined by agar dilution method. One-way Analysis of Variance (ANOVA followed by Sidak post hoc test was used to compare the mean zone of microbial growth in the groups.Results: There were significant differences between the two groups (p< 0.05. Results of the agar diffusion test showed that antibiotics (amoxicillin, gentamycin had the greatest antibacterial activity followed by NSAIDs (ibuprofen, diclofenac. Ca(OH2 failed to show antibacterial activity. Diclofenac and ibuprofen showed distinct antibacterial activity against E. faecalis in 50 µg/ml and above concentrations.Conclusion: Within the limitations of this in vitro study, it is concluded that diclofenac and ibuprofen have significantly more pronounced antibacterial activity against E. faecalis in comparison with Ca(OH2.

  2. Antibacterial kaolinite/urea/chlorhexidine nanocomposites: Experiment and molecular modelling

    International Nuclear Information System (INIS)

    Clay minerals are commonly used materials in pharmaceutical production both as inorganic carriers or active agents. The purpose of this study is the preparation and characterization of clay/antibacterial drug hybrids which can be further included in drug delivery systems for treatment oral infections. Novel nanocomposites with antibacterial properties were successfully prepared by ion exchange reaction from two types of kaolinite/urea intercalates and chlorhexidine diacetate. Intercalation compounds of kaolinite were prepared by reaction with solid urea in the absence of solvents (dry method) as well as with urea aqueous solution (wet method). The antibacterial activity of two prepared samples against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa was evaluated by finding the minimum inhibitory concentration (MIC). Antibacterial studies of both samples showed the lowest MIC values (0.01%, w/v) after 1 day against E. faecalis, E. coli and S. aureus. A slightly worse antibacterial activity was observed against P. aeruginosa (MIC 0.12%, w/v) after 1 day. Since samples showed very good antibacterial activity, especially after 1 day of action, this means that these samples can be used as long-acting antibacterial materials. Prepared samples were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The experimental data are supported by results of molecular modelling.

  3. Antibacterial kaolinite/urea/chlorhexidine nanocomposites: Experiment and molecular modelling

    Energy Technology Data Exchange (ETDEWEB)

    Holešová, Sylva, E-mail: sylva.holesova@vsb.cz [Nanotechnology Centre, VŠB – Technical University of Ostrava, 17.listopadu 15/2172, CZ-708 33 Ostrava, Poruba (Czech Republic); IT4Innovations Centre of Excellence, VŠB – Technical University of Ostrava, 17.listopadu 15/2172, CZ-708 33 Ostrava, Poruba (Czech Republic); Valášková, Marta; Hlaváč, Dominik [Nanotechnology Centre, VŠB – Technical University of Ostrava, 17.listopadu 15/2172, CZ-708 33 Ostrava, Poruba (Czech Republic); IT4Innovations Centre of Excellence, VŠB – Technical University of Ostrava, 17.listopadu 15/2172, CZ-708 33 Ostrava, Poruba (Czech Republic); Madejová, Jana [Institute of Inorganic Chemistry, SAS, Dúbravská cesta 9, SK-845 36 Bratislava (Slovakia); Samlíková, Magda; Tokarský, Jonáš [Nanotechnology Centre, VŠB – Technical University of Ostrava, 17.listopadu 15/2172, CZ-708 33 Ostrava, Poruba (Czech Republic); IT4Innovations Centre of Excellence, VŠB – Technical University of Ostrava, 17.listopadu 15/2172, CZ-708 33 Ostrava, Poruba (Czech Republic); Pazdziora, Erich [Institute of Public Health Ostrava, Centre of Clinical Laboratories, Partyzánské náměstí 7, CZ-702 00 Ostrava (Czech Republic)

    2014-06-01

    Clay minerals are commonly used materials in pharmaceutical production both as inorganic carriers or active agents. The purpose of this study is the preparation and characterization of clay/antibacterial drug hybrids which can be further included in drug delivery systems for treatment oral infections. Novel nanocomposites with antibacterial properties were successfully prepared by ion exchange reaction from two types of kaolinite/urea intercalates and chlorhexidine diacetate. Intercalation compounds of kaolinite were prepared by reaction with solid urea in the absence of solvents (dry method) as well as with urea aqueous solution (wet method). The antibacterial activity of two prepared samples against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa was evaluated by finding the minimum inhibitory concentration (MIC). Antibacterial studies of both samples showed the lowest MIC values (0.01%, w/v) after 1 day against E. faecalis, E. coli and S. aureus. A slightly worse antibacterial activity was observed against P. aeruginosa (MIC 0.12%, w/v) after 1 day. Since samples showed very good antibacterial activity, especially after 1 day of action, this means that these samples can be used as long-acting antibacterial materials. Prepared samples were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The experimental data are supported by results of molecular modelling.

  4. Peptide iodination on phenylalanine residues

    International Nuclear Information System (INIS)

    Peptide labelling with radioactive isotopes is always a compromise between peptide chemistry, labelling chemistry, and biological receptor tolerance. Therefore new ways for isotope introduction are always useful. The present contribution describes the introduction of iodine isotopes onto synthetic polypeptides by means of the Gattermann/ Sandmeyer reactions. Peptides containing the nitrophenylalanyl residue are reduced to the corresponding aminophenylalanyl, diazolized to the diazonium phenylalanyl peptide and converted to the iodophenylalanyl peptide in the presence of copper. Two examples are presented: angiotensin II and enkephalin. In both cases, the iodophenylalanyl residue is well accepted by the biological target. (author). 13 refs.; 4 figs

  5. CCL28 involvement in mucosal tissues protection as a chemokine and as an antibacterial peptide.

    Science.gov (United States)

    Berri, Mustapha; Virlogeux-Payant, Isabelle; Chevaleyre, Claire; Melo, Sandrine; Zanello, Galliano; Salmon, Henri; Meurens, François

    2014-06-01

    CCL28 chemokine is expressed by epithelial cells of various mucosal tissues. This chemokine binds to CCR3 and CCR10 receptors and plays an essential role in the IgA antibody secreting cells (IgA-ASC) homing to mucosal surfaces and to lactating mammary gland as well. In addition, CCL28 has been shown to exert a potent antimicrobial activity against both Gram-negative and Gram-positive bacteria and fungi. Using the pig model, we investigated the expression of both CCR10 and CCR3 receptors in a large panel of mucosal tissues. RT-PCR analysis revealed the expression of CCR3 and CCR10 mRNA in salivary glands, nasal mucosae, Peyer's patches, small and large intestine, suggesting the presence of leucocytes expressing these receptors within these tissues. CCR10 mRNA was observed in sow mammary gland at late gestation with an increasing level during lactation. Recombinant porcine CCL28 protein was produced and mass spectrometry analysis revealed antimicrobial chemokines features such as a high pI value (10.2) and a C-terminal highly positively-charged region. Using a viable count assay, we showed that CCL28 displayed antimicrobial activity against enteric pathogens and was effective in killing Salmonella serotypes Dublin and Choleraesuis, enteroinvasive Escherichia coli K88 and non-pathogenic E. Coli K12. The potent antimicrobial function of CCL28 combined with its wide distribution in mucosal tissues and secretions suggest that this protein plays an important role in innate immune protection of the epithelial surfaces. PMID:24445014

  6. Radiolabelled peptides for oncological diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Boerman, Otto C.; Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Queen Mary University of London, Centre for Molecular Oncology, Barts Cancer Institute, London (United Kingdom)

    2012-02-15

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The {sup 111}In-labelled somatostatin analogue octreotide (OctreoScan trademark) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours. (orig.)

  7. Exopolysacharides from White Rot Fungi and Their Antibacterial Studies

    Directory of Open Access Journals (Sweden)

    V. Pranitha

    2016-06-01

    Full Text Available In current investigation exopolysacharides are produced from the Trametes sp. and antibacterial activity of exopolysaccharides (EPS was studied. The antibacterial effect of EPS was observed that they were most effective against gram-positive bacteria, especially B. subtilis and S.aureaus with a zone of inhibition 24 mm and 28 mm, respectively, at a concentration of 80 mg/ml. Moreover, with the increasing concentration, the EPS showed significant increase in antibacterial activity. The activity was lowest in the inhibition of gram-negative bacterium, E. coli and P aerogenosa at a low concentration whose inhibition zones are between 5 to 15mm.

  8. Synthesis and antibacterial properties of copper nanoparticles for Salmonella typhi

    Science.gov (United States)

    Jaiswal, Anamika; Gaherwal, S.; Lodhi, Pavitra Devi; Singh, Jaiveer; Kaurav, Netram; Shrivastava, M. M. P.

    2016-05-01

    In this study, the antibacterial properties of Cu nanoparitcles (Cu-NPs) were investigated against Salmonella typhi. The Cu-NPs were prepared by the reduction of cupper acetate with the help of ethylene glycol (EG), then sample was characterized by XRD for its average particle size identification. The antibacterial activity assessed by well diffusion and disc diffusion method on different concentration of nanoparticles. It was found that these Cu-NPs showed antibacterial activity in form of zone inhibition, wherein, zone of inhibition increased with increase in concentration of Cu-NPs.

  9. AKTIVITAS ANTIBAKTERI DAN ANTIOKSIDAN HIDROLISAT HASIL HIDROLISIS PROTEIN SUSU KAMBING DENGAN EKSTRAK KASAR BROMELIN [Antibacterial and Antioxidant Activity of Hydrolysate from Goat Milk Protein Hydrolized by Crude Bromelain Extract

    Directory of Open Access Journals (Sweden)

    Eni Kusumaningtyas

    2015-12-01

    Full Text Available Goat milk is highly nutritious foodstuffs that beneficial for improving health. The milk contains bioactive peptides which produced by hydrolysis process. The aim of this study was to evaluate antibacterial and antioxidant activities of hydrolisate produced from hydrolysis of goat milk protein by crude bromelain extract. Hydrolysis of goat milk protein was conducted using crude bromelain (0.1 U/mL at pH 6, 50°C for 60 min. Hydrolysate was fractionated by using membrane molecular weight cut off 10 kDa. hydrolysate before and after fractionation were assayed for antibacterial and antioxidant activities. Toxicity of the Hydrolysate was determined by hemolysis assay. The result showed that the hydrolysate before and after fractionation inhibited growth of E. coli, S. Typhimurium and L. monocytogenes. Hydrolysate after fractionation has higher antibacterial activity indicated that fractionation was able to improve antibacterial activities of the hydrolysate fraction. The hydrolysate showed scavenging activity to ABTS and DPPH radicals. Fraction 10 kDa not only showed absence of hemolysis but also they were able to reduce autolysis of red blood cells. The result showed that hydrolysate from goat milk hydrolyzed by bromelain were able to be antibacterial and antioxidant.

  10. Addition of antibacterial agents to MMA-TBB dentin bonding systems--influence on tensile bond strength and antibacterial effect.

    Science.gov (United States)

    Kudou, Y; Obara, K; Kawashima, T; Kubota, M; Abe, S; Endo, T; Komatsu, M; Okuda, R

    2000-03-01

    To produce a bonding system which has both high bond strength and antibacterial properties, an antibacterial agent (vancomycin: VCM or metronidazol: MN) was added to the PMMA powder of 4-META/MMA-TBB resin (CB). The influence of the addition of an antibacterial agent on tensile bond strength to dentin and the antibacterial effect were investigated in this study. Forty-seven freshly extracted bovine first or second incisors were used to measure the tensile bond strength to dentin. The bond strengths to bovine dentin were not significantly decreased by addition of VCM (1%, 2%, 5%), or MN (1%) to CB (p diffusion method, analyzing the appearance of the inhibition zone around a resin disk following anaerobic culturing. The resin disks containing VCM showed antibacterial effects on all of the strains examined; the widths of the inhibition zones were 4-15 mm. The resin disks containing MN showed antibacterial effects on three strains; the widths of the inhibition zones were 0-4 mm. It was thus possible to produce a bonding system with both antibacterial effect and high tensile bond strength by addition of VCM to PMMA powder. PMID:11219091

  11. Design, Synthesis, Molecular Docking, and Antibacterial Evaluation of Some Novel Flouroquinolone Derivatives as Potent Antibacterial Agent

    Directory of Open Access Journals (Sweden)

    Mehul M. Patel

    2014-01-01

    Full Text Available Objective. Quinolone moiety is an important class of nitrogen containing heterocycles widely used as key building blocks for medicinal agents. It exhibits a wide spectrum of pharmacophores and has bactericidal, antiviral, antimalarial, and anticancer activities. In view of the reported antimicrobial activity of various fluoroquinolones, the importance of the C-7 substituents is that they exhibit potent antimicrobial activities. Our objective was to synthesize newer quinolone analogues with increasing bulk at C-7 position of the main 6-fluoroquinolone scaffold to produce the target compounds which have potent antimicrobial activity. Methods. A novel series of 1-ethyl-6-fluoro-4-oxo-7-{4-[2-(4-substituted phenyl-2-(substituted-ethyl]-1-piperazinyl}-1,4-dihydroquinoline-3-carboxylic acid derivatives were synthesized. To understand the interaction of binding sites with bacterial protein receptor, the docking study was performed using topoisomerase II DNA gyrase enzymes (PDB ID: 2XCT by Schrodinger’s Maestro program. In vitro antibacterial activity of the synthesized compounds was studied and the MIC value was calculated by the broth dilution method. Results. Among all the synthesized compounds, some compounds showed potent antimicrobial activity. The compound 8g exhibited good antibacterial activity. Conclusion. This investigation identified the potent antibacterial agents against certain infections.

  12. Mechanisms and consequences of bacterial resistance to antimicrobial peptides.

    Science.gov (United States)

    Andersson, D I; Hughes, D; Kubicek-Sutherland, J Z

    2016-05-01

    Cationic antimicrobial peptides (AMPs) are an intrinsic part of the human innate immune system. Over 100 different human AMPs are known to exhibit broad-spectrum antibacterial activity. Because of the increased frequency of resistance to conventional antibiotics there is an interest in developing AMPs as an alternative antibacterial therapy. Several cationic peptides that are derivatives of AMPs from the human innate immune system are currently in clinical development. There are also ongoing clinical studies aimed at modulating the expression of AMPs to boost the human innate immune response. In this review we discuss the potential problems associated with these therapeutic approaches. There is considerable experimental data describing mechanisms by which bacteria can develop resistance to AMPs. As for any type of drug resistance, the rate by which AMP resistance would emerge and spread in a population of bacteria in a natural setting will be determined by a complex interplay of several different factors, including the mutation supply rate, the fitness of the resistant mutant at different AMP concentrations, and the strength of the selective pressure. Several studies have already shown that AMP-resistant bacterial mutants display broad cross-resistance to a variety of AMPs with different structures and modes of action. Therefore, routine clinical administration of AMPs to treat bacterial infections may select for resistant bacterial pathogens capable of better evading the innate immune system. The ramifications of therapeutic levels of exposure on the development of AMP resistance and bacterial pathogenesis are not yet understood. This is something that needs to be carefully studied and monitored if AMPs are used in clinical settings. PMID:27180309

  13. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  14. Antibacterial properties of composite UHMWPE/ surfaces

    Science.gov (United States)

    Delle Side, D.; Nassisi, V.; Giuffreda, E.; Velardi, L.; Alifano, P.; Talà, A.; Tredici, S. M.

    2014-10-01

    Due to the diffusion of severe pathogens, everyday life is exposed to the risks of contracting severe diseases. For this reason, efficient antimicrobial surfaces are of paramount importance. In this work we present the first evidences of a new technique to obtain an antibacterial ultra high molecular weight polyethylene based on a non-stoichiometric, visible light responsive, titanium oxide coating. The coating was obtained through a process in which titanium ions, resulting from laser ablation of a corresponding target, were accelerated and implanted on the samples. The samples were tested against a Staphylococcus aureus strain, in order to assay their antimicrobial efficacy. Results show that this treatment strongly discourages bacterial colonization of the treated surfaces.

  15. Cationic nanofibrillar cellulose with high antibacterial properties.

    Science.gov (United States)

    Chaker, Achraf; Boufi, Sami

    2015-10-20

    Cationic nanofibrillar cellulose (C-NFC) has been prepared via a high pressure homogenization using quaternized cellulose fibers with glycidyltrimethylammonium chloride. It has been shown that the quaternization of dried softwood pulp facilitated the defibrillation processes and prevented clogging of the homogenizer. The effects of the trimethylammonium chloride content on the fibrillation yield, the transparency degree of the gel, the rheological behavior of the NFC suspension and their electrokinetic properties were investigated. AFM observation showed that the NFC suspension consisted of individualized cellulose I nanofibrils 4-5nm in width and length in the micronic scale. In addition to their strong reinforcing potential, the inclusion of C-NFC into a polymer matrix was shown to efficiently enhance the antibacterial activity. The reinforcing potential of C-NFC, studied by dynamic mechanical analysis (DMA), was compared to anionic NFC and the difference was explained in terms of the nanofibrils capacities to build up a strong networks held by hydrogen bonding. PMID:26256179

  16. Antimicrobial peptides in crustaceans

    OpenAIRE

    RD Rosa; MA Barracco

    2010-01-01

    Crustaceans are a large and diverse invertebrate animal group that mounts a complex and efficient innate immune response against a variety of microorganisms. The crustacean immune system is primarily related to cellular responses and the production and release of important immune effectors into the hemolymph. Antimicrobial proteins and/or peptides (AMPs) are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, 15 distinct AMP fam...

  17. Antibacterial coating on polymer for space application

    Energy Technology Data Exchange (ETDEWEB)

    Balagna, Cristina, E-mail: cristina.balagna@polito.it [Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Perero, Sergio; Ferraris, Sara; Miola, Marta [Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Fucale, Giacomo [Chemical, Clinical and Microbiological Analyses Department C.T.O., Via G. Zuretti 29, 10126 Torino (Italy); Manfredotti, Chiara; Battiato, Alfio [Physics Department, Centre of Excellence ' Nanostructured Interfaces and Surfaces' and CNISM, University of Torino, Via P. Giuria 1, 10125 Torino (Italy); Santella, Daniela [Thales Alenia Space - Italia, Space Infrastructures and Transportation, Engineering - Advanced Projects Unit, Strada Antica di Collegno 253, 10146 Torino (Italy); Verne, Enrica [Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Vittone, Ettore [Physics Department, Centre of Excellence ' Nanostructured Interfaces and Surfaces' and CNISM, University of Torino, Via P. Giuria 1, 10125 Torino (Italy); Ferraris, Monica [Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2012-08-15

    The microbiological contamination on board of spacecraft and orbital stations is a relevant problem in prolonged space exploration. For this purpose, an antibacterial silver nanocluster silica composite coating was deposited on a commercial polymer Combitherm{sup Registered-Sign }, suitable for aerospace application, using the radio frequency (RF) co-sputtering technique. The presence of metallic silver nanoclusters and silica was confirmed by energy dispersion spectrometry (EDS), x-ray photoelectron spectroscopy (XPS) and localized surface plasmon resonance (LSPR) detected through UV-visible absorption spectrophotometry (UV-Vis). The atomic force microscope (AFM) evidenced the coating morphology. The slight hydrophobicity of both coated and uncoated samples was revealed through the contact angle measurement. The antimicrobial behavior was verified through evaluation of the inhibition halo against several bacterial and fungal species. The coating enhanced the Combitherm{sup Registered-Sign} nano-hardness and its resistance to tensile and perforation tests; the coating wear resistance was measured by abrasion test against Kevlar. A folding procedure on the coated Combitherm{sup Registered-Sign} and storage in air for three months was also carried out without deterioration of the measured properties. The coating deposition did not influence the air permeability of Combitherm{sup Registered-Sign }. -- Highlights: Black-Right-Pointing-Pointer A silver nanocluster silica composite coating was deposited on a polymeric film. Black-Right-Pointing-Pointer A co-sputtering technique was used for the coating deposition. Black-Right-Pointing-Pointer The coating induced an antibacterial effect on the polymer film. Black-Right-Pointing-Pointer The coating improved the nano-hardness and the resistance to tensile and perforation.

  18. Antibacterial activity of aquatic gliding bacteria.

    Science.gov (United States)

    Sangnoi, Yutthapong; Anantapong, Theerasak; Kanjana-Opas, Akkharawit

    2016-01-01

    The study aimed to screen and isolate strains of freshwater aquatic gliding bacteria, and to investigate their antibacterial activity against seven common pathogenic bacteria. Submerged specimens were collected and isolated for aquatic gliding bacteria using four different isolation media (DW, MA, SAP2, and Vy/2). Gliding bacteria identification was performed by 16S rRNA gene sequencing and phylogenetic analysis. Crude extracts were obtained by methanol extraction. Antibacterial activity against seven pathogenic bacteria was examined by agar-well diffusion assay. Five strains of aquatic gliding bacteria including RPD001, RPD008, RPD018, RPD027 and RPD049 were isolated. Each submerged biofilm and plastic specimen provided two isolates of gliding bacteria, whereas plant debris gave only one isolate. Two strains of gliding bacteria were obtained from each DW and Vy/2 isolation medium, while one strain was obtained from the SAP2 medium. Gliding bacteria strains RPD001, RPD008 and RPD018 were identified as Flavobacterium anhuiense with 96, 82 and 96 % similarity, respectively. Strains RPD049 and RPD027 were identified as F. johnsoniae and Lysobacter brunescens, respectively, with similarity equal to 96 %. Only crude extract obtained from RPD001 inhibited growth of Listeria monocytogenes (MIC 150 µg/ml), Staphylococcus aureus (MIC 75 µg/ml) and Vibrio cholerae (MIC 300 µg/ml), but showed weak inhibitory effect on Salmonella typhimurium (MIC > 300 µg/ml). Gliding bacterium strain RPD008 should be considered to a novel genus separate from Flavobacterium due to its low similarity value. Crude extract produced by RPD001 showed potential for development as a broad antibiotic agent. PMID:26885469

  19. [Brain natriuretic peptide].

    Science.gov (United States)

    La Villa, G; Lazzeri, C; Fronzaroli, C; Franchi, F; Gentilini, P

    1995-01-01

    Brain natriuretic peptide (BNP) is a cardiac hormone with a spectrum of activities quite similar to those of atrial natriuretic peptide (ANP), including diuretic, natriuretic, hypotensive and smooth muscle relaxant activities. These effects are due to the stimulation of guanylate cyclase-linked natriuretic peptide receptors, leading to an increase in cyclic GMP concentration in target cells. BNP has a lower affinity than ANP for C (clearance) receptors, and is less susceptible to degradation by neutral endopeptidase-24.11, resulting in a longer half-life. In the kidney, BNP increases the glomerular filtration rate and inhibits sodium reabsorption in the distal tubule. It also inhibits the release of renin and aldosterone. Unlike ANP, produced by the atria, BNP is mainly synthesized and released into circulation by the left ventricle and is therefore influenced by stimuli involving this cardiac chamber, such as an increase in arterial pressure, left ventricular hypertrophy and dilation. Plasma BNP levels are very low in healthy subjects, and respond modestly, although significantly to physiological stimuli such as changes in posture or sodium intake. In contrast, plasma BNP concentrations increase in disease states such as cirrhosis with ascites, hypertension, chronic renal failure, acute myocardial infarction and congestive heart failure. In the latter condition, plasma BNP concentration is a reliable prognostic index. Evidence obtained by administering BNP to healthy subjects and hypertensive patients suggests that BNP, at physiological and pathophysiological plasma concentrations, markedly influences cardiovascular homeostasis, mainly due to its effects on sodium excretion and the renin-aldosterone axis. PMID:8718658

  20. Antibacterial Constituents of Hainan Morinda citrifolia (Noni) Leaves.

    Science.gov (United States)

    Zhang, Wei-Min; Wang, Wei; Zhang, Jing-Jing; Wang, Zhi-Rong; Wang, Yu; Hao, Wang-Jun; Huang, Wu-Yang

    2016-05-01

    Noni (Morinda citrifolia L.) is an edible and medicinal plant distributed in Hainan, China. The antibacterial activities of the extracts of water (WE), petroleum ether (PEE), ethyl acetate (EAE), chloroform (CE), and n-butanol (BE) were assayed by the disk diffusion method. The results showed that the extracts from Noni leaves possessed antibacterial effects against Bacillus subtilis, Escherichia coli, Proteus vulgaris, and Staphylococcus aureus. Among 5 different extracts, the BE produced the best antibacterial activity. The samples were first extracted by ethanol, and the primary compounds in the BE fraction of ethanol extract was further isolated and identified. Six phenolic compounds, including 5, 15-dimethylmorindol, ferulic acid, p-hydroxycinamic acid, methyl 4-hydroxybenzoate, methyl ferulate, and methyl 4-hydroxycinnamate, were identifiedby NMR. The results indicated that the phenolic compounds might significantly contribute to antibacterial activities of Noni leaves. PMID:27074391

  1. Synthesis, characterization and antibacterial activity of new fluorescent chitosan derivatives

    Czech Academy of Sciences Publication Activity Database

    Přichystalová, H.; Almonasy, N.; Abdel-Mohsen, A. M.; Abdel-Rahman, R. M.; Fouda, M. M. G.; Vojtova, L.; Kobera, Libor; Spotz, Z.; Burgert, L.; Jancar, J.

    2014-01-01

    Roč. 65, April (2014), s. 234-240. ISSN 0141-8130 Institutional support: RVO:61389013 Keywords : chitosan derivatives * fluorescence * antibacterial activity Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.858, year: 2014

  2. Study on Microstructure and Nanomechanics Properties of Antibacterial Bone China

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhenyu; Li Hongqi; Zhang Jin; Zhou Hongxiu; Wang Lijuan; Zhang Taihua

    2004-01-01

    Fracture appearance, surface and nanomechanics properties of antibacterial ceramics contairing rare earth phosphate composite antibacterial materials were characterized and measured by SEM, AFM and Nanoindenter, respectively. Results show that grain of fracture surface of antibacterial ceramics grows uniform refinement topography of bubble break-up appears at the surface, which is flat and has liquid character, by adding the phosphate composite containing rare earth, nevertheless needle-like crystal and granular outgrowth form at fracture surface and surface of common ceramics, respectively. Young's modulus of antibacterial ceramic film is 74. 397 GPa and hardness is 8. 134 GPa, which increses by 4.4% and 1.6% comparing with common ceramics, respectively. Loading curves of two kind of ceramics have obvious nonlinear character under 700 nm and linear character between 700 ~ 1000 nm, and unloading curve have obvious linear character.

  3. Antibacterial Activity of Nigella sativa L. Seed Extracts

    Directory of Open Access Journals (Sweden)

    T.V. Suresh Kumar

    2010-11-01

    Full Text Available Most of the bacterial pathogens are resistant to existing synthetic antibacterial agents demanding an increasing effort to seek effective phytochemicals as antibacterial agents against such pathogens. Nigella sativa L. (black cumin seeds play an important role in folk medicine and some of its major constituents are reported to be pharmacologically active. In this present work, black cumin seed extracts were obtained using supercritical carbon dioxide (SCCO2 and conventional soxtec extraction using various organic solvents. The antibacterial activities of the extracts were investigated by the agar dilution method against Gram-positive bacteria (Bacillus cereus F 4810 and Staphylococcus aureus FRI 722 and Gram-negative bacteria (Escherichia coli MTCC 108 and Yersinia enterocolitica MTCC 859. SCCO2-1 (120 bar/40ºC extract showed effective growth inhibition than conventional solvent extracts against all the tested bacteria. Further the antibacterial principle present in the extract was isolated and characterized found to be thymoquinone.

  4. Utilization of Anting-Anting (Acalypha indica) Leaves as Antibacterial

    Science.gov (United States)

    Batubara, Irmanida; Wahyuni, Wulan Tri; Firdaus, Imam

    2016-01-01

    Anting-anting (Acalypha indica) plants is a species of plant having catkin type of inflorescence. This research aims to utilize anting-anting as antibacterial toward Streptococcus mutans and degradation of biofilm on teeth. Anting-anting leaves were extracted by maceration technique using methanol, chloroform, and n-hexane. Antibacterial and biofilm degradation assays were performed using microdilution technique with 96 well. n-Hexane extracts of anting-anting leaves gave the best antibacterial potency with minimum inhibitory concentration and minimum bactericidal concentration value of 500 μg/mL and exhibited good biofilm degradation activity. Fraction of F3 obtained from fractionation of n-hexane's extract with column chromatography was a potential for degradation of biofilm with IC50 value of 56.82 μg/mL. Alkaloid was suggested as antibacterial and degradation of biofilm in the active fraction.

  5. Alkalization is responsible for antibacterial effects of corroding magnesium.

    Science.gov (United States)

    Rahim, Muhammad Imran; Eifler, Rainer; Rais, Bushra; Mueller, Peter P

    2015-11-01

    Magnesium alloys are presently investigated as potential medical implant materials for temporary applications. Magnesium has been reported to have antibacterial activities and could therefore be used to prevent antibiotic treatment-resistant bacterial implant infections. For characterizing the effects of magnesium on infectious bacteria, bioluminescent S. aureus or P. aeruginosa were employed. The proliferation of both types of bacteria was suppressed in the presence of metallic magnesium and also in aqueous magnesium corrosion extracts. Of the two soluble corrosion products, magnesium ions were well tolerated while antibacterial activities correlated with increased pH levels of the supernatants. The alkaline pH alone was sufficient for the antibacterial effects which were completely abolished when the pH of the corrosion supernatants was neutralized. These results demonstrate that pH increases are necessary and sufficient for the antibacterial activity of metallic magnesium. In an animal model magnesium implants showed an enhanced but variable resistance to bacterial colonization. PMID:25974048

  6. Antibacterial potential of three seagrasses against human pathogens

    Institute of Scientific and Technical Information of China (English)

    Rajasekaran Arumugam; Perumal Anantharaman

    2010-01-01

    Objective:To evaluate the antibacterial activity ofHalophila stipulacea (H. stipulacea), Cymodocea serrulata (C. serrulata) andHalodule pinifolia (H. pinifolia) against seven human bacterial pathogens.Methods:The antibacterial activities of the extracts on the various test organisms using disc diffusion method and Minimum Inhibitory Concentraction(MIC).Results:Methanol and chloroform extracts of all the three seagrasses were active against all the tested pathogens, whereas the hexane extract of seagrasses was not active againstStaphylococcus aureus (S. aureus). Antibacterial activity of three seagrass screened, was in the order ofH. pinifolia >H. stipulacea>C. serrulata.Conclusions: This antibacterial studies can further investigated on seagrasses for purification of bioactive substance and its possible utility in disease control.

  7. Antibacterial properties of palladium nanostructures sputtered on polyethylene naphthalate

    Czech Academy of Sciences Publication Activity Database

    Polívková, M.; Válová, M.; Siegel, J.; Rimpelová, S.; Hubáček, Tomáš; Lyutakov, O.; Švorčík, V.

    2015-01-01

    Roč. 5, č. 90 (2015), s. 73767-73774. ISSN 2046-2069 Institutional support: RVO:60077344 Keywords : polymer * palladium sputtering * annealing * nanostructure * antibacterial effect Subject RIV: CA - Inorganic Chemistry Impact factor: 3.840, year: 2014

  8. Accurate Peptide Fragment Mass Analysis: Multiplexed Peptide Identification and Quantification

    OpenAIRE

    Weisbrod, Chad R.; Eng, Jimmy K.; Hoopmann, Michael R.; Baker, Tahmina; Bruce, James E.

    2012-01-01

    FT All Reaction Monitoring (FT-ARM) is a novel approach for the identification and quantification of peptides that relies upon the selectivity of high mass accuracy data and the specificity of peptide fragmentation patterns. An FT-ARM experiment involves continuous, data-independent, high mass accuracy MS/MS acquisition spanning a defined m/z range. Custom software was developed to search peptides against the multiplexed fragmentation spectra by comparing theoretical or empirical fragment ion...

  9. ANTIBACTERIAL ACTIVITY OF LEAF EXTRACT OF Abutilon indicum.

    Science.gov (United States)

    Poonkothai, M

    2006-07-01

    Chloroform, ethanol and aqueous extracts of the leaves of Abutilon indicum were investigated for antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi. Among the various extracts, maximum antibacterial activity was exhibited by ethanol extract (14, 25, 14, 25, 17, 18 mm) followed by chloroform extract (13, 17, 8, 15, 15, 20 mm) while aqueous extract, showed no activity. PMID:22557222

  10. ANTIBACTERIAL ACTIVITY OF LEAF EXTRACT OF Abutilon indicum

    OpenAIRE

    Poonkothai, M.

    2006-01-01

    Chloroform, ethanol and aqueous extracts of the leaves of Abutilon indicum were investigated for antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi. Among the various extracts, maximum antibacterial activity was exhibited by ethanol extract (14, 25, 14, 25, 17, 18 mm) followed by chloroform extract (13, 17, 8, 15, 15, 20 mm) while aqueous extract, showed no activity.

  11. An evaluation of antibacterial activities of Psidium guajava (L.)

    OpenAIRE

    Neviton Rogério Sanches; Diógenes Aparício Garcia Cortez; Michelle Simone Schiavini; Celso Vataru Nakamura; Benedito Prado Dias Filho

    2005-01-01

    The present study was designated to evaluate the antibacterial activities of aqueous and ethanol:water extracts from leaves, roots and stem bark of Psidium guajava L. The antibacterial activities of the extracts against bacteria were tested by using both microdilution assay. The aqueous extracts of P. guajava leaves, roots and stem bark were active against the gram-positive bacteria Staphylococcus aureus (MICs=500, 125 and 250 µg/ml, respectively) and Bacillus subtilis (MICs=500 µg/ml), and v...

  12. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae

    OpenAIRE

    Peng, Lianci; Kang, Shuai; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Li, Zhengwen; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Ye, Gang; Yin, Lizi; Shi, Fei; Lv, Cheng

    2015-01-01

    The antibacterial activity and mechanism of berberine against Streptococcus agalactiae were investigated in this study by analyzing the growth, morphology and protein of the S. agalactiae cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against Streptococcus agalactiae was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, t...

  13. Cost-effectiveness and Pricing of Antibacterial Drugs

    OpenAIRE

    VERHOEF, T. I.; Morris, S

    2014-01-01

    Growing resistance to antibacterial agents has increased the need for the development of new drugs to treat bacterial infections. Given increasing pressure on limited health budgets, it is important to study the cost-effectiveness of these drugs, as well as their safety and efficacy, to find out whether or not they provide value for money and should be reimbursed. In this article, we systematically reviewed 38 cost-effectiveness analyses of new antibacterial agents. Most studies showed the ne...

  14. Novel Benzosuberone Derivatives:Synthesis, Characterization and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    J. Venkateswara Rao

    2015-12-01

    Full Text Available The synthesis of novel amide derivatives of benzosuberone 7a-j from commercially available benzosuberone was successfully achieved in six steps. Some of the important reactions that are involved in the synthesis are (i insertion of methylester (ii Suzki reaction and (iii saponification followed by amide bond formation. The newly synthesis benzosuberone derivatives 7a-j were screened for antibacterial activity and the results indicated that in general, benzosuberone derivatives with R = piperazine ring showed good antibacterial activity.

  15. Antibacterial Activity of Garlic Extract Against some Pathogenic Animal Bacteria

    OpenAIRE

    M. Safithri; M. Bintang; M. Poeloengan

    2011-01-01

    The antimicrobial activity of garlic extract against Gram-positive and Gram-negative bacterial isolates was well studied. However, reports on antibacterial activity of garlic extract against some pathogenic bacteria in animals in Indonesia, are still limited. Therefore, the aim of this study was to evaluate the antibacterial activity of water and ethanol extracts of garlic against Salmonella typhimurium in chickens, and Streptococcus agalactie, Escherichia coli, and Staphylococcus aureus caus...

  16. Nanosize MgO as antibacterial agent: preparation and characteristics

    OpenAIRE

    Zhen-Xing Tang; Xiu-Juan Fang; Zhi-Liang Zhang; Ting Zhou; Xin-Yi Zhang; Lu-E Shi

    2012-01-01

    The antibacterial activity of MgO nanoparticles prepared by a sonication method was evaluated in this paper. The effect of calcination conditions on the size and antibacterial activity of MgO nanoparticles was investigated. MgO nanoparticles were characterized for purity (TGA), crystallinity and crystal size (XRD), particle size and morphology (TEM) and surface area (BET). Results showed that the smallest size of 6 nm could be obtained. The lethal effects of nanocrystalline MgO were evaluated...

  17. ISOLATION OF ANTIBACTERIAL COMPOUND FROM MARINE SOIL ACTINOMYCETES

    OpenAIRE

    2012-01-01

    The antibacterial study revealed that the isolated marine soil actinomycetes by crowded plate method and was identified by MIDI Advance technology (gas chromatographic) method and Thus, the microbes were identified according to their fatty acid sequences. The actinomycetes species were identified as Streptomyces rimosus, Streptomyces fradiae, and Streptomyces griseoflavus and the antibacterial assay was carried out by well diffusion method. Out of these only Streptomyces rimosus having high a...

  18. PRODUCTION OF ANTIBACTERIAL FILTER PAPER FROM WOOD CELLULOSE

    OpenAIRE

    Reza Imani; Mohammad Talaiepour; Joydeep Dutta; Mohammad R. Ghobadinezhad; Amir H. Hemmasi; Mousa M. Nazhad

    2011-01-01

    Paper has a visible market-share in hygiene products either in the form of personal hygiene or as food packaging. The designation “hygiene”, though it suggests cleanliness, does not imply antibacterial properties; rather it can be stated that hygiene products do not initiate microorganism growth. Antibacterial products could restrict propagation of pathogenic bacteria either by holding bacteria or by trapping and neutralizing them. Most research in this field has been conducted using textile ...

  19. Emerging trends in the discovery of natural product antibacterials

    DEFF Research Database (Denmark)

    Bologa, Cristian G; Ursu, Oleg; Oprea, Tudor;

    2013-01-01

    mechanisms. Special emphasis is given to the strengths, weaknesses, and opportunities in the natural product antibacterial drug discovery arena, and to emerging applications driven by advances in bioinformatics, chemical biology, and synthetic biology in concert with exploiting bacterial phenotypes. These...... efforts have identified a critical mass of natural product antibacterial lead compounds and discovery technologies with high probability of successful implementation against emerging bacterial pathogens....

  20. Preparation of Antibacterial Nanofibre/Nanoparticle Covered Composite Yarns

    OpenAIRE

    Fatma Yalcinkaya; Michal Komarek; Daniela Lubasova; Filip Sanetrnik; Jiri Maryska

    2016-01-01

    The antibacterial efficiency of nanofibre composite yarns with an immobilized antibacterial agent was tested. This novel type of nanofibrous composite material combines the good mechanical properties of the core yarn with the high specific surface of the nanofibre shell to gain specific targeted qualities. The main advantages of nanofibre covered composite yarns over the standard planar nanofibre membranes include high tensile strength, a high production rate, and their ability to be processe...

  1. Graphene Oxide Reinforced Polylactic Acid/Polyurethane Antibacterial Composites

    OpenAIRE

    Xiaoli An; Haibin Ma; Bin Liu; Jizeng Wang

    2013-01-01

    Nanocomposites from PLA/PU containing small concentrations of graphene oxide (GO) were prepared by simple liquid-phase mixing followed by casting. The as-prepared ternary PLA/PU/GO composite films exhibited good antibacterial activity against the gram-positive Staphylococcus aureus and the gram-negative Escherichia coli, due to the excellent antibacterial property of GO sheets with high specific surface area. The addition of GO inhibited the attachment and proliferation of microbes on the fil...

  2. Induced Dwarf Mutant in Catharanthus roseus with Enhanced Antibacterial Activity

    OpenAIRE

    Verma, A.K.; Singh, R R

    2010-01-01

    Evaluation of an ethyl methane sulphonate-induced dwarf mutant of Catharanthus roseus (L.) G. Don revealed that the mutant exhibited marked variation in morphometric parameters. The in vitro antibacterial activity of the aqueous and alcoholic leaf extracts of the mutant and control plants was investigated against medically important bacteria. The mutant leaf extracts showed enhanced antibacterial activity against all the tested bacteria except Bacillus subtilis.

  3. Induced dwarf mutant in Catharanthus roseus with enhanced antibacterial activity

    Directory of Open Access Journals (Sweden)

    Verma A

    2010-01-01

    Full Text Available Evaluation of an ethyl methane sulphonate-induced dwarf mutant of Catharanthus roseus (L. G. Don revealed that the mutant exhibited marked variation in morphometric parameters. The in vitro antibacterial activity of the aqueous and alcoholic leaf extracts of the mutant and control plants was investigated against medically important bacteria. The mutant leaf extracts showed enhanced antibacterial activity against all the tested bacteria except Bacillus subtilis.

  4. Induced Dwarf Mutant in Catharanthus roseus with Enhanced Antibacterial Activity

    Science.gov (United States)

    Verma, A. K.; Singh, R. R.

    2010-01-01

    Evaluation of an ethyl methane sulphonate-induced dwarf mutant of Catharanthus roseus (L.) G. Don revealed that the mutant exhibited marked variation in morphometric parameters. The in vitro antibacterial activity of the aqueous and alcoholic leaf extracts of the mutant and control plants was investigated against medically important bacteria. The mutant leaf extracts showed enhanced antibacterial activity against all the tested bacteria except Bacillus subtilis. PMID:21695004

  5. [Bases of the antibacterial effect of beta lactam antibiotics].

    Science.gov (United States)

    Hof, H

    1991-12-01

    The primary antibacterial effect of betalactam antibiotics is due to the inhibition of cell-wall synthesis. Prerequisites for good antibacterial activity of such an antibiotic are --rapid penetration across the bacterial cell wall, --strong binding to the proper targets in the cytoplasmic membrane, i.e. the penicillin-binding proteins, --resistance to betalactamases which may be produced by the bacterial cell. PMID:1802833

  6. An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II.

    Science.gov (United States)

    Hasper, Hester E; Kramer, Naomi E; Smith, James L; Hillman, J D; Zachariah, Cherian; Kuipers, Oscar P; de Kruijff, Ben; Breukink, Eefjan

    2006-09-15

    Lantibiotics are polycyclic peptides containing unusual amino acids, which have binding specificity for bacterial cells, targeting the bacterial cell wall component lipid II to form pores and thereby lyse the cells. Yet several members of these lipid II-targeted lantibiotics are too short to be able to span the lipid bilayer and cannot form pores, but somehow they maintain their antibacterial efficacy. We describe an alternative mechanism by which members of the lantibiotic family kill Gram-positive bacteria by removing lipid II from the cell division site (or septum) and thus block cell wall synthesis. PMID:16973881

  7. JBIR-78 and JBIR-95: phenylacetylated peptides isolated from Kibdelosporangium sp. AK-AA56.

    Science.gov (United States)

    Izumikawa, Miho; Takagi, Motoki; Shin-Ya, Kazuo

    2012-02-24

    The search for metabolites of Kibdelosporangium sp. AK-AA56 resulted in the discovery of novel N-phenylacetylated peptides, JBIR-78 (1) and JBIR-95 (2). Compounds 1 and 2 were established to be N-phenylacetylated heptapeptides by extensive NMR and HRESIMS analyses. The absolute configuration of the standard amino acids including a cysteic acid moiety was determined using Marfey's method on the acid hydrolysates of 1 and 2. The relative and absolute configurations of a nonstandard amino acid, β-hydroxyleucine, were elucidated using the J-based and modified Mosher's methods, respectively. In an antimicrobial test, 1 showed antibacterial activity against Micrococcus luteus. PMID:22264203

  8. Isolation and partial purification of antimicrobial peptides/proteins from dung beetle, Onthophagus taurus immune hemolymph

    International Nuclear Information System (INIS)

    Antimicrobial peptides are important in the first line of the host defense system of all insect species. In the present study antimicrobial peptide(s) were isolated from the hemolymph of the dung beetle Onthophagus taurus. Both non induced and immune induced hemolymphs were tested for their antimicrobial activity against different bacterial strains and C. albicans. Induction was done by injecting E. coli into the abdominal cavity of the O. taurus. The non induced hemolymph did not show activity against any of the tested fungal and bacterial strains where as induced hemolymph showed activity against all tested bacterial strains but no activity against C. albicans. The induced hemolymph was subjected to non reducing SDS-PAGE and UV wavelength scan was performed to detect the presence of peptides. The immune induced hemolymph was purified by gel filtration chromatography to separate the proteins responsible for the antibacterial activity. The fractions within the peak were tested against those bacteria which previously showed sensitivity to the crude immune induced hemolymph. All fractions were found to be active against all tested bacteria with difference in zone of inhibition. The peptides are active against prokaryotes and not against eukaryotes. These properties reveal its unique characteristics and therapeutic application. (author)

  9. ISOLATION AND PARTIAL PURIFICATION OF ANTIMICROBIAL PEPTIDES/PROTEINS FROM DUNG BEETLE, ONTHOPHAGUS TAURUS IMMUNE HEMOLYMPH

    Directory of Open Access Journals (Sweden)

    Vasanth Patil H.B

    2013-06-01

    Full Text Available Antimicrobial peptides are important in the first line of the host defense system of all insect species. In the present study antimicrobial peptide(s were isolated from the hemolymph of the dung beetle Onthophagus taurus. Both non induced and immune induced hemolymphs were tested for their antimicrobial activity against different bacterial strains and C. albicans. Induction was done by injecting E. coli into the abdominal cavity of the O. taurus. The non induced hemolymph did not show activity against any of the tested fungal and bacterial strains where as induced hemolymph showed activity against all tested bacterial strains but no activity against C. albicans. The induced hemolymph was subjected to non reducing SDS-PAGE and UV wavelength scan was performed to detect the presence of peptides. The immune induced hemolymph was purified by gel filtration chromatography to separate the proteins responsible for the antibacterial activity. The fractions within the peak were tested against those bacteria which previously showed sensitivity to the crude immune induced hemolymph. All fractions were found to be active against all tested bacteria with difference in zone of inhibition. The peptides are active against prokaryotes & not against eukaryotes. These properties reveal its unique characteristics and therapeutic application.

  10. Antibacterial effect of zinc oxide nanoparticles combined with ultrasound

    International Nuclear Information System (INIS)

    Using Staphylococcus aureus (S. aureus), the present study investigated the antibacterial effect of ZnO nanoparticles both in the absence and presence of ultrasound stimulation. While the antibacterial effect of control nanoparticle chemistries (Al2O3) alone was either weak or unobservable under the conditions tested, the antibacterial effect of ZnO alone was significant, providing over a four log reduction (equivalent to antibiotics) compared to no treatment after just 8 h. The antibacterial effect was enhanced as ZnO particle diameter decreased. Specifically, when testing the antibacterial effect against bacteria populations relevant to infection, a 500 μg ml−1 dose of zinc oxide nanoparticles with a diameter of 20 nm reduced S. aureus populations by four orders of magnitude after 8 and 24 h, compared to control groups with no nanoparticles. This was accomplished without the use of antibiotics, to which bacteria are developing a resistance anyway. The addition of ultrasound stimulation further reduced the number of viable colony-forming units present in a planktonic cell suspension by 76% compared to nanoparticles alone. Lastly, this study provided a mechanism for how ZnO nanoparticles in the presence of ultrasound decrease bacteria functions by demonstrating greater hydrogen peroxide generation by S. aureus compared to controls. These results indicated that small-diameter ZnO nanoparticles exhibited strong antibacterial properties that can be additionally enhanced in the presence of ultrasound and, thus, should be further studied for a wide range of medical device anti-infection applications. (paper)

  11. Antibacterial properties of modified biodegradable PHB non-woven fabric.

    Science.gov (United States)

    Slepička, P; Malá, Z; Rimpelová, S; Švorčík, V

    2016-08-01

    The antibacterial properties of poly(hydroxybutyrate) (PHB) non-woven fabric were explored in this study. The PHB was activated by plasma modification and subsequently processed with either immersion into a solution of nanoparticles or direct metallization. The wettability and surface chemistry of the PHB surface was determined. The thickness of the sputtered nanolayer on PHB fabric was characterized. It was found that plasma modification led to a formation of strongly hydrophilic surface, while the subsequent metallization by silver or gold resulted in a significantly increased water contact angle. Further, it was found that antibacterial activity may be controlled by the type of a metal and deposition method used. The immersion of plasma modified fabric into Ag nanoparticle solution led to enhanced antibacterial efficiency of PHB against Escherichia coli (E. coli). Direct silver sputtering on PHB fabric was proved to be a simple method for construction of a surface with strong antibacterial potency against both Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis). We demonstrated the antibacterial activity of PHB fabric modified by plasma activation and consecutive selection of a treatment method for an effective antibacterial surface construction. PMID:27157763

  12. Synthesis and antibacterial activity of some Schiff base complexes

    Directory of Open Access Journals (Sweden)

    R. NAIR

    2006-07-01

    Full Text Available Two Schiff bases were synthesized from raceacetophenone: 1 ADS1: 4-ethyl-6-{(E-1-[(3-nitrophenylimino]ethyl}benzene-1,3-diol and 2 ADS3: 4-ethyl-6-{(E-1-[(2-nitrophenylimino]ethyl}benzene-1,3-diol. Then their metal complexes were formed. The metals selected for the preparation of complexes were copper, nickel, iron and zinc. Hence, in total 8 metal complexes were synthesized and screened for antibacterial activity against some clinically important bacteria, such as Pseudomonas aeruginosa, Proteus vulgaris, Proteus mirabilis, Klebsiella pneumoniae and Staphylococcus aureus. The in vitro antibacterial activity was determined by the Agar Ditch technique using DMF (polar and 1,4-dioxane (non polar as solvents. The Schiff bases showed greater activity than theirmetal complexes; themetal complexes showed differential effects on the bacterial strains investigated and the solvent used, suggesting that the antibacterial activity is dependent on the molecular structure of the compound, the solvent used and the bacterial strain under consideration. The Schiff base ADS3 in the polar solvent DMF showed better antibacterial activity towards the investigated bacterial strains. Amongst the four metals, Zn showed the best antibacterial activity followed by Fe in 1,4-dioxane while Ni followed by Zn and Fe showed the best antibacterial activity in DMF. P. vulgaris was the most resistant bacteria.

  13. NCAM Mimetic Peptides: An Update

    DEFF Research Database (Denmark)

    Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    pharmacological tools interfering with NCAM functions. Recent progress in our understanding of the structural basis of NCAM-mediated cell adhesion and signaling has allowed a structure-based design of NCAM mimetic peptides. Using this approach a number of peptides termed P2, P1-B, P-3-DE and P-3-G, whose...... sequences contain one or several NCAM homophilic binding sites involved in NCAM binding to itself, have been identified. By means of NMR titration analysis and molecular modeling a number of peptides derived from NCAM and targeting NCAM heterophilic ligands such as the fibroblast growth factor receptor and...... heparan sulfate proteoglycans (HSPG) have been identified. The FGL, dekaCAM, FRM/EncaminA, BCL, EncaminC and EncaminE peptides all target the FGF receptor whereas the heparin binding peptide HBP targets HSPG. Moreover, a number of NCAM binding peptides have been identified employing screening of...

  14. Identification, phylogenetic analysis and expression profile of an anionic insect defensin gene, with antibacterial activity, from bacterial-challenged cotton leafworm, Spodoptera littoralis

    OpenAIRE

    Seufi AlaaEddeen M; Hafez Elsayed E; Galal Fatma H

    2011-01-01

    Abstract Background Defensins are a well known family of cationic antibacterial peptides (AMPs) isolated from fungi, plants, insects, mussels, birds, and various mammals. They are predominantly active against gram (+) bacteria, and a few of them are also active against gram (-) bacteria and fungi. All insect defensins belonging to the invertebrate class have a consensus motif, C-X5-16-C-X3-C-X9-10-C-X4-7-CX1-C. Only seven AMPs have already been found in different lepidopteran species. No repo...

  15. The PeptideAtlas Project

    OpenAIRE

    Deutsch, Eric W.

    2010-01-01

    PeptideAtlas is a multi-species compendium of peptides observed with tandem mass spectrometry methods. Raw mass spectrometer output files are collected from the community and reprocessed through a uniform analysis and validation pipeline that continues to advance. The results are loaded into a database and the information derived from the raw data is returned to the community via several web-based data exploration tools. The PeptideAtlas resource is useful for experiment planning, improving g...

  16. Human Antimicrobial Peptides and Proteins

    OpenAIRE

    Guangshun Wang

    2014-01-01

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified ...

  17. Improving Peptide Applications Using Nanotechnology.

    Science.gov (United States)

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology. PMID:26279082

  18. Peptides that influence membrane topology

    Science.gov (United States)

    Wong, Gerard C. L.

    2014-03-01

    We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)

  19. Antibacterial substance from mucus of a scleractinian coral,Symphyllia gigantea

    Institute of Scientific and Technical Information of China (English)

    CHEN Guohua; HUANG Liangmin; TAN Yehui; YIN Jianqiang; WANG Hankui; HUANG Hui; ZOU Kun; LI Ruiping

    2007-01-01

    Coral mucus covers the surface of coral and contains antibacterial substances as a first line of defense. Coral mucus not only enables the coral itself to resist disease, but also provides antibacterial agents for people. We collected mucus from a scleractinian coral (Symphyllia gigantea) at Sta. Sanya (China), then extracted the antibacterial substances using 10% glacial acetic acid with the help of antiprotease inhibitors, and tested the antibacterial activity by a terrestrial bacterium (Staphylococcus aurevs) and a marine bacterium (Vibrio anguillarum). The result showed that, there were antibacterial agents in the mucus, and their antibacterial activities were lost by treatment of the sample at 90 °C water for 10 min.

  20. Preparation of cellulose fibres with antibacterial Ag-loading nano-SiO2

    Indian Academy of Sciences (India)

    Wang Shuhua; Niu Runlin; Jia Husheng; Wei Liqiao; Daijinming; Liu Xuguang; Xu Bingshe

    2011-07-01

    The antibacterial cellulose fibres with acrylamide polymerization and Ag-loading SiO2 nanoantibacterial materials were successfully prepared. The chemical structures and morphologies of antibacterial cellulose fibres were characterized by Fourier transformation infrared spectrum (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results showed that acrylamide was adsorbed on the surface of the cellulose fibres and formed a layer with thickness of 50–100 nm. The nano-SiO2 composite antibacterial materials were combined with cellulose fibres firmly by infiltrating into polyacrylamide layer about 100 nm. The antibacterial cellulose fibres with antibacterial layer owned excellent antibacterial effect.

  1. Polyclonal Peptide Antisera.

    Science.gov (United States)

    Pihl, Tina H; Illigen, Kristin E; Houen, Gunnar

    2015-01-01

    Polyclonal antibodies are relatively easy to produce and may supplement monoclonal antibodies for some applications or even have some advantages. The choice of species for production of (peptide) antisera is based on practical considerations, including availability of immunogen (vaccine) and animals. Two major factors govern the production of antisera: the nature of adaptive immune responses, which take place over days/weeks and ethical guidelines for animal welfare. Here, simple procedures for immunization of mice, rabbits, sheep, goats, pigs, horses, and chickens are presented. PMID:26424267

  2. The Antibacterial Effect of American Cockroach Hemolymph on the Nosocomial Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Latifi

    2015-01-01

    Full Text Available Background Insects are able to recognize many pathogenic microorganisms and defend against them due to their long evolutionary history. Due to the development of resistance to synthetic antibiotics, researchers are trying to apply insect immune-derived products. Objectives The current study aimed to investigate the antibacterial effect of the American cockroach (Periplaneta americana hemolymph on susceptible and resistant strains of nosocomial bacteria. Materials and Methods To stimulate adult cockroaches' immune system, Escherichia coli cells were injected. The antimicrobial effect of the extracted induced and non-induced hemolymph was assayed on many susceptible and resistant pathogenic bacteria. Results The comparison of antimicrobial effects of the induced and non-induced hemolymph strains showed that about 43% of bacteria were sensitive to induced hemolymph (P < 0.001, whereas non-induced hemolymph showed no inhibitory effect on the bacteria. Also, evaluation of induced hemolymph effect on the types of strains showed that induced hemolymph affected about 75% of the susceptible bacterial strains (P < 0.001; whereas, it did not affect the resistant strains. Among the tested bacteria, ceftazidime-sensitive E. coli and methicillin-sensitive Staphylococcus aureus showed sensitivity to the induced hemolymph (P < 0.001. Conclusions The study results showed that stimulation of the American cockroach’s immunity system lead to production of antibacterial proteins and peptides which had inhibitory effect on the bacteria, depending on the bacterial strains and their sensitivity. Likely this feature of insects can be used as therapeutic strategies to produce natural antimicrobial compounds against the pathogenic bacteria.

  3. Chemical Composition and Antibacterial Effects of

    Directory of Open Access Journals (Sweden)

    SS Saei Dehkordi

    2009-10-01

    Full Text Available Introduction & Objective: Rosmarinus officinalis L. as a member of the Lamiaceae family and lysozyme as a natural antibacterial agent is important in food microbiology, because of its characteristics. The aim of the present study was to determine the chemical composition and anti-listerial activity of Rosmarinus officinalis essential oil (REO alone and in combination with lysozyme for enhancement of anti-listerial activity of both substances. Materials & Methods: Rosmarinus officinalis L. was purchased from a local grocery store at Shahrekord and was identified by the Institute of Medicinal Plants, ACECR. The air-dried aerial parts were subjected to hydrodistillation using a Clevenger apparatus to obtain essential oil and yielded oil was analyzed by GC/MS. Antibacterial activity (on basis of Minimum Inhibitory Concentration (MIC of REO was studied separately and in combination with unheated lysozyme (L and heat-treated lysozyme (HTL on Listeria monocytogenes at different pH (5, 6 and 7 by a micro-broth dilution assay. The collected data were analyzed by SPSS software. Results: In the current study, 98.05% of constituents of the essential oil were identified. The major components were α-pinene (14.06%, 1,8-cineole (13.62%, verbenone (11.2%, camphor (10.51%, borneol (7.3%, 3-octanone (7.02%, camphene (5.46% and linalool (5.07%. The inhibitory action of REO was stronger at lower pH especially 5 (MIC=225 μg/mL. Inhibition by L at pH 5 was 640 μg/mL but no inhibition was seen at pH 7. HTL resulted in more effective inhibition than L, especially at pH 5 and heat-treatment 80˚C (MIC: 160 μg/mL. Conclusion: Combination of L + REO and particularly HTL + REO was led to enhancement of bacterial inhibition. It was concluded that REO by the identified chemical composition was effective alone or in combination with L or HTL on Listeria monocytogenes as a food-borne pathogen.

  4. In vitro activity of naturally occurring peptides (defensins against Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Nascimento Maria da Graça F.

    1994-01-01

    Full Text Available Autoclaved distilled water samples were inoculated with L. monocytogenes strain V7 and strain VPH-1, and incubated aerobically, at 30 C for 48 hours. Each strain was tested individually, and growth curves were determined at 1, 2, 3, 4, 5, 21, 24, and 48 hours. The growth or survival of L. monocytogenes was similar for both strains, with survivors at 24 hour-incubation. The microbicidal activity of one synthetic cationic peptide (NP-2 was examined against L. monocytogenes strain V7, in a water system. Antibacterial activity of NP-2 (1, 5, and 10 g/ml was best expressed at 60 minute-incubation, with 10 g/ml of peptide, at 30 C.

  5. Isolation and Characterization of a Defensin-Like Peptide (Coprisin from the Dung Beetle, Copris tripartitus

    Directory of Open Access Journals (Sweden)

    Jae-Sam Hwang

    2009-01-01

    analysis showed that Coprisin mRNA was up-regulated from 4 hours after bacteria injection and its expression level was reached a peak at 16 hours. The deduced amino acid sequence of Coprisin was composed of 80 amino acids with a predicted molecular weight of 8.6 kDa and a pI of 8.7. The amino acid sequence of mature Coprisin was found to be 79.1% and 67.4% identical to those of defensin-like peptides of Anomala cuprea and Allomyrina dichotoma, respectively. We also investigated active sequences of Coprisin by using amino acid modification. The result showed that the 9-mer peptide, LLCIALRKK-NH2, exhibited potent antibacterial activities against Escherichia coli and Staphylococcus aureus.

  6. Antimicrobial Activity of Lactoferrin-Related Peptides and Applications in Human and Veterinary Medicine.

    Science.gov (United States)

    Bruni, Natascia; Capucchio, Maria Teresa; Biasibetti, Elena; Pessione, Enrica; Cirrincione, Simona; Giraudo, Leonardo; Corona, Antonio; Dosio, Franco

    2016-01-01

    Antimicrobial peptides (AMPs) represent a vast array of molecules produced by virtually all living organisms as natural barriers against infection. Among AMP sources, an interesting class regards the food-derived bioactive agents. The whey protein lactoferrin (Lf) is an iron-binding glycoprotein that plays a significant role in the innate immune system, and is considered as an important host defense molecule. In search for novel antimicrobial agents, Lf offers a new source with potential pharmaceutical applications. The Lf-derived peptides Lf(1-11), lactoferricin (Lfcin) and lactoferrampin exhibit interesting and more potent antimicrobial actions than intact protein. Particularly, Lfcin has demonstrated strong antibacterial, anti-fungal and antiparasitic activity with promising applications both in human and veterinary diseases (from ocular infections to osteo-articular, gastrointestinal and dermatological diseases). PMID:27294909

  7. Elucidation of sevadicin, a novel non-ribosomal peptide secondary metabolite produced by the honey bee pathogenic bacterium Paenibacillus larvae.

    Science.gov (United States)

    Garcia-Gonzalez, Eva; Müller, Sebastian; Ensle, Paul; Süssmuth, Roderich D; Genersch, Elke

    2014-05-01

    American foulbrood (AFB) caused by the bee pathogenic bacterium Paenibacillus larvae is the most devastating bacterial disease of honey bees worldwide. From AFB-dead larvae, pure cultures of P. larvae can normally be cultivated indicating that P. larvae is able to defend its niche against all other bacteria present. Recently, comparative genome analysis within the species P. larvae suggested the presence of gene clusters coding for multi-enzyme complexes, such as non-ribosomal peptide synthetases (NRPSs). The products of these enzyme complexes are known to have a wide range of biological activities including antibacterial activities. We here present our results on antibacterial activity exhibited by vegetative P. larvae and the identification and analysis of a novel antibacterially active P. larvae tripeptide (called sevadicin; Sev) produced by a NRPS encoded by a gene cluster found in the genome of P. larvae. Identification of Sev was ultimately achieved by comparing the secretome of wild-type P. larvae with knockout mutants of P. larvae lacking production of Sev. Subsequent mass spectrometric studies, enantiomer analytics and chemical synthesis revealed the sequence and configuration of the tripeptide, D-Phe-D-ALa-Trp, which was shown to have antibacterial activity. The relevance of our findings is discussed in respect to host-pathogen interactions. PMID:25118351

  8. Antibacterial effects of several current orthodontic materials against Streptococcus mutans.

    Science.gov (United States)

    Catalbaş, B; Kamak, H; Demir, A; Nur, M; Hadimli, H H

    2012-11-01

    The aim of this study was to examine the antibacterial effect of several current orthodontic materials against a certain oral bacterium. The antibacterial activities of six orthodontic composite resins (Transbond LR, Light Cure Retainer (LCR), Light Bond, System 1+, Kurasper F, Transbond XT adhesive), two orthodontic bonding materials (Transbond XT primer and System 1+ activator) and two glass ionomer cements (GIC) [Multicure Glass Ionomer and Ketac Cem GIC] were evaluated against Streptococcus mutans. The hard materials were put into the Teflon mould. The liquid materials were put on a paper disc. All materials were handled under aseptic conditions and placed on agar culture plates. All plates were incubated at 5% CO2 and 37 degrees C for 48 hours. The bacterial growth inhibition zones including the diameter of the sample were measured in millimetres. As a result of this study, the multicure GIC showed the highest antibacterial effectiveness, but no inhibition zones were noted for ketac cem GIC. The light bond adhesive of the Reliance orthodontic bonding system produced high antibacterial effect against S mutans, while the Reliance composite (LCR) did not show any antibacterial effect (p < 0.05). Both composite and primer of the transbond XT system demonstrated significant antibacterial effect against the test bacterium when compared to transbond LR (p < 0.05). Among the materials tested, kurasper F, Ormco system 1+ and system 1+ activator showed slight or no inhibitory effect against the test bacterium in this study In patients who have relatively high salivary levels of Streptococci mutans before treatment, the multicure GIC, the Reliance light bond adhesive, and transbond XT system which had high level antibacterial properties could be applied. PMID:23757904

  9. Preparation, Characterization and Antibacterial Property of Cerium Substituted Hydroxyapatite Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Lin Yingguang; Yang Zhuoru; Cheng Jiang

    2007-01-01

    Nanoparticles of hydroxyapatite (HAP) and cerium substituted hydroxyapatite (CeHAP) with the atomic ratio of Ce/[Ca+Ce] (xCe) from 0 to 0.2 were prepared by sol-gel-supercritical fluid drying (SCFD) method. The nanoparticles were characterized by TEM, XRD, and FT-IR, and the effects of cerium on crystal structure, crystallinity, and particle shape were discussed. With the tests of bacterial inhibition zone and antibacterial ratio, the antibacterial property of HAP and CeHAP nanoparticles on Escherichia coli, Staphylococcus aureus, Lactobacillus were researched. Results showed that the nanoparticles of HAP and CeHAP could be made by sol-gel-SCFD, cerium could partially substitute for calcium and enter the structure of HAP. After substitution, the crystallinity, the IR wavenumbers of bonds in CeHAP decreased gradually with increase of cerium substitution, and the morphology of the nanoparticles changed from the short rod-shaped HAP to the needle-shaped CeHAP. The nanoparticles of HAP and CeHAP with xCe below 0.08 had antibacterial property only forcibly contacting with the test bacteria at the test concentration of 0.1 g·ml-1, however, the CeHAP nanoparticles had antibacterial ability at that concentration no matter statically or dynamically contacting with the test bacteria when xCe was above 0.08, and the antibacterial ability gets better with the increase of xCe, indicating that the antibacterial property was improved after calcium was partially substituted by cerium. The improved antibacterial effects of CeHAP nanoparticle on Lactobacillus showed its potential ability to anticaries.

  10. Distinct Signaling Cascades Elicited by Different Formyl Peptide Receptor 2 (FPR2 Agonists

    Directory of Open Access Journals (Sweden)

    Fabio Cattaneo

    2013-04-01

    Full Text Available The formyl peptide receptor 2 (FPR2 is a remarkably versatile transmembrane protein belonging to the G-protein coupled receptor (GPCR family. FPR2 is activated by an array of ligands, which include structurally unrelated lipids and peptide/proteins agonists, resulting in different intracellular responses in a ligand-specific fashion. In addition to the anti-inflammatory lipid, lipoxin A4, several other endogenous agonists also bind FPR2, including serum amyloid A, glucocorticoid-induced annexin 1, urokinase and its receptor, suggesting that the activation of FPR2 may result in potent pro- or anti-inflammatory responses. Other endogenous ligands, also present in biological samples, include resolvins, amyloidogenic proteins, such as beta amyloid (Aβ-42 and prion protein (Prp106–126, the neuroprotective peptide, humanin, antibacterial peptides, annexin 1-derived peptides, chemokine variants, the neuropeptides, vasoactive intestinal peptide (VIP and pituitary adenylate cyclase activating polypeptide (PACAP-27, and mitochondrial peptides. Upon activation, intracellular domains of FPR2 mediate signaling to G-proteins, which trigger several agonist-dependent signal transduction pathways, including activation of phospholipase C (PLC, protein kinase C (PKC isoforms, the phosphoinositide 3-kinase (PI3K/protein kinase B (Akt pathway, the mitogen-activated protein kinase (MAPK pathway, p38MAPK, as well as the phosphorylation of cytosolic tyrosine kinases, tyrosine kinase receptor transactivation, phosphorylation and nuclear translocation of regulatory transcriptional factors, release of calcium and production of oxidants. FPR2 is an attractive therapeutic target, because of its involvement in a range of normal physiological processes and pathological diseases. Here, we review and discuss the most significant findings on the intracellular pathways and on the cross-communication between FPR2 and tyrosine kinase receptors triggered by different FPR2

  11. Silver adducts of four-branched histidine rich peptides exhibit synergistic antifungal activity.

    Science.gov (United States)

    Leng, Qixin; Woodle, Martin C; Liu, Yijia; Mixson, A James

    2016-09-01

    Previously, a four branched histidine-lysine rich peptide, H3K4b, was shown to demonstrate selective antifungal activity with minimal antibacterial activity. Due to the potential breakdown from proteases, H3K4b was further evaluated in the current study by varying the D- and l-amino acid content in its branches. Whereas analogues of H3K4b that selectively replaced l-amino acids (H3k4b, h3K4b) had improved antifungal activity, the all d-amino acid analogue, h3k4b, had reduced activity, suggesting that partial breakdown of the peptide may be necessary. Moreover, because histidines form coordination bonds with the silver ion, we examined whether silver adducts can be formed with these branched histidine-lysine peptides, which may improve antifungal activity. For Candida albicans, the silver adduct of h3K4b or H3k4b reduced the MIC compared to peptide and silver ions alone by 4- and 5-fold, respectively. For Aspergillus fumigatus, the silver adducts showed even greater enhancement of activity. Although the silver adducts of H3k4b or h3K4b showed synergistic activity, the silver adduct with the all l-amino acid H3K4b surprisingly showed the greatest synergistic and growth inhibition of A. fumigatus: the silver adduct of H3K4b reduced the MIC compared to the peptide and silver ions alone by 30- and 26-fold, respectively. Consistent with these antifungal efficacy results, marked increases in free oxygen radicals were produced with the H3K4b and silver combination. These studies suggest that there is a balance between stability and breakdown for optimal antifungal activity of the peptide alone and for the peptide-silver adduct. PMID:27387239

  12. Phytosulfokine peptide signalling.

    Science.gov (United States)

    Sauter, Margret

    2015-08-01

    Phytosulfokine (PSK) belongs to the group of plant peptide growth factors. It is a disulfated pentapeptide encoded by precursor genes that are ubiquitously present in higher plants, suggestive of universal functions. Processing of the preproprotein involves sulfonylation by a tyrosylprotein sulfotransferase in the trans-golgi and proteolytic cleavage in the apoplast. The secreted peptide is perceived at the cell surface by a membrane-bound receptor kinase of the leucine-rich repeat family. The PSK receptor PSKR1 from Arabidopsis thaliana is an active kinase and has guanylate cyclase activity resulting in dual-signal outputs. Receptor activity is regulated by calmodulin. While PSK may be an autocrine growth factor, it also acts non-cell autonomously by promoting growth of cells that are receptor-deficient. In planta, PSK has multiple functions. It promotes cell growth, acts in the quiescent centre cells of the root apical meristem, contributes to funicular pollen tube guidance, and differentially alters immune responses depending on the pathogen. It has been suggested that PSK integrates growth and defence signals to balance the competing metabolic costs of these responses. This review summarizes our current understanding of PSK synthesis, signalling, and activity. PMID:25754406

  13. Therapeutic potential of cationic steroid antibacterials.

    Science.gov (United States)

    Salmi, Chanaz; Brunel, Jean M

    2007-08-01

    Antibiotics were one of the great health successes of the 20th century. Antibiotics, both naturally derived and synthetic, have resulted in huge decreases in both morbidity and mortality from bacterial infections. As a consequence, the 'antibiotic age' has changed public expectations about the results of infectious disease. However, this has led to high levels of inappropriate prescribing, where antibiotics may be administered to fulfil patient expectations rather than for clinical benefit. Along with unwise uses in agriculture and elsewhere, this has contributed to recent rises in numbers of antibiotic-resistant bacteria. As a result, many commentators have described this as the end of the antibiotic age and the term 'superbug' has entered the common vocabulary for multi-drug-resistant bacteria such as vancomycin-resistant Enterococcus, multi-drug-resistant Staphylococcus aureus and multi-drug-resistant Pseudomonas aeruginosa. In this context, an attractive approach for the development of antibacterial agents is the use of a new class of cationic steroidal compounds mimicking polymyxin activities. The permeabilization properties of these agents of the outer membranes of Gram-negative bacteria are reported in this review, as well as a discussion of literature results. PMID:17685865

  14. Antibacterial titanium surfaces for medical implants.

    Science.gov (United States)

    Ferraris, S; Spriano, S

    2016-04-01

    Bacterial contamination is a critical problem in different fields (ranging from everyday life to space missions, and from medicine to biosensing). Specifically, in the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. These problems can in turn lead to the necessity of a prolonged antibiotic therapy (which can last for years) and eventually to the removal of the device, with a consequent significant increase in the hospitalization times and costs, together with a stressful, painful and critical situation for the patient. Commercially pure titanium and its alloys are the most commonly used materials for permanent implants in contact with bone, and the prevention of infections on their surface is therefore a crucial challenge for orthopaedic and dental surgeons. The problem of the bacterial contamination of medical implants is briefly described in the first part of the present review. Then the most important inorganic antibacterial agents (Ag, Cu and Zn) are described, and this is followed by a review of the reported attempts of their introduction onto the surface of Ti-based substrates. PMID:26838926

  15. Mechanism of antibacterial activity of copper nanoparticles

    International Nuclear Information System (INIS)

    In a previous communication, we reported a new method of synthesis of stable metallic copper nanoparticles (Cu-NPs), which had high potency for bacterial cell filamentation and cell killing. The present study deals with the mechanism of filament formation and antibacterial roles of Cu-NPs in E. coli cells. Our results demonstrate that NP-mediated dissipation of cell membrane potential was the probable reason for the formation of cell filaments. On the other hand, Cu-NPs were found to cause multiple toxic effects such as generation of reactive oxygen species, lipid peroxidation, protein oxidation and DNA degradation in E. coli cells. In vitro interaction between plasmid pUC19 DNA and Cu-NPs showed that the degradation of DNA was highly inhibited in the presence of the divalent metal ion chelator EDTA, which indicated a positive role of Cu2+ ions in the degradation process. Moreover, the fast destabilization, i.e. the reduction in size, of NPs in the presence of EDTA led us to propose that the nascent Cu ions liberated from the NP surface were responsible for higher reactivity of the Cu-NPs than the equivalent amount of its precursor CuCl2; the nascent ions were generated from the oxidation of metallic NPs when they were in the vicinity of agents, namely cells, biomolecules or medium components, to be reduced simultaneously. (paper)

  16. Antibacterial Effect of Five Zingiberaceae Essential Oils

    Directory of Open Access Journals (Sweden)

    Orapin Kerdchoechuen

    2007-08-01

    Full Text Available Essential oil obtained by hydrodistillation and two different solvent extractions (petroleum ether and ethanol from five Zingiberaceae species: ginger (Zingiber officinale Roscoe., galanga (Alpinia galanga Sw., turmeric (Curcuma longa L., kaempferia (Boesenbergia pandurata Holtt. and bastard cardamom (Amomum xanthioides Wall. was characterized. Volatile components of all extracts were analyzed by gas chromatographymass spectrometry (GC-MS. The major components of ginger, turmeric, galangal, bastard cardamom and kaempferia were zingiberene, turmerone, methyl chavicol, and γ-terpinene, respectively. Their antibacterial effects towards Escherichia coli, Staphylococcus aureus, Bacillus cereus and Listeria monocytogenes were tested by a disc diffusion assay. Essential oil of kaempferia and bastard cardamom obtained by hydrodistillation extraction could inhibit growth of all tested bacteria. Essential oil of ginger extracted by hydrodistillation had the highest efficiency against three positive strains of bacteria (S. aureus, B. cereus and L. monocytogenes, with a minimum concentration to inhibit B. cereus and L. monocytogenes of 6.25 mg/mL.

  17. Detection of the antibacterial activity of chitosan

    Directory of Open Access Journals (Sweden)

    Mayer, Gerd

    2007-12-01

    Full Text Available Using three bacterial strains the antibacterial activity of Chitoskin®, a chitosan-containing wound-dressing, was investigated by determining the viable bacterial cell count in liquid cultures in the absence and presence of Chitoskin®. Results were compared to those obtained for cellulose and silver-laminated cellulose.While the pure cellulose wound-dressing had no impact on the bacterial growth, Chitoskin® and, to an even greater extend, silver-laminated cellulose reduced the viable cell count over 4,5 hrs. Adding a second sample after 2 hrs of incubation resulted in a significantly increased activity of Chitoskin®. In the presence of protein the activity of the silver-laminated cellulose was completely abolished, while that of Chitoskin® continued for at least 3 hrs. Covering bacterial cells on an agar plate with Chitoskin® reversibly inhibited their growth, but did not kill them. Instead, they could be transferred to another sterile agar plate.The results are compatible with the hypothesis that Chitoskin® shows a bacteriostatic activity due to its ability to strongly adsorb the cells. From the theoretical point of view, heavily contaminated wounds would benefit from an early renewal of the wound dressing.

  18. Antibacterial polyelectrolyte micelles for coating stainless steel.

    Science.gov (United States)

    Falentin-Daudré, Céline; Faure, Emilie; Svaldo-Lanero, Tiziana; Farina, Fabrice; Jérôme, Christine; Van De Weerdt, Cécile; Martial, Joseph; Duwez, Anne-Sophie; Detrembleur, Christophe

    2012-05-01

    In this study, we report on the original synthesis and characterization of novel antimicrobial coatings for stainless steel by alternating the deposition of aqueous solutions of positively charged polyelectrolyte micelles doped with silver-based nanoparticles with a polyanion. The micelles are formed by electrostatic interaction between two oppositely charged polymers: a polycation bearing 3,4-dihydroxyphenylalanine units (DOPA, a major component of natural adhesives) and a polyanion (poly(styrene sulfonate), PSS) without using any block copolymer. DOPA units are exploited for their well-known ability to anchor to stainless steel and to form and stabilize biocidal silver nanoparticles (Ag(0)). The chlorine counteranion of the polycation forms and stabilizes biocidal silver chloride nanoparticles (AgCl). We demonstrate that two layers of micelles (alternated by PSS) doped with silver particles are enough to impart to the surface strong antibacterial activity against gram-negative E. coli. Moreover, micelles that are reservoirs of biocidal Ag(+) can be easily reactivated after depletion. This novel water-based approach is convenient, simple, and attractive for industrial applications. PMID:22506542

  19. Urinary Peptides in Rett Syndrome.

    Science.gov (United States)

    Solaas, K. M.; Skjeldal, O.; Gardner, M. L. G.; Kase, B. F.; Reichelt, K. L.

    2002-01-01

    A study found a significantly higher level of peptides in the urine of 53 girls with Rett syndrome compared with controls. The elevation was similar to that in 35 girls with infantile autism. Levels of peptides were lower in girls with classic Rett syndrome than those with congenital Rett syndrome. (Contains references.) (Author/CR)

  20. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte; Wengel, Jesper

    2013-01-01

    Although peptide-oligonucleotide conjugates (POCs) are well-known for nucleic acids delivery and therapy, reports on internal attachment of peptides to oligonucleotides are limited in number. To develop a convenient route for preparation of internally labeled POCs with improved biomedical...

  1. Solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Jensen, Knud Jørgen

    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  2. Radiolabelled peptides for oncological diagnosis.

    NARCIS (Netherlands)

    Laverman, P.; Sosabowski, J.K.; Boerman, O.C.; Oyen, W.J.G.

    2012-01-01

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of resea

  3. Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: potential as a probiotic strain.

    Science.gov (United States)

    Khochamit, Nalisa; Siripornadulsil, Surasak; Sukon, Peerapol; Siripornadulsil, Wilailak

    2015-01-01

    The antimicrobial activity and probiotic properties of Bacillus subtilis strain KKU213, isolated from local soil, were investigated. The cell-free supernatant (CFS) of a KKU213 culture containing crude bacteriocins exhibited inhibitory effects on Gram-positive bacteria, including Bacillus cereus, Listeria monocytogenes, Micrococcus luteus, and Staphylococcus aureus. The antibacterial activity of the CFS precipitated with 40% ammonium sulfate (AS) remained even after treatment at 60 and 100 °C, at pH 4 and 10 and with proteolytic enzymes, detergents and heavy metals. When analyzed by SDS-PAGE and overlaid with the indicator strains B. cereus and S. aureus, the 40% AS precipitate exhibited inhibitory activity on proteins smaller than 10 kDa. However, proteins larger than 25 kDa and smaller than 10 kDa were still observed on a native protein gel. Purified subtilosin A was prepared by Amberlite XAD-16 bead extraction and HPLC and analyzed by Nano-LC-QTOF-MS. Its molecular mass was found to be 3.4 kDa, and it retained its antibacterial activity. These results are consistent with the detection of the anti-listerial subtilosin A gene of the sbo/alb cluster in the KKU213 strain, which is 100% identical to that of B. subtilis subsp. subtilis 168. In addition to stable and cyclic subtilosin A, a mixture of many extracellular antibacterial peptides was also detected in the KKU213 culture. The KKU213 strain produced extracellular amylase, cellulase, lipase and protease, is highly acid-resistant (pH 2) when cultured in inulin and promotes health and reduces infection of intestinally colonized broiler chickens. Therefore, we propose that bacteriocin-producing B. subtilis KKU213 could be used as a potential probiotic strain or protective culture. PMID:25440998

  4. Antibacterial activity of the sponge Suberites domuncula and its primmorphs: Potential basis for epibacterial chemical defense

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Hentschel, U.; Krasko, A; Pabel, C.T.; Anil, A; Mueller, W.E.G.

    ). Moreover, a recombinant perforin-like protein was cloned from S. domuncula that displayed strong antibacterial activity. Based on these observations, it is proposed that the sponge may be provided with a direct (by producing antibacterial metabolites...

  5. Dietary choline regulates antibacterial activity, inflammatory response and barrier function in the gills of grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Zhao, Hua-Fu; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2016-05-01

    An 8-week feeding trial was conducted to determine the effects of graded levels of choline (197-1795 mg/kg) on antibacterial properties, inflammatory status and barrier function in the gills of grass carp. The results showed that optimal dietary choline supplementation significantly improved lysozyme and acid phosphatase activities, complement component 3 (C3) content, and the liver expressed antimicrobial peptide 2 and Hepcidin mRNA levels in the gills of fish (P C3 content and AHR activity, the dietary choline requirements for young grass carp (266.5-787.1 g) were estimated to be 1191.0 and 1555.0 mg/kg diet, respectively. PMID:26988287

  6. Antibacterial polyelectrolyte-coated Mg alloys for biomedical applications

    Science.gov (United States)

    Seraz, Md. S.; Asmatulu, R.; Chen, Z.; Ceylan, M.; Mahapatro, A.; Yang, S. Y.

    2014-04-01

    This study deals with two biomedical subjects: corrosion rates of polyelectrolyte-coated magnesium (Mg) alloys, mainly used for biomedical purposes, and antibacterial properties of these alloys. Thin sheets of Mg alloys were coated with cationic polyelectrolyte chitosan (CHI) and anionic polyelectrolyte carboxymethyl cellulose (CMC) using a layer-by-layer coating method and then embedded with antibacterial agents under vacuum. Electrochemical impedance spectroscopy was employed to analyze these samples in order to detect their corrosion properties at different conditions. In the electrochemical analysis section, a corrosion rate of 72 mille inches per year was found in a salt solution for the sample coated with a 12 phosphonic acid self-assembled monolayer and 9 CHI/CMC multilayers. In the antibacterial tests, gentamicin was used to investigate the effects of the drug embedded with the coated surfaces against the Escherichia coli (E. coli) bacteria. Antibacterial studies were tested using the disk diffusion method. Based on the standard diameter of the zone of inhibition chart, the antibacterial diffusion from the surface strongly inhibited bacterial growth in the regions. The largest recorded diameter of the zone of inhibition was 50 mm for the pre-UV treated and gentamicin-loaded sample, which is more than three times the standard diameter.

  7. Antibacterial activities of extracts from Nigerian chewing sticks.

    Science.gov (United States)

    Taiwo, O; Xu, H X; Lee, S F

    1999-12-01

    Ten aqueous extracts from wooden chewing sticks widely used in Nigeria for teeth cleaning were studied for antibacterial activities against 25 different bacteria using an agar diffusion assay. The extracts from five sticks, namely Garcinia kola, Anogeissus leiocarpus, Terminalia glaucescens, Sorindeia warneckei and Vitex doniana, exhibited strong activities against a wide spectrum of bacteria including medically and dentally relevant bacteria. Notably, these five chewing stick extracts showed potent activities against methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and multidrug-resistant Burkholderia cepacia and Pseudomonas aeruginosa. Extracts from Vernonia amygdalina, Fagara zanthoxyloides and Massularia acuminata also showed activities against bacteria significant to periodontal disease. Methanol extracts prepared from G. kola, A. leiocarpus and V. doniana were further fractionated by solvent extraction. Results showed that the antibacterial activities were distributed into different fractions suggesting that the sticks contain different active antibacterial principles. In conclusion, the results showed that most of the Nigerian chewing sticks do contain antibacterial activities which may contribute to the reported anticaries effect of chewing sticks. These sticks may be sources for new lead antibacterial agents for therapeutic or preventive applications. PMID:10594937

  8. PRODUCTION OF ANTIBACTERIAL FILTER PAPER FROM WOOD CELLULOSE

    Directory of Open Access Journals (Sweden)

    Reza Imani

    2011-02-01

    Full Text Available Paper has a visible market-share in hygiene products either in the form of personal hygiene or as food packaging. The designation “hygiene”, though it suggests cleanliness, does not imply antibacterial properties; rather it can be stated that hygiene products do not initiate microorganism growth. Antibacterial products could restrict propagation of pathogenic bacteria either by holding bacteria or by trapping and neutralizing them. Most research in this field has been conducted using textile fibers as a substrate, but the present work uses paper instead. The objective was to produce an antibacterial filter paper capable of trapping and neutralizing pathogenic microorganisms using wood fibers. To produce antibacterial paper, chitosan and nanosilver capped with PAA (polyacrylic acid were deposited on the fiber surface using a layer-by-layer technique. Samples for the tests were prepared from refined bleached softwood (RBSW kraft pulp. The deposition of antibacterial agents on fiber as well as paper were monitored using a zeta potential analyzer (ZPA, scanning electron microscopy (SEM, and Fourier transform infrared spectroscopy (FTIRS. The minimum requirement for deposition of the agents was a multilayer comprised of eight alternating layers. The deposition onto fiber or paper had no effect on tensile strength or the pore structure of the substrate.

  9. Antibacterial activity of graphene supported FeAg bimetallic nanocomposites.

    Science.gov (United States)

    Ahmad, Ayyaz; Qureshi, Abdul Sattar; Li, Li; Bao, Jie; Jia, Xin; Xu, Yisheng; Guo, Xuhong

    2016-07-01

    We report the simple one pot synthesis of iron-silver (FeAg) bimetallic nanoparticles with different compositions on graphene support. The nanoparticles are well dispersed on the graphene sheet as revealed by the TEM, XRD, and Raman spectra. The antibacterial activity of graphene-FeAg nanocomposite (NC) towards Bacillus subtilis, Escherichia coli, and Staphylococcus aureus was investigated by colony counting method. Graphene-FeAg NC demonstrates excellent antibacterial activity as compared to FeAg bimetallic without graphene. To understand the antibacterial mechanism of the NC, oxidative stress caused by reactive oxygen species (ROS) and the glutathione (GSH) oxidation were investigated in the system. It has been observed that ROS production and GSH oxidation are concentration dependent while the increase in silver content up to 50% generally enhances the ROS production while ROS decreases on further increase in silver content. Graphene loaded FeAg NC demonstrates higher GSH oxidation capacity than bare FeAg bimetallic nanocomposite. The mechanism study suggests that the antibacterial activity is probably due to membrane and oxidative stress produced by the nanocomposites. The possible antibacterial pathway mainly includes the non-ROS oxidative stress (GSH oxidation) while ROS play minor role. PMID:27038914

  10. Study of antibacterial mechanism of graphene oxide using Raman spectroscopy.

    Science.gov (United States)

    Nanda, Sitansu Sekhar; Yi, Dong Kee; Kim, Kwangmeyung

    2016-01-01

    Graphene oxide (GO) is extensively proposed as an effective antibacterial agent in commercial product packaging and for various biomedical applications. However, the antibacterial mode of action of GO is yet hypothetical and unclear. Here we developed a new and sensitive fingerprint approach to study the antibacterial activity of GO and underlying mechanism, using Raman spectroscopy. Spectroscopic signatures obtained from biomolecules such as Adenine and proteins from bacterial cultures with different concentrations of GO, allowed us to probe the antibacterial activity of GO with its mechanism at the molecular level. Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis) were used as model micro-organisms for all the experiments performed. The observation of higher intensity Raman peaks from Adenine and proteins in GO treated E. coli and E. faecalis; correlated with induced death, confirmed by Scanning electron Microscopy (SEM) and Biological Atomic Force Microscopy (Bio-AFM). Our findings open the way for future investigations of the antibacterial properties of different nanomaterial/GO composites using Raman spectroscopy. PMID:27324288

  11. Controlling the release of peptide antimicrobial agents from surfaces.

    Science.gov (United States)

    Shukla, Anita; Fleming, Kathleen E; Chuang, Helen F; Chau, Tanguy M; Loose, Christopher R; Stephanopoulos, Gregory N; Hammond, Paula T

    2010-03-01

    Medical conditions are often exacerbated by the onset of infection caused by hospital dwelling bacteria such as Staphylococcus aureus. Antibiotics taken orally or intravenously can require large and frequent doses, further contributing to the sharp rise in resistant bacteria observed over the past several decades. These existing antibiotics are also often ineffective in preventing biofilm formation, a common cause of medical device failure. Local delivery of new therapeutic agents that do not allow bacterial resistance to occur, such as antimicrobial peptides, could alleviate many of the problems associated with current antibacterial treatments. By taking advantage of the versatility of layer-by-layer assembly of polymer thin films, ponericin G1, an antimicrobial peptide known to be highly active against S. aureus, was incorporated into a hydrolytically degradable polyelectrolyte multilayer film. Several film architectures were examined to obtain various drug loadings that ranged from 20 to 150 microg/cm2. Release was observed over approximately ten days, with varying release profiles, including burst as well as linear release. Results indicated that film-released peptide did not suffer any loss in activity against S. aureus and was able to inhibit bacteria attachment, a necessary step in preventing biofilm formation. Additionally, all films were found to be biocompatible with the relevant wound healing cells, NIH 3T3 fibroblasts and human umbilical vein endothelial cells. These films provide the level of control over drug loading and release kinetics required in medically relevant applications including coatings for implant materials and bandages, while eliminating susceptibility to bacterial resistance. PMID:20004967

  12. The Wound Healing and Antibacterial Activity of Five Ethnomedical Calophyllum inophyllum Oils: An Alternative Therapeutic Strategy to Treat Infected Wounds.

    Directory of Open Access Journals (Sweden)

    Teddy Léguillier

    showed that CIO exhibit two distinct antibacterial effects: one against Gram+ bacteria by direct inhibition of mitotic growth and another potent effect against Gram- bacteria due to increased release of β-defensin 2 peptide by macrophages. Interestingly, the needed concentrations of CIO to inhibit bacteria growth and to promote wound healing are lower than concentrations exhibiting cytotoxic effects on keratinocyte cells. Finally, we performed bioautography assay against Staphylococcus aureus to determine polarity profile of the components responsible for CIO antibacterial activity. Our results showed for the five tested CIO that components responsible of the bacterial growth inhibition are the more polar one on the TLC chromatographic profile and are contained in the resinous fraction of the oil.This study was conducted to evaluate cytotoxicity, wound healing and antibacterial properties of five CIO traditionally used to treat infected wounds. Using cell and bacteria cultures, we confirmed the pharmacological effects of CIO as wound healing and antimicrobial agent. Moreover, we showed that concentration of CIO needed to exhibit therapeutic effects are lower than concentrations exhibiting cytotoxic effects in vitro. For the first time, this study provides support for traditional uses of CIO. These wound healing and antibiotic properties make CIO a valuable candidate to treat infected wounds especially in tropical areas.

  13. Plaque-left-behind after brushing: intra-oral reservoir for antibacterial toothpaste ingredients

    OpenAIRE

    Otten, Marieke P. T.; Henk J Busscher; Abbas, Frank; van der Mei, Henny C.; van Hoogmoed, Chris G.

    2012-01-01

    Objectives Plaque is never fully removed by brushing and may act as a reservoir for antibacterial ingredients, contributing to their substantive action. This study investigates the contribution of plaque-left-behind and saliva towards substantivity of three antibacterial toothpastes versus a control paste without antibacterial claims. Materials and methods First, volunteers brushed 2 weeks with a control or antibacterial toothpaste. Next, plaque and saliva samples were collected 6 and 12 h af...

  14. Presence of chromogranin-derived antimicrobial peptides in plasma during coronary artery bypass surgery and evidence of an immune origin of these peptides.

    Science.gov (United States)

    Tasiemski, Aurélie; Hammad, Hamida; Vandenbulcke, Franck; Breton, Christophe; Bilfinger, Thomas J; Pestel, Joel; Salzet, Michel

    2002-07-15

    Chromogranin A (CGA) and chromogranin B (CGB) are acidic proteins stored in secretory organelles of endocrine cells and neurons. In addition to their roles as helper proteins in the packaging of peptides, they may serve as prohormones to generate biologically active peptides such as vasostatin-1 and secretolytin. These molecules derived from CGA and CGB, respectively, possess antimicrobial properties. The present study demonstrates that plasmatic levels of both vasostatin-1 and secretolytin increase during surgery in patients undergoing cardiopulmonary bypass (CPB). Vasostatin-1 and secretolytin, initially present in plasma at low levels, are released just after skin incision. Consequently, they can be added to enkelytin, an antibacterial peptide derived from proenkephalin A, for the panoply of components acting as a first protective barrier against hypothetical invasion of pathogens, which may occur during surgery. CGA and CGB, more commonly viewed as markers for endocrine and neuronal cells, were also found to have an immune origin. RNA messengers coding for CGB were amplified by reverse transcription-polymerase chain reaction in human monocytes, and immunocytochemical analysis by confocal microscopy revealed the presence of CGA or CGB or both in monocytes and neutrophils. A combination of techniques including confocal microscopic analysis, mass spectrometry measurement, and antibacterial tests allowed for the identification of the positive role of interleukin 6 (IL-6) in the secretolytin release from monocytes in vitro. Because IL-6 release is known to be strongly enhanced during CPB, we suggest a possible relationship between IL-6 and the increased level of secretolytin in patients undergoing CPB. PMID:12091348

  15. Conus venom peptide pharmacology.

    Science.gov (United States)

    Lewis, Richard J; Dutertre, Sébastien; Vetter, Irina; Christie, MacDonald J

    2012-04-01

    Conopeptides are a diverse group of recently evolved venom peptides used for prey capture and/or defense. Each species of cone snails produces in excess of 1000 conopeptides, with those pharmacologically characterized (≈ 0.1%) targeting a diverse range of membrane proteins typically with high potency and specificity. The majority of conopeptides inhibit voltage- or ligand-gated ion channels, providing valuable research tools for the dissection of the role played by specific ion channels in excitable cells. It is noteworthy that many of these targets are found to be expressed in pain pathways, with several conopeptides having entered the clinic as potential treatments for pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one now marketed for intrathecal treatment of severe pain [ziconotide (Prialt)]. This review discusses the diversity, pharmacology, structure-activity relationships, and therapeutic potential of cone snail venom peptide families acting at voltage-gated ion channels (ω-, μ-, μO-, δ-, ι-, and κ-conotoxins), ligand-gated ion channels (α-conotoxins, σ-conotoxin, ikot-ikot, and conantokins), G-protein-coupled receptors (ρ-conopeptides, conopressins, and contulakins), and neurotransmitter transporters (χ-conopeptides), with expanded discussion on the clinical potential of sodium and calcium channel inhibitors and α-conotoxins. Expanding the discovery of new bioactives using proteomic/transcriptomic approaches combined with high-throughput platforms and better defining conopeptide structure-activity relationships using relevant membrane protein crystal structures are expected to grow the already significant impact conopeptides have had as both research probes and leads to new therapies. PMID:22407615

  16. Antibacterial activity and biological performance of a novel antibacterial coating containing a halogenated furanone compound loaded poly(L-lactic acid) nanoparticles on microarc-oxidized titanium

    Science.gov (United States)

    Cheng, Yicheng; Zhao, Xianghui; Liu, Xianghui; Sun, Weige; Ren, Huifang; Gao, Bo; Wu, Jiang

    2015-01-01

    Titanium implants have been widely used for many medical applications, but bacterial infection after implant surgery remains one of the most common and intractable complications. To this end, long-term antibacterial ability of the implant surface is highly desirable to prevent implant-associated infection. In this study, a novel antibacterial coating containing a new antibacterial agent, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone loaded poly(L-lactic acid) nanoparticles, was fabricated on microarc-oxidized titanium for this purpose. The antibacterial coating produced a unique inhibition zone against Staphylococcus aureus throughout a 60-day study period, which is normally long enough to prevent the infection around implants in the early and intermediate stages. The antibacterial rate for adherent S. aureus was about 100% in the first 10 days and constantly remained over 90% in the following 20 days. Fluorescence staining of adherent S. aureus also confirmed the excellent antibacterial ability of the antibacterial coating. Moreover, in vitro experiments showed an enhanced osteoblast adhesion and proliferation on the antibacterial coating, and more notable cell spread was observed at the early stage. It is therefore concluded that the fabricated antibacterial coating, which exhibits relatively long-term antibacterial ability and excellent biological performance, is a potential and promising strategy to prevent implant-associated infection. PMID:25632231

  17. Composite Membranes of Recombinant Silkworm Antimicrobial Peptide and Poly (L-lactic Acid) (PLLA) for biomedical application.

    Science.gov (United States)

    Li, Zhi; Liu, Xuan; Li, Yi; Lan, Xiqian; Leung, Polly Hangmei; Li, Jiashen; Li, Gang; Xie, Maobin; Han, Yanxia; Lin, Xiaofen

    2016-01-01

    Antimicrobial peptides, produced by innate immune system of hosts in response to invading pathogens, are capable of fighting against a spectrum of bacteria, viruses, fungi, parasites and cancer cells. Here, a recombinant silkworm AMP Bmattacin2 from heterologous expression is studied, indicating a broad spectrum of antibacterial activity and showing selective killing ability towards skin and colon cancer cells over their normal cell counterparts. For the purpose of biomedical application, the electrospinning fabrication technique is employed to load Bmattacin2 into PLLA nanofibrous membrane. In addition to a good compatibility with the normal cells, Bmattacin2 loaded nanofibrous membranes demonstrate instant antibacterial effects and sustained anticancer effects. The cancer cell and bacteria targeting dynamics of recombinant Bmattacin2 are investigated. With these characteristics, PLLA/Bmattacin2 composite membranes have a great potential for developing novel biomedical applications such as cancer therapies and wound healing treatments. PMID:27503270

  18. Paenilamicin: structure and biosynthesis of a hybrid nonribosomal peptide/polyketide antibiotic from the bee pathogen Paenibacillus larvae.

    Science.gov (United States)

    Müller, Sebastian; Garcia-Gonzalez, Eva; Mainz, Andi; Hertlein, Gillian; Heid, Nina C; Mösker, Eva; van den Elst, Hans; Overkleeft, Herman S; Genersch, Elke; Süssmuth, Roderich D

    2014-09-26

    The spore-forming bacterium Paenibacillus larvae is the causative agent of American Foulbrood (AFB), a fatal disease of honey bees that occurs worldwide. Previously, we identified a complex hybrid nonribosomal peptide/polyketide synthesis (NRPS/PKS) gene cluster in the genome of P. larvae. Herein, we present the isolation and structure elucidation of the antibacterial and antifungal products of this gene cluster, termed paenilamicins. The unique structures of the paenilamicins give deep insight into the underlying complex hybrid NRPS/PKS biosynthetic machinery. Bee larval co-infection assays reveal that the paenilamicins are employed by P. larvae in fighting ecological niche competitors and are not directly involved in killing the bee larvae. Their antibacterial and antifungal activities qualify the paenilamicins as attractive candidates for drug development. PMID:25080172

  19. Synergistic Antibacterial Effect and Antibacterial Action Mode of Chitosan-Ferulic Acid Conjugate against Methicillin-Resistant Staphylococcus aureus.

    Science.gov (United States)

    Eom, Sung-Hwan; Kang, Shin-Kook; Lee, Dae-Sung; Myeong, Jeong-In; Lee, Jinhwan; Kim, Hyun-Woo; Kim, Kyoung-Ho; Je, Jae-Young; Jung, Won-Kyo; Kim, Young-Mog

    2016-04-28

    We evaluated the synergistic antibacterial effect in combination with the chitosan-ferulic acid conjugate (CFA) and β-lactam antibiotics, such as ampicillin, penicillin, and oxacillin, against methicillin-resistant Staphylococcus aureus (MRSA) using fractional inhibitory concentration (FIC) indices. CFA clearly reversed the antibacterial activity of ampicillin, penicillin, and oxacillin against MRSA in the combination mode. Among these antibiotics, the combination of oxacillin-CFA resulted in a ∑FICmin range of 0.250 and ∑FICmax of 0.563, suggesting that the oxacillin-CFA combination resulted in an antibacterial synergy effect against MRSA. In addition, we determined that CFA inhibited the mRNA expression of gene mecA and the production of PBP2a, which is a key determinant for β-lactam antibiotic resistance, in a dosedependent manner. Thus, the results obtained in this study supported the idea on the antibacterial action mechanism that oxacillin will restore the antibacterial activity against MRSA through the suppression of PBP2a production by CFA. PMID:26718468

  20. Effect of silver on antibacterial properties of stainless steel

    International Nuclear Information System (INIS)

    The microstructural variation and antibacterial properties of the AISI 304 stainless steel containing silver (Ag) element have been investigated by means of optical microscopy (OM), grazing incidence X-ray diffractometry (GIXRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometer (EDS). Furthermore, the antibacterial testing was performed according to JIS Z2801:2000 specification. As the alloy contained Ag elements, the microstructure of the alloys was a mixture of (α + γ + Ag-rich compound)-phases. The amounts of α phase and Ag-rich compound increased as Ag contents increased. The Ag-rich compound has FCC structure with the lattice parameter a = 0.251 nm. No precipitates were found within the matrix and grain boundaries in the present alloys after SHT. Moreover, when the alloy is added to Ag element, antibacterial property was seen obvious against E. coli. It has an AR nearly of 100%.

  1. Graphene Oxide Reinforced Polycarbonate Nanocomposite Films with Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    R. Mahendran

    2016-01-01

    Full Text Available The incorporation of carbonaceous nanofillers into polymers can result in significant materials with improved physicochemical properties and novel composite functionalities. In this study, we have fabricated antibacterial, lightweight, transparent, and flexible graphene oxide (GO reinforced polycarbonate thin films by a facile and low-cost methodology. Solution blending is employed to get a homogeneous mixture of PC-GO composites at various loading of GO, and the thin films are prepared by dry-wet phase inversion technique. Thermal studies and micrographs of the films revealed the incorporation of GO in PC matrix. Microstructure of the thin films showed the homogeneous dispersion of GO at micro- and nanoscales; however, at higher loading of GO (0.7%, significant agglomeration is observed. More importantly, PC-GO composite films exhibited excellent antibacterial activities against E. coli and S. aureus, owing to the antibacterial nature of GO nanoparticles.

  2. Antibacterial Characterization of Silver Nanoparticles against E. Coli ATCC-15224

    Institute of Scientific and Technical Information of China (English)

    M.Raffi; F.Hussain; T.M.Bhatti; J.I.Akhter; A.Hameed; M.M.Hasan

    2008-01-01

    Silver nanoparticles of mean size 16 nm were synthesized by inert gas condensation (IGC) method. Crystalline structure, morphology and nanoparticles size estimation were conducted by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Antibacterial activity of these silver nanoparticles as a function of particles concentration against gram-negative bacterium Escherichia coli (E. coli) was carried out in liquid as well as solid growth media. Scanning electron microscopy (SEM) and TEM studies showed that silver nanoparticles after interaction with E.coli have adhered to and penetrated into the bacterial cells. Antibacterial properties of silver nanoparticles are attributed to their total surface area, as a larger surface to volume ratio of nanoparticles provides more efficient means for enhanced antibacterial activity.

  3. ANTIBACTERIAL EFFECT OF CALCIUM HYDROXIDE IN DIFFER ENT VEHICLES

    Directory of Open Access Journals (Sweden)

    Hari

    2012-11-01

    Full Text Available ABSTRACT: AIM: This study evaluated the antibacterial effect of ca lcium hydroxide in different vehicles in an in vitro model. MATERIAL AND METHODS: Calcium hydroxide paste prepared with two conventionally used vehicles namely, campho rated monochlophenol, distilled water and also propylene glycol. The antibacterial activity of these paste were tested against five micro- organisms that can commonly occur in the inf ected root canals. RESULTS AND CONCLUSIONS: The results of the study indicate that a paste of ca lcium hydroxide made with propylene glycol exerts significant antibacterial act ion. Hence, it can be recommended for use as an intracanal medicament in preference to a paste prepa red with a tissue toxic phenolic compound like camphorated mono chlorophenol

  4. Antibacterial potency of methanol extracts of lower plants.

    Science.gov (United States)

    Ojo, O O; Ajayi, A O; Anibijuwon, I I

    2007-03-01

    Antibacterial potency of methanol extracts of three green lower plants, Pneumatopteris afra, Platycerium bifurcatum and Nephrolepsis bisserata was determined using agar dilution method on clinical strains of Escherichia coli, Staphylococcus aureus, Klebsiella spp. and Salmomelia typhi. Antibacterial activities were observed at concentrations of 12.5, 25.0, 50.0 and 100.0 microg/ml. Their minimum inhibitory concentrations ranged from 12.5approximately 100 microg/ml. Extracts of P. afra and P. bifurcatum were most active. Antibacterial activities observed with N. bisserata were less pronounced with no detectable activity at extract concentrations of 12.5 and 25.0 microg/ml. E. coli, together with S. aureus appeared to be the most susceptible of the test bacteria while Klebsiella spp. was least sensitive. The significance of our findings is discussed. PMID:17323431

  5. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yudovin-Farber, Ira [Hebrew University of Jerusalem, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine (Israel); Beyth, Nurit; Weiss, Ervin I. [Hebrew University of Jerusalem, Department of Prosthodontics, Faculty of Dentistry (Israel); Domb, Abraham J., E-mail: avid@ekmd.huji.ac.i [Hebrew University of Jerusalem, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine (Israel)

    2010-02-15

    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  6. Antibacterial activity of five Peruvian medicinal plants against Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    Gabriela; Ulloa-Urizar; Miguel; Angel; Aguilar-Luis; María; del; Carmen; De; Lama-Odría; José; Camarena-Lizarzaburu; Juana; del; Valle; Mendoza

    2015-01-01

    Objective: To evaluate the susceptibility of Pseudomonas aeruginosa(P. aeruginosa)in vitro to the ethanolic extracts obtained from five different Peruvian medicinal plants.Methods: The plants were chopped and soaked in absolute ethanol(1:2, w/v). The antibacterial activity of compounds against P. aeruginosa was evaluated using the cupplate agar diffusion method.Results: The extracts from Maytenus macrocarpa("Chuchuhuasi"), Dracontium loretense Krause("Jergon Sacha"), Tabebuia impetiginosa("Tahuari"), Eucalyptus camaldulensis Dehn(eucalyptus), Uncaria tomentosa("U?a de gato") exhibited favorable antibacterial activity against P. aeruginosa. The inhibitory effect of the extracts on the strains of P. aeruginosa tested demonstrated that Tabebuia impetiginosa and Maytenus macrocarpa possess higher antibacterial activity.Conclusions: The results of the present study scientifically validate the inhibitory capacity of the five medicinal plants attributed by their common use in folk medicine and contribute towards the development of new treatment options based on natural products.

  7. ANTIBACTERIAL POTENTIAL OF GLORY LILY, GLORIOSA SUPERBA LINN.

    Directory of Open Access Journals (Sweden)

    Haroon Rehana banu

    2011-03-01

    Full Text Available The successive Soxhlet extract of Gloriosa superba, L. (Liliaceae was extracted using acetone, dichloromethane, chloroform and methanol in ascending order of the polarity. The extracts were investigated for their antibacterial activity against two Gram positive bacteria Streptococcus faecalis and Enterococcus faecalis and two Gram negative bacteria Klebsiella pneumoniae and Proteus mirabilis by using disc diffusion method. Among the four extracts tested, acetone extract had effective antibacterial potential, followed by methanol extract at 25 and 100% concentration against Enterococcus faecalis. The acetone extract showed greater activity against Gram-positive than against Gram-negative organisms. The study confirms the antibacterial potential of Gloriosa superba leaves extracted using various solvents, and is therefore, a potential drug that requires further studies and development.

  8. Antibacterial potency of methanol extracts of lower plants

    Institute of Scientific and Technical Information of China (English)

    OJO O.O.; AJAYI A.O.; ANIBIJUWON I.I.

    2007-01-01

    Antibacterial potency of methanol extracts of three green lower plants, Pneumatopteris afra, Platycerium bifurcatum and Nephrolepsis bisserata was determined using agar dilution method on clinical strains of Escherichia coli, Staphylococcus aureus, Klebsiella spp. and Salmomelia typhi. Antibacterial activities were observed at concentrations of 12.5, 25.0, 50.0 and 100.0 μg/ml. Their minimum inhibitory concentrations ranged from 12.5~100 μg/ml. Extracts ofP. afra and P. bifurcatum were most active. Antibacterial activities observed with N. bisserata were less pronounced with no detectable activity at extract concentrations of 12.5 and 25.0 μg/ml. E. coli, together with S. aureus appeared to be the most susceptible of the test bacteria while Klebsiella spp. was least sensitive. The significance of our findings is discussed.

  9. Antibacterial activity of ifve Peruvian medicinal plants against Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    Gabriela Ulloa-Urizar; Miguel Angel Aguilar-Luis; Mara del Carmen De Lama-Odra; Jos Camarena-Lizarzaburu; Juana del Valle Mendoza

    2015-01-01

    Objective:To evaluate the susceptibility of Pseudomonas aeruginosa (P. aeruginosa) in vitro to the ethanolic extracts obtained from five different Peruvian medicinal plants. Methods:The plants were chopped and soaked in absolute ethanol (1:2, w/v). The antibacterial activity of compounds against P. aeruginosa was evaluated using the cup-plate agar diffusion method. Results:The extracts from Maytenus macrocarpa (“Chuchuhuasi”), Dracontium loretense Krause (“Jergon Sacha”), Tabebuia impetiginosa (“Tahuari”), Eucalyptus camaldulensis Dehn (eucalyptus), Uncaria tomentosa (“Uña de gato”) exhibited favorable antibacterial activity against P. aeruginosa. The inhibitory effect of the extracts on the strains of P. aeruginosa tested demonstrated that Tabebuia impetiginosa and Maytenus macrocarpa possess higher antibacterial activity. Conclusions:The results of the present study scientifically validate the inhibitory capacity of the five medicinal plants attributed by their common use in folk medicine and contribute towards the development of new treatment options based on natural products.

  10. Studies on the antibacterial activity of dodecylglycerol

    International Nuclear Information System (INIS)

    The antimicrobial activity of lipids has been known for many years, with dodecanoylglycerol (dodecanoic acid esterified to glycerol) being one of the most potential. However, the antibacterial potency of dodecylglycerol (DDG), the corresponding 1-O-alkyl glycerol ether, is considerably greater. The superior efficacy of DDG can be attributed, at least in part, to the greater chemical and metabolic stability of the ether bond as compared to esters. In an attempt towards elucidating the mode of action of DDG, the effect of DDG on bacterial lipid metabolism was examined using Streptococcus mutans BHT, a tolerant bacterium. The metabolic fate of the ether was also determined with the use of three radioactive tracers, 14C-glycerol, 32Pi, and 14C-DDG. Treatment of exponentially growing cultures of S. mutans BHI with growth inhibitory concentrations of DDG (10 and 20 μg/ml) inhibited the incorporation of 14C-glycerol into lipid. In vivo studies using 14C-DDG showed that the 14C-ether was readily incorporated almost exclusively into phosphatidic (PA) and lysophosphatidic (LPA) acids. When cells prelabelled with either 14C-glycerol or 32Pi were exposed to 10 and 20 +g/ml DDG for 2 h, the accumulation of PA and diphosphatidylglycerol (diPG) was greatly stimulated. However, diPG accumulated at the expense of its precursor, glycerol, which greatly decreased. These data suggest that the ether-containing PA inhibits the synthesis of CDP-diglyceride. Moreover, these results clearly demonstrate that DDG functions as a metabolic rather than physical effector, disputing the conventional notion that bactericidal lipids act as detergents, physically dissolving the cellular envelope

  11. Radiopharmaceutical development of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Fani, Melpomeni; Maecke, Helmut R. [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany)

    2012-02-15

    Receptor targeting with radiolabelled peptides has become very important in nuclear medicine and oncology in the past few years. The overexpression of many peptide receptors in numerous cancers, compared to their relatively low density in physiological organs, represents the molecular basis for in vivo imaging and targeted radionuclide therapy with radiolabelled peptide-based probes. The prototypes are analogs of somatostatin which are routinely used in the clinic. More recent developments include somatostatin analogs with a broader receptor subtype profile or with antagonistic properties. Many other peptide families such as bombesin, cholecystokinin/gastrin, glucagon-like peptide-1 (GLP-1)/exendin, arginine-glycine-aspartic acid (RGD) etc. have been explored during the last few years and quite a number of potential radiolabelled probes have been derived from them. On the other hand, a variety of strategies and optimized protocols for efficient labelling of peptides with clinically relevant radionuclides such as {sup 99m}Tc, M{sup 3+} radiometals ({sup 111}In, {sup 86/90}Y, {sup 177}Lu, {sup 67/68}Ga), {sup 64/67}Cu, {sup 18}F or radioisotopes of iodine have been developed. The labelling approaches include direct labelling, the use of bifunctional chelators or prosthetic groups. The choice of the labelling approach is driven by the nature and the chemical properties of the radionuclide. Additionally, chemical strategies, including modification of the amino acid sequence and introduction of linkers/spacers with different characteristics, have been explored for the improvement of the overall performance of the radiopeptides, e.g. metabolic stability and pharmacokinetics. Herein, we discuss the development of peptides as radiopharmaceuticals starting from the choice of the labelling method and the conditions to the design and optimization of the peptide probe, as well as some recent developments, focusing on a selected list of peptide families, including somatostatin

  12. Antibacterial Activity of Ti3C2Tx MXene.

    Science.gov (United States)

    Rasool, Kashif; Helal, Mohamed; Ali, Adnan; Ren, Chang E; Gogotsi, Yury; Mahmoud, Khaled A

    2016-03-22

    MXenes are a family of atomically thin, two-dimensional (2D) transition metal carbides and carbonitrides with many attractive properties. Two-dimensional Ti3C2Tx (MXene) has been recently explored for applications in water desalination/purification membranes. A major success indicator for any water treatment membrane is the resistance to biofouling. To validate this and to understand better the health and environmental impacts of the new 2D carbides, we investigated the antibacterial properties of single- and few-layer Ti3C2Tx MXene flakes in colloidal solution. The antibacterial properties of Ti3C2Tx were tested against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) by using bacterial growth curves based on optical densities (OD) and colonies growth on agar nutritive plates. Ti3C2Tx shows a higher antibacterial efficiency toward both Gram-negative E. coli and Gram-positive B. subtilis compared with graphene oxide (GO), which has been widely reported as an antibacterial agent. Concentration dependent antibacterial activity was observed and more than 98% bacterial cell viability loss was found at 200 μg/mL Ti3C2Tx for both bacterial cells within 4 h of exposure, as confirmed by colony forming unit (CFU) and regrowth curve. Antibacterial mechanism investigation by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) coupled with lactate dehydrogenase (LDH) release assay indicated the damage to the cell membrane, which resulted in release of cytoplasmic materials from the bacterial cells. Reactive oxygen species (ROS) dependent and independent stress induction by Ti3C2Tx was investigated in two separate abiotic assays. MXenes are expected to be resistant to biofouling and offer bactericidal properties. PMID:26909865

  13. Antibacterial activity of carbon-coated zinc oxide particles.

    Science.gov (United States)

    Sawai, Jun; Yamamoto, Osamu; Ozkal, Burak; Nakagawa, Zenbe-E

    2007-03-01

    Particles of ZnO coated with carbon (ZnOCC) were prepared and evaluated for their antibacterial activity. ZnO powder and poly(vinyl alcohol) (PVA) (polymerization degree: 2,000-95,000) were mixed at a mass ratio (ZnO/PVA) of 1, and then heated at 500-650 degree C for 3 h under argon gas with a flow rate of 50ml/min. Carbon deposited on the ZnOCC surface was amorphous as revealed by X-ray diffraction studies. The ZnOCC particles maintained their shape in water, even under agitation. The antibacterial activity of ZnOCC powder against Staphylococcus aureus was evaluated quantitatively by measuring the change in the electrical conductivity of the growth medium caused by bacterial metabolism (conductimetric assay). The conductivity curves obtained were analyzed using the growth inhibition kinetic model proposed by Takahashi for calorimetric evaluation, allowing the estimation of the antibacterial efficacy and kinetic parameters of ZnOCC. In a previous study, when ZnO was immobilized on materials, such as activated carbon, the amount of ZnO immobilized was approximately 10-50%, and the antibacterial activity markedly decreased compared to that of the original ZnO. On the other hand, the ZnOCC particles prepared in this study contained approximately 95% ZnO and possessed antibacterial activity similar to that of pure ZnO. The carbon-coating treatment could maintain the antibacterial efficacy of the ZnO and may be useful in the develop-ment of multifunctional antimicrobial materials. PMID:17408004

  14. Antiviral activity of a Bacillus sp: P34 peptide against pathogenic viruses of domestic animals

    Directory of Open Access Journals (Sweden)

    Débora Scopel e Silva

    2014-09-01

    Full Text Available P34 is an antimicrobial peptide produced by a Bacillus sp. strain isolated from the intestinal contents of a fish in the Brazilian Amazon basin with reported antibacterial activity. The aim of this work was to evaluate the peptide P34 for its in vitro antiviral properties against canine adenovirus type 2 (CAV-2, canine coronavirus (CCoV, canine distemper virus (CDV, canine parvovirus type 2 (CPV-2, equine arteritis virus (EAV, equine influenza virus (EIV, feline calicivirus (FCV and feline herpesvirus type 1 (FHV-1. The results showed that the peptide P34 exhibited antiviral activity against EAV and FHV-1. The peptide P34 inhibited the replication of EAV by 99.9% and FHV-1 by 94.4%. Virucidal activity was detected only against EAV. When P34 and EAV were incubated for 6 h at 37 °C the viral titer reduced from 10(4.5 TCID50 to 10(2.75 TCID50, showing a percent of inhibition of 98.6%. In conclusion, our results demonstrated that P34 inhibited EAV and FHV-1 replication in infected cell cultures and it showed virucidal activity against EAV. Since there is documented resistance to the current drugs used against herpesviruses and there is no treatment for equine viral arteritis, it is advisable to search for new antiviral compounds to overcome these infections.

  15. Peptide primary messengers in plants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The peptide primary messengers regulate embryonic development,cell growth and many other activities in animal cells. But recent evidence verified that peptide primary messengers are also involved in plant defense responses, the recognition between pollen and stigma and keep the balance between cell proliferation and differentiations in shoot apical meristems. Those results suggest that plants may actually make wide use of peptide primary messengers, both in embryonic development and late life when they rally their cells to defend against pathogens and insect pests. The recent advance in those aspects is reviewed.

  16. Preparation of Antibacterial Silver-Containing Silica Nanocomposite

    Science.gov (United States)

    Kim, Young Hwan; Kim, Chang Woo; Cha, Hyun Gil; Jo, Byoung Kee; Ahn, Gi Woong; Hong, Eun Suk; Kang, Young Soo

    Ag nanoparticle deposition on the surface of spherical SiO2 nanoparticles was studied to achieve hybrid structure of Ag-SiO2 nanocomposite. SiO2 nanoparticles were served as seeds for continuous Ag metal deposition. The ratio of elements and morphology was studied with scanning electron microscope energy dispersive X-ray and transmission electron microscope. The antibacterial properties of Ag-SiO2 nanocomposite were examined. The homogeneously formed Ag nanoparticles on the surface of SiO2 nanoparticles without aggregation of Ag nanoparticles showed excellent antibacterial abilities.

  17. Antibacterial behavior of diamond nanoparticles against Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Beranova, Jana; Seydlova, Gabriela [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 16200 Prague (Czech Republic); Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 12844 Prague (Czech Republic); Kozak, Halyna; Potocky, Stepan; Kromka, Alexander [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 16200 Prague (Czech Republic); Konopasek, Ivo [Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 12844 Prague (Czech Republic)

    2012-12-15

    In this study, we investigated the potential antibacterial properties of nanocrystalline diamond. In particular, we tested the effect of diamond nanoparticles (DNPs) on growth of the model gram-negative bacterium Escherichia coli on solid, nutrient-rich growth medium. We found that the presence of DNPs on agar plates significantly reduced the colony forming ability of E. coli. The antibacterial effect occurred in a concentration dependent manner and was conditional on the specific ratio of DNPs to the number of bacterial cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Plasma polymerized carvone as an antibacterial and biocompatible coating.

    Science.gov (United States)

    Chan, Yuen Wah; Siow, Kim Shyong; Ng, Pei Yuen; Gires, Usup; Yeop Majlis, Burhanuddin

    2016-11-01

    Antibacterial coating is important to prevent the colonization of medical devices by biofilm forming bacteria that would cause infection and sepsis in patients. Current coating techniques such as immobilization of antimicrobial compounds, time-releasing antibiotic agents and silver nanoparticles, require multiple processing steps, and they have low efficacy and low stability. We proposed a single-step plasma polymerization of an essential oil known as carvone to produce a moderately hydrophobic antibacterial coating (ppCar) with an average roughness of cell line. This study would be of interest to researcher keen on producing a bacteria-resistance and biocompatible coating on different substrates in a cost-effective manner. PMID:27524089

  19. Antibacterial compounds from marine Vibrionaceae isolated on a global expedition

    DEFF Research Database (Denmark)

    Wietz, Matthias; Månsson, Maria; Gotfredsen, Charlotte Held;

    2010-01-01

    On a global research expedition, over 500 bacterial strains inhibitory towards pathogenic bacteria were isolated. Three hundred of the antibacterial strains were assigned to the Vibrionaceae family. The purpose of the present study was to investigate the phylogeny and bioactivity of five Vibriona......On a global research expedition, over 500 bacterial strains inhibitory towards pathogenic bacteria were isolated. Three hundred of the antibacterial strains were assigned to the Vibrionaceae family. The purpose of the present study was to investigate the phylogeny and bioactivity of five...

  20. Synthesis and antibacterial activity of new chiral -sulfamoyloxazolidin-2-ones

    Indian Academy of Sciences (India)

    Fouzia Bouchareb; Malika Berredjem; Samira Ait Kaki; Amel Bouaricha; Abdeslem Bouzina; Billel Belhani; Nour-Eddine Aouf

    2016-01-01

    A new series of , ′-bis-oxazolidinones-sulfone and 5-chloromethylsulfamoyl-oxazolidin-2-ones have been synthesized in three steps (carbamoylation, sulfamoylation and cyclization) starting from 1,3-dichloroporopan-2-ol, chlorosulfonyl isocyanate and primary or secondary amines. Synthesis has been carried out following simple methodology in excellent isolated yields. The structure and purity of the original compounds were confirmed by IR, NMR, and MS. The compounds were evaluated for their in vitro antibacterial activity against some Gram-positive bacteria; Staphylococcus aureus and Gram-negative bacteria; Escherichia Coli, Klebsiella pneumonieae, Acinetobacter, Pseudomonas aeruginosa, Enterococcus, Salmonella sp. The compounds showed moderate to good antibacterial activity.

  1. Antibacterial Antifolates: From Development through Resistance to the Next Generation.

    Science.gov (United States)

    Estrada, Alexavier; Wright, Dennis L; Anderson, Amy C

    2016-01-01

    The folate cycle is one of the key metabolic pathways used by bacteria to synthesize vital building blocks required for proliferation. Therapeutic agents targeting enzymes in this cycle, such as trimethoprim and sulfamethoxazole, are among some of the most important and continually used antibacterials to treat both Gram-positive and Gram-negative pathogens. As with all antibacterial agents, the emergence of resistance threatens the continued clinical use of these life-saving drugs. In this article, we describe and analyze resistance mechanisms that have been clinically observed and review newer generations of preclinical compounds designed to overcome the molecular basis of the resistance. PMID:27352799

  2. GREEN SYNTHESIS OF NANOSTRUCTURED MATERIALS FOR ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES

    OpenAIRE

    Ayeshamariam A*, Tajun Meera Begam M, Jayachandran M, Praveen Kumar G and M Bououdina

    2013-01-01

    New materials hold the key to fundamental advances in antibacterial and antifungal activities, both of which are vital in order to meet the challenge of global warning of microorganism’s advantages and limitations and the finite nature of medicinal plants. The use of additive to augment the effect of a synthetic or natural drug candidate is well known.  Here we report the use of nanoparticles of tin oxide (SnO2) to enhance the antibacterial and anti fungal potency of Alovera extract when comp...

  3. Antibacterial triterpenes from Syzygium guineense (Myrtaceae)

    OpenAIRE

    Djoukeng, J.D.; Abou-Mansour, Eliane; Tabacchi, Raphaël; Tapondjou, A. L.; Bouda, H.; Lontsi, D.

    2009-01-01

    Antibacterial bioassay-guided fractionation of Syzygium guineense leaf extracts afforded 10 triterpenes, namely betulinic acid 1, oleanolic acid 2, a mixture of 2-hydroxyoleanolic acid 3a, 2-hydroxyursolic acid 3b, arjunolic acid 4a, asiatic acid 4b, a mixture of terminolic acid 5a, 6-hydroxyasiatic acid 5b, and a mixture of arjunolic acid 28-β-glucopyranosyl ester 6a and the asiatic acid 28-β-glucopyranosyl ester 6b. Isolated compounds were submitted to an antibacterial assay system against ...

  4. Antibacterial Behavior of Pyridinecarboxylatesilver(Ⅰ) Complexes

    Institute of Scientific and Technical Information of China (English)

    Abarca, Romina; Gomez, Grace; Velasquez, Carla; Paez, Maritza A.; Gulppi, Miguel; Arrieta, Abel; Azocar, Manuell

    2012-01-01

    FT-1R spectroscopy of carboxylic groups and viability tests were useful to understand the antibacterial proper- ties of six highly efficient silver(I) pyridinecarboxylate (nicotinic, picolinic and isonicotinic acids) and bipiridinecarboxylate (pyridine-2,3-dicarboxylic, pyridine-2,4-dicarboxylic and pyridine-2,5-dicarboxylic acids) complexes with Ag--O and Ag--N bonds against E. coli (ATCC 25922) and Streptococcus' agalactiae (ISP 329-09). The resuits show a tendency between the nature of Ag--X (X=oxygen and nitrogen) bonds and the rate or efficiency of antibacterial behavior.

  5. Screening of TACE Peptide Inhibitors from Phage Display Peptide Library

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To obtain the recombinant tumor necrosis factor-α converting enzyme (TACE) ectodomain and use it as a selective molecule for the screening of TACE peptide inhibitors, the cDNA coding catalytic domain (T800) and full-length ectodomain (T1300) of TACE were amplified by RTPCR, and the expression plasmids were constructed by inserting T800 and T1300 into plasmid pET28a and pET-28c respectively. The recombinant T800 and T1300 were induced by IPTG, and SDSPAGE and Western blotting analysis results revealed that T800 and T1300 were highly expressed in the form of inclusion body. After Ni2+-NTA resin affinity chromatography, the recombinant proteins were used in the screening of TACE-binding peptides from phage display peptide library respectively. After 4 rounds of biopanning, the positive phage clones were analyzed by ELISA, competitive inhibition assay and DNA sequencing. A common amino acid sequence (TRWLVYFSRPYLVAT) was found and synthesized. The synthetic peptide could inhibit the TNF-α release from LPS-stimulated human peripheral blood mononuclear cells (PBMC) up to 60.3 %. FACS analysis revealed that the peptide mediated the accumulation of TNF-α on the cell surface. These results demonstrate that the TACE-binding peptide is an effective antagonist of TACE.

  6. Identification of probiotics strain Tu-569 from rabbit cecum and property analysis of its extracellular antibacterial product%兔源益生菌Tu-569菌株鉴定与其胞外产抑菌物性质分析

    Institute of Scientific and Technical Information of China (English)

    柴玉龙; 尚伟; 姜军坡; 王世英; 朱宝成

    2012-01-01

    with heat, but could be degraded by proteases. The antibacterial polypeptide could be concentrated from butanol extraction without loss of antibacterial activity. The antibacterial activity of antibacterial polypeptide could be enhanced by Mn2+, but would be reduced in lower pH (pH3) or higher pH (pHll) buffer solutions. When surfactants or β-mercaptoethanol was present in buffer solutions, antimicrobial peptides would show complete loss of the antibacterial activity. The antibacterial activity against E. coli of antimicrobial peptides in lmg of crude protein was equivalent to 2μg of gentamicin sulfate, 10μg of streptomycin sulfate or 50μg of oxytetracycline. Conclusion Antimicrobial peptides of Tu-569 strain had a high and stable antibacterial activity against Escherichia coli, which was useful in applications of animal husbandry, aquaculture, food and other fields.

  7. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    Science.gov (United States)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore

  8. High-resolution mass spectrometry driven discovery of peptidic danger signals in insect immunity.

    Science.gov (United States)

    Berisha, Arton; Mukherjee, Krishnendu; Vilcinskas, Andreas; Spengler, Bernhard; Römpp, Andreas

    2013-01-01

    The 'danger model' is an alternative concept for immune response postulating that the immune system reacts to entities that do damage (danger associated molecular patterns, DAMP) and not only to entities that are foreign (pathogen-associated molecular patterns, PAMP) as proposed by classical immunology concepts. In this study we used Galleria mellonella to validate the danger model in insects. Hemolymph of G. mellonella was digested with thermolysin (as a representative for virulence-associated metalloproteinases produced by humanpathogens) followed by chromatographic fractionation. Immune-stimulatory activity was tested by measuring lysozyme activity with the lytic zone assays against Micrococcus luteus cell wall components. Peptides were analyzed by nano-scale liquid chromatography coupled to high-resolution Fourier transform mass spectrometers. Addressing the lack of a genome sequence we complemented the rudimentary NCBI protein database with a recently established transcriptome and de novo sequencing methods for peptide identification. This approach led to identification of 127 peptides, 9 of which were identified in bioactive fractions. Detailed MS/MS experiments in comparison with synthetic analogues confirmed the amino acid sequence of all 9 peptides. To test the potential of these putative danger signals to induce immune responses we injected the synthetic analogues into G. mellonella and monitored the anti-bacterial activity against living Micrococcus luteus. Six out of 9 peptides identified in the bioactive fractions exhibited immune-stimulatory activity when injected. Hence, we provide evidence that small peptides resulting from thermolysin-mediated digestion of hemolymph proteins function as endogenous danger signals which can set the immune system into alarm. Consequently, our study indicates that the danger model also plays a role in insect immunity. PMID:24303012

  9. The Equine PeptideAtlas

    DEFF Research Database (Denmark)

    Bundgaard, Louise; Jacobsen, Stine; Sorensen, Mette A.;

    2014-01-01

    Progress in MS-based methods for veterinary research and diagnostics is lagging behind compared to the human research, and proteome data of domestic animals is still not well represented in open source data repositories. This is particularly true for the equine species. Here we present a first...... current release comprises 24 131 distinct peptides representing 2636 canonical proteins observed at false discovery rates of 0.2% at the peptide level and 1.4% at the protein level. Data from the Equine PeptideAtlas are available for experimental planning, validation of new datasets, and as a proteomic...... data mining resource. The advantages of the Equine PeptideAtlas are demonstrated by examples of mining the contents for information on potential and well-known equine acute phase proteins, which have extensive general interest in the veterinary clinic. The extracted information will support further...

  10. Peptide nanostructures in biomedical technology.

    Science.gov (United States)

    Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik

    2016-09-01

    Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. PMID:26846352

  11. Production and characterization of peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies are...... powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors such as......, including solid-phase peptide-carrier conjugation and peptide-carrier conjugation in solution. Upon immunization, adjuvants such as Al(OH)(3) are added together with the immunogenic peptide-carrier conjugate, which usually leads to high-titred antisera. Following immunization and peptide antibody...

  12. Targeting cancer with peptide aptamers

    OpenAIRE

    Seigneuric, Renaud; Gobbo, Jessica; Colas, Pierre; Garrido, Carmen

    2011-01-01

    A major endeavour in cancer chemotherapy is to develop agents that specifically target a biomolecule of interest. There are two main classes of targeting agents: small molecules and biologics. Among biologics (e.g.: antibodies), DNA, RNA but also peptide aptamers are relatively recent agents. Peptide aptamers are seldom described but represent attractive agents that can inhibit a growing panel of oncotargets including Heat Shock Proteins. Potential pitfalls and coming challenges towards succe...

  13. Manufacturing of peptides exhibiting biological activity

    OpenAIRE

    Zambrowicz, Aleksandra; Timmer, Monika; Polanowski, Antoni; Lubec, Gert; Trziszka, Tadeusz

    2012-01-01

    Numerous studies have shown that food proteins may be a source of bioactive peptides. Those peptides are encrypted in the protein sequence. They stay inactive within the parental protein until release by proteolytic enzymes (Mine and Kovacs-Nolan in Worlds Poult Sci J 62(1):87–95, 2006; Hartman and Miesel in Curr Opin Biotechnol 18:163–169, 2007). Once released the bioactive peptides exhibit several biofunctionalities and may serve therapeutic roles in body systems. Opioid peptides, peptides ...

  14. Peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  15. Antimicrobial peptides in annelids

    Directory of Open Access Journals (Sweden)

    A Tasiemski

    2008-06-01

    Full Text Available Gene encoded antimicrobial peptides (AMPs are widely distributed among living organisms including plants, invertebrates and vertebrates. They constitute important effectors of the innate immune response by exerting multiple roles as mediators of inflammation with impact on epithelial and inflammatory cells influencing diverse processes such as cytokine release, cell proliferation, angiogenesis, wound healing, chemotaxis and immune induction. In invertebrates, most of the data describe the characterization and/or the function of AMPs in the numerically and economically most representative group which are arthropods. Annelids are among the first coelomates and are therefore of special phylogenetic interest. Compared to other invertebrate groups, data on annelid’s immunity reveal heavier emphasis on the cellular than on the humoral response suggesting that immune defense of annelids seems to be principally developed as cellular immunity.This paper gives an overview of the variety of AMPs identified in the three classes of annelids, i.e. polychaetes, oligochaetes and achaetes. Their functions, when they have been studied, in the humoral or cellular response of annelids are also mentioned.

  16. Kinins and peptide receptors.

    Science.gov (United States)

    Regoli, Domenico; Gobeil, Fernand

    2016-04-01

    This paper is divided into two sections: the first contains the essential elements of the opening lecture presented by Pr. Regoli to the 2015 International Kinin Symposium in S. Paulo, Brazil on June 28th and the second is the celebration of Dr. Regoli's 60 years of research on vasoactive peptides. The cardiovascular homeostasis derives from a balance of two systems, the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS). The biologically active effector entity of RAS is angiotensin receptor-1 (AT-1R), and that of KKS is bradykinin B2 receptor (B2R). The first mediates vasoconstriction, the second is the most potent and efficient vasodilator. Thanks to its complex and multi-functional mechanism of action, involving nitric oxide (NO), prostacyclin and endothelial hyperpolarizing factor (EDHF). B2R is instrumental for the supply of blood, oxygen and nutrition to tissues. KKS is present on the vascular endothelium and functions as an autacoid playing major roles in cardiovascular diseases (CVDs) and diabetes. KKS exerts a paramount role in the prevention of thrombosis and atherosclerosis. Such knowledge emphasizes the already prominent value of the ACE-inhibitors (ACEIs) for the treatment of CVDs and diabetes. Indeed, the ACEIs, thanks to their double action (block of the RAS and potentiation of the KKS) are the ideal agents for a rational treatment of these diseases. PMID:26408609

  17. Antimicrobial peptides in crustaceans

    Directory of Open Access Journals (Sweden)

    RD Rosa

    2010-11-01

    Full Text Available Crustaceans are a large and diverse invertebrate animal group that mounts a complex and efficient innate immune response against a variety of microorganisms. The crustacean immune system is primarily related to cellular responses and the production and release of important immune effectors into the hemolymph. Antimicrobial proteins and/or peptides (AMPs are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, 15 distinct AMP families are currently recognized, although the great majority (14 families comes from members of the order Decapoda. Crustacean AMPs are generally cationic, gene-encoded molecules that are mainly produced by circulating immune-competent cells (hemocytes or are derived from unrelated proteins primarily involved in other biological functions. In this review, we tentatively classified the crustacean AMPs into four main groups based on their amino acid composition, structural features and multi-functionality. We also attempted to summarize the current knowledge on their implication both in an efficient response to microbial infections and in crustacean survival.

  18. A Hybrid Cationic Peptide Composed of Human β-Defensin-1 and Humanized θ-Defensin Sequences Exhibits Salt-Resistant Antimicrobial Activity

    Science.gov (United States)

    Nagaraj, Ramakrishnan; Motukupally, Swapna R.

    2014-01-01

    We have designed a hybrid peptide by combining sequences of human β-defensin-1 (HBD-1) and θ-defensin, in an attempt to generate a molecule that combines the diversity in structure and biological activity of two different peptides to yield a promising therapeutic candidate. HBD-1 was chosen as it is a natural defensin of humans that is constitutively expressed, but its antibacterial activity is considerably impaired by elevated ionic strength. θ-Defensins are expressed in human bone marrow as a pseudogene and are homologous to rhesus monkey circular minidefensins. Retrocyclins are synthetic human θ-defensins. The cyclic nature of the θ-defensin peptides makes them salt resistant, nonhemolytic, and virtually noncytotoxic in vitro. However, a nonhuman circular molecule developed for clinical use would be less viable than a linear molecule. In this study, we have fused the C-terminal region of HBD-1 to the nonapeptide sequence of a synthetic retrocyclin. Cyclization was achieved by joining the terminal ends of the hybrid peptide by a disulfide bridge. The hybrid peptide with or without the disulfide bridge exhibited enhanced antimicrobial activity against both Gram-negative and Gram-positive bacteria as well as against fungi, including clinical bacterial isolates from eye infections. The peptide retained activity in the presence of NaCl and serum and was nonhemolytic in vitro. Thus, the hybrid peptide generated holds potential as a new class of antibiotics. PMID:25348533

  19. A hybrid cationic peptide composed of human β-defensin-1 and humanized θ-defensin sequences exhibits salt-resistant antimicrobial activity.

    Science.gov (United States)

    Olli, Sudar; Nagaraj, Ramakrishnan; Motukupally, Swapna R

    2015-01-01

    We have designed a hybrid peptide by combining sequences of human β-defensin-1 (HBD-1) and θ-defensin, in an attempt to generate a molecule that combines the diversity in structure and biological activity of two different peptides to yield a promising therapeutic candidate. HBD-1 was chosen as it is a natural defensin of humans that is constitutively expressed, but its antibacterial activity is considerably impaired by elevated ionic strength. θ-Defensins are expressed in human bone marrow as a pseudogene and are homologous to rhesus monkey circular minidefensins. Retrocyclins are synthetic human θ-defensins. The cyclic nature of the θ-defensin peptides makes them salt resistant, nonhemolytic, and virtually noncytotoxic in vitro. However, a nonhuman circular molecule developed for clinical use would be less viable than a linear molecule. In this study, we have fused the C-terminal region of HBD-1 to the nonapeptide sequence of a synthetic retrocyclin. Cyclization was achieved by joining the terminal ends of the hybrid peptide by a disulfide bridge. The hybrid peptide with or without the disulfide bridge exhibited enhanced antimicrobial activity against both Gram-negative and Gram-positive bacteria as well as against fungi, including clinical bacterial isolates from eye infections. The peptide retained activity in the presence of NaCl and serum and was nonhemolytic in vitro. Thus, the hybrid peptide generated holds potential as a new class of antibiotics. PMID:25348533

  20. Material Binding Peptides for Nanotechnology

    Directory of Open Access Journals (Sweden)

    Urartu Ozgur Safak Seker

    2011-02-01

    Full Text Available Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past decade to select material-specific peptides. Screening and selection of such phage displayed material binding peptides has attracted great interest, in particular because of their use in nanotechnology. Phage display selected peptides are either synthesized independently or expressed on phage coat protein. Selected phage particles are subsequently utilized in the synthesis of nanoparticles, in the assembly of nanostructures on inorganic surfaces, and oriented protein immobilization as fusion partners of proteins. In this paper, we present an overview on the research conducted on this area. In this review we not only focus on the selection process, but also on molecular binding characterization and utilization of peptides as molecular linkers, molecular assemblers and material synthesizers.

  1. Collagen-like antimicrobial peptides.

    Science.gov (United States)

    Masuda, Ryo; Kudo, Masakazu; Dazai, Yui; Mima, Takehiko; Koide, Takaki

    2016-11-01

    Combinatorial library composed of rigid rod-like peptides with a triple-helical scaffold was constructed. The component peptides were designed to have various combinations of basic and neutral (or hydrophobic) amino acid residues based on collagen-like (Gly-Pro-Yaa)-repeating sequences, inspired from the basic and amphiphilic nature of naturally occurring antimicrobial peptides. Screening of the peptide pools resulted in identification of antimicrobial peptides. A structure-activity relationship study revealed that the position of Arg-cluster at N-terminus and cystine knots at C-terminus in the triple helix significantly contributed to the antimicrobial activity. The most potent peptide RO-A showed activity against Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. In addition, Escherichia coli exposed to RO-A resulted in abnormal elongation of the cells. RO-A was also shown to have remarkable stability in human serum and low cytotoxicity to mammalian cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 453-459, 2016. PMID:27271210

  2. Synthesis and evaluation of amphiphilic peptides as nanostructures and drug delivery tools

    Science.gov (United States)

    Sayeh, Naser Ali

    the well-known, highly cationic CPPs, such as TAT and Arg9, which do not translocate across phospholipid bilayers, and enter cells mostly by active endocytosis. Alternatively, researchers have found that an effective cellular delivery vector can be improved developed by conjugating a CPP with a fatty acid chain. Amphiphilic peptides have also become a subject of major interest as potent antibacterial agents. Antimicrobial peptides (AMPs) are produced naturally by bacteria and are considered as the first line of host defense protecting living organisms from microorganisms. Various types of AMPs has been discovered, such as defensins, cecropins, magainins and cathelicidins, with significant different structures and bioactivity profiles. The mechanism of actions for these peptides were reported as effectors and regulators of the innate immune system by increasing production and release of chemokine, and enhancing wound healing and angiogenesis. They were able to suppress biofilm formation and induce the dissolution of existing biofilms. Thus, design of new AMPs and more cost effective sequences with highly activity are urgently needed. Although a number of cyclic peptides were discovered and reported as efficient cellular delivery agents or antimicrobial agent, a more systematic investigation is required to identify design rules for optimal entrapment, drug loading, and stability. The balance of many small forces determines the overall morphology, size, and functionality of the structures. A deeper understanding of these factors is required for guiding future research, and for customizing cyclic peptides for drug loading and cellular delivery applications. Thus, additional amphiphilic cyclic and linear peptides were designed with variable electrostatic and hydrophobic residues to optimize drug encapsulation. The diversity in ring size, amino acid number, position and sequences, number of rings, net charge, and hydrophobicity of side chains in cyclic peptides will allow

  3. Cost-effectiveness and Pricing of Antibacterial Drugs

    Science.gov (United States)

    Verhoef, Talitha I; Morris, Stephen

    2015-01-01

    Growing resistance to antibacterial agents has increased the need for the development of new drugs to treat bacterial infections. Given increasing pressure on limited health budgets, it is important to study the cost-effectiveness of these drugs, as well as their safety and efficacy, to find out whether or not they provide value for money and should be reimbursed. In this article, we systematically reviewed 38 cost-effectiveness analyses of new antibacterial agents. Most studies showed the new antibacterial drugs were cost-effective compared to older generation drugs. Drug pricing is a complicated process, involving different stakeholders, and has a large influence on cost-effectiveness. Value-based pricing is a method to determine the price of a drug at which it can be cost-effective. It is currently unclear what the influence of value-based pricing will be on the prices of new antibacterial agents, but an important factor will be the definition of ‘value’, which as well as the impact of the drug on patient health might also include other factors such as wider social impact and the health impact of disease. PMID:25521641

  4. Synthesis and studies of antibacterial activity of pongaglabol

    Indian Academy of Sciences (India)

    Sayed Alam; Zakaria Sarkar; Azizul Islam

    2004-01-01

    Pongaglabol [8-hydroxy-5-phenyl-furo[2,3-h]benzo(b)pyran-7-one] was synthesized and tested for antibacterial effects against Shigella dysenteriae, Salmonella typhi, Streptococcus -haemolyticus and Staphylococcus aureus. The synthesized compounds were characterized using UV, IR and 1H NMR spectral data.

  5. Antibacterial and antifungal activity of liriodenine and related oxoaporphine alkaloids.

    Science.gov (United States)

    Hufford, C D; Sharma, A S; Oguntimein, B O

    1980-10-01

    Liriodenine was evaluated for its antibacterial and antifungal activity against several microorganisms. Other related oxoaporphine alkaloids also were evaluated. Attempts to prepare oxoaporphine alkaloids from N-acetylnoraporphines were unsuccessful, but an unexpected phenanthrene alkaloid was obtained. A novel N-demethylation reaction was noted when oxogaucine methiodide and liriodenine methiodide were treated with alumina. PMID:7420287

  6. Recent advances in engineering topography mediated antibacterial surfaces

    Science.gov (United States)

    Hasan, Jafar; Chatterjee, Kaushik

    2015-09-01

    The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria-material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces.

  7. Antibacterial activity of essential oils: potential applications in food

    NARCIS (Netherlands)

    Burt, S.A.

    2007-01-01

    Due to its antibacterial activity, oregano oil has lately become interesting as a potential 'natural' food preservative. Oregano oil was found to be a fast acting and effective inhibitor of a strain of Escherichia coli O157:H7, the causative agent of a serious gastro-enteritis, and was lethal to thi

  8. Study of Ce-modified antibacterial 316L stainless steel

    Directory of Open Access Journals (Sweden)

    Yuan Junping

    2012-11-01

    Full Text Available 316L stainless steel is widely used for fashion jewelry, but it can carry a large number of bacteria and bring the risk of infection since the steel has no antimicrobial performance. In this paper, the effects of Ce on the antibacterial property, corrosion resistance and processability of 316L were studied by microscopic observation, thin-film adhering quantitative bacteriostasis, and electrochemical and mechanical tests. The results show that a trace of Ce can distribute uniformly in the matrix of 316L and slightly improve its corrosion resistance in artificial sweat. With an increase in Ce content, the Ce is prone to form clustering, which degrades the corrosion resistance and the processability. The Ce-containing 316L exhibits Hormesis effect against S. aureus. A small Ce addition stimulates the growth of S. aureus. As the Ce content increases, the modified 316L exhibits an improved antibacterial efficacy. The more Ce is added, the better antibacterial capability is achieved. Overall, if the 316L is modified with Ce alone, it is difficult to obtain the optimal combination of corrosion resistance, antibacterial performance and processability. In spite of that, 0.15 wt.%-0.20 wt.% Ce around is inferred to be the best trade-off.

  9. Enhancing antibacterial properties of UHMWPE via ion implantation

    Science.gov (United States)

    Nassisi, Vincenzo; Delle Side, Domenico; Velardi, Luciano; Alifano, Pietro; Talà, Adelfia; Maurizio Tredici, Salvatore

    2012-10-01

    In the last decades, the demand for biomaterials of antimicrobial quality sensibly increased. The essential properties of these materials must be the biocompatibility, wettability, durability and their antibacterial characteristics. One of the most important biomaterial for medical applications is the ultra high molecular weight polyethylene (UHMWPE) that it is used to make components of prosthetic knee, hip and shoulder. It is well known that the presence in UHMWPE of Ag atoms increase its antibacterial properties while Cu and its alloys are known as natural antimicrobial materials. In this work it is proposed a dedicated laser ion source (LIS) accelerator to perform ion implantation together with a systematic study of the surface properties of UHMWPE samples treated with different metals in order to modify their antibacterial characteristics. The proposed technique consists in the application of a dose of specific ions inside the first layer of the sample to be treated. This goal can be effectively achieved if the ions are preventively accelerated. This technique seems to be interesting, since it can open the way to an easier realization of antibacterial materials using various metal ions.

  10. Antibacterial Secondary Metabolites from the Cave Sponge Xestospongia sp

    OpenAIRE

    Sridevi Ankisetty; Marc Slattery

    2012-01-01

    Chemical investigation of the cave sponge Xestospongia sp. resulted in the isolation of three new polyacetylenic long chain compounds along with two known metabolites. The structures of the new metabolites were established by NMR and MS analyses. The antibacterial activity of the new metabolites was also evaluated.

  11. Selective antibacterial effects of mixed ZnMgO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Vidic, Jasmina, E-mail: jasmina.vidic@jouy.inra.fr [VIM, Institut de la Recherche Agronomique (France); Stankic, Slavica, E-mail: slavica.stankic@insp.jussieu.fr; Haque, Francia [CNRS, Institut des Nanosciences de Paris, UMR 7588 (France); Ciric, Danica; Le Goffic, Ronan; Vidy, Aurore [VIM, Institut de la Recherche Agronomique (France); Jupille, Jacques [CNRS, Institut des Nanosciences de Paris, UMR 7588 (France); Delmas, Bernard [VIM, Institut de la Recherche Agronomique (France)

    2013-05-15

    Antibiotic resistance has impelled the research for new agents that can inhibit bacterial growth without showing cytotoxic effects on humans and other species. We describe the synthesis and physicochemical characterization of nanostructured ZnMgO whose antibacterial activity was compared to its pure nano-ZnO and nano-MgO counterparts. Among the three oxides, ZnO nanocrystals-with the length of tetrapod legs about 100 nm and the diameter about 10 nm-were found to be the most effective antibacterial agents since both Gram-positive (B. subtilis) and Gram-negative (E. coli) bacteria were completely eradicated at concentration of 1 mg/mL. MgO nanocubes (the mean cube size {approx}50 nm) only partially inhibited bacterial growth, whereas ZnMgO nanoparticles (sizes corresponding to pure particles) revealed high specific antibacterial activity to Gram-positive bacteria at this concentration. Transmission electron microscopy analysis showed that B. subtilis cells were damaged after contact with nano-ZnMgO, causing cell contents to leak out. Our preliminary toxicological study pointed out that nano-ZnO is toxic when applied to human HeLa cells, while nano-MgO and the mixed oxide did not induce any cell damage. Overall, our results suggested that nanostructured ZnMgO, may reconcile efficient antibacterial efficiency while being a safe new therapeutic for bacterial infections.

  12. Antibacterial Activity of Barringtonia acutangula against Selected Urinary Tract Pathogens

    OpenAIRE

    S. Sahoo; Panda, P. K.; S R Mishra; Parida, R. K.; P Ellaiah; Dash, S. K.

    2008-01-01

    Barringtonia acutangula (L.) Gaertn belonging to family Barringtoniaceae was investigated to evaluate In vitro antibacterial activity of aqueous, ethanolic, petroleum ether and chloroform extracts against Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterococcus faecalis and Escherichia coli the major urinary tract infection causing pathogens were tested by disc diffusion assay method and the minimum inhibitory concentration was evaluated. Ethanol (95%) extract exhibi...

  13. Chitosan-based nanofibrous membranes for antibacterial filter applications.

    Science.gov (United States)

    Cooper, Ashleigh; Oldinski, Rachael; Ma, Hongyan; Bryers, James D; Zhang, Miqin

    2013-01-30

    Nanofibrous membranes have drawn considerable interest for filtration applications due to their ability to withstand high fluid flux while removing micro- and nano-sized particulates from solution. The desire to introduce an antibacterial function into water filter applications presents a challenge to widespread application of fibrous membranes because the addition of chemicals or biocides may produce harmful byproducts downstream. Here, we report the development of chitosan-polycaprolactone (PCL) nanofibrous membranes to utilize the natural antibacterial property of chitosan for antibacterial water filtration. Chitosan-PCL fibers with diameters of 200-400 nm and chitosan contents of 25, 50 and 75 wt% were prepared by electrospinning. In a series of bacterial challenge tests, chitosan-PCL fibrous membranes significantly reduced Staphylococcus aureus adhesion compared to PCL fibrous membranes. In water permeability and particulate size removal tests, fibrous membranes with 25% chitosan supported the greatest water flux (∼7000 L/h/m(2)) with 100% removal of 300-nm particulates, while maintaining the membrane integrity. This study demonstrates the potential of chitosan-PCL nanofibrous membranes as pre-filters for water filtration systems that demonstrate combinatorial filtration and intrinsic antibacterial advantages. PMID:23218292

  14. Screening of Antibacterial Activities of Marine Gastropod Hemifusus Pugilinus

    Directory of Open Access Journals (Sweden)

    S. Sugesh

    2013-01-01

    Full Text Available In the present investigation was carried out to screen the antibacterial activities of marine gastropod Hemifusus pugilinus. The whole body of the animal was extracted in three different solvents such as, ethanol, methanol and water. The antibacterial properties were studied using 10 human pathogenic microorganisms such as, Escherichia coli, Klebsiella oxytoca, K. pnuemoniae, Lactobacillus vulgaris, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi, S. paratyphi, Staphylococcus aureus, and Vibrio paraheamolyticus. The ethanolic extracts of H. pugilinus showed maximum antibacterial activities against E. coli (8 mm and minimum activities against Vibrio paraheamolyticus (2 mm, Methanolic extracts showed highest activity in E. coli (6 mm and lowest activity against S. paratyphi (1 mm and the extract of water showed antibacterial activities against E. coli K. oxytoca and S. paratyphi. The crude extracts were purified in silica gel column chromatography with 11 fractions. In that E:M, 16:4, 12:8, 10:10, which showed maximum zone of inhibition against E.coli (4 mm, K. oxytoca (4 mm, K. pneumoniae (3 mm, L. vulgaris (4 mm and V. parahemolyticus (5 mm. 18:2, 8:12, 6:14, 4:12 and 2:18 with these fractions showed minimum activities against the all pathogenic microbial forms.

  15. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis.

    Science.gov (United States)

    Joray, Mariana Belén; Trucco, Lucas Daniel; González, María Laura; Napal, Georgina Natalia Díaz; Palacios, Sara María; Bocco, José Luis; Carpinella, María Cecilia

    2015-01-01

    The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2',4'-dihydroxychalcone (1), isoliquiritigenin (2), pinocembrin (3), 7-hydroxyflavanone (4), and 7,4'-dihydroxy-3'-methoxyflavanone (5). Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC) values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1-5 was determined by MTT assay on acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) cell lines including their multidrug resistant (MDR) phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6-9.9 μM) and a lower effect against CML cells (IC50 = 27.5-30.0 μM). Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound. PMID:26819623

  16. Antibacterial activity of some actinomycetes from Tamil Nadu, India

    Institute of Scientific and Technical Information of China (English)

    Pachaiyappan Saravana Kumar; John Poonga Preetam Raj; Veeramuthu Duraipandiyan; Savarimuthu Ignacimuthu

    2012-01-01

    Objective:To isolate novel actinomycetes and to evaluate their antibacterial activity. Methods:Three soil samples were collected from Vengodu (village) in Kanchipuram district, Tamil Nadu, India. Actinomycetes were isolated using serial dilution and plating method on actinomycetes isolation agar. Results: Totally 35 isolates were obtained on the basis of colony characteristics on actinomycetes isolation agar. All the isolates were screened for antibacterial activity by cross streak method. Medium and optimization of day were done for the potent strains using Nathan's agar well diffusion method. Isolation of bioactive compounds from significant active isolates was done by using different media. The most active isolate VAS 10 was identified as Actinobacterium Loyola PBT VAS 10 (accession No. JF501398) using 16s rRNA sequence method. The hexane, ethyl acetate, dichloromethane and butanol extracts of VAS 10 were tested against bacteria. The maximum antibacterial activity was observed in dichloromethane and ethyl acetate;maximum zones of inhibition were observed against Enterococcus durans. The rRNA secondary structure and the restriction sites of Actinobacterium Loyola VAS 10 were predicted using Genebee and NEBCutter online tools respectively. Conclusions: The present study showed that among the isolated actinomycetes, Actinobacterium Loyola PBT VAS 10 (accession No. JF501398) showed good antibacterial activity against the tested bacteria.

  17. Novel degradablepolymeric materials for biomedical and antibacterial applications

    OpenAIRE

    Zhang, Yi

    2012-01-01

    In this thesis degradable polymers for three different purposes, DNA transfection, drug delivery and antibacterial properties were designed, synthesized and characterized. In the first part of the DNA transfection application the novel degradable and biocompatible poly(PEG-co-(BMDO-co-DMAEMA)) and its quaternized derivative poly(PEG-co-(BMDO-co-DMAEMA•EtBr)) were successfully synthesized and characterized. This copolymer shows a ...

  18. Enhancing the antibacterial efficacy of isoeugenol by emulsion encapsulation.

    Science.gov (United States)

    Krogsgård Nielsen, Christina; Kjems, Jørgen; Mygind, Tina; Snabe, Torben; Schwarz, Karin; Serfert, Yvonne; Meyer, Rikke Louise

    2016-07-16

    Food spoilage and foodborne illnesses are two global challenges for food manufacturers. Essential oils are natural antibacterials that could have a potential for use in food preservation. Unfortunately high concentrations are needed to obtain the desired antibacterial effect, and this limits their use in food due to their adverse organoleptic properties. Encapsulation could make essential oils more effective by concentrating them in the aqueous phase of the food matrix where the bacteria are present. Here we tested encapsulation of the essential oil isoeugenol in spray-dried emulsions as a means of making isoeugenol a more effective antibacterial for use in food preservation. We used β-lactoglobulin and n-OSA starch as emulsifiers, and some emulsions were coated with positively charged chitosan to promote the contact with bacteria through electrostatic interactions. The antibacterial efficacy was quantified as the minimal bactericidal concentration in growth media, milk and carrot juice. The emulsion encapsulation system developed in this study provided high loading capacities, and encapsulation enhanced the efficacy of isoeugenol against Gram-positive and -negative bacteria in media and carrot juice but not in milk. Chitosan-coating did not enhance the efficacy further, possibly due to the aggregation of the chitosan-coated emulsions. The encapsulation system is easy to upscale and should be applicable for encapsulation of similar essential oils. Therefore, we believe it has potential to be used for natural food preservation. PMID:27089032

  19. Graphene Oxide Reinforced Polylactic Acid/Polyurethane Antibacterial Composites

    Directory of Open Access Journals (Sweden)

    Xiaoli An

    2013-01-01

    Full Text Available Nanocomposites from PLA/PU containing small concentrations of graphene oxide (GO were prepared by simple liquid-phase mixing followed by casting. The as-prepared ternary PLA/PU/GO composite films exhibited good antibacterial activity against the gram-positive Staphylococcus aureus and the gram-negative Escherichia coli, due to the excellent antibacterial property of GO sheets with high specific surface area. The addition of GO inhibited the attachment and proliferation of microbes on the film surfaces, resulting in that the PLA/PU/GO composite films show remarkably improved antibacterial activity compared with PLA/PU composite film. The inhibition efficiency is proportional to the amount of GO. Furthermore, PLA/PU/GO composite fibrous paper was fabricated using electrospinning and exhibited good biocompatibility. The addition of GO does not destroy normal cell’s proliferation and differentiation. PLA/PU/GO composites with good antibacterial activity and biocompatibility make it attractive for the environmental and clinical applications and also provide a candidate for future application of tissue engineering.

  20. Design, synthesis and antibacterial activity of novel 1-oxacephem analogs

    Institute of Scientific and Technical Information of China (English)

    Yi He; Jian Bo Wu; Fan Lei; Pei Chen; Li Hai; Yong Wu

    2012-01-01

    A series of 1-oxacephem analogs were synthesized and their antibacterial properties against five strains of Gram-positive and Gram-negative bacteria were evaluated in vitro while ceftazidine was selected as control.Some of the tested compounds,compound 12c in particular,showed more active against three selected strains than the standard.

  1. GREEN SYNTHESIS OF NANOSTRUCTURED MATERIALS FOR ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Ayeshamariam A*, Tajun Meera Begam M, Jayachandran M, Praveen Kumar G and M Bououdina

    2013-01-01

    Full Text Available New materials hold the key to fundamental advances in antibacterial and antifungal activities, both of which are vital in order to meet the challenge of global warning of microorganism’s advantages and limitations and the finite nature of medicinal plants. The use of additive to augment the effect of a synthetic or natural drug candidate is well known.  Here we report the use of nanoparticles of tin oxide (SnO2 to enhance the antibacterial and anti fungal potency of Alovera extract when compared to bulk tinoxide (SnO2.  The possible advantage and limitations of this result will be discussed. It is hoped that this study would lead to the establishment of nanomaterial compounds that could be used to formulate new and more potent antimicrobial drugs of natural origin. Antibacterial activity of Alovera extracts was checked against these gram positive isolates of Staphylococcus aureus, Escherichia Coli E, Salmonella Typhi, Streptococcus pyogenes and gram negative isolates of Pseudomonas Aeruginosa. We observed that effective anti-bacterial and anti-fungal activities for SnO2 nanoparticles, particularly for Streptococcus pyogenes microorganisms and antifungal microorganisms of Aspergillus niger, Mucor indicus microorganism than bulk SnO2.

  2. FORMULATION OF CHLORHEXIDINE GLUCONATE DENTAL GELS AND ITS ANTIBACTERIAL ACTIVITY

    OpenAIRE

    Shivani Salil Desai; Patel, Vishnu M.

    2015-01-01

    Chlorhexidine has bacteriocidal and bacteriostatic properties also it is used to reduce oral bacteria and dental plaque. Chlorhexidine gluconate present in gel formulations possesses antibacterial activity towards the organisms present in the dental plaque. Hence, it is a new alternative and cheaper formulation for the treatment of Periodontitis.

  3. In vitro antibacterial activity of some plant essential oils

    Directory of Open Access Journals (Sweden)

    Ignacimuthu Savarimuthu

    2006-11-01

    Full Text Available Abstract Background: To evaluate the antibacterial activity of 21 plant essential oils against six bacterial species. Methods: The selected essential oils were screened against four gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris and two gram-positive bacteria Bacillus subtilis and Staphylococcus aureus at four different concentrations (1:1, 1:5, 1:10 and 1:20 using disc diffusion method. The MIC of the active essential oils were tested using two fold agar dilution method at concentrations ranging from 0.2 to 25.6 mg/ml. Results: Out of 21 essential oils tested, 19 oils showed antibacterial activity against one or more strains. Cinnamon, clove, geranium, lemon, lime, orange and rosemary oils exhibited significant inhibitory effect. Cinnamon oil showed promising inhibitory activity even at low concentration, whereas aniseed, eucalyptus and camphor oils were least active against the tested bacteria. In general, B. subtilis was the most susceptible. On the other hand, K. pneumoniae exhibited low degree of sensitivity. Conclusion: Majority of the oils showed antibacterial activity against the tested strains. However Cinnamon, clove and lime oils were found to be inhibiting both gram-positive and gram-negative bacteria. Cinnamon oil can be a good source of antibacterial agents.

  4. Isolation and Characterization of Antibacterial Compounds from Sea Urchin

    Directory of Open Access Journals (Sweden)

    Febrina Olivia Akerina,

    2015-06-01

    Full Text Available method, toxicity potential using brine shrimp lethality test (BSLT method, bioactive compound using phytochemical method, and proximate composition by AOAC. This research was devided into two phases, the preliminary research was to determine the best body part of sea urchin showing antibacterial activity. Sea urchins were collected from Pramuka Island and extracted by meseration method. For the preliminary research, gonad extract showed the high antibacterial activity against E. coli and S. aureus at 1.83 ± 0.74 mm and 1.5 mm, respectively. The main research includes the determination of proximate composition, toxicity, bioactive compound, and antibacterial activity from the best body part of sea urchin. The proximate composition from gonad of sea urchin showed that water content 64.97 ± 0.08%; ash 2.72 ± 0.13%; lipid 19.73 ± 0.04%; protein 12.26 ± 0.3%, and 0.33 ± 0.17%, respectively. The detected bioactive compounds from the three different solvents of gonads extracts were steroid, triterpenoid and saponin. The result of lethal toxicity (LC50 from the three gonads extract was 471.861 ppm (n-hexane, 563.226 ppm (ethyl acetate and 577.531 ppm (methanolic, respectively. Gonads ethyl acetate extracts showed the highest antibacterial activity than n-hexane and methanolic extract, its inhibition zone was 2.71 mm against S. aureus and 4.13 against E. coli.

  5. Antibacterial Activities of Dodonaea viscosa using Contact Bioautography Technique

    OpenAIRE

    Humaira Inayat; Abdul Hameed; Naz Abbas; Abdul Qayum; Muhammad Khurram; Murad Ali Khan

    2009-01-01

    The crude ethanolic extract and n-hexane, dichloromethane, ethyl acetate, n-butanol and aqueous fractions of Dodonaea viscosa were analyzed for antibacterial potential against four Gram positive bacteria: Bacillus subtilis, Bacillus cereus, Micrococcus luteus, Staphylococcus aureus, and three Gram negative bacteria: Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa. Preliminary screening showed inhibition against Staphylococcus aureus, Micrococcus luteus, Escherichia coli and Pseudom...

  6. Antibacterial hemostatic dressings with nanoporous bioglass containing silver

    Directory of Open Access Journals (Sweden)

    Hu G

    2012-05-01

    Full Text Available Gangfeng Hu,1 Luwei Xiao,2 Peijian Tong,2 Dawei Bi,1 Hui Wang,1 Haitao Ma,1 Gang Zhu,1 Hui Liu21The First People’s Hospital of Xiaoshan, Hangzhou, China; 2Zhejiang Traditional Chinese Medical University, Hangzhou, ChinaAbstract: Nanoporous bioglass containing silver (n-BGS was fabricated using the sol-gel method, with cetyltrimethyl ammonium bromide as template. The results showed that n-BGS with nanoporous structure had a surface area of 467 m2/g and a pore size of around 6 nm, and exhibited a significantly higher water absorption rate compared with BGS without nanopores. The n-BGS containing small amounts of silver (Ag had a slight effect on its surface area. The n-BGS containing 0.02 wt% Ag, without cytotoxicity, had a good antibacterial effect on Escherichia coli, and its antibacterial rate reached 99% in 12 hours. The n-BGS’s clotting ability significantly decreased prothrombin time (PT and activated partial thromboplastin time (APTT, indicating n-BGS with a higher surface area could significantly promote blood clotting (by decreasing clotting time compared with BGS without nanopores. Effective hemostasis was achieved in skin injury models, and bleeding time was reduced. It is suggested that n-BGS could be a good dressing, with antibacterial and hemostatic properties, which might shorten wound bleeding time and control hemorrhage.Keywords: antibacterial, bioglass, cytotoxicity, dressing, hemostasis, nanopore, silver

  7. Antibacterial Compounds from Marine Vibrionaceae Isolated on a Global Expedition

    Directory of Open Access Journals (Sweden)

    Lone Gram

    2010-12-01

    Full Text Available On a global research expedition, over 500 bacterial strains inhibitory towards pathogenic bacteria were isolated. Three hundred of the antibacterial strains were assigned to the Vibrionaceae family. The purpose of the present study was to investigate the phylogeny and bioactivity of five Vibrionaceae strains with pronounced antibacterial activity. These were identified as Vibrio coralliilyticus (two strains, V. neptunius (two strains, and Photobacterium halotolerans (one strain on the basis of housekeeping gene sequences. The two related V. coralliilyticus and V. neptunius strains were isolated from distant oceanic regions. Chemotyping by LC-UV/MS underlined genetic relationships by showing highly similar metabolite profiles for each of the two V. coralliilyticus and V. neptunius strains, respectively, but a unique profile for P. halotolerans. Bioassay-guided fractionation identified two known antibiotics as being responsible for the antibacterial activity; andrimid (from V. coralliilyticus and holomycin (from P. halotolerans. Despite the isolation of already known antibiotics, our findings show that marine Vibrionaceae are a resource of antibacterial compounds and may have potential for future natural product discovery.

  8. In vitro antibacterial screening of Cryptolepis sanguinolenta alkaloids.

    Science.gov (United States)

    Paulo, A; Duarte, A; Gomes, E T

    1994-10-01

    The ethanol and aqueous crude extracts and five alkaloids isolated from the roots of Crytolepis sanguinolenta (Lindl.) Schlechter were screened for antibacterial activity against 7 reference strains by the twofold serial broth microdilution assay. The ethanol extract and the alkaloids cryptolepine and cryptoheptine inhibited the growth of all strains tested except that of Pseudomonas aeruginosa. PMID:7853864

  9. 杀精抗菌功能抗菌肽的研究进展%Research Progress of the Antimicrobial Peptides with Dualfunctionality of Spermicide and Microbicide

    Institute of Scientific and Technical Information of China (English)

    张尉(综述); 侯丽; 于和鸣(审校)

    2013-01-01

      抗菌肽(antimicrobial peptides)是广泛存在于生物体内的一类抵抗外源性病原微生物致病作用的防御性小分子多肽。抗菌肽拥有巨大的抗菌潜能和广泛的抗菌谱,以及安全、无毒副作用等特点,其中有些抗菌肽还展现了强有力的杀精避孕功能。综述Magainin,Dermaseptins,Nisin和Subtilosin 4种抗菌肽的杀精抗菌功能,为研制具有杀精抗菌双功能的生物制剂提供新的思路和来源。%Antimicrobial peptides are of important components of low-molecular weight peptides to defense organisms invasion. Antimicrobial peptides have many characteristics,such as the big antibacterial potential,broad antibacterial spectrum,safety,and non-toxic. Some of them also have powerful spermicidal and contraceptive potential. This review introduced the difunctionality of spermicide and microbicide of four antimicrobial peptides,including Magainin,Dermaseptins,Nisin and Subtilosin,which could provide us new ideas to develop the biological products with the difunctionality of spermicide and microbicide.

  10. Isolation and Preliminary Characterization of Proteinaceous Toxins with Insecticidal and Antibacterial Activities from Black Widow Spider (L. tredecimguttatus Eggs

    Directory of Open Access Journals (Sweden)

    Qian Lei

    2015-03-01

    Full Text Available The eggs of black widow spider (L. tredecimguttatus have been demonstrated to be rich in toxic proteinaceous components. The study on such active components is of theoretical and practical importance. In the present work, using a combination of multiple biochemical and biological strategies, we isolated and characterized the proteinaceous components from the aqueous extract of the black widow spider eggs. After gel filtration of the egg extract, the resulting main protein and peptide peaks were further fractionated by ion exchange chromatography and reversed-phase high performance liquid chromatography. Two proteinaceous components, named latroeggtoxin-III and latroeggtoxin-IV, respectively, were purified to homogeneity. Latroeggtoxin-III was demonstrated to have a molecular weight of about 36 kDa. Activity analysis indicated that latroeggtoxin-III exhibited neurotoxicity against cockroaches but had no obvious effect on mice, suggesting that it is an insect-specific toxin. Latroeggtoxin-IV, with a molecular weight of 3.6 kDa, was shown to be a broad-spectrum antibacterial peptide, showing inhibitory activity against all five species of bacteria tested, with the highest activity against Staphylococcus aureus. Finally, the implications of the proteinaceous toxins in egg protection and their potential applications were analyzed and discussed.

  11. Silk fibroin based antibacterial bionanotextiles as wound dressing materials

    Energy Technology Data Exchange (ETDEWEB)

    Çalamak, Semih [Hacettepe University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, 06100 Ankara (Turkey); Hacettepe University, Department of Nanotechnology and Nanomedicine, 06800 Ankara (Turkey); Erdoğdu, Ceren; Özalp, Meral [Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, 06100 Ankara (Turkey); Ulubayram, Kezban, E-mail: ukezban@hacettepe.edu.tr [Hacettepe University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, 06100 Ankara (Turkey); Hacettepe University, Department of Nanotechnology and Nanomedicine, 06800 Ankara (Turkey)

    2014-10-01

    New applications for medical biotextiles have been identified with the development of nanotechnological manufacturing technologies. Combination of nanotechnology and biotextile technology has resulted into a new field called bionanotextiles. Bionanotextiles are used in many areas which include wound dressings, bandages and tissue scaffolds. Silk fibroin (SF) from the cocoon of Bombyx mori, is one of the most favorable wound dressing materials due to its unique properties including biocompatibility, permeability, biodegradability, morphologic flexibility, and proper mechanical properties. The modification of antimicrobial properties of SFs can provide a barrier for bacterial penetration as wound dressing materials. In the present study, antibacterial polyethylenimine (PEI) (10, 20 and 30% (w/w)) was blended with SF and bionanotextiles were successfully fabricated by electrospinning. In addition, silk fibroin nanofibers were also functionalized with sulphate group in order to test whether they exhibit an antibacterial activity or not. Fibroin based bionanotextiles were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The cytotoxicity evaluations were carried out by L929 fibroblasts with MTT assay. The indirect cytotoxicity results demonstrate that all fibroin and PEI/fibroin extracts have no cytotoxicity on L929 cancer cell line. PEI/fibroin bionanotextiles showed strong antibacterial activities against gram positive Staphylococcus aureus and gram negative Pseudomonas aeruginosa. - Highlights: • Bionanotextiles are combination of nanotechnology and biotextile technology. • Bionanotextiles have good antibacterial activity against both of S. aureus and P. aeruginosa. • Antibacterial bionanotextiles are applicable to most of the infected wounds. • No cytotoxicity was observed on L929 cell line.

  12. Tannic acid-mediated green synthesis of antibacterial silver nanoparticles.

    Science.gov (United States)

    Kim, Tae Yoon; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-04-01

    The search for novel antibacterial agents is necessary to combat microbial resistance to current antibiotics. Silver nanoparticles (AgNPs) have been reported to be effective antibacterial agents. Tannic acid is a polyphenol compound from plants with antioxidant and antibacterial activities. In this report, AgNPs were prepared from silver ions by tannic acid-mediated green synthesis (TA-AgNPs). The reaction process was facile and involved mixing both silver ions and tannic acid. The absorbance at 423 nm in the UV-Visible spectra demonstrated that tannic acid underwent a reduction reaction to produce TA-AgNPs from silver ions. The synthetic yield of TA-AgNPs was 90.5 % based on inductively coupled plasma mass spectrometry analysis. High-resolution transmission electron microscopy and atomic force microscopy images indicated that spherical-shaped TA-AgNPs with a mean particle size of 27.7-46.7 nm were obtained. Powder high-resolution X-ray diffraction analysis indicated that the TA-AgNP structure was face-centered cubic with a zeta potential of -27.56 mV. The hydroxyl functional groups of tannic acid contributed to the synthesis of TA-AgNPs, which was confirmed by Fourier transform infrared spectroscopy. The in vitro antibacterial activity was measured using the minimum inhibitory concentration (MIC) method. The TA-AgNPs were more effective against Gram-negative bacteria than Gram-positive bacteria. The MIC for the TA-AgNPs in all of the tested strains was in a silver concentration range of 6.74-13.48 μg/mL. The tannic acid-mediated synthesis of AgNPs afforded biocompatible nanocomposites for antibacterial applications. PMID:26895244

  13. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Directory of Open Access Journals (Sweden)

    Veronika Mäde

    2014-05-01

    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  14. Analysis of Healing Effect of Alginate Sulfate Hydrogel Dressing Containing Antimicrobial Peptide on Wound Infection Caused by Methicillin-Resistant Staphylococcus aureus

    Science.gov (United States)

    Babavalian, Hamid; Latifi, Ali Mohammad; Shokrgozar, Mohammad Ali; Bonakdar, Shahin; Mohammadi, Sajjad; Moosazadeh Moghaddam, Mehrdad

    2015-01-01

    Background: Wound infections caused by methicillin-resistant Staphylococcus aureus are a health problem worldwide; therefore, it is necessary to develop new antimicrobial compounds. Considering broad-spectrum antimicrobial activity and low probability of drug resistance to peptides, applications these peptides are being studied extensively. Objectives: In this study, to control drug release over time, an alginate sulfate-based hydrogel impregnated with the CM11 peptide as the antimicrobial agent was developed, and its healing effects were tested on skin infections caused by methicillin-resistant S. aureus strains in a mouse model. Materials and Methods: Minimum inhibitory and minimum bactericidal concentrations of the CM11 peptide and alginate hydrogel in combination with the peptide were determined. Forty mice were divided into 4 groups: 1 group as a negative control (without treatment; however, 5 mice received hydrogel dressing without peptide), 1 group as a positive control (2% mupirocin treatment), and 2 groups as test groups. To establish skin infection, 200 μL of bacterial suspension with 3 × 108 CFU/mL concentration was subcutaneously injected in the scapular region of the mice. On the basis of the in vitro minimal bactericidal concentration of the alginate hydrogel containing peptide for 15 clinical isolates, hydrogel containing 128 mg/L of peptide was used for wound dressing over an 8-day period. Results: The highest and lowest numbers of wounds were observed on day 2 in the negative and positive control groups, respectively. During the 8-day period, the positive control and hydrogel containing peptide treatment groups showed similar levels of wound healing. Conclusions: This study showed that compared to standard drug treatment, treatment with hydrogel containing peptide had substantial antibacterial effects on S. aureus wound infections in mice. PMID:26487923

  15. Perspectives and Peptides of the Next Generation

    Science.gov (United States)

    Brogden, Kim A.

    Shortly after their discovery, antimicrobial peptides from prokaryotes and eukaryotes were recognized as the next potential generation of pharmaceuticals to treat antibiotic-resistant bacterial infections and septic shock, to preserve food, or to sanitize surfaces. Initial research focused on identifying the spectrum of antimicrobial agents, determining the range of antimicrobial activities against bacterial, fungal, and viral pathogens, and assessing the antimicrobial activity of synthetic peptides versus their natural counterparts. Subsequent research then focused on the mechanisms of antimicrobial peptide activity in model membrane systems not only to identify the mechanisms of antimicrobial peptide activity in microorganisms but also to discern differences in cytotoxicity for prokaryotic and eukaryotic cells. Recent, contemporary work now focuses on current and future efforts to construct hybrid peptides, peptide congeners, stabilized peptides, peptide conjugates, and immobilized peptides for unique and specific applications to control the growth of microorganisms in vitro and in vivo.

  16. Exploration of the Medicinal Peptide Space.

    Science.gov (United States)

    Gevaert, Bert; Stalmans, Sofie; Wynendaele, Evelien; Taevernier, Lien; Bracke, Nathalie; D'Hondt, Matthias; De Spiegeleer, Bart

    2016-01-01

    The chemical properties of peptide medicines, known as the 'medicinal peptide space' is considered a multi-dimensional subset of the global peptide space, where each dimension represents a chemical descriptor. These descriptors can be linked to biofunctional, medicinal properties to varying degrees. Knowledge of this space can increase the efficiency of the peptide-drug discovery and development process, as well as advance our understanding and classification of peptide medicines. For 245 peptide drugs, already available on the market or in clinical development, multivariate dataexploration was performed using peptide relevant physicochemical descriptors, their specific peptidedrug target and their clinical use. Our retrospective analysis indicates that clusters in the medicinal peptide space are located in a relatively narrow range of the physicochemical space: dense and empty regions were found, which can be explored for the discovery of novel peptide drugs. PMID:26876881

  17. A novel hairpin-like antimicrobial peptide from barnyard grass (Echinochloa crusgalli L.) seeds: Structure-functional and molecular-genetics characterization.

    Science.gov (United States)

    Ryazantsev, Dmitry Yu; Rogozhin, Eugene A; Dimitrieva, Tatiana V; Drobyazina, Polina E; Khadeeva, Natalia V; Egorov, Tsezi A; Grishin, Eugene V; Zavriev, Sergey K

    2014-04-01

    A novel plant hairpin-like defense polypeptide named EcAMP3 was isolated from latent barnyard grass (Echinochloa crusgalli L.) seeds. The native peptide and its recombinant analogue were characterized. EcAMP3 displays antifungal and antibacterial activity in vitro. The gene family encoding EcAMPs precursor protein was also characterized; the genes and pseudogenes of this family show 97-100% homology. Every member of EcAMPs precursor family contains seven identical cysteine motifs: C1XXXC2(11-13)C3XXXC4. One of those motifs corresponds to the isolated peptide. EcAMP3 is the first member of the plant hairpin-like peptide family that inhibits the growth of phytopathogenic bacteria. Obtained results can explain the nature of the complex resistance of barnyard grass to a variety of pathogenic microorganisms. PMID:24275143

  18. Peptide-enhanced oral delivery of therapeutic peptides and proteins

    DEFF Research Database (Denmark)

    Kristensen, Mie; Foged, Camilla; Berthelsen, Jens;

    2013-01-01

    such as the cell penetrating peptides (CPPs) and the tight junction modulating peptides (TJMPs), which are able to translocate across the cellular membranes in a non-disruptive way or reversibly modulate the integrity of intercellular tight junctions (TJs), respectively. However, because of the harsh...... believed that CPP-mediated translocation involves transcytosis and/or direct translocation through the epithelial cells; whereas TJMP-mediated translocation is dependent on interaction with transmembrane or peripheral TJ proteins. This review focuses on the CPPs and the TJMPs currently employed as...

  19. Double-Stranded Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2001-01-01

    A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker.......A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  20. Recent development of peptide self-assembly

    Institute of Scientific and Technical Information of China (English)

    Xiubo Zhao; Fang Pan; Jian R. Lu

    2008-01-01

    Amino acids are the building blocks to build peptides and proteins. Recent development in peptide synthesis has however enabled us to mimic this natural process by preparing various long and short peptides possessing different conformations and biological functions. The self-assembly of short designed peptides into molecular nanostructures is becoming a growing interest in nanobiotechnology. Self-assembled peptides exhibit several attractive features for applications in tissue regeneration, drug delivery, biological surface engineering as well as in food science, cosmetic industry and antibiotics. The aim of this review is to introduce the readers to a number of representative studies on peptide self-assembly.

  1. Influence of Cysteine and Tryptophan Substitution on DNA-Binding Activity on Maize α-Hairpinin Antimicrobial Peptide.

    Science.gov (United States)

    Sousa, Daniel A; Porto, William F; Silva, Maria Z; da Silva, Tatiane R; Franco, Octávio L

    2016-01-01

    For almost four decades, antimicrobial peptides have been studied, and new classes are being discovered. However, for therapeutic use of these molecules, issues related to the mechanism of action must be answered. In this work, the antimicrobial activity of the hairpinin MBP-1 was studied by the synthesis of two variants, one replacing cysteines and one tryptophan with alanine. Antibacterial activity was abolished in both variants. No membrane disturbance, even in concentrations higher than those required to inhibit the bacteria, was observed in SEM microscopy. The gel retardation assay showed that MBP-1 possesses a higher DNA-binding ability than variants. Finally, molecular modelling showed that the lack of cysteines resulted in structure destabilization and lack of tryptophan resulted in a less flexible peptide, with less solvent assessable surface area, both characteristics that could contribute to absence of activity. In summary, the data here reported add more information about the multiple mechanisms of action of α-hairpinins. PMID:27529210

  2. Antiviral active peptide from oyster

    Science.gov (United States)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  3. Radioactive labelling of peptidic hormones

    International Nuclear Information System (INIS)

    The labelling of peptidic hormones requires stability, specificity and sensitivity of the label. Introduction of a radioactive atome is one way to satisfy these criteria. Several processes have been described to prepare radioactive TRF: synthesis of the peptide with labelled aminoacids or introduction of the label into the hormone. In that approach, tritium can be substituted in the imidazole ring, via precursors activating the proper carbon. Monoiodo TRF leads essentially to tritium labelling of the 5 positions whereas monoazo TRF allows the preparation of 3H TRF labelled in the 2 positions. Di-substituted TRF leads to labelling into the 2 and 5 carbons. Labelled analogs of TRF can be prepared with labelled iodine; further developments of peptide labelling, will be presented. In particular, the homolytic scission of the C-iodine, bond by photochemical activation. The nascent carbon radical can be stabilized by a tritiated scavenger. This approach eliminates the use of heavy metal catalysts

  4. Antiviral active peptide from oyster

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster (Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10-5 kDa, 5-1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10?5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  5. Characterization and regulation of expression of an antifungal peptide from hemolymph of an insect, Manduca sexta.

    Science.gov (United States)

    Al Souhail, Qasim; Hiromasa, Yasuaki; Rahnamaeian, Mohammad; Giraldo, Martha C; Takahashi, Daisuke; Valent, Barbara; Vilcinskas, Andreas; Kanost, Michael R

    2016-08-01

    Insects secrete antimicrobial peptides as part of the innate immune response. Most antimicrobial peptides from insects have antibacterial but not antifungal activity. We have characterized an antifungal peptide, diapausin-1 from hemolymph of a lepidopteran insect, Manduca sexta (tobacco hornworm). Diapausin-1 was isolated by size exclusion chromatography from hemolymph plasma of larvae that were previously injected with a yeast, Saccharomyces cerevisiae. Fractions containing activity against S. cerevisiae were analyzed by SDS-PAGE and MALDI-TOF MS/MS and found to contain a 45-residue peptide that was encoded by sequences identified in M. sexta transcriptome and genome databases. A cDNA for diapausin-1 was cloned from cDNA prepared from fat body RNA. Diapausin-1 is a member of the diapausin family of peptides, which includes members known to have antifungal activity. The M. sexta genome contains 14 genes with high similarity to diapausin-1, each with 6 conserved Cys residues. Diapausin-1 was produced as a recombinant protein in Escherichia coli. Purified recombinant diapausin-1 was active against S. cerevisiae, with IC50 of 12 μM, but had no detectable activity against bacteria. Spores of some plant fungal pathogens treated with diapausin-1 had curled germination tubes or reduced and branched hyphal growth. Diapausin-1 mRNA level in fat body strongly increased after larvae were injected with yeast or with Micrococcus luteus. In addition, diapausin-1 mRNA levels increased in midgut and fat body at the wandering larval stage prior to pupation, suggesting developmental regulation of the gene. Our results indicate that synthesis of diapausin-1 is part of an antifungal innate immune response to infection in M. sexta. PMID:26976231

  6. Antimicrobial peptide-like genes in Nasonia vitripennis: a genomic perspective

    Directory of Open Access Journals (Sweden)

    Zhu Shunyi

    2010-03-01

    Full Text Available Abstract Background Antimicrobial peptides (AMPs are an essential component of innate immunity which can rapidly respond to diverse microbial pathogens. Insects, as a rich source of AMPs, attract great attention of scientists in both understanding of the basic biology of the immune system and searching molecular templates for anti-infective drug design. Despite a large number of AMPs have been identified from different insect species, little information in terms of these peptides is available from parasitic insects. Results By using integrated computational approaches to systemically mining the Hymenopteran parasitic wasp Nasonia vitripennis genome, we establish the first AMP repertoire whose members exhibit extensive sequence and structural diversity and can be distinguished into multiple molecular types, including insect and fungal defensin-like peptides (DLPs with the cysteine-stabilized α-helical and β-sheet (CSαβ fold; Pro- or Gly-rich abaecins and hymenoptaecins; horseshoe crab tachystatin-type AMPs with the inhibitor cystine knot (ICK fold; and a linear α-helical peptide. Inducible expression pattern of seven N. vitripennis AMP genes were verified, and two representative peptides were synthesized and functionally identified to be antibacterial. In comparison with Apis mellifera (Hymenoptera and several non-Hymenopteran model insects, N. vitripennis has evolved a complex antimicrobial immune system with more genes and larger protein precursors. Three classical strategies that are likely responsible for the complexity increase have been recognized: 1 Gene duplication; 2 Exon duplication; and 3 Exon-shuffling. Conclusion The present study established the N. vitripennis peptidome associated with antimicrobial immunity by using a combined computational and experimental strategy. As the first AMP repertoire of a parasitic wasp, our results offer a basic platform for further studying the immunological and evolutionary significances of these

  7. β-Boomerang Antimicrobial and Antiendotoxic Peptides: Lipidation and Disulfide Bond Effects on Activity and Structure

    Directory of Open Access Journals (Sweden)

    Harini Mohanram

    2014-04-01

    Full Text Available Drug-resistant Gram-negative bacterial pathogens and endotoxin- or lipopolysaccharide (LPS-mediated inflammations are among some of the most  prominent health issues globally. Antimicrobial peptides (AMPs are eminent molecules that can kill drug-resistant strains and neutralize LPS toxicity. LPS, the outer layer of the outer membrane of Gram-negative bacteria safeguards cell integrity against hydrophobic compounds, including antibiotics and AMPs. Apart from maintaining structural integrity, LPS, when released into the blood stream, also induces inflammatory pathways leading to septic shock. In previous works, we have reported the de novo design of a set of 12-amino acid long cationic/hydrophobic peptides for LPS binding and activity. These peptides adopt β-boomerang like conformations in complex with LPS. Structure-activity studies demonstrated some critical features of the β-boomerang scaffold that may be utilized for the further development of potent analogs. In this work, β-boomerang lipopeptides were designed and structure-activity correlation studies were carried out. These lipopeptides were homo-dimerized through a disulfide bridge to stabilize conformations and for improved activity. The designed peptides exhibited potent antibacterial activity and efficiently neutralized LPS toxicity under in vitro assays. NMR structure of C4YI13C in aqueous solution demonstrated the conserved folding of the lipopeptide with a boomerang aromatic lock stabilized with disulfide bond at the C-terminus and acylation at the N-terminus. These lipo-peptides displaying bacterial sterilization and low hemolytic activity may be useful for future applications as antimicrobial and antiendotoxin molecules.

  8. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    developed from a cecropin-mellitin hybrid peptide and proved effective in killing colistin resistant Gram-negative A. baumannii in vitro. The molecule was improved with regard to toxicity, as measured by hemolytic ability. Further, this peptide is capable of specifically killing non-growing cells of...... colistin resistant A. baumannii, also known as persisters. Using D. melanogaster as an in vivo efficacy model it was demonstrated that the Lantibiotic NAI- 107, currently undergoing pre-clinical studies, rescues D. melanogaster from MRSA infection with similar efficacy to last resort antimicrobial...

  9. Novel Formulations for Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2014-10-01

    Full Text Available Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  10. Peptides and the new endocrinology

    Science.gov (United States)

    Schwyzer, Robert

    1982-01-01

    The discovery of regulatory peptides common to the nervous and the endocrine systems (brain, gut, and skin) has brought about a revolution in our concepts of endocrinology and neurology. We are beginning to understand some of the complex interrelationships between soma and psyche that might, someday, be important for an integrated treatment of diseases. Examples of the actions of certain peptides in the periphery and in the central nervous system are given, and their biosynthesis and molecular anatomy as carriers for information are discussed.

  11. Natriuretic peptides and cerebral hemodynamics

    DEFF Research Database (Denmark)

    Guo, Song; Barringer, Filippa; Zois, Nora Elisabeth;

    2014-01-01

    decompensated disease. In contrast, their biological effects on the cerebral hemodynamics are poorly understood. In this mini-review, we summarize the hemodynamic effects of the natriuretic peptides with a focus on the cerebral hemodynamics. In addition, we will discuss its potential implications in diseases...... where alteration of the cerebral hemodynamics plays a role such as migraine and acute brain injury including stroke. We conclude that a possible role of the peptides is feasible as evaluated from animal and in vitro studies, but more research is needed in humans to determine the precise response on...... cerebral vessels....

  12. AKTIVITAS ANTIBAKTERI DAN ANTIOKSIDAN HIDROLISAT HASIL HIDROLISIS PROTEIN SUSU KAMBING DENGAN EKSTRAK KASAR BROMELIN [Antibacterial and Antioxidant Activity of Hydrolysate from Goat Milk Protein Hydrolized by Crude Bromelain Extract

    OpenAIRE

    Eni Kusumaningtyas; Raphaella Widiastuti; Harsi Dewantari Kusumaningrum1,2)*; Maggy Thenawidjaja Suhartono

    2015-01-01

    Goat milk is highly nutritious foodstuffs that beneficial for improving health. The milk contains bioactive peptides which produced by hydrolysis process. The aim of this study was to evaluate antibacterial and antioxidant activities of hydrolisate produced from hydrolysis of goat milk protein by crude bromelain extract. Hydrolysis of goat milk protein was conducted using crude bromelain (0.1 U/mL) at pH 6, 50°C for 60 min. Hydrolysate was fractionated by using membrane molecular weight cut o...

  13. Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria

    Science.gov (United States)

    Falanga, Annarita; Lombardi, Lucia; Franci, Gianluigi; Vitiello, Mariateresa; Iovene, Maria Rosaria; Morelli, Giancarlo; Galdiero, Massimiliano; Galdiero, Stefania

    2016-01-01

    The discovery of antibiotics for the treatment of bacterial infections brought the idea that bacteria would no longer endanger human health. However, bacterial diseases still represent a worldwide treat. The ability of microorganisms to develop resistance, together with the indiscriminate use of antibiotics, is mainly responsible for this situation; thus, resistance has compelled the scientific community to search for novel therapeutics. In this scenario, antimicrobial peptides (AMPs) provide a promising strategy against a wide array of pathogenic microorganisms, being able to act directly as antimicrobial agents but also being important regulators of the innate immune system. This review is an attempt to explore marine AMPs as a rich source of molecules with antimicrobial activity. In fact, the sea is poorly explored in terms of AMPs, but it represents a resource with plentiful antibacterial agents performing their role in a harsh environment. For the application of AMPs in the medical field limitations correlated to their peptide nature, their inactivation by environmental pH, presence of salts, proteases, or other components have to be solved. Thus, these peptides may act as templates for the design of more potent and less toxic compounds. PMID:27213366

  14. The Spider Venom Peptide Lycosin-II Has Potent Antimicrobial Activity against Clinically Isolated Bacteria

    Directory of Open Access Journals (Sweden)

    Yongjun Wang

    2016-04-01

    Full Text Available Antimicrobial peptides have been accepted as excellent candidates for developing novel antibiotics against drug-resistant bacteria. Recent studies indicate that spider venoms are the source for the identification of novel antimicrobial peptides. In the present study, we isolated and characterized an antibacterial peptide named lycosin-II from the venom of the spider Lycosa singoriensis. It contains 21 amino acid residue lacking cysteine residues and forms a typical linear amphipathic and cationic α-helical conformation. Lycosin-II displays potent bacteriostatic effect on the tested drug-resistant bacterial strains isolated from hospital patients, including multidrug-resistant A. baumannii, which has presented a huge challenge for the infection therapy. The inhibitory ability of lycosin-II might derive from its binding to cell membrane, because Mg2+ could compete with the binding sites to reduce the bacteriostatic potency of lycosin-II. Our data suggest that lycosin-II might be a lead in the development of novel antibiotics for curing drug-resistant bacterial infections.

  15. Neuroprotective peptides related to Alzheimer's disease

    Czech Academy of Sciences Publication Activity Database

    Slaninová, Jiřina; Borovičková, Lenka; Krejčová, G.; Patočka, J.

    2004-01-01

    Roč. 10, S (2004), s. H33. ISSN 1075-2617. [Hellenic Forum on Bioactive Peptides /4./. 22.04.2004-24.04.2004, Patras-Hellas] Keywords : neuroprotective peptides * Alzheimer's disease Subject RIV: CE - Biochemistry

  16. Histidine-Containing Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2000-01-01

    Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics.......Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics....

  17. Lipoxygenase inhibitor peptides and their use

    OpenAIRE

    Schurink, M.; Boeriu, C.G.; Berkel, van, A.M.; Wichers, H.J.

    2006-01-01

    The present invention is in the field of enzyme inhibition. In particular it relates to peptide inhibitors for lipoxygenases. The lipoxygenase peptide inhibitors of have the potential to be used as therapeutic drugs as well as food preservatives.

  18. Strategic approaches to optimizing peptide ADME properties.

    Science.gov (United States)

    Di, Li

    2015-01-01

    Development of peptide drugs is challenging but also quite rewarding. Five blockbuster peptide drugs are currently on the market, and six new peptides received first marketing approval as new molecular entities in 2012. Although peptides only represent 2% of the drug market, the market is growing twice as quickly and might soon occupy a larger niche. Natural peptides typically have poor absorption, distribution, metabolism, and excretion (ADME) properties with rapid clearance, short half-life, low permeability, and sometimes low solubility. Strategies have been developed to improve peptide drugability through enhancing permeability, reducing proteolysis and renal clearance, and prolonging half-life. In vivo, in vitro, and in silico tools are available to evaluate ADME properties of peptides, and structural modification strategies are in place to improve peptide developability. PMID:25366889

  19. Influence of Composite Phosphate Inorganic Antibacterial Materials Containing Rare Earth on Activated Water Property of Ceramics

    Institute of Scientific and Technical Information of China (English)

    梁金生; 梁广川; 祁洪飞; 吴子钊; 冀志江; 金宗哲

    2004-01-01

    Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating water and improving seed germinative property were tested by nuclear magnetic resonance (NMR) and the method of testing oxygen dissolved in activated water. Results show that the half peak width of 17O-NMR for tap water activated by the antibacterial ceramic drops from 115.36 to 99.15 Hz, and oxygen concentrations of activated water increase by 20%, germinate rate of horsebean and earthnut seeds increases by 12.5% and 7.5%, respectively. Therefore antibacterial ceramic doped enamel slurry with inorganic antibacterial additives containing rare earth can reduce the volume of clusters of water molecules, improve activation of tap water, and promote plant seeds germinate.

  20. Larvicidal activity of synthetic disinfectants and antibacterial soaps against mosquito, Culex quinquefasciatus (Diptera: Culicidae).

    Science.gov (United States)

    Xue, Rui-De; Qualls, Whitney A

    2013-01-01

    Seven commercial synthetic disinfectant and antibacterial soap products were evaluated as mosquito larvicides against Culex quinquefasciatus Say in the laboratory. Three aerosol disinfectant products, at 0.01% concentration resulted in 58-76% mortality of laboratory-reared fourth instar mosquito larvae at 24 h posttreatment. Four antibacterial soap products at 0.0001% concentration resulted in 88-100% larval mortality at 24 h posttreatment. The active ingredient of the antibacterial soap products, triclosan (0.1%) resulted in 74% larval mortality. One of the antibacterial soap products, Equate caused the highest mosquito larval mortality in the laboratory. Equate antibacterial soap at the application rate of 0.000053 ppm resulted in 90% mortality of the introduced fourth instar larvae of Cx. quinquesfasicatus in the outdoor pools. In laboratory and field bioassays, the antibacterial soap resulted in significant larval mosquito mortality. PMID:23427662

  1. Development of a new antibacterial biomaterial by tetracycline immobilization on calcium-alginate beads.

    Science.gov (United States)

    Ozseker, Emine Erdogan; Akkaya, Alper

    2016-10-20

    In recent years, increasing risk of infection, caused by resistant microorganism to antibiotics, has become the limelight discovery of new and natural antibacterial materials. Heavy metals, such as silver, copper, mercury and titanium, have antibacterial activity. Products, which improved these metals, do not have stable antibacterial property. Therefore, use of these products is restricted. The aim of this study was to immobilize tetracycline to alginate and improve an antibacterial biomaterial. For this purpose, calcium-alginate beads were formed by dropping to calcium-chloride solution and tetracycline was immobilized to beads using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at optimum conditions. After immobilization, actualization of immobilization was investigated by analyzing ATR-FTIR spectrum and SEM images. Also, antibacterial property of obtained product was tested. Improved product demonstrated antibacterial property. It has potential for open wound, surgical drapes, bed and pillow sheath in hospitals and it may also be used for increasing human comfort in daily life. PMID:27474587

  2. Multilayered films incorporating CdTe quantum dots with tunable optical properties for antibacterial application

    International Nuclear Information System (INIS)

    Tunable absorption/emission and antibacterial activity are highly desirable for antibacterial decorative coating layers. In this study, films with both tunable optical and effective antibacterial properties were fabricated with cadmium telluride quantum dots (QDs) and poly-L-lysine (PLL) via layer-by-layer assembly. Absorption and photoluminescence spectra as well as surface morphology were examined to monitor the film growth. The films are fabricated in a logarithmic growth mode, exhibiting effective antibacterial activity against Escherichia coli and good biocompatibility to Hela cells. By changing sizes of the incorporated QDs, optical properties of the films can be easily tailored. The PLL/QDs' multilayered films may be used as colorful coating layers for applications requiring both unique optical and antibacterial properties. - Highlights: • A layer-by-layer film incorporating quantum dots and poly-L-lysine was fabricated. • The film shows tunable optical properties and antibacterial activity. • The film is built up in a logarithmic growth mode

  3. Anti-Microbial, Anti-Biofilm Activities and Cell Selectivity of the NRC-16 Peptide Derived from Witch Flounder, Glyptocephalus cynoglossus

    Directory of Open Access Journals (Sweden)

    Chang Ho Seo

    2013-05-01

    Full Text Available Previous studies had identified novel antimicrobial peptides derived from witch flounder. In this work, we extended the search for the activity of peptide that showed antibacterial activity on clinically isolated bacterial cells and bacterial biofilm. Pseudomonas aeruginosa was obtained from otitis media and cholelithiasis patients, while Staphylococcus aureus was isolated from otitis media patients. We found that synthetic peptide NRC-16 displays antimicrobial activity and is not sensitive to salt during its bactericidal activity. Interestingly, this peptide also led to significant inhibition of biofilm formation at a concentration of 4–16 μM. NRC-16 peptide is able to block biofilm formation at concentrations just above its minimum inhibitory concentration while conventional antibiotics did not inhibit the biofilm formation except ciprofloxacin and piperacillin. It did not cause significant lysis of human RBC, and is not cytotoxic to HaCaT cells and RAW264.7 cells, thereby indicating its selective antimicrobial activity. In addition, the peptide’s binding and permeation activities were assessed by tryptophan fluorescence, calcein leakage and circular dichroism using model mammalian membranes composed of phosphatidylcholine (PC, PC/cholesterol (CH and PC/sphingomyelin (SM. These experiments confirmed that NRC-16 does not interact with any of the liposomes but the control peptide melittin did. Taken together, we found that NRC-16 has potent antimicrobial and antibiofilm activities with less cytotoxicity, and thus can be considered for treatment of microbial infection in the future.

  4. What Goes around Comes around-A Comparative Study of the Influence of Chemical Modifications on the Antimicrobial Properties of Small Cyclic Peptides

    Directory of Open Access Journals (Sweden)

    Margitta Dathe

    2013-09-01

    Full Text Available Tryptophan and arginine-rich cyclic hexapeptides of the type cyclo-RRRWFW combine high antibacterial activity with rapid cell killing kinetics, but show low toxicity in human cell lines. The peptides fulfil the structural requirements for membrane interaction such as high amphipathicity and cationic charge, but membrane permeabilisation, which is the most common mode of action of antimicrobial peptides (AMPs, could not be observed. Our current studies focus on elucidating a putative membrane translocation mechanism whereupon the peptides might interfere with intracellular processes. These investigations require particular analytical tools: fluorescent analogues and peptides bearing appropriate reactive groups were synthesized and characterized in order to be used in confocal laser scanning microscopy and HPLC analysis. We found that minimal changes in both the cationic and hydrophobic domain of the peptides in most cases led to significant reduction of antimicrobial activity and/or changes in the mode of action. However, we were able to identify two modified peptides which exhibited properties similar to those of the cyclic parent hexapeptide and are suitable for subsequent studies on membrane translocation and uptake into bacterial cells.

  5. A detailed approach to study the antibacterial mechanisms of nanostructure

    Science.gov (United States)

    Fang, Fang; Fang, Xuan; Li, Jinhua; Wei, Zhipeng; Wang, Xin; Wang, Xiaohua

    2012-03-01

    To overcome the limitations of the conventional inhibition method for mechanism study, here we developed a combined CLSM technique as an alternative approach to evaluate and explain the antibacterial process of nanostructure at single cell level. Three different nanostructures (dumbbell-shaped ZnO, rod-shaped ZnO and ZnO/Ag composites) were examined here as a model system. Their antibacterial processes against Escherichia coli (E. coli) were quantitatively studied in detail. According to the obtained time-dependent mean fluorescence intensity (MFI) decay dynamics, an interesting two-step cellular disruption process was observed and discussed for the first time. The combined CLSM technique described here is superior to standard growth method for they can provide a more detailed and reliable description of cell-nanostructure interactions.

  6. ZnO nanofluids: Green synthesis, characterization, and antibacterial activity

    International Nuclear Information System (INIS)

    Zinc oxide nanoparticles have been synthesized by microwave decomposition of zinc acetate precursor using an ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, [bmim][NTf2] as a green solvent. The structure and morphology of ZnO nanoparticles have been characterized using X-ray diffraction and transmission electron microscopy. The ZnO nanofluids have been prepared by dispersing ZnO nanoparticles in glycerol as a base fluid in the presence of ammonium citrate as a dispersant. The antibacterial activity of suspensions of ZnO nanofluids against (E. coli) has been evaluated by estimating the reduction ratio of the bacteria treated with ZnO. Survival ratio of bacteria decreases with increasing the concentrations of ZnO nanofluids and time. The results show that an increase in the concentrations of ZnO nanofluids produces strong antibacterial activity toward E. coli.

  7. Expression pattern of antibacterial genes in the Musca domestica

    Institute of Scientific and Technical Information of China (English)

    WANG Yan; JIN XiaoBao; ZHU JiaYong; ZENG AiHua; CHU FuJiang; YANG XiaoRong; MA Yan

    2009-01-01

    This work studied the transcriptional patterns of three antibacterial genes, attacin, defensin and cecropin, during the development of Musca domestica. Quantitative analysis by real-time PCR was performed on mRNA levels in different development stages and challenged 3rd-instar larva at different time points after challenge of Musca domestica. The results revealed a predominance of the transcripts of all three genes during the 3rd-instar larvae and the adults. In the meanwhile, it revealed the greatest increase in mRNA. The transcript levels increased to 801 times, 1009 times and 2500 times respectively for cecropin, attacin and defensin in 3rd-instar larvae after challenging susceptible bacterium. The results suggested that the transcriptional patterns of Musca domestica antibacterial genes were different during the different growth stages as well as the microbial challenge encountered in 3rd-instar larvae.

  8. Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jinhua; Zhou, Huaijuan; Qian, Shi; Liu, Ziwei; Feng, Jingwei; Jin, Ping, E-mail: p-jin@mail.sic.ac.cn, E-mail: xyliu@mail.sic.ac.cn; Liu, Xuanyong, E-mail: p-jin@mail.sic.ac.cn, E-mail: xyliu@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2014-06-30

    Close-packed TiO{sub 2} nanotube arrays are prepared on metallic Ti surface by electrochemical anodization. Subsequently, by magnetron sputtering, Au nanoparticles are coated onto the top sidewall and tube inwall. The Au@TiO{sub 2} systems can effectively kill Staphylococcus aureus and Escherichia coli in darkness due to the existence of Au nanoparticles. On the basis of classical optical theories, the antibacterial mechanism is proposed from the perspective of localized surface plasmon resonance. Respiratory electrons of bacterial membrane transfer to Au nanoparticles and then to TiO{sub 2}, which makes bacteria steadily lose electrons until death. This work provides insights for the better understanding and designing of noble metal nanoparticles-based plasmonic heterostructures for antibacterial application.

  9. Relationship of quantitative structure and pharmacokinetics in fluoroquinolone antibacterials

    Institute of Scientific and Technical Information of China (English)

    Die Cheng; Wei-Ren Xu; Chang-Xiao Liu

    2007-01-01

    AIM: To study the relationship between quantitative structure and pharmacokinetics (QSPkR) of fluoroquinolone antibacterials.METHODS: The pharmacokinetic (PK) parameters of oral fluoroquinolones were collected from the literature. These pharmacokinetic data were averaged, 19 compounds were used as the training set, and 3 served as the test set. Genetic function approximation (GFA)module of Cerius2 software was used in QSPkR analysis.RESULTS: A small volume and large polarizability and surface area of substituents at C-7 contribute to a large area under the curve (AUC) for fluoroquinolones. Large polarizability and small volume of substituents at N-1 contribute to a long half life elimination.CONCLUSION: QSPkR models can contribute to some fluoroquinolones antibacterials with excellent pharmacokinetic properties.

  10. Synthesis and antibacterial activity of silver nanoparticles with different sizes

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Castanon, G. A., E-mail: mtzcastanon@fciencias.uaslp.m [UASLP, Maestria en Ciencias Odontologicas, Facultad de Estomatologia (Mexico); Nino-Martinez, N. [UASLP, Instituto de Metalurgia (Mexico); Martinez-Gutierrez, F., E-mail: fidel@uaslp.m [UASLP, Facultad de Ciencias Quimicas (Mexico); Martinez-Mendoza, J. R.; Ruiz, Facundo [UASLP, Facultad de Ciencias (Mexico)

    2008-12-15

    Silver nanoparticles with different sizes (7, 29, and 89 nm mean values) were synthesized using gallic acid in an aqueous chemical reduction method. The nanoparticles were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), and ultraviolet-visible (UV-Vis) absorption spectroscopy; the antibacterial activity was assessed using the standard microdilution method, determining the minimum inhibitory concentration (MIC) according to the National Committee for Clinical Laboratory Standards. From the microscopies studies (TEM) we observed that silver nanoparticles have spherical (7 and 29 nm) and pseudospherical shape (89 nm) with a narrow size distribution. The sizes of the silver nanoparticles were controlled by varying some experimental conditions. It was found that the antibacterial activity of the nanoparticles varies when their size diminishes.

  11. Synthesis and antibacterial activity of silver nanoparticles with different sizes

    International Nuclear Information System (INIS)

    Silver nanoparticles with different sizes (7, 29, and 89 nm mean values) were synthesized using gallic acid in an aqueous chemical reduction method. The nanoparticles were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), and ultraviolet-visible (UV-Vis) absorption spectroscopy; the antibacterial activity was assessed using the standard microdilution method, determining the minimum inhibitory concentration (MIC) according to the National Committee for Clinical Laboratory Standards. From the microscopies studies (TEM) we observed that silver nanoparticles have spherical (7 and 29 nm) and pseudospherical shape (89 nm) with a narrow size distribution. The sizes of the silver nanoparticles were controlled by varying some experimental conditions. It was found that the antibacterial activity of the nanoparticles varies when their size diminishes.

  12. EVALUATION OF PHYTOCHEMICAL AND ANTIBACTERIAL ACTIVITY OF PLECTRANTHUS AMBOINICUS

    Directory of Open Access Journals (Sweden)

    Arunkumar Sathasivam

    2011-02-01

    Full Text Available Plectranthus amboinicus is a commonly available medicinal herb in India. The phytochemical active compounds qualitatively analyzed such as alkaloids, Terpenoids, Cardiac glycosides, saponin, tannins and flavonoids present in Plectranthus amboinicus. The aqueous, acetone and methanol crude plant extracts were prepared and tested against gram positive and gram negative bacteria. The highest antibacterial activities were observed in methanol extract (11± 0.19, 16± 0.45, 15±0.57, 17±0.23, 16± 0.48, 10±0.38 and 16±0.66 mm in diameter compared than acetone extract (6.0 ± 0.18, 6.0 ± 0.18, 6.0 ± 0.18, 6.0 ± 0.18 mm in diameter. There is low antibacterial activity in aqueous extract.

  13. Antibacterial and antifungal screening of four medicinal plants

    Institute of Scientific and Technical Information of China (English)

    Nadjib Mohammed Rahmoun; Hanane Ziane; Zahia Boucherit-Otmani

    2014-01-01

    Objective: To describe the ethnopharmacology study and screening of the antimicrobial activity of hydroalcoholic and chloroform extracts of the four plants Ceratonia siliqua (C. siliqua), Salvadora persica, Aloe vera and Anastatica hierochuntica. Methods: The antimicrobial activity was determined using diffusion disk and solid agar dilution methods against 12 bacteria, according to the recommendations of the Clinical and Laboratory Standards Institute.Results:the preparation of extracts. The extracts obtained by maceration reveal variable yields depending on the polarity of the solvent used. The higher yields were those extracts obtained by the hydroalcoholic solvents. The Anastatica hierochuntica and C. siliqua extracts were by far the most interesting and exerted significant antibacterial activity (minimum inhibitory concentration of 0.07 to 0.13 mg/mL). The ethnopharmacology study provided useful information about how the parts used for Conclusions: These results suggest that C. siliqua could serve as an alternative source of antibacterial agents for human protection against infectious diseases.

  14. Antioxidant, Anticholinesterase and Antibacterial Activities of Jurinea consanguinea DC

    Directory of Open Access Journals (Sweden)

    Hülya Öztürk

    2011-01-01

    Full Text Available The aim of this study was to investigate in vitro antioxidant, anticholinesterase and antibacterial activities of the petroleum ether, chloroform and methanol extracts obtained from the aerial parts of Jurinea consanguinea DC. (Asteraceae. Total phenolic and flavonoid contents of these crude extracts were determined as pyrocatechol and quercetin equivalents, respectively. The methanol extract which possessed almost the same effect with the chloroform extract in b -carotene-linoleic acid system exhibited higher free radical scavenging activity than a standard compound, BHT, at 100 and 200 m g/mL concentrations. The petroleum ether extract showed the highest acetylcholinesterase inhibitory activity among the tested extracts. The methanol extract exhibited higher butyrylcholinesterase inhibitory activity than galantamine at all concentrations (94% inhibition at 200 m g/mL. The antibacterial activity of the extracts was determined by the disc diffusion method. The chloroform extract showed moderate activity against B. subtilis, P. aeruginosa and S. aureus.

  15. Antibacterial activity of Citrus limonum fruit juice extract.

    Science.gov (United States)

    Okeke, Malachy Ifeanyi; Okoli, Arinze Stanley; Eze, Edith Nneka; Ekwume, Grace Chinwe; Okosa, Evangelin Uchena; Iroegbu, Christian Ukwuoma

    2015-09-01

    The fruit juice extract of Citrus limonum was investigated for antibacterial activity. The antibacterial activity of the extract on ten strains of bacteria was determined by both agar well diffusion and macro-broth dilution methods. The extract was variously bacteriostatic and bactericidal against Bacillussubtilis ATCC 6051, Staphylococcus aureus ATCC 12600, Escherichia coli ATCC 11775, Pseudomonas aeruginosa ATCC 10145 as well as locally isolated clinical strains of the above bacteria and Salmonella kintambo (Human: 13, 23: mt:-), Salmonella typhi and Proteus sp. The MICs ranged from 0.78 mg/ml to 50mg/ml; MBCs, 25.0mg/ml to >100mg/ml and MBC/MIC ratios 2.0 to >16.0. These results provide scientific justification for the medicinal use of Citrus limonum fruit juice by Nigerian herbalists in the treatment of diseases in which strains of the test organisms have been implicated as etiologic agents. PMID:26408878

  16. Antibacterial Potential and Antioxidant Activity of Polyphenols of Sesbania grandiflora

    Directory of Open Access Journals (Sweden)

    M.B. Ouattara

    2011-07-01

    Full Text Available The antibacterial and antioxidant activity of Sesbanial grandiflora used in traditional pharmacopeia in Burkina Faso and elsewhere was evaluated. Aqueous, methanolic and hydro-acetone extractions were carried out on the leaves, stems, and granules, pods of fruit and roots of the plant. The phytochimic groups were identified by the tests of characterization, then quantified by the tests of proportioning of total phenolics, flavonoides and tanins. Specific compounds to these phytochimic groups were also identified by the analysis in Thin layer chromatography among which the gallic acid, the caffeic acid, Kaempferol, Quercetin, Rutin. An important antioxidant activity of the same extracts was evaluated by the test of reduction of the stable radical, the 2,2-diphényl-1-picrylhydrazyl (DPPH* and the test of reduction of iron (FRAP. This activity is related to phenolic compounds contained in the extracts. Extracts also expressed a good antibacterial activity.

  17. Cytotoxic and Antibacterial Activities of Constituents from Calophyllum ferrugineum Ridley

    Directory of Open Access Journals (Sweden)

    Nurul Iman Aminudin

    2016-03-01

    Full Text Available This study evaluated the chemical composition of Calophyllum ferrugineum, cytotoxicity against human breast cancer (MCF-7 and human lung carcinoma (A-549 cell lines as well as antibacterial activities against two Gram-positive bacteria, S. aureus and B. subtilis and two Gram-negative bacteria, P. aeruginosa and E. coli. Phytochemical investigations of the bark extract yielded isoapetalic acid (1, apetalic acid (2, 6-hydroxy-2-methoxyxanthone (3 and ent-epicatechin (4. Meanwhile, betulinic acid (5, protocatechuic acid (6 and amentoflavone (7 were isolated from the leave extract. Isoapetalic acid (1 and apetalic acid (2 exhibited cytotoxic activities towards both cancer cell lines and both Gram-positive bacteria. Compounds (3-7 were inactive or showed moderate activities towards cytotoxic and antibacterial tests. This study presents the first report on the phytochemicals investigation from C. ferrugineum and all compounds are reported for the first time from this source.

  18. Bacterial Transcription as a Target for Antibacterial Drug Development.

    Science.gov (United States)

    Ma, Cong; Yang, Xiao; Lewis, Peter J

    2016-03-01

    Transcription, the first step of gene expression, is carried out by the enzyme RNA polymerase (RNAP) and is regulated through interaction with a series of protein transcription factors. RNAP and its associated transcription factors are highly conserved across the bacterial domain and represent excellent targets for broad-spectrum antibacterial agent discovery. Despite the numerous antibiotics on the market, there are only two series currently approved that target transcription. The determination of the three-dimensional structures of RNAP and transcription complexes at high resolution over the last 15 years has led to renewed interest in targeting this essential process for antibiotic development by utilizing rational structure-based approaches. In this review, we describe the inhibition of the bacterial transcription process with respect to structural studies of RNAP, highlight recent progress toward the discovery of novel transcription inhibitors, and suggest additional potential antibacterial targets for rational drug design. PMID:26764017

  19. IN VITRO ANTIBACTERIAL ACTIVITIES OF LAWSONIA INERMIS LEAF EXTRACTS

    Directory of Open Access Journals (Sweden)

    Nayak Sarojini

    2012-07-01

    Full Text Available To know the in vitro antibacterial activities of n-hexane, chloroform, ethyl acetate, benzene, acetone and acetronitrile extracts of the leaves of Lawsonia inermis(Family- Lythraceae, present study was conducted. All the extracts were used at 50mg/ml, 100mg/ml and 300mg/ml concentrations. For the present study Staphylococcus aureus, Bacillus subtilis and Escherichia coli were used. Against Bacillus subtilis, the ethyl acetate extract was more potent than tetracycline (25µl/ml, which was used as a positive control. On the other hand, the chloroform extract and tetracycline more or less produce equal zone of inhibition against that strain. n-hexane, chloroform, ethyl acetate, acetone and acetonitrile extracts were effective against all the strains used in the study. All the extracts of Lawsonia inermis, which were having antibacterial activities, produced such activities in a dose dependent manner. For the study dimethylsulfoxide was used as negative control.

  20. Contact-active antibacterial aerogels from cellulose nanofibrils.

    Science.gov (United States)

    Henschen, Jonatan; Illergård, Josefin; Larsson, Per A; Ek, Monica; Wågberg, Lars

    2016-10-01

    The use of cellulose aerogels as antibacterial materials has been investigated by applying a contact-active layer-by-layer modification to the aerogel surface. Studying the adsorption of multilayers of polyvinylamine (PVAm) and polyacrylic acid to aerogels comprising crosslinked cellulose nanofibrils and monitoring the subsequent bacterial adhesion revealed that up to 26mgPVAmgaerogel(-1) was adsorbed without noticeably affecting the aerogel structure. The antibacterial effect was tested by measuring the reduction of viable bacteria in solution when the aerogels were present. The results show that >99.9% of the bacteria adhered to the surface of the aerogels. Microscopy further showed adherence of bacteria to the surfaces of the modified aerogels. These results indicate that it is possible to create materials with three-dimensional cellulose structures that adsorb bacteria with very high efficiency utilizing the high specific surface area of the aerogels in combination with their open structure. PMID:27391038