WorldWideScience

Sample records for anti-tumor immune response

  1. Anti-tumor immune response after photodynamic therapy

    Science.gov (United States)

    Mroz, Pawel; Castano, Ana P.; Wu, Mei X.; Kung, Andrew L.; Hamblin, Michael R.

    2009-06-01

    Anti-tumor immunity is stimulated after PDT due a number of factors including: the acute inflammatory response caused by PDT, release of antigens from PDT-damaged tumor cells, priming of the adaptive immune system to recognize tumor-associated antigens (TAA), and induction of heat-shock proteins. The induction of specific CD8+ T-lymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy as it would allow the treatment of tumors that may have already metastasized. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. We have carried out in vivo PDT with a BPD-mediated vascular regimen using a pair of BALB/c mouse colon carcinomas: CT26 wild type expressing the naturally occurring retroviral antigen gp70 and CT26.CL25 additionally expressing beta-galactosidase (b-gal) as a model tumor rejection antigen. PDT of CT26.CL25 cured 100% of tumors but none of the CT26WT tumors (all recurred). Cured CT26.CL25 mice were resistant to rechallenge. Moreover mice with two bilateral CT26.CL25 tumors that had only one treated with PDT demonstrated spontaneous regression of 70% of untreated contralateral tumors. T-lymphocytes were isolated from lymph nodes of PDT cured mice that recognized a particular peptide specific to b-gal antigen. T-lymphocytes from LN were able to kill CT26.CL25 target cells in vitro but not CT26WT cells as shown by a chromium release assay. CT26.CL25 tumors treated with PDT and removed five days later had higher levels of Th1 cytokines than CT26 WT tumors showing a higher level of immune response. When mice bearing CT26WT tumors were treated with a regimen of low dose cyclophosphamide (CY) 2 days before, PDT led to 100% of cures (versus 0% without CY) and resistance to rechallenge. Low dose CY is thought to deplete regulatory T-cells (Treg, CD4+CD25+foxp

  2. The Pig as a Large Animal Model for Studying Anti-Tumor Immune Responses

    DEFF Research Database (Denmark)

    Overgaard, Nana Haahr

    The immune system plays a crucial role in cancer development and progression. Cancer immunoediting encompasses three phases: elimination, equilibrium, and escape; together, describing the complex interplay between tumor and immune cells. Specifically, the immune system both protects against cancer...... of autologous tumor cells, underlining the capacity of the Oncopig immune system to mount a cytotoxic anti-tumor response. Using the results from RNA-seq analysis, we propose a potential mechanism for in vivo inhibition of anti-tumor cytotoxicity based on elevated expression of the immunosuppressive genes IDO1...... support that the Oncopig provides a crucial platform for studying anti-tumor immune responses in a large in vivo system, although the model currently only allows preclinical testing of therapeutics against the early stages of cancer....

  3. Activation of Anti-tumor Immune Response by Ablation of HCC with Nanosecond Pulsed Electric Field.

    Science.gov (United States)

    Xu, Xiaobo; Chen, Yiling; Zhang, Ruiqing; Miao, Xudong; Chen, Xinhua

    2018-03-28

    Locoregional therapy is playing an increasingly important role in the non-surgical management of hepatocellular carcinoma (HCC). The novel technique of non-thermal electric ablation by nanosecond pulsed electric field has been recognized as a potential locoregional methodology for indicated HCC. This manuscript explores the most recent studies to indicate its unique anti-tumor immune response. The possible immune mechanism, termed as nano-pulse stimulation, was also analyzed.

  4. IgE/FcεRI-Mediated Antigen Cross-Presentation by Dendritic Cells Enhances Anti-Tumor Immune Responses

    Directory of Open Access Journals (Sweden)

    Barbara Platzer

    2015-03-01

    Full Text Available Epidemiologic studies discovered an inverse association between immunoglobulin E (IgE-mediated allergies and cancer, implying tumor-protective properties of IgE. However, the underlying immunologic mechanisms remain poorly understood. Antigen cross-presentation by dendritic cells (DCs is of key importance for anti-tumor immunity because it induces the generation of cytotoxic CD8+ T lymphocytes (CTLs with specificity for tumor antigens. We demonstrate that DCs use IgE and FcεRI, the high-affinity IgE receptor, for cross-presentation and priming of CTLs in response to free soluble antigen at low doses. Importantly, IgE/FcεRI-mediated cross-presentation is a distinct receptor-mediated pathway because it does not require MyD88 signals or IL-12 induction in DCs. Using passive immunization with tumor antigen-specific IgE and DC-based vaccination experiments, we demonstrate that IgE-mediated cross-presentation significantly improves anti-tumor immunity and induces memory responses in vivo. Our findings suggest a cellular mechanism for the tumor-protective features of IgE and expand the known physiological functions of this immunoglobulin.

  5. MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model.

    Science.gov (United States)

    Mukherjee, P; Pathangey, L B; Bradley, J B; Tinder, T L; Basu, G D; Akporiaye, E T; Gendler, S J

    2007-02-19

    A MUC1-based vaccine was used in a preclinical model of colon cancer. The trial was conducted in a MUC1-tolerant immune competent host injected with MC38 colon cancer cells expressing MUC1. The vaccine included: MHC class I-restricted MUC1 peptides, MHC class II-restricted pan-helper-peptide, unmethylated CpG oligodeoxynucleotide, and granulocyte macrophage-colony stimulating factor. Immunization was successful in breaking MUC1 self-tolerance, and in eliciting a robust anti-tumor response. The vaccine stimulated IFN-gamma-producing CD4(+) helper and CD8(+) cytotoxic T cells against MUC1 and other undefined MC38 tumor antigens. In the prophylactic setting, immunization caused complete rejection of tumor cells, while in the therapeutic regimen, tumor burden was significantly reduced.

  6. Photodynamic therapy stimulates anti-tumor immune response in mouse models: the role of regulatory Tcells, anti-tumor antibodies, and immune attacks on brain metastases

    Science.gov (United States)

    Vatansever, Fatma; Kawakubo, Masayoshi; Chung, Hoon; Hamblin, Michael R.

    2013-02-01

    We have previously shown that photodynamic therapy mediated by a vascular regimen of benzoporphyrin derivative and 690nm light is capable of inducing a robust immune response in the mouse CT26.CL25 tumor model that contains a tumor-rejection antigen, beta-galactosidase (β-gal). For the first time we show that PDT can stimulate the production of serum IgG antibodies against the β-gal antigen. It is known that a common cause of death from cancer, particularly lung cancer, is brain metastases; especially the inoperable ones that do not respond to traditional cytotoxic therapies either. We asked whether PDT of a primary tumor could stimulate immune response that could attack the distant brain metastases. We have developed a mouse model of generating brain metastases by injecting CT26.CL25 tumor cells into the brain as well as injecting the same cancer cells under the skin at the same time. When the subcutaneous tumor was treated with PDT, we observed a survival advantage compared to mice that had untreated brain metastases alone.

  7. Dual antibody therapy to harness the innate anti-tumor immune response to enhance antibody targeting of tumors.

    Science.gov (United States)

    Chester, Cariad; Marabelle, Aurelien; Houot, Roch; Kohrt, Holbrook E

    2015-04-01

    Cancer immunotherapy is a rapidly evolving field that offers a novel paradigm for cancer treatment: therapies focus on enhancing the immune system's innate and adaptive anti-tumor response. Early immunotherapeutics have achieved impressive clinical outcomes and monoclonal antibodies are now integral to therapeutic strategies in a variety of cancers. However, only recently have antibodies targeting innate immune cells entered clinical development. Innate immune effector cells play important roles in generating and maintaining antitumor immunity. Antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) are important innate immune mechanisms for tumor eradication. These cytolytic processes are initiated by the detection of a tumor-targeting antibody and can be augmented by activating co-stimulatory pathways or blocking inhibitory signals on innate immune cells. The combination of FDA-approved monoclonal antibodies with innate effector-targeting antibodies has demonstrated potent preclinical therapeutic synergy and early-phase combinatorial clinical trials are ongoing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Mechanical disruption of tumors by iron particles and magnetic field application results in increased anti-tumor immune responses.

    Directory of Open Access Journals (Sweden)

    Myriam N Bouchlaka

    Full Text Available The primary tumor represents a potential source of antigens for priming immune responses for disseminated disease. Current means of debulking tumors involves the use of cytoreductive conditioning that impairs immune cells or removal by surgery. We hypothesized that activation of the immune system could occur through the localized release of tumor antigens and induction of tumor death due to physical disruption of tumor architecture and destruction of the primary tumor in situ. This was accomplished by intratumor injection of magneto-rheological fluid (MRF consisting of iron microparticles, in Balb/c mice bearing orthotopic 4T1 breast cancer, followed by local application of a magnetic field resulting in immediate coalescence of the particles, tumor cell death, slower growth of primary tumors as well as decreased tumor progression in distant sites and metastatic spread. This treatment was associated with increased activation of DCs in the draining lymph nodes and recruitment of both DCs and CD8(+T cells to the tumor. The particles remained within the tumor and no toxicities were observed. The immune induction observed was significantly greater compared to cryoablation. Further anti-tumor effects were observed when MRF/magnet therapy was combined with systemic low dose immunotherapy. Thus, mechanical disruption of the primary tumor with MRF/magnetic field application represents a novel means to induce systemic immune activation in cancer.

  9. Combination of PDT and a DNA demethylating agent produces anti-tumor immune response in a mouse tumor model

    Science.gov (United States)

    Mroz, Pawel; Hamblin, Michael R.

    2009-06-01

    Epigenetic mechanisms, which involve DNA methylation and histone modifications, result in the heritable silencing of genes without a change in their coding sequence. However, these changes must be actively maintained after each cell division rendering them a promising target for pharmacologic inhibition. DNA methyltransferase inhibitors like 5-aza-deoxycytidine (5-aza-dC) induce and/or up-regulate the expression of MAGE-type antigens in human and mice cancer cells. Photodynamic therapy (PDT) has been shown to be an effective locally ablative anti-cancer treatment that has the additional advantage of stimulating tumor-directed immune response. We studied the effects of a new therapy that combined the demethylating agent 5-aza-dC with PDT in the breast cancer model 4T1 syngenic to immunocompetent BALB/c mice. PDT was used as a locally ablating tumor treatment that is capable of eliciting strong and tumor directed immune response while 5-aza-dC pretreatment was used promote de novo induction of the expression of P1A.protein. This is the mouse homolog of human MAGE family antigens and is reported to function as a tumor rejection antigen in certain mouse tumors. This strategy led to an increase in PDT-mediated immune response and better treatment outcome. These results strongly suggest that the MAGE family antigens are important target for PDT mediated immune response but that their expression can be silenced by epigenetic mechanisms. Therefore the possibility that PDT can be combined with epigenetic strategies to elicit anti-tumor immunity in MAGE-positive tumor models is highly clinically significant and should be studied in detail.

  10. The influence of physical activity in the anti-tumor immune response in experimental breast tumor.

    Science.gov (United States)

    Bianco, Thiago M; Abdalla, Douglas R; Desidério, Chamberttan S; Thys, Sofie; Simoens, Cindy; Bogers, John-Paul; Murta, Eddie F C; Michelin, Márcia A

    2017-10-01

    This study aimed to investigate the influence of physical activity in innate immunity to conduce to an effective antitumoral immune response analyzing the phenotype and activation status of infiltrating cells. We analysed the intracellular cytokines and the transcription factors of tumor infiltrating lymphocytes (TILS) and spleen leukocytes. The Nos2 gene expression was evaluated in spleen cells and futhermore the ROS production was measured and spleen cells; another cell evaluated was dendritic cells (TIDCs), their cytokines expression and membrane molecules; finally to understood the results obtained, we analysed the dendritic cells obtained from bone marrow. Were used female Balb/c mice divided into 4 groups: two controls without tumor, sedentary (GI) and trained (GII) and two groups with tumor, sedentary (GIII) or trained (GIV). The physical activity (PA) was realized acoording swimming protocol. Tumor was induced by injection of 4T1 cells. All experiments were performed in biological triplicate. After the experimental period, the tumor was removed and the cells were identified by flow cytometry with labeling to CD4, CD8, CD11c, CD11b, CD80, CD86 and Ia, and intracelular staining IL-10, IL-12, TNF-α, IFN-γ, IL-17, Tbet, GATA3, RORγt and FoxP3. The bone marrow of the animals was obtained to analyse the derivated DCs by flow cytometry and culture cells to obtain the supernatant to measure the cytokines. Our results demonstrated that the PA inhibit the tumoral growth although not to change the number of TILS, but reduced expression of GATA-3, ROR-γT, related with poor prognosis, and TNF-α intracellular; however occur one significantly reduction in TIDCS, but these cells expressed more co-stimulatory and presentation molecules. Furthermore, we observed that the induced PA stimulated the gene expression of Tbet and the production of inflammatory cytokines suggesting an increase of Th1 systemic response. The results evaluating the systemic influence in DCs

  11. Transgenic expression of soluble human CD5 enhances experimentally-induced autoimmune and anti-tumoral immune responses.

    Directory of Open Access Journals (Sweden)

    Rafael Fenutría

    Full Text Available CD5 is a lymphoid-specific transmembrane glycoprotein constitutively expressed on thymocytes and mature T and B1a lymphocytes. Current data support the view that CD5 is a negative regulator of antigen-specific receptor-mediated signaling in these cells, and that this would likely be achieved through interaction with CD5 ligand/s (CD5L of still undefined nature expressed on immune or accessory cells. To determine the functional consequence of loss of CD5/CD5L interaction in vivo, a new transgenic mouse line was generated (shCD5EμTg, expressing a circulating soluble form of human CD5 (shCD5 as a decoy to impair membrane-bound CD5 function. These shCD5EμTg mice showed an enhanced response to autologous antigens, as deduced from the presentation of more severe forms of experimentally inducible autoimmune disease (collagen-induced arthritis, CIA; and experimental autoimmune encephalitis, EAE, as well as an increased anti-tumoral response in non-orthotopic cancer models (B16 melanoma. This enhancement of the immune response was in agreement with the finding of significantly reduced proportions of spleen and lymph node Treg cells (CD4+CD25+FoxP3+, and of peritoneal IL-10-producing and CD5+ B cells, as well as an increased proportion of spleen NKT cells in shCD5EμTg mice. Similar changes in lymphocyte subpopulations were observed in wild-type mice following repeated administration of exogenous recombinant shCD5 protein. These data reveal the relevant role played by CD5/CD5L interactions on the homeostasis of some functionally relevant lymphocyte subpopulations and the modulation of immune responses to autologous antigens.

  12. Specific anti-tumor immune response with photodynamic therapy mediated by benzoporphyrin derivative and chlorin(e6)

    Science.gov (United States)

    Castano, Ana P.; Gad, Faten; Zahra, Touqir; Hamblin, Michael R.

    2003-07-01

    The purpose of this study was to investigate the induction of anti-tumor immunity by photodynamic therapy (PDT). We used EMT-6 mammary sarcoma, a moderately immunogenic tumor, with 10(6) cells injected s.c. in thighs of immunocompetent Balb/c mice. Mice were treated 10 days later when tumors were 6-mm diameter. Two PDT regimens were equally effective in curing tumors: 1-mg/kg of liposomal benzoporphyrin derivative (BPD) followed after 15 min by 150 J/cm2 690 nm light or 10-mg/kg chlorin(e6) (ce6) followed after 6 hours by 150 J/cm2 665 nm light. BPD-PDT produced a black eschar 24-48 hours after treatment with no visible tumor, followed by healing of the lesion. By contrast ce6-PDT showed no black eschar, but a slow disappearance of tumor over 5-7 days. When cured mice were rechallenged with 10(6) EMT-6 cells in the opposite thigh, all ce6-PDT cured mice rejected the challenge, but BPD-PDT cured mice grew tumors in a proportion of cases. When mice were cured by amputation of the tumor bearing leg, all mice subsequently grew tumors upon rechallenge. Mice were given two EMT6 tumors (1 in each leg) and the mouse was injected with ce6 or BPD but only one tumor was treated with light. Both tumors (PDT-treated and contralateral) regressed at an equal rate until they became undetectable, but in some mice the untreated tumor recurred. Those mice cured of both tumors rejected a subsequent EMT6 rechallenge. Amputation of the tumor bearing leg did not lead to regression of the contralateral tumor. Mice that rejected an EMT6 rechallenge failed to reject a subsequent cross-challenge with J774 reticulum cell sarcoma (an alternative Balb/c murine tumor). These data show that PDT generates a tumor-specific memory immune response, and in addition an active tumoricidal immune response capable of destroying distant established tumors. We hypothesize that ce6-PDT is more effective than BPD-PDT due to more necrotic rather than apoptotic cell death and/or generation of heat

  13. Fractional laser exposure induces neutrophil infiltration (N1 phenotype into the tumor and stimulates systemic anti-tumor immune response.

    Directory of Open Access Journals (Sweden)

    Masayoshi Kawakubo

    Full Text Available Ablative fractional photothermolysis (aFP using a CO2 laser generates multiple small diameter tissue lesions within the irradiation field. aFP is commonly used for a wide variety of dermatological indications, including treatment of photodamaged skin and dyschromia, drug delivery and modification of scars due to acne, surgical procedures and burns. In this study we explore the utility of aFP for treating oncological indications, including induction of local tumor regression and inducing anti-tumor immunity, which is in marked contrast to current indications of aFP.We used a fractional CO2 laser to treat a tumor established by BALB/c colon carcinoma cell line (CT26.CL25, which expressed a tumor antigen, beta-galactosidase (beta-gal. aFP treated tumors grew significantly slower as compared to untreated controls. Complete remission after a single aFP treatment was observed in 47% of the mice. All survival mice from the tumor inoculation rejected re-inoculation of the CT26.CL25 colon carcinoma cells and moreover 80% of the survival mice rejected CT26 wild type colon carcinoma cells, which are parental cells of CT26.CL25 cells. Histologic section of the FP-treated tumors showed infiltrating neutrophil in the tumor early after aFP treatment. Flow cytometric analysis of tumor-infiltrating lymphocytes showed aFP treatment abrogated the increase in regulatory T lymphocyte (Treg, which suppresses anti-tumor immunity and elicited the expansion of epitope-specific CD8+ T lymphocytes, which were required to mediate the tumor-suppressing effect of aFP.We have demonstrated that aFP is able to induce a systemic anti-tumor adaptive immunity preventing tumor recurrence in a murine colon carcinoma in a mouse model. This study demonstrates a potential role of aFP treatments in oncology and further studies should be performed.

  14. Immune response to uv-induced tumors: transplantation immunity and lymphocyte populations exhibiting anti-tumor activity

    International Nuclear Information System (INIS)

    Streeter, P.R.

    1985-01-01

    Ultraviolet light-induced murine skin tumors were analyzed for their ability to induce tumor-specific and cross-protective transplantation immunity in immunocompetent syngeneic mice. These studies revealed that progressor UV-tumors, like regressor UV-tumors, possess tumor-specific transplantation antigens. Cross-protective transplantation immunity to UV-tumors, however, was associated with sensitization to the serum used to culture the tumor lines rather than to cross-reactive or common determinants on UV-tumors. An analysis of the cytolytic activity of lymphocytes from the spleens of mice immunized with either regressor or progressor UV-tumors revealed a striking difference between the two immune splenocyte populations. From regressor tumor-immune animals, cytolytic T (Tc) lymphocytes with specificity for the immunizing tumor were found. However, the analysis of splenic lymphocytes from progressor tumor immune animals revealed no such effector cells. To more effectively examine those lymphocytes exhibiting cytolytic activity in vitro, T lymphocyte cloning technology was used as a means of isolating homogeneous lymphocyte populations with the effector activities described above. The mechanisms where NK cells and other nonspecific effector cells could be induced in tumor-immune animals are discussed in the context of class II restricted immune responses

  15. Pretreatment antigen-specific immunity and regulation - association with subsequent immune response to anti-tumor DNA vaccination.

    Science.gov (United States)

    Johnson, Laura E; Olson, Brian M; McNeel, Douglas G

    2017-07-18

    Immunotherapies have demonstrated clinical benefit for many types of cancers, however many patients do not respond, and treatment-related adverse effects can be severe. Hence many efforts are underway to identify treatment predictive biomarkers. We have reported the results of two phase I trials using a DNA vaccine encoding prostatic acid phosphatase (PAP) in patients with biochemically recurrent prostate cancer. In both trials, persistent PAP-specific Th1 immunity developed in some patients, and this was associated with favorable changes in serum PSA kinetics. In the current study, we sought to determine if measures of antigen-specific or antigen non-specific immunity were present prior to treatment, and associated with subsequent immune response, to identify possible predictive immune biomarkers. Patients who developed persistent PAP-specific, IFNγ-secreting immune responses were defined as immune "responders." The frequency of peripheral T cell and B cell lymphocytes, natural killer cells, monocytes, dendritic cells, myeloid derived suppressor cells, and regulatory T cells were assessed by flow cytometry and clinical laboratory values. PAP-specific immune responses were evaluated by cytokine secretion in vitro, and by antigen-specific suppression of delayed-type hypersensitivity to a recall antigen in an in vivo SCID mouse model. The frequency of peripheral blood cell types did not differ between the immune responder and non-responder groups. Non-responder patients tended to have higher PAP-specific IL-10 production pre-vaccination (p = 0.09). Responder patients had greater preexisting PAP-specific bystander regulatory responses that suppressed DTH to a recall antigen (p = 0.016). While our study population was small (n = 38), these results suggest that different measures of antigen-specific tolerance or regulation might help predict immunological outcome from DNA vaccination. These will be prospectively evaluated in an ongoing randomized, phase II trial.

  16. Irradiated tumor cells of lipopolysaccharide stimulation elicit an enhanced anti-tumor immunity.

    Science.gov (United States)

    Li, Yuli; Shen, Guobo; Nie, Wen; Li, Zhimian; Sang, Yaxiong; Zhang, Binglan; Wei, Yuquan

    2014-11-01

    Lipopolysaccharide (LPS) is a major component of the outer surface membrane of Gram-negative bacteria which has been proved an effective immune enhancer. Here, we investigated the anti-tumor effect of irradiated tumor cells that stimulated by LPS in mouse xenografts models. Tumor cells were irradiated after stimulation with 1 μg/mL LPS for 48 h. The C57BL/6 mice were immunized subcutaneously with irradiated tumor cells. The anti-tumor effect of lymphocytes of immunized mice was investigated. The cytotoxicity of spleen lymphocytes from immunized mice was determined by a standard (51)Cr-release assay. The roles of immune cell subsets in anti-tumor activity were assessed by injected intraperitoneally with monoclonal antibodies. We observed that the vaccine of irradiated tumor cell with LPS-stimulated elicited a stronger protective anti-tumor immunity than other controls. Adoptive transfer of lymphocytes of immunized mice showed that the cellular immune response was involved in the anti-tumor effect. And this effect was achieved by activation of antigen-specific CD8(+) T cell response and reduction of myeloid-derived suppressor cells (MDSCs, Gr1(+) CD11b (+) ), which were confirmed by depletion of immune cell subsets and flow cytometry analysis. In summary, our study showed that stimulation of LPS was able to enhance anti-tumor immunity of vaccination with tumor cells after irradiation treatment, which might be a new strategy for cancer therapy.

  17. Co-delivery of antigen and IL-12 by Venezuelan equine encephalitis virus replicon particles enhances antigen-specific immune responses and anti-tumor effects

    Science.gov (United States)

    Osada, Takuya; Berglund, Peter; Morse, Michael A.; Hubby, Bolyn; Lewis, Whitney; Niedzwiecki, Donna; Hobeika, Amy; Burnett, Bruce; Devi, Gayathri R.; Clay, Timothy M.; Smith, Jonathan; Lyerly, H. Kim

    2013-01-01

    We recently demonstrated that Venezuelan equine encephalitis (VEE) virus-based replicon particles (VRP) encoding tumor antigens could break tolerance in the immunomodulatory environment of advanced cancer. We hypothesized that local injection of VRP expressing Interleukin-12 (IL-12) at the site of injections of VRP-based cancer vaccines would enhance the tumor-antigen-specific T cell and antibody responses and anti-tumor efficacy. Mice were immunized with VRP encoding the human tumor-associated antigen, carcinoembryonic antigen (CEA) (VRP-CEA(6D)) and VRP-IL-12 was also administered at the same site or at a distant location. CEA-specific T cell and antibody responses were measured. To determine antitumor activity, mice were implanted with MC38-CEA-2 cells and immunized with VRP-CEA with and without VRP-IL-12 and tumor growth and mouse survival were measured. VRP-IL-12 greatly enhanced CEA-specific T cell and antibody responses when combined with VRP-CEA(6D) vaccination. VRP IL-12 was superior to IL-12 protein at enhancing immune responses. Vaccination with VRP-CEA(6D) plus VRP-IL-12 was superior to VRP-CEA(6D) or VRP-IL-12 alone in inducing anti-tumor activity and prolonging survival in tumor-bearing mice. Importantly, local injection of VRP-IL-12 at the VRP-CEA(6D) injection site provided more potent activation of CEA-specific immune responses than VRP-IL-12 injected at a distant site from the VRP-CEA injections. Together, this study shows that VRP-IL-12 enhances vaccination with VRP-CEA(6D) and was more effective at activating CEA-specific T cell responses when locally expressed at the vaccine site. Clinical trials evaluating the adjuvant effect of VRP-IL-12 at enhancing the immunogenicity of cancer vaccines are warranted. PMID:22488274

  18. Effects of Androgen Ablation on Anti-Tumor Immunity

    National Research Council Canada - National Science Library

    Kast, Martin

    2004-01-01

    .... This AA induced autoimmune-like response exerts limited anti-tumor activity in a murine prostate cancer model, but could be synergistic with CTLA-4 blockade that promotes the development of autoreactive T cell...

  19. Effect of enteral immunonutrition after radical surgery for esophageal carcinoma on anti-tumor immune response and intestinal mucosal barrier function

    Directory of Open Access Journals (Sweden)

    Tong He

    2017-07-01

    Full Text Available Objective: To study the effect of enteral immunonutrition after radical surgery for esophageal carcinoma on anti-tumor immune response and intestinal mucosal barrier function. Methods: A total of 102 patients who received radical surgery for esophageal carcinoma in our hospital between May 2013 and December 2016 were selected and randomly divided into observation group and control group who received postoperative enteral immunonutrition and routine enteral nutrition respectively. 1 d before operation as well as 1 d and 7 d after operation, peripheral blood immune cell marker expression and serum intestinal mucosal barrier injury marker levels were detected. Results: 1 d after operation, peripheral blood T-bet, NKG2D, NKp30, NKp44 and NKp46 fluorescence intensity of both groups of patients were significantly lower than those 1d before operation while peripheral blood GATA-3 and Foxp3 fluorescence intensity as well as serum DAO, Occludin, ZO-1 and claudin-1 levels were significantly higher than those 1d before operation; peripheral blood T-bet, NKG2D, NKp30, NKp44 and NKp46 fluorescence intensity of observation group 7 d after operation were significantly higher than those 1 d after operation while peripheral blood GATA-3 and Foxp3 fluorescence intensity as well as serum DAO, Occludin, ZO-1 and claudin-1 levels were significantly lower than those 1 d after operation; peripheral blood T-bet, GATA-3, Foxp3, NKG2D, NKp30, NKp44 and NKp46 fluorescence intensity of control group 7 d after operation were not significant different from those 1 d after operation, and serum DAO, Occludin, ZO-1 and claudin-1 levels were significantly lower than those 1d after operation. Conclusion: Enteral immunonutrition after radical surgery for esophageal carcinoma can enhance the anti-tumor immune response and improve the intestinal mucosal barrier function.

  20. Depletion of regulatory T lymphocytes reverses the imbalance between pro- and anti-tumor immunities via enhancing antigen-specific T cell immune responses.

    Directory of Open Access Journals (Sweden)

    Yu-Li Chen

    Full Text Available BACKGROUND: The regulatory T cells (Tregs can actively suppress the immune responses. However, literature about detailed changes of host effective and suppressive immunities before and after depletion of Tregs in ovarian carcinomas, is rare. MATERIALS AND METHODS: Ovarian cancer patients and the ascitogenic animal model were employed. Immunologic profiles with flow cytometric analyses, immunohistochemistric staining, RT-PCR, ELISA, and ELISPOT assays were performed. In vivo depletion of Treg cells with the mAb PC61was also performed in the animal model. RESULTS: The cytokines, including IL-4 (p=0.017 and TNF-α (p=0.046, significantly decreased while others such as TGF-β (p=0.013, IL-6 (p=0.016, and IL-10 (p=0.018 were elevated in ascites of ovarian cancer patients, when the disease progressed to advanced stages. The ratio of CD8(+ T cell/Treg cell in ascites was also lower in advanced diseases than in early diseases (advanced 7.37 ± 0.64 vs. early 14.25 ± 3.11, p=0.037. The kinetic low-dose CD25 Ab depletion group had significantly lower intra-peritoneal tumor weight (0.20 ± 0.03 g than the sequential high-dose (0.69 ± 0.06 g and sequential low-dose (0.67 ± 0.07 g CD25 Ab deletion groups (p=0.001 after 49 days of tumor challenge in the animal. The kinetic low-dose CD25 Ab depletion group generated the highest number of IFN-γ-secreting, mesothelin-specific T lymphocytes compared to the other groups (p<0.001. CONCLUSIONS: The imbalance between effective and suppressive immunities becomes more severe as a tumor progresses. The depletion of Treg cells can correct the imbalance of immunologic profiles and generate potent anti-tumor effects. Targeting Treg cells can be a new strategy for the immunotherapy of ovarian carcinoma.

  1. Opposite role of Bax and BCL-2 in the anti-tumoral responses of the immune system

    Directory of Open Access Journals (Sweden)

    Bougras Gwenola

    2004-08-01

    Full Text Available Abstract Background The relative role of anti apoptotic (i.e. Bcl-2 or pro-apoptotic (e.g. Bax proteins in tumor progression is still not completely understood. Methods The rat glioma cell line A15A5 was stably transfected with human Bcl-2 and Bax transgenes and the viability of theses cell lines was analyzed in vitro and in vivo. Results In vitro, the transfected cell lines (huBax A15A5 and huBcl-2 A15A5 exhibited different sensitivities toward apoptotic stimuli. huBax A15A5 cells were more sensitive and huBcl-2 A15A5 cells more resistant to apoptosis than mock-transfected A15A5 cells (pCMV A15A5. However, in vivo, in syngenic rat BDIX, these cell lines behaved differently, as no tumor growth was observed with huBax A15A5 cells while huBcl-2 A15A5 cells formed large tumors. The immune system appeared to be involved in the rejection of huBax A15A5 cells since i huBax A15A5 cells were tumorogenic in nude mice, ii an accumulation of CD8+ T-lymphocytes was observed at the site of injection of huBax A15A5 cells and iii BDIX rats, which had received huBax A15A5 cells developed an immune protection against pCMV A15A5 and huBcl-2 A15A5 cells. Conclusions We show that the expression of Bax and Bcl-2 controls the sensitivity of the cancer cells toward the immune system. This sensitization is most likely to be due to an increase in immune induced cell death and/or the amplification of an anti tumour immune response

  2. Changes of serum endocrine hormone levels in patients with cancerrelated fatigue and their correlation with anti-tumor immune response and tumor load

    Directory of Open Access Journals (Sweden)

    Lu Yang

    2017-08-01

    Full Text Available Objective: To study the changes of serum endocrine hormone levels in patients with cancerrelated fatigue (CRF and their correlation with anti-tumor immune response and tumor load. Methods: A total of 137 patients who were diagnosed with primary lung cancer in West China Hospital, Sichuan University between June 2014 and November 2016 were selected and then divided into CRF group and control group according to their self-reported symptoms, serum was collected to determine the levels of endocrine hormones and tumor markers, and peripheral blood was collected to detect the levels of immune cells. Results: Serum ACTH and TSH levels of CRF group were significantly higher than those of control group while Cor, FT3 and FT4 levels were significantly lower than those of control group; peripheral blood CD11b+ CD15 - CD33+ CD14+ M-MDSC, CD11b+ CD15-CD33+ CD14- G-MDSC, CD4+ CD25+ CD127lowTreg and CD19+ CD5+ CD1d+ Breg levels as well as serum CEA, Cyfra21-1, SCC-Ag, HE4, GDF- 15 and PCNA levels of CRF group were significantly higher than those of control group, positively correlated with serum ACTH and TSH levels, and negatively correlated with Cor, FT3 and FT4 levels. Conclusion: The changes of thyroid hormone and adrenal cortical hormone levels in patients with cancer-related fatigue are closely related to the inhibited antitumor immune response and increased tumor load.

  3. MUC1 and survivin combination tumor gene vaccine generates specific immune responses and anti-tumor effects in a murine melanoma model.

    Science.gov (United States)

    Zhang, Haihong; Liu, Chenlu; Zhang, Fangfang; Geng, Fei; Xia, Qiu; Lu, Zhenzhen; Xu, Ping; Xie, Yu; Wu, Hui; Yu, Bin; Wu, Jiaxin; Yu, Xianghui; Kong, Wei

    2016-05-23

    MUC1 and survivin are ideal tumor antigens. Although many cancer vaccines targeting survivin or MUC1 have entered clinical trials, no vaccine combining MUC1 and survivin have been reported. Due to tumor heterogeneity, vaccines containing a combination of antigens may have improved efficacy and coverage of a broader spectrum of cancer targets. Here, cellular responses and anti-tumor activities induced by a combination of DNA vaccine targeting MUC1 and survivin (MS) were evaluated. Results showed that CTL activity and inhibition of tumor growth were obviously enhanced in mice immunized with the combined vaccine in a protection assay. However, in order to enhance the therapeutic effect in the treatment assay, a recombinant adenovirus (rAd) vaccine expressing MUC1 and survivin (Ad-MS) was used as a booster following the DNA vaccine prime. Meanwhile, IL-2 promoting T cell proliferation was used as an immunoadjuvant for the DNA vaccine. Results showed that the CTL activity response to the DNA vaccine was enhanced nearly 200% when boosted by the rAd vaccine and was further enhanced by nearly 60% when combined with the IL-2 adjuvant. Therefore, DNA prime combined with rAd boost and IL-2 (MS/IL2/Ad-MS) adjuvant was considered as the best strategy and further evaluated. Multiple cytokines promoting cellular immune responses were shown to be greatly enhanced in mice immunized with MS/IL2/Ad-MS. Moreover, in the treatment assay, the tumor inhibition rate of MS/IL2/Ad-MS reached up to 50.1%, which may be attributed to the enhancement of immune responses and reduction of immunosuppressive factors in tumor-bearing mice. These results suggested that immunization with the combination vaccine targeting MUC1 and survivin using a DNA prime-rAd boost strategy along with IL-2 adjuvant may be an effective method for breaking through immune tolerance to tumors expressing these antigens with potential therapeutic benefits in melanoma cancer. Copyright © 2016. Published by Elsevier Ltd.

  4. Splenectomy inhibits non-small cell lung cancer growth by modulating anti-tumor adaptive and innate immune response

    Science.gov (United States)

    Levy, Liran; Mishalian, Inbal; Bayuch, Rachel; Zolotarov, Lida; Michaeli, Janna; Fridlender, Zvi G

    2015-01-01

    It has been shown that inhibitors of the immune system reside in the spleen and inhibit the endogenous antitumor effects of the immune system. We hypothesized that splenectomy would inhibit the growth of relatively large non-small lung cancer (NSCLC) tumors by modulating the systemic inhibition of the immune system, and in particular Myeloid Derived Suppressor Cells (MDSC). The effect of splenectomy was evaluated in several murine lung cancer models. We found that splenectomy reduces tumor growth and the development of lung metastases, but only in advanced tumors. In immune-deficient NOD-SCID mice the effect of splenectomy on tumor growth and metastatic spread disappeared. Splenectomy significantly reduced the presence of MDSC, and especially monocytic-MDSC in the circulation and inside the tumor. Specific reduction of the CCR2+ subset of monocytic MDSC was demonstrated, and the importance of the CCL2-CCR2 axis was further shown by a marked reduction in CCL2 following splenectomy. These changes were followed by changes in the macrophages contents of the tumors to become more antitumorigenic, and by increased activation of CD8+ Cytotoxic T-cells (CTL). By MDSC depletion, and adoptive transfer of MDSCs, we demonstrated that the effect of splenectomy on tumor growth was substantially mediated by MDSC cells. We conclude that the spleen is an important contributor to tumor growth and metastases, and that splenectomy can blunt this effect by depletion of MDSC, changing the amount and characteristics of myeloid cells and enhancing activation of CTL. PMID:26137413

  5. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor

  6. Tumor-altered dendritic cell function: implications for anti-tumor immunity.

    Science.gov (United States)

    Hargadon, Kristian M

    2013-01-01

    Dendritic cells (DC) are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programing of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor immunity.

  7. Dendritic-cell-based immunotherapy evokes potent anti-tumor immune responses in CD105+ human renal cancer stem cells.

    Science.gov (United States)

    Zhang, Xiao-Fei; Weng, De-Sheng; Pan, Ke; Zhou, Zi-Qi; Pan, Qiu-Zhong; Zhao, Jing-Jing; Tang, Yan; Jiang, Shan-Shan; Chen, Chang-Long; Li, Yong-Qiang; Zhang, Hong-Xia; Chang, Alfred E; Wicha, Max S; Zeng, Yi-Xin; Li, Qiao; Xia, Jian-Chuan

    2017-11-01

    Cancer stem cells (CSCs) are responsible for tumor initiation, progression, and resistance to therapeutic agents; they are usually less sensitive to conventional cancer therapies, and could cause tumor relapse. An ideal therapeutic strategy would therefore be to selectively target and destroy CSCs, thereby preventing tumor relapse. The aim of the present study was to evaluate the effectiveness of dendritic cells (DCs) pulsed with antigen derived from CD105+ human renal cell carcinoma (RCC) CSCs against renal cancer cells in vitro and in vivo. We identified "stem-like" characteristics of CD105+ cells in two human RCC cell lines: A498 and SK-RC-39. Loading with cell lysates did not change the characteristics of the DCs. However, DCs loaded with lysates derived from CD105+ CSCs induced more functionally specific active T cells and specific antibodies against CSCs, and clearly depressed the tumor growth in mice. Our results could form the basis for a novel strategy to improve the efficacy of DC-based immunotherapy for human RCC. © 2017 Wiley Periodicals, Inc.

  8. Cryo-ablation improves anti-tumor immunity through recovering tumor educated dendritic cells in tumor-draining lymph nodes.

    Science.gov (United States)

    He, Xiao-Zheng; Wang, Qi-Fu; Han, Shuai; Wang, Hui-Qing; Ye, Yong-Yi; Zhu, Zhi-Yuan; Zhang, Shi-Zhong

    2015-01-01

    In addition to minimally invasive destruction of tumors, cryo-ablation of tumors to some extent modulated anti-tumor immunity. Cryo-ablated tumors in glioma mice models induced anti-tumor cellular immunologic response which increases the percentage of CD3(+) and CD4(+)T cells in blood as well as natural killer cells. As a crucial role in triggering anti-tumor immunity, dendritic cells (DCs) were educated by tumors to adopt a tolerance phenotype which helps the tumor escape from immune monitoring. This study aims to study whether cryo-ablation could influence the tolerogenic DCs, and influence anti-tumor immunity in tumor-draining lymph nodes (TDLNs). Using the GL261 subcutaneous glioma mouse model, we created a tumor bearing group, cryo-ablation group, and surgery group. We analyzed alteration in phenotype and function of tolerogenic DCs, and evaluated the factors of anti-tumor immunity inhibition. DCs in TDLNs in GL261 subcutaneous glioma mouse model expressed tolerogenic phenotype. In contrast to surgery, cryo-ablation improved the quantity and quality of these tolerogenic DCs. Moreover, the DCs decreased the expression of intracellular interleukin-10 (IL-10) and extra-cellular IL-10. In vitro, DCs from the cryo-ablation group recovered their specific function and induced potent anti-tumor immunity through triggering T cells. In vivo, cryo-ablation showed weak anti-tumor immunity, only inhibiting the growth of rechallenged tumors. But many IL-10-low DCs, rather than IL-10-high DCs, infiltrated the tumors. More importantly, Tregs inhibited the performance of these DCs; and depletion of Tregs greatly improved anti-tumor immunity in vivo. Cryo-ablation could recover function of tumor induced tolerogenic DCs in vitro; and depletion of Tregs could improve this anti-tumor effect in vivo. The Tregs/CD4(+)T and Tregs/CD25(+)T cells in TDLNs inhibit DCs' activity and function.

  9. Nanovectorized radiotherapy: a new strategy to induce anti-tumor immunity

    International Nuclear Information System (INIS)

    Vanpouille-Box, Claire; Hindré, François

    2012-01-01

    Recent experimental findings show that activation of the host immune system is required for the success of chemo- and radiotherapy. However, clinically apparent tumors have already developed multiple mechanisms to escape anti-tumor immunity. The fact that tumors are able to induce a state of tolerance and immunosuppression is a major obstacle in immunotherapy. Hence, there is an overwhelming need to develop new strategies that overcome this state of immune tolerance and induce an anti-tumor immune response both at primary and metastatic sites. Nanovectorized radiotherapy that combines ionizing radiation and nanodevices, is one strategy that could boost the quality and magnitude of an immune response in a predictable and designable fashion. The potential benefits of this emerging treatment may be based on the unique combination of immunostimulatory properties of nanoparticles with the ability of ionizing radiation to induce immunogenic tumor cell death. In this review, we will discuss available data and propose that the nanovectorized radiotherapy could be a powerful new strategy to induce anti-tumor immunity required for positive patient outcome.

  10. Nanovectorized radiotherapy, a new strategy to induce anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Claire eVanpouille-Box

    2012-10-01

    Full Text Available Recent experimental findings show that activation of the host immune system is required for the success of chemo- and radio-therapy. However, clinically-apparent tumors have already developed multiple mechanisms to escape anti-tumor immunity. The fact that tumors are able to induce a state of tolerance and immunosuppression is a major obstacle in immunotherapy. Hence, there is an overwhelming need to develop new strategies that overcome this state of immune tolerance and induce an anti-tumor immune response both at primary and metastatic sites. Nanovectorized radiotherapy that combines ionizing radiation and nano-devices, is one strategy that could boost the quality and magnitude of an immune response in a predictable and designable fashion. The potential benefits of this emerging treatment may be based on the unique combination of immuno-stimulatory properties of nanoparticles with the ability of ionizing radiation to induce immunogenic tumor cell death. In this review, we will discuss available data and propose that the nanovectorized radiotherapy could be a powerful new strategy to induce anti-tumor immunity required for positive patient outcome.

  11. Induction of anti-tumor immunity by trifunctional antibodies in patients with peritoneal carcinomatosis

    Directory of Open Access Journals (Sweden)

    Lindhofer Horst

    2009-02-01

    Full Text Available Abstract Peritoneal carcinomatosis (PC from epithelial tumors is a fatal diagnosis without efficient treatment. Trifunctional antibodies (trAb are novel therapeutic approaches leading to a concerted anti-tumor activity resulting in tumor cell destruction. In addition, preclinical data in mouse tumor models demonstrated the induction of long lasting tumor immunity after treatment with trAb. We describe the induction of anti-tumor specific T-lymphocytes after intraperitoneal administration of trAb in patients with PC. 9 patients with progressive PC from gastric (n = 6 and ovarian cancer (n = 2, and cancer of unknown primary (n = 1 received 3 escalating doses of trAb after surgery and/or ineffective chemotherapy. The trAb EpCAM × CD3 (10, 20, 40 μg or HER2/neu × CD3 (10, 40, 80 μg were applicated by intraperitoneal infusion. Four weeks after the last trAb application, all patients were restimulated by subdermal injection of trAb + autologous PBMC + irradiated autologous tumor cells. Immunological reactivity was tested by analyzing PBMC for specific tumor reactive CD4+/CD8+ T lymphocytes using an IFN-γ secretion assay. In 5 of 9 patients, tumor reactive CD4+/CD8+ T-lymphocytes increased significantly, indicating specific anti-tumor immunity. A clinical response (stable disease, partial regression has been observed in 5 of 9 patients, with a mean time to progression of 3.6 months. Follow-up showed a mean survival of 11.8 months (median 8.0 months after trAb therapy. TrAb are able to induce anti-tumor immunity after intraperitoneal application and restimulation. The induction of long-lasting anti-tumor immunity may provide an additional benefit of the intraperitoneal therapy with trAb and should be further elevated in larger clinical trials.

  12. How Does Ionizing Irradiation Contribute to the Induction of Anti-Tumor Immunity?

    International Nuclear Information System (INIS)

    Rubner, Yvonne; Wunderlich, Roland; Rühle, Paul-Friedrich; Kulzer, Lorenz; Werthmöller, Nina; Frey, Benjamin; Weiss, Eva-Maria; Keilholz, Ludwig; Fietkau, Rainer; Gaipl, Udo S.

    2012-01-01

    Radiotherapy (RT) with ionizing irradiation is commonly used to locally attack tumors. It induces a stop of cancer cell proliferation and finally leads to tumor cell death. During the last years it has become more and more evident that besides a timely and locally restricted radiation-induced immune suppression, a specific immune activation against the tumor and its metastases is achievable by rendering the tumor cells visible for immune attack. The immune system is involved in tumor control and we here outline how RT induces anti-inflammation when applied in low doses and contributes in higher doses to the induction of anti-tumor immunity. We especially focus on how local irradiation induces abscopal effects. The latter are partly mediated by a systemic activation of the immune system against the individual tumor cells. Dendritic cells are the key players in the initiation and regulation of adaptive anti-tumor immune responses. They have to take up tumor antigens and consecutively present tumor peptides in the presence of appropriate co-stimulation. We review how combinations of RT with further immune stimulators such as AnnexinA5 and hyperthermia foster the dendritic cell-mediated induction of anti-tumor immune responses and present reasonable combination schemes of standard tumor therapies with immune therapies. It can be concluded that RT leads to targeted killing of the tumor cells and additionally induces non-targeted systemic immune effects. Multimodal tumor treatments should therefore tend to induce immunogenic tumor cell death forms within a tumor microenvironment that stimulates immune cells.

  13. Regulatory T cells as suppressors of anti-tumor immunity: Role of metabolism.

    Science.gov (United States)

    De Rosa, Veronica; Di Rella, Francesca; Di Giacomo, Antonio; Matarese, Giuseppe

    2017-06-01

    Novel concepts in immunometabolism support the hypothesis that glucose consumption is also used to modulate anti-tumor immune responses, favoring growth and expansion of specific cellular subsets defined in the past as suppressor T cells and currently reborn as regulatory T (Treg) cells. During the 1920s, Otto Warburg and colleagues observed that tumors consumed high amounts of glucose compared to normal tissues, even in the presence of oxygen and completely functioning mitochondria. However, the role of the Warburg Effect is still not completely understood, particularly in the context of an ongoing anti-tumor immune response. Current experimental evidence suggests that tumor-derived metabolic restrictions can drive T cell hyporesponsiveness and immune tolerance. For example, several glycolytic enzymes, deregulated in cancer, contribute to tumor progression independently from their canonical metabolic activity. Indeed, they can control apoptosis, gene expression and activation of specific intracellular pathways, thus suggesting a direct link between metabolic switches and pro-tumorigenic transcriptional programs. Focus of this review is to define the specific metabolic pathways controlling Treg cell immunobiology in the context of anti-tumor immunity and tumor progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Fluorescent nanodiamonds engage innate immune effector cells: A potential vehicle for targeted anti-tumor immunotherapy.

    Science.gov (United States)

    Suarez-Kelly, Lorena P; Campbell, Amanda R; Rampersaud, Isaac V; Bumb, Ambika; Wang, Min S; Butchar, Jonathan P; Tridandapani, Susheela; Yu, Lianbo; Rampersaud, Arfaan A; Carson, William E

    2017-04-01

    Fluorescent nanodiamonds (FNDs) are nontoxic, infinitely photostable, and emit fluorescence in the near infrared region. Natural killer (NK) cells and monocytes are part of the innate immune system and are crucial to the control of carcinogenesis. FND-mediated stimulation of these cells may serve as a strategy to enhance anti-tumor activity. FNDs were fabricated with a diameter of 70±28 nm. Innate immune cell FND uptake, viability, surface marker expression, and cytokine production were evaluated in vitro. Evaluation of fluorescence emission from the FNDs was conducted in an animal model. In vitro results demonstrated that treatment of immune cells with FNDs resulted in significant dose-dependent FND uptake, no compromise in cell viability, and immune cell activation. FNDs were visualized in an animal model. Hence, FNDs may serve as novel agents with "track and trace" capabilities to stimulate innate immune cell anti-tumor responses, especially as FNDs are amenable to surface-conjugation with immunomodulatory molecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The effect of polyanhydride chemistry in particle-based cancer vaccines on the magnitude of the anti-tumor immune response.

    Science.gov (United States)

    Wafa, Emad I; Geary, Sean M; Goodman, Jonathan T; Narasimhan, Balaji; Salem, Aliasger K

    2017-03-01

    The goal of this research was to study the effect of polyanhydride chemistry on the immune response induced by a prophylactic cancer vaccine based on biodegradable polyanhydride particles. To achieve this goal, different compositions of polyanhydride copolymers based on 1,8-bis-(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG), 1,6-bis-(p-carboxyphenoxy)-hexane (CPH), and sebacic anhydride (SA) were synthesized by melt polycondensation, and polyanhydride copolymer particles encapsulating a model antigen, ovalbumin (OVA), were then synthesized using a double emulsion solvent evaporation technique. The ability of three different compositions of polyanhydride copolymers (50:50 CPTEG:CPH, 20:80 CPTEG:CPH, and 20:80 CPH:SA) encapsulating OVA to elicit immune responses was investigated. In addition, the impact of unmethylated oligodeoxynucleotides containing deoxycytidyl-deoxyguanosine dinucleotides (CpG ODN), an immunological adjuvant, on the immune response was also studied. The immune response to cancer vaccines was measured after treatment of C57BL/6J mice with two subcutaneous injections, seven days apart, of 50μg OVA encapsulated in particles composed of different polyanhydride copolymers with or without 25μg CpG ODN. In vivo studies showed that 20:80 CPTEG:CPH particles encapsulating OVA significantly stimulated the highest level of CD8 + T lymphocytes, generated the highest serum titers of OVA-specific IgG antibodies, and provided longer protection against tumor challenge with an OVA-expressing thymoma cell line in comparison to formulations made from other polyanhydride copolymers. The results also revealed that vaccination with CpG ODN along with polyanhydride particles encapsulating OVA did not enhance the immunogenicity of OVA. These results accentuate the crucial role of the copolymer composition of polyanhydrides in stimulating the immune response and provide important insights on rationally designing efficacious cancer vaccines. Compared to soluble cancer

  16. LV305, a dendritic cell-targeting integration-deficient ZVex(TM)-based lentiviral vector encoding NY-ESO-1, induces potent anti-tumor immune response.

    Science.gov (United States)

    Albershardt, Tina Chang; Campbell, David James; Parsons, Andrea Jean; Slough, Megan Merrill; Ter Meulen, Jan; Berglund, Peter

    2016-01-01

    We have engineered an integration-deficient lentiviral vector, LV305, to deliver the tumor antigen NY-ESO-1 to human dendritic cells in vivo through pseudotyping with a modified Sindbis virus envelop protein. Mice immunized once with LV305 developed strong, dose-dependent, multifunctional, and cytotoxic NY-ESO-1-specific cluster of differentiation 8 (CD8) T cells within 14 days post-immunization and could be boosted with LV305 at least twice to recall peak-level CD8 T-cell responses. Immunization with LV305 protected mice against tumor growth in an NY-ESO-1-expressing CT26 lung metastasis model, with the protective effect abrogated upon depletion of CD8 T cells. Adoptive transfer of CD8 T cells, alone or together with CD4 T cells or natural killer cells, from LV305-immunized donor mice to tumor-bearing recipient mice conferred significant protection against metastatic tumor growth. Biodistribution of injected LV305 in mice was limited to the site of injection and the draining lymph node, and injected LV305 exhibited minimal excretion. Mice injected with LV305 developed little to no adverse effects, as evaluated by toxicology studies adherent to good laboratory practices. Taken together, these data support the development of LV305 as a clinical candidate for treatment against tumors expressing NY-ESO-1.

  17. LV305, a dendritic cell-targeting integration-deficient ZVexTM-based lentiviral vector encoding NY-ESO-1, induces potent anti-tumor immune response

    Science.gov (United States)

    Albershardt, Tina Chang; Campbell, David James; Parsons, Andrea Jean; Slough, Megan Merrill; ter Meulen, Jan; Berglund, Peter

    2016-01-01

    We have engineered an integration-deficient lentiviral vector, LV305, to deliver the tumor antigen NY-ESO-1 to human dendritic cells in vivo through pseudotyping with a modified Sindbis virus envelop protein. Mice immunized once with LV305 developed strong, dose-dependent, multifunctional, and cytotoxic NY-ESO-1-specific cluster of differentiation 8 (CD8) T cells within 14 days post-immunization and could be boosted with LV305 at least twice to recall peak-level CD8 T-cell responses. Immunization with LV305 protected mice against tumor growth in an NY-ESO-1-expressing CT26 lung metastasis model, with the protective effect abrogated upon depletion of CD8 T cells. Adoptive transfer of CD8 T cells, alone or together with CD4 T cells or natural killer cells, from LV305-immunized donor mice to tumor-bearing recipient mice conferred significant protection against metastatic tumor growth. Biodistribution of injected LV305 in mice was limited to the site of injection and the draining lymph node, and injected LV305 exhibited minimal excretion. Mice injected with LV305 developed little to no adverse effects, as evaluated by toxicology studies adherent to good laboratory practices. Taken together, these data support the development of LV305 as a clinical candidate for treatment against tumors expressing NY-ESO-1. PMID:27626061

  18. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model

    Directory of Open Access Journals (Sweden)

    Lyerly H Kim

    2007-07-01

    Full Text Available Abstract Background High intensity focused ultrasound (HIFU is an emerging non-invasive treatment modality for localized treatment of cancers. While current clinical strategies employ HIFU exclusively for thermal ablation of the target sites, biological responses associated with both thermal and mechanical damage from focused ultrasound have not been thoroughly investigated. In particular, endogenous danger signals from HIFU-damaged tumor cells may trigger the activation of dendritic cells. This response may play a critical role in a HIFU-elicited anti-tumor immune response which can be harnessed for more effective treatment. Methods Mice bearing MC-38 colon adenocarcinoma tumors were treated with thermal and mechanical HIFU exposure settings in order to independently observe HIFU-induced effects on the host's immunological response. In vivo dendritic cell activity was assessed along with the host's response to challenge tumor growth. Results Thermal and mechanical HIFU were found to increase CD11c+ cells 3.1-fold and 4-fold, respectively, as compared to 1.5-fold observed for DC injection alone. In addition, thermal and mechanical HIFU increased CFSE+ DC accumulation in draining lymph nodes 5-fold and 10-fold, respectively. Moreover, focused ultrasound treatments not only caused a reduction in the growth of primary tumors, with tumor volume decreasing by 85% for thermal HIFU and 43% for mechanical HIFU, but they also provided protection against subcutaneous tumor re-challenge. Further immunological assays confirmed an enhanced CTL activity and increased tumor-specific IFN-γ-secreting cells in the mice treated by focused ultrasound, with cytotoxicity induced by mechanical HIFU reaching as high as 27% at a 10:1 effector:target ratio. Conclusion These studies present initial encouraging results confirming that focused ultrasound treatment can elicit a systemic anti-tumor immune response, and they suggest that this immunity is closely related to

  19. Interleukin-17 acts as double-edged sword in anti-tumor immunity and tumorigenesis.

    Science.gov (United States)

    Qian, Xin; Chen, Hankui; Wu, Xiaofeng; Hu, Ling; Huang, Qi; Jin, Yang

    2017-01-01

    Interleukin-17 (IL-17), a proinflammatory cytokine, mainly produced by Th17 cells, participates in both innate and adaptive immune responses and is involved in various diseases, including infectious diseases, autoimmune disorders and cancer. Emerging evidence indicates that IL-17 not only has an oncogenic role in tumorigenesis by regulating tumor angiogenesis and enhancing tumor immune evasion but also exerts anti-tumor functions by enhancing natural killer (NK) cells and cytotoxic T lymphocytes (CTLs) activation and through the recruitment of neutrophils, NK cells and CD4 + and CD8 + T cells to tumor tissue. In this review, we provide an overview on the basic biology of IL-17 and recent findings regarding its enigmatic double-edged features in tumorigenesis, with special attention to the roles of IL-17 produced by tumor cells interacting with other factors in the tumor microenvironment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Immune-Modulation by Epidermal Growth Factor Receptor Inhibitors: Implication on Anti-Tumor Immunity in Lung Cancer

    Science.gov (United States)

    Herrmann, Amanda C.; Bernatchez, Chantale; Haymaker, Cara; Molldrem, Jeffrey J.; Hong, Waun Ki; Perez-Soler, Roman

    2016-01-01

    Skin toxicity is the most common toxicity caused by Epidermal Growth Factor Receptor (EGFR) inhibitors, and has been associated with clinical efficacy. As EGFR inhibitors enhance the expression of antigen presenting molecules in affected skin keratinocytes, they may concurrently facilitate neo-antigen presentation in lung cancer tumor cells contributing to anti-tumor immunity. Here, we investigated the modulatory effect of the EGFR inhibitor, erlotinib on antigen presenting molecules and PD-L1, prominent immune checkpoint protein, of skin keratinocytes and lung cancer cell lines to delineate the link between EGFR signaling pathway inhibition and potential anti-tumor immunity. Erlotinib up-regulated MHC-I and MHC-II proteins on IFNγ treated keratinocytes but abrogated IFNγ-induced expression of PD-L1, suggesting the potential role of infiltrating autoreactive T cells in the damage of keratinocytes in affected skin. Interestingly, the surface expression of MHC-I, MHC-II, and PD-L1 was up-regulated in response to IFNγ more often in lung cancer cell lines sensitive to erlotinib, but only expression of PD-L1 was inhibited by erlotinib. Further, erlotinib significantly increased T cell mediated cytotoxicity on lung cancer cells. Lastly, the analysis of gene expression dataset of 186 lung cancer cell lines from Cancer Cell Line Encyclopedia demonstrated that overexpression of PD-L1 was associated with sensitivity to erlotinib and higher expression of genes related to antigen presenting pathways and IFNγ signaling pathway. Our findings suggest that the EGFR inhibitors can facilitate anti-tumor adaptive immune responses by breaking tolerance especially in EGFR driven lung cancer that are associated with overexpression of PD-L1 and genes related to antigen presentation and inflammation. PMID:27467256

  1. Immune-Modulation by Epidermal Growth Factor Receptor Inhibitors: Implication on Anti-Tumor Immunity in Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Jin S Im

    Full Text Available Skin toxicity is the most common toxicity caused by Epidermal Growth Factor Receptor (EGFR inhibitors, and has been associated with clinical efficacy. As EGFR inhibitors enhance the expression of antigen presenting molecules in affected skin keratinocytes, they may concurrently facilitate neo-antigen presentation in lung cancer tumor cells contributing to anti-tumor immunity. Here, we investigated the modulatory effect of the EGFR inhibitor, erlotinib on antigen presenting molecules and PD-L1, prominent immune checkpoint protein, of skin keratinocytes and lung cancer cell lines to delineate the link between EGFR signaling pathway inhibition and potential anti-tumor immunity. Erlotinib up-regulated MHC-I and MHC-II proteins on IFNγ treated keratinocytes but abrogated IFNγ-induced expression of PD-L1, suggesting the potential role of infiltrating autoreactive T cells in the damage of keratinocytes in affected skin. Interestingly, the surface expression of MHC-I, MHC-II, and PD-L1 was up-regulated in response to IFNγ more often in lung cancer cell lines sensitive to erlotinib, but only expression of PD-L1 was inhibited by erlotinib. Further, erlotinib significantly increased T cell mediated cytotoxicity on lung cancer cells. Lastly, the analysis of gene expression dataset of 186 lung cancer cell lines from Cancer Cell Line Encyclopedia demonstrated that overexpression of PD-L1 was associated with sensitivity to erlotinib and higher expression of genes related to antigen presenting pathways and IFNγ signaling pathway. Our findings suggest that the EGFR inhibitors can facilitate anti-tumor adaptive immune responses by breaking tolerance especially in EGFR driven lung cancer that are associated with overexpression of PD-L1 and genes related to antigen presentation and inflammation.

  2. Photodynamic therapy stimulates anti-tumor immunity in a murine mastocytoma model

    Science.gov (United States)

    Mroz, Pawel; Hamblin, Michael R.

    2008-02-01

    Photodynamic therapy (PDT) involves the IV administration of photosensitizers followed by illumination of the tumor with red light producing reactive oxygen species that eventually cause vascular shutdown and tumor cell apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, recognition of tumor-specific antigens, and induction of heat-shock proteins, while the three commonest cancer therapies (surgery, chemotherapy and radiotherapy) all tend to suppress the immune system. Like many other immunotherapies, the extent of the immune response after PDT tends to depend on the antigenicity of the particular tumor, or in other words, whether the tumor contains proteins with the correct characteristics to provide peptides that can bind to MHC class I molecules and provide a target for cytolytic T lymphocytes. We have described certain mouse tumors containing defined or naturally occurring tumor associated antigens that respond particularly well to PDT, and potent immune responses capable of destroying distant untreated tumors can be induced. In this report we address the induction of immunity after PDT of the DBA2 mastocytoma known as P815. This tumor was the first mouse tumor to be shown to possess a tumor-rejection antigen capable of being recognized by cytotoxic T-cells.

  3. Decreased Anti-Tumor Cytotoxic Immunity among Microsatellite-Stable Colon Cancers from African Americans.

    Science.gov (United States)

    Basa, Ranor C B; Davies, Vince; Li, Xiaoxiao; Murali, Bhavya; Shah, Jinel; Yang, Bing; Li, Shi; Khan, Mohammad W; Tian, Mengxi; Tejada, Ruth; Hassan, Avan; Washington, Allen; Mukherjee, Bhramar; Carethers, John M; McGuire, Kathleen L

    2016-01-01

    Colorectal cancer is a leading cause of cancer related deaths in the U.S., with African-Americans having higher incidence and mortality rates than Caucasian-Americans. Recent studies have demonstrated that anti-tumor cytotoxic T lymphocytes provide protection to patients with colon cancer while patients deficient in these responses have significantly worse prognosis. To determine if differences in cytotoxic immunity might play a role in racial disparities in colorectal cancer 258 microsatellite-stable colon tumors were examined for infiltrating immune biomarkers via immunohistochemistry. Descriptive summary statistics were calculated using two-sample Wilcoxon rank sum tests, while linear regression models with log-transformed data were used to assess differences in race and Pearson and Spearman correlations were used to correlate different biomarkers. The association between different biomarkers was also assessed using linear regression after adjusting for covariates. No significant differences were observed in CD8+ (p = 0.83), CD57+ (p = 0.55), and IL-17-expressing (p = 0.63) cell numbers within the tumor samples tested. When infiltration of granzyme B+ cells was analyzed, however, a significant difference was observed, with African Americans having lower infiltration of cells expressing this cytotoxic marker than Caucasians (p<0.01). Analysis of infiltrating granzyme B+ cells at the invasive borders of the tumor revealed an even greater difference by race (p<0.001). Taken together, the data presented suggest differences in anti-tumor immune cytotoxicity may be a contributing factor in the racial disparities observed in colorectal cancer.

  4. An evolutionary perspective on anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    David John Klinke

    2013-01-01

    Full Text Available The challenges associated with demonstrating a durable response using molecular targeted therapies in cancer has sparked a renewed interest in viewing cancer from an evolutionary perspective. Evolutionary processes have three common traits: heterogeneity, dynamics, and a selective fitness landscape. Mutagens randomly alter the genome of host cells creating a population of cells that contain different somatic mutations. This genomic rearrangement perturbs cellular homeostasis through changing how cells interact with their tissue microenvironment. To counterbalance the ability of mutated cells to outcompete for limited resources, control structures are encoded within the cell and within the organ system, such as innate and adaptive immunity, to restore cellular homeostasis. These control structures shape the selective fitness landscape and determine whether a cell that harbors particular somatic mutations is retained or eliminated from a cell population. While next-generation sequencing has revealed the complexity and heterogeneity of oncogenic transformation, understanding the dynamics of oncogenesis and how cancer cells alter the selective fitness landscape remain unclear. In this technology review, we will summarize how recent advances in technology have impacted our understanding of these three attributes of cancer as an evolutionary process. In particular, we will focus on how advances in genome sequencing have enabled quantifying cellular heterogeneity, advances in computational power have enabled explicit testing of postulated intra- and intercellular control structures against the available data using simulation, and advances in proteomics have enabled identifying novel mechanisms of cellular cross-talk that cancer cells use to alter the fitness landscape.

  5. FOXP3+ Treg as a therapeutic target for promoting anti-tumor immunity.

    Science.gov (United States)

    Whiteside, Theresa L

    2018-04-01

    Regulatory T cells (Treg) characterized by expression of FOXP3 and strong immunosuppressive activity play a key role in regulating homeostasis in health and disease. Areas covered: Human Treg are highly diverse phenotypically and functionally. In the tumor microenvironment (TME), Treg are reprogrammed by the tumor, acquiring an activated phenotype and enhanced suppressor functions. No unique phenotypic markers for Treg accumulating in human tumors exist. Treg are heterogeneous and use numerous mechanisms to mediate suppression, which either silences anti-tumor immune surveillance or prevents tissue damage by activated T cells. Treg plasticity in the TME endows them with dual functionality. Treg frequency in tumors associates either with poor or improved survival. Treg responses to immune checkpoint inhibition (ICI) differ from the restorative effects ICIs induce in other immune cells. Therapies used to silence Treg, including ICIs, are only partly successful. Treg persistence and resistance to depletion are critical for maintaining homeostasis. Expert opinion: Treg emerge as a heterogeneous subset of immunosuppressive T cells, which usually, but not always, favor tumor progression. Treg are also engaged in non-immune activities that benefit the host. Therapeutic silencing of Treg in cancer requires a deeper understanding of Treg activities in human health and disease.

  6. Dysregulation of innate immunity in ulcerative colitis patients who fail anti-tumor necrosis factor therapy.

    Science.gov (United States)

    Baird, Angela C; Mallon, Dominic; Radford-Smith, Graham; Boyer, Julien; Piche, Thierry; Prescott, Susan L; Lawrance, Ian C; Tulic, Meri K

    2016-11-07

    To study the innate immune function in ulcerative colitis (UC) patients who fail to respond to anti-tumor necrosis factor (TNF) therapy. Effects of anti-TNF therapy, inflammation and medications on innate immune function were assessed by measuring peripheral blood mononuclear cell (PBMC) cytokine expression from 18 inflammatory bowel disease patients pre- and 3 mo post-anti-TNF therapy. Toll-like receptor (TLR) expression and cytokine production post TLR stimulation was assessed in UC "responders" ( n = 12) and "non-responders" ( n = 12) and compared to healthy controls ( n = 12). Erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels were measured in blood to assess disease severity/activity and inflammation. Pro-inflammatory (TNF, IL-1β, IL-6), immuno-regulatory (IL-10), Th1 (IL-12, IFNγ) and Th2 (IL-9, IL-13, IL-17A) cytokine expression was measured with enzyme-linked immunosorbent assay while TLR cellular composition and intracellular signalling was assessed with FACS. Prior to anti-TNF therapy, responders and non-responders had similar level of disease severity and activity. PBMC's ability to respond to TLR stimulation was not affected by TNF therapy, patient's severity of the disease and inflammation or their medication use. At baseline, non-responders had elevated innate but not adaptive immune responses compared to responders ( P innate cytokine responses to all TLRs compared to healthy controls ( P innate immune dysfunction was associated with reduced number of circulating plasmacytoid dendritic cells (pDCs) ( P innate immunity in non-responders may explain reduced efficacy to anti-TNF therapy. These serological markers may prove useful in predicting the outcome of costly anti-TNF therapy.

  7. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation

    Science.gov (United States)

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X.

    2016-01-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient’s own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers. PMID:27256519

  8. Anti-tumor immunity generated by photodynamic therapy in a metastatic murine tumor model

    Science.gov (United States)

    Castano, Ana P.; Hamblin, Michael R.

    2005-04-01

    Photodynamic therapy (PDT) is a modality for the treatment of cancer involving excitation of photosensitizers with harmless visible light producing reactive oxygen species. The major biological effects of PDT are apoptosis of tumor cells, destruction of the blood supply and activation of the immune system. The objective of this study is to compare in an animal model of metastatic cancer, PDT alone and PDT combined with low-dose cyclophosphamide (CY). Since the tumor we used is highly metastatic, it is necessary to generate anti-tumor immunity using PDT to both cure the primary tumor and prevent death from metastasis. This immunity may be potentiated by low dose CY. In our model we used J774 cells (a Balb/c reticulum cell sarcoma line with the characteristics of macrophages) and the following PDT regimen: benzoporphyrin derivative monoacid ring A (BPD, 2mg/kg injected IV followed after 15 min by 150 J/cm2 of 690-nm light). CY (50 mg/kg i.p.) was injected 48 hours before light delivery. BPD-PDT led to complete regression of the primary tumor in more than half the mice but no permanent cures were obtained. BPD-PDT in combination with CY led to 60% permanent cures. CY alone gave no permanent cures but did provide a survival advantage. To probe permanent immunity cured animals were rechallenged with the same tumor cell line and the tumors were rejected in 71% of mice cured with BPD-PDT plus CY. We conclude that BPD-PDT in combination with CY gives best overall results and that this is attributable to immunological response activation in addition to PDT-mediated destruction of the tumor.

  9. Plasticity of gamma delta T cells: impact on the anti-tumor response

    Directory of Open Access Journals (Sweden)

    Virginie eLafont

    2014-12-01

    Full Text Available The tumor immune microenvironment contributes to tumor initiation, progression and response to therapy. Among the immune cell subsets that play a role in the tumor microenvironment, innate-like T cells that express T cell receptors composed of gamma and delta chains (gamma delta T cells are of particular interest. gamma delta T cells can contribute to the immune response against many tumor types (lymphoma, myeloma, melanoma, breast, colon, lung, ovary and prostate cancer directly through their cytotoxic activity and indirectly by stimulating or regulating the biological functions of other cell types required for the initiation and establishment of the anti-tumor immune response, such as dendritic cells and cytotoxic CD8+ T cells. However, the notion that tumor-infiltrating gamma delta T cells are a good prognostic marker in cancer was recently challenged by studies showing that the presence of these cells in the tumor microenvironment was associated with poor prognosis in both breast and colon cancer. These findings suggest that gamma delta T cells may also display pro-tumor activities. Indeed, breast tumor-infiltrating gamma deltaT cells could exert an immunosuppressive activity by negatively regulating DC maturation. Furthermore, recent studies demonstrated that signals from the microenvironment, particularly cytokines, can confer some plasticity to gamma delta T cells and promote their differentiation into gamma delta T cells with regulatory functions. This review focuses on the current knowledge on the functional plasticity of gamma delta T cells and its effect on their anti-tumor activities. It also discusses the putative mechanisms underlying gamma delta T cell expansion, differentiation and recruitment in the tumor microenvironment.

  10. Photodynamic therapy stimulates anti-tumor immunity in a murine model

    Science.gov (United States)

    Mroz, Pawel; Castano, Ana P.; Wu, Mei X.; Kung, Andrew L.; Hamblin, Michael R.

    2007-02-01

    Cancer is a leading cause of death among modern peoples largely due to metastatic disease. The ideal cancer treatment should target both the primary tumor and the metastases with the minimal toxicity. This is best accomplished by educating the body's immune system to recognize the tumor as foreign so that after the primary tumor is destroyed, distant metastases will also be eradicated. Photodynamic therapy (PDT) involves the IV administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA), and induction of heat-shock proteins. The induction of specific CD8+ T lymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. We here report on PDT of mice bearing tumors that either do or do not express an established TAA. We utilized a BALB/c colon adenocarcinoma cell line termed CT26.CL25 retrovirally transduced to stably express β-galactosidase ( β-gal, a bacterial protein), and its non-β-gal expressing wild-type counterpart termed CT26 WT, as well as the control cell line consisting of CT26 transduced with the empty retroviral vector termed CT26-neo. All cells expressed class I MHC restriction element H-2Ld syngenic to BALB/c mice. Vascular PDT with a regimen of 1mg/kg BPD injected IV, and 120 J/cm2 of 690-nm laser light after 15 minutes successfully cured 100% of CT26.CL25 tumors but 0% of CT26-neo tumors and 0% of CT26 WT tumors. After 90 days tumor free interval the CT26.CL25 cured mice were rechallenged with CT26.CL25 tumor cells and 96% rejected the rechallenge while the CT26.CL25 cured mice did not reject a CT26 WT tumor cell challenge. Experiments with mice bearing two CT26.CL25 tumors (one

  11. A TLR9 agonist enhances the anti-tumor immunity of peptide and lipopeptide vaccines via different mechanisms.

    Science.gov (United States)

    Song, Ying-Chyi; Liu, Shih-Jen

    2015-07-28

    The toll-like receptor 9 (TLR9) agonists CpG oligodeoxynucleotides (CpG ODNs) have been recognized as promising adjuvants for vaccines against infectious diseases and cancer. However, the role of TLR9 signaling in the regulation of antigen uptake and presentation is not well understood. Therefore, to investigate the effects of TLR9 signaling, this study used synthetic peptides (IDG) and lipopeptides (lipoIDG), which are internalized by dendritic cells (DCs) via endocytosis-dependent and endocytosis-independent pathways, respectively. Our data demonstrated that the internalization of lipoIDG and IDG by bone marrow-derived dendritic cells (BMDCs) was not enhanced in the presence of CpG ODNs; however, CpG ODNs prolonged the co-localization of IDG with CpG ODNs in early endosomes. Surprisingly, CpG ODNs enhanced CD8(+) T cell responses, and the anti-tumor effects of IDG immunization were stronger than those of lipoIDG immunization. LipoIDG admixed with CpG ODNs induced low levels of CD8(+) T cells and partially inhibit tumor growth. Our findings suggest that CpG ODNs increase the retention of antigens in early endosomes, which is important for eliciting anti-tumor immunity. These results will facilitate the application of CpG adjuvants in the design of different vaccines.

  12. Viral subversion of APOBEC3s: Lessons for anti-tumor immunity and tumor immunotherapy.

    Science.gov (United States)

    Borzooee, Faezeh; Asgharpour, Mahdi; Quinlan, Emma; Grant, Michael D; Larijani, Mani

    2017-12-06

    APOBEC3s (A3) are endogenous DNA-editing enzymes that are expressed in immune cells including T lymphocytes. A3s target and mutate the genomes of retroviruses that infect immune tissues such as the human immunodeficiency virus (HIV). Therefore, A3s were classically defined as host anti-viral innate immune factors. In contrast, we and others showed that A3s can also benefit the virus by mediating escape from adaptive immune recognition and drugs. Crucially, whether A3-mediated mutations help or hinder HIV, is not up to chance. Rather, the virus has evolved multiple mechanisms to actively and maximally subvert A3 activity. More recently, extensive A3 mutational footprints in tumor genomes have been observed in many different cancers. This suggests a role for A3s in cancer initiation and progression. On the other hand, multiple anti-tumor activities of A3s have also come to light, including impact on immune checkpoint molecules and possible generation of tumor neo-antigens. Here, we review the studies that reshaped the view of A3s from anti-viral innate immune agents to host factors exploited by HIV to escape from immune recognition. Viruses and tumors share many attributes, including rapid evolution and adeptness at exploiting mutations. Given this parallel, we then discuss the pro- and anti-tumor roles of A3s, and suggest that lessons learned from studying A3s in the context of anti-viral immunity can be applied to tumor immunotherapy.

  13. Bacteriophages support anti-tumor response initiated by DC-based vaccine against murine transplantable colon carcinoma.

    Science.gov (United States)

    Pajtasz-Piasecka, Elzbieta; Rossowska, Joanna; Duś, Danuta; Weber-Dabrowska, Beata; Zabłocka, Agnieszka; Górski, Andrzej

    2008-02-15

    Bacteriophages in eukaryotic hosts may behave as particulate antigens able to activate the innate immune system and generate adaptive immunity. Dendritic cells (DCs) play a key role in the initiation of the immune response, mainly by priming T cell-mediated immunity. For this reason, they are increasingly applied as an adjuvant for effective anti-tumor therapies in animal models as well as in a few clinical trials. The presented study focused on the application of mouse DCs which were activated with T4 bacteriophages (T4 phages, T4) and further loaded with tumor antigens (TAg) in inducing an anti-tumor response. The activation of bone marrow-derived DCs with T4 phages and TAg resulted in augmentation of their differentiation marker expression accompanied by an enhanced ability to prime T cells for IFN-gamma production. These activated DCs (BM-DC/T4+TAg) were used in experimental immunotherapy of C57BL/6 mice bearing advanced MC38 colon carcinoma tumors. As a result of their triple application, a significant tumor growth delay, up to 19 days, was observed compared with the controls - treated with BM-DCs activated only with T4 phages, TAg, or lipopolysaccharide solution ["solvent"], where the tumor growth delay did not exceed 7 days. The percentage of tumor growth inhibition estimated 10 days after the third cell injection ranged from 32% (for animals treated with BM-DC/TAg cells) to 76% (for animals treated with BM-DC/T4+TAg cells) over the tumor-bearing untreated control mice. The obtained data indicate that in vitro interactions between T4 phages and BM-DCs followed by TAg activation caused augmentation of the anti-tumor effect when DCs were used as a vaccine for tumor-bearing mice treatment. Therefore, pretreatment of DCs with the phages may be considered as a beneficial element of a novel strategy in anti-tumor immunotherapy.

  14. Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense.

    Science.gov (United States)

    Hu, Xiaomeng; Wu, Tingting; Bao, Yuling; Zhang, Zhiping

    2017-06-28

    Cancer is still the leading cause of death. While traditional treatments such as surgery, chemotherapy and radiotherapy play dominating roles, recent breakthroughs in cancer immunotherapy indicate that the influence of immune system on cancer development is virtually beyond our expectation. Manipulating the immune system to fight against cancer has been thriving in recent years. Further understanding of tumor anatomy provides opportunities to put a brake on immunosuppression by overcoming tumor intrinsic resistance or modulating tumor microenvironment. Nanotechnology which provides versatile engineered approaches to enhance therapeutic effects may potentially contribute to the development of future cancer treatment modality. In this review, we will focus on the application of nanotechnology both in boosting anti-tumor immunity and collapsing tumor defense. Copyright © 2017. Published by Elsevier B.V.

  15. Up-regulation of GITRL on dendritic cells by WGP improves anti-tumor immunity in murine Lewis lung carcinoma.

    Directory of Open Access Journals (Sweden)

    Jie Tian

    Full Text Available BACKGROUND: β-Glucans have been shown to function as a potent immunomodulator to stimulate innate and adaptive immune responses, which contributes to their anti-tumor property. However, their mechanisms of action are still elusive. Glucocorticoid-induced TNF receptor ligand (GITRL, a member of the TNF superfamily, binds to its receptor, GITR, on both effector and regulatory T cells, generates a positive co-stimulatory signal implicated in a wide range of T cell functions, which is important for the development of immune responses. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we found that whole β-glucan particles (WGPs could activate dendritic cells (DCs via dectin-1 receptor, and increase the expression of GITRL on DCs in vitro and in vivo. Furthermore, we demonstrated that the increased GITRL on DCs could impair the regulartory T cell (Treg-mediated suppression and enhance effector T cell proliferation in a GITR/GITRL dependent way. In tumor models, DCs with high levels of GITRL were of great potential to prime cytotoxic T lymphocyte (CTL responses and down-regulate the suppressive activity of Treg cells, thereby leading to the delayed tumor progression. CONCLUSIONS/SIGNIFICANCE: These findings suggest that particulate β-glucans can be used as an immunomodulator to stimulate potent T cell-mediated adaptive immunity while down-regulate suppressive immune activity via GITR/GITRL interaction, leading to a more efficient defense mechanism against tumor development.

  16. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity

    Directory of Open Access Journals (Sweden)

    Tania Løve Aaes

    2016-04-01

    Full Text Available Successful immunogenic apoptosis in experimental cancer therapy depends on the induction of strong host anti-tumor responses. Given that tumors are often resistant to apoptosis, it is important to identify alternative molecular mechanisms that elicit immunogenic cell death. We have developed a genetic model in which direct dimerization of FADD combined with inducible expression of RIPK3 promotes necroptosis. We report that necroptotic cancer cells release damage-associated molecular patterns and promote maturation of dendritic cells, the cross-priming of cytotoxic T cells, and the production of IFN-γ in response to tumor antigen stimulation. Using both FADD-dependent and FADD-independent RIPK3 induction systems, we demonstrate the efficient vaccination potential of immunogenic necroptotic cells. Our study broadens the current concept of immunogenic cell death and opens doors for the development of new strategies in cancer therapy.

  17. Protein Kinase C-theta (PKC-theta in Natural Killer (NK cell function and anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Alberto eAnel

    2012-07-01

    Full Text Available The protein kinase C-theta (PKCtheta, which is essential for T cell function and survival, is also required for efficient anti-tumor immune surveillance. Natural killer (NK cells, which express PKCtheta, play a prominent role in this process, mainly by elimination of tumor cells with reduced or absent major histocompatibility complex class-I (MHC-I expression. This justifies the increased interest of the use of activated NK cells in anti-tumor immunotherapy in the clinic. The in vivo development of MHC-I-deficient tumors is much favored in PKCtheta-/- mice compared with wild-type mice. Recent data offer some clues on the mechanism that could explain the important role of PKCtheta in NK cell-mediated anti-tumor immune surveillance: some studies show that PKCtheta is implicated in signal transduction and anti-tumoral activity of NK cells elicited by interleukin (IL-12 or IL-15, while others show that it is implicated in NK cell functional activation mediated by certain killer activating receptors (KAR. Alternatively, the possibility that PKCtheta is involved in NK cell degranulation is discussed, since recent data indicate that it is implicated in microtubule-organizing center (MTOC polarization to the immune synapse in CD4+ T cells. The implication of PKC isoforms in degranulation has been more extensively studied in CTL, and these studies will be also summarized.

  18. Synergistic effect of CTLA-4 blockade and cancer chemotherapy in the induction of anti-tumor immunity.

    Directory of Open Access Journals (Sweden)

    W Joost Lesterhuis

    Full Text Available Several chemotherapeutics exert immunomodulatory effects. One of these is the nucleoside analogue gemcitabine, which is widely used in patients with lung cancer, ovarian cancer, breast cancer, mesothelioma and several other types of cancer, but with limited efficacy. We hypothesized that the immunopotentiating effects of this drug are partly restrained by the inhibitory T cell molecule CTLA-4 and thus could be augmented by combining it with a blocking antibody against CTLA-4, which on its own has recently shown beneficial clinical effects in the treatment of patients with metastatic melanoma. Here we show, using two non-immunogenic murine tumor models, that treatment with gemcitabine chemotherapy in combination with CTLA-4 blockade results in the induction of a potent anti-tumor immune response. Depletion experiments demonstrated that both CD4(+ and CD8(+ T cells are required for optimal therapeutic effect. Mice treated with the combination exhibited tumor regression and long-term protective immunity. In addition, we show that the efficacy of the combination is moderated by the timing of administration of the two agents. Our results show that immune checkpoint blockade and cytotoxic chemotherapy can have a synergistic effect in the treatment of cancer. These results provide a basis to pursue combination therapies with anti-CTLA-4 and immunopotentiating chemotherapy and have important implications for future studies in cancer patients. Since both drugs are approved for use in patients our data can be immediately translated into clinical trials.

  19. EpCAM peptide-primed dendritic cell vaccination confers significant anti-tumor immunity in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Yoo Jin Choi

    Full Text Available Cancer stem-like cells (CSCs may play a key role in tumor initiation, self-renewal, differentiation, and resistance to current treatments. Dendritic cells (DCs play a vital role in host immune reactions as well as antigen presentation. In this study, we explored the suitability of using CSC peptides as antigen sources for DC vaccination against human breast cancer and hepatocellular carcinoma (HCC with the aim of achieving CSC targeting and enhancing anti-tumor immunity. CD44 is used as a CSC marker for breast cancer and EpCAM is used as a CSC marker for HCC. We selected CD44 and EpCAM peptides that bind to HLA-A2 molecules on the basis of their binding affinity, as determined by a peptide-T2 binding assay. Our data showed that CSCs express high levels of tumor-associated antigens (TAAs as well as major histocompatibility complex (MHC molecules. Pulsing DCs with CD44 and EpCAM peptides resulted in the efficient generation of mature DCs (mDCs, thus enhancing T cell stimulation and generating potent cytotoxic T lymphocytes (CTLs. The activation of CSC peptide-specific immune responses by the DC vaccine in combination with standard chemotherapy may provide better clinical outcomes in advanced carcinomas.

  20. Possible stimulation of anti-tumor immunity using repeated cold stress: a hypothesis

    Directory of Open Access Journals (Sweden)

    Radoja Sasa

    2007-11-01

    Full Text Available Abstract Background The phenomenon of hormesis, whereby small amounts of seemingly harmful or stressful agents can be beneficial for the health and lifespan of laboratory animals has been reported in literature. In particular, there is accumulating evidence that daily brief cold stress can increase both numbers and activity of peripheral cytotoxic T lymphocytes and natural killer cells, the major effectors of adaptive and innate tumor immunity, respectively. This type of regimen (for 8 days has been shown to improve survival of mice infected with intracellular parasite Toxoplasma gondii, which would also be consistent with enhanced cell-mediated immunity. Presentation of the hypothesis This paper hypothesizes that brief cold-water stress repeated daily over many months could enhance anti-tumor immunity and improve survival rate of a non-lymphoid cancer. The possible mechanism of the non-specific stimulation of cellular immunity by repeated cold stress appears to involve transient activation of the sympathetic nervous system, hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid axes, as described in more detail in the text. Daily moderate cold hydrotherapy is known to reduce pain and does not appear to have noticeable adverse effects on normal test subjects, although some studies have shown that it can cause transient arrhythmias in patients with heart problems and can also inhibit humoral immunity. Sudden immersion in ice-cold water can cause transient pulmonary edema and increase permeability of the blood-brain barrier, thereby increasing mortality of neurovirulent infections. Testing the hypothesis The proposed procedure is an adapted cold swim (5–7 minutes at 20 degrees Celsius, includes gradual adaptation to be tested on a mouse tumor model. Mortality, tumor size, and measurements of cellular immunity (numbers and activity of peripheral CD8+ T lymphocytes and natural killer cells of the cold-exposed group would be compared to

  1. Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses In Vivo.

    Science.gov (United States)

    Kooreman, Nigel G; Kim, Youngkyun; de Almeida, Patricia E; Termglinchan, Vittavat; Diecke, Sebastian; Shao, Ning-Yi; Wei, Tzu-Tang; Yi, Hyoju; Dey, Devaveena; Nelakanti, Raman; Brouwer, Thomas P; Paik, David T; Sagiv-Barfi, Idit; Han, Arnold; Quax, Paul H A; Hamming, Jaap F; Levy, Ronald; Davis, Mark M; Wu, Joseph C

    2018-02-08

    Cancer cells and embryonic tissues share a number of cellular and molecular properties, suggesting that induced pluripotent stem cells (iPSCs) may be harnessed to elicit anti-tumor responses in cancer vaccines. RNA sequencing revealed that human and murine iPSCs express tumor-associated antigens, and we show here a proof of principle for using irradiated iPSCs in autologous anti-tumor vaccines. In a prophylactic setting, iPSC vaccines prevent tumor growth in syngeneic murine breast cancer, mesothelioma, and melanoma models. As an adjuvant, the iPSC vaccine inhibited melanoma recurrence at the resection site and reduced metastatic tumor load, which was associated with fewer Th17 cells and increased CD11b + GR1 hi myeloid cells. Adoptive transfer of T cells isolated from vaccine-treated tumor-bearing mice inhibited tumor growth in unvaccinated recipients, indicating that the iPSC vaccine promotes an antigen-specific anti-tumor T cell response. Our data suggest an easy, generalizable strategy for multiple types of cancer that could prove highly valuable in clinical immunotherapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Cigarette smoke alters the invariant natural killer T cell function and may inhibit anti-tumor responses.

    LENUS (Irish Health Repository)

    Hogan, Andrew E

    2011-09-01

    Invariant natural killer T (iNKT) cells are a minor subset of human T cells which express the invariant T cell receptor Vα24 Jα18 and recognize glycolipids presented on CD1d. Invariant NKT cells are important immune regulators and can initiate anti-tumor responses through early potent cytokine production. Studies show that iNKT cells are defective in certain cancers. Cigarette smoke contains many carcinogens and is implicated directly and indirectly in many cancers. We investigated the effects of cigarette smoke on the circulating iNKT cell number and function. We found that the iNKT cell frequency is significantly reduced in cigarette smoking subjects. Invariant NKT cells exposed to cigarette smoke extract (CSE) showed significant defects in cytokine production and the ability to kill target cells. CSE inhibits the upregulation of CD107 but not CD69 or CD56 on iNKT cells. These findings suggest that CSE has a specific effect on iNKT cell anti-tumor responses, which may contribute to the role of smoking in the development of cancer.

  3. Anti-tumor response induced by immunologically modified carbon nanotubes and laser irradiation using rat mammary tumor model

    Directory of Open Access Journals (Sweden)

    Joseph T. Acquaviva

    2015-07-01

    Full Text Available The ideal treatment modality for metastatic cancer would be a local treatment that can destroy primary tumors while inducing an effective systemic anti-tumor response. To this end, we developed laser immunotherapy, combining photothermal laser application with an immunoadjuvant for the treatment of metastatic cancer. Additionally, to enhance the selective photothermal effect, we integrated light-absorbing nanomaterials into this innovative treatment. Specifically, we developed an immunologically modified carbon nanotube combining single-walled carbon nanotubes (SWNTs with the immunoadjuvant glycated chitosan (GC. To determine the effectiveness of laser irradiation, a series of experiments were performed using two different irradiation durations — 5 and 10 min. Rats were inoculated with DMBA-4 cancer cells, a metastatic cancer cell line. The treatment group of rats receiving laser irradiation for 10 min had a 50% long-term survival rate without residual primary or metastatic tumors. The treatment group of rats receiving laser irradiation for 5 min had no long-term survivors; all rats died with multiple metastases at several distant sites. Therefore, Laser+SWNT–GC treatment with 10 min of laser irradiation proved to be effective at reducing tumor size and inducing long-term anti-tumor immunity.

  4. Evidence of Anti-tumoral Efficacy in an Immune Competent Setting with an iRGD-Modified Hyaluronidase-Armed Oncolytic Adenovirus

    Directory of Open Access Journals (Sweden)

    Ahmed Abdullah Al-Zaher

    2018-03-01

    Full Text Available To enhance adenovirus-mediated oncolysis, different approaches that tackle the selectivity, tumor penetration, and spreading potential of oncolytic adenoviruses have been reported. We have previously demonstrated that insertion of the internalizing Arginine-Glycine-Aspartic (iRGD tumor-penetrating peptide at the C terminus of the fiber or transgenic expression of a secreted hyaluronidase can improve virus tumor targeting and spreading. Here we report a new oncolytic adenovirus ICOVIR17K-iRGD in which both modifications have been incorporated. In xenografted A549 tumors in nude mice, ICOVIR17K-iRGD shows higher efficacy than the non-iRGD counterpart. To gain insights into the role of the immune system in oncolysis, we have studied ICOVIR17K-iRGD in the tumor isograft mouse model CMT64.6, partially permissive to human adenovirus 5 replication, in immunodeficient or immunocompetent mice. Whereas no efficacy was observed in the immunodeficient setting due to insufficient viral replication, partial efficacy and a polymorphonuclear and CD8+ T cell infiltrate were observed in the immunocompetent mice. The results indicate that the elicitation of a virus-induced anti-tumoral immune response is responsible for the observed partial anti-tumoral effect. Keywords: oncolytic adenovirus, iRGD tumor-penetrating peptide, immune response

  5. [Functions of eosinophil granulocytes: from anti-parasite immunity to anti-tumoral potential].

    Science.gov (United States)

    Capron, Monique; Legrand, Fanny

    2009-02-01

    Eosinophils have long been considered simply as effectors of adaptive immune responses during parasitic infections and inflammatory processes. Their role in allergic manifestations and mucosal responses is mediated by membrane receptors that allow them to interact with IgE and IgA antibodies. The recent demonstration that human eosinophils express innate immune receptors suggests that they may also play a role in antitumoral immune surveillance. Experimental evidence shows that human eosinophils have tumoricidal potential, in synergy with other effector cells, notably by releasing cytotoxic molecules.

  6. Monocyte-derived dendritic cells are essential for CD8+ T cell activation and anti-tumor responses after local immunotherapy

    Directory of Open Access Journals (Sweden)

    Sabine eKuhn

    2015-11-01

    Full Text Available Tumors harbor several populations of dendritic cells with the ability to prime tumor-specific T cells. However, these T cells mostly fail to differentiate into armed effectors and are unable to control tumor growth. We have previously shown that treatment with immunostimulatory agents at the tumor site can activate anti-tumor immune responses, and is associated with the appearance of a population of monocyte-derived dendritic cells in the tumor and tumor-draining lymph node. Here we use dendritic cell or monocyte depletion and monocyte transfer to show that these monocyte-derived dendritic cells are critical to the activation of anti-tumor immune responses. Treatment with the immunostimulatory agents Monosodium Urate crystals and Mycobacterium smegmatis induced the accumulation of monocytes in the draining lymph node, their upregulation of CD11c and MHCII, and expression of iNOS, TNFα and IL12p40. Blocking monocyte entry into the lymph node and tumor through neutralization of the chemokine CCL2 or inhibition of Colony Stimulating Factor-1 receptor signaling prevented the generation of monocyte-derived dendritic cells, the infiltration of tumor-specific T cells into the tumor, and anti-tumor responses. In a reciprocal fashion, monocytes transferred into mice depleted of CD11c+ cells were sufficient to rescue CD8+ T cell priming in lymph node and delay tumor growth. Thus monocytes exposed to the appropriate conditions become powerful activators of tumor-specific CD8+ T cells and anti-tumor immunity.

  7. T-cell mediated anti-tumor immunity after photodynamic therapy: Why does it not always work and how can we improve it?

    Science.gov (United States)

    de Freitas, Lucas Freitas; Hamblin, Michael R

    2015-01-01

    Photodynamic therapy (PDT) uses the combination of non-toxic photosensitizers and harmless light to generate reactive oxygen species that destroy tumors by a combination of direct tumor cell killing, vascular shutdown, and activation of the immune system. It has been shown in some animal models that mice that have been cured of cancer by PDT, may exhibit resistance to rechallenge. The cured mice can also possess tumor specific T-cells that recognize defined tumor antigens, destroy tumor cells in vitro, and can be adoptively transferred to protect naïve mice from cancer. However, these beneficial outcomes are the exception rather than the rule. The reasons for this lack of consistency lie in the ability of many tumors to suppress the host immune system and to actively evade immune attack. The presence of an appropriate tumor rejection antigen in the particular tumor cell line is a requisite for T-cell mediated immunity. Regulatory T-cells (CD25+, Foxp3+) are potent inhibitors of anti-tumor immunity, and their removal by low dose cyclophosphamide can potentiate the PDT-induced immune response. Treatments that stimulate dendritic cells (DC) such as CpG oligonucleotide can overcome tumor-induced DC dysfunction and improve PDT outcome. Epigenetic reversal agents can increase tumor expression of MHC class I and also simultaneously increase expression of tumor antigens. A few clinical reports have shown that anti-tumor immunity can be generated by PDT in patients, and it is hoped that these combination approaches may increase tumor cures in patients. PMID:26062987

  8. Tumor mouse model confirms MAGE-A3 cancer immunotherapeutic as an efficient inducer of long-lasting anti-tumoral responses.

    Directory of Open Access Journals (Sweden)

    Catherine Gérard

    Full Text Available MAGE-A3 is a potential target for immunotherapy due to its tumor-specific nature and expression in several tumor types. Clinical data on MAGE-A3 immunotherapy have raised many questions that can only be addressed by using animal models. In the present study, different aspects of the murine anti-tumor immune responses induced by a recombinant MAGE-A3 protein (recMAGE-A3 in combination with different immunostimulants (AS01, AS02, CpG7909 or AS15 were investigated.Based on cytokine profile analyses and protection against challenge with MAGE-A3-expressing tumor, the combination recMAGE-A3+AS15 was selected for further experimental work, in particular to study the mechanisms of anti-tumor responses. By using MHC class I-, MHC class II-, perforin-, B-cell- and IFN-γ- knock-out mice and CD4+ T cell-, CD8+ T cell- and NK cell- depleted mice, we demonstrated that CD4+ T cells and NK cells are the main anti-tumor effectors, and that IFN-γ is a major effector molecule. This mouse tumor model also established the need to repeat recMAGE-A3+AS15 injections to sustain efficient anti-tumor responses. Furthermore, our results indicated that the efficacy of tumor rejection by the elicited anti-MAGE-A3 responses depends on the proportion of tumor cells expressing MAGE-A3.The recMAGE-A3+AS15 cancer immunotherapy efficiently induced an antigen-specific, functional and long-lasting immune response able to recognize and eliminate MAGE-A3-expressing tumor cells up to several months after the last immunization in mice. The data highlighted the importance of the immunostimulant to induce a Th1-type immune response, as well as the key role played by IFN-γ, CD4+ T cells and NK cells in the anti-tumoral effect.

  9. Sex differences in response to anti-tumor necrosis factor therapy in early and established rheumatoid arthritis -- results from the DANBIO registry

    DEFF Research Database (Denmark)

    Jawaheer, Damini; Olsen, Jørn; Hetland, Merete Lund

    2012-01-01

    To investigate sex differences in response to anti-tumor necrosis factor-a (TNF-a) therapy over time in early versus established rheumatoid arthritis (RA).......To investigate sex differences in response to anti-tumor necrosis factor-a (TNF-a) therapy over time in early versus established rheumatoid arthritis (RA)....

  10. The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation.

    Science.gov (United States)

    Mendes, Fernando; Domingues, Cátia; Rodrigues-Santos, Paulo; Abrantes, Ana Margarida; Gonçalves, Ana Cristina; Estrela, Jéssica; Encarnação, João; Pires, Ana Salomé; Laranjo, Mafalda; Alves, Vera; Teixo, Ricardo; Sarmento, Ana Bela; Botelho, Maria Filomena; Rosa, Manuel Santos

    2016-04-01

    Immune surveillance seems to represent an effective tumor suppressor mechanism. However, some cancer cells survive and become variants, being poorly immunogenic and able to enter a steady-state phase. These cells become functionally dormant or remain hidden clinically throughout. Neoplastic cells seem to be able to instruct immune cells to undergo changes promoting malignancy. Radiotherapy may act as a trigger of the immune response. After radiotherapy a sequence of reactions occurs, starting in the damage of oncogenic cells by multiple mechanisms, leading to the immune system positive feedback against the tumor. The link between radiotherapy and the immune system is evident. T cells, macrophages, Natural Killer cells and other immune cells seem to have a key role in controlling the tumor. T cells may be dysfunctional and remain in a state of T cell exhaustion, nonetheless, they often retain a high potential for successful defense against cancer, being able to be mobilized to become highly functional. The lack of clinical trials on a large scale makes data a little robust, in spite of promising information, there are still many variables in the studies relating to radiation and immune system. The clarification of the mechanisms underlying immune response to radiation exposure may contribute to treatment improvement, gain of life quality and span of patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Erica M. [Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103 (United States); Barnes, Betsy J., E-mail: barnesbe@njms.rutgers.edu [Department of Biochemistry and Molecular Biology, Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103 (United States)

    2014-04-23

    Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin{sup ®}) and rituximab (Rituxan{sup ®})) and the first approved cancer vaccine, Provenge{sup ®} (sipuleucel-T), investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS) within the tumor microenvironment may be used to enhance immunotherapy response.

  12. Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    International Nuclear Information System (INIS)

    Pimenta, Erica M.; Barnes, Betsy J.

    2014-01-01

    Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin ® ) and rituximab (Rituxan ® )) and the first approved cancer vaccine, Provenge ® (sipuleucel-T), investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS) within the tumor microenvironment may be used to enhance immunotherapy response

  13. Role of Tertiary Lymphoid Structures (TLS in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    Directory of Open Access Journals (Sweden)

    Erica M. Pimenta

    2014-04-01

    Full Text Available Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin® and rituximab (Rituxan® and the first approved cancer vaccine, Provenge® (sipuleucel-T, investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS within the tumor microenvironment may be used to enhance immunotherapy response.

  14. Radiotherapy-induced anti-tumor immunity contributes to the therapeutic efficacy of irradiation and can be augmented by CTLA-4 blockade in a mouse model.

    Directory of Open Access Journals (Sweden)

    Yuya Yoshimoto

    Full Text Available PURPOSE: There is growing evidence that tumor-specific immune responses play an important role in anti-cancer therapy, including radiotherapy. Using mouse tumor models we demonstrate that irradiation-induced anti-tumor immunity is essential for the therapeutic efficacy of irradiation and can be augmented by modulation of cytotoxic T lymphocyte (CTL activity. METHODS AND MATERIALS: C57BL/6 mice, syngeneic EL4 lymphoma cells, and Lewis lung carcinoma (LL/C cells were used. Cells were injected into the right femurs of mice. Ten days after inoculation, tumors were treated with 30 Gy of local X-ray irradiation and their growth was subsequently measured. The effect of irradiation on tumor growth delay (TGD was defined as the time (in days for tumors to grow to 500 mm3 in the treated group minus that of the untreated group. Cytokine production and serum antibodies were measured by ELISA and flow cytometry. RESULTS: In the EL4 tumor model, tumors were locally controlled by X-ray irradiation and re-introduced EL4 cells were completely rejected. Mouse EL4-specific systemic immunity was confirmed by splenocyte cytokine production and detection of tumor-specific IgG1 antibodies. In the LL/C tumor model, X-ray irradiation also significantly delayed tumor growth (TGD: 15.4 days and prolonged median survival time (MST to 59 days (versus 28 days in the non-irradiated group. CD8(+ cell depletion using an anti-CD8 antibody significantly decreased the therapeutic efficacy of irradiation (TGD, 8.7 days; MST, 49 days. Next, we examined whether T cell modulation affected the efficacy of radiotherapy. An anti-CTLA-4 antibody significantly increased the anti-tumor activity of radiotherapy (TGD was prolonged from 13.1 to 19.5 days, while anti-FR4 and anti-GITR antibodies did not affect efficacy. CONCLUSIONS: Our results indicate that tumor-specific immune responses play an important role in the therapeutic efficacy of irradiation. Immunomodulation, including CTLA-4

  15. Vaccination with Irradiated Tumor Cells Engineered to Secrete Murine Granulocyte-Macrophage Colony-Stimulating Factor Stimulates Potent, Specific, and Long-Lasting Anti-Tumor Immunity

    Science.gov (United States)

    Dranoff, Glenn; Jaffee, Elizabeth; Lazenby, Audrey; Golumbek, Paul; Levitsky, Hyam; Brose, Katja; Jackson, Valerie; Hamada, Hirofumi; Pardoll, Drew; Mulligan, Richard C.

    1993-04-01

    To compare the ability of different cytokines and other molecules to enhance the immunogenicity of tumor cells, we generated 10 retroviruses encoding potential immunomodulators and studied the vaccination properties of murine tumor cells transduced by the viruses. Using a B16 melanoma model, in which irradiated tumor cells alone do not stimulate significant anti-tumor immunity, we found that irradiated tumor cells expressing murine granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated potent, long-lasting, and specific anti-tumor immunity, requiring both CD4^+ and CD8^+ cells. Irradiated cells expressing interleukins 4 and 6 also stimulated detectable, but weaker, activity. In contrast to the B16 system, we found that in a number of other tumor models, the levels of anti-tumor immunity reported previously in cytokine gene transfer studies involving live, transduced cells could be achieved through the use of irradiated cells alone. Nevertheless, manipulation of the vaccine or challenge doses made it possible to demonstrate the activity of murine GM-CSF in those systems as well. Overall, our results have important implications for the clinical use of genetically modified tumor cells as therapeutic cancer vaccines.

  16. Surgical Stress Abrogates Pre-Existing Protective T Cell Mediated Anti-Tumor Immunity Leading to Postoperative Cancer Recurrence.

    Directory of Open Access Journals (Sweden)

    Abhirami A Ananth

    Full Text Available Anti-tumor CD8+ T cells are a key determinant for overall survival in patients following surgical resection for solid malignancies. Using a mouse model of cancer vaccination (adenovirus expressing melanoma tumor-associated antigen (TAA-dopachrome tautomerase (AdDCT and resection resulting in major surgical stress (abdominal nephrectomy, we demonstrate that surgical stress results in a reduction in the number of CD8+ T cell that produce cytokines (IFNγ, TNFα, Granzyme B in response to TAA. This effect is secondary to both reduced proliferation and impaired T cell function following antigen binding. In a prophylactic model, surgical stress completely abrogates tumor protection conferred by vaccination in the immediate postoperative period. In a clinically relevant surgical resection model, vaccinated mice undergoing a positive margin resection with surgical stress had decreased survival compared to mice with positive margin resection alone. Preoperative immunotherapy with IFNα significantly extends survival in surgically stressed mice. Importantly, myeloid derived suppressor cell (MDSC population numbers and functional impairment of TAA-specific CD8+ T cell were altered in surgically stressed mice. Our observations suggest that cancer progression may result from surgery-induced suppression of tumor-specific CD8+ T cells. Preoperative immunotherapies aimed at targeting the prometastatic effects of cancer surgery will reduce recurrence and improve survival in cancer surgery patients.

  17. Tumor-associated antigens identified by mRNA expression profiling induce protective anti-tumor immunity

    DEFF Research Database (Denmark)

    Mathiassen, S; Lauemøller, S L; Ruhwald, M

    2001-01-01

    Defined tumor-associated antigens (TAA) are attractive targets for anti-tumor immunotherapy. Here, we describe a novel genome-wide approach to identify multiple TAA from any given tumor. A panel of transplantable thymomas was established from an inbred p53-/- mouse strain. The resulting tumors were...

  18. Mathematical modeling of interleukin-27 induction of anti-tumor T cells response.

    Directory of Open Access Journals (Sweden)

    Kang-Ling Liao

    Full Text Available Interleukin-12 is a pro-inflammatory cytokine which promotes Th1 and cytotoxic T lymphocyte activities, such as Interferon-[Formula: see text] secretion. For this reason Interleukin-12 could be a powerful therapeutic agent for cancer treatment. However, Interleukin-12 is also excessively toxic. Interleukin-27 is an immunoregulatory cytokine from the Interleukin-12 family, but it is not as toxic as Interleukin-12. In recent years, Interleukin-27 has been considered as a potential anti-tumor agent. Recent experiments in vitro and in vivo have shown that cancer cells transfected with IL-27 activate CD8+ T cells to promote the secretion of anti-tumor cytokines Interleukin-10, although, at the same time, IL-27 inhibits the secretion of Interferon-[Formula: see text] by CD8+ T cells. In the present paper we develop a mathematical model based on these experimental results. The model involves a dynamic network which includes tumor cells, CD8+ T cells and cytokines Interleukin-27, Interleukin-10 and Interferon-[Formula: see text]. Simulations of the model show how Interleukin-27 promotes CD8+ T cells to secrete Interleukin-10 to inhibit tumor growth. On the other hand Interleukin-27 inhibits the secretion of Interferon-[Formula: see text] by CD8+ T cells which somewhat diminishes the inhibition of tumor growth. Our numerical results are in qualitative agreement with experimental data. We use the model to design protocols of IL-27 injections for the treatment of cancer and find that, for some special types of cancer, with a fixed total amount of drug, within a certain range, continuous injection has better efficacy than intermittent injections in reducing the tumor load while the treatment is ongoing, although the decrease in tumor load is only temporary.

  19. Scaling dynamic response and destructive metabolism in an immunosurveillant anti-tumor system modulated by different external periodic interventions.

    Directory of Open Access Journals (Sweden)

    Yuanzhi Shao

    Full Text Available On the basis of two universal power-law scaling laws, i.e. the scaling dynamic hysteresis in physics and the allometric scaling metabolism in biosystem, we studied the dynamic response and the evolution of an immunosurveillant anti-tumor system subjected to a periodic external intervention, which is equivalent to the scheme of a radiotherapy or chemotherapy, within the framework of the growth dynamics of tumor. Under the modulation of either an abrupt or a gradual change external intervention, the population density of tumors exhibits a dynamic hysteresis to the intervention. The area of dynamic hysteresis loop characterizes a sort of dissipative-therapeutic relationship of the dynamic responding of treated tumors with the dose consumption of accumulated external intervention per cycle of therapy. Scaling the area of dynamic hysteresis loops against the intensity of an external intervention, we deduced a characteristic quantity which was defined as the theoretical therapeutic effectiveness of treated tumor and related with the destructive metabolism of tumor under treatment. The calculated dose-effectiveness profiles, namely the dose cumulant per cycle of intervention versus the therapeutic effectiveness, could be well scaled into a universal quadratic formula regardless of either an abrupt or a gradual change intervention involved. We present a new concept, i.e., the therapy-effect matrix and the dose cumulant matrix, to expound the new finding observed in the growth and regression dynamics of a modulated anti-tumor system.

  20. [Opportunities and defiance of therapeutic anti-tumoral vaccination].

    Science.gov (United States)

    Coulie, P

    2007-01-01

    Therapeutic anti-cancer vaccines containing tumor-specific antigens recognized by T lymphocytes are thought to stimulate high numbers of anti-vaccine cytolytic T lymphocytes (CTL) which then can lyse the tumor cells. To understand why these vaccines are followed by tumor regressions in only 10% of the patients, we analysed the tumor-specific immune responses of these patients. Contrary to our expectations, the anti-vaccine CTL responses were of very low level. However, regressing tumors were massively infiltrated by anti-tumor T cells of other specificities, including new anti-tumor CTL clonotypes that emerged following vaccination. We now believe that the role of the anti-vaccine CTL is to activate or restimulate large numbers of other anti-tumor CTL. Their ability to initiate this response is probably more important than their number. These results have important consequences for the improvement of the clinical efficacy of anti-cancer vaccines.

  1. Tumor-associated antigens identified by mRNA expression profiling induce protective anti-tumor immunity

    DEFF Research Database (Denmark)

    Mathiassen, Søren; Lauemøller, S L; Ruhwald, Morten

    2001-01-01

    Defined tumor-associated antigens (TAA) are attractive targets for anti-tumor immunotherapy. Here, we describe a novel genome-wide approach to identify multiple TAA from any given tumor. A panel of transplantable thymomas was established from an inbred p53-/- mouse strain. The resulting tumors we...... imprints, which may be used to identify patient-specific arrays of TAA. This may enable a multi-epitope based immunotherapy with improved prospects of clinical tumor rejection....

  2. Interleukin-6 Induced "Acute" Phenotypic Microenvironment Promotes Th1 Anti-Tumor Immunity in Cryo-Thermal Therapy Revealed By Shotgun and Parallel Reaction Monitoring Proteomics.

    Science.gov (United States)

    Xue, Ting; Liu, Ping; Zhou, Yong; Liu, Kun; Yang, Li; Moritz, Robert L; Yan, Wei; Xu, Lisa X

    2016-01-01

    Cryo-thermal therapy has been emerged as a promising novel therapeutic strategy for advanced breast cancer, triggering higher incidence of tumor regression and enhanced remission of metastasis than routine treatments. To better understand its anti-tumor mechanism, we utilized a spontaneous metastatic mouse model and quantitative proteomics to compare N-glycoproteome changes in 94 serum samples with and without treatment. We quantified 231 highly confident N-glycosylated proteins using iTRAQ shotgun proteomics. Among them, 53 showed significantly discriminated regulatory patterns over the time course, in which the acute phase response emerged as the most enhanced pathway. The anti-tumor feature of the acute response was further investigated using parallel reaction monitoring target proteomics and flow cytometry on 23 of the 53 significant proteins. We found that cryo-thermal therapy reset the tumor chronic inflammation to an "acute" phenotype, with up-regulation of acute phase proteins including IL-6 as a key regulator. The IL-6 mediated "acute" phenotype transformed IL-4 and Treg-promoting ICOSL expression to Th1-promoting IFN-γ and IL-12 production, augmented complement system activation and CD86(+)MHCII(+) dendritic cells maturation and enhanced the proliferation of Th1 memory cells. In addition, we found an increased production of tumor progression and metastatic inhibitory proteins under such "acute" environment, favoring the anti-metastatic effect. Moreover, cryo-thermal on tumors induced the strongest "acute" response compared to cryo/hyperthermia alone or cryo-thermal on healthy tissues, accompanying by the most pronounced anti-tumor immunological effect. In summary, we demonstrated that cryo-thermal therapy induced, IL-6 mediated "acute" microenvironment shifted the tumor chronic microenvironment from Th2 immunosuppressive and pro-tumorigenic to Th1 immunostimulatory and tumoricidal state. Moreover, the magnitude of "acute" and "danger" signals play a key

  3. CCL3 and CCL20-recruited dendritic cells modified by melanoma antigen gene-1 induce anti-tumor immunity against gastric cancer ex vivo and in vivo.

    Science.gov (United States)

    He, Songbing; Wang, Liang; Wu, Yugang; Li, Dechun; Zhang, Yanyun

    2010-04-27

    To investigate whether dendritic cell (DC) precursors, recruited by injection of chemokine ligand 3 (CCL3) and CCL20, induce anti-tumor immunity against gastric cancer induced by a DC vaccine expressing melanoma antigen gene-1 (MAGE-1) ex vivo and in vivo. B6 mice were injected with CCL3 and CCL20 via the tail vein. Freshly isolated F4/80-B220-CD11c+ cells cultured with cytokines were analyzed by phenotype analysis and mixed lymphocyte reaction (MLR). For adenoviral (Ad)-mediated gene transduction, cultured F4/80-B220-CD11c+ cells were incubated with Ad-MAGE-1. Vaccination of stimulated DC induced T lymphocytes. The killing effect of these T cells against gastric carcinoma cells was assayed by MTT. INF-gamma production was determined with an INF-gamma ELISA kit. In the solid tumor and metastases model, DC-based vaccines were used for immunization after challenge with MFC cells. Tumor size, survival of mice, and number of pulmonary metastatic foci were used to assess the therapeutic effect of DC vaccines. F4/80-B220-CD11c+ cell numbers increased after CCL3 and CCL20 injection. Freshly isolated F4/80-B220-CD11c+ cells cultured with cytokines were phenotyically identical to typical DC and gained the capacity to stimulate allogeneic T cells. These DCs were transduced with Ad-MAGE-1, which were prepared for DC vaccines expressing tumor antigen. T lymphocytes stimulated by DCs transduced with Ad-MAGE-1 exhibited specific killing effects on gastric carcinoma cells and produced high levels of INF-gamma ex vivo. In vivo, tumor sizes of the experimental group were much smaller than both the positive control group and the negative control groups (P anti-tumor immunity specific to gastric cancer ex vivo and in vivo. This system may prove to be an efficient strategy for anti-tumor immunotherapy.

  4. Immune response

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000821.htm Immune response To use the sharing features on this page, please enable JavaScript. The immune response is how your body recognizes and defends itself ...

  5. CCL3 and CCL20-recruited dendritic cells modified by melanoma antigen gene-1 induce anti-tumor immunity against gastric cancer ex vivo and in vivo

    Directory of Open Access Journals (Sweden)

    Zhang Yanyun

    2010-04-01

    Full Text Available Abstract Background To investigate whether dendritic cell (DC precursors, recruited by injection of chemokine ligand 3 (CCL3 and CCL20, induce anti-tumor immunity against gastric cancer induced by a DC vaccine expressing melanoma antigen gene-1 (MAGE-1 ex vivo and in vivo. Methods B6 mice were injected with CCL3 and CCL20 via the tail vein. Freshly isolated F4/80-B220-CD11c+ cells cultured with cytokines were analyzed by phenotype analysis and mixed lymphocyte reaction (MLR. For adenoviral (Ad-mediated gene transduction, cultured F4/80-B220-CD11c+ cells were incubated with Ad-MAGE-1. Vaccination of stimulated DC induced T lymphocytes. The killing effect of these T cells against gastric carcinoma cells was assayed by MTT. INF-γ production was determined with an INF-γ ELISA kit. In the solid tumor and metastases model, DC-based vaccines were used for immunization after challenge with MFC cells. Tumor size, survival of mice, and number of pulmonary metastatic foci were used to assess the therapeutic effect of DC vaccines. Results F4/80-B220-CD11c+ cell numbers increased after CCL3 and CCL20 injection. Freshly isolated F4/80-B220-CD11c+ cells cultured with cytokines were phenotyically identical to typical DC and gained the capacity to stimulate allogeneic T cells. These DCs were transduced with Ad-MAGE-1, which were prepared for DC vaccines expressing tumor antigen. T lymphocytes stimulated by DCs transduced with Ad-MAGE-1 exhibited specific killing effects on gastric carcinoma cells and produced high levels of INF-γ ex vivo. In vivo, tumor sizes of the experimental group were much smaller than both the positive control group and the negative control groups (P P Conclusions CCL3 and CCL20-recruited DCs modified by adenovirus-trasnsduced, tumor-associated antigen, MAGE-1, can stimulate anti-tumor immunity specific to gastric cancer ex vivo and in vivo. This system may prove to be an efficient strategy for anti-tumor immunotherapy.

  6. Type I interferons as stimulators of DC-mediated cross-priming: impact on anti-tumor response

    Directory of Open Access Journals (Sweden)

    Giovanna eSchiavoni

    2013-12-01

    Full Text Available Induction of potent tumor-specific cytotoxic T-cell responses is a fundamental objective in anticancer therapeutic strategies. This event requires that antigen-presenting cells (APC present tumor-associated antigens (Ag on their MHC class-I molecule, in a process termed cross-presentation. Dendritic cells (DC are particularly keen on this task and can induce the cross-priming of CD8+ T cells, when exposed to danger or inflammatory signals that stimulate their activation. Type I interferons (IFN-I, a family of long-known immunostimulatory cytokines, have been proven to produce optimal activation signal for DC-induced cross-priming. Recent in vitro and in vivo evidences have suggested that IFN-I -stimulated cross-priming by DC against tumor-associated Ag is a key mechanism for cancer immunosurveillance and may be usefully exploited to boost anti-tumor CD8+ T-cell responses. Here, we will review the cross-presentation properties of different DC subsets, with special focus on cell-associated and tumor Ag, and discuss how IFN-I can modify this function, with the aim of identifying more specific and effective strategies for improving anticancer responses.

  7. Calcitriol exerts an anti-tumor effect in osteosarcoma by inducing the endoplasmic reticulum stress response.

    Science.gov (United States)

    Shimizu, Takatsune; Kamel, Walied A; Yamaguchi-Iwai, Sayaka; Fukuchi, Yumi; Muto, Akihiro; Saya, Hideyuki

    2017-09-01

    Osteosarcoma is the most common type of primary bone tumor, and novel therapeutic approaches for this disease are urgently required. To identify effective agents, we screened a panel of Food and Drug Administration (FDA)-approved drugs in AXT cells, our newly established mouse osteosarcoma line, and identified calcitriol as a candidate compound with therapeutic efficacy for this disease. Calcitriol inhibited cell proliferation in AXT cells by blocking cell cycle progression. From a mechanistic standpoint, calcitriol induced endoplasmic reticulum (ER) stress, which was potentially responsible for downregulation of cyclin D1, activation of p38 MAPK, and intracellular production of reactive oxygen species (ROS). Knockdown of Atf4 or Ddit3 restored cell viability after calcitriol treatment, indicating that the ER stress response was indeed responsible for the anti-proliferative effect in AXT cells. Notably, the ER stress response was induced to a lesser extent in human osteosarcoma than in AXT cells, consistent with the weaker suppressive effect on cell growth in the human cells. Thus, the magnitude of ER stress induced by calcitriol might be an index of its anti-osteosarcoma effect. Although mice treated with calcitriol exhibited weight loss and elevated serum calcium levels, a single dose was sufficient to decrease osteosarcoma tumor size in vivo. Our findings suggest that calcitriol holds therapeutic potential for treatment of osteosarcoma, assuming that techniques to diminish its toxicity could be established. In addition, our results show that calcitriol could still be safely administered to osteosarcoma patients for its original purposes, including treatment of osteoporosis. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  8. Tumor-associated antigens identified by mRNA expression profiling induce protective anti-tumor immunity

    DEFF Research Database (Denmark)

    Mathiassen, S; Lauemøller, S L; Ruhwald, M

    2001-01-01

    to identify TAA, mice were immunized with mixtures of peptides representing putative cytotoxic T cell epitopes derived from one of the gene products. Indeed, such immunized mice were partially protected against subsequent tumor challenge. Despite being immunized with bona fide self antigens, no clinical signs...... imprints, which may be used to identify patient-specific arrays of TAA. This may enable a multi-epitope based immunotherapy with improved prospects of clinical tumor rejection....

  9. Combined IL-21 and Low-Dose IL-2 therapy induces anti-tumor immunity and long-term curative effects in a murine melanoma tumor model

    Directory of Open Access Journals (Sweden)

    Fox Bernard A

    2006-06-01

    Full Text Available Abstract Background In vivo studies have recently demonstrated that interleukin 21 (IL-21 enhances the anti-tumor function of T-cells and NK cells in murine tumor models, and the combined use of IL-21 and IL-15 has resulted in prolonged tumor regression and survival in mice with previously established tumors. However, the combined anti-tumor effects of IL-21 and low dose IL-2 have not been studied even though IL-2 has been approved for human use, and, at low dose administration, stimulates the proliferation of memory T cells, and does not significantly increase antigen-induced apoptosis or regulatory T cell (Treg expansion. This study examined whether recombinant IL-21 alone or in combination with low-dose IL-2 could improve the in vivo anti-tumor function of naïve, tumor-antigen specific CD8+ T cells in a gp10025–33 T cell receptor transgenic pmel murine melanoma model. Methods Congenic C57BL/6 (Ly5.2 mice bearing subcutaneous B16F10 melanoma tumors were sublethally irradiated to induce lymphopenia. After irradiation naive pmel splenocytes were adoptively transferred, and mice were immunized with bone marrow-derived dendritic cells pulsed with human gp10025–33 (hgp10025–33. Seven days after vaccination groups of mice received 5 consecutive days of intraperitoneal administration of IL-2 alone (20 × 103 IU, IL-21 alone (20 μg or IL-21 and IL-2. Control animals received no cytokine therapy. Results IL-21 alone and IL-2 alone both delayed tumor progression, but only IL-21 significantly augmented long-term survival (20% compared to the control group. However, combination therapy with IL-21 and IL-2 resulted in the highest long-term (>150 days tumor-free survival frequency of 46%. Animals that were tumor-free for > 150 days demonstrated tumor-specific protection after rechallenge with B16F10 melanoma cells. At peak expansion (21 days post vaccination, the combination of IL-21 plus IL-2 resulted in a 2- to 3-fold higher absolute number of

  10. Depletion of regulatory T cells by anti-ICOS antibody enhances anti-tumor immunity of tumor cell vaccine in prostate cancer.

    Science.gov (United States)

    Mo, Lijun; Chen, Qianmei; Zhang, Xinji; Shi, Xiaojun; Wei, Lili; Zheng, Dianpeng; Li, Hongwei; Gao, Jimin; Li, Jinlong; Hu, Zhiming

    2017-10-13

    ICOS + Treg cells exert important immunosuppressive effects in tumor immunity. We adopt a combination approach of ICOS + Treg cells depletion with tumor cell vaccine to evaluate anti-tumor immunity in mouse prostate cancer model. Streptavidin (SA)-mGM-CSF surface-modified RM-1 cells were prepared as the vaccine and the mouse subcutaneous prostate tumor model was used to evaluate the immunity. Tumor growth, flow cytometry, immunohistochemistry, immunofluorescence and enzyme linked immunosorbent assay (ELISA) were performed to evaluate the therapeutic effects. Our results demonstrated that SA-mGM-CSF vaccine was prepared successfully and tumor growth was inhibited. The tumor size in the combination group was much smaller than that in the vaccine with IgG mAb group. The portions of dendritic cells, CD8 + and CD4 + T cells in the mice blood and tumor tissues were increased after treatment with vaccine. There were more immune-suppressing Tregs infiltrated into tumor after treatment with tumor cell vaccine, and ICOS blocking could deplete the infiltrated Tregs, and T lymphocytes increased more dramatically in the combination therapy group. The concentrations of interferon-γ were increased in all vaccine group, the concentrations of Interleukin-10 and Interleukin-4 were much lower in the combination group. Our study demonstrated that ICOS blocking could deplete the tumor-infiltrated ICOS + Treg cells. Combining GM-CSF surface-modified RM-1 cell vaccine with Anti-ICOS antibody could induce better antitumor immunity than a vaccine alone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Role of Activin A in Immune Response to Breast Cancer

    Science.gov (United States)

    2014-12-01

    Strome SE, Salomao DR, et al: Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion . Nat Med 8:793-800, 2002 56...active evasion of the immune system. MECHANISMS FOR IMMUNE EVASION Tumors have the entire genome at their disposal for modulating and evading the anti...tumor- immune response, and their escape tends to be multi-pronged (Figure 1). One simple method of escape utilized by tumors and viruses alike, is

  12. Dysregulation of TGFβ1 Activity in Cancer and Its Influence on the Quality of Anti-Tumor Immunity

    Directory of Open Access Journals (Sweden)

    Kristian M. Hargadon

    2016-08-01

    Full Text Available TGFβ1 is a pleiotropic cytokine that exhibits a variety of physiologic and immune regulatory functions. Although its influence on multiple cell types is critical for the regulation of numerous biologic processes in the host, dysregulation of both TGFβ1 expression and activity is frequently observed in cancer and contributes to various aspects of cancer progression. This review focuses on TGFβ1’s contribution to tumor immune suppression and escape, with emphasis on the influence of this regulatory cytokine on the differentiation and function of dendritic cells and T cells. Clinical trials targeting TGFβ1 in cancer patients are also reviewed, and strategies for future therapeutic interventions that build on our current understanding of immune regulation by TGFβ1 are discussed.

  13. Dysregulation of TGFβ1 Activity in Cancer and Its Influence on the Quality of Anti-Tumor Immunity.

    Science.gov (United States)

    Hargadon, Kristian M

    2016-08-31

    TGFβ1 is a pleiotropic cytokine that exhibits a variety of physiologic and immune regulatory functions. Although its influence on multiple cell types is critical for the regulation of numerous biologic processes in the host, dysregulation of both TGFβ1 expression and activity is frequently observed in cancer and contributes to various aspects of cancer progression. This review focuses on TGFβ1's contribution to tumor immune suppression and escape, with emphasis on the influence of this regulatory cytokine on the differentiation and function of dendritic cells and T cells. Clinical trials targeting TGFβ1 in cancer patients are also reviewed, and strategies for future therapeutic interventions that build on our current understanding of immune regulation by TGFβ1 are discussed.

  14. Pyrvinium targets the unfolded protein response to hypoglycemia and its anti-tumor activity is enhanced by combination therapy.

    Directory of Open Access Journals (Sweden)

    De-Hua Yu

    Full Text Available We identified pyrvinium pamoate, an old anthelminthic medicine, which preferentially inhibits anchorage-independent growth of cancer cells over anchorage-dependent growth (approximately 10 fold. It was also reported by others to have anti-tumor activity in vivo and selective toxicity against cancer cells under glucose starvation in vitro, but with unknown mechanism. Here, we provide evidence that pyrvinium suppresses the transcriptional activation of GRP78 and GRP94 induced by glucose deprivation or 2-deoxyglucose (2DG, a glycolysis inhibitor, but not by tunicamycin or A23187. Other UPR pathways induced by glucose starvation, e.g. XBP-1, ATF4, were also found suppressed by pyrvinium. Constitutive expression of GRP78 via transgene partially protected cells from pyrvinium induced cell death under glucose starvation, suggesting that suppression of the UPR is involved in pyrvinium mediated cytotoxicity under glucose starvation. Xenograft experiments showed rather marginal overall anti-tumor activity for pyrvinium as a monotherapy. However, the combination of pyrvinium and Doxorubicin demonstrated significantly enhanced efficacy in vivo, supporting a mechanistic treatment concept based on tumor hypoglycemia and UPR.

  15. Anti-tumor Activity of Toll-Like Receptor 7 Agonists

    Directory of Open Access Journals (Sweden)

    Huju Chi

    2017-05-01

    Full Text Available Toll-like receptors (TLRs are a class of pattern recognition receptors that play a bridging role in innate immunity and adaptive immunity. The activated TLRs not only induce inflammatory responses, but also elicit the development of antigen specific immunity. TLR7, a member of TLR family, is an intracellular receptor expressed on the membrane of endosomes. TLR7 can be triggered not only by ssRNA during viral infections, but also by immune modifiers that share a similar structure to nucleosides. Its powerful immune stimulatory action can be potentially used in the anti-tumor therapy. This article reviewed the anti-tumor activity and mechanism of TLR7 agonists that are frequently applied in preclinical and clinical investigations, and mainly focused on small synthetic molecules, including imiquimod, resiquimod, gardiquimod, and 852A, etc.

  16. The evaluation of sleep quality and response to anti-tumor necrosis factor α therapy in rheumatoid arthritis patients.

    Science.gov (United States)

    Karatas, Gulsah; Bal, Ajda; Yuceege, Melike; Yalcin, Elif; Firat, Hikmet; Dulgeroglu, Deniz; Karataş, Fatih; Sahin, Suleyman; Cakci, Aytul; Ardic, Sadik

    2017-01-01

    Poor sleep quality (SQ) is increasingly recognized as giving rise to decreased quality of life, and raising pain perception. Our aim is to evaluate the SQ in rheumatoid arthritis (RA) patients treated with anti-tumor necrosis factor alpha (anti-TNF-α) therapy. This was a prospective observational and open-label study of RA patients. A total of 35 patients with RA were enrolled in this study. Of the 35 patients, 22 had high disease activity (DA), and 13 were in remission. High DA group was initiated an anti TNF-α therapy. Clinical and objective parameters of SQ were assessed by using the Pittsburgh Sleep Quality Index (PSQI) and polysomnography (PSG). The total PSQI score and the frequency of poor SQ were high in 60 % of the RA patients. The median PSQI score was significantly higher in the high DA group than in the remission group (P = 0.026). Following an anti-TNF-α therapy initiation, significant improvements were observed in the high DA group by PSQI test (P = 0.012). However, no statistically significant difference was found by PSG (P > 0.05). Although an improvement in DA with anti-TNF-alpha therapy did not provide an amelioration in laboratory parameters, we found a significant improvement in SQ by subjective PSQI test. These findings may support that sleep disorders in RA are likely to be associated with a complex pathophysiology.

  17. Homeostatic T Cell Expansion to Induce Anti-Tumor Autoimmunity in Breast Cancer

    National Research Council Canada - National Science Library

    Baccala, Roberto

    2007-01-01

    ... that (a) homeostatic T-cell proliferation consistently elicits anti-tumor responses; (b) irradiation is more effective than Tcell depletion by antibodies in inducing anti-tumor responses mediated by homeostatic T-cell proliferation...

  18. Migration of dendritic cells to the lymph nodes and its enhancement to drive anti-tumor responses.

    NARCIS (Netherlands)

    Seyfizadeh, N; Muthuswamy, Ravikumar; Mitchell, Duane; Nierkens, S; Seyfizadeh, Nayer

    2016-01-01

    Better prognoses associated with increased T cell infiltration of tumors, as seen with chimeric antigen receptor (CAR) T cell therapies and immune checkpoint inhibitors, portray the importance and potential of the immune system in controlling tumors. This has rejuvenated the field of cancer

  19. TRAF1/C5 but Not PTPRC Variants Are Potential Predictors of Rheumatoid Arthritis Response to Anti-Tumor Necrosis Factor Therapy

    Directory of Open Access Journals (Sweden)

    Helena Canhão

    2015-01-01

    Full Text Available Background. The aim of our work was to replicate, in a Southern European population, the association reported in Northern populations between PTPRC locus and response to anti-tumor necrosis factor (anti-TNF treatment in rheumatoid arthritis (RA. We also looked at associations between five RA risk alleles and treatment response. Methods. We evaluated associations between anti-TNF treatment responses assessed by DAS28 change and by EULAR response at six months in 383 Portuguese patients. Univariate and multivariate linear and logistic regression analyses were performed. In a second step to confirm our findings, we pooled our population with 265 Spanish patients. Results. No association was found between PTPRC rs10919563 allele and anti-TNF treatment response, neither in Portuguese modeling for several clinical variables nor in the overall population combining Portuguese and Spanish patients. The minor allele for RA susceptibility, rs3761847 SNP in TRAF1/C5 region, was associated with a poor response in linear and logistic univariate and multivariate regression analyses. No association was observed with the other allellic variants. Results were confirmed in the pooled analysis. Conclusion. This study did not replicate the association between PTPRC and the response to anti-TNF treatment in our Southern European population. We found that TRAF1/C5 risk RA variants potentially influence anti-TNF treatment response.

  20. The Effect of Radiation on the Immune Response to Cancers

    Directory of Open Access Journals (Sweden)

    Bonggoo Park

    2014-01-01

    Full Text Available In cancer patients undergoing radiation therapy, the beneficial effects of radiation can extend beyond direct cytotoxicity to tumor cells. Delivery of localized radiation to tumors often leads to systemic responses at distant sites, a phenomenon known as the abscopal effect which has been attributed to the induction and enhancement of the endogenous anti-tumor innate and adaptive immune response. The mechanisms surrounding the abscopal effect are diverse and include trafficking of lymphocytes into the tumor microenvironment, enhanced tumor recognition and killing via up-regulation of tumor antigens and antigen presenting machinery and, induction of positive immunomodulatory pathways. Here, we discuss potential mechanisms of radiation-induced enhancement of the anti-tumor response through its effect on the host immune system and explore potential combinational immune-based strategies such as adoptive cellular therapy using ex vivo expanded NK and T cells as a means of delivering a potent effector population in the context of radiation-enhanced anti-tumor immune environment.

  1. Tumor sialylation impedes T cell mediated anti-tumor responses while promoting tumor associated-regulatory T cells

    NARCIS (Netherlands)

    Perdicchio, Maurizio; Cornelissen, Lenneke A. M.; Streng-Ouwehand, Ingeborg; Engels, Steef; Verstege, Marleen I.; Boon, Louis; Geerts, Dirk; van Kooyk, Yvette; Unger, Wendy W. J.

    2016-01-01

    The increased presence of sialylated glycans on the tumor surface has been linked to poor prognosis, yet the effects on tumor-specific T cell immunity are hardly studied. We here show that hypersialylation of B16 melanoma substantially influences tumor growth by preventing the formation of effector

  2. Patients with Crohn's disease on anti-tumor necrosis factor therapy are at significant risk of inadequate response to the 23-valent pneumococcal polysaccharide vaccine.

    Science.gov (United States)

    Lee, Chang Kyun; Kim, Hyun-Soo; Ye, Byong Duk; Lee, Kang-Moon; Kim, You Sun; Rhee, Sang Youl; Kim, Hyo-Jong; Yang, Suk-Kyun; Moon, Won; Koo, Ja-Seol; Lee, Suck-Ho; Seo, Geom Seog; Park, Soo Jung; Choi, Chang Hwan; Jung, Sung-Ae; Hong, Sung Noh; Im, Jong Pil; Kim, Eun Soo

    2014-05-01

    The effect of immunosuppressants on the efficacy of a variety of vaccines is a controversial issue in patients with inflammatory bowel disease (IBD). In this study we determined whether specific immunosuppressants impair the serological response to the standard 23-valent pneumococcal polysaccharide vaccine (PPSV23) in a large cohort of patients with Crohn's disease (CD). This was a multi-center, prospective observational study of adult patients with CD at 15 academic teaching hospitals in Korea. The study population received one intramuscular injection of PPSV23. Anti-pneumococcal IgG antibody titers were measured by immunoassay prior to and 4weeks after vaccination. All vaccination-related adverse events and the effect of the vaccine on disease activity were also evaluated. The overall serological response rate was 67.5% (133/197). The serological response rate was significantly lower in patients on anti-tumor necrosis factor (anti-TNF) therapy (50.0% on anti-TNF alone; 58.0% on anti-TNF combined with an immunomodulator, IM) than patients on 5-aminosalicylate (78.4%; all P-values vs. 5-aminosalicylaterisk of an inadequate response to PPSV23. The pneumococcal vaccination strategy should be optimized for patients with CD on anti-TNF therapy. © 2013 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.

  3. Melanocyte-specific immune response in melanoma and vitiligo: two faces of the same coin?

    NARCIS (Netherlands)

    Wankowicz-Kalinska, Anna; Le Poole, Caroline; van den Wijngaard, Rene; Storkus, Walter J.; Das, Pranab K.

    2003-01-01

    The appearance of depigmentation during the course of malignant melanoma has been considered a good prognostic sign. Is it only a side-effect, informative of the immune system's response to the treatment, or does it act as a necessary amplifier of these clinically important anti-tumor responses? The

  4. Physiological intermolecular modification spectroscopy for the prediction of response to anti-tumor necrosis factor therapy in patients with inflammatory bowel diseases.

    Science.gov (United States)

    Eftekhari, Pierre; Glaubitz, Lisa; Breidert, Matthias; Neurath, Markus Friedrich; Atreya, Raja

    2014-01-01

    Anti-tumor necrosis factor (TNF) antibodies have clinical efficiency only in a subgroup of patients with inflammatory bowel diseases (IBD). Prediction of clinical response is a critical clinical problem. Physiological intermolecular modification spectroscopy (PIMS) is a label-free technology performed in physiological conditions. PIMS enables real-time monitoring of dynamic molecular resonance of entire proteins and macromolecules of an individual. The aim of this study was to explore the capacity of PIMS to discriminate IBD patients regarding response to anti-TNF treatment. Protein extracts of peripheral blood mononuclear cells (PBMC) from 30 outpatients diagnosed with ulcerative colitis (UC) or Crohn's disease (CD) and treated with infliximab were subjected to PIMS analysis in a blinded transversal study. Total protein from each patient's PBMCs was challenged with infliximab. Dynamic changes in macromolecular interaction were registered while the temperature rose from -37 to 37°C. Individual macromolecular volume and molecular elasticity were determined for each patient. Clinical data revealed that 67% of UC and 79% of CD patients responded to infliximab therapy during the 3-month study period based on their respective clinical activity score. These results confirm that PIMS data predicted response to anti-TNF therapy with an accuracy of 96%. PIMS stratified IBD patients into two groups, responders and nonresponders, which correlated with the clinical efficacy of anti-TNF therapy. PIMS seems to be a powerful technology to adapt IBD treatment to the individual patient. Further studies with PIMS might enable to predict clinical response to biological treatment in IBD patients before the therapy is initiated. © 2014 S. Karger AG, Basel.

  5. Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T

    Science.gov (United States)

    Burga, Rachel A.; Thorn, Mitchell; Point, Gary R.; Guha, Prajna; Nguyen, Cang T.; Licata, Lauren A.; DeMatteo, Ronald P.; Ayala, Alfred; Espat, N. Joseph; Junghans, Richard P.; Katz, Steven C.

    2015-01-01

    Chimeric antigen receptor modified T cell (CAR-T) technology, a promising immunotherapeutic tool, has not been applied specifically to treat liver metastases (LM). While CAR-T delivery to LM can be optimized by regional intrahepatic infusion, we propose that liver CD11b+Gr-1+ myeloid-derived suppressor cells (L-MDSC) will inhibit the efficacy of CAR-T in the intrahepatic space. We studied anti-CEA CAR-T in a murine model of CEA+ LM and identified mechanisms through which L-MDSC expand and inhibit CAR-T function. We established CEA+ LM in mice and studied purified L-MDSC and responses to treatment with intrahepatic anti-CEA CAR-T infusions. L-MDSC expanded three-fold in response to LM and their expansion was dependent on GM-CSF, which was produced by tumor cells. L-MDSC utilized PD-L1 to suppress anti-tumor responses through engagement of PD-1 on CAR-T. GM-CSF, in cooperation with STAT3, promoted L-MDSC PD-L1 expression. CAR-T efficacy was rescued when mice received CAR-T in combination with MDSC depletion, GM-CSF neutralization to prevent MDSC expansion, or PD-L1 blockade. As L-MDSC suppressed anti-CEA CAR-T, infusion of anti-CEA CAR-T in tandem with agents targeting L-MDSC is a rational strategy for future clinical trials. PMID:25850344

  6. Neem leaf glycoprotein promotes dual generation of central and effector memory CD8(+) T cells against sarcoma antigen vaccine to induce protective anti-tumor immunity.

    Science.gov (United States)

    Ghosh, Sarbari; Sarkar, Madhurima; Ghosh, Tithi; Guha, Ipsita; Bhuniya, Avishek; Saha, Akata; Dasgupta, Shayani; Barik, Subhasis; Bose, Anamika; Baral, Rathindranath

    2016-03-01

    We have previously shown that Neem Leaf Glycoprotein (NLGP) mediates sustained tumor protection by activating host immune response. Now we report that adjuvant help from NLGP predominantly generates CD44(+)CD62L(high)CCR7(high) central memory (TCM; in lymph node) and CD44(+)CD62L(low)CCR7(low) effector memory (TEM; in spleen) CD8(+) T cells of Swiss mice after vaccination with sarcoma antigen (SarAg). Generated TCM and TEM participated either to replenish memory cell pool for sustained disease free states or in rapid tumor eradication respectively. TCM generated after SarAg+NLGP vaccination underwent significant proliferation and IL-2 secretion following SarAg re-stimulation. Furthermore, SarAg+NLGP vaccination helps in greater survival of the memory precursor effector cells at the peak of the effector response and their maintenance as mature memory cells, in comparison to single modality treatment. Such response is corroborated with the reduced phosphorylation of FOXO in the cytosol and increased KLF2 in the nucleus associated with enhanced CD62L, CCR7 expression of lymph node-resident CD8(+) T cells. However, spleen-resident CD8(+) T memory cells show superior efficacy for immediate memory-to-effector cell conversion. The data support in all aspects that SarAg+NLGP demonstrate superiority than SarAg vaccination alone that benefits the host by rapid effector functions whenever required, whereas, central-memory cells are thought to replenish the memory cell pool for ultimate sustained disease free survival till 60 days following post-vaccination tumor inoculation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. TLR2-dependent induction of IL-10 and Foxp3+ CD25+ CD4+ regulatory T cells prevents effective anti-tumor immunity induced by Pam2 lipopeptides in vivo.

    Directory of Open Access Journals (Sweden)

    Sayuri Yamazaki

    Full Text Available 16 S-[2,3-bis(palmitoylpropyl]cysteine (Pam2 lipopeptides act as toll-like receptor (TLR2/6 ligands and activate natural killer (NK cells and dendritic cells (DCs to produce inflammatory cytokines and cytotoxic NK activity in vitro. However, in this study, we found that systemic injection of Pam2 lipopeptides was not effective for the suppression of NK-sensitive B16 melanomas in vivo. When we investigated the immune suppressive mechanisms, systemic injection of Pam2 lipopeptides induced IL-10 in a TLR2-dependent manner. The Pam2 lipopeptides increased the frequencies of Foxp3(+CD4(+ regulatory T (T reg cells in a TLR2- and IL-10- dependent manner. The T reg cells from Pam2-lipopeptide injected mice maintained suppressor activity. Pam2 lipopeptides, plus the depletion of T reg with an anti-CD25 monoclonal antibody, improved tumor growth compared with Pam2 lipopeptides alone. In conclusion, our data suggested that systemic treatment of Pam2 lipopeptides promoted IL-10 production and T reg function, which suppressed the effective induction of anti-tumor immunity in vivo. It is necessary to develop an adjuvant that does not promote IL-10 and T reg function in vivo for the future establishment of an anti-cancer vaccine.

  8. Pre-clinical toxicity and immunogenicity evaluation of a MUC1-MBP/BCG anti-tumor vaccine.

    Science.gov (United States)

    Hu, Boqi; Wang, Juan; Guo, Yingying; Chen, Tanxiu; Ni, Weihua; Yuan, Hongyan; Zhang, Nannan; Xie, Fei; Tai, Guixiang

    2016-04-01

    Mucin 1 (MUC1), as an oncogene, plays a key role in the progression and tumorigenesis of many human adenocarcinomas and is an attractive target in tumor immunotherapy. Our previous study showed that the MUC1-MBP/BCG anti-tumor vaccine induced a MUC1-specific Th1-dominant immune response, simulated MUC1-specific cytotoxic T lymphocyte killing activity, and could significantly inhibit MUC1-expression B16 cells' growth in mice. To help move the vaccine into a Phase I clinical trial, in the current study, a pre-clinical toxicity and immunogenicity evaluation of the vaccine was conducted. The evaluation was comprised of a single-dose acute toxicity study in mice, repeat-dose chronic toxicity and immunogenicity studies in rats, and pilot toxicity and immunogenicity studies in cynomolgus monkeys. The results showed that treatment with the MUC1-MBP/BCG anti-tumor vaccine did not cause any organ toxicity, except for arthritis or local nodules induced by BCG in several rats. Furthermore, the vaccine significantly increased the levels of IFN-γ in rats, indicating that Th1 cells were activated. In addition, the results showed that the MUC1-MBP/BCG anti-tumor vaccine induced a MUC1-specific IgG antibody response both in rats and cynomolgus monkeys. Collectively, these data are beneficial to move the MUC1-MBP/BCG anti-tumor vaccine into a Phase I clinical trial. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Natural Killer Dendritic Cells Enhance Immune Responses Elicited by α-Galactosylceramide-Stimulated Natural Killer T Cells

    Directory of Open Access Journals (Sweden)

    Sung Won Lee

    2013-01-01

    Full Text Available Natural killer dendritic cells (NKDCs possess potent anti-tumor activity, but the cellular effect of NKDC interactions with other innate immune cells is unclear. In this study, we demonstrate that the interaction of NKDCs and natural killer T (NKT cells is required for the anti-tumor immune responses that are elicited by α-galactosylceramide (α-GC in mice. The rapid and strong expression of interferon-γ by NKDCs after α-GC stimulation was dependent on NKT cells. Various NK and DC molecular markers and cytotoxic molecules were up-regulated following α-GC administration. This up-regulation could improve NKDC presentation of tumor antigens and increase cytotoxicity against tumor cells. NKDCs were required for the stimulation of DCs, NK cells, and NKT cells. The strong anti-tumor immune responses elicited by α-GC may be due to the down-regulation of regulatory T cells. Furthermore, the depletion of NKDCs dampened the tumor clearance mediated by α-GC-stimulated NKT cells in vivo. Taken together, these results indicate that complex interactions of innate immune cells might be required to achieve optimal anti-tumor immune responses during the early stages of tumorigenesis.

  10. MiR-15a/16 deficiency enhances anti-tumor immunity of glioma-infiltrating CD8+ T cells through targeting mTOR.

    Science.gov (United States)

    Yang, Jiao; Liu, Ronghua; Deng, Yuting; Qian, Jiawen; Lu, Zhou; Wang, Yuedi; Zhang, Dan; Luo, Feifei; Chu, Yiwei

    2017-11-15

    MiR-15a/16, a miRNA cluster located at chromosome 13q14, has been reported to act as an immune regulator in inflammatory disorders besides its aberrant expression in cancers. However, little is known about its regulation in tumor-infiltrating immune cells. In our study, using an orthotropic GL261 mouse glioma model, we found that miR-15a/16 deficiency in host inhibited tumor growth and prolonged mice survival, which might be associated with the accumulation of tumor-infiltrating CD8+ T cells. More importantly, tumor-infiltrating CD8+ T cells without miR-15a/16 showed lower expression of PD-1, Tim-3 and LAG-3, and stronger secretion of IFN-γ, IL-2 and TNF-α than WT tumor-infiltrating CD8+ T cells. Also, our in vitro experiments further confirmed that miR-15a/16 -/- CD8+ T displayed higher active phenotypes, more cytokines secretion and faster expansion, compared to WT CD8+ T cells. Mechanismly, mTOR was identified as a target gene of miR-15a/16 to negatively regulate the activation of CD8+ T cells. Taken together, these data suggest that miR-15a/16 deficiency resists the exhaustion and maintains the activation of glioma-infiltrating CD8+ T cells to alleviate glioma progression via targeting mTOR. Our findings provide evidence for the potential immunotherapy through targeting miR-15a/16 in tumor-infiltrating immune cells. © 2017 UICC.

  11. Modeling protective anti-tumor immunity via preventative cancer vaccines using a hybrid agent-based and delay differential equation approach.

    Science.gov (United States)

    Kim, Peter S; Lee, Peter P

    2012-01-01

    A next generation approach to cancer envisions developing preventative vaccinations to stimulate a person's immune cells, particularly cytotoxic T lymphocytes (CTLs), to eliminate incipient tumors before clinical detection. The purpose of our study is to quantitatively assess whether such an approach would be feasible, and if so, how many anti-cancer CTLs would have to be primed against tumor antigen to provide significant protection. To understand the relevant dynamics, we develop a two-compartment model of tumor-immune interactions at the tumor site and the draining lymph node. We model interactions at the tumor site using an agent-based model (ABM) and dynamics in the lymph node using a system of delay differential equations (DDEs). We combine the models into a hybrid ABM-DDE system and investigate dynamics over a wide range of parameters, including cell proliferation rates, tumor antigenicity, CTL recruitment times, and initial memory CTL populations. Our results indicate that an anti-cancer memory CTL pool of 3% or less can successfully eradicate a tumor population over a wide range of model parameters, implying that a vaccination approach is feasible. In addition, sensitivity analysis of our model reveals conditions that will result in rapid tumor destruction, oscillation, and polynomial rather than exponential decline in the tumor population due to tumor geometry.

  12. The fully synthetic MAG-Tn3 therapeutic vaccine containing the tetanus toxoid-derived TT830-844 universal epitope provides anti-tumor immunity.

    Science.gov (United States)

    Laubreton, Daphné; Bay, Sylvie; Sedlik, Christine; Artaud, Cécile; Ganneau, Christelle; Dériaud, Edith; Viel, Sophie; Puaux, Anne-Laure; Amigorena, Sebastian; Gérard, Catherine; Lo-Man, Richard; Leclerc, Claude

    2016-03-01

    Malignant transformations are often associated with aberrant glycosylation processes that lead to the expression of new carbohydrate antigens at the surface of tumor cells. Of these carbohydrate antigens, the Tn antigen is particularly highly expressed in many carcinomas, especially in breast carcinoma. We designed MAG-Tn3, a fully synthetic vaccine based on three consecutive Tn moieties that are O-linked to a CD4+ T cell epitope, to induce anti-Tn antibody responses that could be helpful for therapeutic vaccination against cancer. To ensure broad coverage within the human population, the tetanus toxoid-derived peptide TT830-844 was selected as a T-helper epitope because it can bind to various HLA-DRB molecules. We showed that the MAG-Tn3 vaccine, which was formulated with the GSK proprietary immunostimulant AS15 and designed for human cancer therapy, is able to induce an anti-Tn antibody response in mice of various H-2 haplotypes, and this response correlates with the ability to induce a specific T cell response against the TT830-844 peptide. The universality of the TT830-844 peptide was extended to new H-2 and HLA-DRB molecules that were capable of binding this T cell epitope. Finally, the MAG-Tn3 vaccine was able to induce anti-Tn antibody responses in cynomolgus monkeys, which targeted Tn-expressing tumor cells and mediated tumor cell death both in vitro and in vivo. Thus, MAG-Tn3 is a highly promising anticancer vaccine that is currently under evaluation in a phase I clinical trial.

  13. Photodynamic therapy for cancer and activation of immune response

    Science.gov (United States)

    Mroz, Pawel; Huang, Ying-Ying; Hamblin, Michael R.

    2010-02-01

    Anti-tumor immunity is stimulated after PDT for cancer due to the acute inflammatory response, exposure and presentation of tumor-specific antigens, and induction of heat-shock proteins and other danger signals. Nevertheless effective, powerful tumor-specific immune response in both animal models and also in patients treated with PDT for cancer, is the exception rather than the rule. Research in our laboratory and also in others is geared towards identifying reasons for this sub-optimal immune response and discovering ways of maximizing it. Reasons why the immune response after PDT is less than optimal include the fact that tumor-antigens are considered to be self-like and poorly immunogenic, the tumor-mediated induction of CD4+CD25+foxP3+ regulatory T-cells (T-regs), that are able to inhibit both the priming and the effector phases of the cytotoxic CD8 T-cell anti-tumor response and the defects in dendritic cell maturation, activation and antigen-presentation that may also occur. Alternatively-activated macrophages (M2) have also been implicated. Strategies to overcome these immune escape mechanisms employed by different tumors include combination regimens using PDT and immunostimulating treatments such as products obtained from pathogenic microorganisms against which mammals have evolved recognition systems such as PAMPs and toll-like receptors (TLR). This paper will cover the use of CpG oligonucleotides (a TLR9 agonist found in bacterial DNA) to reverse dendritic cell dysfunction and methods to remove the immune suppressor effects of T-regs that are under active study.

  14. Immune responses to metastases

    International Nuclear Information System (INIS)

    Herberman, R.B.; Wiltrout, R.H.; Gorelik, E.

    1987-01-01

    The authors present the changes in the immune system in tumor-bearing hosts that may influence the development of progression of metastases. Included are mononuclear cell infiltration of metastases; alterations in natural resistance mediated by natural killer cells and macrophages; development of specific immunity mediated by T-lymphocytes or antibodies; modulation of tumor-associated antigen expression; and the down-regulation of the immune response to the tumor by several suppressor mechanisms; the augmentation of the immune response and its potential for therapeutic application; includes the prophylaxis of metastases formation by NK cells; the therapy of metastases by augmentation NK-, macrophage-, or T-lymphocyte-mediated responses by biological response modifiers; and the transfer of anticancer activity by cytoxic T-lymphocytes or immunoconjugates of monoclonal antibodies with specificity for tumors

  15. Anti-tumor activity of polysaccharides extracted from Senecio ...

    African Journals Online (AJOL)

    Purpose: To optimize the extraction conditions of polysaccharides from the root of Senecio scandens. Buch,-Ham. (PRS) and evaluate its anti-tumor effect on hepatocellular carcinoma. Methods: Response surface methodology (RSM) applied with a Box-Behnken design (BBD, three levels and three factors) was employed to ...

  16. Anti-tumor activity of polysaccharides extracted from Senecio ...

    African Journals Online (AJOL)

    Purpose: To optimize the extraction conditions of polysaccharides from the root of Senecio scandens Buch,-Ham. (PRS) and evaluate its anti-tumor effect on hepatocellular carcinoma. Methods: Response surface methodology (RSM) applied with a Box-Behnken design (BBD, three levels and three factors) was employed to ...

  17. A Comparative Study of Replication-Incompetent and -Competent Adenoviral Therapy-Mediated Immune Response in a Murine Glioma Model.

    Science.gov (United States)

    Kim, Julius W; Miska, Jason; Young, Jacob S; Rashidi, Aida; Kane, J Robert; Panek, Wojciech K; Kanojia, Deepak; Han, Yu; Balyasnikova, Irina V; Lesniak, Maciej S

    2017-06-16

    Oncolytic virotherapy is a treatment approach with increasing clinical relevance, as indicated by the marked survival benefit seen in animal models and its current exploration in human patients with cancer. The use of an adenovirus vector for this therapeutic modality is common, has significant clinical benefit in animals, and its efficacy has recently been linked to an anti-tumor immune response that occurs following tumor antigen presentation. Here, we analyzed the adaptive immune system's response following viral infection by comparing replication-incompetent and replication-competent adenoviral vectors. Our findings suggest that cell death caused by replication-competent adenoviral vectors is required to induce a significant anti-tumor immune response and survival benefits in immunocompetent mice bearing intracranial glioma. We observed significant changes in the repertoire of immune cells in the brain and draining lymph nodes and significant recruitment of CD103+ dendritic cells (DCs) in response to oncolytic adenoviral therapy, suggesting the active role of the immune system in anti-tumor response. Our data suggest that the response to oncolytic virotherapy is accompanied by local and systemic immune responses and should be taken in consideration in the future design of the clinical studies evaluating oncolytic virotherapy in patients with glioblastoma multiforme (GBM).

  18. A Comparative Study of Replication-Incompetent and -Competent Adenoviral Therapy-Mediated Immune Response in a Murine Glioma Model

    Directory of Open Access Journals (Sweden)

    Julius W. Kim

    2017-06-01

    Full Text Available Oncolytic virotherapy is a treatment approach with increasing clinical relevance, as indicated by the marked survival benefit seen in animal models and its current exploration in human patients with cancer. The use of an adenovirus vector for this therapeutic modality is common, has significant clinical benefit in animals, and its efficacy has recently been linked to an anti-tumor immune response that occurs following tumor antigen presentation. Here, we analyzed the adaptive immune system’s response following viral infection by comparing replication-incompetent and replication-competent adenoviral vectors. Our findings suggest that cell death caused by replication-competent adenoviral vectors is required to induce a significant anti-tumor immune response and survival benefits in immunocompetent mice bearing intracranial glioma. We observed significant changes in the repertoire of immune cells in the brain and draining lymph nodes and significant recruitment of CD103+ dendritic cells (DCs in response to oncolytic adenoviral therapy, suggesting the active role of the immune system in anti-tumor response. Our data suggest that the response to oncolytic virotherapy is accompanied by local and systemic immune responses and should be taken in consideration in the future design of the clinical studies evaluating oncolytic virotherapy in patients with glioblastoma multiforme (GBM.

  19. Assessment of in vivo anti-tumor activity of human umbilical vein endothelial cell vaccines prepared by various antigen forms.

    Science.gov (United States)

    Zhou, Ling; Si, Chunfeng; Li, Defang; Lu, Meiyu; Zhong, Weilan; Xie, Zeping; Guo, Lin; Zhang, Shumin; Xu, Maolei

    2018-03-01

    Human umbilical vein endothelial cell (HUVEC) vaccine has been proved as an effective whole-cell vaccine, but the modest therapeutic anti-tumor efficiency limits its clinical use. Various antigen forms, including paraformaldehyde-fixed HUVEC, glutaraldehyde-fixed HUVEC, HUVEC lysate and live HUVEC, have been intensively used in HUVEC vaccine preparation, however, the most effective antigen form has not yet been identified. In the present study, these four commonly used antigen forms were used to prepare vaccines named Para-Fixed-EC, Glu-Fixed-EC, Lysate-EC, and Live-EC respectively, and the anti-tumor efficacy of these four vaccines was investigated. Results showed that Live-EC exhibited the most favorable anti-tumor growth and metastasis effects among the four vaccines in both H22 hepatocellular carcinoma and Lewis lung cancer models. High titer anti-HUVEC antibodies were detected in Live-EC immunized mice sera, and the immune sera of Live-EC group could significantly inhibit HUVEC proliferation and tube formation. Moreover, T cells isolated from Live-EC immunized mice exhibited strong cytotoxicity against HUVEC cells, with an increasing IFN-γ and decreasing Treg production in Live-EC immunized mice. Finally, CD31 immunohistochemical analysis of the excised tumors verified a significant reduction in vessel density after Live-EC vaccination, which was in accordance with the anti-tumor efficiency. Taken together, all the results proved that live HUVEC was the most effective antigen form to induce robust HUVEC specific antibody and CTL responses, which could lead to the significant inhibition of tumor growth and metastasis. We hope the present findings would provide a rationale for the further optimization of HUVEC vaccine. Copyright © 2017. Published by Elsevier B.V.

  20. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Energy Technology Data Exchange (ETDEWEB)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas, E-mail: tke@uams.edu [Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2011-11-11

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses.

  1. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    International Nuclear Information System (INIS)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas

    2011-01-01

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses

  2. 4-Bromophenylhydrazinyl benzenesulfonylphenylureas as indoleamine 2,3-dioxygenase inhibitors with in vivo target inhibition and anti-tumor efficacy.

    Science.gov (United States)

    Lin, Shu-Yu; Yeh, Teng-Kuang; Song, Jen-Shin; Hung, Ming-Shiu; Cheng, Ming-Fu; Liao, Fang-Yu; Li, An-Shiou; Cheng, Shu-Ying; Lin, Li-Mei; Chiu, Chun-Hsien; Wu, Mine-Hsine; Lin, Yi-Jyun; Hsiao, Wenchi; Sun, Manwu; Wang, Yi-Hsin; Huang, Chin-Hsiang; Tang, Ya-Chu; Chang, Hsin-Huei; Huang, Zih-Ting; Chao, Yu-Sheng; Shih, Chuan; Pan, Shiow-Lin; Wu, Su-Ying; Kuo, Ching-Chuan; Ueng, Shau-Hua

    2018-02-12

    Indoleamine 2,3-dioxygenase is a heme-containing enzyme implicated in the down regulation of the anti-tumor immune response, and considered a promising anti-cancer drug target. Several pharmaceutical companies, including Pfizer, Merck, and Bristol-Myers Squibb, are known to be in pursuit of IDO inhibitors, and Incyte recently reported good results in the phase II clinical trial of the IDO inhibitor Epacadostat. In previous work, we developed a series of IDO inhibitors based on a sulfonylhydrazide core structure, and explored how they could serve as potent IDO inhibitors with good drug profiles. Herein, we disclose the development of the 4-bromophenylhydrazinyl benzenesulfonylphenylurea 5k, a potent IDO inhibitor which demonstrated 25% tumor growth inhibition in a murine CT26 syngeneic model on day 18 with 100 mg/kg oral administration twice daily, and a 30% reduction in tumor weight. Pharmacodynamic testing of 5k found it to cause a 25% and 21% reduction in kyn/trp ratio at the plasma and tumor, respectively. In the CT26 tumor model, 5k was found to slightly increase the percentage of CD3 + T cells and lymphocyte responsiveness, indicating that 5k may have potential in modulating anti-tumor immunity. These data suggest 5k to be worthy of further investigation in the development of anti-tumor drugs. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. MicroRNA-22 impairs anti-tumor ability of dendritic cells by targeting p38.

    Directory of Open Access Journals (Sweden)

    Xue Liang

    Full Text Available Dendritic cells (DCs play a critical role in triggering anti-tumor immune responses. Their intracellular p38 signaling is of great importance in controlling DC activity. In this study, we identified microRNA-22 (miR-22 as a microRNA inhibiting p38 protein expression by directly binding to the 3' untranslated region (3'UTR of its mRNA. The p38 down-regulation further interfered with the synthesis of DC-derived IL-6 and the differentiation of DC-driven Th17 cells. Moreover, overexpression of miR-22 in DCs impaired their tumor-suppressing ability while miR-22 inhibitor could reverse this phenomenon and improve the curative effect of DC-based immunotherapy. Thus, our results highlight a suppressive role for miR-22 in the process of DC-invoked anti-tumor immunity and that blocking this microRNA provides a new strategy for generating potent DC vaccines for patients with cancer.

  4. Recognition of melanoma-derived antigens by CTL: possible mechanisms involved in down-regulating anti-tumor T-cell reactivity

    DEFF Research Database (Denmark)

    Rivoltini, L; Loftus, D J; Squarcina, P

    1998-01-01

    Several T cell-recognized epitopes presented by melanoma cells have been identified recently. Despite the large array of epitopes potentially available for clinical use, it is still unclear which of these antigens could be effective in mediating anti-tumor responses when used as a vaccine...... (detected as increased antigen-specific CTL activity in peripheral blood) was obtained by vaccinating HLA-A2.1+ melanoma patients with the immunodominant epitope (residues 27-35) of the differentiation antigen MART-1, but this immunization was not accompanied by a significant clinical response. To implement...... immunotherapeuties capable of significantly impacting disease outcome, it is necessary to identify the potential mechanisms responsible for the failure of some antigens to mediate significant anti-tumor responses in vivo. In the case of the MART-1(27-35) epitope, we hypothesize that one of these mechanisms may...

  5. Nigella sativa modulates splenocyte proliferation, Th1/Th2 cytokine profile, macrophage function and NK anti-tumor activity.

    Science.gov (United States)

    Majdalawieh, Amin F; Hmaidan, Reem; Carr, Ronald I

    2010-09-15

    Nigella sativa, also known as blackseed, has long been used in traditional medicine for treating various conditions related to the respiratory and gastrointestinal systems as well as different types of cancers. In this study, the potential immunomodulatory effects of Nigella sativa are investigated in light of splenocyte proliferation, macrophage function, and NK anti-tumor activity using BLAB/c and C57/BL6 primary cells. Splenocyte proliferation was assessed by [(3)H]-thymidine incorporation. Griess assay was performed to evaluate NO production by macrophages. ELISA was performed to measure the level of cytokines secreted by splenocytes and macrophages. NK cytotoxic activity against YAC-1 tumor cells was examined by JAM assay. We demonstrate that the aqueous extract of Nigella sativa significantly enhances splenocyte proliferation in a dose-responsive manner. In addition, the aqueous extract of Nigella sativa favors the secretion of Th2, versus Th1, cytokines by splenocytes. The secretion of IL-6, TNFalpha, and NO; key pro-inflammatory mediators, by primary macrophages is significantly suppressed by the aqueous extract of Nigella sativa, indicating that Nigella sativa exerts anti-inflammatory effects in vitro. Finally, experimental evidence indicates that the aqueous extract of Nigella sativa significantly enhances NK cytotoxic activity against YAC-1 tumor cells, suggesting that the documented anti-tumor effects of Nigella sativa may be, at least in part, attributed to its ability to serve as a stimulant of NK anti-tumor activity. Our data present Nigella sativa as a traditionally used herb with potent immunomodulatory, anti-inflammatory, and anti-tumor effects. We anticipate that Nigella sativa ingredients may be employed as effective therapeutic agents in the regulation of diverse immune reactions implicated in various conditions and diseases such as cancer. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  6. NKT cells as an ideal anti-tumor immunotherapeutic.

    Science.gov (United States)

    Fujii, Shin-Ichiro; Shimizu, Kanako; Okamoto, Yoshitaka; Kunii, Naoki; Nakayama, Toshinori; Motohashi, Shinichiro; Taniguchi, Masaru

    2013-12-02

    Human natural killer T (NKT) cells are characterized by their expression of an invariant T cell antigen receptor α chain variable region encoded by a Vα24Jα18 rearrangement. These NKT cells recognize α-galactosylceramide (α-GalCer) in conjunction with the MHC class I-like CD1d molecule and bridge the innate and acquired immune systems to mediate efficient and augmented immune responses. A prime example of one such function is adjuvant activity: NKT cells augment anti-tumor responses because they can rapidly produce large amounts of IFN-γ, which acts on NK cells to eliminate MHC negative tumors and also on CD8 cytotoxic T cells to kill MHC positive tumors. Thus, upon administration of α-GalCer-pulsed DCs, both MHC negative and positive tumor cells can be effectively eliminated, resulting in complete tumor eradication without tumor recurrence. Clinical trials have been completed in a cohort of 17 patients with advanced non-small cell lung cancers and 10 cases of head and neck tumors. Sixty percent of advanced lung cancer patients with high IFN-γ production had significantly prolonged median survival times of 29.3 months with only the primary treatment. In the case of head and neck tumors, 10 patients who completed the trial all had stable disease or partial responses 5 weeks after the combination therapy of α-GalCer-DCs and activated NKT cells. We now focus on two potential powerful treatment options for the future. One is to establish artificial adjuvant vector cells containing tumor mRNA and α-GalCer/CD1d. This stimulates host NKT cells followed by DC maturation and NK cell activation but also induces tumor-specific long-term memory CD8 killer T cell responses, suppressing tumor metastasis even 1 year after the initial single injection. The other approach is to establish induced pluripotent stem (iPS) cells that can generate unlimited numbers of NKT cells with adjuvant activity. Such iPS-derived NKT cells produce IFN-γ in vitro and in vivo upon

  7. Treatment response, drug survival, and predictors thereof in 764 patients with psoriatic arthritis treated with anti-tumor necrosis factor α therapy

    DEFF Research Database (Denmark)

    Glintborg, Bente; Østergaard, Mikkel; Dreyer, Lene

    2011-01-01

    Score. Male sex, CRP level >10 mg/liter, concomitant methotrexate use, and low patient health visual analog scale score at baseline were associated with longer drug survival. Improvement was achieved by 59%, 45%, 24%, and 54% of patients according to the ACR20, ACR50, ACR70 response criteria and EULAR...

  8. Culture of Dendritic Cells in vitro and Its Anti-tumor Immonotherapy

    Directory of Open Access Journals (Sweden)

    Yanwen ZHOU

    2010-05-01

    Full Text Available Background and objective Immunocompromised patients with malignant tumor always lack of strong anti-tumor immune response, because the antigenicity of tumor cells is weak, and antigen-presenting cell function is low, so that can not be effectively presenting tumor antigens to the lymphocytes. Therefore, how to effectively induce anti-tumor immune response is the key issue. Through the study on establishing a method to culture dendritic cells (DC in vitro and to observe the anti-lung cancer immunological effect induced by DC, we provided definite experiment basis for the clinic application of vaccine based on DC. Methods Through the experiment we get the soluble antigen polypeptide from lung cancer cells GLC-82 by 3 mol/L potassium chloride. DCs are cultured and obtained from peripheral blood mononuclear cell by GM-CSF, IL-4 and TNF-a. DCs are identified by flow cytometer (FCM and immunostaining. DCs modified by lung cancer tumor soluble antigen (TSA and staphylococcal enterotox in A (SEA, DCs modified by TSA or DCs modified by SEA or DCs modified by nothing were cultivated together with T lymphocyte, and the obtained cells are named TSA-SEA-DCL or TSA-DCL or SEA-DCL or DCL as effector cells. The anti-tumor activity of every effector cells against target cells was assayed with MTT method. Shape of DCs and effector cells, and the process of killing target cells were observed in microscope. Results Induced DCs expressed more CD1a, CD80 and HLA-DR, which had typical cell traits such as tree branch. The killing ratio of the TSA-SEA-DCL in vitro to GLC-82 is larger than TSA-DCL, SEA-DCL and DCL, also larger than to K562. When the effector cells cultivate with target cells, we can observe the CTL approach and gather to the cancer cell, induce it necrosis and apoptosis. Conclusion Ripe DCs that have typical characteristic and phenotype could be induced successfully. High potency and relatively specific antilung caner effect can be prepared in virtue of

  9. Lipid profile of rheumatoid arthritis patients treated with anti-tumor necrosis factor-alpha drugs changes according to disease activity and predicts clinical response.

    Science.gov (United States)

    Cacciapaglia, Fabio; Anelli, Maria Grazia; Rinaldi, Angela; Serafino, Lucia; Covelli, Michele; Scioscia, Crescenzio; Iannone, Florenzo; Lapadula, Giovanni

    2014-11-01

    Patients with active rheumatoid arthritis (RA) frequently show an atherogenic lipid profile, which has been linked with the inflammatory reaction. Inflammatory cytokines, and particularly tumor necrosis factor-alpha (TNF-α), are implicated in the pathogenesis of both atherosclerosis and RA, and also involved in the development of the impaired lipid profile detected in active RA. Although anti-TNF-α agents have been proven effective in controlling joint damage and systemic inflammation, controversy remains about the effect of these drugs on the lipid profile; therefore, the aim of our study was to investigate the effect of anti-TNF-α treatment, in combination with disease-modifying anti-rheumatic drugs (DMARDs) and corticosteroid therapy, on the lipid profile of patients with active RA. Our data suggest that the combination anti-TNF-α/DMARDs/steroids do not significantly interfere with the lipid profile of RA patients. However, analysis of clinical response data showed that patients achieving low disease activity or remission seem to have a protective lipid profile, suggesting that better control of inflammation and disease activity can affect lipid metabolism. The available evidence indicates that high inflammation interferes with lipid metabolism, whereas good control of the chronic inflammatory state may positively influence the lipid profile and cardiovascular risk. Low cholesterol levels at baseline could predict a favorable outcome with anti-TNF-α treatment, but these data need to be confirmed by large prospective studies with long-term follow-up. © 2014 Wiley Periodicals, Inc.

  10. Autophagy: an adaptive metabolic response to stress shaping the antitumor immunity.

    Science.gov (United States)

    Viry, Elodie; Paggetti, Jerome; Baginska, Joanna; Mgrditchian, Takouhie; Berchem, Guy; Moussay, Etienne; Janji, Bassam

    2014-11-01

    Several environmental-associated stress conditions, including hypoxia, starvation, oxidative stress, fast growth and cell death suppression, modulate both cellular metabolism and autophagy to enable cancer cells to rapidly adapt to environmental stressors, maintain proliferation and evade therapies. It is now widely accepted that autophagy is essential to support cancer cell growth and metabolism and that metabolic reprogramming in cancer can also favor autophagy induction. Therefore, this complex interplay between autophagy and tumor cell metabolism will provide unique opportunities to identify new therapeutic targets. As the regulation of the autophagic activity is related to metabolism, it is important to elucidate the exact molecular mechanism which drives it and the functional consequence of its activation in the context of cancer therapy. In this review, we will summarize the role of autophagy in shaping the cellular response to an abnormal tumor microenvironment and discuss some recent results on the molecular mechanism by which autophagy plays such a role in the context of the anti-tumor immune response. We will also describe how autophagy activation can behave as a double-edged sword, by activating the immune response in some circumstances, and impairing the anti-tumor immunity in others. These findings imply that defining the precise context-specific role for autophagy in cancer is critical to guide autophagy-based therapeutics which are becoming key strategies to overcome tumor resistance to therapies. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Mesenchymal Stromal Cells Can Regulate the Immune Response in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Alessandro Poggi

    2016-11-01

    Full Text Available The tumor microenvironment is a good target for therapy in solid tumors and hematological malignancies. Indeed, solid tumor cells’ growth and expansion can influence neighboring cells’ behavior, leading to a modulation of mesenchymal stromal cell (MSC activities and remodeling of extracellular matrix components. This leads to an altered microenvironment, where reparative mechanisms, in the presence of sub-acute inflammation, are not able to reconstitute healthy tissue. Carcinoma cells can undergo epithelial mesenchymal transition (EMT, a key step to generate metastasis; these mesenchymal-like cells display the functional behavior of MSC. Furthermore, MSC can support the survival and growth of leukemic cells within bone marrow participating in the leukemic cell niche. Notably, MSC can inhibit the anti-tumor immune response through either carcinoma-associated fibroblasts or bone marrow stromal cells. Experimental data have indicated their relevance in regulating cytolytic effector lymphocytes of the innate and adaptive arms of the immune system. Herein, we will discuss some of the evidence in hematological malignancies and solid tumors. In particular, we will focus our attention on the means by which it is conceivable to inhibit MSC-mediated immune suppression and trigger anti-tumor innate immunity.

  12. A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma.

    Science.gov (United States)

    Arancibia, Sergio; Espinoza, Cecilia; Salazar, Fabián; Del Campo, Miguel; Tampe, Ricardo; Zhong, Ta-Ying; De Ioannes, Pablo; Moltedo, Bruno; Ferreira, Jorge; Lavelle, Ed C; Manubens, Augusto; De Ioannes, Alfredo E; Becker, María Inés

    2014-01-01

    Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH). This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH) and the Concholepas hemocyanin (CCH). FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4(+) lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α) by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer immunotherapy.

  13. A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma.

    Directory of Open Access Journals (Sweden)

    Sergio Arancibia

    Full Text Available Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH. This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH and the Concholepas hemocyanin (CCH. FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4(+ lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer

  14. The anti-tumor efficacy of 3C23K, a glyco-engineered humanized anti-MISRII antibody, in an ovarian cancer model is mainly mediated by engagement of immune effector cells.

    Science.gov (United States)

    Estupina, Pauline; Fontayne, Alexandre; Barret, Jean-Marc; Kersual, Nathalie; Dubreuil, Olivier; Le Blay, Marion; Pichard, Alexandre; Jarlier, Marta; Pugnière, Martine; Chauvin, Maëva; Chardès, Thierry; Pouget, Jean-Pierre; Deshayes, Emmanuel; Rossignol, Alexis; Abache, Toufik; de Romeuf, Christophe; Terrier, Aurélie; Verhaeghe, Lucie; Gaucher, Christine; Prost, Jean-François; Pèlegrin, André; Navarro-Teulon, Isabelle

    2017-06-06

    Ovarian cancer is the leading cause of death in women with gynecological cancers and despite recent advances, new and more efficient therapies are crucially needed. Müllerian Inhibiting Substance type II Receptor (MISRII, also named AMHRII) is expressed in most ovarian cancer subtypes and is a novel potential target for ovarian cancer immunotherapy. We previously developed and tested 12G4, the first murine monoclonal antibody (MAb) against human MISRII. Here, we report the humanization, affinity maturation and glyco-engineering steps of 12G4 to generate the Fc-optimized 3C23K MAb, and the evaluation of its in vivo anti-tumor activity. The epitopes of 3C23K and 12G4 were strictly identical and 3C23K affinity for MISRII was enhanced by a factor of about 14 (KD = 5.5 × 10-11 M vs 7.9 × 10-10 M), while the use of the EMABling® platform allowed the production of a low-fucosylated 3C23K antibody with a 30-fold KD improvement of its affinity to FcγRIIIa. In COV434-MISRII tumor-bearing mice, 3C23K reduced tumor growth more efficiently than 12G4 and its combination with carboplatin was more efficient than each monotherapy with a mean tumor size of 500, 1100 and 100 mm3 at the end of treatment with 3C23K (10 mg/kg, Q3-4D12), carboplatin (60 mg/kg, Q7D4) and 3C23K+carboplatin, respectively. Conversely, 3C23K-FcKO, a 3C23K form without affinity for the FcγRIIIa receptor, did not display any anti-tumor effect in vivo. These results strongly suggested that 3C23K mechanisms of action are mainly Fc-related. In vitro, antibody-dependent cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP) were induced by 3C23K, as demonstrated with human effector cells. Using human NK cells, 50% of the maximal lysis was obtained with a 46-fold lower concentration of low-fucosylated 3C23K (2.9 ng/ml) than of 3C23K expressed in CHO cells (133.35 ng/ml). As 3C23K induced strong ADCC with human PBMC but almost none with murine PBMC, antibody-dependent cell phagocytosis (ADCP) was

  15. Immunohistochemical analysis of immune response in breast cancer and melanoma patients after laser immunotherapy

    Science.gov (United States)

    Nordquist, Robert E.; Bishop, Shelly L.; Ferguson, Halie; Vaughan, Melville B.; Jose, Jessnie; Kastl, Katherine; Nguyen, Long; Li, Xiaosong; Liu, Hong; Chen, Wei R.

    2011-03-01

    Laser immunotherapy (LIT) has shown great promise in pre-clinical studies and preliminary clinical trials. It could not only eradicate treated local tumors but also cause regression and elimination of untreated metastases at distant sites. Combining a selective photothermal therapy with an active immunological stimulation, LIT can induce systemic anti-tumor immune responses. Imiquimod (IMQ), a toll-like receptor agonist, was used for the treatment of late-stage melanoma patients and glycated chitosan (GC), a biological immunological modulator, was used for the treatment of late-stage breast cancer patients, in combination of irradiation of a near-infrared laser light. To observe the immunological changes before and after LIT treatment, the pathological tissues of melanoma and breast cancer patients were processed for immunohistochemical analysis. Our results show that LIT changed the expressions of several crucial T cell types. Specifically, we observed significant decreases of CD3+ T-cells and a significant increase of CD4+,CD8+, and CD68+ T-cells in the tumor samples after LIT treatment. While not conclusive, our study could shed light on one the possible mechanisms of anti-tumor immune responses induced by LIT. Further studies will be conducted to identify immunological biomarkers associated with LIT-induced clinical response.

  16. [Advances in study on anti-tumor mechanism of andrographolide].

    Science.gov (United States)

    Qi, Cui-Ling; Wang, Li-Jing; Zhou, Xin-Lei

    2007-10-01

    In recent years, more and more attention was payed to the study of andrographolide. Andrographolide has the extensive pharmacological actions, such as anti-tumor, dephlogisticate and antibiosis and anti-virus. It was dected that andrographolide had the action of anti-tumor in gastric cancer, liver cancer, lung cancer and breast cancer. The anti-tumor mechanism of andrographolide was versatile, for instance, andrographolide can induce the apoptosis of cancer cell, inhibit the cell cycle, and increase the antitumor activity of lymphocyte. The following review was about the recent progress of study on the anti-tumor mechanism of andrographolide.

  17. Subversion and coercion: the art of redirecting tumor immune surveillance.

    Science.gov (United States)

    Mumm, John B; Oft, Martin

    2011-01-01

    Tumor immune surveillance and CD8+ T cells in particular appear capable of recognizing the antigenic properties of human tumor cells. However, those antigen specific T cells are often excluded from tumor tissue or are functionally limited in their cytotoxic capacity. Instead, the immune response provides proinflammatory cytokines and proteases promoting tumor growth and progression while subverting cytotoxic anti-tumor immunity. The cytokines and the inflammatory mechanisms driving tumor associated inflammation resemble tissue remodeling processes during wound healing and chronic inflammatory diseases. In this chapter, we summarize the current knowledge of how inflammatory cytokines may promote the deviation of anti-tumor immunity toward a tumor promoting, noncytotoxic inflammation.

  18. Immune Response After Measles Vaccination

    Directory of Open Access Journals (Sweden)

    Bhardwaj A.K

    1991-01-01

    Full Text Available Measles immunization of 192 under 5 years of age children was undertaken and the overall seroconversion was 76.0%. Seroconversion rate in the age group of 9-12 months was 70.9% and it was 100% after one year. Immune response in malnourished children was more as compared to normal children. There were negligible side reactions after measles vaccination, and this vaccine passed normal potency tests under field conditions.

  19. Stimulation of dendritic cells enhances immune response after photodynamic therapy

    Science.gov (United States)

    Mroz, Pawel; Castano, Ana P.; Hamblin, Michael R.

    2009-02-01

    Photodynamic therapy (PDT) involves the administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell necrosis and apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA). The induction of specific CD8+ Tlymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. This process is however, often sub-optimal, in part due to tumor-induced DC dysfunction. Instead of DC that can become mature and activated and have a potent antigen-presenting and immune stimulating phenotype, immature dendritic cells (iDC) are often found in tumors and are part of an immunosuppressive milieu including regulatory T-cells and immunosuppressive cytokines such as TGF-beta and IL10. We here report on the use of a potent DC activating agent, an oligonucleotide (ODN) that contains a non-methylated CpG motif and acts as an agonist of toll like receptor (TLR) 9. TLR activation is a danger signal to notify the immune system of the presence of invading pathogens. CpG-ODN (but not scrambled non-CpG ODN) increased bone-marrow DC activation after exposure to PDT-killed tumor cells, and significantly increased tumor response to PDT and mouse survival after peri-tumoral administration. CpG may be a valuable immunoadjuvant to PDT especially for tumors that produce DC dysfunction.

  20. Anti-tumor effect of polysaccharides from rhizome of Curculigo ...

    African Journals Online (AJOL)

    The anti-tumor effect of PDC on cervical cancer was investigated in vivo in mice injected with Hela cells. The parameters measured were tumor volume and weight. In vitro anti-tumor effects of PDC were assessed by measuring expressions of caspase-3, caspase-9 and P53 proteins in Hela cells via ELISA assay. Thymus ...

  1. Anti-tumor effect of polysaccharides from rhizome of Curculigo ...

    African Journals Online (AJOL)

    Purpose: To investigate the anti-tumor effects of polysaccharides from Curculigo orchioides (PDC) on cervical cancer and the possible mechanisms involved. Methods: A Box–Behnken design (BBD) was employed to optimize extraction conditions for PDC. The anti-tumor effect of PDC on cervical cancer was investigated in ...

  2. New Perspectives on the Role of Vitiligo in Immune Responses to Melanoma

    Science.gov (United States)

    Byrne, Katelyn T.; Turk, Mary Jo

    2011-01-01

    Melanoma-associated vitiligo is the best-studied example of the linkage between tumor immunity and autoimmunity. Although vitiligo is an independent positive prognostic factor for melanoma patients, the autoimmune destruction of melanocytes was long thought to be merely a side effect of robust anti-tumor immunity. However, new data reveal a key role for vitiligo in supporting T cell responses to melanoma. This research perspective reviews the history of melanoma-associated vitiligo in patients, the experimental studies that form the basis for understanding this relationship, and the unique characteristics of melanoma-specific CD8 T cells found in hosts with vitiligo. We also discuss the implications of our recent findings for the interpretation of patient responses, and the design of next-generation cancer immunotherapies. PMID:21911918

  3. Antioxidants Impair Anti-Tumoral Effects of Vorinostat, but Not Anti-Neoplastic Effects of Vorinostat and Caspase-8 Downregulation

    OpenAIRE

    Bergadà, Laura; Yeramian, Andree; Sorolla, Annabel; Matias-Guiu, Xavier; Dolcet, Xavier

    2014-01-01

    We have recently demonstrated that histone deacetylase inhibitor, Vorinostat, applied as a single therapy or in combination with caspase-8 downregulation exhibits high anti-tumoral activity on endometrial carcinoma cell lines. In the present study, we have assessed the signalling processes underlying anti-tumoral effects of Vorinostat. Increasing evidence suggests that reactive oxygen species are responsible for histone deacetylase inhibitor-induced cell killing. We have found that Vorinostat...

  4. Successful generation of primary virus-specific and anti-tumor T-cell responses from the naive donor T-cell repertoire is determined by the balance between antigen-specific precursor T cells and regulatory T cells.

    NARCIS (Netherlands)

    Jedema, I.; Meent, M. van de; Pots, J.M.; Kester, M.G.; Beek, M.T. van der; Falkenburg, J.H.F.

    2011-01-01

    BACKGROUND: One of the major challenges in allogeneic stem cell transplantation is to find a balance between the harmful induction of graft-versus-host disease and the beneficial graft-versus-leukemia and pathogen-specific immune responses. Adoptive transfer of in-vitro generated donor T cells with

  5. An IL12-IL2-antibody fusion protein targeting Hodgkin's lymphoma cells potentiates activation of NK and T cells for an anti-tumor attack.

    Directory of Open Access Journals (Sweden)

    Tobias Jahn

    Full Text Available Successful immunotherapy of Hodgkin's disease is so far hampered by the striking unresponsiveness of lymphoma infiltrating immune cells. To mobilize both adoptive and innate immune cells for an anti-tumor attack we fused the pro-inflammatory cytokines IL2 and IL12 to an anti-CD30 scFv antibody in a dual cytokine fusion protein to accumulate both cytokines at the malignant CD30(+ Hodgkin/Reed-Sternberg cells in the lymphoma lesion. The tumor-targeted IL12-IL2 fusion protein was superior in activating resting T cells to amplify and secrete pro-inflammatory cytokines compared to targeted IL2 or IL12 alone. NK cells were also activated by the dual cytokine protein to secrete IFN-γ and to lyse target cells. The tumor-targeted IL12-IL2, when applied by i.v. injection to immune-competent mice with established antigen-positive tumors, accumulated at the tumor site and induced tumor regression. Data demonstrate that simultaneous targeting of two cytokines in a spatial and temporal simultaneous fashion to pre-defined tissues is feasible by a dual-cytokine antibody fusion protein. In the case of IL12 and IL2, this produced superior anti-tumor efficacy implying the strategy to muster a broader immune cell response in the combat against cancer.

  6. Impact of Depleting Therapeutic Monoclonal Antibodies on the Host Adaptive Immunity: A Bonus or a Malus?

    Directory of Open Access Journals (Sweden)

    Claire Deligne

    2017-08-01

    Full Text Available Clinical responses to anti-tumor monoclonal antibody (mAb treatment have been regarded for many years only as a consequence of the ability of mAbs to destroy tumor cells by innate immune effector mechanisms. More recently, it has also been shown that anti-tumor antibodies can induce a long-lasting anti-tumor adaptive immunity, likely responsible for durable clinical responses, a phenomenon that has been termed the vaccinal effect of antibodies. However, some of these anti-tumor antibodies are directed against molecules expressed both by tumor cells and normal immune cells, in particular lymphocytes, and, hence, can also strongly affect the host adaptive immunity. In addition to a delayed recovery of target cells, lymphocyte depleting-mAb treatments can have dramatic consequences on the adaptive immune cell network, its rebound, and its functional capacities. Thus, in this review, we will not only discuss the mAb-induced vaccinal effect that has emerged from experimental preclinical studies and clinical trials but also the multifaceted impact of lymphocytes-depleting therapeutic antibodies on the host adaptive immunity. We will also discuss some of the molecular and cellular mechanisms of action whereby therapeutic mAbs induce a long-term protective anti-tumor effect and the relationship between the mAb-induced vaccinal effect and the immune response against self-antigens.

  7. Astrocyte immune responses in epilepsy

    NARCIS (Netherlands)

    Aronica, Eleonora; Ravizza, Teresa; Zurolo, Emanuele; Vezzani, Annamaria

    2012-01-01

    Astrocytes, the major glial cell type of the central nervous system (CNS), are known to play a major role in the regulation of the immune/inflammatory response in several human CNS diseases. In epilepsy-associated pathologies, the presence of astrogliosis has stimulated extensive research focused on

  8. Retroviral Replicating Vector Delivery of miR-PDL1 Inhibits Immune Checkpoint PDL1 and Enhances Immune Responses In Vitro

    Directory of Open Access Journals (Sweden)

    Amy H. Lin

    2017-03-01

    Full Text Available Tumor cells express a number of immunosuppressive molecules that can suppress anti-tumor immune responses. Efficient delivery of small interfering RNAs to treat a wide range of diseases including cancers remains a challenge. Retroviral replicating vectors (RRV can be used to stably and selectively introduce genetic material into cancer cells. Here, we designed RRV to express shRNA (RRV-shPDL1 or microRNA30-derived shRNA (RRV-miRPDL1 using Pol II or Pol III promoters to downregulate PDL1 in human cancer cells. We also designed RRV expressing cytosine deaminase (yCD2 and miRPDL1 for potential combinatorial therapy. Among various configurations tested, we showed that RRV-miRPDL1 vectors with Pol II or Pol III promoter replicated efficiently and exhibited sustained downregulation of PDL1 protein expression by more than 75% in human cancer cell lines with high expression of PDL1. Immunologic effects of RRV-miRPDL1 were assessed by a trans-suppression lymphocyte assay. In vitro data showed downregulation of PDL1+ tumor cells restored activation of CD8+ T cells and bio-equivalency compared to anti-PDL1 antibody treatment. These results suggest RRV-miRPDL1 may be an alternative therapeutic approach to enhance anti-tumor immunity by overcoming PDL1-induced immune suppression from within cancer cells and this approach may also be applicable to other cancer targets.

  9. Evaluation of immune response to hepatitis A vaccination and vaccine safety in juvenile idiopathic arthritis

    Directory of Open Access Journals (Sweden)

    Muferet Erguven

    2011-05-01

    Conclusion: Hepatitis A vaccine was safe in patients with JIA, and response to vaccine did not differ between healthy children and patients with JIA except for children with active systemic JIA receiving anti-tumor necrosis factor alpha drugs.

  10. [Screening of the anti-tumor active fraction from Ipomoea batatas Lam. (cv.simon) leaves].

    Science.gov (United States)

    Lü, Shuhe; Lin, Cong; Xu, Pingsheng

    2015-05-01

    Three fractions (SM, SM-A, SM-B) were prepared from different polarity parts of Ipomoea batatas Lam. (cv.simon) leaves and the anti-tumor potency as well as the dose-response relations were evaluated. The anti-tumor activities of fraction SM, SM-A or SM-B were screened by MTS in human hepatic cancer Hep3B cells, lung cancer A549 cells or gastric carcinoma MGC803 cells, respectively. The three fractions all showed anti-tumor activities in three cancer cells with different sensitivity. Among them, SM-B was the most potent fraction with IC50 values at 15.17 mg/L, 72.64 mg/L or 165.47 mg/L in MGC803 cells, A549 cells or Hep3B cells, respectively (P<0.05). Th e extraction of Brazil sweet potato leaves displayed anti-tumor activity and SM-B was the most potent fraction.

  11. [Immune response to influenza vaccination].

    Science.gov (United States)

    Alvarez, I; Corral, J; Arranz, A; Foruria, A; Landa, V; Lejarza, J R; Marijuán, L; Martínez, J M

    1989-01-01

    The present study investigated the level of immunity of the population against three strains of the influenza virus (A Chile/1/83 -A Philippines/2/82 and B URSS/100/83) before and three months after vaccination, and the immune response to whole virus vaccine as compared with fragmented virus vaccine. A high percentage of the population had titers greater than or equal to 1/10 before vaccination for the Chile (54%) and Philippines (65.7%) strains, while titers against the URSS strain were lower (25.4%). There was a definitive increase in antibody titer in the vaccinated population, although it was lower than expected. The overall response to both vaccines, with protecting titers greater than or equal to 1/40 after vaccination was 65.2% for the Chile strain, 74.6% for the Philippines strain, and 15% for the URSS strain. No differences in the overall immune response were found between the groups vaccinated with whole and fragmented virus.

  12. Anti-tumor effects of (1→3)-β-d-glucan from Saccharomyces cerevisiae in S180 tumor-bearing mice.

    Science.gov (United States)

    Mo, Li; Chen, Yafei; Li, Wenjian; Guo, Shuai; Wang, Xuzhao; An, Hailong; Zhan, Yong

    2017-02-01

    (1→3)-β-d-Glucan from Saccharomyces cerevisiae is a typical polysaccharide with various biological effects and is considered a candidate for the prevention and treatment of cancer in vitro. Research into the function of (1→3)-β-d-glucan in tumor-bearing animals in vivo, however, is limited. Here, we investigated the effects of (1→3)-β-d-glucan from S. cerevisiae on S180 tumor-bearing mice and on the immunity of the tumor-bearing host. The molecular mechanisms underlying the observed effects were investigated. (1→3)-β-d-Glucan was shown to exert anti-tumor effects without toxicity in normal mouse cells. The volume and weight of S180 tumors decreased dramatically following treatment with (1→3)-β-d-glucan, and treatment with the polysaccharide was furthermore shown to increase the tumor inhibition rate in a dose-dependent manner. Spleen index, T lymphocyte subsets (CD 4 and CD 8 ), as well as interleukins (IL)-2, (IL-2, IL-6), and tumor necrosis factor-α were assayed to detect the immunoregulatory and anti-tumor effects after (1→3)-β-d-glucan intragastrical administration. (1→3)-β-d-Glucan was shown to significantly potentiate the mouse immune responses by, among other effects, decreasing the ratio of CD 4 to CD 8 . The expression levels of IL-2, IL-6, and TNF-α were also significantly increased by (1→3)-β-d-glucan. These results suggest that (1→3)-β-d-glucan enhances the host's immune function during the tumor inhibition process. S180 tumor cells treated with (1→3)-β-d-glucan also exhibited significant apoptotic characteristics. (1→3)-β-d-glucan increased the ratio of Bax to Bcl-2 at the translation level by up-regulating Bax expression and down-regulating Bcl-2 expression, resulting in the initiation of cell apoptosis in S180 tumor-bearing mice. Taken together, these results indicate that the anti-tumor effects exerted by (1→3)-β-d-glucan may be attributed to the polysaccharide's immunostimulating properties and apoptosis

  13. Fallen angels or risen apes? A tale of the intricate complexities of imbalanced immune responses in the pathogenesis and progression of immune-mediated and viral cancers.

    Science.gov (United States)

    Ondondo, Beatrice Omusiro

    2014-01-01

    Excessive immune responses directed against foreign pathogens, self-antigens, or commensal microflora can cause cancer establishment and progression if the execution of tight immuno-regulatory mechanisms fails. On the other hand, induction of potent tumor antigen-specific immune responses together with stimulation of the innate immune system is a pre-requisite for effective anti-tumor immunity, and if suppressed by the strong immuno-regulatory mechanisms can lead to cancer progression. Therefore, it is crucial that the inevitable co-existence of these fundamental, yet conflicting roles of immune-regulatory cells is carefully streamlined as imbalances can be detrimental to the host. Infection with chronic persistent viruses is characterized by severe immune dysfunction resulting in T cell exhaustion and sometimes deletion of antigen-specific T cells. More often, this is due to increased immuno-regulatory processes, which are triggered to down-regulate immune responses and limit immunopathology. However, such heightened levels of immune disruption cause a concomitant loss of tumor immune-surveillance and create a permissive microenvironment for cancer establishment and progression, as demonstrated by increased incidences of cancer in immunosuppressed hosts. Paradoxically, while some cancers arise as a consequence of increased immuno-regulatory mechanisms that inhibit protective immune responses and impinge on tumor surveillance, other cancers arise due to impaired immuno-regulatory mechanisms and failure to limit pathogenic inflammatory responses. This intricate complexity, where immuno-regulatory cells can be beneficial in certain immune settings but detrimental in other settings underscores the need for carefully formulated interventions to equilibrate the balance between immuno-stimulatory and immuno-regulatory processes.

  14. A HLA-A2-restricted CTL epitope induces anti-tumor effects against human lung cancer in mouse xenograft model.

    Science.gov (United States)

    Sher, Yuh-Pyng; Lin, Su-I; Chen, I-Hua; Liu, Hsin-Yu; Lin, Chen-Yuan; Chiang, I-Ping; Roffler, Steve; Chen, Hsin-Wei; Liu, Shih-Jen

    2016-01-05

    Cancer immunotherapy is attractive for antigen-specific T cell-mediated anti-tumor therapy, especially in induction of cytotoxic T lymphocytes. In this report, we evaluated human CTL epitope-induced anti-tumor effects in human lung cancer xenograft models. The tumor associated antigen L6 (TAL6) is highly expressed in human lung cancer cell lines and tumor specimens as compared to normal lung tissues. TAL6 derived peptides strongly inhibited tumor growth, cancer metastasis and prolonged survival time in HLA-A2 transgenic mice immunized with a formulation of T-helper (Th) peptide, synthetic CpG ODN, and adjuvant Montanide ISA-51 (ISA-51). Adoptive transfer of peptide-induced CTL cells from HLA-A2 transgenic mice into human tumor xenograft SCID mice significantly inhibited tumor growth. Furthermore, combination of CTL-peptide immunotherapy and gemcitabine additively improved the therapeutic effects. This pre-clinical evaluation model provides a useful platform to develop efficient immunotherapeutic drugs to treat lung cancer and demonstrates a promising strategy with benefit of antitumor immune responses worthy of further development in clinical trials.

  15. Cellular immune responses to respiratory viruses

    NARCIS (Netherlands)

    van Helden, M.J.G.

    2011-01-01

    When a respiratory virus successfully infects the lungs, cascades of immune responses are initiated aimed to remove the pathogen. Immediate non-specific protection is provided by the innate immune system and this reduces the viral load during the first days of infection. The adaptive immune response

  16. Tilapia show immunization response against Ich

    Science.gov (United States)

    This study compares the immune response of Nile tilapia and red tilapia against parasite Ichthyophthirius multifiliis (Ich) using a cohabitation challenge model. Both Nile and red tilapia showed strong immune response post immunization with live Ich theronts by IP injection or immersion. Blood serum...

  17. Induction of Anti-Tumor Immune Responses by Peptide Receptor Radionuclide Therapy with (177)Lu-DOTATATE in a Murine Model of a Human Neuroendocrine Tumor

    DEFF Research Database (Denmark)

    Wu, Yin; Pfeifer, Andreas Klaus; Myschetzky, Rebecca

    2013-01-01

    Peptide receptor radionuclide therapy (PRRT) is a relatively new mode of internally targeted radiotherapy currently in clinical trials. In PRRT, ionizing radioisotopes conjugated to somatostatin analogues are targeted to neuroendocrine tumors (NETs) via somatostatin receptors. Despite promising...

  18. Induction of Anti-Tumor Immune Responses by Peptide Receptor Radionuclide Therapy with 177Lu-DOTATATE in a Murine Model of a Human Neuroendocrine Tumor

    Directory of Open Access Journals (Sweden)

    Michael Bzorek

    2013-10-01

    Full Text Available Peptide receptor radionuclide therapy (PRRT is a relatively new mode of internally targeted radiotherapy currently in clinical trials. In PRRT, ionizing radioisotopes conjugated to somatostatin analogues are targeted to neuroendocrine tumors (NETs via somatostatin receptors. Despite promising clinical results, very little is known about the mechanism of tumor control. By using NCI-H727 cells in an in vivo murine xenograft model of human NETs, we showed that 177Lu-DOTATATE PRRT led to increased infiltration of CD86+ antigen presenting cells into tumor tissue. We also found that following treatment with PRRT, there was significantly increased tumor infiltration by CD49b+/FasL+ NK cells potentially capable of tumor killing. Further investigation into the immunomodulatory effects of PRRT will be essential in improving treatment efficacy.

  19. Saffron and natural carotenoids: Biochemical activities and anti-tumor effects.

    Science.gov (United States)

    Bolhassani, Azam; Khavari, Afshin; Bathaie, S Zahra

    2014-01-01

    Saffron, a spice derived from the flower of Crocus sativus, is rich in carotenoids. Two main natural carotenoids of saffron, crocin and crocetin, are responsible for its color. Preclinical studies have shown that dietary intake of some carotenoids have potent anti-tumor effects both in vitro and in vivo, suggesting their potential preventive and/or therapeutic roles in several tissues. The reports represent that the use of carotenoids without the potential for conversion to vitamin A may provide further protection and avoid toxicity. The mechanisms underlying cancer chemo-preventive activities of carotenoids include modulation of carcinogen metabolism, regulation of cell growth and cell cycle progression, inhibition of cell proliferation, anti-oxidant activity, immune modulation, enhancement of cell differentiation, stimulation of cell-to-cell gap junction communication, apoptosis and retinoid-dependent signaling. Taken together, different hypotheses for the antitumor actions of saffron and its components have been proposed such as a) the inhibitory effect on cellular DNA and RNA synthesis, but not on protein synthesis; b) the inhibitory effect on free radical chain reactions; c) the metabolic conversion of naturally occurring carotenoids to retinoids; d) the interaction of carotenoids with topoisomerase II, an enzyme involved in cellular DNA-protein interaction. Furthermore, the immunomodulatory activity of saffron was studied on driving toward Th1 and Th2 limbs of the immune system. In this mini-review, we briefly describe biochemical and immunological activities and chemo-preventive properties of saffron and natural carotenoids as an anticancer drug. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Homeostatic T Cell Expansion to Induce Anti-Tumor Antoimmunity in Breast Cancer

    Science.gov (United States)

    2005-04-01

    response by manipulating the composition of the infused T cells; and (c) to potentiate the anti-tumor effect by using T cell survival and proliferation... antineoplastic drugs with tumor vaccines. Cancer Immunol Immunother 52:680 79. Theofilopoulos AN, Dummer W, Kono DH (2001) T cell homeostasis and systemic...recovered were approved by the Institutional Animal Care Committee. 7 days after transfer had undergone one to four cell divisions, with Donor cells no

  1. The Immune Response of Maternally Immune Chicks to Vaccination ...

    African Journals Online (AJOL)

    The Immune Response of Maternally Immune Chicks to Vaccination with Newcastle Disease Virus. ... G A El-Tayeb, M Y El-Ttegani, I E Hajer, M A Mohammed ... This study was conducted to determine the persistence of maternally derived antibodies (MDA) to Newcastle disease virus (NDV) in newly hatched chicks and the ...

  2. Immune response to fungal infection.

    Science.gov (United States)

    Diamond, R D

    1989-01-01

    In general, fungi are saprophytes that are well adapted to grow in nature supported by diverse nutritional substrates. For fungi, in contrast to many other microorganisms that infect humans, parasitism is an accidental phenomenon rather than an obligatory requirement for survival. Thus, with progressive improvement in our capabilities to prolong survival of patients with global defects in host defense mechanisms, clinical experience suggests that human tissues may support growth of numerous species of saprophytic fungi that share the capacity to grow at 37 degrees C. Normally, however, a broad array of natural and acquired host defense mechanisms make the occurrence of progressive, systemic, life-threatening mycoses extremely rare events. When one or another of these host defense mechanisms is compromised, one of a variety of significant fungal infections may then progress. Mycoses may be broadly categorized into those controlled largely by natural cellular defenses vs. acquired cell-mediated immunity. Notwithstanding data that permit such general classification of host factors controlling one or another invasive mycosis, the diverse structural and antigenic properties of individual fungi create unique patterns of infections in individual, characteristic host settings. Thus, while some broad generalizations are possible, definition of predisposing factors for specific individual mycoses (and, ultimately, prospects for corrective immunotherapy) requires careful characterization of diverse features of fungal forms mediating divergent immune responses.

  3. Effects of Androgen Ablation on Anti-Tumor Immunity

    National Research Council Canada - National Science Library

    Kast, W

    2003-01-01

    ... prostate. Castration of mice stimulates B and T lymphopoiesis, thymic and bone marrow hyperplasia. The induction of apoptotic cell death following androgen ablation is accompanied by an inflammatory infiltrate comprised predominantly of activated T cells...

  4. Amplification of Anti-Tumor Immunity Without Antoimmune Complications

    National Research Council Canada - National Science Library

    Wei, Wei-Zen

    2005-01-01

    The hypothesis is that inactivation of Treg cells accompanied by Neu DNA vaccination will overcome tolerance in BALB NeuT mice and inhibit spontaneous matnmarytunorigenesis or reject an established s.c. tumor...

  5. Amplification of Anti-Tumor Immunity Without Autoimmune Complications

    Science.gov (United States)

    2007-05-01

    neu, and an unrelated self-antigen, thyroglobulin. BALB/c mice were inoculated with TUBO cells expressing an activated rat neu and treated with anti...nonspecific (12, 13) manner through a contact-dependent mechanism. In this study, rat neu is used as the model tumor-associated antigen. Overexpression...experimental autoimmune thyroiditis (24), the murine model of Hashimoto’s thyroiditis. Hashimoto’s thyroid- itis, the leading cause of hypothyroidism , is

  6. The immune response to surgery and infection.

    Science.gov (United States)

    Dąbrowska, Aleksandra M; Słotwiński, Robert

    2014-01-01

    Surgical trauma affects both the innate and acquired immunity. The severity of immune disorders is proportional to the extent of surgical trauma and depends on a number of factors, including primarily the basic disease requiring surgical treatment (e.g. cancer), often coexisting infections and impaired nutritional status. Disorder of the immune response following surgical trauma may predispose to septic complications burdened with the highest mortality rate. Extensive surgery in cancer patients is associated with simultaneous activation of pro- and anti-inflammatory processes defined as SIRS (systemic inflammatory immune response) and CARS (compensatory anti-inflammatory immune response). However, it is generally believed that major surgical trauma is accompanied by sustained postoperative immunosuppression, which is particularly important in patients operated on for cancer, since the suppression of the immune system promotes not only septic complications, but also proliferation and tumor metastasis. This paper reviews the main features of immune response to surgical trauma and possibilities of its regulation.

  7. Radiation effects on tumor-specific DTH response, 2

    International Nuclear Information System (INIS)

    Nobusawa, Hiroshi; Hachisu, Reiko.

    1991-01-01

    Tumor-specific immunity was induced in C3H mice by immunizing with syngeneic MH134 hepatoma cells. Radiation sensitivity of anti-tumor activity of immunized spleen cells were examined and compared with the radiation sensitivity of the delayed-type hypersensitivity (DTH)-response. The spleen cells were irradiated in vitro, then mixed with the tumor cells. DTH-response intensity was determined from the footpad increment twenty-four hours after inoculation of tumor cells with immunized spleen cells. Anti-tumor activity of the spleen cells, based on growth inhibition of tumor cells, was measured by a cytostatic test in vivo with diffusion chambers. Tumor-specific DTH response was suppressed dose-dependently in the range of 12-24 Gy irradiation. No suppression was observed below 12 Gy. Without irradiation, growth of tumor cells was inhibited by immunized spleen cells more effectively than by normal spleen cells. Anti-tumor activity of immunized and normal spleen cells was diminished by irradiation doses of 20 Gy and 10 Gy, respectively. Comparing our report with others that analyzed the type of anti-tumor effector cells induced in this experimental system, we concluded that tumor-specific anti-tumor activity (tumor growth inhibition in vivo) that was radiosensitive at 10-20 Gy depended on a DTH-response. (author)

  8. Enhanced anti-tumor effect of a gene gun-delivered DNA vaccine encoding the human papillomavirus type 16 oncoproteins genetically fused to the herpes simplex virus glycoprotein D

    Directory of Open Access Journals (Sweden)

    M.O. Diniz

    2011-05-01

    Full Text Available Anti-cancer DNA vaccines have attracted growing interest as a simple and non-invasive method for both the treatment and prevention of tumors induced by human papillomaviruses. Nonetheless, the low immunogenicity of parenterally administered vaccines, particularly regarding the activation of cytotoxic CD8+ T cell responses, suggests that further improvements in both vaccine composition and administration routes are still required. In the present study, we report the immune responses and anti-tumor effects of a DNA vaccine (pgD-E7E6E5 expressing three proteins (E7, E6, and E5 of the human papillomavirus type 16 genetically fused to the glycoprotein D of the human herpes simplex virus type 1, which was administered to mice by the intradermal (id route using a gene gun. A single id dose of pgD-E7E6E5 (2 µg/dose induced a strong activation of E7-specific interferon-γ (INF-γ-producing CD8+ T cells and full prophylactic anti-tumor effects in the vaccinated mice. Three vaccine doses inhibited tumor growth in 70% of the mice with established tumors. In addition, a single vaccine dose consisting of the co-administration of pgD-E7E6E5 and the vector encoding interleukin-12 or granulocyte-macrophage colony-stimulating factor further enhanced the therapeutic anti-tumor effects and conferred protection to 60 and 50% of the vaccinated mice, respectively. In conclusion, id administration of pgD-E7E6E5 significantly enhanced the immunogenicity and anti-tumor effects of the DNA vaccine, representing a promising administration route for future clinical trials.

  9. Innate Immune Response to Burkholderia mallei

    Science.gov (United States)

    2017-02-16

    vaccination and therapeutic approaches are necessary for complete protection against B. mallei. Keywords: Innate Immune response, Burkholderia mallei...immune signaling, cellular immunity, vaccine . TR-17-034 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. UNCLASSIFIED...Currently, no licensed vaccines are available for either disease, and medical therapeutic options are limited. Both B. pseudomallei and B. mallei

  10. Cytokines and Immune Responses in Murine Atherosclerosis

    NARCIS (Netherlands)

    Kusters, Pascal J. H.; Lutgens, Esther

    2015-01-01

    Atherosclerosis is an inflammatory disease of the vessel wall characterized by activation of the innate immune system, with macrophages as the main players, as well as the adaptive immune system, characterized by a Th1-dominant immune response. Cytokines play a major role in the initiation and

  11. Gastrointestinal immune responses in HIV infected subjects

    Directory of Open Access Journals (Sweden)

    LRR Castello-Branco

    1996-06-01

    Full Text Available The gut associated lymphoid tissue is responsible for specific responses to intestinal antigens. During HIV infection, mucosal immune deficiency may account for the gastrointestinal infections. In this review we describe the humoral and cellular mucosal immune responses in normal and HIV-infected subjects.

  12. Immune cellular response to HPV: current concepts

    Directory of Open Access Journals (Sweden)

    Maria Alice Guimarães Gonçalves

    Full Text Available Although cellular immunity is essential for the elimination of human papillomavirus (HPV, the mechanisms involved are still poorly understood. We summarize the main mechanisms involved in cellular immune response to infections caused by HPV. Immunotherapies for HPV-related cancers require the disruption of T-cell response control mechanisms, associated with the stimulation of the Th1 cytokine response.

  13. Visualization of Immune Responses in the Cornea.

    Science.gov (United States)

    Perez, Victor L

    2017-11-01

    The eye has become a useful site for the investigation and understanding of local and systemic immune responses. The ease of access and transparency of the cornea permits direct visualization of ocular structures, blood vessels, and lymphatic vessels, allowing for the tracking of normal and pathological biological processes in real time. As a window to the immune system, we have used the eye to dissect the mechanisms of corneal inflammatory reactions that include innate and adaptive immune responses. We have identified that the ocular microenvironment regulates these immune responses by recruiting different populations of inflammatory cells to the cornea through local production of selected chemokines. Moreover, crosstalk between T cells and macrophages is a common and crucial step in the development of ocular immune responses to corneal alloantigens. This review summarizes the data generated by our group using intravital fluorescent confocal microscopy to capture the tempo, magnitude, and function of innate and adaptive corneal immune responses.

  14. Anti-tumor effect of polysaccharides isolated from Taraxacum ...

    African Journals Online (AJOL)

    Original Research Article. Anti-tumor effect of polysaccharides isolated from. Taraxacum mongolicum Hand-Mazz on MCF-7 human breast cancer cells. Hu Niu1,2, JunWei Fan3, ... leading cause of cancer-related death in women worldwide [1]. Currently, breast cancer is the most common cancer among women in China,.

  15. Anti-tumor effect of polysaccharides isolated from Taraxacum ...

    African Journals Online (AJOL)

    The effects of extraction temperature, liquid-solid ratio and extraction time on the yield of PTM were investigated using a Box-Behnken design (BBD). The in vitro anti-tumor effect of PTM on MCF-7 cells was investigated by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, while the mechanism of PTM-induced ...

  16. Avian malaria and bird humoral immune response.

    Science.gov (United States)

    Delhaye, Jessica; Jenkins, Tania; Glaizot, Olivier; Christe, Philippe

    2018-02-09

    Plasmodium parasites are known to impose fitness costs on their vertebrate hosts. Some of these costs are due to the activation of the immune response, which may divert resources away from self-maintenance. Plasmodium parasites may also immuno-deplete their hosts. Thus, infected individuals may be less able to mount an immune response to a new pathogen than uninfected ones. However, this has been poorly investigated. The effect of Plasmodium infection on bird humoral immune response when encountering a novel antigen was tested. A laboratory experiment was conducted on canaries (Serinus canaria) experimentally infected with Plasmodium relictum (lineage SGS1) under controlled conditions. Birds were immune challenged with an intra-pectoral injection of a novel non-pathogenic antigen (keyhole limpet haemocyanin, KLH). One week later they were challenged again. The immune responses to the primary and to the secondary contacts were quantified as anti-KLH antibody production via enzyme-linked immunosorbent assay (ELISA). There was no significant difference in antibody production between uninfected and Plasmodium infected birds at both primary and secondary contact. However, Plasmodium parasite intensity in the blood increased after the primary contact with the antigen. There was no effect of Plasmodium infection on the magnitude of the humoral immune response. However, there was a cost of mounting an immune response in infected individuals as parasitaemia increased after the immune challenge, suggesting a trade-off between current control of chronic Plasmodium infection and investment against a new immune challenge.

  17. Polarization of immune responses in fish

    NARCIS (Netherlands)

    Wiegertjes, Geert F.; Wentzel, Annelieke S.; Spaink, Herman P.; Elks, Philip M.; Fink, Inge R.

    2016-01-01

    In this review, we support taking polarized immune responses in teleost fish from a 'macrophage first' point of view, a hypothesis that reverts the dichotomous T helper (TH)1 and TH2 driving forces by building on the idea of conservation of innate immune responses in lower

  18. The Immune Response to Astrovirus Infection.

    Science.gov (United States)

    Marvin, Shauna A

    2016-12-30

    Astroviruses are one of the leading causes of pediatric gastroenteritis worldwide and are clinically importantly pathogens in the elderly and immunocompromised populations. Although the use of cell culture systems and small animal models have enhanced our understanding of astrovirus infection and pathogenesis, little is known about the immune response to astrovirus infection. Studies from humans and animals suggest that adaptive immunity is important in restricting classic and novel astrovirus infections, while studies from animal models and cell culture systems suggest that an innate immune system plays a role in limiting astrovirus replication. The relative contribution of each arm of the immune system in restricting astrovirus infection remains unknown. This review summarizes our current understanding of the immune response to astrovirus infection and highlights some of the key questions that stem from these studies. A full understanding of the immune response to astrovirus infection is required to be able to treat and control astrovirus-induced gastroenteritis.

  19. Saponin-based adjuvants create a highly effective anti-tumor vaccine when combined with in situ tumor destruction.

    NARCIS (Netherlands)

    Brok, M.H.M.G.M. den; Nierkens, S.; Wagenaars, J.A.L.; Ruers, T.J.M.; Schrier, C.C.; Rijke, E.O.; Adema, G.J.

    2012-01-01

    Today's most commonly used microbial vaccines are essentially composed of antigenic elements and a non-microbial adjuvant, and induce solid amounts of antibodies. Cancer vaccines mostly aim to induce anti-tumor CTL-responses, which require cross-presentation of tumor-derived antigens by dendritic

  20. In situ vaccination by radiotherapy to improve responses to anti-CTLA-4 treatment.

    Science.gov (United States)

    Vanpouille-Box, Claire; Pilones, Karsten A; Wennerberg, Erik; Formenti, Silvia C; Demaria, Sandra

    2015-12-16

    Targeting immune checkpoint receptors has emerged as an effective strategy to induce immune-mediated cancer regression in the subset of patients who have significant pre-existing anti-tumor immunity. For the remainder, effective anti tumor responses may require vaccination. Radiotherapy, traditionally used to achieve local tumor control, has acquired a new role, that of a partner for immunotherapy. Ionizing radiation has pro-inflammatory effects that facilitate tumor rejection. Radiation alters the tumor to enhance the concentration of effector T cells via induction of chemokines, cytokines and adhesion molecules. In parallel, radiation can induce an immunogenic death of cancer cells, promoting cross-presentation of tumor-derived antigens by dendritic cells to T cells. Newly generated anti-tumor immune responses have been demonstrated post-radiation in both murine models and occasional patients, supporting the hypothesis that the irradiated tumor can become an in situ vaccine. It is in this role, that radiation can be applied to induce anti-tumor T cells in lymphocyte-poor tumors, and possibly benefit patients who would otherwise fail to respond to immune checkpoint inhibitors. This review summarizes preclinical and clinical data demonstrating that radiation acts in concert with antibodies targeting the immune checkpoint cytotoxic T-lymphocyte antigen-4 (CTLA-4), to induce therapeutically effective anti-tumor T cell responses in tumors otherwise non responsive to anti-CTLA-4 therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The immune response to surgery and infection

    OpenAIRE

    D?browska, Aleksandra M.; S?otwi?ski, Robert

    2014-01-01

    Surgical trauma affects both the innate and acquired immunity. The severity of immune disorders is proportional to the extent of surgical trauma and depends on a number of factors, including primarily the basic disease requiring surgical treatment (e.g. cancer), often coexisting infections and impaired nutritional status. Disorder of the immune response following surgical trauma may predispose to septic complications burdened with the highest mortality rate. Extensive surgery in cancer patien...

  2. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain...

  3. Update on anti-tumor necrosis factor agents in Crohn disease.

    Science.gov (United States)

    Singh, Siddharth; Pardi, Darrell S

    2014-09-01

    Anti-tumor necrosis factor-α (TNF) agents, including infliximab, adalimumab, and certolizumab pegol, are effective medications for the management of moderate to severe Crohn disease (CD). They are effective in inducing and maintaining clinical remission, inducing mucosal healing, improving quality of life, and reducing the risk of hospitalization and surgery in adult and pediatric patients with CD. Future research into comparative effectiveness of different agents, as well as better understanding of predictors of response, is warranted to allow optimization of therapeutic response. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Cholinergic Modulation of Type 2 Immune Responses

    Directory of Open Access Journals (Sweden)

    Goele Bosmans

    2017-12-01

    Full Text Available In recent years, the bidirectional relationship between the nervous and immune system has become increasingly clear, and its role in both homeostasis and inflammation has been well documented over the years. Since the introduction of the cholinergic anti-inflammatory pathway, there has been an increased interest in parasympathetic regulation of both innate and adaptive immune responses, including T helper 2 responses. Increasing evidence has been emerging suggesting a role for the parasympathetic nervous system in the pathophysiology of allergic diseases, including allergic rhinitis, asthma, food allergy, and atopic dermatitis. In this review, we will highlight the role of cholinergic modulation by both nicotinic and muscarinic receptors in several key aspects of the allergic inflammatory response, including barrier function, innate and adaptive immune responses, and effector cells responses. A better understanding of these cholinergic processes mediating key aspects of type 2 immune disorders might lead to novel therapeutic approaches to treat allergic diseases.

  5. The anti-tumor effect and biological activities of the extract JMM6 ...

    African Journals Online (AJOL)

    Juglans mandshurica Maxim is a traditional herbal medicines in China, and its anti-tumor bioactivities are of research interest. Bioassay-guided fractionation method was employed to isolate anti-tumor compounds from the stem barks of the Juglans mandshurica Maxim. The anti-tumor effect and biological activities of the ...

  6. Combination approaches with immune checkpoint blockade in cancer therapy

    Directory of Open Access Journals (Sweden)

    Maarten Swart

    2016-11-01

    Full Text Available In healthy individuals, immune checkpoint molecules prevent autoimmune responses and limit immune cell-mediated tissue damage. Tumors frequently exploit these molecules to evade eradication by the immune system. Over the past years, immune checkpoint blockade of cytotoxic T lymphocyte antigen-4 (CTLA-4 and programmed death-1 (PD-1 emerged as promising strategies to activate anti-tumor cytotoxic T cell responses. Although complete regression and long-term survival is achieved in some patients, not all patients respond. This review describes promising, novel combination approaches involving immune checkpoint blockade, aimed at increasing response-rates to the single treatments.

  7. Cellular immune response in intraventricular experimental neurocysticercosis.

    Science.gov (United States)

    Moura, Vania B L; Lima, Sarah B; Matos-Silva, Hidelberto; Vinaud, Marina C; Loyola, Patricia R A N; Lino, Ruy S

    2016-03-01

    Neurocysticercosis (NCC) is considered a neglected parasitic infection of the human central nervous system. Its pathogenesis is due to the host immune response, stage of evolution and location of the parasite. The aim of this study was to evaluate the in situ and systemic immune response through cytokines dosage (IL-4, IL-10, IL-17 and IFN-γ) as well as the local inflammatory response of the experimental NCC with Taenia crassiceps. The in situ and systemic cellular and inflammatory immune response were evaluated through the cytokines quantification at 7, 30, 60 and 90 days after inoculation and histopathological analysis. All cysticerci were found within the cerebral ventricles. There was a discrete intensity of inflammatory cells of mixed immune profile, polymorphonuclear and mononuclear cells, at the beginning of the infection and predominance of mononuclear cells at the end. The systemic immune response showed a significant increase in all the analysed cytokines and predominance of the Th2 immune profile cytokines at the end of the infection. These results indicate that the location of the cysticerci may lead to ventriculomegaly. The acute phase of the infection showed a mixed Th1/Th17 profile accompanied by high levels of IL-10 while the late phase showed a Th2 immune profile.

  8. Surviving Sepsis: Taming a Deadly Immune Response

    Science.gov (United States)

    ... Issues Subscribe August 2014 Print this issue Surviving Sepsis Taming a Deadly Immune Response En español Send ... Mouth? Looking at Lupus Wise Choices Signs of Sepsis Sepsis can be hard to spot, because its ...

  9. Immune Response in Hepatitis B Virus Infection

    Science.gov (United States)

    Tan, Anthony; Koh, Sarene; Bertoletti, Antonio

    2015-01-01

    Hepatitis B virus (HBV) can replicate within hepatocytes without causing direct cell damage. The host immune response is, therefore, not only essential to control the spread of virus infection, but it is also responsible for the inflammatory events causing liver pathologies. In this review, we discuss how HBV deals with host immunity and how we can harness it to achieve virus control and suppress liver damage. PMID:26134480

  10. Antioxidants Impair Anti-Tumoral Effects of Vorinostat, but Not Anti-Neoplastic Effects of Vorinostat and Caspase-8 Downregulation

    Science.gov (United States)

    Bergadà, Laura; Yeramian, Andree; Sorolla, Annabel

    2014-01-01

    We have recently demonstrated that histone deacetylase inhibitor, Vorinostat, applied as a single therapy or in combination with caspase-8 downregulation exhibits high anti-tumoral activity on endometrial carcinoma cell lines. In the present study, we have assessed the signalling processes underlying anti-tumoral effects of Vorinostat. Increasing evidence suggests that reactive oxygen species are responsible for histone deacetylase inhibitor-induced cell killing. We have found that Vorinostat induces formation of reactive oxygen species and DNA damage. To investigate the role of oxidative stress as anti-neoplastic mechanism, we have evaluated the effects of different antioxidants (Bha, Nac and Tiron) on endometrial carcinoma cell line Ishikawa treated with Vorinostat. We show that Bha, Nac and Tiron markedly inhibited the cytotoxic effects of Vorinostat, increasing cell viability in vitro. We found that all three antioxidants did not inhibited accumulation of acetyl Histone H4, so that antioxidants did not inhibit Vorinostat activity. Finally, we have evaluated the effects of antioxidants on anti-tumoral activity of Vorinostat as monotherapy or in combination with caspase-8 downregulation in vivo. Interestingly, antioxidants blocked the reduction of tumour growth caused by Vorinostat, but they were unable to inhibit anti-tumoral activity of Vorinostat plus caspase-8 inhibition. PMID:24651472

  11. Antioxidants impair anti-tumoral effects of Vorinostat, but not anti-neoplastic effects of Vorinostat and caspase-8 downregulation.

    Science.gov (United States)

    Bergadà, Laura; Yeramian, Andree; Sorolla, Annabel; Matias-Guiu, Xavier; Dolcet, Xavier

    2014-01-01

    We have recently demonstrated that histone deacetylase inhibitor, Vorinostat, applied as a single therapy or in combination with caspase-8 downregulation exhibits high anti-tumoral activity on endometrial carcinoma cell lines. In the present study, we have assessed the signalling processes underlying anti-tumoral effects of Vorinostat. Increasing evidence suggests that reactive oxygen species are responsible for histone deacetylase inhibitor-induced cell killing. We have found that Vorinostat induces formation of reactive oxygen species and DNA damage. To investigate the role of oxidative stress as anti-neoplastic mechanism, we have evaluated the effects of different antioxidants (Bha, Nac and Tiron) on endometrial carcinoma cell line Ishikawa treated with Vorinostat. We show that Bha, Nac and Tiron markedly inhibited the cytotoxic effects of Vorinostat, increasing cell viability in vitro. We found that all three antioxidants did not inhibited accumulation of acetyl Histone H4, so that antioxidants did not inhibit Vorinostat activity. Finally, we have evaluated the effects of antioxidants on anti-tumoral activity of Vorinostat as monotherapy or in combination with caspase-8 downregulation in vivo. Interestingly, antioxidants blocked the reduction of tumour growth caused by Vorinostat, but they were unable to inhibit anti-tumoral activity of Vorinostat plus caspase-8 inhibition.

  12. Granulomatous salmonella osteomyelitis associated with anti-tumor necrosis factor therapy in a non-sickle cell patient: a case report

    International Nuclear Information System (INIS)

    Gould, Elaine S.; Gilet, Anthony G.; Vigorita, Vincent J.

    2010-01-01

    Salmonella osteomyelitis is seen most commonly in patients with sickle cell disease and in those with compromised immune systems. We report on the clinical, histological and imaging findings of salmonella osteomyelitis with intraosseous abscess formation occurring in a non-sickle cell patient receiving anti-tumor necrosis factor (TNF) alpha therapy. (orig.)

  13. Granulomatous salmonella osteomyelitis associated with anti-tumor necrosis factor therapy in a non-sickle cell patient: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Elaine S.; Gilet, Anthony G. [State University of New York at Stony Brook, Department of Radiology, Stony Brook, NY (United States); Vigorita, Vincent J. [SUNY Health Sciences Center Brooklyn, Department of Pathology and Orthopedics, Brooklyn, NY (United States)

    2010-08-15

    Salmonella osteomyelitis is seen most commonly in patients with sickle cell disease and in those with compromised immune systems. We report on the clinical, histological and imaging findings of salmonella osteomyelitis with intraosseous abscess formation occurring in a non-sickle cell patient receiving anti-tumor necrosis factor (TNF) alpha therapy. (orig.)

  14. Study on the Immunomodulation Effect of Isodon japonicus Extract via Splenocyte Function and NK Anti-Tumor Activity

    Directory of Open Access Journals (Sweden)

    Kyung-A Hwang

    2012-04-01

    Full Text Available Here we investigated the potential immune-enhancing activity of Isodon japonicus on murine splenocyte and natural-killer (NK cells in vitro. The ethanol extract of I. japonicus significantly enhanced the proliferation of splenocyte and induced the significant enhancement of NK cells’ activity against tumor cells (YAC-1. In addition, I. japonicus increased the production of interferon (IFN-γ and tumor necrosis factor (TNF-α, suggesting that the increase in NK cell cytotoxicity could be due to the enhancement of the NK cell production of both cytokines. Taken together, I. japonicus extract inhibited the growth of human leukemia cells (K562 by 74%. Our observation indicated that the anti-tumor effects of I. japonicus may be attributed to its ability to serve as a stimulant of NK anti-tumor activity. In addition, our results support the development of functional food studies on I. japonicus.

  15. Dissolving microneedle delivery of nanoparticle-encapsulated antigen elicits efficient cross-priming and Th1 immune responses by murine Langerhans cells.

    Science.gov (United States)

    Zaric, Marija; Lyubomska, Oksana; Poux, Candice; Hanna, Mary L; McCrudden, Maeliosa T; Malissen, Bernard; Ingram, Rebecca J; Power, Ultan F; Scott, Christopher J; Donnelly, Ryan F; Kissenpfennig, Adrien

    2015-02-01

    Dendritic cells (DCs) of the skin have an important role in skin-mediated immunity capable of promoting potent immune responses. We availed of polymeric dissolving microneedle (MN) arrays laden with nano-encapsulated antigen to specifically target skin DC networks. This modality of immunization represents an economic, efficient, and potent means of antigen delivery directly to skin DCs, which are inefficiently targeted by more conventional immunization routes. Following MN immunization, Langerhans cells (LCs) constituted the major skin DC subset capable of cross-priming antigen-specific CD8+ T cells ex vivo. Although all DC subsets were equally efficient in priming CD4+ T cells, LCs were largely responsible for orchestrating the differentiation of CD4+ IFN-γ- and IL-17-producing effectors. Importantly, depletion of LCs prior to immunization had a profound effect on CD8+ CTL responses in vivo, and vaccinated animals displayed reduced protective anti-tumor and viral immunity. Interestingly, this cross-priming bias was lost following MN immunization with soluble antigen, suggesting that processing and cross-presentation of nano-particulate antigen is favored by LCs. Therefore, these studies highlight the importance of LCs in skin immunization strategies and that targeting of nano-particulate immunogens through dissolvable polymeric MNs potentially provides a promising technological platform for improved vaccination strategies.

  16. The Immune Response to Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Marija Gubina

    2014-01-01

    Full Text Available The immune response to Helicobacter pylori involves different mechanisms that are both protective and damaging to the host. The innate and the adaptive immune responses lead to inflammatory as well as anti-inflammatory responses, allowing for persistence of many infections. Thus, developing new therapeutics and effective vaccines against H. pylori has proven to be arduous. Despite many immunisation experiments, using various routes of immunisation with classical as well as recombinant H. pylori vaccines (urease, CagA, HP-NAP, HspA, DNA, chimeric molecules, live vectors, microspheres, no effective vaccine is currently available for humans. New directions for successful vaccine construction should follow a profound knowledge of immunopathological events during natural H. pylori infection and factors leading to resolution of infection: mandatory is a new knowledge about the interplay of the innate response to H. pylori, mucosal inflammation, H. pylori virulence factors inducing immune responses, regulation of the adaptive responses to H. pylori as well as construction of novel vaccine platforms for achieving a broad immune response, leading to a sterilizing immunity.

  17. Cooperative therapeutic anti-tumor effect of IL-15 agonist ALT-803 and co-targeting soluble NKG2D ligand sMIC.

    Science.gov (United States)

    Basher, Fahmin; Jeng, Emily K; Wong, Hing; Wu, Jennifer

    2016-01-05

    Shedding of the human NKG2D ligand MIC (MHC class I-chain-related molecule) from tumor cell surfaces correlates with progression of many epithelial cancers. Shedding-derived soluble MIC (sMIC) enables tumor immune escape through multiple immune suppressive mechanisms, such as disturbing natural killer (NK) cell homeostatic maintenance, impairing NKG2D expression on NK cells and effector T cells, and facilitating the expansion of arginase I+ myeloid suppressor cells. Our recent study has demonstrated that sMIC is an effective cancer therapeutic target. Whether targeting tumor-derived sMIC would enhance current active immunotherapy is not known. Here, we determined the in vivo therapeutic effect of an antibody co-targeting sMIC with the immunostimulatory IL-15 superagonist complex, ALT-803, using genetically engineered transplantable syngeneic sMIC+ tumor models. We demonstrate that combined therapy of a nonblocking antibody neutralizing sMIC and ALT-803 improved the survival of animals bearing sMIC+ tumors in comparison to monotherapy. We further demonstrate that the enhanced therapeutic effect with combined therapy is through concurrent augmentation of NK and CD8 T cell anti-tumor responses. In particular, expression of activation-induced surface molecules and increased functional potential by cytokine secretion are improved greatly by the administration of combined therapy. Depletion of NK cells abolished the cooperative therapeutic effect. Our findings suggest that administration of the sMIC-neutralizing antibody can enhance the anti-tumor effects of ALT-803. With ALT-803 currently in clinical trials to treat progressive solid tumors, the majority of which are sMIC+, our findings provide a rationale for co-targeting sMIC to enhance the therapeutic efficacy of ALT-803 or other IL-15 agonists.

  18. Plasticity of immunity in response to eating.

    Science.gov (United States)

    Luoma, Rachel L; Butler, Michael W; Stahlschmidt, Zachary R

    2016-07-01

    Following a meal, an animal can exhibit dramatic shifts in physiology and morphology, as well as a substantial increase in metabolic rate associated with the energetic costs of processing a meal (i.e. specific dynamic action, SDA). However, little is known about the effects of digestion on another important physiological and energetically costly trait: immune function. Thus, we tested two competing hypotheses. (1) Digesting animals up-regulate their immune systems (putatively in response to the increased microbial exposure associated with ingested food). (2) Digesting animals down-regulate their immune systems (presumably to allocate energy to the breakdown of food). We assayed innate immunity (lytic capacity and agglutination) in cornsnakes (Pantherophis guttatus) during and after meal digestion. Lytic capacity was higher in females, and (in support of our first hypothesis) agglutination was higher during absorption. Given its potential energetic cost, immune up-regulation may contribute to SDA. © 2016. Published by The Company of Biologists Ltd.

  19. Personalized peptide vaccine-induced immune response associated with long-term survival of a metastatic cholangiocarcinoma patient.

    Science.gov (United States)

    Löffler, Markus W; Chandran, P Anoop; Laske, Karoline; Schroeder, Christopher; Bonzheim, Irina; Walzer, Mathias; Hilke, Franz J; Trautwein, Nico; Kowalewski, Daniel J; Schuster, Heiko; Günder, Marc; Carcamo Yañez, Viviana A; Mohr, Christopher; Sturm, Marc; Nguyen, Huu-Phuc; Riess, Olaf; Bauer, Peter; Nahnsen, Sven; Nadalin, Silvio; Zieker, Derek; Glatzle, Jörg; Thiel, Karolin; Schneiderhan-Marra, Nicole; Clasen, Stephan; Bösmüller, Hans; Fend, Falko; Kohlbacher, Oliver; Gouttefangeas, Cécile; Stevanović, Stefan; Königsrainer, Alfred; Rammensee, Hans-Georg

    2016-10-01

    We report a novel experimental immunotherapeutic approach in a patient with metastatic intrahepatic cholangiocarcinoma. In the 5year course of the disease, the initial tumor mass, two local recurrences and a lung metastasis were surgically removed. Lacking alternative treatment options, aiming at the induction of anti-tumor T cells responses, we initiated a personalized multi-peptide vaccination, based on in-depth analysis of tumor antigens (immunopeptidome) and sequencing. Tumors were characterized by immunohistochemistry, next-generation sequencing and mass spectrometry of HLA ligands. Although several tumor-specific neo-epitopes were predicted in silico, none could be validated by mass spectrometry. Instead, a personalized multi-peptide vaccine containing non-mutated tumor-associated epitopes was designed and applied. Immunomonitoring showed vaccine-induced T cell responses to three out of seven peptides administered. The pulmonary metastasis resected after start of vaccination showed strong immune cell infiltration and perforin positivity, in contrast to the previous lesions. The patient remains clinically healthy, without any radiologically detectable tumors since March 2013 and the vaccination is continued. This remarkable clinical course encourages formal clinical studies on adjuvant personalized peptide vaccination in cholangiocarcinoma. Metastatic cholangiocarcinomas, cancers that originate from the liver bile ducts, have very limited treatment options and a fatal prognosis. We describe a novel therapeutic approach in such a patient using a personalized multi-peptide vaccine. This vaccine, developed based on the characterization of the patient's tumor, evoked detectable anti-tumor immune responses, associating with long-term tumor-free survival. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  20. Immune responsiveness in chronic fatigue syndrome.

    OpenAIRE

    Milton, J. D.; Clements, G. B.; Edwards, R. H.

    1991-01-01

    We have endeavoured to find immunological indications of chronic virus infection in patients with chronic fatigue syndrome (myalgic encephalomyelitis) and to investigate immune responsiveness to viruses in such patients in comparison with normal subjects and patients with muscular dystrophy. Levels of circulating IgM immune complexes were elevated (above the 95% normal control range) in 10 (17%) of 58 patients with chronic fatigue syndrome, which was not significantly different from the norma...

  1. Immune responses after live attenuated influenza vaccination

    Science.gov (United States)

    Mohn, Kristin G.-I.; Smith, Ingrid; Sjursen, Haakon; Cox, Rebecca Jane

    2018-01-01

    ABSTRACT Since 2003 (US) and 2012 (Europe) the live attenuated influenza vaccine (LAIV) has been used as an alternative to the traditional inactivated influenza vaccines (IIV). The immune responses elicted by LAIV mimic natural infection and have been found to provide broader clinical protection in children compared to the IIVs. However, our knowledge of the detailed immunological mechanisims induced by LAIV remain to be fully elucidated, and despite 14 years on the global market, there exists no correlate of protection. Recently, matters are further complicated by differing efficacy data from the US and Europe which are not understood. Better understanding of the immune responses after LAIV may aid in achieving the ultimate goal of a future “universal influenza vaccine”. In this review we aim to cover the current understanding of the immune responses induced after LAIV. PMID:28933664

  2. Skin innate immune response to flaviviral infection.

    Science.gov (United States)

    Garcia, Magali; Wehbe, Michel; Lévêque, Nicolas; Bodet, Charles

    2017-06-01

    Skin is a complex organ and the largest interface of the human body exposed to numerous stress and pathogens. Skin is composed of different cell types that together perform essential functions such as pathogen sensing, barrier maintenance and immunity, at once providing the first line of defense against microbial infections and ensuring skin homeostasis. Being inoculated directly through the epidermis and the dermis during a vector blood meal, emerging Dengue, Zika and West Nile mosquito-borne viruses lead to the initiation of the innate immune response in resident skin cells and to the activation of dendritic cells, which migrate to the draining lymph node to elicit an adaptive response. This literature review aims to describe the inflammatory response and the innate immune signalization pathways involved in human skin cells during Dengue, Zika and West Nile virus infections.

  3. Cancer Immunotherapy Trials Underutilize Immune Response Monitoring.

    Science.gov (United States)

    Connell, Claire M; Raby, Sophie E M; Beh, Ian; Flint, Thomas R; Williams, Edward H; Fearon, Douglas T; Jodrell, Duncan I; Janowitz, Tobias

    2018-01-01

    Immune-related radiological and biomarker monitoring in cancer immunotherapy trials permits interrogation of efficacy and reasons for therapeutic failure. We report the results from a cross-sectional analysis of response monitoring in 685 T-cell checkpoint-targeted cancer immunotherapy trials in solid malignancies, as registered on the U.S. National Institutes of Health trial registry by October 2016. Immune-related radiological response criteria were registered for only 25% of clinical trials. Only 38% of trials registered an exploratory immunological biomarker, and registration of immunological biomarkers has decreased over the last 15 years. We suggest that increasing the utilization of immune-related response monitoring across cancer immunotherapy trials will improve analysis of outcomes and facilitate translational efforts to extend the benefit of immunotherapy to a greater proportion of patients with cancer. © AlphaMed Press 2017.

  4. Studies of Immune Responses in Candida vaginitis

    Science.gov (United States)

    De Bernardis, Flavia; Arancia, Silvia; Sandini, Silvia; Graziani, Sofia; Norelli, Sandro

    2015-01-01

    The widespread occurrence of vaginal candidiasis and the development of resistance against anti-fungal agents has stimulated interest in understanding the pathogenesis of this disease. The aim of our work was to characterize, in an animal model of vaginal candidiasis, the mechanisms that play a role in the induction of mucosal immunity against C. albicans and the interaction between innate and adaptive immunity. Our studies evidenced the elicitation of cell-mediated immunity (CMIs) and antibody (Abs)-mediated immunity with a Th1 protective immunity. An immune response of this magnitude in the vagina was very encouraging to identify the proper targets for new strategies for vaccination or immunotherapy of vaginal candidiasis. Overall, our data provide clear evidence that it is possible to prevent C. albicans vaginal infection by active intravaginal immunization with aspartyl proteinase expressed as recombinant protein. This opens the way to a modality for anti-Candida protection at the mucosa. The recombinant protein Sap2 was assembled with virosomes, and a vaccine PEVION7 (PEV7) was obtained. The results have given evidence that the vaccine, constituted of virosomes and Secretory aspartyl proteinase 2 (Sap2) (PEV7), has an encouraging therapeutic potential for the treatment of recurrent vulvovaginal candidiasis. PMID:26473934

  5. Radiation and PD-(L)1 treatment combinations: immune response and dose optimization via a predictive systems model.

    Science.gov (United States)

    Kosinsky, Yuri; Dovedi, Simon J; Peskov, Kirill; Voronova, Veronika; Chu, Lulu; Tomkinson, Helen; Al-Huniti, Nidal; Stanski, Donald R; Helmlinger, Gabriel

    2018-02-27

    Numerous oncology combination therapies involving modulators of the cancer immune cycle are being developed, yet quantitative simulation models predictive of outcome are lacking. We here present a model-based analysis of tumor size dynamics and immune markers, which integrates experimental data from multiple studies and provides a validated simulation framework predictive of biomarkers and anti-tumor response rates, for untested dosing sequences and schedules of combined radiation (RT) and anti PD-(L)1 therapies. A quantitative systems pharmacology model, which includes key elements of the cancer immunity cycle and the tumor microenvironment, tumor growth, as well as dose-exposure-target modulation features, was developed to reproduce experimental data of CT26 tumor size dynamics upon administration of RT and/or a pharmacological IO treatment such as an anti-PD-L1 agent. Variability in individual tumor size dynamics was taken into account using a mixed-effects model at the level of tumor-infiltrating T cell influx. The model allowed for a detailed quantitative understanding of the synergistic kinetic effects underlying immune cell interactions as linked to tumor size modulation, under these treatments. The model showed that the ability of T cells to infiltrate tumor tissue is a primary determinant of variability in individual tumor size dynamics and tumor response. The model was further used as an in silico evaluation tool to quantitatively predict, prospectively, untested treatment combination schedules and sequences. We demonstrate that anti-PD-L1 administration prior to, or concurrently with RT reveal further synergistic effects, which, according to the model, may materialize due to more favorable dynamics between RT-induced immuno-modulation and reduced immuno-suppression of T cells through anti-PD-L1. This study provides quantitative mechanistic explanations of the links between RT and anti-tumor immune responses, and describes how optimized combinations and

  6. Injury-induced immune responses in Hydra.

    Science.gov (United States)

    Wenger, Yvan; Buzgariu, Wanda; Reiter, Silke; Galliot, Brigitte

    2014-08-01

    The impact of injury-induced immune responses on animal regenerative processes is highly variable, positive or negative depending on the context. This likely reflects the complexity of the innate immune system that behaves as a sentinel in the transition from injury to regeneration. Early-branching invertebrates with high regenerative potential as Hydra provide a unique framework to dissect how injury-induced immune responses impact regeneration. A series of early cellular events likely require an efficient immune response after amputation, as antimicrobial defence, epithelial cell stretching for wound closure, migration of interstitial progenitors toward the wound, cell death, phagocytosis of cell debris, or reconstruction of the extracellular matrix. The analysis of the injury-induced transcriptomic modulations of 2636 genes annotated as immune genes in Hydra identified 43 genes showing an immediate/early pulse regulation in all regenerative contexts examined. These regulations point to an enhanced cytoprotection via ROS signaling (Nrf, C/EBP, p62/SQSMT1-l2), TNFR and TLR signaling (TNFR16-like, TRAF2l, TRAF5l, jun, fos-related, SIK2, ATF1/CREB, LRRC28, LRRC40, LRRK2), proteasomal activity (p62/SQSMT1-l1, Ced6/Gulf, NEDD8-conjugating enzyme Ubc12), stress proteins (CRYAB1, CRYAB2, HSP16.2, DnaJB9, HSP90a1), all potentially regulating NF-κB activity. Other genes encoding immune-annotated proteins such as NPYR4, GTPases, Swap70, the antiproliferative BTG1, enzymes involved in lipid metabolism (5-lipoxygenase, ACSF4), secreted clotting factors, secreted peptidases are also pulse regulated upon bisection. By contrast, metalloproteinases and antimicrobial peptide genes largely follow a context-dependent regulation, whereas the protease inhibitor α2macroglobulin gene exhibits a sustained up-regulation. Hence a complex immune response to injury is linked to wound healing and regeneration in Hydra. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights

  7. L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity.

    Science.gov (United States)

    Geiger, Roger; Rieckmann, Jan C; Wolf, Tobias; Basso, Camilla; Feng, Yuehan; Fuhrer, Tobias; Kogadeeva, Maria; Picotti, Paola; Meissner, Felix; Mann, Matthias; Zamboni, Nicola; Sallusto, Federica; Lanzavecchia, Antonio

    2016-10-20

    Metabolic activity is intimately linked to T cell fate and function. Using high-resolution mass spectrometry, we generated dynamic metabolome and proteome profiles of human primary naive T cells following activation. We discovered critical changes in the arginine metabolism that led to a drop in intracellular L-arginine concentration. Elevating L-arginine levels induced global metabolic changes including a shift from glycolysis to oxidative phosphorylation in activated T cells and promoted the generation of central memory-like cells endowed with higher survival capacity and, in a mouse model, anti-tumor activity. Proteome-wide probing of structural alterations, validated by the analysis of knockout T cell clones, identified three transcriptional regulators (BAZ1B, PSIP1, and TSN) that sensed L-arginine levels and promoted T cell survival. Thus, intracellular L-arginine concentrations directly impact the metabolic fitness and survival capacity of T cells that are crucial for anti-tumor responses. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Immune Responses Involved in Mycobacterium Tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Roghayeh Teimourpour

    2016-09-01

    Full Text Available Background and Objectives: Mycobacterium tuberculosis is the causative agent of tuberculosis (TB. Approximately one-third of the world's population is infected with M. tuberculosis. Despite the availability of drug and vaccine, it remains one of the leading causes of death in humans especially in developing countries. Epidemiological studies have indicated that only 10-30% of people exposed to tubercle bacillus are infected with M. tuberculosis, and at least 90% of the infected people finally do not acquire TB. The studies have indicated that the host efficient immune system has essential roles in the control of TB infection such that the highest rate of mortality and morbidity is seen in immunocompromised patients such as people infected with HIV. M. tuberculosis is an obligatory intracellular bacterium. It enters the body mainly through the respiratory tract and alveolar macrophages combat this pathogen most commonly. In addition to alveolar macrophages, various T-cell subpopulations need to be activated to overcome this bacterium's resistance to the host defense systems. CD4+ T cells, through production of several cytokines such as IFN-γ and TNF-α, and CD8+ T cells, through cytotoxic activities and induction of apoptosis in infected cells, play critical roles in inducing appropriate immune responses against M. tuberculosis. Although cell-mediated immunity is the cornerstone of host responses against TB and the recent studies have provided evidence for the importance of humoral and innate immune system in the control of TB, a profound understanding of the immune responses would provide a basis for development of new generations of vaccines and drugs. The present study addresses immune responses involved in M. tuberculosis infection.

  9. Regulatory T Cells and Host Anti-CML Responses

    National Research Council Canada - National Science Library

    Wong, Jr, K. K

    2008-01-01

    CD4+CD25+FoxP-3+ regulatory T-cells (Tregs) suppress immune responses to "self" antigens, but also have been shown to suppress host anti-tumor responses in several human malignancies, including breast, gastrointestinal, and ovarian cancer...

  10. Immune Response to Dengue and Zika.

    Science.gov (United States)

    Elong Ngono, Annie; Shresta, Sujan

    2018-01-18

    Flaviviruses such as dengue (DENV), yellow fever (YFV), West Nile (WNV), and Zika (ZIKV) are human pathogens of global significance. In particular, DENV causes the most prevalent mosquito-borne viral diseases in humans, and ZIKV emerged from obscurity into the spotlight in 2016 as the etiologic agent of congenital Zika syndrome. Owing to the recent emergence of ZIKV as a global pandemic threat, the roles of the immune system during ZIKV infections are as yet unclear. In contrast, decades of DENV research implicate a dual role for the immune system in protection against and pathogenesis of DENV infection. As DENV and ZIKV are closely related, knowledge based on DENV studies has been used to prioritize investigation of ZIKV immunity and pathogenesis, and to accelerate ZIKV diagnostic, therapeutic, and vaccine design. This review discusses the following topics related to innate and adaptive immune responses to DENV and ZIKV: the interferon system as the key mechanism of host defense and viral target for immune evasion, antibody-mediated protection versus antibody-dependent enhancement, and T cell-mediated protection versus original T cell antigenic sin. Understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during DENV and ZIKV infections is critical toward development of safe and effective DENV and ZIKV therapeutics and vaccines. Expected final online publication date for the Annual Review of Immunology Volume 36 is April 26, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  11. Immune Response in Mussels To Environmental Pollution.

    Science.gov (United States)

    Pryor, Stephen C.; Facher, Evan

    1997-01-01

    Describes the use of mussels in measuring the extent of chemical contamination and its variation in different coastal regions. Presents an experiment to introduce students to immune response and the effects of environmental pollution on marine organisms. Contains 14 references. (JRH)

  12. Innate Immune Sensing and Response to Influenza

    Science.gov (United States)

    Pulendran, Bali; Maddur, Mohan S.

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocom-promised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza. PMID:25078919

  13. Adrenaline influence on the immune response. I

    International Nuclear Information System (INIS)

    Depelchin, A.; Letesson, J.J.

    1981-01-01

    The intervention of adrenaline in the immunoregulation was investigated through the modification of the anti-SRBC PFC response of mice after its i.p. administration (4 μg) at various intervals before SRBC antigen. When the interval was less than 24 h, adrenaline accelerated the immune kinetics. This modification was apparent on both direct and indirect PFC, as well as on naive and immune mice. However, mice treated from 2 days showed a suppression of the response. The adrenaline affect subsisted on the adoptive response of spleen cells drug-treated either in vivo or in vitro. The mitogenic response after in vitro PHA or LPS stimulation of spleen cells from adrenaline-treated mice indicated that the T-cells were the drug target. The physiological role of the adrenaline and immunological influences of acute stress are discussed in the paper. The stress was provided by gamma irradiation. (Auth.)

  14. Protective immune responses in lawsonia intracellularis infections

    DEFF Research Database (Denmark)

    Cordes, Henriette; Riber, Ulla; Boutrup, Torsten

    and no increase in acute phase response after challenge with a pathogenic isolate. Here we show results from measurements of serology as well as cell-mediated immune responses from this experiment. We found that Lawsonia-specific IgA peaked in serum around day 17-24 after a primary infection in experimentally......, but exhibited a high, but short-lasting peak after re-infection. Specific IFN responses were also measured using a whole blood IFN-γ assay. These were very high in challenge infected and re-infected animals as compared to controls. These specific immune responses may contribute to the explanation of mechanisms......Lawsonia intracellularis is the cause of porcine proliferative enteropathy, one of the major causes of antibiotics usage in modern pig production. L. intracellularis is an obligate intracellular bacterium preferable infecting epithelial cells of pigs intestine. We have demonstrated earlier...

  15. Humoral immune response to AAV

    Directory of Open Access Journals (Sweden)

    Roberto eCalcedo

    2013-10-01

    Full Text Available Adeno-associated virus (AAV is a member of the family parvoviridae that has been widely used as a vector for gene therapy because of its safety profile, its ability to transduce both dividing and non-dividing cells, and its low immunogenicity. AAV has been detected in many different tissues of several animal species but has not been associated with any disease. As a result of natural infections, antibodies to AAV can be found in many animals including humans. It has been shown that pre-existing AAV antibodies can modulate the safety and efficacy of AAV vector-mediated gene therapy by blocking vector transduction or by redirecting distribution of AAV vectors to tissues other than the target organ. This review will summarize antibody responses against natural AAV infections, as well as AAV gene therapy vectors and their impact in the clinical development of AAV vectors for gene therapy. We will also review and discuss the various methods used for AAV antibody detection and strategies to overcome neutralizing antibodies in AAV-mediated gene therapy.

  16. A model of auto immune response

    OpenAIRE

    Peterson, James K.; Kesson, Alison M.; King, Nicholas J. C.

    2017-01-01

    Background In this work, we develop a theoretical model of an auto immune response. This is based on modifications of standard second messenger trigger models using both signalling pathways and diffusion and a macro level dynamic systems approximation to the response of a triggering agent such as a virus, bacteria or environmental toxin. Results We show that there, in general, will be self damage effects whenever the triggering agent?s effect on the host can be separated into two distinct cla...

  17. Pulmonary contusion primes systemic innate immunity responses.

    Science.gov (United States)

    Hoth, J Jason; Martin, R S; Yoza, Barbara K; Wells, Jonathan D; Meredith, J W; McCall, Charles E

    2009-07-01

    Traumatic injury may result in an exaggerated response to subsequent immune stimuli such as nosocomial infection. This "second hit" phenomenon and molecular mechanism(s) of immune priming by traumatic lung injury, specifically, pulmonary contusion, remain unknown. We used an animal model of pulmonary contusion to determine whether the injury resulted in priming of the innate immune response and to test the hypothesis that resuscitation fluids could attenuate the primed response to a second hit. Male, 8 to 9 weeks, C57/BL6 mice with a pulmonary contusion were challenged by a second hit of intratracheal administration of the Toll-like receptor 4 agonist, lipopolysaccharide (LPS, 50 microg) 24 hours after injury (injury + LPS). Other experimental groups were injury + vehicle or LPS alone. A separate group was injured and resuscitated by 4 cc/kg of hypertonic saline (HTS) or Lactated Ringer's (LR) resuscitation before LPS challenge. Mice were killed 4 hours after LPS challenge and blood, bronchoalveolar lavage, and tissue were isolated and analyzed. Data were analyzed using one-way analysis of variance with Bonferroni multiple comparison posttest for significant differences (*p < or = 0.05). Injury + LPS showed immune priming observed by lung injury histology and increased bronchoalveolar lavage neutrophilia, lung myeloperoxidase and serum IL-6, CXCL1, and MIP-2 levels when compared with injury + vehicle or LPS alone. After injury, resuscitation with HTS, but not Lactated Ringer's was more effective in attenuating the primed response to a second hit. Pulmonary contusion primes innate immunity for an exaggerated response to a second hit with the Toll-like receptor 4 agonist, LPS. We observed synergistic increases in inflammatory mediator expression in the blood and a more severe lung injury in injured animals challenged with LPS. This priming effect was reduced when HTS was used to resuscitate the animal after lung contusion.

  18. Construction of a fusion plasmid containing the PSCA gene and cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) and its anti-tumor effect in an animal model of prostate cancer.

    Science.gov (United States)

    Mai, T J; Ma, R; Li, Z; Bi, S C

    2016-10-24

    Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is a negative regulator of T cell activation, which competes with CD28 for B7.1/B7.2 binding, and which has a greater affinity. Fusion of specific antigens to extracellular domain of CTLA4 represents a promising approach to increase the immunogenicity of DNA vaccines. In this study, we evaluated this interesting approach for CTLA4 enhancement on prostate stem cell antigen (PSCA)-specific immune responses and its anti-tumor effects in a prostate cancer mouse model. Consequently, we constructed a DNA vaccine containing the PSCA and the CTLA-4 gene. Vaccination with the CTLA4-fused DNA not only induced a much higher level of anti-PSCA antibody, but also increased PSCA-specific T cell response in mice. To evaluate the anti-tumor efficacy of the plasmids, murine models with PSCA-expressing tumors were generated. After injection of the tumor-bearing mouse model, the plasmid carrying the CTLA4 and PSCA fusion gene showed stronger inhibition of tumor growth than the plasmid expressing PSCA alone. These observations emphasize the potential of the CTLA4-fused DNA vaccine, which could represent a promising approach for tumor immunotherapy.

  19. Construction of a fusion plasmid containing the PSCA gene and cytotoxic T-lymphocyte associated antigen-4 (CTLA-4 and its anti-tumor effect in an animal model of prostate cancer

    Directory of Open Access Journals (Sweden)

    T.J. Mai

    Full Text Available Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4 is a negative regulator of T cell activation, which competes with CD28 for B7.1/B7.2 binding, and which has a greater affinity. Fusion of specific antigens to extracellular domain of CTLA4 represents a promising approach to increase the immunogenicity of DNA vaccines. In this study, we evaluated this interesting approach for CTLA4 enhancement on prostate stem cell antigen (PSCA-specific immune responses and its anti-tumor effects in a prostate cancer mouse model. Consequently, we constructed a DNA vaccine containing the PSCA and the CTLA-4 gene. Vaccination with the CTLA4-fused DNA not only induced a much higher level of anti-PSCA antibody, but also increased PSCA-specific T cell response in mice. To evaluate the anti-tumor efficacy of the plasmids, murine models with PSCA-expressing tumors were generated. After injection of the tumor-bearing mouse model, the plasmid carrying the CTLA4 and PSCA fusion gene showed stronger inhibition of tumor growth than the plasmid expressing PSCA alone. These observations emphasize the potential of the CTLA4-fused DNA vaccine, which could represent a promising approach for tumor immunotherapy.

  20. Ovine model for studying pulmonary immune responses

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Chanana, A.D.

    1984-11-25

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with /sup 125/I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables.

  1. Immune Response to Lipoproteins in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Sonia Samson

    2012-01-01

    Full Text Available Atherosclerosis, the underlying cause of cardiovascular disease, is characterized by chronic inflammation and altered immune response. Cholesterol is a well-known risk factor associated with the development of cardiovascular diseases. Elevated serum cholesterol is unique because it can lead to development of atherosclerosis in animals and humans even in the absence of other risk factors. Modifications of low-density lipoproteins mediated by oxidation, enzymatic degradation, and aggregation result in changes in their function and activate both innate and adaptive immune system. Oxidized low-density lipoprotein (LDL has been identified as one of the most important autoantigens in atherosclerosis. This escape from self-tolerance is dependent on the formation of oxidized phospholipids. The emerging understanding of the importance of immune responses against oxidized LDL in atherosclerosis has focused attention on the possibility of development of novel therapy for atherosclerosis. This review provides an overview of immune response to lipoproteins and the fascinating possibility of developing an immunomodulatory therapy for atherosclerosis.

  2. Ovine model for studying pulmonary immune responses

    International Nuclear Information System (INIS)

    Joel, D.D.; Chanana, A.D.

    1984-01-01

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with 125 I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables

  3. Immune responses to Dermatophilus congolensis infections.

    Science.gov (United States)

    Ambrose, N; Lloyd, D; Maillard, J C

    1999-07-01

    Complex mechanisms underly the establishment of dermatophilosis, an exudative and proliferative skin disease of ruminants. This multicomponent system involves the bacterium Dermatophilus congolensis, transmission by various routes including flies, host genetic factors and immunosuppression by Amblyomma variegatum ticks. Here, Nick Ambrose and colleagues summarize recent evidence for an association between A. variegatum and severe chronic dermatophilosis in cattle. Breed-based differences in resistance to dermatophilosis are probably related to immunity to ticks or resistance to the immunosuppressive effects of ticks. Immunity to dermatophilosis might involve non-classic responses mediated by CD1 antigen presentation and gammadelta T cells. Progress towards vaccination is further complicated by strain-specific acquired immunity to D. congolensis.

  4. Cyclophosphamide chemotherapy sensitizes tumor cells to TRAIL-dependent CD8 T cell-mediated immune attack resulting in suppression of tumor growth.

    Directory of Open Access Journals (Sweden)

    Robbert G van der Most

    Full Text Available BACKGROUND: Anti-cancer chemotherapy can be simultaneously lymphodepleting and immunostimulatory. Pre-clinical models clearly demonstrate that chemotherapy can synergize with immunotherapy, raising the question how the immune system can be mobilized to generate anti-tumor immune responses in the context of chemotherapy. METHODS AND FINDINGS: We used a mouse model of malignant mesothelioma, AB1-HA, to investigate T cell-dependent tumor resolution after chemotherapy. Established AB1-HA tumors were cured by a single dose of cyclophosphamide in a CD8 T cell- and NK cell-dependent manner. This treatment was associated with an IFN-alpha/beta response and a profound negative impact on the anti-tumor and total CD8 T cell responses. Despite this negative effect, CD8 T cells were essential for curative responses. The important effector molecules used by the anti-tumor immune response included IFN-gamma and TRAIL. The importance of TRAIL was supported by experiments in nude mice where the lack of functional T cells could be compensated by agonistic anti-TRAIL-receptor (DR5 antibodies. CONCLUSION: The data support a model in which chemotherapy sensitizes tumor cells for T cell-, and possibly NK cell-, mediated apoptosis. A key role of tumor cell sensitization to immune attack is supported by the role of TRAIL in tumor resolution and explains the paradox of successful CD8 T cell-dependent anti-tumor responses in the absence of CD8 T cell expansion.

  5. OFFICIAL MEDICATIONS FOR ANTI-TUMOR GENE THERAPY

    Directory of Open Access Journals (Sweden)

    E. R. Nemtsova

    2016-01-01

    Full Text Available This is a review of modern literature data of official medications for anti-tumor gene therapy as well as of medications that finished clinical trials.The article discusses the concept of gene therapy, the statistical analysis results of initiated clinical trials of gene products, the most actively developing directions of anticancer gene therapy, and the characteristics of anti-tumor gene medications.Various delivery systems for gene material are being examined, including viruses that are defective in  replication (Gendicine™ and Advexin and oncolytic (tumor specific conditionally replicating viruses (Oncorine™, ONYX-015, Imlygic®.By now three preparations for intra-tumor injection have been introduced into oncology clinical practice: two of them – Gendicine™ and Oncorine™ have been registered in China, and one of them – Imlygic® has been registered in the USA. Gendicine™ and Oncorine™ are based on the wild type p53 gene and are designed for treatment of patients with head and neck malignancies. Replicating adenovirus is the delivery system in Gendicine™, whereas oncolytic adenovirus is the vector for gene material in Oncorine™. Imlygic® is based on the  recombinant replicating HSV1 virus with an introduced GM–CSF gene and is designed for treatment of  melanoma patients. These medications are well tolerated and do not cause any serious adverse events. Gendicine™ and Oncorine™ are not effective in monotherapy but demonstrate pronounced synergism with chemoand radiation therapy. Imlygic® has just started the post marketing trials.

  6. Optimal MHC-II-restricted tumor antigen presentation to CD4+ T helper cells: the key issue for development of anti-tumor vaccines

    Directory of Open Access Journals (Sweden)

    Accolla Roberto S

    2012-07-01

    Full Text Available Abstract Present immunoprevention and immunotherapeutic approaches against cancer suffer from the limitation of being not “sterilizing” procedures, as very poor protection against the tumor is obtained. Thus newly conceived anti-tumor vaccination strategies are urgently needed. In this review we will focus on ways to provide optimal MHC class II-restricted tumor antigen presentation to CD4+ T helper cells as a crucial parameter to get optimal and protective adaptive immune response against tumor. Through the description of successful preventive or therapeutic experimental approaches to vaccinate the host against the tumor we will show that optimal activation of MHC class II-restricted tumor specific CD4+ T helper cells can be achieved in various ways. Interestingly, the success in tumor eradication and/or growth arrest generated by classical therapies such as radiotherapy and chemotherapy in some instances can be re-interpreted on the basis of an adaptive immune response induced by providing suitable access of tumor-associated antigens to MHC class II molecules. Therefore, focussing on strategies to generate better and suitable MHC class II–restricted activation of tumor specific CD4+ T helper cells may have an important impact on fighting and defeating cancer.

  7. Multiscale modeling of mucosal immune responses

    Science.gov (United States)

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut

  8. Quantitating cellular immune responses to cancer vaccines.

    Science.gov (United States)

    Lyerly, H Kim

    2003-06-01

    While the future of immunotherapy in the treatment of cancer is promising, it is difficult to compare the various approaches because monitoring assays have not been standardized in approach or technique. Common assays for measuring the immune response need to be established so that these assays can one day serve as surrogate markers for clinical response. Assays that accurately detect and quantitate T-cell-mediated, antigen-specific immune responses are particularly desired. However, to date, increases in the number of cytotoxic T cells through immunization have not been correlated with clinical tumor regression. Ideally, then, a T-cell assay not only needs to be sensitive, specific, reliable, reproducible, simple, and quick to perform, it must also demonstrate close correlation with clinical outcome. Assays currently used to measure T-cell response are delayed-type hypersensitivity testing, flow cytometry using peptide major histocompatibility complex tetramers, lymphoproliferation assay, enzyme-linked immunosorbant assay, enzyme-linked immunospot assay, cytokine flow cytometry, direct cytotoxicity assay, measurement of cytokine mRNA by quantitative reverse transcriptase polymerase chain reaction, and limiting dilution analysis. The purpose of this review is to describe the attributes of each test and compare their advantages and disadvantages.

  9. Recognition of melanoma-derived antigens by CTL: possible mechanisms involved in down-regulating anti-tumor T-cell reactivity

    DEFF Research Database (Denmark)

    Rivoltini, L; Loftus, D J; Squarcina, P

    1998-01-01

    Several T cell-recognized epitopes presented by melanoma cells have been identified recently. Despite the large array of epitopes potentially available for clinical use, it is still unclear which of these antigens could be effective in mediating anti-tumor responses when used as a vaccine...

  10. Improvement in patient-reported outcomes in a rituximab trial in patients with severe rheumatoid arthritis refractory to anti-tumor necrosis factor therapy

    NARCIS (Netherlands)

    Keystone, E.; Burmester, G. R.; Furie, R.; Loveless, J. E.; Emery, P.; Kremer, J.; Tak, P. P.; Broder, M. S.; Yu, E.; Cravets, M.; Magrini, F.; Jost, F.

    2008-01-01

    OBJECTIVE: To assess the effects of treatment with rituximab plus methotrexate on patient-reported outcomes in patients with active rheumatoid arthritis (RA) who experienced inadequate response to anti-tumor necrosis factor therapy. METHODS: Patients with active RA were randomly assigned to

  11. Prophylactic DNA vaccine targeting Foxp3+ regulatory T cells depletes myeloid-derived suppressor cells and improves anti-melanoma immune responses in a murine model.

    Science.gov (United States)

    Namdar, Afshin; Mirzaei, Reza; Memarnejadian, Arash; Boghosian, Roobina; Samadi, Morteza; Mirzaei, Hamid Reza; Farajifard, Hamid; Zavar, Mehdi; Azadmanesh, Kayhan; Elahi, Shokrollah; Noorbakhsh, Farshid; Rezaei, Abbas; Hadjati, Jamshid

    2018-03-01

    Regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) are the two important and interactive immunosuppressive components of the tumor microenvironment that hamper anti-tumor immune responses. Therefore, targeting these two populations together might be beneficial for overcoming immune suppression in the tumor microenvironment. We have recently shown that prophylactic Foxp3 DNA/recombinant protein vaccine (Foxp3 vaccine) promotes immunity against Treg in tumor-free conditions. In the present study, we investigated the immune modulatory effects of a prophylactic regimen of the redesigned Foxp3 vaccine in the B16F10 melanoma model. Our results indicate that Foxp3 vaccination continuously reduces Treg population in both the tumor site and the spleen. Surprisingly, Treg reduction was associated with a significant decrease in the frequency of MDSC, both in the spleen and in the tumor environment. Furthermore, Foxp3 vaccination resulted in a significant reduction of arginase-1(Arg-1)-induced nitric oxide synthase (iNOS), reactive oxygen species (ROS) and suppressed MDSC activity. Moreover, this concurrent depletion restored production of inflammatory cytokine IFN-γ and enhanced tumor-specific CTL response, which subsequently resulted in the reduction of tumor growth and the improved survival rate of vaccinated mice. In conclusion, our results revealed that Foxp3 vaccine promotes an immune response against tumor by targeting both Treg and MDSC, which could be exploited as a potential immunotherapy approach.

  12. Manipulations of the immune response in the chicken

    International Nuclear Information System (INIS)

    Bixler, G.S. Jr.

    1978-01-01

    The chicken with its dissociation of immune responses in cell-mediated immunity, dependent on the thymus, and humoral immunity, dependent on the bursa of Fabricius, provides a unique model for studying the two components of the immune system. While there are methods of obtaining selective, profound deficiency of humoral immunity, in this species, methods for obtaining a consistent, profound selective deficiency of cell-mediated immunity have been lacking. Oxisuran, 2[(methylsulfinyl)acetal] pyridine, has been reported to have the unique ability to differentially suppress cell-mediated immunity in several species of mammals without a concomitant reduction in antibody forming capacity. The effect of this compound on two parameters of cell-mediated immune responses in chickens was investigated. In further attempts to create a deficiency of both cell-mediated and humoral immunity, the effects of a combination of cyclophosphamide treatment and x-irradiation early in life on immune responses were studied

  13. Experimental study of anti-tumor activity of direct current

    International Nuclear Information System (INIS)

    Ito, Hisao; Hashimoto, Shozo

    1989-01-01

    The anti-tumor activity of direct current combined with radiation was studied. The experiments were performed with fibrosarcomas (FSA, NFSA) syngenetic to C3H mice. Direct current (0.6mA, 120min) alone was effective to reduce the tumor sizes, but could not cure the tumors. When the direct current therapy (DC therapy) was combined with radiation the DC therapy following radiation was more effective than that before radiation. Using TCD 50 assay, the DC therapy enhanced the effect of a single dose of radiation with the dose-modifying factor of 1.2. However, tumor control rates by the combination therapy were more improved at the smaller doses of radiation than at the larger ones. When the single DC therapy (0.6mA, 120min) was applied immediately after the first radiation of fractionated one the combination therapy still showed the enhanced effect. However, both DC therapy and the radiation therapy were divided in three fractions, and the DC therapy (0.6mA, 40min) was applied after each radiation. Tumor growth retardation by the combination therapy was no different from that by radiation alone. This result suggests that there might be a minimum required dose of coulombs to show the effect of the combination therapy. (author)

  14. Anti-Tumor Activity of a Polysaccharide from Blueberry

    Directory of Open Access Journals (Sweden)

    Xiyun Sun

    2015-02-01

    Full Text Available Blueberries (Vaccinium spp. are rich in bioactive compounds. However, the biological activity of polysaccharides from blueberry has not been reported so far. This study evaluated the anti-tumor and immunological activities of a polysaccharide (BBP3-1 from blueberry in S180-bearing mice. The experimental results indicated that BBP3-1 (100 mg·kg−1·d−1 inhibited the tumor growth rate by 73.4%. Moreover, this group, compared with the model control, had shown an effect of increasing both the spleen and thymus indices (p < 0.05, increasing phagocytosis by macrophages (p < 0.05, boosting the proliferation and transformation of lymphocytes (p < 0.01, promoting the secretion of TNF-α, IFN-γ, and IL-2 (p < 0.05 and improving NK cell activity (p < 0.01. From this study, we could easily conclude that BBP3-1 has the ability to inhibit tumor progression and could act as a good immunomodulator.

  15. Parasite burden and the insect immune response: interpopulation comparison.

    Science.gov (United States)

    Kaunisto, Kari M; Suhonen, Jukka

    2013-01-01

    The immune response affects host's survival and reproductive success. Insurmountable immune function has not evolved because it is costly and there is a trade-off between other life-history traits. In previous studies several factors such as diet and temperature have been proposed to cause interpopulation differences in immune response. Moreover, the insect immune system may be functionally more protective upon secondary exposure, thus infection history may associate with the immune response. Here we measured how geographical location and parasite burden is related to variation in immune response between populations. We included 13 populations of the Northern Damselfly Coenagrion hastulatum (Odonata: Coenagrionidae) in Finland over a latitudinal range of 880 km to this study. We found that water mites associated strongly with the immune response at interpopulation level: the more the mites, the higher the immune response. Also, in an alternative model based on AIC, latitude and individual size associated with the immune response. In turn, endoparasitic gregarines did not affect the immune response. To conclude, a positive interpopulation association between the immune response and the rate of water mite infection may indicate (i) local adaptation to chronic parasite stress, (ii) effective 'induced' immune response against parasites, or (iii) a combined effect of both of these.

  16. MECHANISMS OF IMMUNE RESPONSES IN CNIDARIANS

    Directory of Open Access Journals (Sweden)

    Iván Darío Ocampo

    2015-05-01

    Full Text Available The immune system maintains the integrity of the organisms through a complex network of molecules, cells, and tissues that recognize internal or external antigenic substances to neutralized and eliminate them. The mechanisms of immune response have evolved in a modular fashion, where members of a given module interact strongly among them, but weakly with members of other modules, providing robustness and evolvability to the immune system. Ancestral modules are the raw material for the generation of new modules through evolution. Thus, the study of immune systems in basal metazoans such as cnidarians seeks to determine the basic tool kit from which the metazoans started to construct their immune systems. In addition, understanding the immune mechanisms in cnidarians contributes to decipher the etiopathology of coral diseases of infectious nature that are affecting coral reefs worldwide. RESUMEN El sistema inmune mantiene la integridad de los organismos vivos por medio de una red compleja de moléculas, células y tejidos que reconocen sustancias antigénicas internas o externas para neutralizarlas y eliminarlas. Los mecanismos de respuesta inmune han evolucionado de una manera modular, en donde miembros de un módulo dado interactúan fuertemente entre sí, pero débilmente con componentes de otros módulos, otorgando así robustez y potencial evolutivo al sistema inmune. Módulos ancestrales representan el material básico para la generación de nuevos módulos durante el proceso evolutivo. Así, el estudio de sistemas inmunes en metazoarios basales como los cnidarios busca determinar cuales son los módulos ancestrales a partir de los cuales se constituyen los sistemas inmunes de animales derivados. Adicionalmente, el entendimiento de los mecanismos de respuesta inmune en cnidarios eventualmente contribuirá a descifrar la etiopatología de las enfermedades de corales de carácter infeccioso que está afectando los corales en el mundo.

  17. Immune Response of Amebiasis and Immune Evasion by Entamoeba histolytica

    Science.gov (United States)

    Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2016-01-01

    Entamoeba histolytica is a protozoan parasite and the causative agent of amebiasis. It is estimated approximately 1% of humans are infected with E. histolytica, resulting in an estimate of 100,000 deaths annually. Clinical manifestations of amebic infection range widely from asymptomatic to severe symptoms, including dysentery and extra-intestinal abscesses. Like other infectious diseases, it is assumed that only ~20% of infected individuals develop symptoms, and genetic factors of both the parasite and humans as well as the environmental factors, e.g., microbiota, determine outcome of infection. There are multiple essential steps in amebic infection: degradation of and invasion into the mucosal layer, adherence to the intestinal epithelium, invasion into the tissues, and dissemination to other organs. While the mechanisms of invasion and destruction of the host tissues by the amebae during infection have been elucidated at the molecular levels, it remains largely uncharacterized how the parasite survive in the host by evading and attacking host immune system. Recently, the strategies for immune evasion by the parasite have been unraveled, including immunomodulation to suppress IFN-γ production, elimination of immune cells and soluble immune mediators, and metabolic alterations against reactive oxygen and nitrogen species to fend off the attack from immune system. In this review, we summarized the latest knowledge on immune reaction and immune evasion during amebiasis. PMID:27242782

  18. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide.

    OpenAIRE

    Viaud S; Saccheri F; Mignot G; Yamazaki T; Daill\\xere R; Hannani D; Enot DP; Pfirschke C; Engblom C; Pittet MJ; Schlitzer A; Ginhoux F; Apetoh L; Chachaty E; Woerther PL

    2013-01-01

    Cyclophosphamide is one of several clinically important cancer drugs whose therapeutic efficacy is due in part to their ability to stimulate anti-tumor immune responses. Studying mouse models, we demonstrate that cyclophosphamide alters the composition of microbiota in the small intestine and induces the translocation of selected species of Gram+ bacteria into secondary lymphoid organs. There, these bacteria stimulate the generation of a specific subset of “pathogenic” T helper 17 (pTh17) cel...

  19. Modulation of the innate immune responses in the striped ...

    African Journals Online (AJOL)

    Thus, most of the innate non-specific immune responses are inducible though they are constitutive of fish immune system exhibiting a basal level of activity even in the absence of pathogen challenge. Keywords: Aeromonas hydrophila, Experimental challenge, Innate immune response, Striped snakehead murrel ...

  20. Anti-tumor and immunomodulatory activities of an exopolysaccharide from Rhizopus nigricans on CT26 tumor-bearing mice.

    Science.gov (United States)

    Zhu, Lei; Cao, Jianfeng; Chen, Guochuang; Xu, Yanghui; Lu, Jingbo; Fang, Fang; Chen, Kaoshan

    2016-07-01

    This study was aimed to investigate the anti-tumor and immunomodulatory activities of an exopolysaccharide (EPS) from Rhizopus nigricans. Our results showed EPS could significantly inhibit the tumor growth and increase the immune organs index of CT26 tumor-bearing mice. EPS treatment increased the productions of interleukin-2 (IL-2) and tumor necrosis factor-α (TNF-α) levels in serum. The increase of percentage of CD8(+) cytotoxic T cells among total spleen T lymphocyte was also observed. Furthermore, EPS remarkably stimulate spleen lymphocytes proliferation in the absence or presence of mitogens. In addition, we found that EPS had synergistic effect with chemotherapy and improved immunosuppressive effect induced by 5-Fu. In summary, these findings indicated that the antitumor effects of EPS might be partly due to immune function activation and it might have potential to be used in the treatment for colorectal cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Neuroendocrine and Immune System Responses with Spaceflights

    Science.gov (United States)

    Tipton, Charles M.; Greenleaf, John E.; Jackson, Catherine G. R.

    1996-01-01

    Despite the fact that the first human was in space during 1961 and individuals have existed in a microgravity environment for more than a year, there are limited spaceflight data available on the responses of the neuroendocrine and immune systems. Because of mutual interactions between these respective integrative systems, it is inappropriate to assume that the responses of one have no impact on functions of the other. Blood and plasma volume consistently decrease with spaceflight; hence, blood endocrine and immune constituents will be modified by both gravitational and measurement influences. The majority of the in-flight data relates to endocrine responses that influence fluids and electrolytes during the first month in space. Adrenocorticotropin (ACTH), aldo-sterone. and anti-diuretic hormone (ADH) appear to be elevated with little change in the atrial natriuretic peptides (ANP). Flight results longer than 60 d show increased ADH variability with elevations in angiotensin and cortisol. Although post-flight results are influenced by reentry and recovery events, ACTH and ADH appear to be consistently elevated with variable results being reported for the other hormones. Limited in-flight data on insulin and growth hormone levels suggest they are not elevated to counteract the loss in muscle mass. Post-flight results from short- and long-term flights indicate that thyroxine and insulin are increased while growth hormone exhibits minimal change. In-flight parathyroid hormone (PTH) levels are variable for several weeks after which they remain elevated. Post-flight PTH was increased on missions that lasted either 7 or 237 d, whereas calcitonin concentrations were increased after 1 wk but decreased after longer flights. Leukocytes are elevated in flights of various durations because of an increase in neutrophils. The majority of post-flight data indicates immunoglobulin concentrations are not significantly changed from pre-flight measurements. However, the numbers of T

  2. Human Metapneumovirus Antagonism of Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Xiaoyong Bao

    2012-12-01

    Full Text Available  Human metapneumovirus (hMPV is a recently identified RNA virus belonging to the Paramyxoviridae family, which includes several major human and animal pathogens. Epidemiological studies indicate that hMPV is a significant human respiratory pathogen with worldwide distribution. It is associated with respiratory illnesses in children, adults, and immunocompromised patients, ranging from upper respiratory tract infections to severe bronchiolitis and pneumonia. Interferon (IFN represents a major line of defense against virus infection, and in response, viruses have evolved countermeasures to inhibit IFN production as well as IFN signaling. Although the strategies of IFN evasion are similar, the specific mechanisms by which paramyxoviruses inhibit IFN responses are quite diverse. In this review, we will present an overview of the strategies that hMPV uses to subvert cellular signaling in airway epithelial cells, the major target of infection, as well as in primary immune cells.

  3. Human metapneumovirus antagonism of innate immune responses.

    Science.gov (United States)

    Kolli, Deepthi; Bao, Xiaoyong; Casola, Antonella

    2012-12-07

     Human metapneumovirus (hMPV) is a recently identified RNA virus belonging to the Paramyxoviridae family, which includes several major human and animal pathogens. Epidemiological studies indicate that hMPV is a significant human respiratory pathogen with worldwide distribution. It is associated with respiratory illnesses in children, adults, and immunocompromised patients, ranging from upper respiratory tract infections to severe bronchiolitis and pneumonia. Interferon (IFN) represents a major line of defense against virus infection, and in response, viruses have evolved countermeasures to inhibit IFN production as well as IFN signaling. Although the strategies of IFN evasion are similar, the specific mechanisms by which paramyxoviruses inhibit IFN responses are quite diverse. In this review, we will present an overview of the strategies that hMPV uses to subvert cellular signaling in airway epithelial cells, the major target of infection, as well as in primary immune cells.

  4. Mx bio adjuvant for enhancing immune responses against influenza virus

    Directory of Open Access Journals (Sweden)

    Sina Soleimani

    2015-06-01

    Conclusion: These data revealed that Mx1 as biological adjuvant was able to increase antibody titer and induction memory immune responses against influenza immunization without causing any side effects.

  5. Immune Response And Anamnestic Immune Response In Children After A 3-Dose Primary Hepatitis B Vaccination.

    Science.gov (United States)

    Afzal, Muhammad Faheem; Sultan, Muhammad Ashraf; Saleemi, Ahmad Imran

    2016-01-01

    Diseases caused by Hepatitis B virus (HBV) have a worldwide distribution. Pakistan adopted the recommendations of World Health Organization (WHO) for routine universal infant vaccination against hepatitis B in 2002, currently being administered at 6, 10, and 14 weeks of age in a combination vaccine. This study was conducted to determine the immune response & anamnestic immune response in children, 9 months-10 years of age, after a 3dose primary Hepatitis B vaccination. This cross sectional study was conducted in the Department of Paediatrics, King Edward Medical University/Mayo Hospital, Lahore, Pakistan, from January to June, 2014. A total of 200 children of either sex between the ages of 9 months to 10 years, documented to have received 3 doses of hepatitis B vaccines according to Expanded Program of Immunization (6,10,14 weeks) schedule in infancy, were recruited by consecutive sampling. The level of serum antiHBsAb by ELIZA was measured. Children with antiHBs titers ≥10 mIU/mL were considered to be immune. Those with anti HBsAb levels immune response was measured. Data was analysed using SPSS 17 to determine the relation between time interval since last vaccination and antibody titer. Chi square test was applied. Of the 200 children, protective antibody response was found in 58%. Median serological response was 18.60 (range 2.82 - 65.15). Antibody levels were found to have a statistically significant ( pvalue 0.019) negative correlation with the time since last administration of vaccine. A booster dose of Hepatitis B vacci ne was administered to all nonresponders, with each registering a statistically significant (pvalue 0.00) anamnestic response. The vaccination schedule with short dosage interval was unable to provide protection to 42% of the study population. Introduction of birth dose of Hepatitis B vaccine to the existing schedule is recommended.

  6. Golimumab and certolizumab: The two new anti-tumor necrosis factor kids on the block

    Directory of Open Access Journals (Sweden)

    Mittal Mohit

    2010-01-01

    Full Text Available Anti-tumor necrosis factor (anti-TNF agents have revolutionized treatment of psoriasis and many other inflammatory diseases of autoimmune origin. They have considerable advantages over the existing immunomodulators. Anti-TNF agents are designed to target a very specific component of the immune-mediated inflammatory cascades. Thus, they have lower risks of systemic side-effects. In a brief period of 10 years, a growing number of biological therapies are entering the clinical arena while many more biologicals remain on the horizon. With time, the long-term side-effects and efficacies of these individual agents will become clearer and help to determine which ones are the most suitable for long-term care. Golimumab (a human monoclonal anti-TNF-α antibody and Certolizumab (a PEGylated Fab fragment of humanized monoclonal TNF-α antibody are the two latest additions to the anti-TNF regimen. Here, we are providing a brief description about these two drugs and their uses.

  7. Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse mammary tumor model.

    Science.gov (United States)

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Gandham, Ravi Kumar; Sahoo, A P; Harish, D R; Singh, Arvind Kumar; Tiwari, A K

    2016-02-02

    Many viral proteins have the ability to kill tumor cells specifically without harming the normal cells. These proteins, on ectopic expression, cause lysis or induction of apoptosis in the target tumor cells. Parvovirus NS1 is one of such proteins, which is known to kill high proliferating tumor cells. In the present study, we assessed the apoptosis inducing ability of canine parvovirus type 2 NS1 protein (CPV2.NS1) in vitro in 4T1 cells, and found it to cause significant cell death due to induction of apoptosis through intrinsic or mitochondrial pathway. Further, we also evaluated the oncolytic activity of CPV2.NS1 protein in a mouse mammary tumor model. The results suggested that CPV2.NS1 was able to inhibit the growth of 4T1 induced mouse mammary tumor as indicated by significantly reduced tumor volume, mitotic, AgNOR and PCNA indices. Further, inhibition of tumor growth was found to be because of induction of apoptosis in the tumor cells, which was evident by a significant increase in the number of TUNEL positive cells. Further, CPV2.NS1 was also able to stimulate the immune cells against the tumor antigens as indicated by the increased CD4+ and CD8+ counts in the blood of CVP2.NS1 treated mice. Further optimization of the delivery of NS1 protein and use of an adjuvant may further enhance its anti-tumor activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Enhancement of Immune Memory Responses to Respiratory Infection

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0360 TITLE: Enhancement of Immune Memory Responses to Respiratory Infection PRINCIPAL INVESTIGATORs: Dr Min Chen PhD...5a. CONTRACT NUMBER Enhancement of Immune Memory Responses to Respiratory Infection 5b. GRANT NUMBER W81XWH-16-1-0360 5c. PROGRAM ELEMENT NUMBER...entitled “ENHANCEMENT OF IMMUNE MEMORY RESPONSES TO RESPIRATORY INFECTION : AUTOPHAGY IN MEMORY B-CELLS RESPONSE TO INFLUENZA VACCINE (AMBRIV

  9. Ganoderma lucidum extracts inhibited leukemia WEHI-3 cells in BALB/c mice and promoted an immune response in vivo.

    Science.gov (United States)

    Chang, Yung-Hsien; Yang, Jai-Sing; Yang, Jiun-Long; Wu, Chang-Lin; Chang, Shu-Jen; Lu, Kung-Wen; Lin, Jen-Jyh; Hsia, Te-Chun; Lin, Yi-Ting; Ho, Chin-Chih; Wood, W Gibson; Chung, Jing-Gung

    2009-12-01

    Ganoderma lucidum (G. lucidum) is a medicinal mushroom having biological effects such as immunomodulation and anti-tumor actions. In China and many other Asian countries, G. lucidum is used as a folk remedy to promote health and longevity. Although many studies have shown that G. lucidum modulates the immune system, including, for example, antigen-presenting cells, natural killer (NK) cells, and the T and B lymphocytes, the effects of G. lucidum on the WEHI-3 leukemic BALB/c mice are unclear. We attempted to determine whether G. lucidum would promote immune responses in BALB/c mice injected with WEHI-3 leukemia cells. The effects of G. lucidum on the survival rate of WEHI-3 leukemia cells injected into BALB/c mice were examined. It increased the percentages of CD3 and CD19, but decreased the percentages of Mac-3 and CD11b markers, suggesting that differentiation of the precursor of T and B cells was promoted but macrophages were inhibited. It decreased the weight of spleens as compared with control mice. It also promoted phagocytosis by macrophage from peripheral blood mononuclear cell (PBMC) and it also promoted natural killer cell activity. It decreased the percentage of leukemia cells in the spleens of mice before they were injected with WEHI-3 cells. Apparently, G. lucidum affects murine leukemia WEHI-3 cells in vivo.

  10. Anti-Tumor Effect of Steamed Codonopsis lanceolata in H22 Tumor-Bearing Mice and Its Possible Mechanism

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-09-01

    Full Text Available Although previous studies confirmed that steaming and the fermentation process could significantly improve the cognitive-enhancement and neuroprotective effects of Codonopsis lanceolata, the anti-tumor efficacy of steamed C. lanceolata (SCL and what mechanisms are involved remain largely unknown. The present study was designed to evaluate the anti-tumor effect in vivo of SCL in H22 tumor-bearing mice. The results clearly indicated that SCL could not only inhibit the tumor growth, but also prolong the survival time of H22 tumor-bearing mice. Besides, the serum levels of cytokines, such as interferon gamma (IFN-γ, tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6 and interleukin-2 (IL-2, were enhanced by SCL administration. The observations of Hoechst 33258 staining demonstrated that SCL was able to induce tumor cell apoptosis. Finally, immunohistochemical analysis revealed that SCL treatment significantly increased Bax expression and decreased Bcl-2 and vascular endothelial growth factor (VEGF expression of H22 tumor tissues in a dose-dependent manner. Moreover, LC/MS analysis of SCL indicated that it mainly contained lobetyolin and six saponins. Taken all together, the findings in the present study clearly demonstrated that SCL inhibited the H22 tumor growth in vivo at least partly via improving the immune functions, inducing apoptosis and inhibiting angiogenesis.

  11. Gold namoprtices enhance anti-tumor effect of radiotherapy to hypoxic tumor

    International Nuclear Information System (INIS)

    Kim, Mi Sun; Lee, Eun Jung; Kim, Jae Won; Keum, Ki Chang; Koom, Woong Sub; Chung, Ui Seok; Koh, Won Gun

    2016-01-01

    Hypoxia can impair the therapeutic efficacy of radiotherapy (RT). Therefore, a new strategy is necessary for enhancing the response to RT. In this study, we investigated whether the combination of nanoparticles and RT is effective in eliminating the radioresistance of hypoxic tumors. Gold nanoparticles (GNPs) consisting of a silica core with a gold shell were used. CT26 colon cancer mouse model was developed to study whether the combination of RT and GNPs reduced hypoxia-induced radioresistance. Hypoxia inducible factor-1α (HIF-1α) was used as a hypoxia marker. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were conducted to evaluate cell death. Hypoxic tumor cells had an impaired response to RT. GNPs combined with RT enhanced anti-tumor effect in hypoxic tumor compared with RT alone. The combination of GNPs and RT decreased tumor cell viability compare to RT alone in vitro. Under hypoxia, tumors treated with GNPs + RT showed a higher response than that shown by tumors treated with RT alone. When a reactive oxygen species (ROS) scavenger was added, the enhanced antitumor effect of GNPs + RT was diminished. In the present study, hypoxic tumors treated with GNPs + RT showed favorable responses, which might be attributable to the ROS production induced by GNPs + RT. Taken together, GNPs combined with RT seems to be potential modality for enhancing the response to RT in hypoxic tumors

  12. Gold namoprtices enhance anti-tumor effect of radiotherapy to hypoxic tumor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Sun; Lee, Eun Jung; Kim, Jae Won; Keum, Ki Chang; Koom, Woong Sub [Dept. of Radiation Oncology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Chung, Ui Seok; Koh, Won Gun [Dept. of Chemical and Biomolecular Engineering, Yonsei University, Seoul (Korea, Republic of)

    2016-09-15

    Hypoxia can impair the therapeutic efficacy of radiotherapy (RT). Therefore, a new strategy is necessary for enhancing the response to RT. In this study, we investigated whether the combination of nanoparticles and RT is effective in eliminating the radioresistance of hypoxic tumors. Gold nanoparticles (GNPs) consisting of a silica core with a gold shell were used. CT26 colon cancer mouse model was developed to study whether the combination of RT and GNPs reduced hypoxia-induced radioresistance. Hypoxia inducible factor-1α (HIF-1α) was used as a hypoxia marker. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were conducted to evaluate cell death. Hypoxic tumor cells had an impaired response to RT. GNPs combined with RT enhanced anti-tumor effect in hypoxic tumor compared with RT alone. The combination of GNPs and RT decreased tumor cell viability compare to RT alone in vitro. Under hypoxia, tumors treated with GNPs + RT showed a higher response than that shown by tumors treated with RT alone. When a reactive oxygen species (ROS) scavenger was added, the enhanced antitumor effect of GNPs + RT was diminished. In the present study, hypoxic tumors treated with GNPs + RT showed favorable responses, which might be attributable to the ROS production induced by GNPs + RT. Taken together, GNPs combined with RT seems to be potential modality for enhancing the response to RT in hypoxic tumors.

  13. Amplexicaule A exerts anti-tumor effects by inducing apoptosis in human breast cancer

    Science.gov (United States)

    Shu, Guangwen; Wan, Dingrong; He, Feng; Loaec, Morgann; Ding, Yali; Li, Jun; Dovat, Sinisa; Yang, Gaungzhong; Song, Chunhua

    2016-01-01

    Chemotherapy is the main treatment for patients with breast cancer metastases, but natural alternatives have been receiving attention for their potential as novel anti-tumor reagents. Amplexicaule A (APA) is a flavonoid glucoside isolated from rhizomes of Polygonum amplexicaule D. Don var. sinense Forb (PADF). We found that APA has anti-tumor effects in a breast cancer xenograft mouse model and induces apoptosis in breast cancer cell lines. APA increased levels of cleaved caspase-3,-8,-9 and PARP, which resulted from suppression of MCL-1 and BCL-2 expression in the cells. APA also inactivated the Akt/mTOR pathway in breast cancer cells. Thus, APA exerts a strong anti-tumor effect on breast cancer cells, most likely through induction of apoptosis. Our study is the first to identify this novel anti-tumor compound and provides a new strategy for isolation and separation of single compounds from herbs. PMID:26943775

  14. Malaria vaccines and human immune responses.

    Science.gov (United States)

    Long, Carole A; Zavala, Fidel

    2016-08-01

    Despite reductions in malaria episodes and deaths over the past decade, there is still significant need for more effective tools to combat this serious global disease. The positive results with the Phase III trial of RTS,S directed to the circumsporozoite protein of Plasmodium falciparum have established that a vaccine against malaria can provide partial protection to children in endemic areas, but its limited efficacy and relatively short window of protection mandate that new generations of more efficacious vaccines must be sought. Evidence shows that anti-parasite immune responses can control infection against other stages as well, but translating these experimental findings into vaccines for blood stages has been disappointing and clinical efforts to test a transmission blocking vaccine are just beginning. Difficulties include the biological complexity of the organism with a large array of stage-specific genes many of which in the erythrocytic stages are antigenically diverse. In addition, it appears necessary to elicit high and long-lasting antibody titers, address the redundant pathways of merozoite invasion, and still seek surrogate markers of protective immunity. Most vaccine studies have focused on a single or a few antigens with an apparent functional role, but this is likely to be too restrictive, and broad, multi-antigen, multi-stage vaccines need further investigation. Finally, novel tools and biological insights involving parasite sexual stages and the mosquito vector will provide new avenues for reducing or blocking malaria transmission. Published by Elsevier Ltd.

  15. Cell-autonomous stress responses in innate immunity.

    Science.gov (United States)

    Moretti, Julien; Blander, J Magarian

    2017-01-01

    The innate immune response of phagocytes to microbes has long been known to depend on the core signaling cascades downstream of pattern recognition receptors (PRRs), which lead to expression and production of inflammatory cytokines that counteract infection and induce adaptive immunity. Cell-autonomous responses have recently emerged as important mechanisms of innate immunity. Either IFN-inducible or constitutive, these processes aim to guarantee cell homeostasis but have also been shown to modulate innate immune response to microbes and production of inflammatory cytokines. Among these constitutive cell-autonomous responses, autophagy is prominent and its role in innate immunity has been well characterized. Other stress responses, such as metabolic stress, the ER stress/unfolded protein response, mitochondrial stress, or the DNA damage response, seem to also be involved in innate immunity, although the precise mechanisms by which they regulate the innate immune response are not yet defined. Of importance, these distinct constitutive cell-autonomous responses appear to be interconnected and can also be modulated by microbes and PRRs, which add further complexity to the interplay between innate immune signaling and cell-autonomous responses in the mediation of an efficient innate immune response. © Society for Leukocyte Biology.

  16. immune response can measuring immunity to hiv during ...

    African Journals Online (AJOL)

    2005-11-01

    Nov 1, 2005 ... that these can lead to sustainable reduction in viral burden. Conversely, antiviral ... is sufficiently plastic in adults to show restoration of specific and general immunity after receiving ART is promising when translated to paediatric .... of a skewed expansion of CD8+ cells that use a limited Vß. T-cell receptor ...

  17. immune response can measuring immunity to hiv during ...

    African Journals Online (AJOL)

    2005-11-01

    Nov 1, 2005 ... that these can lead to sustainable reduction in viral burden. Conversely, antiviral drug ... is sufficiently plastic in adults to show restoration of specific and general immunity after receiving ART is promising when translated to ... changes.1,18 Improvements in naïve and/or memory CD4+ and. CD8+ T-cell ...

  18. Frequent adaptive immune responses against arginase-1

    DEFF Research Database (Denmark)

    Martinenaite, Evelina; Mortensen, Rasmus Erik Johansson; Hansen, Morten

    2018-01-01

    was examined in PBMCs from cancer patients and healthy individuals. IFNγ ELISPOT revealed frequent immune responses against multiple arginase-1-derived peptides. We further identified a hot-spot region within the arginase-1 protein sequence containing multiple epitopes recognized by T cells. Next, we examined......, and further demonstrated the specificity and reactivity of these T cells. Overall, we showed that arginase-1-specific T cells were capable of recognizing arginase-1-expressing cells. The activation of arginase-1-specific T cells by vaccination is an attractive approach to target arginase-1-expressing...... macrophages (TAMs), and its expression is associated with poor prognosis. In the present study, we divided the arginase-1 protein sequence into overlapping 20-amino-acid-long peptides, generating a library of 31 peptides covering the whole arginase-1 sequence. Reactivity towards this peptide library...

  19. Flavobacterium psychrophilum - Experimental challenge and immune response

    DEFF Research Database (Denmark)

    Henriksen, Maya Maria Mihályi

    use of antibiotics, further knowledge of the disease is needed. Previous studies focusing on various types of aquacultures demonstrated the presence of F. psychrophilum in all examined farms. The bacterium was demonstrated in gills, skin, internal organs and wounds both during RTFS outbreaks......) Establish an experimental infection model imitating natural infection, 2) examine the immune response in blood and selected organs, and 3) examine potential portals of entry for the bacterium. Previous experimental immersion-challenges involving F. psychrophilum have resulted in none or low mortality...... in rainbow trout fry, unless the fish are stressed or have their surface compromised through e.g. injuries to the skin. The effect of a range of hydrogen peroxide (H2O2) concentrations was tested on fry in order to assess mortality. An appropriate dose was subsequently combined with immersion in a diluted...

  20. Adrenaline influence on the immune response. II

    International Nuclear Information System (INIS)

    Depelchin, A.; Letesson, J.J.

    1981-01-01

    Experiments were carried out to specify the adrenaline target among the immunocompetent cells. Adrenaline administered for some hours exerted opposite effects on the natural PFC and RFC: the first were enhanced and the second significantly reduced. These paradoxical results were interpreted as a consequence of the inhibition of the suppressor T-cells in the resting status. Adrenaline appeared to act on the sensitive cells through beta- rather than through alpha-receptors. Further experiments on the adrenaline influence on the syngeneic barrier phenomenon and on the cellular balance at its termination seemed to indicate that adrenaline was directly inhibitory for the Ts but not for their precursors. These results are discussed in the light of the cellular networks regulating the immune response. Irradiated mice were compared with non-irradiated mice as described in the previous article. (Auth.)

  1. Population-expression models of immune response

    International Nuclear Information System (INIS)

    Stromberg, Sean P; Antia, Rustom; Nemenman, Ilya

    2013-01-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable. (paper)

  2. Population-expression models of immune response

    Science.gov (United States)

    Stromberg, Sean P.; Antia, Rustom; Nemenman, Ilya

    2013-06-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.

  3. Neuroendocrine-immune interactions and responses to exercise.

    Science.gov (United States)

    Fragala, Maren S; Kraemer, William J; Denegar, Craig R; Maresh, Carl M; Mastro, Andrea M; Volek, Jeff S

    2011-08-01

    This article reviews the interaction between the neuroendocrine and immune systems in response to exercise stress, considering gender differences. The body's response to exercise stress is a system-wide effort coordinated by the integration between the immune and the neuroendocrine systems. Although considered distinct systems, increasing evidence supports the close communication between them. Like any stressor, the body's response to exercise triggers a systematic series of neuroendocrine and immune events directed at bringing the system back to a state of homeostasis. Physical exercise presents a unique physiological stress where the neuroendocrine and immune systems contribute to accommodating the increase in physiological demands. These systems of the body also adapt to chronic overload, or exercise training. Such adaptations alleviate the magnitude of subsequent stress or minimize the exercise challenge to within homeostatic limits. This adaptive capacity of collaborating systems resembles the acquired, or adaptive, branch of the immune system, characterized by the memory capacity of the cells involved. Specific to the adaptive immune response, once a specific antigen is encountered, memory cells, or lymphocytes, mount a response that reduces the magnitude of the immune response to subsequent encounters of the same stress. In each case, the endocrine response to physical exercise and the adaptive branch of the immune system share the ability to adapt to a stressful encounter. Moreover, each of these systemic responses to stress is influenced by gender. In both the neuroendocrine responses to exercise and the adaptive (B lymphocyte) immune response, gender differences have been attributed to the 'protective' effects of estrogens. Thus, this review will create a paradigm to explain the neuroendocrine communication with leukocytes during exercise by reviewing (i) endocrine and immune interactions; (ii) endocrine and immune systems response to physiological stress

  4. Staphylococcus aureus strategies to evade the host acquired immune response.

    Science.gov (United States)

    Goldmann, Oliver; Medina, Eva

    2017-09-15

    Staphylococcus aureus poses a significant public-health problem. Infection caused by S. aureus can manifest as acute or long-lasting persistent diseases that are often refractory to antibiotic and are associated with significant morbidity and mortality. To develop more effective strategies for preventing or treating these infections, it is crucial to understand why the immune response is incapable to eradicate the bacterium. When S. aureus first infect the host, there is a robust activation of the host innate immune responses. Generally, S. aureus can survive this initial interaction due to the expression of a wide array of virulence factors that interfere with the host innate immune defenses. After this initial interaction the acquired immune response is the arm of the host defenses that will try to clear the pathogen. However, S. aureus is capable of maintaining infection in the host even in the presence of a robust antigen-specific immune response. Thus, understanding the mechanisms underlying the ability of S. aureus to escape immune surveillance by the acquired immune response will help uncover potentially important targets for the development of immune-based adjunctive therapies and more efficient vaccines. There are several lines of evidence that lead us to believe that S. aureus can directly or indirectly disable the acquired immune response. This review will discuss the different immune evasion strategies used by S. aureus to modulate the different components of the acquired immune defenses. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Combined expression of miR-34a and Smac mediated by oncolytic vaccinia virus synergistically promote anti-tumor effects in Multiple Myeloma.

    Science.gov (United States)

    Lei, Wen; Wang, Shibing; Yang, Chunmei; Huang, Xianbo; Chen, Zhenzhen; He, Wei; Shen, Jianping; Liu, Xinyuan; Qian, Wenbin

    2016-08-24

    Despite great progress made in the treatment of multiple myeloma (MM), it is still incurable. Promising phase II clinical results have been reported recently for oncolytic vaccinia virus (OVV) clinic therapeutics. One reason for this has focused on the critical therapeutic importance of the immune response raised by these viruses. However, few studies have performed their applications as an optimal delivery system for therapeutic gene, especially miRNA in MM. In this study, we constructed two novel OVVs (TK deletion) that express anti-tumor genes, miR-34a and Smac, respectively, in MM cell lines and xenograft model. The results demonstrated that the novel OVV can effectively infect MM cell lines, and forcefully enhance the exogenous gene (miR-34a or Smac) expression. Furthermore, utilization of VV-miR-34a combined with VV-Smac synergistically inhibited tumor growth and induced apoptosis in vitro and in vivo. The underlying mechanism is proposed that blocking of Bcl-2 by VV-miR-34a increases the release of cytochrome c from mitochondria and then synergistically amplifies the antitumor effects of Smac-induced cell apoptosis. Our study is the first to utilize OVV as the vector for miR-34a or Smac expression to treat MM, and lays the groundwork for future clinical therapy for MM.

  6. Enhancement of broiler performance and immune response by ...

    African Journals Online (AJOL)

    Administrator

    2011-09-19

    Sep 19, 2011 ... immune response. The significant increase in lymphocytes might also indicate the specific and non- specific immune stimulant role of E. purpurea. Bauer .... extract from root significantly increased in vivo the number of leucocytes and lymphocytes. It is reported that Echinacea activates rat immune system.

  7. Sex hormones and the immune response in humans

    NARCIS (Netherlands)

    Bouman, Annechien; Heineman, Maas Jan; Faas, Marijke M.

    2005-01-01

    In addition to their effects on sexual differentiation and reproduction, sex hormones appear to influence the immune system. This results in a sexual dimorphism in the immune response in humans: for instance, females produce more vigorous cellular and more vigorous humoral immune reactions, are more

  8. Response to childhood immunizations in congenital nephrotic syndrome.

    Science.gov (United States)

    Nguyen, Stephanie; Winnicki, Erica; Butani, Lavjay

    2015-05-01

    Infections are a leading cause of morbidity in children following transplantation. It is therefore imperative to ensure that children are immunized before a transplant. Contrary to this recommendation, it has long been suggested that children with congenital nephrotic syndrome (CNS) not receive immunizations due to their perceived lack of response. We report a child with CNS who was immunized before transplantation per the routine pediatric immunization protocol and responded appropriately. The intent of this report is to encourage health care providers to immunize children with CNS, as the practice of withholding immunizations in these patients may have adverse health implications.

  9. Advances of Immune Checkpoint Inhibitors in Tumor Immunotherapy

    Science.gov (United States)

    Guo, Qiao

    2018-01-01

    Immune checkpoints are cell surface molecules that can fine-tune the immune responses, they are crucial for modulating the duration and amplitude of immune reactions while maintaining self-tolerance in order to minimize autoimmune responses. Numerous studies have demonstrated that tumors cells can directly express immune-checkpoint molecules, or induce many inhibitory molecules expression in the tumor microenvironment to inhibit the anti-tumor immunity. Releasing these brakes has emerged as an exciting strategy to cure cancer. In the past few years, clinical trials with therapeutic antibodies targeting to the checkpoint molecules CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. In contrast to the conventional treatment, checkpoint inhibitors induce broad and durable antitumor responses. In the future, treatment may involve combination therapy to target different checkpoint molecules and stages of the adaptive immune responses. In this review, we summarized the recent advances of the study and development of other checkpoint molecules in tumor immunotherapy.

  10. Enhancement of anamnestic immunospecific antibody response in orally immunized chickens

    DEFF Research Database (Denmark)

    Mayo, Susan; Carlsson, Hans-Erik; Zagon, Andrea

    2008-01-01

    Production of immunospecific egg yolk antibodies (IgY antibodies) in egg laying hens through oral immunization is an attractive alternative to conventional antibody production in mammals for economic reasons as well as for animal welfare reasons. Oral immunization results in a systemic humoral...... response, but oral booster immunizations lack efficiency. The aim of the present study was to develop immunization schemes in which the concentration of immunospecific IgY would increase following oral booster immunizations. Two groups of egg laying hens (5 in each group) were immunized orally (each...... and one oral dose with BSA+RV. The eggs of the chickens in this group had a significantly higher immunospecific anti BSA IgY-concentration than did any of the eggs from the orally immunized chickens. One of the immunization regimes (immunizations in weeks 1, 7 and 18) clearly included a booster effect...

  11. Non specific immune response in the African catfish ...

    African Journals Online (AJOL)

    Non specific immune response in the African catfish, Heterobranchus longifilis fed diets fortified with ethanolic extracts of selected traditional medicinal plants and disease resistance against Pseudomonas aeruginosa.

  12. cGAS/STING Pathway in Cancer: Jekyll and Hyde Story of Cancer Immune Response

    Directory of Open Access Journals (Sweden)

    Debojit Bose

    2017-11-01

    Full Text Available The last two decades have witnessed enormous growth in the field of cancer immunity. Mechanistic insights of cancer immunoediting have not only enhanced our understanding but also paved the way to target and/or harness the innate immune system to combat cancer, called cancer immunotherapy. Cyclic GMP-AMP synthase (cGAS/Stimulator of interferon genes(STING pathway has recently emerged as nodal player in cancer immunity and is currently being explored as potential therapeutic target. Although therapeutic activation of this pathway has shown promising anti-tumor effects in vivo, evidence also indicates the role of this pathway in inflammation mediated carcinogenesis. This review highlights our current understanding of cGAS/STING pathway in cancer, its therapeutic targeting and potential alternate approaches to target this pathway. Optimal therapeutic targeting and artificial tunability of this pathway still demand in depth understanding of cGAS/STING pathway regulation and homeostasis.

  13. Redundancy of direct priming and cross-priming in tumor-specific CD8(+) T cell responses

    NARCIS (Netherlands)

    Wolkers, M. C.; Stoetter, G.; Vyth-Dreese, F. A.; Schumacher, T. N.

    2001-01-01

    Against a subset of human cancers, vigorous tumor-specific CD8(+) T cell responses can develop either spontaneously or upon allogeneic transplantation. However, the parameters that determine the induction of such pronounced anti-tumor immunity remain ill defined. To dissect the conditions required

  14. Spaceflight and Immune Responses of Rhesus Monkeys

    Science.gov (United States)

    Sonnenfeld, Gerald

    1997-01-01

    In the grant period, we perfected techniques for determination of interleukin production and leukocyte subset analysis of rhesus monkeys. These results are outlined in detail in publication number 2, appended to this report. Additionally, we participated in the ARRT restraint test to determine if restraint conditions for flight in the Space Shuttle could contribute to any effects of space flight on immune responses. All immunological parameters listed in the methods section were tested. Evaluation of the data suggests that the restraint conditions had minimal effects on the results observed, but handling of the monkeys could have had some effect. These results are outlined in detail in manuscript number 3, appended to this report. Additionally, to help us develop our rhesus monkey immunology studies, we carried out preliminary studies in mice to determine the effects of stressors on immunological parameters. We were able to show that there were gender-based differences in the response of immunological parameters to a stressor. These results are outlined in detail in manuscript number 4, appended to this report.

  15. Immune-related tumour response assessment criteria: a comprehensive review.

    Science.gov (United States)

    Somarouthu, Bhanusupriya; Lee, Susanna I; Urban, Trinity; Sadow, Cheryl A; Harris, Gordon J; Kambadakone, Avinash

    2018-04-01

    Growing emphasis on precision medicine in oncology has led to increasing use of targeted therapies that encompass a spectrum of drug classes including angiogenesis inhibitors, immune modulators, signal transduction inhibitors, DNA damage modulators, hormonal agents etc. Immune therapeutic drugs constitute a unique group among the novel therapeutic agents that are transforming cancer treatment, and their use is rising. The imaging manifestations in patients on immune therapies appear to be distinct from those typically seen with conventional cytotoxic therapies. Patients on immune therapies may demonstrate a delayed response, transient tumour enlargement followed by shrinkage, stable size, or initial appearance of new lesions followed by stability or response. These newer patterns of response to treatment have rendered conventional criteria such as World Health Organization and response evaluation criteria in solid tumours suboptimal in monitoring changes in tumour burden. As a consequence, newer imaging response criteria such as immune-related response evaluation criteria in solid tumours and immune-related response criteria are being implemented in many trials to effectively monitor patients on immune therapies. In this review, we discuss the traditional and new imaging response criteria for evaluation of solid tumours, review the outcomes of various articles which compared traditional criteria with the new immune-related criteria and discuss pseudo-progression and immune-related adverse events.

  16. Meningococcal C specific immune responses: immunity in an era of immunization with vaccine

    NARCIS (Netherlands)

    de Voer, R.M.

    2010-01-01

    Meningococcal serogroup C conjugate immunization was introduced in the Dutch national immunization schedule at the age of 14 months, together with a large catch-up campaign in 2002. After introduction of this MenC immunization, the incidence of MenC completely disappeared from the immunized

  17. Immune response and anamnestic immune response in children after a 3-dose primary hepatitis b vaccination

    International Nuclear Information System (INIS)

    Afzal, M.F.; Sultan, M.A.; Saleemi, A.I.

    2017-01-01

    Diseases caused by Hepatitis B virus (HBV) have a worldwide distribution. Pakistan adopted the recommendations of World Health Organization (WHO) for routine universal infant vaccination against hepatitis B in 2002, currently being administered at 6, 10, and 14 weeks of age in a combination vaccine. This study was conducted to determine the immune response and anamnestic immune response in children, 9 months-10 years of age, after a 3-dose primary Hepatitis B vaccination. Methods: This cross sectional study was conducted in the Department of Paediatrics, King Edward Medical University/Mayo Hospital, Lahore, Pakistan, from January to June, 2014. A total of 200 children of either sex between the ages of 9 months to 10 years, docu mented to have received 3 doses of hepatitis B vaccines according to Expanded Program of Immunization (6,10,14 weeks) schedule in infancy, were recruited by consecutive sampling. The level of serum anti-HBsAb by ELIZA was measured. Children with anti-HBs titers =10 mIU/mL were considered to be immune. Those with anti-HBsAb levels <10 mIU/mL were offered a booster dose of infant recombinant hepatitis B vaccine. The second serum sample was obtained 21-28 days following the administration of the booster dose and the anamnestic immune response was measured. Data was analysed using SPSS 17 to determine the relation between time interval since last vaccination and antibody titer. Chi square test was applied. Results: Of the 200 children, protective antibody response was found in 58 percent. Median serological response was 18.60 (range 2.82-65.15). Antibody levels were found to have a statistically significant (p-value 0.019) negative correlation with the time since last administration of vaccine. A booster dose of Hepatitis B vaccine was administered to all non-responders, with each registering a statistically significant (p-value 0.00) anamnestic response. Conclusion: The vaccination schedule with short dosage interval was unable to provide

  18. Seasonal changes in human immune responses to malaria

    DEFF Research Database (Denmark)

    Hviid, L; Theander, T G

    1993-01-01

    Cellular as well as humorol immune responses to malaria antigens fluctuate in time in individuals living in molono-endemic areas, particularly where malaria transmission is seasonal. The most pronounced changes are seen in association with clinical attacks, but osymptomatic infection can also lead...... to apparent immune depression. However, recent data have shown that seasonal variation in cellular immune responses may occur even in the absence of detectable porositaemia. Here, Lars Hviid and Thor G. Theonder review the seasonal variation in human immune responses to malaria, and discuss its possible...... causes and implications....

  19. Global immune disregulation in multiple sclerosis: from the adaptive response to the innate immunity.

    Science.gov (United States)

    Ristori, G; Montesperelli, C; Perna, A; Cannoni, S; Battistini, L; Borsellino, G; Riccio, P; Pesole, G; Chersi, A; Pozzilli, C; Buttinelli, C; Salvetti, M

    2000-07-24

    Increasing evidences show a global immune disregulation in multiple sclerosis (MS). The possible involvement of myelin and non-myelin (auto-)antigens in the autoaggressive process as well as the disregulation of both adaptive and innate immunity challenge the concept of specific immunotherapy. T cells at the boundary between innate and adaptive immunity, whose immunoregulatory role is becoming increasingly clear, have recently been shown to bear relevance for MS pathogenesis. Global immune interventions (and type I interferons may be considered as such) aimed at interfering with both innate and acquired immune responses seem to be a most promising therapeutic option in MS.

  20. Respons imun humoral pada pulpitis (Humoral immune response on pulpitis)

    OpenAIRE

    Widodo, Trijoedani

    2005-01-01

    Pulpitis is an inflammation process on dental pulp tissue, and usually as the continuous of caries. The microorganism in the caries is a potential immunogenic triggering the immune respons, both humoral and celluler immune responses. The aim of this research is to explain the humoral immune response changes in the dental pulp tissues of pulpitis. This research was done on three group samples: Irreversible pulpitis, Reversible pulpitis and sound teeth as the control group. The result showed th...

  1. Survivin-specific T-cell reactivity correlates with tumor response and patient survival

    DEFF Research Database (Denmark)

    Becker, Jürgen C; Andersen, Mads H; Hofmeister-Müller, Valeska

    2012-01-01

    Therapeutic vaccination directed to induce an anti-tumoral T-cell response is a field of extensive investigation in the treatment of melanoma. However, many vaccination trials in melanoma failed to demonstrate a correlation between the vaccine-specific immune response and therapy outcome. This has...... been mainly attributed to immune escape by antigen loss, rendering us in the need of new vaccination targets....

  2. Multiple myeloma patients in long-term complete response after autologous stem cell transplantation express a particular immune signature with potential prognostic implication.

    Science.gov (United States)

    Arteche-López, A; Kreutzman, A; Alegre, A; Sanz Martín, P; Aguado, B; González-Pardo, M; Espiño, M; Villar, L M; García Belmonte, D; de la Cámara, R; Muñoz-Calleja, C

    2017-06-01

    The proportion of multiple myeloma patients in long-term complete response (LTCR-MM) for more than 6 years after autologous stem cell transplantation (ASCT) is small. To evaluate whether this LTCR is associated with a particular immune signature, peripheral blood samples from 13 LTCR-MM after ASCT and healthy blood donors (HBD) were analysed. Subpopulations of T-cells (naïve, effector, central memory and regulatory), B-cells (naïve, marginal zone-like, class-switched memory, transitional and plasmablasts) and NK-cells expressing inhibitory and activating receptors were quantified by multiparametric flow cytometry (MFC). Heavy/light chains (HLC) were quantified by nephelometry. The percentage of CD4 + T-cells was lower in patients, whereas an increment in the percentage of CD4 + and CD8 + effector memory T-cells was associated with the LTCR. Regulatory T-cells and NK-cells were similar in both groups but a particular redistribution of inhibitory and activating receptors in NK-cells were found in patients. Regarding B-cells, an increase in naïve cells and a corresponding reduction in marginal zone-like and class-switched memory B-cells was observed. The HLC values were normal. Our results suggest that LTCR-MM patients express a particular immune signature, which probably reflects a 'high quality' immune reconstitution that could exert a competent anti-tumor immunological surveillance along with a recovery of the humoral immunity.

  3. Innate immune response development in nestling tree swallows

    Science.gov (United States)

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  4. Anti-tumor activity of exopolysaccharide from Rhizopus nigricans Ehrenb on S180 tumor-bearing mice.

    Science.gov (United States)

    Cao, Jianfeng; Hou, Dong; Lu, Jingbo; Zhu, Lei; Zhang, Pengying; Zhou, Nan; Chen, Kaoshan

    2016-04-15

    In this study, the effect of antitumor and immune activities of extracellular polysaccharides (EPS) from Rhizopus nigricans Ehrenb were investigated using S180 bearing mice. The results revealed that EPS in the concentration range 50-1000 μg/mL can inhibited S180 cell proliferation in a dose dependent manner. EPS at the highest dose of 1000 μg/mL showed significantly antitumor activity against S180 with inhibition rate of 47.53%. However, EPS significantly simulated spleen lymphocytes in the concentration of 500 μg/mL, and the increase proliferation ability showed a dose-dependent effect with EPS at the dose of 50-500 μg/mL. In comparison with the control groups, the weights of tumor were declined and the inhibition rates of tumor were remarkably decreased in the treated groups. Pretreatment with EPS at the dose of 75 mg/kg/day, the inhibition rate was decreased by 44.38% (Pcontrol group were very obvious. Meanwhile, the prophylactic administration of EPS could more efficiently inhibit the growth of S180 tumor than direct administration of EPS. EPS could prolong the survival period of S180 tumor bearing mice, and the doses 75 mg/kg/day of EPS and combined with cyclophosphamide (20 mg/kg/day) were 43.36% and 36.28% respectively compared to control groups (P<0.05). The results suggested EPS confirmed in vivo anti-tumor effects observed in vitro, and the mechanism of anti-tumor effect of EPS may be at least in part mediated by increased immune activity in host. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Dynamic Nature of Noncoding RNA Regulation of Adaptive Immune Response

    Directory of Open Access Journals (Sweden)

    Franca Citarella

    2013-08-01

    Full Text Available Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response.

  6. Linear ubiquitination signals in adaptive immune responses.

    Science.gov (United States)

    Ikeda, Fumiyo

    2015-07-01

    Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized tumor necrosis factor (TNF)-induced canonical nuclear factor-κB (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. HIV's evasion of the cellular immune response.

    Science.gov (United States)

    Collins, K L; Baltimore, D

    1999-04-01

    Despite a strong cytotoxic T-lymphocyte (CTL) response directed against viral antigens, untreated individuals infected with the human immunodeficiency virus (HIV-1) develop AIDS. We have found that primary T cells infected with HIV-1 downregulate surface MHC class I antigens and are resistant to lysis by HLA-A2-restricted CTL clones. In contrast, cells infected with an HIV-1 in which the nef gene is disrupted are sensitive to CTLs in an MHC and peptide-specific manner. In primary T cells HLA-A2 antigens are downmodulated more dramatically than total MHC class I antigens, suggesting that nef selectively downmodulates certain MHC class I antigens. In support of this, studies on cells expressing individual MHC class I alleles have revealed that nef does not downmodulate HLA-C and HLA-E antigens. This selective downmodulation allows infected cells to maintain resistance to certain natural killer cells that lyse infected cells expressing low levels of MHC class I antigens. Downmodulation of MHC class I HLA-A2 antigens occurs not only in primary T cells, but also in B and astrocytoma cell lines. No effect of other HIV-1 accessory proteins such as vpu and vpr was observed. Thus Nef is a protein that may promote escape of HIV-1 from immune surveillance.

  8. Risk factors for discordant immune response among HIV-infected ...

    African Journals Online (AJOL)

    Risk factors for discordant immune response among HIV-infected patients initiating antiretroviral therapy: A retrospective cohort study. ... Multivariate logistic regression models were used to estimate adjusted odds ratios (AORs) to determine associations between discordant immune response and clinical and demographic ...

  9. [Immune response and digestive cancers: Prognostic and therapeutic implications].

    Science.gov (United States)

    Bibeau, Frédéric; Bazille, Céline; Svrcek, Magali; Pierson, Rémi; Lagorce-Pagès, Christine; Cohen, Romain; André, Thierry

    2017-02-01

    The aim of this article is to emphasize the impact of the immune response in digestive cancers, especially from colorectal (CRC) origin. In this setting, an adaptive lymphocytic infiltrate underlines the prognostic impact of the immune response, because it is associated to a favorable outcome. The next challenge will be to validate, in a prospective therapeutic trial, the integration of the immune response as decisional parameter for adjuvant therapy. The immune response is also a predictive parameter in microsatellite instable metastatic CRC, characterized by an adaptive lymphocytic infiltrate, leading to a very high response rate to immune therapies. However, prognostic and predictive biomarkers still need to be optimized in order to better select patients. These data are also valuable for digestive non-colorectal cancers, which are briefly analyzed. The methodology for the assessment of these prognostic and predictive biomarkers, which represents an important issue in precision medicine, is also discussed. Copyright © 2016. Published by Elsevier Masson SAS.

  10. Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor

    International Nuclear Information System (INIS)

    Hamdi, Hamdi K.; Castellon, Raquel

    2005-01-01

    Oleuropein, a non-toxic secoiridoid derived from the olive tree, is a powerful antioxidant and anti-angiogenic agent. Here, we show it to be a potent anti-cancer compound, directly disrupting actin filaments in cells and in a cell-free assay. Oleuropein inhibited the proliferation and migration of advanced-grade tumor cell lines in a dose-responsive manner. In a novel tube-disruption assay, Oleuropein irreversibly rounded cancer cells, preventing their replication, motility, and invasiveness; these effects were reversible in normal cells. When administered orally to mice that developed spontaneous tumors, Oleuropein completely regressed tumors in 9-12 days. When tumors were resected prior to complete regression, they lacked cohesiveness and had a crumbly consistency. No viable cells could be recovered from these tumors. These observations elevate Oleuropein from a non-toxic antioxidant into a potent anti-tumor agent with direct effects against tumor cells. Our data may also explain the cancer-protective effects of the olive-rich Mediterranean diet

  11. Characterization of a Newly Isolated Marine Fungus Aspergillus dimorphicus for Optimized Production of the Anti-Tumor Agent Wentilactones

    Directory of Open Access Journals (Sweden)

    Rui Xu

    2015-11-01

    Full Text Available The potential anti-tumor agent wentilactones were produced by a newly isolated marine fungus Aspergillus dimorphicus. This fungus was derived from deep-sea sediment and identified by polyphasic approach, combining phenotypic, molecular, and extrolite profiles. However, wentilactone production was detected only under static cultures with very low yields. In order to improve wentilactone production, culture conditions were optimized using the response surface methodology. Under the optimal static fermentation conditions, the experimental values were closely consistent with the prediction model. The yields of wentilactone A and B were increased about 11-fold to 13.4 and 6.5 mg/L, respectively. The result was further verified by fermentation scale-up for wentilactone production. Moreover, some small-molecule elicitors were found to have capacity of stimulating wentilactone production. To our knowledge, this is first report of optimized production of tetranorlabdane diterpenoids by a deep-sea derived marine fungus. The present study might be valuable for efficient production of wentilactones and fundamental investigation of the anti-tumor mechanism of norditerpenoids.

  12. Immune response induction in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...

  13. The innate immune response during urinary tract infection and pyelonephritis.

    Science.gov (United States)

    Spencer, John David; Schwaderer, Andrew L; Becknell, Brian; Watson, Joshua; Hains, David S

    2014-07-01

    Despite its proximity to the fecal flora, the urinary tract is considered sterile. The precise mechanisms by which the urinary tract maintains sterility are not well understood. Host immune responses are critically important in the antimicrobial defense of the urinary tract. During recent years, considerable advances have been made in our understanding of the mechanisms underlying immune homeostasis of the kidney and urinary tract. Dysfunctions in these immune mechanisms may result in acute disease, tissue destruction and overwhelming infection. The objective of this review is to provide an overview of the innate immune response in the urinary tract in response to microbial assault. In doing so, we focus on the role of antimicrobial peptides-a ubiquitous component of the innate immune response.

  14. Rotavirus immune responses and correlates of protection

    OpenAIRE

    Angel, Juana; Franco, Manuel A.; Greenberg, Harry B.

    2012-01-01

    Selected topics in the field of rotavirus immunity are reviewed focusing on recent developments that may improve efficacy and safety of current and future vaccines. Rotaviruses have developed multiple mechanisms to evade interferon-mediated innate immunity. Compared to more developed regions of the world, protection induced by natural infection and vaccination is reduced in developing countries where, among other factors, high viral challenge loads are common and where infants are infected at...

  15. Innate and adaptive immune responses in neurodegeneration and repair

    Science.gov (United States)

    Amor, Sandra; Woodroofe, M Nicola

    2014-01-01

    Emerging evidence suggests important roles of the innate and adaptive immune responses in the central nervous system (CNS) in neurodegenerative diseases. In this special review issue, five leading researchers discuss the evidence for the beneficial as well as the detrimental impact of the immune system in the CNS in disorders including Alzheimer's disease, multiple sclerosis and CNS injury. Several common pathological mechanisms emerge indicating that these pathways could provide important targets for manipulating the immune reposes in neurodegenerative disorders. The articles highlight the role of the traditional resident immune cell of the CNS - the microglia - as well as the role of other glia astrocytes and oligodendrocytes in immune responses and their interplay with other immune cells including, mast cells, T cells and B cells. Future research should lead to new discoveries which highlight targets for therapeutic interventions which may be applicable to a range of neurodegenerative diseases. PMID:23758741

  16. Immune responsiveness in renal transplant recipients: mycophenolic acid severely depresses humoral immunity in vivo

    NARCIS (Netherlands)

    Rentenaar, Rob J.; van Diepen, Frank N. J.; Meijer, René T.; Surachno, Sugianto; Wilmink, Joep M.; Schellekens, Peter Th A.; Pals, Steven T.; van Lier, René A. W.; ten Berge, Ineke J. M.

    2002-01-01

    BACKGROUND: Current immunosuppressive drug treatments for renal transplant recipients result in high one-year graft survival rates. Despite adequate suppression of the immune response directed to the allograft, the immune system remains able to cope with many infectious agents. METHODS: To define

  17. Systemic immune response to Acanthamoeba keratitis in the Chinese hamster.

    Science.gov (United States)

    Van Klink, F; Leher, H; Jager, M J; Alizadeh, H; Taylor, W; Niederkorn, J Y

    1997-12-01

    Recrudescence is a common and troubling feature of Acanthamoeba keratitis and suggests that corneal infection with this organism fails to stimulate the systemic immune apparatus. The present study examined the cell-mediated and humoral immune responses to Acanthamoeba keratitis in the Chinese hamster. Corneal infection with A. castellanii failed to induce either delayed-type hypersensitivity (DTH) or serum IgG antibody against parasite antigens. The failure to induce cell-mediated and humoral immunity did not result in anergy or tolerance since subsequent intramuscular (i.m.) immunization with parasite antigens elicited robust DTH and IgG antibody responses. The inability of corneal infections to induce primary cell-mediated immune responses was due to the absence of resident antigen-presenting cells in the central cornea because induction of Langerhans cell (LC) migration into the central cornea prior to infection with Acanthamoeba promoted the development of parasite-specific DTH. Although the presence of resident LC did not promote the development of a primary humoral immune response, subsequent i.m. immunization elicited heightened parasite-specific IgG antibody production which was indicative of an anamnestic response. Collectively, the results indicate that in the absence of resident antigen-presenting cells, corneal infection with Acanthamoeba fails to stimulate primary cell-mediated or humoral immunity. Induction of peripheral LC into the central corneal epithelium promotes the development of parasite-specific DTH, but does not exacerbate corneal disease.

  18. Interplay between behavioural thermoregulation and immune response in mealworms.

    Science.gov (United States)

    Catalán, Tamara P; Niemeyer, Hermann M; Kalergis, Alexis M; Bozinovic, Francisco

    2012-11-01

    Since the preferential body temperature should positively correlate with physiological performance, behavioural fever should enhance an organism's immune response under an immune challenge. Here we have studied the preferential body temperature (T(p)) and its consequences on immune response performance after an immune challenge in larvae of Tenebrio molitor. We evaluated T(p) and immune responses of larvae following a challenge with various concentrations of lipopolysaccharide (LPS), and we studied the correlation between T(p) and two immune traits, namely antibacterial and phenoloxidase (PO) activities. Larvae that were immune challenged with higher LPS concentrations (C(50) and C(100)) preferred in average, warmer temperatures than did larvae challenged with lower concentrations (C(0) and C(25)). T(p) of C(25)-C(100) (challenged)-mealworms was 2.3°C higher than of C(0) (control) larvae. At lower LPS concentration immune challenge (C(0) and C(25)) antibacterial activity correlated positively with T(p), but at C(50) and C(100) correlation was lose. PO activity was higher at higher LPS concentration, but its magnitude of response did not correlate with T(p) Our data suggest that behavioural fever may have a positive effect on host performance by enhancing antibacterial response under a low pathogen load situation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Science.gov (United States)

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  20. Enhancing the Immune Response to Recombinant Plague Antigens

    Science.gov (United States)

    2007-05-01

    protection against rotavirus infection of mice stimulated by intranasal immunization with chimeric VP4 or VP6 protein. J Virol 1999;73(9):7574–81. [13] Choi...McNeal MM, Rae MN, Bean JA, Ward RL. Antibody-dependent and -independent protection following intranasal immunization of mice with rotavirus particles. J...Williamson ED, Sharp GJ, Eley SM, Vesey PM, Pepper TC, Titball RW, et al. Local and systemic immune response to a microencapsu- lated sub-unit vaccine for

  1. In Vitro and In Vivo Anti-tumoral Effects of the Flavonoid Apigenin in Malignant Mesothelioma

    OpenAIRE

    Laura Masuelli; Monica Benvenuto; Rosanna Mattera; Enrica Di Stefano; Erika Zago; Gloria Taffera; Ilaria Tresoldi; Maria Gabriella Giganti; Giovanni Vanni Frajese; Ginevra Berardi; Andrea Modesti; Andrea Modesti; Roberto Bei; Roberto Bei

    2017-01-01

    Malignant mesothelioma (MM) is a tumor arising from mesothelium. MM patients’ survival is poor. The polyphenol 4′,5,7,-trihydroxyflavone Apigenin (API) is a “multifunctional drug”. Several studies have demonstrated API anti-tumoral effects. However, little is known on the in vitro and in vivo anti-tumoral effects of API in MM. Thus, we analyzed the in vitro effects of API on cell proliferation, cell cycle regulation, pro-survival signaling pathways, apoptosis, and autophagy of human and mouse...

  2. Optimizing production of asperolide A, a potential anti-tumor tetranorditerpenoid originally produced by the algal-derived endophytic fungus Aspergillus wentii EN-48

    Science.gov (United States)

    Xu, Rui; Li, Xiaoming; Xu, Gangming; Wang, Bingui

    2017-05-01

    The marine algal-derived endophytic fungus Aspergillus wentii EN-48 produces the potential anti-tumor agent asperolide A, a tetranorlabdane diterpenoid active against lung cancer. However, the fermentation yield of asperolide A was very low and only produced in static cultures. Static fermentation conditions of A. wentii EN-48 were optimized employing response surface methodology to enhance the production of asperolide A. The optimized conditions resulted in a 13.9-fold yield enhancement, which matched the predicted value, and the optimized conditions were successfully used in scale-up fermentation for the production of asperolide A. Exogenous addition of plant hormones (especially 10 μmol/L methyl jasmonate) stimulated asperolide A production. To our knowledge, this is first optimized production of an asperolide by a marine-derived fungus. The optimization is Effective and valuable to supply material for further anti-tumor mechanism studies and preclinical evaluation of asperolide A and other norditerpenoids.

  3. The Role of the Immune Response in Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Triozzi, Pierre L., E-mail: triozzp@ccf.org [Taussig Cancer Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Fernandez, Anthony P. [Departments of Dermatology and Anatomic Pathology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States)

    2013-02-28

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies.

  4. Host Immune Response to Influenza A Virus Infection.

    Science.gov (United States)

    Chen, Xiaoyong; Liu, Shasha; Goraya, Mohsan Ullah; Maarouf, Mohamed; Huang, Shile; Chen, Ji-Long

    2018-01-01

    Influenza A viruses (IAVs) are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins), various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.

  5. The Role of the Immune Response in Merkel Cell Carcinoma

    International Nuclear Information System (INIS)

    Triozzi, Pierre L.; Fernandez, Anthony P.

    2013-01-01

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies

  6. Host Immune Response to Influenza A Virus Infection

    Directory of Open Access Journals (Sweden)

    Xiaoyong Chen

    2018-03-01

    Full Text Available Influenza A viruses (IAVs are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins, various phagocytic cells, group of cytokines, interferons (IFNs, and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.

  7. Immune response induction in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...... and/or demyelinating pathology. This article will review the molecular and cellular dynamics of immune responses in the CNS, with particular emphasis on autoimmune inflammation, as has been studied in the authors' laboratory....

  8. War and peace: Factor VIII and the adaptive immune response.

    Science.gov (United States)

    Georgescu, Maria T; Lai, Jesse D; Hough, Christine; Lillicrap, David

    2016-03-01

    The development of neutralizing anti-factor VIII (FVIII) antibodies (inhibitors) remains a major challenge for FVIII replacement therapy in hemophilia A patients. The adaptive immune response plays a crucial role in the development and maintenance of inhibitors. In this review, we focus on our current understanding of FVIII interactions with cells of the adaptive immune system and the phenotype of the resultant response. Additionally, we examine both current and novel FVIII tolerance induction methods that function at the level of the adaptive immune response. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Rotavirus immune responses and correlates of protection.

    Science.gov (United States)

    Angel, Juana; Franco, Manuel A; Greenberg, Harry B

    2012-08-01

    Selected topics in the field of rotavirus immunity are reviewed focusing on recent developments that may improve efficacy and safety of current and future vaccines. Rotaviruses (RVs) have developed multiple mechanisms to evade interferon (IFN)-mediated innate immunity. Compared to more developed regions of the world, protection induced by natural infection and vaccination is reduced in developing countries where, among other factors, high viral challenge loads are common and where infants are infected at an early age. Studies in developing countries indicate that rotavirus-specific serum IgA levels are not an optimal correlate of protection following vaccination, and better correlates need to be identified. Protection against rotavirus following vaccination is substantially heterotypic; nonetheless, a role for homotypic immunity in selection of circulating postvaccination strains needs further study. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Cervical Carcinogenesis and Immune Response Gene Polymorphisms: A Review

    Directory of Open Access Journals (Sweden)

    Akash M. Mehta

    2017-01-01

    Full Text Available The local immune response is considered a key determinant in cervical carcinogenesis after persistent infection with oncogenic, high-risk human papillomavirus (HPV infections. Genetic variation in various immune response genes has been shown to influence risk of developing cervical cancer, as well as progression and survival among cervical cancer patients. We reviewed the literature on associations of immunogenetic single nucleotide polymorphism, allele, genotype, and haplotype distributions with risk and progression of cervical cancer. Studies on HLA and KIR gene polymorphisms were excluded due to the abundance on literature on that subject. We show that multiple genes and loci are associated with variation in risk of cervical cancer. Rather than one single gene being responsible for cervical carcinogenesis, we postulate that variations in the different immune response genes lead to subtle differences in the effectiveness of the antiviral and antitumour immune responses, ultimately leading to differences in risk of developing cervical cancer and progressive disease after HPV infection.

  11. Association Between Inflammatory Diet Pattern and Risk of Colorectal Carcinoma Subtypes Classified by Immune Responses to Tumor.

    Science.gov (United States)

    Liu, Li; Nishihara, Reiko; Qian, Zhi Rong; Tabung, Fred K; Nevo, Daniel; Zhang, Xuehong; Song, Mingyang; Cao, Yin; Mima, Kosuke; Masugi, Yohei; Shi, Yan; da Silva, Annacarolina; Twombly, Tyler; Gu, Mancang; Li, Wanwan; Hamada, Tsuyoshi; Kosumi, Keisuke; Inamura, Kentaro; Nowak, Jonathan A; Drew, David A; Lochhead, Paul; Nosho, Katsuhiko; Wu, Kana; Wang, Molin; Garrett, Wendy S; Chan, Andrew T; Fuchs, Charles S; Giovannucci, Edward L; Ogino, Shuji

    2017-12-01

    lymphocytic reaction. These findings suggest that diet-related inflammation might contribute to development of colorectal cancer, by suppressing the adaptive anti-tumor immune response. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Modulation of the immune response by emotional stress

    NARCIS (Netherlands)

    Croiset, G; Heijnen, C J; Veldhuis, H D; de Wied, D; Ballieux, R E

    1987-01-01

    The influence of mild, emotional stress was investigated for its effect on the immune system by subjecting rats to the one-trial-learning passive avoidance test. The reactivity of the immune system was tested by determining the proliferative response after mitogenic stimulation in vitro as well as

  13. Humoral and cellular immune responses to modified hepatitis B ...

    African Journals Online (AJOL)

    Purpose: To evaluate the immunogenicity and types of immune response of a quality-controlled modified recombinant hepatitis B surface antigen (HBsAg) plasmid encoding HBsAg in mice. Methods: The characterized plasmid DNA was used in the immunization of Balb/c mice. Three groups of mice were intramuscularly ...

  14. Hepatitis B Virus Vaccine immune response in Egyptian children 15 ...

    African Journals Online (AJOL)

    Egypt J Pediatr Allergy Immunol 2015;13(2):45-48. 45. Hepatitis B Virus Vaccine immune response in Egyptian children 15-17 years after primary immunization; should we provide a booster dose? INTRODUCTION. Hepatitis B virus (HBV) infection is a global public health problem. With approximately 350 million hepatitis B ...

  15. Evidence of a humoral immune response against the prokaryotic ...

    Indian Academy of Sciences (India)

    Although the BVDV non-structural N-terminal protease (Npro) acts as an interferon antagonist and subverts the host innate immunity, little is known about its immunogenicity. Hence, we expressed a recombinant BVDV Npro–His fusion protein (28 kDa) in E. coli and determined the humoral immune response generated by it ...

  16. Anti-Tumor Effect of the Alphavirus-based Virus-like Particle Vector Expressing Prostate-Specific Antigen in a HLA-DR Transgenic Mouse Model of Prostate Cancer

    Science.gov (United States)

    Riabov, V.; Tretyakova, I.; Alexander, R. B.; Pushko, P.; Klyushnenkova, E. N.

    2015-01-01

    The goal of this study was to determine if an alphavirus-based vaccine encoding human Prostate-Specific Antigen (PSA) could generate an effective anti-tumor immune response in a stringent mouse model of prostate cancer. DR2bxPSA F1 male mice expressing human PSA and HLA-DRB1*1501 transgenes were vaccinated with virus-like particle vector encoding PSA (VLPV-PSA) followed by the challenge with Transgenic Adenocarcinoma of Mouse Prostate cells engineered to express PSA (TRAMP-PSA). PSA-specific cellular and humoral immune responses were measured before and after tumor challenge. PSA and CD8 reactivity in the tumors was detected by immunohistochemistry. Tumor growth was compared in vaccinated and control groups. We found that VLPV-PSA could infect mouse dendritic cells in vitro and induce a robust PSA-specific immune response in vivo. A substantial proportion of splenic CD8+ T cells (19.6±7.4%) produced IFNγ in response to the immunodominant peptide PSA65–73. In the blood of vaccinated mice, 18.4±4.1% of CD8+ T cells were PSA-specific as determined by the staining with H-2Db/PSA65–73 dextramers. VLPV-PSA vaccination also strongly stimulated production of IgG2a/b anti-PSA antibodies. Tumors in vaccinated mice showed low levels of PSA expression and significant CD8 T cell infiltration. Tumor growth in VLPV-PSA vaccinated mice was significantly delayed at early time points (p=0.002, Gehan-Breslow test). Our data suggest that TC-83-based VLPV-PSA vaccine can efficiently overcome immune tolerance to PSA, mediate rapid clearance of PSA-expressing tumor cells and delay tumor growth. The VLPV-PSA vaccine will undergo further testing for the immunotherapy of prostate cancer. PMID:26319744

  17. Modulation of primary immune response by different vaccine adjuvants

    Directory of Open Access Journals (Sweden)

    Annalisa Ciabattini

    2016-10-01

    Full Text Available Adjuvants contribute to enhancing and shaping the vaccine immune response through different modes of action. Since the primary immune response can influence the overall quality of the response generated, here we investigate early biomarkers of adjuvanticity after primary immunization with four different adjuvants combined with the chimeric tuberculosis vaccine antigen H56. C57BL/6 mice were immunized by the subcutaneous route with different vaccine formulations, and the modulation of primary CD4+ T cell and B cell responses was assessed within draining lymph nodes, blood and spleen, 7 and 12 days after priming. Vaccine formulations containing the liposome system CAF01 or a squalene-based oil-in-water emulsion (o/w Squalene, but not aluminum hydroxide (Alum or CpG ODN 1826, elicited a significant primary antigen-specific CD4+ T cell response compared to antigen alone, 7 days after immunization. The effector function of activated CD4+ T cells was skewed towards a Th1/Th17 response by CAF01, while a Th1/Th2 response was elicited by o/w Squalene. Differentiation of B cells in short-lived plasma cells, and subsequent early H56-specific IgG secretion, was observed in mice immunized with o/w Squalene or CpG adjuvants. Tested adjuvants promoted the germinal centre reaction with different magnitude. These results show that the immunological activity of different adjuvants can be characterized by profiling early immunization biomarkers after primary immunization. These data and this approach could give an important contribution to the rational development of heterologous prime-boost vaccine immunization protocols.

  18. Subversion of the Immune Response by Rabies Virus

    Directory of Open Access Journals (Sweden)

    Terence P. Scott

    2016-08-01

    Full Text Available Rabies has affected mankind for several centuries and is one of the oldest known zoonoses. It is peculiar how little is known regarding the means by which rabies virus (RABV evades the immune response and kills its host. This review investigates the complex interplay between RABV and the immune system, including the various means by which RABV evades, or advantageously utilizes, the host immune response in order to ensure successful replication and spread to another host. Different factors that influence immune responses—including age, sex, cerebral lateralization and temperature—are discussed, with specific reference to RABV and the effects on host morbidity and mortality. We also investigate the role of apoptosis and discuss whether it is a detrimental or beneficial mechanism of the host’s response to infection. The various RABV proteins and their roles in immune evasion are examined in depth with reference to important domains and the downstream effects of these interactions. Lastly, an overview of the means by which RABV evades important immune responses is provided. The research discussed in this review will be important in determining the roles of the immune response during RABV infections as well as to highlight important therapeutic target regions and potential strategies for rabies treatment.

  19. Immune response capacity after human splenic autotransplantation - Restoration of response to individual pneumococcal vaccine subtypes

    NARCIS (Netherlands)

    Leemans, R; Manson, W; Snijder, JAM; Smit, JW; Klasen, HJ; The, TH; Timens, W

    Objective To evaluate features of general immune function, in particular the restoration of the humoral immune response to pneumococcal capsular polysaccharides, in humans undergoing a spleen autotransplantation after splenectomy because of trauma. Summary Background Data After splenectomy, patients

  20. Loss of the innate immunity negative regulator IRAK-M leads to enhanced host immune defense against tumor growth

    Science.gov (United States)

    Xie, Qifa; Gan, Lu; Wang, Jianxia; Wilson, Ingred; Li, Liwu

    2010-01-01

    IRAK-M is a negative regulator of innate immunity signaling processes. Although attenuation of innate immunity may help to prevent excessive inflammation, it may also lead to compromised immune surveillance of tumor cells and contribute to tumor formation and growth. Here, we demonstrate that IRAK-M−/− mice are resistant to tumor growth upon inoculation with transplantable tumor cells. Immune cells from IRAK-M−/− mice are responsible for the anti-tumor effect, since adoptive transfer of splenocytes from IRAK-M−/− mice to wild type mice can transfer the tumor-resistant phenotype. Upon tumor cell challenge, there are elevated populations of CD4+ and CD8+ T cells and a decreased population of CD4+ CD25+Foxp3+ regulatory T cells in IRAK-M −/− splenocytes. Furthermore, we observe that IRAK-M deficiency leads to elevated proliferation and activation of T cells and B cells. Enhanced NFκB activation directly caused by IRAK-M deficiency may explain elevated activation of T and B cells. In addition, macrophages from IRAK-M−/− mice exhibit enhanced phagocytic function toward acetylated LDL and apoptotic thymocytes. Collectively, we demonstrate that IRAK-M is directly involved in the regulation of both innate and adaptive immune signaling processes, and deletion of IRAK-M enhances host anti-tumor immune response. PMID:17477969

  1. Transcriptional Profiling of the Immune Response to Marburg Virus Infection.

    Science.gov (United States)

    Connor, John H; Yen, Judy; Caballero, Ignacio S; Garamszegi, Sara; Malhotra, Shikha; Lin, Kenny; Hensley, Lisa; Goff, Arthur J

    2015-10-01

    Marburg virus is a genetically simple RNA virus that causes a severe hemorrhagic fever in humans and nonhuman primates. The mechanism of pathogenesis of the infection is not well understood, but it is well accepted that pathogenesis is appreciably driven by a hyperactive immune response. To better understand the overall response to Marburg virus challenge, we undertook a transcriptomic analysis of immune cells circulating in the blood following aerosol exposure of rhesus macaques to a lethal dose of Marburg virus. Using two-color microarrays, we analyzed the transcriptomes of peripheral blood mononuclear cells that were collected throughout the course of infection from 1 to 9 days postexposure, representing the full course of the infection. The response followed a 3-stage induction (early infection, 1 to 3 days postexposure; midinfection, 5 days postexposure; late infection, 7 to 9 days postexposure) that was led by a robust innate immune response. The host response to aerosolized Marburg virus was evident at 1 day postexposure. Analysis of cytokine transcripts that were overexpressed during infection indicated that previously unanalyzed cytokines are likely induced in response to exposure to Marburg virus and further suggested that the early immune response is skewed toward a Th2 response that would hamper the development of an effective antiviral immune response early in disease. Late infection events included the upregulation of coagulation-associated factors. These findings demonstrate very early host responses to Marburg virus infection and provide a rich data set for identification of factors expressed throughout the course of infection that can be investigated as markers of infection and targets for therapy. Marburg virus causes a severe infection that is associated with high mortality and hemorrhage. The disease is associated with an immune response that contributes to the lethality of the disease. In this study, we investigated how the immune cells

  2. Overview of the immune response to phytonutrient in poultry

    Science.gov (United States)

    Overview of the immune response to phytonutrient in poultry. Lillehoj, Hyun S. Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA Phytochemicals are non-nutritive, plant-derived chemicals, many w...

  3. Nanoparticles for nasal delivery of vaccines : monitoring adaptive immune responses

    NARCIS (Netherlands)

    Keijzer, C.

    2013-01-01

    The continuous emergence of new pathogens and growing drug resistance of microorganisms asks for innovative vaccination strategies. An alternative to conventional multiple injection vaccines is the nasal route of vaccine delivery. The immune response induced following nasal antigen delivery depends

  4. Autophagy suppresses host adaptive immune responses toward Borrelia burgdorferi

    NARCIS (Netherlands)

    Buffen, Kathrin; Oosting, Marije; Li, Yang; Kanneganti, Thirumala-Devi; Netea, Mihai G.; Joosten, Leo A. B.

    Inhibition of autophagy increases the severity of murine Lyme arthritis and human adaptive immune responses against B. burgdorferi. We have previously demonstrated that inhibition of autophagy increased the Borrelia burgdorferi induced innate cytokine production in vitro, but little is known

  5. DNA Damage Response and Immune Defence: Links and Mechanisms

    Directory of Open Access Journals (Sweden)

    Björn Schumacher

    2016-08-01

    Full Text Available DNA damage plays a causal role in numerous human pathologies including cancer, premature aging and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signalling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signalling. We highlight evidence gained into (i which molecular and cellular pathways of DDR activate immune signalling, (ii how DNA damage drives chronic inflammation, and (iii how chronic inflammation causes DNA damage and pathology in humans.

  6. EphA2-derived peptide vaccine with amphiphilic poly(gamma-glutamic acid) nanoparticles elicits an anti-tumor effect against mouse liver tumor.

    Science.gov (United States)

    Yamaguchi, Shinjiro; Tatsumi, Tomohide; Takehara, Tetsuo; Sasakawa, Akira; Yamamoto, Masashi; Kohga, Keisuke; Miyagi, Takuya; Kanto, Tatsuya; Hiramastu, Naoki; Akagi, Takami; Akashi, Mitsuru; Hayashi, Norio

    2010-05-01

    The prognosis of liver cancer remains poor, but recent advances in nanotechnology offer promising possibilities for cancer treatment. Novel adjuvant, amphiphilic nanoparticles (NPs) composed of L: -phenylalanine (Phe)-conjugated poly(gamma-glutamic acid) (gamma-PGA-Phe NPs) having excellent capacity for carrying peptides, were found to have the potential for use as a peptide vaccine against tumor models overexpressing artificial antigens, such as ovalbumin (OVA). However, the anti-tumor potential of gamma-PGA-Phe NPs vaccines using much less immunogenic tumor-associated antigen (TAA)-derived peptide needs to be clarified. In this study, we evaluated the effectiveness of immunization with EphA2, recently identified TAA, derived peptide-immobilized gamma-PGA-Phe NPs (Eph-NPs) against mouse liver tumor of MC38 cells (EphA2-positive colon cancer cells). Immunization of normal mice with Eph-NPs resulted in generation of EphA2-specific type-1 CD8+ T cells. Immunization with Eph-NPs tended to provide a degree of anti-MC38 liver tumor protection more than that observed for immunization with the mixture of EphA2-derived peptide and complete Freund's adjuvant (Eph + CFA). Neither Eph-NPs nor Eph + CFA vaccines inhibited tumor growth of BL6, EphA2-negative melanoma cells. Splenocytes isolated from MC38-bearing mice treated with Eph-NPs showed strong and specific cytotoxic activity against MC38 cells. Immunization with Eph + CFA induced liver damage as evidenced by elevation of serum alanine aminotransferase, while Eph-NPs vaccination did not exhibit any toxic damage to the liver. These results demonstrated that immunization with Eph-NPs displayed anti-tumor effects against liver tumor by generating acquired immunity equivalent to the toxic adjuvant CFA, suggesting that safe gamma-PGA-Phe NPs could be applied clinically for the vaccine treatment of liver cancer.

  7. Immune markers and correlates of protection for vaccine induced immune responses

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Pedersen, Lasse Eggers; Jungersen, Gregers

    2012-01-01

    , through recombinant major histocompatibility complex (MHC) class I tetramers loaded with relevant peptides, has opened a new vista to include CTL responses in the evaluation of protective immune responses. Here, we review different immune markers and new candidates for correlates of a protective vaccine......Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers...... of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against...

  8. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies....... These studies have identified a plethora of novel effector proteins stored in the granules of neutrophils. In addition, these studies provide evidence that neutrophil differentiation and immune response are governed by a highly coordinated transcriptional programme that regulates cellular fate and function...

  9. Immune responses to colophony, an agent causing occupational asthma.

    OpenAIRE

    Cullen, R T; Cherrie, B; Soutar, C A

    1992-01-01

    BACKGROUND: Inhalation of fumes from heated colophony (pine resin) is a recognised cause of occupational asthma, although the mechanisms by which colophony produces symptoms are unclear and specific immune responses to colophony have not been reported in sensitised workers. A study was carried out to determine whether colophony is antigenic. METHODS: The immune responses to colophony were studied in C57BL/6 mice and Dunkin Hartley guinea pigs after intraperitoneal injection of colophony conju...

  10. Anti-tumor activity of triterpenoid-rich extract from bamboo shavings ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-20

    Sep 20, 2010 ... especially on anti-tumor. The reports on the biological activities of triterpenoids ... Helium was used as a carrier gas at a flow rate of 1. mL/min. 1 µL EBS sample dissolved in dichloromethane was ... The Silica Gel Column Chromatography and Countercurrent Chro- matography preparation techniques were ...

  11. Anti-tumor potential of total alkaloid extract of Prosopis juliflora DC ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... The in vitro anti-tumor potential of the extract was evaluated using MTT (3-(4,5- dimethythiazol-2yl)2 ... were compared with mitogen stimulated T-lymphocyte cultures derived from peripheral blood of healthy volunteers. The MTT test ... showed significant activity against lung carcinoma in vivo. (Wassel et al.

  12. In vitro antioxidant, antibacterial and anti-tumor activities of total ...

    African Journals Online (AJOL)

    In vitro antioxidant, antibacterial and anti-tumor activities of total flavonoids from Elsholtzia densa Benth. Ren Qiu-Rong, Li Jiao, Wang Ya-Nan, Gou Xun, Xin Wen-Yuan, Ma Dan-Wei, Xiong Xiu-Hong, Zhou Yu-Jun ...

  13. In vitro antioxidant, antibacterial and anti-tumor activities of total ...

    African Journals Online (AJOL)

    Purpose: To investigate the in vitro antioxidant, antibacterial and anti-tumor activities of total flavonoids from Elsholtzia densa Benth of Sichuan Province, China. Methods: The total flavonoids of Elsholtzia densa Bent were extracted utilizing the ultrasonic extraction method, and purified by D101 macroporous adsorption resin ...

  14. Anti-thrombotic and anti-tumor effect of water extract of caulis of ...

    African Journals Online (AJOL)

    Purpose: To investigate the anti-thrombosis and anti-tumor effect of the water extract of the caulis of Sargentodoxa cuneata (Oliv.) Rehd. et Wils. (WCSW) in rat and mouse models. Methods: WCSW extract was prepared and the main constituents were determined by high pressure liquid chromatography (HPLC). The acute ...

  15. Anti-tumor activity of triterpenoid-rich extract from bamboo shavings ...

    African Journals Online (AJOL)

    Bamboo shavings are a kind of Chinese traditional medicine, which have been certificated as a material of functional food by the Ministry of Health in China. The anti-tumor activities of a triterpenoid-rich extract of bamboo shavings (EBS) and its main component, friedelin were evaluated in the present study. It was proved ...

  16. Anti-tumor potential of total alkaloid extract of Prosopis juliflora DC ...

    African Journals Online (AJOL)

    The total alkaloid extract from Prosopis juliflora DC. leaves was obtained using acid/base modified extraction method. The in vitro anti-tumor potential of the extract was evaluated using MTT (3-(4,5- dimethythiazol-2yl)2,5-diphenyl tetrazolium bromide) based cytotoxicity monitoring after 24, 48 and 72 h exposure of the ...

  17. Study on in vitro anti-tumor activity of Bidens bipinnata L. extract ...

    African Journals Online (AJOL)

    We studied the in vitro anti-tumor activity of Bidens Bipinnata L. extract. MTT assay was used to investigate the inhibitory effect of different concentrations of the extracts on human hepatocellular carcinoma (HepG2) cell lines and human cervical carcinoma (Hela) cell lines, and the IC50 values were calculated. The Bidens ...

  18. Anti-tumor activity of tetrodotoxin extracted from the Masked Puffer ...

    African Journals Online (AJOL)

    Anti-tumor activity of tetrodotoxins extracted from the skin of the Masked Puffer fish (Arothron diadematus) from the Red Sea was evaluated using the Ehrlich ascite carcinoma tumor model in mice. Activity was assessed using a variety of cellular and liver biochemical parameters. Experimental mice were divided into 4 equal ...

  19. Study on anti-tumor effect of total glycosides from radix paeoniae ...

    African Journals Online (AJOL)

    The objective of the paper was to study the anti-tumor effect of total glycosides from Radix paeoniae rubra in S180 tumor-bearing mice, and to preliminarily explore its mechanism of action. Mice were made into S180 solid tumor model, grouped and administered with the extracts; tumor inhibition rate was measured by ...

  20. Evaluation of Anti-tumor and Chemoresistance-lowering Effects of ...

    African Journals Online (AJOL)

    Evaluation of Anti-tumor and Chemoresistance-lowering Effects of Pectolinarigenin from Cirsium japonicum Fisch ex DC in Breast Cancer. Mingqian Lu, Xinhua Xu, Hongda Lu, Zhongxin Lu, Bingqing Xu, Chao Tan, Kezhi Shi, Rong Guo, Qingzhi Kong ...

  1. Antigen processing and immune regulation in the response to tumours.

    Science.gov (United States)

    Reeves, Emma; James, Edward

    2017-01-01

    The MHC class I and II antigen processing and presentation pathways display peptides to circulating CD8 + cytotoxic and CD4 + helper T cells respectively to enable pathogens and transformed cells to be identified. Once detected, T cells become activated and either directly kill the infected / transformed cells (CD8 + cytotoxic T lymphocytes) or orchestrate the activation of the adaptive immune response (CD4 + T cells). The immune surveillance of transformed/tumour cells drives alteration of the antigen processing and presentation pathways to evade detection and hence the immune response. Evasion of the immune response is a significant event tumour development and considered one of the hallmarks of cancer. To avoid immune recognition, tumours employ a multitude of strategies with most resulting in a down-regulation of the MHC class I expression at the cell surface, significantly impairing the ability of CD8 + cytotoxic T lymphocytes to recognize the tumour. Alteration of the expression of key players in antigen processing not only affects MHC class I expression but also significantly alters the repertoire of peptides being presented. These modified peptide repertoires may serve to further reduce the presentation of tumour-specific/associated antigenic epitopes to aid immune evasion and tumour progression. Here we review the modifications to the antigen processing and presentation pathway in tumours and how it affects the anti-tumour immune response, considering the role of tumour-infiltrating cell populations and highlighting possible future therapeutic targets. © 2016 John Wiley & Sons Ltd.

  2. Respons imun humoral pada pulpitis (Humoral immune response on pulpitis

    Directory of Open Access Journals (Sweden)

    Trijoedani Widodo

    2005-06-01

    Full Text Available Pulpitis is an inflammation process on dental pulp tissue, and usually as the continuous of caries. The microorganism in the caries is a potential immunogenic triggering the immune respons, both humoral and celluler immune responses. The aim of this research is to explain the humoral immune response changes in the dental pulp tissues of pulpitis. This research was done on three group samples: Irreversible pulpitis, Reversible pulpitis and sound teeth as the control group. The result showed that there were three pulpitis immunopathologic patterns: the sound teeth immunopathologic pattern showing a low humoral immune response, in a low level of IgG, IgA and IgM, the reversible pulpitis pattern showing that in a higher humoral immune response, IgG and IgA decreased but IgM increased, the irreversible pulpitis pattern showing that IgG and IgM increased, but it couldn't be repaired although it has highly immunity, and it showed an unusually low level of IgA. This low level of IgA meant that irreversible pulpitis had a low mucosal immunity.

  3. Modeling the interactions between pathogenic bacteria, bacteriophage and immune response

    Science.gov (United States)

    Leung, Chung Yin (Joey); Weitz, Joshua S.

    The prevalence of antibiotic-resistant strains of pathogenic bacteria has led to renewed interest in the use of bacteriophage (phage), or virus that infects bacteria, as a therapeutic agent against bacterial infections. However, little is known about the theoretical mechanism by which phage therapy may work. In particular, interactions between the bacteria, the phage and the host immune response crucially influences the outcome of the therapy. Few models of phage therapy have incorporated all these three components, and existing models suffer from unrealistic assumptions such as unbounded growth of the immune response. We propose a model of phage therapy with an emphasis on nonlinear feedback arising from interactions with bacteria and the immune response. Our model shows a synergistic effect between the phage and the immune response which underlies a possible mechanism for phage to catalyze the elimination of bacteria even when neither the immune response nor phage could do so alone. We study the significance of this effect for different parameters of infection and immune response, and discuss its implications for phage therapy.

  4. The effect of anti-tumor necrosis factor alpha agents on postoperative anastomotic complications in Crohn's disease

    DEFF Research Database (Denmark)

    El-Hussuna, Alaa Abdul-Hussein H; Krag, Aleksander; Olaison, Gunnar

    2013-01-01

    Patients with Crohn's disease treated with anti-tumor necrosis factor alpha agents may have an increased risk of surgical complications.......Patients with Crohn's disease treated with anti-tumor necrosis factor alpha agents may have an increased risk of surgical complications....

  5. Suppression of Th2 immune responses by the sulfated polysaccharide from Porphyra haitanensis in tropomyosin-sensitized mice.

    Science.gov (United States)

    Shi, Chaolan; Pan, Tzuming; Cao, Minjie; Liu, Qingmei; Zhang, Lingjing; Liu, Guangming

    2015-02-01

    The sulfated polysaccharide from Porphyra was hypothesized to exhibit immunoregulatory, anti-tumor and anti-inflammatory activity, but its anti-allergic activity is not fully understood. Therefore, the aim of this study was to isolate sulfated polysaccharide from Porphyra haitanensis (PHPS) and investigate its anti-allergic potential using a tropomyosin (TM)-induced mouse allergy model. Intraperitoneal injection of PHPS suppressed the allergic reaction by modulating serum IgE, IgG1 and IgG2a levels in mice. In particular, when PHPS was injected prior to the first immunization with TM, the IgE level decreased by 34.2% compared with the control (PBS) group. Oral therapeutic administration of PHPS to TM-sensitized mice decreased histamine release and repaired the pathology in the jejunum of the small intestine. In vitro, the mRNA expressions of the TM-induced Th2 cytokines (interleukin-4 (IL-4), IL-5 and IL-13) in splenic lymphocytes were reduced by PHPS; however, the expression of Th1 and regulatory cytokines (interferon gamma (IFN-γ) and IL-10) were up-regulated in PHPS-treated splenic lymphocytes. In the splenic lymphocyte supernatant, the IL-4, IL-13 and IFN-γ levels were also regulated by PHPS. Moreover, PHPS induced IFN-γ secretion via the Jun N-terminal kinase (JNK) and Janus kinase 2 (JAK2) signaling pathways. Therefore, these results suggest that PHPS suppresses the TM-induced allergic reaction, possibly by modulating the imbalance of the Th1/Th2 immune response. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The anti-tumor effect of ACNU and x-irradiation on mouse glioma

    International Nuclear Information System (INIS)

    Nakagawa, Hidemitsu; Hori, Masaharu; Hasegawa, Hiroshi; Mogami, Heitaro; Hayakawa, Toru.

    1979-01-01

    Anti-tumor activities of 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride (ACNU) and x-irradiation on methylcholanthrene induced glioma in C 57 BL mice were studied in vitro and in vivo. In vitro experiments using cultured glioma cells (MGB cells), the synchronization of cell cycle was done by excess addition of thymidine, and the anti-tumor cell effect were investigated by mean of determinations of DNA synthesis, mitotic index and the number of the living cells following the treatments. As the results, it appeared obvious that ACNU was most effective on MGB cells in S phase and x-irradiation in M phase. As to the combined therapy of ACNU and x-irradiation, the anti-tumor effect was most remarkable when the cells were treated by x-irradiation in the G 2 , M phase, which were hervested by addition of ACNU 44 hours before irradiation. However simultaneous treatment of ACNU and x-irradiation on the cells in G 1 phase was not so remarkable. In vivo experiments the anti-tumor effect of ACNU and x-irradiation on subcutaneously or intracranially transplanted glioma in mice was investigated. Either ACNU 10 mg/kg or local x-irradiation 1240 rads showed inhibitory effect on the tumor growth and prolonged the survival time of the tumor bearing mice. The combination therapy was more effective than ACNU or x-irradiation alone, particularly combination therapy of ACNU and repeated small doses irradiation of x-ray was remarkably effective. Evidence obtained indicated that the combination therapy of ACNU and x-irradiation have synergistic anti-tumor effect on experimental mouse glioma. (author)

  7. Evaluation of mucosal and systemic immune responses elicited by GPI-0100- adjuvanted influenza vaccine delivered by different immunization strategies.

    Directory of Open Access Journals (Sweden)

    Heng Liu

    Full Text Available Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN or the intrapulmonary (IPL route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses.

  8. Immune response to UV-induced tumors: mediation of progressor tumor rejection by natural killer cells

    International Nuclear Information System (INIS)

    Streeter, P.R.; Fortner, G.W.

    1986-01-01

    Skin tumors induced in mice by chronic ultraviolet (UV) irradiation are highly antigenic and can induce a state of transplantation immunity in syngeneic animals. In the present study, the authors compared the in vitro cytolytic activity of splenic lymphocytes from mice immunized with either regressor or progressor UV-tumors. The results of this comparison implicated tumor-specific cytolytic T (Tc) lymphocytes in rejection of regressor UV-tumors, and revealed that immunization with the progressor UV-tumor 2237 failed to elicit detectable levels of progressor tumor-specific Tc cells even as the tumors rejected. Following in vitro resensitization of spleen cells from either regressor or progressor tumor immune animals, the authors found NK-like lymphocytes with anti-tumor activity. As the authors had not detected cells with this activity in splenic lymphocyte preparations prior to in vitro resensitization, the authors examined lymphocytes from the local tumor environment during the course of progressor tumor rejection for this activity. This analysis revealed NK lymphocytes exhibiting significant levels of cytolytic activity against UV-tumors. These results implicate NK cells as potential effector cells in the rejection of progressor UV-tumors by immune animals, and suggests that these cells may be regulated by T lymphocytes

  9. Initiation of innate immune responses by surveillance of homeostasis perturbations.

    Science.gov (United States)

    Colaço, Henrique G; Moita, Luis F

    2016-07-01

    Pathogen recognition, signaling transduction pathways, and effector mechanisms are necessary steps of innate immune responses that play key roles in the early phase of defense and in the stimulation of the later specific response of adaptive immunity. Here, we argue that in addition to the direct recognition of conserved common structural and functional molecular signatures of microorganisms using pattern recognition receptors, hosts can mount an immune response following the sensing of disruption in homeostasis as proximal reporters for infections. Surveillance of disruption of core cellular activities leading to defense responses is a flexible strategy that requires few additional components and that can effectively detect relevant threats. It is likely to be evolutionarily very conserved and ancient because it is operational in organisms that lack pattern recognition triggered immunity. A homeostasis disruption model of immune response initiation and modulation has broad implications for pathophysiology and treatment of disease and might constitute an often overlooked but central component of a comprehensive conceptual framework for innate immunity. © 2016 Federation of European Biochemical Societies.

  10. Maternal immunity enhances Mycoplasma hyopneumoniae vaccination induced cell-mediated immune responses in piglets.

    Science.gov (United States)

    Bandrick, Meggan; Theis, Kara; Molitor, Thomas W

    2014-06-05

    Passively acquired maternal derived immunity (MDI) is a double-edged sword. Maternal derived antibody-mediated immunity (AMI) and cell-mediated immunity (CMI) are critical immediate defenses for the neonate; however, MDI may interfere with the induction of active immunity in the neonate, i.e. passive interference. The effect of antigen-specific MDI on vaccine-induced AMI and CMI responses to Mycoplasma hyopneumoniae (M. hyopneumoniae) was assessed in neonatal piglets. To determine whether CMI and AMI responses could be induced in piglets with MDI, piglets with high and low levels of maternal M. hyopneumoniae-specific immunity were vaccinated against M. hyopneumoniae at 7 d of age. Piglet M. hyopneumoniae-specific antibody, lymphoproliferation, and delayed type hypersensitivity (DTH) responses were measured 7 d and 14 d post vaccination. Piglets with M. hyopneumoniae-specific MDI failed to show vaccine-induced AMI responses; there was no rise in M. hyopneumoniae antibody levels following vaccination of piglets in the presence of M. hyopneumoniae-specific MDI. However, piglets with M. hyopneumoniae-specific MDI had primary (antigen-specific lymphoproliferation) and secondary (DTH) M. hyopneumoniae-specific CMI responses following vaccination. In this study neonatal M. hyopneumoniae-specific CMI was not subject to passive interference by MDI. Further, it appears that both maternal derived and endogenous CMI contribute to M. hyopneumoniae-specific CMI responses in piglets vaccinated in the face of MDI.

  11. Modulation of systemic immune responses through commensal gastrointestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Kyle M Schachtschneider

    Full Text Available Colonization of the gastrointestinal (GI tract is initiated during birth and continually seeded from the individual's environment. Gastrointestinal microorganisms play a central role in developing and modulating host immune responses and have been the subject of investigation over the last decades. Animal studies have demonstrated the impact of GI tract microbiota on local gastrointestinal immune responses; however, the full spectrum of action of early gastrointestinal tract stimulation and subsequent modulation of systemic immune responses is poorly understood. This study explored the utility of an oral microbial inoculum as a therapeutic tool to affect porcine systemic immune responses. For this study a litter of 12 pigs was split into two groups. One group of pigs was inoculated with a non-pathogenic oral inoculum (modulated, while another group (control was not. DNA extracted from nasal swabs and fecal samples collected throughout the study was sequenced to determine the effects of the oral inoculation on GI and respiratory microbial communities. The effects of GI microbial modulation on systemic immune responses were evaluated by experimentally infecting with the pathogen Mycoplasma hyopneumoniae. Coughing levels, pathology, toll-like receptors 2 and 6, and cytokine production were measured throughout the study. Sequencing results show a successful modulation of the GI and respiratory microbiomes through oral inoculation. Delayed type hypersensitivity responses were stronger (p = 0.07, and the average coughing levels and respiratory TNF-α variance were significantly lower in the modulated group (p<0.0001 and p = 0.0153, respectively. The M. hyopneumoniae infection study showed beneficial effects of the oral inoculum on systemic immune responses including antibody production, severity of infection and cytokine levels. These results suggest that an oral microbial inoculation can be used to modulate microbial communities, as well as

  12. Therapeutic targeting of regulatory T cells enhances tumor-specific CD8+ T cell responses in Epstein–Barr virus associated nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fogg, Mark [Department of Medicine, Brigham and Women' s Hospital (United States); Murphy, John R. [Departments of Medicine and Microbiology, Boston University School of Medicine, Boston, MA 02118 (United States); Lorch, Jochen; Posner, Marshall [Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 (United States); Wang, Fred, E-mail: fwang@research.bwh.harvard.edu [Department of Medicine, Brigham and Women' s Hospital (United States); Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 (United States)

    2013-07-05

    Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, as well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. - Highlights: • Viral proteins are tumor antigens in Epstein–Barr virus associated Nasopharyngeal Carcinoma. • CD8+ T cell responses against EBV proteins EBNA-1 and LMP2 are suppressed in NPC patients. • T regulatory cells are responsible for suppressing EBV immunity in NPC patients. • Depletion of Tregs with Ontak can rescue EBV-specific CD8+ T cell responses in NPC patients. • This clinically approved drug may be effective for enhancing anti-tumor immunity in NPC patients.

  13. Flavobacterium psychrophilum, prevention and immune response

    DEFF Research Database (Denmark)

    Henriksen, Maya Maria Mihályi; Dalsgaard, Inger

    The fish pathogen Flavobacterium psychrophilum is one of the main causes of mortality in farmed rainbow trout and other salmonid fish. The disease following infection is often called bacterial coldwater disease (BCWD) in USA or rainbow trout fry syndrome (RTFS) in Europe. An infected farm can exp...... goal is to examine gene expression and location of transcription products in rainbow trout fry, in order to optimize vaccination or immune-stimulation. The presentation will focus on the future plans for the project, since no data have yet been obtained....

  14. Cancer Immunotherapy Trials Underutilize Immune Response Monitoring

    OpenAIRE

    Connell, Claire M.; Raby, Sophie E.M.; Beh, Ian; Flint, Thomas R.; Williams, Edward H.; Fearon, Douglas T.; Jodrell, Duncan I.; Janowitz, Tobias

    2017-01-01

    This brief communication presents a quantitative assessment of the inclusion of immune‐related response criteria and immunological biomarker response monitoring in the registration details of T‐cell checkpoint‐targeted cancer immunotherapy trials in solid malignancies.

  15. Agouron and immune response to commercialize remune immune-based treatment.

    Science.gov (United States)

    James, J S

    1998-06-19

    Agouron Pharmaceuticals agreed in June to collaborate with The Immune Response Corporation on the final development and marketing of an immune-based treatment for HIV. Remune, the vaccine developed by Dr. Jonas Salk, is currently in Phase III randomized trials with 2,500 patients, and the trials are expected to be completed in April 1999. Immune-based treatments have been difficult to test, as there is no surrogate marker, like viral load, to determine if the drug is working. Agouron agreed to participate in the joint venture after reviewing encouraging results from preliminary trials in which remune was taken in combination with highly active antiretroviral drugs.

  16. IL-12 Expressing oncolytic herpes simplex virus promotes anti-tumor activity and immunologic control of metastatic ovarian cancer in mice.

    Science.gov (United States)

    Thomas, Eric D; Meza-Perez, Selene; Bevis, Kerri S; Randall, Troy D; Gillespie, G Yancey; Langford, Catherine; Alvarez, Ronald D

    2016-10-27

    Despite advances in surgical aggressiveness and conventional chemotherapy, ovarian cancer remains the most lethal cause of gynecologic cancer mortality; consequently there is a need for new therapeutic agents and innovative treatment paradigms for the treatment of ovarian cancer. Several studies have demonstrated that ovarian cancer is an immunogenic disease and immunotherapy represents a promising and novel approach that has not been completely evaluated in ovarian cancer. Our objective was to evaluate the anti-tumor activity of an oncolytic herpes simplex virus "armed" with murine interleukin-12 and its ability to elicit tumor-specific immune responses. We evaluated the ability of interleukin-12-expressing and control oncolytic herpes simplex virus to kill murine and human ovarian cancer cell lines in vitro. We also administered interleukin-12-expressing oncolytic herpes simplex virus to the peritoneal cavity of mice that had developed spontaneous, metastatic ovarian cancer and determined overall survival and tumor burden at 95 days. We used flow cytometry to quantify the tumor antigen-specific CD8 + T cell response in the omentum and peritoneal cavity. All ovarian cancer cell lines demonstrated susceptibility to oncolytic herpes simplex virus in vitro. Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus demonstrated a more robust tumor antigen-specific CD8 + T-cell immune response in the omentum (471.6 cells vs 33.1 cells; p = 0.02) and peritoneal cavity (962.3 cells vs 179.5 cells; p = 0.05). Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus were more likely to control ovarian cancer metastases (81.2 % vs 18.2 %; p = 0.008) and had a significantly longer overall survival (p = 0.02). Finally, five of 6 mice treated with interleukin-12-expressing oHSV had no evidence of metastatic tumor when euthanized at 6 months, compared to two of 4 mice treated with

  17. The renaissance of anti-neoplastic immunity from tumor cell demise.

    Science.gov (United States)

    Ma, Yuting; Pitt, Jonathan M; Li, Qingqing; Yang, Heng

    2017-11-01

    Cancer therapies can temporarily reduce tumor burdens by inducing malignant cell death. However, cancer cure is still far from realization because tumors often gain resistance to current treatment and eventually relapse. Accumulating evidence suggests that successful cancer interventions require anti-tumor immunity. Therapy-induced cell stress responses ultimately result in one or more cell death modalities, including apoptosis, autophagy, necroptosis, and pyroptosis. These irreversible dying processes are accompanied by active or passive release of cell death-associated molecular patterns (CDAMPs), which can be sensed by corresponding pattern recognition receptors (PRR) on tumor-infiltrating immune cells. This crosstalk with the immune system can reawaken immune surveillance in the tumor microenvironment (TME). This review focuses on immune-modulatory properties of anti-cancer regimens and CDAMP-mediated communications between cell stress responses and the immune contexture of TME. In addition, we describe how immunogenic cell death can elicit strong and durable anti-tumor immune responses. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Immunomodulator-based enhancement of anti smallpox immune responses.

    Directory of Open Access Journals (Sweden)

    Osmarie Martínez

    Full Text Available The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists, and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  19. Transgenerational effects enhance specific immune response in a wild passerine

    Directory of Open Access Journals (Sweden)

    Juli Broggi

    2016-03-01

    Full Text Available Vertebrate mothers transfer diverse compounds to developing embryos that can affect their development and final phenotype (i.e., maternal effects. However, the way such effects modulate offspring phenotype, in particular their immunity, remains unclear. To test the impact of maternal effects on offspring development, we treated wild breeding house sparrows (Passer domesticus in Sevilla, SE Spain with Newcastle disease virus (NDV vaccine. Female parents were vaccinated when caring for first broods, eliciting a specific immune response to NDV. The immune response to the same vaccine, and to the PHA inflammatory test were measured in 11-day-old chicks from their following brood. Vaccinated chicks from vaccinated mothers developed a stronger specific response that was related to maternal NDV antibody concentration while rearing their chicks. The chicks’ carotenoid concentration and total antioxidant capacity in blood were negatively related to NDV antibody concentration, whereas no relation with PHA response was found. Specific NDV antibodies could not be detected in 11-day-old control chicks from vaccinated mothers, implying that maternally transmitted antibodies are not directly involved but may promote offspring specific immunity through a priming effect, while other immunity components remain unaffected. Maternally transmitted antibodies in the house sparrow are short-lived, depend on maternal circulation levels and enhance pre-fledging chick specific immunity when exposed to the same pathogens as the mothers.

  20. Behavioural trait covaries with immune responsiveness in a wild passerine.

    Science.gov (United States)

    Sild, Elin; Sepp, Tuul; Hõrak, Peeter

    2011-10-01

    Immune system is highly integrated with the nervous and endocrine systems, which is thought to result in covariation between behavioural syndromes and stress- and immune-associated diseases. Very little is known about the associations between behaviour and immune traits in wild animals. Here we describe such an association in passerine birds, the greenfinches (Carduelis chloris). When wild-caught greenfinches are brought into captivity, some individuals damage their tail feathers against cage walls due to excited behaviour, while others retain their feathers in intact condition. We show that damage to tail feathers was associated with flapping flight movements and the frequency of such flapping bouts was individually consistent over 57 days. Birds with intact tails, i.e., relatively 'calm' individuals mounted stronger antibody response to a novel Brucella abortus antigen and their circulating phagocytes were capable of producing stronger oxidative burst in response to stimulation with bacterial lipopolysaccharide in vitro. As the behavioural trait was assessed 13-25 days before measuring immune responsiveness, our results demonstrate that individuals' coping styles with captivity predicted how these individuals would respond to forthcoming immune challenges. This is a novel evidence about covariation between immune responsiveness and a behavioural trait in a wild-caught animal. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Subversion of innate and adaptive immune responses by Toxoplasma gondii.

    Science.gov (United States)

    Lang, Christine; Gross, Uwe; Lüder, Carsten G K

    2007-01-01

    The intracellular apicomplexan parasite Toxoplasma gondii is able to survive and persist in immunocompetent intermediate hosts for the host's life span. This is despite the induction of a vigorous humoral and -- more importantly -- cell-mediated immune response during infection. In order to establish and maintain such chronic infections, however, T. gondii has evolved multiple strategies to avoid or to interfere with potentially efficient anti-parasitic immune responses of the host. Such immune evasion includes (1) indirect mechanisms by altering the expression and secretion of immunomodulatory cytokines or by altering the viability of immune cells and (2) direct mechanisms by establishing a lifestyle within a suitable intracellular niche and by interference with intracellular signaling cascades, thereby abolishing a number of antimicrobial effector mechanisms of the host. Despite the parasite's ability to interfere successfully with the host's efforts to eradicate the infection, the immune response is, however, not completely abrogated but is rather partially diminished after infection. T. gondii thus keeps a delicate balance between induction and suppression of the host's immune response in order to guarantee the survival of the host as a safe harbor for parasite development and to allow its transmission to the definitive host.

  2. Administration of sulfosuccinimidyl-4-[N-maleimidomethyl] cyclohexane-1-carboxylate conjugated GP100{sub 25–33} peptide-coupled spleen cells effectively mounts antigen-specific immune response against mouse melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Xiaoli [Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing (China); Xia, Chang-Qing, E-mail: cqx65@yahoo.com [Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing (China); Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL32610 (United States)

    2015-12-04

    It remains a top research priority to develop immunotherapeutic approaches to induce potent antigen-specific immune responses against tumors. However, in spite of some promising results, most strategies are ineffective because they generate low numbers of tumor-reactive cytotoxic T lymphocytes (CTLs). Here we designed a strategy to enhance antigen-specific immune response via administering sulfosuccinimidyl-4-[N-maleimidomethyl] cyclohexane-1-carboxylate (sulfo-SMCC)-conjugated melanoma tumor antigen GP100{sub 25–33} peptide-coupled syngeneic spleen cells in a mouse model of melanoma. We found that infusion of GP100{sub 25–33} peptide-coupled spleen cells significantly attenuated the growth of melanoma in prophylactic and therapeutic immunizations. Consistent with these findings, the adoptive transfer of spleen cells from immunized mice to naïve syngeneic mice was able to transfer anti-tumor effect, suggesting that GP100{sub 25–33} peptide-specific immune response was induced. Further studies showed that, CD8+ T cell proliferation and the frequency of interferon (IFN)-γ-producing CD8+ T cells upon ex vivo stimulation by GP100{sub 25–33} were significantly increased compared to control groups. Tumor antigen, GP100{sub 25–23} specific immune response was also confirmed by ELISpot and GP100-tetramer assays. This approach is simple, easy-handled, and efficiently delivering antigens to lymphoid tissues. Our study offers an opportunity for clinically translating this approach into tumor immunotherapy. - Highlights: • Infusion of GP100{sub 25–33}-coupled spleen cells leads to potent anti-melanoma immunity. • GP100{sub 25–33}-coupled spleen cell treatment induces antigen-specific IFN-γ-producing CD8 T cells. • This approach takes advantage of homing nature of immune cells.

  3. The immune response against Candida spp. and Sporothrix schenckii.

    Science.gov (United States)

    Martínez-Álvarez, José A; Pérez-García, Luis A; Flores-Carreón, Arturo; Mora-Montes, Héctor M

    2014-01-01

    Candida albicans is the main causative agent of systemic candidiasis, a condition with high mortality rates. The study of the interaction between C. albicans and immune system components has been thoroughly studied and nowadays there is a model for the anti-C. albicans immune response; however, little is known about the sensing of other pathogenic species of the Candida genus. Sporothrix schenckii is the causative agent of sporotrichosis, a subcutaneous mycosis, and thus far there is limited information about its interaction with the immune system. In this paper, we review the most recent information about the immune sensing of species from genus Candida and S. schenckii. Thoroughly searches in scientific journal databases were performed, looking for papers addressing either Candida- or Sporothrix-immune system interactions. There is a significant advance in the knowledge of non-C. albicans species of Candida and Sporothrix immune sensing; however, there are still relevant points to address, such as the specific contribution of pathogen-associated molecular patterns (PAMPs) for sensing by different immune cells and the immune receptors involved in such interactions. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  4. The immune response to Prevotella bacteria in chronic inflammatory disease

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura

    2017-01-01

    The microbiota plays a central role in human health and disease by shaping immune development, immune responses and metabolism, and by protecting from invading pathogens. Technical advances that allow comprehensive characterization of microbial communities by genetic sequencing have sparked......-8, IL-6 and CCL20, which can promote mucosal Th17 immune responses and neutrophil recruitment. Prevotella-mediated mucosal inflammation leads to systemic dissemination of inflammatory mediators, bacteria and bacterial products, which in turn may affect systemic disease outcomes. Studies in mice...... support a causal role of Prevotella as colonization experiments promote clinical and inflammatory features of human disease. When compared with strict commensal bacteria, Prevotella exhibit increased inflammatory properties, as demonstrated by augmented release of inflammatory mediators from immune cells...

  5. Impact on allergic immune response after treatment with vitamin A

    DEFF Research Database (Denmark)

    Matheu, Victor; Berggård, Karin; Barrios, Yvelise

    2009-01-01

    ABSTRACT: BACKGROUND: Vitamin A may have some influence on the immune system, but the role in allergy modulation is still unclear. OBJECTIVE: To clarify whether high levels of retinoic acid (RA) affects allergic response in vivo, we used a murine experimental model of airway allergic disease....... METHODS: Ovalbumin (OVA)-immunization/OVA-challenge (OVA/OVA) and house dust mite (HDM)-immunization/HDM-challenge (HDM/HDM) experimental murine models of allergic airway disease, using C57Bl.10/Q groups of mice (n = 10) treated subcutaneously with different concentrations of all-trans RA (0, 50, 500...... and 2,500 ug) every 2-days were used to assess the allergic immune response. RESULTS: Levels of total and specific-IgE in sera were increased in all groups of RA treated OVA/OVA and HDM/HDM mice. Percentage and total amount of recruited eosinophil in airways by bronchoalveolar lavage fluid (BALF) were...

  6. Balancing immune protection and immune pathology by CD8+ T cell responses to influenza infection

    Directory of Open Access Journals (Sweden)

    Susu eDuan

    2016-02-01

    Full Text Available Influenza A virus (IAV is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL-mediated immunity contributes to clearance of virus-infected cells; CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, their cytotoxicity, and the effects of produced pro-inflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL anti-viral immunity from those necessary to restrain CTL-mediated nonspecific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity.

  7. A simple non-linear model of immune response

    International Nuclear Information System (INIS)

    Gutnikov, Sergei; Melnikov, Yuri

    2003-01-01

    It is still unknown why the adaptive immune response in the natural immune system based on clonal proliferation of lymphocytes requires interaction of at least two different cell types with the same antigen. We present a simple mathematical model illustrating that the system with separate types of cells for antigen recognition and patogen destruction provides more robust adaptive immunity than the system where just one cell type is responsible for both recognition and destruction. The model is over-simplified as we did not have an intention of describing the natural immune system. However, our model provides a tool for testing the proposed approach through qualitative analysis of the immune system dynamics in order to construct more sophisticated models of the immune systems that exist in the living nature. It also opens a possibility to explore specific features of highly non-linear dynamics in nature-inspired computational paradigms like artificial immune systems and immunocomputing . We expect this paper to be of interest not only for mathematicians but also for biologists; therefore we made effort to explain mathematics in sufficient detail for readers without professional mathematical background

  8. Spectroscopic techniques to study the immune response in human saliva

    Science.gov (United States)

    Nepomnyashchaya, E.; Savchenko, E.; Velichko, E.; Bogomaz, T.; Aksenov, E.

    2018-01-01

    Studies of the immune response dynamics by means of spectroscopic techniques, i.e., laser correlation spectroscopy and fluorescence spectroscopy, are described. The laser correlation spectroscopy is aimed at measuring sizes of particles in biological fluids. The fluorescence spectroscopy allows studying of the conformational and other structural changings in immune complex. We have developed a new scheme of a laser correlation spectrometer and an original signal processing algorithm. We have suggested a new fluorescence detection scheme based on a prism and an integrating pin diode. The developed system based on the spectroscopic techniques allows studies of complex process in human saliva and opens some prospects for an individual treatment of immune diseases.

  9. The Impact of Ultraviolet Radiation on Immune Responses (invited paper)

    International Nuclear Information System (INIS)

    Norval, M.

    2000-01-01

    In addition to its genotoxic and mutagenic effects, UV has the capacity to suppress immune responses. The mechanism involved is complex, beginning with chromophores located in the skin which absorb UV, this leading in turn to changes in the production of a range of immune mediators locally and systemically which then induce phenotypic and functional alterations in antigen presentation. The cascade ends with the promotion of a subset of T-cells downregulating cell-mediated immunity. The possible consequences of this immunomodulation for the control of tumours and infectious diseases require careful evaluation from laboratory and human studies. (author)

  10. The nature of immune responses to urinary tract infections

    Science.gov (United States)

    Abraham, Soman N.; Miao, Yuxuan

    2016-01-01

    The urinary tract is constantly exposed to microorganisms that inhabit the gastrointestinal tract, but generally the urinary tract resists infection by gut microorganisms. This resistance to infection is mainly ascribed to the versatility of the innate immune defences in the urinary tract as the adaptive immune responses are limited, particularly when only the lower urinary tract is infected. In recent years, as the strengths and weaknesses of the immune system of the urinary tract have emerged and as the virulence attributes of uropathogens are recognized, several potentially effective and unconventional strategies to contain or prevent urinary tract infections have emerged. PMID:26388331

  11. Modulation of Human Immune Response by Fungal Biocontrol Agents

    Science.gov (United States)

    Konstantinovas, Cibele; de Oliveira Mendes, Tiago A.; Vannier-Santos, Marcos A.; Lima-Santos, Jane

    2017-01-01

    Although the vast majority of biological control agents is generally regarded as safe for humans and environment, the increased exposure of agriculture workers, and consumer population to fungal substances may affect the immune system. Those compounds may be associated with both intense stimulation, resulting in IgE-mediated allergy and immune downmodulation induced by molecules such as cyclosporin A and mycotoxins. This review discusses the potential effects of biocontrol fungal components on human immune responses, possibly associated to infectious, inflammatory diseases, and defective defenses. PMID:28217107

  12. Ageing and the humoral immune response in mice

    International Nuclear Information System (INIS)

    Blankwater, M.J.

    1978-01-01

    The study presented in this thesis is concerned with changes in the humoral immune system as a function of age in different inbred mouse strains. Their capacity to develop humoral immune responses to experimentally given thymus-dependent and thymus-independent antigens under various conditions is compared. Furthermore, experiments employing thymus transplantation and thymic humoral factors which are directed at the restoration of the diminished T cell functions in old age are reported. (Auth.)

  13. ENDOCANNABINOIDS AND EICOSAMOIDS: BIOSYNTHESIS AND INTERACTIONS WITH IMMUNE RESPONSE

    Directory of Open Access Journals (Sweden)

    Yu. K. Karaman

    2013-01-01

    Full Text Available The review is dedicated to modern concepts of arachidonic acid metabolites, i.e., endocannabinoids and eicosanoids, their biosynthetic pathways, cross-talk mechanisms and participation in immune response. New information from literature and own results include data concerning overlapping enzymatic pathways controlling biosynthesis of endocannabinoids and eicosanoids. Impact of synthetic cannabinoid receptor ligands upon production rates of proinflammatory cytokines and eicosanoids is discussed, as like as relationships among immune system reactivity and expression levels of cannabinoid receptors.

  14. Metabolic and adaptive immune responses induced in mice infected ...

    African Journals Online (AJOL)

    This study investigated metabolic and immuno-inflammatory responses of mice infected with tissue-dwelling larvae of Trichinella zimbabwensis and explored the relationship between infection, metabolic parameters and Th1/Th17 immune responses. Sixty (60) female BALB/c mice aged between 6 to 8 weeks old were ...

  15. The immune response to sand fly salivary proteins and its influence on Leishmania immunity

    Directory of Open Access Journals (Sweden)

    Regis eGomes

    2012-05-01

    Full Text Available Leishmaniasis is a vector-borne disease transmitted by bites of phlebotomine sand flies. During Leishmania transmission, sand fly saliva is co-inoculated with parasites into the skin of the mammalian host. Sand fly saliva consists of roughly thirty different salivary proteins, many with known roles linked to blood feeding facilitation. Apart from the anti-hemostatic capacity of saliva, several sand fly salivary proteins have been shown to be immunogenic upon multiple contacts with a mammalian host. Immunization with single immunogenic salivary proteins or exposure to uninfected bites can produce protective immune responses against leishmaniasis. These sand fly salivary proteins induce cellular immune responses and/or antibodies. Antibodies to saliva are not required for protection in a mouse model against leishmaniasis. A strong body of evidence points to the role for saliva-specific T cells producing IFN-γ in the form of a delayed-type hypersensitivity reaction at the bite site as the main protective response. Herein, we review immunity to sand fly salivary proteins in the context of its vector-parasite-host combinations and vaccine potential, as well as some recent advances to shed light on the mechanism of how an immune response to sand fly saliva protects against leishmaniasis.

  16. Modulation of immune responses in stress by Yoga

    Directory of Open Access Journals (Sweden)

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  17. Arginine and Citrulline and the Immune Response in Sepsis

    Science.gov (United States)

    Wijnands, Karolina A.P.; Castermans, Tessy M.R.; Hommen, Merel P.J.; Meesters, Dennis M.; Poeze, Martijn

    2015-01-01

    Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO) and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target. PMID:25699985

  18. Arginine and Citrulline and the Immune Response in Sepsis

    Directory of Open Access Journals (Sweden)

    Karolina A.P. Wijnands

    2015-02-01

    Full Text Available Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target.

  19. Nano-Pulse Stimulation induces immunogenic cell death in human papillomavirus-transformed tumors and initiates an adaptive immune response.

    Directory of Open Access Journals (Sweden)

    Joseph G Skeate

    Full Text Available Nano-Pulse Stimulation (NPS is a non-thermal pulsed electric field modality that has been shown to have cancer therapeutic effects. Here we applied NPS treatment to the human papillomavirus type 16 (HPV 16-transformed C3.43 mouse tumor cell model and showed that it is effective at eliminating primary tumors through the induction of immunogenic cell death while subsequently increasing the number of tumor-infiltrating lymphocytes within the tumor microenvironment. In vitro NPS treatment of C3.43 cells resulted in a doubling of activated caspase 3/7 along with the translocation of phosphatidylserine (PS to the outer leaflet of the plasma membrane, indicating programmed cell death activity. Tumor-bearing mice receiving standard NPS treatment showed an initial decrease in tumor volume followed by clearing of tumors in most mice, and a significant increase in overall survival. Intra-tumor analysis of mice that were unable to clear tumors showed an inverse correlation between the number of tumor infiltrating lymphocytes and the size of the tumor. Approximately half of the mice that cleared established tumors were protected against tumor re-challenge on the opposite flank. Selective depletion of CD8+ T cells eliminated this protection, suggesting that NPS treatment induces an adaptive immune response generating CD8+ T cells that recognize tumor antigen(s associated with the C3.43 tumor model. This method may be utilized in the future to not only ablate primary tumors, but also to induce an anti-tumor response driven by effector CD8+ T cells capable of protecting individuals from disease recurrence.

  20. 17D yellow fever vaccine elicits comparable long-term immune responses in healthy individuals and immune-compromised patients

    NARCIS (Netherlands)

    Wieten, R. W.; Goorhuis, A.; Jonker, E. F. F.; de Bree, G. J.; de Visser, A. W.; van Genderen, P. J. J.; Remmerswaal, E. B. M.; ten Berge, I. J. M.; Visser, L. G.; Grobusch, M. P.; van Leeuwen, E. M. M.

    2016-01-01

    The 17D live attenuated yellow fever (YF) vaccine is contra-indicated in immune-compromised individuals and may elicit a suboptimal immunologic response. The aim of this study is to assess whether long-term immune responses against the YF vaccine are impaired in immune-compromised patients. Fifteen

  1. The genetic regulation of infant immune responses to vaccination

    Directory of Open Access Journals (Sweden)

    Melanie eNewport

    2015-02-01

    Full Text Available A number of factors are recognised to influence immune responses to vaccinations including age, gender, the dose and quality of the antigen used, the number of doses given, the route of administration and the nutritional status of the recipient. Additionally, several immunogenetic studies have identified associations between polymorphisms in genes encoding immune response proteins, both innate and adaptive, and variation in responses to vaccines. Variants in the genes encoding Toll-like receptors, HLA molecules, cytokines, cytokine receptors have associated with heterogeneity of responses to a wide range of vaccines including measles, hepatitis B, influenza A, BCG, Haemophilus influenzae type b and certain Neisseria meningitidis serotypes, amongst others. However, the vast majority of these studies have been conducted in older children and adults and there are very few data available from studies conducted in infants. This paper reviews the evidence to date that host genes influencing vaccines responses in these older population and identifies a large gap in our understanding of the genetic regulation of responses in early life. . Given the high mortality from infection in early life and the challenges of developing vaccines that generate effective immune responses in the context of the developing immune system further research on infant populations is required.

  2. A basic mathematical model of the immune response

    Science.gov (United States)

    Mayer, H.; Zaenker, K. S.; an der Heiden, U.

    1995-03-01

    Interaction of the immune system with a target population of, e.g., bacteria, viruses, antigens, or tumor cells must be considered as a dynamic process. We describe this process by a system of two ordinary differential equations. Although the model is strongly idealized it demonstrates how the combination of a few proposed nonlinear interaction rules between the immune system and its targets are able to generate a considerable variety of different kinds of immune responses, many of which are observed both experimentally and clinically. In particular, solutions of the model equations correspond to states described by immunologists as ``virgin state,'' ``immune state'' and ``state of tolerance.'' The model successfully replicates the so-called primary and secondary response. Moreover, it predicts the existence of a threshold level for the amount of pathogen germs or of transplanted tumor cells below which the host is able to eliminate the infectious organism or to reject the tumor graft. We also find a long time coexistence of targets and immune competent cells including damped and undamped oscillations of both. Plausibly the model explains that if the number of transformed cells or pathogens exeeds definable values (poor antigenicity, high reproduction rate) the immune system fails to keep the disease under control. On the other hand, the model predicts apparently paradoxical situations including an increased chance of target survival despite enhanced immune activity or therapeutically achieved target reduction. A further obviously paradoxical behavior consists of a positive effect for the patient up to a complete cure by adding an additional target challenge where the benefit of the additional targets depends strongly on the time point and on their amount. Under periodically pulsed stimulation the model may show a chaotic time behavior of both target growth and immune response.

  3. Immune responses of ducks infected with duck Tembusu virus

    Directory of Open Access Journals (Sweden)

    Ning eLi

    2015-05-01

    Full Text Available Duck Tembusu virus (DTMUV can cause serious disease in ducks, characterized by reduced egg production. Although the virus has been isolated and detection methods developed, the host immune responses to DTMUV infection are unclear. Therefore, we systematically examined the expression of immune-related genes and the viral distribution in DTMUV-infected ducks, using quantitative real-time PCR. Our results show that DTMUV replicates quickly in many tissues early in infection, with the highest viral titers in the spleen 1 day after infection. Rig-1, Mda5, and Tlr3 are involved in the host immune response to DTMUV, and the expression of proinflammatory cytokines (Il-1β, -2, -6, Cxcl8 and antiviral proteins (Mx, Oas, etc. are also upregulated early in infection. The expression of Il-6 increased most significantly in the tissues tested. The upregulation of Mhc-I was observed in the brain and spleen, but the expression of Mhc-II was upregulated in the brain and downregulated in the spleen. The expression of the interferons was also upregulated to different degrees in the spleen but that of the brain was various. Our study suggests that DTMUV replicates rapidly in various tissues and that the host immune responses are activated early in infection. However, the overexpression of cytokines may damage the host. These results extend our understanding of the immune responses of ducks to DTMUV infection, and provide insight into the pathogenesis of DTMUV attributable to host factors.

  4. Probiotics, antibiotics and the immune responses to vaccines.

    Science.gov (United States)

    Praharaj, Ira; John, Sushil M; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-06-19

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Probiotics, antibiotics and the immune responses to vaccines

    Science.gov (United States)

    Praharaj, Ira; John, Sushil M.; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-01-01

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. PMID:25964456

  6. Anti-myosin humoral immune response following cardiac injury.

    Science.gov (United States)

    de Scheerder, I K; de Buyzere, M L; Delanghe, J R; Clement, D L; Wieme, R J

    1989-01-01

    A sensitive and highly specific ELISA assay was developed to determine the anti-myosin humoral immune response (AMA) in various heart diseases: acute viral myocarditis, infective endocarditis, acute myocardial infarction, and valve and coronary bypass surgery. The mean study entry AMA titer of each patient group was already significantly increased compared with age matched controls. During further follow-up (90 d) all the groups except for endocarditis showed a significant increase of AMA titer compared with their entry titer. Anti-myosin antibody titer were higher after cardiac surgery than after myocardial infarction or inflammatory heart disease. These results suggest that anti-myosin immune response is not limited to infectious processes in which the pathogen induces antibodies which cross-react with heart constituents but is merely caused by direct cardiac injury. Myosin as a major compound of heart cellular proteins turned out to be a good candidate to trigger immune response after cardiac injury.

  7. Immune responses to inflammation and trauma: a physical training model.

    Science.gov (United States)

    Shephard, R J; Shek, P N

    1998-05-01

    Physical activity and training have some potential as tools for examining immune responses to inflammation and trauma. Contributors to the present symposium review various aspects of the inflammatory process, including issues of lymphocyte recirculation and endotoxemia. They examine also the extent and nature of the immune disturbances induced by acute and chronic exercise and consider parallels between such responses and cellular manifestations of clinical sepsis. Factors modulating immune responses during physical activity include changes in the circulating levels of various cytokines, alterations in nutritional status, an altered expression of adhesion molecules, and the possible intervention of reactive species. Factors that can exacerbate exercise-induced changes include exposure to adverse environments, particularly hot conditions, and disturbances of the normal sleep-wakefulness cycle. Current research in exercise immunology finds clinical application in attempts to regulate aging, acute viral infections, and neoplasia.

  8. Crosstalk between microbiota, pathogens and the innate immune responses.

    Science.gov (United States)

    Günther, Claudia; Josenhans, Christine; Wehkamp, Jan

    2016-08-01

    Research in the last decade has convincingly demonstrated that the microbiota is crucial in order to prime and orchestrate innate and adaptive immune responses of their host and influence barrier function as well as multiple developmental and metabolic parameters of the host. Reciprocally, host reactions and immune responses instruct the composition of the microbiota. This review summarizes recent evidence from experimental and human studies which supports these arms of mutual relationship and crosstalk between host and resident microbiota, with a focus on innate immune responses in the gut, the role of cell death pathways and antimicrobial peptides. We also provide some recent examples on how dysbiosis and pathogens can act in concert to promote intestinal infection, inflammatory pathologies and cancer. The future perspectives of these combined research efforts include the discovery of protective species within the microbiota and specific traits and factors of microbes that weaken or enforce host intestinal homeostasis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Secondary immune response of rainbow trout following repeated immersion vaccination

    DEFF Research Database (Denmark)

    Jaafar, R. M.; Al-Jubury, A.; Chettri, J. K.

    2017-01-01

    Teleosts are able to raise a protective immune response, comprising both innate and adaptive elements, against various pathogens. This is the basis for a widespread use of vaccines, administered as injection or immersion, in the aquaculture industry. It has been described that repeated injection...... vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout...... does not raise a classical secondary response following repeated immersion vaccination. Serum antibody titres were merely slightly increased even after three immunizations, using 30-s immersion into a bacterin consisting of formalin-inactivated Y. ruckeri (serotype O1, biotypes 1 and 2), performed over...

  10. Secondary immune response of rainbow trout following repeated immersion vaccination

    DEFF Research Database (Denmark)

    Jaafar, R. M.; Al-Jubury, Azmi; Chettri, Jiwan Kumar

    2018-01-01

    Teleosts are able to raise a protective immune response, comprising both innate and adaptive elements, against various pathogens. This is the basis for a widespread use of vaccines, administered as injection or immersion, in the aquaculture industry. It has been described that repeated injection...... vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout...... does not raise a classical secondary response following repeated immersion vaccination. Serum antibody titres were merely slightly increased even after three immunizations, using 30-s immersion into a bacterin consisting of formalin-inactivated Y. ruckeri (serotype O1, biotypes 1 and 2), performed over...

  11. Skin immunization by microneedle patch overcomes statin-induced suppression of immune responses to influenza vaccine.

    Science.gov (United States)

    Vassilieva, Elena V; Wang, Shelly; Li, Song; Prausnitz, Mark R; Compans, Richard W

    2017-12-19

    Recent studies indicated that in elderly individuals, statin therapy is associated with a reduced response to influenza vaccination. The present study was designed to determine effects on the immune response to influenza vaccination induced by statin administration in a mouse model, and investigate potential approaches to improve the outcome of vaccination on the background of statin therapy. We fed middle aged BALB/c mice a high fat "western" diet (WD) alone or supplemented with atorvastatin (AT) for 14 weeks, and control mice were fed with the regular rodent diet. Mice were immunized with a single dose of subunit A/Brisbane/59/07 (H1N1) vaccine, either systemically or with dissolving microneedle patches (MNPs). We observed that a greater age-dependent decline in the hemagglutinin inhibition titers occurred in systemically-immunized mice than in MNP- immunized mice. AT dampened the antibody response in the animals vaccinated by either route of vaccine delivery. However, the MNP-vaccinated AT-treated animals had ~20 times higher total antibody levels to the influenza vaccine than the systemically vaccinated group one month postvaccination. We propose that microneedle vaccination against influenza provides an approach to ameliorate the immunosuppressive effect of statin therapy observed with systemic immunization.

  12. Tumor-Derived Exosomes and Their Role in Tumor-Induced Immune Suppression

    Directory of Open Access Journals (Sweden)

    Theresa L. Whiteside

    2016-10-01

    Full Text Available Tumor-derived exosomes (TEX are emerging as critical components of an intercellular information network between the tumor and the host. The tumor escapes from the host immune system by using a variety of mechanisms designed to impair or eliminate anti-tumor immunity. TEX carrying a cargo of immunoinhibitory molecules and factors represent one such mechanism. TEX, which are present in all body fluids of cancer patients, deliver negative molecular or genetic signals to immune cells re-programming their functions. Although TEX can also stimulate immune activity, in the microenvironments dominated by the tumor, TEX tend to mediate immune suppression thus promoting tumor progression. The TEX content, in part resembling that of the parent cell, may serve as a source of cancer biomarkers. TEX also interfere with immune therapies. A better understanding of TEX and their contribution to cancer progression and cancer patients’ response to immune therapies represents a challenging new field of investigation.

  13. B cells and ectopic follicular structures: novel players in anti-tumor programming with prognostic power for patients with metastatic colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Anastasia Meshcheryakova

    Full Text Available Remarkably limited information is available about biological mechanisms that determine the disease entity of metastatic colorectal cancer in the liver (CRCLM with no good clinical parameters to estimate prognosis. For the last few years, understanding the relationship between tumor characteristics and local immune response has gained increasing attention. Given the multifaceted roles of B-cell-driven responses, we aimed to elucidate the immunological imprint of B lymphocytes at the metastatic site, the interrelation with macrophages, and their prognostic relevance. Here we present novel algorithm allowing to assess a link between the local patient-specific immunological capacity and clinical outcome. The microscopy-based imaging platform was used for automated scanning of large-scale tissue sections and subsequent qualitative and quantitative analyses of immune cell subtypes using lineage markers and single-cell recognition strategy. Results indicate massive infiltration of CD45-positive leukocytes confined to the metastatic border. We report for the first time the accumulation of CD20-positive B lymphocytes at the tumor-liver interface comprising the major population within the large CD45-positive aggregates. Strikingly, functionally active, activation-induced cytidine deaminase (AID-positive ectopic lymphoid structures were found to be assembled within the metastatic margin. Furthermore, the CD20-based data set revealed a strong prognostic power: patients with high CD20 content and/or ectopic follicles had significantly lower risk for disease recurrence as revealed by univariate analysis (p<0.001 for both and in models adjusted for clinicopathological variables (p<0.001 and p = 0.01, respectively, and showed prolonged overall survival. In contrast, CD68 staining-derived data set did not show an association with clinical outcome. Taken together, we nominate the magnitude of B lymphocytes, including those organized in ectopic follicles, as

  14. Microgravity and immune responsiveness: implications for space travel.

    Science.gov (United States)

    Borchers, Andrea T; Keen, Carl L; Gershwin, M Eric

    2002-10-01

    To date, several hundred cosmonauts and astronauts have flown in space, yet knowledge about the adaptation of their immune system to space flight is rather limited. It is evident that a variety of immune parameters are changed during and after space flight, but the magnitude and pattern of these changes can differ dramatically between missions and even between crew members on the same mission. A literature search was conducted involving a total of 335 papers published between 1972 and 2002 that dealt with the key words immune response, microgravity and astronauts/cosmonauts, isolation, gravity, and human health. The data from multiple studies suggested that major discrepancies in outcome are due to methodologic differences. However, the data also suggested major factors that affect and modulate the immune response during space travel. In part at least, these discrepancies can be attributed to methodologic differences. In addition, a variety of other features, in particular the types and extent of stressors encountered during space missions, are likely to contribute to the variability of immune responses during and after space flight. That stress plays an important role in the effects of space flight on immunologic parameters is suggested by the frequent findings that stress hormones are upregulated during and after space flight. Unfortunately, however, the existing data on hormonal parameters are almost as varied as those on immunologic changes, and correlations between the two datasets have only rarely been attempted. The functional implications of space flight-induced alterations in immune response largely remain to be elucidated, but the data suggest that long-term travel will be associated with the development of immune-compromised hosts.

  15. Acute psychological stress induces short-term variable immune response.

    Science.gov (United States)

    Breen, Michael S; Beliakova-Bethell, Nadejda; Mujica-Parodi, Lilianne R; Carlson, Joshua M; Ensign, Wayne Y; Woelk, Christopher H; Rana, Brinda K

    2016-03-01

    In spite of advances in understanding the cross-talk between the peripheral immune system and the brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute psychological stressor remain largely unknown. Conventional approaches to classify molecular factors mediating these responses have targeted relatively few biological measurements or explored cross-sectional study designs, and therefore have restricted characterization of stress-immune interactions. This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes (modules) throughout the time-series revealed immune stress responses in modules associated to immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell cytotoxicity which differed between males and females. These results offer a spring-board for future research towards improved treatment of stress-related disease including the impact of stress on cardiovascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to these diseases may be gender-specific. Copyright © 2015. Published by Elsevier Inc.

  16. [Immune response to hepatitis B vaccine in elite athletes].

    Science.gov (United States)

    Rosić, Ilija; Malićević, Sead; Medić, Snezana

    2008-01-01

    Hepatitis B viral infection can create serious health problems, such as acute and chronic hepatitis, cirrhosis of liver and hepatocellular carcinoma. Athletes have bigger risk of hepatitis B infection due to frequent injuries with bleeding, their style of living (promiscuity), close contact with teammates, etc. The aim of this study was to investigate the immune response to hepatitis B vaccine among elite athletes, compared to corresponding control group of male subjects front general non-athlete population, and to test out reaction in relation to age. There were 21 elite football players and 30 control non-athlete males. After written consent, they all received three doses of hepatitis B vaccine (Euvax B, Sanofi Pasteur) during 6 months. Eight weeks later, their immune response (as anti-HBs antibody titre in serum) was assessed and statistical significance of the findings was tested. The level of immune response was also evaluated in different age clusters within test groups. None of the footballers was without response to the vaccine. One of the subjects from the control group did not develop it. The group of athletes was with better mean values of antibody titre (1626621 mIU/ml vs. 1568455 mIU/ml), but without statistical significance (t = 0.375: p > 0.05), and with a greater deal of subjects who developed very good immune response (titre over 2000 mIU/ml). Younger football players had better immune reaction than older (age 18-24, 1795560 mIU/ml, vs. age 25-29 years, 1597470 mIU/ml vs. age 30 and more, 1360904 mIU/ml), but without statistical importance (H = 1.593; p > 0.05). Our study has shown that elite athletes respond very well to hepatitis B vaccination and have good immune response. Vaccination against hepatitis B of elite athletes is very important, because viral infection can seriously affect their health and stop their careers.

  17. Innate immune interferon responses to human immunodeficiency virus-1 infection.

    Science.gov (United States)

    Hughes, Rose; Towers, Greg; Noursadeghi, Mahdad

    2012-07-01

    Type I interferon (IFN) responses represent the canonical host innate immune response to viruses, which serves to upregulate expression of antiviral restriction factors and augment adaptive immune defences. There is clear evidence for type I IFN activity in both acute and chronic HIV-1 infection in vivo, and plasmacytoid dendritic cells have been identified as one important source for these responses, through innate immune detection of viral RNA by Toll-like receptor 7. In addition, new insights into the molecular mechanisms that trigger induction of type I IFNs suggest innate immune receptors for viral DNA may also mediate these responses. It is widely recognised that HIV-1 restriction factors share the characteristic of IFN-inducible expression, and that the virus has evolved to counteract these antiviral mechanisms. However, in some target cells, such as macrophages, IFN can still effectively restrict virus. In this context, HIV-1 shows the ability to evade innate immune recognition and thereby avoid induction of type I IFN in order to successfully establish productive infection. The relative importance of evasion of innate immune detection and evasion of IFN-inducible restriction in the natural history of HIV-1 infection is not known, and the data suggest that type I IFN responses may play a role in both viral control and in the immunopathogenesis of progressive disease. Further study of the relationship between HIV-1 infection and type I IFN responses is required to unravel these issues and inform the development of novel therapeutics or vaccine strategies. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Mitochondrial DNA in the regulation of innate immune responses

    Directory of Open Access Journals (Sweden)

    Chunju Fang

    2015-10-01

    Full Text Available Abstract Mitochondrion is known as the energy factory of the cell, which is also a unique mammalian organelle and considered to be evolved from aerobic prokaryotes more than a billion years ago. Mitochondrial DNA, similar to that of its bacterial ancestor’s, consists of a circular loop and contains significant number of unmethylated DNA as CpG islands. The innate immune system plays an important role in the mammalian immune response. Recent research has demonstrated that mitochondrial DNA (mtDNA activates several innate immune pathways involving TLR9, NLRP3 and STING signaling, which contributes to the signaling platforms and results in effector responses. In addition to facilitating antibacterial immunity and regulating antiviral signaling, mounting evidence suggests that mtDNA contributes to inflammatory diseases following cellular damage and stress. Therefore, in addition to its well-appreciated roles in cellular metabolism and energy production, mtDNA appears to function as a key member in the innate immune system. Here, we highlight the emerging roles of mtDNA in innate immunity.

  19. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    Science.gov (United States)

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  20. The intracellular cholesterol landscape: dynamic integrator of the immune response

    Science.gov (United States)

    Fessler, Michael B.

    2016-01-01

    Cholesterol has typically been considered an exogenous, disease-related factor in immunity; however, recent literature suggests that a paradigm shift is in order. Sterols are now recognized to ligate several immune receptors. Altered flux through the mevalonic acid synthesis pathway also appears to be a required event in the antiviral interferon response of macrophages and in the activation, proliferation, and differentiation of T cells. In this review, evidence is discussed that suggests an intrinsic, ‘professional’ role for sterols and oxysterols in macrophage and T cell immunity. Host defense may have been the original selection pressure behind the development of mechanisms for intracellular cholesterol homeostasis. Functional coupling between sterol metabolism and immunity has fundamental implications for health and disease. PMID:27692616

  1. Liver Stage specific response among Endemic Populations: Diet & Immunity

    Directory of Open Access Journals (Sweden)

    Sarat Kumar Dalai

    2015-03-01

    Full Text Available Developing effective anti-malarial vaccine has been a challenge for long. Various factors including complex life cycle of parasite and lack of knowledge of stage specific critical antigens are some of the reasons. Moreover, inadequate understanding of the immune responses vis-à-vis sterile protection induced naturally by Plasmodia infection has further compounded the problem. It has been shown that people living in endemic areas take years to develop protective immunity to blood stage infection. But hardly anyone believes that immunity to liver-stage infection could be developed. Various experimental model studies using attenuated parasite suggest that liver stage immunity might exist among endemic populations. This could be induced because of the attenuation of parasite in liver by various compounds present in the diet of endemic populations.

  2. Nanotechnology, neuromodulation & the immune response: discourse, materiality & ethics.

    Science.gov (United States)

    Fins, Joseph J

    2015-04-01

    Drawing upon the American Pragmatic tradition in philosophy and the more recent work of philosopher Karen Barad, this paper examines how scientific problems are both obscured, and resolved by our use of language describing the natural world. Using the example of the immune response engendered by neural implants inserted in the brain, the author explains how this discourse has been altered by the advent of nanotechnology methods and devices which offer putative remedies that might temper the immune response in the central nervous system. This emergent nanotechnology has altered this problem space and catalyzed one scientific community to acknowledge a material reality that was always present, if not fully acknowledged.

  3. Re-evaluation of the involvement of NK cells and C-type lectin-like NK receptors in modulation of immune responses by multivalent GlcNAc-terminated oligosaccharides

    Czech Academy of Sciences Publication Activity Database

    Grobárová, Valeria; Benson, Veronika; Rozbeský, Daniel; Novák, Petr; Černý, O.

    2013-01-01

    Roč. 156, 1-2 (2013), s. 110-117 ISSN 0165-2478 R&D Projects: GA MŠk ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Anti-tumor immunity * Carbohydrate dendrimer * NK cells Subject RIV: EC - Immunology Impact factor: 2.367, year: 2013

  4. BPIC: A novel anti-tumor lead capable of inhibiting inflammation and scavenging free radicals.

    Science.gov (United States)

    Li, Shan; Wang, Yuji; Zhao, Ming; Wu, Jianhui; Peng, Shiqi

    2015-03-01

    Inflammation has a critical role in the tumor progression, free radical damage can worse the status of patients in cancer condition. The anti-cancer agents capable of inhibiting inflammation and scavenging free radicals attract a lot of our interest. Aimed at the discovery of such anti-tumor agent, a novel intercalator, benzyl 1-[4-hydroxy-3-(methoxycarbonyl)-phenyl-9H-pyrido[3,4-b]indole-3-carboxylate (BPIC) was presented. The docking investigation of BPIC and doxorubicin towards the DNA (PDB ID: 1NAB) gave equal score and similar feature. The anti-proliferation assay of 8 cancer cells identified S180 cells had equal sensitivity to BPIC and doxorubicin. The anti-tumor assay defined the efficacy of BPIC been 2 folds higher than that of doxorubicin. At 1μmol/kg of dose BPIC effectively inhibited xylene-induced ear edema and decreased the plasma TNF-α and IL-8 of the mice. BPIC scavenged ∙OH, ∙O2(-) and NO free radicals in a concentration dependent manner and NO free radicals had the highest sensitivity. BPIC could be a novel anti-tumor lead capable of simultaneously inhibiting inflammation and scavenging free radicals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Anti-tumor effects of gene therapy with GALV membrane fusion glycoprotein in lung adenocarcinoma.

    Science.gov (United States)

    Zhu, Bing; Yang, Jian-ru; Fu, Xin-ping; Jiang, Yue-quan

    2014-07-01

    This study examined the efficacy of gene therapy of lung adenocarcinoma using specifically controlled type I herpes simplex virus recombinant vector expressing Gibbon ape leukemia virus membrane fusion glycoprotein gene (GALV.fus). Recombinant HSV-I plasmid carrying target transgene was constructed, and recombinant viral vector was generated in Vero cells using Lipofectamine transfection. Viral vector was introduced into lung adenocarcinoma A549 cells or human fetal fibroblast HFL-I GNHu 5 cells, or inoculated into human lung adenocarcinoma xenografts in nude mice. The anti-tumor and cytotoxic effects of GALV-FMG, the transgene, were examined in these cell and animal models. Expression of GALV-FMG in xenographs achieved 100 % tumorigenicity. Recombinant HSV-I viral vector also exhibited significant tumor cell killing effect in vitro. Relative survival rates of tumor cells treated with GALV-FMG or control vectors were, respectively, 20 and 70 %. GALV.fus has a potent anti-tumor effect against lung cancer both in vitro and in vivo. This anti-tumor potential provides foundation for further studies with this vector.

  6. Animals living in polluted environments are a potential source of anti-tumor molecule(s).

    Science.gov (United States)

    Jeyamogan, Shareni; Khan, Naveed Ahmed; Siddiqui, Ruqaiyyah

    2017-11-01

    Despite advances in therapeutic interventions and supportive care, the morbidity and mortality associated with cancer have remained significant. Thus, there is a need for newer and more powerful anti-tumor agents. The search for new anti-tumor compounds originating from natural resources is a promising research area. Animals living in polluted environments are a potent source of anti-tumor agents. Under polluted milieus, species such as crocodiles, feed on rotten meat, are exposed to heavy metals, endure high levels of radiation, and are among the very few species to survive the catastrophic Cretaceous-Tertiary extinction event with a prolonged lifespan. Thus, it is reasonable to speculate that animals such as crocodiles have developed mechanisms to defend themselves against cancer. The discovery of antitumor activity in animals such as crocodiles, whales, sharks, etc. will stimulate research in finding therapeutic molecules from unusual sources, and has potential for the development of novel antitumor compound(s) that may also overcome current drug resistance. Nevertheless, intensive research in the next few years will be required to realize these expectations.

  7. QSAR Study on the anti-tumor activity of levofloxacin-thiadiazole HDACi conjugates

    Science.gov (United States)

    Tang, Ziqiang; Feng, Hui; Chen, Yan; Yue, Wei; Feng, Changjun

    2017-12-01

    A molecular electronegativity distance vector(M t) based on 13atomic types is used to describe the structures of 19 conjugates(LHCc) of levofloxacin-thiadiazole HDAC inhibitor(HDACi) and related to the anti-tumor activity (M F and P C) of LHCc against MCF-7 and PC-3. The quantitative structure-activity relationships (QSAR) was established by using leaps-and-bounds regression analysis for the anti-tumor activities (M F and P C) of 19 above compounds to MCF-7and PC-3 along with the M t. The correlation coefficients (R 2) and the leave-one-out (LOO) cross validation R cv 2 for the M F and P C models were 0.792 and 0.679; 0.773 and 0.565, respectively. The QSAR models have favorable correlation, as well as robustness and good prediction capability by R 2, F, R cv 2, A IC F IT V IF tests. The results indicate that the molecular structural units: -CHg-(g=1, 2), -NH2, -NH-,-OH, O=, -O-, -S- and -X are main factors which can affect the anti-tumor activity M F and PC bioactivities of these compounds directly.

  8. Improving anti-tumor activity of sorafenib tosylate by lipid- and polymer-coated nanomatrix.

    Science.gov (United States)

    Guo, Yang; Zhong, Ting; Duan, Xiao-Chuan; Zhang, Shuang; Yao, Xin; Yin, Yi-Fan; Huang, Dan; Ren, Wei; Zhang, Qiang; Zhang, Xuan

    2017-11-01

    In the present study, we select the Sylysia 350 (Sylysia) as mesoporous material, distearoylphosphatidylethanolamine-poly(ethylene glycol) 2000 (DSPE-PEG) as absorption enhancer and hydroxy propyl methyl cellulose (HPMC) as crystallization inhibitor to prepare sorafenib tosylate (SFN) nanomitrix (MSNM@SFN) for improving the anti-tumor activity of SFN. The MSNM@SFN was prepared by solvent evaporation method. The solubility, dissolution, and bioavailability of SFN in MSNM@SFN were also investigated. The anti-tumor activity of MSNM@SFN was evaluated in vitro and in vivo. Our results indicated that the solubility and dissolution of SFN in MSNM@SFN were significantly increased. The oral bioavailability of SFN in MSNM@SFN was greatly improved 7.7-fold compared with that in SFN suspension. The enhanced anti-tumor activity of MSNM@SFN was confirmed in vitro and in vivo experiments. This nanomatrix developed in this study could be a promising drug delivery platform for improving the therapeutic efficacy of poorly water-soluble drugs.

  9. The allure and peril of hematopoietic stem cell transplantation: overcoming immune challenges to improve success.

    Science.gov (United States)

    Newman, Robert G; Ross, Duncan B; Barreras, Henry; Herretes, Samantha; Podack, Eckhard R; Komanduri, Krishna V; Perez, Victor L; Levy, Robert B

    2013-12-01

    Since its inception in the mid-twentieth century, the complication limiting the application and utility of allogeneic hematopoietic stem cell transplantation (allo-HSCT) to treat patients with hematopoietic cancer is the development of graft-versus-host disease (GVHD). Ironically, GVHD is induced by the cells (T lymphocytes) transplanted for the purpose of eliminating the malignancy. Damage ensuing to multiple tissues, e.g., skin, GI, liver, and others including the eye, provides the challenge of regulating systemic and organ-specific GVH responses. Because the immune system is also targeted by GVHD, this both: (a) impairs reconstitution of immunity post-transplant resulting in patient susceptibility to lethal infection and (b) markedly diminishes the individual's capacity to generate anti-cancer immunity--the raison d'etre for undergoing allo-HSCT. We hypothesize that deleting alloreactive T cells ex vivo using a new strategy involving antigen stimulation and alkylation will prevent systemic GVHD thereby providing a platform for the generation of anti-tumor immunity. Relapse also remains the major complication following autologous HSCT (auto-HSCT). While GVHD does not complicate auto-HSCT, its absence removes significant grant anti-tumor responses (GVL) and raises the challenge of generating rapid and effective anti-tumor immunity early post-transplant prior to immune reconstitution. We hypothesize that effective vaccine usage to stimulate tumor-specific T cells followed by their amplification using targeted IL-2 can be effective in both the autologous and allogeneic HSCT setting. Lastly, our findings support the notion that the ocular compartment can be locally targeted to regulate visual complications of GVHD which may involve both alloreactive and self-reactive (i.e., autoimmune) responses.

  10. Effects of inhaled insoluble 239PuO2 on immune responses following lung immunization

    International Nuclear Information System (INIS)

    Bice, D.E.; Harris, D.L.; Brooks, A.L.; Mewhinney, J.A.

    1978-01-01

    To determine if inhaled 239 PuO 2 suppresses immunity in lung-associated lymph nodes, Chinese hamsters were exposed to a polydisperse aerosol of 239 PuO 2 produced at 1150 0 C. The mean lung burden of these animals was estimated to be 10 nCi at 8 days after exposure. At 128, 256 and 400 days after exposure, sham exposed controls and experimental animals were immunized by intratracheal instillation of 1 x 10 8 sheep red blood cells (SRBC). Six days later, they were sacrificed and the number of antibody forming cells (AFC) in lung-associated lymph nodes, spleen and cervical lymph nodes was evaluated. Results of these studies indicated that the number of AFC in lung-associated lymph modes was significantly lower in animals exposed to 239 PuO 2 . Only a few AFC were found in spleen and cervical lymph nodes after intratracheal immunization and the number in exposed animals was not significantly different than in the controls. These data indicate that even though the 239 PuO 2 exposure had suppressed immune responses in lung-associated lymph nodes, their filtering capacity was unaffected and antigen did not translocate to the spleen. We conclude that, at the sacrifice intervals evaluated, the immune function of lung-associated lymph nodes was suppressed and that distant lymphoid tissue (e.g., spleen and cervical lymph nodes) did not replace the immune function of the lung-associated lymph nodes

  11. Immune Response to Cryptosporidiosis in Philippine Children

    Science.gov (United States)

    1990-01-01

    and total iron binding capacity, and the degree of malnutrition was determined by clinical examination. Antibody response to Cryptosporidium was...of Cryptosporidium - found positive by modified Kinyoun stain were specific IgA, lgG, and lgM antibodies in the stool. 131 132 1 \\XER \\ND OTHERS FABLE...plus PBS were run. To establish cutoff val- 10. Blastocvsts hominis 9 1.1 ues. serum samples were obtained from 12 11. (ampilobacter jejumt 7 ().85

  12. The microbiota and immune response during Clostridium difficile infection.

    Science.gov (United States)

    Buonomo, Erica L; Petri, William A

    2016-10-01

    Clostridium difficile is a gram-positive, spore forming anaerobe that infects the gut when the normal microbiota has been disrupted. C. difficile infection (CDI) is the most common cause of hospital acquired infection in the United States, and the leading cause of death due to gastroenteritis. Patients suffering from CDI have varying symptoms which range from mild diarrhea to pseudomembranous colitis and death. The involvement of the immune response to influence disease severity is just beginning to be investigated. There is evidence that the immune response can facilitate either protective or pathogenic phenotypes, suggesting it plays a multifaceted role during CDI. In addition to the immune response, the microbiota is pivotal in dictating the pathogenesis to CDI. A healthy microbiota effectively inhibits infection by restricting the ability of C. difficile to expand in the colon. Thus, understanding which immune mediators and components of the microbiota play beneficial roles during CDI will be important to future therapeutic developments. This review outlines how the microbiota can modulate specific immune mediators, such as IL-23 and others, to influence disease outcome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of produced water on cod (Gadus morhua) immune responses

    Energy Technology Data Exchange (ETDEWEB)

    Hamoutene, D.; Mabrouk, G.; Samuelson, S.; Mansour, A.; Lee, K. [Fisheries and Oceans Canada, Dartmouth, NS (Canada). Maritimes Region, Ocean Sciences Division; Volkoff, H.; Parrish, C. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada); Mathieu, A. [Oceans Ltd., St. John' s, NL (Canada)

    2007-07-01

    Studies have shown that produced water (PW) discharged from North Sea offshore platforms affects the biota at greater distances from operational platforms than originally presumed. According to PW dispersion simulations, dilution by at least 240 times occurs within 50-100 m, and up to 9000 times by 20 km from the discharge. In this study, the effect of PW on cod immunity was investigated by exposing fish to 0, 100 ppm (x 10,000 dilution) or 200 ppm (x 500) of PW for 76 days. Immune responses were evaluated at the end of the exposure. Fish from the 3 groups were injected with Aeromonas salmonicida lipopolysaccharides (LPS). Blood cell observation and flow cytometry were used to investigate the serum cortisol levels and gill histology along with ratios and respiratory burst (RB) responses of both circulating and head-kidney white blood cells (WBCs). The study revealed that baseline immunity and stress response were not affected by PW, other than an irritant-induced change in gill cells found in treated cod. In all groups, LPS injection resulted in a pronounced decrease in RB of head-kidney cells and an increase in serum cortisol and protein levels. However, the group exposed to 200 ppm of PW exhibited the most significant changes. LPS injection was also shown to influence WBC ratios, but further studies are needed to determine if this impact is stronger in fish exposed to PW. This study suggested an effect of PW on cod immunity after immune challenge with LPS.

  14. miRNAs associated with immune response in teleost fish.

    Science.gov (United States)

    Andreassen, Rune; Høyheim, Bjørn

    2017-10-01

    MicroRNAs (miRNAs) have been identified as important post transcriptional regulators of gene expression. In higher vertebrates, a subset of miRNAs has been identified as important regulators of a number of key genes in immune system gene networks, and this paper review recent studies on miRNAs associated with immune response in teleost fish. Challenge studies conducted in several species have identified differently expressed miRNAs associated with viral or bacterial infection. The results from these studies point out several miRNAs that are likely to have evolutionary conserved functions that are related to immune response in teleost fish. Changed expression levels of mature miRNAs from the five miRNA genes miRNA-462, miRNA-731, miRNA-146, miRNA-181 and miRNA-223 are observed following viral as well as bacterial infection in several teleost fish. Furthermore, significant changes in expression of mature miRNAs from the five genes miRNA-21, miRNA-155, miRNA-1388, miRNA-99 and miRNA-100 are observed in multiple studies of virus infected fish while changes in expression of mature miRNA from the three genes miRNA-122, miRNA-192 and miRNA-451 are observed in several studies of fish with bacterial infections. Interestingly, some of these genes are not present in higher vertebrates. The function of the evolutionary conserved miRNAs responding to infection depends on the target gene(s) they regulate. A few target genes have been identified while a large number of target genes have been predicted by in silico analysis. The results suggest that many of the targets are genes from the host's immune response gene networks. We propose a model with expected temporal changes in miRNA expression if they target immune response activators/effector genes or immune response inhibitors, respectively. The best way to understand the function of a miRNA is to identify its target gene(s), but as the amount of genome resources for teleost fish is limited, with less well characterized genomes

  15. The anti-tumor effect of the quinoline-3-carboxamide tasquinimod: blockade of recruitment of CD11b+ Ly6Chi cells to tumor tissue reduces tumor growth

    International Nuclear Information System (INIS)

    Deronic, Adnan; Leanderson, Tomas; Ivars, Fredrik

    2016-01-01

    Previous work has demonstrated immunomodulatory, anti-tumor, anti-metastatic and anti-angiogenic effects of the small molecule quinoline-3-carboxamide tasquinimod in pre-clinical cancer models. To better understand the anti-tumor effects of tasquinimod in transplantable tumor models, we have evaluated the impact of the compound both on recruitment of myeloid cells to tumor tissue and on tumor-induced myeloid cell expansion as these cells are known to promote tumor development. Mice bearing subcutaneous 4 T1 mammary carcinoma tumors were treated with tasquinimod in the drinking water. A BrdU-based flow cytometry assay was utilized to assess the impact of short-term tasquinimod treatment on myeloid cell recruitment to tumors. Additionally, long-term treatment was performed to study the anti-tumor effect of tasquinimod as well as its effects on splenic myeloid cells and their progenitors. Myeloid cell populations were also immune-depleted by in vivo antibody treatment. Short-term tasquinimod treatment did not influence the proliferation of splenic Ly6C hi and Ly6G hi cells, but instead reduced the influx of Ly6C hi cells to the tumor. Treatment with tasquinimod for various periods of time after tumor inoculation revealed that the anti-tumor effect of this compound mainly operated during the first few days of tumor growth. Similar to tasquinimod treatment, antibody-mediated depletion of Ly6C hi cells within that same time frame, caused reduced tumor growth, thereby confirming a significant role for these cells in tumor development. Additionally, long-term tasquinimod treatment reduced the splenomegaly and expansion of splenic myeloid cells during a later phase of tumor development. In this phase, tasquinimod normalized the tumor-induced alterations in myeloerythroid progenitor cells in the spleen but had only limited impact on the same populations in the bone marrow. Our results indicate that tasquinimod treatment reduces tumor growth by operating early after tumor

  16. The Host Immune Response to Streptococcus pneumoniae: Bridging Innate and Adaptive Immunity

    Science.gov (United States)

    2006-07-06

    expression affect the inflammatory response (Friedland et al., 1995; Wellmer et al., 2002). Heat-inactivation destroys the cytotoxic and cytokine...clearance of Brucella abortus. Infect. Immun. 73: 5137-5143. Wellmer , A., Zysk, G., Gerber, J., Kunst, T., Von Mering, M., Bunkowski, S., Eiffert, H

  17. Human embryo immune escape mechanisms rediscovered by the tumor.

    Science.gov (United States)

    Ridolfi, Laura; Petrini, Massimiliano; Fiammenghi, Laura; Riccobon, Angela; Ridolfi, Ruggero

    2009-01-01

    Towards the end of the 1990s, the two opposing theories on immunosurveillance and immunostimulation were extensively studied by researchers in an attempt to understand the complex mechanisms that regulate the relation between tumors and the host's immune system. Both theories probably have elements that would help us to comprehend how the host can induce anti-tumor clinical responses through stimulation of the immune system and which could also give us a deeper insight into the mechanisms of tumor immunosuppression. The model that most resembles the behavior of tumor cells in terms of growth, infiltration and suppression of the immune system of the environment in which they live is undoubtedly that of the embryonic cell. The fetus behaves like an allogenic transplant within the mother's body, using every means it has to escape from and defend itself against the mother's immune system. The majority of these mechanisms are the same as those found in tumor cells: antigenic loss, lack of expression of classic HLA-I molecules, production of immunosuppressive cytokines, induction of lack of expression of co-stimulatory molecules in antigen presenting cells, and induction of apoptosis in infiltrating lymphocytes, with activation of a type Th2 regulatory lymphocyte response. A careful and comparative study of key mechanisms capable of triggering tolerance or cytotoxicity in both embryonic and tumor cells could prove immensely valuable in designing new strategies for anti-tumor immunotherapy.

  18. The role of complement in the acquired immune response

    DEFF Research Database (Denmark)

    Nielsen, C H; Fischer, E M; Leslie, R G

    2000-01-01

    Studies over the past three decades have clearly established a central role for complement in the promotion of a humoral immune response. The primary function of complement, in this regard, is to opsonize antigen or immune complexes for uptake by complement receptor type 2 (CR2, CD21) expressed...... on B cells, follicular dendritic cells (FDC) and some T cells. A variety of mechanisms appear to be involved in complement-mediated promotion of the humoral response. These include: enhancement of antigen (Ag) uptake and processing by both Ag-specific and non-specific B cells for presentation...... to specific T cells; the activation of a CD21/CD19 complex-mediated signalling pathway in B cells, which provides a stimulus synergistic to that induced by antigen interaction with the B-cell receptor (BCR); and promotion of the interaction between B cells and FDC, where C3d-bearing immune complexes...

  19. The role of complement in the acquired immune response

    DEFF Research Database (Denmark)

    Nielsen, C H; Fischer, E M; Leslie, R G

    2000-01-01

    on B cells, follicular dendritic cells (FDC) and some T cells. A variety of mechanisms appear to be involved in complement-mediated promotion of the humoral response. These include: enhancement of antigen (Ag) uptake and processing by both Ag-specific and non-specific B cells for presentation...... to specific T cells; the activation of a CD21/CD19 complex-mediated signalling pathway in B cells, which provides a stimulus synergistic to that induced by antigen interaction with the B-cell receptor (BCR); and promotion of the interaction between B cells and FDC, where C3d-bearing immune complexes......Studies over the past three decades have clearly established a central role for complement in the promotion of a humoral immune response. The primary function of complement, in this regard, is to opsonize antigen or immune complexes for uptake by complement receptor type 2 (CR2, CD21) expressed...

  20. Bystander activation and anti-tumor effects of CD8+ T cells following Interleukin-2 based immunotherapy is independent of CD4+ T cell help.

    Directory of Open Access Journals (Sweden)

    Arta M Monjazeb

    Full Text Available We have previously demonstrated that immunotherapy combining agonistic anti-CD40 and IL-2 (IT results in synergistic anti-tumor effects. IT induces expansion of highly cytolytic, antigen-independent "bystander-activated" (CD8(+CD44high T cells displaying a CD25(-NKG2D(+ phenotype in a cytokine dependent manner, which were responsible for the anti-tumor effects. While much attention has focused on CD4(+ T cell help for antigen-specific CD8(+ T cell expansion, little is known regarding the role of CD4(+ T cells in antigen-nonspecific bystander-memory CD8(+ T cell expansion. Utilizing CD4 deficient mouse models, we observed a significant expansion of bystander-memory T cells following IT which was similar to the non-CD4 depleted mice. Expanded bystander-memory CD8(+ T cells upregulated PD-1 in the absence of CD4(+ T cells which has been published as a hallmark of exhaustion and dysfunction in helpless CD8(+ T cells. Interestingly, compared to CD8(+ T cells from CD4 replete hosts, these bystander expanded cells displayed comparable (or enhanced cytokine production, lytic ability, and in vivo anti-tumor effects suggesting no functional impairment or exhaustion and were enriched in an effector phenotype. There was no acceleration of the post-IT contraction phase of the bystander memory CD8(+ response in CD4-depleted mice. The response was independent of IL-21 signaling. These results suggest that, in contrast to antigen-specific CD8(+ T cell expansion, CD4(+ T cell help is not necessary for expansion and activation of antigen-nonspecific bystander-memory CD8(+ T cells following IT, but may play a role in regulating conversion of these cells from a central memory to effector phenotype. Additionally, the expression of PD-1 in this model appears to be a marker of effector function and not exhaustion.

  1. Murine Dendritic Cells Pulsed with Whole Tumor Lysates Mediate Potent Antitumor Immune Responses in vitro and in vivo

    Science.gov (United States)

    Fields, R. C.; Shimizu, K.; Mule, J. J.

    1998-08-01

    The highly efficient nature of dendritic cells (DC) as antigen-presenting cells raises the possibility of uncovering in tumor-bearing hosts very low levels of T cell reactivity to poorly immunogenic tumors that are virtually undetectable by other means. Here, we demonstrate the in vitro and in vivo capacities of murine bone marrow-derived, cytokine-driven DC to elicit potent and specific anti-tumor responses when pulsed with whole tumor lysates. Stimulation of naive spleen-derived T cells by tumor lysate-pulsed DC generated tumor-specific proliferative cytokine release and cytolytic reactivities in vitro. In addition, in two separate strains of mice with histologically distinct tumors, s.c. injections of DC pulsed with whole tumor lysates effectively primed these animals to reject subsequent lethal challenges with viable parental tumor cells and, important to note, also mediated significant reductions in the number of metastases established in the lungs. Tumor rejection depended on host-derived CD8+ T cells and, to a lesser extent, CD4+ T cells. Spleens from mice that had rejected their tumors contained specific precursor cytotoxic T lymphocytes. The use of whole tumor lysates as a source of tumor-associated antigen(s) for pulsing of DC circumvents several limitations encountered with other methods as well as provides certain distinct advantages, which are discussed. These data serve as rationale for our recent initiation of a phase I clinical trial of immunization with autologous tumor lysate-pulsed DC in adult and pediatric cancer patients.

  2. Suspected de novo Hepatitis B in a Patient Receiving Anti-Tumor Necrosis Factor Alpha Therapy for the Treatment of Crohn's Disease

    Directory of Open Access Journals (Sweden)

    Tetsuya Ishida

    2014-01-01

    Full Text Available We report a 45-year-old female patient who developed acute hepatic disorder during anti-tumor necrosis factor α therapy for the treatment of Crohn's disease (CD. She was diagnosed as colonic CD and placed on infliximab (IFX. She was negative for hepatitis B surface antigen at the initiation of IFX therapy, but developed acute hepatitis after the 30th administration of IFX 4 years and 1 month after the first administration. She was suspected to have had occult hepatitis B virus infection before IFX therapy, and de novo hepatitis B was considered the most likely diagnosis. Hepatitis subsided after discontinuation of anti-tumor necrosis factor α therapy and initiation of treatment with entecavir. She started to receive adalimumab to prevent relapse of CD. She has continued maintenance therapy with entecavir and adalimumab and has since been asymptomatic. As de novo hepatitis B may be fatal, virological testing for hepatitis B is essential for patients who are being considered for treatment that may weaken the immune system.

  3. A Drosophila immune response against Ras-induced overgrowth

    Directory of Open Access Journals (Sweden)

    Thomas Hauling

    2014-03-01

    Full Text Available Our goal is to characterize the innate immune response against the early stage of tumor development. For this, animal models where genetic changes in specific cells and tissues can be performed in a controlled way have become increasingly important, including the fruitfly Drosophila melanogaster. Many tumor mutants in Drosophila affect the germline and, as a consequence, also the immune system itself, making it difficult to ascribe their phenotype to a specific tissue. Only during the past decade, mutations have been induced systematically in somatic cells to study the control of tumorous growth by neighboring cells and by immune cells. Here we show that upon ectopic expression of a dominant-active form of the Ras oncogene (RasV12, both imaginal discs and salivary glands are affected. Particularly, the glands increase in size, express metalloproteinases and display apoptotic markers. This leads to a strong cellular response, which has many hallmarks of the granuloma-like encapsulation reaction, usually mounted by the insect against larger foreign objects. RNA sequencing of the fat body reveals a characteristic humoral immune response. In addition we also identify genes that are specifically induced upon expression of RasV12. As a proof-of-principle, we show that one of the induced genes (santa-maria, which encodes a scavenger receptor, modulates damage to the salivary glands. The list of genes we have identified provides a rich source for further functional characterization. Our hope is that this will lead to a better understanding of the earliest stage of innate immune responses against tumors with implications for mammalian immunity.

  4. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Jo A.; Jochems, Caroline [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Gulley, James L. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Schlom, Jeffrey, E-mail: js141c@nih.gov; Tsang, Kwong Y. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2012-12-11

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies.

  5. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    International Nuclear Information System (INIS)

    Tucker, Jo A.; Jochems, Caroline; Gulley, James L.; Schlom, Jeffrey; Tsang, Kwong Y.

    2012-01-01

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies

  6. [Immune response of Hansen's disease. Review].

    Science.gov (United States)

    Rada, Elsa; Aranzazu, Nacarid; Convit, Jacinto

    2009-12-01

    Hansen's disease presents a wide spectrum of clinical and histopathological manifestations that reflect the nature of the immunological response of the host towards diverse Mycobacterium leprae components. The immunological system, composed by both innate and adaptive immunology, offers protection towards infections of various etiologies, among them bacterial. Bacteria, of course, have developed multiple strategies for evading host defenses, based on either very complex or simple mechanisms, but with a single purpose: to "resist" host attacks and to be able to survive. We have tried to summarize some recent studies in Hansen's disease, with more emphasis in the inmunology area. We think that in the future, all illnesses should also be very strongly related to other important aspects such as the social, environmental and economic, and whose development is not solved in a laboratory.

  7. HTLV-1, Immune Response and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Juarez A S Quaresma

    2015-12-01

    Full Text Available Human T-lymphotropic virus type-1 (HTLV-1 infection is associated with adult T-cell leukemia/lymphoma (ATL. Tropical spastic paraparesis/HTLV-1-associated myelopathy (PET/HAM is involved in the development of autoimmune diseases including Rheumatoid Arthritis (RA, Systemic Lupus Erythematosus (SLE, and Sjögren’s Syndrome (SS. The development of HTLV-1-driven autoimmunity is hypothesized to rely on molecular mimicry, because virus-like particles can trigger an inflammatory response. However, HTLV-1 modifies the behavior of CD4+ T cells on infection and alters their cytokine production. A previous study showed that in patients infected with HTLV-1, the activity of regulatory CD4+ T cells and their consequent expression of inflammatory and anti-inflammatory cytokines are altered. In this review, we discuss the mechanisms underlying changes in cytokine release leading to the loss of tolerance and development of autoimmunity.

  8. Characterization of the immune response in human paracoccidioidomycosis.

    Science.gov (United States)

    de Castro, Lívia Furquim; Ferreira, Maria Carolina; da Silva, Rosiane Maria; Blotta, Maria Heloisa de Souza Lima; Longhi, Larissa Nara Alegrini; Mamoni, Ronei Luciano

    2013-11-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis caused by the dimorphic fungus Paracoccidioides brasiliensis that presents two main clinical forms: the adult form (AF) and the juvenile form (JF); and an asymptomatic form denominated PCM-infection (PI). These forms of PCM are related to the immune response developed after infection, which has been associated with Th1 and Th2 responses. However, some PCM characteristics cannot be explained by this balance. In this study we aimed to complement the characterization of the immune response in PCM, including the newly described T cells subpopulations (Th17, Th9 and Th22). We analyzed the expression of cytokines and transcription factors characteristics of these different subpopulations of CD4(+) T cells in PBMCs from PCM patients and a PI group. The results showed that the PI group presented a predominant Th1 response; that JF patients were characterized by a mixed Th2/Th9 response; and AF patients were characterized by a predominant Th17/Th22 response, as well as substantial participation of Th1 cells. These results contribute to the existing knowledge on the immune responses associated with resistance or susceptibility to the P. brasiliensis infection, and thus could lead to the development of new strategies for patient management. Copyright © 2013 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  9. Role of Activin A in Immune Response to Breast Cancer

    Science.gov (United States)

    2015-12-01

    Ipilimumab Phase 1 NCT01935921 Stages III and IV head and neck cancer Cetuximab IMRT Ipilimumab Phase 1 NCT02115139 Melanoma Brain metastases Ipilimumab WBRT...impaired growth-inhibitory response by suppressing immunity in the tumor microenvironment (Loomans et al., Cancers ( Basel ). 2014). Radiotherapy (RT) has

  10. Veni, vidi, vici: in vivo molecular imaging of immune response.

    Science.gov (United States)

    Gross, Shimon; Moss, Britney L; Piwnica-Worms, David

    2007-10-01

    "I came, I saw, I conquered," Julius Caesar proclaimed, highlighting the importance of direct visualization as a winning strategy. Continuing the "From the Field" series (see Editorial [2007] 26, 131), Gross et al. summarize how modern molecular imaging techniques can successfully dissect the complexities of immune response in vivo.

  11. Effect of partially purified fumonisins on cellular immune response in ...

    African Journals Online (AJOL)

    Fumonisins are mycotoxins produced mainly by Fusarium verticillioides, which can modulate the immune response. Paracoccidioidomycosis (PCM), caused by the fungus Paracoccodioides brasiliensis (Pb), is one of the most important systemic mycoses in Latin America. The aim of this study was to evaluate the effect of ...

  12. Induction of protective immune responses in mice by double DNA ...

    African Journals Online (AJOL)

    Purpose: To investigate the efficacy of a double DNA vaccine encoding of Brucella melitensis omp31 gene and of Escherichia coli eae gene in inducing protective immune response in a mouse model. Methods: After performing PCR assays and cloning both the eae and omp31 genes, the generated DNA vaccines were ...

  13. Enhancement of broiler performance and immune response by ...

    African Journals Online (AJOL)

    The objective of the present study was to compare short and long term application of Echinacea purpurea root powder on growth performance and immunity response of broiler chicks. Three replicate trials involving a total of 600 day-old Ross chicks were used in this study. In each trial, a total of 200 chicks were randomly ...

  14. Signalling through C-type lectin receptors: shaping immune responses

    NARCIS (Netherlands)

    Geijtenbeek, Teunis B. H.; Gringhuis, Sonja I.

    2009-01-01

    C-type lectin receptors (CLRs) expressed by dendritic cells are crucial for tailoring immune responses to pathogens. Following pathogen binding, CLRs trigger distinct signalling pathways that induce the expression of specific cytokines which determine T cell polarization fates. Some CLRs can induce

  15. Genetic variations in non-specific immune response to ...

    African Journals Online (AJOL)

    Non-specific immune response in three strains of Heterobranchus bidorsalis challenged with the bacterium Aeromonas hydrophilia was evaluated. The study was undertaken in three strains of H. bidorsalis from different ecological zones in Nigeria and the percentage cumulative mortality was lowest and significantly ...

  16. Induction of protective immune responses in mice by double DNA ...

    African Journals Online (AJOL)

    Purpose: To investigate the efficacy of a double DNA vaccine encoding of Brucella melitensis omp31 gene and of Escherichia coli eae gene in inducing protective immune response in a mouse model. Methods: After performing PCR assays and cloning both the eae and omp31 genes, the generated. DNA vaccines were ...

  17. Risk factors for discordant immune response among HIV-infected ...

    African Journals Online (AJOL)

    2012-11-02

    Nov 2, 2012 ... We aimed to determine the prevalence of discordant immune response and explore associated factors in a retrospective cohort of ..... haemoglobin; TB = tuberculosis; BMI = body mass index; ALT = alanine aminotransferase; AST = aspartate transaminase. *Data are ... In the North American. AIDS Cohort ...

  18. Cellular immune response in prognosis of Bell's palsy and its ...

    African Journals Online (AJOL)

    Objective: To determine the cellular immune response in Bell's palsy (BP) and its prognostic value in relation to clinical and electrophysiological findings. Methods: Twenty patients with BP were subjected to: Facial nerve paralysis assessment according to House–Brackmann (H&B) grading system, bilateral facial nerve ...

  19. Immune and clinical response to honeybee venom in beekeepers

    Directory of Open Access Journals (Sweden)

    Jan Matysiak

    2016-03-01

    The differences in the immune response to a bee sting between the beekeepers and individuals not exposed to bees were probably due to the high exposure of the beekeepers to honeybee venom allergens. This may suggest a different approach to the bee venom allergy diagnostic tests in this occupational group.

  20. Cellular immune response of infectious bursal disease and ...

    African Journals Online (AJOL)

    Jane

    2011-08-22

    Aug 22, 2011 ... Cellular immune response of infectious bursal disease and Newcastle disease vaccinations in broilers exposed to monochromatic lights. Avesta Sadrzadeh1, Gholamreza Nikbakht Brujeni2, Masoud Livi1, Mohammad Javad Nazari1,. Meysam Tehrani Sharif1, Hossein Hassanpour3* and Nasrin Haghighi3.

  1. Investigating Human Dendritic Cell Immune Responses to Borrelia burgdorferi

    NARCIS (Netherlands)

    Mason, Lauren M. K.; Hovius, Joppe W. R.

    2018-01-01

    Dendritic cells (DCs) are professional antigen-presenting cells that recognize and phagocytose pathogens, and help to orchestrate adaptive immune responses to combat them. DCs are abundant in the skin where Borrelia burgdorferi first enters the body during a tick bite, and are thus critical in

  2. Radiation-induced augmentation of the immune response

    International Nuclear Information System (INIS)

    Anderson, R.E.; Lefkovits, I.; Troup, G.M.

    1980-01-01

    Radiation-induced augmentation of the immune response has been shown to occur both in vivo and in vitro. Evidence is presented to implicate injury to an extremely radiosensitive T cell in the expression of this phenomenon. Experiments are outlined which could be employed to support or reflect this hypothesis

  3. Optimal Control Strategy for Abnormal Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Jinying Tan

    2015-01-01

    Full Text Available Innate immune response plays an important role in control and clearance of pathogens following viral infection. However, in the majority of virus-infected individuals, the response is insufficient because viruses are known to use different evasion strategies to escape immune response. In this study, we use optimal control theory to investigate how to control the innate immune response. We present an optimal control model based on an ordinary-differential-equation system from a previous study, which investigated the dynamics and regulation of virus-triggered innate immune signaling pathways, and we prove the existence of a solution to the optimal control problem involving antiviral treatment or/and interferon therapy. We conduct numerical experiments to investigate the treatment effects of different control strategies through varying the cost function and control efficiency. The results show that a separate treatment, that is, only inhibiting viral replication (u1(t or enhancing interferon activity (u2(t, has more advantages for controlling viral infection than a mixed treatment, that is, controlling both (u1(t and (u2(t simultaneously, including the smallest cost and operability. These findings would provide new insight for developing effective strategies for treatment of viral infectious diseases.

  4. Cocoa Diet and Antibody Immune Response in Preclinical Studies

    Directory of Open Access Journals (Sweden)

    Mariona Camps-Bossacoma

    2017-06-01

    Full Text Available The ability of cocoa to interact with the immune system in vitro and in vivo has been described. In the latter context, a cocoa-enriched diet in healthy rats was able to modify the immune system’s functionality. This fact could be observed in the composition and functionality of lymphoid tissues, such as the thymus, spleen, and lymph nodes. Consequently, immune effector mechanisms, such as antibody synthesis, were modified. A cocoa-enriched diet in young rats was able to attenuate the serum levels of immunoglobulin (Ig G, IgM, and IgA and also the intestinal IgM and IgA secretion. Moreover, in immunized rats, the intake of cocoa decreased specific IgG1, IgG2a, IgG2c, and IgM concentrations in serum. This immune-regulator potential was then tested in disease models in which antibodies play a pathogenic role. A cocoa-enriched diet was able to partially prevent the synthesis of autoantibodies in a model of autoimmune arthritis in rats and was also able to protect against IgE and T helper 2-related antibody synthesis in two rat models of allergy. Likewise, a cocoa-enriched diet prevented an oral sensitization process in young rats. In this review, we will focus on the influence of cocoa on the acquired branch of the immune function. Therefore, we will focus on how a cocoa diet influences lymphocyte function both in the systemic and intestinal immune system. Likewise, its potential role in preventing some antibody-induced immune diseases is also included. Although further studies must characterize the particular cocoa components responsible for such effects and nutritional studies in humans need to be carried out, cocoa has potential as a nutraceutical agent in some hypersensitivity status.

  5. Immunosuppressive activity of florfenicol on the immune responses in mice.

    Science.gov (United States)

    Shuang, Guan; Yu, Song; Weixiao, Guo; Dacheng, Wang; Zhichao, Zhang; Jing, Lu; Xuming, Deng

    2011-01-01

    Florfenicol is a new type of broad-spectrum antibacterial that has been used in veterinary clinics. It shows immunosuppressive activity on the immune responses to ovalbumin (OVA) in mice. In the present study, florfenicol suppressed lipopolysaccharide (LPS)-stimulated splenocyte proliferation in a concentration-dependent manner in vitro and in vivo. BALB/c mice were immunized subcutaneously with OVA on days 1 and 4. Following the second immunization, mice were treated with a single daily oral dose of florfenicol (50, 100, and 200 mg/kg) for 10 consecutive days. On day 14, blood samples were collected to analyze OVA-specific IgG, IgG1, and IgG2b antibodies, and splenocytes were harvested to assess lymphocyte proliferation, CD3(+) T and CD19(+) B lymphocyte subsets. The results presented here demonstrate that florfenicol not only significantly suppressed Con A-, LPS- and OVA-induced splenocyte proliferation but also decreased the percentage of CD19(+) B cells in a dose-dependent manner and suppressed CD3(+) T cell at high doses. Moreover, OVA-specific IgG, IgG1 and IgG2b titers in OVA-immunized mice were reduced by florfenicol. These results suggest that florfenicol could suppress humoral and cellular immune responses in mice.

  6. Ebola haemorrhagic fever virus: pathogenesis, immune responses, potential prevention.

    Science.gov (United States)

    Marcinkiewicz, Janusz; Bryniarski, Krzysztof; Nazimek, Katarzyna

    2014-01-01

    Ebola zoonotic RNA filovirus represents human most virulent and lethal pathogens, which induces acute hemorrhagic fever and death within few days in a range of 60-90% of symptomatic individuals. Last outbreak in 2014 in West Africa caused panic that Ebola epidemic can be spread to other continents. Number of deaths in late December reached almost 8,000 individuals out of more than 20,000 symptomatic patients. It seems that only a coordinated international response could counteract the further spread of Ebola. Major innate immunity mechanisms against Ebola are associated with the production of interferons, that are inhibited by viral proteins. Activation of host NK cells was recognized as a leading immune function responsible for recovery of infected people. Uncontrolled cell infection by Ebola leads to an impairment of immunity with cytokine storm, coagulopathy, systemic bleeding, multi-organ failure and death. Tested prevention strategies to induce antiviral immunity include: i. recombinant virus formulations (vaccines); ii. cocktail of monoclonal antibodies (serotherapy); iii. alternative RNA-interference-based antiviral methods. Maintaining the highest standards of aseptic and antiseptic precautions is equally important. Present brief review summarizes a current knowledge concerning pathogenesis of Ebola hemorrhagic disease and the virus interaction with the immune system and discusses recent advances in prevention of Ebola infection by vaccination and serotherapy.

  7. Glycan-mediated modification of the immune response

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Pedersen, Anders E; Wandall, Hans H

    2013-01-01

    Aberrantly glycosylated tumor antigens represent promising targets for the development of anti-cancer vaccines, yet how glycans influence immune responses is poorly understood. Recent studies have demonstrated that GalNAc-glycosylation enhances antigen uptake by dendritic cells as well as CD4(+) T......-cell and humoral responses, but prevents CD8(+) T-cell activation. Here, we briefly discuss the relevance of glycans as candidate targets for anti-cancer vaccines....

  8. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    Science.gov (United States)

    Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán

    2008-08-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  9. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    International Nuclear Information System (INIS)

    Godina-Nava, J. J.; Segura, M. A. Rodriguez; Cadena, S. Reyes; Sierra, L. C. Gaitan

    2008-01-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen

  10. Assessment of serum tumor markers, tumor cell apoptosis and immune response in patients with advanced colon cancer after DC-CIK combined with intravenous chemotherapy

    Directory of Open Access Journals (Sweden)

    Lei-Fan Li

    2016-12-01

    Full Text Available Objective: To study the effect of DC-CIK combined with intravenous chemotherapy on serum tumor markers, tumor cell apoptosis and immune response in patients with advanced colon cancer. Methods: A total of 79 patients with advanced colon cancer conservatively treated in our hospital between May 2012 and October 2015 were retrospectively studied and divided into DC-CIK group and intravenous chemotherapy group according to different therapeutic regimens, DC-CIK group received DC-CIK combined with intravenous chemotherapy and intravenous chemotherapy group received conventional intravenous chemotherapy. After three cycles of chemotherapy, the content of tumor markers in serum, expression levels of apoptotic molecules in tumor lesions as well as immune function indexes were determined. Results: After 3 cycles of chemotherapy, CEA, CA199, CA242, HIF-1α, IL-4, IL-5 and IL-10 content in serum of DC-CIK group were significantly lower than those of intravenous chemotherapy group; p53, FAM96B, PTEN, PHLPP, ASPP2 and RASSF10 mRNA content in tumor lesions of DC-CIK group were significantly higher than those of intravenous chemotherapy group; the fluorescence intensity of CD3, CD4 and CD56 on peripheral blood mononuclear cell surface of DC-CIK group were significantly higher than those of intravenous chemotherapy group while the fluorescence intensity of CD8 and CD25 were significantly lower than those of intravenous chemotherapy group; IL-2 and IFN-γ content in serum of DC-CIK group were significantly higher than those of intravenous chemotherapy group while IL-4, IL-5 and IL-10 content were significantly lower than those of intravenous chemotherapy group. Conclusions: DC-CIK combined with intravenous chemotherapy has better effect on killing colon cancer cells and inducing colon cancer cell apoptosis than conventional intravenous chemotherapy, and can also improve the body's anti-tumor immune response.

  11. Stochastic responses of tumor–immune system with periodic treatment

    International Nuclear Information System (INIS)

    Li Dong-Xi; Li Ying

    2017-01-01

    We investigate the stochastic responses of a tumor–immune system competition model with environmental noise and periodic treatment. Firstly, a mathematical model describing the interaction between tumor cells and immune system under external fluctuations and periodic treatment is established based on the stochastic differential equation. Then, sufficient conditions for extinction and persistence of the tumor cells are derived by constructing Lyapunov functions and Ito’s formula. Finally, numerical simulations are introduced to illustrate and verify the results. The results of this work provide the theoretical basis for designing more effective and precise therapeutic strategies to eliminate cancer cells, especially for combining the immunotherapy and the traditional tools. (paper)

  12. Human cytomegalovirus infection and the immune response to exercise.

    Science.gov (United States)

    Simpson, Richard J; Bigley, Austin B; Spielmann, Guillaume; LaVoy, Emily C P; Kunz, Hawley; Bollard, Catherine M

    2016-01-01

    Human cytomegalovirus (HCMV) is a ubiquitous -herpes virus that has co-evolved with its host since the very beginning of human life. The vast majority of adults worldwide carry the virus in a latent state, which is known to have striking effects on the composition and function of both T-cells and NK-cells. While there is evidence to suggest that prior exposure to HCMV can have beneficial effects in the immune competent host, poor control of the virus may contribute to T-cell exhaustion and the early onset of immunosenescence. The interaction between HCMV and exercise has garnered a lot of recent research attention. This stemmed from observations that people with HCMV redeploy greater numbers of CD8+ T-cells in response to a single exercise bout, while NK-cell mobilization is, conversely, impaired. Moreover, athletes with latent HCMV infection may be better protected against symptoms of upper respiratory illness (URI), and it has been suggested that the host's ability to control HCMV (i.e. keeping CMV in a latent state) may connect apparent bidirectional effects of exercise volume on host immunity and infection risk. This work has set a new paradigm that immune responses to both acute and chronic exercise might be governed by the infection history of the host. In this review, we summarize current knowledge on the effects of HCMV infection on T-cells and NK-cells and synthesize the literature on HCMV and the immune response to both single exercise bouts and prolonged periods of exercise training. We also discuss potential clinical and practical applications of this work including the use of HCMV reactivation as a biomarker of immune depression in athletes, its relevance in immunosenescence and the associated immune risk profile, and the potential for exercise to augment vaccine responses and the man ufacture of immune cells for adoptive transfer immunotherapy. Although research in this area is still in its infancy, we conclude that host infection history and the

  13. Inflammation and Immune Response in COPD: Where Do We Stand?

    Directory of Open Access Journals (Sweden)

    Nikoletta Rovina

    2013-01-01

    Full Text Available Increasing evidence indicates that chronic inflammatory and immune responses play key roles in the development and progression of COPD. Recent data provide evidence for a role in the NLRP3 inflammasome in the airway inflammation observed in COPD. Cigarette smoke activates innate immune cells by triggering pattern recognition receptors (PRRs to release “danger signal”. These signals act as ligands to Toll-like receptors (TLRs, triggering the production of cytokines and inducing innate inflammation. In smokers who develop COPD there appears to be a specific pattern of inflammation in the airways and parenchyma as a result of both innate and adaptive immune responses, with the predominance of CD8+ and CD4+ cells, and in the more severe disease, with the presence of lymphoid follicles containing B lymphocytes and T cells. Furthermore, viral and bacterial infections interfere with the chronic inflammation seen in stable COPD and exacerbations via pathogen-associated molecular patterns (PAMPs. Finally, autoimmunity is another novel aspect that may play a critical role in the pathogenesis of COPD. This review is un update of the currently discussed roles of inflammatory and immune responses in the pathogenesis of COPD.

  14. Fluid phase recognition molecules in neutrophil-dependent immune responses.

    Science.gov (United States)

    Jaillon, Sébastien; Ponzetta, Andrea; Magrini, Elena; Barajon, Isabella; Barbagallo, Marialuisa; Garlanda, Cecilia; Mantovani, Alberto

    2016-04-01

    The innate immune system comprises both a cellular and a humoral arm. Neutrophils are key effector cells of the immune and inflammatory responses and have emerged as a major source of humoral pattern recognition molecules (PRMs). These molecules, which include collectins, ficolins, and pentraxins, are specialised in the discrimination of self versus non-self and modified-self and share basic multifunctional properties including recognition and opsonisation of pathogens and apoptotic cells, activation and regulation of the complement cascade and tuning of inflammation. Neutrophils act as a reservoir of ready-made soluble PRMs, such as the long pentraxin PTX3, the peptidoglycan recognition protein PGRP-S, properdin and M-ficolin, which are stored in neutrophil granules and are involved in neutrophil effector functions. In addition, other soluble PRMs, such as members of the collectin family, are not expressed in neutrophils but can modulate neutrophil-dependent immune responses. Therefore, soluble PRMs are an essential part of the innate immune response and retain antibody-like effector functions. Here, we will review the expression and general function of soluble PRMs, focusing our attention on molecules involved in neutrophil effector functions. Copyright © 2016. Published by Elsevier Ltd.

  15. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs.

    Science.gov (United States)

    Pollak, Cora N; Wanke, María Magdalena; Estein, Silvia M; Delpino, M Victoria; Monachesi, Norma E; Comercio, Elida A; Fossati, Carlos A; Baldi, Pablo C

    2015-03-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Antitumor effect of malaria parasite infection in a murine Lewis lung cancer model through induction of innate and adaptive immunity.

    Directory of Open Access Journals (Sweden)

    Lili Chen

    Full Text Available BACKGROUND: Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL staining and decreased Ki-67 expression in tumors. Through natural killer (NK cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8(+ T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. CONCLUSIONS/SIGNIFICANCE: Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria

  17. Antitumor Effect of Malaria Parasite Infection in a Murine Lewis Lung Cancer Model through Induction of Innate and Adaptive Immunity

    Science.gov (United States)

    Chen, Lili; He, Zhengxiang; Qin, Li; Li, Qinyan; Shi, Xibao; Zhao, Siting; Chen, Ling; Zhong, Nanshan; Chen, Xiaoping

    2011-01-01

    Background Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. Methodology/Principal Findings Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC) model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL) staining and decreased Ki-67 expression in tumors. Through natural killer (NK) cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8+ T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. Conclusions/Significance Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria parasite may provide a

  18. Primary immune system responders to nucleus pulposus cells: evidence for immune response in disc herniation

    Directory of Open Access Journals (Sweden)

    K Murai

    2010-01-01

    Full Text Available Although intervertebral disc herniation and associated sciatica is a common disease, its molecular pathogenesis is not well understood. Immune responses are thought to be involved. This study provides direct evidence that even non-degenerated nucleus pulposus (NP cells elicit immune responses. An in vitro colony forming inhibition assay demonstrated the suppressive effects of autologous spleen cells on NP cells and an in vitro cytotoxicity assay showed the positive cytotoxic effects of natural killer (NK cells and macrophages on NP cells. Non-degenerated rat NP tissues transplanted into wild type rats and immune-deficient mice demonstrated a significantly higher NP cell survival rate in immune-deficient mice. Immunohistochemical staining showed the presence of macrophages and NK cells in the transplanted NP tissues. These results suggest that even non-degenerated autologous NP cells are recognized by macrophages and NK cells, which may have an immunological function in the early phase of disc herniation. These findings contribute to understanding resorption and the inflammatory reaction to disc herniation.

  19. Immunization with avian metapneumovirus harboring chicken Fc induces higher immune responses.

    Science.gov (United States)

    Paudel, Sarita; Easwaran, Maheswaran; Jang, Hyun; Jung, Ho-Kyoung; Kim, Joo-Hun; Shin, Hyun-Jin

    2016-07-15

    In this study, we evaluated the immune responses of avian metapneumovirus harboring chicken Fc molecule. Stable Vero cells expressing chicken Fc chimera on its surface (Vero-cFc) were established, and we confirmed that aMPV grown in Vero-cFc incorporated host derived chimera Fc into the aMPV virions. Immunization of chicken with aMPV-cFc induced higher level of antibodies and inflammatory cytokines; (Interferon (IFN)-γ and Interleukin (IL)-1β) compared to those of aMPV. The increased levels of antibodies and inflammatory cytokines in chicken immunized with aMPV-cFc were statistically significantly (p<0.05) to that of aMPV and control. The aMPV-cFc group also generated the highest neutralizing antibody response. After challenges, chickens immunized with aMPV-cFc showed much less pathological signs in nasal turbinates and trachea so that we could confirm aMPV-cFc induced higher protection than that of aMPV. The greater ability of aMPV harboring chicken Fc to that of aMPV presented it as a possible vaccine candidate. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Resistance and immune response in scabies-infested hosts immunized with Dermatophagoides mites.

    Science.gov (United States)

    Arlian, L G; Rapp, C M; Morgan, M S

    1995-06-01

    Seventy-one percent of rabbits immunized with a mixed (50:50) Dermatophagoides farinae and D. pteronyssinus house dust mite extract were resistant to infestation by Sarcoptes scabiei var. canis. The resistance was evidenced by a marked reduction in parasite load. All immunized hosts developed similar immunogen-specific antibody titers that were independent of the levels of scabies infestation that developed when the hosts were infested with scabies. Resistant hosts exhibited significantly lower scabies-specific immunoglobulin titers and produced antibody to fewer scabies antigens than did nonresistant hosts. All infested hosts (resistant and nonresistant) showed a cellular infiltrate in the scabietic lesions that was composed of neutrophils, plasma cells, macrophages, and mononuclear cells. Resistant hosts were characterized by fewer plasma cells in the infiltrate than were observed for non-resistant hosts. Resistant hosts exhibited a gradual increase in the number of infiltrating neutrophils, followed by a decrease that correlated with a decrease in the mite burden. Nonresistant hosts exhibited an early rapid increase, a decrease, and then a gradual increase in the concentration of neutrophils as the mite load increased. These results clearly showed that D. farinae/D. pteronyssinus antigens/epitopes can sensitize the hosts to scabies mites and induce protective immunity. The lower circulating antibody levels and generally stronger inflammatory cell-mediated response of resistant hosts compared with nonresistant hosts suggested that the mechanism by which immunization with Dermatophagoides mites induces immunity to scabies mites involved a down-regulated T helper cell type 2 (Th2) response with reduced antibody production but an up-regulated and stronger Th1 (inflammatory cell-mediated) response to scabies.

  1. A Combination of Immune Checkpoint Inhibition with Metronomic Chemotherapy as a Way of Targeting Therapy-Resistant Cancer Cells

    Directory of Open Access Journals (Sweden)

    Irina Kareva

    2017-10-01

    Full Text Available Therapeutic resistance remains a major obstacle in treating many cancers, particularly in advanced stages. It is likely that cytotoxic lymphocytes (CTLs have the potential to eliminate therapy-resistant cancer cells. However, their effectiveness may be limited either by the immunosuppressive tumor microenvironment, or by immune cell death induced by cytotoxic treatments. High-frequency low-dose (also known as metronomic chemotherapy can help improve the activity of CTLs by providing sufficient stimulation for cytotoxic immune cells without excessive depletion. Additionally, therapy-induced removal of tumor cells that compete for shared nutrients may also facilitate tumor infiltration by CTLs, further improving prognosis. Metronomic chemotherapy can also decrease the number of immunosuppressive cells in the tumor microenvironment, including regulatory T cells (Tregs and myeloid-derived suppressor cells (MDSCs. Immune checkpoint inhibition can further augment anti-tumor immune responses by maintaining T cells in an activated state. Combining immune checkpoint inhibition with metronomic administration of chemotherapeutic drugs may create a synergistic effect that augments anti-tumor immune responses and clears metabolic competition. This would allow immune-mediated elimination of therapy-resistant cancer cells, an effect that may be unattainable by using either therapeutic modality alone.

  2. Cell mediated immune response in human antirabies revaccination

    Directory of Open Access Journals (Sweden)

    Débora Regina Veiga

    1987-04-01

    Full Text Available The occurrence of secondary cell mediated immune response (CMI in human antirabies immunization was studied. The Puenzalida & Palácios vaccine was used because it is routinely used in Brazil. CMI was evaluated by lymphoblastic transformation indices obtained in whole blood culture in the presence of rabies and control (nervous tissue antigens. Eleven volunteers submitted to revaccination constituted the group under study, while three other volunteers submitted primo vaccination were utilized as control group. A clear secondary CMI to rabies antigen was detected in all the revaccinated volunteers who showed earlier and more intense response than the control group. Response to the control antigen, however, present in all the components of the first group was not detectable in two out of the three primovaccinated and very low in the third one.

  3. Immune responses of wild birds to emerging infectious diseases.

    Science.gov (United States)

    Staley, M; Bonneaud, C

    2015-05-01

    Over the past several decades, outbreaks of emerging infectious diseases (EIDs) in wild birds have attracted worldwide media attention, either because of their extreme virulence or because of alarming spillovers into agricultural animals or humans. The pathogens involved have been found to infect a variety of bird hosts ranging from relatively few species (e.g. Trichomonas gallinae) to hundreds of species (e.g. West Nile Virus). Here we review and contrast the immune responses that wild birds are able to mount against these novel pathogens. We discuss the extent to which these responses are associated with reduced clinical symptoms, pathogen load and mortality, or conversely, how they can be linked to worsened pathology and reduced survival. We then investigate how immune responses to EIDs can evolve over time in response to pathogen-driven selection using the illustrative case study of the epizootic outbreak of Mycoplasma gallisepticum in wild North American house finches (Haemorhous mexicanus). We highlight the need for future work to take advantage of the substantial inter- and intraspecific variation in disease progression and outcome following infections with EID to elucidate the extent to which immune responses confer increased resistance through pathogen clearance or may instead heighten pathogenesis. © 2015 John Wiley & Sons Ltd.

  4. Viral Infection: An Evolving Insight into the Signal Transduction Pathways Responsible for the Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Girish J. Kotwal

    2012-01-01

    Full Text Available The innate immune response is initiated by the interaction of stereotypical pathogen components with genetically conserved receptors for extracytosolic pathogen-associated molecular patterns (PAMPs or intracytosolic nucleic acids. In multicellular organisms, this interaction typically clusters signal transduction molecules and leads to their activations, thereby initiating signals that activate innate immune effector mechanisms to protect the host. In some cases programmed cell death—a fundamental form of innate immunity—is initiated in response to genotoxic or biochemical stress that is associated with viral infection. In this paper we will summarize innate immune mechanisms that are relevant to viral pathogenesis and outline the continuing evolution of viral mechanisms that suppress the innate immunity in mammalian hosts. These mechanisms of viral innate immune evasion provide significant insight into the pathways of the antiviral innate immune response of many organisms. Examples of relevant mammalian innate immune defenses host defenses include signaling to interferon and cytokine response pathways as well as signaling to the inflammasome. Understanding which viral innate immune evasion mechanisms are linked to pathogenesis may translate into therapies and vaccines that are truly effective in eliminating the morbidity and mortality associated with viral infections in individuals.

  5. Viral Infection: An Evolving Insight into the Signal Transduction Pathways Responsible for the Innate Immune Response

    Science.gov (United States)

    Kotwal, Girish J.; Hatch, Steven; Marshall, William L.

    2012-01-01

    The innate immune response is initiated by the interaction of stereotypical pathogen components with genetically conserved receptors for extracytosolic pathogen-associated molecular patterns (PAMPs) or intracytosolic nucleic acids. In multicellular organisms, this interaction typically clusters signal transduction molecules and leads to their activations, thereby initiating signals that activate innate immune effector mechanisms to protect the host. In some cases programmed cell death—a fundamental form of innate immunity—is initiated in response to genotoxic or biochemical stress that is associated with viral infection. In this paper we will summarize innate immune mechanisms that are relevant to viral pathogenesis and outline the continuing evolution of viral mechanisms that suppress the innate immunity in mammalian hosts. These mechanisms of viral innate immune evasion provide significant insight into the pathways of the antiviral innate immune response of many organisms. Examples of relevant mammalian innate immune defenses host defenses include signaling to interferon and cytokine response pathways as well as signaling to the inflammasome. Understanding which viral innate immune evasion mechanisms are linked to pathogenesis may translate into therapies and vaccines that are truly effective in eliminating the morbidity and mortality associated with viral infections in individuals. PMID:22997518

  6. Immune responses and latent herpesvirus reactivation in spaceflight.

    Science.gov (United States)

    Stowe, R P; Mehta, S K; Ferrando, A A; Feeback, D L; Pierson, D L

    2001-10-01

    Increased frequency and severity of herpesvirus infections are common in individuals with impaired cellular immunity, a phenomenon observed in both the elderly and astronauts alike. This study investigated immune responses and latent herpesvirus reactivation during a 9-d spaceflight. In addition, adrenocortical and immune responses of an elderly astronaut (payload specialist-2, PS2; age 77) who flew on this mission were compared with that of younger crewmembers. Spaceflight and associated stresses will decrease cellular immunity and reactivate latent herpesviruses. Blood and urine samples, collected from the seven crewmembers who flew on the Space Shuttle Discovery (STS-95), were analyzed for levels of neuroendocrine hormones, leukocyte and lymphocyte subsets, and evidence of herpes-virus reactivation. Prior to flight, increased antibody titers to latent Epstein-Barr virus were found. During flight, acute changes in dehydroepiandrosterone sulfate (DHEAS) and cortisol resulted in a pronounced decrease in the DHEAS/cortisol ratio by the end of the mission for PS2 and a younger crewmember. Shedding of cytomegalovirus (CMV) in urine and increased CMV antibody titers also occurred inflight. At landing, the percent increases in adrenocorticotropic hormone and cortisol were greatest for PS2 as compared with the other six crewmembers. A significant neutrophilia also was observed in all crewmembers. Notably, PS2 had large increases in monocytes and natural killer cells at landing while other crewmembers showed little change or a decrease. These findings indicate that spaceflight and associated stresses reactivate latent herpesviruses and suggest that acute changes in neuroendocrine hormones mediate these changes in part by downregulating cellular immunity. Moreover, the similarities between aging and spaceflight suggest that the study of the immune system in elderly subjects may be useful as a predictive model for astronauts enduring long-term spaceflights.

  7. The immune response to surgery and trauma: Implications for treatment.

    Science.gov (United States)

    Marik, Paul E; Flemmer, Mark

    2012-10-01

    Infection after surgery and trauma is a major cause of increased morbidity, mortality, and cost. Alterations of the hosts immune system following these insults is believed to be responsible for the increased risk of infection. The hosts' immune response to tissue injury is widely believed to follow a bimodal response, with the systemic inflammatory response syndrome (SIRS) followed by the compensated anti-inflammatory response syndrome (CARS). Recent data, however, suggests that his paradigm may not be correct. We reviewed the literature to describe the immunological changes following surgery and trauma and possible therapeutic interventions to limit this process. Physical injury related to trauma and surgery increase the expression of T-helper 2 (Th2) lymphocytes which cause impaired cell mediated immunity (CMI). Activation of the hypothalamic-pituitary-adrenal (HPA) axis and sympathoadrenal system (SAS) with the release of cortisol and catecholamines appear to be responsible for altering the Th1/Th2 balance. Decreased expression and signalling of interleukin-12 (IL-12) and increased expression of T regulatory cells (Tregs) appear to play a central role in mediating this immune depression. Furthermore, Th2 cytokines increase the expression of arginase-1 (ARG1) in myeloid-derived suppressor cells (MDSC's) causing an arginine deficient state, which further impairs lymphocyte function. Immunomodulating diets (IMDs) containing supplemental arginine and omega-3 fatty acids have been demonstrated to restore the Th1/Th2 balance after surgical trauma and to reduce the risk of infectious complications. β-adrenergic receptor blockage reverses the Th-1 to Th2 shift and preliminary data suggests that such therapy may be beneficial. Tissue injury following surgery and trauma results in depressed CMI leading to an increased risk of infections. The peri-operative use of IMDs appear to reverse this immunosuppression and decrease the risk of postoperative complications. While

  8. Persistence of the immune response induced by BCG vaccination

    Directory of Open Access Journals (Sweden)

    Blitz Rose

    2008-01-01

    Full Text Available Abstract Background Although BCG vaccination is recommended in most countries of the world, little is known of the persistence of BCG-induced immune responses. As novel TB vaccines may be given to boost the immunity induced by neonatal BCG vaccination, evidence concerning the persistence of the BCG vaccine-induced response would help inform decisions about when such boosting would be most effective. Methods A randomised control study of UK adolescents was carried out to investigate persistence of BCG immune responses. Adolescents were tested for interferon-gamma (IFN-γ response to Mycobacterium tuberculosis purified protein derivative (M.tb PPD in a whole blood assay before, 3 months, 12 months (n = 148 and 3 years (n = 19 after receiving teenage BCG vaccination or 14 years after receiving infant BCG vaccination (n = 16. Results A gradual reduction in magnitude of response was evident from 3 months to 1 year and from 1 year to 3 years following teenage vaccination, but responses 3 years after vaccination were still on average 6 times higher than before vaccination among vaccinees. Some individuals (11/86; 13% failed to make a detectable antigen-specific response three months after vaccination, or lost the response after 1 (11/86; 13% or 3 (3/19; 16% years. IFN-γ response to Ag85 was measured in a subgroup of adolescents and appeared to be better maintained with no decline from 3 to 12 months. A smaller group of adolescents were tested 14 years after receiving infant BCG vaccination and 13/16 (81% made a detectable IFN-γ response to M.tb PPD 14 years after infant vaccination as compared to 6/16 (38% matched unvaccinated controls (p = 0.012; teenagers vaccinated in infancy were 19 times more likely to make an IFN-γ response of > 500 pg/ml than unvaccinated teenagers. Conclusion BCG vaccination in infancy and adolescence induces immunological memory to mycobacterial antigens that is still present and measurable for at least 14 years in the

  9. A New in Vitro Anti-Tumor Polypeptide Isolated from Arca inflata

    Directory of Open Access Journals (Sweden)

    Jian Xu

    2013-12-01

    Full Text Available A new in vitro anti-tumor polypeptide, coded as J2-C3, was isolated from Arca inflata Reeve and purified by diethyl-aminoethanol (DEAE-sepharose Fast Flow anion exchange and phenyl sepharose CL-4B hydrophobic chromatography. J2-C3 was identified to be a homogeneous compound by native polyacrylamide gel electrophoresis (Native-PAGE. The purity of J2-C3 was over 99% in reversed phase-high performance liquid chromatography (RP-HPLC. The molecular weight was determined as 20,538.0 Da by electrospray-ionization mass spectrometry (ESI-MS/MS. J2-C3 was rich in Glx (Gln + Glu, Lys, and Asx (Asp + Asn according to amino acid analysis. Four partial amino acid sequences of this peptide were determined as L/ISMEDVEESR, KNGMHSI/LDVNHDGR, AMKI/LI/LNPKKGI/LVPR and AMGAHKPPKGNEL/IGHR via MALDI-TOF/TOF-MS and de novo sequencing. Secondary structural analysis by CD spectroscopy revealed that J2-C3 had the α-helix (45.2%, β-sheet (2.9%, β-turn (26.0% and random coil (25.9%. The anti-tumor effect of J2-C3 against human tumor cells was measured by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, and the IC50 values of J2-C3 were 65.57, 93.33 and 122.95 µg/mL against A549, HT-29 and HepG2 cell lines, respectively. Therefore, J2-C3 might be developed as a potential anti-tumor agent.

  10. In Vitro and In Vivo Anti-tumoral Effects of the Flavonoid Apigenin in Malignant Mesothelioma

    Directory of Open Access Journals (Sweden)

    Laura Masuelli

    2017-06-01

    Full Text Available Malignant mesothelioma (MM is a tumor arising from mesothelium. MM patients’ survival is poor. The polyphenol 4′,5,7,-trihydroxyflavone Apigenin (API is a “multifunctional drug”. Several studies have demonstrated API anti-tumoral effects. However, little is known on the in vitro and in vivo anti-tumoral effects of API in MM. Thus, we analyzed the in vitro effects of API on cell proliferation, cell cycle regulation, pro-survival signaling pathways, apoptosis, and autophagy of human and mouse MM cells. We evaluated the in vivo anti-tumor activities of API in mice transplanted with MM #40a cells forming ascites. API inhibited in vitro MM cells survival, increased reactive oxygen species intracellular production and induced DNA damage. API activated apoptosis but not autophagy. API-induced apoptosis was sustained by the increase of Bax/Bcl-2 ratio, increase of p53 expression, activation of both caspase 9 and caspase 8, cleavage of PARP-1, and increase of the percentage of cells in subG1 phase. API treatment affected the phosphorylation of ERK1/2, JNK and p38 MAPKs in a cell-type specific manner, inhibited AKT phosphorylation, decreased c-Jun expression and phosphorylation, and inhibited NF-κB nuclear translocation. Intraperitoneal administration of API increased the median survival of C57BL/6 mice intraperitoneally transplanted with #40a cells and reduced the risk of tumor growth. Our findings may have important implications for the design of MM treatment using API.

  11. Models for anti-tumor activity of bisphosphonates using refined topochemical descriptors

    Science.gov (United States)

    Goyal, Rakesh K.; Singh, G.; Madan, A. K.

    2011-10-01

    An in silico approach comprising of decision tree (DT), random forest (RF) and moving average analysis (MAA) was successfully employed for development of models for prediction of anti-tumor activity of bisphosphonates. A dataset consisting of 65 analogues of both nitrogen-containing and non-nitrogen-containing bisphosphonates was selected for the present study. Four refinements of eccentric distance sum topochemical index termed as augmented eccentric distance sum topochemical indices 1-4 ( {ξ_{{1c}}^{{ADS}},ξ_{{2c}}^{{ADS}},ξ_{{3c}}^{{ADS}},ξ_{{4c}}^{{ADS}}} ) have been proposed so as to significantly augment discriminating power. Proposed topological indices (TIs) along with the exiting TIs (>1,400) were subsequently utilized for development of models for prediction of anti-tumor activity of bisphosphonates. A total of 43 descriptors of diverse nature, from a large pool of molecular descriptors, calculated through E-Dragon software (version 1.0) and an in-house computer program were selected for development of suitable models by employing DT, RF and MAA. DT identified two TIs as most important and classified the analogues of the dataset with an accuracy of 97% in training set and 90.7% in tenfold cross-validated set. Random forest correctly classified the analogues with an accuracy of 89.2%. Four independent models developed through MAA predicted the activity of analogues of the dataset with an accuracy of 87.6% to 89%. The statistical significance of proposed models was assessed through intercorrelation analysis, specificity, sensitivity and Matthew's correlation coefficient. The proposed models offer a vast potential for providing lead structures for development of potent anti-tumor agents for treatment of cancer that has spread to the bone.

  12. The Immune Response in Measles: Virus Control, Clearance and Protective Immunity

    OpenAIRE

    Griffin, Diane E.

    2016-01-01

    Measles is an acute systemic viral infection with immune system interactions that play essential roles in multiple stages of infection and disease. Measles virus (MeV) infection does not induce type 1 interferons, but leads to production of cytokines and chemokines associated with nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) signaling and activation of the NACHT, LRR and PYD domains-containing protein (NLRP3) inflammasome. This restricted response allows extensive vir...

  13. Augmenting Plant Immune Responses and Biological Control by Microbial Determinants

    Directory of Open Access Journals (Sweden)

    Sang Moo Lee

    2015-09-01

    Full Text Available Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

  14. The vitamin E analog, alpha-tocopheryloxyacetic acid enhances the anti-tumor activity of trastuzumab against HER2/neu-expressing breast cancer

    Directory of Open Access Journals (Sweden)

    Penichet Manuel L

    2011-11-01

    Full Text Available Abstract Background HER2/neu is an oncogene that facilitates neoplastic transformation due to its ability to transduce growth signals in a ligand-independent manner, is over-expressed in 20-30% of human breast cancers correlating with aggressive disease and has been successfully targeted with trastuzumab (Herceptin®. Because trastuzumab alone achieves only a 15-30% response rate, it is now commonly combined with conventional chemotherapeutic drugs. While the combination of trastuzumab plus chemotherapy has greatly improved response rates and increased survival, these conventional chemotherapy drugs are frequently associated with gastrointestinal and cardiac toxicity, bone marrow and immune suppression. These drawbacks necessitate the development of new, less toxic drugs that can be combined with trastuzumab. Recently, we reported that orally administered alpha-tocopheryloxyacetic acid (α-TEA, a novel ether derivative of alpha-tocopherol, dramatically suppressed primary tumor growth and reduced the incidence of lung metastases both in a transplanted and a spontaneous mouse model of breast cancer without discernable toxicity. Methods In this study we examined the effect of α-TEA plus HER2/neu-specific antibody treatment on HER2/neu-expressing breast cancer cells in vitro and in a HER2/neu positive human xenograft tumor model in vivo. Results We show in vitro that α-TEA plus anti-HER2/neu antibody has an increased cytotoxic effect against murine mammary tumor cells and human breast cancer cells and that the anti-tumor effect of α-TEA is independent of HER2/neu status. More importantly, in a human breast cancer xenograft model, the combination of α-TEA plus trastuzumab resulted in faster tumor regression and more tumor-free animals than trastuzumab alone. Conclusion Due to the cancer cell selectivity of α-TEA, and because α-TEA kills both HER2/neu positive and HER2/neu negative breast cancer cells, it has the potential to be effective and

  15. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Diane E. [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Program of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA (United States); Hoover, Benjamin [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Cloud, Loretta Grey [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Liu, Shihui [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Molinolo, Alfredo A. [Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Leppla, Stephen H. [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Bugge, Thomas H., E-mail: thomas.bugge@nih.go [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States)

    2014-09-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. - Highlights: • Toxicity and anti-tumor

  16. Preparation and in vitro evaluation of radioiodinated bakuchiol as an anti tumor agent

    Energy Technology Data Exchange (ETDEWEB)

    Bapat, Ketaki [Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Chintalwar, G.J. [Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Pandey, Usha [Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Thakur, V.S. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sarma, H.D. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Samuel, Grace [Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Pillai, M.R.A. [Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Chattopadhyay, S. [Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Venkatesh, Meera [Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)]. E-mail: meerav@apsara.barc.ernet.in

    2005-03-01

    Bakuchiol, extracted from the plant Psoralea corylifolia, has been proven to have anti-tumor, cytotoxic, anti-microbial and anti-inflammatory activity. In order to study if radiolabeled bakuchiol exhibits enhanced cytotoxicity, bakuchiol was radiolabeled with {sup 125}I. In-vitro uptake studies of {sup 125}I-bakuchiol were carried out using LS-A (lymphosarcoma) and barcl-95 (radiation-induced thymic lymphoma) ascitic and solid tumor cells of murine origin. In both LS-A and barcl-95, {sup 125}I-bakuchiol showed significant uptake. Viability studies showed that the radioiodinated compound showed greater cytotoxic effect than bakuchiol.

  17. Chicken Immune Response after In Ovo Immunization with Chimeric TLR5 Activating Flagellin of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Katarzyna A Radomska

    Full Text Available Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the immunogenicity and protective efficacy of a recombinant C. jejuni flagellin-based subunit vaccine with intrinsic adjuvant activity. Toll-like receptor activation assays demonstrated the purity and TLR5 stimulating (adjuvant activity of the vaccine. The antigen (20-40 μg was administered in ovo to 18 day-old chicken embryos. Serum samples and intestinal content were assessed for antigen-specific systemic and mucosal humoral immune responses. In ovo vaccination resulted in the successful generation of IgY and IgM serum antibodies against the flagellin-based subunit vaccine as determined by ELISA and Western blotting. Vaccination did not induce significant amounts of flagellin-specific secretory IgA in the chicken intestine. Challenge of chickens with C. jejuni yielded similar intestinal colonization levels for vaccinated and control animals. Our results indicate that in ovo delivery of recombinant C. jejuni flagellin subunit vaccine is a feasible approach to yield a systemic humoral immune response in chickens but that a mucosal immune response may be needed to reduce C. jejuni colonization.

  18. Oncogenic pathways that affect antitumor immune response and immune checkpoint blockade therapy.

    Science.gov (United States)

    Zhao, Xianda; Subramanian, Subbaya

    2018-01-01

    Mechanistic insights of cancer immunology have led to the development of immune checkpoint blockade therapy (ICBT), which has elicited a remarkable clinical response in some cancer patients. Increasing evidence suggests that activation of oncogenic pathways, such as RAS/RAF/MAPK and PI3K signaling, impairs the antitumor immune response. Such oncogenic signaling, in turn, activates many inhibitory factors, including expression of immune checkpoint genes-allowing active infiltration of immunosuppressive cells into the tumor environment and inducing resistance against T-cell killing. In preclinical tumor models, effective targeting of oncogenic pathways has enhanced the response to ICBT. Ongoing clinical trials are now evaluating combination therapy (i.e., the use of oncogenic pathway inhibitors in combination with ICBT). However, more translational and clinical research is needed, to optimize ICBT doses and sequence, minimize toxicity, and assess the impact on study participants of certain genetic backgrounds. Also, it is crucial to understand whether wild-type tumors with elevated oncogenic signaling will respond to combination therapy. Insights gained through current and future translational studies will provide the scientific premise and rationale to target 1 or more oncogenic pathways in ICBT-resistant tumors, thus enabling more human patients to benefit from combination therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Immune responses of Helicoverpa armigera to different kinds of pathogens

    Directory of Open Access Journals (Sweden)

    Zhao Xiao-Fan

    2010-03-01

    Full Text Available Abstract Background Insects react against pathogens through innate immunity. The cotton bollworm Helicoverpa armigera (H. armigera is an important defoliator and an extremely destructive pest insect of many crops. The elucidation of the mechanism of the immune response of H. armigera to various pathogens can provide a theoretical basis for new approaches to biologically control this pest. Results Four kinds of pathogens Bacillus thuringiensis, Klebsiella pneumoniae, Candida albicans, and Autographa californica multiple nucleocapsid nucleopolyhedrovirus harbored green fluorescence protein and polyhedron (AcMNPV-GFP were used to challenge the insect. The cellular and humoral immune responses to the pathogens were analyzed in the challenged H. armigera. The results show that in the five kinds of haemocytes, only granulocytes phagocytized the Gram-negative and Gram-positive bacteria and fungi. All haemocytes can be infected by AcMNPV. Fourteen immune-related genes including pattern recognition receptors (PRRs such as peptidoglycan recognition proteins (HaPGRP and HaPGRP C and Gram-Negative Bacteria-Binding Protein (HaGNBP, and antimicrobial peptides (AMPs such as cecropin-1, 2 and 3 (HaCec-1, 2 and 3, lysozyme (HaLys, attacin (HaAtt, gallerimycin-like (HaGall, gloverin-like (HaGlo, moricin-like (HaMor, cobatoxin-like (HaCob, galiomicin-like (HaGali, and immune inducible protein (HaIip appeared in different expression profiles to different pathogen infections. The transcripts of 13 immune related genes (except HaPGRPC are obviously up-regulated by Gram-positive bacteria. HaCec-1 and 3, HaMor, HaAtt, HaLys, HaIip, HaPGRP and HaGNBP are greatly up-regulated after fungal infection. HaGNBP, HaCec-2, HaGall, HaGlo, HaMor, HaCob, HaGali obviously increased in Gram-negative bacterial infection. Only five genes, HaGNBP, HaCec-1, HaGali, HaGlo, and HaLys, are weakly up-regulated after viral infection. The AMP transcripts had higher expression levels than the

  20. FEATURES OF THE IMMUNE RESPONSE DURING VIRAL INFECTION

    Directory of Open Access Journals (Sweden)

    G. A. Borisov

    2015-01-01

    Full Text Available The aim of the investigation was to select using cluster analysis and comparatively characterize immune disorders types in acute and chronic viral infections. Patients with acute and chronic viral infections (n = 896 were examined: 77 patients with acute viral hepatitis B, 94 — chronic viral hepatitis B, 119 — chronic hepatitis C, 531 — recurrent herpes, 75 — human papillomavirus infection. Healthy persons (n = 466 were examined as control. The research of blood lymphocyte phenotype was performed by flow cytometry. Four-color immunophenotyping were used in the following panels: Т-lymphocytes (CD3+CD19–CD16/56–CD45+, Т-helpers (CD3+CD4+CD45+, cytotoxic Т-cells (CD3+CD8+CD45+, NKcells (CD3–CD16/56+CD45+, B-lymphocytes (CD3–CD19+CD16/56+CD45+. Absolute values were obtained on a dualplatform technology using the results of haematological analysis. The immunoglobulin concentrations were determined by ELISA. The clustering was performed by a single linkage method. The number of clusters was determined on the basis of calculating the values of the Euclidean distance between the mean group values. It was found that the parameters, characterizing the functional state of the various parts of the immune system in acute and chronic viral infections, considerable diversity values. Custer analysis allows to allocate 6 immunotypes defined different states of innate and adaptive immunity: characterized by activation of the innate (increasing the number of neutrophils and NK-cells and adaptive immunity humoral response (increasing the concentration of IgG, characterized by hyperreaction of adaptive immunity (a significant increase in the concentration of IgG, discoordinated (multidirectional changes in the values of immunological parameters, immunodeficiency and unresponsiveness (did not differ from the control parameters immunotypes. It is proved that in patients with viral infections most often determined by the

  1. Factors influencing secondary vibriocidal immune responses: relevance for understanding immunity to cholera.

    Science.gov (United States)

    Losonsky, G A; Yunyongying, J; Lim, V; Reymann, M; Lim, Y L; Wasserman, S S; Levine, M M

    1996-01-01

    Although serum vibriocidal activity is used extensively as a marker of immunity to O1 Vibrio cholerae, there are limitations in this assay to detect instances of reexposure. We define the conditions operative in producing secondary vibriocidal responses in North American volunteers primed with either wild-type V. cholerae 1, 4, or 6 months later. Secondary serum vibriocidal responses occurred under two distinct secondary challenge conditions. The first occurred when secondary challenge produced a breakthrough in clinical protection. Following secondary exposure, 14 of 22 (64%) and 1 of 29 (3%) subjects with and without vibrio stool excretion, respectively, had secondary responses (P CVD 103-HgR and given homologous wild-type challenge within 4 months mounted a secondary vibriocidal response (P = 0.0009). The majority of the serum vibriocidal activity was of the immunoglobulin M (IgM) isotype, seen in 96 and 73% of subjects following primary and secondary exposure, respectively. Vibriocidal activity in the IgG fraction following primary and secondary exposures occurred with LPS)-specific IgG1 and IgG3 subclass responses supported the vibriocidal isotype data. However, following primary exposure, IgG4 LPS responses predominated, occurring in 81% of responding volunteers. These data suggest that, under certain conditions of secondary exposure to V. cholerae O1 antigens, when there is sufficient active local immunity present, there is a block of vibrio antigen resampling at the M cell level. We discuss the implications of and possible explanations for these findings.

  2. Salinomycin possesses anti-tumor activity and inhibits breast cancer stem-like cells via an apoptosis-independent pathway

    Energy Technology Data Exchange (ETDEWEB)

    An, Hyunsook; Kim, Ji Young; Lee, Nahyun; Cho, Youngkwan; Oh, Eunhye [Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 152-703 (Korea, Republic of); Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul 152-703 (Korea, Republic of); Seo, Jae Hong, E-mail: cancer@korea.ac.kr [Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 152-703 (Korea, Republic of); Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul 152-703 (Korea, Republic of)

    2015-10-30

    Cancer stem cells (CSCs) play important roles in the formation, growth and recurrence of tumors, particularly following therapeutic intervention. Salinomycin has received recent attention for its ability to target breast cancer stem cells (BCSCs), but the mechanisms of action involved are not fully understood. In the present study, we sought to investigate the mechanisms responsible for salinomycin's selective targeting of BCSCs and its anti-tumor activity. Salinomycin suppressed cell viability, concomitant with the downregulation of cyclin D1 and increased p27{sup kip1} nuclear accumulation. Mammosphere formation assays revealed that salinomycin suppresses self-renewal of ALDH1-positive BCSCs and downregulates the transcription factors Nanog, Oct4 and Sox2. TUNEL analysis of MDA-MB-231-derived xenografts revealed that salinomycin administration elicited a significant reduction in tumor growth with a marked downregulation of ALDH1 and CD44 levels, but seemingly without the induction of apoptosis. Our findings shed further light on the mechanisms responsible for salinomycin's effects on BCSCs. - Highlights: • Salinomycin suppresses mammosphere formation. • Salinomycin reduces ALDH1 activity and downregulates Nanog, Oct4 and Sox2. • Salinomycin targets BCSCs via an apoptosis-independent pathway.

  3. An overview of HCV molecular biology, replication and immune responses

    Directory of Open Access Journals (Sweden)

    Nawaz Zafar

    2011-04-01

    Full Text Available Abstract Hepatitis C virus (HCV causes acute and chronic hepatitis which can eventually lead to permanent liver damage, hepatocellular carcinoma and death. Currently, there is no vaccine available for prevention of HCV infection due to high degree of strain variation. The current treatment of care, Pegylated interferon α in combination with ribavirin is costly, has significant side effects and fails to cure about half of all infections. In this review, we summarize molecular virology, replication and immune responses against HCV and discussed how HCV escape from adaptive and humoral immune responses. This advance knowledge will be helpful for development of vaccine against HCV and discovery of new medicines both from synthetic chemistry and natural sources.

  4. Functional characterization of Foxp3-specific spontaneous immune responses

    DEFF Research Database (Denmark)

    Larsen, Susanne Købke; Munir, S; Andersen, Anders Woetmann

    2013-01-01

    Tumor-infiltrating CD4+CD25+ regulatory T cells (Tregs) are associated with an impaired prognosis in several cancers. The transcription factor forkhead box P3 (Foxp3) is generally expressed in Tregs. Here, we identify and characterize spontaneous cytotoxic immune responses to Foxp3-expressing cells...... in peripheral blood of healthy volunteers and cancer patients. These immune responses were directed against a HLA-A2-restricted peptide epitope derived from Foxp3. Foxp3-reactive T cells were characterized as cytotoxic CD8+ T cells. These cells recognized dendritic cells incubated with recombinant Foxp3 protein...... indicating that this protein was indeed internalized, processed and cross-presented in the context of HLA-A2. More importantly, however, Foxp3-specific T cells were able to specifically recognize Tregs. Similarly, Foxp3+ malignant T cells established from a Cutaneous T-cell lymphomas (CTCL) patient were...

  5. Immune responses in humans after 60 days of confinement

    Science.gov (United States)

    Schmitt, D. A.; Peres, C.; Sonnenfeld, G.; Tkackzuk, J.; Arquier, M.; Mauco, G.; Ohayon, E.

    1995-01-01

    A confinement experiment in a normobaric diving chamber was undertaken to better understand the effect of confinement and isolation on human psychology and physiology. Pre- and postconfinement blood samples were obtained from four test subjects and control donors to analyze immune responses. No modification in the levels of CD2+, CD3+, CD4+, CD8+, CD19+, and CD56+ cells was observed after confinement. Mitogen-induced T-lymphocyte proliferation and interleukin-2 receptor expression were not altered significantly. Whole blood interferon-alpha and gamma-induction and plasma cortisol levels were also unchanged, as was natural killer cell activity. These data suggest that in humans, no specific components of the immune response are affected by a 2-month isolation and confinement of a small group.

  6. Curcumin prevents human dendritic cell response to immune stimulants

    International Nuclear Information System (INIS)

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2008-01-01

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14 + monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4 + T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant

  7. The effect of anti-tumor necrosis factor alpha agents on postoperative anastomotic complications in Crohn's disease: a systematic review.

    Science.gov (United States)

    El-Hussuna, Alaa; Krag, Aleksander; Olaison, Gunnar; Bendtsen, Flemming; Gluud, Lise L

    2013-12-01

    Patients with Crohn's disease treated with anti-tumor necrosis factor alpha agents may have an increased risk of surgical complications. We assessed the effect of anti-tumor necrosis factor alpha on postoperative complications in patients with Crohn's disease undergoing abdominal surgery. Studies were identified through electronic and manual searches. Observational studies on patients with Crohn's disease undergoing laparoscopic or open abdominal surgery were included. Anti-tumor necrosis factor alpha agents were administered within 3 months before surgery. The primary outcome was anastomotic complications including overt dehiscence, intra-abdominal abscess, and enteric fistulas. Fourteen studies on 679 patients in the intervention (anti-tumor necrosis factor alpha) group and 2363 controls were included. Random-effects meta-analysis found no difference in anastomotic complications between the 2 groups (7.6% versus 8.2%; risk ratio, 0.91; 95% CI, 0.56-1.48). There was clear heterogeneity between studies. In subgroup analyses, the anti-tumor necrosis factor alpha increased anastomotic complications in trials with a lower risk of bias, but not in the studies with a higher bias risk (risk ratio, 1.63; 95% CI, 1.03-2.60 and risk ratio, 0.17; 95% CI, 0.05-0.60). In the overall analysis and in studies with a lower bias risk, anti-tumor necrosis factor alpha agents increased the risk of nonanastomotic surgical complications, major medical complications, and minor medical complications. Limitations of observations studies. In studies with a low risk of bias, anti-tumor necrosis factor alpha agents increased the risk of anastomotic complications. Inadequate bias control may lead to an underestimated risk of anastomotic complications.

  8. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses

    OpenAIRE

    Maggini, Silvia; Wintergerst, Eva S.; Beveridge, Stephen; Hornig, Dietrich H.

    2017-01-01

    Adequate intakes of micronutrients are required for the immune system to function efficiently. Micronutrient deficiency suppresses immunity by affecting innate, T cell mediated and adaptive antibody responses, leading to dysregulation of the balanced host response. This situation increases susceptibility to infections, with increased morbidity and mortality. In turn, infections aggravate micronutrient deficiencies by reducing nutrient intake, increasing losses, and interfering with utilizatio...

  9. Immune Responses against Conserved and Variable Viral Epitopes

    OpenAIRE

    Bittner, B.; Wahl, L. M.

    2000-01-01

    We extend well-known mathematical models of viral infection to examine the response of cytotoxic T lymphocytes (CTL) to both conserved and variable viral epitopes. Because most viruses are subject to error-prone reproduction, CTL recognition may be faced with highly variable epitopes, while other CTL epitopes may remain conserved across viral strains. In this paper we examine the steady state conditions for a simple model of viral-immune system dynamics in which the viral strain can be limite...

  10. Immune response to racotumomab in a child with relapsed neuroblastoma

    Directory of Open Access Journals (Sweden)

    CLAUDIA VANESA SAMPOR

    2012-12-01

    Full Text Available Immunotherapy targeting ganglioside antigens is a powerful tool for the treatment of high risk neuroblastoma. However, only treatment with anti-GD2 antibodies has been used in clinical practice and other options may be pursued. We report the use of racotumomab, an anti-idiotype vaccine against N-glycolyl neuraminic acid (NeuGc- containing gangliosides, eliciting an immune response in a child with relapsed neuroblastoma expressing the NeuGcGM3 ganglioside.

  11. Specific cellular immune response in patients with Helicobacter pylori infection.

    Science.gov (United States)

    Fixa, B; Komárková, O; Krejsek, J; Nozicka, Z; Bures, J

    1990-12-01

    The leukocyte migration inhibition test was performed in 39 patients with Helicobacter pylori infection and in 38 patients without such infection. The culture of Helicobacter pylori was used as antigen. A highly significant inhibitory effect on leukocyte migration was found in patients with Helicobacter pylori infection. The results can be taken as proof of a systemic immune response to helicobacters at the cellular level in patients with Helicobacter pylori infection.

  12. Reprogramming Antitumor Immune Responses with microRNAs

    Science.gov (United States)

    2013-10-01

    disseminate throughout the peritoneal cavity. For tumor cells, ascites provides an ideal milieu to detach and seed distally. Furthermore, crucial...these responses were able to put tumors in check for relatively prolonged periods. However, after this latency period, tumors started to grow very...then, overwhelming experimental evidence demonstrates that both the innate and adaptive immune systems play a non-redundant role in the prevention or

  13. Intestinal immune response to human Cryptosporidium sp. infection

    Science.gov (United States)

    2008-01-01

    Guerrant. 2007. Heavy cryptosporidial infections in children in northeast Brazil: comparison of Cryptosporidium hominis and Cryptosporidium parvum...Asgharpour, C. T. Ng, D. P. Calfee, R. L. Guerrant, V. Maro, S. Ole-Nguyaine, and J. F. Shao. 2005. Short report: asymptomatic Cryptosporidium hominis ...JAN 2008 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Intestinal immune response to human Cryptosporidium sp. infection 5a

  14. Immune responses to colophony, an agent causing occupational asthma.

    Science.gov (United States)

    Cullen, R T; Cherrie, B; Soutar, C A

    1992-01-01

    BACKGROUND: Inhalation of fumes from heated colophony (pine resin) is a recognised cause of occupational asthma, although the mechanisms by which colophony produces symptoms are unclear and specific immune responses to colophony have not been reported in sensitised workers. A study was carried out to determine whether colophony is antigenic. METHODS: The immune responses to colophony were studied in C57BL/6 mice and Dunkin Hartley guinea pigs after intraperitoneal injection of colophony conjugated to bovine serum albumin (BSA) or human IgG by a mixed anhydride procedure. Colophony and dinitrofluorobenzene were also compared in an assay of dermal sensitisation. RESULTS: Mice immunised with the colophony conjugates produced antibodies which recognised conjugates of both BSA and human IgG irrespective of which had been used as the immunogen. Solutions of unconjugated colophony inhibited the binding of antibodies to the BSA-colophony and BSA-abietic acid conjugates, confirming that the antibodies recognised one or more components in the colophony. Portuguese colophony also abrogated the antigen binding of serum from guinea pigs immunised with the BSA-colophony conjugate. Spleen cells from immunised mice proliferated in the presence of the conjugates. Although there was some cross reactivity in these responses, it was not as marked as in the antibody assays. Unconjugated colophony failed to induce an immune response when injected intraperitoneally with adjuvant. Skin sensitisation could not be induced in mice by topical application, or by subcutaneous or intradermal injection of unconjugated colophony. CONCLUSIONS: Colophony components have the potential to act as haptens and an immune component could be involved in the pathogenesis of occupational asthma in workers exposed to colophony. Colophony is not readily immunogenic unless conjugated ex vivo to proteins. Images PMID:1494769

  15. Hantaan virus triggers TLR4-dependent innate immune responses.

    Science.gov (United States)

    Yu, Hai-Tao; Jiang, Hong; Zhang, Ye; Nan, Xue-Ping; Li, Yu; Wang, Wei; Jiang, Wei; Yang, Dong-Qiang; Su, Wen-Jing; Wang, Jiu-Ping; Wang, Ping-Zhong; Bai, Xue-Fan

    2012-10-01

    The innate immune response induced by Hantavirus is responsible for endothelial cell dysfunction and viral pathogenicity. Recent studies demonstrate that TLR4 expression is upregulated and mediates the secretion of several cytokines in Hantaan virus (HTNV)-infected endothelial cells. To examine viral interactions with host endothelial cells and characterize the innate antiviral responses associated with Toll-like receptors, we selected TLR4 as the target molecule to investigate anti-hantavirus immunity. TLR4 mRNA-silenced EVC-304 (EVC-304 TLR4-) cells and EVC-304 cells were used to investigate signaling molecules downstream of TLR4. The expression of the adaptor protein TRIF was higher in HTNV-infected EVC-304 cells than in EVC-304 TLR4- cells. However, there was no apparent difference in the expression of MyD88 in either cell line. The transcription factors for NF-κB and IRF-3 were translocated from the cytoplasm into the nucleus in HTNV-infected EVC-304 cells, but not in HTNV-infected EVC-304 TLR4- cells. Our results demonstrate that TLR4 may play an important role in the antiviral immunity of the host against HTNV infection through an MyD88-independent signaling pathway.

  16. Pre-Vaccination Frequencies of Th17 Cells Correlate with Vaccine-Induced T-Cell Responses to Survivin-Derived Peptide Epitopes

    DEFF Research Database (Denmark)

    Køllgaard, Tania; Ugurel-Becker, Selma; Idorn, Manja

    2015-01-01

    Various subsets of immune regulatory cells are suggested to influence the outcome of therapeutic antigen-specific anti-tumor vaccinations. We performed an exploratory analysis of a possible correlation of pre-vaccination Th17 cells, MDSCs, and Tregs with both vaccination-induced T-cell responses......-generating study demonstrated that immune regulatory cells, in particular Th17 cells, play a relevant role for generation of the vaccine-induced anti-tumor immunity in cancer patients, hence warranting further investigation to test for validity as predictive biomarkers....... as well as clinical outcome in metastatic melanoma patients vaccinated with survivin-derived peptides. Notably, we observed dysfunctional Th1 and cytotoxic T cells, i.e. down-regulation of the CD3ζchain (p=0.001) and an impaired IFNγ-production (p=0.001) in patients compared to healthy donors, suggesting...

  17. Construction, immune protection and innate immune response of shuffled polyvalent ompAs vaccines.

    Science.gov (United States)

    Wang, Sheng-Nan; Cheng, Zhi-Xue; Ling, Xiao-Peng; Chu, Xiao; Peng, Xuan-Xian; Li, Hui

    2018-03-01

    Our previous studies demonstrated that molecular breeding via DNA shuffling directs the evolution of polyvalent vaccines with desired traits, which leads to generation of polyvalent ompA vaccines using Vibrio alginolyticus VA0764 primers. Here, we replaced VA0764 primers with Edwardsiella tarda ompA primers to generate new polyvalent ompA vaccines by DNA shuffling of the same five ompA genes from four species of bacteria E. tarda, V. parahaemolyticus, V. alginolyticus and Escherichia coli. We identified four polyvalent vaccine candidates from a eukaryotic expressing library EompAs-FE containing 82 ompAs using active immune protection against V. alginolyticus and E. tarda. Furthermore, we explored mechanisms of polyvalent vaccine candidates by investigation of the innate immune response to these ompAs, and found that expression of IL-1β, IL-8, IL-15, COX-2, IFN-γ, TLR-1, TLR-3 and C3b genes was elevated as a characteristic feature of these polyvalent vaccine candidates. These results indicate that use of different primers to construct a DNA library selects new evolution of polyvalent vaccines with desired traits, and polyvalent ompA vaccines elicit high innate immune response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. DMPD: Innate immune responses during infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15576198 Innate immune responses during infection. Ulevitch RJ, Mathison JC, da Sil...ses during infection. PubmedID 15576198 Title Innate immune responses during infection. Authors Ulevitch RJ, Math

  19. Fewer Doses of HPV Vaccine Result in Immune Response Similar to Three-Dose Regimen

    Science.gov (United States)

    ... Note Fewer doses of HPV vaccine result in immune response similar to three-dose regimen Posted: November 4, ... or three doses of Cervarix. They also measured immune responses of unvaccinated women who, at enrollment, were found ...

  20. The influence of diet on anti-cancer immune responsiveness.

    Science.gov (United States)

    Soldati, Laura; Di Renzo, Laura; Jirillo, Emilio; Ascierto, Paolo A; Marincola, Francesco M; De Lorenzo, Antonino

    2018-03-20

    Immunotherapy has matured into standard treatment for several cancers, but much remains to be done to extend the reach of its effectiveness particularly to cancers that are resistant within each indication. This review proposes that nutrition can affect and potentially enhance the immune response against cancer. The general mechanisms that link nutritional principles to immune function and may influence the effectiveness of anticancer immunotherapy are examined. This represents also the premise for a research project aimed at identifying the best diet for immunotherapy enhancement against tumours (D.I.E.T project). Particular attention is turned to the gut microbiota and the impact of its composition on the immune system. Also, the dietary patterns effecting immune function are discussed including the value of adhering to a healthy diets such as the Mediterranean, Veg, Japanese, or a Microbiota-regulating diet, the very low ketogenic diet, which have been demonstrated to lower the risk of developing several cancers and reduce the mortality associated with them. Finally, supplements, as omega-3 and polyphenols, are discussed as potential approaches that could benefit healthy dietary and lifestyle habits in the context of immunotherapy.