WorldWideScience

Sample records for anti-tumor immune response

  1. Anti-tumor immune response after photodynamic therapy

    Science.gov (United States)

    Mroz, Pawel; Castano, Ana P.; Wu, Mei X.; Kung, Andrew L.; Hamblin, Michael R.

    2009-06-01

    Anti-tumor immunity is stimulated after PDT due a number of factors including: the acute inflammatory response caused by PDT, release of antigens from PDT-damaged tumor cells, priming of the adaptive immune system to recognize tumor-associated antigens (TAA), and induction of heat-shock proteins. The induction of specific CD8+ T-lymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy as it would allow the treatment of tumors that may have already metastasized. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. We have carried out in vivo PDT with a BPD-mediated vascular regimen using a pair of BALB/c mouse colon carcinomas: CT26 wild type expressing the naturally occurring retroviral antigen gp70 and CT26.CL25 additionally expressing beta-galactosidase (b-gal) as a model tumor rejection antigen. PDT of CT26.CL25 cured 100% of tumors but none of the CT26WT tumors (all recurred). Cured CT26.CL25 mice were resistant to rechallenge. Moreover mice with two bilateral CT26.CL25 tumors that had only one treated with PDT demonstrated spontaneous regression of 70% of untreated contralateral tumors. T-lymphocytes were isolated from lymph nodes of PDT cured mice that recognized a particular peptide specific to b-gal antigen. T-lymphocytes from LN were able to kill CT26.CL25 target cells in vitro but not CT26WT cells as shown by a chromium release assay. CT26.CL25 tumors treated with PDT and removed five days later had higher levels of Th1 cytokines than CT26 WT tumors showing a higher level of immune response. When mice bearing CT26WT tumors were treated with a regimen of low dose cyclophosphamide (CY) 2 days before, PDT led to 100% of cures (versus 0% without CY) and resistance to rechallenge. Low dose CY is thought to deplete regulatory T-cells (Treg, CD4+CD25+foxp

  2. [Research advances of anti-tumor immune response induced by pulse electric field ablation].

    Science.gov (United States)

    Cui, Guang-ying; Diao, Hong-yan

    2015-11-01

    As a novel tumor therapy, pulse electric field has shown a clinical perspective. This paper reviews the characteristics of tumor ablation by microsecond pulse and nanosecond pulse electric field, and the research advances of anti-tumor immune response induced by pulse electric field ablation. Recent researches indicate that the pulse electric field not only leads to a complete ablation of local tumor, but also stimulates a protective immune response, thereby inhibiting tumor recurrence and metastasis. These unique advantages will show an extensive clinical application in the future. However, the mechanism of anti-tumor immune response and the development of related tumor vaccine need further studies.

  3. Osthole promotes anti-tumor immune responses in tumor-bearing mice with hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Lurong; Jiang, Guorong; Yao, Fei; Liang, Guoqiang; Wang, Fei; Xu, Heng; Wu, Yan; Yu, Xiao; Liu, Haiyan

    2015-06-01

    Osthole, a natural coumarin derivative, has been shown to have anti-tumor and anti-inflammatory activity. However, the effect of osthole on anti-tumor immune responses in tumor-bearing mice has not yet been reported. In the present study, osthole treatment did not affect the weight and the coefficient of thymus and spleen in tumor-bearing mice with hepatocellular carcinoma (HCC). However, osthole administration significantly elevated the proportion and number of the splenic CD8(+) T cells, the proportion of CD4(+) T and CD8(+) T cells in tumor tissues, and the levels of IL-2 and TNF-α in the serum of HCC tumor-bearing mice. Our results suggested that osthole could promote the activation of the tumor-infiltrating CD4(+) T and CD8(+) T cells, and elevate the proportion of CD4(+) and CD8(+) effector T cells. Osthole treatment also significantly decreased the proportion of CD4(+)CD25(+)Foxp3(+) regulatory T cells in the spleen. Taken together, osthole could enhance the T cell mediated anti-tumor immune responses in the tumor-bearing mice with HCC. PMID:25975579

  4. Targeting amino acid metabolism in cancer growth and anti-tumor immune response

    Institute of Scientific and Technical Information of China (English)

    Elitsa; Ananieva

    2015-01-01

    Recent advances in amino acid metabolism have revealed that targeting amino acid metabolic enzymes in cancer therapy is a promising strategy for the development of novel therapeutic agents. There are currently several drugs in clinical trials that specifically target amino acid metabolic pathways in tumor cells. In the context of the tumor microenvironment,however,tumor cells form metabolic relationships with immune cells,and they oftencompete for common nutrients. Many tumors evolved to escape immune surveillance by taking advantage of their metabolic flexibility and redirecting nutrients for their own advantage. This review outlines the most recent advances in targeting amino acid metabolic pathways in cancer therapy while giving consideration to the impact these pathways may have on the anti-tumor immune response.

  5. ANTI-TUMOR ACTIVITY AND IMMUNE RESPONSES INDUCED BY HUMAN CANCER-ASSOCIATED MUCIN CORE PEPTIDE

    Institute of Scientific and Technical Information of China (English)

    Ma Yunguo; Yuan Mei; Fei Lihua; Li Li

    1998-01-01

    Objective: To investigate the immune responses induced by apomucin which is a mixture of mucin core peptide, in mice for elucidating the role of mucin core peptide in the modulation of cancers. Methods:Apomucin was isolated from human pancreatic cancer cell line SW1990. The mice were immunized with this apomucin (10μg/time×6) plus DETOX. Results: When immunized, all mice developed delayed-type hypersensitivity (DTH) after challenged with apomucin or synthetic peptide MUC-2 or MUC-3, while the mice immunized with apomucin alone did not develop DTH.No antibodies were detected by ELISA after immunization. When the spleen cells of vaccinated mice were cocultured with this apomucin (10-50μg/ml) and rhIL-2(50U/ml) in vitro, the proliferated lymphocytes showed cytotoxicity against human cancer cells, including colon cancer, gastric cancer, pancreatic cancer and leukemia as measured by Cr-51 release assay. Antibodies against MUC-2 and MUC-3 could block the cytotoxicity. Conclusion: It was identified that a vaccine combined of apomucin and immune adjuvant DETOX can induce cellular immune response and anti-tumor cytotoxicity in mice.

  6. IgE/FcεRI-Mediated Antigen Cross-Presentation by Dendritic Cells Enhances Anti-Tumor Immune Responses

    Directory of Open Access Journals (Sweden)

    Barbara Platzer

    2015-03-01

    Full Text Available Epidemiologic studies discovered an inverse association between immunoglobulin E (IgE-mediated allergies and cancer, implying tumor-protective properties of IgE. However, the underlying immunologic mechanisms remain poorly understood. Antigen cross-presentation by dendritic cells (DCs is of key importance for anti-tumor immunity because it induces the generation of cytotoxic CD8+ T lymphocytes (CTLs with specificity for tumor antigens. We demonstrate that DCs use IgE and FcεRI, the high-affinity IgE receptor, for cross-presentation and priming of CTLs in response to free soluble antigen at low doses. Importantly, IgE/FcεRI-mediated cross-presentation is a distinct receptor-mediated pathway because it does not require MyD88 signals or IL-12 induction in DCs. Using passive immunization with tumor antigen-specific IgE and DC-based vaccination experiments, we demonstrate that IgE-mediated cross-presentation significantly improves anti-tumor immunity and induces memory responses in vivo. Our findings suggest a cellular mechanism for the tumor-protective features of IgE and expand the known physiological functions of this immunoglobulin.

  7. Photodynamic therapy stimulates anti-tumor immune response in mouse models: the role of regulatory Tcells, anti-tumor antibodies, and immune attacks on brain metastases

    Science.gov (United States)

    Vatansever, Fatma; Kawakubo, Masayoshi; Chung, Hoon; Hamblin, Michael R.

    2013-02-01

    We have previously shown that photodynamic therapy mediated by a vascular regimen of benzoporphyrin derivative and 690nm light is capable of inducing a robust immune response in the mouse CT26.CL25 tumor model that contains a tumor-rejection antigen, beta-galactosidase (β-gal). For the first time we show that PDT can stimulate the production of serum IgG antibodies against the β-gal antigen. It is known that a common cause of death from cancer, particularly lung cancer, is brain metastases; especially the inoperable ones that do not respond to traditional cytotoxic therapies either. We asked whether PDT of a primary tumor could stimulate immune response that could attack the distant brain metastases. We have developed a mouse model of generating brain metastases by injecting CT26.CL25 tumor cells into the brain as well as injecting the same cancer cells under the skin at the same time. When the subcutaneous tumor was treated with PDT, we observed a survival advantage compared to mice that had untreated brain metastases alone.

  8. Mechanical disruption of tumors by iron particles and magnetic field application results in increased anti-tumor immune responses.

    Directory of Open Access Journals (Sweden)

    Myriam N Bouchlaka

    Full Text Available The primary tumor represents a potential source of antigens for priming immune responses for disseminated disease. Current means of debulking tumors involves the use of cytoreductive conditioning that impairs immune cells or removal by surgery. We hypothesized that activation of the immune system could occur through the localized release of tumor antigens and induction of tumor death due to physical disruption of tumor architecture and destruction of the primary tumor in situ. This was accomplished by intratumor injection of magneto-rheological fluid (MRF consisting of iron microparticles, in Balb/c mice bearing orthotopic 4T1 breast cancer, followed by local application of a magnetic field resulting in immediate coalescence of the particles, tumor cell death, slower growth of primary tumors as well as decreased tumor progression in distant sites and metastatic spread. This treatment was associated with increased activation of DCs in the draining lymph nodes and recruitment of both DCs and CD8(+T cells to the tumor. The particles remained within the tumor and no toxicities were observed. The immune induction observed was significantly greater compared to cryoablation. Further anti-tumor effects were observed when MRF/magnet therapy was combined with systemic low dose immunotherapy. Thus, mechanical disruption of the primary tumor with MRF/magnetic field application represents a novel means to induce systemic immune activation in cancer.

  9. Reprogramming anti-tumor immunity

    Science.gov (United States)

    Crompton, Joseph G.; Clever, David; Vizcardo, Raul; Rao, Mahendra; Restifo, Nicholas P.

    2014-01-01

    Regenerative medicine holds great promise in replacing tissues and organs lost to degenerative disease and injury. Applying principles of cellular reprogramming for the treatment of cancer, however, are not well established. Here we present an overview of cell-based reprogramming techniques (i.e. lineage reprogramming and stimulus-triggered acquisition of pluripotency) used in regenerative medicine, and within this context, envision how the scope of regenerative medicine may be expanded to treat metastatic cancer by revitalizing an exhausted and senescent immune system. PMID:24661777

  10. Heat-shocked tumor cell lysate-pulsed dendritic cells induce effective anti-tumor immune response in vivo

    Institute of Scientific and Technical Information of China (English)

    Jian Qiu; Guo-Wei Li; Yan-Fang Sui; Hong-Ping Song; Shao-Yan Si; Wei Ge

    2006-01-01

    AIM: To study whether heat-shocked tumor cells could enhance the effect of tumor cell lysate-pulsed dendritic cells (DCs) in evoking anti-tumor immune response in vivo.METHODS: Mouse undifferentiated colon cancer cells(CT-26) were heated at 42℃ for 1 h and then frozenthawed. The bone marrow-derived DCs pulsed with heatshocked CT-26 cell lysate (HSCT-26 DCs) were recruited to immunize syngeneic naive BALB/c mice. The cytotoxic activity of tumor specific cytotoxic T lymphocytes (CTLs)in mouse spleen was evaluated by IFN-enzyme-linked immunospot (ELISpot) and LDH release assay. The immunoprophylactic effects induced by HSCT-26 DCs in mouse colon cancer model were compared to those induced by single CT-26 cell lysate-pulsed DCs (CT-26DCs) on tumor volume, peritoneal metastasis and survival time of the mice.RESULTS: Heat-treated CT-26 cells showed a higher hsp70 protein expression. Heat-shocked CT-26 cell lysate pulsing elevated the co-stimulatory and MHC-Ⅱ molecule expression of bone marrow-derived DCs as well as interleukin-12 p70 secretion. The IFN-γ secreting CTLs induced by HSCT-26 DCs were significantly more than those induced by CT-26 DCs (P= 0.002). The former CTLs' specific cytotoxic activity was higher than the latter CTLs' at a serial E/T ratio of 10:1, 20:1, and 40:1. Mouse colon cancer model showed that the tumor volume of HSCT-26 DC vaccination group was smaller than that of CT-26 DC vaccination group on tumor volume though there was no statistical difference between them(24 mm3 vs 8 mm3, P= 0.480). The median survival time of mice immunized with HSCT-26 DCs was longer than that of those immunized with CT-26 DCs (57 d vs 43 d,P= 0.0384).CONCLUSION: Heat-shocked tumor cell lysate-pulsed DCs can evoke anti-tumor immune response in vivo effectively and serve as a novel DC-based tumor vaccine.

  11. The role of regulatory T cells in the modulation of anti-tumor immune response

    OpenAIRE

    Radosavljević Gordana D.; Jovanović Ivan P.; Kanjevac Tatjana V.; Arsenijević Nebojša N.

    2013-01-01

    It has been shown that the loss of regulatory function by deple­ + Regulatory T cells (Treg) represent a subset of CD4 T cells whose function is to suppress immune responses. Treg lymphocytes can be divided into two subsets: natural nTreg lymphocytes that are developed in the thymus and inducible iTreg lymphocytes, which originate from conventional T lymphocytes on the periphery. The majority of Treg lymphocytes express high levels of interleukin­2 (IL­2) receptor α chain (CD25) and tra...

  12. Anti-tumor Immune Response Mediated by Newcastle Disease Virus HN Gene

    Institute of Scientific and Technical Information of China (English)

    PENG Li-ping; JIN Ning-yi; LI Xiao; SUN Li-li; WEN Zhong-mei; LIU Yan; GAO Peng; HUANG Hai-yan; PIAO Bing-guo; JIN Jing

    2011-01-01

    Hemagglutinin-neuramidinase(HN) is one of the most important surface structure proteins of the Newcastle disease virus(NDV). HN not only mediates receptor recognition but also possesses neuraminidase(NA) activity,which gives it the ability to cleave a component of those receptors, NAcneu. Previous studies have demonstrated that HN has interesting anti-neoplastic and immune-stimulating properties in mammalian species, including humans. To explore the application of the HN gene in cancer gene therapy, we constructed a Lewis lung carcinoma(LLC) solid tumor model using C57BL/6 mice. Mice were injected intratumorally with the recombinant adenovirus expressing HN gene(Ad-HN), and the effect of HN was explored by natural killer cell activity assay, cytotoxic lymphocyte activity assay, T cell subtype evaluation, and Thl/Th2 cytokines analysis. The results demonstrate that HN not only can elicit clonal expansion of both CD4+ and CD8+ T cell populations and cytotoxic T lymphocyte(CTL) and killer cell response, but also skews the immune response toward Thl. Thus, vaccination with Ad-HN may be a potential strategy for cancer gene therapy.

  13. Caffeine promotes anti-tumor immune response during tumor initiation: Involvement of the adenosine A2A receptor.

    Science.gov (United States)

    Eini, Hadar; Frishman, Valeria; Yulzari, Robert; Kachko, Leonid; Lewis, Eli C; Chaimovitz, Cidio; Douvdevani, Amos

    2015-11-01

    Epidemiologic studies depict a negative correlation between caffeine consumption and incidence of tumors in humans. The main pharmacological effects of caffeine are mediated by antagonism of the adenosine receptor, A2AR. Here, we examine whether the targeting of A2AR by caffeine plays a role in anti-tumor immunity. In particular, the effects of caffeine are studied in wild-type and A2AR knockout (A2AR(-/-)) mice. Tumor induction was achieved using the carcinogen 3-methylcholanthrene (3-MCA). Alternatively, tumor cells, comprised of 3-MCA-induced transformed cells or B16 melanoma cells, were inoculated into animal footpads. Cytokine release was determined in a mixed lymphocyte tumor reaction (MLTR). According to our findings, caffeine-consuming mice (0.1% in water) developed tumors at a lower rate compared to water-consuming mice (14% vs. 53%, respectively, p=0.0286, n=15/group). Within the caffeine-consuming mice, tumor-free mice displayed signs of autoimmune alopecia and pronounced leukocyte recruitment intocarcinogen injection sites. Similarly, A2AR(-/-) mice exhibited reduced rates of 3-MCA-induced tumors. In tumor inoculation studies, caffeine treatment resulted in inhibition of tumor growth and elevation in proinflammatory cytokine release over water-consuming mice, as depicted by MLTR. Addition of the adenosine receptor agonist, NECA, to MLTR resulted in a sharp decrease in IFNγ levels; this was reversed by the highly selective A2AR antagonist, ZM241385. Thus, immune response modulation through either caffeine or genetic deletion of A2AR leads to a Th1 immune profile and suppression of carcinogen-induced tumorigenesis. Taken together, our data suggest that the use of pharmacologic A2AR antagonists may hold therapeutic potential in diminishing the rate of cancer development.

  14. Design, Immune Responses and Anti-Tumor Potential of an HPV16 E6E7 Multi-Epitope Vaccine.

    Directory of Open Access Journals (Sweden)

    Liliane Maria Fernandes de Oliveira

    Full Text Available Cervical cancer is a common type of cancer among women worldwide and infection with high-risk human papillomavirus (HPVs types represents the major risk factor for the etiopathogenesis of the disease. HPV-16 is the most frequently identified HPV type in cervical lesions and expression of E6 and E7 oncoproteins is required for the uncontrolled cellular proliferation. In the present study we report the design and experimental testing of a recombinant multi-epitope protein containing immunogenic epitopes of HPV-16 E6 and E7. Tumor preventive assays, based on the engraftment of TC-1 cells in mice, showed that the E6E7 multi-epitope protein induced a full preventive anti-tumor protection in wild-type mice, as well as in mice deficient in expression of CD4+ T cells and TLR4 receptor. Nonetheless, no anti-tumor protection was observed in mice deficient in CD8+ T cells. Also, the vaccine promoted high activation of E6/E7-specific T cells and in a therapeutic-approach, E6E7 protein conferred full anti-tumor protection in mice. These results show a potential use of this E6E7 multi-epitope antigen as a new and promising antigen for the development of a therapeutic vaccine against tumors induced by HPV.

  15. Oligoesculin fraction induces anti-tumor effects and promotes immune responses on B16-F10 mice melanoma.

    Science.gov (United States)

    Mokdad Bzeouich, Imen; Mustapha, Nadia; Sassi, Aicha; Ghedira, Kamel; Ghoul, Mohamed; Chebil, Latifa; Luis, José; Chekir-Ghedira, Leila

    2016-08-01

    Laccase was used to enzymatically polymerize esculin. Oligoesculin fraction was obtained after ultrafiltration through a 5-kDa membrane. Several studies have been carried out to prove the effectiveness of natural substances such as immunomodulators to promote the anti-cancer activity in situ. The purpose of our report was to explore whether the anti-tumor potential of the oligoesculin fraction in vitro and in vivo is linked to its immunological mechanisms in melanoma-bearing mice. We revealed that oligoesculin fraction reduced B16-F10 proliferation and migration in vitro in a dose-related manner. Moreover, melanin synthesis and tyrosinase activity were inhibited in these melanoma cells in a concentration-dependent way. The anti-tumor potential of oligoesculin fraction was also assessed in vivo. Our results showed that intraperitoneal administration of oligoesculin fraction, at 50 mg/kg body weight (b.w.) for 21 days, reduced tumor size and weight with percentages of inhibition of 94 and 87 %, respectively. Oligoesculin fraction was effective in promoting lysosomal activity and nitric oxide (NO) production by peritoneal macrophages in tumor-implanted mice. In addition, the activities of natural killer (NK), cytotoxic T lymphocytes, and macrophages were significantly enhanced by oligoesculin fraction. These findings suggested that this polymer with its anti-tumor and immunomodulatory properties could be used for the treatment of melanoma. PMID:26960691

  16. Anti-tumor immunity, autophagy and chemotherapy

    Institute of Scientific and Technical Information of China (English)

    Gy(o)rgyi Müzes; Ferenc Sipos

    2012-01-01

    Autophagy or self-digestion of cells is activated upon various stressful stimuli and has been found to be a survival and drug resistance pathway in cancer.However,genetic studies support that autophagy can act as a tumor suppressor.Furthermore,defective autophagy is implicated in tumorigenesis,as well.The precise impact of autophagy on malignant transformation has not yet been clarified,but recent data suggest that this complex process is mainly directed by cell types,phases,genetic background and microenvironment.Relation of autophagy to anticancer immune responses may indicate a novel aspect in cancer chemotherapy.

  17. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor

  18. ER Stress Sensor XBP1 Controls Anti-tumor Immunity by Disrupting Dendritic Cell Homeostasis.

    Science.gov (United States)

    Cubillos-Ruiz, Juan R; Silberman, Pedro C; Rutkowski, Melanie R; Chopra, Sahil; Perales-Puchalt, Alfredo; Song, Minkyung; Zhang, Sheng; Bettigole, Sarah E; Gupta, Divya; Holcomb, Kevin; Ellenson, Lora H; Caputo, Thomas; Lee, Ann-Hwee; Conejo-Garcia, Jose R; Glimcher, Laurie H

    2015-06-18

    Dendritic cells (DCs) are required to initiate and sustain T cell-dependent anti-cancer immunity. However, tumors often evade immune control by crippling normal DC function. The endoplasmic reticulum (ER) stress response factor XBP1 promotes intrinsic tumor growth directly, but whether it also regulates the host anti-tumor immune response is not known. Here we show that constitutive activation of XBP1 in tumor-associated DCs (tDCs) drives ovarian cancer (OvCa) progression by blunting anti-tumor immunity. XBP1 activation, fueled by lipid peroxidation byproducts, induced a triglyceride biosynthetic program in tDCs leading to abnormal lipid accumulation and subsequent inhibition of tDC capacity to support anti-tumor T cells. Accordingly, DC-specific XBP1 deletion or selective nanoparticle-mediated XBP1 silencing in tDCs restored their immunostimulatory activity in situ and extended survival by evoking protective type 1 anti-tumor responses. Targeting the ER stress response should concomitantly inhibit tumor growth and enhance anti-cancer immunity, thus offering a unique approach to cancer immunotherapy.

  19. ER Stress Sensor XBP1 Controls Anti-tumor Immunity by Disrupting Dendritic Cell Homeostasis

    Science.gov (United States)

    Cubillos-Ruiz, Juan R.; Silberman, Pedro C.; Rutkowski, Melanie R.; Chopra, Sahil; Perales-Puchalt, Alfredo; Song, Minkyung; Zhang, Sheng; Bettigole, Sarah E.; Gupta, Divya; Holcomb, Kevin; Ellenson, Lora H.; Caputo, Thomas; Lee, Ann-Hwee; Conejo-Garcia, Jose R.; Glimcher, Laurie H.

    2015-01-01

    SUMMARY Dendritic cells (DCs) are required to initiate and sustain T cell-dependent anti-cancer immunity. However, tumors often evade immune control by crippling normal DC function. The endoplasmic reticulum (ER) stress response factor XBP1 promotes intrinsic tumor growth directly, but whether it also regulates the host anti-tumor immune response is not known. Here we show that constitutive activation of XBP1 in tumor-associated DCs (tDCs) drives ovarian cancer (OvCa) progression by blunting anti-tumor immunity. XBP1 activation, fueled by lipid peroxidation byproducts, induced a triglyceride biosynthetic program in tDCs leading to abnormal lipid accumulation and subsequent inhibition of tDC capacity to support anti-tumor T cells. Accordingly, DC-specific XBP1 deletion or selective nanoparticle-mediated XBP1 silencing in tDCs restored their immunostimulatory activity in situ and extended survival by evoking protective type 1 anti-tumor responses. Targeting the ER stress response should concomitantly inhibit tumor growth and enhance anti-cancer immunity, thus offering a unique approach to cancer immunotherapy. PMID:26073941

  20. Function of Helper T Cells in the Memory CTL-mediated Anti-tumor Immunity

    Institute of Scientific and Technical Information of China (English)

    高丰光; GermainJ.P.Fernendo; 刘文军

    2004-01-01

    Abstract To investigate the role of CD4+ helper T (Th) cells in the memory CTL-mediated anti-tumor immunity, the RAG-1 gene knock out mice were adoptively transferred with OT-1 cells to generate the memory CTL, the C57B1/6 mice immunized with the epitope peptide of OVA specific Th cells and with different adjuvants were adopfively transferred with these memory-CTLs, and then the animals were challenged with tumor cells EGT. It was found that although the simple immunization of mice with the epitope peptide of the OVA specific Th cells could generate more effect CTL, but this effect was not so strong enough to resist completely the challenges with tumor cells. Nevertheless, the memory CTL-mediated anti-tumor immune effect required the helps of Th1 and Th2 cells. The cross-regulation between Thl and Th2 cells seemed to be beneficial for the host to generate more effector CTL for mounting an efficient anti-tumor response. It concluded that the interaction between Thl and Th2 cells might be more important than the single subset of Th cells in the memory CTL-mediated anti-tumor immune response. More attention should be paid in this regard for the future studies.

  1. Radio-immunotherapy-induced immunogenic cancer cells as basis for induction of systemic anti-tumor immune responses – preclinical evidence and ongoing clinical applications

    Directory of Open Access Journals (Sweden)

    Anja eDerer

    2015-10-01

    Full Text Available Radiotherapy (RT primarily aims to locally destroy the tumor via the induction of DNA damage in the tumor cells. However, so called abscopal, namely systemic and immune mediated effects of RT move over more and more in the focus of scientists and clinicians since combinations of local irradiation with immune therapy have been demonstrated to induce anti-tumor immunity. We here summarize changes of the phenotype and microenvironment of tumor cells after exposure to irradiation, chemotherapeutic agents and immune modulating agents rendering the tumor more immunogenic. The impact of therapy-modified tumor cells and damage associated molecular patterns (DAMPs on local and systemic control of the primary tumor, recurrent tumors and metastases will be outlined. Finally, clinical studies affirming the bench-side findings of interactions and synergies of radiation therapy and immunotherapy will be discussed. Focus is set on combination of radio(chemotherapy (RCT with immune checkpoint inhibitors, growth factor inhibitors and chimeric antigen receptor (CAR T-cell therapy. Well deliberated combination of RCT with selected immune therapies and growth factor inhibitors bear the great potential to further improve anti-cancer therapies.

  2. Induction of anti-tumor immunity by trifunctional antibodies in patients with peritoneal carcinomatosis

    Directory of Open Access Journals (Sweden)

    Lindhofer Horst

    2009-02-01

    Full Text Available Abstract Peritoneal carcinomatosis (PC from epithelial tumors is a fatal diagnosis without efficient treatment. Trifunctional antibodies (trAb are novel therapeutic approaches leading to a concerted anti-tumor activity resulting in tumor cell destruction. In addition, preclinical data in mouse tumor models demonstrated the induction of long lasting tumor immunity after treatment with trAb. We describe the induction of anti-tumor specific T-lymphocytes after intraperitoneal administration of trAb in patients with PC. 9 patients with progressive PC from gastric (n = 6 and ovarian cancer (n = 2, and cancer of unknown primary (n = 1 received 3 escalating doses of trAb after surgery and/or ineffective chemotherapy. The trAb EpCAM × CD3 (10, 20, 40 μg or HER2/neu × CD3 (10, 40, 80 μg were applicated by intraperitoneal infusion. Four weeks after the last trAb application, all patients were restimulated by subdermal injection of trAb + autologous PBMC + irradiated autologous tumor cells. Immunological reactivity was tested by analyzing PBMC for specific tumor reactive CD4+/CD8+ T lymphocytes using an IFN-γ secretion assay. In 5 of 9 patients, tumor reactive CD4+/CD8+ T-lymphocytes increased significantly, indicating specific anti-tumor immunity. A clinical response (stable disease, partial regression has been observed in 5 of 9 patients, with a mean time to progression of 3.6 months. Follow-up showed a mean survival of 11.8 months (median 8.0 months after trAb therapy. TrAb are able to induce anti-tumor immunity after intraperitoneal application and restimulation. The induction of long-lasting anti-tumor immunity may provide an additional benefit of the intraperitoneal therapy with trAb and should be further elevated in larger clinical trials.

  3. Gene Therapy of Cancer: Induction of Anti-Tumor Immunity

    Institute of Scientific and Technical Information of China (English)

    ChengQian; JesusPrieto

    2004-01-01

    Many malignancies lack satisfactory treatment and new therapeutic options are urgently needed. Gene therapy is a new modality to treat both inherited and acquired diseases based on the transfer of genetic material to the tissues. Different gene therapy strategies against cancers have been developed. A considerable number of preclinical studies indicate that a great variety of cancers are amenable to gene therapy. Among these strategies, induction of anti-tumor immunity is the most promising approach. Gene therapy with cytokines has reached unprecedented success in preclinical models of cancer. Synergistic rather than additive effects have been demonstrated by combination of gene transfer of cytokines/chemokines, costimulatory molecules or adoptive cell therapy. Recent progress in vector technology and in imaging techniques allowing in vivo assessment of gene expression will facilitate the development of clinical applications of gene therapy, a procedure which may have a notorious impact in the management of cancers lacking effective treatment. Cellular & Molecular Immunology. 2004;1(2):105-111.

  4. LV305, a dendritic cell-targeting integration-deficient ZVex(TM)-based lentiviral vector encoding NY-ESO-1, induces potent anti-tumor immune response.

    Science.gov (United States)

    Albershardt, Tina Chang; Campbell, David James; Parsons, Andrea Jean; Slough, Megan Merrill; Ter Meulen, Jan; Berglund, Peter

    2016-01-01

    We have engineered an integration-deficient lentiviral vector, LV305, to deliver the tumor antigen NY-ESO-1 to human dendritic cells in vivo through pseudotyping with a modified Sindbis virus envelop protein. Mice immunized once with LV305 developed strong, dose-dependent, multifunctional, and cytotoxic NY-ESO-1-specific cluster of differentiation 8 (CD8) T cells within 14 days post-immunization and could be boosted with LV305 at least twice to recall peak-level CD8 T-cell responses. Immunization with LV305 protected mice against tumor growth in an NY-ESO-1-expressing CT26 lung metastasis model, with the protective effect abrogated upon depletion of CD8 T cells. Adoptive transfer of CD8 T cells, alone or together with CD4 T cells or natural killer cells, from LV305-immunized donor mice to tumor-bearing recipient mice conferred significant protection against metastatic tumor growth. Biodistribution of injected LV305 in mice was limited to the site of injection and the draining lymph node, and injected LV305 exhibited minimal excretion. Mice injected with LV305 developed little to no adverse effects, as evaluated by toxicology studies adherent to good laboratory practices. Taken together, these data support the development of LV305 as a clinical candidate for treatment against tumors expressing NY-ESO-1. PMID:27626061

  5. LV305, a dendritic cell-targeting integration-deficient ZVexTM-based lentiviral vector encoding NY-ESO-1, induces potent anti-tumor immune response

    Science.gov (United States)

    Albershardt, Tina Chang; Campbell, David James; Parsons, Andrea Jean; Slough, Megan Merrill; ter Meulen, Jan; Berglund, Peter

    2016-01-01

    We have engineered an integration-deficient lentiviral vector, LV305, to deliver the tumor antigen NY-ESO-1 to human dendritic cells in vivo through pseudotyping with a modified Sindbis virus envelop protein. Mice immunized once with LV305 developed strong, dose-dependent, multifunctional, and cytotoxic NY-ESO-1-specific cluster of differentiation 8 (CD8) T cells within 14 days post-immunization and could be boosted with LV305 at least twice to recall peak-level CD8 T-cell responses. Immunization with LV305 protected mice against tumor growth in an NY-ESO-1-expressing CT26 lung metastasis model, with the protective effect abrogated upon depletion of CD8 T cells. Adoptive transfer of CD8 T cells, alone or together with CD4 T cells or natural killer cells, from LV305-immunized donor mice to tumor-bearing recipient mice conferred significant protection against metastatic tumor growth. Biodistribution of injected LV305 in mice was limited to the site of injection and the draining lymph node, and injected LV305 exhibited minimal excretion. Mice injected with LV305 developed little to no adverse effects, as evaluated by toxicology studies adherent to good laboratory practices. Taken together, these data support the development of LV305 as a clinical candidate for treatment against tumors expressing NY-ESO-1. PMID:27626061

  6. LV305, a dendritic cell-targeting integration-deficient ZVex(TM)-based lentiviral vector encoding NY-ESO-1, induces potent anti-tumor immune response.

    Science.gov (United States)

    Albershardt, Tina Chang; Campbell, David James; Parsons, Andrea Jean; Slough, Megan Merrill; Ter Meulen, Jan; Berglund, Peter

    2016-01-01

    We have engineered an integration-deficient lentiviral vector, LV305, to deliver the tumor antigen NY-ESO-1 to human dendritic cells in vivo through pseudotyping with a modified Sindbis virus envelop protein. Mice immunized once with LV305 developed strong, dose-dependent, multifunctional, and cytotoxic NY-ESO-1-specific cluster of differentiation 8 (CD8) T cells within 14 days post-immunization and could be boosted with LV305 at least twice to recall peak-level CD8 T-cell responses. Immunization with LV305 protected mice against tumor growth in an NY-ESO-1-expressing CT26 lung metastasis model, with the protective effect abrogated upon depletion of CD8 T cells. Adoptive transfer of CD8 T cells, alone or together with CD4 T cells or natural killer cells, from LV305-immunized donor mice to tumor-bearing recipient mice conferred significant protection against metastatic tumor growth. Biodistribution of injected LV305 in mice was limited to the site of injection and the draining lymph node, and injected LV305 exhibited minimal excretion. Mice injected with LV305 developed little to no adverse effects, as evaluated by toxicology studies adherent to good laboratory practices. Taken together, these data support the development of LV305 as a clinical candidate for treatment against tumors expressing NY-ESO-1.

  7. Immune-Modulation by Epidermal Growth Factor Receptor Inhibitors: Implication on Anti-Tumor Immunity in Lung Cancer

    Science.gov (United States)

    Herrmann, Amanda C.; Bernatchez, Chantale; Haymaker, Cara; Molldrem, Jeffrey J.; Hong, Waun Ki; Perez-Soler, Roman

    2016-01-01

    Skin toxicity is the most common toxicity caused by Epidermal Growth Factor Receptor (EGFR) inhibitors, and has been associated with clinical efficacy. As EGFR inhibitors enhance the expression of antigen presenting molecules in affected skin keratinocytes, they may concurrently facilitate neo-antigen presentation in lung cancer tumor cells contributing to anti-tumor immunity. Here, we investigated the modulatory effect of the EGFR inhibitor, erlotinib on antigen presenting molecules and PD-L1, prominent immune checkpoint protein, of skin keratinocytes and lung cancer cell lines to delineate the link between EGFR signaling pathway inhibition and potential anti-tumor immunity. Erlotinib up-regulated MHC-I and MHC-II proteins on IFNγ treated keratinocytes but abrogated IFNγ-induced expression of PD-L1, suggesting the potential role of infiltrating autoreactive T cells in the damage of keratinocytes in affected skin. Interestingly, the surface expression of MHC-I, MHC-II, and PD-L1 was up-regulated in response to IFNγ more often in lung cancer cell lines sensitive to erlotinib, but only expression of PD-L1 was inhibited by erlotinib. Further, erlotinib significantly increased T cell mediated cytotoxicity on lung cancer cells. Lastly, the analysis of gene expression dataset of 186 lung cancer cell lines from Cancer Cell Line Encyclopedia demonstrated that overexpression of PD-L1 was associated with sensitivity to erlotinib and higher expression of genes related to antigen presenting pathways and IFNγ signaling pathway. Our findings suggest that the EGFR inhibitors can facilitate anti-tumor adaptive immune responses by breaking tolerance especially in EGFR driven lung cancer that are associated with overexpression of PD-L1 and genes related to antigen presentation and inflammation. PMID:27467256

  8. Cryo-ablation improves anti-tumor immunity through recovering tumor educated dendritic cells in tumor-draining lymph nodes

    Directory of Open Access Journals (Sweden)

    He XZ

    2015-03-01

    Full Text Available Xiao-Zheng He,1,2 Qi-Fu Wang,1,2 Shuai Han,3 Hui-Qing Wang,1,2 Yong-Yi Ye,1,2 Zhi-Yuan Zhu,1,2 Shi-Zhong Zhang1,2 1Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China; 2The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, People’s Republic of China; 3Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China Background: In addition to minimally invasive destruction of tumors, cryo-ablation of tumors to some extent modulated anti-tumor immunity. Cryo-ablated tumors in glioma mice models induced anti-tumor cellular immunologic response which increases the percentage of CD3+ and CD4+T cells in blood as well as natural killer cells. As a crucial role in triggering anti-tumor immunity, dendritic cells (DCs were educated by tumors to adopt a tolerance phenotype which helps the tumor escape from immune monitoring. This study aims to study whether cryo-ablation could influence the tolerogenic DCs, and influence anti-tumor immunity in tumor-draining lymph nodes (TDLNs. Methods: Using the GL261 subcutaneous glioma mouse model, we created a tumor bearing group, cryo-ablation group, and surgery group. We analyzed alteration in phenotype and function of tolerogenic DCs, and evaluated the factors of anti-tumor immunity inhibition. Results: DCs in TDLNs in GL261 subcutaneous glioma mouse model expressed tolerogenic phenotype. In contrast to surgery, cryo-ablation improved the quantity and quality of these tolerogenic DCs. Moreover, the DCs decreased the expression of intracellular interleukin-10 (IL-10 and extra-cellular IL-10. In vitro, DCs from the cryo-ablation group recovered their specific function and induced potent anti-tumor immunity through triggering T cells. In vivo, cryo

  9. Anti-PD-L1 prolongs survival and triggers T cell but not humoral anti-tumor immune responses in a human MUC1-expressing preclinical ovarian cancer model.

    Science.gov (United States)

    Mony, Jyothi Thyagabhavan; Zhang, Lixin; Ma, Tianzhou; Grabosch, Shannon; Tirodkar, Tejas S; Brozick, Joan; Tseng, George; Elishaev, Esther; Edwards, Robert P; Huang, Xin; Vlad, Anda M

    2015-09-01

    Monoclonal antibodies that block inhibitory immune checkpoint molecules and enhance anti-tumor responses show clinical promise in advanced solid tumors. Most of the preliminary evidence on therapeutic efficacy of immune checkpoint blockers comes from studies in melanoma, lung and renal cancer. To test the in vivo potential of programmed death-ligand 1 (PD-L1) blockade in ovarian cancer, we recently generated a new transplantable tumor model using human mucin 1 (MUC1)-expressing 2F8 cells. The MUC1 transgenic (MUC1.Tg) mice develop large number of intraperitoneal (IP) tumors following IP injection of 8 × 10(5) syngeneic 2F8 cells. The tumors are aggressive and display little T cell infiltration. Anti-PD-L1 antibody was administered IP every 2 weeks (200 μg/dose) for a total of three doses. Treatment was started 21 days post-tumor challenge, a time point which corresponds to late tumor stage. The anti-PD-L1 treatment led to substantial T cell infiltration within the tumor and significantly increased survival (p = 0.001) compared to isotype control-treated mice. When the same therapy was administered to wild-type mice challenged with 2F8 tumors, no survival benefit was observed, despite the presence of high titer anti-MUC1 antibodies. However, earlier treatment (day 11) and higher frequency of IP injections restored the T cell responses and led to prolonged survival. Splenocyte profiling via Nanostring using probes for 511 immune genes revealed a treatment-induced immune gene signature consistent with increased T cell-mediated immunity. These findings strongly support further preclinical and clinical strategies exploring PD-L1 blockade in ovarian cancer.

  10. Silencing invariant chains of dendritic cells enhances anti-tumor immunity using small-interfering RNA

    Institute of Scientific and Technical Information of China (English)

    KE Shan; CHEN Xue-hua; ZHU Zheng-gang; LI Jian-fang; YU Bei-qin; GU Qin-long; LIU Bing-ya

    2010-01-01

    Background Genetic modification of dendritic cells (DCs) has been used as an effective approach to enhance anti-tumor immunity. RNA interference (RNAi), which can cause the degradation of any RNA in a sequence-specific manner, is a post-transcriptional gene silencing mechanism. In this study, small-interfering RNA (siRNA) specific for the Ii gene was transfected into DCs, and the anti-tumor immunity of Ii-silenced DCs was assessed.Methods The silencing effect of siRNA was evaluated by Western blotting and real-time PCR analyses. In vitro cytotoxic activity of T cells was evaluated using a Cytotox 96(R) non-radioactive cytotoxicity assay kit. The time to tumor onset and the tumor volumes were used as reliable indices to assess the anti-tumor immunity in vivo. To further examine the mechanisms underlying the anti-tumor immunity, flow cytometry analysis was used.Results The Ii expression of DCs was significantly reduced after Ii siRNA transfection. Significant in vitro anti-tumor ability was exhibited when DCs were co-transfected with Ii siRNA plus endogenous tumor antigen (P <0.05). Furthermore,tumor growth was greatly inhibited when mice were immunized with DCs transfected with Ii siRNA plus tumor antigen prior to or subsequent to tumor implantation. Flow cytometry analysis in vitro and in vivo indicated that both CD4+ and CD8+ T cells were significantly activated in the Ii siRNA group (P <0.05).Conclusion Silencing of the Ii gene of DCs may offer a potential approach to enhance DC-based anti-tumor immunity.

  11. Metabolic inhibition of galectin-1-binding carbohydrates accentuates anti-tumor immunity

    OpenAIRE

    Cedeno-Laurent, Filiberto; Opperman, Matthew; Barthel, Steven R.; Hays, Danielle; Schatton, Tobias; Zhan, Qian; He, Xiaoying; Matta, Khushi L.; Supko, Jeffrey G; Frank, Markus H; Murphy, George F.; Dimitroff, Charles J

    2011-01-01

    Galectin-1 (Gal-1) has been shown to play a major role in tumor immune escape by inducing apoptosis of effector leukocytes and correlating with tumor aggressiveness and disease progression. Targeting the Gal-1 – Gal-1 ligand axis, thus, represents a promising cancer therapeutic approach. Here, to test the Gal-1-mediated tumor immune evasion hypothesis and demonstrate the importance of Gal-1-binding N-acetyllactosamines in controlling the fate and function of anti-tumor immune cells, we treate...

  12. Pure Multiplicative Noises Induced Population Extinction in an Anti-tumor Model under Immune Surveillance

    International Nuclear Information System (INIS)

    The dynamical characters of a theoretical anti-tumor model under immune surveillance subjected to a pure multiplicative noise are investigated. The effects of pure multiplicative noise on the stationary probability distribution (SPD) and the mean first passage time (MFPT) are analysed based on the approximate Fokker-Planck equation of the system in detail. For the anti-tumor model, with the multiplicative noise intensity D increasing, the tumor population move towards to extinction and the extinction rate can be enhanced. Numerical simulations are carried out to check the approximate theoretical results. Reasonably good agreement is obtained.

  13. "Flagellated" cancer cells propel anti-tumor immunity.

    Science.gov (United States)

    Garaude, Johan; Blander, J Magarian

    2012-09-01

    The use of innate immune receptor agonists in cancer therapies has suffered from many drawbacks. Our recent observations suggest that some of these hurdles can be overcome by introducing flagellin into tumor cells to promote tumor antigen presentation by dendritic cells (DCs) and simultaneously trigger two types of pattern recognition receptors (PRRs).

  14. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation

    Science.gov (United States)

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X.

    2016-06-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient’s own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers.

  15. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation.

    Science.gov (United States)

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X

    2016-01-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient's own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers. PMID:27256519

  16. Anti-Tumor Immunity in Head and Neck Cancer: Understanding the Evidence, How Tumors Escape and Immunotherapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Clint T. Allen

    2015-12-01

    Full Text Available Many carcinogen- and human papilloma virus (HPV-associated head and neck cancers (HNSCC display a hematopoietic cell infiltrate indicative of a T-cell inflamed phenotype and an underlying anti-tumor immune response. However, by definition, these tumors have escaped immune elimination and formed a clinically significant malignancy. A number of both genetic and environmental mechanisms may allow such immune escape, including selection of poorly antigenic cancer cell subsets, tumor produced proinflammatory and immunosuppressive cytokines, recruitment of immunosuppressive immune cell subsets into the tumor and expression of checkpoint pathway components that limit T-cell responses. Here, we explore concepts of antigenicity and immunogenicity in solid tumors, summarize the scientific and clinical data that supports the use of immunotherapeutic approaches in patients with head and neck cancer, and discuss immune-based treatment approaches currently in clinical trials.

  17. Plasticity of gamma delta T cells: impact on the anti-tumor response

    Directory of Open Access Journals (Sweden)

    Virginie eLafont

    2014-12-01

    Full Text Available The tumor immune microenvironment contributes to tumor initiation, progression and response to therapy. Among the immune cell subsets that play a role in the tumor microenvironment, innate-like T cells that express T cell receptors composed of gamma and delta chains (gamma delta T cells are of particular interest. gamma delta T cells can contribute to the immune response against many tumor types (lymphoma, myeloma, melanoma, breast, colon, lung, ovary and prostate cancer directly through their cytotoxic activity and indirectly by stimulating or regulating the biological functions of other cell types required for the initiation and establishment of the anti-tumor immune response, such as dendritic cells and cytotoxic CD8+ T cells. However, the notion that tumor-infiltrating gamma delta T cells are a good prognostic marker in cancer was recently challenged by studies showing that the presence of these cells in the tumor microenvironment was associated with poor prognosis in both breast and colon cancer. These findings suggest that gamma delta T cells may also display pro-tumor activities. Indeed, breast tumor-infiltrating gamma deltaT cells could exert an immunosuppressive activity by negatively regulating DC maturation. Furthermore, recent studies demonstrated that signals from the microenvironment, particularly cytokines, can confer some plasticity to gamma delta T cells and promote their differentiation into gamma delta T cells with regulatory functions. This review focuses on the current knowledge on the functional plasticity of gamma delta T cells and its effect on their anti-tumor activities. It also discusses the putative mechanisms underlying gamma delta T cell expansion, differentiation and recruitment in the tumor microenvironment.

  18. RNAi nanomaterials targeting immune cells as an anti-tumor therapy: the missing link in cancer treatment?

    Directory of Open Access Journals (Sweden)

    João Conde

    2016-01-01

    Full Text Available siRNA delivery targeting tumor cells and cancer-associated immune cells has been gaining momentum in the last few years. A combinatorial approach for silencing crucial factors essential for tumor progression in cancer-associated immune cells and in cancer cells simultaneously can effectively shift the tumor microenvironment from pro-oncogenic to anti-tumoral. Gene-therapy using RNAi nanomaterials can help shift this balance; however, fully utilizing the potential of RNAi relies on effective and specific delivery. RNAi nanomaterials can act as a Trojan horse which delivers siRNAs against immunosuppressive factors and reverses the regulatory activity of tumor immune cells residing in the tumor microenvironment. Here we review potential RNAi targets, means to activate and control the immune response, as well as ways to design delivery nanovehicles for successful RNAi immunotherapy.

  19. The critical role of the tumor microenvironment in shaping natural killer cell-mediated anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Joanna eBaginska

    2013-12-01

    Full Text Available Considerable evidence has been gathered over the last 10 years showing that the tumor microenvironment (TME is not simply a passive recipient of immune cells, but an active participant in the establishment of immunosuppressive conditions. It is now well documented that hypoxia, within the TME, affects the functions of immune effectors including natural killer (NK cells by multiple overlapping mechanisms. Indeed, each cell in the TME, irrespective of its transformation status, has the capacity to adapt to the hostile TME and produce immune modulatory signals or mediators affecting the function of immune cells either directly or through the stimulation of other cells present in the tumor site. This observation has led to intense research efforts focused mainly on tumor-derived factors. Notably, it has become increasingly clear that tumor cells secrete a number of environmental factors such as cytokines, growth factors, exosomes, and microRNAs impacting the immune cell response. Moreover, tumor cells in hostile microenvironments may activate their own intrinsic resistance mechanisms, such as autophagy, to escape the effective immune response. Such adaptive mechanisms may also include the ability of tumor cells to modify their metabolism and release several metabolites to impair the function of immune cells. In this review, we summarize the different mechanisms involved in the TME that affect the anti-tumor immune function of NK cells.

  20. Effects and possible anti-tumor immunity of electrochemotherapy with bleomycin on human colon cancer xenografts in nude mice

    Institute of Scientific and Technical Information of China (English)

    Min-Hua Zheng; Bao-Ming Yu; Bo Feng; Jian-Wen Li; Ai-Guo Lu; Ming-Liang Wang; Wei-Guo Hu; Ji-Yuan Sun; Yan-Yan Hu; Jun-Jun Ma

    2005-01-01

    AIM: To evaluate the anti-tumor effects and possible involvement of anti-tumor immunity of electrochemotherapy (ECT) employing electroporation and bleomycin in human colon cancer xenografts in nude mice, and to establish the experimental basis for clinical application of ECT.METHODS: Forty nude mice, inoculated subcutaneously human colon cancer cell line LoVo for 3 wk, were allocated randomly into four groups: B+E+ (ECT), B+E- (administration of bleomycin alone), B-E+ (administration of electric pulses alone), and B-E- (no treatment). Tumor volumes were measured daily. The animals were killed on the 7th d, the weights of xenografts were measured, and histologies of tumors were evaluated. Cytotoxicity of spleen natural killer (NK) and lymphokine-activated killer (LAK) cells was then assessed by lactic dehydrogenase release assay.RESULTS: The mean tumor volume of group B+E+ was statistically different from the other three groups after the treatment (F= 36.80, P<0.01). There was one case of complete response, seven cases of partial response (PR) in group B+E+, one case of PR in group B+E- and group B-E+ respectively, and no response was observed in group B-E-. The difference of response between group B+E+ and the other three groups was statistically significant (χ2 = 25.67, P<0.01). Histologically, extensive necrosis of tumor cells with considerable vascular damage and inflammatory cells infiltration were observed in group B+E+. There was no statistical difference between the cytotoxicity of NK and LAK cells in the four treatment groups.CONCLUSION: ECT significantly enhances the chemosensitivity and effects of chemotherapy in human colon cancer xenografts in nude mice, and could be a kind of novel treatment modality for human colon cancer.The generation of T-cell-dependent, tumor-specific immunity might be involved in the process of ECT.

  1. Possible stimulation of anti-tumor immunity using repeated cold stress: a hypothesis

    Directory of Open Access Journals (Sweden)

    Radoja Sasa

    2007-11-01

    Full Text Available Abstract Background The phenomenon of hormesis, whereby small amounts of seemingly harmful or stressful agents can be beneficial for the health and lifespan of laboratory animals has been reported in literature. In particular, there is accumulating evidence that daily brief cold stress can increase both numbers and activity of peripheral cytotoxic T lymphocytes and natural killer cells, the major effectors of adaptive and innate tumor immunity, respectively. This type of regimen (for 8 days has been shown to improve survival of mice infected with intracellular parasite Toxoplasma gondii, which would also be consistent with enhanced cell-mediated immunity. Presentation of the hypothesis This paper hypothesizes that brief cold-water stress repeated daily over many months could enhance anti-tumor immunity and improve survival rate of a non-lymphoid cancer. The possible mechanism of the non-specific stimulation of cellular immunity by repeated cold stress appears to involve transient activation of the sympathetic nervous system, hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid axes, as described in more detail in the text. Daily moderate cold hydrotherapy is known to reduce pain and does not appear to have noticeable adverse effects on normal test subjects, although some studies have shown that it can cause transient arrhythmias in patients with heart problems and can also inhibit humoral immunity. Sudden immersion in ice-cold water can cause transient pulmonary edema and increase permeability of the blood-brain barrier, thereby increasing mortality of neurovirulent infections. Testing the hypothesis The proposed procedure is an adapted cold swim (5–7 minutes at 20 degrees Celsius, includes gradual adaptation to be tested on a mouse tumor model. Mortality, tumor size, and measurements of cellular immunity (numbers and activity of peripheral CD8+ T lymphocytes and natural killer cells of the cold-exposed group would be compared to

  2. The Potential of Intralesional Rose Bengal to Stimulate T-Cell Mediated Anti-Tumor Responses

    OpenAIRE

    Maker, Ajay V; Prabhakar, Bellur; Pardiwala, Krunal

    2015-01-01

    Rose Bengal (RB) is a red synthetic dye that was initially used in the garment industry and has been used safely for decades as a corneal stain by ophthalmologists. Antineoplastic properties of RB have also been observed, though the mechanism of action remained to be elucidated. Recently, interest in RB as a therapeutic cancer treatment has increased due to significant anti-tumor responses with direct tumor injection in human clinical trials for metastatic melanoma. In these patients, there h...

  3. Cigarette smoke alters the invariant natural killer T cell function and may inhibit anti-tumor responses.

    LENUS (Irish Health Repository)

    Hogan, Andrew E

    2011-09-01

    Invariant natural killer T (iNKT) cells are a minor subset of human T cells which express the invariant T cell receptor Vα24 Jα18 and recognize glycolipids presented on CD1d. Invariant NKT cells are important immune regulators and can initiate anti-tumor responses through early potent cytokine production. Studies show that iNKT cells are defective in certain cancers. Cigarette smoke contains many carcinogens and is implicated directly and indirectly in many cancers. We investigated the effects of cigarette smoke on the circulating iNKT cell number and function. We found that the iNKT cell frequency is significantly reduced in cigarette smoking subjects. Invariant NKT cells exposed to cigarette smoke extract (CSE) showed significant defects in cytokine production and the ability to kill target cells. CSE inhibits the upregulation of CD107 but not CD69 or CD56 on iNKT cells. These findings suggest that CSE has a specific effect on iNKT cell anti-tumor responses, which may contribute to the role of smoking in the development of cancer.

  4. Regulatory T Cells in Tumor-Associated Tertiary Lymphoid Structures Suppress Anti-tumor T Cell Responses.

    Science.gov (United States)

    Joshi, Nikhil S; Akama-Garren, Elliot H; Lu, Yisi; Lee, Da-Yae; Chang, Gregory P; Li, Amy; DuPage, Michel; Tammela, Tuomas; Kerper, Natanya R; Farago, Anna F; Robbins, Rebecca; Crowley, Denise M; Bronson, Roderick T; Jacks, Tyler

    2015-09-15

    Infiltration of regulatory T (Treg) cells into many tumor types correlates with poor patient prognoses. However, mechanisms of intratumoral Treg cell function remain to be elucidated. We investigated Treg cell function in a genetically engineered mouse model of lung adenocarcinoma and found that Treg cells suppressed anti-tumor responses in tumor-associated tertiary lymphoid structures (TA-TLSs). TA-TLSs have been described in human lung cancers, but their function remains to be determined. TLSs in this model were spatially associated with >90% of tumors and facilitated interactions between T cells and tumor-antigen-presenting dendritic cells (DCs). Costimulatory ligand expression by DCs and T cell proliferation rates increased in TA-TLSs upon Treg cell depletion, leading to tumor destruction. Thus, we propose that Treg cells in TA-TLSs can inhibit endogenous immune responses against tumors, and targeting these cells might provide therapeutic benefit for cancer patients.

  5. Monocyte-derived dendritic cells are essential for CD8+ T cell activation and anti-tumor responses after local immunotherapy

    OpenAIRE

    Sabine eKuhn; Jianping eYang; F eRonchese

    2015-01-01

    Tumors harbor several populations of dendritic cells with the ability to prime tumor-specific T cells. However, these T cells mostly fail to differentiate into armed effectors and are unable to control tumor growth. We have previously shown that treatment with immunostimulatory agents at the tumor site can activate anti-tumor immune responses, and is associated with the appearance of a population of monocyte-derived dendritic cells in the tumor and tumor-draining lymph node. Here we use dendr...

  6. Size does not matter: commensal microorganisms forge tumor-promoting inflammation and anti-tumor immunity

    Science.gov (United States)

    Rutkowski, Melanie R.; Conejo-Garcia, Jose R.

    2015-01-01

    Recent studies have demonstrated that the commensal microbiota are indispensable for the maintenance of immune homeostasis, orchestration of immune responses against pathogens and most recently during cancer immunotherapy and malignant progression of extraintestinal tumors. Here we discuss the recent findings that a common genetic variation in TLR5 influences the progression and outcome of ovarian, sarcoma, and luminal breast tumors and the implications of these findings in light of recent publications describing the role of the commensal microbiota in control of the systemic immune system. PMID:25897427

  7. The Anti-tumor Immunity of Dendritic Cells Modified by IFN γ Gene on Mice Bearing Ascite Hepatoma Cell H22

    Institute of Scientific and Technical Information of China (English)

    Zi-You CUI; Hong-Yan YANG; You-Tian HUANG; Zhi-min ZHENG; Ming-Yao ZHAO; Zi-Ming DONG

    2005-01-01

    @@ 1 Introduction Dendritc cell (DC)-based cancer vaccines have shown to been effective both in clinical trials and in animal tumor models. Some clinical trials have been on the phase Ⅲ , but some problems are challenging now. The functions of DC from patient with malignant tumor were depressed by tumor-secreting cytokines such as IL-10. it is critical to find out some methods to improve DC differentiation maturation for priming naive T cells and initiating the specific anti-tumor immunity effectively. IFNγ is a pluripotent cytokine that can exert more the expressions of different molecules in various cells. Now, some data have shown that DCs can produce IFNγ and IFNγ can promote the maturation of DCs, which plays very important roles in promoting protective immune response as the same as IFNγ produced in NK and NKT cells. In our research,we transfected IFNγ gene into DCs in order to investigate the effect of IFNγ on DCs and monitor the anti-tumor response of the tumor bearing mice after vaccination by IFNγ-modified DCs.

  8. Immune responses of recombinant adenovirus-5 vector vaccine of human papillomavirus type 16 E6E7 and its anti-tumor effects in mice%表达人乳头瘤病毒16型E6E7重组腺病毒疫苗对小鼠的免疫和抗肿瘤效应

    Institute of Scientific and Technical Information of China (English)

    吴洁; 陈刚; 金素凤; 高孟; 庄昉成; 李剑波; 姜云水; 毛子安

    2014-01-01

    目的 评价HPV16 E6E7的复制缺陷型重组5型腺病毒(PK-HPV-ad5)治疗性疫苗对实验小鼠免疫应答和抗肿瘤的生物学效应.方法 使用基因重组技术构建PK-HPV-ad5疫苗,并通过小鼠免疫试验,检测小鼠总抗体和特异性IFNγ,同时将造模小鼠分成疫苗组和对照组,分别对其进行抑瘤试验、TC-1肿瘤细胞挑战试验和肿瘤切除后防复发试验.结果 HPV16 E6E7诱导的总抗体第12天的水平相对较高(1:400~1:600);3批次疫苗特异性IFNγ在第14天与对照组比较分别升高8.6、5.9和8.9倍,差异有统计学意义(t=15.721、6.967和14.342,P均<0.01).抑瘤试验表明疫苗剂量为107IU/只时小鼠肿瘤生长率为0,与对照组比较差异有统计学意义(确切概率法,P<0.01),3批次疫苗验证有效剂量为107IU/只时肿瘤抑制率可达80%(8/10)以上.TC-1肿瘤细胞挑战试验结果显示:小鼠先接种疫苗能引起特异性的免疫应答,并能保护90%(9/10)的小鼠免受TC-1肿瘤细胞的攻击;肿瘤切除后防止复发试验提示在注射相同剂量疫苗时,对104个/只和105个/只肿瘤细胞造模小鼠,第0、5天免疫组肿瘤复发数少于第5,8天免疫组(1/10,4/10 vs 8/10,7/10).结论 PK-HPV-ad5疫苗能诱导小鼠产生特异性的免疫应答,对抗肿瘤复发有治疗潜力.%Objective To evaluate the immune responses and anti-tumor effects of replication-deficient recombinant adenovirus-5 vector vaccine of human papillomavirus type 16 E6E7 as a theraputic vaccine (PK-HPV-ad5) in mouse models.Methods PK-HPV-ad5 vaccine was constructed by gene recombination technique.HPV16E6E7 total antibody and specific IFNγ of the vaccine were detected by mouse immune experiment.The model mice were divided into vaccine group and control group,and were used for anti-tumor test,TC-1 tumor cell challenge test and evaluation of tumor excision combined with vaccine to prevent tumor recurrence.Results HPV16 E6E7 total antibody increased to a

  9. Sex Differences in Response to Anti-Tumor Necrosis Factor Therapy in Early and Established Rheumatoid Arthritis -- Results from the DANBIO Registry

    DEFF Research Database (Denmark)

    Jawaheer, Damini; Olsen, Jørn; Hetland, Merete Lund

    2012-01-01

    To investigate sex differences in response to anti-tumor necrosis factor-a (TNF-a) therapy over time in early versus established rheumatoid arthritis (RA).......To investigate sex differences in response to anti-tumor necrosis factor-a (TNF-a) therapy over time in early versus established rheumatoid arthritis (RA)....

  10. Role of Tertiary Lymphoid Structures (TLS in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    Directory of Open Access Journals (Sweden)

    Erica M. Pimenta

    2014-04-01

    Full Text Available Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin® and rituximab (Rituxan® and the first approved cancer vaccine, Provenge® (sipuleucel-T, investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS within the tumor microenvironment may be used to enhance immunotherapy response.

  11. Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Erica M. [Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103 (United States); Barnes, Betsy J., E-mail: barnesbe@njms.rutgers.edu [Department of Biochemistry and Molecular Biology, Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103 (United States)

    2014-04-23

    Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin{sup ®}) and rituximab (Rituxan{sup ®})) and the first approved cancer vaccine, Provenge{sup ®} (sipuleucel-T), investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS) within the tumor microenvironment may be used to enhance immunotherapy response.

  12. Glimpse into the future: harnessing autophagy to promote anti-tumor immunity with the DRibbles vaccine.

    Science.gov (United States)

    Page, David B; Hulett, Tyler W; Hilton, Traci L; Hu, Hong-Ming; Urba, Walter J; Fox, Bernard A

    2016-01-01

    Because the benefits of immune checkpoint blockade may be restricted to tumors with pre-existing immune recognition, novel therapies that facilitate de novo immune activation are needed. DRibbles is a novel multi-valent vaccine that is created by disrupting degradation of intracellular proteins by the ubiquitin proteasome system. The DRibbles vaccine is comprised of autophagosome vesicles that are enriched with defective ribosomal products and short-lived proteins, known tumor-associated antigens, mediators of innate immunity, and surface markers that encourage phagocytosis and cross-presentation by antigen presenting cells. Here we summarize the rationale and preclinical development of DRibbles, translational evidence in support of DRibbles as a therapeutic strategy in humans, as well as recent developments and expected future directions of the DRibbles vaccine in the clinic. PMID:27190627

  13. Viral-mimicking protein nanoparticle vaccine for eliciting anti-tumor responses

    OpenAIRE

    Molino, NM; Neek, M; Tucker, JA; Nelson, EL; Wang, S-W

    2016-01-01

    The immune system is a powerful resource for the eradication of cancer, but to overcome the low immunogenicity of tumor cells, a sufficiently strong CD8(+) T cell-mediated adaptive immune response is required. Nanoparticulate biomaterials represent a potentially effective delivery system for cancer vaccines, as they can be designed to mimic viruses, which are potent inducers of cellular immunity. We have been exploring the non-viral pyruvate dehydrogenase E2 protein nanoparticle as a biomimet...

  14. Radiotherapy-induced anti-tumor immunity contributes to the therapeutic efficacy of irradiation and can be augmented by CTLA-4 blockade in a mouse model.

    Directory of Open Access Journals (Sweden)

    Yuya Yoshimoto

    Full Text Available PURPOSE: There is growing evidence that tumor-specific immune responses play an important role in anti-cancer therapy, including radiotherapy. Using mouse tumor models we demonstrate that irradiation-induced anti-tumor immunity is essential for the therapeutic efficacy of irradiation and can be augmented by modulation of cytotoxic T lymphocyte (CTL activity. METHODS AND MATERIALS: C57BL/6 mice, syngeneic EL4 lymphoma cells, and Lewis lung carcinoma (LL/C cells were used. Cells were injected into the right femurs of mice. Ten days after inoculation, tumors were treated with 30 Gy of local X-ray irradiation and their growth was subsequently measured. The effect of irradiation on tumor growth delay (TGD was defined as the time (in days for tumors to grow to 500 mm3 in the treated group minus that of the untreated group. Cytokine production and serum antibodies were measured by ELISA and flow cytometry. RESULTS: In the EL4 tumor model, tumors were locally controlled by X-ray irradiation and re-introduced EL4 cells were completely rejected. Mouse EL4-specific systemic immunity was confirmed by splenocyte cytokine production and detection of tumor-specific IgG1 antibodies. In the LL/C tumor model, X-ray irradiation also significantly delayed tumor growth (TGD: 15.4 days and prolonged median survival time (MST to 59 days (versus 28 days in the non-irradiated group. CD8(+ cell depletion using an anti-CD8 antibody significantly decreased the therapeutic efficacy of irradiation (TGD, 8.7 days; MST, 49 days. Next, we examined whether T cell modulation affected the efficacy of radiotherapy. An anti-CTLA-4 antibody significantly increased the anti-tumor activity of radiotherapy (TGD was prolonged from 13.1 to 19.5 days, while anti-FR4 and anti-GITR antibodies did not affect efficacy. CONCLUSIONS: Our results indicate that tumor-specific immune responses play an important role in the therapeutic efficacy of irradiation. Immunomodulation, including CTLA-4

  15. Can anti-tumor immunity help to explain “oncogene addiction”?

    OpenAIRE

    Restifo, Nicholas P

    2010-01-01

    “Oncogene addiction” refers to the process of tumor cell death that can occur after inactivation of a single oncogene. In this issue of Cancer Cell, Rakhra, et al. argue that complete tumor clearance after molecular targeted therapies requires a functioning immune system, pointing the way toward radically new combination therapies.

  16. Anti-Tumor and Immune Enhancing Activities of Rice Bran Gramisterol on Acute Myelogenous Leukemia.

    Directory of Open Access Journals (Sweden)

    Somsuda Somintara

    Full Text Available Acute myelogenous leukemia (AML is a cancer of the blood that most commonly affects human adults. The specific cause of AML is unclear, but it induces abnormality of white blood cells that grow rapidly and accumulate in bone marrow interfering with the production and functions of the normal blood cells. AML patients face poor prognosis and low quality of life during chemotherapy or transplantation of hematopoietic stem cells due to the progressive impairment of their immune system. The goal of this study is to find natural products that have the potential to delay growth or eliminate the abnormal leukemic cells but cause less harmful effect to the body's immune system.The unsaponified fraction of Riceberry rice bran (RBDS and the main pure compound, gramisterol, were studied for cytotoxicity and biological activities in WEHI-3 cells and in the leukemic mouse model induced by transplantation of WEHI-3 cells intraperitoneally. In the in vitro assay, RBDS and gramisterol exerted sub-G1 phase cell cycle arrest with a potent induction of apoptosis. Both of them effectively decreased cell cycle controlling proteins (cyclin D1 and cyclin E, suppressed cellular DNA synthesis and mitotic division, and reduced anti-apoptosis Bcl-2 protein, but increased apoptotic proteins (p53 and Bax and activated caspase-3 enzyme in the intrinsic cell death stimulation pathway. In leukemic mice, daily feeding of RBDS significantly increased the amount of immune function-related cells including CD3+, CD19+, and CD11b+, and elevated the serum levels of IFN-γ, TNF-α, IL-2, and IL-12β cytokines, but suppressed IL-10 level. At the tumor sites, CD11b+ cells were polarized and became active phagocytotic cells. Treatment of mice normal immune cells with gramisterol alone or a combination of gramisterol with cytokines released from RBDS-treated leukemic mice splenocytes culture synergistically increased pSTAT1 transcriptional factor that up-regulated the genes controlling

  17. Specific anti-tumor immune responses of dendritic cells pulsed with recombinant human rhHSP70 and freeze-thaw cellular lysates derived from breast cancer%rhHSP70联合冻融抗原修饰树突状细胞诱导的抗乳腺癌作用*

    Institute of Scientific and Technical Information of China (English)

    李斌; 陈鹏; 郑建云

    2013-01-01

    lysates derived from breast cancer can enhance growth expansion of lymphocytes. They may serve as an effective tumor antigen to stimulate the proliferation of specific CTLs, which are very effective in activating specific T-cell responses against breast cancer cells in vitro. The improved anti-tumor immunity response by DC-based vaccines may be related to the maturation of the DCs promoted by rhHSP70.

  18. Anti-tumor response with immunologically modified carbon nanotubes and phototherapy

    Science.gov (United States)

    Acquaviva, Joseph T.; Zhou, Feifan; Boarman, Ellen; Chen, Wei R.

    2013-02-01

    While successes of different cancer therapies have been achieved in various degrees a systemic immune response is needed to effectively treat late-stage, metastatic cancers, and to establish long-term tumor resistance in the patients. A novel method for combating metastatic cancers has been developed using immunologically modified carbon nanotubes in conjunction with phototherapy. Glycated chitosan (GC) is a potent immunological adjuvant capable of increasing host immune responses, including antigen presentation by activation of dendritic cells (DCs) and causing T cell proliferation. GC is also an effective surfactant for nanomaterials. By combining single-walled carbon nanotubes (SWNTs) and GC, immunologically modified carbon nanotubes (SWNT-GC) were constructed. The SWNT-GC suspension retains the enhanced light absorption properties in the near infrared (NIR) region and the ability to enter cells, which are characteristic of SWNTs. The SWNT-GC also retains the immunological properties of GC. Cellular SWNT-GC treatments increased macrophage activity, DC activation and T cell proliferation. When cellular SWNT-GC was irradiated with a laser of an appropriate wavelength, these immune activities could be enhanced. The combination of laser irradiation and SWNT-GC induced cellular toxicity in targeted tumor cells, leading to a systemic antitumor response. Immunologically modified carbon nanotubes in conjunction with phototherapy is a novel and promising method to produce a systemic immune response for the treatment of metastatic cancers.

  19. Poly (I:C)-DOTAP cationic nanoliposome containing multi-epitope HER2-derived peptide promotes vaccine-elicited anti-tumor immunity in a murine model.

    Science.gov (United States)

    Alipour Talesh, Ghazal; Ebrahimi, Zahra; Badiee, Ali; Mansourian, Mercedeh; Attar, Hossein; Arabi, Leila; Jalali, Seyed Amir; Jaafari, Mahmoud Reza

    2016-08-01

    In the current study we aimed at developing a vaccine delivery/adjuvant system to enhance anti-tumor immunity against the natural multi-epitope HER2/Neu-derived P5 peptide. Polyriboinosinic: polyribocytidylic acid [Poly (I:C)] is a strong immunoadjuvant able to enhance specific antitumor immunity induced by peptide-based vaccines. Nevertheless, delivering the peptide and adjuvant intracellularly into their target site remains a challenging issue. We hypothesized this barrier could be overcome through the use of a cationic nanoliposome carrier system which can carry and protect the antigen and adjuvant in the extracellular environment and augment the induction of antitumor immunity. P5 was encapsulated in cationic nanoliposomes composed of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)-Cholesterol either alone or complexed with Poly (I:C). Immunocompetent BALB/c mice were immunized with the formulations 3 times in two-week intervals and the efficiency and type of immune response were then evaluated both in vitro and in vivo. The groups immunized with Lip-P5+PIC (DOTAP-Cholestrol-P5+Poly (I:C)) and Lip+PIC (DOTAP-Cholestrol+Poly (I:C)) enhanced the release of Interferon (IFN)-γ in comparison with other groups. Flow cytometry analysis revealed that Lip-P5+PIC formulation induced the highest level of IFN-γ in CD8(+) lymphocytes. Lip-P5+PIC, Lip+PIC and Lip-P5 (DOTAP-Cholestrol-P5) provided some extent of protection in terms of tumor regression in TUBO tumor mice model during the first 65days post tumor challenge but at the end only the tumors of mice immunized with Lip-P5+PIC were significantly smaller than all other groups. Furthermore, tumors of mice receiving Lip-P5+PIC grew at a significantly slower rate throughout the observation period. Our results showed that the combination of Poly (I:C) and DOTAP with the tumor antigen and without applying additional T-helper epitope induced strong antitumor responses. The observations presented here are of great interest

  20. Combining BRAF inhibitor and anti PD-L1 antibody dramatically improves tumor regression and anti tumor immunity in an immunocompetent murine model of anaplastic thyroid cancer.

    Science.gov (United States)

    Brauner, Eran; Gunda, Viswanath; Vanden Borre, Pierre; Zurakowski, David; Kim, Yon Seon; Dennett, Kate Virginia; Amin, Salma; Freeman, Gordon James; Parangi, Sareh

    2016-03-29

    The interaction of programmed cell death-1 and its ligand is widely studied in cancer. Monoclonal antibodies blocking these molecules have had great success but little is known about them in thyroid cancer. We investigated the role of PD-L1 in thyroid cancer with respect to BRAF mutation and MAP kinase pathway activity and the effect of anti PD-L1 antibody therapy on tumor regression and intra-tumoral immune response alone or in combination with BRAF inhibitor (BRAFi). BRAFV600E cells showed significantly higher baseline expression of PD-L1 at mRNA and protein levels compared to BRAFWT cells. MEK inhibitor treatment resulted in a decrease of PD-L1 expression across all cell lines. BRAFi treatment decreased PD-L1 expression in BRAFV600E cells, but paradoxically increased its expression in BRAFWT cells. BRAFV600E mutated patients samples had a higher level of PD-L1 mRNA compared to BRAFWT (p=0.015). Immunocompetent mice (B6129SF1/J) implanted with syngeneic 3747 BRAFV600E/WT P53-/- murine tumor cells were randomized to control, PLX4720, anti PD-L1 antibody and their combination. In this model of aggressive thyroid cancer, control tumor volume reached 782.3±174.6mm3 at two weeks. The combination dramatically reduced tumor volume to 147.3±60.8, compared to PLX4720 (439.3±188.4 mm3, P=0.023) or PD-L1 antibody (716.7±62.1, Panti PD-L1 treatment potentiates the effect of BRAFi on tumor regression and intensifies anti tumor immune response in an immunocompetent model of ATC. Clinical trials of this therapeutic combination may be of benefit in patients with ATC.

  1. Anti-tumor Immunity Elicited by Adenovirus Encoding AdhTrp2 or AdmTrp2 without Vitiligo

    Institute of Scientific and Technical Information of China (English)

    Hongju LIU; Xianzhi XIONG; Zuoya LI; Jianbao XIN; Xiaonan TAO; Yu HU

    2008-01-01

    To compare the difference in tumor immunity and autoimmunity elicited by adenovirus (Ad) encoding human or murine tyrosinase-related protein 2 (AdhTRP2 or AdmTRP2), and to find the most effective way to induce immunity by AdhTRP2 or AdmTRP2, C57BL/6 mice were im-munized with AdhTRP2 or AdmTRP2 intramuscularly at different doses of 105, 106, 107 and 108 separately (10 mice for each dose). Two weeks after the immunization, in vivo CTL assay and in- tracellular staining (ICS) of IFN-γ were carried out to analyze the dose-effect relationship. Tumor growth and vitiligo (as an sign of autoimmunity) were observed until 3 months after challenge with 105 B I6F10 tumor cells. The results showed that Ad encoding AdmTrp2 induced weak tumor im- mune response. Similar immunization with AdhTrp-2 elicited stronger protective immunity. CTL activity and IFN-γ-produced CD8+T cells were directly proportional to dose of AdhTrp2 or AdmTrp2. Moreover, AdhTrp2 group showed tumor rejection in 100% of challenged mice till the end of 3rd month while 60% of mice immunized with AdmTrp2 were protected against tumor. In the whole process of this experiment, no vitiligo was observed in mice immunized either with AdhTrp2 or AdmTrp2. It is concluded that anti-melanoma responses induced by genetic vaccina- tion expressing xenoantigens breaks immune tolerance effectively and is able to elicit strong anti-gen-specific cytotoxic T cell response without vitiligo.

  2. Tumor-associated antigens identified by mRNA expression profiling induce protective anti-tumor immunity

    DEFF Research Database (Denmark)

    Mathiassen, Søren; Lauemøller, S L; Ruhwald, Morten;

    2001-01-01

    Defined tumor-associated antigens (TAA) are attractive targets for anti-tumor immunotherapy. Here, we describe a novel genome-wide approach to identify multiple TAA from any given tumor. A panel of transplantable thymomas was established from an inbred p53-/- mouse strain. The resulting tumors were...... imprints, which may be used to identify patient-specific arrays of TAA. This may enable a multi-epitope based immunotherapy with improved prospects of clinical tumor rejection....

  3. Interleukin-6 Induced "Acute" Phenotypic Microenvironment Promotes Th1 Anti-Tumor Immunity in Cryo-Thermal Therapy Revealed By Shotgun and Parallel Reaction Monitoring Proteomics.

    Science.gov (United States)

    Xue, Ting; Liu, Ping; Zhou, Yong; Liu, Kun; Yang, Li; Moritz, Robert L; Yan, Wei; Xu, Lisa X

    2016-01-01

    Cryo-thermal therapy has been emerged as a promising novel therapeutic strategy for advanced breast cancer, triggering higher incidence of tumor regression and enhanced remission of metastasis than routine treatments. To better understand its anti-tumor mechanism, we utilized a spontaneous metastatic mouse model and quantitative proteomics to compare N-glycoproteome changes in 94 serum samples with and without treatment. We quantified 231 highly confident N-glycosylated proteins using iTRAQ shotgun proteomics. Among them, 53 showed significantly discriminated regulatory patterns over the time course, in which the acute phase response emerged as the most enhanced pathway. The anti-tumor feature of the acute response was further investigated using parallel reaction monitoring target proteomics and flow cytometry on 23 of the 53 significant proteins. We found that cryo-thermal therapy reset the tumor chronic inflammation to an "acute" phenotype, with up-regulation of acute phase proteins including IL-6 as a key regulator. The IL-6 mediated "acute" phenotype transformed IL-4 and Treg-promoting ICOSL expression to Th1-promoting IFN-γ and IL-12 production, augmented complement system activation and CD86(+)MHCII(+) dendritic cells maturation and enhanced the proliferation of Th1 memory cells. In addition, we found an increased production of tumor progression and metastatic inhibitory proteins under such "acute" environment, favoring the anti-metastatic effect. Moreover, cryo-thermal on tumors induced the strongest "acute" response compared to cryo/hyperthermia alone or cryo-thermal on healthy tissues, accompanying by the most pronounced anti-tumor immunological effect. In summary, we demonstrated that cryo-thermal therapy induced, IL-6 mediated "acute" microenvironment shifted the tumor chronic microenvironment from Th2 immunosuppressive and pro-tumorigenic to Th1 immunostimulatory and tumoricidal state. Moreover, the magnitude of "acute" and "danger" signals play a key

  4. The Anti-tumor Immunity of Dendritic Cells Modified by IFN γ Gene on Mice Bearing Ascite Hepatoma Cell H22

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 Introduction Dendritc cell (DC)-based cancer vaccines have shown to been effective both in clinical trials and in animal tumor models. Some clinical trials have been on the phase Ⅲ, but some problems are challenging now. The functions of DC from patient with malignant tumor were depressed by tumor-secreting cytokines such as IL-10. it is critical to find out some methods to improve DC differentiation maturation for priming naive T cells and initiating the specific anti-tumor immunity effectively. IFNγ is ...

  5. Predictors of response to anti-tumor necrosis factor therapy in ulcerative colitis

    Institute of Scientific and Technical Information of China (English)

    Evanthia; Zampeli; Michalis; Gizis; Spyros; I; Siakavellas; Giorgos; Bamias

    2014-01-01

    Ulcerative colitis(UC) is an immune-mediated, chronic inflammatory disease of the large intestine. Its course is characterized by flares of acute inflammation and periods of low-grade chronic inflammatory activity or remission. Monoclonal antibodies against tumor necrosis factor(anti-TNF) are part of the therapeutic armamentarium and are used in cases of moderate to severe UC that is refractory to conventional treatment with corticosteroids and/or immunosuppressants. Therapeutic response to these agents is not uniform and a large percentage of patients either fail to improve(primary non-response) or lose response after a period of improvement(secondary non-response/loss of response). In addition, the use of anti-TNF agents has been related to uncommon but potentially serious adverse effects that preclude their administration or lead to their discontinuation. Finally, use of these medications is associated with a considerable cost for the health system. The identification of parameters thatmay predict response to anti-TNF drugs in UC would help to better select for patients with a high probability to respond and minimize risk and costs for those who will not respond. Analysis of the major clinical trials and the accumulated experience with the use of anti-TNF drugs in UC has resulted to the report of such prognostic factors. Included are clinical and epidemiological characteristics, laboratory markers, endoscopic indicators and molecular(immunological/genetic) signatures. Such predictive parameters of long-term outcomes may either be present at the commencement of treatment or determined during the early period of therapy. Validation of these prognostic markers in large cohorts of patients with variable characteristics will facilitate their introduction into clinical practice and the best selection of UC patients who will benefit from anti-TNF therapy.

  6. Combining BRAF inhibitor and anti PD-L1 antibody dramatically improves tumor regression and anti tumor immunity in an immunocompetent murine model of anaplastic thyroid cancer

    Science.gov (United States)

    Borre, Pierre Vanden; Zurakowski, David; Kim, Yon Seon; Dennett, Kate Virginia; Amin, Salma; Freeman, Gordon James; Parangi, Sareh

    2016-01-01

    The interaction of programmed cell death-1 and its ligand is widely studied in cancer. Monoclonal antibodies blocking these molecules have had great success but little is known about them in thyroid cancer. We investigated the role of PD-L1 in thyroid cancer with respect to BRAF mutation and MAP kinase pathway activity and the effect of anti PD-L1 antibody therapy on tumor regression and intra-tumoral immune response alone or in combination with BRAF inhibitor (BRAFi). BRAFV600E cells showed significantly higher baseline expression of PD-L1 at mRNA and protein levels compared to BRAFWT cells. MEK inhibitor treatment resulted in a decrease of PD-L1 expression across all cell lines. BRAFi treatment decreased PD-L1 expression in BRAFV600E cells, but paradoxically increased its expression in BRAFWT cells. BRAFV600E mutated patients samples had a higher level of PD-L1 mRNA compared to BRAFWT (p=0.015). Immunocompetent mice (B6129SF1/J) implanted with syngeneic 3747 BRAFV600E/WT P53−/− murine tumor cells were randomized to control, PLX4720, anti PD-L1 antibody and their combination. In this model of aggressive thyroid cancer, control tumor volume reached 782.3±174.6mm3 at two weeks. The combination dramatically reduced tumor volume to 147.3±60.8, compared to PLX4720 (439.3±188.4 mm3, P=0.023) or PD-L1 antibody (716.7±62.1, P<0.001) alone. Immunohistochemistry analysis revealed intense CD8+ CTL infiltration and cytotoxicity and favorable CD8+:Treg ratio compared to each individual treatment. Our results show anti PD-L1 treatment potentiates the effect of BRAFi on tumor regression and intensifies anti tumor immune response in an immunocompetent model of ATC. Clinical trials of this therapeutic combination may be of benefit in patients with ATC. PMID:26943572

  7. Tumor-associated antigens identified by mRNA expression profiling induce protective anti-tumor immunity

    DEFF Research Database (Denmark)

    Mathiassen, S; Lauemøller, S L; Ruhwald, M;

    2001-01-01

    to identify TAA, mice were immunized with mixtures of peptides representing putative cytotoxic T cell epitopes derived from one of the gene products. Indeed, such immunized mice were partially protected against subsequent tumor challenge. Despite being immunized with bona fide self antigens, no...

  8. Membrane-bound p35 Subunit of IL-12 on Tumor Cells is Functionally Equivalent to Membrane-bound Heterodimeric Single Chain IL-12 for Induction of Anti-tumor Immunity

    Science.gov (United States)

    Kim, Hyun-Jin; Park, Sang Min

    2016-01-01

    In this study, we compared two different tumor cell vaccines for their induction of anti-tumor immunity; one was a tumor cell clone expressing a membrane-bound form of IL-12 p35 subunit (mbIL-12 p35 tumor clone), and the other was a tumor clone expressing heterodimeric IL-12 as a single chain (mb-scIL-12 tumor clone). The stimulatory effect of mb-scIL-12 on the proliferation of ConA-activated splenocytes was higher than that of mbIL-12 p35 in vitro. However, the stimulatory effect of mbIL-12 p35 was equivalent to that of recombinant soluble IL-12 (3 ng/ml). Interestingly, both tumor clones (mbIL-12 p35 and mb-scIL-12) showed similar tumorigenicity and induction of systemic anti-tumor immunity in vivo, suggesting that tumor cell expression of the membrane-bound p35 subunit is sufficient to induce anti-tumor immunity in our tumor vaccine model.

  9. Pyrvinium targets the unfolded protein response to hypoglycemia and its anti-tumor activity is enhanced by combination therapy.

    Directory of Open Access Journals (Sweden)

    De-Hua Yu

    Full Text Available We identified pyrvinium pamoate, an old anthelminthic medicine, which preferentially inhibits anchorage-independent growth of cancer cells over anchorage-dependent growth (approximately 10 fold. It was also reported by others to have anti-tumor activity in vivo and selective toxicity against cancer cells under glucose starvation in vitro, but with unknown mechanism. Here, we provide evidence that pyrvinium suppresses the transcriptional activation of GRP78 and GRP94 induced by glucose deprivation or 2-deoxyglucose (2DG, a glycolysis inhibitor, but not by tunicamycin or A23187. Other UPR pathways induced by glucose starvation, e.g. XBP-1, ATF4, were also found suppressed by pyrvinium. Constitutive expression of GRP78 via transgene partially protected cells from pyrvinium induced cell death under glucose starvation, suggesting that suppression of the UPR is involved in pyrvinium mediated cytotoxicity under glucose starvation. Xenograft experiments showed rather marginal overall anti-tumor activity for pyrvinium as a monotherapy. However, the combination of pyrvinium and Doxorubicin demonstrated significantly enhanced efficacy in vivo, supporting a mechanistic treatment concept based on tumor hypoglycemia and UPR.

  10. Reprogramming anti-tumor immunity

    OpenAIRE

    Crompton, Joseph G.; Clever, David; Vizcardo, Raul; Rao, Mahendra; Restifo, Nicholas P

    2014-01-01

    Regenerative medicine holds great promise in replacing tissues and organs lost to degenerative disease and injury. Applying principles of cellular reprogramming for the treatment of cancer, however, are not well established. Here we present an overview of cell-based reprogramming techniques (i.e. lineage reprogramming and stimulus-triggered acquisition of pluripotency) used in regenerative medicine, and within this context, envision how the scope of regenerative medicine may be expanded to tr...

  11. The Effect of Radiation on the Immune Response to Cancers

    Directory of Open Access Journals (Sweden)

    Bonggoo Park

    2014-01-01

    Full Text Available In cancer patients undergoing radiation therapy, the beneficial effects of radiation can extend beyond direct cytotoxicity to tumor cells. Delivery of localized radiation to tumors often leads to systemic responses at distant sites, a phenomenon known as the abscopal effect which has been attributed to the induction and enhancement of the endogenous anti-tumor innate and adaptive immune response. The mechanisms surrounding the abscopal effect are diverse and include trafficking of lymphocytes into the tumor microenvironment, enhanced tumor recognition and killing via up-regulation of tumor antigens and antigen presenting machinery and, induction of positive immunomodulatory pathways. Here, we discuss potential mechanisms of radiation-induced enhancement of the anti-tumor response through its effect on the host immune system and explore potential combinational immune-based strategies such as adoptive cellular therapy using ex vivo expanded NK and T cells as a means of delivering a potent effector population in the context of radiation-enhanced anti-tumor immune environment.

  12. Interleukin-6 Induced “Acute” Phenotypic Microenvironment Promotes Th1 Anti-Tumor Immunity in Cryo-Thermal Therapy Revealed By Shotgun and Parallel Reaction Monitoring Proteomics

    OpenAIRE

    Xue, Ting; Liu, Ping; Zhou, Yong; Liu, Kun; Yang, Li; Moritz, Robert L.; Yan, Wei; Xu, Lisa X.

    2016-01-01

    Cryo-thermal therapy has been emerged as a promising novel therapeutic strategy for advanced breast cancer, triggering higher incidence of tumor regression and enhanced remission of metastasis than routine treatments. To better understand its anti-tumor mechanism, we utilized a spontaneous metastatic mouse model and quantitative proteomics to compare N-glycoproteome changes in 94 serum samples with and without treatment. We quantified 231 highly confident N-glycosylated proteins using iTRAQ s...

  13. H22 tumor cell lysate plus adjuvants can effectively induce anti-tumor immunity%佐剂增强的肿瘤细胞裂解物疫苗抗小鼠H22肝癌作用

    Institute of Scientific and Technical Information of China (English)

    刘彬; 邢芸; 张秀华; 王泽宇; 路蕾; 葛驰宇; 张龙; 刘景晶; 曹荣月

    2012-01-01

    Whole cell lysate of mouse hepatoma ( H22 ) was prepared and processed to the whole tumor cell vaccine H22-DT-M2-OK432 ( abbreviated as HDTMOK ) by chemical coupling a mixture of DT and microbial HSP70 peptide epitope 407-426 and addition of OK432 as antigen. According to the results of therapeutic immune, the immune response stimulated by HDTMOK had effectively inhibited the growth of H22. Compared with that of the PBS group, the average weight and size of the tumor had both significantly reduced ( P < 0. 05 ). In order to enhance the anti-tumor effect of the vaccines, immunostimulating complex ( ISCOM ) were prepared on the basis of HDTMOK. Therapeutic immune results showed that the mean weight and size of excised tumors significantly reduced compared with that of the PBS group ( P < 0. 01 ). ISCOM also effectively retarded the angiogenesis of intradermal tumor model ( P < 0. 01 ). Meanwhile, the anti-tumor effect was also strengthened in comparison with HDTMOK ( P <0. 05 ).%以鼠源肝癌H22全细胞裂解物为抗原,通过化学偶联白喉毒素(DT)和串联重复的T 辅助表位mHSP70407-426肽段,混合OK432(链球菌A群)制成肿瘤全细胞疫苗H22-DT-M2-OK432(HDTMOK).治疗性免疫结果显示,疫苗激发的免疫应答对H22肿瘤起到了有效的抑制作用.为进一步提高该疫苗的抗肿瘤效果,用偶联的疫苗制备免疫刺激复合物(ISCOM),并验证其抑瘤效果.治疗性免疫结果显示,与PBS组相比,ISCOM疫苗组平均瘤重和瘤体积显著降低(P<0.01),同时有效地抑制了小鼠皮内肿瘤模型中的血管新生(P<0.01); ELISA法从血清中检测到高滴度的抗体.且与HDTMOK疫苗相比,ISCOM疫苗抑瘤作用提升显著(P<0.05).HDTMOK能有效抑制小鼠肝癌实体瘤生长,佐剂配伍后的疫苗对H22的抑制更为显著,能够有效提升肿瘤全细胞疫苗的抗肿瘤能力.

  14. TRAF1/C5 but Not PTPRC Variants Are Potential Predictors of Rheumatoid Arthritis Response to Anti-Tumor Necrosis Factor Therapy

    Directory of Open Access Journals (Sweden)

    Helena Canhão

    2015-01-01

    Full Text Available Background. The aim of our work was to replicate, in a Southern European population, the association reported in Northern populations between PTPRC locus and response to anti-tumor necrosis factor (anti-TNF treatment in rheumatoid arthritis (RA. We also looked at associations between five RA risk alleles and treatment response. Methods. We evaluated associations between anti-TNF treatment responses assessed by DAS28 change and by EULAR response at six months in 383 Portuguese patients. Univariate and multivariate linear and logistic regression analyses were performed. In a second step to confirm our findings, we pooled our population with 265 Spanish patients. Results. No association was found between PTPRC rs10919563 allele and anti-TNF treatment response, neither in Portuguese modeling for several clinical variables nor in the overall population combining Portuguese and Spanish patients. The minor allele for RA susceptibility, rs3761847 SNP in TRAF1/C5 region, was associated with a poor response in linear and logistic univariate and multivariate regression analyses. No association was observed with the other allellic variants. Results were confirmed in the pooled analysis. Conclusion. This study did not replicate the association between PTPRC and the response to anti-TNF treatment in our Southern European population. We found that TRAF1/C5 risk RA variants potentially influence anti-TNF treatment response.

  15. Adoptive transfer of Tc1 or Tc17 cells elicits anti-tumor immunity against established melanoma through distinct mechanisms1

    OpenAIRE

    Yu, Yu; Cho, Hyun-II; Wang, Dapeng; Kaosaard, Kane; Anasetti, Claudio; Celis, Esteban; Yu, Xue-Zhong

    2013-01-01

    Adoptive cell transfer (ACT) of ex vivo activated autologous tumor-reactive T cells is currently one of the most promising approaches for cancer immunotherapy. Recent studies provided some evidence that Th17/Tc17 cells may exhibit potent anti-tumor activity, but the specific mechanisms have not been completely defined. In the present study, we used a murine melanoma lung-metastasis model and tested the therapeutic effects of gp100-specific polarized Tc1 or Tc17 cells combined with autologous ...

  16. Interleukin-7 Modulates Anti-Tumor CD8+ T Cell Responses via Its Action on Host Cells

    Science.gov (United States)

    Deiser, Katrin; Stoycheva, Diana; Bank, Ute; Blankenstein, Thomas; Schüler, Thomas

    2016-01-01

    The adoptive transfer of antigen-specific CD8+ T cells is a promising approach for the treatment of chronic viral and malignant diseases. In order to improve adoptive T cell therapy (ATT) of cancer, recent strategies aim at the antibody-based blockade of immunosuppressive signaling pathways in CD8+ T cells. Alternatively, adjuvant effects of immunostimulatory cytokines might be exploited to improve therapeutic CD8+ T cell responses. For example, Interleukin-7 (IL-7) is a potent growth, activation and survival factor for CD8+ T cells that can be used to improve virus- and tumor-specific CD8+ T cell responses. Although direct IL-7 effects on CD8+ T cells were studied extensively in numerous models, the contribution of IL-7 receptor-competent (IL-7R+) host cells remained unclear. In the current study we provide evidence that CD8+ T cell-mediated tumor rejection in response to recombinant IL-7 (rIL-7) therapy is strictly dependent on IL-7R+ host cells. On the contrary, CD8+ T cell expansion is independent of host IL-7R expression. If, however, rIL-7 therapy and peptide vaccination are combined, host IL-7R signaling is crucial for CD8+ T cell expansion. Unexpectedly, maximum CD8+ T cell expansion relies mainly on IL-7R signaling in non-hematopoietic host cells, similar to the massive accumulation of dendritic cells and granulocytes. In summary, we provide evidence that IL-7R+ host cells are major targets of rIL-7 that modulate therapeutic CD8+ T cell responses and the outcome of rIL-7-assisted ATT. This knowledge may have important implications for the design and optimization of clinical ATT protocols. PMID:27447484

  17. Interleukin-7 Modulates Anti-Tumor CD8+ T Cell Responses via Its Action on Host Cells.

    Directory of Open Access Journals (Sweden)

    Katrin Deiser

    Full Text Available The adoptive transfer of antigen-specific CD8+ T cells is a promising approach for the treatment of chronic viral and malignant diseases. In order to improve adoptive T cell therapy (ATT of cancer, recent strategies aim at the antibody-based blockade of immunosuppressive signaling pathways in CD8+ T cells. Alternatively, adjuvant effects of immunostimulatory cytokines might be exploited to improve therapeutic CD8+ T cell responses. For example, Interleukin-7 (IL-7 is a potent growth, activation and survival factor for CD8+ T cells that can be used to improve virus- and tumor-specific CD8+ T cell responses. Although direct IL-7 effects on CD8+ T cells were studied extensively in numerous models, the contribution of IL-7 receptor-competent (IL-7R+ host cells remained unclear. In the current study we provide evidence that CD8+ T cell-mediated tumor rejection in response to recombinant IL-7 (rIL-7 therapy is strictly dependent on IL-7R+ host cells. On the contrary, CD8+ T cell expansion is independent of host IL-7R expression. If, however, rIL-7 therapy and peptide vaccination are combined, host IL-7R signaling is crucial for CD8+ T cell expansion. Unexpectedly, maximum CD8+ T cell expansion relies mainly on IL-7R signaling in non-hematopoietic host cells, similar to the massive accumulation of dendritic cells and granulocytes. In summary, we provide evidence that IL-7R+ host cells are major targets of rIL-7 that modulate therapeutic CD8+ T cell responses and the outcome of rIL-7-assisted ATT. This knowledge may have important implications for the design and optimization of clinical ATT protocols.

  18. Interleukin-7 Modulates Anti-Tumor CD8+ T Cell Responses via Its Action on Host Cells.

    Science.gov (United States)

    Deiser, Katrin; Stoycheva, Diana; Bank, Ute; Blankenstein, Thomas; Schüler, Thomas

    2016-01-01

    The adoptive transfer of antigen-specific CD8+ T cells is a promising approach for the treatment of chronic viral and malignant diseases. In order to improve adoptive T cell therapy (ATT) of cancer, recent strategies aim at the antibody-based blockade of immunosuppressive signaling pathways in CD8+ T cells. Alternatively, adjuvant effects of immunostimulatory cytokines might be exploited to improve therapeutic CD8+ T cell responses. For example, Interleukin-7 (IL-7) is a potent growth, activation and survival factor for CD8+ T cells that can be used to improve virus- and tumor-specific CD8+ T cell responses. Although direct IL-7 effects on CD8+ T cells were studied extensively in numerous models, the contribution of IL-7 receptor-competent (IL-7R+) host cells remained unclear. In the current study we provide evidence that CD8+ T cell-mediated tumor rejection in response to recombinant IL-7 (rIL-7) therapy is strictly dependent on IL-7R+ host cells. On the contrary, CD8+ T cell expansion is independent of host IL-7R expression. If, however, rIL-7 therapy and peptide vaccination are combined, host IL-7R signaling is crucial for CD8+ T cell expansion. Unexpectedly, maximum CD8+ T cell expansion relies mainly on IL-7R signaling in non-hematopoietic host cells, similar to the massive accumulation of dendritic cells and granulocytes. In summary, we provide evidence that IL-7R+ host cells are major targets of rIL-7 that modulate therapeutic CD8+ T cell responses and the outcome of rIL-7-assisted ATT. This knowledge may have important implications for the design and optimization of clinical ATT protocols.

  19. Randomized, placebo-controlled trial of the anti-tumor necrosis factor antibody fragment afelimomab in hyperinflammatory response during severe sepsis : The RAMSES Study

    NARCIS (Netherlands)

    Reinhart, K; Menges, T; Gardlund, B; Zwaveling, JH; Smithes, M; Vincent, JL; Tellado, JM; Salgado-Remigio, A; Zimlichman, R; Withington, S; Tschaikowsky, K; Brase, R; Damas, P; Kupper, H; Kempeni, J; Eiselstein, J; Kaul, M

    2001-01-01

    Objective: This study investigated whether treatment with the anti-tumor necrosis factor-or monoclonal antibody afelimomab would improve survival in septic patients with serum interleukin (IL)-6 concentrations of >1000 pg/ml, Design: Multicenter, double-blind, randomized, placebo-controlled study. S

  20. Neem leaf glycoprotein promotes dual generation of central and effector memory CD8(+) T cells against sarcoma antigen vaccine to induce protective anti-tumor immunity.

    Science.gov (United States)

    Ghosh, Sarbari; Sarkar, Madhurima; Ghosh, Tithi; Guha, Ipsita; Bhuniya, Avishek; Saha, Akata; Dasgupta, Shayani; Barik, Subhasis; Bose, Anamika; Baral, Rathindranath

    2016-03-01

    We have previously shown that Neem Leaf Glycoprotein (NLGP) mediates sustained tumor protection by activating host immune response. Now we report that adjuvant help from NLGP predominantly generates CD44(+)CD62L(high)CCR7(high) central memory (TCM; in lymph node) and CD44(+)CD62L(low)CCR7(low) effector memory (TEM; in spleen) CD8(+) T cells of Swiss mice after vaccination with sarcoma antigen (SarAg). Generated TCM and TEM participated either to replenish memory cell pool for sustained disease free states or in rapid tumor eradication respectively. TCM generated after SarAg+NLGP vaccination underwent significant proliferation and IL-2 secretion following SarAg re-stimulation. Furthermore, SarAg+NLGP vaccination helps in greater survival of the memory precursor effector cells at the peak of the effector response and their maintenance as mature memory cells, in comparison to single modality treatment. Such response is corroborated with the reduced phosphorylation of FOXO in the cytosol and increased KLF2 in the nucleus associated with enhanced CD62L, CCR7 expression of lymph node-resident CD8(+) T cells. However, spleen-resident CD8(+) T memory cells show superior efficacy for immediate memory-to-effector cell conversion. The data support in all aspects that SarAg+NLGP demonstrate superiority than SarAg vaccination alone that benefits the host by rapid effector functions whenever required, whereas, central-memory cells are thought to replenish the memory cell pool for ultimate sustained disease free survival till 60 days following post-vaccination tumor inoculation.

  1. Sequential immune responses: The weapons of immunity

    OpenAIRE

    Mills, Charles; Ley, Klaus; Buchmann, Kurt; Canton, Jonathan

    2015-01-01

    Sequential immune responses (SIR) is a new model that describes what ‘immunity’ means in higher animals. Existing models, such as self/nonself discrimination or danger, focus on how immune responses are initiated. However, initiation is not protection. SIR describes the actual immune responses that provide protection. SIR resulted from a comprehensive analysis of the evolution of immune systems that revealed that several very different types of host innate responses occur (and at different te...

  2. Progress in anti-tumor immune mechanisms and treatment strategy%肿瘤免疫逃逸和免疫抑制的机制和免疫治疗策略的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘权兴; 戴纪刚

    2014-01-01

    Immunotherapy is an important auxiliary anti-tumor treatment.It has important significance for treatment of early stage tumors by activating antitumor immune system effectively.Instead of novel checkpoint-blocking antibodies,recent insight into innate immune system may further improve cancer immunotherapy strategy and help to overcome the limitations of conventional strategies.A major hurdle for tumor immunotherapy is that the majority of tumor cells are located in an immunosuppressive tumor environment.This paper reviews the novel immunotherapeutic approaches for targeting established cancers.%免疫治疗是抗肿瘤治疗的一项重要的辅助治疗手段.有效的激活自身抗肿瘤免疫系统对早期肿瘤的治疗有重要意义.与传统的应用靶点特异性抗体不同,研究者更倾向于对肿瘤组织内部的免疫应答过程进行深入研究,从而期望制定出更有效的肿瘤免疫治疗方案.肿瘤细胞处于不利于诱导抗肿瘤免疫应答的微环境中是肿瘤免疫治疗面临的主要困难之一.

  3. Anti-tumor effects in head and neck cancer in response to toll-like receptor activation, checkpoint inhibition, and chemotherapy

    OpenAIRE

    Zhang, Shannon Shueyin

    2016-01-01

    Head and neck cancer (HNC) affects approximately 600,000 individuals annually and occurs when squamous cells lining the oral cavity, nasal cavity, and throat become cancerous. Certain problems are associated with current therapies. Surgery can lead to a lower quality of life due to functional and cosmetic disturbances while chemotherapy and radiation have high toxicity levels. In addition, chemotherapy has low response rates and high recurrence rates. Thus, it is necessary to utilize immune-d...

  4. In vitro induction of specific anti-tumoral immunity against laryngeal carcinoma by using human interleukin-12gene-transfected dendritic cells

    Institute of Scientific and Technical Information of China (English)

    LIANG Wen; WANG Xue-feng

    2011-01-01

    Background Objective evaluation of the antitumor effect of interleukin-12 (IL-12) gene-transfected dendritic cell (DC)vaccine on laryngeal carcinoma requires in vivo and in vitro tests. The aim of this study was to investigate the function of IL-12 gene transfected DC at initiating specific immune response to laryngeal carcinoma in vitro.Methods Recombinant adenovirus with IL-12 gene was constructed. DCs were isolated from the peripheral blood of patients with laryngeal carcinoma, pulsed with tumor lysate of laryngeal carcinoma cells (DC+Ag), and transfected with IL-12 (DC-IL-12+Ag). The cells pheotypes including CD83, CD86 and HLA-DR on surface of DCs were assayed by flow cytometry (FCM). The concentration of IL-12 in culture supernatant of DCs and interferon γ (IFN-γ) in culture supernatant of T cells cocultured with DCs were quantified by ELISA. Methyl thiazolys tetrazolium (MTT) was used to evaluate proliferation of autologous T lymphocytes and activation of cytotoxic T lymphocytes (CTL) stimulated by IL-12-transfected DCs pulsed with tumor lysate against laryngeal carcinoma cells.Results The recombinant adenovirus expressing IL-12 gene was constructed successfully. Gene-transfected DC plused with tumor lysate with IL-12 (DC-IL-12+Ag) expressed higher level of CD83, CD86 and produced higher level of IL-12 than untransfected DCs (DC+Ag) (CD83: (60.2±1.8)% vs. (50.7±1.2)%, P <0.05; CD86: (88.9±2.1)% vs.(78.2±3.9)%, P <0.05; IL-12: (262.5±3.0) ng/L vs. (103.8±5.1) ng/L, P <0.05). The proliferation of autologous T lymphocytes and production of IFN-γ stimulated by DC transfected with IL-12 were more obviously than untransfected DCs. Cytotoxicity of CTL stimulated by IL-12-transfected DC pulsed with tumor lysate against laryngeal carcinoma cells were significantly stronger than stimulated by untransfected DC.Conclusion It is a promising approach for IL-12-transfected DC pulsed with tumor lysate to increase the antitumoral effect.

  5. Photodynamic therapy for cancer and activation of immune response

    Science.gov (United States)

    Mroz, Pawel; Huang, Ying-Ying; Hamblin, Michael R.

    2010-02-01

    Anti-tumor immunity is stimulated after PDT for cancer due to the acute inflammatory response, exposure and presentation of tumor-specific antigens, and induction of heat-shock proteins and other danger signals. Nevertheless effective, powerful tumor-specific immune response in both animal models and also in patients treated with PDT for cancer, is the exception rather than the rule. Research in our laboratory and also in others is geared towards identifying reasons for this sub-optimal immune response and discovering ways of maximizing it. Reasons why the immune response after PDT is less than optimal include the fact that tumor-antigens are considered to be self-like and poorly immunogenic, the tumor-mediated induction of CD4+CD25+foxP3+ regulatory T-cells (T-regs), that are able to inhibit both the priming and the effector phases of the cytotoxic CD8 T-cell anti-tumor response and the defects in dendritic cell maturation, activation and antigen-presentation that may also occur. Alternatively-activated macrophages (M2) have also been implicated. Strategies to overcome these immune escape mechanisms employed by different tumors include combination regimens using PDT and immunostimulating treatments such as products obtained from pathogenic microorganisms against which mammals have evolved recognition systems such as PAMPs and toll-like receptors (TLR). This paper will cover the use of CpG oligonucleotides (a TLR9 agonist found in bacterial DNA) to reverse dendritic cell dysfunction and methods to remove the immune suppressor effects of T-regs that are under active study.

  6. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Energy Technology Data Exchange (ETDEWEB)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas, E-mail: tke@uams.edu [Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2011-11-11

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses.

  7. Enhanced responses to tumor immunization following total body irradiation are time-dependent.

    Directory of Open Access Journals (Sweden)

    Adi Diab

    Full Text Available The development of successful cancer vaccines is contingent on the ability to induce effective and persistent anti-tumor immunity against self-antigens that do not typically elicit immune responses. In this study, we examine the effects of a non-myeloablative dose of total body irradiation on the ability of tumor-naïve mice to respond to DNA vaccines against melanoma. We demonstrate that irradiation followed by lymphocyte infusion results in a dramatic increase in responsiveness to tumor vaccination, with augmentation of T cell responses to tumor antigens and tumor eradication. In irradiated mice, infused CD8(+ T cells expand in an environment that is relatively depleted in regulatory T cells, and this correlates with improved CD8(+ T cell functionality. We also observe an increase in the frequency of dendritic cells displaying an activated phenotype within lymphoid organs in the first 24 hours after irradiation. Intriguingly, both the relative decrease in regulatory T cells and increase in activated dendritic cells correspond with a brief window of augmented responsiveness to immunization. After this 24 hour window, the numbers of dendritic cells decline, as does the ability of mice to respond to immunizations. When immunizations are initiated within the period of augmented dendritic cell activation, mice develop anti-tumor responses that show increased durability as well as magnitude, and this approach leads to improved survival in experiments with mice bearing established tumors as well as in a spontaneous melanoma model. We conclude that irradiation can produce potent immune adjuvant effects independent of its ability to induce tumor ablation, and that the timing of immunization and lymphocyte infusion in the irradiated host are crucial for generating optimal anti-tumor immunity. Clinical strategies using these approaches must therefore optimize such parameters, as the correct timing of infusion and vaccination may mean the difference

  8. Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity.

    Science.gov (United States)

    Bol, Kalijn F; Aarntzen, Erik H J G; Pots, Jeanette M; Olde Nordkamp, Michel A M; van de Rakt, Mandy W M M; Scharenborg, Nicole M; de Boer, Annemiek J; van Oorschot, Tom G M; Croockewit, Sandra A J; Blokx, Willeke A M; Oyen, Wim J G; Boerman, Otto C; Mus, Roel D M; van Rossum, Michelle M; van der Graaf, Chantal A A; Punt, Cornelis J A; Adema, Gosse J; Figdor, Carl G; de Vries, I Jolanda M; Schreibelt, Gerty

    2016-03-01

    Dendritic cell (DC)-based immunotherapy is explored worldwide in cancer patients, predominantly with DC matured with pro-inflammatory cytokines and prostaglandin E2. We studied the safety and efficacy of vaccination with monocyte-derived DC matured with a cocktail of prophylactic vaccines that contain clinical-grade Toll-like receptor ligands (BCG, Typhim, Act-HIB) and prostaglandin E2 (VAC-DC). Stage III and IV melanoma patients were vaccinated via intranodal injection (12 patients) or combined intradermal/intravenous injection (16 patients) with VAC-DC loaded with keyhole limpet hemocyanin (KLH) and mRNA encoding tumor antigens gp100 and tyrosinase. Tumor antigen-specific T cell responses were monitored in blood and skin-test infiltrating-lymphocyte cultures. Almost all patients mounted prophylactic vaccine- or KLH-specific immune responses. Both after intranodal injection and after intradermal/intravenous injection, tumor antigen-specific immune responses were detected, which coincide with longer overall survival in stage IV melanoma patients. VAC-DC induce local and systemic CTC grade 2 and 3 toxicity, which is most likely caused by BCG in the maturation cocktail. The side effects were self-limiting or resolved upon a short period of systemic steroid therapy. We conclude that VAC-DC can induce functional tumor-specific responses. Unfortunately, toxicity observed after vaccination precludes the general application of VAC-DC, since in DC maturated with prophylactic vaccines BCG appears to be essential in the maturation cocktail.

  9. [Research progress on anti-tumor effect of Huaier].

    Science.gov (United States)

    Yang, Ai-lin; Hu, Zhong-dong; Tu, Peng-fei

    2015-12-01

    Huaier (Trametes robiniophila) has been widely used as an adjuvant drug for cancer treatment in China. The anti-cancer effect of Huaier extract has been confirmed in liver cancer, lung cancer, breast cancer, ovarian cancer, gastric cancer, and so on. The main mechanisms by which Huaier exerts an anti-neoplastic effect include inhibition of the growth and proliferation of cancer cells, induction of apoptosis of cancer cells, suppression of angiogenesis, inhibition of the invasion and migration of cancer cells, regulation of oncogenes and tumor suppressor genes expression, improving immunity, and reversal of drug resistance in cancer cells. In order to provide references for further study and clinical application on anti-tumor effect of Huaier, the latest research progress on anti-tumor effect of Huaier in recent years is summarized in this paper. PMID:27245026

  10. Study on the immune responses against pancreatic cancer induced by mucin 4 and human telomerase reverse transcriptase mRNA co-transfected dendritic cells in vitro

    Institute of Scientific and Technical Information of China (English)

    陈江

    2014-01-01

    Objective To investigate the anti-tumor immune response induced by human pancreatic cancer mucin 4mRNA and human telomerase reverse transcriptase(hTERT)mRNA cotransfected dendritic cells(DC),and to provide the experimental evidences for the treatment of pancreatic cancer with multi-epitope loaded DC vaccine.Methods DC were isolated from peripheral DC.

  11. Promotion of Tumor Invasion by Cooperation of Granulocytes and Macrophages Activated by Anti-tumor Antibodies

    Directory of Open Access Journals (Sweden)

    Emilio Barbera-Guillem

    1999-11-01

    Full Text Available We investigated the potential role of anti-tumor antibodies and tumor antigens in the formation of immune complexes which promote matrix degradation and angiogenesis. B-cell deficient or B-cell depleted mice showed a reduction in tumor invasion and metastasis. In vitro invasion assays and in vivo models of metastasis showed that anti-sTn antibodies and sTn tumor antigens form complexes which induce granulocytes and macrophages together to mediate tumor invasion and metastasis by processes including extracellular matrix degradation and angiogenesis. These results suggest the existence of a tumor promoting role of a B-cell immune response induced by shed tumor associated antigens of solid, nonlymphoid tumors.

  12. Distinct immune response induced by peptidoglycan derived from Lactobacillus sp

    Institute of Scientific and Technical Information of China (English)

    Jin Sun; Yong-Hui Shi; Guo-Wei Le; Xi-Yi Ma

    2005-01-01

    AIM: To analyze the distinct immune responses induced by Lactobacillus peptidoglycan (PG).METHODS: BALB/c mice were intraperitoneally injected with PG once a day for three consecutive days. Peritoneal macrophage and splenocyte mRNA was extracted and the gene expression profile was studied using high-density oligonucleotide microarrays. Inhibitory effects of Lactobacillus PG on colon tumor tissue were studied in vitro and in vivo.RESULTS: The gene expression profiles revealed that the TLR-NF-κB and Jak-STAT signaling pathways were highly activated. An inflammatory phenotype was induced when peritoneal macrophages were initially exposed to Lactobacillus PG and switched to a more complex phenotype when BALB/c mice were treated with three doses of Lactobacillus PG. A protective physiological inflammatory response was induced after three consecutive days of PG treatment. It was tending toward Th1 dominant immune response. Lactobacillus PG also appeared to induce a significantin vivo anti-colon tumor effect.CONCLUSION: Lactobacillus PG is responsible for certain immune responses induced by Lactobacilli. Anti-tumor effects of Lactobacilli are likely to attribute to the activation of macrophages by PG expressed on the bacterial cell surface.

  13. 抗肿瘤疫苗的研究进展%Research progress of anti-tumor vaccine

    Institute of Scientific and Technical Information of China (English)

    李曼曼; 柳祖辉; 袁玉婷; 苗梓韬; 王云康; 曹荣月

    2015-01-01

    抗肿瘤疫苗是一种通过增强或者诱导机体对肿瘤细胞产生特异性应答的免疫治疗方式。利用肿瘤细胞或抗原物质制备抗肿瘤疫苗,促进T淋巴细胞增殖、活化以及细胞因子释放,以期达到抑制肿瘤的生长、转移和复发的目的。本文综述目前肿瘤免疫治疗的进展,着重介绍细胞疫苗、DNA疫苗、多肽疫苗、树突状细胞疫苗等四类抗肿瘤疫苗,旨在探讨目前肿瘤免疫治疗学存在的问题以及肿瘤免疫在未来临床治疗中的应用。%Anti-tumor vaccine is an immune treatment mode that by enhancing or inducing the body produce specific immune response to tumor cells.Using of tumor cells or antigen material preparation anti-tumor vaccine can promote T lymphocyte proliferation,activation and cytokine release,and then achieve the goal of suppressing tumor growth,metasta-sis and recurrence.This paper reviews the progress in tumor immunotherapy and introduces four types of anti-tumor vaccine such as cell vaccine,DNA vaccine,peptide vaccine and dendritic cells vaccine,and discusses the current prob-lems existing in the tumor immune therapy and tumor immune clinical application in the future.

  14. Immune Cells in Colorectal Cancer: Prognostic Relevance and Role of MSI

    OpenAIRE

    Deschoolmeester, Vanessa; Baay, Marc; Lardon, Filip; Pauwels, Patrick; Peeters, Marc

    2011-01-01

    There is growing evidence that both local and systemic inflammatory responses play an important role in the progression of a variety of solid tumors. Colorectal cancer (CRC) results from the cumulative effect of sequential genetic alterations, leading to the expression of tumor-associated antigens possibly inducing a cellular anti-tumor immune response. It is well recognized that cytotoxic lymphocytes (CTLs) constitute one of the most important effector mechanisms of anti-tumor-immunity. Howe...

  15. NKT cells as an ideal anti-tumor immunotherapeutic

    Directory of Open Access Journals (Sweden)

    Shin-ichiro eFujii

    2013-12-01

    Full Text Available Human NKT cells are characterized by their expression of an invariant T cell antigen receptor (TCR  chain variable region encoded by a V24J18 rearrangement. These NKT cells recognize -galactosylceramide (-GalCer in conjunction with the MHC class-I-like CD1d molecule and bridge the innate and acquired immune systems to mediate efficient and augmented immune responses. A prime example of one such function is adjuvant activity: NKT cells augment anti-tumor responses because they can rapidly produce large amounts of IFN-, which acts on NK cells to eliminate MHC negative tumors and also on CD8 cytotoxic T cells to kill MHC positive tumors. Thus, upon administration of -GalCer-pulsed DCs, both MHC negative and positive tumor cells can be effectively eliminated, resulting in complete tumor eradication without tumor recurrence. Clinical trials have been completed in a cohort of 17 patients with advanced non-small cell lung cancers and 10 cases of head and neck tumors. Sixty percent of advanced lung cancer patients with high IFN- production had significantly prolonged median survival times (MST of 29.3 Mo with only the primary treatment. In the case of head and neck tumors, 10 patients who completed the trial all had stable disease or partial responses 5 wks after the combination therapy of -GalCer-DCs and activated NKT cells.We now focus on two potential powerful treatment options for the future. One is to establish artificial adjuvant vector cells containing tumor mRNA and -GalCer/CD1d. This stimulates host NKT cells followed by DC maturation and NK cell activation but also induces tumor-specific long-term memory CD8 killer T cell responses, suppressing tumor metastasis even one year after the initial single injection. The other approach is to establish induced pluripotent stem (iPS cells that can generate unlimited numbers of NKT cells with adjuvant activity. Such iPS-derived NKT cells produce IFN- in vitro and in vivo

  16. Cellular immune responses to HIV

    Science.gov (United States)

    McMichael, Andrew J.; Rowland-Jones, Sarah L.

    2001-04-01

    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

  17. Isolation and Characterization of Neutrophils with Anti-Tumor Properties.

    Science.gov (United States)

    Sionov, Ronit Vogt; Assi, Simaan; Gershkovitz, Maya; Sagiv, Jitka Y; Polyansky, Lola; Mishalian, Inbal; Fridlender, Zvi G; Granot, Zvi

    2015-01-01

    Neutrophils, the most abundant of all white blood cells in the human circulation, play an important role in the host defense against invading microorganisms. In addition, neutrophils play a central role in the immune surveillance of tumor cells. They have the ability to recognize tumor cells and induce tumor cell death either through a cell contact-dependent mechanism involving hydrogen peroxide or through antibody-dependent cell-mediated cytotoxicity (ADCC). Neutrophils with anti-tumor activity can be isolated from peripheral blood of cancer patients and of tumor-bearing mice. These neutrophils are termed tumor-entrained neutrophils (TEN) to distinguish them from neutrophils of healthy subjects or naïve mice that show no significant tumor cytotoxic activity. Compared with other white blood cells, neutrophils show different buoyancy making it feasible to obtain a > 98% pure neutrophil population when subjected to a density gradient. However, in addition to the normal high-density neutrophil population (HDN), in cancer patients, in tumor-bearing mice, as well as under chronic inflammatory conditions, distinct low-density neutrophil populations (LDN) appear in the circulation. LDN co-purify with the mononuclear fraction and can be separated from mononuclear cells using either positive or negative selection strategies. Once the purity of the isolated neutrophils is determined by flow cytometry, they can be used for in vitro and in vivo functional assays. We describe techniques for monitoring the anti-tumor activity of neutrophils, their ability to migrate and to produce reactive oxygen species, as well as monitoring their phagocytic capacity ex vivo. We further describe techniques to label the neutrophils for in vivo tracking, and to determine their anti-metastatic capacity in vivo. All these techniques are essential for understanding how to obtain and characterize neutrophils with anti-tumor function. PMID:26132785

  18. PDE3A-SLCO1C1 locus is associated with response to anti-tumor necrosis factor therapy in psoriatic arthritis.

    Science.gov (United States)

    Julià, Antonio; Rodríguez, Jesús; Fernández-Sueiro, José Luis; Gratacós, Jordi; Queiró, Rubén; Montilla, Carlos; Torre-Alonso, Juan Carlos; Pérez-Venegas, José Javier; Manrique-Arija, Sara; Muñoz-Fernández, Santiago; González, Carlos; Roig, Daniel; Zarco, Pedro; Erra, Alba; Castañeda, Santos; García, Alicia; Salvador, Georgina; Díaz-Torne, César; Blanco, Ricardo; Domínguez, Alfredo Willisch; Mosquera, José Antonio; Vela, Paloma; Tornero, Jesús; Sánchez-Fernández, Simón; Corominas, Héctor; Ramírez, Julio; Avila, Gabriela; Alonso, Arnald; Tortosa, Raül; López-Lasanta, María; Cañete, Juan D; Marsal, Sara

    2014-11-01

    Aim: Variation at PDE3A-SLCO1C1 locus has been recently associated with the response to anti-TNF therapy in rheumatoid arthritis. We undertook the present study to determine whether PDE3A-SLCO1C1 is also associated with the response to anti-TNF therapy in psoriatic arthritis. Patients & methods: Genomic DNA was obtained from 81 psoriatic arthritis patients that had been treated with anti-TNF therapy. PDE3A-SLCO1C1 SNP rs3794271 was genotyped using Taqman realt-time PCR. The clinical response to anti-TNF therapy was measured as the change from baseline in the level of disease activity according to the DAS28 score. Results: A significant association between rs3794271 and anti-TNF response in psoriatic arthritis was found (beta = -0.71; p = 0.0036). Conclusion: PDE3A-SLCO1C1 locus is also associated with response to anti-TNF therapy in psoriatic arthritis. Original submitted 12 May 2014; Revision submitted 18 August 2014.

  19. Culture of Dendritic Cells in vitro and Its Anti-tumor Immonotherapy

    Directory of Open Access Journals (Sweden)

    Yanwen ZHOU

    2010-05-01

    Full Text Available Background and objective Immunocompromised patients with malignant tumor always lack of strong anti-tumor immune response, because the antigenicity of tumor cells is weak, and antigen-presenting cell function is low, so that can not be effectively presenting tumor antigens to the lymphocytes. Therefore, how to effectively induce anti-tumor immune response is the key issue. Through the study on establishing a method to culture dendritic cells (DC in vitro and to observe the anti-lung cancer immunological effect induced by DC, we provided definite experiment basis for the clinic application of vaccine based on DC. Methods Through the experiment we get the soluble antigen polypeptide from lung cancer cells GLC-82 by 3 mol/L potassium chloride. DCs are cultured and obtained from peripheral blood mononuclear cell by GM-CSF, IL-4 and TNF-a. DCs are identified by flow cytometer (FCM and immunostaining. DCs modified by lung cancer tumor soluble antigen (TSA and staphylococcal enterotox in A (SEA, DCs modified by TSA or DCs modified by SEA or DCs modified by nothing were cultivated together with T lymphocyte, and the obtained cells are named TSA-SEA-DCL or TSA-DCL or SEA-DCL or DCL as effector cells. The anti-tumor activity of every effector cells against target cells was assayed with MTT method. Shape of DCs and effector cells, and the process of killing target cells were observed in microscope. Results Induced DCs expressed more CD1a, CD80 and HLA-DR, which had typical cell traits such as tree branch. The killing ratio of the TSA-SEA-DCL in vitro to GLC-82 is larger than TSA-DCL, SEA-DCL and DCL, also larger than to K562. When the effector cells cultivate with target cells, we can observe the CTL approach and gather to the cancer cell, induce it necrosis and apoptosis. Conclusion Ripe DCs that have typical characteristic and phenotype could be induced successfully. High potency and relatively specific antilung caner effect can be prepared in virtue of

  20. SoNar, a Highly Responsive NAD+/NADH Sensor, Allows High-Throughput Metabolic Screening of Anti-tumor Agents.

    Science.gov (United States)

    Zhao, Yuzheng; Hu, Qingxun; Cheng, Feixiong; Su, Ni; Wang, Aoxue; Zou, Yejun; Hu, Hanyang; Chen, Xianjun; Zhou, Hai-Meng; Huang, Xinzhi; Yang, Kai; Zhu, Qian; Wang, Xue; Yi, Jing; Zhu, Linyong; Qian, Xuhong; Chen, Lixin; Tang, Yun; Loscalzo, Joseph; Yang, Yi

    2015-05-01

    The altered metabolism of tumor cells confers a selective advantage for survival and proliferation, and studies have shown that targeting such metabolic shifts may be a useful therapeutic strategy. We developed an intensely fluorescent, rapidly responsive, pH-resistant, genetically encoded sensor of wide dynamic range, denoted SoNar, for tracking cytosolic NAD(+) and NADH redox states in living cells and in vivo. SoNar responds to subtle perturbations of various pathways of energy metabolism in real time, and allowed high-throughput screening for new agents targeting tumor metabolism. Among > 5,500 unique compounds, we identified KP372-1 as a potent NQO1-mediated redox cycling agent that produced extreme oxidative stress, selectively induced cancer cell apoptosis, and effectively decreased tumor growth in vivo. This study demonstrates that genetically encoded sensor-based metabolic screening could serve as a valuable approach for drug discovery.

  1. Anti-tumor activity of CpG-ODN aerosol in mouse lung metastases.

    Science.gov (United States)

    Sfondrini, Lucia; Sommariva, Michele; Tortoreto, Monica; Meini, Alessandra; Piconese, Silvia; Calvaruso, Marco; Van Rooijen, Nick; Bonecchi, Raffaella; Zaffaroni, Nadia; Colombo, Mario P; Tagliabue, Elda; Balsari, Andrea

    2013-07-15

    Studies in preclinical models have demonstrated the superior anti-tumor effect of CpG oligodeoxynucleotides (CpG-ODN) when administered at the tumor site rather than systemically. We evaluated the effect of aerosolized CpG-ODN on lung metastases in mice injected with immunogenic N202.1A mammary carcinoma cells or weakly immunogenic B16 melanoma cells. Upon reaching the bronchoalveolar space, aerosolized CpG-ODN activated a local immune response, as indicated by production of IL-12p40, IFN-γ and IL-1β and by recruitment and maturation of DC cells in bronchoalveolar lavage fluid of mice. Treatment with aerosolized CpG-ODN induced an expansion of CD4+ cells in lung and was more efficacious than systemic i.p. administration against experimental lung metastases of immunogenic N202.1A mammary carcinoma cells, whereas only i.p. delivery of CpG-ODN provided anti-tumor activity, which correlated with NK cell expansion in the lung, against lung metastases of the poorly immunogenic B16 melanoma. The inefficacy of aerosol therapy to induce NK expansion was related to the presence of immunosuppressive macrophages in B16 tumor-bearing lungs, as mice depleted of these cells by clodronate treatment responded to aerosol CpG-ODN through expansion of the NK cell population and significantly reduced numbers of lung metastases. Our results indicate that tumor immunogenicity and the tumor-induced immunosuppressive environment are critical factors to the success of CpG therapy in the lung, and point to the value of routine sampling of the lung immune environment in defining an optimal immunotherapeutic strategy. PMID:23319306

  2. A study on recent tendency of anti-tumor herbal acupuncture

    Directory of Open Access Journals (Sweden)

    Yoo Hwa-Seung

    2001-12-01

    Full Text Available Objectives: The purpose of this study is to develop and activate anti-tumor herbal acupuncture for cancer patients in South Korea. Methods: We investigated some literatures on anti-tumor herbal acupuncture which is used in South Korea and China, and made diagrams. Results: The results are summarized as follows. Anti-tumor herbal acupuncture is one of the traditional oriental medical method which is effective for cancer patients. In domestic studies, most of herb materials are belong to action of cooling&detoxification(25.0% and strengthening body resistance(46.4% which are proved to have effects of anti-tumor, immune activation and preventing tumor. In China, point injection therapy are used for improving symptoms of cancer patients and healing tumor. Also herbal intravenous injection is used for combination of chinese traditional and western cancer therapy and treating cancer patients variously. Conclusions: From the above results, it is expected that anti-tumor herbal acupuncture is useful to improve clinical symptoms and quality of life(QOL of cancer patients. Also we must develop new progressive methods of point injection and herbal intravenous injection for treating cancer patients, and advance clinical studies and trials.

  3. pH-responsive drug delivery of chitosan nanoparticles as Tamoxifen carriers for effective anti-tumor activity in breast cancer cells.

    Science.gov (United States)

    Vivek, R; Nipun Babu, V; Thangam, R; Subramanian, K S; Kannan, S

    2013-11-01

    Tamoxifen (Tam) has a broad spectrum of anticancer activity, but is limited in clinical application. The aim of this study was to explore the smart pH-responsive drug delivery system (DDS) based on chitosan (CH) nanoparticles (NPs) for its potential in enabling more intelligent controlled release and enhancing chemotherapeutic efficiency of Tamoxifen. Tamoxifen was loaded onto CH-nanoparticles by forming complexes and Tamoxifen was released from the DDS much more rapidly at pH 4.0 and 6.0 than at pH 7.4, which is a desirable characteristic for tumor-targeted drug delivery. Tamoxifen-loaded CH nanoparticles induced remarkable improvement in anticancer activity, as demonstrated by MTT-assay, AO/EtBr and Hoechst nuclear staining. Furthermore, the possible signaling pathway was explored by RT-PCR. For instance, in human breast cancer MCF-7 cells, it was demonstrated that Tamoxifen-loaded CH nanoparticles increase intracellular concentration of Tamoxifen and enhance its anticancer efficiency by inducing apoptosis in a caspase-dependent manner, indicating that drug loaded nanoparticles could act as an efficient DDS importing Tamoxifen into target cancer cells. PMID:23787278

  4. Immune responses to improving welfare.

    Science.gov (United States)

    Berghman, L R

    2016-09-01

    The relationship between animal welfare and the immune status of an animal has a complex nature. Indeed, the intuitive notion that "increased vigilance of the immune system is by definition better" because it is expected to better keep the animal healthy, does not hold up under scrutiny. This is mostly due to the fact that the immune system consists of 2 distinct branches, the innate and the adaptive immune system. While they are intimately intertwined and synergistic in the living organism, they are profoundly different in their costs, both in terms of performance and wellbeing. In contrast to the adaptive immune system, the action of the innate immune system has a high metabolic cost as well as undesirable behavioral consequences. When a pathogen breaches the first line of defense (often a mucosal barrier), that organism's molecular signature is recognized by resident macrophages. The macrophages respond by releasing a cocktail of pro-inflammatory cytokines (including interleukin-1 and -6) that signal the brain via multiple pathways (humoral as well as neural) of the ongoing peripheral innate immune response. The behavioral response to the release of proinflammatory cytokines, known as "sickness behavior," includes nearly all the behavioral aspects that are symptomatic for clinical depression in humans. Hence, undesired innate immune activity, such as chronic inflammation, needs to be avoided by the industry. From an immunological standpoint, one of the most pressing poultry industry needs is the refinement of our current veterinary vaccine arsenal. The response to a vaccine, especially to a live attenuated vaccine, is often a combination of innate and adaptive immune activities, and the desired immunogenicity comes at the price of high reactogenicity. The morbidity, albeit limited and transient, caused by live vaccines against respiratory diseases and coccidiosis are good examples. Thankfully, the advent of various post-genomics technologies, such as DNA

  5. Slamf receptors : Modulators of Phagocyte Immune Responses

    NARCIS (Netherlands)

    Van Driel, Boaz Job

    2015-01-01

    Signaling Lymphocyte Activation Molecule family (Slamf) receptors can operate in three distinct modes. Slamf receptors can dictate the extent of immune responses, thereby maneuvering immunity to the optimal zone between immunopathology or autoimmunity and weak, ineffective immune responses. A second

  6. Immune response to H pylori

    Institute of Scientific and Technical Information of China (English)

    Giovanni Suarez; Victor E Reyes; Ellen J Beswick

    2006-01-01

    The gastric mucosa separates the underlying tissue from the vast array of antigens that traffic through the stomach lumen. While the extreme pH of this environment is essential in aiding the activation of enzymes and food digestion, it also renders the gastric epithelium free from bacterial colonization, with the exception of one important human pathogen, H pylori. This bacterium has developed mechanisms to survive the harsh environment of the stomach, actively move through the mucosal layer,attach to the epithelium, evade immune responses, and achieve persistent colonization. While a hallmark of this infection is a marked inflammatory response with the infiltration of various immune cells into the infected gastric mucosa, the host immune response is unable to clear the infection and may actually contribute to the associated pathogenesis. Here, we review the host responses involved during infection with H pylori and how they are influenced by this bacterium.

  7. MAP Kinases in Immune Responses

    Institute of Scientific and Technical Information of China (English)

    Yongliang Zhang; Chen Dong

    2005-01-01

    MAP kinases are evolutionarily conserved signaling regulators from budding yeast to mammals and play essential roles in both innate and adaptive immune responses. There are three main families of MAPKs in mammals. Each of them has its own activators, inactivators, substrates and scaffolds, which altogether form a fine signaling network in response to different extracellular or intracellular stimulation. In this review, we summarize recent advances in understanding of the regulation of MAP kinases and the roles of MAP kinases in innate and adaptive immune responses.

  8. MAP Kinases in Immune Responses

    Institute of Scientific and Technical Information of China (English)

    YongliangZhang; ChenDong

    2005-01-01

    MAP kinases are evolutionarily conserved signaling regulators from budding yeast to mammals and play essential roles in both innate and adaptive immune responses. There are three main families of MAPKs in mammals. Each of them has its own activators, inactivators, substrates and scaffolds, which altogether form a fine signaling network in response to different extracellular or intracellular stimulation. In this review, we summarize recent advances in understanding of the regulation of MAP kinases and the roles of MAP kinases in innate and adaptive immune responses. Cellular & Molecular Immunology. 2005;2(1):20-27.

  9. Transfection of B7-1 cDNA empowers antigen presentation of blood malignant cells for activation of anti-tumor T cells

    Institute of Scientific and Technical Information of China (English)

    克晓燕; 贾丽萍; 王晶; 王德炳

    2003-01-01

    Objective To define roles of B7-1 co-stimulation factor expressed in human malignant cell lines in mediating anti-tumor T cell immune responses. Methods Examining human leucocyte antigen (HLA) and B7 expressions on 8 human blood malignancies cell lines by flow cytometry. Transfecting B7-1 gene to B7-1 negative (B7*!-) Raji and B7*!- Jurkat cell lines by liposome, and comparing the potencies of blood malignant cell lines in the induction of T cell activation by examination of T cell cytokine mRNAs before and after transfection using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). Results High level of HLA Ⅰ and Ⅱ molecules were expressed in most human blood malignant cell lines examined, and the co-stimulatory factor B7-2 was also highly expressed. In contrast, another member of B7 family: B7-1 was either not expressed or very limitedly expressed in most of these hematopoietic malignant cell lines. Most importantly, transfection of B7-1 gene to B7*!-. Raji and B7*!-. Jurkat cell lines made these cell lines better antigen presenting cells for stimulation of anti-tumor T cell activation, which was demonstrated by up regulation of expression of T cell cytokines IL-2, IL-4 and INF-γ mRNAs after incubation of these tumor cells with T cells for 24 h. Conclusions B7 co-stimulation plays an important role in anti-tumor immunity. Transfection of B7-1 gene to the human hematopoietic malignant cell lines that are deficient in the B7-1 expression empowers their antigen presentation potency for activation of anti-tumor T cells. Our results suggested that repairing the deficiency of B7-1 co-stimulatory pathway in tumor cells might be a novel immunotherapeutic approach for human hematopoietic malignancies.

  10. Research progress on anti-tumor and immunity activity of CpG%CpG抗肿瘤作用及其免疫活性的研究进展

    Institute of Scientific and Technical Information of China (English)

    唐正海; 王晓文; 唐劲天

    2012-01-01

    CpG motifs are unmethylated oligodeoxynucleotides,and its core sequences are composed of unmethylated cytosine and unmethylated guanine.CpG motifs can induce the immune response by activating a variety of immune cells against diseases.The changes of CpG structure will increase the biological activities of CpG,and then enhance the therapeutic effect of CpG as the immuno adjuvant and the sensitizer of radiotherapy and chemotherapy in cancer treatment%胞嘧啶与鸟嘌呤二核苷酸序列(CpG ODN)是一段以非甲基化胞嘧啶与鸟嘌呤(CpG)为核心的碱基序列,能够激活体内的多种免疫细胞,发生免疫应答,抵抗疾病.调节CpG的结构,化学修饰可提高CpG的生物活性,提高CpG作为免疫佐剂和放疗、化疗增敏剂治疗肿瘤的效果.

  11. Dynamic Metabolism in Immune Response

    Science.gov (United States)

    Al-Hommrani, Mazen; Chakraborty, Paramita; Chatterjee, Shilpak; Mehrotra, Shikhar

    2016-01-01

    Cell, the basic unit of life depends for its survival on nutrients and thereby energy to perform its physiological function. Cells of lymphoid and myeloid origin are key in evoking an immune response against “self” or “non-self” antigens. The thymus derived lymphoid cells called T cells are a heterogenous group with distinct phenotypic and molecular signatures that have been shown to respond against an infection (bacterial, viral, protozoan) or cancer. Recent studies have unearthed the key differences in energy metabolism between the various T cell subsets, natural killer cells, dendritic cells, macrophages and myeloid derived suppressor cells. While a number of groups are dwelling into the nuances of the metabolism and its role in immune response at various strata, this review focuses on dynamic state of metabolism that is operational within various cellular compartments that interact to mount an effective immune response to alleviate disease state.

  12. Mechanistic studies of systemic immune responses induced by laser-nanotechnology

    Science.gov (United States)

    Chen, Wei R.; Zhou, Feifan; Henderson, Brock; Vasquez, Bailey; Liu, Hong; Hode, Tomas; Nordquist, Robert E.

    2014-02-01

    With the help of the specific absorption spectrum of carbon nanotubes, we achieved selective photothermal tumor cell destruction, particularly using a near-infrared laser to reduce potential damage to untargeted tissues. Combined with immunological stimulation, using a novel adjuvant, we also observed the anti-tumor immune responses when treating animal tumors using the laser-nano treatment. In fact, the local application of laser-nano-immunotherapy appeared to result in a systemic curative effect. In our mechanistic study, we found that the laser-nano-immuno treatment can activate antigen-presenting cells, such as dendritic cells (DCs). More importantly, the uptake and presentation of antigens by these antigen presenting cells were significantly enhanced, as shown by the strong binding of tumor cells and DCs as well as the proliferation of T cells caused by the DCs after the DCs had been incubated with laser-nano-immuno treated tumors. These cellular observations provide evidence that a systemic anti-tumor immune response was induced by the combination of laser and nanotechnology.

  13. A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma.

    Science.gov (United States)

    Arancibia, Sergio; Espinoza, Cecilia; Salazar, Fabián; Del Campo, Miguel; Tampe, Ricardo; Zhong, Ta-Ying; De Ioannes, Pablo; Moltedo, Bruno; Ferreira, Jorge; Lavelle, Ed C; Manubens, Augusto; De Ioannes, Alfredo E; Becker, María Inés

    2014-01-01

    Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH). This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH) and the Concholepas hemocyanin (CCH). FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4(+) lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α) by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer immunotherapy.

  14. A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma.

    Directory of Open Access Journals (Sweden)

    Sergio Arancibia

    Full Text Available Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH. This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH and the Concholepas hemocyanin (CCH. FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4(+ lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer

  15. Immune response to fungal infections.

    Science.gov (United States)

    Blanco, Jose L; Garcia, Marta E

    2008-09-15

    The immune mechanisms of defence against fungal infections are numerous, and range from protective mechanisms that were present early in evolution (innate immunity) to sophisticated adaptive mechanisms that are induced specifically during infection and disease (adaptive immunity). The first-line innate mechanism is the presence of physical barriers in the form of skin and mucous membranes, which is complemented by cell membranes, cellular receptors and humoral factors. There has been a debate about the relative contribution of humoral and cellular immunity to host defence against fungal infections. For a long time it was considered that cell-mediated immunity (CMI) was important, but humoral immunity had little or no role. However, it is accepted now that CMI is the main mechanism of defence, but that certain types of antibody response are protective. In general, Th1-type CMI is required for clearance of a fungal infection, while Th2 immunity usually results in susceptibility to infection. Aspergillosis, which is a disease caused by the fungus Aspergillus, has been the subject of many studies, including details of the immune response. Attempts to relate aspergillosis to some form of immunosuppression in animals, as is the case with humans, have not been successful to date. The defence against Aspergillus is based on recognition of the pathogen, a rapidly deployed and highly effective innate effector phase, and a delayed but robust adaptive effector phase. Candida albicans, part of the normal microbial flora associated with mucous surfaces, can be present as congenital candidiasis or as acquired defects of cell-mediated immunity. Resistance to this yeast is associated with Th1 CMI, whereas Th2 immunity is associated with susceptibility to systemic infection. Dermatophytes produce skin alterations in humans and other animals, and the essential role of the CMI response is to destroy the fungi and produce an immunoprotective status against re-infection. The resolution

  16. Apolipophorins and insects immune response

    Directory of Open Access Journals (Sweden)

    A Zdybicka-Barabas

    2013-08-01

    Full Text Available Insect lipoproteins, called lipophorins, are non-covalent assemblies of lipids and proteins serving as lipid transport vehicles. The protein moiety of lipophorin comprises two glycosylated apolipoproteins, apolipophorin I (apoLp-I and apolipophorin II (apoLp-II, constantly present in a lipophorin particle, and an exchangeable protein, apolipophorin III (apoLp-III. ApoLp-III is an abundant protein occurring in hemolymph in lipid-free and lipid-bound state and playing an important role in lipid transport and insect innate immunity. In immune response apoLp-III serves as a pattern recognition molecule. It binds and detoxifies microbial cell wall components, i.e., lipopolysaccharide, lipoteichoic acid, and β-1,3-glucan. ApoLp-III activates expression of antimicrobial peptides and proteins, stimulates their antimicrobial activity, participates in regulation of the phenoloxidase system and in hemolymph clotting. In addition, the protein is involved in cellular immune response, influencing hemocyte adhesion, phagocytosis and nodule formation, and in gut immunity. Although apoLp-III is the best studied apolipophorin in insect immunity so far, a literature review suggests that all the three apolipoproteins, apoLp-I, apoLp-II and apoLp-III, function together in a coordinated defense against pathogens

  17. Identification of the anti-tumor activity and mechanisms of nuciferine through a network pharmacology approach

    Science.gov (United States)

    Qi, Quan; Li, Rui; Li, Hui-ying; Cao, Yu-bing; Bai, Ming; Fan, Xiao-jing; Wang, Shu-yan; Zhang, Bo; Li, Shao

    2016-01-01

    Aim: Nuciferine is an aporphine alkaloid extracted from lotus leaves, which is a raw material in Chinese medicinal herb for weight loss. In this study we used a network pharmacology approach to identify the anti-tumor activity of nuciferine and the underlying mechanisms. Methods: The pharmacological activities and mechanisms of nuciferine were identified through target profile prediction, clustering analysis and functional enrichment analysis using our traditional Chinese medicine (TCM) network pharmacology platform. The anti-tumor activity of nuciferine was validated by in vitro and in vivo experiments. The anti-tumor mechanisms of nuciferine were predicted through network target analysis and verified by in vitro experiments. Results: The nuciferine target profile was enriched with signaling pathways and biological functions, including “regulation of lipase activity”, “response to nicotine” and “regulation of cell proliferation”. Target profile clustering results suggested that nuciferine to exert anti-tumor effect. In experimental validation, nuciferine (0.8 mg/mL) markedly inhibited the viability of human neuroblastoma SY5Y cells and mouse colorectal cancer CT26 cells in vitro, and nuciferine (0.05 mg/mL) significantly suppressed the invasion of 6 cancer cell lines in vitro. Intraperitoneal injection of nuciferine (9.5 mg/mL, ip, 3 times a week for 3 weeks) significantly decreased the weight of SY5Y and CT26 tumor xenografts in nude mice. Network target analysis and experimental validation in SY5Y and CT26 cells showed that the anti-tumor effect of nuciferine was mediated through inhibiting the PI3K-AKT signaling pathway and IL-1 levels in SY5Y and CT26 cells. Conclusion: By using a TCM network pharmacology method, nuciferine is identified as an anti-tumor agent against human neuroblastoma and mouse colorectal cancer in vitro and in vivo, through inhibiting the PI3K-AKT signaling pathways and IL-1 levels. PMID:27180984

  18. Response to Hepatocarcinoma Hca-F of Mice Immunized with Heat Shock Protein 70 from Elemene Combo Tumor Cell Vaccine

    Institute of Scientific and Technical Information of China (English)

    Lianying Guo; Guangxia Shi; Zhihong Gao; Jie Shen; Rong Xing; Zhenchao Qian

    2006-01-01

    To analyze immune response to murine hepatocarcinoma Hca-F of mice immunized with heat shock protein 70(HSP70) derived from elemene combo tumor cell vaccine (EC-TCV) of Hca-F, HSP70 was isolated from EC-TCV by ADP affinity chromatography. Mice were immunized with HSP70 intraperitoneally three times and spleen cells were sampled. For cells, their proliferation and cytotoxicity against Hca-F were measured with MTT assay and their phenotypes were analyzed with flow cytometry. Spleen cells of immunized mice with HSP70 exhibited more potent cytotoxicity against Hca-F and proliferation than that of normal control mice, but less potent than that of mice immunized with EC-TCV. Among three groups, the percent of γδ T lymphocytes in the mice immunized with HSP70 (35.5%) was the highest compared with 6.25% in normal mice, and 28.4% in the mice immunized with EC-TCV. Immunization of HSP70 derived from EC-TCV could elicit potent immune response to Hca-F. HSP70 is one of elements inducing anti-tumor immune responses against Hca-F. Cellular & Molecular Immunology. 2006;3(4):291-295.

  19. In vivo anti-tumor effect of hybrid vaccine of dendritic cells and esophageal carcinoma cells on esophageal carcinoma cell line 109 in mice with severe combined immune deficiency

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To develop a fusion vaccine of esophageal carcinoma cells and dendritic cells (DC) and observe its protective and therapeutic effect against esophageal carcinoma cell line 109 (EC109). METHODS: The fusion vaccine was produced by fusing traditional polyethyleneglycol (PEG), inducing cytokine, sorting CD34+ magnetic microbead marker and magnetic cell system (MACS). The liver, spleen and lung were pathologically tested after injection of the fusion vaccine. To study the therapeutic and protective effect of the fusion vaccine against tumor EC109, mice were divided immune group and therapeutic group. The immune group was divided into P, E, D and ED subgroups, immunized by phosphate buffered solution (PBS), inactivated EC109,DC and the fusion vaccine respectively, and attacked by EC109 cells. The tumor size, weight, latent period and mouse survival period were recorded and statistically analyzed. The therapeutic group was divided into four subgroups: P, inactivated EC109,D and ED subgroups, which were attacked by EC109 and then treated with PBS, inactivated EC109,DC,and EC109-DC respectively. Pathology and flow cytometry were also used to study the therapeutic effect of the fusion vaccine against EC109 cells. RESULTS: Flow cytometry showed that the expression of folate receptor (FR), EC109, D Cs (D) in human nasopharyngeal carcinoma cell line (HNE1) (B) was 78.21%,89.50%,and 0.18%,respectively.The fusion cells were highly expressed. No tumor was found in the spleen, lung and liver after injection of the fusion vaccine. Human IgG was tested in peripheral blood lymphocytes (PBL). In the immune group, the latent period was longer in EC109-DC subgroup than in other subgroups, while the tumor size and weight were also smaller than those in ED subgroup. In the therapeutic group, the tumor size and weight were smaller in ED subgroup than in P, inactivated EC109 and DC subgroups. CONCLUSION: Fusion cells are highly expressed not only in FR but also in CD80.The fusion

  20. Cellular immune responses to respiratory viruses

    NARCIS (Netherlands)

    van Helden, M.J.G.

    2011-01-01

    When a respiratory virus successfully infects the lungs, cascades of immune responses are initiated aimed to remove the pathogen. Immediate non-specific protection is provided by the innate immune system and this reduces the viral load during the first days of infection. The adaptive immune response

  1. Tilapia show immunization response against Ich

    Science.gov (United States)

    This study compares the immune response of Nile tilapia and red tilapia against parasite Ichthyophthirius multifiliis (Ich) using a cohabitation challenge model. Both Nile and red tilapia showed strong immune response post immunization with live Ich theronts by IP injection or immersion. Blood serum...

  2. A genetic inference on cancer immune responsiveness

    OpenAIRE

    Wang, Ena; Uccellini, Lorenzo; Marincola, Francesco M.

    2012-01-01

    A cancer immune signature implicating good prognosis and responsiveness to immunotherapy was described that is observed also in other aspects of immune-mediated, tissue-specific destruction (TSD). Its determinism remains, however, elusive. Based on limited but unique clinical observations, we propose a multifactorial genetic model of human cancer immune responsiveness.

  3. The insect cellular immune response

    Institute of Scientific and Technical Information of China (English)

    Michael R. Strand

    2008-01-01

    The innate immune system of insects is divided into humoral defenses that include the production of soluble effector molecules and cellular defenses like phagocytosis and encapsulation that are mediated by hemocytes. This review summarizes current understanding of the cellular immune response. Insects produce several terminally differentiated types of hemocytes that are distinguished by morphology, molecular and antigenic markers, and function. The differentiated hemocytes that circulate in larval or nymphal stage insects arise from two sources: progenitor cells produced during embryogenesis and mesodermally derived hematopoietic organs. Regulation of hematopoiesis and hemocyte differentiation also involves several different signaling pathways. Phagocytosis and encapsulation require that hemocytes first recognize a given target as foreign followed by activation of downstream signaling and effector responses. A number of humoral and cellular receptors have been identified that recognize different microbes and multicellular parasites. In turn, activation of these receptors stimulates a number of signaling pathways that regulate different hemocyte functions. Recent studies also identify hemocytes as important sources of a number of humoral effector molecules required for killing different foreign invaders.

  4. Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms

    Institute of Scientific and Technical Information of China (English)

    Zhi-binLIN; Hui-naZHANG

    2004-01-01

    Ganoderma lucidum (G lucidum) is a medicinal fungus with a variety of biological activities. It has long been used as a folk remedy for promotion of health and longevity in China and other oriental countries. The most attractive character of this kind of medicinal fungus is its immunomodulatory and anti-tumor activities. Large numbers of studies have shown that G lucidum modulate many components of the immune system such as the antigen-presenting cells, NK cells, T and B lymphocytes. The water extract and the polysaccharides fraction of G lucidum exhibited significant anti-tumor effect in several tumor-bearing animals mainly through its immunoenhancing activity. Recent studies also showed that the alcohol extract or the triterpene fraction of G lucidum possessed antitumor effect, which seemed to be related to the cytotoxic activity against tumor cells directly. Preliminary study indicated that antiangiogenic effect may be involved antitumor activity of G lucidum.

  5. Interleukin-12 Gene Modification Exerts Anti-Tumor Effects on Murine Mammary Sarcoma Cell Line in vivo

    Institute of Scientific and Technical Information of China (English)

    Dan Li; Hong Yu; Tengfei Xu; Jinghua Li; Yunfang Sun; Wenqing Zhang

    2008-01-01

    The aim of this project was to investigate the anti-tumor effect of an IL-12 gene modified mammary sarcoma murine cell line, EMT6/IL-12, in mouse model. In this study, we transfected the recombinant eukaryotic plasmid encoding IL-12 gene (pcDNA6-p70) into EMT6 and obtained the IL-12 expressing EMT6/IL-12 cell line. Then EMT6/IL-12 cells were s.c. inoculated into mice. The recombinant vector treatment group was set as control. We then evaluated the inhibition of tumor growth and the anti-tumor immunity function in vivo such as cytotoxicity, proliferation of splenocytes and serial IFN-y level. And the percentage of IFN-y producing CD4 or CD8 T cells among splenocytes was also analyzed in tumor bearing mice. Our results showed that the growth of tumors was obviously inhibited in EMT6/IL-12 group. Moreover, the capacities of anti-tumor immunity were all significantly higher in EMT6/IL-12 group compared to the controls. The results of the present investigation support the notion that EMT6/IL-12 could exert gene therapy in tumor model by improving the anti-tumor cellular immunity. Cellular & Molecular Immunology. 2008;5(3):225-230.

  6. A HLA-A2-restricted CTL epitope induces anti-tumor effects against human lung cancer in mouse xenograft model.

    Science.gov (United States)

    Sher, Yuh-Pyng; Lin, Su-I; Chen, I-Hua; Liu, Hsin-Yu; Lin, Chen-Yuan; Chiang, I-Ping; Roffler, Steve; Chen, Hsin-Wei; Liu, Shih-Jen

    2016-01-01

    Cancer immunotherapy is attractive for antigen-specific T cell-mediated anti-tumor therapy, especially in induction of cytotoxic T lymphocytes. In this report, we evaluated human CTL epitope-induced anti-tumor effects in human lung cancer xenograft models. The tumor associated antigen L6 (TAL6) is highly expressed in human lung cancer cell lines and tumor specimens as compared to normal lung tissues. TAL6 derived peptides strongly inhibited tumor growth, cancer metastasis and prolonged survival time in HLA-A2 transgenic mice immunized with a formulation of T-helper (Th) peptide, synthetic CpG ODN, and adjuvant Montanide ISA-51 (ISA-51). Adoptive transfer of peptide-induced CTL cells from HLA-A2 transgenic mice into human tumor xenograft SCID mice significantly inhibited tumor growth. Furthermore, combination of CTL-peptide immunotherapy and gemcitabine additively improved the therapeutic effects. This pre-clinical evaluation model provides a useful platform to develop efficient immunotherapeutic drugs to treat lung cancer and demonstrates a promising strategy with benefit of antitumor immune responses worthy of further development in clinical trials. PMID:26621839

  7. Thermal ablation versus conventional regional hyperthermia has greater anti-tumor activity against melanoma in mice by upregulating CD4~+ cells and enhancing IL-2 secretion

    Institute of Scientific and Technical Information of China (English)

    Yingying Zhang; Wei Zhang; Cuanying Geng; Tongjun Lin; Xiaowen Wang; Lingyun Zhao; Jintian Tang

    2009-01-01

    To determine whether conventional hyperthermia (42-45℃) or ablation therapy (>50℃) achieves better synergistic effects on direct cytotoxicity and anti-tumor immunity,we compared the therapeutic effects of two hyperthermia temperatures,43 and 55℃,in terms of cytotoxicity and upregulation of immune functions in a mouse malignant melanoma model.Melanoma-bearing mice were treated by directly applying regional hyperthermia to the tumor nodule with a heating light at a temperature of 43℃ for 30 min or 55℃ for 10 min.The tumor growth curve and mice survival rate were observed.To investigate the hyperthermia-induced immunological response,peripheral blood CD4~+ and CD8~+ T cells and the serum IL-2 level were determined.Our results indicated that application of regional hyperthermia at the ablation temperature (such as 55℃) achieved better synergistic anti-tumor effects than did conventional hyperthermia (43℃).Significant increases in the number of peripheral blood CD4~+ T cells and the serum IL-2 level likely contributed to the underlying mechanism.

  8. Hypothalamic neurohormones and immune responses

    Science.gov (United States)

    Quintanar, J. Luis; Guzmán-Soto, Irene

    2013-01-01

    The aim of this review is to provide a comprehensive examination of the current literature describing the neural-immune interactions, with emphasis on the most recent findings of the effects of neurohormones on immune system. Particularly, the role of hypothalamic hormones such as Thyrotropin-releasing hormone (TRH), Corticotropin-releasing hormone (CRH) and Gonadotropin-releasing hormone (GnRH). In the past few years, interest has been raised in extrapituitary actions of these neurohormones due to their receptors have been found in many non-pituitary tissues. Also, the receptors are present in immune cells, suggesting an autocrine or paracrine role within the immune system. In general, these neurohormones have been reported to exert immunomodulatory effects on cell proliferation, immune mediators release and cell function. The implications of these findings in understanding the network of hypothalamic neuropeptides and immune system are discussed. PMID:23964208

  9. Induction of Anti-Tumor Immune Responses by Peptide Receptor Radionuclide Therapy with 177Lu-DOTATATE in a Murine Model of a Human Neuroendocrine Tumor

    Directory of Open Access Journals (Sweden)

    Michael Bzorek

    2013-10-01

    Full Text Available Peptide receptor radionuclide therapy (PRRT is a relatively new mode of internally targeted radiotherapy currently in clinical trials. In PRRT, ionizing radioisotopes conjugated to somatostatin analogues are targeted to neuroendocrine tumors (NETs via somatostatin receptors. Despite promising clinical results, very little is known about the mechanism of tumor control. By using NCI-H727 cells in an in vivo murine xenograft model of human NETs, we showed that 177Lu-DOTATATE PRRT led to increased infiltration of CD86+ antigen presenting cells into tumor tissue. We also found that following treatment with PRRT, there was significantly increased tumor infiltration by CD49b+/FasL+ NK cells potentially capable of tumor killing. Further investigation into the immunomodulatory effects of PRRT will be essential in improving treatment efficacy.

  10. Immune response to Encephalitozoon cuniculi infection

    OpenAIRE

    Khan, Imtiaz A.; Moretto, Magali; Weiss, Louis M.

    2001-01-01

    Microsporidia are obligate intracellular parasites, which can cause complications in immunocompromised individuals. Very little is known about the host immune response generated against these infectious agents. Encephalitozoon cuniculi is the best studied microsporidian and the protective immune response against this parasite is mediated by cytotoxic CD8+ T cells.

  11. Polarization of immune responses in fish

    NARCIS (Netherlands)

    Wiegertjes, Geert F.; Wentzel, Annelieke S.; Spaink, Herman P.; Elks, Philip M.; Fink, Inge R.

    2016-01-01

    In this review, we support taking polarized immune responses in teleost fish from a 'macrophage first' point of view, a hypothesis that reverts the dichotomous T helper (TH)1 and TH2 driving forces by building on the idea of conservation of innate immune responses in lower v

  12. Probiotics and lung immune responses.

    Science.gov (United States)

    Forsythe, Paul

    2014-01-01

    There is increasing interest in the potential for microbe-based therapeutic approaches to asthma and respiratory infection. However, to date, clinical trials of probiotics in the treatment of respiratory disease have met with limited success. It is becoming clear that to identify the true therapeutic potential of microbes we must move away from a purely empirical approach to clinical trials and adopt knowledge-based selection of candidate probiotics strains, dose, and means of administration. Animal models have played a key role in the identification of mechanisms underlying the immunomodulatory capacity of specific bacteria. Microbe-induced changes in dendritic cell phenotype and function appear key to orchestrating the multiple pathways, involving inter alia, T cells, natural killer cells, and alveolar macrophages, associated with the protective effect of probiotics. Moving forward, the development of knowledge-based strategies for microbe-based therapeutics in respiratory disease will be aided by greater understanding of how specific bacterial structural motifs activate unique combinations of pattern recognition receptors on dendritic cells and thus direct desired immune responses.

  13. Micronutrients influencing the immune response in leprosy

    Directory of Open Access Journals (Sweden)

    Cecília Maria Passos Vázquez

    2014-01-01

    Full Text Available Leprosy is a chronic infectious disease caused by Mycobacterium leprae, an intracellular bacillus of airborne transmission. The disease affects the skin and peripheral nerves and can cause neurological sequelae. The bacillus multiplies slowly in the host and the disease probably occurs due to malfunctioning in host immune response. This review addresses the role of some specific micronutrients in the immune response, such as Vitamins A, D, E, C, Zinc and Selenium, detailing their mechanisms of actions in infectious diseases, and in leprosy. The immune response to pathogens releases harmful substances, which lead to tissue damage. This review discusses how a decreased level of antioxidants may contribute to an increased oxidative stress and complications of infectious diseases and leprosy. As the nutrients have a regulatory effect in the innate and adaptative immune responses, a perfect balance in their concentrations is important to improve the immune response against the pathogens.

  14. Enhanced anti-tumor effect of a gene gun-delivered DNA vaccine encoding the human papillomavirus type 16 oncoproteins genetically fused to the herpes simplex virus glycoprotein D

    Directory of Open Access Journals (Sweden)

    M.O. Diniz

    2011-05-01

    Full Text Available Anti-cancer DNA vaccines have attracted growing interest as a simple and non-invasive method for both the treatment and prevention of tumors induced by human papillomaviruses. Nonetheless, the low immunogenicity of parenterally administered vaccines, particularly regarding the activation of cytotoxic CD8+ T cell responses, suggests that further improvements in both vaccine composition and administration routes are still required. In the present study, we report the immune responses and anti-tumor effects of a DNA vaccine (pgD-E7E6E5 expressing three proteins (E7, E6, and E5 of the human papillomavirus type 16 genetically fused to the glycoprotein D of the human herpes simplex virus type 1, which was administered to mice by the intradermal (id route using a gene gun. A single id dose of pgD-E7E6E5 (2 µg/dose induced a strong activation of E7-specific interferon-γ (INF-γ-producing CD8+ T cells and full prophylactic anti-tumor effects in the vaccinated mice. Three vaccine doses inhibited tumor growth in 70% of the mice with established tumors. In addition, a single vaccine dose consisting of the co-administration of pgD-E7E6E5 and the vector encoding interleukin-12 or granulocyte-macrophage colony-stimulating factor further enhanced the therapeutic anti-tumor effects and conferred protection to 60 and 50% of the vaccinated mice, respectively. In conclusion, id administration of pgD-E7E6E5 significantly enhanced the immunogenicity and anti-tumor effects of the DNA vaccine, representing a promising administration route for future clinical trials.

  15. Gene Therapy of Cancer: Induction of Anti-Tumor Immunity

    Institute of Scientific and Technical Information of China (English)

    Cheng Qian; Jesus Prieto

    2004-01-01

    Many malignancies lack satisfactory treatment and new therapeutic options are urgently needed. Gene therapy is a new modality to treat both inherited and acquired diseases based on the transfer of genetic material to the tissues. Different gene therapy strategies against cancers have been developed. A considerable number of preclinical studies indicate that a great variety of cancers are amenable to gene therapy. Among these strategies,induction of anti-tumorimmunity is the most promising approach. Gene therapy with cytokines has reached unprecedented success in preclinical models of cancer. Synergistic rather than additive effects have beendemonstrated by combination of gene transfer of cytokines/chemokines, costimulatory molecules or adoptive cell therapy. Recent progress in vector technology and in imaging techniques allowing in vivo assessment of gene expression will facilitate the development of clinical applications of gene therapy, a procedure which may have a notorious impact in the management of cancers lacking effective treatment.

  16. DNA vaccine encoding HPV-16 E7 with mutation in L-Y-C-Y-E pRb-binding motif induces potent anti-tumor responses in mice.

    Science.gov (United States)

    Bahrami, Armina Alagheband; Ghaemi, Amir; Tabarraei, Alijan; Sajadian, Azadeh; Gorji, Ali; Soleimanjahi, Hoorieh

    2014-09-01

    Cervical cancer is the second most common cancer among women worldwide and remains a clinical problem despite improvements in early detection and therapy. The human papillomavirus (HPV) type 16 (HPV16) E7 oncoprotein expressed in cervical carcinoma cells are considered as attractive tumor-specific antigen targets for immunotherapy. Since the transformation potential of the oncogenes, vaccination based of these oncogenes is not safe. In present study, DNA vaccine expressing the modified variant with mutation in pRb-binding motif of the HPV-16 E7 oncoprotein was generated. A novel modified E7 gene with mutation in LYCYE motif was designed and constructed and the immunogenicity and antitumor effect of therapeutic DNA vaccines encoding the mutant and wild type of E7 gene were investigated. The L-Y-C-Y-E pRb-binding motif of E7 proteins has been involved in the immortalization and transformation of the host cell. The results showed that the mutant and wild type HPV-16 E7 vectors expressed the desired protein. Furthermore, the immunological mechanism behind mutant E7 DNA vaccine can be attributed at least partially to increased cytotoxic T lymphocyte, accompanied by the up-regulation of Th1-cytokine IFN-γ and TNF-β and down-regulation of Th3-cytokine TGF-β. Immunized mice with mutant plasmid demonstrated significantly stronger cell immune responses and higher levels of tumor protection than wild-type E7 DNA vaccine. The results exhibit that modified E7 DNA vaccine may be a promising candidate for development of therapeutic vaccine against HPV-16 cancers.

  17. Epigenetics and the Adaptive Immune Response

    OpenAIRE

    Kondilis-Mangum, Hrisavgi D.; Wade, Paul A.

    2012-01-01

    Cells of the adaptive immune response undergo dynamic epigenetic changes as they develop and respond to immune challenge. Plasticity is a necessary prerequisite for the chromosomal dynamics of lineage specification, development, and the immune effector function of the mature cell types. The alterations in DNA methylation and histone modification that characterize activation may be integral to the generation of immunologic memory, thereby providing an advantage on secondary exposure to pathoge...

  18. The immune response to surgery and infection

    OpenAIRE

    Dąbrowska, Aleksandra M.; Słotwiński, Robert

    2014-01-01

    Surgical trauma affects both the innate and acquired immunity. The severity of immune disorders is proportional to the extent of surgical trauma and depends on a number of factors, including primarily the basic disease requiring surgical treatment (e.g. cancer), often coexisting infections and impaired nutritional status. Disorder of the immune response following surgical trauma may predispose to septic complications burdened with the highest mortality rate. Extensive surgery in cancer patien...

  19. Green synthesis and characterization of gold nanoparticles using extract of anti-tumor potent Crocus sativus

    Science.gov (United States)

    Vijayakumar, R.; Devi, V.; Adavallan, K.; Saranya, D.

    2011-12-01

    In the present study, we have explored anti-tumor potent Crocus sativus (saffron) as a reducing agent for one pot size controlled green synthesis of gold nanoparticles (AuNps) at ambient conditions. The nanoparticles were characterized using UV-vis, scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and FTIR analysis. The prepared AuNPs showed surface Plasmon resonance centered at 549 nm with average particle size of 15±5 nm. Stable, spherical and triangular crystalline AuNPs with well-defined dimensions were synthesized using anti-tumor potent Crocus sativus (saffron). Crystalline nature of the nanoparticles is confirmed from the HR-TEM, SAED and SEM images, and XRD patterns. From the FTIR spectra it is found that the biomolecules are responsible for capping in gold nanoparticles.

  20. Anti-tumor activities andapoptotic mechanism ofribosome-inactivating proteins

    Institute of Scientific and Technical Information of China (English)

    MeiqiZeng; ManyinZheng; DeshengLu; JunWang; WenqiJiang; OuSha

    2015-01-01

    Ribosome-inactivating proteins (RIPs) belong to a family of enzymes that attack eukaryotic ribosomes and potently inhibit cellular protein synthesis. RIPs possess several biomedical properties, including anti-viral and anti-tumor activi-ties. Multiple RIPs are known to inhibit tumor cell proliferation through inducing apoptosis in a variety of cancers, such as breast cancer, leukemia/lymphoma, and hepatoma. This review focuses on the anti-tumor activities of RIPs and their apoptotic effects through three closely related pathways: mitochondrial, death receptor, and endoplasmic reticulum pathways.

  1. Anti-Tumor Effect of Heat Shock Protein 70-Peptide Complexes on A-549 Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To investigate the anti-tumor immunity in vitro of heat shock protein 70-peptide complexes (HSP70-PC) from human lung cancer tissue. Methods: HSP70-PC was purified from lung tumor tissues and corresponding non-tumor lung samples with the methods of ADP-affinity chromatography, DEAE ion-exchange chromatography and Western-blot. The activation and proliferation of PBMC induced by different HSP70-PC and tumor cytotoxic reactivity to A549 cells in vitro were measured by the MTT cell proliferation assay. Results: The purified HSP70-PC had a very high purity found by SDS-PAGE and Western-blot. Human lymphocytes were sensitized efficiently by HSP70 preparation purified from lung cancer tissues and a definite cytotoxicity to A-549 cells was observed. There was significant difference with HSP70-PC purified from lung cancer, compared with the control group (P<0.001). Conclusion: High purity of HSP70-PC could be achieved from tumor tissues in this study. HSP70-PC purified from human tumor tissues can induce anti-tumor immunity in vitro mainly implemented by eliciting CTL immunity.

  2. Combination of treatment with death receptor 5-specific antibody with therapeutic HPV DNA vaccination generates enhanced therapeutic anti-tumor effects.

    Science.gov (United States)

    Tseng, Chih Wen; Monie, Archana; Trimble, Cornelia; Alvarez, Ronald D; Huh, Warner K; Buchsbaum, Donald J; Straughn, J Michael; Wang, Mei-Cheng; Yagita, Hideo; Hung, Chien-Fu; Wu, T-C

    2008-08-12

    There is currently a vital need for the development of novel therapeutic strategies for the control of advanced stage cancers. Antigen-specific immunotherapy and the employment of antibodies against the death receptor 5 (DR5) have emerged as two potentially promising strategies for cancer treatment. In the current study, we hypothesize that the combination of treatment with the anti-DR5 monoclonal antibody, MD5-1 with a DNA vaccine encoding calreticulin (CRT) linked to human papillomavirus type 16 (HPV-16) E7 antigen (CRT/E7(detox)) administered via gene gun would lead to further enhancement of E7-specific immune responses as well as anti-tumor effects. Our results indicated that mice bearing the E7-expressing tumor, TC-1 treated with MD5-1 monoclonal antibody followed by CRT/E7(detox) DNA vaccination generated the most potent therapeutic anti-tumor effects as well as highest levels of E7-specific CD8+ T cells among all the groups tested. In addition, treatment with MD5-1 monoclonal antibody was capable of rendering the TC-1 tumor cells more susceptible to lysis by E7-specific cytotoxic T lymphocytes. Our findings serve as an important foundation for future clinical translation.

  3. Exosomes in the Immune Response and Tolerance

    Institute of Scientific and Technical Information of China (English)

    修方明; 曹雪涛

    2004-01-01

    Exosomes, secreted by many live cells, are small non-cell vesicles with nanoparticle-grade size. In addition to the original function of discarding the uselessful membrane molecules, exosomes are involved in a range of immunoregulatory functions. Dendritic cell-derived exosomes and tumor-derived exosomes are the best characterized vesicles with potent antitumor effect by efficienfly inducing immune response. Down-regtdation of immune response or induction of immune tolerance is another interesting function of exosomes, Further functional studies of the exosomes will shed light on the application of exosomes。

  4. Synthesis and anti-tumor activity of alkenyl camptothecin esters

    Institute of Scientific and Technical Information of China (English)

    Zhi-song CAO; John MENDOZA; Albert DEJESUS; Beppino GIOVANELLA

    2005-01-01

    Aim: To study the degrees of influence of changing side ester chains at position C20 of camptothecin on the anti-tumor activity of the molecules. Methods: The esterification reaction of camptothecin 1 and 9-nitrocamptothecin 2 with crotonic anhydride in pyridine gave the corresponding esters 3 and 4, respectively. The acylation of 1 and 2 with cinnamoyl chloride gave products 7 and 8. Epoxidation reaction of 3 and 4 with m-chloroperoxybenzoic acid in benzene solvent gave the products 5 and 6. Esters 3, 4, and 5 were tested for anti-tumor activity against 14 human cancer cell lines. Results: Both in vitro and in vivo anti-tumor activity studies for these esters were conducted and the data demonstrated positive results, that is, these esters were active against the tested tumor lines. Conclusion: Alkenyl esters 3 and 4 showed strong anti-tumor activity in vitro against 14 different cancer cell lines. Ester 3 was active against human breast carcinoma in mice and the toxicity of the agent was not observed in mice during the treatment, implying that this agent is effective for treatment with low toxicity.

  5. Immune Response to Giardia duodenalis

    OpenAIRE

    Faubert, Gaétan

    2000-01-01

    The intestinal protozoan Giardia duodenalis is a widespread opportunistic parasite of humans and animals. This parasite inhabits the upper part of the small intestine and has a direct life cycle. After ingestion of cysts, which are the infective stage, the trophozoites emerge from the cysts in the duodenum and attach to the small intestinal mucosa of the host. Since the migration of trophozoites from the lumen of the intestine into surrounding tissues is an unusual occurrence, the immune resp...

  6. Plasticity of immunity in response to eating.

    Science.gov (United States)

    Luoma, Rachel L; Butler, Michael W; Stahlschmidt, Zachary R

    2016-07-01

    Following a meal, an animal can exhibit dramatic shifts in physiology and morphology, as well as a substantial increase in metabolic rate associated with the energetic costs of processing a meal (i.e. specific dynamic action, SDA). However, little is known about the effects of digestion on another important physiological and energetically costly trait: immune function. Thus, we tested two competing hypotheses. (1) Digesting animals up-regulate their immune systems (putatively in response to the increased microbial exposure associated with ingested food). (2) Digesting animals down-regulate their immune systems (presumably to allocate energy to the breakdown of food). We assayed innate immunity (lytic capacity and agglutination) in cornsnakes (Pantherophis guttatus) during and after meal digestion. Lytic capacity was higher in females, and (in support of our first hypothesis) agglutination was higher during absorption. Given its potential energetic cost, immune up-regulation may contribute to SDA. PMID:27099367

  7. Effect of cellular mobility on immune response

    Science.gov (United States)

    Pandey, R. B.; Mannion, R.; Ruskin, H. J.

    2000-08-01

    Mobility of cell types in our HIV immune response model is subject to an intrinsic mobility and an explicit directed mobility, which is governed by Pmob. We investigate how restricting the explicit mobility, while maintaining the innate mobility of a viral-infected cell, affects the model's results. We find that increasing the explicit mobility of the immune system cells leads to viral dominance for certain levels of viral mutation. We conclude that increasing immune system cellular mobility indirectly increases the virus’ inherent mobility.

  8. Targeting the tumor-draining area : local immunotherapy and its effect on the systemic T cell response

    NARCIS (Netherlands)

    Herbert-Fransen, Marieke Fernande

    2012-01-01

    This dissertation deals with the role of local immune stimulation in the lymph node and tumor microenvironment and its effect on systemic CD8+ T cell responses, in particular the anti-tumor CD8+ T cell responses. In chapter 2 the use of a slow-release system is described to deliver the immune-acti

  9. The immune responses of the coral

    OpenAIRE

    C Toledo-Hernández; CP Ruiz-Diaz

    2014-01-01

    Corals are among the most ancient extant animals on earth. Currently, coral viability is threatened, due in part to the increased number of diseases affecting them in recent decades. Understanding how the innate immune systems of corals function is important if we want to predict the fate of corals and their response to the environmental and biological changes they face. In this review we discuss the latest findings regarding the innate immune systems of corals. The review is organized follow...

  10. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4

    Directory of Open Access Journals (Sweden)

    Bo Yoon Chang

    2015-10-01

    Full Text Available Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE. MFE stimulated the production of cytokines, nitric oxide (NO and tumor necrosis factor-α (TNF-α and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase and nuclear factor-κB (NF-κB signaling pathways downstream from toll-like receptor (TLR 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK cell activity, cytotoxic T lymphocyte (CTL activity and IFN-γ production. Immunoglobulin G (IgG antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent.

  11. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4.

    Science.gov (United States)

    Chang, Bo Yoon; Kim, Seon Beom; Lee, Mi Kyeong; Park, Hyun; Kim, Sung Yeon

    2015-10-13

    Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE). MFE stimulated the production of cytokines, nitric oxide (NO) and tumor necrosis factor-α (TNF-α) and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase) and nuclear factor-κB (NF-κB) signaling pathways downstream from toll-like receptor (TLR) 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK) cell activity, cytotoxic T lymphocyte (CTL) activity and IFN-γ production. Immunoglobulin G (IgG) antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent.

  12. The immune responses of the coral

    Directory of Open Access Journals (Sweden)

    C Toledo-Hernández

    2014-11-01

    Full Text Available Corals are among the most ancient extant animals on earth. Currently, coral viability is threatened, due in part to the increased number of diseases affecting them in recent decades. Understanding how the innate immune systems of corals function is important if we want to predict the fate of corals and their response to the environmental and biological changes they face. In this review we discuss the latest findings regarding the innate immune systems of corals. The review is organized following the chronology of steps taken by corals from the initial encounter with a potential pathogen and recognition of threats to the orchestration of a response. We begin with the literature describing the repertory of immune-related receptors involved in the recognition of threats and the subsequent pathways leading to an immune response. We then review the effector responses that eliminate the threats described for corals. Finally, we acknowledge the literature of coral microbiology to access the potential role of microbes as an essential constituent of the coral immune system.

  13. Radiation triggering immune response and inflammation.

    Science.gov (United States)

    Hekim, Nezih; Cetin, Zafer; Nikitaki, Zacharenia; Cort, Aysegul; Saygili, Eyup Ilker

    2015-11-28

    Radiation therapy (RT) is a well-established but still under optimization branch of Cancer Therapy (CT). RT uses electromagnetic waves or charged particles in order to kill malignant cells, by accumulating the energy onto these cells. The issue at stake for RT, as well as for any other Cancer Therapy technique, is always to kill only cancer cells, without affecting the surrounding healthy ones. This perspective of CT is usually described under the terms "specificity" and "selectivity". Specificity and selectivity are the ideal goal, but the ideal is never entirely achieved. Thus, in addition to killing healthy cells, changes and effects are observed in the immune system after irradiation. In this review, we mainly focus on the effects of ionizing radiation on the immune system and its components like bone marrow. Additionally, we are interested in the effects and benefits of low-dose ionizing radiation on the hematopoiesis and immune response. Low dose radiation has been shown to induce biological responses like inflammatory responses, innate immune system activation and DNA repair (adaptive response). This review reveals the fact that there are many unanswered questions regarding the role of radiation as either an immune-activating (low dose) or immunosuppressive (high dose) agent.

  14. Immune Response to Ebola Virus Infection

    Directory of Open Access Journals (Sweden)

    Alain Alonso Remedios

    2016-06-01

    Full Text Available Ebola virus belongs to the family Filoviridae and causes a highly lethal hemorrhagic fever. Affected patients show an impaired immune response as a result of the evasion mechanisms employed by the virus. Cathepsin is an enzyme present in the granules of phagocytes which cleaves viral surface glycoproteins, allowing virus entry into the host cell. In addition, this virus is resistant to the antiviral effects of type I interferon, promotes the synthesis of proinflammatory cytokines and induces apoptosis of monocytes and lymphocytes. It also induces an incomplete activation of dendritic cells, thus avoiding the presentation of viral antigens. Although specific antibodies are produced after the first week, their neutralizing capacity is doubtful. The virus evades the immune response and replicates uncontrollably in the host. This paper aims to summarize the main characteristics of the immune response to Ebola virus infection.

  15. Antimicrobial peptides in innate immune responses.

    Science.gov (United States)

    Sørensen, Ole E; Borregaard, Niels; Cole, Alexander M

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain diseases like Crohn's disease and atopic dermatitis. AMPs are attractive candidates for development of novel antibiotics due to their in vivo activity profile and some peptides may serve as templates for further drug development.

  16. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain...... diseases like Crohn's disease and atopic dermatitis. AMPs are attractive candidates for development of novel antibiotics due to their in vivo activity profile and some peptides may serve as templates for further drug development Udgivelsesdato: 2008...

  17. Studies of Immune Responses in Candida vaginitis

    Science.gov (United States)

    De Bernardis, Flavia; Arancia, Silvia; Sandini, Silvia; Graziani, Sofia; Norelli, Sandro

    2015-01-01

    The widespread occurrence of vaginal candidiasis and the development of resistance against anti-fungal agents has stimulated interest in understanding the pathogenesis of this disease. The aim of our work was to characterize, in an animal model of vaginal candidiasis, the mechanisms that play a role in the induction of mucosal immunity against C. albicans and the interaction between innate and adaptive immunity. Our studies evidenced the elicitation of cell-mediated immunity (CMIs) and antibody (Abs)-mediated immunity with a Th1 protective immunity. An immune response of this magnitude in the vagina was very encouraging to identify the proper targets for new strategies for vaccination or immunotherapy of vaginal candidiasis. Overall, our data provide clear evidence that it is possible to prevent C. albicans vaginal infection by active intravaginal immunization with aspartyl proteinase expressed as recombinant protein. This opens the way to a modality for anti-Candida protection at the mucosa. The recombinant protein Sap2 was assembled with virosomes, and a vaccine PEVION7 (PEV7) was obtained. The results have given evidence that the vaccine, constituted of virosomes and Secretory aspartyl proteinase 2 (Sap2) (PEV7), has an encouraging therapeutic potential for the treatment of recurrent vulvovaginal candidiasis. PMID:26473934

  18. Damage signals in the insect immune response

    Directory of Open Access Journals (Sweden)

    Robert eKrautz

    2014-07-01

    Full Text Available Insects and mammals share an ancient innate immune system comprising both humoral and cellular responses. The insect immune system consists of the fat body, which secretes effector molecules into the hemolymph and several classes of hemocytes, which reside in the hemolymph and of protective border epithelia. Key features of wound- and immune responses are shared between insect and mammalian immune systems including the mode of activation by commonly shared microbial (nonself patterns and the recognition of these patterns by dedicated receptors. It is unclear how metazoan parasites in insects, which lack these shared motifs, are recognized. Research in recent years has demonstrated that during entry into the insect host, many eukaryotic pathogens leave traces that alert potential hosts of the damage they have afflicted. In accordance with terminology used in the mammalian immune systems, these signals have been dubbed danger- or damage-associated signals. Damage signals are necessary byproducts generated during entering hosts either by mechanical or proteolytic damage. Here, we briefly review the current stage of knowledge on how wound closure and wound healing during mechanical damage is regulated and how damage-related signals contribute to these processes. We also discuss how sensors of proteolytic activity induce insect innate immune responses. Strikingly damage-associated signals are also released from cells that have aberrant growth, including tumor cells. These signals may induce apoptosis in the damaged cells, the recruitment of immune cells to the aberrant tissue and even activate humoral responses. Thus, this ensures the removal of aberrant cells and compensatory proliferation to replace lost tissue. Several of these pathways may have been co-opted from wound healing and developmental processes.

  19. A nonequilibrium phase transition in immune response

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei; Qi An-Shen

    2004-01-01

    The dynamics of immune response correlated to signal transduction in immune thymic cells (T cells) is studied.In particular, the problem of the phosphorylation of the immune-receptor tyrosine-based activation motifs (ITAM) is explored. A nonlinear model is established on the basis of experimental observations. The behaviours of the model can be well analysed using the concepts of nonequilibrium phase transitions. In addition, the Riemann-Hugoniot cusp catastrophe is demonstrated by the model. Due to the application of the theory of nonequilibrium phase transitions,the biological phenomena can be clarified more precisely. The results can also be used to further explain the signal transduction and signal discrimination of an important type of immune T cell.

  20. Optically Triggered Immune Response through Photocaged Oligonucleotides

    Science.gov (United States)

    Govan, Jeane M.; Young, Douglas D.; Lively, Mark O.

    2015-01-01

    Bacterial and viral CpG oligonculeotides are unmethylated cytosine-phosphate-guanosine dinucleotide sequences and trigger an innate immune response through activation of the toll-like receptor 9 (TLR9). We have developed synthetic photocaged CpGs via site-specific incorporation of nitropiperonyloxymethyl (NPOM)-caged thymidine residues. These oligonucleotides enable the optical control of TLR9 function and thereby provide light-activation of an immune response. We provide a proof-of-concept model by applying a reporter assay in live cells and by quantification of endogenous production of interleukin 6. PMID:26034339

  1. Anti-tumor Action and Clinical Application of Proteasome Inhibitor

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong-ming; YU Mei-xia; LONG Hui; HUANG Shi-ang

    2008-01-01

    Ubiquitin-proteasome pathway mediates the degradation of cell protein,and cell cycle,gene translation and expression,antigen presentation and inflammatory development.Proteasome inhibitor Call inhibit growth and proliferation of tumor cell,induce apoptosis and reverse multipledrug resistance of tumor cell,increase the sensitivity of other chemomerapeutic drugs and radiotherapy,and is a novel class of potent anti-tumor agents.

  2. Granulomatous salmonella osteomyelitis associated with anti-tumor necrosis factor therapy in a non-sickle cell patient: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Elaine S.; Gilet, Anthony G. [State University of New York at Stony Brook, Department of Radiology, Stony Brook, NY (United States); Vigorita, Vincent J. [SUNY Health Sciences Center Brooklyn, Department of Pathology and Orthopedics, Brooklyn, NY (United States)

    2010-08-15

    Salmonella osteomyelitis is seen most commonly in patients with sickle cell disease and in those with compromised immune systems. We report on the clinical, histological and imaging findings of salmonella osteomyelitis with intraosseous abscess formation occurring in a non-sickle cell patient receiving anti-tumor necrosis factor (TNF) alpha therapy. (orig.)

  3. Immune response from a resource allocation perspective

    Directory of Open Access Journals (Sweden)

    Wendy Mercedes Rauw

    2012-12-01

    Full Text Available The immune system is a life history trait that can be expected to trade off against other life history traits. Whether or not a trait is considered to be a life history trait has consequences for the expectation on how it responds to natural selection and evolution; in addition, it may have consequences for the outcome of artificial selection when included in the breeding objective. The immune system involved in pathogen resistance comprises multiple mechanisms that define a host’s defensive capacity. Immune resistance involves employing mechanisms that either prevent pathogens from invading or eliminate the pathogens when they do invade. On the other hand, tolerance involves limiting the damage that is caused by the infection. Both tolerance and resistance traits require (reallocation of resources and carry physiological costs. Examples of trade-offs between immune function and growth, reproduction and stress response are provided in this review, in addition to consequences of selection for increased production on immune function and vice versa. Reaction norms are used to deal with questions of immune resistance versus tolerance to pathogens that relate host health to infection intensity. In essence, selection for immune tolerance in livestock is a particular case of selection for animal robustness. Since breeding goals that include robustness traits are required in the implementation of more sustainable agricultural production systems, it is of interest to investigate whether immune tolerance is a robustness trait that is positively correlated with overall animal robustness. Considerably more research is needed to estimate the shapes of the cost functions of different immune strategies, and investigate trade-offs and cross-over benefits of selection for disease resistance and/or disease tolerance in livestock production.

  4. Immunomodulatory and anti-tumor effects of Nigella glandulifera freyn and sint seeds on ehrlich ascites carcinoma in mouse model

    Directory of Open Access Journals (Sweden)

    Ainiwaer Aikemu

    2013-01-01

    Full Text Available Aim : This study investigated the immunomodulatory and anti-tumor effects of Nigella glandulifera Freyn and Sint seeds (NGS on Ehrlich ascites carcinoma in a mouse model. Materials and Methods : Kunming mice with transplanted Ehrlich ascites tumor cells (EAC were treated with NGS by oral administration. On the 11 th day after the EAC implant, mouse thymus, liver, spleen and kidney tumors were removed for histopathological analysis. Blood samples were taken for hematological and biochemical analyses. Results : The results indicate that NGS treatment leads to an increase in TNF-α, IL-1β, and IL-2 blood serum levels. Absence of viable EAC and presence of necrotic cells were observed in the tumor tissue of the NGS-treated animals. Conclusions : The study results indicated that a water extract of NGS had the highest anti-tumor effect. Moreover, NGS treatment also showed an increase in the immune system activity.

  5. Study on the Immunomodulation Effect of Isodon japonicus Extract via Splenocyte Function and NK Anti-Tumor Activity

    Directory of Open Access Journals (Sweden)

    Kyung-A Hwang

    2012-04-01

    Full Text Available Here we investigated the potential immune-enhancing activity of Isodon japonicus on murine splenocyte and natural-killer (NK cells in vitro. The ethanol extract of I. japonicus significantly enhanced the proliferation of splenocyte and induced the significant enhancement of NK cells’ activity against tumor cells (YAC-1. In addition, I. japonicus increased the production of interferon (IFN-γ and tumor necrosis factor (TNF-α, suggesting that the increase in NK cell cytotoxicity could be due to the enhancement of the NK cell production of both cytokines. Taken together, I. japonicus extract inhibited the growth of human leukemia cells (K562 by 74%. Our observation indicated that the anti-tumor effects of I. japonicus may be attributed to its ability to serve as a stimulant of NK anti-tumor activity. In addition, our results support the development of functional food studies on I. japonicus.

  6. Adaptive immune responses to Candida albicans infection.

    Science.gov (United States)

    Richardson, Jonathan P; Moyes, David L

    2015-01-01

    Fungal infections are becoming increasingly prevalent in the human population and contribute to morbidity and mortality in healthy and immunocompromised individuals respectively. Candida albicans is the most commonly encountered fungal pathogen of humans, and is frequently found on the mucosal surfaces of the body. Host defense against C. albicans is dependent upon a finely tuned implementation of innate and adaptive immune responses, enabling the host to neutralise the invading fungus. Central to this protection are the adaptive Th1 and Th17 cellular responses, which are considered paramount to successful immune defense against C. albicans infections, and enable tissue homeostasis to be maintained in the presence of colonising fungi. This review will highlight the recent advances in our understanding of adaptive immunity to Candida albicans infections.

  7. Enhancing Immune Responses for Cancer Therapy

    Institute of Scientific and Technical Information of China (English)

    Shao-An Xue; Hans J Stauss

    2007-01-01

    Although the immune system possesses the means to respond to cancer, it often fails to control the spread of malignancy. Nonetheless, equipping endogenous immunity to release a strong antitumor response has significant advantages over conventional therapies. This review explores some of the options available to accomplish this,focusing first on vaccinations with tumor antigens to stimulate the immune system and empower stronger antitumor responses. We then compare and contrast the so-far limited clinical success of vaccination with the well-documented curative potential of adoptive therapy using T lymphocytes transfer. Finally, we highlight novel approaches using T cell receptor (TCR) gene transfer strategy to exploit allogeneic T cell repertoires in conjunction with receptors selected in vitro for defined MHC/peptide combinations, as a basis for antigen-specific gene therapy of cancers.

  8. Differential regional immune response in Chagas disease.

    Directory of Open Access Journals (Sweden)

    Juliana de Meis

    Full Text Available Following infection, lymphocytes expand exponentially and differentiate into effector cells to control infection and coordinate the multiple effector arms of the immune response. Soon after this expansion, the majority of antigen-specific lymphocytes die, thus keeping homeostasis, and a small pool of memory cells develops, providing long-term immunity to subsequent reinfection. The extent of infection and rate of pathogen clearance are thought to determine both the magnitude of cell expansion and the homeostatic contraction to a stable number of memory cells. This straight correlation between the kinetics of T cell response and the dynamics of lymphoid tissue cell numbers is a constant feature in acute infections yielded by pathogens that are cleared during the course of response. However, the regional dynamics of the immune response mounted against pathogens that are able to establish a persistent infection remain poorly understood. Herein we discuss the differential lymphocyte dynamics in distinct central and peripheral lymphoid organs following acute infection by Trypanosoma cruzi, the causative agent of Chagas disease. While the thymus and mesenteric lymph nodes undergo a severe atrophy with massive lymphocyte depletion, the spleen and subcutaneous lymph nodes expand due to T and B cell activation/proliferation. These events are regulated by cytokines, as well as parasite-derived moieties. In this regard, identifying the molecular mechanisms underlying regional lymphocyte dynamics secondary to T. cruzi infection may hopefully contribute to the design of novel immune intervention strategies to control pathology in this infection.

  9. Immune Response in Mussels To Environmental Pollution.

    Science.gov (United States)

    Pryor, Stephen C.; Facher, Evan

    1997-01-01

    Describes the use of mussels in measuring the extent of chemical contamination and its variation in different coastal regions. Presents an experiment to introduce students to immune response and the effects of environmental pollution on marine organisms. Contains 14 references. (JRH)

  10. Vesicle trafficking in plant immune responses.

    Science.gov (United States)

    Robatzek, Silke

    2007-01-01

    In plants, perception of pathogen-associated molecular patterns at the surface is the first line of defence in cellular immunity. This review summarizes recent evidence of the involvement of vesicle trafficking in the plant's immune response against pathogens. I first discuss aspects of ligand-stimulated receptor endocytosis. The best-characterized pattern-recognition receptor (PRR), FLS2, is a transmembrane leucine-rich repeat receptor kinase that recognizes bacterial flagellin. FLS2 was recently shown to undergo internalization upon activation with its cognate ligand. An animal PRR, TLR4 that mediates perception of bacterial-derived lipopolysaccharides, similarly exhibits ligand-stimulated endocytosis. The second focus is N-ethylmaleimide-sensitive factor adaptor protein receptor (SNARE)-mediated immunity involving syntaxins and their cognate partners. One of the genes involved in basal immunity in Arabidopsis, PEN1, encodes a syntaxin that focally accumulates at fungal penetration sites, raising the possibility that induced exocytosis is important for active defence. Pathogen-triggered endocytic and exocytic processes have to be balanced to ensure host cell homeostasis. Thus, understanding how phytopathogens have evolved strategies to exploit host cell vesicle trafficking to manipulate immune responses is currently an area of intense study. PMID:17081192

  11. Ovine model for studying pulmonary immune responses

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Chanana, A.D.

    1984-11-25

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with /sup 125/I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables.

  12. Ovine model for studying pulmonary immune responses

    International Nuclear Information System (INIS)

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with 125I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables

  13. Purif ied Protein Fraction of Garlic Extract Modulates Cellular Immune Response against Breast Transplanted Tumors in BALB/c Mice Model

    Directory of Open Access Journals (Sweden)

    Narges Zare Mehrjardi

    2013-01-01

    Full Text Available Objective: Garlic (Allium sativum has anti-inflammatory, anti-mutagenesis, and immunomodulatory properties that modulate anti-tumor immunity and inhibit tumor growth. In this study we have examined the effect of a protein fraction isolated from fresh garlic on anti-tumor response and intra-tumor lymphocyte infiltration.Materials and Methods: In this experimental study a protein fraction was purified from fresh garlic bulbs using ultra-filtration, followed by chromatofocusing, and SDS-PAGE analysis. Anti-tumor activity was assessed by intra-tumor injection of the protein fraction and garlic extract, itself, into groups of 5 mice each. The percentage of peripheral blood and intra-tumor CD4+ and CD8+ cells were assessed by flow cytometry. Unpaired student’s t test using the SPSS program was applied for all statistical analyses.Results: Garlic extract included different type of proteins with different molecular weight. One of protein’s fraction was immunomodeulator and was composed of three single polypeptides, with molecular masses of ~10-13 kDa and different isoelectric points (pI. These molecules augmented the delayed type hypersensitivity (DTH response compared to the control group. Intra-tumor injection of the fraction provoked a significant increase in the CD8+ subpopulation of T-lymphocytes, as well as a decrease in tumor size. The fraction increased peripheral blood CD8+ T-lymphocytes in treated animals.Conclusion: The data confirms that protein fractions purified from fresh garlic bulbs augment CD8+ T-cell infiltration into the tumor site, inhibiting tumor growth more efficiently than garlic extract. These fi ndings provide a basis for further investigations on the purified polypeptide as a useful candidate for immunomodulation and tumor treatment.

  14. Treatment response, drug survival, and predictors thereof in 764 patients with psoriatic arthritis treated with anti-tumor necrosis factor α therapy: results from the nationwide Danish DANBIO registry

    DEFF Research Database (Denmark)

    Glintborg, Bente; Østergaard, Mikkel; Krogh, Niels Steen;

    2011-01-01

    Objective To investigate disease activity, treatment response, and drug survival, and predictors thereof, among Danish patients with psoriatic arthritis (PsA) receiving their first treatment series with a tumor necrosis factor a (TNFa) inhibitor. Methods Patients with PsA were identified from...... a prospective nationwide rheumatologic database, the Danish biologics registry DANBIO, using data registered from 2000–2009. Information was obtained on the patients' clinical response to anti-TNFa treatment (defined as achievement of the American College of Rheumatology 20% [ACR20], ACR50, and ACR70...... improvement criteria or a European League Against Rheumatism [EULAR] good response at least once during the first 6 months of treatment) and duration and rate of drug adherence (referred to as drug survival), as well as predictors thereof. Results Of 764 patients with PsA, 320 received adalimumab, 260...

  15. Downregulation of CD4+CD25+ regulatory T cells may underlie enhanced Th1 immunity caused by immunization with activated autologous T cells

    Institute of Scientific and Technical Information of China (English)

    Qi Cao; Dangsheng Li; Ningli Li; Li Wang; Fang Du; Huiming Sheng; Yan Zhang; Juanjuan Wu; Baihua Shen; Tianwei Shen; Jingwu Zhang

    2007-01-01

    Regulatory T cells (Treg) play important roles in immune system homeostasis, and may also be involved in tumor immunotolerance by suppressing Thl immune response which is involved in anti-tumor immunity. We have previously reported that immunization with attenuated activated autologous T cells leads to enhanced anti-tumor immunity and upregulated Thl responses in vivo. However, the underlying molecular mechanisms are not well understood. Here we show that Treg function was significantly downregulated in mice that received immunization of attenuated activated autologous T cells. We found that Foxp3 expression decreased in CD4+CD25+ T cells from the immunized mice. Moreover, CD4+CD25+Foxp3+ Treg obtained from immunized mice exhibited diminished immunosuppression ability compared to those from naive mice. Further analysis showed that the serum of immunized mice contains a high level of anti-CD25 antibody (about 30 ng/ml,/K0.01 vs controls). Consistent with a role of anti-CD25 response in the down-regulation of Treg, adoptive transfer of serum from immunized mice to naive mice led to a significant decrease in Treg population and function in recipient mice. The triggering of anti-CD25 response in immunized mice can be explained by the fact that CD25 was induced to a high level in the ConA activated autologous T cells used for immunization. Our results demonstrate for the first time that immunization with attenuated activated autologous T cells evokes anti-CD25 antibody production, which leads to impeded CD4+CD25+Foxp3+ Treg expansion and function in vivo. We suggest that dampened Treg function likely contributes to enhanced Thl response in immunized mice and is at least part of the mechanism underlying the boosted anti-tumor immunity.

  16. Chitin modulates innate immune responses of keratinocytes.

    Directory of Open Access Journals (Sweden)

    Barbara Koller

    Full Text Available BACKGROUND: Chitin, after cellulose the second most abundant polysaccharide in nature, is an essential component of exoskeletons of crabs, shrimps and insects and protects these organisms from harsh conditions in their environment. Unexpectedly, chitin has been found to activate innate immune cells and to elicit murine airway inflammation. The skin represents the outer barrier of the human host defense and is in frequent contact with chitin-bearing organisms, such as house-dust mites or flies. The effects of chitin on keratinocytes, however, are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We hypothesized that chitin stimulates keratinocytes and thereby modulates the innate immune response of the skin. Here we show that chitin is bioactive on primary and immortalized keratinocytes by triggering production of pro-inflammatory cytokines and chemokines. Chitin stimulation further induced the expression of the Toll-like receptor (TLR TLR4 on keratinocytes at mRNA and protein level. Chitin-induced effects were mainly abrogated when TLR2 was blocked, suggesting that TLR2 senses chitin on keratinocytes. CONCLUSIONS/SIGNIFICANCE: We speculate that chitin-bearing organisms modulate the innate immune response towards pathogens by upregulating secretion of cytokines and chemokines and expression of MyD88-associated TLRs, two major components of innate immunity. The clinical relevance of this mechanism remains to be defined.

  17. Secondary specific immune response in vitro to MSV tumor cells.

    Science.gov (United States)

    Senik, A; Hebrero, F P; Levy, J P

    1975-12-15

    The interactions which occur between antigenic tumor cells and normal or immune lymphoid cells in a 3-day in vitro culture, have been studied with a murine sarcoma virus (MSV)-induced tumor. The 3H-thymidine incorporation of lymphoma cells growing in suspension, and the radioactive-chromium release of freshly sampled lymphoma cells regularly added to the culture, have been compared to determine the part played by immune lymphoid cells in cytolysis and cytostasis of the tumor-cell population. The cytolytic activity increases in the culture from day 0 to day 3. It is due, predominantly, to T-cells, and remains specific to antigens shared by MSV tumors and related lymphomas. This activity would be difficult to detect unless freshly sampled ascitic cells were used as targets, since the lymphoma cells spontaneously lose a part of their sensitivity to immune cytolysis during in vitro culture. The method used in the present experiments is a secondary chromium release test (SCRT), which measures the invitro secondary stimulation of cytotoxic T-lymphocytes (CTL) by tumor cells. In the absence of stimulatory cells, the CTL activity would have rapidly fallen in vitro. The cytostatic activity also increases during the 3 days in vitro, in parallel to the cytolytic activity: it is due to non-T-cells and remains mainly non-specific. The significance of these data for the interpretation of invitro demonstrated cell-mediated anti-tumor immune reactions is briefly discussed, as well as their relevance in the in vivo role of immune CTL. PMID:53210

  18. Compositions and anti-tumor activity of Pyropolyporus fomentarius petroleum ether fraction in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Yanhua Zhang

    Full Text Available The chemical compositions and anti-tumor activities of the petroleum ether fraction (PE, from mushroom Pyropolyporus fomentarius, were studied. Upon gas chromatography-mass spectrometry (GC-MS analysis, nine major constituents were identified in the fraction. In vitro, the PE showed cytotoxic activity against murine sarcoma S180 (S180 cells in a dose- and time-dependent manner, and the cytotoxic effects were associated with apoptosis. The mitochondrial membrane potential loss and the intracellular ROS generation were greatly increased in the Pyropolyporus fomentarius PE treated group, suggesting cell apoptosis, induced by the PE in S180 cells, might be mitochondria dependent and ROS mediated. Consistent with in vitro findings, the in vivo study showed that the Pyropolyporus fomentarius PE was also effective in inhibiting the tumor growth induced by S180 cells and had lower immune organ toxicity. We found that the Pyropolyporus fomentarius PE has significant anti-tumor activity and great potential in screening anti-tumor drugs.

  19. Down-regulation of IKKβ expression in glioma-infiltrating microglia/macrophages is associated with defective inflammatory/immune gene responses in glioblastoma.

    Science.gov (United States)

    Mieczkowski, Jakub; Kocyk, Marta; Nauman, Pawel; Gabrusiewicz, Konrad; Sielska, Małgorzata; Przanowski, Piotr; Maleszewska, Marta; Rajan, Wenson D; Pszczolkowska, Dominika; Tykocki, Tomasz; Grajkowska, Wieslawa; Kotulska, Katarzyna; Roszkowski, Marcin; Kostkiewicz, Boguslaw; Kaminska, Bozena

    2015-10-20

    Glioblastoma (GBM) is an aggressive malignancy associated with profound host immunosuppression. Microglia and macrophages infiltrating GBM acquire the pro-tumorigenic, M2 phenotype and support tumor invasion, proliferation, survival, angiogenesis and block immune responses both locally and systematically. Mechanisms responsible for immunological deficits in GBM patients are poorly understood. We analyzed immune/inflammatory gene expression in five datasets of low and high grade gliomas, and performed Gene Ontology and signaling pathway analyses to identify defective transcriptional responses. The expression of many immune/inflammatory response and TLR signaling pathway genes was reduced in high grade gliomas compared to low grade gliomas. In particular, we found the reduced expression of the IKBKB, a gene coding for IKKβ, which phosphorylates IκB proteins and represents a convergence point for most signal transduction pathways leading to NFκB activation. The reduced IKBKB expression and IKKβ levels in GBM tissues were demonstrated by qPCR, Western blotting and immunohistochemistry. The IKKβ expression was down-regulated in microglia/macrophages infiltrating glioblastoma. NFκB activation, prominent in microglia/macrophages infiltrating low grade gliomas, was reduced in microglia/macrophages in glioblastoma tissues. Down-regulation of IKBKB expression and NFκB signaling in microglia/macrophages infiltrating glioblastoma correlates with defective expression of immune/inflammatory genes and M2 polarization that may result in the global impairment of anti-tumor immune responses in glioblastoma.

  20. A WKYMVm-containing combination elicits potent anti-tumor activity in heterotopic cancer animal model.

    Directory of Open Access Journals (Sweden)

    Sang Doo Kim

    Full Text Available The development of efficient anti-cancer therapy has been a topic of intense interest for several decades. Combined administration of certain molecules and immune cells has been shown to be an effective form of anti-cancer therapy. Here, we examined the effects of administering an immune stimulating peptide (WKYMVm, 5-fluoro-uracil (5-FU, and mature dendritic cells (mDCs against heterotopic cancer animal model. Administration of the triple combination strongly reduced tumor volume in CT-26-inoculated heterotopic cancer animal model. The induced anti-tumor activity was well correlated with FAS expression, caspase-3 activation, and cancer cell apoptosis. The triple combination treatment caused recruitment of CD8 T lymphocytes and natural killer (NK cells into the tumor. The production of two cytokines, IFN-γ and IL-12, were strongly stimulated by administration of the triple combination. Depletion of CD8 T lymphocytes or NK cells by administration of anti-CD8 or anti-asialoGM1 antibody inhibited the anti-tumor activity and cytokine production of the triple combination. The triple combination strongly inhibited metastasis of colon cancer cells in a heterotopic cancer animal model as well as in a metastatic cancer animal model, and enhanced the survival rate of the mice model. Adoptive transfer of CD8 T lymphocytes and NK cells further increased the survival rate. Taken together, we suggest that the use of triple combination therapy of WKYMVm, 5-FU, and mDCs may have implications in solid tumor and metastasis treatment.

  1. Cyclophosphamide chemotherapy sensitizes tumor cells to TRAIL-dependent CD8 T cell-mediated immune attack resulting in suppression of tumor growth.

    Directory of Open Access Journals (Sweden)

    Robbert G van der Most

    Full Text Available BACKGROUND: Anti-cancer chemotherapy can be simultaneously lymphodepleting and immunostimulatory. Pre-clinical models clearly demonstrate that chemotherapy can synergize with immunotherapy, raising the question how the immune system can be mobilized to generate anti-tumor immune responses in the context of chemotherapy. METHODS AND FINDINGS: We used a mouse model of malignant mesothelioma, AB1-HA, to investigate T cell-dependent tumor resolution after chemotherapy. Established AB1-HA tumors were cured by a single dose of cyclophosphamide in a CD8 T cell- and NK cell-dependent manner. This treatment was associated with an IFN-alpha/beta response and a profound negative impact on the anti-tumor and total CD8 T cell responses. Despite this negative effect, CD8 T cells were essential for curative responses. The important effector molecules used by the anti-tumor immune response included IFN-gamma and TRAIL. The importance of TRAIL was supported by experiments in nude mice where the lack of functional T cells could be compensated by agonistic anti-TRAIL-receptor (DR5 antibodies. CONCLUSION: The data support a model in which chemotherapy sensitizes tumor cells for T cell-, and possibly NK cell-, mediated apoptosis. A key role of tumor cell sensitization to immune attack is supported by the role of TRAIL in tumor resolution and explains the paradox of successful CD8 T cell-dependent anti-tumor responses in the absence of CD8 T cell expansion.

  2. Regulatory T cells in cutaneous immune responses.

    OpenAIRE

    Honda, Tetsuya; MIYACHI, YOSHIKI; Kabashima, Kenji

    2011-01-01

    Regulatory T cells (Treg) are a subset of T cells with strong immunosuppressive activity. In the skin, it has recently been revealed that Treg play important roles not only in the maintenance of skin homeostasis but also in the regulation of the immune responses, such as contact hypersensitivity and atopic dermatitis. Furthermore, the skin plays important roles in the induction of Treg in the periphery. In this review, we will provide an overview of the mechanism of Treg-mediated immunosuppre...

  3. Chimeric peptide containing both B and T cells epitope of tumor-associated antigen L6 enhances anti-tumor effects in HLA-A2 transgenic mice.

    Science.gov (United States)

    Lin, Su-I; Huang, Ming-Hsi; Chang, Yu-Wen; Chen, I-Hua; Roffler, Steve; Chen, Bing-Mae; Sher, Yuh-Pyng; Liu, Shih-Jen

    2016-07-28

    Synthetic peptides are attractive for cancer immunotherapy because of their safety and flexibility. In this report, we identified a new B cell epitope of tumor-associated antigen L6 (TAL6) that could induce antibody-dependent cellular cytotoxicity (ADCC) in vivo. We incorporated the B cell epitope with a cytotoxic T lymphocyte (CTL) and a helper T (Th) epitope to form a chimeric long peptide. We formulated the chimeric peptide with different adjuvants to immunize HLA-A2 transgenic mice and evaluate their immunogenicity. The chimeric peptide formulated with an emulsion type nanoparticle (PELC) adjuvant and a toll-like receptor 9 agonist (CpG ODN) (PELC/CpG) induced the greatest ADCC and CTL responses. The induced anti-tumor immunity inhibited the growth of TAL6-positive cancer cells. Moreover, we observed that immunization with the chimeric peptide inhibited cancer cell migration in vitro and metastasis in vivo. These data suggest that a chimeric peptide containing both B and T cell epitopes of TAL6 formulated with PELC/CpG adjuvant is feasible for cancer immunotherapy. PMID:27130449

  4. Protective immune responses in lawsonia intracellularis infections

    DEFF Research Database (Denmark)

    Cordes, Henriette; Riber, Ulla; Boutrup, Torsten;

    , that a primary L. intracellularis experimental infection in pigs protects against re-colonisation (re-infection) with a virulent L. intracellularis isolate. After re-infection the animals had reduced L. intracellularis colonisation of the intestinal mucosa compared to controls, no bacterial shedding......, but exhibited a high, but short-lasting peak after re-infection. Specific IFN responses were also measured using a whole blood IFN-γ assay. These were very high in challenge infected and re-infected animals as compared to controls. These specific immune responses may contribute to the explanation of mechanisms...... behind the observed protection against re-infection with L. intracellularis....

  5. A Recent Study of Anti-tumor Herbal Acupuncture in Korea

    OpenAIRE

    Hwa-Seung Yoo; Sun-hwi Bang; Chong-Kwan Cho

    2006-01-01

    Objectives : This systematic review summarizes the existing evidence on anti-tumor herbal acupuncture in South Korea. Methods : Literature searches were conducted in four databases. All studies of anti-tumor herbal acupuncture which has been published in South Korea until May, 2006 were included. Data were extracted according to pre-defined criteria by two independent reviewers. Results : We found 73 papers related to anti-tumor herbal acupuncture in South Korea. Seventy of seventy-thre...

  6. A study on recent tendency of anti-tumor herbal acupuncture

    OpenAIRE

    Yoo Hwa-Seung; Lee Yong-Yeon; Cho Jung-Hyo; Lee Yeon-Weol; Son Chang-Gue; Cho Chong-Kwan; Hwang Kyu-Jeong

    2001-01-01

    Objectives: The purpose of this study is to develop and activate anti-tumor herbal acupuncture for cancer patients in South Korea. Methods: We investigated some literatures on anti-tumor herbal acupuncture which is used in South Korea and China, and made diagrams. Results: The results are summarized as follows. Anti-tumor herbal acupuncture is one of the traditional oriental medical method which is effective for cancer patients. In domestic studies, most of herb materials are belong to ...

  7. Flavobacterium psychrophilum - Experimental challenge and immune response

    DEFF Research Database (Denmark)

    Henriksen, Maya Maria Mihályi

    The disease rainbow trout fry syndrome (RTFS) is caused by the bacterial fish pathogen Flavobacterium psychrophilum. It has been the cause of great losses of rainbow trout in aquacultures both in Denmark and around the world. It was estimated that RTFS resulted in the death of 88 million fry...... the immune system of the fry is not fully developed. Theoretically, the infection pressure could be subdued by vaccinating larger fish, but no commercial vaccine is yet available. Diagnostic methods are well described and the disease is treated with antibiotics. To prevent disease outbreaks and subsequent...... and periods without disease. The main purpose and focus of the present thesis was to increase knowledge of the immune response following infection with F. psychrophilum, which may contribute to the future development of vaccines and other preventive measures. The project consisted of three main tasks: 1...

  8. Recognition of melanoma-derived antigens by CTL: possible mechanisms involved in down-regulating anti-tumor T-cell reactivity

    DEFF Research Database (Denmark)

    Rivoltini, L; Loftus, D J; Squarcina, P;

    1998-01-01

    immunotherapeuties capable of significantly impacting disease outcome, it is necessary to identify the potential mechanisms responsible for the failure of some antigens to mediate significant anti-tumor responses in vivo. In the case of the MART-1(27-35) epitope, we hypothesize that one of these mechanisms may be...

  9. Immune response associated with nonmelanoma skin cancer.

    Science.gov (United States)

    Strickland, F M; Kripke, M L

    1997-10-01

    It is now clear that UV radiation causes nonmelanoma skin cancer in at least two ways: by causing permanent changes in the genetic code and by preventing immunologic recognition of mutant cells. These are interacting rather than separate mechanisms. Damage to DNA results in disregulation of cellular proliferation and initiates immune suppression by stimulating the production of suppressive cytokines. These cytokines contribute to the loss of immunosurveillance. Ultraviolet radiation has both local and systemic immunosuppressive effects. Locally, it depletes and alters antigen-presenting LC at the site of UV irradiation. Systemic suppression results when Ts cells are induced, by altered LC, by inflammatory macrophages that enter the skin following UV irradiation, or by the action of cytokines. Damage to DNA appears to be one of the triggering events in inducing systemic immunosuppression via the release of immunosuppressive cytokines and mediators. Immunologic approaches to treating skin cancers so far have concentrated on nonspecifically stimulating immune cells that infiltrate these tumors, but induction of specific immune responses against these tumors with antitumor vaccines has received little attention as yet. Preventive measures include sun avoidance and the use of sunscreens to prevent DNA damage by UV light. Future strategies may employ means to reverse UV-induced immunosuppression by using anti-inflammatory agents, biologicals that accelerate DNA repair or prevent the generation of immunosuppressive cytokines, and specific immunotherapy with tumor antigens. New approaches for studying the immunology of human skin cancers are needed to accelerate progress in this field.

  10. MECHANISMS OF IMMUNE RESPONSES IN CNIDARIANS

    Directory of Open Access Journals (Sweden)

    Iván Darío Ocampo

    2014-12-01

    Full Text Available The immune system maintains the integrity of the organisms through a complex network of molecules, cells, and tissues that recognize internal or external antigenic substances to neutralized and eliminate them. The mechanisms of immune response have evolved in a modular fashion, where members of a given module interact strongly among them, but weakly with members of other modules, providing robustness and evolvability to the immune system. Ancestral modules are the raw material for the generation of new modules through evolution. Thus, the study of immune systems in basal metazoans such as cnidarians seeks to determine the basic tool kit from which the metazoans started to construct their immune systems. In addition, understanding the immune mechanisms in cnidarians contributes to decipher the etiopathology of coral diseases of infectious nature that are affecting coral reefs worldwide.RESUMENEl sistema inmune mantiene la integridad de los organismos vivos por medio de una red compleja de moléculas, células y tejidos que reconocen sustancias antigénicas internas o externas para neutralizarlas y eliminarlas. Los mecanismos de respuesta inmune han evolucionado de una manera modular, en donde miembros de un módulo dado interactúan fuertemente entre sí, pero débilmente con componentes de otros módulos, otorgando así robustez y potencial evolutivo al sistema inmune. Módulos ancestrales representan el material básico para la generación de nuevos módulos durante el proceso evolutivo. Así, el estudio de sistemas inmunes en metazoarios basales como los cnidarios busca determinar cuales son los módulos ancestrales a partir de los cuales se constituyen los sistemas inmunes de animales derivados. Adicionalmente, el entendimiento de los mecanismos de respuesta inmune en cnidarios eventualmente contribuirá a descifrar la etiopatología de las enfermedades de corales de carácter infeccioso que está afectando los corales en el mundo.

  11. Immune Response of Amebiasis and Immune Evasion by Entamoeba histolytica.

    Science.gov (United States)

    Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2016-01-01

    Entamoeba histolytica is a protozoan parasite and the causative agent of amebiasis. It is estimated approximately 1% of humans are infected with E. histolytica, resulting in an estimate of 100,000 deaths annually. Clinical manifestations of amebic infection range widely from asymptomatic to severe symptoms, including dysentery and extra-intestinal abscesses. Like other infectious diseases, it is assumed that only ~20% of infected individuals develop symptoms, and genetic factors of both the parasite and humans as well as the environmental factors, e.g., microbiota, determine outcome of infection. There are multiple essential steps in amebic infection: degradation of and invasion into the mucosal layer, adherence to the intestinal epithelium, invasion into the tissues, and dissemination to other organs. While the mechanisms of invasion and destruction of the host tissues by the amebae during infection have been elucidated at the molecular levels, it remains largely uncharacterized how the parasite survive in the host by evading and attacking host immune system. Recently, the strategies for immune evasion by the parasite have been unraveled, including immunomodulation to suppress IFN-γ production, elimination of immune cells and soluble immune mediators, and metabolic alterations against reactive oxygen and nitrogen species to fend off the attack from immune system. In this review, we summarized the latest knowledge on immune reaction and immune evasion during amebiasis. PMID:27242782

  12. Enhanced antitumoral efficacy and immune response following conditionally replicative adenovirus containing constitutive HSF1 delivery to rodent tumors

    Directory of Open Access Journals (Sweden)

    Fan Rong

    2012-05-01

    Full Text Available Abstract Background Oncolytic adenoviruses are promising as anticancer agents but have limited clinical responses. Our previous study showed that heat shock transcription factor 1 (HSF1 overexpression could increase the anti-tumor efficacy of E1B55kD deleted oncolytic adenovirus through increasing the viral burst. Due to the important roles of heat shock proteins (HSPs in eliciting innate and adaptive immunity, we reasoned that besides increasing the viral burst, HSF1 may also play a role in increasing tumor specific immune response. Methods In the present study, intra-dermal murine models of melanoma (B16 and colorectal carcinoma (CT26 were treated with E1B55kD deleted oncolytic adenovirus Adel55 or Adel55 incorporated with cHSF1, HSF1i, HSP70, or HSP90 by intra-tumoral injection. Tumors were surgically excised 72 h post injection and animals were analyzed for tumor resistance and survival rate. Results Approximately 95% of animals in the Adel55-cHSF1 treated group showed sustained resistance upon re-challenge with autologous tumor cells, but not in PBS, Adel55, or Adel55-HSF1i treated groups. Only 50–65% animals in the Adel55-HSP70 and Adel55-HSP90 treated group showed tumor resistance. Tumor resistance was associated with development of tumor type specific cellular immune responses. Adel55-cHSF1 treatment also showed higher efficacy in diminishing progression of the secondary tumor focus than Adel55-HSP70 or Adel55-HSP90 treatment. Conclusions Besides by increasing its burst in tumor cells, cHSF1 could also augment the potential of E1B55kD deleted oncolytic adenovirus by increasing the tumor-specific immune response, which is beneficial to prevent tumor recurrence. cHSF1 is a better gene for neoadjuvant immunotherapy than other heat shock protein genes.

  13. Intratumoral injection of Propionibacterium acnes suppresses malignant melanoma by enhancing Th1 immune responses.

    Directory of Open Access Journals (Sweden)

    Kenshiro Tsuda

    Full Text Available Malignant melanoma (MM is an aggressive cutaneous malignancy associated with poor prognosis; many putatively therapeutic agents have been administered, but with mostly unsuccessful results. Propionibacterium acnes (P. acnes is an aerotolerant anaerobic gram-positive bacteria that causes acne and inflammation. After being engulfed and processed by phagocytes, P. acnes induces a strong Th1-type cytokine immune response by producing cytokines such as IL-12, IFN-γ and TNF-α. The characteristic Th2-mediated allergic response can be counteracted by Th1 cytokines induced by P. acnes injection. This inflammatory response induced by P. acnes has been suggested to have antitumor activity, but its effect on MM has not been fully evaluated.We analyzed the anti-tumor activity of P. acnes vaccination in a mouse model of MM. Intratumoral administration of P. acnes successfully protected the host against melanoma progression in vivo by inducing both cutaneous and systemic Th1 type cytokine expression, including TNF-α and IFN-γ, which are associated with subcutaneous granuloma formation. P. acnes-treated tumor lesions were infiltrated with TNF-α and IFN-γ positive T cells. In the spleen, TNF-α as well as IFN-γ producing CD8(+T cells were increased, and interestingly, the number of monocytes was also increased following P. acnes administration. These observations suggest that P. acnes vaccination induces both systemic and local antitumor responses. In conclusion, this study shows that P. acnes vaccination may be a potent therapeutic alternative in MM.

  14. Seasonal changes in human immune responses to malaria

    DEFF Research Database (Denmark)

    Hviid, L; Theander, T G

    1993-01-01

    to apparent immune depression. However, recent data have shown that seasonal variation in cellular immune responses may occur even in the absence of detectable porositaemia. Here, Lars Hviid and Thor G. Theonder review the seasonal variation in human immune responses to malaria, and discuss its possible...

  15. Neuroendocrine and Immune System Responses with Spaceflights

    Science.gov (United States)

    Tipton, Charles M.; Greenleaf, John E.; Jackson, Catherine G. R.

    1996-01-01

    Despite the fact that the first human was in space during 1961 and individuals have existed in a microgravity environment for more than a year, there are limited spaceflight data available on the responses of the neuroendocrine and immune systems. Because of mutual interactions between these respective integrative systems, it is inappropriate to assume that the responses of one have no impact on functions of the other. Blood and plasma volume consistently decrease with spaceflight; hence, blood endocrine and immune constituents will be modified by both gravitational and measurement influences. The majority of the in-flight data relates to endocrine responses that influence fluids and electrolytes during the first month in space. Adrenocorticotropin (ACTH), aldo-sterone. and anti-diuretic hormone (ADH) appear to be elevated with little change in the atrial natriuretic peptides (ANP). Flight results longer than 60 d show increased ADH variability with elevations in angiotensin and cortisol. Although post-flight results are influenced by reentry and recovery events, ACTH and ADH appear to be consistently elevated with variable results being reported for the other hormones. Limited in-flight data on insulin and growth hormone levels suggest they are not elevated to counteract the loss in muscle mass. Post-flight results from short- and long-term flights indicate that thyroxine and insulin are increased while growth hormone exhibits minimal change. In-flight parathyroid hormone (PTH) levels are variable for several weeks after which they remain elevated. Post-flight PTH was increased on missions that lasted either 7 or 237 d, whereas calcitonin concentrations were increased after 1 wk but decreased after longer flights. Leukocytes are elevated in flights of various durations because of an increase in neutrophils. The majority of post-flight data indicates immunoglobulin concentrations are not significantly changed from pre-flight measurements. However, the numbers of T

  16. Mx bio adjuvant for enhancing immune responses against influenza virus

    Directory of Open Access Journals (Sweden)

    Sina Soleimani

    2015-06-01

    Conclusion: These data revealed that Mx1 as biological adjuvant was able to increase antibody titer and induction memory immune responses against influenza immunization without causing any side effects.

  17. Antisense oligonucleotides and all-trans retinoic acid have a synergistic anti-tumor effect on oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Chen Wantao

    2008-06-01

    Full Text Available Abstract Background Antisense oligonucleotides against hTR (As-ODN-hTR have shown promising results as treatment strategies for various human malignancies. All-trans retinoic acid (ATRA is a signalling molecule with important roles in differentiation and apoptosis. Biological responses to ATRA are currently used therapeutically in various human cancers. The aim of this study was to evaluate the anti-tumor effects of As-ODN-hTR combined with ATRA in vivo. Methods In situ human oral squamous cell carcinoma (OSCC models were established by subcutaneous injection of Tca8113 cells. Mice were treated with sense oligonucleotides against hTR(S-ODN-hTR alone, As-ODN-hTR alone, ATRA alone, As-ODN-hTR plus ATRA, or S-ODN-hTR plus ATRA. Tumor size and weight were assessed in the mice. Telomerase activity was detected by a TRAP assay, apoptotic cells were evaluated with a Tunel assay, the expression of apoptosis-related proteins (Bcl-2 and Bax was evaluated by immunohistochemistry and ultrastructural morphological changes in the tumor specimen were examined. Results Both As-ODN-hTR and ATRA can significantly inhibit tumor growth in this OSCC xenograft solid-tumor model, and the combination of the two agents had a synergistic anti-tumorogenic effect. We also demonstrated that this anti-tumor effect correlated with inhibition of telomerase activity. Furthermore, significant increases in the number of apoptotic cells, typical apoptotic morphology and a downregulation of the anti-apoptotic protein, bcl-2 were observed in the treated tissues. Conclusion The combination of As-ODN-hTR and ATRA has a synergistic anti-tumor effect. This anti-tumor effect can be mainly attributed to apoptosis induced by a decrease in telomerase activity. Bcl-2 plays an important role in this process. Therefore, combining As-ODN-hTR and ATRA may be an approach for the treatment of human oral squamous cell carcinoma.

  18. Rotavirus Antagonism of the Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Michelle M. Arnold

    2009-11-01

    Full Text Available Rotavirus is a primary cause of severe dehydrating gastroenteritis in infants and young children. The virus is sensitive to the antiviral effects triggered by the interferon (IFN-signaling pathway, an important component of the host cell innate immune response. To counteract these effects, rotavirus encodes a nonstructural protein (NSP1 that induces the degradation of proteins involved in regulating IFN expression, such as members of the IFN regulatory factor (IRF family. In some instances, NSP1 also subverts IFN expression by causing the degradation of a component of the E3 ubiquitin ligase complex responsible for activating NF-κB. By antagonizing multiple components of the IFN-induction pathway, NSP1 aids viral spread and contributes to rotavirus pathogenesis.

  19. [Breaking immune tolerance in cancer].

    Science.gov (United States)

    Desbois, Mélanie; Champiat, Stéphane; Chaput, Nathalie

    2015-01-01

    The discovery and understanding of complex cellular interactions that govern the immune system contributed to the pharmacological targeting of anti-tumor immunity. The activity of immune effector cells, such as NK and T-cells, is regulated by a wide range of activating and inhibiting receptors or ligands. Drugs that target these receptors or ligands can modulate the immune response by exerting antagonistic or agonistic effects. Over the past decade, several immunomodulators have demonstrated clinical effectiveness, and three of them have already been approved for use in oncology. The development of these immunotherapy approaches presented unique challenges for safety and efficacy, requiring revising clinical response criteria and the establishment of guidelines to help oncologists to manage properly inflammatory toxicities. The introduction of these immunotherapies is a revolution in oncology. However, additional efforts in terms of optimizing treatment administration and identification of biomarkers are needed. Identifying the immunodynamics of various immunomodulators should allow a better understanding of anti-tumor and inflammatory mechanisms, and certainly give the opportunity to develop effective therapeutic combinations without potentiating adverse events. PMID:25609492

  20. Molecular immune response of channel catfish immunized with live theronts of Ichthyophthirius multifiliis.

    Science.gov (United States)

    Xu, De-Hai; Zhang, Qi-Zhong; Shoemaker, Craig A; Zhang, Dunhua; Moreira, Gabriel S A

    2016-07-01

    The parasite Ichthyophthirius multifiliis (Ich) has been reported in various freshwater fishes worldwide and results in severe losses to both food and aquarium fish production. The fish surviving natural infections or immunized with live theronts develop strong specific and non-specific immune responses. Little is known about how these immune genes are induced or how they interact and lead to specific immunity against Ichthyophthirius multifiliis in channel catfish Ictalurus punctatus. This study evaluated the differential expression of immune-related genes, including immunoglobulin, immune cell receptor, cytokine, complement factor and toll-like receptors in head kidney from channel catfish at different time points after immunization with live theronts of I. multifiliis. The immunized fish showed significantly higher anti-Ich antibody expressed as immobilization titer and ELISA titer than those of control fish. The vast majority of immunized fish (95%) survived theront challenge. Expression of IgM and IgD heavy chain genes exhibited a rapid increase from 4 hour (h4) to 2 days (d2) post immunization. Expression of immune cell receptor genes (CD4, CD8-α, MHC I, MHC II β, TcR-α, and TcR-β) showed up-regulation from h4 to d6 post immunization, indicating that different immune cells were actively involved in cellular immune response. Cytokine gene expression (IL-1βa, IL-1βb, IFN-γ and TNF-α) increased rapidly at h4 post immunization and were at an up-regulated level until d2 compared to the bovine serum albumin control. Expression of complement factor and toll-like receptor genes exhibited a rapid increase from h4 to d2 post immunization. Results of this study demonstrated differential expression of genes involved in the specific or non-specific immune response post immunization and that the vaccination against Ich resulted in protection against infection by I. multifiliis. PMID:27044331

  1. The immune response and its therapeutic modulation in bronchiectasis.

    Science.gov (United States)

    Daheshia, Massoud; Prahl, James D; Carmichael, Jacob J; Parrish, John S; Seda, Gilbert

    2012-01-01

    Bronchiectasis (BC) is a chronic pulmonary disease with tremendous morbidity and significant mortality. As pathogen infection has been advocated as a triggering insult in the development of BC, a central role for the immune response in this process seems obvious. Inflammatory cells are present in both the airways as well as the lung parenchyma, and multiple mediators of immune cells including proteases and cytokines or their humoral products are increased locally or in the periphery. Interestingly, a defect in the immune system or suppression of immune response during conditions such as immunodeficiency may well predispose one to the devastating effects of BC. Thus, the outcome of an active immune response as detrimental or protective in the pathogenesis of BC may be dependent on the state of the patient's immunity, the severity of infection, and the magnitude of immune response. Here we reassess the function of the innate and acquired immunity in BC, the major sites of immune response, and the nature of the bioactive mediators. Furthermore, the potential link(s) between an ongoing immune response and structural alterations accompanying the disease and the success of therapies that can modulate the nature and extent of immune response in BC are elaborated upon.

  2. Malaria vaccines and human immune responses.

    Science.gov (United States)

    Long, Carole A; Zavala, Fidel

    2016-08-01

    Despite reductions in malaria episodes and deaths over the past decade, there is still significant need for more effective tools to combat this serious global disease. The positive results with the Phase III trial of RTS,S directed to the circumsporozoite protein of Plasmodium falciparum have established that a vaccine against malaria can provide partial protection to children in endemic areas, but its limited efficacy and relatively short window of protection mandate that new generations of more efficacious vaccines must be sought. Evidence shows that anti-parasite immune responses can control infection against other stages as well, but translating these experimental findings into vaccines for blood stages has been disappointing and clinical efforts to test a transmission blocking vaccine are just beginning. Difficulties include the biological complexity of the organism with a large array of stage-specific genes many of which in the erythrocytic stages are antigenically diverse. In addition, it appears necessary to elicit high and long-lasting antibody titers, address the redundant pathways of merozoite invasion, and still seek surrogate markers of protective immunity. Most vaccine studies have focused on a single or a few antigens with an apparent functional role, but this is likely to be too restrictive, and broad, multi-antigen, multi-stage vaccines need further investigation. Finally, novel tools and biological insights involving parasite sexual stages and the mosquito vector will provide new avenues for reducing or blocking malaria transmission. PMID:27262417

  3. Nanomaterial Induced Immune Responses and Cytotoxicity.

    Science.gov (United States)

    Ali, Ashraf; Suhail, Mohd; Mathew, Shilu; Shah, Muhammad Ali; Harakeh, Steve M; Ahmad, Sultan; Kazmi, Zulqarnain; Alhamdan, Mohammed Abdul Rahman; Chaudhary, Adeel; Damanhouri, Ghazi Abdullah; Qadri, Ishtiaq

    2016-01-01

    Nanomaterials are utilized in a wide array of end user products such as pharmaceuticals, electronics, clothes and cosmetic products. Due to its size (< 100 nm), nanoparticles have the propensity to enter through the airway and skin, making its path perilous with the potential to cause damages of varying severity. Once within the body, these particles have unconstrained access to different tissues and organs including the brain, liver, and kidney. As a result, nanomaterials may cause the perturbation of the immune system eliciting an inflammatory response and cytotoxicity. This potential role is dependent on many factors such as the characteristics of the nanomaterials, presence or absence of diseases, and genetic predisposition. Cobalt and nickel nanoparticles, for example, were shown to have inflammogenic properties, while silver nanoparticles were shown to reduce allergic inflammation. Just as asbestos fibers, carbon nanotubes were shown to cause lungs damage. Some nanomaterials were shown, based on animal studies, to result in cell damage, leading to the formation of pre-cancerous lesions. This review highlights the impact of nanomaterials on immune system and its effect on human health with toxicity consideration. It recommends the development of suitable animal models to study the toxicity and bio-clearance of nanomaterials and propose safety guidelines.

  4. Nanomaterial Induced Immune Responses and Cytotoxicity.

    Science.gov (United States)

    Ali, Ashraf; Suhail, Mohd; Mathew, Shilu; Shah, Muhammad Ali; Harakeh, Steve M; Ahmad, Sultan; Kazmi, Zulqarnain; Alhamdan, Mohammed Abdul Rahman; Chaudhary, Adeel; Damanhouri, Ghazi Abdullah; Qadri, Ishtiaq

    2016-01-01

    Nanomaterials are utilized in a wide array of end user products such as pharmaceuticals, electronics, clothes and cosmetic products. Due to its size (< 100 nm), nanoparticles have the propensity to enter through the airway and skin, making its path perilous with the potential to cause damages of varying severity. Once within the body, these particles have unconstrained access to different tissues and organs including the brain, liver, and kidney. As a result, nanomaterials may cause the perturbation of the immune system eliciting an inflammatory response and cytotoxicity. This potential role is dependent on many factors such as the characteristics of the nanomaterials, presence or absence of diseases, and genetic predisposition. Cobalt and nickel nanoparticles, for example, were shown to have inflammogenic properties, while silver nanoparticles were shown to reduce allergic inflammation. Just as asbestos fibers, carbon nanotubes were shown to cause lungs damage. Some nanomaterials were shown, based on animal studies, to result in cell damage, leading to the formation of pre-cancerous lesions. This review highlights the impact of nanomaterials on immune system and its effect on human health with toxicity consideration. It recommends the development of suitable animal models to study the toxicity and bio-clearance of nanomaterials and propose safety guidelines. PMID:27398432

  5. Wolbachia symbiosis and insect immune response

    Institute of Scientific and Technical Information of China (English)

    Stefanos Siozios; Panagiotis Sapountzis; Panagiotis Ioannidis; Kostas Bourtzis

    2008-01-01

    Bacterial intracellular symbiosis is very common in insects, having significant consequences in promoting the evolution of life and biodiversity. The bacterial group that has recently attracted particular attention is Wolbachia pipientis which probably represents the most ubiquitous endosymbiont on the planet. W. pipientis is a Gram-negative obligatory intracellular and maternally transmitted α-proteobacterium, that is able to establish symbiotic associations with arthropods and nematodes. In arthropods, Wolbachia pipientis infections have been described in Arachnida, in Isopoda and mainly in Insecta. They have been reported in almost all major insect orders including Diptera, Coleoptera, Hemiptera,Hymenoptera, Orthoptera and Lepidoptera. To enhance its transmission, W. pipientis can manipulate host reproduction by inducing parthenogenesis, feminization, male killing and cytoplasmic incompatibility. Several polymerase chain reaction surveys have indicated that up to 70% of all insect species may be infected with W. pipientis. How does W. pipientis manage to get established in diverse insect host species? How is this intracellular bacterial symbiont species so successful in escaping the host immune response? The present review presents recent advances and ongoing scientific efforts in the field. The current body of knowledge in the field is summarized, revelations from the available genomic information are presented and as yet unanswered questions are discussed in an attempt to present a comprehensive picture of the unique ability of W. pipientis to establish symbiosis and to manipulate reproduction while evading the host's immune system.

  6. [The role of IL-10 in the modulation of the immune response in normal conditions and the tumor environment].

    Science.gov (United States)

    Kicielińska, Jagoda; Pajtasz-Piasecka, Elzbieta

    2014-01-01

    Under the influence of the various stimuli that activate transcription factors such as cMaf, NFIL3, and ERK, many normal and neoplastic cells are able to produce the same cytokine--IL-10. There is increasing evidence that this cytokine has a significant impact on various aspects of the immune control mechanisms. Therefore, it is important to complete understanding of which factors are responsible for regulation of Il10 gene expression and protein secretion. The influence of IL-10 on cells, as in the case of other cytokines, depends on the presence of the specific receptor. Its expression has been shown, among others, on the surface of antigen-presenting cells (dendritic cells, macrophages, B cells), NK cells, T lymphocytes CD8+ and CD4+ (including Tr1, Th1 and Th2), which play an important role in the development of anti-tumor immunity. Therefore, the role of IL-10 in this process is considered to an increasing extent. There are a number of results showing that IL-10 is involved in the generation of immunosuppression, while others demonstrate immunostimulatory properties of this cytokine. This functional duality of IL-10 is substantial in the context of the regulation of tumor growth, both its promotion and fighting against it.

  7. The role of IL-10 in the modulation of the immune response in normal conditions and the tumor environment

    Directory of Open Access Journals (Sweden)

    Jagoda Kicielińska

    2014-06-01

    Full Text Available Under the influence of the various stimuli that activate transcription factors such as cMaf, NFIL3, and ERK, many normal and neoplastic cells are able to produce the same cytokine – IL-10. There is increasing evidence that this cytokine has a significant impact on various aspects of the immune control mechanisms. Therefore, it is important to complete understanding of which factors are responsible for regulation of Il10 gene expression and protein secretion. The influence of IL-10 on cells, as in the case of other cytokines, depends on the presence of the specific receptor. Its expression has been shown, among others, on the surface of antigen-presenting cells (dendritic cells, macrophages, B cells, NK cells, T lymphocytes CD8+ and CD4+ (including Tr1, Th1 and Th2, which play an important role in the development of anti-tumor immunity. Therefore, the role of IL-10 in this process is considered to an increasing extent. There are a number of results showing that IL-10 is involved in the generation of immunosuppression, while others demonstrate immunostimulatory properties of this cytokine. This functional duality of IL-10 is substantial in the context of the regulation of tumor growth, both its promotion and fighting against it.

  8. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    Science.gov (United States)

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity. PMID:21796701

  9. Meeting report VLPNPV: Session 3: Immune responses.

    Science.gov (United States)

    Morrison, Trudy G

    2014-01-01

    Virus-like particles (VLPs) and nano-particles (NP) are increasingly considered for both prophylactic and therapeutic vaccines for a wide variety of human and animal diseases. Indeed, 2 VLPs have already been licensed for use in humans, the human papilloma virus vaccine and the hepatitis B virus vaccine. (1) Reflecting this increased interest, a second international conference with a specific focus on VLPs and NP was held at the Salk Institute for Biological Studies in La Jolla, California, in June 2014. Approximately 100 attendees, hailing from many nations, came from academic institutions, research institutes, and biotech companies. A wide variety of topics were discussed, ranging from development and characterization of specific VLP and NP vaccine candidates to methods of production of these particles. Session three was focused on the general question of immune responses to VLPs. PMID:25529229

  10. Local immune response and protection in the guinea pig keratoconjunctivitis model following immunization with Shigella vaccines.

    OpenAIRE

    Hartman, A B; Van De Verg, L L; Collins, H H; Tang, D B; Bendiuk, N O; Taylor, D N; Powell, C J

    1994-01-01

    This study used the guinea pig keratoconjunctivitis model to examine the importance of route of administration (mucosal versus parenteral), frequency and timing of immunization (primary versus boosting immunization), and form of antigen given (live attenuated vaccine strain versus O-antigen-protein conjugate) on the production of protective immunity against Shigella infection. Since local immune response to the lipopolysaccharide (LPS) O-antigen of Shigella spp. is thought to be important for...

  11. Population-expression models of immune response

    Science.gov (United States)

    Stromberg, Sean P.; Antia, Rustom; Nemenman, Ilya

    2013-06-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.

  12. Sex hormones and the immune response in humans

    NARCIS (Netherlands)

    Bouman, Annechien; Heineman, Maas Jan; Faas, Marijke M.

    2005-01-01

    In addition to their effects on sexual differentiation and reproduction, sex hormones appear to influence the immune system. This results in a sexual dimorphism in the immune response in humans: for instance, females produce more vigorous cellular and more vigorous humoral immune reactions, are more

  13. Immune response markers in sentinel nodes may predict melanoma progression

    OpenAIRE

    Rodolfo, Monica; Castelli, Chiara; Rivoltini, Licia

    2014-01-01

    We recently reported that variable expression of immune-response genes distinguishes tumor positive sentinel nodes in melanoma patients with malignant progression from those with non-progressing disease. Our results depict sentinel nodes as sites in which immune functions are associated with metastatic disease and identify CD30 as a host immune-related cancer prognostic marker and potential therapeutic target.

  14. Anti-tumor activity of calcitriol: pre-clinical and clinical studies.

    Science.gov (United States)

    Trump, Donald L; Hershberger, Pamela A; Bernardi, Ronald J; Ahmed, Sharmilla; Muindi, Josephia; Fakih, Marwan; Yu, Wei-Dong; Johnson, Candace S

    2004-05-01

    1,25-Dihydroxycholecalciferol (calcitriol) is recognized widely for its effects on bone and mineral metabolism. Epidemiological data suggest that low Vitamin D levels may play a role in the genesis of prostate cancer and perhaps other tumors. Calcitriol is a potent anti-proliferative agent in a wide variety of malignant cell types. In prostate, breast, colorectal, head/neck and lung cancer as well as lymphoma, leukemia and myeloma model systems calcitriol has significant anti-tumor activity in vitro and in vivo. Calcitriol effects are associated with an increase in G0/G1 arrest, induction of apoptosis and differentiation, modulation of expression of growth factor receptors. Glucocorticoids potentiate the anti-tumor effect of calcitriol and decrease calcitriol-induced hypercalcemia. Calcitriol potentiates the antitumor effects of many cytotoxic agents and inhibits motility and invasiveness of tumor cells and formation of new blood vessels. Phase I and II trials of calcitriol either alone or in combination with carboplatin, taxanes or dexamethasone have been initiated in patients with androgen dependent and independent prostate cancer and advanced cancer. Data indicate that high-dose calcitriol is feasible on an intermittent schedule, no dose-limiting toxicity has been encountered and optimal dose and schedule are being delineated. Clinical responses have been seen with the combination of high dose calcitriol+dexamethasone in androgen independent prostate cancer (AIPC) and apparent potentiation of the antitumor effects of docetaxel have been seen in AIPC. These results demonstrate that high intermittent doses of calcitriol can be administered to patients without toxicity, that the MTD is yet to be determined and that calcitriol has potential as an anti-cancer agent. PMID:15225831

  15. Anti-tumor activity of calcitriol: pre-clinical and clinical studies.

    Science.gov (United States)

    Trump, Donald L; Hershberger, Pamela A; Bernardi, Ronald J; Ahmed, Sharmilla; Muindi, Josephia; Fakih, Marwan; Yu, Wei-Dong; Johnson, Candace S

    2004-05-01

    1,25-Dihydroxycholecalciferol (calcitriol) is recognized widely for its effects on bone and mineral metabolism. Epidemiological data suggest that low Vitamin D levels may play a role in the genesis of prostate cancer and perhaps other tumors. Calcitriol is a potent anti-proliferative agent in a wide variety of malignant cell types. In prostate, breast, colorectal, head/neck and lung cancer as well as lymphoma, leukemia and myeloma model systems calcitriol has significant anti-tumor activity in vitro and in vivo. Calcitriol effects are associated with an increase in G0/G1 arrest, induction of apoptosis and differentiation, modulation of expression of growth factor receptors. Glucocorticoids potentiate the anti-tumor effect of calcitriol and decrease calcitriol-induced hypercalcemia. Calcitriol potentiates the antitumor effects of many cytotoxic agents and inhibits motility and invasiveness of tumor cells and formation of new blood vessels. Phase I and II trials of calcitriol either alone or in combination with carboplatin, taxanes or dexamethasone have been initiated in patients with androgen dependent and independent prostate cancer and advanced cancer. Data indicate that high-dose calcitriol is feasible on an intermittent schedule, no dose-limiting toxicity has been encountered and optimal dose and schedule are being delineated. Clinical responses have been seen with the combination of high dose calcitriol+dexamethasone in androgen independent prostate cancer (AIPC) and apparent potentiation of the antitumor effects of docetaxel have been seen in AIPC. These results demonstrate that high intermittent doses of calcitriol can be administered to patients without toxicity, that the MTD is yet to be determined and that calcitriol has potential as an anti-cancer agent.

  16. [Progress of anti-tumor study based on BRAF].

    Science.gov (United States)

    Yan, Gui-Rui; Xu, Zhi-Jian; Wang, He-Yao; Zhu, Wei-Liang

    2012-12-01

    BRAF is one of the most important pro-oncogenes, which is mutated in approximately 8% of human tumors. The most common BRAF mutation is a valine-to-glutamate transition (V600E) that is expressed primarily in melanoma, colorectal cancer and thyroid carcinoma. MEK/ERK is constitutively activated in the cells expressing BRAFV600E, leading to tumor development, invasion, and metastasis. Therefore, BRAFV600E is a therapeutic target for melanoma and some other BRAFV600E tumors. Vemurafenib, a BRAFV600E inhibitor, which was approved by FDA for the treatment of late-stage melanoma in 2011, produces improved rates of overall and progression-free survival in patients with the BRAFV600E mutation, making a dramatic breakthrough in melanoma treatment. Vemurafenib is also an individual target drug based on genetic diagnosis. However, its therapeutic success is limited by the emergence of drug resistance. Therefore, it is important to explore the mechanisms underlying the resistance for developing new inhibitor drugs and for preventing or delaying the resistance evolution to BRAF inhibitor drugs. In this review, we described the role of BRAFV600E as an anti-tumor drug target and the development of BRAF inhibitors. We also discussed the mechanisms leading to resistance of BRAFV600E inhibitors. Furthermore, therapeutic strategies that might be employed to overcome acquired resistance were proposed.

  17. 人卵巢癌细胞与自体或同种异体树突状细胞融合诱导抗肿瘤免疫%Induction of anti-tumor activity by immunization with fusion of human ovarian carcinoma cellsto autologous or allogeneic dendritic cells

    Institute of Scientific and Technical Information of China (English)

    吴尚辉; 陈明雄; 朱斌

    2003-01-01

    目的探讨人卵巢癌(OVCA)细胞与自体或同种异体树突状细胞(DC)融合后体外诱导特异性CTL的作用.方法用PEG法将OVCA细胞与自体或异体DC融合,在含GM-CSF的RPNH-1640完全培养基中继续培养7~14d,然后将融合细胞与CA-125特异性T细胞共同培养,用细胞内细胞素染色法检测其诱导CTL活性.结果人类OVCA细胞表达CA-125、HER2A/neu、MUC1肿瘤相关抗原及MHC-Ⅰ类分子和粘附分子(ICAM),但不表达MHC-Ⅱ类分子、B7-1和B7-2;DC则表达MHC-Ⅰ类和Ⅱ类分子、共刺激分子和ICAM,但不表达DF3/MUC1或CA-125等OVCA相关抗原,而OVCA细胞与自体或异体DC融合细胞则表达CA-125及MUC1肿瘤相关抗原、MHC-Ⅰ类和Ⅱ类分子、B7-1、B7-2及ICAM.结论人OVCA与自体或异体DC融合细胞能诱导由MHC-Ⅰ类分子限制的CTL活性和自体肿瘤细胞的溶解作用.%Objective:To study the effect of activation of specific anti-tumor cytotoxic T lymphocytes in vitro by fusion of human ovarian carcinoma cells with autologous or allogeneic dendritic cells.Methods:The human dendritic cells with ovarian carcinoma cells were fused by PEG and were cultivated in complete RPMI-1640 media containing 10% FCS, GM-CSF for 7~14 days,and then co-cultured fusion cells with CA-125 Specific T cells. The activation of anti-tumor CTL elicited by the fusion cells was detected by intracellular cytokine staining.Results:The human ovarian carcinoma cells expressed the CA-125,MUC1,MHC classⅠand ICAM, but not MHCclassⅡ,B7-1 or B7-2.In contrast, the DCs expressed MHC classⅠand class Ⅱ molecules, co-stimulative molecules and ICAM, but not CA-125 or MUC1 carcinoma-associated Ags. Fusion of the OVCA cells to autologous or allogeneic DCs resulted in the generation of heterokaryons that expressed the CA-125 and MUC1 Ags, MHC class Ⅰand classⅡ molecules,B7-1 and B7-2.Conclusions:The fusions of autologous or allogeneic DCs with ovarian carcinoma cells can induce cytotoxic T cell

  18. Spaceflight and immune responses of rhesus monkeys

    Science.gov (United States)

    Sonnenfeld, Gerald; Morton, Darla S.; Swiggett, Jeanene P.; Hakenewerth, Anne M.; Fowler, Nina A.

    1995-01-01

    The effects of restraint on immunological parameters was determined in an 18 day ARRT (adult rhesus restraint test). The monkeys were restrained for 18 days in the experimental station for the orbiting primate (ESOP), the chair of choice for Space Shuttle experiments. Several immunological parameters were determined using peripheral blood, bone marrow, and lymph node specimens from the monkeys. The parameters included: response of bone marrow cells to GM-CSF (granulocyte-macrophage colony stimulating factor), leukocyte subset distribution, and production of IFN-a (interferon-alpha) and IFN-gamma (interferon-gamma). The only parameter changed after 18 days of restraint was the percentage of CD8+ T cells. No other immunological parameters showed changes due to restraint. Handling and changes in housing prior to the restraint period did apparently result in some restraint-independent immunological changes. Handling must be kept to a minimum and the animals allowed time to recover prior to flight. All experiments must be carefully controlled. Restraint does not appear to be a major issue regarding the effects of space flight on immune responses.

  19. Meningococcal C specific immune responses: immunity in an era of immunization with vaccine

    NARCIS (Netherlands)

    de Voer, R.M.

    2010-01-01

    Meningococcal serogroup C conjugate immunization was introduced in the Dutch national immunization schedule at the age of 14 months, together with a large catch-up campaign in 2002. After introduction of this MenC immunization, the incidence of MenC completely disappeared from the immunized populati

  20. The unfolded protein response in immunity and inflammation.

    Science.gov (United States)

    Grootjans, Joep; Kaser, Arthur; Kaufman, Randal J; Blumberg, Richard S

    2016-08-01

    The unfolded protein response (UPR) is a highly conserved pathway that allows the cell to manage endoplasmic reticulum (ER) stress that is imposed by the secretory demands associated with environmental forces. In this role, the UPR has increasingly been shown to have crucial functions in immunity and inflammation. In this Review, we discuss the importance of the UPR in the development, differentiation, function and survival of immune cells in meeting the needs of an immune response. In addition, we review current insights into how the UPR is involved in complex chronic inflammatory diseases and, through its role in immune regulation, antitumour responses. PMID:27346803

  1. Effect of antipyretic analgesics on immune responses to vaccination.

    Science.gov (United States)

    Saleh, Ezzeldin; Moody, M Anthony; Walter, Emmanuel B

    2016-09-01

    While antipyretic analgesics are widely used to ameliorate vaccine adverse reactions, their use has been associated with blunted vaccine immune responses. Our objective was to review literature evaluating the effect of antipyretic analgesics on vaccine immune responses and to highlight potential underlying mechanisms. Observational studies reporting on antipyretic use around the time of immunization concluded that their use did not affect antibody responses. Only few randomized clinical trials demonstrated blunted antibody response of unknown clinical significance. This effect has only been noted following primary vaccination with novel antigens and disappears following booster immunization. The mechanism by which antipyretic analgesics reduce antibody response remains unclear and not fully explained by COX enzyme inhibition. Recent work has focused on the involvement of nuclear and subcellular signaling pathways. More detailed immunological investigations and a systems biology approach are needed to precisely define the impact and mechanism of antipyretic effects on vaccine immune responses. PMID:27246296

  2. Immune response inhibits associative learning in insects.

    OpenAIRE

    Mallon, Eamonn B.; Brockmann, Axel; Schmid-Hempel, Paul

    2003-01-01

    In vertebrates, it is well established that there are many intricate interactions between the immune system and the nervous system, and vice versa. Regarding insects, until now little has been known about the link between these two systems. Here, we present behavioural evidence indicating a link between the immune system and the nervous system in insects. We show that otherwise non-infected honeybees whose immune systems are challenged by a non-pathogenic immunogenic elicitor lipopolysacchari...

  3. Endocrine Factors Modulating Immune Responses in Pregnancy

    OpenAIRE

    Schumacher, Anne; Costa, Serban-Dan; Zenclussen, Ana Claudia

    2014-01-01

    How the semi-allogeneic fetus is tolerated by the maternal immune system remains a fascinating phenomenon. Despite extensive research activity in this field, the mechanisms underlying fetal tolerance are still not well understood. However, there are growing evidences that immune–immune interactions as well as immune–endocrine interactions build up a complex network of immune regulation that ensures fetal survival within the maternal uterus. In the present review, we aim to summarize emerging ...

  4. Activation and Regulation of DNA-Driven Immune Responses

    OpenAIRE

    Paludan, Søren R

    2015-01-01

    The innate immune system provides early defense against infections and also plays a key role in monitoring alterations of homeostasis in the body. DNA is highly immunostimulatory, and recent advances in this field have led to the identification of the innate immune sensors responsible for the recognition of DNA as well as the downstream pathways that are activated. Moreover, information on how cells regulate DNA-driven immune responses to avoid excessive inflammation is now emerging. Finally,...

  5. Innate immune response development in nestling tree swallows

    Science.gov (United States)

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  6. A New Mechanism to Curb Over-reactive Immune Responses

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ The human immune system is a truly amazing constellation of responses to attacks from the outside. It could defend you against millions of bacteria, microbes, viruses, toxins and parasites that would invade your body. However, there are cases where the immune response to innocuous substances is inappropriate and over-reactive, leading to diseases such as allergies and arthritis.

  7. Importins and Exportins Regulating Allergic Immune Responses

    Directory of Open Access Journals (Sweden)

    Ankita Aggarwal

    2014-01-01

    Full Text Available Nucleocytoplasmic shuttling of macromolecules is a well-controlled process involving importins and exportins. These karyopherins recognize and bind to receptor-mediated intracellular signals through specific signal sequences that are present on cargo proteins and transport into and out of the nucleus through nuclear pore complexes. Nuclear localization signals (NLS present on cargo molecules to be imported while nuclear export signals (NES on the molecules to be exported are recognized by importins and exportins, respectively. The classical NLS are found on many transcription factors and molecules that are involved in the pathogenesis of allergic diseases. In addition, several immune modulators, including corticosteroids and vitamin D, elicit their cellular responses by regulating the expression and activity of importin molecules. In this review article, we provide a comprehensive list of importin and exportin molecules and their specific cargo that shuttled between cytoplasm and the nucleus. We also critically review the role and regulation of specific importin and exportin involved in the transport of activated transcription factors in allergic diseases, the underlying molecular mechanisms, and the potential target sites for developing better therapeutic approaches.

  8. Golimumab and certolizumab: The two new anti-tumor necrosis factor kids on the block

    Directory of Open Access Journals (Sweden)

    Mittal Mohit

    2010-01-01

    Full Text Available Anti-tumor necrosis factor (anti-TNF agents have revolutionized treatment of psoriasis and many other inflammatory diseases of autoimmune origin. They have considerable advantages over the existing immunomodulators. Anti-TNF agents are designed to target a very specific component of the immune-mediated inflammatory cascades. Thus, they have lower risks of systemic side-effects. In a brief period of 10 years, a growing number of biological therapies are entering the clinical arena while many more biologicals remain on the horizon. With time, the long-term side-effects and efficacies of these individual agents will become clearer and help to determine which ones are the most suitable for long-term care. Golimumab (a human monoclonal anti-TNF-α antibody and Certolizumab (a PEGylated Fab fragment of humanized monoclonal TNF-α antibody are the two latest additions to the anti-TNF regimen. Here, we are providing a brief description about these two drugs and their uses.

  9. The Safety and Anti-Tumor Effects of Ozonated Water in Vivo

    Directory of Open Access Journals (Sweden)

    Kohei Kuroda

    2015-10-01

    Full Text Available Ozonated water is easier to handle than ozone gas. However, there have been no previous reports on the biological effects of ozonated water. We conducted a study on the safety of ozonated water and its anti-tumor effects using a tumor-bearing mouse model and normal controls. Local administration of ozonated water (208 mM was not associated with any detrimental effects in normal tissues. On the other hand, local administration of ozonated water (20.8, 41.6, 104, or 208 mM directly into the tumor tissue induced necrosis and inhibited proliferation of tumor cells. There was no significant difference in the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick-end labeling (TUNEL-positive cells following administration of ozonated water. The size of the necrotic areas was dependent on the concentration of ozonated water. These results indicate that ozonated water does not affect normal tissue and damages only the tumor tissue by selectively inducing necrosis. There is a possibility that it exerts through the production of reaction oxygen species (ROS. In addition, the induction of necrosis rather than apoptosis is very useful in tumor immunity. Based on these results, we believe that administration of ozonated water is a safe and potentially simple adjunct or alternative to existing antineoplastic treatments.

  10. Anti-tumor effects of brucine immuno-nanoparticles on hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Qin JM

    2012-01-01

    Full Text Available Jian-Min Qin1, Pei-Hao Yin1, Qi Li1, Zhong-Qiu Sa1, Xia Sheng1, Lin Yang1, Tao Huang1, Min Zhang1, Ke-Pan Gao2, Qing-Hua Chen2, Jing-Wei Ma3, He-Bai Shen31Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 2National Pharmaceutical Engineering Research Center; Shanghai Institute of Pharmaceutical Industry, 3Department of Physical Chemistry, Shanghai Normal University, Shanghai, People's Republic of ChinaBackground: Hepatocellular carcinoma is difficult to diagnose early, and most patients are already in the late stages of the disease when they are admitted to hospital. The total 5-year survival rate is less than 5%. Recent studies have showed that brucine has a good anti-tumor effect, but high toxicity, poor water solubility, short half-life, narrow therapeutic window, and a toxic dose that is close to the therapeutic dose, which all limit its clinical application. This study evaluated the effects of brucine immuno-nanoparticles (BIN on hepatocellular carcinoma.Materials and methods: Anionic polymerization, chemical modification technology, and phacoemulsification technology were used to prepare a carboxylated polyethylene glycol-polylactic acid copolymer carrier material. Chemical coupling technology was utilized to develop anti-human AFP McAb-polyethylene glycol-polylactic acid copolymer BIN. The size, shape, zeta potential, drug loading, encapsulation efficiency, and release of these immune-nanoparticles were studied in vitro. The targeting, and growth, invasion, and metastasis inhibitory effects of this treatment on liver cancer SMMC-7721 cells were tested.Results: BIN were of uniform size with an average particle size of 249 ± 77 nm and zeta potential of -18.7 ± 4.19 mV. The encapsulation efficiency was 76.0% ± 2.3% and the drug load was 5.6% ± 0.2%. Complete uptake and even distribution around the liver cancer cell membrane were observed.Conclusion: BIN had even size distribution, was

  11. Silencing B7-H1 enhances the anti-tumor effect of bladder cancer antigen-loaded dendritic cell vaccine in vitro

    Directory of Open Access Journals (Sweden)

    Wang S

    2014-08-01

    Full Text Available Shuo Wang,1 Yonghua Wang,1 Jing Liu,2 Shixiu Shao,1 Xianjun Li,1 Jiannan Gao,1 Haitao Niu,1 Xinsheng Wang1 1Department of Urology, 2Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China Objective: The aim of this study was to examine whether short hairpin RNA (shRNA expressing lentiviral particles targeting B7-H1 infection could result in B7-H1 knockdown on dendritic cells (DCs and to investigate whether B7-H1 silencing could augment the immune function of DCs and further elicit a more potent anti-tumor immune effect against bladder cancer cells in vitro. Methods: Monocyte-derived DCs, which were generated from peripheral blood mononuclear cells, were infected by a recombinant lentivirus containing shRNA sequence aimed at B7-H1. After that, the infected DCs were pulsed by tumor antigens and used to stimulate cytotoxic T lymphocytes-based anti-tumor effect in vitro. Results: The lentivirus-mediated shRNA delivery method efficiently and effectively silenced B7-H1 in DCs. Furthermore, the B7-H1 silencing enhanced the stimulatory capacity and the secretion of interleukin-12, but down-regulated interleukin-10 secretion. And more importantly, the anti-tumor effect of bladder cancer antigen-loaded DC vaccine in vitro was also potentially augmented. Conclusion: This study suggests that a combination of B7-H1 knockdown and target antigen delivery could augment anti-tumor effects in vitro, which potentially provides a novel strategy in the immunotherapy of bladder cancer. Keywords: B7-H1, bladder cancer, dendritic cell, vaccine, immunotherapy

  12. [Primary research on anti-tumor activity of panaxadiol fatty acid esters].

    Science.gov (United States)

    Zhang, Chun-Hong; Zhang, Lian-Xue; Li, Xiang-Gao; Gao, Yu-Gang; Liu, Ya-Jing

    2006-11-01

    For making use of Ginseng resources and finding new anti-tumor drugs, the anti-tumor activity of three kinds of new panaxadiol fatty acid ester derivates: 3beta-acetoxy panaxadiol (I), 3beta-palmitic acid aceloxy panaxadiol (II), 3beta-octadecanoic acid aceloxy panaxadiol (Ill) and panaxaiol were compared through the method of cell stain and counting. Tumor cell was Vero cell line. Positive control was 5-FU. Blank was RPM11640 culture medium. Negative control was RPM11640 culture medium and the solvent for subjected drugs. The result showed that compound I had the strongest anti-tumor activity, second was panaxadiol, II and III had the same and the weakest antitumor activity. Furthermore, the anti-tumor activities of panaxadiol fatty acid ester derivates showed positive correlation with subjects' concentrations, but no relationship with molecular weight of fatty acid. PMID:17228662

  13. Turmeric enhancing anti-tumor effect of Rhizoma paridis saponins by influencing their metabolic profiling in tumors of H22 hepatocarcinoma mice.

    Science.gov (United States)

    Man, Shuli; Chai, Hongyan; Qiu, Peiyu; Liu, Zhen; Fan, Wei; Wang, Jiaming; Gao, Wenyuan

    2015-12-01

    Rhizoma Paridis saponins combined with turmeric (RT) showed well anti-hepatocarcinoma activities in our previous research. The aim of this study was to investigate the progression of the biochemical response to RT and capture metabolic variations during intragastric administration of their compatibility. In the experiment, histopathological examination and (1)H NMR method were developed and validated for the metabolic profiling of RT intervention in H22 tumor growth. Data were analyzed with principal components analysis (PCA) and partial least-squares discrimination analysis (PLS-DA). As a result, Rhizoma paridis saponins (RPS) or RT induced inflammatory cell infiltration in tumors. RT also mediated the tumor microenvironment to promote anti-tumor immunity of mice. RT significantly inhibited tumor growth rate through suppressing levels of amino acids containing alanine, asparagine, glutamine, putrescine, and sarcosine, lipid compounds, and carbohydrates like myo-inositol and arabinose in the tumor tissues. In conclusion, these results uncovered unexpectedly poor nutritional conditions in the RT-treated tumor tissues whose effect was stronger than RPS's. Therefore, RT could be a novel anticancer agent that targets on cancer metabolism through starving tumors reducing viability of cancer cells.

  14. Immune response induction in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...

  15. STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice.

    Science.gov (United States)

    Wang, Zili; Celis, Esteban

    2015-08-01

    Therapeutic vaccines to induce anti-tumor CD8 T cells have been used in clinical trials for advanced melanoma patients, but the clinical response rate and overall survival time have not improved much. We believe that these dismal outcomes are caused by inadequate number of antigen-specific CD8 T cells generated by most vaccines. In contrast, huge CD8 T cell responses readily occur during acute viral infections. High levels of type-I interferon (IFN-I) are produced during these infections, and this cytokine not only exhibits anti-viral activity but also promotes CD8 T cell responses. The studies described here were performed to determine whether promoting the production of IFN-I could enhance the potency of a peptide vaccine. We report that cyclic diguanylate monophosphate (c-di-GMP), which activates the stimulator of interferon genes, potentiated the immunogenicity and anti-tumor effects of a peptide vaccine against mouse B16 melanoma. The synergistic effects of c-di-GMP required co-administration of costimulatory anti-CD40 antibody, the adjuvant poly-IC, and were mediated in part by IFN-I. These findings demonstrate that peptides representing CD8 T cell epitopes can be effective inducers of large CD8 T cell responses in vaccination strategies that mimic acute viral infections.

  16. Characteristics of immune response to protozoan infections

    OpenAIRE

    Arsić-Arsenijević Valentina S.; Džamić Aleksandar M.; Mitrović Sanja M.; Radonjić Ivana V.; Kranjčić-Zec Ivana F.

    2003-01-01

    Introduction When protozoa enter the blood stream or tissues they can often survive and replicate because they adapt to the resisting natural host defenses. The interaction of immune system with infectious organisms is a dynamic interplay of host mechanisms aimed at eliminating infections and microbial strategies designed to permit survival in the face of powerful effectors mechanisms. Protozoa cause chronic and persistent infections, because natural immunity against them is weak and because ...

  17. The X-files in immunity: sex-based differences predispose immune responses.

    Science.gov (United States)

    Fish, Eleanor N

    2008-09-01

    Despite accumulating evidence in support of sex-based differences in innate and adaptive immune responses, in the susceptibility to infectious diseases and in the prevalence of autoimmune diseases, health research and clinical practice do not address these distinctions, and most research studies of immune responses do not stratify by sex. X-linked genes, hormones and societal context are among the many factors that contribute to disparate immune responses in males and females. It is crucial to address sex-based differences in disease pathogenesis and in the pharmacokinetics and pharmacodynamics of therapeutic medications to provide optimal disease management for both sexes.

  18. Endocrine factors modulating immune responses in pregnancy.

    Science.gov (United States)

    Schumacher, Anne; Costa, Serban-Dan; Zenclussen, Ana Claudia

    2014-01-01

    How the semi-allogeneic fetus is tolerated by the maternal immune system remains a fascinating phenomenon. Despite extensive research activity in this field, the mechanisms underlying fetal tolerance are still not well understood. However, there are growing evidences that immune-immune interactions as well as immune-endocrine interactions build up a complex network of immune regulation that ensures fetal survival within the maternal uterus. In the present review, we aim to summarize emerging research data from our and other laboratories on immune modulating properties of pregnancy hormones with a special focus on progesterone, estradiol, and human chorionic gonadotropin. These pregnancy hormones are critically involved in the successful establishment, maintenance, and termination of pregnancy. They suppress detrimental maternal alloresponses while promoting tolerance pathways. This includes the reduction of the antigen-presenting capacity of dendritic cells (DCs), monocytes, and macrophages as well as the blockage of natural killer cells, T and B cells. Pregnancy hormones also support the proliferation of pregnancy supporting uterine killer cells, retain tolerogenic DCs, and efficiently induce regulatory T (Treg) cells. Furthermore, they are involved in the recruitment of mast cells and Treg cells into the fetal-maternal interface contributing to a local accumulation of pregnancy-protective cells. These findings highlight the importance of endocrine factors for the tolerance induction during pregnancy and encourage further research in the field. PMID:24847324

  19. Endocrine factors modulating immune responses in pregnancy

    Directory of Open Access Journals (Sweden)

    Anne eSchumacher

    2014-05-01

    Full Text Available How the semi-allogeneic fetus is tolerated by the maternal immune system remains a fascinating phenomenon. Despite extensive research activity in this field the mechanisms underlying fetal tolerance are still not well understood. However, there are growing evidences that immune-immune interactions as well as immune-endocrine interactions build up a complex network of immune regulation that ensures fetal survival within the maternal uterus. In the present review, we aim to summarize emerging research data from our and other laboratories on immune modulating properties of pregnancy hormones with a special focus on progesterone, estradiol and human Chorionic Gonadotropin. These pregnancy hormones are critically involved in the successful establishment, maintenance and termination of pregnancy. They suppress detrimental maternal alloresponses while promoting tolerance pathways. This includes the reduction of the antigen-presenting capacity of dendritic cells, monocytes and macrophages as well as the blockage of natural killer cells, T and B cells. Pregnancy hormones also support the proliferation of pregnancy supporting uterine killer cells, retain tolerogenic dendritic cells and efficiently induce regulatory T cells. Furthermore, they are involved in the recruitment of mast cells and regulatory T cells into the fetal-maternal interface contributing to a local accumulation of pregnancy-protective cells. These findings highlight the importance of endocrine factors for the tolerance induction during pregnancy and encourage further research in the field.

  20. Immune responses to cancer: are they potential biomarkers of prognosis?

    Directory of Open Access Journals (Sweden)

    Theresa L Whiteside

    2013-05-01

    Full Text Available Recent technical improvements in evaluations of immune cells in situ and immune monitoring of patients with cancer have provided a wealth of new data confirming that immune cells play a key role in human cancer progression. This, in turn, has revived the expectation that immune endpoints might serve as reliable biomarkers of outcome or response to therapy in cancer. The recent successes in linking the T-cell signature in human colorectal carcinoma (CRC with prognosis have provided a strong motive for searching for additional immune biomarkers that could serve as intermediate endpoints of response to therapy and outcome in human cancers. A number of potentially promising immune biomarkers have emerged, but most remain to be validated. Among them, the B-cell signature, as exemplified by expression of the immunoglobulin G kappa chain (IGKC in tumor-infiltrating lymphocytes (TIL, has been validated as a biomarker of response to adjuvant therapy and better survival in patients with breast carcinoma and several other types of human solid tumors. Additional immune endpoints are being currently tested as potentially promising biomarkers in cancer. In view of currently growing use of immune cancer therapies, the search for immune biomarkers of prognosis are critically important for identifying patients who would benefit the most from adjuvant immunotherapy.

  1. Proteasome function shapes innate and adaptive immune responses.

    Science.gov (United States)

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively. PMID:27343191

  2. The Role of the Immune Response in Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Triozzi, Pierre L., E-mail: triozzp@ccf.org [Taussig Cancer Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Fernandez, Anthony P. [Departments of Dermatology and Anatomic Pathology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States)

    2013-02-28

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies.

  3. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses.

    Science.gov (United States)

    Doran, Todd M; Sarkar, Mohosin; Kodadek, Thomas

    2016-05-18

    Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field. PMID:27115249

  4. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses.

    Science.gov (United States)

    Doran, Todd M; Sarkar, Mohosin; Kodadek, Thomas

    2016-05-18

    Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field.

  5. Heavy metal pollution disturbs immune response in wild ant populations

    International Nuclear Information System (INIS)

    Concern about the effects of environmental contaminants on immune function in both humans and wildlife is growing and practically nothing is known about this impact on terrestrial invertebrates, even though they are known to easily accumulate pollutants. We studied the effect of industrial heavy metal contamination on immune defense of a free-living wood ant (Formica aquilonia). To find out whether ants show an adapted immune function in a polluted environment, we compared encapsulation responses between local and translocated colonies. Local colonies showed higher heavy metal levels than the translocated ones but the encapsulation response was similar between the two groups, indicating that the immune system of local ants has not adapted to high contamination level. The encapsulation response was elevated in moderate whereas suppressed in high heavy metal levels suggesting higher risk for infections in heavily polluted areas. - Heavy metal pollution affects immune function in ants

  6. Advantages of Extracellular Ubiquitin in Modulation of Immune Responses.

    Science.gov (United States)

    Sujashvili, Rusudan

    2016-01-01

    T and B lymphocytes play a central role in protecting the human body from infectious pathogens but occasionally they can escape immune tolerance, become activated, and induce autoimmune diseases. All deregulated cellular processes are associated with improper functioning of the ubiquitin-proteasome system (UPS) in eukaryotic cells. The role of ubiquitin in regulation of immune responses and in autoimmune diseases is only beginning to emerge. Ubiquitin is found in intra- and extracellular fluids and is involved in regulation of numerous cellular processes. Extracellular ubiquitin ascribed a role in lymphocyte differentiation. It regulates differentiation and maturation of hematopoietic cell lines. Ubiquitination is involved in initiation, propagation, and termination of immune responses. Disrupted ubiquitination can lead to autoimmunity. Recent observations showed that it can suppress immune response and prevent inflammation. Exogenous ubiquitin may provide good potential as a new tool for targeted therapy for immune mediated disorders of various etiologies. PMID:27642236

  7. Apoptosis and other immune biomarkers predict influenza vaccine responsiveness.

    Science.gov (United States)

    Furman, David; Jojic, Vladimir; Kidd, Brian; Shen-Orr, Shai; Price, Jordan; Jarrell, Justin; Tse, Tiffany; Huang, Huang; Lund, Peder; Maecker, Holden T; Utz, Paul J; Dekker, Cornelia L; Koller, Daphne; Davis, Mark M

    2013-01-01

    Despite the importance of the immune system in many diseases, there are currently no objective benchmarks of immunological health. In an effort to identifying such markers, we used influenza vaccination in 30 young (20-30 years) and 59 older subjects (60 to >89 years) as models for strong and weak immune responses, respectively, and assayed their serological responses to influenza strains as well as a wide variety of other parameters, including gene expression, antibodies to hemagglutinin peptides, serum cytokines, cell subset phenotypes and in vitro cytokine stimulation. Using machine learning, we identified nine variables that predict the antibody response with 84% accuracy. Two of these variables are involved in apoptosis, which positively associated with the response to vaccination and was confirmed to be a contributor to vaccine responsiveness in mice. The identification of these biomarkers provides new insights into what immune features may be most important for immune health. PMID:23591775

  8. Paradoxical acclimation responses in the thermal performance of insect immunity.

    Science.gov (United States)

    Ferguson, Laura V; Heinrichs, David E; Sinclair, Brent J

    2016-05-01

    Winter is accompanied by multiple stressors, and the interactions between cold and pathogen stress potentially determine the overwintering success of insects. Thus, it is necessary to explore the thermal performance of the insect immune system. We cold-acclimated spring field crickets, Gryllus veletis, to 6 °C for 7 days and measured the thermal performance of potential (lysozyme and phenoloxidase activity) and realised (bacterial clearance and melanisation) immune responses. Cold acclimation decreased the critical thermal minimum from -0.5 ± 0.25 to -2.1 ± 0.18 °C, and chill coma recovery time after 72 h at -2 °C from 16.8 ± 4.9 to 5.2 ± 2.0 min. Measures of both potential and realised immunity followed a typical thermal performance curve, decreasing with decreasing temperature. However, cold acclimation further decreased realised immunity at low, but not high, temperatures; effectively, immune activity became paradoxically specialised to higher temperatures. Thus, cold acclimation induced mismatched thermal responses between locomotor and immune systems, as well as within the immune system itself. We conclude that cold acclimation in insects appears to preferentially improve cold tolerance over whole-animal immune performance at low temperatures, and that the differential thermal performance of physiological responses to multiple pressures must be considered when predicting ectotherms' response to climate change. PMID:26846428

  9. Q fever in pregnant goats: humoral and cellular immune responses

    NARCIS (Netherlands)

    Roest, H.I.J.; Post, J.; Gelderen, van E.; Zijderveld, van F.G.; Rebel, J.M.J.

    2013-01-01

    Q fever is a zoonosis caused by the intracellular bacterium Coxiella burnetii. Both humoral and cellular immunity are important in the host defence against intracellular bacteria. Little is known about the immune response to C. burnetii infections in domestic ruminants even though these species are

  10. Altered Allogeneic Immune Responses in Middle-Aged Mice

    Institute of Scientific and Technical Information of China (English)

    YiminSun; HanhanLi; AlanN.Langnas

    2004-01-01

    It is well known that leukocyte composition, T cell phenotypes and immune function change in aged mice and humans. However, limited and conflicting results on the age-related immune changes in middle-aged mice were reported. Identification of the characteristics of allogeneic immune responses in aging mice may offer important information for transplantation immunology. The major age-related changes in the immune cell phenotypes and function of 12 months old mice include: 1) the significantly decreased CD4+ cell population in the peripheral blood, the major peripheral CD4+ cells is CD45RBlowCD62Llow memory phenotype; 2) the in vitro responses to alloantigens and Con A of splenocytes markedly reduced; 3) the in vivo secondary humoral immune responses to alloantigens significantly declined; 4) the age-related alteration in the thymus mainly occurred in CD4/CD8 double positive (DP) stage; and 5) increased CD80+ and MHC class II+ cell population in spleens. Thus, the major age-related immune changes in 12 months old mice occurred in CD4+ T cells in the periphery and DP stage in the thymus, which may subsequently lead to the decreased allogeneic immune responses and the different sensitivity to immunosuppressive drugs and treatments. Further studies on the characteristics of allogeneic immunity in aging individuals may help to determine the appropriated treatment for transplant aging individuals. Cellular & Molecular Immunology. 2004;1(6):440-446.

  11. Superficial Immunity: Antimicrobial Responses Are More Than Skin Deep.

    Science.gov (United States)

    Mack, Madison R; Kim, Brian S

    2016-07-19

    The skin barrier is essential for host defense, but how the skin provides protection when the barrier is breached is not well understood. In this issue of Immunity, Gallo and colleagues report that keratinocytes integrate signals from antimicrobial peptides via MAVS signaling to amplify their antiviral immune response. PMID:27438760

  12. Altered Allogeneic Immune Responses in Middle-Aged Mice

    Institute of Scientific and Technical Information of China (English)

    Yimin Sun; Hanhan Li; Alan N. Langnas; Yong Zhao

    2004-01-01

    It is well known that leukocyte composition, T cell phenotypes and immune function change in aged mice and humans. However, limited and conflicting results on the age-related immune changes in middle-aged mice were reported. Identification of the characteristics of allogeneic immune responses in aging mice may offer important information for transplantation immunology. The major age-related changes in the immune cell phenotypes and function of 12 months old mice include: 1) the significantly decreased CD4+ cell population in the peripheral blood, the major peripheral CD4+ cells is CD45RBlowCD62Llow memory phenotype; 2) the in vitro responses to alloantigens and Con A of splenocytes markedly reduced; 3) the in vivo secondary humoral immune responses to alloantigens significantly declined; 4) the age-related alteration in the thymus mainly occurred in CD4/CD8 double positive (DP) stage; and 5) increased CD80+ and MHC class Ⅱ+ cell population in spleens. Thus, the major age-related immune changes in 12 months old mice occurred in CD4+ T cells in the periphery and DP stage in the thymus, which may subsequently lead to the decreased allogeneic immune responses and the different sensitivity to immunosuppressive drugs and treatments. Further studies on the characteristics of allogeneic immunity in aging individuals may help to determine the appropriated treatment for transplant aging individuals. Cellular & Molecular Immunology. 2004; 1(6) :440-446.

  13. Measuring antigen-specific immune responses: 2008 Update

    NARCIS (Netherlands)

    J.W. Gratama (Jan-Willem); F. Kern (Florian); F. Manca (Fabrizio); M. Roederer (Mario)

    2008-01-01

    textabstractOverall, the last 10 years have seen an explosion in the field of antigen-specific immune response monitoring. As summarized in this issue of Cytometry and at the MASIR conferences, these technologies have provided new insights into the basic biology of the immune system and are beginnin

  14. Sublingual nucleotides and immune response to exercise

    Directory of Open Access Journals (Sweden)

    Ostojic Sergej M

    2012-07-01

    Full Text Available Abstract Evidence exists regarding the potential role of exogenous nucleotides as regulators of the immune function in physically active humans, yet the potential use of nucleotides has been hindered by their low bioavailability after oral administration. We conducted a double-blind, placebo-controlled, randomized trial to assess the effect of sublingual nucleotides (50 mg/day on salivary and serum immunity indicators as compared to placebo, both administered to healthy males aged 20 to 25 years for 14 days. Sublingual administration of nucleotides for 14 days increased serum immunoglobulin A, natural killer cells count and cytotoxic activity, and offset the post-exercise drop of salivary immunoglobulins and lactoferrin (P  0.05. It seems that sublingual administration of nucleotides for two weeks considerably affected immune function in healthy males.

  15. [Adaptive immune response of people living near chemically hazardous object].

    Science.gov (United States)

    Petlenko, S V; Ivanov, M B; Goverdovskiĭ, Iu B; Bogdanova, E G; Golubkov, A V

    2011-10-01

    The article presents data dynamics of adaptive immune responses of people for a long time living in adverse environmental conditions caused by pollution of the environment by industrial toxic waste. It is shown that in the process of adaptation to adverse environmental factors, changes in the immune system are in the phase fluctuations of immunological parameters that are accompanied by changes in the structure of immunodependent pathology. Most sensitive to prolonged exposure to toxic compounds are the cellular mechanisms of immune protection. Violations of the structural and quantitative and functional parameters of the link of the immune system are leading to the formation of immunopathological processes.

  16. Sub-lethal radiation enhances anti-tumor immunotherapy in a transgenic mouse model of pancreatic cancer

    International Nuclear Information System (INIS)

    It is not uncommon to observe circulating tumor antigen-specific T lymphocytes in cancer patients despite a lack of significant infiltration and destruction of their tumors. Thus, an important goal for tumor immunotherapy is to identify ways to modulate in vivo anti-tumor immunity to achieve clinical efficacy. We investigate this proposition in a spontaneous mouse tumor model, Rip1-Tag2. Experimental therapies were carried out in two distinctive trial designs, intended to either intervene in the explosive growth of small tumors, or regress bulky end-stage tumors. Rip1-Tag2 mice received a single transfer of splenocytes from Tag-specific, CD4+ T cell receptor transgenic mice, a single sub-lethal radiation, or a combination therapy in which the lymphocyte transfer was preceded by the sub-lethal radiation. Tumor burden, the extent of lymphocyte infiltration into solid tumors and host survival were used to assess the efficacy of these therapeutic approaches. In either intervention or regression, the transfer of Tag-specific T cells alone did not result in significant lymphocyte infiltration into solid tumors, not did it affect tumor growth or host survival. In contrast, the combination therapy resulted in significant reduction in tumor burden, increase in lymphocyte infiltration into solid tumors, and extension of survival. The results indicate that certain types of solid tumors may be intrinsically resistant to infiltration and destruction by tumor-specific T lymphocytes. Our data suggest that such resistance can be disrupted by sub-lethal radiation. The combinatorial approach presented here merits consideration in the design of clinical trials aimed to achieve T cell-mediated anti-tumor immunity

  17. Nanoparticles for nasal delivery of vaccines : monitoring adaptive immune responses

    NARCIS (Netherlands)

    Keijzer, C.

    2013-01-01

    The continuous emergence of new pathogens and growing drug resistance of microorganisms asks for innovative vaccination strategies. An alternative to conventional multiple injection vaccines is the nasal route of vaccine delivery. The immune response induced following nasal antigen delivery depends

  18. DNA Damage Response and Immune Defence: Links and Mechanisms

    Directory of Open Access Journals (Sweden)

    Björn Schumacher

    2016-08-01

    Full Text Available DNA damage plays a causal role in numerous human pathologies including cancer, premature aging and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signalling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signalling. We highlight evidence gained into (i which molecular and cellular pathways of DDR activate immune signalling, (ii how DNA damage drives chronic inflammation, and (iii how chronic inflammation causes DNA damage and pathology in humans.

  19. Effect of mycotoxins on swine in immune responses

    OpenAIRE

    Fornalés Pallàs, Clara

    2014-01-01

    Póster Mycotoxins are secondary metabolites of fungi, hazardous to human and animal health. Their effect has been mostly studied in medium or half doses. It has been stated that, at lower, subclinical doses, mycotoxins may alter immune response, thus predisposing the appearance of diseases. Swine are a good model for studying the effect of mycotoxins to extrapolate to humans. This review is focused on the effect of most common mycotoxins on Swine immune response.

  20. A preliminary study to evaluate the immune responses induced by immunization of dogs with inactivated Ehrlichia canis organisms

    Directory of Open Access Journals (Sweden)

    Sunita Mahan

    2005-09-01

    Full Text Available Ehrlichia canis is an intracellular pathogen that causes canine monocytic ehrlichiosis. Although the role of antibody responses cannot be discounted, control of this intracellular pathogen is expected to be by cell mediated immune responses. The immune responses in dogs immunized with inactivated E. canis organisms in combination with Quil A were evaluated. Immunization provoked strong humoral and cellular immune responses, which were demonstrable by Western blotting and lymphocyte proliferation assays. By Western blotting antibodies to several immunodominant E. canis proteins were detected in serum from immunized dogs and antibody titres increased after each immunization. The complement of immunogenic proteins recognized by the antisera were similar to those recognized in serum from infected dogs. Upon challenge with live E. canis, rapid anamnestic humoral responses were detected in the serum of immunized dogs and primary antibody responses were detected in the serum from control dogs. Following immunization, a lymphocyte proliferative response (cellular immunity was detected in peripheral blood mononuclear cells (PBMNs of immunized dogs upon stimulation with E. canis antigens. These responses were absent from non-immunized control dogs until after infection with live E. canis, when antigen specific-lymphocyte proliferation responses were also detected in the PBMNs of the control dogs. It can be thus concluded that immunization against canine monocytic ehrlichiosis may be feasible. However, the immunization regimen needs to be optimized and a detailed investigation needs to be done to determine if this regimen can prevent development of acute and chronic disease.

  1. Respons imun humoral pada pulpitis (Humoral immune response on pulpitis

    Directory of Open Access Journals (Sweden)

    Trijoedani Widodo

    2005-06-01

    Full Text Available Pulpitis is an inflammation process on dental pulp tissue, and usually as the continuous of caries. The microorganism in the caries is a potential immunogenic triggering the immune respons, both humoral and celluler immune responses. The aim of this research is to explain the humoral immune response changes in the dental pulp tissues of pulpitis. This research was done on three group samples: Irreversible pulpitis, Reversible pulpitis and sound teeth as the control group. The result showed that there were three pulpitis immunopathologic patterns: the sound teeth immunopathologic pattern showing a low humoral immune response, in a low level of IgG, IgA and IgM, the reversible pulpitis pattern showing that in a higher humoral immune response, IgG and IgA decreased but IgM increased, the irreversible pulpitis pattern showing that IgG and IgM increased, but it couldn't be repaired although it has highly immunity, and it showed an unusually low level of IgA. This low level of IgA meant that irreversible pulpitis had a low mucosal immunity.

  2. Modeling the interactions between pathogenic bacteria, bacteriophage and immune response

    Science.gov (United States)

    Leung, Chung Yin (Joey); Weitz, Joshua S.

    The prevalence of antibiotic-resistant strains of pathogenic bacteria has led to renewed interest in the use of bacteriophage (phage), or virus that infects bacteria, as a therapeutic agent against bacterial infections. However, little is known about the theoretical mechanism by which phage therapy may work. In particular, interactions between the bacteria, the phage and the host immune response crucially influences the outcome of the therapy. Few models of phage therapy have incorporated all these three components, and existing models suffer from unrealistic assumptions such as unbounded growth of the immune response. We propose a model of phage therapy with an emphasis on nonlinear feedback arising from interactions with bacteria and the immune response. Our model shows a synergistic effect between the phage and the immune response which underlies a possible mechanism for phage to catalyze the elimination of bacteria even when neither the immune response nor phage could do so alone. We study the significance of this effect for different parameters of infection and immune response, and discuss its implications for phage therapy.

  3. Research progress and mechanism research on anti-tumor material finding from Gecko%壁虎抗肿瘤活性物质的发现及作用机制研究进展

    Institute of Scientific and Technical Information of China (English)

    蒋桂香; 王春梅; 赓迪

    2013-01-01

    Gecko is effective to cure many kinds of tumor with little toxicity. Many labs have tried to find the anti-tumor materials from gecko. The anti-tumor mechanism of gecko has also been deeply investigated. This paper reviewed the advances on the active materials finding and the active monomer isolated from gecko and its anti-tumor mechanisms. Gecko played the anti-tumor roles from several different ways which include inducing cells apoptosis, inhibiting tumor angiogenesis, promoting the cell differentiation and stimulating immunity. And we looked forward to the anti-tumor research of gecko. This review provided a reference for the further study of the Gecko anti-tumor.%壁虎广泛用于临床肿瘤疾病的治疗,因其抗肿瘤的独特疗效和低毒副作用,已经引起国内外学者的高度重视,近年来多个研究室对壁虎抗肿瘤的物质基础和作用机制进行了大量研究,取得了一定进展.文章综述了从壁虎中寻找活性物质的研究现状及分离到的抗肿瘤活性单体,总结了壁虎在诱导肿瘤细胞凋亡、抑制肿瘤新生血管形成、诱导肿瘤细胞分化以及免疫调节等方面的药理机制,并结合本课题组的工作对壁虎抗肿瘤研究进行了展望,以期为研究工作者的深入研究提供参考和依据.

  4. Protective immune responses to fungal infections.

    Science.gov (United States)

    Rivera, A

    2014-09-01

    The incidence of fungal infections has been on the rise over several decades. Fungal infections threaten animals, plants and humans alike and are thus of significant concern to scientists across disciplines. Over the last decade, significant advances on fungal immunology have lead to a better understanding of important mechanisms of host protection against fungi. In this article, I review recent advances of relevant mechanisms of immune-mediated protection to fungal infections.

  5. Legionella secreted effectors and innate immune responses

    OpenAIRE

    Luo, Zhao-Qing

    2011-01-01

    Legionella pneumophila is a facultative intracellular pathogen capable of replicating in a wide spectrum of cells. Successful infection by Legionella requires the Dot/Icm type IV secretion system, which translocates a large number of effector proteins into infected cells. By co-opting numerous host cellular processes, these proteins function to establish a specialized organelle that allows bacterial survival and proliferation. Even within the vacuole, L. pneumophila triggers robust immune res...

  6. Chemical agents and the immune response.

    OpenAIRE

    Luster, M I; Rosenthal, G J

    1993-01-01

    Our desire to understand the potential adverse human health effects of environmental chemical exposure has coincided with an increased understanding of the immune system and an appreciation of its complex regulatory network. This has spawned a broad interest in the area of immunotoxicology within the scientific community as well as certain concerns in the public sector regarding chemical-induced hypersensitivity and immunosuppression. The incidence of alleged human sensitization to chemicals ...

  7. Autophagy-associated immune responses and cancer immunotherapy

    Science.gov (United States)

    Xu, Yinghua; Han, Weidong; Lou, Fang; Fei, Weiqiang; Liu, Shuiping; Jing, Zhao; Sui, Xinbing

    2016-01-01

    Autophagy is an evolutionarily conserved catabolic process by which cellular components are sequestered into a double-membrane vesicle and delivered to the lysosome for terminal degradation and recycling. Accumulating evidence suggests that autophagy plays a critical role in cell survival, senescence and homeostasis, and its dysregulation is associated with a variety of diseases including cancer, cardiovascular disease, neurodegeneration. Recent studies show that autophagy is also an important regulator of cell immune response. However, the mechanism by which autophagy regulates tumor immune responses remains elusive. In this review, we will describe the role of autophagy in immune regulation and summarize the possible molecular mechanisms that are currently well documented in the ability of autophagy to control cell immune response. In addition, the scientific and clinical hurdles regarding the potential role of autophagy in cancer immunotherapy will be discussed. PMID:26788909

  8. Optimal approximation of linear systems by artificial immune response

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper puts forward a novel artificial immune response algorithm for optimal approximation of linear systems. A quaternion model of artificial immune response is proposed for engineering computing. The model abstracts four elements, namely, antigen, antibody, reaction rules among antibodies, and driving algorithm describing how the rules are applied to antibodies, to simulate the process of immune response. Some reaction rules including clonal selection rules, immunological memory rules and immune regulation rules are introduced. Using the theorem of Markov chain, it is proofed that the new model is convergent. The experimental study on the optimal approximation of a stable linear system and an unstable one show that the approximate models searched by the new model have better performance indices than those obtained by some existing algorithms including the differential evolution algorithm and the multi-agent genetic algorithm.

  9. The role of lysosomal cysteine proteases in crustacean immune response

    Directory of Open Access Journals (Sweden)

    FL Garcia-Carreño

    2014-04-01

    Full Text Available Over the long course of evolution and under the selective pressure exerted by pathogens and parasites, animals have selectively fixed a number of defense mechanisms against the constant attack of intruders. The immune response represents a key component to optimize the biological fitness of individuals. Two decades ago, prevention and control of diseases in crustacean aquaculture systems were considered priorities in most shrimp-producing countries, but knowledge was scarce and various pathogens have severely affected aquaculture development around the world. Scientific contributions have improved our understanding of the crustacean immune response. Several studies confirm the central role played by proteases in the immune response of animals, and the cooperative interaction of these enzymes in a wide variety of organisms is well known. This review summarizes the current information regarding the role of cysteine proteases in the immune system of Crustacea and points to aspects that are needed to provide a better integration of our knowledge.

  10. Autophagy-associated immune responses and cancer immunotherapy.

    Science.gov (United States)

    Pan, Hongming; Chen, Liuxi; Xu, Yinghua; Han, Weidong; Lou, Fang; Fei, Weiqiang; Liu, Shuiping; Jing, Zhao; Sui, Xinbing

    2016-04-19

    Autophagy is an evolutionarily conserved catabolic process by which cellular components are sequestered into a double-membrane vesicle and delivered to the lysosome for terminal degradation and recycling. Accumulating evidence suggests that autophagy plays a critical role in cell survival, senescence and homeostasis, and its dysregulation is associated with a variety of diseases including cancer, cardiovascular disease, neurodegeneration. Recent studies show that autophagy is also an important regulator of cell immune response. However, the mechanism by which autophagy regulates tumor immune responses remains elusive. In this review, we will describe the role of autophagy in immune regulation and summarize the possible molecular mechanisms that are currently well documented in the ability of autophagy to control cell immune response. In addition, the scientific and clinical hurdles regarding the potential role of autophagy in cancer immunotherapy will be discussed.

  11. Characterization of a Newly Isolated Marine Fungus Aspergillus dimorphicus for Optimized Production of the Anti-Tumor Agent Wentilactones

    Directory of Open Access Journals (Sweden)

    Rui Xu

    2015-11-01

    Full Text Available The potential anti-tumor agent wentilactones were produced by a newly isolated marine fungus Aspergillus dimorphicus. This fungus was derived from deep-sea sediment and identified by polyphasic approach, combining phenotypic, molecular, and extrolite profiles. However, wentilactone production was detected only under static cultures with very low yields. In order to improve wentilactone production, culture conditions were optimized using the response surface methodology. Under the optimal static fermentation conditions, the experimental values were closely consistent with the prediction model. The yields of wentilactone A and B were increased about 11-fold to 13.4 and 6.5 mg/L, respectively. The result was further verified by fermentation scale-up for wentilactone production. Moreover, some small-molecule elicitors were found to have capacity of stimulating wentilactone production. To our knowledge, this is first report of optimized production of tetranorlabdane diterpenoids by a deep-sea derived marine fungus. The present study might be valuable for efficient production of wentilactones and fundamental investigation of the anti-tumor mechanism of norditerpenoids.

  12. The serological response to heartwater immunization in cattle is an indicator of protective immunity

    DEFF Research Database (Denmark)

    Lawrence, J A; Tjørnehøj, Kirsten; Whiteland, A P;

    1995-01-01

    A significant correlation was demonstrated in Friesian-cross steers between the serological response to previous vaccination with the Ball 3 strain of Cowdria ruminantium and the development of protective immunity against the Kalota isolate from Malawi. Of 10 animals which seroconverted after...... vaccination, all were completely or partially immune to challenge. Ten of the 14 animals which failed to seroconvert were immune but the proportion was not significantly different from that in the unvaccinated controls (4/10). Of 29 animals vaccinated and treated simultaneously with a slow-release doxycycline...

  13. Synergistic anti-tumor effect of recombinant chicken fibroblast growth factor receptor-1-mediated anti-angiogenesis and low-dose gemcitabine in a mouse colon adenocarcinoma model

    Institute of Scientific and Technical Information of China (English)

    Shao-Jiang Zheng; Shao-Ping Zheng; Feng-Ying Huang; Chang-Liang Jiao; Ren-Liang Wu

    2007-01-01

    AIM: To evaluate whether the combination of recombinant chicken fibroblast growth factor receptor -1(FGFR-1) protein vaccine (cFR-1) combined with low-dose gemcitabine would improve anti-tumor efficacy in a mouse CT26 colon adenocarcinoma (CT26) model.METHODS: The CT26 model was established in BABL/c mice. Seven days after tumor cell injection, mice were randomly divided into four groups: combination therapy,cFR-1 alone, gemcitabine alone, and normal saline groups. Tumor growth, survival rate of tumor-bearing mice, and systemic toxicity were observed. The presence of anti-tumor auto-antibodies was detected by Western blot analysis and enzyme-linked immunospot assay,microvessel density (MVD) of the tumors and tumor cell proliferation were detected by Immunohistochemistry staining, and tumor cell apoptosis was detected by TdT-mediated biotinylated-dUTP nick end label staining.RESULTS: The combination therapy results in apparent decreases in tumor volume, microvessel density and tumor cell proliferation, and an increase in apoptosis without obvious side-effects as compared with either therapy alone or normal control groups. Also, both autoantibodies and the antibody-producing B cells against mouse FGFR-1 were detected in mice immunized with cFR-1 vaccine alone or with combination therapy, but not in non-immunized mice. In addition, the deposition of auto-antibodies on endothelial cells from mice immunized with cFR-1 was observed by immunofluorescent staining, but not on endothelial cells from control groups.Synergistic indexes of tumor volume, MVD, cell apoptosis and proliferation in the combination therapy group were 1.71 vs 1.15 vs 1.11 and 1.04, respectively, 31 d after tumor cell injection.CONCLUSION: The combination of cFR-1-mediated antiangiogenesis and low-dose gemcitabine synergistically enhances the anti-tumor activity without overt toxicity in mice.

  14. Immune allergic response in Asperger syndrome.

    Science.gov (United States)

    Magalhães, Elizabeth S; Pinto-Mariz, Fernanda; Bastos-Pinto, Sandra; Pontes, Adailton T; Prado, Evandro A; deAzevedo, Leonardo C

    2009-11-30

    Asperger's syndrome is a subgroup of autism characterized by social deficits without language delay, and high cognitive performance. The biological nature of autism is still unknown but there are controversial evidence associating an immune imbalance and autism. Clinical findings, including atopic family history, serum IgE levels as well as cutaneous tests showed that incidence of atopy was higher in the Asperger group compared to the healthy controls. These findings suggest that atopy is frequent in this subgroup of autism implying that allergic inflammation might be an important feature in Asperger syndrome.

  15. Immunomodulator-based enhancement of anti smallpox immune responses.

    Directory of Open Access Journals (Sweden)

    Osmarie Martínez

    Full Text Available The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists, and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  16. Signaling molecules involved in immune responses in mussels

    Directory of Open Access Journals (Sweden)

    S Koutsogiannaki

    2010-01-01

    Full Text Available Immune system of molluscs is constituted by hemocytes and humoral factors that cooperate for the protection of the organism, triggering a wide range of immune responses. In molluscs, immune responses include phagocytosis, encapsulation, respiratory burst leading to reactive oxygen species (ROS production and nitric oxide (NO synthesis, release of antimicrobial molecules and the activation of phenoloxidase system. These responses are mediated firstly by a variety of hemocyte receptors binding to ligands that results to a cascade of signaling events. The processes of hemocytes adhesion to and migration through extracellular matrix (ECM proteins play a crucial role in cell immunity. Results suggest that cadmium and oxidants induce adhesion to and migration through ECM proteins in Mytilus gallorovincialis hemocytes with the involvement of Na+/H+ exchanger (NHE, phosphatidylinositol-3 kinase (PI-3K, protein kinase C (PKC, NADPH oxidase, ROS and NO as well as with α2 integrin subunit. Furthermore, the data so far suggests the involvement of additional signaling molecules such as mitogen-activated protein kinases (MAPKs, signal transducers and activators of transcription (STATs, c-Jun N-terminal kinase (JNK, extracellular signal-regulated kinase (ERK, cyclic adenosine monophosphate (cAMP, responsive element binding protein (CREB and nuclear factor kappa B (NF-kB in molluscs immunity. Further research in mollusc immune system may lead to a more sufficient protection and to a better control of these economically important organisms.

  17. Immune responses and immune-related gene expression profile in orange-spotted grouper after immunization with Cryptocaryon irritans vaccine.

    Science.gov (United States)

    Dan, Xue-Ming; Zhang, Tuan-Wei; Li, Yan-Wei; Li, An-Xing

    2013-03-01

    In order to elucidate the immune-protective mechanisms of inactivated Cryptocaryon irritans vaccine, different doses of C. irritans theronts were used to immunize orange-spotted grouper (Epinephelus coioides). We measured serum immobilization titer, blood leukocyte respiratory burst activity, serum alternative complement activity, and serum lysozyme activity weekly. In addition, the expression levels of immune-related genes such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), major histocompatibility complexes I and II (MHC I and II), and transforming growth factor-β1 (TGF-β1) were determined in spleen and gills. The results showed that the immobilization titer, respiratory burst activity, and alternative complement activity of immunized fish were significantly increased, and the levels of the last two immune parameters in the high-dose vaccine group were significantly higher than in the low-dose vaccine group. Serum lysozyme activity in the high-dose vaccine group was significantly higher than in the PBS control group. Vaccination also regulated host immune-related gene expression. For example, at 2- and 3- weeks post immunization, IL-1β expression in the high-dose vaccine group spleen was significantly increased. At 4-weeks post immunization, the fish were challenged with a lethal dose of parasite, and the survival rates of high-dose vaccine group, low-dose vaccine group, PBS control group, and adjuvant control group were 80%, 40%, 0%, and 10% respectively. These results demonstrate that inactivated C. irritans vaccination improves specific and nonspecific immune responses in fish, enhancing their anti-parasite ability. These effects are vaccine antigen dose-dependent.

  18. Optimizing production of asperolide A, a potential anti-tumor tetranorditerpenoid originally produced by the algal-derived endophytic fungus Aspergillus wentii EN-48

    Science.gov (United States)

    Xu, Rui; Li, Xiaoming; Xu, Gangming; Wang, Bingui

    2016-07-01

    The marine algal-derived endophytic fungus Aspergillus wentii EN-48 produces the potential anti-tumor agent asperolide A, a tetranorlabdane diterpenoid active against lung cancer. However, the fermentation yield of asperolide A was very low and only produced in static cultures. Static fermentation conditions of A. wentii EN-48 were optimized employing response surface methodology to enhance the production of asperolide A. The optimized conditions resulted in a 13.9-fold yield enhancement, which matched the predicted value, and the optimized conditions were successfully used in scale-up fermentation for the production of asperolide A. Exogenous addition of plant hormones (especially 10 μmol/L methyl jasmonate) stimulated asperolide A production. To our knowledge, this is first optimized production of an asperolide by a marine-derived fungus. The optimization is Effective and valuable to supply material for further anti-tumor mechanism studies and preclinical evaluation of asperolide A and other norditerpenoids.

  19. [Bone marrow stromal damage mediated by immune response activity].

    Science.gov (United States)

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  20. Balancing immune protection and immune pathology by CD8+ T cell responses to influenza infection

    Directory of Open Access Journals (Sweden)

    Susu eDuan

    2016-02-01

    Full Text Available Influenza A virus (IAV is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL-mediated immunity contributes to clearance of virus-infected cells; CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, their cytotoxicity, and the effects of produced pro-inflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL anti-viral immunity from those necessary to restrain CTL-mediated nonspecific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity.

  1. The immune response against Candida spp. and Sporothrix schenckii.

    Science.gov (United States)

    Martínez-Álvarez, José A; Pérez-García, Luis A; Flores-Carreón, Arturo; Mora-Montes, Héctor M

    2014-01-01

    Candida albicans is the main causative agent of systemic candidiasis, a condition with high mortality rates. The study of the interaction between C. albicans and immune system components has been thoroughly studied and nowadays there is a model for the anti-C. albicans immune response; however, little is known about the sensing of other pathogenic species of the Candida genus. Sporothrix schenckii is the causative agent of sporotrichosis, a subcutaneous mycosis, and thus far there is limited information about its interaction with the immune system. In this paper, we review the most recent information about the immune sensing of species from genus Candida and S. schenckii. Thoroughly searches in scientific journal databases were performed, looking for papers addressing either Candida- or Sporothrix-immune system interactions. There is a significant advance in the knowledge of non-C. albicans species of Candida and Sporothrix immune sensing; however, there are still relevant points to address, such as the specific contribution of pathogen-associated molecular patterns (PAMPs) for sensing by different immune cells and the immune receptors involved in such interactions. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).

  2. The Impact of Ultraviolet Radiation on Immune Responses (invited paper)

    International Nuclear Information System (INIS)

    In addition to its genotoxic and mutagenic effects, UV has the capacity to suppress immune responses. The mechanism involved is complex, beginning with chromophores located in the skin which absorb UV, this leading in turn to changes in the production of a range of immune mediators locally and systemically which then induce phenotypic and functional alterations in antigen presentation. The cascade ends with the promotion of a subset of T-cells downregulating cell-mediated immunity. The possible consequences of this immunomodulation for the control of tumours and infectious diseases require careful evaluation from laboratory and human studies. (author)

  3. Functional characterization of Foxp3-specific spontaneous immune responses

    DEFF Research Database (Denmark)

    Larsen, Susanne Købke; Munir, S; Andersen, Anders Woetmann;

    2013-01-01

    Tumor-infiltrating CD4+CD25+ regulatory T cells (Tregs) are associated with an impaired prognosis in several cancers. The transcription factor forkhead box P3 (Foxp3) is generally expressed in Tregs. Here, we identify and characterize spontaneous cytotoxic immune responses to Foxp3-expressing cells...... in peripheral blood of healthy volunteers and cancer patients. These immune responses were directed against a HLA-A2-restricted peptide epitope derived from Foxp3. Foxp3-reactive T cells were characterized as cytotoxic CD8+ T cells. These cells recognized dendritic cells incubated with recombinant Foxp3 protein...... readily killed by the Foxp3-specific cytotoxic T lymphocytes. The spontaneous presence of Foxp3-specific cytotoxic T-cell responses suggest a general role of such T cells in the complex network of immune regulation as such responses may eliminate Tregs, that is, suppression of the suppressors...

  4. Ageing and the humoral immune response in mice

    International Nuclear Information System (INIS)

    The study presented in this thesis is concerned with changes in the humoral immune system as a function of age in different inbred mouse strains. Their capacity to develop humoral immune responses to experimentally given thymus-dependent and thymus-independent antigens under various conditions is compared. Furthermore, experiments employing thymus transplantation and thymic humoral factors which are directed at the restoration of the diminished T cell functions in old age are reported. (Auth.)

  5. SUMO-Enriched Proteome for Drosophila Innate Immune Response

    Science.gov (United States)

    Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S.

    2015-01-01

    Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. PMID:26290570

  6. The Immune Response and Its Therapeutic Modulation in Bronchiectasis

    OpenAIRE

    Massoud Daheshia; Prahl, James D.; Carmichael, Jacob J.; Parrish, John S.; Gilbert Seda

    2012-01-01

    Bronchiectasis (BC) is a chronic pulmonary disease with tremendous morbidity and significant mortality. As pathogen infection has been advocated as a triggering insult in the development of BC, a central role for the immune response in this process seems obvious. Inflammatory cells are present in both the airways as well as the lung parenchyma, and multiple mediators of immune cells including proteases and cytokines or their humoral products are increased locally or in the periphery. Interest...

  7. Interactions between dietary chicory, gut microbiota and immune responses

    OpenAIRE

    Liu, Haoyu

    2013-01-01

    This thesis provides a better understanding of interactions between diet, gut microbiota, and immune responses to a specific dietary fiber source, chicory (Cichorium intybus L). This was achieved by examining the impact of chicory fiber on animal performance, digestibility, gut development, commensal bacteria community structure in small and large intestine, and follow-up reactions with specific immune components, cytoprotective heat shock protein (HSP) 27 and 72, in vivo and in vitro. T...

  8. Therapeutic targeting of regulatory T cells enhances tumor-specific CD8+ T cell responses in Epstein–Barr virus associated nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fogg, Mark [Department of Medicine, Brigham and Women' s Hospital (United States); Murphy, John R. [Departments of Medicine and Microbiology, Boston University School of Medicine, Boston, MA 02118 (United States); Lorch, Jochen; Posner, Marshall [Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 (United States); Wang, Fred, E-mail: fwang@research.bwh.harvard.edu [Department of Medicine, Brigham and Women' s Hospital (United States); Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 (United States)

    2013-07-05

    Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, as well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. - Highlights: • Viral proteins are tumor antigens in Epstein–Barr virus associated Nasopharyngeal Carcinoma. • CD8+ T cell responses against EBV proteins EBNA-1 and LMP2 are suppressed in NPC patients. • T regulatory cells are responsible for suppressing EBV immunity in NPC patients. • Depletion of Tregs with Ontak can rescue EBV-specific CD8+ T cell responses in NPC patients. • This clinically approved drug may be effective for enhancing anti-tumor immunity in NPC patients.

  9. Flavobacterium psychrophilum, prevention and immune response

    DEFF Research Database (Denmark)

    Henriksen, Maya Maria Mihályi; Dalsgaard, Inger

    The fish pathogen Flavobacterium psychrophilum is one of the main causes of mortality in farmed rainbow trout and other salmonid fish. The disease following infection is often called bacterial coldwater disease (BCWD) in USA or rainbow trout fry syndrome (RTFS) in Europe. An infected farm can...... expect mortality rates around 50-60% in fry and 2-10% in juvenile fish within few weeks, which causes significant economical losses worldwide. Presently no commercial vaccine exists, and fish farmers control the disease with antibiotics. The project is currently in its preliminary phase but the overall...... goal is to examine gene expression and location of transcription products in rainbow trout fry, in order to optimize vaccination or immune-stimulation. The presentation will focus on the future plans for the project, since no data have yet been obtained....

  10. The immune response to sand fly salivary proteins and its influence on Leishmania immunity

    Directory of Open Access Journals (Sweden)

    Regis eGomes

    2012-05-01

    Full Text Available Leishmaniasis is a vector-borne disease transmitted by bites of phlebotomine sand flies. During Leishmania transmission, sand fly saliva is co-inoculated with parasites into the skin of the mammalian host. Sand fly saliva consists of roughly thirty different salivary proteins, many with known roles linked to blood feeding facilitation. Apart from the anti-hemostatic capacity of saliva, several sand fly salivary proteins have been shown to be immunogenic upon multiple contacts with a mammalian host. Immunization with single immunogenic salivary proteins or exposure to uninfected bites can produce protective immune responses against leishmaniasis. These sand fly salivary proteins induce cellular immune responses and/or antibodies. Antibodies to saliva are not required for protection in a mouse model against leishmaniasis. A strong body of evidence points to the role for saliva-specific T cells producing IFN-γ in the form of a delayed-type hypersensitivity reaction at the bite site as the main protective response. Herein, we review immunity to sand fly salivary proteins in the context of its vector-parasite-host combinations and vaccine potential, as well as some recent advances to shed light on the mechanism of how an immune response to sand fly saliva protects against leishmaniasis.

  11. Modulation of immune responses in stress by Yoga

    Directory of Open Access Journals (Sweden)

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  12. Specific and nonspecific aspects of humoral immune response in leprosy.

    Science.gov (United States)

    Kirsztajn, G M; Nishida, S K; Silva, M S; Lombardi, C; Ajzen, H; Pereira, A B

    1994-01-01

    1. We have studied some generic and specific aspects of the humoral immune response in 96 patients with leprosy (29 paucibacillary and 67 multibacillary individuals). We determined serum immunoglobulins (IgM, IgG and IgA), CH50, C1q, C3 and C4, circulating immune complexes (CIC), C-reactive protein (CRP), rheumatoid factor (RF) and antinuclear antibodies. No specific pattern of general humoral immune changes could be observed. 2. The specific immune response was studied by the detection of specific IgM anti-M. leprae antibodies. An immunoradiometric assay (IRMA) and an ELISA were compared for clinical effectiveness. IRMA showed greater sensitivity for the serodiagnosis of leprosy as compared to ELISA (88.1% vs 58.2% for multibacillary patients and 20.7% vs 10.3% for paucibacillary leprosy patients). Specificity was 96% for IRMA and 97% for ELISA. 3. Our results indicate that nonspecific changes in the humoral immune response are of little value in assessing leprosy patients and that immune assays for the detection of specific anti-M. leprae antibodies may be of value in the diagnosis, study and follow-up of these patients. PMID:8173529

  13. Immune responses in multiple myeloma: role of the natural immune surveillance and potential of immunotherapies.

    Science.gov (United States)

    Guillerey, Camille; Nakamura, Kyohei; Vuckovic, Slavica; Hill, Geoffrey R; Smyth, Mark J

    2016-04-01

    Multiple myeloma (MM) is a tumor of terminally differentiated B cells that arises in the bone marrow. Immune interactions appear as key determinants of MM progression. While myeloid cells foster myeloma-promoting inflammation, Natural Killer cells and T lymphocytes mediate protective anti-myeloma responses. The profound immune deregulation occurring in MM patients may be involved in the transition from a premalignant to a malignant stage of the disease. In the last decades, the advent of stem cell transplantation and new therapeutic agents including proteasome inhibitors and immunoregulatory drugs has dramatically improved patient outcomes, suggesting potentially key roles for innate and adaptive immunity in disease control. Nevertheless, MM remains largely incurable for the vast majority of patients. A better understanding of the complex interplay between myeloma cells and their immune environment should pave the way for designing better immunotherapies with the potential of very long term disease control. Here, we review the immunological microenvironment in myeloma. We discuss the role of naturally arising anti-myeloma immune responses and their potential corruption in MM patients. Finally, we detail the numerous promising immune-targeting strategies approved or in clinical trials for the treatment of MM. PMID:26801219

  14. Genetic control of the innate immune response

    Directory of Open Access Journals (Sweden)

    Sweet Matthew

    2003-06-01

    Full Text Available Abstract Background Susceptibility to infectious diseases is directed, in part, by the interaction between the invading pathogen and host macrophages. This study examines the influence of genetic background on host-pathogen interactions, by assessing the transcriptional responses of macrophages from five inbred mouse strains to lipopolysaccharide (LPS, a major determinant of responses to gram-negative microorganisms. Results The mouse strains examined varied greatly in the number, amplitude and rate of induction of genes expressed in response to LPS. The response was attenuated in the C3H/HeJlpsd strain, which has a mutation in the LPS receptor Toll-like receptor 4 (TLR4. Variation between mouse strains allowed clustering into early (C57Bl/6J and DBA/2J and delayed (BALB/c and C3H/ARC transcriptional phenotypes. There was no clear correlation between gene induction patterns and variation at the Bcg locus (Slc11A1 or propensity to bias Th1 versus Th2 T cell activation responses. Conclusion Macrophages from each strain responded to LPS with unique gene expression profiles. The variation apparent between genetic backgrounds provides insights into the breadth of possible inflammatory responses, and paradoxically, this divergence was used to identify a common transcriptional program that responds to TLR4 signalling, irrespective of genetic background. Our data indicates that many additional genetic loci control the nature and the extent of transcriptional responses promoted by a single pathogen-associated molecular pattern (PAMP, such as LPS.

  15. What are carbon nanotubes’ roles in anti-tumor therapies?

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Since their discovery,carbon nanotubes(CNTs) have become one of the most promising nanomaterials in many industrial and biomedical applications.Due to their unique physicochemical properties,CNTs have been proposed and actively exploited as multipurpose innovative carriers for cancer therapy.The aim of this article is to provide an overview of the status of applications,advantages,and up-to-date research and development of carbon nanotubes in cancer therapy with an emphasis on drug delivery,photothermal therapy,gene therapy,RNAi,and immune therapy.In addition,the issues of risk and safety of CNTs in cancer nanotechnology are discussed briefly.

  16. The genetic regulation of infant immune responses to vaccination

    Directory of Open Access Journals (Sweden)

    Melanie eNewport

    2015-02-01

    Full Text Available A number of factors are recognised to influence immune responses to vaccinations including age, gender, the dose and quality of the antigen used, the number of doses given, the route of administration and the nutritional status of the recipient. Additionally, several immunogenetic studies have identified associations between polymorphisms in genes encoding immune response proteins, both innate and adaptive, and variation in responses to vaccines. Variants in the genes encoding Toll-like receptors, HLA molecules, cytokines, cytokine receptors have associated with heterogeneity of responses to a wide range of vaccines including measles, hepatitis B, influenza A, BCG, Haemophilus influenzae type b and certain Neisseria meningitidis serotypes, amongst others. However, the vast majority of these studies have been conducted in older children and adults and there are very few data available from studies conducted in infants. This paper reviews the evidence to date that host genes influencing vaccines responses in these older population and identifies a large gap in our understanding of the genetic regulation of responses in early life. . Given the high mortality from infection in early life and the challenges of developing vaccines that generate effective immune responses in the context of the developing immune system further research on infant populations is required.

  17. Adverse environmental conditions influence age-related innate immune responsiveness

    Directory of Open Access Journals (Sweden)

    Amankwa Joseph

    2009-05-01

    Full Text Available Abstract Background- The innate immune system plays an important role in the recognition and induction of protective responses against infectious pathogens, whilst there is increasing evidence for a role in mediating chronic inflammatory diseases at older age. Despite indications that environmental conditions can influence the senescence process of the adaptive immune system, it is not known whether the same holds true for the innate immune system. Therefore we studied whether age-related innate immune responses are similar or differ between populations living under very diverse environmental conditions. Methods- We compared cross-sectional age-related changes in ex vivo innate cytokine responses in a population living under affluent conditions in the Netherlands (age 20–68 years old, n = 304 and a population living under adverse environmental conditions in Ghana (age 23–95 years old, n = 562. Results- We found a significant decrease in LPS-induced Interleukin (IL-10 and Tumor Necrosis Factor (TNF production with age in the Dutch population. In Ghana a similar age-related decline in IL-10 responses to LPS, as well as to zymosan, or LPS plus zymosan, was observed. TNF production, however, did not show an age-associated decline, but increased significantly with age in response to co-stimulation with LPS and zymosan. Conclusion- We conclude that the decline in innate cytokine responses is an intrinsic ageing phenomenon, while pathogen exposure and/or selective survival drive pro-inflammatory responses under adverse living conditions.

  18. A basic mathematical model of the immune response

    Science.gov (United States)

    Mayer, H.; Zaenker, K. S.; an der Heiden, U.

    1995-03-01

    Interaction of the immune system with a target population of, e.g., bacteria, viruses, antigens, or tumor cells must be considered as a dynamic process. We describe this process by a system of two ordinary differential equations. Although the model is strongly idealized it demonstrates how the combination of a few proposed nonlinear interaction rules between the immune system and its targets are able to generate a considerable variety of different kinds of immune responses, many of which are observed both experimentally and clinically. In particular, solutions of the model equations correspond to states described by immunologists as ``virgin state,'' ``immune state'' and ``state of tolerance.'' The model successfully replicates the so-called primary and secondary response. Moreover, it predicts the existence of a threshold level for the amount of pathogen germs or of transplanted tumor cells below which the host is able to eliminate the infectious organism or to reject the tumor graft. We also find a long time coexistence of targets and immune competent cells including damped and undamped oscillations of both. Plausibly the model explains that if the number of transformed cells or pathogens exeeds definable values (poor antigenicity, high reproduction rate) the immune system fails to keep the disease under control. On the other hand, the model predicts apparently paradoxical situations including an increased chance of target survival despite enhanced immune activity or therapeutically achieved target reduction. A further obviously paradoxical behavior consists of a positive effect for the patient up to a complete cure by adding an additional target challenge where the benefit of the additional targets depends strongly on the time point and on their amount. Under periodically pulsed stimulation the model may show a chaotic time behavior of both target growth and immune response.

  19. Impact of Temozolomide on Immune Response during Malignant Glioma Chemotherapy

    Directory of Open Access Journals (Sweden)

    Sadhak Sengupta

    2012-01-01

    Full Text Available Malignant glioma, or glioblastoma, is the most common and lethal form of brain tumor with a median survival time of 15 months. The established therapeutic regimen includes a tripartite therapy of surgical resection followed by radiation and temozolomide (TMZ chemotherapy, concurrently with radiation and then as an adjuvant. TMZ, a DNA alkylating agent, is the most successful antiglioma drug and has added several months to the life expectancy of malignant glioma patients. However, TMZ is also responsible for inducing lymphopenia and myelosuppression in malignant glioma patients undergoing chemotherapy. Although TMZ-induced lymphopenia has been attributed to facilitate antitumor vaccination studies by inducing passive immune response, in general lymphopenic conditions have been associated with poor immune surveillance leading to opportunistic infections in glioma patients, as well as disrupting active antiglioma immune response by depleting both T and NK cells. Deletion of O6-methylguanine-DNA-methyltransferase (MGMT activity, a DNA repair enzyme, by temozolomide has been determined to be the cause of lymphopenia. Drug-resistant mutation of the MGMT protein has been shown to render chemoprotection against TMZ. The immune modulating role of TMZ during glioma chemotherapy and possible mechanisms to establish a strong TMZ-resistant immune response have been discussed.

  20. 胆道恶性肿瘤中单胺氧化酶-A对肿瘤相关巨噬细胞抗肿瘤免疫功能的影响%Effect of monoamine oxidase-A on the anti-tumor immunity of tumor-associated macrophages in biliary tract cancers

    Institute of Scientific and Technical Information of China (English)

    赖佳明; 陈健聪; 陈伟; 张朝晖; 黄力; 梁力建

    2015-01-01

    Objective To investigate the effect of monoamine oxidase-A (MAO-A) in biliary tract cancers (BTCs) on the immunity of tumor-associated macrophages.Methods MAO-A expression plasmid and control plasmid were constructed and transiently transfected into BTC cell lines respectively.Macrophages were derived from peripheral blood mononuclear cells donated by healthy volunteers.Macrophages were then cocultured with aforementioned transfected cancer cell lines for 48 h respectively,Western blotting and enzyme linked immunosorbent assay (ELISA) were applied to assess the expression of immune effector proteins and the excretion of cytokines from cocultured macrophages.24 h priming of macrophages with human recombinant interferon-γ (IFN-γ) were performed after their first stage of coculture;then the second stage of coculture with corresponding transfected cancer cell lines for 48 h were followed.Flow cytometry was employed to detect necrosis and apotosis of cancer cells induced by cocultured macrophages.Results The expression of MAO-A was down-regulated in BTC cell lines,which polarized the cocultured macrophages into M2 type tumor-associated macrophages,and promoted their excretion of interleukin (IL)-10 and expression of PD-L1,while suppressed their excretion of tumor necrosis factor-α (TNF-α),IL-1β and IL-12p70 (18.8±2.3 vs.31.7±1.9,75.0±0.4 vs.150.2±17.0 and 49.1 ± 15.2 vs.135.2 ± 1.0,respectively,P < 0.05),as well as the expression of Human leukocyte antigen-DR (HLA-DR).On the contrary,however,macrophages cocultured with MAO-A overexpressing BTC cells exhibited pro-inflammatory phenotype (M1 type) which opposite to above suppressive immunity phenotype (M2 type).After priming of IFN-γ,macrophages cocultured with MAO-A overexpressing BTC cells induced tumor necrosis and apoptosis more effectively than those cocultured with control BTCcells [(84.85±5.66)% vs.(1.56±0.46)% and (76.73 ±6.31)% vs.(1.28±0.57)%,respectively,P < 0.05].Conclusion Down

  1. Analysis of the anti-tumor effect of cetuximab using protein kinetics and mouse xenograft models

    Directory of Open Access Journals (Sweden)

    Matsuo Teppei

    2011-05-01

    Full Text Available Abstract Background The binding of EGFR and its ligands leads to autophosphorylation of receptor tyrosine kinase as well as subsequent activation of signal transduction pathways that are involved in regulating cellular proliferation, differentiation, and survival. An EGFR inhibitor, cetuximab binds to EGFR and consequently blocks a variety of cellular processes. KRAS/BRAF mutations are known to be associated with a low response rate to cetuximab. In the present study, to clarify the anti-tumor mechanisms of cetuximab, we evaluated the KRAS/BRAF status, phosphorylation level of the EGFR pathway, and the tumor suppression effect in vivo, using a human colon cancer cell line HT29, which exhibited the highest EGFR expression in response to the cetuximab therapy among the 6 colorectal cancer cell lines tested. Findings The conventional growth suppression assay did not work efficiently with cetuximab. EGF, TGF-α, and IGF activated the EGFR/MAPK cell signaling pathway by initiating the phosphorylation of EGFR. Cetuximab partially inhibited the EGFR/MAPK pathway induced by EGF, TGF-α, and IGF. However, cetuximab exposure induced the EGFR, MEK, and ERK1/2 phosphorylation by itself. Mouse xenograft tumor growth was significantly inhibited by cetuximab and both cetuximab-treated and -untreated xenograft specimens exhibited phosphorylations of the EGFR pathway proteins. Conclusions We have confirmed that cetuximab inhibited the EGFR/MAPK pathway and reduced tumor growth in the xenografts while the remaining tumor showed EGFR pathway activation. These results suggest that: ( i The effect of cetuximab in growth signaling is not sufficient to induce complete growth suppression in vitro; ( ii time-course monitoring may be necessary to evaluate the effect of cetuximab because EGFR signaling is transmitted in a minute order; and ( iii cetuximab treatment may have cells acquired resistant selectively survived in the heterogeneous cancer population.

  2. Improved local and systemic anti-tumor efficacy for irreversible electroporation in immunocompetent versus immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Robert E Neal

    Full Text Available Irreversible electroporation (IRE is a non-thermal focal ablation technique that uses a series of brief but intense electric pulses delivered into a targeted region of tissue, killing the cells by irrecoverably disrupting cellular membrane integrity. This study investigates if there is an improved local anti-tumor response in immunocompetent (IC BALB/c versus immunodeficient (ID nude mice, including the potential for a systemic protective effect against rechallenge. Subcutaneous murine renal carcinoma tumors were treated with an IRE pulsing protocol that used 60% of the predicted voltage required to invoke complete regressions in the ID mice. Tumors were followed for 34 days following treatment for 11 treated mice from each strain, and 7 controls from each strain. Mouse survival based on tumor burden and the progression-free disease period was substantially longer in the treated IC mice relative to the treated ID mice and sham controls for both strains. Treated IC mice were rechallenged with the same cell line 18 days after treatment, where growth of the second tumors was shown to be significantly reduced or prevented entirely. There was robust CD3+ cell infiltration in some treated BALB/C mice, with immunocytes focused at the transition between viable and dead tumor. There was no difference in the low immunocyte presence for untreated tumors, nude mice, and matrigel-only injections in both strains. These findings suggest IRE therapy may have greater therapeutic efficacy in immunocompetent patients than what has been suggested by immunodeficient models, and that IRE may invoke a systemic response beyond the targeted ablation region.

  3. Improved Local and Systemic Anti-Tumor Efficacy for Irreversible Electroporation in Immunocompetent versus Immunodeficient Mice

    Science.gov (United States)

    Neal, Robert E.; Rossmeisl, John H.; Robertson, John L.; Arena, Christopher B.; Davis, Erica M.; Singh, Ravi N.; Stallings, Jonathan; Davalos, Rafael V.

    2013-01-01

    Irreversible electroporation (IRE) is a non-thermal focal ablation technique that uses a series of brief but intense electric pulses delivered into a targeted region of tissue, killing the cells by irrecoverably disrupting cellular membrane integrity. This study investigates if there is an improved local anti-tumor response in immunocompetent (IC) BALB/c versus immunodeficient (ID) nude mice, including the potential for a systemic protective effect against rechallenge. Subcutaneous murine renal carcinoma tumors were treated with an IRE pulsing protocol that used 60% of the predicted voltage required to invoke complete regressions in the ID mice. Tumors were followed for 34 days following treatment for 11 treated mice from each strain, and 7 controls from each strain. Mouse survival based on tumor burden and the progression-free disease period was substantially longer in the treated IC mice relative to the treated ID mice and sham controls for both strains. Treated IC mice were rechallenged with the same cell line 18 days after treatment, where growth of the second tumors was shown to be significantly reduced or prevented entirely. There was robust CD3+ cell infiltration in some treated BALB/C mice, with immunocytes focused at the transition between viable and dead tumor. There was no difference in the low immunocyte presence for untreated tumors, nude mice, and matrigel-only injections in both strains. These findings suggest IRE therapy may have greater therapeutic efficacy in immunocompetent patients than what has been suggested by immunodeficient models, and that IRE may invoke a systemic response beyond the targeted ablation region. PMID:23717630

  4. The novel fusion proteins, GnRH-p53 and GnRHIII-p53, expression and their anti-tumor effect.

    Directory of Open Access Journals (Sweden)

    Peiyuan Jia

    Full Text Available p53, one of the most well studied tumor suppressor factor, is responsible to a variety of damage owing to the induction of apoptosis and cell cycle arrest in the tumor cells. More than 50% of human tumors contain mutation or deletion of p53. Gonadotrophin-releasing hormone (GnRH, as the ligand of Gonadotrophin-releasing hormone receptor (GnRH-R, was used to deliver p53 into tumor cells. The p53 fusion proteins GnRH-p53 and GnRH iii-p53 were expressed and their targeted anti-tumor effects were determined. GnRH mediates its fusion proteins transformation into cancer cells. The intracellular delivery of p53 fusion proteins exerted the inhibition of the growth of H1299 cells in vitro and the reduction of tumor volume in vivo. Their anti-tumor effect was functioned by the apoptosis and cell cycle arrest induced by p53. Hence, the fusion protein could be a novel protein drug for anti-tumor therapy.

  5. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    Science.gov (United States)

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  6. Escaping deleterious immune response in their hosts: lessons from trypanosomatids

    Directory of Open Access Journals (Sweden)

    Anne eGeiger

    2016-05-01

    Full Text Available The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, T. cruzi and Leishmania spp are important human pathogens causing Human African Trypanosomiasis (HAT or Sleeping Sickness, Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs or sandflies and affect millions of people worldwide.In humans, extracellular African trypanosomes (T. brucei evade the hosts’ immune defences, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response.This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and, will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation.

  7. Control of the adaptive immune response by tumor vasculature

    Directory of Open Access Journals (Sweden)

    Laetitia eMauge

    2014-03-01

    Full Text Available The endothelium is nowadays described as an entire organ that regulates various processes: vascular tone, coagulation, inflammation, and immune cell trafficking, depending on the vascular site and its specific microenvironment as well as on endothelial cell-intrinsic mechanisms like epigenetic changes. In this review, we will focus on the control of the adaptive immune response by the tumor vasculature. In physiological conditions, the endothelium acts as a barrier regulating cell trafficking by specific expression of adhesion molecules enabling adhesion of immune cells on the vessel, and subsequent extravasation. This process is also dependent on chemokine and integrin expression, and on the type of junctions defining the permeability of the endothelium. Endothelial cells can also regulate immune cell activation. In fact, the endothelial layer can constitute immunological synapses due to its close interactions with immune cells, and the delivery of co-stimulatory or co-inhibitory signals. In tumor conditions, the vasculature is characterized by abnormal vessel structure and permeability, and by specific phenotype of endothelial cells. All these abnormalities lead to a modulation of intratumoral immune responses and contribute to the development of intratumoral immunosuppression, which is a major mechanism for promoting the development, progression and treatment resistance of tumors. The in-depth analysis of these various abnormalities will help defining novel targets for the development of antitumoral treatments. Furthermore, eventual changes of the endothelial cell phenotype identified by plasma biomarkers could secondarily be selected to monitor treatment efficacy.

  8. Mitochondrial DNA in the regulation of innate immune responses.

    Science.gov (United States)

    Fang, Chunju; Wei, Xiawei; Wei, Yuquan

    2016-01-01

    Mitochondrion is known as the energy factory of the cell, which is also a unique mammalian organelle and considered to be evolved from aerobic prokaryotes more than a billion years ago. Mitochondrial DNA, similar to that of its bacterial ancestor’s, consists of a circular loop and contains significant number of unmethylated DNA as CpG islands. The innate immune system plays an important role in the mammalian immune response. Recent research has demonstrated that mitochondrial DNA (mtDNA) activates several innate immune pathways involving TLR9, NLRP3 and STING signaling, which contributes to the signaling platforms and results in effector responses. In addition to facilitating antibacterial immunity and regulating antiviral signaling, mounting evidence suggests that mtDNA contributes to inflammatory diseases following cellular damage and stress. Therefore, in addition to its well-appreciated roles in cellular metabolism and energy production,mtDNA appears to function as a key member in the innate immune system. Here, we highlight the emerging roles of mtDNA in innate immunity. PMID:26498951

  9. Role of DNA repair in host immune response and inflammation.

    Science.gov (United States)

    Fontes, Fabrícia Lima; Pinheiro, Daniele Maria Lopes; Oliveira, Ana Helena Sales de; Oliveira, Rayssa Karla de Medeiros; Lajus, Tirzah Braz Petta; Agnez-Lima, Lucymara Fassarella

    2015-01-01

    In recent years, the understanding of how DNA repair contributes to the development of innate and acquired immunity has emerged. The DNA damage incurred during the inflammatory response triggers the activation of DNA repair pathways, which are required for host-cell survival. Here, we reviewed current understanding of the mechanism by which DNA repair contributes to protection against the oxidized DNA damage generated during infectious and inflammatory diseases and its involvement in innate and adaptive immunity. We discussed the functional role of DNA repair enzymes in the immune activation and the relevance of these processes to: transcriptional regulation of cytokines and other genes involved in the inflammatory response; V(D)J recombination; class-switch recombination (CSR); and somatic hypermutation (SHM). These three last processes of DNA damage repair are required for effective humoral adaptive immunity, creating genetic diversity in developing T and B cells. Furthermore, viral replication is also dependent on host DNA repair mechanisms. Therefore, the elucidation of the pathways of DNA damage and its repair that activate innate and adaptive immunity will be important for a better understanding of the immune and inflammatory disorders and developing new therapeutic interventions for treatment of these diseases and for improving their outcome. PMID:25795123

  10. The Xs and Y of immune responses to viral vaccines.

    Science.gov (United States)

    Klein, Sabra L; Jedlicka, Anne; Pekosz, Andrew

    2010-05-01

    The biological differences associated with the sex of an individual are a major source of variation, affecting immune responses to vaccination. Compelling clinical data illustrate that men and women differ in their innate, humoral, and cell-mediated responses to viral vaccines. Sex affects the frequency and severity of adverse effects of vaccination, including fever, pain, and inflammation. Pregnancy can also substantially alter immune responses to vaccines. Data from clinical trials and animal models of vaccine efficacy lay the groundwork for future studies aimed at identifying the biological mechanisms that underlie sex-specific responses to vaccines, including genetic and hormonal factors. An understanding and appreciation of the effect of sex and pregnancy on immune responses might change the strategies used by public health officials to start efficient vaccination programmes (optimising the timing and dose of the vaccine so that the maximum number of people are immunised), ensure sufficient levels of immune responses, minimise adverse effects, and allow for more efficient protection of populations that are high priority (eg, pregnant women and individuals with comorbid conditions).

  11. Danger signals activating the immune response after trauma

    OpenAIRE

    Stefanie Hirsiger; Hans-Peter Simmen; Werner, Clément M. L.; Wanner, Guido A; Daniel Rittirsch

    2012-01-01

    Sterile injury can cause a systemic inflammatory response syndrome (SIRS) that resembles the host response during sepsis. The inflammatory response following trauma comprises various systems of the human body which are cross-linked with each other within a highly complex network of inflammation. Endogenous danger signals (danger-associated molecular patterns; DAMPs; alarmins) as well as exogenous pathogen-associated molecular patterns (PAMPs) play a crucial role in the initiation of the immun...

  12. Tumoral Immune Cell Exploitation in Colorectal Cancer Metastases Can Be Targeted Effectively by Anti-CCR5 Therapy in Cancer Patients.

    Science.gov (United States)

    Halama, Niels; Zoernig, Inka; Berthel, Anna; Kahlert, Christoph; Klupp, Fee; Suarez-Carmona, Meggy; Suetterlin, Thomas; Brand, Karsten; Krauss, Juergen; Lasitschka, Felix; Lerchl, Tina; Luckner-Minden, Claudia; Ulrich, Alexis; Koch, Moritz; Weitz, Juergen; Schneider, Martin; Buechler, Markus W; Zitvogel, Laurence; Herrmann, Thomas; Benner, Axel; Kunz, Christina; Luecke, Stephan; Springfeld, Christoph; Grabe, Niels; Falk, Christine S; Jaeger, Dirk

    2016-04-11

    The immune response influences the clinical course of colorectal cancer (CRC). Analyzing the invasive margin of human CRC liver metastases, we identified a mechanism of immune cell exploitation by tumor cells. While two distinct subsets of myeloid cells induce an influx of T cells into the invasive margin via CXCL9/CXCL10, CCL5 is produced by these T cells and stimulates pro-tumoral effects via CCR5. CCR5 blockade in patient-derived functional in vitro organotypic culture models showed a macrophage repolarization with anti-tumoral effects. These anti-tumoral effects were then confirmed in a phase I trial with a CCR5 antagonist in patients with liver metastases of advanced refractory CRC. Mitigation of tumor-promoting inflammation within the tumor tissue and objective tumor responses in CRC were observed.

  13. Host Cell Autophagy in Immune Response to Zoonotic Infections

    Directory of Open Access Journals (Sweden)

    Panagiotis Skendros

    2012-01-01

    Full Text Available Autophagy is a fundamental homeostatic process in which cytoplasmic targets are sequestered within double-membraned autophagosomes and subsequently delivered to lysosomes for degradation. Accumulating evidence supports the pivotal role of autophagy in host defense against intracellular pathogens implicating both innate and adaptive immunity. Many of these pathogens cause common zoonotic infections worldwide. The induction of the autophagic machinery by innate immune receptors signaling, such as TLRs, NOD1/2, and p62/SQSTM1 in antigen-presenting cells results in inhibition of survival and elimination of invading pathogens. Furthermore, Th1 cytokines induce the autophagic process, whereas autophagy also contributes to antigen processing and MHC class II presentation, linking innate to adaptive immunity. However, several pathogens have developed strategies to avoid autophagy or exploit autophagic machinery to their advantage. This paper focuses on the role of host cell autophagy in the regulation of immune response against intracellular pathogens, emphasizing on selected bacterial and protozoan zoonoses.

  14. Nanotechnology, neuromodulation & the immune response: discourse, materiality & ethics.

    Science.gov (United States)

    Fins, Joseph J

    2015-04-01

    Drawing upon the American Pragmatic tradition in philosophy and the more recent work of philosopher Karen Barad, this paper examines how scientific problems are both obscured, and resolved by our use of language describing the natural world. Using the example of the immune response engendered by neural implants inserted in the brain, the author explains how this discourse has been altered by the advent of nanotechnology methods and devices which offer putative remedies that might temper the immune response in the central nervous system. This emergent nanotechnology has altered this problem space and catalyzed one scientific community to acknowledge a material reality that was always present, if not fully acknowledged.

  15. Immune response induced in mice oral immunization with cowpea severe mosaic virus

    Directory of Open Access Journals (Sweden)

    M.I. Florindo

    2002-07-01

    Full Text Available There is increasing interest in the immune response induced by plant viruses since these could be used as antigen-expressing systems in vaccination procedures. Cowpea severe mosaic virus (CPSMV, as a purified preparation (300 g of leaves, 2 weeks post-inoculation, or crude extract from cowpea (Vigna unguiculata leaves infected with CPSMV both administered by gavage to Swiss mice induced a humoral immune response. Groups of 10 Swiss mice (2-month-old females were immunized orally with 10 daily doses of either 50 µg viral capsid protein (boosters of 50 µg at days 21 and 35 after immunization or 0.6 mg protein of the crude extract (boosters of 0.6 mg at days 21 and 35 after immunization. Anti-CPSMV antibodies were quantified by ELISA in pooled sera diluted at least 1:400 at days 7, 14, 21, 28, 35 and 42 after the 10th dose. IgG and IgA against CPSMV were produced systemically, but IgE was not detected. No synthesis of specific antibodies against the proteins of leaf extracts from V. unguiculata, infected or not with CPSMV, was detected. The use of CPSMV, a plant-infecting virus that apparently does not induce a pathogenic response in animals, induced a humoral and persistent (at least 6 months immune response through the administration of low antigen doses by gavage. These results raise the possibility of using CPSMV either as a vector for the production of vaccines against animal pathogens or in quick and easy methods to produce specific antisera for viral diagnosis.

  16. Cytokines and antitumor immunity.

    Science.gov (United States)

    Müller, Ludmila; Pawelec, Graham

    2003-06-01

    Currently, the notion of immunosurveillance against tumors is enjoying something of a renaissance. Even if we still refuse to accept that tumors arising in the normal host are unable to trigger an immune response because of the lack of initiation ("danger") signals, there is no doubt that the immune system can be manipulated experimentally and by implication therapeutically to exert anti-tumor effects. For this activity to be successful, the appropriate cytokine milieu has to be provided, making cytokine manipulation central to immunotherapy. On the other hand, the major hurdle currently preventing successful immunotherapy is the ability of tumors to evolve resistant variants under the pressure of immune selection. Here, too, the cytokine milieu plays an essential role. The purpose of this brief review is to consider the current status of the application of cytokines in facilitating antitumor immunity, as well their role in inhibiting responses to tumors. Clearly, encouraging the former but preventing the latter will be the key to the effective clinical application of cancer immunotherapy. PMID:12779349

  17. Purification and Crystallization of Flammulin, a Basic Protein with Anti-tumor Activities from Flammulina Velutipes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Flammulin, an anti-tumor protein, was purified from the aqueous extract of basidiomes of Flammulina Velutipes to electrophoretic homogeneity and crystallized by microdialysis against a polyethylene glycol- sodium phosphate buffer. The purified product was found to have marked antitumor effects and be able to affect the tumor cells directly.

  18. Anti-tumor effect of a recombinant plasmid expressing human interleukin-12: an initial research

    International Nuclear Information System (INIS)

    Objective: To study the anti-tumor effect of a recombinant plasmid expressing human interleukin-12 (pEGFP-CIIL- 12) in vivo and in vitro. Methods: We transduct the recombinant gene (pEGFP-CIIL-12) to liver cancer cell HepG2 in vitro, and detect reproductive activity of the cell using MTT and the activity of expressing vascular endothelial growth factor(VEGF) using semiquantitative PCR. And then, we deliver the gene to rabbit liver tumor tissue intraarterial and combine with chemoembolization to observe the anti- tumor effect to VX2 tumor in vivo. Results: There are no statistical difference compared With control group in activity of reproductive and expressing VEGF in vitro. In vivo, tumor growth rate significantly reduce in gene therapy combined with chemoembolization group. Conclusion: Recombinant gene (pEGFP-ClIL-12) exhibit significant anti-tumor effect in vivo but not in vitro, perhaps the anti-tumor effect is associated with an indirect pathway instead of a direct pathway. (authors)

  19. Synthesis and anti-tumor activity of all-trans retinoic acid derivatives

    Institute of Scientific and Technical Information of China (English)

    Juan Shen; Jing Bo Shi; Fei Hu Chen; Yuan Wang; Jing Jing Ruan; Yua Huang

    2009-01-01

    A series of retinoate and retinamide derivatives were designed, synthesized, and their anti-tumor activities were investigated in NB4 by MTT and flow cytometry assays (FCM). All compounds showed cytotoxicity, especially compounds 1a and 1d exhibited a higher cytotoxicity than other derivatives and all-traus retinoic acid (ATRA). Furthermore, compound ld could induce NB4 cell lines differentiation efficiently.

  20. Complement Activation Pathways: A Bridge between Innate and Adaptive Immune Responses in Asthma

    OpenAIRE

    Wills-Karp, Marsha

    2007-01-01

    Although it is widely accepted that allergic asthma is driven by T helper type 2 (Th2)-polarized immune responses to innocuous environmental allergens, the mechanisms driving these aberrant immune responses remain elusive. Recent recognition of the importance of innate immune pathways in regulating adaptive immune responses have fueled investigation into the role of innate immune pathways in the pathogenesis of asthma. The phylogenetically ancient innate immune system, the complement system, ...

  1. The effect of anti-tumor necrosis factor alpha agents on postoperative anastomotic complications in Crohn's disease

    DEFF Research Database (Denmark)

    El-Hussuna, Alaa Abdul-Hussein H; Krag, Aleksander; Olaison, Gunnar;

    2013-01-01

    Patients with Crohn's disease treated with anti-tumor necrosis factor alpha agents may have an increased risk of surgical complications.......Patients with Crohn's disease treated with anti-tumor necrosis factor alpha agents may have an increased risk of surgical complications....

  2. Effect of produced water on cod (Gadus morhua) immune responses

    Energy Technology Data Exchange (ETDEWEB)

    Hamoutene, D.; Mabrouk, G.; Samuelson, S.; Mansour, A.; Lee, K. [Fisheries and Oceans Canada, Dartmouth, NS (Canada). Maritimes Region, Ocean Sciences Division; Volkoff, H.; Parrish, C. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada); Mathieu, A. [Oceans Ltd., St. John' s, NL (Canada)

    2007-07-01

    Studies have shown that produced water (PW) discharged from North Sea offshore platforms affects the biota at greater distances from operational platforms than originally presumed. According to PW dispersion simulations, dilution by at least 240 times occurs within 50-100 m, and up to 9000 times by 20 km from the discharge. In this study, the effect of PW on cod immunity was investigated by exposing fish to 0, 100 ppm (x 10,000 dilution) or 200 ppm (x 500) of PW for 76 days. Immune responses were evaluated at the end of the exposure. Fish from the 3 groups were injected with Aeromonas salmonicida lipopolysaccharides (LPS). Blood cell observation and flow cytometry were used to investigate the serum cortisol levels and gill histology along with ratios and respiratory burst (RB) responses of both circulating and head-kidney white blood cells (WBCs). The study revealed that baseline immunity and stress response were not affected by PW, other than an irritant-induced change in gill cells found in treated cod. In all groups, LPS injection resulted in a pronounced decrease in RB of head-kidney cells and an increase in serum cortisol and protein levels. However, the group exposed to 200 ppm of PW exhibited the most significant changes. LPS injection was also shown to influence WBC ratios, but further studies are needed to determine if this impact is stronger in fish exposed to PW. This study suggested an effect of PW on cod immunity after immune challenge with LPS.

  3. The host immune response to gastrointestinal nematode infection in sheep.

    Science.gov (United States)

    McRae, K M; Stear, M J; Good, B; Keane, O M

    2015-12-01

    Gastrointestinal nematode infection represents a major threat to the health, welfare and productivity of sheep populations worldwide. Infected lambs have a reduced ability to absorb nutrients from the gastrointestinal tract, resulting in morbidity and occasional mortality. The current chemo-dominant approach to nematode control is considered unsustainable due to the increasing incidence of anthelmintic resistance. In addition, there is growing consumer demand for food products from animals not subjected to chemical treatment. Future mechanisms of nematode control must rely on alternative, sustainable strategies such as vaccination or selective breeding of resistant animals. Such strategies take advantage of the host's natural immune response to nematodes. The ability to resist gastrointestinal nematode infection is considered to be dependent on the development of a protective acquired immune response, although the precise immune mechanisms involved in initiating this process remain to be fully elucidated. In this study, current knowledge on the innate and acquired host immune response to gastrointestinal nematode infection in sheep and the development of immunity is reviewed. PMID:26480845

  4. Immune responses in DNA vaccine formulated with PMMA following immunization and after challenge with Leishmania major.

    Science.gov (United States)

    Zarrati, Somayeh; Mahdavi, Mehdi; Tabatabaie, Fatemeh

    2016-06-01

    Leishmaniasis is a major infectious disease caused by protozoan parasites of the genus Leishmania. Despite of many efforts toward vaccine against Leishmania no effective vaccine has been approved yet. DNA vaccines can generate more powerful and broad immune responses than conventional vaccines. In order to increase immunity, the DNA vaccine has been supplemented with adjuvant. In this study a new nano-vaccine containing TSA recombinant plasmid and poly(methylmethacrylate) nanoparticles (act as adjuvant) was designed and its immunogenicity tested on BALB/c mouse. After three intramuscular injection of nano-vaccine (100 μg), the recombinant TSA protein (20 μg) was injected subcutaneously. Finally as a challenge animals were infected by Leishmania major. After the last injection of nano-vaccine, after protein booster injection, and also after challenge, cellular immune and antibody responses were evaluated by ELISA method. The findings of this study showed the new nano-vaccine was capable of induction both cytokines secretion and specific antibody responses, but predominant Th1 immune response characterized by IFN-γ production compared to control groups. Moreover, results revealed that nano-vaccine was effective in reducing parasite burden in the spleen of Leishmania major-infected BALB/c mice. Base on results, current candidate vaccine has potency for further studies. PMID:27413316

  5. Verification of immune response optimality through cybernetic modeling.

    Science.gov (United States)

    Batt, B C; Kompala, D S

    1990-02-01

    An immune response cascade that is T cell independent begins with the stimulation of virgin lymphocytes by antigen to differentiate into large lymphocytes. These immune cells can either replicate themselves or differentiate into plasma cells or memory cells. Plasma cells produce antibody at a specific rate up to two orders of magnitude greater than large lymphocytes. However, plasma cells have short life-spans and cannot replicate. Memory cells produce only surface antibody, but in the event of a subsequent infection by the same antigen, memory cells revert rapidly to large lymphocytes. Immunologic memory is maintained throughout the organism's lifetime. Many immunologists believe that the optimal response strategy calls for large lymphocytes to replicate first, then differentiate into plasma cells and when the antigen has been nearly eliminated, they form memory cells. A mathematical model incorporating the concept of cybernetics has been developed to study the optimality of the immune response. Derived from the matching law of microeconomics, cybernetic variables control the allocation of large lymphocytes to maximize the instantaneous antibody production rate at any time during the response in order to most efficiently inactivate the antigen. A mouse is selected as the model organism and bacteria as the replicating antigen. In addition to verifying the optimal switching strategy, results showing how the immune response is affected by antigen growth rate, initial antigen concentration, and the number of antibodies required to eliminate an antigen are included. PMID:2338827

  6. Cytomegalovirus infection enhances the immune response to influenza.

    Science.gov (United States)

    Furman, David; Jojic, Vladimir; Sharma, Shalini; Shen-Orr, Shai S; Angel, Cesar J L; Onengut-Gumuscu, Suna; Kidd, Brian A; Maecker, Holden T; Concannon, Patrick; Dekker, Cornelia L; Thomas, Paul G; Davis, Mark M

    2015-04-01

    Cytomegalovirus (CMV) is a β-herpesvirus present in a latent form in most people worldwide. In immunosuppressed individuals, CMV can reactivate and cause serious clinical complications, but the effect of the latent state on healthy people remains elusive. We undertook a systems approach to understand the differences between seropositive and negative subjects and measured hundreds of immune system components from blood samples including cytokines and chemokines, immune cell phenotyping, gene expression, ex vivo cell responses to cytokine stimuli, and the antibody response to seasonal influenza vaccination. As expected, we found decreased responses to vaccination and an overall down-regulation of immune components in aged individuals regardless of CMV status. In contrast, CMV-seropositive young adults exhibited enhanced antibody responses to influenza vaccination, increased CD8(+) T cell sensitivity, and elevated levels of circulating interferon-γ compared to seronegative individuals. Experiments with young mice infected with murine CMV also showed significant protection from an influenza virus challenge compared with uninfected animals, although this effect declined with time. These data show that CMV and its murine equivalent can have a beneficial effect on the immune response of young, healthy individuals, which may explain the ubiquity of CMV infection in humans and many other species. PMID:25834109

  7. Elevated EBNA1 Immune Responses Predict Conversion to Multiple Sclerosis

    Science.gov (United States)

    Lünemann, Jan D.; Tintoré, Mar; Messmer, Brady; Strowig, Till; Rovira, Álex; Perkal, Héctor; Caballero, Estrella; Münz, Christian; Montalban, Xavier; Comabella, Manuel

    2009-01-01

    Objective The aims of the study were to determine the immune responses to candidate viral triggers of multiple sclerosis (MS) in patients with clinically isolated syndromes (CIS), and to evaluate their potential value in predicting conversion to MS. Methods Immune responses to Epstein-Barr virus (EBV), human herpesvirus 6, cytomegalovirus (HCMV), and measles were determined in a cohort of 147 CIS patients with a mean follow-up of 7 years and compared with 50 demographically matched controls. Results Compared to controls, CIS patients showed increased humoral (p<0.0001) and cellular (p=0.007) immune responses to the EBV-encoded nuclear antigen-1 (EBNA1), but not to other EBV-derived proteins. IgG responses to other virus antigens and frequencies of T cells specific for HCMV and influenza virus gene products were unchanged in CIS patients. EBNA1 was the only viral antigen towards which immune responses correlated with number of T2 lesions (p=0.006) and number of Barkhof criteria (p=0.001) at baseline, and with number of T2 lesions (p=0.012 both at 1 and 5 years), presence of new T2 lesions (p=0.003 and p=0.028 at 1 and 5 years), and EDSS (p=0.015 and p=0.010 at 1 and 5 years) during follow-up. In a univariate Cox regression model, increased EBNA1-specific IgG responses predicted conversion to MS based on McDonald criteria [hazard ratio (95% confidence interval), 2.2 (1.2–4.3); p=0.003]. Interpretation Our results indicate that elevated immune responses towards EBNA1 are selectively increased in CIS patients and suggest that EBNA1-specific IgG titers could be used as a prognostic marker for disease conversion and disability progression. PMID:20225269

  8. Review: Adjuvant effects of saponins on animal immune responses

    Institute of Scientific and Technical Information of China (English)

    RAJPUT Zahid Iqbal; HU Song-hua; XIAO Chen-wen; ARIJO Abdullah G.

    2007-01-01

    Vaccines require optimal adjuvants including immunopotentiator and delivery systems to offer long term protection from infectious diseases in animals and man. Initially it was believed that adjuvants are responsible for promoting strong and sustainable antibody responses. Now it has been shown that adjuvants influence the isotype and avidity of antibody and also affect the properties of cell-mediated immunity. Mostly oil emulsions, lipopolysaccharides, polymers, saponins, liposomes, cytokines,ISCOMs (immunostimulating complexes), Freund's complete adjuvant, Freund's incomplete adjuvant, alums, bacterial toxins etc.,are common adjuvants under investigation. Saponin based adjuvants have the ability to stimulate the cell mediated immune system as well as to enhance antibody production and have the advantage that only a low dose is needed for adjuvant activity. In the present study the importance of adjuvants, their role and the effect of saponin in immune system is reviewed.

  9. Epigallocatechin Gallate/Layered Double Hydroxide Nanohybrids: Preparation, Characterization, and In Vitro Anti-Tumor Study

    Science.gov (United States)

    Shafiei, Seyedeh Sara; Solati-Hashjin, Mehran; Samadikuchaksaraei, Ali; Kalantarinejad, Reza; Asadi-Eydivand, Mitra; Abu Osman, Noor Azuan

    2015-01-01

    In recent years, nanotechnology in merging with biotechnology has been employed in the area of cancer management to overcome the challenges of chemopreventive strategies in order to gain promising results. Since most biological processes occur in nano scale, nanoparticles can act as carriers of certain drugs or agents to deliver it to specific cells or targets. In this study, we intercalated Epigallocatechin-3-Gallate (EGCG), the most abundant polyphenol in green tea, into Ca/Al-NO3 Layered double hydroxide (LDH) nanoparticles, and evaluated its efficacy compared to EGCG alone on PC3 cell line. The EGCG loaded LDH nanohybrids were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM) and nanosizer analyses. The anticancer activity of the EGCG-loaded LDH was investigated in prostate cancer cell line (PC3) while the release behavior of EGCG from LDH was observed at pH 7.45 and 4.25. Besides enhancing of apoptotic activity of EGCG, the results showed that intercalation of EGCG into LDH can improve the anti- tumor activity of EGCG over 5-fold dose advantages in in-vitro system. Subsequently, the in-vitro release data showed that EGCG-loaded LDH had longer release duration compared to physical mixture, and the mechanism of diffusion through the particle was rate-limiting step. Acidic attack was responsible for faster release of EGCG molecules from LDH at pH of 4.25 compared to pH of 7.4. The results showed that Ca/Al-LDH nanoparticles could be considered as an effective inorganic host matrix for the delivery of EGCG to PC3 cells with controlled release properties. PMID:26317853

  10. Epigallocatechin Gallate/Layered Double Hydroxide Nanohybrids: Preparation, Characterization, and In Vitro Anti-Tumor Study.

    Directory of Open Access Journals (Sweden)

    Seyedeh Sara Shafiei

    Full Text Available In recent years, nanotechnology in merging with biotechnology has been employed in the area of cancer management to overcome the challenges of chemopreventive strategies in order to gain promising results. Since most biological processes occur in nano scale, nanoparticles can act as carriers of certain drugs or agents to deliver it to specific cells or targets. In this study, we intercalated Epigallocatechin-3-Gallate (EGCG, the most abundant polyphenol in green tea, into Ca/Al-NO3 Layered double hydroxide (LDH nanoparticles, and evaluated its efficacy compared to EGCG alone on PC3 cell line. The EGCG loaded LDH nanohybrids were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM and nanosizer analyses. The anticancer activity of the EGCG-loaded LDH was investigated in prostate cancer cell line (PC3 while the release behavior of EGCG from LDH was observed at pH 7.45 and 4.25. Besides enhancing of apoptotic activity of EGCG, the results showed that intercalation of EGCG into LDH can improve the anti- tumor activity of EGCG over 5-fold dose advantages in in-vitro system. Subsequently, the in-vitro release data showed that EGCG-loaded LDH had longer release duration compared to physical mixture, and the mechanism of diffusion through the particle was rate-limiting step. Acidic attack was responsible for faster release of EGCG molecules from LDH at pH of 4.25 compared to pH of 7.4. The results showed that Ca/Al-LDH nanoparticles could be considered as an effective inorganic host matrix for the delivery of EGCG to PC3 cells with controlled release properties.

  11. Riluzole mediates anti-tumor properties in breast cancer cells independent of metabotropic glutamate receptor-1.

    Science.gov (United States)

    Speyer, Cecilia L; Nassar, Mahdy A; Hachem, Ali H; Bukhsh, Miriam A; Jafry, Waris S; Khansa, Rafa M; Gorski, David H

    2016-06-01

    Riluzole, the only drug approved by the FDA for treating amyotrophic lateral sclerosis, inhibits melanoma proliferation through its inhibitory effect on glutamatergic signaling. We demonstrated that riluzole also inhibits the growth of triple-negative breast cancer (TNBC) and described a role for metabotropic glutamate receptor-1 (GRM1) in regulating TNBC cell growth and progression. However, the role of GRM1 in mediating riluzole's effects in breast cancer has not been fully elucidated. In this study, we seek to determine how much of riluzole's action in breast cancer is mediated through GRM1. We investigated anti-tumor properties of riluzole in TNBC and ER+ cells using cell growth, invasion, and soft-agar assays and compared riluzole activity with GRM1 levels. Using Lentiviral vectors expressing GRM1 or shGRM1, these studies were repeated in cells expressing high or low GRM1 levels where the gene was either silenced or overexpressed. Riluzole inhibited proliferation, invasion, and colony formation in both TNBC and ER+ cells. There was a trend between GRM1 expression in TNBC cells and their response to riluzole in both cell proliferation and invasion assays. However, silencing and overexpression studies had no effect on cell sensitivity to riluzole. Our results clearly suggest a GRM1-independent mechanism through which riluzole mediates its effects on breast cancer cells. Understanding the mechanism by which riluzole mediates breast cancer progression will be useful in identifying new therapeutic targets for treating TNBC and in facilitating stratification of patients in clinical trials using riluzole in conjunction with conventional therapy. PMID:27146584

  12. Durable and sustained immune tolerance to ERT in Pompe disease with entrenched immune responses

    Science.gov (United States)

    Kazi, Zoheb B.; Prater, Sean N.; Kobori, Joyce A.; Viskochil, David; Bailey, Carrie; Gera, Renuka; Stockton, David W.; McIntosh, Paul; Rosenberg, Amy S.; Kishnani, Priya S.

    2016-01-01

    BACKGROUND Enzyme replacement therapy (ERT) has prolonged survival and improved clinical outcomes in patients with infantile Pompe disease (IPD), a rapidly progressive neuromuscular disorder. Yet marked interindividual variability in response to ERT, primarily attributable to the development of antibodies to ERT, remains an ongoing challenge. Immune tolerance to ongoing ERT has yet to be described in the setting of an entrenched immune response. METHODS Three infantile Pompe patients who developed high and sustained rhGAA IgG antibody titers (HSAT) and received a bortezomib-based immune tolerance induction (ITI) regimen were included in the study and were followed longitudinally to monitor the long-term safety and efficacy. A trial to taper the ITI protocol was attempted to monitor if true immune tolerance was achieved. RESULTS Bortezomib-based ITI protocol was safely tolerated and led to a significant decline in rhGAA antibody titers with concomitant sustained clinical improvement. Two of the 3 IPD patients were successfully weaned off all ITI protocol medications and continue to maintain low/no antibody titers. ITI protocol was significantly tapered in the third IPD patient. B cell recovery was observed in all 3 IPD patients. CONCLUSION This is the first report to our knowledge on successful induction of long-term immune tolerance in patients with IPD and HSAT refractory to agents such as cyclophosphamide, rituximab, and methotrexate, based on an approach using the proteasome inhibitor bortezomib. As immune responses limit the efficacy and cost-effectiveness of therapy for many conditions, proteasome inhibitors may have new therapeutic applications. FUNDING This research was supported by a grant from the Genzyme Corporation, a Sanofi Company (Cambridge, Massachusetts, USA), and in part by the Lysosomal Disease Network, a part of NIH Rare Diseases Clinical Research Network (RDCRN).

  13. Curdlan blocks the immune suppression by myeloid-derived suppressor cells and reduces tumor burden.

    Science.gov (United States)

    Rui, Ke; Tian, Jie; Tang, Xinyi; Ma, Jie; Xu, Ping; Tian, Xinyu; Wang, Yungang; Xu, Huaxi; Lu, Liwei; Wang, Shengjun

    2016-08-01

    Tumor-elicited immunosuppression is one of the essential mechanisms for tumor evasion of immune surveillance. It is widely thought to be one of the main reasons for the failure of tumor immunotherapy. Myeloid-derived suppressor cells (MDSCs) comprise a heterogeneous population of cells that play an important role in tumor-induced immunosuppression. These cells expand in tumor-bearing individuals and suppress T cell responses via various mechanisms. Curdlan, the linear (1 → 3)-β-glucan from Agrobacterium, has been applied in the food industry and other sectors. The anti-tumor property of curdlan has been recognized for a long time although the underlying mechanism still needs to be explored. In this study, we investigated the effect of curdlan on MDSCs and found that curdlan could promote MDSCs to differentiate into a more mature state and then significantly reduce the suppressive function of MDSCs, decrease the MDSCs in vivo and down-regulate the suppression in tumor-bearing mice, thus leading to enhanced anti-tumor immune responses. We, therefore, increase the understanding of further mechanisms by which curdlan achieves anti-tumor effects. PMID:26832917

  14. A Drosophila immune response against Ras-induced overgrowth

    Directory of Open Access Journals (Sweden)

    Thomas Hauling

    2014-03-01

    Full Text Available Our goal is to characterize the innate immune response against the early stage of tumor development. For this, animal models where genetic changes in specific cells and tissues can be performed in a controlled way have become increasingly important, including the fruitfly Drosophila melanogaster. Many tumor mutants in Drosophila affect the germline and, as a consequence, also the immune system itself, making it difficult to ascribe their phenotype to a specific tissue. Only during the past decade, mutations have been induced systematically in somatic cells to study the control of tumorous growth by neighboring cells and by immune cells. Here we show that upon ectopic expression of a dominant-active form of the Ras oncogene (RasV12, both imaginal discs and salivary glands are affected. Particularly, the glands increase in size, express metalloproteinases and display apoptotic markers. This leads to a strong cellular response, which has many hallmarks of the granuloma-like encapsulation reaction, usually mounted by the insect against larger foreign objects. RNA sequencing of the fat body reveals a characteristic humoral immune response. In addition we also identify genes that are specifically induced upon expression of RasV12. As a proof-of-principle, we show that one of the induced genes (santa-maria, which encodes a scavenger receptor, modulates damage to the salivary glands. The list of genes we have identified provides a rich source for further functional characterization. Our hope is that this will lead to a better understanding of the earliest stage of innate immune responses against tumors with implications for mammalian immunity.

  15. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases.

    Science.gov (United States)

    Middleton, Elizabeth A; Weyrich, Andrew S; Zimmerman, Guy A

    2016-10-01

    Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury. PMID:27489307

  16. Unique functions of CHK1 and WEE1 underlie synergistic anti-tumor activity upon pharmacologic inhibition

    Directory of Open Access Journals (Sweden)

    Guertin Amy D

    2012-11-01

    Full Text Available Abstract Background Inhibition of kinases involved in the DNA damage response sensitizes cells to genotoxic agents by abrogating checkpoint-induced cell cycle arrest. CHK1 and WEE1 act in a pathway upstream of CDK1 to inhibit cell cycle progression in response to damaged DNA. Therapeutic targeting of either CHK1 or WEE1, in combination with chemotherapy, is under clinical evaluation. These studies examine the overlap and potential for synergy when CHK1 and WEE1 are inhibited in cancer cell models. Methods Small molecules MK-8776 and MK-1775 were used to selectively and potently inhibit CHK1 and WEE1, respectively. Results In vitro, the combination of MK-8776 and MK-1775 induces up to 50-fold more DNA damage than either MK-8776 or MK-1775 alone at a fixed concentration. This requires aberrant cyclin-dependent kinase activity but does not appear to be dependent on p53 status alone. Furthermore, DNA damage takes place primarily in S-phase cells, implying disrupted DNA replication. When dosed together, the combination of MK-8776 and MK-1775 induced more intense and more durable DNA damage as well as anti-tumor efficacy than either MK-8776 or MK-1775 dosed alone. DNA damage induced by the combination was detected in up to 40% of cells in a treated xenograft tumor model. Conclusions These results highlight the roles of WEE1 and CHK1 in maintaining genomic integrity. Importantly, the strong synergy observed upon inhibition of both kinases suggests unique yet complimentary anti-tumor effects of WEE1 and CHK1 inhibition. This demonstration of DNA double strand breaks in the absence of a DNA damaging chemotherapeutic provides preclinical rationale for combining WEE1 and CHK1 inhibitors as a cancer treatment regimen.

  17. Protective immune responses in lawsonia intracellularis infections

    DEFF Research Database (Denmark)

    Cordes, Henriette; Riber, Ulla; Boutrup, Torsten;

    , that a primary L. intracellularis experimental infection in pigs protects against re-colonisation (re-infection) with a virulent L. intracellularis isolate. After re-infection the animals had reduced L. intracellularis colonisation of the intestinal mucosa compared to controls, no bacterial shedding...... infected piglets where after it levelled off. There was no boost in this response after re-infection, but boosting was observed with serum IgG, resulting in an increasing IgG/IgA index. Local secretory IgA, on the other hand were low following a primary infection, probably due to age-related effects...... behind the observed protection against re-infection with L. intracellularis....

  18. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies...

  19. Glycan-mediated modification of the immune response

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Pedersen, Anders E; Wandall, Hans H

    2013-01-01

    Aberrantly glycosylated tumor antigens represent promising targets for the development of anti-cancer vaccines, yet how glycans influence immune responses is poorly understood. Recent studies have demonstrated that GalNAc-glycosylation enhances antigen uptake by dendritic cells as well as CD4(+) T...

  20. Impact on allergic immune response after treatment with vitamin A

    DEFF Research Database (Denmark)

    Matheu, Victor; Berggård, Karin; Barrios, Yvelise;

    2009-01-01

    ABSTRACT: BACKGROUND: Vitamin A may have some influence on the immune system, but the role in allergy modulation is still unclear. OBJECTIVE: To clarify whether high levels of retinoic acid (RA) affects allergic response in vivo, we used a murine experimental model of airway allergic disease...

  1. Primary immune response to blood group antigens in burned children.

    Science.gov (United States)

    Bacon, N; Patten, E; Vincent, J

    1991-01-01

    Delayed hemolytic transfusion reactions (DHTRs) are generally attributed to an anamnestic immune response. Case reports of DHTRs due to a primary immune response are rare. Transfusion reactions occurring in patients on the pediatric burn unit from 1981 to September 1988 were reviewed, and additional information was obtained for patients for whom a DHTR was documented. Of 62 transfusion reactions, 11 were classified as a primary immune response (DHTR), with either a positive antibody screen, a positive direct antiglobulin test (DAT), or both. None of the 11 patients included in the study had been previously tranfused or pregnant. The average number of units transfused prior to antibody identification was 19. The average time elapsed between the first transfusion and antibody identification was 3.6 weeks. Anti-K and anti-E were the most frequently identified. Three patients had a decrease in hemoglobin (average 1.5 g/dL) and hematocrit at the time that a positive DAT was detected. Such changes could not be demonstrated for the remaining eight patients. The conclusion was that a DHTR may he caused by a primary immune response in burned children more often than expected, but DHTR signs and symptoms are often not apparent due to the complications of burn trauma. PMID:15946011

  2. Schistosoma mansoni egg glycoproteins : glycan structures and host immune responses

    NARCIS (Netherlands)

    Meevissen, Moniek Hubertina Joanna

    2012-01-01

    Schistosomes are parasitic helminths that cause chronic infections in over 200 million people in tropical and sub-tropical areas around the world. Glycoproteins from the eggs of the parasite Schistosoma mansoni induce various immune responses in the human host, including T-cell modulation and granul

  3. Polysaccharides isolated from Acai fruit induce innate immune responses.

    Directory of Open Access Journals (Sweden)

    Jeff Holderness

    Full Text Available The Açaí (Acai fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease.

  4. Ebola haemorrhagic fever virus: pathogenesis, immune responses, potential prevention.

    Science.gov (United States)

    Marcinkiewicz, Janusz; Bryniarski, Krzysztof; Nazimek, Katarzyna

    2014-01-01

    Ebola zoonotic RNA filovirus represents human most virulent and lethal pathogens, which induces acute hemorrhagic fever and death within few days in a range of 60-90% of symptomatic individuals. Last outbreak in 2014 in West Africa caused panic that Ebola epidemic can be spread to other continents. Number of deaths in late December reached almost 8,000 individuals out of more than 20,000 symptomatic patients. It seems that only a coordinated international response could counteract the further spread of Ebola. Major innate immunity mechanisms against Ebola are associated with the production of interferons, that are inhibited by viral proteins. Activation of host NK cells was recognized as a leading immune function responsible for recovery of infected people. Uncontrolled cell infection by Ebola leads to an impairment of immunity with cytokine storm, coagulopathy, systemic bleeding, multi-organ failure and death. Tested prevention strategies to induce antiviral immunity include: i. recombinant virus formulations (vaccines); ii. cocktail of monoclonal antibodies (serotherapy); iii. alternative RNA-interference-based antiviral methods. Maintaining the highest standards of aseptic and antiseptic precautions is equally important. Present brief review summarizes a current knowledge concerning pathogenesis of Ebola hemorrhagic disease and the virus interaction with the immune system and discusses recent advances in prevention of Ebola infection by vaccination and serotherapy.

  5. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    Science.gov (United States)

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  6. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    Science.gov (United States)

    Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán

    2008-08-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  7. The influence of quartz and surfactant on immune responses

    OpenAIRE

    Zetterberg, Göran

    1998-01-01

    Pulmonary surfactant is a mixture of lipids and proteins that embeds the alveolar cells, has surface tension reducing properties but also influences the immune response. To further investigate this, quartz was used to initiate an inflammatory response in two different models. Firstly, in vitro exposures of resting and activated human leukocytes to combinations of quartz and surfactant were done, and secondly in vivo exposures of rats to instilled quartz were performed. W...

  8. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    International Nuclear Information System (INIS)

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen

  9. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Jeffrey Schlom

    2012-12-01

    Full Text Available Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies.

  10. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Jo A.; Jochems, Caroline [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Gulley, James L. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Schlom, Jeffrey, E-mail: js141c@nih.gov; Tsang, Kwong Y. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2012-12-11

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies.

  11. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    International Nuclear Information System (INIS)

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies

  12. The role of complement in the acquired immune response

    DEFF Research Database (Denmark)

    Nielsen, C H; Fischer, E M; Leslie, R G

    2000-01-01

    Studies over the past three decades have clearly established a central role for complement in the promotion of a humoral immune response. The primary function of complement, in this regard, is to opsonize antigen or immune complexes for uptake by complement receptor type 2 (CR2, CD21) expressed...... participate in intercellular bridging. Finally, current studies suggest that CR2 may also play a role in the determination of B-cell tolerance towards self-antigens and thereby hold the key to the previously observed correlation between deficiencies of the early complement components and autoimmune disease....

  13. Reprogramming immune responses via microRNA modulation

    Science.gov (United States)

    Cubillos-Ruiz, Juan R.; Rutkowski, Melanie R; Tchou, Julia; Conejo-Garcia, Jose R.

    2013-01-01

    It is becoming increasingly clear that there are unique sets of miRNAs that have distinct governing roles in several aspects of both innate and adaptive immune responses. In addition, new tools allow selective modulation of the expression of individual miRNAs, both in vitro and in vivo. Here, we summarize recent advances in our understanding of how miRNAs drive the activity of immune cells, and how their modulation in vivo opens new avenues for diagnostic and therapeutic interventions in multiple diseases, from immunodeficiency to cancer. PMID:25285232

  14. Effect of doxycycline on immune response in mice.

    OpenAIRE

    Bellahsene, A; Forsgren, A

    1985-01-01

    The effect of doxycycline on immune response has been studied in mice, cell-mediated immunity being evaluated with the split heart allograft technique. Survival duration of heart transplants in animals treated with 2.5 mg of doxycycline per kg per day from the day of transplantation until rejection was slightly but significantly longer than in untreated animals, 18.8 days (P less than 0.05) as compared with 14.5 days. In doxycycline-treated animals, both agglutinating and hemolytic antibody r...

  15. Mechanisms of immune response regulation in lung cancer

    OpenAIRE

    Domagala-Kulawik, Joanna; Osinska, Iwona; Hoser, Grazyna

    2014-01-01

    Lung cancer is a leading cause of cancer deaths. As a solid tumor with low antigenicity and heterogenic phenotype lung cancer evades host immune defense. The cytotoxic anticancer effect is suppressed by a complex mechanism in tumor microenvironment. The population of regulatory T cells (Tregs) plays a crucial role in this inhibition of immune response. Tregs are defined by presence of forkhead box P3 (Foxp3) molecule. The high expression of Foxp3 was found in lung cancer cells and in tumor in...

  16. Tumor-derived vaccines containing CD200 inhibit immune activation: implications for immunotherapy.

    Science.gov (United States)

    Xiong, Zhengming; Ampudia-Mesias, Elisabet; Shaver, Rob; Horbinski, Craig M; Moertel, Christopher L; Olin, Michael R

    2016-09-01

    There are over 400 ongoing clinical trials using tumor-derived vaccines. This approach is especially attractive for many types of brain tumors, including glioblastoma, yet so far the clinical response is highly variable. One contributor to poor response is CD200, which acts as a checkpoint blockade, inducing immune tolerance. We demonstrate that, in response to vaccination, glioma-derived CD200 suppresses the anti-tumor immune response. In contrast, a CD200 peptide inhibitor that activates antigen-presenting cells overcomes immune tolerance. The addition of the CD200 inhibitor significantly increased leukocyte infiltration into the vaccine site, cytokine and chemokine production, and cytolytic activity. Our data therefore suggest that CD200 suppresses the immune system's response to vaccines, and that blocking CD200 could improve the efficacy of cancer immunotherapy. PMID:27485078

  17. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs.

    Science.gov (United States)

    Pollak, Cora N; Wanke, María Magdalena; Estein, Silvia M; Delpino, M Victoria; Monachesi, Norma E; Comercio, Elida A; Fossati, Carlos A; Baldi, Pablo C

    2015-03-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs.

  18. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs.

    Science.gov (United States)

    Pollak, Cora N; Wanke, María Magdalena; Estein, Silvia M; Delpino, M Victoria; Monachesi, Norma E; Comercio, Elida A; Fossati, Carlos A; Baldi, Pablo C

    2015-03-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. PMID:25540276

  19. Inflammation and Immune Response in COPD: Where Do We Stand?

    Directory of Open Access Journals (Sweden)

    Nikoletta Rovina

    2013-01-01

    Full Text Available Increasing evidence indicates that chronic inflammatory and immune responses play key roles in the development and progression of COPD. Recent data provide evidence for a role in the NLRP3 inflammasome in the airway inflammation observed in COPD. Cigarette smoke activates innate immune cells by triggering pattern recognition receptors (PRRs to release “danger signal”. These signals act as ligands to Toll-like receptors (TLRs, triggering the production of cytokines and inducing innate inflammation. In smokers who develop COPD there appears to be a specific pattern of inflammation in the airways and parenchyma as a result of both innate and adaptive immune responses, with the predominance of CD8+ and CD4+ cells, and in the more severe disease, with the presence of lymphoid follicles containing B lymphocytes and T cells. Furthermore, viral and bacterial infections interfere with the chronic inflammation seen in stable COPD and exacerbations via pathogen-associated molecular patterns (PAMPs. Finally, autoimmunity is another novel aspect that may play a critical role in the pathogenesis of COPD. This review is un update of the currently discussed roles of inflammatory and immune responses in the pathogenesis of COPD.

  20. Host immune status and response to hepatitis E virus infection.

    Science.gov (United States)

    Krain, Lisa J; Nelson, Kenrad E; Labrique, Alain B

    2014-01-01

    Hepatitis E virus (HEV), identified over 30 years ago, remains a serious threat to life, health, and productivity in developing countries where access to clean water is limited. Recognition that HEV also circulates as a zoonotic and food-borne pathogen in developed countries is more recent. Even without treatment, most cases of HEV-related acute viral hepatitis (with or without jaundice) resolve within 1 to 2 months. However, HEV sometimes leads to acute liver failure, chronic infection, or extrahepatic symptoms. The mechanisms of pathogenesis appear to be substantially immune mediated. This review covers the epidemiology of HEV infection worldwide, the humoral and cellular immune responses to HEV, and the persistence and protection of antibodies produced in response to both natural infection and vaccines. We focus on the contributions of altered immune states (associated with pregnancy, human immunodeficiency virus [HIV], and immunosuppressive agents used in cancer and transplant medicine) to the elevated risks of chronic infection (in immunosuppressed/immunocompromised patients) and acute liver failure and mortality (among pregnant women). We conclude by discussing outstanding questions about the immune response to HEV and interactions with hormones and comorbid conditions. These questions take on heightened importance now that a vaccine is available.

  1. Cell signalling in the immune response of mussel hemocytes

    Directory of Open Access Journals (Sweden)

    L Canesi

    2006-05-01

    Full Text Available In this work data on immune cell signallling in the circulating hemocytes of the edible bivalve, themussel Mytilus spp, are summarized. Studies with different bacterial species and strains, heterologouscytokines and natural hormones, as well as with organic environmental chemicals, led to theidentification of the role of conserved components of kinase-mediated transduction pathways,including cytosolic kinases (such as MAPKs and PKC and kinase-activated transcription factors (suchas STATs, CREB, NF-kB, in the immune response. From these data a general scenario emergedindicating that close similarities exist in the signalling pathways involved in cell mediated immunity inbivalve and mammalian immunocytes. In particular, the results indicate that both the extent andduration of activation of components of kinase-mediated cascades are crucial in determining thehemocyte response to extracellular stimuli. The identification of the basic mechanisms of immunityand its modulation in mussels can give important information for the possible utilization of thesespecies as an invertebrate model for studies on innate immunity. Moreover, the application of thisknowledge to the understanding of the actual adaptive responses of bivalves when exposed to microorganismsin their natural environment can represent significant ecological, economical and publichealth-related interest.

  2. The effects of pollutants on the allergic immune response.

    Science.gov (United States)

    Kemeny, D M

    2000-11-01

    An increase in the prevalence of allergy and allergic diseases has taken place in the industrialised countries. Allergic diseases represent a major health problem, and appear linked to affluence and modern lifestyle. In the 20th century air pollution from industrial sources largely has been replaced by diesel exhaust and other traffic pollution. Further, the indoor environment in which we spend most of our time has changed dramatically. In order to understand the contribution of pollution and other environmental changes to the development of allergy, we need to understand the biologic processes that underlie allergic immune responses. In the present paper, immune regulatory pathways that control the allergic immune response are delineated. Castor bean dust causes widespread allergic sensitisation. The investigations that made clear the importance of CD8 T cells for the regulation of IgE production were triggered by studies of castor bean allergy. A special focus is in this review placed on the regulatory role of CD8 T cells in the development of the allergic immune response.

  3. Immunization with avian metapneumovirus harboring chicken Fc induces higher immune responses.

    Science.gov (United States)

    Paudel, Sarita; Easwaran, Maheswaran; Jang, Hyun; Jung, Ho-Kyoung; Kim, Joo-Hun; Shin, Hyun-Jin

    2016-07-15

    In this study, we evaluated the immune responses of avian metapneumovirus harboring chicken Fc molecule. Stable Vero cells expressing chicken Fc chimera on its surface (Vero-cFc) were established, and we confirmed that aMPV grown in Vero-cFc incorporated host derived chimera Fc into the aMPV virions. Immunization of chicken with aMPV-cFc induced higher level of antibodies and inflammatory cytokines; (Interferon (IFN)-γ and Interleukin (IL)-1β) compared to those of aMPV. The increased levels of antibodies and inflammatory cytokines in chicken immunized with aMPV-cFc were statistically significantly (p<0.05) to that of aMPV and control. The aMPV-cFc group also generated the highest neutralizing antibody response. After challenges, chickens immunized with aMPV-cFc showed much less pathological signs in nasal turbinates and trachea so that we could confirm aMPV-cFc induced higher protection than that of aMPV. The greater ability of aMPV harboring chicken Fc to that of aMPV presented it as a possible vaccine candidate. PMID:27130629

  4. Synergistic anti-tumor efficacy of immunogenic adenovirus ONCOS-102 (Ad5/3-D24-GM-CSF) and standard of care chemotherapy in preclinical mesothelioma model.

    Science.gov (United States)

    Kuryk, Lukasz; Haavisto, Elina; Garofalo, Mariangela; Capasso, Cristian; Hirvinen, Mari; Pesonen, Sari; Ranki, Tuuli; Vassilev, Lotta; Cerullo, Vincenzo

    2016-10-15

    Malignant mesothelioma (MM) is a rare cancer type caused mainly by asbestos exposure. The median overall survival time of a mesothelioma cancer patient is less than 1-year from diagnosis. Currently there are no curative treatment modalities for malignant mesothelioma, however treatments such as surgery, chemotherapy and radiotherapy can help to improve patient prognosis and increase life expectancy. Pemetrexed-Cisplatin is the only standard of care (SoC) chemotherapy for malignant mesothelioma, but the median PFS/OS (progression-free survival/overall survival) from the initiation of treatment is only up to 12 months. Therefore, new treatment strategies against malignant mesothelioma are in high demand. ONCOS-102 is a dual targeting, chimeric oncolytic adenovirus, coding for human GM-CSF. The safety and immune activating properties of ONCOS-102 have already been assessed in phase 1 study (NCT01598129). In this preclinical study, we evaluated the antineoplastic activity of combination treatment with SoC chemotherapy (Pemetrexed, Cisplatin, Carboplatin) and ONCOS-102 in xenograft BALB/c model of human malignant mesothelioma. We demonstrated that ONCOS-102 is able to induce immunogenic cell death of human mesothelioma cell lines in vitro and showed anti-tumor activity in the treatment of refractory H226 malignant pleural mesothelioma (MPM) xenograft model. While chemotherapy alone showed no anti-tumor activity in the mesothelioma mouse model, ONCOS-102 was able to slow down tumor growth. Interestingly, a synergistic anti-tumor effect was seen when ONCOS-102 was combined with chemotherapy regimens. These findings give a rationale for the clinical testing of ONCOS-102 in combination with first-line chemotherapy in patients suffering from malignant mesothelioma. PMID:27287512

  5. Genomics of immune response to typhoid and cholera vaccines.

    Science.gov (United States)

    Majumder, Partha P

    2015-06-19

    Considerable variation in antibody response (AR) was observed among recipients of an injectable typhoid vaccine and an oral cholera vaccine. We sought to find whether polymorphisms in genes of the immune system, both innate and adaptive, were associated with the observed variation in response. For both vaccines, we were able to discover and validate several polymorphisms that were significantly associated with immune response. For the typhoid vaccines, these polymorphisms were on genes that belonged to pathways of polysaccharide recognition, signal transduction, inhibition of T-cell proliferation, pro-inflammatory signalling and eventual production of antimicrobial peptides. For the cholera vaccine, the pathways included epithelial barrier integrity, intestinal homeostasis and leucocyte recruitment. Even though traditional wisdom indicates that both vaccines should act as T-cell-independent antigens, our findings reveal that the vaccines induce AR using different pathways.

  6. Cell mediated immune response in human antirabies revaccination

    Directory of Open Access Journals (Sweden)

    Débora Regina Veiga

    1987-04-01

    Full Text Available The occurrence of secondary cell mediated immune response (CMI in human antirabies immunization was studied. The Puenzalida & Palácios vaccine was used because it is routinely used in Brazil. CMI was evaluated by lymphoblastic transformation indices obtained in whole blood culture in the presence of rabies and control (nervous tissue antigens. Eleven volunteers submitted to revaccination constituted the group under study, while three other volunteers submitted primo vaccination were utilized as control group. A clear secondary CMI to rabies antigen was detected in all the revaccinated volunteers who showed earlier and more intense response than the control group. Response to the control antigen, however, present in all the components of the first group was not detectable in two out of the three primovaccinated and very low in the third one.

  7. Immune responses to Mycoplasma bovis proteins formulated with different adjuvants.

    Science.gov (United States)

    Prysliak, Tracy; Perez-Casal, Jose

    2016-06-01

    Most vaccines for protection against Mycoplasma bovis disease are made of bacterins, and they offer varying degrees of protection. Our focus is on the development of a subunit-based protective vaccine, and to that end, we have identified 10 novel vaccine candidates. After formulation of these candidates with TriAdj, an experimental tri-component novel vaccine adjuvant developed at VIDO-InterVac, we measured humoral and cell-mediated immune responses in vaccinated animals. In addition, we compared the immune responses after formulation with TriAdj with the responses measured in animals vaccinated with a mix of a commercial adjuvant (Emulsigen™) and 2 of the components of the TriAdj, namely polyinosinic:polycytidylic acid (poly I:C) and the cationic innate defense regulator (IDR) peptide 1002 (VQRWLIVWRIRK). In this latter trial, we detected significant IgG1 humoral immune responses to 8 out of 10 M. bovis proteins, and IgG2 responses to 7 out of 10 proteins. Thus, we concluded that the commercial adjuvant formulated with poly I:C and the IDR peptide 1002 is the best formulation for the experimental vaccine. PMID:27105454

  8. No apparent cost of evolved immune response in Drosophila melanogaster.

    Science.gov (United States)

    Gupta, Vanika; Venkatesan, Saudamini; Chatterjee, Martik; Syed, Zeeshan A; Nivsarkar, Vaishnavi; Prasad, Nagaraj G

    2016-04-01

    Maintenance and deployment of the immune system are costly and are hence predicted to trade-off with other resource-demanding traits, such as reproduction. We subjected this longstanding idea to test using laboratory experimental evolution approach. In the present study, replicate populations of Drosophila melanogaster were subjected to three selection regimes-I (Infection with Pseudomonas entomophila), S (Sham-infection with MgSO4 ), and U (Unhandled Control). After 30 generations of selection flies from the I regime had evolved better survivorship upon infection with P. entomophila compared to flies from U and S regimes. However, contrary to expectations and previous reports, we did not find any evidence of trade-offs between immunity and other life history related traits, such as longevity, fecundity, egg hatchability, or development time. After 45 generations of selection, the selection was relaxed for a set of populations. Even after 15 generations, the postinfection survivorship of populations under relaxed selection regime did not decline. We speculate that either there is a negligible cost to the evolved immune response or that trade-offs occur on traits such as reproductive behavior or other immune mechanisms that we have not investigated in this study. Our research suggests that at least under certain conditions, life-history trade-offs might play little role in maintaining variation in immunity. PMID:26932243

  9. Targeting Transcriptional Regulators of CD8+ T Cell Dysfunction to Boost Anti-Tumor Immunity.

    Science.gov (United States)

    Waugh, Katherine A; Leach, Sonia M; Slansky, Jill E

    2015-01-01

    Transcription is a dynamic process influenced by the cellular environment: healthy, transformed, and otherwise. Genome-wide mRNA expression profiles reflect the collective impact of pathways modulating cell function under different conditions. In this review we focus on the transcriptional pathways that control tumor infiltrating CD8+ T cell (TIL) function. Simultaneous restraint of overlapping inhibitory pathways may confer TIL resistance to multiple mechanisms of suppression traditionally referred to as exhaustion, tolerance, or anergy. Although decades of work have laid a solid foundation of altered transcriptional networks underlying various subsets of hypofunctional or "dysfunctional" CD8+ T cells, an understanding of the relevance in TIL has just begun. With recent technological advances, it is now feasible to further elucidate and utilize these pathways in immunotherapy platforms that seek to increase TIL function.

  10. Targeting Transcriptional Regulators of CD8+ T Cell Dysfunction to Boost Anti-Tumor Immunity

    Directory of Open Access Journals (Sweden)

    Katherine A. Waugh

    2015-09-01

    Full Text Available Transcription is a dynamic process influenced by the cellular environment: healthy, transformed, and otherwise. Genome-wide mRNA expression profiles reflect the collective impact of pathways modulating cell function under different conditions. In this review we focus on the transcriptional pathways that control tumor infiltrating CD8+ T cell (TIL function. Simultaneous restraint of overlapping inhibitory pathways may confer TIL resistance to multiple mechanisms of suppression traditionally referred to as exhaustion, tolerance, or anergy. Although decades of work have laid a solid foundation of altered transcriptional networks underlying various subsets of hypofunctional or “dysfunctional” CD8+ T cells, an understanding of the relevance in TIL has just begun. With recent technological advances, it is now feasible to further elucidate and utilize these pathways in immunotherapy platforms that seek to increase TIL function.

  11. Myeloid IKKβ promotes antitumor immunity by modulating CCL11 and the innate immune response.

    Science.gov (United States)

    Yang, Jinming; Hawkins, Oriana E; Barham, Whitney; Gilchuk, Pavlo; Boothby, Mark; Ayers, Gregory D; Joyce, Sebastian; Karin, Michael; Yull, Fiona E; Richmond, Ann

    2014-12-15

    Myeloid cells are capable of promoting or eradicating tumor cells and the nodal functions that contribute to their different roles are still obscure. Here, we show that mice with myeloid-specific genetic loss of the NF-κB pathway regulatory kinase IKKβ exhibit more rapid growth of cutaneous and lung melanoma tumors. In a BRAF(V600E/PTEN(-/-)) allograft model, IKKβ loss in macrophages reduced recruitment of myeloid cells into the tumor, lowered expression of MHC class II molecules, and enhanced production of the chemokine CCL11, thereby negatively regulating dendritic-cell maturation. Elevated serum and tissue levels of CCL11 mediated suppression of dendritic-cell differentiation/maturation within the tumor microenvironment, skewing it toward a Th2 immune response and impairing CD8(+) T cell-mediated tumor cell lysis. Depleting macrophages or CD8(+) T cells in mice with wild-type IKKβ myeloid cells enhanced tumor growth, where the myeloid cell response was used to mediate antitumor immunity against melanoma tumors (with less dependency on a CD8(+) T-cell response). In contrast, myeloid cells deficient in IKKβ were compromised in tumor cell lysis, based on their reduced ability to phagocytize and digest tumor cells. Thus, mice with continuous IKKβ signaling in myeloid-lineage cells (IKKβ(CA)) exhibited enhanced antitumor immunity and reduced melanoma outgrowth. Collectively, our results illuminate new mechanisms through which NF-κB signaling in myeloid cells promotes innate tumor surveillance. PMID:25336190

  12. [Adaptive immune response and associated trigger factors in atopic dermatitis].

    Science.gov (United States)

    Heratizadeh, A; Werfel, T; Rösner, L M

    2015-02-01

    Due to a broad variety of extrinsic trigger factors, patients with atopic dermatitis (AD) are characterized by complex response mechanisms of the adaptive immune system. Notably, skin colonization with Staphylococcus aureus seems to be of particular interest since not only exotoxins, but also other proteins of S. aureus can induce specific humoral and cellular immune responses which partially also correlate with the severity of AD. In a subgroup of AD patients Malassezia species induce specific IgE- and T cell-responses which has been demonstrated by atopy patch tests. Moreover, Mala s 13 is characterized by high cross-reactivity to the human corresponding protein (thioredoxin). Induction of a potential autoallergy due to molecular mimicry seems therefore to be relevant for Malassezia-sensitized AD patients. In addition, sensitization mechanisms to autoallergens aside from cross-reactivity are under current investigation. Regarding inhalant allergens, research projects are in progress with the aim to elucidate allergen-specific immune response mechanisms in more depth. For grass-pollen allergens a flare-up of AD following controlled exposure has been observed while for house dust mite-allergens a polarization towards Th2 and Th2/Th17 T cell phenotypes can be observed. These and further findings might finally contribute to the development of specific and effective treatments for aeroallergen-sensitized AD patients. PMID:25532900

  13. Immune secondary response and clonal selection inspired optimizers

    Institute of Scientific and Technical Information of China (English)

    Maoguo Gong; Licheng Jiao; Lining Zhang; Haifeng Du

    2009-01-01

    The immune system's ability to adapt its B cells to new types of antigen is powered by processes known as clonal selection and affinity maturation. When the body is exposed to the same antigen, immune system usually calls for a more rapid and larger response to the antigen, where B cells have the function of negative adjustment. Based on the clonal selection theory and the dynamic process of immune response, two novel artificial immune system algorithms, secondary response clonal programming algorithm (SRCPA) and secondary response clonal multi-objective algorithm (SRCMOA), are presented for solving single and multi-objective optimization problems, respectively. Clonal selection operator (CSO) and secondary response operator (SRO) are the main operators of SRCPA and SRCMOA. Inspired by the cional selection theory, CSO reproduces individuals and selects their improved maturated progenies after the affinity mat-uration process. SRO copies certain antibodies to a secondary pool, whose members do not participate in CSO, but these antibodies could be activated by some external stimulations. The update of the secondary pool pays more attention to maintain the population diversity. On the one hand, decimal-string representation makes SRCPA more suitable for solving high-dimensional function optimiza-tion problems. Special mutation and recombination methods are adopted in SRCPA to simulate the somatic mutation and receptor edit-ing process. Compared with some existing evolutionary algorithms, such as OGA/Q, IEA, IMCPA, BGA and AEA, SRCPA is shown to be able to solve complex optimization problems, such as high-dimensional function optimizations, with better performance. On the other hand, SRCMOA combines the Pareto-strength based fitness assignment strategy, CSO and SRO to solve multi-objective optimization problems. The performance comparison between SRCMOA, NSGA-Ⅱ, SPEA, and PAES based on eight well-known test problems shows that SRCMOA has better performance in

  14. Immune responses of Helicoverpa armigera to different kinds of pathogens

    Directory of Open Access Journals (Sweden)

    Zhao Xiao-Fan

    2010-03-01

    Full Text Available Abstract Background Insects react against pathogens through innate immunity. The cotton bollworm Helicoverpa armigera (H. armigera is an important defoliator and an extremely destructive pest insect of many crops. The elucidation of the mechanism of the immune response of H. armigera to various pathogens can provide a theoretical basis for new approaches to biologically control this pest. Results Four kinds of pathogens Bacillus thuringiensis, Klebsiella pneumoniae, Candida albicans, and Autographa californica multiple nucleocapsid nucleopolyhedrovirus harbored green fluorescence protein and polyhedron (AcMNPV-GFP were used to challenge the insect. The cellular and humoral immune responses to the pathogens were analyzed in the challenged H. armigera. The results show that in the five kinds of haemocytes, only granulocytes phagocytized the Gram-negative and Gram-positive bacteria and fungi. All haemocytes can be infected by AcMNPV. Fourteen immune-related genes including pattern recognition receptors (PRRs such as peptidoglycan recognition proteins (HaPGRP and HaPGRP C and Gram-Negative Bacteria-Binding Protein (HaGNBP, and antimicrobial peptides (AMPs such as cecropin-1, 2 and 3 (HaCec-1, 2 and 3, lysozyme (HaLys, attacin (HaAtt, gallerimycin-like (HaGall, gloverin-like (HaGlo, moricin-like (HaMor, cobatoxin-like (HaCob, galiomicin-like (HaGali, and immune inducible protein (HaIip appeared in different expression profiles to different pathogen infections. The transcripts of 13 immune related genes (except HaPGRPC are obviously up-regulated by Gram-positive bacteria. HaCec-1 and 3, HaMor, HaAtt, HaLys, HaIip, HaPGRP and HaGNBP are greatly up-regulated after fungal infection. HaGNBP, HaCec-2, HaGall, HaGlo, HaMor, HaCob, HaGali obviously increased in Gram-negative bacterial infection. Only five genes, HaGNBP, HaCec-1, HaGali, HaGlo, and HaLys, are weakly up-regulated after viral infection. The AMP transcripts had higher expression levels than the

  15. Disrupted glucocorticoid--Immune interactions during stress response in schizophrenia.

    Science.gov (United States)

    Chiappelli, Joshua; Shi, Qiaoyun; Kodi, Priyadurga; Savransky, Anya; Kochunov, Peter; Rowland, Laura M; Nugent, Katie L; Hong, L Elliot

    2016-01-01

    Glucocorticoid and immune pathways typically interact dynamically to optimize adaptation to stressful environmental challenges. We tested the hypothesis that a dysfunctional glucocorticoid-immune relationship contributes to abnormal stress response in schizophrenia. Saliva samples from 34 individuals with schizophrenia (20 male, 14 female) and 40 healthy controls (20 male, 20 female) were collected prior to and at 3 time points following completion of a computerized psychological challenge meant to be frustrating. Salivary concentrations of cortisol and interleukin-6 (IL-6) and their response to the challenge were examined. Both cortisol and IL-6 significantly increased in response to stress in the combined sample (both pschizophrenia patients (r=.379, p=.027). The trends were significantly different (Z=3.7, p=.0002). This stress paradigm induces a rise in both cortisol and IL-6. In healthy controls, a more robust acute cortisol response was associated with a steeper decline of IL-6 levels following stress, corresponding to the expected anti-inflammatory effects of cortisol. Patients exhibited the opposite relationship, suggesting an inability to down-regulate inflammatory responses to psychological stress in schizophrenia; or even a paradoxical increase of IL-6 response. This finding may partially underlie abnormalities in inflammatory and stress pathways previously found in the illness, implicating dysregulated stress response in the chronic inflammatory state in schizophrenia.

  16. Alopecia secondary to anti-tumor necrosis factor-alpha therapy *

    OpenAIRE

    Ribeiro, Lara Beatriz Prata; Rego, Juliana Carlos Gonçalves; Estrada, Bruna Duque; Bastos, Paula Raso; Piñeiro Maceira, Juan Manuel; Sodré, Celso Tavares

    2015-01-01

    Biologic drugs represent a substantial progress in the treatment of chronic inflammatory immunologic diseases. However, its crescent use has revealed seldom reported or unknown adverse reactions, mainly associated with anti-tumor necrosis factor (anti-TNF). Psoriasiform cutaneous reactions and few cases of alopecia can occur in some patients while taking these drugs. Two cases of alopecia were reported after anti-TNF therapy. Both also developed psoriasiform lesions on the body. This is the s...

  17. The Study of Anti-tumor Activity of Trichosanthin by Cyclic Voltammogram

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The anti-tumor activity of Trichosanthin (TCS) has been frequently reported in recent years. In our experiments, electrochemical methods were applied to detect the effects of TCS on human leukemia cells U937. 50m g/ml TCS treatment for 40 hours can cause irreversible negative effects on the viability of U937 cells. This effect largely depends on the concentration of TCS and the time period of treatment.

  18. Pure multiplicative stochastic resonance of anti-tumor model with seasonal modulability

    OpenAIRE

    Zhong, Wei-Rong; Shao, Yuan-Zhi; He, Zhen-Hui

    2006-01-01

    The effects of pure multiplicative noise on stochastic resonance in an anti-tumor system modulated by a seasonal external field are investigated by using theoretical analyses of the generalized potential and numerical simulations. For optimally selected values of the multiplicative noise intensity quasi-symmetry of two potential minima and stochastic resonance are observed. Theoretical results and numerical simulations are in good quantitative agreement.

  19. Synthesis and in vitro biological evaluation of farnesylthiosalicylic acid derivatives as anti-tumor carcinoma agents

    Institute of Scientific and Technical Information of China (English)

    Yong Ling; You An Xiao; Guang Tong Chen; Dong Geng Wang; Yu Qin Li; Xin Yang Wang; Heng Zheng

    2012-01-01

    Novel farnesylthiosalicylic acid (FTA) derivatives 5a-m with different substituted 1,3,4-thiadiazoles were synthesized.Compounds 5b,5c,5e and 5f displayed anti-tumor activities superior to FTA in most cancer cells tested.Furthermore,5e induced tumor cell apoptosis,which was accompanied by lower Bcl-2 expression,but with higher Bax and caspase 3 expression activities in cancer cells.

  20. Changes in macrophage phenotype as the immune response evolves

    Science.gov (United States)

    Lichtnekert, Julia; Kawakami, Takahisa; Parks, William C.; Duffield, Jeremy S.

    2013-01-01

    Mononuclear phagocytic cells, including macrophages and dendritic cells, are widely distributed throughout our organs where they perform important homeostatic, surveillance and regenerative tasks. In response to infection or injury, the composition and number of mononuclear phagocytic cells changes remarkably, in part due to the recruitment of inflammatory monocytes from bone marrow. In infection or injury, macrophages and dendritic cells perform important innate and adaptive immune roles from the initial insult through repair and regeneration of the tissue and resolution of inflammation. Evidence from mouse models of disease has shown increasing complexity and subtlety to the mononuclear phagocytic system, which will be reviewed here. New studies show that in addition to monocytes, the resident populations of mononuclear phagocytes expand in disease states and play distinct but important roles in the immune response. Finally, new insights into these functionally diverse cells are now translating into therapeutics to treat human disease. PMID:23747023

  1. Curcumin prevents human dendritic cell response to immune stimulants

    Science.gov (United States)

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2012-01-01

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14+ monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing naïve CD4+ T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant. PMID:18639521

  2. Responsive immunization and intervention for infectious diseases in social networks

    Science.gov (United States)

    Wu, Qingchu; Zhang, Haifeng; Zeng, Guanghong

    2014-06-01

    By using the microscopic Markov-chain approximation approach, we investigate the epidemic spreading and the responsive immunization in social networks. It is assumed that individual vaccination behavior depends on the local information of an epidemic. Our results suggest that the responsive immunization has negligible impact on the epidemic threshold and the critical value of initial epidemic outbreak, but it can effectively inhibit the outbreak of epidemic. We also analyze the influence of the intervention on the disease dynamics, where the vaccination is available only to those individuals whose number of neighbors is greater than a certain value. Simulation analysis implies that the intervention strategy can effectively reduce the vaccine use under the epidemic control.

  3. The role of complement in the acquired immune response

    DEFF Research Database (Denmark)

    Nielsen, C H; Fischer, E M; Leslie, R G

    2000-01-01

    Studies over the past three decades have clearly established a central role for complement in the promotion of a humoral immune response. The primary function of complement, in this regard, is to opsonize antigen or immune complexes for uptake by complement receptor type 2 (CR2, CD21) expressed...... on B cells, follicular dendritic cells (FDC) and some T cells. A variety of mechanisms appear to be involved in complement-mediated promotion of the humoral response. These include: enhancement of antigen (Ag) uptake and processing by both Ag-specific and non-specific B cells for presentation...... participate in intercellular bridging. Finally, current studies suggest that CR2 may also play a role in the determination of B-cell tolerance towards self-antigens and thereby hold the key to the previously observed correlation between deficiencies of the early complement components and autoimmune disease....

  4. Curcumin prevents human dendritic cell response to immune stimulants

    International Nuclear Information System (INIS)

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14+ monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4+ T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant

  5. INDUCTION OF ANTIVIRAL IMMUNE-RESPONSES BY IMMUNIZATION WITH RECOMBINANT-DNA ENCODED AVIAN CORONAVIRUS NUCLEOCAPSID PROTEIN

    NARCIS (Netherlands)

    BOOTS, AMH; BENAISSATROUW, BJ; HESSELINK, W; RIJKE, E; SCHRIER, C; HENSEN, EJ; Boots, Annemieke

    1992-01-01

    Immune responses to the infectious bronchitis virus (IBV) nucleocapsid protein were studied using a recombinant-DNA expression product. In mice, a lymphocyte proliferative response and a delayed-type hypersensitivity reaction to IBV were induced upon immunization with this nucleocapsid protein. Next

  6. Cloning and biological activity of an anti-tumor peptide of Tumstatin

    Institute of Scientific and Technical Information of China (English)

    WANG Shujing; LIU Yan; LIN Xuesong; FU Xue; XU Jianyong; LIU Xinghan

    2007-01-01

    To obtain an anti-tumor peptide of Tumstatin and detect its biological activity,the nucleotide sequence encoding 185-203 amino acids (19peptide) of Tumstatin was synthesized and inserted into the fusion protein vector pTYB2.After identification by sequencing and restriction endonucleases,the recombined vector was transformed into BL-21 (DE3) E.coli competent cells.Transformed E.coli BL-21 (DE3) were induced by isopropyl-β-thiogalactopyranoside (IPTG),and then expressed.By 1,4-dithiothreitol (DTT)reduction,the soluble 19peptide was obtained from a chitin affinity chromatograph.The biological activity of 19peptide was determined by 3-[4,5-dimethylthiazol-2-y1]-2,5-diphenytetrazolium bromide (MTT) assay,cell growth curve,the effect of the ascitic fluid transfevent H22 hepatoma on mice and via histopathological slices.The purified 19peptide directly inhibited proliferation and migration of murine B16 melanoma cells,SMMC-7721hepatoma carcinoma cells and human umbilical vein endothelial cells (HUVEC).The tumor inhibition rate of mice ascitic fluid transfevent H22 hepatoma was 48.46%.Histopathological slices showed that it could promote tumor tissue necrosis and decrease the density of blood vessels.With higher anti-tumor activity,19peptide has the potential to become a novel,potent anti-tumor agent.

  7. BPIC: A novel anti-tumor lead capable of inhibiting inflammation and scavenging free radicals.

    Science.gov (United States)

    Li, Shan; Wang, Yuji; Zhao, Ming; Wu, Jianhui; Peng, Shiqi

    2015-03-01

    Inflammation has a critical role in the tumor progression, free radical damage can worse the status of patients in cancer condition. The anti-cancer agents capable of inhibiting inflammation and scavenging free radicals attract a lot of our interest. Aimed at the discovery of such anti-tumor agent, a novel intercalator, benzyl 1-[4-hydroxy-3-(methoxycarbonyl)-phenyl-9H-pyrido[3,4-b]indole-3-carboxylate (BPIC) was presented. The docking investigation of BPIC and doxorubicin towards the DNA (PDB ID: 1NAB) gave equal score and similar feature. The anti-proliferation assay of 8 cancer cells identified S180 cells had equal sensitivity to BPIC and doxorubicin. The anti-tumor assay defined the efficacy of BPIC been 2 folds higher than that of doxorubicin. At 1μmol/kg of dose BPIC effectively inhibited xylene-induced ear edema and decreased the plasma TNF-α and IL-8 of the mice. BPIC scavenged ∙OH, ∙O2(-) and NO free radicals in a concentration dependent manner and NO free radicals had the highest sensitivity. BPIC could be a novel anti-tumor lead capable of simultaneously inhibiting inflammation and scavenging free radicals.

  8. Modulation of immune responses in stress by Yoga

    OpenAIRE

    Arora Sarika; Bhattacharjee Jayashree

    2008-01-01

    Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary syste...

  9. Changes in macrophage phenotype as the immune response evolves

    OpenAIRE

    Lichtnekert, Julia; Kawakami, Takahisa; Parks, William C.; Duffield, Jeremy S.

    2013-01-01

    Mononuclear phagocytic cells, including macrophages and dendritic cells, are widely distributed throughout our organs where they perform important homeostatic, surveillance and regenerative tasks. In response to infection or injury, the composition and number of mononuclear phagocytic cells changes remarkably, in part due to the recruitment of inflammatory monocytes from bone marrow. In infection or injury, macrophages and dendritic cells perform important innate and adaptive immune roles fro...

  10. Dysregulation of the humoral immune response in old mice.

    Science.gov (United States)

    Zhao, K S; Wang, Y F; Guéret, R; Weksler, M E

    1995-06-01

    The increase in autoantibodies with age of both experimental animals and humans has been thought to reflect a shift in the antibody repertoire from foreign to self antigens. In mice, before immunization, the age-associated increase in antibodies reactive with a prototypic autoantigen, bromelain-treated autologous erythrocytes (BrMRBC), reflected a 3-fold increase in serum IgM and the number of IgM-secreting spleen cells in old compared with young mice. However, the percentage of the IgM-secreting spleen cell repertoire reactive with BrMRBC in old mice was actually approximately 50% that in young mice. In contrast, after immunization with sheep erythrocytes (SRBC), old mice showed a 5-fold increase in the percentage of IgM-secreting cells reactive with BrMRBC while young mice showed no significant increase. The converse is true for the percentage of IgM-secreting spleen cells in old mice specific for SBRC, which is 10% the number generated by young mice. The increased autoantibody response of old mice is not, however, linked to their poor response to the nominal antigen. Thus, immunization with phosphorylcholine (PC) conjugated keyhole limpet hemocyanin, an antigen that induces a comparable anti-PC response in old and young mice, also induced more autoantibody forming cells in old than young mice. The increased autoantibody response of old mice after immunization can be accounted for by both an increased number of Ig-secreting spleen cells as well as an increased percentage of the expressed repertoire of IgM-secreting spleen cells that react with autoantigens.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Immune response to Streptococcus pyogenes and the susceptibility to psoriasis.

    Science.gov (United States)

    Muto, M; Fujikura, Y; Hamamoto, Y; Ichimiya, M; Ohmura, A; Sasazuki, T; Fukumoto, T; Asagami, C

    1996-05-01

    Monoclonal antibodies directed against type 12 Group A streptococcal cell wall antigens cross-react with nuclei and cytoplasm of cells from skin and synovium from controls, uninvolved skin of psoriatics and psoriatic plaques. Patients with psoriasis had high serum titres of antibody against the M12 (C-region) streptococcal antigen compared to controls. An abnormal immune response directed against a "self' antigen after initiation by Group A streptococcal infection may play an important role in the exacerbation or development of psoriasis.

  12. Suppression of Hyperactive Immune Responses Protects against Nitrogen Mustard Injury

    OpenAIRE

    Au, Liemin; Meisch, Jeffrey P.; Das, Lopa M; Binko, Amy M; Boxer, Rebecca S.; Wen, Amy M.; Steinmetz, Nicole F.; Lu, Kurt Q.

    2015-01-01

    DNA alkylating agents like nitrogen mustard (NM) are easily absorbed through the skin and exposure to such agents manifest not only in direct cellular death but also in triggering inflammation. We show that toxicity resulting from topical mustard exposure is mediated in part by initiating exaggerated host innate immune responses. Using an experimental model of skin exposure to NM we observe activation of inflammatory dermal macrophages that exacerbate local tissue damage in an inducible nitri...

  13. Mutants of rabies viruses in skunks: immune response and pathogenicity.

    OpenAIRE

    Tolson, N D; Charlton, K M; Stewart, R B; Casey, G A; Webster, W A; Mackenzie, K.; Campbell, J. B.; Lawson, K. F.

    1990-01-01

    In studies to develop an oral rabies vaccine for wildlife, the immune response to and pathogenicity of two types of mutants of rabies viruses were examined. Forty-five small plaque mutants were selected from cultures of ERA rabies virus treated with 8-azaguanine or 5-fluorouracil and tested for pathogenicity in mice. Two of these mutants AZA 1 and AZA 2 (low pathogenicity in mice) were given to skunks by oral (bait), intestinal (endoscope) and intramuscular routes. Additionally, challenge vir...

  14. Intralesional injection of rose bengal induces a systemic tumor-specific immune response in murine models of melanoma and breast cancer.

    Directory of Open Access Journals (Sweden)

    Paul Toomey

    Full Text Available Intralesional (IL injection of PV-10 has shown to induce regression of both injected and non-injected lesions in patients with melanoma. To determine an underlying immune mechanism, the murine B16 melanoma model and the MT-901 breast cancer model were utilized. In BALB/c mice bearing MT-901 breast cancer, injection of PV-10 led to regression of injected and untreated contralateral subcutaneous lesions. In a murine model of melanoma, B16 cells were injected into C57BL/6 mice to establish one subcutaneous tumor and multiple lung lesions. Treatment of the subcutaneous lesion with a single injection of IL PV-10 led to regression of the injected lesion as well as the distant B16 melanoma lung metastases. Anti-tumor immune responses were measured in splenocytes collected from mice treated with IL PBS or PV-10. Splenocytes isolated from tumor bearing mice treated with IL PV-10 demonstrated enhanced tumor-specific IFN-gamma production compared to splenocytes from PBS-treated mice in both models. In addition, a significant increase in lysis of B16 cells by T cells isolated after PV-10 treatment was observed. Transfer of T cells isolated from tumor-bearing mice treated with IL PV-10 led to tumor regression in mice bearing B16 melanoma. These studies establish that IL PV-10 therapy induces tumor-specific T cell-mediated immunity in multiple histologic subtypes and support the concept of combining IL PV10 with immunotherapy for advanced malignancies.

  15. Hantaan virus triggers TLR4-dependent innate immune responses.

    Science.gov (United States)

    Yu, Hai-Tao; Jiang, Hong; Zhang, Ye; Nan, Xue-Ping; Li, Yu; Wang, Wei; Jiang, Wei; Yang, Dong-Qiang; Su, Wen-Jing; Wang, Jiu-Ping; Wang, Ping-Zhong; Bai, Xue-Fan

    2012-10-01

    The innate immune response induced by Hantavirus is responsible for endothelial cell dysfunction and viral pathogenicity. Recent studies demonstrate that TLR4 expression is upregulated and mediates the secretion of several cytokines in Hantaan virus (HTNV)-infected endothelial cells. To examine viral interactions with host endothelial cells and characterize the innate antiviral responses associated with Toll-like receptors, we selected TLR4 as the target molecule to investigate anti-hantavirus immunity. TLR4 mRNA-silenced EVC-304 (EVC-304 TLR4-) cells and EVC-304 cells were used to investigate signaling molecules downstream of TLR4. The expression of the adaptor protein TRIF was higher in HTNV-infected EVC-304 cells than in EVC-304 TLR4- cells. However, there was no apparent difference in the expression of MyD88 in either cell line. The transcription factors for NF-κB and IRF-3 were translocated from the cytoplasm into the nucleus in HTNV-infected EVC-304 cells, but not in HTNV-infected EVC-304 TLR4- cells. Our results demonstrate that TLR4 may play an important role in the antiviral immunity of the host against HTNV infection through an MyD88-independent signaling pathway.

  16. DAP12 Inhibits Pulmonary Immune Responses to Cryptococcus neoformans.

    Science.gov (United States)

    Heung, Lena J; Hohl, Tobias M

    2016-06-01

    Cryptococcus neoformans is an opportunistic fungal pathogen that is inhaled into the lungs and can lead to life-threatening meningoencephalitis in immunocompromised patients. Currently, the molecular mechanisms that regulate the mammalian immune response to respiratory cryptococcal challenge remain poorly defined. DAP12, a signaling adapter for multiple pattern recognition receptors in myeloid and natural killer (NK) cells, has been shown to play both activating and inhibitory roles during lung infections by different bacteria and fungi. In this study, we demonstrate that DAP12 plays an important inhibitory role in the immune response to C. neoformans Infectious outcomes in DAP12(-/-) mice, including survival and lung fungal burden, are significantly improved compared to those in C57BL/6 wild-type (WT) mice. We find that eosinophils and macrophages are decreased while NK cells are increased in the lungs of infected DAP12(-/-) mice. In contrast to WT NK cells, DAP12(-/-) NK cells are able to repress C. neoformans growth in vitro Additionally, DAP12(-/-) macrophages are more highly activated than WT macrophages, with increased production of tumor necrosis factor (TNF) and CCL5/RANTES and more efficient uptake and killing of C. neoformans These findings suggest that DAP12 acts as a brake on the pulmonary immune response to C. neoformans by promoting pulmonary eosinophilia and by inhibiting the activation and antifungal activities of effector cells, including NK cells and macrophages. PMID:27068093

  17. Dyshidrotic eczema: relevance to the immune response in situ

    Directory of Open Access Journals (Sweden)

    Frank J. Pinto

    2009-08-01

    Full Text Available Context: Pompholyx (called dyshidrosis by some is one of the most common conditions and its immune response is presently poorly understood. Case report: We describe a 58 year old African American female with a clinical history of rheumatoid arthritis and type II diabetes who presented a chronic five-year, itchy vesicular/blistering rash involving her hands and feet. A lesional skin biopsy was taken for hematoxylin and eosin (H & E analysis. In addition, a multicolor direct immunofluorescence (MDIF and immunohistochemistry (IHC studies were performed. The major findings to be reported were: the H & E examination revealed spongiotic dermatitis and pompholix. IHC and MDIF studies demonstrated focally deposits of positive CD45, CD3, CD8, anti myeloperoxidase (MPO, and anti-human IgE, C3C, C3D and anti-human-fibrinogen within the epidermal spongiotic process, as well as around the blood vessels surrounding the inflammatory process especially at the sweat glands and respective ductus. The patient began mycophenolate mofetil therapy, with successful clearing of the palms and soles. Conclusion: The significance of our findings indicates a complex immunological process including complement, MPO and T-cell immune response. In addition, possibly a secondary allergic process for the presence of IgE immune response and possibly aggravation by application of other medicines. Further immunological studies on pompholyx are needed

  18. Dyshidrotic eczema: Relevance to the immune response in situ

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2009-01-01

    Full Text Available Context: Pompholyx (called dyshidrosis by some is one of the most common conditions and its immune response is presently poorly understood. Case report: We describe a 58 year old African American female with a clinical history of rheumatoid arthritis and type II diabetes who presented a chronic five-year, itchy vesicular/blistering rash involving her hands and feet. A lesional skin biopsy was taken for hematoxylin and eosin (H & E analysis. In addition, a multicolor direct immunofluorescence (MDIF and immunohistochemistry (IHC studies were performed. The major findings to be reported were: the H & E examination revealed spongiotic dermatitis and pompholix. IHC and MDIF studies demonstrated focally deposits of positive CD45, CD3, CD8, anti myeloperoxidase (MPO, and anti-human IgE, C3C, C3D and anti-human-fibrinogen within the epidermal spongiotic process, as well as around the blood vessels surrounding the inflammatory process especially at the sweat glands and respective ductus. The patient began mycophenolate mofetil therapy, with successful clearing of the palms and soles. Conclusion : The significance of our findings indicates a complex immunological process including complement, MPO and T-cell immune response. In addition, possibly a secondary allergic process for the presence of IgE immune response and possibly aggravation by application of other medicines. Further immunological studies on pompholyx are needed. (Abreu Velez AM, Pinto FJ, Howard MS.

  19. A systematic review of humoral immune responses against tumor antigens.

    Science.gov (United States)

    Reuschenbach, Miriam; von Knebel Doeberitz, Magnus; Wentzensen, Nicolas

    2009-10-01

    This review summarizes studies on humoral immune responses against tumor-associated antigens (TAAs) with a focus on antibody frequencies and the potential diagnostic, prognostic, and etiologic relevance of antibodies against TAAs. We performed a systematic literature search in Medline and identified 3,619 articles on humoral immune responses and TAAs. In 145 studies, meeting the inclusion criteria, humoral immune responses in cancer patients have been analyzed against over 100 different TAAs. The most frequently analyzed antigens were p53, MUC1, NY-ESO-1, c-myc, survivin, p62, cyclin B1, and Her2/neu. Antibodies against these TAAs were detected in 0-69% (median 14%) of analyzed tumor patients. Antibody frequencies were generally very low in healthy individuals, with the exception of few TAAs, especially MUC1. For several TAAs, including p53, Her2/neu, and NY-ESO-1, higher antibody frequencies were reported when tumors expressed the respective TAA. Antibodies against MUC1 were associated with a favorable prognosis while antibodies against p53 were associated with poor disease outcome. These data suggest different functional roles of endogenous antibodies against TAAs. Although data on prediagnostic antibody levels are scarce and antibody frequencies for most TAAs are at levels precluding use in diagnostic assays for cancer early detection, there is some promising data on achieving higher sensitivity for cancer detection using panels of TAAs.

  20. Hemocyanins and the immune response: defense against the dark arts.

    Science.gov (United States)

    Terwilliger, Nora B

    2007-10-01

    The innate immune response is a conserved trait shared by invertebrates and vertebrates. In crustaceans, circulating hemocytes play significant roles in the immune response, including the release of prophenoloxidases. Activated phenoloxidase (tyrosinase) participates in encapsulation and melanization of foreign organisms as well as sclerotization of the new exoskeleton after wound-repair or molting. Hemocyanin functions as a phenoloxidase under certain conditions and thus also participates in the immune response and molting. The relative contributions of hemocyte phenoloxidase and hemocyanin in the physiological ratio at which they occur in hemolymph have been investigated in the crab Cancer magister. Differences in activity, substrate affinity, and catalytic ability between the two enzymes indicate that hemocytes are the predominant source of phenoloxidase activity in crabs. In contrast, hemocyanin is the primary source of phenoloxidase activity in isopods and chelicerates whose hemocytes show no phenoloxidase activity. Quantitative PCR studies on the distribution of prophenoloxidase mRNA in the tissues of Carcinus maenas showed little effect relative to salinity stress. Phylogenetic analysis of hemocyanin, phenoloxidase, and other members of this arthropod gene family are consistent with the possibility that a common ancestral molecule had both phenoloxidase and oxygen-binding capabilities.

  1. Regulation of A1 by OX40 contributes to CD8(+ T cell survival and anti-tumor activity.

    Directory of Open Access Journals (Sweden)

    Fengyang Lei

    Full Text Available The TNFR family member OX40 (CD134 is critical for optimal clonal expansion and survival of T cells. However, the intracellular targets of OX40 in CD8 T cells are not fully understood. Here we show that A1, a Bcl-2 family protein, is regulated by OX40 in effector CD8 T cells. In contrast to wild-type T cells, OX40-deficient CD8 T cells failed to maintain A1 expression driven by antigen. Conversely, enforced OX40 stimulation promoted A1 expression. In both situations, the expression of A1 directly correlated with CD8 T cell survival. In addition, exogenous expression of A1 in OX40-deficient CD8 T cells reversed their survival defect in vitro and in vivo. Moreover, forced expression of A1 in CD8 T cells from OX40-deficient mice restored the ability of these T cells to suppress tumor growth in a murine model. These results indicate that OX40 signals regulate CD8 T cell survival at least in part through maintaining expression of the anti-apoptotic molecule A1, and provide new insight into the mechanism by which OX40 may impact anti-tumor immunity.

  2. Cloning and Expression of a Novel Target Fusion Protein and its Application in Anti-Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Rui Sun

    2015-03-01

    Full Text Available Backgrounds: Epidermal growth factor (EGF is a 53 amino acid polypeptide and its receptor EGFR is an established therapeutic target for anti-tumor therapy. Two major categories of EGFR-targeted drugs include monoclonal antibodies (mAbs and small molecular tyrosine kinase inhibitors (TKIs. However, drug resistance occurs in a significant proportion of patients due to EGFR mutations. Since EGFR can maintain activation while abrogating the activity of mAbs or TKIs, or bypass signaling functions while successfully circumventing the EGF-EGFR switch, developing new mechanism-based inhibitors is necessary. Methods: In this study, based on the principle of tumor immunotherapy, a recombinant protein pLLO-hEGF was constructed. The N-terminal portion contains three immunodominant epitopes from listeriolysin O (LLO and the C-terminal includes EGF. To use EGF as a target vector to recognize EGFR-expressing cancer cells, immunodominant epitopes could enhance immunogenicity of tumor cells for immune cell activation and attack. Results: Recombinant protein pLLO-hEGF was successfully expressed and showed strong affinity to cancer cells. Also, pLLO-hEGF could significantly stimulate human lymphocyte proliferation and the lymphocytes demonstrated enhanced killing potency in EGFR-expressing cancer cells in vitro and in vivo. Conclusion: This study can provide novel strategies and directions in tumor biotherapy.

  3. Immune Response to Hepatitis B Vaccine among Dental Students

    Directory of Open Access Journals (Sweden)

    HR Abdolsamadi

    2009-06-01

    Full Text Available "nBackground: Hepatitis B infection is a major public health problem worldwide. Dental students who are frequently in contact with body fluids like blood and saliva are still at high risk for HBV exposure. The aim of this study was to evaluate the effectiveness of HBV vaccine and personal factors associated with serologic evidence of the immune response."nMethods: A descriptive-cross sectional study was carried out using data from Hamadan dental school students that received just three doses of HBV vaccine. The serum sample of 86 dental clinical students were examined in order to determine hepatitis B surface antigen and the level of anti-HBs using IEMA method. Logistic regression models were used to assess the relationship of vaccine response to the variables Sex, age weight, smoking status and the time lasting from the third dose of vaccine injection."nResults: Ninety-three percent had positive anti-HBs response and 7% were non-responders. No one showed HBsAg. Vaccine response was most strongly associated with age, smoking status, sex and weight. The time lasting from the third dose was unrelated to vaccine response."nConclusion: Clinical dental students had desirable immune response to the HBV vaccine nevertheless recommended num­ber of doses, standard protocol and early vaccination are critical to adequate protection against hepatitis infection among all health care workers, in particular dental students and dentists who are often exposed to blood and other body fluids.

  4. DMPD: ITAM-based signaling beyond the adaptive immune response. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16332394 ITAM-based signaling beyond the adaptive immune response. Fodor S, Jakus Z...TAM-based signaling beyond the adaptive immune response. PubmedID 16332394 Title ITAM-based signaling beyond the adaptive

  5. An immune response study of oakmoss absolute and its constituents atranol and chloroatranol

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menné; Nielsen, Morten Milek; Gimenéz-Arnau, Elena;

    2014-01-01

    BACKGROUND: Atranol and chloroatranol are the main allergens of oakmoss absolute. However, the immune responses induced by these substances are poorly characterized. OBJECTIVES: To characterize immune responses induced by atranol, chloroatranol and oakmoss absolute in mice. METHODS: Mice were sen...

  6. Suspected de novo Hepatitis B in a Patient Receiving Anti-Tumor Necrosis Factor Alpha Therapy for the Treatment of Crohn's Disease

    Directory of Open Access Journals (Sweden)

    Tetsuya Ishida

    2014-01-01

    Full Text Available We report a 45-year-old female patient who developed acute hepatic disorder during anti-tumor necrosis factor α therapy for the treatment of Crohn's disease (CD. She was diagnosed as colonic CD and placed on infliximab (IFX. She was negative for hepatitis B surface antigen at the initiation of IFX therapy, but developed acute hepatitis after the 30th administration of IFX 4 years and 1 month after the first administration. She was suspected to have had occult hepatitis B virus infection before IFX therapy, and de novo hepatitis B was considered the most likely diagnosis. Hepatitis subsided after discontinuation of anti-tumor necrosis factor α therapy and initiation of treatment with entecavir. She started to receive adalimumab to prevent relapse of CD. She has continued maintenance therapy with entecavir and adalimumab and has since been asymptomatic. As de novo hepatitis B may be fatal, virological testing for hepatitis B is essential for patients who are being considered for treatment that may weaken the immune system.

  7. Anti-tumor activity of heat-killed Lactobacillus plantarum BF-LP284 on Meth-A tumor cells in BALB/c mice.

    Science.gov (United States)

    Shin, Ryoichi; Itoh, Yukie; Kataoka, Motoyuki; Iino-Miura, Shiori; Miura, Ryosuke; Mizutani, Takeo; Fujisawa, Tomohiko

    2016-09-01

    Probiotics exert numerous effects on human well-being. Here, heat-killed Lactobacillus plantarum BF-LP284 (H-Lp) was isolated as a potent immuno-modulator among 15 strains of lactobacilli in terms of TNF-α induction ability in peritoneal macrophages. In vitro TNF-α and IFN-γ induction in Peyer's patch (PP) cells was higher when incubated with H-Lp than with live L. plantarum BF-LP284 (L-Lp). Suppression of syngeneic Meth-A tumors in a murine model by oral administration of H-Lp was also greater than that of L-Lp and of controls. H-Lp stimulated IFN-γ production in spleen cells, which displayed inhibited tumor growth in Winn assays when treated with H-Lp. Moreover, H-Lp increased the ratio of CD3(+ )cells among peripheral blood mononuclear cells in Meth-A tumor-bearing mice, suggesting an H-Lp-mediated anti-tumor mechanism whereby immune cells that are activated by H-Lp in PP and acquire anti-tumor activity in the spleen migrate to tumor sites through lymphocyte homing to inhibit tumor growth. PMID:27198983

  8. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host

    Directory of Open Access Journals (Sweden)

    Yingru eLiu

    2011-03-01

    Full Text Available It is well known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host’s immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory- immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine.

  9. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host.

    Science.gov (United States)

    Liu, Yingru; Feinen, Brandon; Russell, Michael W

    2011-01-01

    It is well-known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host's immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory-immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine. PMID:21833308

  10. Tailored immune responses: novel effector helper T cell subsets in protective immunity.

    Directory of Open Access Journals (Sweden)

    Ervin E Kara

    2014-02-01

    Full Text Available Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H1/T(H2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.

  11. Tailored immune responses: novel effector helper T cell subsets in protective immunity.

    Science.gov (United States)

    Kara, Ervin E; Comerford, Iain; Fenix, Kevin A; Bastow, Cameron R; Gregor, Carly E; McKenzie, Duncan R; McColl, Shaun R

    2014-02-01

    Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H)1/T(H)2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.

  12. Alterations in immune responses in prenatally irradiated dogs

    International Nuclear Information System (INIS)

    Immunologic responses were studied in beagle dogs following prenatal (35 days gestation) irradiation to evaluate the effects of ionizing radiation on the developing immune system. Each dog received 1.5 Gy 60Co gamma irradiation or sham irradiation. Prenatally irradiated dogs exhibited a significant reduction in primary humoral antibody responses to inoculated sheep red blood cells, a T-dependent antigen, and a concurrent decrease in T-helper lymphocyte subpopulations in the peripheral blood at 3 to 4 months of age. Similarly, irradiated fetuses have been shown to have defects in epitheliostromal development of the thymus. It is suggested that the postnatal immunologic deficits may relate to the prenatal thymic injury

  13. Immunity to rhabdoviruses in rainbow trout: the antibody response

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lapatra, S.E.

    1999-01-01

    occasional detrimental effect on rainbow trout farming. Research efforts have been focused on understanding the mechanisms involved in protective immunity. Several specific and nonspecific cellular and humoral parameters are believed to be involved, but only the antibody response has been characterised in......, have demonstrated that rainbow trout can produce specific and highly functional antibodies that are able to neutralise virus pathogenicity in vitro as well as in vivo. The apparently more restricted antibody response to IHNV and VHSV antigens in fish compared to mammals could possibly be explained by...

  14. Royal Decree: Gene Expression in Trans-Generationally Immune Primed Bumblebee Workers Mimics a Primary Immune Response.

    Directory of Open Access Journals (Sweden)

    Seth M Barribeau

    Full Text Available Invertebrates lack the cellular and physiological machinery of the adaptive immune system, but show specificity in their immune response and immune priming. Functionally, immune priming is comparable to immune memory in vertebrates. Individuals that have survived exposure to a given parasite are better protected against subsequent exposures. Protection may be cross-reactive, but demonstrations of persistent and specific protection in invertebrates are increasing. This immune priming can cross generations ("trans-generational" immune priming, preparing offspring for the prevailing parasite environment. While these phenomena gain increasing support, the mechanistic foundations underlying such immune priming, both within and across generations, remain largely unknown. Using a transcriptomic approach, we show that exposing bumblebee queens with an injection of heat-killed bacteria, known to induce trans-generational immune priming, alters daughter (worker gene expression. Daughters, even when unexposed themselves, constitutively express a core set of the genes induced upon direct bacterial exposure, including high expression of antimicrobial peptides, a beta-glucan receptor protein implicated in bacterial recognition and the induction of the toll signaling pathway, and slit-3 which is important in honeybee immunity. Maternal exposure results in a distinct upregulation of their daughters' immune system, with a signature overlapping with the induced individual response to a direct exposure. This will mediate mother-offspring protection, but also associated costs related to reconfiguration of constitutive immune expression. Moreover, identification of conserved immune pathways in memory-like responses has important implications for our understanding of the innate immune system, including the innate components in vertebrates, which share many of these pathways.

  15. Transition between immune and disease states in a cellular automaton model of clonal immune response

    CERN Document Server

    Bezzi, M; Ruffo, S; Seiden, P E; Bezzi, Michele; Celada, Franco; Ruffo, Stefano; Seiden, Philip E.

    1997-01-01

    In this paper we extend the Celada-Seiden (CS) model of the humoral immune response to include infectious virus and cytotoxic T lymphocytes (cellular response). The response of the system to virus involves a competition between the ability of the virus to kill the host cells and the host's ability to eliminate the virus. We find two basins of attraction in the dynamics of this system, one is identified with disease and the other with the immune state. There is also an oscillating state that exists on the border of these two stable states. Fluctuations in the population of virus or antibody can end the oscillation and drive the system into one of the stable states. The introduction of mechanisms of cross-regulation between the two responses can bias the system towards one of them. We also study a mean field model, based on coupled maps, to investigate virus-like infections. This simple model reproduces the attractors for average populations observed in the cellular automaton. All the dynamical behavior connect...

  16. Study on development of anti-tumor effect of phytosterols%植物甾醇的抗肿瘤作用及其机制研究进展

    Institute of Scientific and Technical Information of China (English)

    曹玫; 欧阳露

    2015-01-01

    Phytosterols are the active constitutents in plant,which have been researched by anti-tumor effect mechanism abroad recently. Phytosterols have prevention and therapeutical effect on colon cancer, breast cancer and prostate cancer. Its mainly mechanism of action includes the inhibition production of cancer substance, depression of growth and breeding of tumor cell,and it can also affect the signal transduction of tumor cell,depression metastasis of tumor cell and stimulate immune response.%植物甾醇是植物中的一种活性成分,近年来国外对其抗肿瘤作用及其机制研究颇多. 植物甾醇对结肠癌、乳腺癌和前列腺癌都有预防和治疗作用. 其作用机制主要为抑制癌症物质产生,抑制肿瘤细胞生长和繁殖;还可以改变肿瘤细胞的信号传导,抑制肿瘤细胞转移,刺激产生肿瘤免疫应答.

  17. SEX DIFFERENCES AND ESTROGEN MODULATION OF THE CELLULAR IMMUNE RESPONSE AFTER INJURY

    OpenAIRE

    Bird, Melanie D.; Karavitis, John; Kovacs, Elizabeth J

    2008-01-01

    Cell-mediated immunity is extremely important for resolution of infection and for proper healing from injury. However, the cellular immune response is dysregulated following injuries such as burn and hemorrhage. Sex hormones are known to regulate immunity, and a well-documented dichotomy exists in the immune response to injury between the sexes. This disparity is caused by differences in immune cell activation, infiltration, and cytokine production during and after injury. Estrogen and testos...

  18. Multi-scale modeling of the CD8 immune response

    Science.gov (United States)

    Barbarroux, Loic; Michel, Philippe; Adimy, Mostafa; Crauste, Fabien

    2016-06-01

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself in case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.

  19. DMPD: Innate immune responses: crosstalk of signaling and regulation of genetranscription. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16753195 Innate immune responses: crosstalk of signaling and regulation of genetran...l) (.csml) Show Innate immune responses: crosstalk of signaling and regulation of genetranscription. PubmedI...D 16753195 Title Innate immune responses: crosstalk of signaling and regulation o

  20. DMPD: Innate immune response to viral infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18694646 Innate immune response to viral infection. Koyama S, Ishii KJ, Coban C, Ak...ira S. Cytokine. 2008 Sep;43(3):336-41. Epub 2008 Aug 9. (.png) (.svg) (.html) (.csml) Show Innate immune response... to viral infection. PubmedID 18694646 Title Innate immune response to viral infection. Authors Koyama

  1. Simulating the Immune Response on a Distributed Parallel Computer

    Science.gov (United States)

    Castiglione, F.; Bernaschi, M.; Succi, S.

    The application of ideas and methods of statistical mechanics to problems of biological relevance is one of the most promising frontiers of theoretical and computational mathematical physics.1,2 Among others, the computer simulation of the immune system dynamics stands out as one of the prominent candidates for this type of investigations. In the recent years immunological research has been drawing increasing benefits from the resort to advanced mathematical modeling on modern computers.3,4 Among others, Cellular Automata (CA), i.e., fully discrete dynamical systems evolving according to boolean laws, appear to be extremely well suited to computer simulation of biological systems.5 A prominent example of immunological CA is represented by the Celada-Seiden automaton, that has proven capable of providing several new insights into the dynamics of the immune system response. To date, the Celada-Seiden automaton was not in a position to exploit the impressive advances of computer technology, and notably parallel processing, simply because no parallel version of this automaton had been developed yet. In this paper we fill this gap and describe a parallel version of the Celada-Seiden cellular automaton aimed at simulating the dynamic response of the immune system. Details on the parallel implementation as well as performance data on the IBM SP2 parallel platform are presented and commented on.

  2. Dynamics of immune response and drug resistance in malaria infection

    Directory of Open Access Journals (Sweden)

    Gurarie David

    2006-10-01

    Full Text Available Abstract Background Malaria parasites that concurrently infect a host compete on the basis of their intrinsic growth rates and by stimulating cross-reactive immune responses that inhibit each others' growth. If the phenotypes also show different drug sensitivities ('sensitive' vs. 'resistant' strains, drug treatment can change their joint dynamics and the long-term outcome of the infection: most obviously, persistent drug pressure can permit the more resistant, but otherwise competitively-inferior, strains to dominate. Methods Here a mathematical model is developed to analyse how these and more subtle effects of antimalarial drug use are modulated by immune response, repeated re-inoculation of parasites, drug pharmacokinetic parameters, dose and treatment frequency. Results The model quantifies possible effects of single and multiple (periodic treatment on the outcome of parasite competition. In the absence of further inoculation, the dosage and/or treatment frequency required for complete clearance can be estimated. With persistent superinfection, time-average parasite densities can be derived in terms of the basic immune-regulating parameters, the drug efficacy and treatment regimen. Conclusion The functional relations in the model are applicable to a wide range of conditions and transmission environments, allowing predictions to be made on both the individual and the community levels, and, in particular, transitions from drug-sensitive to drug-resistant parasite dominance to be projected on both levels.

  3. Effects of Morphine, Fentanyl and Tramadol on Human Immune Response

    Institute of Scientific and Technical Information of China (English)

    LIU Zhihen; GAO Feng; TIAN Yuke

    2006-01-01

    Morphine has been reported to suppress human immune response. We aimed to observe the effects of morphine, fentanyl and tramadol on NF- κ B and IL-2 from both laboratory and clinical perspective. Jurkat cells were incubated with ten times clinically relevant concentrations of morphine,fentanyl and tramadol before being stimulated with PMA. NF- κ B binding activity and IL-2 levels were measured. In the clinical study, 150 consenting patients were randomized into 3 groups according to the analgesics used in them, namely, group morphine (M), group fentanyl (F) and group tramadol (T). IL-2 was measured preoperatively and 1, 3 and 24 h after operation. Consequently, NF-κ B activation was suppressed by morphine and fentanyl but not by tramadol. IL-2 was significantly decreased by morphine and fentanyl but not by tramadol in vitro. In the PCA patients, IL-2 was decreased in group M and increased in group F postoperatively. Whereas in group T, IL-2 was unchanged 1 h after operation but was significantly elevated 3 and 24 h after operation. Our results showed that the inhibition of morphine on IL-2 was most probably related to its suppression on NF-κ B. Fentanyl had different effects on human immune response in vitro and in vivo. Tramadol may have immune enhancing effect.

  4. Danger Signals Activating the Immune Response after Trauma

    Directory of Open Access Journals (Sweden)

    Stefanie Hirsiger

    2012-01-01

    Full Text Available Sterile injury can cause a systemic inflammatory response syndrome (SIRS that resembles the host response during sepsis. The inflammatory response following trauma comprises various systems of the human body which are cross-linked with each other within a highly complex network of inflammation. Endogenous danger signals (danger-associated molecular patterns; DAMPs; alarmins as well as exogenous pathogen-associated molecular patterns (PAMPs play a crucial role in the initiation of the immune response. With popularization of the “danger theory,” numerous DAMPs and PAMPs and their corresponding pathogen-recognition receptors have been identified. In this paper, we highlight the role of the DAMPs high-mobility group box protein 1 (HMGB1, interleukin-1α (IL-1α, and interleukin-33 (IL-33 as unique dual-function mediators as well as mitochondrial danger signals released upon cellular trauma and necrosis.

  5. Original Antigenic Sin Response to RNA Viruses and Antiviral Immunity

    Science.gov (United States)

    Park, Mee Sook; Kim, Jin Il; Park, Sehee; Lee, Ilseob

    2016-01-01

    The human immune system has evolved to fight against foreign pathogens. It plays a central role in the body's defense mechanism. However, the immune memory geared to fight off a previously recognized pathogen, tends to remember an original form of the pathogen when a variant form subsequently invades. This has been termed 'original antigenic sin'. This adverse immunological effect can alter vaccine effectiveness and sometimes cause enhanced pathogenicity or additional inflammatory responses, according to the type of pathogen and the circumstances of infection. Here we aim to give a simplified conceptual understanding of virus infection and original antigenic sin by comparing and contrasting the two examples of recurring infections such as influenza and dengue viruses in humans. PMID:27799871

  6. Immune Responses and Histopathological Changes in Rabbits Immunized with Inactivated SARS Coronavirus

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To evaluate the immunogenicity of inactivated SARS coronavirus (SARS-CoV), three groups of rabbits were immunized three times at 2-week intervals with inactivated vaccine + adjuvant, adjuvant,and normal saline respectively. Eight batchs of serum were sampled from the auricular vein at day 7 to day 51, and specific IgG antibody titers and neutralizing antibody titers were detected by indirect ELISA and micro-cytopathic effect neutralizing test. Antibody specificity was identified by proteinchip assay.Histopathological changes were detected by H&E staining. The results showed that, rabbits in the experimental group immunized with inactivated SARS-CoV all generated specific IgG antibodies with neutralizing activity, which suggested the inactivated SARS-CoV could preserve its antigenicity well and elicit an effective humoral immune responses. The peak titer value of specific IgG antibody and neutralizing antibody reached 1:40960 and 1:2560 respectively. In the experimental group, no obvious histopathological changes was detected in the H&E stained slides of heart, spleen, kidney and testis samples, but the livers had slight histopathological changes, and the lungs presented remarkable histopathological changes. These findings are of importance for SARS-CoV inactivated vaccine development.

  7. Murine immune responses to oral BCG immunization in the presence or absence of prior BCG sensitization.

    Science.gov (United States)

    Cross, Martin L; Lambeth, Matthew R; Aldwell, Frank E

    2010-02-01

    Oral delivery of live Mycobacterium bovis BCG in a lipid matrix invokes cell-mediated immune (CMI) responses in mice and consequent protection against pulmonary challenge with virulent mycobacteria. To investigate the influence of prior BCG sensitization on oral vaccine efficacy, we assessed CMI responses and BCG colonization of the alimentary tract lymphatics 5 months after oral vaccination, in both previously naive mice and in mice that had been sensitized to BCG by injection 6 months previously. CMI responses did not differ significantly between mice that received subcutaneous BCG followed by oral BCG and those that received either injected or oral BCG alone. In vivo BCG colonization was predominant in the mesenteric lymph nodes after oral vaccination; this colonizing ability was not influenced by prior BCG sensitization. From this murine model study, we conclude that although prior parenteral-route BCG sensitization does not detrimentally affect BCG colonization after oral vaccination, there is no significant immune-boosting effect of the oral vaccine either.

  8. Innate Cellular Immune Responses in Aedes caspius (Diptera: Culicidae) Mosquitoes.

    Science.gov (United States)

    Soliman, D E; Farid, H A; Hammad, R E; Gad, A M; Bartholomay, L C

    2016-03-01

    Mosquitoes transmit a variety of pathogens that have devastating consequences for global public and veterinary health. Despite their capacity to serve as vectors, these insects have a robust capacity to respond to invading organisms with strong cellular and humoral immune responses. In Egypt, Aedes caspius (Pallas, 1771) has been suspected to act as a bridge vector of Rift Valley Fever virus between animals and humans. Microscopic analysis of Ae. caspius hemolymph revealed the presence of phagocytic cells called granulocytes. We further evaluated cellular immune responses produced by Ae. caspius as a result of exposure to a Gram-negative, and Gram-positive bacterium, and to latex beads. After challenge, a rapid and strong phagocytic response against either a natural or synthetic invader was evident. Hemocyte integrity in bacteria-inoculated mosquitoes was not morphologically affected. The number of circulating granulocytes decreased with age, reducing the overall phagocytic capacity of mosquitoes over time. The magnitude and speed of the phagocytic response suggested that granulocytes act as an important force in the battle against foreign invaders, as has been characterized in other important mosquito vector species.

  9. Transcriptomic Study on Ovine Immune Responses to Fasciola hepatica Infection

    Science.gov (United States)

    Fu, Yan; Chryssafidis, Andreas L.; Browne, John A.; O'Sullivan, Jack; McGettigan, Paul A.; Mulcahy, Grace

    2016-01-01

    Background Fasciola hepatica is not only responsible for major economic losses in livestock farming, but is also a major food-borne zoonotic agent, with 180 million people being at risk of infection worldwide. This parasite is sophisticated in manipulating the hosts’ immune system to benefit its own survival. A better understanding of the mechanisms underpinning this immunomodulation is crucial for the development of control strategies such as vaccines. Methodology/principal findings This in vivo study investigated the global gene expression changes of ovine peripheral blood mononuclear cells (PBMC) response to both acute & chronic infection of F. hepatica, and revealed 6490 and 2364 differential expressed genes (DEGS), respectively. Several transcriptional regulators were predicted to be significantly inhibited (e.g. IL12 and IL18) or activated (e.g. miR155-5p) in PBMC during infection. Ingenuity Pathway Analysis highlighted a series of immune-associated pathways involved in the response to infection, including ‘Transforming Growth Factor Beta (TGFβ) signaling’, ‘Production of Nitric Oxide in Macrophages’, ‘Toll-like Receptor (TLRs) Signaling’, ‘Death Receptor Signaling’ and ‘IL17 Signaling’. We hypothesize that activation of pathways relevant to fibrosis in ovine chronic infection, may differ from those seen in cattle. Potential mechanisms behind immunomodulation in F. hepatica infection are a discussed. Significance In conclusion, the present study performed global transcriptomic analysis of ovine PBMC, the primary innate/adaptive immune cells, in response to infection with F. hepatica, using deep-sequencing (RNAseq). This dataset provides novel information pertinent to understanding of the pathological processes in fasciolosis, as well as a base from which to further refine development of vaccines. PMID:27661612

  10. Immune Response to Sipuleucel-T in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    David I. Quinn

    2012-04-01

    Full Text Available Historically, chemotherapy has remained the most commonly utilized therapy in patients with metastatic cancers. In prostate cancer, chemotherapy has been reserved for patients whose metastatic disease becomes resistant to first line castration or androgen deprivation. While chemotherapy palliates, decreases serum prostate specific antigen and improves survival, it is associated with significant side effects and is only suitable for approximately 60% of patients with castrate-resistant prostate cancer. On that basis, exploration of other therapeutic options such as active secondary hormone therapy, bone targeted treatments and immunotherapy are important. Until recently, immunotherapy has had no role in the treatment of solid malignancies aside from renal cancer and melanoma. The FDA-approved autologous cellular immunotherapy sipuleucel-T has demonstrated efficacy in improving overall survival in patients with metastatic castrate-resistant prostate cancer in randomized clinical trials. The proposed mechanism of action is reliant on activating the patients’ own antigen presenting cells (APCs to prostatic acid phosphatase (PAP fused with granulocyte-macrophage colony stimulating factor (GM-CSF and subsequent triggered T-cell response to PAP on the surface of prostate cancer cells in the patients body. Despite significant prolongation of survival in Phase III trials, the challenge to health care providers remains the dissociation between objective changes in serum PSA or on imaging studies after sipleucel-T and survival benefit. On that basis there is an unmet need for markers of outcome and a quest to identify immunologic or clinical surrogates to fill this role. This review focuses on the impact of sipuleucel-T on the immune system, the T and B cells, and their responses to relevant antigens and prostate cancer. Other therapeutic modalities such as chemotherapy, corticosteroids and GM-CSF and host factors can also affect immune response. The

  11. [Local Immune response in rabbits following enteral immunization with live attenuated bacterial Enterobacteriaceae vaccines].

    Science.gov (United States)

    Dentschev, W; Marinova, S; Sumerska, T; Nenkov, P; Koitschev, T; Trifonowa, A

    1980-01-01

    Streptomycin-dependent and inactivated Shigella flexneri 2a and Shigella sonnei strains were intra-intestinally applied to rabbits for immunisation. Rosette and plaque tests and well as indirect haemagglutination gave short-time secretion of low titres of specific copro-antibody, following monovaccines and bivaccines. High titres of secretory antibody were induced, depending on doses, by re-immunisation. No antigen competition was established. The localised immune response caused by Shigella live vaccines was found to be much stronger than that induced by inactivated vaccines PMID:6998404

  12. Muscles provide protection during microbial infection by activating innate immune response pathways in Drosophila and zebrafish

    Directory of Open Access Journals (Sweden)

    Arunita Chatterjee

    2016-06-01

    Full Text Available Muscle contraction brings about movement and locomotion in animals. However, muscles have also been implicated in several atypical physiological processes including immune response. The role of muscles in immunity and the mechanism involved has not yet been deciphered. In this paper, using Drosophila indirect flight muscles (IFMs as a model, we show that muscles are immune-responsive tissues. Flies with defective IFMs are incapable of mounting a potent humoral immune response. Upon immune challenge, the IFMs produce anti-microbial peptides (AMPs through the activation of canonical signaling pathways, and these IFM-synthesized AMPs are essential for survival upon infection. The trunk muscles of zebrafish, a vertebrate model system, also possess the capacity to mount an immune response against bacterial infections, thus establishing that immune responsiveness of muscles is evolutionarily conserved. Our results suggest that physiologically fit muscles might boost the innate immune response of an individual.

  13. Immunity

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008254 Prokaryotic expression and immunogenicity of Fba,a novel fibronectin-binding protein of group A streptococcus.MA Cuiqing(马翠柳),et al.Dept Immunol,Basic Med Coll,Hebei Med Univ,Shijiazhuang 050017.Chin J Infect Dis 2008;26(3):146-150.Objective To express the novel fibronectin-binding protein Fba ofgroupAstreptococcus(GAS)and analyze its immunogenicity,so to evaluate the immune responses to GAS infection.Methods fbagene was amplified by

  14. Analysis of immune responses against H pylori in rabbits

    Institute of Scientific and Technical Information of China (English)

    Khademul Islam; Ibrahim Khalil; Chowdhury Rafiqul Ahsan; Mahmuda Yasmin; Jamalun Nessa

    2007-01-01

    AIM: To investigate the immunogenicity of H pylori proteins, to evaluate the production rate of anti H pylori IgG antibodies in relation to time and to demonstrate the fidelity of newly optimized in-house enzymelinked immunosorbent assay (ELISA) technique as an alternative for H pylori infection assay.METHODS: In the present study, 100 μg of formalinfixed H pylori whole cell antigens was injected into an experimental animal (New Zealand white female rabbit) intramuscularly on d 0, 16, 27 and 36. The first two doses were injected with adjuvants. On d 0,a serum sample was collected from the rabbit before immunization and this pre-immunized serum was used as a negative control for the whole study. To evaluate the immunogenic responses of the injected antigen,serum samples were collected from the rabbit at regular intervals up to d 42. The sera were analyzed using inhouse ELISA and Western blot techniques.RESULTS: The production of anti H pylori IgG antibodies in the rabbit in response to the injected antigen increased almost exponentially up to d 14 and after that it was maintained at the same level until the last day (d 42). By analyzing the immune profiles of immunized sera, 11 proteins were identified to be immunogenic,among them 2 (approximately 100 kDa and 85 kDa)were most prominent.CONCLUSION: Analysis of the immune responses against pathogenic microorganisms like H pylori is necessary for the development of various diagnostic and preventive approaches. The results of this experiment reveal that the formalin-fixed H pylori whole cell antigens injected into the rabbit are highly immunogenic. These prominent proteins (approximately 100 kDa and 85 kDa)might have higher immunogenic effects among humans infected with H pylori and some of these immunogenic proteins can be included in diagnostic approaches based on serology and also for vaccine formulation. The inhouse ELISA is a promising alternative compared to invasive techniques.

  15. Innate immune response to pulmonary contusion: Identification of cell-type specific inflammatory responses

    OpenAIRE

    Hoth, J. Jason; Wells, Jonathan D.; Yoza, Barbara K.; McCall, Charles E.

    2012-01-01

    Lung injury from pulmonary contusion is a common traumatic injury, predominantly seen after blunt chest trauma such as in vehicular accidents. The local and systemic inflammatory response to injury includes activation of innate immune receptors, elaboration of a variety inflammatory mediators, and recruitment of inflammatory cells to the injured lung. Using a mouse model of pulmonary contusion, we had previously shown that innate immune Toll like receptors 2 and 4 (TLR2 and TLR4) mediate the ...

  16. The immune response during the luteal phase of the ovarian cycle : a Th2-type response?

    NARCIS (Netherlands)

    Faas, Marijke; Bouman, Annechien; Moes, H; Heineman, Maas Jan; de Leij, Loe; Schuiling, Gerard

    2000-01-01

    Objective: To test the hypothesis that during the luteal phase of the ovarian cycle, as compared with the follicular phase, the peripheral immune response is shifted toward a type-2 response. Design: Prospective study. Setting: Academic research setting. Patient(s): Women with regular menstrual cycl

  17. Outcome Prediction in Mathematical Models of Immune Response to Infection.

    Directory of Open Access Journals (Sweden)

    Manuel Mai

    Full Text Available Clinicians need to predict patient outcomes with high accuracy as early as possible after disease inception. In this manuscript, we show that patient-to-patient variability sets a fundamental limit on outcome prediction accuracy for a general class of mathematical models for the immune response to infection. However, accuracy can be increased at the expense of delayed prognosis. We investigate several systems of ordinary differential equations (ODEs that model the host immune response to a pathogen load. Advantages of systems of ODEs for investigating the immune response to infection include the ability to collect data on large numbers of 'virtual patients', each with a given set of model parameters, and obtain many time points during the course of the infection. We implement patient-to-patient variability v in the ODE models by randomly selecting the model parameters from distributions with coefficients of variation v that are centered on physiological values. We use logistic regression with one-versus-all classification to predict the discrete steady-state outcomes of the system. We find that the prediction algorithm achieves near 100% accuracy for v = 0, and the accuracy decreases with increasing v for all ODE models studied. The fact that multiple steady-state outcomes can be obtained for a given initial condition, i.e. the basins of attraction overlap in the space of initial conditions, limits the prediction accuracy for v > 0. Increasing the elapsed time of the variables used to train and test the classifier, increases the prediction accuracy, while adding explicit external noise to the ODE models decreases the prediction accuracy. Our results quantify the competition between early prognosis and high prediction accuracy that is frequently encountered by clinicians.

  18. Feliform carnivores have a distinguished constitutive innate immune response

    Directory of Open Access Journals (Sweden)

    Sonja K. Heinrich

    2016-05-01

    Full Text Available Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas, the brown hyena (Hyena brunnea, the caracal (Caracal caracal, the cheetah (Acinonyx jubatus, the leopard (Panthera pardus and the lion (Panthera leo using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system.

  19. Immune response of shrimp (Penaeus monodon) against Vibrios furnissii pathogen

    Institute of Scientific and Technical Information of China (English)

    Kumaran Subramanian; Deivasigamani Balaraman; Rajasekar Thirunavukarasu; Suresh Gopal; Pugazhvendan Sampath Renuka; Alagappan Kumarappan

    2014-01-01

    Objective: To analyse experimental infection and immune system of shrimp (Penaeus monodon) against Vibrios furnissii (V. furnissii). Methods: Experimental animals were collected and acclimatized by maintaining specific temperature, pH and salinity to avoid mortality. Shrimps were experimentally infected with V. furnissii and their immune responses were monitored. After the infection all the shrimps were monitored for any symptoms, death rate in 0, 12, 24, 36, 48 h. Then haemolymph were collected and tetrahydrocannabinol, phenol oxidase, nitroblue tetrazolium and lysozyme were monitored in every 12 h at the interval of 48 h. Results: Shrimps infected by live V. furnissii had showed gradual increase in tetrahydrocannabinol, phenol oxidase activity, nitro-blue-tetrazolium and lysozyme activity comparing with the killed and control.Conclusions:The live V. furnissii shows infection in experimental shrimps comparing with killed V. furnissii. So the V. furnissii in nature cause the infection in shrimp Penaeus monodon immune system. This report could be applied to control of the infection in shrimp hatchery.

  20. Humoral and Cellular Immune Response in Canine Hypothyroidism.

    Science.gov (United States)

    Miller, J; Popiel, J; Chełmońska-Soyta, A

    2015-07-01

    Hypothyroidism is one of the most common endocrine diseases in dogs and is generally considered to be autoimmune in nature. In human hypothyroidism, the thyroid gland is destroyed by both cellular (i.e. autoreactive helper and cytotoxic T lymphocytes) and humoral (i.e. autoantibodies specific for thyroglobulin, thyroxine and triiodothyronine) effector mechanisms. Other suggested factors include impaired peripheral immune suppression (i.e. the malfunction of regulatory T cells) or an additional pro-inflammatory effect of T helper 17 lymphocytes. The aim of this study was to evaluate immunological changes in canine hypothyroidism. Twenty-eight clinically healthy dogs, 25 hypothyroid dogs without thyroglobulin antibodies and eight hypothyroid dogs with these autoantibodies were enrolled into the study. There were alterations in serum proteins in hypothyroid dogs compared with healthy controls (i.e. raised concentrations of α-globulins, β2- and γ-globulins) as well as higher concentration of acute phase proteins and circulating immune complexes. Hypothyroid animals had a lower CD4:CD8 ratio in peripheral blood compared with control dogs and diseased dogs also had higher expression of interferon γ (gene and protein expression) and CD28 (gene expression). Similar findings were found in both groups of hypothyroid dogs. Canine hypothyroidism is therefore characterized by systemic inflammation with dominance of a cellular immune response.

  1. Innate immune inflammatory response in the acutely ischemic myocardium.

    Science.gov (United States)

    Deftereos, Spyridon; Angelidis, Christos; Bouras, Georgios; Raisakis, Konstantinos; Gerckens, Ulrich; Cleman, Michael W; Giannopoulos, Georgios

    2014-01-01

    The "holy grail" of modern interventional cardiology is the salvage of viable myocardial tissue in the distribution of an acutely occluded coronary artery. Thrombolysis and percutaneous coronary interventions, provided they can be delivered on time, can interrupt the occlusion and save tissue. At the same time restoring the patency of the coronary vessels and providing the ischemic myocardium with blood can cause additional tissue damage. A key element of ischemic and reperfusion injury and major determinant of the evolution of damage in the injured myocardium is the inflammatory response. The innate immune system initiates and directs this response which is a prerequisite for subsequent healing. The complement cascade is set in motion following the release of subcellular membrane constituents. Endogenous 'danger' signals known as danger-associated molecular patterns (DAMPs) released from ischemic and dying cells alert the innate immune system and activate several signal transduction pathways through interactions with the highly conserved Toll like receptors (TLRs). Reactive oxygen species (ROS) generation directly induces pro-inflammatory cascades and triggers formation of the inflammasome. The challenge lies into designing strategies that specifically block the inflammatory cascades responsible for tissue damage without affecting those concerned with tissue healing.

  2. Immune markers and correlates of protection for vaccine induced immune responses

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Pedersen, Lasse Eggers; Jungersen, Gregers

    2012-01-01

    Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers of an appropr......Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers...... of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against...... chronic infections in neither human nor veterinary medicine. Technological and conceptual advancements within cell-mediated immunology have led to a number of new immunological read-outs with the potential to emerge as correlates of vaccine induced protection. For TH1 type responses, antigen...

  3. The changing shape of vaccination: improving immune responses through geometrical variations of a microdevice for immunization

    Science.gov (United States)

    Crichton, Michael Lawrence; Muller, David Alexander; Depelsenaire, Alexandra Christina Isobel; Pearson, Frances Elizabeth; Wei, Jonathan; Coffey, Jacob; Zhang, Jin; Fernando, Germain J. P.; Kendall, Mark Anthony Fernance

    2016-06-01

    Micro-device use for vaccination has grown in the past decade, with the promise of ease-of-use, painless application, stable solid formulations and greater immune response generation. However, the designs of the highly immunogenic devices (e.g. the gene gun, Nanopatch or laser adjuvantation) require significant energy to enter the skin (30–90 mJ). Within this study, we explore a way to more effectively use energy for skin penetration and vaccination. These modifications change the Nanopatch projections from cylindrical/conical shapes with a density of 20,000 per cm2 to flat-shaped protrusions at 8,000 per cm2, whilst maintaining the surface area and volume that is placed within the skin. We show that this design results in more efficient surface crack initiations, allowing the energy to be more efficiently be deployed through the projections into the skin, with a significant overall increase in penetration depth (50%). Furthermore, we measured a significant increase in localized skin cell death (>2 fold), and resultant infiltrate of cells (monocytes and neutrophils). Using a commercial seasonal trivalent human influenza vaccine (Fluvax 2014), our new patch design resulted in an immune response equivalent to intramuscular injection with approximately 1000 fold less dose, while also being a practical device conceptually suited to widespread vaccination.

  4. Immune response to 60-day head-down bed rest

    Science.gov (United States)

    Song, Jinping; Guo, Aihua; Zhong, Ping; Zhang, Hongyu; Wu, Feng; Wan, Yumin; Bai, Yanqiang; Chen, Shanguang; Li, Yinghui

    Introduction: Exposure of humans to spaceflight has resulted in disregulation of the immune system. Head-down bed rest (HDBR) has been extensively used as an earth-bound analog to study physiologic effects mimicking those occurring in weightlessness during spaceflight. It is uncertain how a prolonged period of bed rest affect human immune responses. The objective of this study was to investigate the effects of 60-day HDBR on immune function and EB virus reactivation in seven male volunteers. Methods: There were seven healthy male volunteers who were subjected to HDBR for 60d. Immunological parameters including leukocyte subset distribution, lymphocyte proliferation to mitogens, secreted cytokine profiles and EB virus reactivation were monitored. Results: Total WBC conunts increased significantly 10d post-HDBR as compared with pre-HDBR. At the same time, the relative percentage of neutrophils was also higher than pre-HDBR but not significant. MFI of CD11b in neutrophils was reduced obviously at thd end of HDBR. T Lymphocyte proliferations to PHA reduced at HDBR 30, HDBR 60 and 10d post-HDBR while IL-2 production decreased significantly at the same time. IFN-and IL-4 production trended to decrease at HDBR 30 and HDBR 60. The relative percentage of T lymphocyte subset, B lymphocyte and NK cells were not altered. EBV EA (early antigen) were negative and EBV VCA titers had no changes through HDBR. Conclusion: The results indicate that several immunological parameters (mainly cellular immunity) are altered significantly by prolonged HDBR, and these changes were similar to those happened in spaceflight.

  5. Paradoxical Immune Responses in Non-HIV Cryptococcal Meningitis.

    Directory of Open Access Journals (Sweden)

    Anil A Panackal

    2015-05-01

    Full Text Available The fungus Cryptococcus is a major cause of meningoencephalitis in HIV-infected as well as HIV-uninfected individuals with mortalities in developed countries of 20% and 30%, respectively. In HIV-related disease, defects in T-cell immunity are paramount, whereas there is little understanding of mechanisms of susceptibility in non-HIV related disease, especially that occurring in previously healthy adults. The present description is the first detailed immunological study of non-HIV-infected patients including those with severe central nervous system (s-CNS disease to 1 identify mechanisms of susceptibility as well as 2 understand mechanisms underlying severe disease. Despite the expectation that, as in HIV, T-cell immunity would be deficient in such patients, cerebrospinal fluid (CSF immunophenotyping, T-cell activation studies, soluble cytokine mapping and tissue cellular phenotyping demonstrated that patients with s-CNS disease had effective microbiological control, but displayed strong intrathecal expansion and activation of cells of both the innate and adaptive immunity including HLA-DR+ CD4+ and CD8+ cells and NK cells. These expanded CSF T cells were enriched for cryptococcal-antigen specific CD4+ cells and expressed high levels of IFN-γ as well as a lack of elevated CSF levels of typical T-cell specific Th2 cytokines -- IL-4 and IL-13. This inflammatory response was accompanied by elevated levels of CSF NFL, a marker of axonal damage, consistent with ongoing neurological damage. However, while tissue macrophage recruitment to the site of infection was intact, polarization studies of brain biopsy and autopsy specimens demonstrated an M2 macrophage polarization and poor phagocytosis of fungal cells. These studies thus expand the paradigm for cryptococcal disease susceptibility to include a prominent role for macrophage activation defects and suggest a spectrum of disease whereby severe neurological disease is characterized by immune

  6. Bovine lactoferrin binds oleic acid to form an anti-tumor complex similar to HAMLET.

    Science.gov (United States)

    Fang, Bing; Zhang, Ming; Tian, Mai; Jiang, Lu; Guo, Hui Yuan; Ren, Fa Zheng

    2014-04-01

    α-Lactalbumin (α-LA) can bind oleic acid (OA) to form HAMLET-like complexes, which exhibited highly selective anti-tumor activity in vitro and in vivo. Considering the structural similarity to α-LA, we conjectured that lactoferrin (LF) could also bind OA to obtain a complex with anti-tumor activity. In this study, LF-OA was prepared and its activity and structural changes were compared with α-LA-OA. The anti-tumor activity was evaluated by methylene blue assay, while the apoptosis mechanism was analyzed using flow cytometry and Western blot. Structural changes of LF-OA were measured by fluorescence spectroscopy and circular dichroism. The interactions of OA with LF and α-LA were evaluated by isothermal titration calorimetry (ITC). LF-OA was obtained by heat-treatment at pH8.0 with LD50 of 4.88, 4.95 and 4.62μM for HepG2, HT29, and MCF-7 cells, respectively, all of which were 10 times higher than those of α-LA-OA. Similar to HAMLET, LF-OA induced apoptosis in tumor cells through both death receptor- and mitochondrial-mediated pathways. Exposure of tryptophan residues and the hydrophobic regions as well as the loss of tertiary structure were observed in LF-OA. Besides these similarities, LF showed different secondary structure changes when compared with α-LA, with a decrease of α-helix and β-turn and an increase of β-sheet and random coil. ITC results showed that there was a higher binding number of OA to LF than to α-LA, while both of the proteins interacted with OA through van der Waals forces and hydrogen bonds. This study provides a theoretical basis for further exploration of protein-OA complexes. PMID:24368211

  7. A New in Vitro Anti-Tumor Polypeptide Isolated from Arca inflata

    Directory of Open Access Journals (Sweden)

    Jian Xu

    2013-12-01

    Full Text Available A new in vitro anti-tumor polypeptide, coded as J2-C3, was isolated from Arca inflata Reeve and purified by diethyl-aminoethanol (DEAE-sepharose Fast Flow anion exchange and phenyl sepharose CL-4B hydrophobic chromatography. J2-C3 was identified to be a homogeneous compound by native polyacrylamide gel electrophoresis (Native-PAGE. The purity of J2-C3 was over 99% in reversed phase-high performance liquid chromatography (RP-HPLC. The molecular weight was determined as 20,538.0 Da by electrospray-ionization mass spectrometry (ESI-MS/MS. J2-C3 was rich in Glx (Gln + Glu, Lys, and Asx (Asp + Asn according to amino acid analysis. Four partial amino acid sequences of this peptide were determined as L/ISMEDVEESR, KNGMHSI/LDVNHDGR, AMKI/LI/LNPKKGI/LVPR and AMGAHKPPKGNEL/IGHR via MALDI-TOF/TOF-MS and de novo sequencing. Secondary structural analysis by CD spectroscopy revealed that J2-C3 had the α-helix (45.2%, β-sheet (2.9%, β-turn (26.0% and random coil (25.9%. The anti-tumor effect of J2-C3 against human tumor cells was measured by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, and the IC50 values of J2-C3 were 65.57, 93.33 and 122.95 µg/mL against A549, HT-29 and HepG2 cell lines, respectively. Therefore, J2-C3 might be developed as a potential anti-tumor agent.

  8. Bovine lactoferrin binds oleic acid to form an anti-tumor complex similar to HAMLET.

    Science.gov (United States)

    Fang, Bing; Zhang, Ming; Tian, Mai; Jiang, Lu; Guo, Hui Yuan; Ren, Fa Zheng

    2014-04-01

    α-Lactalbumin (α-LA) can bind oleic acid (OA) to form HAMLET-like complexes, which exhibited highly selective anti-tumor activity in vitro and in vivo. Considering the structural similarity to α-LA, we conjectured that lactoferrin (LF) could also bind OA to obtain a complex with anti-tumor activity. In this study, LF-OA was prepared and its activity and structural changes were compared with α-LA-OA. The anti-tumor activity was evaluated by methylene blue assay, while the apoptosis mechanism was analyzed using flow cytometry and Western blot. Structural changes of LF-OA were measured by fluorescence spectroscopy and circular dichroism. The interactions of OA with LF and α-LA were evaluated by isothermal titration calorimetry (ITC). LF-OA was obtained by heat-treatment at pH8.0 with LD50 of 4.88, 4.95 and 4.62μM for HepG2, HT29, and MCF-7 cells, respectively, all of which were 10 times higher than those of α-LA-OA. Similar to HAMLET, LF-OA induced apoptosis in tumor cells through both death receptor- and mitochondrial-mediated pathways. Exposure of tryptophan residues and the hydrophobic regions as well as the loss of tertiary structure were observed in LF-OA. Besides these similarities, LF showed different secondary structure changes when compared with α-LA, with a decrease of α-helix and β-turn and an increase of β-sheet and random coil. ITC results showed that there was a higher binding number of OA to LF than to α-LA, while both of the proteins interacted with OA through van der Waals forces and hydrogen bonds. This study provides a theoretical basis for further exploration of protein-OA complexes.

  9. Characterization and Anti-tumor Activity of Giycopeptides from Ganoderma sinensis

    Institute of Scientific and Technical Information of China (English)

    GAO Yang; JIANG Ru-zhi; CHEN Ying-hong; LUO Hao-ming; XU Duo-duo; GAO Qi-pin

    2009-01-01

    The water-soluble part(GS) of Ganoderma sinense Zhao, Xu et Zhang was divided into high molecu-Iar(GS-H) and low molecular(GS-L) parts by Cellulose Super Filtration, and GS was also fractionated into four frac-tions, GS-1, 2, 3, and 4 by ethanol precipitation according to their molecular weights. Chemical analysis shows that GS and GS-I, 2, 3, 4 were complexes of polysaccharide and peptide. The fractions with molecular weights over 4000, GS-1, 2, 3, and GS-H show anti-tumor activities, however, the fractions with molecular weights lower than 4000,GS-4, and GS-L have no anti-tumor activity, indicating that the anti-tumor activity of Ganoderma Sinensis was caused by glucopeptides with molecular weight ranging from 4000 to 20000. Two purified glucopeptides, GS-6b and GS-7b were obtained from GS-H by ion-exchange and gel-permeation chromatography. Their molecular weights, glycosidic linkages, and configurations were detected by means of IR spectrum, sugar composition analysis, and me-thylation analysis. The polysaccharide parts of GS-6b and GS-7b had glucan backbone consisting of β-1→3 Glc, and side chain containing glucosyl, mannosyl, fueosyl, xylosyl, galactosyl, and glucuronic acid residues attached on 1-2,1-4, 1-6 positions of the backbone of GS-6b, or 1-6, 1-4 positions of the backbone of GS-7b. The peptide parts in GS-6b and GS-7b were composed of 10 kinds of amino acids, including Asp, Ser, Arg, Gly, Thr, Pro, Ala, Val, Met, and Lys.

  10. Biodegradable nanoassemblies of piperlongumine display enhanced anti-angiogenesis and anti-tumor activities

    Science.gov (United States)

    Liu, Yuanyuan; Chang, Ying; Yang, Chao; Sang, Zitai; Yang, Tao; Ang, Wei; Ye, Weiwei; Wei, Yuquan; Gong, Changyang; Luo, Youfu

    2014-03-01

    Piperlongumine (PL) shows an inhibitory effect on tumor growth; however, lipophilicity has restricted its further applications. Nanotechnology provides an effective method to overcome the poor water solubility of lipophilic drugs. Polymeric micelles with small particle size can passively target tumors by the enhanced permeability and retention (EPR) effect, thus improving their anti-tumor effects. In this study, to improve the water solubility and anti-tumor activity of PL, PL encapsulated polymeric micelles (PL micelles) were prepared by a solid dispersion method. The prepared PL micelles showed a small particle size and high encapsulation efficiency, which could be lyophilized into powder, and the re-dissolved PL micelles are homogenous and stable in water. In addition, a sustained release behavior of PL micelles was observed in vitro. Encapsulation of PL into polymeric micelles could increase the cytotoxicity, cellular uptake, reactive oxygen species (ROS) and oxidized glutathione (GSSG), and reduce glutathione (GSH) levels in vitro. Encapsulation of PL into polymeric micelles enhanced its inhibitory effect on neovascularization both in vitro and in vivo. Compared with free PL, PL micelles showed a stronger inhibitory effect on the proliferation, migration, invasion and tube formation of human umbilical vein endothelial cells (HUVECs). Additionally, in a transgenic zebrafish model, embryonic angiogenesis was inhibited by PL micelles. Furthermore, PL micelles were more effective in inhibiting tumor growth and prolonging survival in a subcutaneous CT-26 murine tumor model in vivo. Therefore, our data revealed that the encapsulation of PL into biodegradable polymeric micelles enhanced its anti-angiogenesis and anti-tumor activities both in vitro and in vivo.

  11. ANTI-TUMOR ACTIVITY OF BACTERIAL LECTIN AND 5-METHYLURACIL ADDUCT

    Directory of Open Access Journals (Sweden)

    Elena Welchinska

    2014-07-01

    Full Text Available The synthesis was performed using 5-methyluracil mono-and bis-derivatives with the halogen-containing pharmacophore groups in the composition of molecules; their physiochemical and biological properties were studied. These reactions are a typical example of substitution reactions on heteroatom N(1 of uracil molecule using as the second component the reaction of halothane—the known inhaled anesthetic.  The reactions were carried out in a solvent system: benzene-dimethyl formamide and diethyl ether, under conditions of phase transfer catalysis DB-18-crown-6-complex (alkaline medium, by heating from 2 to 11 hours, followed by purification, and drying of the resulting products.  The structure of the synthesized compounds was confirmed by elemental analysis, IR and 1HNMR spectra.  The purity was controlled by the methods of thin-layer and gas-liquid chromatography. Chromatography, IR and 1HNMR spectra of the final products were identified in comparison with the chromatograms, IR and 1HNMR spectra of the initial compounds. Variation of the reaction conditions and changes in methods of synthesis enabled to receive the synthesized compounds of high purity and to increase their practical output up to 43-80%.  Molecular complex of Bacterial lectin and 5-methyluracil bis-derivative was obtained.  The toxicity and anti-tumor activity of some of the synthesized compounds were investigated. We have found that the new molecular complex of Bacterial lectin and 5-methyluracil bis-derivative has high anti-tumor activity in Limphosarcoma Plissa—62.8% (activity criterion >50%, which allows us to consider the synthesized compound as a physiologically active compound with the prospect for further study as a potential vehicle for anti-tumoral treatment in patients. 

  12. The effect of environmental temperature on immune response and metabolism of the young chicken

    NARCIS (Netherlands)

    Henken, A.M.

    1982-01-01

    The effect of environmental temperature on immune response and metabolism was studied in young chickens. Immunization was performed by injecting intramuscularly 0.5 ml packed SRBC (sheep red blood cells) in both thighs of 32 days old pullets ( WarrenSSL ). The ensueing immune response

  13. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Diane E. [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Program of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA (United States); Hoover, Benjamin [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Cloud, Loretta Grey [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Liu, Shihui [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Molinolo, Alfredo A. [Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Leppla, Stephen H. [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Bugge, Thomas H., E-mail: thomas.bugge@nih.go [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States)

    2014-09-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. - Highlights: • Toxicity and anti-tumor

  14. Anti-tumor effect of IFNγ endostatin gene-radiotherapy in vivo and its mechanism

    International Nuclear Information System (INIS)

    Objective: To study the anti-tumor effect of pEgr-IFN γ-endostatin gene-radiotherapy in mice bearing Lewis lung carcinoma and its mechanism. Methods: The plasmids packed by liposome were injected locally into the tumors of the mice, and the tumors were irradiated with 5 Gy X-rays 36 hours later. The tumor growth rate at different times and the mean survival period of the mice were observed. Cytotoxic activity of splenic CTL, NK and TNFα secretion activity of peritoneal macrophages of the mice in various groups were evaluated 15 days after irradiation. The intratumor microvessel density was evaluated by immunohistochemical staining 10 days after irradiation. Results: The tumor growth rate of the mice in double-gene-radiotherapy group was significantly lower than that of the control group, 5 Gy X-irradiation alone group and single-gene-radiotherapy group 6-18 days after gene-radiotherapy, and the mean survival period of which was longer. The tumor growth rate in mice treated with pEgr-IFN γ-endostatin and 2.5 Gy X-ray irradiation for four times was lower significantly than that in mice treated with pEgr-IFN γ-endostatin and 10 Gy X-irradiation for once only 12-18 days after therapy, and the mean survival time of mice was longer. Cytotoxic activity of splenic CTL, NK and TNF α secretion activity of peritoneal macrophages of the mice in the double-gene-radiotherapy group were significantly higher than those in the control group, 5 Gy X-irradiation alone group and pEgr-endostatin gene-radiotherapy group 15 days after irradiation. The intratumor microvessel density of the mice in double-gene-radiotherapy group was significantly lower than that in the control group, 5 Gy X-irradiation alone group and pEgr-IFNγ gene-radiotherapy group. Conclusions: The anti-tumor effect of double-gene-radiotherapy is significantly better than that of single-gene-radiotherapy. Its mechanism is perhaps associated with the expressions of IFNγ and endostatin induced by X-ray irradiation

  15. Synthesis and preliminary study on a new class anti-tumor agents--acetylthiophene thiosemicarbazone

    International Nuclear Information System (INIS)

    Six 2-acetylthiophene TSC have been synthesized and characterized by IR, MC and elemental analysis. Five of them are the first prepared compounds. The anti-tumor activities of them have been investigated. The results show that they have high inhibition to all three carcinoma cells (KB cell, HCT-8 cell and Bel 7402 cell). These ligands are labelled with 111In. The bio-distributions of six 111In ligand complexes in mice are determined. The results show that concentrating of 111In ligand complexes in blood is not apparent. Further study is needed to see the uptake of 111In ligand complexes by carcinoma cells

  16. Anti-Angiogenesis and Anti-Tumor Effect of Shark Cartilage Extract

    Institute of Scientific and Technical Information of China (English)

    王锋; 王漪涛; 谢莉萍; 张荣庆

    2001-01-01

    The effect of shark cartilage extract (SCE), purified in this laboratory, on angiogenesis in chick chorioallantoic membrane (CAM), on the activity of collagenase IV and on human umbilical vein endothelial cell (ECV-304) proliferation and apoptosis was investigated in vitro. The results showed that SCE caused a decline in CAM blood vessels and significantly prevented collagenase-induced collagenolysis. Moreover, SCE produced a dose-dependent decline in ECV-304 proliferation and altered its normal cell cycle. These results suggest that the anti-angiogenesis and anti-tumor effects of shark cartilage may be due to inhibition of endothelial cells as well as collagenolysis.

  17. Targeted Immune Therapy of Ovarian Cancer

    Science.gov (United States)

    Knutson, Keith L.; Karyampudi, Lavakumar; Lamichhane, Purushottam; Preston, Claudia

    2014-01-01

    Clinical outcomes, such as recurrence free survival and overall survival, in ovarian cancer are quite variable, independent of common characteristics such as stage, response to therapy and grade. This disparity in outcomes warrants further exploration and therapeutic targeting into the interaction between the tumor and host. One compelling host characteristic that contributes both to the initiation and progression of ovarian cancer is the immune system. Hundreds of studies have confirmed a prominent role for the immune system in modifying the clinical course of the disease. Recent studies also show that anti-tumor immunity is often negated by immune regulatory cells present in the tumor microenvironment. Regulatory immune cells also directly enhance the pathogenesis through the release of various cytokines and chemokines, which together form an integrated pathologic network. Thus, in the future, research into immunotherapy targeting ovarian cancer will probably become increasingly focused on combination approaches that simultaneously augment immunity while preventing local immune suppression. In this article, we summarize important immunological targets that influence ovarian cancer outcome as well as include an update on newer immunotherapeutic strategies. PMID:25544369

  18. IMMUNOLOGICAL PROCESSES IN CANCER: A LINK BETWEEN INFLAMMATION AND IMMUNITY

    Directory of Open Access Journals (Sweden)

    Vanessa Jacob Victorino

    2014-01-01

    Full Text Available Cancer is a worldwide issue and one of the most relevant death causes in child and adults. There are several causes that can lead to cancer development. It is well known that inflammation is one known hallmark of cancer and it favors tumor cells growth. Several alterations in immunological and inflammatory processes are caused in response to tumor presence and both innate and adaptive immunity have effective mechanism to destroy tumor cells. Nevertheless, distinct tumor types developed mechanisms to evade anti-tumor immunological responses. Here, we revise researches regarding inflammation and immune response during cancer development, as well as cancer signaling pathways and immunotherapy that have been performed in Brazil. The better understanding of the mechanisms regarding cancer and immunological processes is of huge importance and it may support the development of new cancer targets.

  19. The responses of immune cells to iron oxide nanoparticles.

    Science.gov (United States)

    Xu, Yaolin; Sherwood, Jennifer A; Lackey, Kimberly H; Qin, Ying; Bao, Yuping

    2016-04-01

    Immune cells play an important role in recognizing and removing foreign objects, such as nanoparticles. Among various parameters, surface coatings of nanoparticles are the first contact with biological system, which critically affect nanoparticle interactions. Here, surface coating effects on nanoparticle cellular uptake, toxicity and ability to trigger immune response were evaluated on a human monocyte cell line using iron oxide nanoparticles. The cells were treated with nanoparticles of three types of coatings (negatively charged polyacrylic acid, positively charged polyethylenimine and neutral polyethylene glycol). The cells were treated at various nanoparticle concentrations (5, 10, 20, 30, 50 μg ml(-1) or 2, 4, 8, 12, 20 μg cm(-2)) with 6 h incubation or treated at a nanoparticle concentration of 50 μg ml(-1) (20 μg cm(-2)) at different incubation times (6, 12, 24, 48 or 72 h). Cell viability over 80% was observed for all nanoparticle treatment experiments, regardless of surface coatings, nanoparticle concentrations and incubation times. The much lower cell viability for cells treated with free ligands (e.g. ~10% for polyethylenimine) suggested that the surface coatings were tightly attached to the nanoparticle surfaces. The immune responses of cells to nanoparticles were evaluated by quantifying the expression of toll-like receptor 2 and tumor necrosis factor-α. The expression of tumor necrosis factor-α and toll-like receptor 2 were not significant in any case of the surface coatings, nanoparticle concentrations and incubation times. These results provide useful information to select nanoparticle surface coatings for biological and biomedical applications. PMID:26817529

  20. Action of booster immunization with E2 CSFV on immune response elicited by marker DNA-vaccine against CSF

    Directory of Open Access Journals (Sweden)

    Deryabina O. G.

    2012-04-01

    Full Text Available The aim was to study the influence of booster immunization with recombinant fragment of E2 CSFV on humoral immune response, elicited by candidate marker DNA-vaccine against CSF. Methods. The fragment of E2 CSFV gene has been detected by PCR, and the expression of encoded protein – by immunohistochemical analysis. The anti-E2 antibodies in blood serum after immunization have been detected by ELISA. Results. It has been shown that candidate marker DNA-vaccine transfected myocytes of murine biceps in situ. The data of immuno-histochemical analysis revealed the expression of fragment of glycoprotein E2 CSFV from the plasmid introduced. The booster immunization with recombinant E2 led to the significant increase of the titer of antibodies specific to the antigen studied. Conclusions. The data obtained show that boosting with recombinant E2 enhances humoral immune response elicited by the candidate marker DNA-vaccine against CSF.

  1. Colon cancer and the immune system: The role of tumor invading T cells

    Institute of Scientific and Technical Information of China (English)

    Maximilian Waldner; Carl C Schimanski; Markus F Neurath

    2006-01-01

    Colon cancer is still one of the leading causes of cancer death worldwide. Although the host immune system has been shown to react against tumor cells, mainly through tumor infiltrating lymphocytes and NK cells, tumor cells may utilize different ways to escape anti-tumor immune response. Tumor infiltration of CD8+ and CD4+ (T-bet+)effector T cells has been attributed to a beneficial outcome, and the enhancement of T cell activation through T cell receptor stimulation and co-stimulatory signals provides promising strategies for immunotherapy of colon cancer. Growing evidence supports a role for the Fas/FasL system in tumor immunology, although the mechanisms and consequences of FasL activation in colon cancer are not completely understood. In animal models, depletion of regulatory T cells (CD4+ CD25+T cells) can enhance the anti-tumor immune response under certain conditions. Taken together, recent insights in the immune reaction against colon carcinoma have provided new approaches to immunotherapy,although much remains to be learned about the exact mechanisms.

  2. The Role of TAM Family Receptors in Immune Cell Function: Implications for Cancer Therapy

    Science.gov (United States)

    Paolino, Magdalena; Penninger, Josef M.

    2016-01-01

    The TAM receptor protein tyrosine kinases—Tyro3, Axl, and Mer—are essential regulators of immune homeostasis. Guided by their cognate ligands Growth arrest-specific gene 6 (Gas6) and Protein S (Pros1), these receptors ensure the resolution of inflammation by dampening the activation of innate cells as well as by restoring tissue function through promotion of tissue repair and clearance of apoptotic cells. Their central role as negative immune regulators is highlighted by the fact that deregulation of TAM signaling has been linked to the pathogenesis of autoimmune, inflammatory, and infectious diseases. Importantly, TAM receptors have also been associated with cancer development and progression. In a cancer setting, TAM receptors have a dual regulatory role, controlling the initiation and progression of tumor development and, at the same time, the associated anti-tumor responses of diverse immune cells. Thus, modulation of TAM receptors has emerged as a potential novel strategy for cancer treatment. In this review, we discuss our current understanding of how TAM receptors control immunity, with a particular focus on the regulation of anti-tumor responses and its implications for cancer immunotherapy. PMID:27775650

  3. Cinobufagin Modulates Human Innate Immune Responses and Triggers Antibacterial Activity.

    Science.gov (United States)

    Xie, Shanshan; Spelmink, Laura; Codemo, Mario; Subramanian, Karthik; Pütsep, Katrin; Henriques-Normark, Birgitta; Olliver, Marie

    2016-01-01

    The traditional Chinese medicine Chan-Su is widely used for treatment of cancer and cardiovascular diseases, but also as a remedy for infections such as furunculosis, tonsillitis and acute pharyngitis. The clinical use of Chan-Su suggests that it has anti-infective effects, however, the mechanism of action is incompletely understood. In particular, the effect on the human immune system is poorly defined. Here, we describe previously unrecognized immunomodulatory activities of cinobufagin (CBG), a major bioactive component of Chan-Su. Using human monocyte-derived dendritic cells (DCs), we show that LPS-induced maturation and production of a number of cytokines was potently inhibited by CBG, which also had a pro-apoptotic effect, associated with activation of caspase-3. Interestingly, CBG triggered caspase-1 activation and significantly enhanced IL-1β production in LPS-stimulated cells. Finally, we demonstrate that CBG upregulates gene expression of the antimicrobial peptides (AMPs) hBD-2 and hBD-3 in DCs, and induces secretion of HNP1-3 and hCAP-18/LL-37 from neutrophils, potentiating neutrophil antibacterial activity. Taken together, our data indicate that CBG modulates the inflammatory phenotype of DCs in response to LPS, and triggers an antibacterial innate immune response, thus proposing possible mechanisms for the clinical effects of Chan-Su in anti-infective therapy. PMID:27529866

  4. The immune response in cattle infected with Tritrichomonas foetus.

    Science.gov (United States)

    Soto, P; Parma, A E

    1989-10-01

    Holando-Argentina calves (males and females) were experimentally infected with Tritrichomonas foetus var. Belfast (T. foetus) by introducing 10(7) protozoa into the preputial and vaginal cavities, in order to analyse the course of the immune response to infection. Samples of serum, vaginal mucus and preputial secretion were taken periodically and assayed by means of microagglutination of living protozoa. The serum antibody titre, which averaged 32 before infection and was equivalent to titres in a non-infected group, increased to 512 in the heifers 11 weeks later and to 128 in the bulls 4 months post-infection. Agglutinating antibodies were not detected in the preputial cavity, but heifers showed antibodies in the vaginal mucus and became trichomoniasis free after 4 months. Conversely, genital secretions from the bulls gave rise to positive cultures during the whole period of experimentation. The intradermal sensitivity was checked using a soluble antigen from T. foetus. The diameter of the papula increased up to three times in heifers, while in bulls the results were no different than those from the non-infected group. Serum antibodies were of the IgG2 subclass, while those isolated from vaginal mucus were characterized as IgG1, an opsonizing antibody. Heifers were refractory to challenge infection after 1 year. The poor immune response in bulls is consistent with their role as carriers of T. foetus.

  5. The immune response in cattle infected with Tritrichomonas foetus.

    Science.gov (United States)

    Soto, P; Parma, A E

    1989-10-01

    Holando-Argentina calves (males and females) were experimentally infected with Tritrichomonas foetus var. Belfast (T. foetus) by introducing 10(7) protozoa into the preputial and vaginal cavities, in order to analyse the course of the immune response to infection. Samples of serum, vaginal mucus and preputial secretion were taken periodically and assayed by means of microagglutination of living protozoa. The serum antibody titre, which averaged 32 before infection and was equivalent to titres in a non-infected group, increased to 512 in the heifers 11 weeks later and to 128 in the bulls 4 months post-infection. Agglutinating antibodies were not detected in the preputial cavity, but heifers showed antibodies in the vaginal mucus and became trichomoniasis free after 4 months. Conversely, genital secretions from the bulls gave rise to positive cultures during the whole period of experimentation. The intradermal sensitivity was checked using a soluble antigen from T. foetus. The diameter of the papula increased up to three times in heifers, while in bulls the results were no different than those from the non-infected group. Serum antibodies were of the IgG2 subclass, while those isolated from vaginal mucus were characterized as IgG1, an opsonizing antibody. Heifers were refractory to challenge infection after 1 year. The poor immune response in bulls is consistent with their role as carriers of T. foetus. PMID:2683348

  6. Autoimmune disease-associated variants of extracellular endoplasmic reticulum aminopeptidase 1 induce altered innate immune responses by human immune cells

    OpenAIRE

    Aldhamen, Yasser A; Pepelyayeva, Yuliya; Rastall, David P. W.; Seregin, Sergey S.; Zervoudi, Efthalia; Koumantou, Despoina; Charles F Aylsworth; Quiroga, Dionisia; Godbehere, Sarah; Georgiadis, Dimitris; Stratikos, Efstratios; Amalfitano, Andrea

    2015-01-01

    ERAP1 gene polymorphisms have been linked to several autoimmune diseases; however, the molecular mechanisms underlying these associations are not well understood. Recently, we have demonstrated that ERAP1 regulates key aspects of the innate immune response. Moreover, previous studies show ERAP1 to be ER-localized and secreted during inflammation. Herein, we investigate the possible roles that ERAP1 polymorphic variants may have in modulating innate immune responses of human PBMCs using two ex...

  7. Immune Responses Following Mouse Peripheral Nerve Xenotransplantation in Rats

    Directory of Open Access Journals (Sweden)

    Lai-Jin Lu

    2009-01-01

    Full Text Available Xenotransplantation offers a potentially unlimited source for tissues and organs for transplantation, but the strong xenoimmune responses pose a major obstacle to its application in the clinic. In this study, we investigate the rejection of mouse peripheral nerve xenografts in rats. Severe intragraft mononuclear cell infiltration, graft distension, and necrosis were detected in the recipients as early as 2 weeks after mouse nerve xenotransplantation. The number of axons in xenografts reduced progressively and became almost undetectable at week 8. However, mouse nerve xenotransplantation only led to a transient and moderate increase in the production of Th1 cytokines, including IL-2, IFN-γ, and TNF-α. The data implicate that cellular immune responses play a critical role in nerve xenograft rejection but that further identification of the major effector cells mediating the rejection is required for developing effective means to prevent peripheral nerve xenograft rejection.

  8. Monitoring Immune Responses in Organ Recipients by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Al-Mukhalafi Zuha

    2001-01-01

    Full Text Available Allograft rejection remains a major barrier to successful organ transplan-tation. Cellular and humoral immune responses play a critical role in mediating graft rejection. During the last few years, monoclonal antibodies have been used as a new specific therapeutic approach in the prevention of allograft rejection. Recently, the technology of flow cytometry has become a useful tool for monitoring immunological responses in transplant recipients. The application of this valuable tool in clinical transplantation at the present time is aimed at, i determining the extent of immuno-suppressive therapy through T-cell receptor analysis of cellular components, ii monitoring levels of alloreactive antibodies to identify high-risk recipients (sensitized patients in the pre-operative period and iii to predict rejection by monitoring their development post-operatively. In future, further development of this technology may demonstrate greater benefit to the field of organ transplantation.

  9. The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase.

    Directory of Open Access Journals (Sweden)

    Rikke Baek Sørensen

    Full Text Available BACKGROUND: The enzyme indoleamine 2,3-dioxygenase (IDO exerts an well established immunosuppressive function in cancer. IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune tolerance to tumor antigens. In the present study, we tested the notion whether IDO itself may be subject to immune responses. METHODS AND FINDINGS: The presence of naturally occurring IDO-specific CD8 T cells in cancer patients was determined by MHC/peptide stainings as well as ELISPOT. Antigen specific cytotoxic T lymphocytes (CTL from the peripheral blood of cancer patients were cloned and expanded. The functional capacity of the established CTL clones was examined by chrome release assays. The study unveiled spontaneous cytotoxic T-cell reactivity against IDO in peripheral blood as well as in the tumor microenvironment of different cancer patients. We demonstrate that these IDO reactive T cells are indeed peptide specific, cytotoxic effector cells. Hence, IDO reactive T cells are able to recognize and kill tumor cells including directly isolated AML blasts as well as IDO-expressing dendritic cells, i.e. one of the major immune suppressive cell populations. CONCLUSION: IDO may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies. Furthermore, as emerging evidence suggests that IDO constitutes a significant counter-regulatory mechanism induced by pro-inflammatory signals, IDO-based immunotherapy holds the promise to boost anti-cancer immunotherapy in general.

  10. Neonate intestinal immune response to CpG oligodeoxynucleotide stimulation.

    Directory of Open Access Journals (Sweden)

    Sonia Lacroix-Lamandé

    Full Text Available BACKGROUND: The development of mucosal vaccines is crucial to efficiently control infectious agents for which mucosae are the primary site of entry. Major drawbacks of these protective strategies are the lack of effective mucosal adjuvant. Synthetic oligodeoxynucleotides that contain several unmethylated cytosine-guanine dinucleotide (CpG-ODN motifs are now recognized as promising adjuvants displaying mucosal adjuvant activity through direct activation of TLR9-expressing cells. However, little is known about the efficacy of these molecules in stimulating the intestinal immune system in neonates. METHODOLOGY/PRINCIPAL FINDINGS: First, newborn mice received CpG-ODN orally, and the intestinal cytokine and chemokine response was measured. We observed that oral administration of CpG-ODN induces CXC and CC chemokine responses and a cellular infiltration in the intestine of neonates as detected by immunohistochemistry. We next compared the efficiency of the oral route to intraperitoneal administration in stimulating the intestinal immune responses of both adults and neonates. Neonates were more responsive to TLR9-stimulation than adults whatever the CpG-ODN administration route. Their intestinal epithelial cells (IECs indirectly responded to TLR9 stimulation and contributed to the CXC chemokine response, whereas other TLR9-bearing cells of the lamina-propria produced CC chemokines and Th1-type cytokines. Moreover, we showed that the intestine of adult exhibited a significantly higher level of IL10 at homeostasis than neonates, which might be responsible for the unresponsiveness to TLR9-stimulation, as confirmed by our findings in IL10-deficient mice. CONCLUSIONS/SIGNIFICANCE: This is the first report that deciphers the role played by CpG-ODN in the intestine of neonates. This work clearly demonstrates that an intraperitoneal administration of CpG-ODN is more efficient in neonates than in adults to stimulate an intestinal chemokine response due to their

  11. Study on Wusan Granule Anti-tumor Related Target Gene Screened by Cdna Microarray

    Institute of Scientific and Technical Information of China (English)

    YOU Zi-li; SHI Jin-ping; CHEN Hai-hong

    2006-01-01

    To screen Wusan Granule anti-tumor related target gene using cDNA microarray technique, both mRNA from Lewis lung carcinoma tissues treated by Wusan Granule and untreated control are reversibly transcribed to prepare cDNA probes which are labeled by Cy5 and Cy3. Then, the probes are hybridized to the mice cDNA microarray type MGEC-20S. After hybridization, the cDNA microarray is scanned by ScanArray 3 000 scanner and the data is analyzed by ImaGene 3 software to screen the differentially expressed genes. There are 45 differentially expressed genes including 18 known genes and 27 unknown genes between the two groups, and among them, 20 elevated genes and 25 reduced genes are identified. Additionally, the genes related to invasion and metastasis of malignant carcinomas are down-regulated and the genes related to apoptosis are up-regulated. The cDNA microarray technique is a high-throughput approach to screen the Wusan Granule anti-tumor related target genes, which allow us to explore the molecular biological mechanism on a genomic scale.

  12. Macrophage PPARγ inhibits Gpr132 to mediate the anti-tumor effects of rosiglitazone

    Science.gov (United States)

    Cheng, Wing Yin; Huynh, HoangDinh; Chen, Peiwen; Peña-Llopis, Samuel; Wan, Yihong

    2016-01-01

    Tumor-associated macrophage (TAM) significantly contributes to cancer progression. Human cancer is enhanced by PPARγ loss-of-function mutations, but inhibited by PPARγ agonists such as TZD diabetes drugs including rosiglitazone. However, it remains enigmatic whether and how macrophage contributes to PPARγ tumor-suppressive functions. Here we report that macrophage PPARγ deletion in mice not only exacerbates mammary tumor development but also impairs the anti-tumor effects of rosiglitazone. Mechanistically, we identify Gpr132 as a novel direct PPARγ target in macrophage whose expression is enhanced by PPARγ loss but repressed by PPARγ activation. Functionally, macrophage Gpr132 is pro-inflammatory and pro-tumor. Genetic Gpr132 deletion not only retards inflammation and cancer growth but also abrogates the anti-tumor effects of PPARγ and rosiglitazone. Pharmacological Gpr132 inhibition significantly impedes mammary tumor malignancy. These findings uncover macrophage PPARγ and Gpr132 as critical TAM modulators, new cancer therapeutic targets, and essential mediators of TZD anti-cancer effects. DOI: http://dx.doi.org/10.7554/eLife.18501.001

  13. High in Vitro Anti-Tumor Efficacy of Dimeric Rituximab/Saporin-S6 Immunotoxin

    Directory of Open Access Journals (Sweden)

    Massimo Bortolotti

    2016-06-01

    Full Text Available The anti-CD20 mAb Rituximab has revolutionized lymphoma therapy, in spite of a number of unresponsive or relapsing patients. Immunotoxins, consisting of toxins coupled to antibodies, are being investigated for their potential ability to augment Rituximab efficacy. Here, we compare the anti-tumor effect of high- and low-molecular-weight Rituximab/saporin-S6 immunotoxins, named HMW-IT and LMW-IT, respectively. Saporin-S6 is a potent and stable plant enzyme belonging to ribosome-inactivating proteins that causes protein synthesis arrest and consequent cell death. Saporin-S6 was conjugated to Rituximab through an artificial disulfide bond. The inhibitory activity of HMW-IT and LMW-IT was evaluated on cell-free protein synthesis and in two CD20+ lymphoma cell lines, Raji and D430B. Two different conjugates were separated on the basis of their molecular weight and further characterized. Both HMW-IT (dimeric and LMW-IT (monomeric maintained a high level of enzymatic activity in a cell-free system. HMW-IT, thanks to a higher toxin payload and more efficient antigen capping, showed stronger in vitro anti-tumor efficacy than LMW-IT against lymphoma cells. Dimeric HMW-IT can be used for lymphoma therapy at least for ex vivo treatments. The possibility of using HMW-IT augments the yield in immunotoxin preparation and allows the targeting of antigens with low internalization rates.

  14. Anti-Tumor Effect and Anti-Inflammatory Activity of Boschniakia rossica

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the anti-tumor effect and anti-inflammatory activity of Boschniakia rossica (BR). Methods: The expression of tumor marker, GST-P, p53 and p21ras proteins in promotion stage of rat chemical hepatocarcinogenesis were examined by immunohistochemical technique ABC method. Anti-tumor effect of BR was investigated by inhibitory test on Sarcoma180. Anti-inflammatory activity of BR was tested by xylene-induced mouse ear swelling method. Results: BR-H2O extract (the H2O extract fractionated from BR-Methanol extract with CH2Cl2 and H2O) 500 mg/kg has inhibitory effect on the formation of diethylnitrosamine (DEN)-induced glutathione S-transferase placental form (GST-P) positive foci in rat liver with the expression of mutant p53 and p21ras proteins lower than those of non-treated hepatic preneoplastic lesions. BR extract showed inhibitory effect on Sarcoma180 and anti-inflammatory effect in mice by xylene-induced mouse ear swelling tests. Conclusion: BR- H2O extract exerted inhibitory effect on DEN-induced preneoplastic hepatic foci in promotion stage of rat chemical hepatocarcinogenesis and might suppress the growth of solid Sarcoma180 in mice. Both CH2Cl2 and H2O extract from BR exerted anti-inflammatory effect in mice.

  15. Nanosuspension delivery of paclitaxel to xenograft mice can alter drug disposition and anti-tumor activity

    Science.gov (United States)

    Chiang, Po-Chang; Gould, Stephen; Nannini, Michelle; Qin, Ann; Deng, Yuzhong; Arrazate, Alfonso; Kam, Kimberly R.; Ran, Yingqing; Wong, Harvey

    2014-04-01

    Paclitaxel is a common chemotherapeutic agent that is effective against various cancers. The poor aqueous solubility of paclitaxel necessitates a large percentage of Cremophor EL:ethanol (USP) in its commercial formulation which leads to hypersensitivity reactions in patients. We evaluate the use of a crystalline nanosuspension versus the USP formulation to deliver paclitaxel to tumor-bearing xenograft mice. Anti-tumor efficacy was assessed following intravenous administration of three 20 mg/kg doses of paclitaxel. Paclitaxel pharmacokinetics and tissue distribution were evaluated, and differences were observed between the two formulations. Plasma clearance and tissue to plasma ratio of mice that were dosed with the nanosuspension are approximately 33- and 11-fold higher compared to those of mice that were given the USP formulation. Despite a higher tumor to plasma ratio for the nanosuspension treatment group, absolute paclitaxel tumor exposure was higher for the USP group. Accordingly, a higher anti-tumor effect was observed in the xenograft mice that were dosed with the USP formulation (90% versus 42% tumor growth inhibition). This reduction in activity of nanoparticle formulation appeared to result from a slower than anticipated dissolution in vivo. This study illustrates a need for careful consideration of both dose and systemic solubility prior utilizing nanosuspension as a mode of intravenous delivery.

  16. High in Vitro Anti-Tumor Efficacy of Dimeric Rituximab/Saporin-S6 Immunotoxin.

    Science.gov (United States)

    Bortolotti, Massimo; Bolognesi, Andrea; Battelli, Maria Giulia; Polito, Letizia

    2016-01-01

    The anti-CD20 mAb Rituximab has revolutionized lymphoma therapy, in spite of a number of unresponsive or relapsing patients. Immunotoxins, consisting of toxins coupled to antibodies, are being investigated for their potential ability to augment Rituximab efficacy. Here, we compare the anti-tumor effect of high- and low-molecular-weight Rituximab/saporin-S6 immunotoxins, named HMW-IT and LMW-IT, respectively. Saporin-S6 is a potent and stable plant enzyme belonging to ribosome-inactivating proteins that causes protein synthesis arrest and consequent cell death. Saporin-S6 was conjugated to Rituximab through an artificial disulfide bond. The inhibitory activity of HMW-IT and LMW-IT was evaluated on cell-free protein synthesis and in two CD20⁺ lymphoma cell lines, Raji and D430B. Two different conjugates were separated on the basis of their molecular weight and further characterized. Both HMW-IT (dimeric) and LMW-IT (monomeric) maintained a high level of enzymatic activity in a cell-free system. HMW-IT, thanks to a higher toxin payload and more efficient antigen capping, showed stronger in vitro anti-tumor efficacy than LMW-IT against lymphoma cells. Dimeric HMW-IT can be used for lymphoma therapy at least for ex vivo treatments. The possibility of using HMW-IT augments the yield in immunotoxin preparation and allows the targeting of antigens with low internalization rates. PMID:27338475

  17. Microencapsulation of anti-tumor, antibiotic and thrombolytic drugs in microgravity

    Science.gov (United States)

    Morrison, Dennis R.; Mosier, Benjamin; Cassanto, John

    1994-01-01

    Encapsulation of cytotoxic or labile drugs enables targeted delivery and sustained release kinetics that are not available with intravenous injection. A new liquid-liquid diffusion process has been developed for forming unique microcapsules that contain both aqueous and hydrocarbon soluble drugs. Microgravity experiments, on sounding rockets (1989-92) and Shuttle missions STS-52 (1992) and STS-56 (1993) using an automated Materials Dispersion Apparatus, produced multi-lamellar microcapsules containing both Cis-platinum (anti-tumor drug) and iodinated poppy seed oil (a radiocontrast medium), surrounded by a polyglyceride skin. Microcapsules formed with amoxicillin (antibiotic) or urokinase (a clot dissolving enzyme), co-encapsulated with IPO, are still intact after two years. Microcapsules were formed with the drug so concentrated that crystals formed inside. Multi-layered microspheres, with both hydrophobic drug compartments, can enable diffusion of complementary drugs from the same microcapsule, e.g. antibiotics and immuno-stimulants to treat resistant infections or multiple fibrinolytic drugs to dissolve emboli. Co-encapsulation of enough radio-contrast medium enables oncologists to monitor the delivery of anti-tumor microcapsules to target tumors using computerized tomography and radiography that would track the distribution of microcapsules after release from the intra-arterial catheter. These microcapsules could have important applications in chemotheraphy of certain liver, kidney, brain and other tumors.

  18. Immune response in mice and cattle after immunization with a Boophilus microplus DNA vaccine containing bm86 gene.

    Science.gov (United States)

    Ruiz, Lina María; Orduz, Sergio; López, Elkin D; Guzmán, Fanny; Patarroyo, Manuel E; Armengol, Gemma

    2007-03-15

    Plasmid pBMC2 encoding antigen Bm86 from a Colombian strain of cattle tick Boophilus microplus, was used for DNA-mediated immunization of BALB/c mice, employing doses of 10 and 50microg, delivered by intradermic and intramuscular routes. Anti-Bm86 antibody levels were significantly higher compared to control mice treated with PBS. In the evaluation of immunoglobulin isotypes, significant levels of IgG2a and IgG2b were observed in mice immunized with 50microg of pBMC2. Measurement of interleukine (IL) levels (IL-4, IL-5, IL-12(p40)) and interferon-gamma (IFN-gamma) in the sera of mice immunized with pBMC2 indicated high levels of IL-4 and IL-5, although there were also significant levels of IFN-gamma. Mice immunized with pBMC2 showed antigen-specific stimulation of splenocytes according to the incorporation of bromodeoxyuridine and IFN-gamma secretion. In all trials, mice injected intramuscularly with 50microg of pBMC2 presented the highest immune response. Moreover, cattle immunized with this DNA vaccine showed antibody production significantly different to the negative control. In conclusion, these results suggest the potential of DNA immunization with pBMC2 to induce humoral and cellular immune responses against B. microplus. PMID:17055651

  19. Growth inhibitory effect of triple anti-tumor gene transfer using Semliki Forest virus vector in glioblastoma cells.

    Science.gov (United States)

    Lee, Jong-Soo; Lee, Jun-Han; Poo, Haryoung; Kim, Mi-Suk; Lee, Seung-Hoon; Sung, Moon-Hee; Kim, Chul-Joong

    2006-03-01

    The gene delivery of multiple tumor suppressors can provide an efficient tumor therapy in the case of malignant human glioblastomas containing multiple genetic alteration and inactivation. As such, the current study presents a new delivery system that can simultaneously express three anti-tumor genes using a Semliki Forest virus (SFV) vector in the expectation of combined or synergistic effects of angiogenesis inhibition by angiostatin and apoptosis induction by p53, PTEN and the rSFV particle itself. Recombinant SFV (rSFV) containing three anti-tumor genes (rSFV-Agt/p53/PTEN) were found to efficiently transduce and express each anti-tumor gene in glioblastoma cells. In addition, rSFV-Agt/p53/PTEN also resulted in a more effective induction of apoptosis in vitro and inhibition of tumor growth in nude mice when compared with other rSFVs containing only one or two anti-tumor genes. Accordingly, the current results demonstrate that a triple anti-tumor gene transfer using an rSFV vector would be a powerful strategy for regional cancer gene therapy. PMID:16465369

  20. AAL exacerbates pro-inflammatory response in macrophages by regulating Mincle/Syk/Card9 signaling along with the Nlrp3 inflammasome assembly

    OpenAIRE

    Zhang, Zhijun; He, Long; Hu, Shuang; Wang, Yi; Lai, Qiaohong; Yang, Ping; Yu, Qilin; Zhang, Shu; Xiong, Fei; Simsekyilmaz, Sakine; Ning, Qin; Li, Jinxiu; Zhang, Dongshan; Zhang, Hongliang; Xiang, Xudong

    2015-01-01

    Previously, we demonstrated that Agrocybe aegerita lectin (AAL), a galectin isolated from edible mushroom Agrocybe aegerita, exerts potent anti-tumor activity, while the mechanisms by which AAL suppresses tumor growth are yet to be elucidated. Here, we conducted studies with focus for its impact on the cecal ligation and puncture (CLP)-induced innate immune response. Administration of AAL significantly exacerbated the severity of CLP-induced septic shock as manifested the increased lethality....

  1. Mosquito immune responses and malaria transmission: lessons from insect model systems and implications for vertebrate innate immunity and vaccine development.

    Science.gov (United States)

    Barillas-Mury, C; Wizel, B; Han, Y S

    2000-06-01

    The introduction of novel biochemical, genetic, molecular and cell biology tools to the study of insect immunity has generated an information explosion in recent years. Due to the biodiversity of insects, complementary model systems have been developed. The conceptual framework built based on these systems is used to discuss our current understanding of mosquito immune responses and their implications for malaria transmission. The areas of insect and vertebrate innate immunity are merging as new information confirms the remarkable extent of the evolutionary conservation, at a molecular level, in the signaling pathways mediating these responses in such distant species. Our current understanding of the molecular language that allows the vertebrate innate immune system to identify parasites, such as malaria, and direct the acquired immune system to mount a protective immune response is very limited. Insect vectors of parasitic diseases, such as mosquitoes, could represent excellent models to understand the molecular responses of epithelial cells to parasite invasion. This information could broaden our understanding of vertebrate responses to parasitic infection and could have extensive implications for anti-malarial vaccine development. PMID:10802234

  2. In vivo pharmacokinetics, biodistribution and the anti-tumor effect of cyclic RGD-modified doxorubicin-loaded polymers in tumor-bearing mice.

    Science.gov (United States)

    Wang, Chen; Li, Yuan; Chen, Binbin; Zou, Meijuan

    2016-10-01

    In our previous study, we successfully produced and characterized a multifunctional drug delivery system with doxorubicin (RC/GO/DOX), which was based on graphene oxide (GO) and cyclic RGD-modified chitosan (RC). Its characteristics include: pH-responsiveness, active targeting of hepatocarcinoma cells, and efficient loading with controlled drug release. Here, we report the pharmacokinetics, biodistribution, and anti-tumor efficacy of RC/GO/DOX polymers in tumor-bearing nude mice. The objective of this study is to assess its targeting potential for tumors. Pharmacokinetic and biodistribution profiles demonstrated that tumor accumulation of RC/GO/DOX polymers was almost three times higher than the others, highlighting the efficacy of the active targeting strategy. Furthermore, the tumor inhibition rate of RC/GO/DOX polymers was 56.64%, 2.09 and 2.93 times higher than that of CS/GO/DOX polymers (without modification) and the DOX solution, respectively. Anti-tumor efficacy results indicated that the tumor growth was better controlled by RC/GO/DOX polymers than the others. Hematoxylin and eosin (H&E) staining showed remarkable changes in tumor histology. Compared with the saline group, the tumor section from the RC/GO/DOX group revealed a marked increase in the quantity of apoptotic and necrotic cells, and a reduction in the quantity of the blood vessels. Together, these studies show that this new system could be regarded as a suitable form of DOX-based treatment of the hepatocellular carcinoma. PMID:27244048

  3. Optimization of ultrasonic/microwave assisted extraction (UMAE) of polysaccharides from Inonotus obliquus and evaluation of its anti-tumor activities.

    Science.gov (United States)

    Chen, Yiyong; Gu, Xiaohong; Huang, Sheng-quan; Li, Jinwei; Wang, Xin; Tang, Jian

    2010-05-01

    Recently, the use of ultrasonic and microwave has attracted considerable interest as an alternative approach to the traditional extraction methods. In this paper, in order to maximize the yield and purity of polysaccharides from Inonotus obliquus, response surface methodology (RSM) was employed to optimize the ultrasonic/microwave assisted extraction (UMAE) conditions. The results indicated that the optimal conditions for UMAE were 90W microwave power, 50W ultrasonic power together with 40kHz ultrasonic frequency, solid/water ratio was 1:20 (W/V) and the extracting time was 19min, respectively. Under the optimal conditions, the yield and purity of polysaccharides were 3.25% and 73.16%, respectively, which are above that of traditional hot water extraction and close to the predicted value (3.07% and 72.54%, respectively). These results confirmed that ultrasonic/microwave assisted extraction (UMAE) of polysaccharides had great potential and efficiency compared with traditional hot water extraction. At the same time, the anti-tumor activities of the polysaccharides from I. obliquus with UMAE were evaluated. The results suggested that polysaccharides from I. obliquus exhibited obvious anti-tumor activities. PMID:20149817

  4. Anti-tumor effect in human lung cancer by a combination treatment of novel histone deacetylase inhibitors: SL142 or SL325 and retinoic acids.

    Directory of Open Access Journals (Sweden)

    Shaoteng Han

    Full Text Available Histone deacetylase (HDAC inhibitors arrest cancer cell growth and cause apoptosis with low toxicity thereby constituting a promising treatment for cancer. In this study, we investigated the anti-tumor activity in lung cancer cells of the novel cyclic amide-bearing hydroxamic acid based HDAC inhibitors SL142 and SL325. In A549 and H441 lung cancer cells both SL142 and SL325 induced more cell growth inhibition and cell death than the hydroxamic acid-based HDAC inhibitor suberoylanilide hydroxamic acid (SAHA. Moreover, the combination treatment using retinoid drugs ATRA or 9-cis RA along with SL142 or SL325 significantly induced more apoptosis and suppressed colony formation than the single use of either. The expression of the retinoic acid receptors RARα, RARβ, RXRα and RXRβ were unchanged with the treatment. However a luciferase reporter construct (pGL4. RARE 7x containing seven tandem repeats of the retinoic acid responsible element (RARE generated significant transcriptional activity after the combination treatment of retinoic acids and SL142 or SL325 in H441 lung cancer cells. Moreover, apoptosis-promoting Bax expression and caspase-3 activity was increased after the combination treatment. These results suggest that the combination treatment of SL142 or SL325 with retinoic acids exerts significant anti-tumor activity and is a promising therapeutic candidate to treat human lung cancer.

  5. Early life socioeconomic position and immune response to persistent infections among elderly Latinos.

    Science.gov (United States)

    Meier, Helen C S; Haan, Mary N; Mendes de Leon, Carlos F; Simanek, Amanda M; Dowd, Jennifer B; Aiello, Allison E

    2016-10-01

    Persistent infections, such as cytomegalovirus (CMV), herpes simplex virus-1 (HSV-1), Helicobacter pylori (H. pylori), and Toxoplasma gondii (T. gondii), are common in the U.S. but their prevalence varies by socioeconomic status. It is unclear if early or later life socioeconomic position (SEP) is a more salient driver of disparities in immune control of these infections. Using data from the Sacramento Area Latino Study on Aging, we examined whether early or later life SEP was the strongest predictor of immune control later in life by contrasting two life course models, the critical period model and the chain of risk model. Early life SEP was measured as a latent variable, derived from parental education and occupation, and food availability. Indicators for SEP in later life included education level and occupation. Individuals were categorized by immune response to each pathogen (seronegative, low, medium and high) with increasing immune response representing poorer immune control. Cumulative immune response was estimated using a latent profile analysis with higher total immune response representing poorer immune control. Structural equation models were used to examine direct, indirect and total effects of early life SEP on each infection and cumulative immune response, controlling for age and gender. The direct effect of early life SEP on immune response was not statistically significant for the infections or cumulative immune response. Higher early life SEP was associated with lower immune response for T. gondii, H. pylori and cumulative immune response through pathways mediated by later life SEP. For CMV, higher early life SEP was both directly associated and partially mediated by later life SEP. No association was found between SEP and HSV-1. Findings from this study support a chain of risk model, whereby early life SEP acts through later life SEP to affect immune response to persistent infections in older age. PMID:27543684

  6. Immune response modulation by curcumin in a latex allergy model

    Directory of Open Access Journals (Sweden)

    Raju Raghavan

    2007-01-01

    Full Text Available Abstract Background There has been a worldwide increase in allergy and asthma over the last few decades, particularly in industrially developed nations. This resulted in a renewed interest to understand the pathogenesis of allergy in recent years. The progress made in the pathogenesis of allergic disease has led to the exploration of novel alternative therapies, which include herbal medicines as well. Curcumin, present in turmeric, a frequently used spice in Asia has been shown to have anti-allergic and inflammatory potential. Methods We used a murine model of latex allergy to investigate the role of curcumin as an immunomodulator. BALB/c mice were exposed to latex allergens and developed latex allergy with a Th2 type of immune response. These animals were treated with curcumin and the immunological and inflammatory responses were evaluated. Results Animals exposed to latex showed enhanced serum IgE, latex specific IgG1, IL-4, IL-5, IL-13, eosinophils and inflammation in the lungs. Intragastric treatment of latex-sensitized mice with curcumin demonstrated a diminished Th2 response with a concurrent reduction in lung inflammation. Eosinophilia in curcumin-treated mice was markedly reduced, co-stimulatory molecule expression (CD80, CD86, and OX40L on antigen-presenting cells was decreased, and expression of MMP-9, OAT, and TSLP genes was also attenuated. Conclusion These results suggest that curcumin has potential therapeutic value for controlling allergic responses resulting from exposure to allergens.

  7. Characterization and role of the immune response during ligament healing

    Science.gov (United States)

    Chamberlain, Connie S.

    inflammation and stimulating remodeling. IL-4 dose- and time-dependently stimulated early ligament regeneration but was unable to maintain the response during later healing. In summary, this work demonstrated the association between the immune cells and ligament healing, indicating a potential for obtaining a more regenerative response by modulating the immune response in a time, dose, and spatial manner.

  8. Immune modulation by ER stress and inflammation in the tumor microenvironment.

    Science.gov (United States)

    Rodvold, Jeffrey J; Mahadevan, Navin R; Zanetti, Maurizio

    2016-09-28

    It is now increasingly evident that the immune system represents a barrier to tumor emergence, growth, and recurrence. Although this idea was originally proposed almost 50 years ago as the "immune surveillance hypothesis", it is commonly recognized that, with few rare exceptions, tumor cells always prevail. Thus, one of the central unsolved paradoxes of tumor immunology is how a tumor escapes immune control, which is reflected in the lack of effective autochthonous or vaccine-induced anti-tumor T cell responses. In this review, we discuss the role of the endoplasmic reticulum (ER) stress response/unfolded protein response (UPR) in the immunomodulation of myeloid cells and T cells. Specifically, we will discuss how the tumor cell UPR polarizes myeloid cells in a cell-extrinsic manner, and how in turn, thus polarized myeloid cells negatively affect T cell activation and clonal expansion. PMID:26525580

  9. Innate immune responses of young bulls to a novel environment.

    Science.gov (United States)

    Razzuoli, Elisabetta; Olzi, Emilio; Calà, Pietro; Cafazzo, Simona; Magnani, Diego; Vitali, Andrea; Lacetera, Nicola; Archetti, Laura; Lazzara, Fabrizio; Ferrari, Angelo; Nanni Costa, Leonardo; Amadori, Massimo

    2016-04-01

    Animal welfare during transportation has been investigated in several studies, as opposed to post-transportation phases. In this study, we evaluated the effect of a novel environment after transportation on 26 Friesian bulls, 242 ± 42 day-old, from ten different dairy farms. Animals were shipped to a breeding center in different seasons, and selected parameters of innate immunity (serum bactericidal activity, hemolytic complement, serum albumin, α, β, and γ-globulins, interleukin-6, TNF-α) were monitored before and after the arrival at days--4/0/4/15/30. Our results showed significant differences of IL-6 and TNF-α protein levels at destination in December (94 ± 1.3 pg/ml) and June (+788 pg/ml), respectively. Moreover, the serum levels of these cytokines increased between days 0 and 15 after the arrival, the modulation of IL-6 being in agreement with established models of physical and/or psychological stress. Concerning the modulation of albumin, alpha and beta-globulins, the highest levels were detected in April, whereas a significant decrease was observed between day 15 and 30 after arrival; on the contrary, γ-globulin levels significantly increased after day 15. The results of this study highlight the occurrence of innate immune responses of young bulls to the combined effects of climate (season) and novel farming conditions.

  10. Anaphylatoxins coordinate innate and adaptive immune responses in allergic asthma.

    Science.gov (United States)

    Schmudde, Inken; Laumonnier, Yves; Köhl, Jörg

    2013-02-01

    Allergic asthma is a chronic disease of the airways in which maladaptive Th2 and Th17 immune responses drive airway hyperresponsiveness (AHR), eosinophilic and neutrophilic airway inflammation and mucus overproduction. Airway epithelial and pulmonary vascular endothelial cells in concert with different resident and monocyte-derived dendritic cells (DC) play critical roles in allergen sensing and consecutive activation of TH cells and their differentiation toward TH2 and TH17 effector or regulatory T cells (Treg). Further, myeloid-derived regulatory cells (MDRC) act on TH cells and either suppress or enhance their activation. The complement-derived anaphylatoxins (AT) C3a and C5a are generated during initial antigen encounter and regulate the development of maladaptive immunity at allergen sensitization. Here, we will review the complex role of ATs in activation and modulation of different DC populations, MDRCs and CD4⁺ TH cells. We will also discuss the potential impact of ATs on the regulation of the pulmonary stromal compartment as an important means to regulate DC functions. PMID:23694705

  11. HPV16 E2 protein promotes innate immunity by modulating immunosuppressive status.

    Science.gov (United States)

    Sunthamala, Nuchsupha; Pientong, Chamsai; Ohno, Tatsukuni; Zhang, Chenyang; Bhingare, Arundhati; Kondo, Yuta; Azuma, Miyuki; Ekalaksananan, Tipaya

    2014-04-18

    The balance between active immune responses against human papillomavirus (HPV) and HPV-induced immune escape regulates viral clearance and carcinogenesis. To understand the role of the early viral protein HPV16 E2 in host innate immune responses, the HPV16 E2-transfected murine squamous cell carcinoma cell line SCCVII (SCC/E2) was generated and anti-tumor responses in T-cell-depleted mice were evaluated. Tumor growth of SCC/E2 was markedly reduced. Cytotoxicity against the NK-sensitive targets YAC-1 and SCCVII was clearly enhanced in SCC/E2-inoculated mice. Despite the comparable ratio of NK cells, the proportion of CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs) was significantly decreased in SCC/E2-inoculated mice. The transcription of MDSC-related mediators such as inducible nitric oxide synthase, indoleamine 2,3-dioxygenase, and heme oxygenase-1 was significantly impaired in the SCC/E2-inoculated tumor tissues on day 3. Our results suggest that HPV16 E2 promotes anti-tumor innate effector function by modulating immunoregulatory events mediated by MDSCs and their mediators. This report describes a new role for HPV16 E2 as a local immunomodulator at infected sites. PMID:24657154

  12. Steroid-sensitive mechanism of soluble immune response suppressor production in steroid-responsive nephrotic syndrome.

    OpenAIRE

    Schnaper, H W; Aune, T M

    1987-01-01

    Soluble immune response suppressor (SIRS), a lymphokine that suppresses antibody production and delayed type hypersensitivity in vivo, has been detected in urine and serum from certain patients with nephrotic syndrome. In the present paper, the relationship between SIRS production and nephrotic syndrome is further characterized. A striking correlation was found between detection of SIRS and the presence of steroid-responsive nephrotic syndrome (SRNS). A potential mechanism of SIRS production ...

  13. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  14. TRAF-mediated regulation of immune and inflammatory responses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The tumor necrosis factor (TNF) receptor-associated factor (TRAF) family consists of six mammalian members,and is shown to participate in signal transduction of a large number of receptor families including TNF receptor family (TNFR) and Toll-like receptors-interleukin-1 receptors (TLR-IL-1R) family.Upon receptor activation,TRAFs are directly or indirectly recruited to the intracellular domains of these receptors.They subsequently engage other signaling proteins to activate inhibitor of κB kinase (IKK) complex,TRAF family member-associated NF-κB activator (TANK)-binding kinase 1 (TBK1) and inducible I κB kinase (IKK-i) (also known as IKKε),ultimately leading to activation of transcription factors such as NF-κB and interferon-regulatory factor (IRF) to induce immune and inflammatory responses.

  15. Young T Cells Age During a Redirected Anti-Tumor Attack: Chimeric Antigen Receptor-Provided Dual Costimulation is Half the Battle.

    Science.gov (United States)

    Hombach, Andreas A; Abken, Hinrich

    2013-01-01

    Adoptive therapy with chimeric antigen receptor (CAR)-redirected T cells showed spectacular efficacy in the treatment of leukemia in recent early phase trials. Patient's T cells were ex vivo genetically engineered with a CAR, amplified and re-administered to the patient. While T cells mediating the primary response were predominantly of young effector and central memory phenotype, repetitive antigen engagement irreversible triggers T cell maturation leaving late memory cells with the KLRG1(+) CD57(+) CD7(-) CCR7(-) phenotype in the long-term. These cells preferentially accumulate in the periphery, are hypo-responsive upon TCR engagement and prone to activation-induced cell death. A recent report indicates that those T cells can be rescued by CAR provided CD28 and OX40 (CD134) stimulation. We discuss the strategy with respect to prolong the anti-tumor response and to improve the over-all efficacy of adoptive cell therapy. PMID:23761793

  16. Mechanisms Underlying the Immune Response Generated by an Oral Vibrio cholerae Vaccine.

    Science.gov (United States)

    Sirskyj, Danylo; Kumar, Ashok; Azizi, Ali

    2016-01-01

    Mechanistic details underlying the resulting protective immune response generated by mucosal vaccines remain largely unknown. We investigated the involvement of Toll-like receptor signaling in the induction of humoral immune responses following oral immunization with Dukoral, comparing wild type mice with TLR-2-, TLR-4-, MyD88- and Trif-deficient mice. Although all groups generated similar levels of IgG antibodies, the proliferation of CD4+ T-cells in response to V. cholerae was shown to be mediated via MyD88/TLR signaling, and independently of Trif signaling. The results demonstrate differential requirements for generation of immune responses. These results also suggest that TLR pathways may be modulators of the quality of immune response elicited by the Dukoral vaccine. Determining the critical signaling pathways involved in the induction of immune response to this vaccine would be beneficial, and could contribute to more precisely-designed versions of other oral vaccines in the future. PMID:27384558

  17. GITR Activation Positively Regulates Immune Responses against Toxoplasma gondii

    Science.gov (United States)

    Costa, Frederico R. C.; Mota, Caroline M.; Santiago, Fernanda M.; Silva, Murilo V.; Ferreira, Marcela D.; Fonseca, Denise M.; Silva, João S.; Mineo, José R.; Mineo, Tiago W. P.

    2016-01-01

    Toxoplasma gondii is a widespread parasite responsible for causing clinical diseases especially in pregnant and immunosuppressed individuals. Glucocorticoid-induced TNF receptor (GITR), which is also known as TNFRS18 and belongs to the TNF receptor superfamily, is found to be expressed in various cell types of the immune system and provides an important costimulatory signal for T cells and myeloid cells. However, the precise role of this receptor in the context of T. gondii infection remains elusive. Therefore, the current study investigated the role of GITR activation in the immunoregulation mechanisms induced during the experimental infection of mice with T. gondii. Our data show that T. gondii infection slightly upregulates GITR expression in Treg cells and B cells, but the most robust increment in expression was observed in macrophages and dendritic cells. Interestingly, mice infected and treated with an agonistic antibody anti-GITR (DTA-1) presented a robust increase in pro-inflammatory cytokine production at preferential sites of parasite replication, which was associated with the decrease in latent brain parasitism of mice under treatment with DTA-1. Several in vivo and in vitro analysis were performed to identify the cellular mechanisms involved in GITR activation upon infection, however no clear alterations were detected in the phenotype/function of macrophages, Tregs and B cells under treatment with DTA-1. Therefore, GITR appears as a potential target for intervention during infection by the parasite Toxoplasma gondii, even though further studies are still necessary to better characterize the immune response triggered by GITR activation during T. gondii infection. PMID:27027302

  18. Tamibarotene modulates the local immune response in experimental periodontitis.

    Science.gov (United States)

    Jin, Ying; Wang, Linyuan; Liu, Dixin; Lin, Xiaoping

    2014-12-01

    Tamibarotene (Am80), a synthetic retinoic acid receptor (RAR), is an agonist with high specificity for RARα and RARβ. Retinoid agonists have been shown to inhibit Th17 cell polarization and to enhance forkhead box P3 (Foxp3) expression during the course of inflammatory diseases. The aim of this study was to evaluate the previously unrecognized role of Am80 in regulating the immune responses of periodontitis within the oral microenvironment. The experimental model of periodontitis in mice was induced by oral infection with Porphyromonas gingivalis (P. gingivalis) W83. Our results indicated that Am80 effectively suppressed alveolar bone resorption induced by P. gingivalis W83 and decreased the number of osteoclasts. We clarified that these effects were closely associated with the reduced percentage of CD4(+) retinoid-related orphan receptor (ROR)γt(+) cells and increased the percentage of CD4(+) Foxp3(+) cells in the gingival tissues, cervical lymph nodes (CLNs), and spleen. Furthermore, in P. gingivalis-infected mice, Am80 down-regulated mRNA expression levels of interleukin-17A (IL-17A), receptor activator of nuclear factor-kappa beta ligand (RANKL), monocyte chemotactic protein-1 (MCP-1), IL-6, and IL-1β. Simultaneously, Am80 up-regulated expression levels of IL-10 and transforming growth factor-β1 (TGF-β1) in gingival tissues and the CLNs. Our results suggest that Am80 could protect against periodontal bone resorption, primarily through the modulation of immune responses in the oral microenvironment, and demonstrate the potential of Am80 as a novel clinical strategy for preventing periodontitis.

  19. Protective efficacy and immune responses by homologous prime-booster immunizations of a novel inactivated Salmonella Gallinarum vaccine candidate

    Science.gov (United States)

    2016-01-01

    Purpose Salmonella enterica serovar Gallinarum (SG) ghost vaccine candidate was recently constructed. In this study, we evaluated various prime-boost vaccination strategies using the candidate strain to optimize immunity and protection efficacy against fowl typhoid. Materials and Methods The chickens were divided into five groups designated as group A (non-immunized control), group B (orally primed and boosted), group C (primed orally and boosted intramuscularly), group D (primed and boosted intramuscularly), and group E (primed intramuscularly and boosted orally). The chickens were primed with the SG ghost at 7 days of age and were subsequently boosted at the fifth week of age. Post-immunization, the plasma IgG and intestinal secretory IgA (sIgA) levels, and the SG antigen-specific lymphocyte stimulation were monitored at weekly interval and the birds were subsequently challenged with a virulent SG strain at the third week post-second immunization. Results Chickens in group D showed an optimized protection with significantly increased plasma IgG, sIgA, and lymphocyte stimulation response compared to all groups. The presence of CD4+ and CD8+ T cells and monocyte/macrophage (M/M) in the spleen, and splenic expression of cytokines such as interferon γ (IFN-γ) and interleukin 6 (IL-6) in the immunized chickens were investigated. The prime immunization induced significantly higher splenic M/M population and mRNA levels of IFN-γ whereas the booster showed increases of splenic CD4+ and CD8+ T-cell population and IL-6 cytokine in mRNA levels. Conclusion Our results indicate that the prime immunization with the SG ghost vaccine induced Th1 type immune response and the booster elicited both Th1- and Th2-related immune responses. PMID:27489805

  20. Pleomorphic forms of Borrelia burgdorferi induce distinct immune responses.

    Science.gov (United States)

    Meriläinen, Leena; Brander, Heini; Herranen, Anni; Schwarzbach, Armin; Gilbert, Leona

    2016-01-01

    Borrelia burgdorferi is the causative agent of tick-borne Lyme disease. As a response to environmental stress B. burgdorferi can change its morphology to a round body form. The role of B. burgdorferi pleomorphic forms in Lyme disease pathogenesis has long been debated and unclear. Here, we demonstrated that round bodies were processed differently in differentiated macrophages, consequently inducing distinct immune responses compared to spirochetes in vitro. Colocalization analysis indicated that the F-actin participates in internalization of both forms. However, round bodies end up less in macrophage lysosomes than spirochetes suggesting that there are differences in processing of these forms in phagocytic cells. Furthermore, round bodies stimulated distinct cytokine and chemokine production in these cells. We confirmed that spirochetes and round bodies present different protein profiles and antigenicity. In a Western blot analysis Lyme disease patients had more intense responses to round bodies when compared to spirochetes. These results suggest that round bodies have a role in Lyme disease pathogenesis. PMID:27139815