WorldWideScience

Sample records for anti-trypanosoma cruzi activity

  1. Anti-Trypanosoma cruzi activity of nicotinamide.

    Science.gov (United States)

    Soares, Milena B P; Silva, Cinara V; Bastos, Tanira M; Guimarães, Elisalva T; Figueira, Claudio P; Smirlis, Despina; Azevedo, Walter F

    2012-05-01

    Inhibition of Trypanosoma brucei and Leishmania spp. sirtuins has shown promising antiparasitic activity, indicating that these enzymes may be used as targets for drug discovery against trypanosomatid infections. In the present work we carried out a virtual screening focused on the C pocket of Sir2 from Trypanosoma cruzi. Using this approach, the best ligand found was nicotinamide. In vitro tests confirmed the anti-T. cruzi activity of nicotinamide on epimastigote and trypomastigote forms. Moreover, treatment of T. cruzi-infected macrophages with nicotinamide caused a significant reduction in the number of amastigotes. In addition, alterations in the mitochondria and an increase in the vacuolization in the cytoplasm were observed in epimastigotes treated with nicotinamide. Analysis of the complex of Sir2 and nicotinamide revealed the details of the possible ligand-target interaction. Our data reveal a potential use of TcSir2 as a target for anti-T. cruzi drug discovery. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Synthesis and anti-Trypanosoma cruzi activity of diaryldiazepines.

    Science.gov (United States)

    Menezes, Júlio César L; Vaz, Luana Beatriz A; de Abreu Vieira, Paula Melo; da Silva Fonseca, Kátia; Carneiro, Cláudia Martins; Taylor, Jason G

    2014-12-23

    Chagas disease is a so-called "neglected disease" and endemic to Latin America. Nifurtimox and benznidazole are drugs that have considerable efficacy in the treatment of the acute phase of the disease but cause many significant side effects. Furthermore, in the Chronic Phase its efficiency is reduced and their therapeutic effectiveness is dependent on the type of T. cruzi strain. For this reason, the present work aims to drive basic research towards the discovery of new chemical entities to treat Chagas disease. Differently substituted 5,7-diaryl-2,3-dihydro-1,4-diazepines were synthesized by cyclocondensation of substituted flavones with ethylenediamine and tested as anti-Trypanosoma cruzi candidates. Epimastigotes of the Y strain from T. cruzi were used in this study and the number of parasites was determined in a Neubauer chamber. The most potent diaryldiazepine that reduced epimastigote proliferation exhibited an IC50 value of 0.25 μM, which is significantly more active than benznidazole.

  3. Synthesis and Anti-Trypanosoma cruzi Activity of Diaryldiazepines

    Directory of Open Access Journals (Sweden)

    Júlio César L. Menezes

    2014-12-01

    Full Text Available Chagas disease is a so-called “neglected disease” and endemic to Latin America. Nifurtimox and benznidazole are drugs that have considerable efficacy in the treatment of the acute phase of the disease but cause many significant side effects. Furthermore, in the Chronic Phase its efficiency is reduced and their therapeutic effectiveness is dependent on the type of T. cruzi strain. For this reason, the present work aims to drive basic research towards the discovery of new chemical entities to treat Chagas disease. Differently substituted 5,7-diaryl-2,3-dihydro-1,4-diazepines were synthesized by cyclocondensation of substituted flavones with ethylenediamine and tested as anti-Trypanosoma cruzi candidates. Epimastigotes of the Y strain from T. cruzi were used in this study and the number of parasites was determined in a Neubauer chamber. The most potent diaryldiazepine that reduced epimastigote proliferation exhibited an IC50 value of 0.25 μM, which is significantly more active than benznidazole.

  4. In Vitro and in Vivo Anti-Trypanosoma cruzi Activity of a Novel Nitro-derivative

    OpenAIRE

    Muelas-Serrano, Susana; Le-Senne, Ana; Fernández-Portillo, Carlos; Nogal, Juan José; Ochoa, Carmen; Gómez-Barrio, Alicia

    2002-01-01

    Nitroarylidenemalononitriles and their cyanoacetamide derivatives with remarkable anti-epimastigote properties, were synthesized attempting to obtain new 3,5-diamino-4-(5'-nitroarylidene)-4H-thiadiazine 1,1-dioxide derivatives, which in previous reports had shown anti-Trypanosoma cruzi activity. Tests to evaluate the cytotoxicity of compounds were performed on J774 macrophages. 5-nitro-2-thienyl-malononitrile (5NO2TM), was the only product which maintained a high anti-epimastigote activity at...

  5. Medicinal plants of Chile: evaluation of their anti-Trypanosoma cruzi activity.

    Science.gov (United States)

    Muñoz, Orlando M; Maya, Juan D; Ferreira, Jorge; Christen, Philippe; San Martin, José; López-Muñoz, Rodrigo; Morello, Antonio; Kemmerling, Ulrike

    2013-01-01

    The extracts of several plants of Central Chile exhibited anti-Trypanosoma cruzi trypomastigotes activity. Most active extracts were those obtained from Podanthus ovatifolius, Berberis microphylla, Kageneckia oblonga, and Drimys winteri. The active extract of Drimys winteri (IC50 51.2 microg/mL) was purified and three drimane sesquiterpenes were obtained: polygodial, drimenol, and isodrimenin. Isodrimenin and drimenol were found to be active against the trypomastigote form of T. cruzi with IC50 values of 27.9 and 25.1 microM, respectively.

  6. Synthesis and Anti-Trypanosoma cruzi Activity of Diaryldiazepines

    OpenAIRE

    Júlio César L. Menezes; Luana Beatriz A. Vaz; Paula Melo de Abreu Vieira; Kátia da Silva Fonseca; Cláudia Martins Carneiro; Jason G. Taylor

    2014-01-01

    Chagas disease is a so-called “neglected disease” and endemic to Latin America. Nifurtimox and benznidazole are drugs that have considerable efficacy in the treatment of the acute phase of the disease but cause many significant side effects. Furthermore, in the Chronic Phase its efficiency is reduced and their therapeutic effectiveness is dependent on the type of T. cruzi strain. For this reason, the present work aims to drive basic research towards the discovery of new chemical entities t...

  7. In Vitro and in Vivo Anti-Trypanosoma cruzi Activity of a Novel Nitro-derivative

    Directory of Open Access Journals (Sweden)

    Susana Muelas-Serrano

    2002-06-01

    Full Text Available Nitroarylidenemalononitriles and their cyanoacetamide derivatives with remarkable anti-epimastigote properties, were synthesized attempting to obtain new 3,5-diamino-4-(5'-nitroarylidene-4H-thiadiazine 1,1-dioxide derivatives, which in previous reports had shown anti-Trypanosoma cruzi activity. Tests to evaluate the cytotoxicity of compounds were performed on J774 macrophages. 5-nitro-2-thienyl-malononitrile (5NO2TM, was the only product which maintained a high anti-epimastigote activity at concentrations in which it was no longer cytotoxic, thus it was assayed against intracellular amastigotes. Its anti-amastigote activity was similar to that of nifurtimox. Afterwards in vivo toxicity and anti-chagasic activity were determined. A reduction in parasitemia was observed.

  8. Mutagenic activation of CL64,855, an anti-Trypanosoma cruzi nitroderivant, by bacterial nitroreductases

    Directory of Open Access Journals (Sweden)

    Morais Jr. Marcos Antonio de

    1998-01-01

    Full Text Available CL64,855 is a nitroimidazole-thiodiazole derivate with high anti-Trypanosoma cruzi activity. CL64,855-induced mutagenesis in the Salmonella/microsome test was detected by TA98 and TA98dnp6 strains, but not by the nitroreductase I-deficient TA98nr strain. The lack of mutagenic response of TA98nr was connected with its extreme resistance to the killing effect of the drug. Presence of S9 mix did not restore mutagenic activity of CL64,855 to the TA98nr strain. Additionally, CL64,855 was reduced in vitro by the nitroreductase I-proficient TA98 strain, mainly in the presence of oxygen, but not by the TA98nr strain. Mutagenic activity was detected in serum samples of treated guinea pigs by nitroreductase-proficient strains TA98 and TA98dnp6, but not by nitroductase-deficient strain TA98nr. In the case of urine, mutagenic activity was observed with all three tested strains, suggesting an in vivo metabolic activation of the drug by a distinct metabolic pathway.

  9. Identification of Anti-Trypanosoma cruziLead Compounds with Putative Immunomodulatory Activity.

    Science.gov (United States)

    Otta, Dayane Andriotti; de Araújo, Fernanda Fortes; de Rezende, Vitor Bortolo; Souza-Fagundes, Elaine Maria; Elói-Santos, Silvana Maria; Costa-Silva, Matheus Fernandes; Santos, Raiany Araújo; Costa, Heloísa Alves; Siqueira Neto, Jair Lage; Martins-Filho, Olindo Assis; Teixeira-Carvalho, Andréa

    2018-02-05

    In substitution for the current Chagas disease treatment with several relevant side effects, new therapeutic candidates have been extensively investigated. In this context, the balanced interaction between mediators of the host immune response seems to be a key element for therapeutic success, where a pro-inflammatory microenvironment modulated by IL-10 is shown to be relevant to potentiate anti- Trypanosoma cruzi drug activity. This study aimed to identify the potential immunomodulatory activity of the anti- T. cruzi K777, Pyronaridine (PYR) and Furazolidone (FUR) compounds in peripheral blood mononuclear cells (PBMC) from noninfected subjects (NI) and chronic Chagas disease patients (CD). Our results showed low cytotoxicity to PBMC populations, with CC 50 = 13.1μM (K777); 9.0μM (PYR) and greater than 20μM (FUR). In addition, K777 showed no impact on the exposure index (EI) of phytohemagglutinin-stimulated leukocytes (PHA), while PYR and FUR treatments induced increased EI of monocytes and T lymphocytes at late stages of apoptosis in NI subjects. Moreover, K777 induced a more prominent pro-inflammatory response (TNF-α + CD8 + /CD4 + , IFN-γ + CD4 + /CD8 + modulated by IL-10 (IL-10 + CD4 + T/CD8 + T) in comparison with PYR (TNF-α + CD8 + , IL-10 + CD8 + ) and FUR (TNF-α + CD8 + , IL-10 + CD8 + ). Signature analysis of intracytoplasmic cytokines corroborated with the proinflammatory/modulated (K777) and pro-inflammatory (PYR and FUR) profiles previously found. In conclusion, K777 lead compound may induce beneficial changes in the immunological profile of patients presenting the chronic phase of Chagas disease and may contribute to a more effective therapy against the disease. Copyright © 2018 American Society for Microbiology.

  10. Unlocking the in vitro anti-Trypanosoma cruzi activity of halophyte plants from the southern Portugal.

    Science.gov (United States)

    Oliveira, Marta; Sales Junior, Policarpo Ademar; Rodrigues, Maria João; DellaGreca, Marina; Barreira, Luísa; Murta, Silvane Maria Fonseca; Romanha, Alvaro José; Custódio, Luísa

    2016-08-01

    To evaluate the in vitro anti-Trypanosoma cruzi (T. cruzi) activity of organic extracts prepared from halophyte species collected in the southern coast of Portugal (Algarve), and chemically characterize the most active samples. Acetone, dichloromethane and methanol extracts were prepared from 31 halophyte species and tested in vitro against trypomastigotes and intracellular amastigotes of the Tulahuen strain of T. cruzi. The most active extract was fractionated by preparative HPLC-DAD, affording 11 fractions. The most selective fraction was fully characterized by (1)H NMR. From 94 samples tested, one was active, namely the root dichloromethane extract of Juncus acutus (IC50 anti-parasitic activity. Fraction 8 (IC50 = 4.1 μg/mL) was the most active, and was further characterized by (1)H NMR. The major compounds were phenanthrenes, 9,10-dihydrophenanthrenes and benzocoumarins. Our results suggest that the compounds identified in fraction 8 are likely responsible for the observed anti parasitic activity. Further research is in progress aiming to isolate and identify the specific active molecules. To the best of our knowledge, this is the first report on the in vitro anti T. cruzi activity of halophyte species. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  11. Dimeric flavonoids from Arrabidaea brachypoda and assessment of their anti-Trypanosoma cruzi activity.

    Science.gov (United States)

    da Rocha, Cláudia Quintino; Queiroz, Emerson Ferreira; Meira, Cássio Santana; Moreira, Diogo Rodrigo Magalhães; Soares, Milena Botelho Pereira; Marcourt, Laurence; Vilegas, Wagner; Wolfender, Jean-Luc

    2014-06-27

    The nonpolar fraction of an aqueous ethanol extract of the roots of Arrabidaea brachypoda, a Brazilian medicinal plant, demonstrated significant in vitro activity against Trypanosoma cruzi, the parasite responsible for Chagas disease. Targeted isolation of the active constituents led to the isolation of three new dimeric flavonoids (1-3), and their structures were elucidated using UV, NMR, and HRMS analysis, as well as by chemical derivatization. The anti-T. cruzi activity and cytotoxicity toward mammalian cells were determined for these substances. Compound 1 exhibited no activity toward T. cruzi, while flavonoids 2 and 3 exhibited selective activity against these trypomastigotes. Compounds 2 and 3 inhibited the parasite invasion process and its intracellular development in host cells with similar potencies to benznidazole. In addition, compound 2 reduced the blood parasitemia of T. cruzi-infected mice. This study has revealed that these two dimeric flavonoids represent potential anti-T. cruzi lead compounds for further drug development.

  12. Structural design, synthesis and structure-activity relationships of thiazolidinones with enhanced anti-Trypanosoma cruzi activity.

    Science.gov (United States)

    Moreira, Diogo Rodrigo Magalhães; Leite, Ana Cristina Lima; Cardoso, Marcos Verissimo Oliveira; Srivastava, Rajendra Mohan; Hernandes, Marcelo Zaldini; Rabello, Marcelo Montenegro; da Cruz, Luana Faria; Ferreira, Rafaela Salgado; de Simone, Carlos Alberto; Meira, Cássio Santana; Guimaraes, Elisalva Teixeira; da Silva, Aline Caroline; dos Santos, Thiago André Ramos; Pereira, Valéria Rêgo Alves; Soares, Milena Botelho Pereira

    2014-01-01

    Pharmacological treatment of Chagas disease is based on benznidazole, which displays poor efficacy when administered during the chronic phase of infection. Therefore, the development of new therapeutic options is needed. This study reports on the structural design and synthesis of a new class of anti-Trypanosoma cruzi thiazolidinones (4 a-p). (2-[2-Phenoxy-1-(4-bromophenyl)ethylidene)hydrazono]-5-ethylthiazolidin-4-one (4 h) and (2-[2-phenoxy-1-(4-phenylphenyl)ethylidene)hydrazono]-5-ethylthiazolidin-4-one (4 l) were the most potent compounds, resulting in reduced epimastigote proliferation and were toxic for trypomastigotes at concentrations below 10 μM, while they did not display host cell toxicity up to 200 μM. Thiazolidinone 4 h was able to reduce the in vitro parasite burden and the blood parasitemia in mice with similar potency to benznidazole. More importantly, T. cruzi infection reduction was achieved without exhibiting mouse toxicity. Regarding the molecular mechanism of action, these thiazolidinones did not inhibit cruzain activity, which is the major trypanosomal protease. However, investigating the cellular mechanism of action, thiazolidinones altered Golgi complex and endoplasmic reticulum (ER) morphology, produced atypical cytosolic vacuoles, as well as induced necrotic parasite death. This structural design employed for the new anti-T. cruzi thiazolidinones (4 a-p) led to the identification of compounds with enhanced potency and selectivity compared to first-generation thiazolidinones. These compounds did not inhibit cruzain activity, but exhibited strong antiparasitic activity by acting as parasiticidal agents and inducing a necrotic parasite cell death. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. In vitro anti-Trypanosoma cruzi activity of dronedarone, a novel amiodarone derivative with an improved safety profile.

    Science.gov (United States)

    Benaim, Gustavo; Hernandez-Rodriguez, Vanessa; Mujica-Gonzalez, Sheira; Plaza-Rojas, Lourdes; Silva, May Li; Parra-Gimenez, Nereida; Garcia-Marchan, Yael; Paniz-Mondolfi, Alberto; Uzcanga, Graciela

    2012-07-01

    Amiodarone, a commonly used antiarrhythmic, is also a potent and selective anti-Trypanosoma cruzi agent. Dronedarone is an amiodarone derivative in which the 2,5-diiodophenyl moiety of the parental drug has been replaced with an unsubstituted phenyl group aiming to eliminate the thyroid toxicity frequently observed with amiodarone treatment. Dronedarone has been approved by the Food and Drug Administration (FDA), and its use as a safe antiarrhythmic has been extensively documented. We show here that dronedarone also has potent anti-T. cruzi activity, against both extracellular epimastigotes and intracellular amastigotes, the clinically relevant form of the parasite. The 50% inhibitory concentrations against both proliferative stages are lower than those previously reported for amiodarone. The mechanism of action of dronedarone resembles that of amiodarone, as it induces a large increase in the intracellular Ca(2+) concentration of the parasite, which results from the release of this ion from intracellular storage sites, including a direct effect of the drug on the mitochondrial electrochemical potential, and through alkalinization of the acidocalcisomes. Our results suggest a possible future repurposed use of dronedarone for the treatment of Chagas' disease.

  14. Activity in vivo of anti-Trypanosoma cruzi compounds selected from a high throughput screening.

    Science.gov (United States)

    Andriani, Grasiella; Chessler, Anne-Danielle C; Courtemanche, Gilles; Burleigh, Barbara A; Rodriguez, Ana

    2011-08-01

    Novel technologies that include recombinant pathogens and rapid detection methods are contributing to the development of drugs for neglected diseases. Recently, the results from the first high throughput screening (HTS) to test compounds for activity against Trypanosoma cruzi trypomastigote infection of host cells were reported. We have selected 23 compounds from the hits of this HTS, which were reported to have high anti-trypanosomal activity and low toxicity to host cells. These compounds were highly purified and their structures confirmed by HPLC/mass spectrometry. The compounds were tested in vitro, where about half of them confirmed the anti-T. cruzi activity reported in the HTS, with IC50 values lower than 5 µM. We have also adapted a rapid assay to test anti-T. cruzi compounds in vivo using mice infected with transgenic T. cruzi expressing luciferase as a model for acute infection. The compounds that were active in vitro were also tested in vivo using this assay, where we found two related compounds with a similar structure and low in vitro IC50 values (0.11 and 0.07 µM) that reduce T. cruzi infection in the mouse model more than 90% after five days of treatment. Our findings evidence the benefits of novel technologies, such as HTS, for the drug discovery pathway of neglected diseases, but also caution about the need to confirm the results in vitro. We also show how rapid methods of in vivo screening based in luciferase-expressing parasites can be very useful to prioritize compounds early in the chain of development.

  15. Activity in vivo of anti-Trypanosoma cruzi compounds selected from a high throughput screening.

    Directory of Open Access Journals (Sweden)

    Grasiella Andriani

    2011-08-01

    Full Text Available Novel technologies that include recombinant pathogens and rapid detection methods are contributing to the development of drugs for neglected diseases. Recently, the results from the first high throughput screening (HTS to test compounds for activity against Trypanosoma cruzi trypomastigote infection of host cells were reported. We have selected 23 compounds from the hits of this HTS, which were reported to have high anti-trypanosomal activity and low toxicity to host cells. These compounds were highly purified and their structures confirmed by HPLC/mass spectrometry. The compounds were tested in vitro, where about half of them confirmed the anti-T. cruzi activity reported in the HTS, with IC50 values lower than 5 µM. We have also adapted a rapid assay to test anti-T. cruzi compounds in vivo using mice infected with transgenic T. cruzi expressing luciferase as a model for acute infection. The compounds that were active in vitro were also tested in vivo using this assay, where we found two related compounds with a similar structure and low in vitro IC50 values (0.11 and 0.07 µM that reduce T. cruzi infection in the mouse model more than 90% after five days of treatment. Our findings evidence the benefits of novel technologies, such as HTS, for the drug discovery pathway of neglected diseases, but also caution about the need to confirm the results in vitro. We also show how rapid methods of in vivo screening based in luciferase-expressing parasites can be very useful to prioritize compounds early in the chain of development.

  16. Enantiomers of nifurtimox do not exhibit stereoselective anti-Trypanosoma cruzi activity, toxicity, or pharmacokinetic properties.

    Science.gov (United States)

    Moraes, Carolina B; White, Karen L; Braillard, Stéphanie; Perez, Catherine; Goo, Junghyun; Gaspar, Luis; Shackleford, David M; Cordeiro-da-Silva, Anabela; Thompson, R C Andrew; Freitas-Junior, Lucio; Charman, Susan A; Chatelain, Eric

    2015-01-01

    With the aim of improving the available drugs for the treatment of Chagas disease, individual enantiomers of nifurtimox were characterized. The results indicate that the enantiomers are equivalent in their in vitro activity against a panel of Trypanosoma cruzi strains; in vivo efficacy in a murine model of Chagas disease; in vitro toxicity and absorption, distribution, metabolism, and excretion characteristics; and in vivo pharmacokinetic properties. There is unlikely to be any therapeutic benefit of an individual nifurtimox enantiomer over the racemic mixture. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Synthesis and anti-Trypanosoma cruzi activity of new 3-phenylthio-nor-β-lapachone derivatives.

    Science.gov (United States)

    Cardoso, Mariana F do Carmo; Salomão, Kelly; Bombaça, Ana Cristina; da Rocha, David R; da Silva, Fernando de C; Cavaleiro, José A S; de Castro, Solange L; Ferreira, Vitor F

    2015-08-01

    We report herein a straightforward and efficient one-step reaction to prepare new nor-β-lapachone derivatives tethered with phenylthio groups at position 3 of the furan ring. We have screened the compounds on bloodstream trypomastigotes of Trypanosoma cruzi, the causative agent of Chagas disease, aimed at finding a new prototype with high trypanocidal activity. The new compounds possess a broad range of activity (IC50/24h from 9.2 to 182.7 μM), higher than the original quinone (391.5 μM) and four of them higher than standard drug benznidazole (103.6 μM). The most active was compound 13b (9.2 μM), being 11 times active than benznidazole and the less toxic derivative to heart muscle cells. Copyright © 2015. Published by Elsevier Ltd.

  18. Sulfonamide-metal complexes endowed with potent anti-Trypanosoma cruzi activity.

    Science.gov (United States)

    Chohan, Zahid H; Hernandes, Marcelo Zaldini; Sensato, Fabricio R; Moreira, Diogo Rodrigo Magalhaes; Pereira, Valéria Rego Alves; Neves, Juliana Kelle de Andrade Lemoine; de Oliveira, Andresa Pereira; de Oliveira, Beatriz Coutinho; Leite, Ana Cristina Lima

    2014-04-01

    In this article, we describe that mononuclear complexes composed of (5-chloro-2-hydroxybenzylidene)aminobenzenesulfonamides (L1-3) of general formula (L2(M)2H2O, where M is Co, Cu, Zn, Ni or Mn) reduced epimastigote proliferation and were found cidal for trypomastigotes of Trypanosoma cruzi Y strain. Complexes C5 and C11 have IC50 of 2.7 ± 0.27 and 4.8 ± 0.47 µM, respectively, for trypomastigotes, when the positive control Nifurtimox, which is also an approved drug for Chagas disease, showed IC50 of 2.7 ± 0.25 µM. We tested whether these complexes inhibit the enzyme T. cruzi trypanothione reductase or acting as DNA binders. While none of these complexes inhibited trypanothione reductase, we observed some degree of DNA binding, albeit less pronounced than observed for cisplatin in this assay. Unfortunately, most of these complexes were also toxic for mouse splenocytes. Along with the present studies, we discuss a number of interesting structure-activity relationships and chemical features for these metal complexes, including computational calculations.

  19. New imidazolidine derivatives as anti-Trypanosoma cruzi agents: structure-activity relationships.

    Science.gov (United States)

    Dos Santos Gomes, Fabiana Oliveira; de Melo, Cristiane Moutinho Lagos; Peixoto, Christina Alves; de Lima, Maria do Carmo Alves; Galdino, Suely Lins; Pereira, Valéria Rêgo Alves; da Rocha Pitta, Ivan

    2012-12-01

    Imidazolidine derivatives are key components for the development of bioactive compounds for the treatment of many diseases, especially Chagas. In fact, others studies showed that the imidazolidine-2,4-dione has stood out by presenting a wide spectrum of pharmacological activities including anticonvulsants, antiarrhythmic, and antiparasitic. In the present study, we investigated the morphological alterations induced by imidazolidine derivates LPSF/NN-52 and LPSF/NN-100 on trypomastigotes forms of Trypanosoma cruzi through ultrastructural analysis by electron microscopy. Many concentrations were used to measure the antiparasitic propriety promoted by imidazolidine derivatives, and our study indicates that parasites treated with 13 μg mL(-1) of the imidazolidine derivates for 24 h revealed severe damage to the parasite's mitochondrial complex. Beyond that, also observed in treated parasites were the following: myelin bodies, enlargement of cytoplasm vacuole, fragmentation of endoplasmic reticulum, and some treated samples clearly showed signs of necrosis. To confirm the ultrastructural results, some assays were performed for knowledge cellular death induction promoted by imidazolidine derivates against immune spleen cells. The induction of the necrotic process through derivatives LPSF/NN-52 and LPSF/NN-100 showed similar results in relation to nifurtimox and benznidazole. In the last assays, it was demonstrated that NN-100 was efficient against epimastigotes and trypomastigotes forms and these results reinforce the mechanisms of action of both new imidazolidine derivatives against T. cruzi.

  20. Anti-Trypanosoma cruzi activity of 10 medicinal plants used in northeast Mexico.

    Science.gov (United States)

    Molina-Garza, Zinnia Judith; Bazaldúa-Rodríguez, Aldo Fabio; Quintanilla-Licea, Ramiro; Galaviz-Silva, Lucio

    2014-08-01

    The aim of this study was to screen the trypanocidal activity of plants used in traditional Mexican medicine for the treatment of various diseases related to parasitic infections. Cultured Trypanosoma cruzi epimastigotes were incubated for 96h with different concentrations of methanolic extracts obtained from Artemisia mexicana, Castela texana, Cymbopogon citratus, Eryngium heterophyllum, Haematoxylum brasiletto, Lippia graveolens, Marrubium vulgare, Persea americana, Ruta chalepensis and Schinus molle. The inhibitory concentration (IC50) was determined for each extract via a colorimetric method. Among the evaluated species, the methanolic extracts of E. heterophyllum, H. brasiletto, M. vulgare and S. molle exhibited the highest trypanocidal activity, showing percentages of growth inhibition between 88 and 100% at a concentration of 150μg/ml. These medicinal plants may represent a valuable source of new bioactive compounds for the therapeutic treatment of trypanosomiasis. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Anti-Trypanosoma cruzi activity in vitro of phases and isolated compounds from Excoecaria lucida leaves.

    Science.gov (United States)

    da Silva, Cristiane Franca; Pacheco, Ania Ochoa; Alves, Rayane Nogueira; Tavares, Josean Fechine; da Silva, Marcelo Sobral; Arranz, Julio Cesar Escalona

    2018-01-11

    Chagas disease is caused by the protozoan parasite Trypanosoma cruzi. This illness is found mainly in 21 Latin American countries and an estimated 8 million people are infected worldwide. The unsatisfactory chemotherapy provokes severe toxicity and resistant strains. Medicinal plants constitute a promising source of new drugs and remedies against all kinds of disorders, mainly infectious diseases arousing interest worldwide. The aim of this study has been the isolation, structural identification and evaluation of the trypanocidal activity of samples present in the Excoecaria lucida Sw. leaves. Total extract (TE) of E. lucida Sw. leaves was obtained by ethanol extract therefore fractionated sequentially with hexane, ethyl acetate and n-butanol, to obtain three phases: Hex, EA and But, respectively. Ellagic acid (EL1) was purified from both EA and But phases, while EL2; a 1:1 stigmasterol-3-O-β-D-glucopyranoside plus sitosterol-3-O-β-D-glucopyranoside mixture was obtained from the Hex phase. Activity assays was performed using bloodstream and intracellular forms of T. cruzi and cytotoxicity assays using L929 fibroblasts. The EL1 and EL2 samples were more active against bloodstream trypomastigote forms with EC50 of 53.0±3.6 and 58.2±29.0 µg/mL, respectively; at 100 µg/mL. These samples also shown 70% of inhibition of L929 cells infection. Toxicity assays demonstrated that after 96 h of treatment only the fractions Hex and EA presented detectable cytotoxicity. ellagic acid, stigmasterol-3-O-β-D-glucopyranoside and sitosterol-3-O-β-D-glucopyranoside are reported for the first time in E. lucida Sw. leaves as well as their biological activity studies supporting further investigations for Chagas disease treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Benznidazole/Itraconazole Combination Treatment Enhances Anti-Trypanosoma cruzi Activity in Experimental Chagas Disease.

    Directory of Open Access Journals (Sweden)

    Tassiane Assíria Fontes Martins

    Full Text Available The nitroheterocyclic drugs nifurtimox and benznidazole are first-line drugs available to treat Chagas disease; however, they have limitations, including long treatment courses and toxicity. Strategies to overcome these limitations include the identification of new drugs with specific target profiles, re-dosing regimens for the current drugs, drug repositioning and combination therapy. In this work, we evaluated combination therapy as an approach for optimization of the current therapeutic regimen for Chagas disease. The curative action of benznidazole/itraconazole combinations was explored in an established infection of the mice model with the T. cruzi Y strain. The activities of the benznidazole/itraconazole combinations were compared with the results from those receiving the same dosage of each individual drug. The administration of benznidazole/itraconazole in combination eliminated parasites from the blood more efficiently than each drug alone. Here, there was a significant reduction of the number of treatment days (number of doses necessary to induce parasitemia suppression with the benznidazole/itraconazole combination, as compared to each compound administered alone. These results clearly indicate the enhanced effects of these drugs in combination, particularly at the dose of 75 mg/kg, as the effects observed with the drug combinations were four times more effective than those of each drug used alone. Moreover, benznidazole/itraconazole treatment was shown to prevent or decrease the typical lesions associated with chronic experimental Chagas disease, as illustrated by similar levels of inflammatory cells and fibrosis in the cardiac muscle tissue of healthy and treated mice. These results emphasize the importance of exploring the potential of combination treatments with currently available compounds to specifically treat Chagas disease.

  3. Benznidazole/Itraconazole Combination Treatment Enhances Anti-Trypanosoma cruzi Activity in Experimental Chagas Disease.

    Science.gov (United States)

    Assíria Fontes Martins, Tassiane; de Figueiredo Diniz, Lívia; Mazzeti, Ana Lia; da Silva do Nascimento, Álvaro Fernando; Caldas, Sérgio; Caldas, Ivo Santana; de Andrade, Isabel Mayer; Ribeiro, Isabela; Bahia, Maria Terezinha

    2015-01-01

    The nitroheterocyclic drugs nifurtimox and benznidazole are first-line drugs available to treat Chagas disease; however, they have limitations, including long treatment courses and toxicity. Strategies to overcome these limitations include the identification of new drugs with specific target profiles, re-dosing regimens for the current drugs, drug repositioning and combination therapy. In this work, we evaluated combination therapy as an approach for optimization of the current therapeutic regimen for Chagas disease. The curative action of benznidazole/itraconazole combinations was explored in an established infection of the mice model with the T. cruzi Y strain. The activities of the benznidazole/itraconazole combinations were compared with the results from those receiving the same dosage of each individual drug. The administration of benznidazole/itraconazole in combination eliminated parasites from the blood more efficiently than each drug alone. Here, there was a significant reduction of the number of treatment days (number of doses) necessary to induce parasitemia suppression with the benznidazole/itraconazole combination, as compared to each compound administered alone. These results clearly indicate the enhanced effects of these drugs in combination, particularly at the dose of 75 mg/kg, as the effects observed with the drug combinations were four times more effective than those of each drug used alone. Moreover, benznidazole/itraconazole treatment was shown to prevent or decrease the typical lesions associated with chronic experimental Chagas disease, as illustrated by similar levels of inflammatory cells and fibrosis in the cardiac muscle tissue of healthy and treated mice. These results emphasize the importance of exploring the potential of combination treatments with currently available compounds to specifically treat Chagas disease.

  4. Pentamidine exerts in vitro and in vivo anti Trypanosoma cruzi activity and inhibits the polyamine transport in Trypanosoma cruzi.

    Science.gov (United States)

    Díaz, María V; Miranda, Mariana R; Campos-Estrada, Carolina; Reigada, Chantal; Maya, Juan D; Pereira, Claudio A; López-Muñoz, Rodrigo

    2014-06-01

    Pentamidine is an antiprotozoal and fungicide drug used in the treatment of leishmaniasis and African trypanosomiasis. Despite its extensive use as antiparasitic drug, little evidence exists about the effect of pentamidine in Trypanosoma cruzi, the etiological agent of Chagas' disease. Recent studies have shown that pentamidine blocks a polyamine transporter present in Leishmania major; consequently, its might also block these transporters in T. cruzi. Considering that T. cruzi lacks the ability to synthesize putrescine de novo, the inhibition of polyamine transport can bring a new therapeutic target against the parasite. In this work, we show that pentamidine decreases, not only the viability of T. cruzi trypomastigotes, but also the parasite burden of infected cells. In T. cruzi-infected mice pentamidine decreases the inflammation and parasite burden in hearts from infected mice. The treatment also decreases parasitemia, resulting in an increased survival rate. In addition, pentamidine strongly inhibits the putrescine and spermidine transport in T. cruzi epimastigotes and amastigotes. Thus, this study points to reevaluate the utility of pentamidine and introduce evidence of a potential new action mechanism. In the quest of new therapeutic strategies against Chagas disease, the extensive use of pentamidine in human has led to a well-known clinical profile, which could be an advantage over newly synthesized molecules that require more comprehensive trials prior to their clinical use. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Buthionine Sulfoximine Has Anti-Trypanosoma cruzi Activity in a Murine Model of Acute Chagas' Disease and Enhances the Efficacy of Nifurtimox▿

    OpenAIRE

    Faúndez, Mario; López-Muñoz, Rodrigo; Torres, Gloria; Morello, Antonio; Ferreira, Jorge; Kemmerling, Ulrike; Orellana, Myriam; Maya, Juan D.

    2008-01-01

    l-Buthionine (S,R)-sulfoximine (BSO) at a dose of 220 mg/kg of body weight/day showed an anti-Trypanosoma cruzi effect in infected mice, increasing their survival rate and decreasing the parasitemias and parasite burden in the hearts. Treatment with BSO plus nifurtimox caused an increase in the survival rate in comparison to the rates with treatment with each drug alone.

  6. Design, synthesis and biological evaluation of hybrid bioisoster derivatives of N-acylhydrazone and furoxan groups with potential and selective anti-Trypanosoma cruzi activity.

    Science.gov (United States)

    Massarico Serafim, Ricardo Augusto; Gonçalves, José Eduardo; de Souza, Felipe Pereira; de Melo Loureiro, Ana Paula; Storpirtis, Silvia; Krogh, Renata; Andricopulo, Adriano Defini; Dias, Luiz Carlos; Ferreira, Elizabeth Igne

    2014-07-23

    Hybrid bioisoster derivatives from N-acylhydrazones and furoxan groups were designed with the objective of obtaining at least a dual mechanism of action: cruzain inhibition and nitric oxide (NO) releasing activity. Fifteen designed compounds were synthesized varying the substitution in N-acylhydrazone and in furoxan group as well. They had its anti-Trypanosoma cruzi activity in amastigotes forms, NO releasing potential and inhibitory cruzain activity evaluated. The two most active compounds (6, 14) both in the parasite amastigotes and in the enzyme contain the nitro group in para position of the aromatic ring. The permeability screening in Caco-2 cell and cytotoxicity assay in human cells were performed for those most active compounds and both showed to be less cytotoxic than the reference drug, benznidazole. Compound 6 was the most promising, since besides activity it showed good permeability and selectivity index, higher than the reference drug. Thereby the compound 6 was considered as a possible candidate for additional studies. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Antiparasitic evaluation of betulinic acid derivatives reveals effective and selective anti-Trypanosoma cruzi inhibitors.

    Science.gov (United States)

    Meira, Cássio Santana; Barbosa-Filho, José Maria; Lanfredi-Rangel, Adriana; Guimarães, Elisalva Teixeira; Moreira, Diogo Rodrigo Magalhães; Soares, Milena Botelho Pereira

    2016-07-01

    Betulinic acid is a pentacyclic triterpenoid with several biological properties already described, including antiparasitic activity. Here, the anti-Trypanosoma cruzi activity of betulinic acid and its semi-synthetic amide derivatives (BA1-BA8) was investigated. The anti-Trypanosoma cruzi activity and selectivity were enhanced in semi-synthetic derivatives, specially on derivatives BA5, BA6 and BA8. To understand the mechanism of action underlying betulinic acid anti-T. cruzi activity, we investigated ultrastructural changes by electron microscopy. Ultrastructural studies showed that trypomastigotes incubated with BA5 had membrane blebling, flagella retraction, atypical cytoplasmic vacuoles and Golgi cisternae dilatation. Flow cytometry analysis showed that parasite death is mainly caused by necrosis. Treatment with derivatives BA5, BA6 or BA8 reduced the invasion process, as well as intracellular parasite development in host cells, with a potency and selectivity similar to that observed in benznidazole-treated cells. More importantly, the combination of BA5 and benznidazole revealed synergistic effects on trypomastigote and amastigote forms of T. cruzi. In conclusion, we demonstrated that BA5 compound is an effective and selective anti-T. cruzi agent. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. QSAR study and conformational analysis of 4-arylthiazolylhydrazones derived from 1-indanones with anti-Trypanosoma cruzi activity.

    Science.gov (United States)

    Noguera, Guido J; Fabian, Lucas E; Lombardo, Elisa; Finkielsztein, Liliana

    2015-10-12

    A set of 4-arylthiazolylhydrazones derived from 1-indanones (TZHs) previously synthesized and assayed against Trypanosoma cruzi, the causative agent of Chagas disease, were explored in terms of conformational analysis. We found that TZHs can adopt four minimum energy conformations: cis (A, B and C) and trans. The possible bioactive conformation was selected by a 3D-QSAR model. Different molecular parameters were calculated to produce QSAR second-generation models. These QSAR results are discussed in conjunction with conformational analysis from molecular modeling studies. The main factor to determine the activity of the compounds was the partial charge at the N(3) atom (qN3). The predictive ability of the QSAR equations proposed was experimentally validated. The QSAR models developed in this study will be helpful to design novel potent TZHs. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. 2-Pyridyl thiazoles as novel anti-Trypanosoma cruzi agents: structural design, synthesis and pharmacological evaluation.

    Science.gov (United States)

    Cardoso, Marcos Veríssimo de Oliveira; de Siqueira, Lucianna Rabelo Pessoa; da Silva, Elany Barbosa; Costa, Lívia Bandeira; Hernandes, Marcelo Zaldini; Rabello, Marcelo Montenegro; Ferreira, Rafaela Salgado; da Cruz, Luana Faria; Moreira, Diogo Rodrigo Magalhães; Pereira, Valéria Rêgo Alves; de Castro, Maria Carolina Accioly Brelaz; Bernhardt, Paul V; Leite, Ana Cristina Lima

    2014-10-30

    The present work reports on the synthesis, anti-Trypanosoma cruzi activities and docking studies of a novel series of 2-(pyridin-2-yl)-1,3-thiazoles derived from 2-pyridine thiosemicarbazone. The majority of these compounds are potent cruzain inhibitors and showed excellent inhibition on the trypomastigote form of the parasite, and the resulting structure-activity relationships are discussed. Together, these data present a novel series of thiazolyl hydrazones with potential effects against Chagas disease and they could be important leads in continuing development against Chagas disease. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Curcumin Enhances the Anti-Trypanosoma cruzi Activity of Benznidazole-Based Chemotherapy in Acute Experimental Chagas Disease.

    Science.gov (United States)

    Novaes, Rômulo Dias; Sartini, Marcus Vinicius Pessoa; Rodrigues, João Paulo Ferreira; Gonçalves, Reggiani Vilela; Santos, Eliziária Cardoso; Souza, Raquel Lopes Martins; Caldas, Ivo Santana

    2016-06-01

    Although curcumin can increase the effectiveness of drugs against malaria, combination therapies using the molecule have never been investigated in Chagas disease (ChD). Therefore, we evaluated the efficacy of curcumin as a complementary strategy to benznidazole (Bz)-based chemotherapy in mice acutely infected with Trypanosoma cruzi Eighty-four 12-week-old Swiss mice were equally randomized into seven groups: uninfected (NI), T. cruzi infected and untreated (INF), infected and treated with 100 mg/kg of body weight Bz (B100), 50 mg/kg Bz (B50), 100 mg/kg curcumin (C100), 100 mg/kg Bz plus 100 mg/kg curcumin (B100 plus C100), and 50 mg/kg Bz plus 100 mg/kg curcumin (B50 plus C100). After microscopic identification of blood trypomastigotes (4 days after inoculation), both drugs were administered by gavage once a day for 20 days. Curcumin showed limited antiparasitic, anti-inflammatory, and antioxidant effects when administered alone. When curcumin and Bz were combined, there was a drastic reduction in parasitemia, parasite load, mortality, anti-T. cruzi IgG reactivity, circulating levels of cytokines (gamma interferon [IFN-γ], interleukin 4 [IL-4], and MIP1-α), myocardial inflammation, and morphological and oxidative cardiac injury; these results exceeded the isolated effects of Bz. The combination of Bz and curcumin was also effective at mitigating liver toxicity triggered by Bz, increasing the parasitological cure rate, and preventing infection recrudescence in noncured animals, even when the animals were treated with 50% of the recommended therapeutic dose of Bz. By limiting the toxic effects of Bz and enhancing its antiparasitic efficiency, the combination of the drug with curcumin may be a relevant therapeutic strategy that is possibly better tolerated in ChD treatment than Bz-based monotherapy. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. In Vitro and in Vivo Anti-Trypanosoma cruzi Activity of New Arylamine Mannich Base-Type Derivatives.

    Science.gov (United States)

    Moreno-Viguri, Elsa; Jiménez-Montes, Carmen; Martín-Escolano, Rubén; Santivañez-Veliz, Mery; Martin-Montes, Alvaro; Azqueta, Amaya; Jimenez-Lopez, Marina; Zamora Ledesma, Salvador; Cirauqui, Nuria; López de Ceráin, Adela; Marín, Clotilde; Sánchez-Moreno, Manuel; Pérez-Silanes, Silvia

    2016-12-22

    Chagas disease is a neglected tropical disease with 6-7 million people infected worldwide, and there is no effective treatment. Therefore, there is an urgent need to continue researching in order to discover novel therapeutic alternatives. We present a series of arylaminoketone derivatives as means of identifying new drugs to treat Chagas disease in the acute phase with greater activity, less toxicity, and a larger spectrum of action than that corresponding to the reference drug benznidazole. Indexes of high selectivity found in vitro formed the basis for later in vivo assays in BALB/c mice. Murine model results show that compounds 3, 4, 7, and 10 induced a remarkable decrease in parasitemia levels in acute phase and the parasitemia reactivation following immunosuppression, and curative rates were higher than with benznidazole. These high antiparasitic activities encourage us to propose these compounds as promising molecules for developing an easy to synthesize anti-Chagas agent.

  12. Identification of novel benzimidazole derivatives as anti-Trypanosoma cruzi agents: solid-phase synthesis, structure-activity relationships and molecular docking studies.

    Science.gov (United States)

    Ríos, Natalia; Varela, Javier; Birriel, Estefania; González, Mercedes; Cerecetto, Hugo; Merlino, Alicia; Porcal, Williams

    2013-10-01

    In this paper, we report the solid-phase synthesis of 33 novel 1,2,5-tri-substituted benzimidazole derivatives and their in vitro activity on cruzipain and Trypanosoma cruzi epimastigotes. Seven compounds were potent inhibitors of T. cruzi growth with IC50 values in the range 6-16 µM. Applying structure-activity relationships and principal component analysis strategies we were able to determine ring substituent effects and physicochemical properties that are important for the antichagasic activity of these novel derivatives, as well as get an insight into their possible mechanisms of action. Molecular docking studies revealed the binding orientation of the ligands in the active site of cruzipain providing new guidelines for the further design of better inhibitors. Compound 2a constitute a promising hit compound for novel anti-T. cruzi agents showing that the benzimidazole scaffold may represent an interesting therapeutic alternative for the treatment of Chagas disease.

  13. In Vivo Anti-Trypanosoma cruzi Activity of Hydro-Ethanolic Extract and Isolated Active Principles from Aristeguietia glutinosa and Mechanism of Action Studies

    Directory of Open Access Journals (Sweden)

    Javier Varela

    2014-06-01

    Full Text Available The currently available treatments for Chagas disease show limited therapeutic potential and are associated with serious side effects. Attempting to find alternative drugs isolated from Nature as agents against Trypanosoma cruzi has been our goal. Recently, we have demonstrated the in vitro anti-T. cruzi activities of two secondary metabolites isolated from the hydro-ethanolic extract of the aerial parts of Aristeguietia glutinosa (Lam., (family Asteraceae. These active principles displayed poor hemolytic activity, low toxicity against murine macrophages, and absence of mutagenicity. Herein, proof of concept in vivo studies of the whole hydro-ethanolic extract of the aerial parts of Aristeguietia glutinosa and of the most active component isolated from the hydro-ethanolic extract, i.e., (+-15-hydroxy-7-labden-17-al, was done in a murine acute model of Chagas disease. Both treatments caused a decrease in the animals’ parasitemia. Metabolomic mechanism of action studies were done by 1H-NMR, both on the extract and on the active compounds, examining the effects of the metabolites both on membrane sterol biosynthesis and mitochondrial dehydrogenases, whereby we found that one of the metabolites inhibited the activity of the parasite mitochondrial dehydrogenases and the other inhibited the biosynthesis of parasite membrane sterols. The results are interesting in the context of popular use of plants for the treatment of Chagas disease.

  14. In vivo anti-Trypanosoma cruzi activity of hydro-ethanolic extract and isolated active principles from Aristeguietia glutinosa and mechanism of action studies.

    Science.gov (United States)

    Varela, Javier; Serna, Elva; Torres, Susana; Yaluff, Gloria; de Bilbao, Ninfa I Vera; Miño, Patricio; Chiriboga, Ximena; Cerecetto, Hugo; González, Mercedes

    2014-06-23

    The currently available treatments for Chagas disease show limited therapeutic potential and are associated with serious side effects. Attempting to find alternative drugs isolated from Nature as agents against Trypanosoma cruzi has been our goal. Recently, we have demonstrated the in vitro anti-T. cruzi activities of two secondary metabolites isolated from the hydro-ethanolic extract of the aerial parts of Aristeguietia glutinosa (Lam.), (family Asteraceae). These active principles displayed poor hemolytic activity, low toxicity against murine macrophages, and absence of mutagenicity. Herein, proof of concept in vivo studies of the whole hydro-ethanolic extract of the aerial parts of Aristeguietia glutinosa and of the most active component isolated from the hydro-ethanolic extract, i.e., (+)-15-hydroxy-7-labden-17-al, was done in a murine acute model of Chagas disease. Both treatments caused a decrease in the animals' parasitemia. Metabolomic mechanism of action studies were done by 1H-NMR, both on the extract and on the active compounds, examining the effects of the metabolites both on membrane sterol biosynthesis and mitochondrial dehydrogenases, whereby we found that one of the metabolites inhibited the activity of the parasite mitochondrial dehydrogenases and the other inhibited the biosynthesis of parasite membrane sterols. The results are interesting in the context of popular use of plants for the treatment of Chagas disease.

  15. Anti-Trypanosoma cruzi and anti-leishmanial activity by quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives.

    Science.gov (United States)

    Villalobos-Rocha, Juan Carlos; Sánchez-Torres, Luvia; Nogueda-Torres, Benjamín; Segura-Cabrera, Aldo; García-Pérez, Carlos A; Bocanegra-García, Virgilio; Palos, Isidro; Monge, Antonio; Rivera, Gildardo

    2014-06-01

    In this work, a novel series of ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives were evaluated in vitro on Trypanosoma cruzi trypomastigotes and Leishmania mexicana promastigotes, and cytotoxicity activity in murine macrophages was tested. In silico molecular docking simulations of trypanothione reductase were also done. Three compounds of 33 quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives showed better anti-T. cruzi activity than nifurtimox and beznidazole; two compounds had better anti-leishmanial activity that amphotericin-B, and two compounds showed better activity against both parasites than reference drugs. Compounds M2, M7, M8 and E5, showed low cytotoxic activity on the host cell. The in silico studies suggest that compound M2 is a potential trypanothione reductase inhibitor.

  16. Rhodium-catalyzed C-H bond activation for the synthesis of quinonoid compounds: Significant Anti-Trypanosoma cruzi activities and electrochemical studies of functionalized quinones.

    Science.gov (United States)

    Jardim, Guilherme A M; Silva, Thaissa L; Goulart, Marilia O F; de Simone, Carlos A; Barbosa, Juliana M C; Salomão, Kelly; de Castro, Solange L; Bower, John F; da Silva Júnior, Eufrânio N

    2017-08-18

    Thirty four halogen and selenium-containing quinones, synthesized by rhodium-catalyzed C-H bond activation and palladium-catalyzed cross-coupling reactions, were evaluated against bloodstream trypomastigotes of T. cruzi. We have identified fifteen compounds with IC 50 /24 h values of less than 2 μM. Electrochemical studies on A-ring functionalized naphthoquinones were also performed aiming to correlate redox properties with trypanocidal activity. For instance, (E)-5-styryl-1,4-naphthoquinone 59 and 5,8-diiodo-1,4-naphthoquinone 3, which are around fifty fold more active than the standard drug benznidazole, are potential derivatives for further investigation. These compounds represent powerful new agents useful in Chagas disease therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Anti-Trypanosoma cruzi antibody detection in eastern Andalusia (Spain).

    Science.gov (United States)

    Marín, Clotilde; Concha-Valdez, Fanny; Cañas, Rocío; Gutiérrez-Sánchez, Ramón; Sánchez-Moreno, Manuel

    2014-03-01

    Chagas disease caused by the protozoan haemoflagellate Trypanosoma cruzi is no longer found exclusively in Latin America; the disease is occurring in Europe, and Spain is the country with the highest prevalence. Our aim was to detect anti-T. cruzi antibodies in blood donors from southeast Spain, and we performed eight serological diagnostic assays on each of 550 blood samples collected in March-June 2010. Two in-house ELISA methods were used to test against a parasite lysate (ELISA-H) and the semi-purified superoxide dismutase excreted by T. cruzi (ELISA-SODe); we also used the Western blot technique against the same antigen (WB-SODe), indirect immunofluorescence (IFA) and four commercial tests. The serological test results showed a range of seroprevalence values, the lowest being 1.1%, determined by IFA and two commercial tests (Ab rapid and Chagascreen); other values were: 1.3% (commercial ELISA [Chagas ELISA IgG+IgM]); 2.1% (immunochromatographic test [Stick Chagas]); 2.7% (ELISA-H); 4.0% (WB-SODe); and 4.2%, the highest value (ELISA-SODe). The excellent specificity of SODe antigen for the detection of antibodies to T. cruzi in donors lead us to affirm that the serological test performed with this biomarker could provide a useful screening and confirmatory test method for cases of Chagas disease.

  18. Chemical composition and anti-Trypanosoma cruzi activity of essential oils obtained from leaves of Xylopia frutescens and X. laevigata (Annonaceae).

    Science.gov (United States)

    da Silva, Thanany Brasil; Menezes, Leociley Rocha Alencar; Sampaio, Marília Fernanda Chaves; Meira, Cássio Santana; Guimarães, Elisalva Teixeira; Soares, Milena Botelho Pereira; Prata, Ana Paula do Nascimento; Nogueira, Paulo Cesar de Lima; Costa, Emmanoel Vilaça

    2013-03-01

    Essential oils from leaves of Xylopia frutescens (XFMJ) and two specimens of Xylopia laevigata (XLMC and XLSI) were obtained by hydrodistillation using a Clevenger-type apparatus, and analyzed by GC-MS and GC-FID. Sesquiterpenes dominated the essential oils. The main constituents of XFMJ were (E)-caryophyllene (24.8%), bicyclogermacrene (20.8%), germacrene D (17.0%), beta-elemene (7.9%), and (E)-beta-ocimene (6.8%). XLMC contained significant quantities of germacrene D (18.9%), bicyclogermacrene (18.4%), beta-elemene (9.5%), delta-selinene (9.2%), (E)-caryophyllene (8.5%), germacrene B (5.7%) and gamma-muurolene (5.7%), while germacrene D (27.0%), bicyclogermacrene (12.8%), (E)-caryophyllene (8.6%), gamma-muurolene (8.6%), delta-cadinene (6.8%), and germacrene B (6.0%) were the main components of XLSI. The essential oils had trypanocidal activity against the Y strain of Trypanosoma cruzi, with IC50 values lower than 30 microg x mL(-1) and 15 microg x mL(-1) against epimastigote and trypomastigote forms of T. cruzi, respectively, and were also able to reduce the percentage in vitro of T. cruzi-infected macrophages and the intracellular number of amastigotes at concentrations that were non-cytotoxic to macrophages.

  19. Synthesis, crystal structure, catalytic and anti-Trypanosoma cruzi activity of a new chromium(III) complex containing bis(3,5-dimethylpyrazol-1-yl)methane

    Science.gov (United States)

    Hurtado, John; Ibarra, Laura; Yepes, David; García-Huertas, Paola; Macías, Mario A.; Triana-Chavez, Omar; Nagles, Edgar; Suescun, Leopoldo; Muñoz-Castro, Alvaro

    2017-10-01

    The reaction of CrCl36H2O with the ligand bis(3,5-dimethylpyrazol-1-yl)methane (L) yielded the cationic complex [(Cr(L)(H2O)2Cl2]+, which crystallized as the chloride trihydrate [(Cr(L)(H2O)2Cl2]Cl·3H2O. The chromium complex was characterized by elemental analysis, electrical conductivity, Infrared and Ultraviolet/Visible spectroscopy. The crystal structure determination using single-crystal X-ray diffraction showed a chromium center in a distorted octahedral coordination sphere. In the crystal, the packing was directed by Osbnd H⋯(O,Cl) hydrogen bonds and weak Csbnd H⋯O interactions to build a monoclinic P21/c supramolecular structure. The complex showed excellent properties as an initiator for the ring opening polymerization of є-caprolactone (CL) under solvent-free conditions. The obtained polymer showed high crystallinity (89.9%) and a decomposition temperature above 475 °C. In addition, the new complex was evaluated against epimastigotes from Trypanosoma cruzi (T. cruzi) strains. The results indicated that this complex has a high activity against this parasite with a minimum inhibitory concentration 50 (MIC50) of 1.08 μg/mL. Interestingly, this compound showed little effect on erythrocytes, indicating that it is not cytotoxic. These results provide interesting contributions to the design of metal complexes by using simple and accessible ligands with activity against T. cruzi and with potential applications in the polymerization of CL.

  20. New achievements on biological aspects of copper complexes Casiopeínas®: interaction with DNA and proteins and anti-Trypanosoma cruzi activity.

    Science.gov (United States)

    Becco, Lorena; Rodríguez, Alejandra; Bravo, María Elena; Prieto, María José; Ruiz-Azuara, Lena; Garat, Beatriz; Moreno, Virtudes; Gambino, Dinorah

    2012-04-01

    The mixed-chelate copper(II) complexes Casiopeínas® have been tested in several models in vitro and in vivo, showing promising antitumoral results. However, their mechanism of action remains to be defined. Trying to get a deeper insight into their molecular mode of action, further analyses, including gel electrophoresis, atomic force microscopy and circular dichroism were carried out to study their interaction with DNA and some cytoskeleton proteins. Our results revealed that the interaction of Casiopeínas triggers DNA cleavage by a free radical mechanism. The tested complexes showed a differential response to reducing and scavenger agents. Differences on target preference were also evident using double stranded oligonucleotides as sequence competitors. Surprisingly, distamycin A, a minor groove binder, enhanced the Casiopeínas' action on DNA. On the other hand, the tested Casiopeínas produce strong changes in protein structure of tubulin, integrin and fibronectin. All together these results suggest a multiple mode of action for these metal-based drugs. In addition, since it has been proposed that antitumor drugs efficiently interacting with DNA could also show activity against Trypanosoma cruzi, etiologic agent of Chagas disease, we evaluated the activity of these compounds on this protozoan parasite. The tested complexes showed in vitro anti-T. cruzi activity similar to the anti-trypanosomal reference drug Nifurtimox. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Synthesis and anti-Trypanosoma cruzi activity of naphthoquinone-containing triazoles: electrochemical studies on the effects of the quinoidal moiety.

    Science.gov (United States)

    Diogo, Emilay B T; Dias, Gleiston G; Rodrigues, Bernardo L; Guimarães, Tiago T; Valença, Wagner O; Camara, Celso A; de Oliveira, Ronaldo N; da Silva, Mauro G; Ferreira, Vitor F; de Paiva, Yen Galdino; Goulart, Marilia O F; Menna-Barreto, Rubem F S; de Castro, Solange L; da Silva Júnior, Eufrânio N

    2013-11-01

    In our continued search for novel trypanocidal compounds, twenty-six derivatives of para- and ortho-naphthoquinones coupled to 1,2,3-triazoles were synthesized. These compounds were evaluated against the infective bloodstream form of Trypanosoma cruzi, the etiological agent of Chagas disease. Compounds 17-24, 28-30 and 36-38 are described herein for the first time. Three of these novel compounds (28-30) were found to be more potent than the standard drug benznidazole, with IC50/24h values between 6.8 and 80.8μM. Analysis of the toxicity to heart muscle cells led to LC50/24h of activity, and it was observed that more electrophilic quinones were generally more potent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Expanding the family of heteroleptic oxidovanadium(IV) compounds with salicylaldehyde semicarbazones and polypyridyl ligands showing anti-Trypanosoma cruzi activity.

    Science.gov (United States)

    Scalese, Gonzalo; Benítez, Julio; Rostán, Santiago; Correia, Isabel; Bradford, Lara; Vieites, Marisol; Minini, Lucía; Merlino, Alicia; Coitiño, E Laura; Birriel, Estefania; Varela, Javier; Cerecetto, Hugo; González, Mercedes; Pessoa, João Costa; Gambino, Dinorah

    2015-06-01

    Searching for prospective vanadium-based drugs for the treatment of Chagas disease, a new series of heteroleptic [V(IV)O(L-2H)(NN)] compounds was developed by including the lipophilic 3,4,7,8-tetramethyl-1,10-phenanthroline (tmp) NN ligand and seven tridentate salicylaldehyde semicarbazone derivatives (L1-L7). The compounds were characterized in the solid state and in solution. EPR spectroscopy suggests that the NN ligand is bidentate bound through both nitrogen donor atoms in an axial-equatorial mode. The EPR and (51)V-NMR spectra of aerated solutions at room temperature indicate that the compounds are stable to hydrolysis and that no significant oxidation of V(IV) to V(V) takes place at least in 24h. The complexes are more active in vitro against Trypanosoma cruzi, the parasite responsible for Chagas disease, than the reference drug Nifurtimox and most of them are more active than previously reported [V(IV)O(L-2H)(NN)] complexes of other NN co-ligands. Selectivity towards the parasite was analyzed using J-774 murine macrophages as mammalian cell model. Due to both, high activity and high selectivity, L2, L4, L5 and L7 complexes could be considered new hits for further drug development. Lipophilicity probably plays a relevant role in the bioactivity of the new compounds. The [V(IV)O(L-2H)(NN)] compounds were designed aiming DNA as potential molecular target. Therefore, the novel L1-L7 tmp complexes were screened by computational modeling, comparing their DNA-binding features with those of previously reported [V(IV)O(L-2H)(NN)] compounds with different NN co-ligands. Whereas all the complexes interact well with DNA, with binding modes and strength tuned in different extents by the NN and semicarbazone co-ligands, molecular docking suggests that the observed anti-T. cruzi activity cannot be explained upon DNA intercalation as the sole mechanism of action. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Ruthenium(II) complexes of 1,3-thiazolidine-2-thione: Cytotoxicity against tumor cells and anti-Trypanosoma cruzi activity enhanced upon combination with benznidazole.

    Science.gov (United States)

    Corrêa, Rodrigo S; da Silva, Monize M; Graminha, Angelica E; Meira, Cássio S; Santos, Jamyle A F Dos; Moreira, Diogo R M; Soares, Milena B P; Von Poelhsitz, Gustavo; Castellano, Eduardo E; Bloch, Carlos; Cominetti, Marcia R; Batista, Alzir A

    2016-03-01

    Three new mixed and mononuclear Ru(II) complexes containing 1,3-thiazolidine-2-thione (tzdtH) were synthesized and characterized by spectroscopic analysis, molar conductivity, cyclic voltammetry, high-resolution electrospray ionization mass spectra and X-ray diffraction. The complexes presented unique stereochemistry and the proposed formulae are: [Ru(tzdt)(bipy)(dppb)]PF6 (1), cis-[Ru(tzdt)2(PPh3)2] (2) and trans-[Ru(tzdt)(PPh3)2(bipy)]PF6 (3), where dppb=1,4-bis(diphenylphosphino)butane and bipy=2,2'-bipyridine. These complexes demonstrated strong cytotoxicity against cancer cell lines when compared to cisplatin. Specifically, complex 2 was the most potent cytotoxic agent against MCF-7 breast cells, while complexes 1 and 3 were more active in DU-145 prostate cells. Binding of complexes to ctDNA was determined by UV-vis titration and viscosity measurements and revealed binding constant (Kb) values in range of 1.0-4.9×10(3)M(-1), which are characteristic of compounds possessing weak affinity to ctDNA. In addition, these complexes presented antiparasitic activity against Trypanosoma cruzi. Specifically, complex 3 demonstrated strong potency, moderate selectivity index and acted in synergism with the approved antiparasitic drug, benznidazole. Additionally, complex 3 caused parasite cell death through a necrotic process. In conclusion, we demonstrated that Ru(II) complexes have powerful pharmacological activity, while the metal-free tzdtH does not provoke the same outcome. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Optimization of anti-Trypanosoma cruzi oxadiazoles leads to identification of compounds with efficacy in infected mice.

    Science.gov (United States)

    dos Santos Filho, José Maurício; Moreira, Diogo Rodrigo M; de Simone, Carlos Alberto; Ferreira, Rafaela Salgado; McKerrow, James H; Meira, Cássio Santana; Guimarães, Elisalva Teixeira; Soares, Milena Botelho Pereira

    2012-11-01

    We recently showed that oxadiazoles have anti-Trypanosoma cruzi activity at micromolar concentrations. These compounds are easy to synthesize and show a number of clear and interpretable structure-activity relationships (SAR), features that make them attractive to pursue potency enhancement. We present here the structural design, synthesis, and anti-T. cruzi evaluation of new oxadiazoles denoted 5a-h and 6a-h. The design of these compounds was based on a previous model of computational docking of oxadiazoles on the T. cruzi protease cruzain. We tested the ability of these compounds to inhibit catalytic activity of cruzain, but we found no correlation between the enzyme inhibition and the antiparasitic activity of the compounds. However, we found reliable SAR data when we tested these compounds against the whole parasite. While none of these oxadiazoles showed toxicity for mammalian cells, oxadiazoles 6c (fluorine), 6d (chlorine), and 6e (bromine) reduced epimastigote proliferation and were cidal for trypomastigotes of T. cruzi Y strain. Oxadiazoles 6c and 6d have IC(50) of 9.5 ± 2.8 and 3.5 ± 1.8 μM for trypomastigotes, while Benznidazole, which is the currently used drug for Chagas disease treatment, showed an IC(50) of 11.3 ± 2.8 μM. Compounds 6c and 6d impair trypomastigote development and invasion in macrophages, and also induce ultrastructural alterations in trypomastigotes. Finally, compound 6d given orally at 50mg/kg substantially reduces the parasitemia in T. cruzi-infected BALB/c mice. Our drug design resulted in potency enhancement of oxadiazoles as anti-Chagas disease agents, and culminated with the identification of oxadiazole 6d, a trypanosomicidal compound in an animal model of infection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Standardization of serological tests for detecting anti-Trypanosoma cruzi antibodies in dogs

    Directory of Open Access Journals (Sweden)

    M. A. Lauricella

    1993-09-01

    Full Text Available This paper reports on the standardization of four serological reactions currently used in human serodiagnosis for the detection of anti-Trypanosoma cruzi antibodies in naturally and experimentally infected dogs. Indirect immunofluorescence test (IFAT and hemagglutination test (IHAT were standardized, and complement fixation test (CFT and direct agglutination test (DAT were used for diagnostic confirmation. Four hundred and eighty one mongrel dogs that were studied by xenodiagnosis were used: (1 parasitemic dogs of two localities of endemic area (EA of Santiago del Estero province in Argentina (n = 134; (2 non-parasitemic dogs of the same area (n = 285; (3 dogs experimentally infected with T. cruzi in the patent period (n = 6; (4 non-infected dogs (n = 56 which were born in the city of Buenos Aires (BA, one non-EA for Chagas' disease. For IFAT, parasitemic dogs EA showed 95% of reactive sera. Non parasitemic dogs EA showed 77% of non reactive sera. None sera from BA were reactive for dilutions higher than four. For IHAT, 84% of sera of parasitemic dogs EA showed serological reactivity and among non parasitemic dogs BA, 61% were non reactive, while the remainder showed at most titres of 1/16. The cut-off titres for IFAT and IHAT were 1/16 and 1/32 respectively, and for CFT and DAT 1/1 and 1/128 respectively. Sensitivity for IFAT, IHAT, CF and DAT were 95%, 84%, 97% and 95% respectively.

  6. Synthesis, biological evaluation, and structure-activity relationships of potent noncovalent and nonpeptidic cruzain inhibitors as anti-Trypanosoma cruzi agents.

    Science.gov (United States)

    Ferreira, Rafaela S; Dessoy, Marco A; Pauli, Ivani; Souza, Mariana L; Krogh, Renata; Sales, Ana I L; Oliva, Glaucius; Dias, Luiz C; Andricopulo, Adriano D

    2014-03-27

    The development of cruzain inhibitors has been driven by the urgent need to develop novel and more effective drugs for the treatment of Chagas' disease. Herein, we report the lead optimization of a class of noncovalent cruzain inhibitors, starting from an inhibitor previously cocrystallized with the enzyme (K(i) = 0.8 μM). With the goal of achieving a better understanding of the structure-activity relationships, we have synthesized and evaluated a series of over 40 analogues, leading to the development of a very promising competitive inhibitor (8r, IC50 = 200 nM, K(i) = 82 nM). Investigation of the in vitro trypanocidal activity and preliminary cytotoxicity revealed the potential of the most potent cruzain inhibitors in guiding further medicinal chemistry efforts to develop drug candidates for Chagas' disease.

  7. Nitro/Nitrosyl-Ruthenium Complexes Are Potent and Selective Anti-Trypanosoma cruzi Agents Causing Autophagy and Necrotic Parasite Death

    Science.gov (United States)

    Bastos, Tanira M.; Barbosa, Marília I. F.; da Silva, Monize M.; da C. Júnior, José W.; Meira, Cássio S.; Guimaraes, Elisalva T.; Ellena, Javier; Moreira, Diogo R. M.; Batista, Alzir A.

    2014-01-01

    cis-[RuCl(NO2)(dppb)(5,5′-mebipy)] (complex 1), cis-[Ru(NO2)2(dppb)(5,5′-mebipy)] (complex 2), ct-[RuCl(NO)(dppb)(5,5′-mebipy)](PF6)2 (complex 3), and cc-[RuCl(NO)(dppb)(5,5′-mebipy)](PF6)2 (complex 4), where 5,5′-mebipy is 5,5′-dimethyl-2,2′-bipyridine and dppb is 1,4-bis(diphenylphosphino)butane, were synthesized and characterized. The structure of complex 2 was determined by X-ray crystallography. These complexes exhibited a higher anti-Trypanosoma cruzi activity than benznidazole, the current antiparasitic drug. Complex 3 was the most potent, displaying a 50% effective concentration (EC50) of 2.1 ± 0.6 μM against trypomastigotes and a 50% inhibitory concentration (IC50) of 1.3 ± 0.2 μM against amastigotes, while it displayed a 50% cytotoxic concentration (CC50) of 51.4 ± 0.2 μM in macrophages. It was observed that the nitrosyl complex 3, but not its analog lacking the nitrosyl group, releases nitric oxide into parasite cells. This release has a diminished effect on the trypanosomal protease cruzain but induces substantial parasite autophagy, which is followed by a series of irreversible morphological impairments to the parasites and finally results in cell death by necrosis. In infected mice, orally administered complex 3 (five times at a dose of 75 μmol/kg of body weight) reduced blood parasitemia and increased the survival rate of the mice. Combination index analysis of complex 3 indicated that its in vitro activity against trypomastigotes is synergic with benznidazole. In addition, drug combination enhanced efficacy in infected mice, suggesting that ruthenium-nitrosyl complexes are potential constituents for drug combinations. PMID:25092707

  8. Evaluación in vitro de la actividad anti Trypanosoma cruzi de aceites esenciales de diez plantas medicinales

    Directory of Open Access Journals (Sweden)

    Juan Rojas

    2010-07-01

    Full Text Available Objetivos: Determinar la actividad anti Trypanosoma cruzi in vitro de los aceites esenciales de 10 plantas medicinales. Además, determinar la actividad citotóxica de los aceites contra células de mamíferos y la actividad modulatoria de los aceites sobre el óxido nítrico. Diseño: Estudio experimental in vitro. Institución: Instituto de Investigaciones Clínicas e Instituto de Medicina Tropical, Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú. Material biológico: Epimastigotes de Trypanosoma cruzi, células Raw 264.7, aceites esenciales de Mentha X piperita L (menta, Rosmarinus officinalis L (romero, Chenopodium ambrosioides L (paico, Eucaliptus globulus Labill (eucalipto, Artemisia absinthium L (ajenjo, Melissa officinalis L (toronjil, Minthostachys setosa Brig (muña, Cimbopogon citratus (hierba luisa, Aloysia triphylla (cedrón y Mentha spicata L (hierba buena. Método: La actividad tripanocida se evaluó contra epimastigotes cultivados en medio LIT, incubados por 48 horas a 37ºC en incubador humidificado con CO2 al 5%. El cristal violeta se utilizó como control positivo. La actividad citotóxica de los productos contra células mamíferas se evaluó en células RAW 264.7 y la actividad modulatoria de los compuestos sobre óxido nítrico también se determinó en los cultivos de células RAW 264.7. Principales medidas de resultados: Porcentaje de inhibición de viabilidad y CI50. Resultados: Los aceites esenciales de Cymbopogon citratus (hierba luisa y Aloysia triphylla (cedrón inhibieron significativamente el crecimiento de la forma epimastigote de T. cruzi, con una CI50 de 63,09 y 96,49 μg/mL, respectivamente. No hubo variaciσn significativa de la concentraciσn de óxido nítrico y tampoco se evidenció citotoxicidad. Conclusiones: Los aceites esenciales de Cymbopogon citratus y Aloysia triphylla mostraron actividad anti-Trypanosoma cruzi in vitro y no fueron citotóxicas para las células mamíferas.

  9. Synthesis, Biological Evaluation and Molecular Docking of New Benzenesulfonylhydrazone as Potential anti-Trypanosoma cruzi Agents.

    Science.gov (United States)

    Elizondo-Jimenez, Silvia; Moreno-Herrera, Antonio; Reyes-Olivares, Rogelio; Dorantes-Gonzalez, Edith; Nogueda-Torres, Benjamín; Oliveira, Eduardo A Gamosa de; Romeiro, Nelilma C; Lima, Lidia M; Palos, Isidro; Rivera, Gildardo

    2017-01-01

    Chagas disease is a public health problem caused by Trypanosoma cruzi. Cruzain is a pharmacological target for designing a new drug against this parasite. Hydrazone and Nacylhydrazone derivatives have been traditionally associated as potential Cruzain inhibitors. Additionally, benzenesulfonyl derivatives show trypanocidal activity. Therefore, in this study, the combination of both structures has been taken into account for drug design. Seven benzenesulfonylhydrazone (BS-H) and seven N-propionyl benzenesulfonylhydrazone (BS-NAH) derivatives were synthetized and elucidated by infrared spectroscopy, nuclear magnetic resonance, and elemental analysis. All compounds were evaluated biologically in vitro against two strains of Trypanosoma cruzi (NINOA and INC-5), which are endemic in Mexico, and compared with the reference drugs nifurtimox and benznidazole. In order to gain insight into the putative molecular origin of the trypanocidal properties of these derivatives, docking studies were carried out with Cruzain. Compounds 4 and 6 (BS-H) and 10, 12-14 (BS-NAH) showed the best biological activity against NINOA and INC-5 strains, respectively. Compound 13 was the most potent trypanocidal compound showing a LC50 of 0.06 µM against INC-5 strain. However, compound 4 showed the best activity against both strains (LC50 activity. Benzenesulfonyl and N-propionyl benzenesulfonyl hydrazone derivatives are good options for developing new trypanocidal agents. Particularly, compound 4 could be considered a lead compound. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Efecto anti-Trypanosoma cruzi del aceite esencial de Cymbopogon citratus (DC Stapf (hierba luisa en ratones Balb/c

    Directory of Open Access Journals (Sweden)

    Juan Rojas

    2012-01-01

    Full Text Available Objetivo: Determinar la actividad anti-Trypanosoma cruzi in vivo del aceite esencial de Cymbopogon citratus en ratones Balb/c. Diseño: Estudio experimental, prospectivo. Institución: Instituto de Investigaciones Clínicas e Instituto de Medicina Tropical de la Facultad de Medicina de la Universidad Nacional Mayor de San Marcos, Lima, Perú. Material biológico: Aceite esencial de Cymbopogon citratus; ratones albinos Balb/c. Intervenciones: Los animales fueron asignados aleatoriamente a seis grupos de 15 ratones cada uno: infectados y no tratados (G1, infectados y tratados con benznidazol 100 mg/kg (G2, infectados y tratados con aceite esencial de Cymbopogon citratus 100 mg/kg y 250 mg/kg (G3 y G4, respectivamente, no infectados y no tratados (G5, y no infectados y tratados con 250 mg de Cymbopogon citratus (G6. La infección con T. cruzi se realizó con 10(4 trypomastigotes sanguíneos y el tratamiento empezó en el 8º día post infección (dpi hasta el 28° dpi. La parasitemia se determinó con microscopia óptica cada dos días en 5 µL de sangre de la cola. En el 14°, 21° y 28° dpi, cinco animales de cada grupo fueron sacrificados y se removió el corazón para estudio histopatológico. Principales medidas de resultados: Parasitemia, número de nidos de amastigotes e infiltrados inflamatorios. Resultados: El aceite esencial de Cymbopogon citratus 250 mg/kg/día produjo una reducción significativa en el pico de parasitemia desde 113,92 ± 25,66 hasta 74,60 ± 12,37 tripomastigotes/mL (p < 0,05. Con 100 mg/kg/día se produjo una reducción hasta 77,40 ± 14,93 tripomastigotes/ mL (p < 0,05. También redujo el número de amastigotes y de infiltrados inflamatorios en el corazón. Conclusiones: El aceite esencial de Cymbopogon citratus tuvo efecto anti-Trypanosoma cruzi en ratones Balb/c en lo referente a la disminución de la parasitemia, el número de nidos de amastigotes y los resultados inflamatorios.

  11. Anti-Trypanosoma cruzi antibody detection in blood donors in the Southern Brazil

    Directory of Open Access Journals (Sweden)

    A.B. Araújo

    Full Text Available Trypanosoma cruzi, the causal agent of Chagas' Disease, is a widely spread protozoa in America. Blood transfusion is the secondly most important way of acquiring the infection. In blood banks, tests are performed to eliminate potentially infected blood. This study aimed to evaluate the positivity for T. cruzi in blood samples of donor's candidates in Southern Brazil. The study was based on a sampling containing all blood donors of Hemopel - a Pelotas City Blood Center, Rio Grande do Sul State, Brazil, from 2004 to 2005. Serological study was performed using ELISA Chagatest. Sampling containing values ± 20% cut off were evaluated using ELISA Chagatek, ELISA Alka/Adaltis, IHA Chagatest and IIF Imunocruzi. TESA-Blot was used as a confirmatory procedure in situations where blood samples showed conflicting results. From 4,482 samples collected in 2004 and 2005, the reactivity for anti-T. cruzi was 0.96% (43. Among those, 21 cases (0.47% were confirmed as positive - most of them were female, with low school level and averaging 47.2% years old. Interestingly, the blood donors are not aware of being contaminated and this fact makes it difficult for controlling the disease. Chagas' Disease was one of the main reasons for discarding blood bags through serological control in Southern Brazil. Sampling reactivity showed variation among the different techniques used for anti-T. cruzi research. In order to obtaining more secure and conclusive results, more than one diagnostic technique must be used.

  12. 5-Nitro-2-furfuriliden derivatives as potential anti-Trypanosoma cruzi agents: design, synthesis, bioactivity evaluation, cytotoxicity and exploratory data analysis.

    Science.gov (United States)

    Palace-Berl, Fanny; Jorge, Salomão Dória; Pasqualoto, Kerly Fernanda Mesquita; Ferreira, Adilson Kleber; Maria, Durvanei Augusto; Zorzi, Rodrigo Rocha; de Sá Bortolozzo, Leandro; Lindoso, José Ângelo Lauletta; Tavares, Leoberto Costa

    2013-09-01

    The anti-Trypanosoma cruzi activity of 5-nitro-2-furfuriliden derivatives as well as the cytotoxicity of these compounds on J774 macrophages cell line and FN1 human fibroblast cells were investigated in this study. The most active compounds of series I and II were 4-butyl-[N'-(5-nitrofuran-2-yl) methylene] benzidrazide (3g; IC50=1.05μM±0.07) and 3-acetyl-5-(4-butylphenyl)-2-(5-nitrofuran-2-yl)-2,3-dihydro,1,3,4-oxadiazole (4g; IC50=8.27μM±0.42), respectively. Also, compound 3g was more active than the standard drugs, benznidazole (IC50=22.69μM±1.96) and nifurtimox (IC50=3.78μM±0.10). Regarding the cytotoxicity assay, the 3g compound presented IC50 value of 28.05μM (SI=26.71) against J774 cells. For the FN1 fibroblast assay, 3g showed IC50 value of 98μM (SI=93.33). On the other hand, compound 4g presented a cytotoxicity value on J774 cells higher than 400μM (SI >48), and for the FN1 cells its IC50 value was 186μM (SI=22.49). Moreover, an exploratory data analysis, which comprises hierarchical cluster (HCA) and principal component analysis (PCA), was carried out and the findings were complementary. The molecular properties that most influenced the compounds' grouping were ClogP and total dipole moment, pointing out the need of a lipophilic/hydrophilic balance in the designing of novel potential anti-T. cruzi molecules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Decoding the anti-Trypanosoma cruzi action of HIV peptidase inhibitors using epimastigotes as a model.

    Directory of Open Access Journals (Sweden)

    Leandro S Sangenito

    Full Text Available BACKGROUND: Aspartic peptidase inhibitors have shown antimicrobial action against distinct microorganisms. Due to an increase in the occurrence of Chagas' disease/AIDS co-infection, we decided to explore the effects of HIV aspartic peptidase inhibitors (HIV-PIs on Trypanosoma cruzi, the etiologic agent of Chagas' disease. METHODOLOGY AND PRINCIPAL FINDINGS: HIV-PIs presented an anti-proliferative action on epimastigotes of T. cruzi clone Dm28c, with IC50 values ranging from 0.6 to 14 µM. The most effective inhibitors, ritonavir, lopinavir and nelfinavir, also had an anti-proliferative effect against different phylogenetic T. cruzi strains. The HIV-PIs induced some morphological alterations in clone Dm28c epimastigotes, as reduced cell size and swollen of the cellular body. Transmission electron microscopy revealed that the flagellar membrane, mitochondrion and reservosomes are the main targets of HIV-PIs in T. cruzi epimastigotes. Curiously, an increase in the epimastigote-into-trypomastigote differentiation process of clone Dm28c was observed, with many of these parasites presenting morphological alterations including the detachment of flagellum from the cell body. The pre-treatment with the most effective HIV-PIs drastically reduced the interaction process between epimastigotes and the invertebrate vector Rhodnius prolixus. It was also noted that HIV-PIs induced an increase in the expression of gp63-like and calpain-related molecules, and decreased the cruzipain expression in epimastigotes as judged by flow cytometry and immunoblotting assays. The hydrolysis of a cathepsin D fluorogenic substrate was inhibited by all HIV-PIs in a dose-dependent manner, showing that the aspartic peptidase could be a possible target to these drugs. Additionally, we verified that ritonavir, lopinavir and nelfinavir reduced drastically the viability of clone Dm28c trypomastigotes, causing many morphological damages. CONCLUSIONS AND SIGNIFICANCE: The results

  14. Conformational restriction of aryl thiosemicarbazones produces potent and selective anti-Trypanosoma cruzi compounds which induce apoptotic parasite death.

    Science.gov (United States)

    Magalhaes Moreira, Diogo Rodrigo; de Oliveira, Ana Daura Travassos; Teixeira de Moraes Gomes, Paulo André; de Simone, Carlos Alberto; Villela, Filipe Silva; Ferreira, Rafaela Salgado; da Silva, Aline Caroline; dos Santos, Thiago André Ramos; Brelaz de Castro, Maria Carolina Accioly; Pereira, Valéria Rego Alves; Leite, Ana Cristina Lima

    2014-03-21

    Chagas disease, caused by Trypanosoma cruzi, is a life-threatening infection leading to approximately 12,000 deaths per year. T. cruzi is susceptible to thiosemicarbazones, making this class of compounds appealing for drug development. Previously, the homologation of aryl thiosemicarbazones resulted in an increase in anti-T. cruzi activity in comparison to aryl thiosemicarbazones without a spacer group. Here, we report the structural planning, synthesis and anti-T. cruzi evaluation of new aryl thiosemicarbazones (9a-x), designed as more conformationally restricted compounds. By varying substituents attached to the phenyl ring, substituents were observed to retain, enhance or greatly increase the anti-T. cruzi activity, in comparison to the nonsubstituted derivative. In most cases, hydrophobic and bulky substituents, such as bromo, biphenyl and phenoxyl groups, greatly increased antiparasitic activity. Specifically, thiosemicarbazones were identified that inhibit the epimastigote proliferation and were toxic for trypomastigotes without affecting mouse splenocytes viability. The most potent anti-T. cruzi thiosemicarbazones were evaluated against cruzain. However, inhibition of this enzyme was not observed, suggesting that the compounds work through another mechanism. In addition, examination of T. cruzi cell death showed that these thiosemicarbazones induce apoptosis. In conclusion, the structural design executed within the series of aryl thiosemicarbazones (9a-x) led to the identification of new potent anti-T. cruzi agents, such as compounds (9h) and (9r), which greatly inhibited epimastigote proliferation, and demonstrated a toxicity for trypomastigotes, but not for splenocytes. Mechanistically, these compounds do not inhibit the cruzain, but induce T. cruzi cell death by an apoptotic process. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Desing and synthesis of potent anti-Trypanosoma cruzi agents new thiazoles derivatives which induce apoptotic parasite death.

    Science.gov (United States)

    da Silva, Elany Barbosa; Oliveira E Silva, Dayane Albuquerque; Oliveira, Arsênio Rodrigues; da Silva Mendes, Carlos Henrique; Dos Santos, Thiago André Ramos; da Silva, Aline Caroline; de Castro, Maria Carolina Acioly; Ferreira, Rafaela Salgado; Moreira, Diogo Rodrigo Magalhães; Cardoso, Marcos Veríssimo de Oliveira; de Simone, Carlos Alberto; Pereira, Valéria Rêgo Alves; Leite, Ana Cristina Lima

    2017-04-21

    Chagas disease, caused by the kinetoplastid protozoan parasite Trypanosoma cruzi, remains a relevant cause of illness and premature death and it is estimated that 6 million to 7 million people are infected worldwide. Although chemotherapy options are limited presenting serious problems, such as low efficacy and high toxicity. T. cruzi is susceptible to thiazoles, making this class of compounds appealing for drug development. Previously, thiazoles resulted in an increase in anti-T. cruzi activity in comparison to thiosemicarbazones. Here, we report the structural planning, synthesis and anti-T. cruzi evaluation of new thiazoles derivatives (3a-m and 4a-m), designed from molecular hybridization associated with non-classical bioisosterism. By varying substituents attached to the phenyl and thiazole rings, substituents were observed to retain, enhance or greatly increase their anti-T. cruzi activity, in comparison to the corresponding thiosemicarbazones. In most cases, electron-withdrawing substituents, such as bromine, 3,4-dichloro and nitro groups, greatly increased antiparasitic activity. Specifically, new thiazoles were identified that inhibit the epimastigote proliferation and were toxic for trypomastigotes without affecting macrophages viability. These compounds were also evaluated against cruzain. However, inhibition of this enzyme was not observed, suggesting that the compounds work through another mechanism. In addition, examination of T. cruzi cell death showed that these molecules induce apoptosis. In conclusion, except for compounds 3h and 3k, all thiazoles derivatives evaluated exhibited higher cytotoxic activity against the trypomastigote forms than the reference medicament benznidazole, without affecting macrophages viability. Compounds 4d and 4k were highlights, CC50 = 1.2 e 1.6 μM, respectively. Mechanistically, these compounds do not inhibit the cruzain, but induce T. cruzi cell death by an apoptotic process, being considered a good starting

  16. Evolution of anti-Trypanosoma cruzi antibody production in patients with chronic Chagas disease: Correlation between antibody titers and development of cardiac disease severity.

    Directory of Open Access Journals (Sweden)

    Ingebourg Georg

    2017-07-01

    Full Text Available Chagas disease is one of the most important endemic infections in Latin America affecting around 6-7 million people. About 30-50% of patients develop the cardiac form of the disease, which can lead to severe cardiac dysfunction and death. In this scenario, the identification of immunological markers of disease progression would be a valuable tool for early treatment and reduction of death rates. In this observational study, the production of anti-Trypanosoma cruzi antibodies through a retrospective longitudinal follow-up in chronic Chagas disease patients´ cohort and its correlation with disease progression and heart commitment was evaluated. Strong inverse correlation (ρ = -0.6375, p = 0.0005 between anti-T. cruzi IgG1 titers and left ventricular ejection fraction (LVEF in chronic Chagas cardiomyopathy (CCC patients were observed after disease progression. Elevated levels of anti-T. cruzi IgG3 titers were detected in all T. cruzi-infected patients, indicating a lack of correlation of this IgG isotype with disease progression. Furthermore, low levels of anti-T. cruzi IgG2, IgG4, and IgA were detected in all patients through the follow-up. Although without statistical significance anti-T. cruzi IgE tends to be more reactive in patients with the indeterminate form (IND of the disease (p = 0.0637. As this study was conducted in patients with many years of chronic disease no anti-T. cruzi IgM was detected. Taken together, these results indicate that the levels of anti-T. cruzi IgG1 could be considered to seek for promising biomarkers to predict the severity of chronic Chagas disease cardiomyopathy.

  17. Evolution of anti-Trypanosoma cruzi antibody production in patients with chronic Chagas disease: Correlation between antibody titers and development of cardiac disease severity

    Science.gov (United States)

    Georg, Ingebourg; Hasslocher-Moreno, Alejandro Marcel; Xavier, Sergio Salles; de Holanda, Marcelo Teixeira; Bonecini-Almeida, Maria da Gloria

    2017-01-01

    Chagas disease is one of the most important endemic infections in Latin America affecting around 6–7 million people. About 30–50% of patients develop the cardiac form of the disease, which can lead to severe cardiac dysfunction and death. In this scenario, the identification of immunological markers of disease progression would be a valuable tool for early treatment and reduction of death rates. In this observational study, the production of anti-Trypanosoma cruzi antibodies through a retrospective longitudinal follow-up in chronic Chagas disease patients´ cohort and its correlation with disease progression and heart commitment was evaluated. Strong inverse correlation (ρ = -0.6375, p = 0.0005) between anti-T. cruzi IgG1 titers and left ventricular ejection fraction (LVEF) in chronic Chagas cardiomyopathy (CCC) patients were observed after disease progression. Elevated levels of anti-T. cruzi IgG3 titers were detected in all T. cruzi-infected patients, indicating a lack of correlation of this IgG isotype with disease progression. Furthermore, low levels of anti-T. cruzi IgG2, IgG4, and IgA were detected in all patients through the follow-up. Although without statistical significance anti-T. cruzi IgE tends to be more reactive in patients with the indeterminate form (IND) of the disease (p = 0.0637). As this study was conducted in patients with many years of chronic disease no anti-T. cruzi IgM was detected. Taken together, these results indicate that the levels of anti-T. cruzi IgG1 could be considered to seek for promising biomarkers to predict the severity of chronic Chagas disease cardiomyopathy. PMID:28723905

  18. 3-H-[1,2]Dithiole as a New Anti-Trypanosoma cruzi Chemotype: Biological and Mechanism of Action Studies.

    Science.gov (United States)

    Couto, Marcos; Sánchez, Carina; Dávila, Belén; Machín, Valentina; Varela, Javier; Álvarez, Guzmán; Cabrera, Mauricio; Celano, Laura; Aguirre-López, Beatriz; Cabrera, Nallely; de Gómez-Puyou, Marieta Tuena; Gómez-Puyou, Armando; Pérez-Montfort, Ruy; Cerecetto, Hugo; González, Mercedes

    2015-08-12

    The current pharmacological Chagas disease treatments, using Nifurtimox or Benznidazole, show limited therapeutic results and are associated with potential side effects, like mutagenicity. Using random screening we have identified new chemotypes that were able to inhibit relevant targets of the Trypanosoma cruzi. We found 3H-[1,2]dithioles with the ability to inhibit Trypanosoma cruzi triosephosphate isomerase (TcTIM). Herein, we studied the structural modifications of this chemotype to analyze the influence of volume, lipophilicity and electronic properties in the anti-T. cruzi activity. Their selectivity to parasites vs. mammalian cells was also examined. To get insights into a possible mechanism of action, the inhibition of the enzymatic activity of TcTIM and cruzipain, using the isolated enzymes, and the inhibition of membrane sterol biosynthesis and excreted metabolites, using the whole parasite, were achieved. We found that this structural framework is interesting for the generation of innovative drugs for the treatment of Chagas disease.

  19. 3-H-[1,2]Dithiole as a New Anti-Trypanosoma cruzi Chemotype: Biological and Mechanism of Action Studies

    Directory of Open Access Journals (Sweden)

    Marcos Couto

    2015-08-01

    Full Text Available The current pharmacological Chagas disease treatments, using Nifurtimox or Benznidazole, show limited therapeutic results and are associated with potential side effects, like mutagenicity. Using random screening we have identified new chemotypes that were able to inhibit relevant targets of the Trypanosoma cruzi. We found 3H-[1,2]dithioles with the ability to inhibit Trypanosoma cruzi triosephosphate isomerase (TcTIM. Herein, we studied the structural modifications of this chemotype to analyze the influence of volume, lipophilicity and electronic properties in the anti-T. cruzi activity. Their selectivity to parasites vs. mammalian cells was also examined. To get insights into a possible mechanism of action, the inhibition of the enzymatic activity of TcTIM and cruzipain, using the isolated enzymes, and the inhibition of membrane sterol biosynthesis and excreted metabolites, using the whole parasite, were achieved. We found that this structural framework is interesting for the generation of innovative drugs for the treatment of Chagas disease.

  20. Selective blockade of trypanosomatid protein synthesis by a recombinant antibody anti-Trypanosoma cruzi P2β protein.

    Science.gov (United States)

    Ayub, Maximiliano Juri; Nyambega, Benson; Simonetti, Leandro; Duffy, Tomas; Longhi, Silvia A; Gómez, Karina A; Hoebeke, Johan; Levin, Mariano J; Smulski, Cristian R

    2012-01-01

    The ribosomal P proteins are located on the stalk of the ribosomal large subunit and play a critical role during the elongation step of protein synthesis. The single chain recombinant antibody C5 (scFv C5) directed against the C-terminal region of the Trypanosoma cruzi P2β protein (TcP2β) recognizes the conserved C-terminal end of all T. cruzi ribosomal P proteins. Although this region is highly conserved among different species, surface plasmon resonance analysis showed that the scFv C5 possesses very low affinity for the corresponding mammalian epitope, despite having only one single amino-acid change. Crystallographic analysis, in silico modelization and NMR assays support the analysis, increasing our understanding on the structural basis of epitope specificity. In vitro protein synthesis experiments showed that scFv C5 was able to specifically block translation by T. cruzi and Crithidia fasciculata ribosomes, but virtually had no effect on Rattus norvegicus ribosomes. Therefore, we used the scFv C5 coding sequence to make inducible intrabodies in Trypanosoma brucei. Transgenic parasites showed a strong decrease in their growth rate after induction. These results strengthen the importance of the P protein C terminal regions for ribosomal translation activity and suggest that trypanosomatid ribosomal P proteins could be a possible target for selective therapeutic agents that could be derived from structural analysis of the scFv C5 antibody paratope.

  1. Selective blockade of trypanosomatid protein synthesis by a recombinant antibody anti-Trypanosoma cruzi P2β protein.

    Directory of Open Access Journals (Sweden)

    Maximiliano Juri Ayub

    Full Text Available The ribosomal P proteins are located on the stalk of the ribosomal large subunit and play a critical role during the elongation step of protein synthesis. The single chain recombinant antibody C5 (scFv C5 directed against the C-terminal region of the Trypanosoma cruzi P2β protein (TcP2β recognizes the conserved C-terminal end of all T. cruzi ribosomal P proteins. Although this region is highly conserved among different species, surface plasmon resonance analysis showed that the scFv C5 possesses very low affinity for the corresponding mammalian epitope, despite having only one single amino-acid change. Crystallographic analysis, in silico modelization and NMR assays support the analysis, increasing our understanding on the structural basis of epitope specificity. In vitro protein synthesis experiments showed that scFv C5 was able to specifically block translation by T. cruzi and Crithidia fasciculata ribosomes, but virtually had no effect on Rattus norvegicus ribosomes. Therefore, we used the scFv C5 coding sequence to make inducible intrabodies in Trypanosoma brucei. Transgenic parasites showed a strong decrease in their growth rate after induction. These results strengthen the importance of the P protein C terminal regions for ribosomal translation activity and suggest that trypanosomatid ribosomal P proteins could be a possible target for selective therapeutic agents that could be derived from structural analysis of the scFv C5 antibody paratope.

  2. Synthesis and biological evaluation of quinones derived from natural product komaroviquinone as anti-Trypanosoma cruzi agents.

    Science.gov (United States)

    Suto, Yutaka; Nakajima-Shimada, Junko; Yamagiwa, Noriyuki; Onizuka, Yoko; Iwasaki, Genji

    2015-08-01

    Current chemotherapy drugs for Chagas' disease are insufficient due to their limited efficacy; however, anti-trypanosomal agents have recently shown promise. As such, synthetic intermediates of komaroviquinone were evaluated for anti-trypanosomal activity. Based on the results, a series of novel quinone derivatives were screened for anti-trypanosomal activity and mammalian cytotoxicity. Several quinone derivatives displayed higher antiprotozoal activity against Trypanosoma cruzi trypomastigotes than the reference drug benznidazole, without concomitant toxicity toward the host cell. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. In vitro phenotypic screening of 7-chloro-4-amino(oxy)quinoline derivatives as putative anti-Trypanosoma cruzi agents.

    Science.gov (United States)

    Fonseca-Berzal, Cristina; Rojas Ruiz, Fernando A; Escario, José A; Kouznetsov, Vladimir V; Gómez-Barrio, Alicia

    2014-02-15

    In this study, a series of 22 pre-synthesized 7-chloro-4-amino(oxy)quinoline derivatives was assayed in vitro as potential antichagasic agents. A primary screening against Trypanosoma cruzi epimastigotes and a non-specific cytotoxicity assay on murine fibroblasts were simultaneously performed, resulting quinolines 3, 7 and 12 with great selectivity (SI) on the extracellular parasite (SI7, SI3, SI12 and SIBZ >9.44). Therefore, the activity of these derivatives was evaluated on intracellular amastigotes, achieving derivative 7 the best SI (SI=12.73). These results, supported by the in silico prediction of a good oral bioavailability and a suitable risk profile, propose the 4-amino-7-chloroquinoline scaffold as a potential template for designing trypanocidal prototypes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. [Heterogeneous distribution of the prevalence of anti-Trypanosoma cruzi antibodies among blood donors in the State of Puebla, Mexico].

    Science.gov (United States)

    Monteón, Victor M; Reyes-López, Pedro A; Sosa-Palacio, Adalid; León-Tello, Gloria; Martínez-Murguía, Jaime; Sosa-Jurado, Francisca

    2005-01-01

    To determine the seroprevalence and associated factors, of antibodies against Trypanosoma cruzi (T. cruzi Ab) among blood donors living in rural and suburban areas and risk regions. A cross-sectional study was conducted from January to December 2003, in 2489 blood donors of seven regions of Puebla, who were evaluated for mandatory viral and T. cruzi serological tests using validated procedures. The seroprevalence for T. cruzi Ab was 1.24% (31/2489), similar to hepatitis C (HVC) (1.5%) and higher than human immunodeficiency virus (HIV) (0.4%) and hepatitis B (HVB) (0.3%). The highest seroprevalences were observed in the regions of Tehuacan-Sierra Negra and Mixteca, up to 2.6%, while in Sierra nororiental and Angelopolis no positive blood donors were identified. A positive association was observed between seropositivity and being older than forty years and being born and raised in Tehuacan-Sierra Negra and Mixteca. T. cruzi seroprevalence distribution is heterogeneous, from 0% to 2.6%, with higher seroprevalences in the regions of Tehuacan-Sierra Negra and Mixteca.

  5. [A confirmatory diagnosis of antibodies anti-Trypanosoma cruzi in donors referred by blood banks in Venezuela].

    Science.gov (United States)

    Díaz-Bello, Zoraida; Zavala-Jaspe, Reinaldo; Díaz-Villalobos, María; Mauriello, Luciano; Maekelt, Alberto; de Noya, Belkisyolé Alarcón

    2008-06-01

    To establish the confirmatory diagnosis of Trypanosoma cruzi infection, at least two immunoserological tests (ELISA, Indirect hamaglutination, IH, Complement Fixation Test, CFT) were carried out in 254 donors, from public and private blood banks of Venezuela, during 48 months between 1997-1998 and 2003-2004, referred to the Immunology Section of the Tropical Medicine Institute in Caracas. Antibodies anti-T. cruzi were detected in 129/254 (50,79%) by ELISA-IgG or IH and CFT. The "artificial xenodiagnosis" was positive in 10/118 persons with positive confirmed serology. Of 129 donors found positive by the serological tests, 68 were living in the capital region and 61 in the interior of the country. Likewise 113 were born in the interior of the country, 8 in Caracas and 8 in Colombia. Of them, 12 individuals serologically confirmed declared to have donated blood in a minimum of 4 occasions before diagnosis. The present study emphasizes the importance of detection of antibodies against T. cruzi in the integral evaluation of blood donors, since many of them with antibodies anti-T. cruzi, have donated blood several times previous to diagnosis.

  6. EVI antibodies in patients with Chagas' disease: relationship with anti-Trypanosoma cruzi immunoglobulins and effects of specific treatment

    Directory of Open Access Journals (Sweden)

    Z. Brener

    1983-12-01

    Full Text Available Antibodies against heart vascular structures and striated muscle cells interstitium (EVI antibodies persist in Chagas' disease patients who had been cured by specific treatment as demonstrated by negative xenodiagnosis, conventional serology (CS and complement mediated lysis (CoML. On the other hand, EVI antibodies are either present or absent in treated patients presenting positive CS but negative CoML. Since CoML detects antibodies associated to resistance, EVI antibodies are not likely to participate in the control of T. cruzi infections although they might be induced by cross-reacting antigens of heart cells and the parasite. They are neither necessarily related to antibodies responsible for CS. Absorption with T. cruzi and heart tissue confirms the suggestion that EVI antibodies are induced by a number of antigenic determinants, most from heart structures with a minor participation of T. cruzi antigens.Anticorpos contra estruturas vasculares do coraçao e interstício de musculatura estriada (anticorpos EVI persistem em pacientes com doenças de Chagas curados por tratamento específico e que apresentam negativos o xenodiagnóstico, sorologia convencional (SC e o teste de lise mediada por complemento (LMCo. Além disso, o anticorpo EVI pode estar presente ou não em pacientes tratados que apresentam SC positiva mas LMCo negativa. Como a LMCo detecta anticorpos associados à resistência, os anticorpos EVI provavelmente não participam do controle de infecção pelo T. cruzi (embora sejam induzidos por antígenos comuns a estruturas cardíacas e ao parasita. Os anticorpos EVI não são também necessariamente relacionados aos anticorpos responsáveis pela SC. Experiências de absorção com T. cruzi e tecido cardíaco confirmam a sugestão de que esses anticorpos são induzidos por vários determinantes antigênicos, a maioria dos quais de tecido cardíaco mas com menor participação de antígenos do T. cruzi

  7. In vitro and in vivo high-throughput assays for the testing of anti-Trypanosoma cruzi compounds.

    Directory of Open Access Journals (Sweden)

    Adriana M C Canavaci

    2010-07-01

    Full Text Available The two available drugs for treatment of T. cruzi infection, nifurtimox and benznidazole (BZ, have potential toxic side effects and variable efficacy, contributing to their low rate of use. With scant economic resources available for antiparasitic drug discovery and development, inexpensive, high-throughput and in vivo assays to screen potential new drugs and existing compound libraries are essential.In this work, we describe the development and validation of improved methods to test anti-T. cruzi compounds in vitro and in vivo using parasite lines expressing the firefly luciferase (luc or the tandem tomato fluorescent protein (tdTomato. For in vitro assays, the change in fluorescence intensity of tdTomato-expressing lines was measured as an indicator of parasite replication daily for 4 days and this method was used to identify compounds with IC(50 lower than that of BZ.This method was highly reproducible and had the added advantage of requiring relatively low numbers of parasites and no additional indicator reagents, enzymatic post-processes or laborious visual counting. In vivo, mice were infected in the footpads with fluorescent or bioluminescent parasites and the signal intensity was measured as a surrogate of parasite load at the site of infection before and after initiation of drug treatment. Importantly, the efficacy of various drugs as determined in this short-term (<2 weeks assay mirrored that of a 40 day treatment course.These methods should make feasible broader and higher-throughput screening programs needed to identify potential new drugs for the treatment of T. cruzi infection and for their rapid validation in vivo.

  8. [Standardization of Dot-ELISA for detection of anti-Trypanosoma cruzi antibodies, compared to ELISA and Western blot].

    Science.gov (United States)

    Cervantes-Landín, Alejandra Yunuen; Martínez-Martínez, Ignacio; Reyes, Pedro A; Shabib, Muslim; Espinoza-Gutiérrez, Bertha

    2014-01-01

    Chagas disease is considered endemic of Latin America. Because of migration of people from this region to non-endemic areas, such as the United States, Canada and Europe, it has become a major health problem. There are parasitology and serology tests for its diagnosis, but only the latter are useful during the chronic phase. Most of these tests require expensive equipment, which make them also inaccessible for laboratories in endemic areas. In the present work we standardize Dot-ELISA as a diagnostic test for Trypanosoma cruzi infection, since it is an easy, inexpensive and an accessible test. A total of 360 samples were tested: 96 sera from Chagas patients and 153 from healthy people; 40 blood samples spots collected and eluted from filter paper were also tested, as well as 71 serum samples of patients with non-related infections. Sensitivity, specificity and kappa index of Dot-ELISA test were calculated, in order to determine a correlation value of this technique compared to ELISA and Western blot that are already being used for diagnosis. Dot-ELISA obtained 97% sensitivity and 89% specificity, since it showed cross-reaction mainly with Leishmania spp., and a kappa index of 0,79. Dot-ELISA results correlate well with other tests that are already being used for diagnosis of Chagas disease. As it is easy and inexpensive, it may be useful as an additional diagnostic test or for field studies. Copyright © 2013 Elsevier España, S.L. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  9. 4-Aminopyridyl-based CYP51 inhibitors as anti-Trypanosoma cruzi drug leads with improved pharmacokinetic profile and in vivo potency.

    Science.gov (United States)

    Calvet, Claudia M; Vieira, Debora F; Choi, Jun Yong; Kellar, Danielle; Cameron, Michael D; Siqueira-Neto, Jair Lage; Gut, Jiri; Johnston, Jonathan B; Lin, Li; Khan, Susan; McKerrow, James H; Roush, William R; Podust, Larissa M

    2014-08-28

    CYP51 is a P450 enzyme involved in the biosynthesis of the sterol components of eukaryotic cell membranes. CYP51 inhibitors have been developed to treat infections caused by fungi, and more recently the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. To specifically optimize drug candidates for T. cruzi CYP51 (TcCYP51), we explored the structure-activity relationship (SAR) of a N-indolyl-oxopyridinyl-4-aminopropanyl-based scaffold originally identified in a target-based screen. This scaffold evolved via medicinal chemistry to yield orally bioavailable leads with potent anti-T. cruzi activity in vivo. Using an animal model of infection with a transgenic T. cruzi Y luc strain expressing firefly luciferase, we prioritized the biaryl and N-arylpiperazine analogues by oral bioavailability and potency. The drug-target complexes for both scaffold variants were characterized by X-ray structure analysis. Optimization of both binding mode and pharmacokinetic properties of these compounds led to potent inhibitors against experimental T. cruzi infection.

  10. Distribución heterogénea de la prevalencia de anticuerpos contra Trypanosoma cruzi en donadores de sangre en Puebla, México Heterogeneous distribution of the prevalence of anti-Trypanosoma cruzi antibodies among blood donors in the State of Puebla, Mexico

    OpenAIRE

    Víctor M Monteón; Pedro A Reyes-López; Adalid Sosa-Palacio; Gloria León-Tello; Jaime Martínez-Murguía; Francisca Sosa-Jurado

    2005-01-01

    OBJETIVO: Identificar la seroprevalencia de anticuerpos anti Trypanosoma cruzi (Ac anti-T. cruzi) en donadores de sangre que habitan en ámbito rural y suburbano, así como las regiones del estado de mayor riesgo y factores asociados. MATERIAL Y MÉTODOS: Estudio transversal realizado de enero a diciembre de 2003. Se analizaron 2 489 donadores de sangre reclutados en 10 puestos de sangrado del Instituto Mexicano del Seguro Social (IMSS) distribuidos en las siete regiones económicas del estado de...

  11. ESR, electrochemical, molecular modeling and biological evaluation of 4-substituted and 1,4-disubstituted 7-nitroquinoxalin-2-ones as potential anti- Trypanosoma cruzi agents

    Science.gov (United States)

    Aguilera-Venegas, Benjamín; Olea-Azar, Claudio; Norambuena, Ester; Arán, Vicente J.; Mendizábal, Fernando; Lapier, Michel; Maya, Juan Diego; Kemmerling, Ulrike; López-Muñoz, Rodrigo

    2011-03-01

    Electrochemical and ESR studies were carried out in this work with the aim of characterizing the reduction mechanisms of 4-substituted and 1,4-disubstituted 7-nitroquinoxalin-2-ones by means of cyclic voltammetry in DMSO as aprotic solvent. Two reduction mechanisms were found for these compounds: the first, for compounds bearing a labile hydrogen by following a self-protonation mechanism (ECE steps), and the second, for compounds without labile hydrogen, based on a purely electrochemical reduction mechanism (typical of nitroheterocycles). The electrochemical results were corroborated using ESR spectroscopy allowing us to propose the hyperfine splitting pattern of the nitro-radical, which was later corroborated by the ESR simulation spectra. All these compounds were assayed as growth inhibitors against Trypanosoma cruzi: first, on the non-proliferative (and infective) form of the parasite (trypomastigote stage), and then, the ones that displayed activity, were assayed on the non-infective form (epimastigote stage). Thus, we found four new compounds highly active against T. cruzi. Finally, molecular modeling studies suggest the inhibition of the trypanothione reductase like one of the possible mechanisms involved in the trypanocidal action.

  12. Utilização, em politransfundidos, da pesquisa de anticorpos igm anti-trypanosoma cruzi e anti-toxoplasma gondii para detectar infecções pós-transfusionais recentes

    Directory of Open Access Journals (Sweden)

    Vicente Amato Neto

    1984-04-01

    Full Text Available Consideram os Autores que a pesquisa de anticorpos IgM no soro é tática capaz de revelar recentes infecções pós-transfusionais. Por isso, decidiram usar esse tipo de mensuração relativamente a grupo constituído por 101 politrans-fundidos, tendo abordado especificamente as aquisições de doença de Chagas e toxoplasmose. Através da investigação que realizaram, só em duas oportunidades encontraram anticorpos IgM anti-Trypanosoma cruzi ou anti-Toxoplasma gondii e, portanto, não evidenciaram expressivo panorama tradutor de processos há pouco tempo contraídos, como ainda, por meio de anticorpos IgG não identificaram números expressivos de pessoas com essas protozooses. No entanto, detectaram a expressiva taxa de 4,9% de casos de doença de Chagas muito provavelmente decorrentes da hemoterapia. A despeito da relevância não acentuada dos resultados que obtiveram, julgaram os Autores ser válido estimular a efetivação de outros estudos congêneres e correlatos, aptos a contribuir para aqui-latamento de riscos pertinentes à prática hemoterápica.

  13. High prevalence anti-Trypanosoma cruzi antibodies, among blood donors in the State of Puebla, a non-endemic area of Mexico.

    Science.gov (United States)

    Sánchez-Guillén, M C; Barnabé, C; Guégan, J F; Tibayrenc, M; Velásquez-Rojas, M; Martínez-Munguía, J; Salgado-Rosas, H; Torres-Rasgado, E; Rosas-Ramírez, M I; Pérez-Fuentes, R

    2002-10-01

    Blood transfusion is the second most common transmission route of Chagas disease in many Latin American countries. In Mexico, the prevalence of Chagas disease and impact of transfusion of Trypanosoma cruzi-contaminated blood is not clear. We determined the seropositivity to T. cruzi in a representative random sample, of 2,140 blood donors (1,423 men and 647 women, aged 19-65 years), from a non-endemic state of almost 5 millions of inhabitants by the indirect hemagglutination (IHA) and enzyme linked immunosorbent assay (ELISA) tests using one autochthonous antigen from T. cruzi parasites, which were genetically characterized like TBAR/ME/1997/RyC-V1 (T. cruzi I) isolated from a Triatoma barberi specimen collected in the same locality. The seropositivity was up to 8.5% and 9% with IHA and ELISA tests, respectively, and up to 7.7% using both tests in common. We found high seroprevalence in a non-endemic area of Mexico, comparable to endemic countries where the disease occurs, e.g. Brazil (0.7%), Bolivia (13.7%) and Argentina (3.5%). The highest values observed in samples from urban areas, associated to continuous rural emigration and the absence of control in blood donors, suggest unsuspected high risk of transmission of T. cruzi, higher than those reported for infections by blood e.g. hepatitis (0.1%) and AIDS (0.1%) in the same region.

  14. High prevalence anti-Trypanosoma cruzi antibodies, among blood donors in the State of Puebla, a non-endemic area of Mexico

    Directory of Open Access Journals (Sweden)

    MC Sánchez-Guillén

    2002-10-01

    Full Text Available Blood transfusion is the second most common transmission route of Chagas disease in many Latin American countries. In Mexico, the prevalence of Chagas disease and impact of transfusion of Trypanosoma cruzi-contaminated blood is not clear. We determined the seropositivity to T. cruzi in a representative random sample, of 2,140 blood donors (1,423 men and 647 women, aged 19-65 years, from a non-endemic state of almost 5 millions of inhabitants by the indirect hemagglutination (IHA and enzyme linked immunosorbent assay (ELISA tests using one autochthonous antigen from T. cruzi parasites, which were genetically characterized like TBAR/ME/1997/RyC-V1 (T. cruzi I isolated from a Triatoma barberi specimen collected in the same locality. The seropositivity was up to 8.5% and 9% with IHA and ELISA tests, respectively, and up to 7.7% using both tests in common. We found high seroprevalence in a non-endemic area of Mexico, comparable to endemic countries where the disease occurs, e.g. Brazil (0.7%, Bolivia (13.7% and Argentina (3.5%. The highest values observed in samples from urban areas, associated to continuous rural emigration and the absence of control in blood donors, suggest unsuspected high risk of transmission of T. cruzi, higher than those reported for infections by blood e.g. hepatitis (0.1% and AIDS (0.1% in the same region.

  15. Diterpenoids from Azorella compacta (Umbelliferae active on Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Araya Jorge E

    2003-01-01

    Full Text Available The anti-Trypanosoma cruzi activity of natural products isolated from Azorella compacta was evaluated, with particular emphasis on their effect against intracellular amastigotes. Five diterpenoids from A. compacta derived from mulinane and azorellane were isolated and identified. Only two products, named azorellanol (Y-2 and mulin-11,3-dien-20-oic acid (Y-5, showed trypanocidal activity against all stages of T. cruzi including intracellular amastigotes. At 10 µM, these compounds displayed a strong lytic activity. It ranged from 88.4 ± 0.6 to 99.0 ± 1 % for all strains and stages evaluate, with an IC50 /18 h values of 20-84 µM and 41-87 µM, respectively. The development of intracellular amastigotes was also inhibited by nearly 60% at 25 µM. The trypanocidal molecules Y-2 and Y-5 did show different degrees of cytotoxicity depending on the cell line tested, with an IC50 /24 h ranging from 33.2 to 161.2 µM. We evaluated the effect of diterpenoids against intracellular T. cruzi forms by immunofluorescent identification of a specific membrane molecular marker (Ssp-4 antigen of the T. cruzi amastigote forms. The accuracy and reproducibility of the measurements were found to be outstanding when examined by confocal microscopy.

  16. Blood transfusion and iatrogenic risks in Mexico city: anti-Trypanosoma cruzi seroprevalence in 43,048 blood donors, evaluation of parasitemia, and electrocardiogram findings in seropositive

    Directory of Open Access Journals (Sweden)

    Nidia Hernández-Becerril

    2005-04-01

    Full Text Available Iatrogenous transmission of Trypanosoma cruziby blood transfusion was suggested as a potential risk by Pellegrino (1949. Seropositive blood donors in Mexico were first reported in 1978, however, limited information is available due to small sampling, the use of heterogeneous serologic assays, and geographically limited studies. A wide survey carried out in 18 out of the 32 states of Mexico, showed a national mean of 1.6% seropositive among 64,969 donors, ranging from 0.2 to 2.8%. In the present study, we have screened 43,048 voluntary blood donors in a period of five years at the Instituto Nacional de Cardiología I. Chávez, a concentration hospital located in Mexico city which serves mainly the metropolitan area and accepts from all over the country. Standardized ELISA and IIF were used to identify seropositive individuals in addition to hemoculture, PCR and standard 12 lead ECG tests that were applied to a group of seropositive patients (29/161. The result showed a seropositivity of 0.37% (161/43,048. From the group of seropositive individuals 40% (12/29 were potential carriers of T. cruzi at the donation time and 5/29 had subclinical ECG abnormalities. Parasitological tests performed in 70 erythrocyte and platelet fractions from seropositive units (70/161 showed negative results. Our findings strongly support T. cruzi screening in the transfusion medicine practice and identify subclinical heart disease among seropositive blood donors.

  17. Estudo fitoquímico e avaliação in vitro da atividade anti-Trypanosoma cruzi cepa Y de Pilocarpus spicatus St. Hil. (Rutaceae

    Directory of Open Access Journals (Sweden)

    C.V Silva

    2014-12-01

    Full Text Available A investigação química da espécie Pilocarpus spicatus, popularmente conhecida como jaborandi e usada na medicina tradicional para doenças como estomatite, febre, bronquite e psoríase, teve por objetivo o isolamento e/ou identificação de substâncias ativas e a avaliação da atividade antiparasitária dos extratos frente às formas epimastigotas de Trypanosoma cruzi. O estudo resultou na identificação de nove substâncias, tais como: tridecanona, 2-heptadecanona, espatulenol, aromadendreno, β-cariofileno, ácido 3α-hidroxitirucala-7,24-dien-21-óico, (+-isoangenomalina, episesamina e sesamina. As estr uturas dos compostos foram elucidadas por análises espectroscópicas e comparação com dados da literatura. Os extratos hexânico e metanólico de folhas e raízes foram testados in vitro contra o Trypanosoma cruzi cepa Y e apresentaram atividade tripanomicida.

  18. Distribución heterogénea de la prevalencia de anticuerpos contra Trypanosoma cruzi en donadores de sangre en Puebla, México Heterogeneous distribution of the prevalence of anti-Trypanosoma cruzi antibodies among blood donors in the State of Puebla, Mexico

    Directory of Open Access Journals (Sweden)

    Víctor M Monteón

    2005-04-01

    Full Text Available OBJETIVO: Identificar la seroprevalencia de anticuerpos anti Trypanosoma cruzi (Ac anti-T. cruzi en donadores de sangre que habitan en ámbito rural y suburbano, así como las regiones del estado de mayor riesgo y factores asociados. MATERIAL Y MÉTODOS: Estudio transversal realizado de enero a diciembre de 2003. Se analizaron 2 489 donadores de sangre reclutados en 10 puestos de sangrado del Instituto Mexicano del Seguro Social (IMSS distribuidos en las siete regiones económicas del estado de Puebla, México. Se determinó la seroprevalencia mediante las pruebas serológicas obligatorias del panel viral y, además, para T. cruzi, región de reclutamiento y de origen de los donadores. RESULTADOS: La seroprevalencia de Ac anti-T. cruzi fue de 1.24% (31/2 489 comparable con la obtenida para el virus de la hepatitis C (1.5% y por arriba de la del virus de la inmunodeficiencia humana (0.4% y del antígeno de superficie del virus de la hepatitis B (0.3%. Las regiones de Tehuacán-Sierra Negra y Mixteca fueron las de mayor riesgo con seroprevalencias, por el origen del donador, de 2.6% para T. cruzi, mientras que en los originarios de las regiones Sierra nororiental y Angelópolis no se detectaron casos positivos. Se observó asociación entre ser seropositivo y mayor de 40 años y ser originario de las regiones de Tehuacán-Sierra Negra y Mixteca. CONCLUSIONES: La distribución de seroprevalencia a T. cruzi es heterogénea, oscila desde 0% hasta 2.6%, y se reconoce a Tehuacán-Sierra Negra y Mixteca como las regiones de mayor riesgo.OBJECTIVE: To determine the seroprevalence and associated factors, of antibodies against Trypanosoma cruzi (T. cruzi Ab among blood donors living in rural and suburban areas and risk regions. MATERIAL AND METHODS: A cross-sectional study was conducted from January to December 2003, in 2489 blood donors of seven regions of Puebla, who were evaluated for mandatory viral and T. cruzi serological tests using validated

  19. Utilização, em politransfundidos, da pesquisa de anticorpos igm anti-trypanosoma cruzi e anti-toxoplasma gondii para detectar infecções pós-transfusionais recentes IgM Trypanosoma cruzi and Toxoplasma gondii antibodies in the detection of recent transfusion-transmitted infections

    Directory of Open Access Journals (Sweden)

    Vicente Amato Neto

    1984-04-01

    Full Text Available Consideram os Autores que a pesquisa de anticorpos IgM no soro é tática capaz de revelar recentes infecções pós-transfusionais. Por isso, decidiram usar esse tipo de mensuração relativamente a grupo constituído por 101 politrans-fundidos, tendo abordado especificamente as aquisições de doença de Chagas e toxoplasmose. Através da investigação que realizaram, só em duas oportunidades encontraram anticorpos IgM anti-Trypanosoma cruzi ou anti-Toxoplasma gondii e, portanto, não evidenciaram expressivo panorama tradutor de processos há pouco tempo contraídos, como ainda, por meio de anticorpos IgG não identificaram números expressivos de pessoas com essas protozooses. No entanto, detectaram a expressiva taxa de 4,9% de casos de doença de Chagas muito provavelmente decorrentes da hemoterapia. A despeito da relevância não acentuada dos resultados que obtiveram, julgaram os Autores ser válido estimular a efetivação de outros estudos congêneres e correlatos, aptos a contribuir para aqui-latamento de riscos pertinentes à prática hemoterápica.The Authors have regarded serum IgM antibodies titration as useful in the detection of recent transfusion-transmitted infections. For this reason a group consisting of 101 patients, who had received many blood transfusions, underwent such mensuration in order to reveal recent Chagas'disease and toxoplasmosis acquired infections. Throughout the investigation just two cases have yielded IgM trypanosomal or toxoplasmal antibodies, showing therefore that this sort of titration did not correlate with the real existence of recent acquired infections. On the other hand IgM antibodies in the same patients did not show a considerable incidence of these two protozoan infections. However an expressive rate of 4.9% of Chagas'disease probably due to hemotherapy was found. Although the results this study were not very relevant, the Authors still have in mind that further similar investigations should be

  20. Anti-Trypanosoma, anti-Leishmania and cytotoxic activities of natural products from Psidium brownianum Mart. ex DC. and Psidium guajava var. Pomifera analysed by LC-MS.

    Science.gov (United States)

    de Souza, Celestina Elba Sobral; da Silva, Ana Raquel Pereira; Gomez, Maria Celeste Vega; Rolóm, Míriam; Coronel, Cathia; da Costa, José Galberto Martins; Sousa, Amanda K; Rolim, Larissa A; de Souza, Francisco Hugo Sobral; Coutinho, Henrique Douglas Melo

    2017-12-01

    Neglected diseases are those that are prevalent in developing countries, even with a rich biodiversity. These diseases still persist because of the lack of scientific studies, government negligence or failures of the public health system. This study aims to identify the composition of extracts and fractions from Psidium brownianum and Psidium guajava through LC-MS, to evaluate its in vitro anti-parasitic and cytotoxic activity against Trypanosoma cruzi, Leishmania brasiliensis and L. infantum epismastigote and promastigote forms, as well as mammalian cells. The results showed the presence of chemical constituents in the two Psidium species as quercetin, myricetin and gallic acid derivatives. The P. brownianum extract and fractions showed low toxicity at all tested concentrations and all samples were effective at the concentration of 1000μg/mL against the parasites, with the extract being the most efficient against the L. infantum promastigote form. The ethanolic extract, and the flavonoid and tannic fractions, from P. guajava showed low toxicity for the fibroblasts. All samples showed effectiveness at the highest concentration tested and the extract was more effective against the promastigote forms tested. The results showed that the species Psidium brownianum and Psidium guajava demonstrated an anti-parasitic activity against the T. cruzi, L. brasiliensis and L. infantum parasite cell lines indicating these species as an alternative therapy given their efficacy in the in vitro assays performed, opening the possibility for new biological studies to further this knowledge through in vivo assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. In vitro and in vivo antiparasitic activity of Physalis angulata L. concentrated ethanolic extract against Trypanosoma cruzi.

    Science.gov (United States)

    Meira, Cássio Santana; Guimarães, Elisalva Teixeira; Dos Santos, Jamyle Andrade Ferreira; Moreira, Diogo Rodrigo Magalhães; Nogueira, Renata Campos; Tomassini, Therezinha Coelho Barbosa; Ribeiro, Ivone Maria; de Souza, Claudia Valeria Campos; Ribeiro Dos Santos, Ricardo; Soares, Milena Botelho Pereira

    2015-10-15

    The current treatment of Chagas disease, endemic in Latin America and emerging in several countries, is limited by the frequent side effects and variable efficacy of benznidazole. Natural products are an important source for the search for new drugs. Considering the great potential of natural products as antiparasitic agents, we investigated the anti-Trypanosoma cruzi activity of a concentrated ethanolic extract of Physalis angulata (EEPA). Cytotoxicity to mammalian cells was determined using mouse peritoneal macrophages. The antiparasitic activity was evaluated against axenic epimastigote and bloodstream trypomastigote forms of T. cruzi, and against amastigote forms using T. cruzi-infected macrophages. Cell death mechanism was determined in trypomastigotes by flow cytometry analysis after annexin V and propidium iodide staining. The efficacy of EEPA was examined in vivo in an acute model of infection by monitoring blood parasitaemia and survival rate 30 days after treatment. The effect against trypomastigotes of EEPA and benznidazole acting in combination was evaluated. EEPA effectively inhibits the epimastigote growth (IC50 2.9 ± 0.1 µM) and reduces bloodstream trypomastigote viability (EC50 1.7 ± 0.5 µM). It causes parasite cell death by necrosis. EEPA impairs parasite infectivity as well as amastigote development in concentrations noncytotoxic to mammalian cells. In mice acutely-infected with T. cruzi, EEPA reduced the blood parasitaemia in 72.7%. When combined with benznidazole, EEPA showed a synergistic anti-T. cruzi activity, displaying CI values of 0.8 ± 0.07 at EC50 and 0.83 ± 0.1 at EC90. EEPA has antiparasitic activity against T. cruzi, causing cell death by necrosis and showing synergistic activity with benznidazole. These findings were reinforced by the observed efficacy of EEPA in reducing parasite load in T. cruzi-mice. Therefore, this represents an important source of antiparasitic natural products. Copyright © 2015 Elsevier GmbH. All rights

  2. Evaluación de la toxicidad del aceite esencial de Aloysia triphylla Britton (cedrón y de la actividad anti-Trypanosoma cruzi del citral, in vivo

    Directory of Open Access Journals (Sweden)

    Juan Rojas Armas

    2015-04-01

    Full Text Available Introducción: Existe escasa investigación en enfermedades olvidadas. Las plantas medicinales son una potencial fuente de compuestos antimicrobianos. Objetivos: Determinar la toxicidad del aceite esencial de Aloysia triphylla y la actividad del citral contra Trypanosoma cruzi en ratones. Diseño: Estudio experimental preclínico in vivo. Institución: Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú. Material: Ratones albinos. Intervenciones: La toxicidad aguda oral a dosis única fue evaluada en ratas albinas. Para la actividad tripanocida se utilizaron ratones asignados a los siguientes grupos: infectados y no tratados (G1, infectados y tratados con citral en dosis de 50, 150 y 300 mg/kg/día (G2, G3 y G4, respectivamente, infectados y tratados con benznidazol 100 mg/kg (G5 y no infectados y no tratados (G6. La parasitemia fue determinada individualmente cada 2 días por microscopia directa. En los días 14, 21 y 28 post infección, cinco ratones de cada grupo fueron sacrificados y los corazones procesados para análisis histopatológico. Principales medidas de resultados: Signos de toxicidad y mortalidad, y parasitemia. Resultados: La dosis límite de 2 000 mg/kg no provocó signos ni síntomas de toxicidad y los estudios anatomopatológicos macroscópicos y microscópicos no mostraron alteración de los órganos estudiados. La parasitemia fue reducida significativamente con la dosis de 300 mg/kg en los días 16° 18° y 20° post infección (p < 0,05. El número de nidos de amastigotes y de infiltrados inflamatorios en corazón fueron reducidos en 67,7% y 51,7%, respectivamente, con 300 mg/kg en el día 28°. Conclusiones: El aceite esencial de Aloysia triphylla es calificado como no tóxico y el citral en dosis de 300 mg/kg tuvo actividad contra Trypanosoma cruzi en ratones.

  3. Novel polymorphs of the anti-Trypanosoma cruzi drug benznidazole

    Science.gov (United States)

    Honorato, Sara Braga; Mendonça, Jorge Souza; Boechat, Nubia; Oliveira, Alcemira Conceição; Mendes Filho, Josué; Ellena, Javier; Ayala, Alejandro Pedro

    2014-01-01

    Benznidazole (N-benzyl-2-(2-nitro-1H-imidazol-1-yl)acetamide), is a nitro-heterocyclic drug used in the treatment of Chagas disease. Despite the fact that this drug was released more than 30 years ago, little information about its solid state properties is available in the literature. In this study, it was verified that this drug exhibits three polymorphs, which were characterized in situ by X-ray powder diffraction, thermal analysis, hot stage microscopy and infrared spectroscopy. The thermodynamic relationships among these polymorphs were also discussed.

  4. Novel 2-arylazoimidazole derivatives as inhibitors of Trypanosoma cruzi proliferation: Synthesis and evaluation of their biological activity.

    Science.gov (United States)

    Salerno, Alejandra; Celentano, Ana M; López, Julieta; Lara, Virginia; Gaozza, Carlos; Balcazar, Darío E; Carrillo, Carolina; Frank, Fernanda M; Blanco, María M

    2017-01-05

    In this work, the synthesis of a series of 2-arylazoimidazole derivatives 6-20 has been achieved through the reaction of imidazole with aryldiazonium salts, followed by ultrasound-assisted alkylation. This approach has important advantages including higher yield, shorter reaction times and milder reaction conditions. The structures of the compounds obtained were determined by MS, IR; and 1 H and 13 C NMR. The anti-Trypanosoma cruzi activity of the 15 compounds obtained was evaluated. Two compounds with piperidino substituents in the carboxamide moiety proved to be effective inhibitors of epimastigote proliferation, obtaining inhibition values comparable to those achieved with the reference drug Benznidazole. Besides, these compounds displayed low cytotoxicity on mammalian cells. In vivo, both compounds protected mice against a challenge with a lethal Trypanosoma cruzi strain. These results allow us to propose 2-arylazoimidazoles as lead compounds for the design of novel drugs to treat Chagas' disease. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. New 1,3-thiazole derivatives and their biological and ultrastructural effects on Trypanosoma cruzi.

    Science.gov (United States)

    de Moraes Gomes, Paulo André Teixeira; de Oliveira Barbosa, Miria; Farias Santiago, Edna; de Oliveira Cardoso, Marcos Veríssimo; Capistrano Costa, Natáli Tereza; Hernandes, Marcelo Zaldini; Moreira, Diogo Rodrigo Magalhães; da Silva, Aline Caroline; Dos Santos, Thiago André Ramos; Pereira, Valéria Rêgo Alves; Brayner Dos Santosd, Fábio André; do Nascimento Pereira, Glaécia Aparecida; Ferreira, Rafaela Salgado; Leite, Ana Cristina Lima

    2016-10-04

    In previous studies, the compound 3-(bromopropiophenone) thiosemicarbazone was described as a potent anti-Trypanosoma cruzi and cruzain inhibitor. In view to optimize this activity, 1,3-thiazole core was used as building-block strategy to access new lead generation of anti T. cruzi agents. In this way a series of thiazole derivatives were synthesized and most of these derivatives exhibited antiparasitic activity similar to benznidazole (Bzd). Among them, compounds (1c) and (1g) presented better selective index (SI) than Bzd. In addition, compounds showed inhibitory activity against the cruzain protease. As observed by electron microscopy, compound (1c) treatment caused irreversible and specific morphological changes on ultrastructure organization of T. cruzi, demonstrating that this class of compounds is killing parasites. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Identification of Trypanocidal Activity for Known Clinical Compounds Using a New Trypanosoma cruzi Hit-Discovery Screening Cascade.

    Science.gov (United States)

    De Rycker, Manu; Thomas, John; Riley, Jennifer; Brough, Stephen J; Miles, Tim J; Gray, David W

    2016-04-01

    Chagas disease is a significant health problem in Latin America and the available treatments have significant issues in terms of toxicity and efficacy. There is thus an urgent need to develop new treatments either via a repurposing strategy or through the development of new chemical entities. A key first step is the identification of compounds with anti-Trypanosoma cruzi activity from compound libraries. Here we describe a hit discovery screening cascade designed to specifically identify hits that have the appropriate anti-parasitic properties to warrant further development. The cascade consists of a primary imaging-based assay followed by newly developed and appropriately scaled secondary assays to predict the cidality and rate-of-kill of the compounds. Finally, we incorporated a cytochrome P450 CYP51 biochemical assay to remove compounds that owe their phenotypic response to inhibition of this enzyme. We report the use of the cascade in profiling two small libraries containing clinically tested compounds and identify Clemastine, Azelastine, Ifenprodil, Ziprasidone and Clofibrate as molecules having appropriate profiles. Analysis of clinical derived pharmacokinetic and toxicity data indicates that none of these are appropriate for repurposing but they may represent suitable start points for further optimisation for the treatment of Chagas disease.

  7. Identification of Trypanocidal Activity for Known Clinical Compounds Using a New Trypanosoma cruzi Hit-Discovery Screening Cascade.

    Directory of Open Access Journals (Sweden)

    Manu De Rycker

    2016-04-01

    Full Text Available Chagas disease is a significant health problem in Latin America and the available treatments have significant issues in terms of toxicity and efficacy. There is thus an urgent need to develop new treatments either via a repurposing strategy or through the development of new chemical entities. A key first step is the identification of compounds with anti-Trypanosoma cruzi activity from compound libraries. Here we describe a hit discovery screening cascade designed to specifically identify hits that have the appropriate anti-parasitic properties to warrant further development. The cascade consists of a primary imaging-based assay followed by newly developed and appropriately scaled secondary assays to predict the cidality and rate-of-kill of the compounds. Finally, we incorporated a cytochrome P450 CYP51 biochemical assay to remove compounds that owe their phenotypic response to inhibition of this enzyme. We report the use of the cascade in profiling two small libraries containing clinically tested compounds and identify Clemastine, Azelastine, Ifenprodil, Ziprasidone and Clofibrate as molecules having appropriate profiles. Analysis of clinical derived pharmacokinetic and toxicity data indicates that none of these are appropriate for repurposing but they may represent suitable start points for further optimisation for the treatment of Chagas disease.

  8. Dialkylimidazole inhibitors of Trypanosoma cruzi sterol 14α-demethylase as anti-Chagas disease agents.

    Science.gov (United States)

    Suryadevara, Praveen Kumar; Racherla, Kishore Kumar; Olepu, Srinivas; Norcross, Neil R; Tatipaka, Hari Babu; Arif, Jennifer A; Planer, Joseph D; Lepesheva, Galina I; Verlinde, Christophe L M J; Buckner, Frederick S; Gelb, Michael H

    2013-12-01

    New dialkylimidazole based sterol 14α-demethylase inhibitors were prepared and tested as potential anti-Trypanosoma cruzi agents. Previous studies had identified compound 2 as the most potent and selective inhibitor against parasite cultures. In addition, animal studies had demonstrated that compound 2 is highly efficacious in the acute model of the disease. However, compound 2 has a high molecular weight and high hydrophobicity, issues addressed here. Systematic modifications were carried out at four positions on the scaffold and several inhibitors were identified which are highly potent (EC50 cruzi in culture. The halogenated derivatives 36j, 36k, and 36p, display excellent activity against T. cruzi amastigotes, with reduced molecular weight and lipophilicity, and exhibit suitable physicochemical properties for an oral drug candidate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effects of amiodarone and posaconazole on the growth and ultrastructure of Trypanosoma cruzi.

    Science.gov (United States)

    Veiga-Santos, Phercyles; Barrias, Emile S; Santos, Júlio F C; de Barros Moreira, Thiago Luiz; de Carvalho, Tecia Maria Ulisses; Urbina, Julio A; de Souza, Wanderley

    2012-07-01

    The antifungal posaconazole (PCZ) is the most advanced candidate for the treatment of Chagas disease, having potent anti-Trypanosoma cruzi activity in vitro and in animal models of the disease as well as an excellent safety profile in humans. Amiodarone (AMD) is the antiarrhythmic drug most frequently used for the symptomatic treatment of chronic Chagas disease patients, but it also has specific anti-T. cruzi activity. When used in combination, these drugs exhibit potent synergistic activity against the parasite. In the present work, electron microscopy was used to analyse the effects of both compounds, acting individually or in combination, against T. cruzi. The 50% inhibitory concentration (IC(50)) against epimastigote and amastigote forms was 25 nM and 1.0 nM for PCZ and 8 μM and 5.6 μM for AMD, respectively. The antiproliferative synergism of the drugs (fractional inhibitory concentrationanti-T. cruzi therapy with low side effects. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  10. Looking for combination of benznidazole and Trypanosoma cruzi-triosephosphate isomerase inhibitors for Chagas disease treatment

    Directory of Open Access Journals (Sweden)

    Elena Aguilera

    Full Text Available BACKGROUND The current chemotherapy for Chagas disease is based on monopharmacology with low efficacy and drug tolerance. Polypharmacology is one of the strategies to overcome these limitations. OBJECTIVES Study the anti-Trypanosoma cruzi activity of associations of benznidazole (Bnz with three new synthetic T. cruzi-triosephosphate isomerase inhibitors, 2, 3, and 4, in order to potentiate their actions. METHODS The in vitro effect of the drug combinations were determined constructing the corresponding isobolograms. In vivo activities were assessed using an acute murine model of Chagas disease evaluating parasitaemias, mortalities and IgG anti-T. cruzi antibodies. FINDINGS The effect of Bnz combined with each of these compounds, on the growth of epimastigotes, indicated an additive action or a synergic action, when combining it with 2 or 3, respectively, and an antagonic action when combining it with 4. In vivo studies, for the two chosen combinations, 2 or 3 plus one fifth equivalent of Bnz, showed that Bnz can also potentiate the in vivo therapeutic effects. For both combinations a decrease in the number of trypomastigote and lower levels of anti-T. cruzi IgG-antibodies were detected, as well clear protection against death. MAIN CONCLUSIONS These results suggest the studied combinations could be used in the treatment of Chagas disease.

  11. Imidazolium compounds are active against all stages of Trypanosoma cruzi.

    Science.gov (United States)

    Faral-Tello, Paula; Liang, Mary; Mahler, Graciela; Wipf, Peter; Robello, Carlos

    2014-03-01

    Imidazolium salts are best known for their applications in organic synthesis as room-temperature ionic liquids, or as precursors of stable carbenes, but they also show important biological properties such as anti-oxidative effects, induction of mitochondrial membrane permeabilisation and inhibition of the infection cycle of Plasmodium falciparum. For these reasons, and since chemotherapy for Chagas disease is inefficient, the aim of this study was to test the use of imidazolium compounds against the kinetoplastid haemoflagellate aetiological agent for this disease, namely Trypanosoma cruzi. The results show that five of the tested compounds are more effective than the reference drug benznidazole against the epimastigote and trypomastigote forms of T. cruzi. Moreover, intracellular amastigotes were also affected by the compounds, which showed lower toxicity in host cells. Transmission electron microscopy analysis demonstrated that the tested agents induced alterations of the kinetoplast and particularly of the mitochondria, leading to extraordinary swelling of the organelle. These results further demonstrate that the test agents with the best profile are those bearing symmetrical bulky substituents at N(1) and N(3), displaying promising activity against all forms of T. cruzi, interesting selectivity indexes and exceptional activity at low doses. Accordingly, these agents represent promising candidates for the treatment of Chagas disease. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  12. Efecto del aceite esencial de Aloysia triphylla britton (cedrón sobre el Trypanosoma cruzi en ratones The effect of the essential oil from Aloysia triphylla britton (lemon verbena on Trypanosoma cruzi in mice

    Directory of Open Access Journals (Sweden)

    Juan Rojas

    2012-03-01

    Full Text Available Objetivos. Determinar la actividad anti-Trypanosoma cruzi in vivo del aceite esencial de Aloysia triphylla en ratones. Materiales y Métodos. Los animales fueron asignados aleatoriamente a los siguientes grupos (n = 15 por grupo: infectados y no tratados (G1, infectados y tratados con benznidazol 100 mg/kg (G2, infectados y tratados con aceite esencial de Aloysia triphylla 100 mg/kg (G3, infectados y tratados con aceite esencial de Aloysia triphylla 250 mg/kg (G4; no infectados y no tratados (G5, y no infectados y tratados con 250 mg/kg de Aloysia triphyla (G6. La infección con T. cruzi se realizó con 104 tripomastigotes sanguíneos y el tratamiento empezó en el octavo día postinfección (dpi hasta el 28 dpi. La parasitemia se determinó con microscopía óptica cada dos días en 5 μL de sangre extraída de la cola. En el 14, 21 y 28 dpi se obtuvo sangre de la cola para el ensayo de creatina kinasa-MB (CK-MB, alanina aminotransferasa y creatinina; después, los animales fueron sacrificados y se extrajo el corazón para el estudio histopatológico. Resultados. El aceite esencial de cedrón produjo una reducción significativa de 85,4% del pico de parasitemia con la dosis de 250 mg/kg; también produjo reducción del número de amastigotes e infiltrados inflamatorios en el corazón. El nivel plasmático de CK-MB también disminuyó en el 28 dpi por efecto de dicho tratamiento. Conclusiones. En condiciones experimentales, el aceite esencial de Aloysia triphylla tiene efecto anti-Trypanosoma cruzi in vivo en ratones.Objectives. To determine the in-vivo anti-Trypanosoma cruzi activity of the essential oil from Aloysia triphylla in mice. Materials and methods. The mice (n = 15 in the study were randomly assigned to the following groups: infected and untreated (G1, infected and treated with benznidazole 100 mg/kg (G2, infected and treated with of Aloysia triphylla essential oil 100 mg/kg (G3, infected and treated with of Aloysia triphylla

  13. A new class of quinazoline-sulfonamides acting as efficient inhibitors against the α-carbonic anhydrase from Trypanosoma cruzi.

    Science.gov (United States)

    Alafeefy, Ahmed M; Ceruso, Mariangela; Al-Jaber, Nabila A; Parkkila, Seppo; Vermelho, Alane Beatriz; Supuran, Claudiu T

    2015-01-01

    The protozoan parasite Trypanosoma cruzi is the agent responsible for trypanosomiasis (Chagas disease) in humans and other animals. It has been recently reported that this pathogen encodes for an α-class carbonic anhydrase (CA, EC 4.2.1.1), denominated TcCA, which was shown to be crucial for its life cycle. Inhibition studies of a class of 4-oxoquinazoline containing a benzensulfonamide moiety and their 4-thioxo bioisosteres against the protozoan enzyme TcCA are described here. Most of 4-oxoquinazoline sulfonamides showed nanomolar TcCA inhibition activity with K(I)s in the same order of magnitude of acetazolamide (AAZ), whereas their thioxo bioisosters showed moderate anti-Trypanosoma CA potency with K(I)s in the micromolar range. The discovery of compounds incorporating a 4-oxoquinazoline ring as a low-nanomolar TcCA inhibitor is quite promising and it may be useful for developing anti-Trypanosoma agents with a novel mechanism of action compared to the clinically used drugs (such as benznidazole, nifurtimox) for which significant resistance and serious adverse effects due to their high-toxicity appeared.

  14. In vitro evaluation of the activity of aromatic nitrocompounds against Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Renata B Oliveira

    2003-01-01

    Full Text Available Fourteen compounds were evaluated for their activity against Trypanosoma cruzi blood stream forms at the concentration of 500 µg/ml. Six compounds were active and re-tested at lower concentrations.

  15. Physalins B and F, seco-steroids isolated from Physalis angulata L., strongly inhibit proliferation, ultrastructure and infectivity of Trypanosoma cruzi.

    Science.gov (United States)

    Meira, Cássio S; Guimarães, Elisalva T; Bastos, Tanira M; Moreira, Diogo R M; Tomassini, Therezinha C B; Ribeiro, Ivone M; Dos Santos, Ricardo R; Soares, Milena B P

    2013-12-01

    We previously observed that physalins have immunomodulatory properties, as well as antileishmanial and antiplasmodial activities. Here, we investigated the anti-Trypanosoma cruzi activity of physalins B, D, F and G. We found that physalins B and F were the most potent compounds against trypomastigote and epimastigote forms of T. cruzi. Electron microscopy of trypomastigotes incubated with physalin B showed disruption of kinetoplast, alterations in Golgi apparatus and endoplasmic reticulum, followed by the formation of myelin-like figures, which were stained with MDC to confirm their autophagic vacuole identity. Physalin B-mediated alteration in Golgi apparatus was likely due to T. cruzi protease perturbation; however physalins did not inhibit activity of the trypanosomal protease cruzain. Flow cytometry examination showed that cell death is mainly caused by necrosis. Treatment with physalins reduced the invasion process, as well as intracellular parasite development in macrophage cell culture, with a potency similar to benznidazole. We observed that a combination of physalins and benznidazole has a greater anti-T. cruzi activity than when compounds were used alone. These results indicate that physalins, specifically B and F, are potent and selective trypanocidal agents. They cause structural alterations and induce autophagy, which ultimately lead to parasite cell death by a necrotic process.

  16. Synthesis of Xylitan Derivatives and Preliminary Evaluation of in Vitro Trypanocidal Activity

    Directory of Open Access Journals (Sweden)

    Paula Regina Elias

    2016-10-01

    Full Text Available A series of novel xylitan derivatives derived from xylitol were synthesized using operationally simple procedures. A xylitan acetonide was the key intermediate used to prepare benzoate, arylsulfonate esters and 1,2,3-triazole derivatives of xylitan. These compounds were evaluated for their in vitro anti-Trypanosoma cruzi activity against trypomastigote and amastigote forms of the parasite in T. cruzi-infected cell lineages. Benznidazole was used as positive control against T. cruzi and cytotoxicity was determined in mammalian L929 cells. The arylsulfonate xylitan derivative bearing a nitro group displayed the best activity of all the compounds tested, and was slightly more potent than the reference drug benznidazole. The importance of the isopropylidene ketal moiety was established and the greater lipophilicity of these compounds suggests enhancement in cell penetration.

  17. Heme A synthesis and CcO activity are essential for Trypanosoma cruzi infectivity and replication.

    Science.gov (United States)

    Merli, Marcelo L; Cirulli, Brenda A; Menéndez-Bravo, Simón M; Cricco, Julia A

    2017-06-27

    Trypanosoma cruzi , the causative agent of Chagas disease, presents a complex life cycle and adapts its metabolism to nutrients' availability. Although T. cruzi is an aerobic organism, it does not produce heme. This cofactor is acquired from the host and is distributed and inserted into different heme-proteins such as respiratory complexes in the parasite's mitochondrion. It has been proposed that T. cruzi's energy metabolism relies on a branched respiratory chain with a cytochrome c oxidase-type aa 3 (C c O) as the main terminal oxidase. Heme A, the cofactor for all eukaryotic C c O, is synthesized via two sequential enzymatic reactions catalyzed by heme O synthase (HOS) and heme A synthase (HAS). Previously, TcCox10 and TcCox15 ( Trypanosoma cruzi Cox10 and Cox15 proteins) were identified in T. cruzi They presented HOS and HAS activity, respectively, when they were expressed in yeast. Here, we present the first characterization of TcCox15 in T. cruzi , confirming its role as HAS. It was differentially detected in the different T. cruzi stages, being more abundant in the replicative forms. This regulation could reflect the necessity of more heme A synthesis, and therefore more C c O activity at the replicative stages. Overexpression of a non-functional mutant caused a reduction in heme A content. Moreover, our results clearly showed that this hindrance in the heme A synthesis provoked a reduction on C c O activity and, in consequence, an impairment on T. cruzi survival, proliferation and infectivity. This evidence supports that T. cruzi depends on the respiratory chain activity along its life cycle, being C c O an essential terminal oxidase. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  18. Biological approaches to characterize the mode of action of two 5-nitroindazolinone prototypes on Trypanosoma cruzi bloodstream trypomastigotes.

    Science.gov (United States)

    Fonseca-Berzal, Cristina; DA Silva, Cristiane França; Menna-Barreto, Rubem F S; Batista, Marcos Meuser; Escario, José A; Arán, Vicente J; Gómez-Barrio, Alicia; Soeiro, Maria DE Nazaré C

    2016-09-01

    The phenotypic activity of two 5-nitroindazolinones, i.e. 2-benzyl-1-propyl (22) and 2-benzyl-1-butyl (24) derivatives, previously proposed as anti-Trypanosoma cruzi prototypes, was presently assayed on bloodstream trypomastigotes (BT) of the moderately drug-resistant Y strain. Further exploration of putative targets and cellular mechanisms involved in their activity was also carried out. Therefore, transmission electron microscopy, high-resolution respirometry and flow cytometry procedures were performed on BT treated for up to 24 h with the respective EC50 value of each derivative. Results demonstrated that although 22 and 24 were not as active as benznidazole in this in vitro assay on BT, both compounds triggered important damages in T. cruzi that lead to the parasite death. Ultrastructural alterations included shedding events, detachment of plasma membrane and nuclear envelope, loss of mitochondrial integrity, besides the occurrence of a large number of intracellular vesicles and profiles of endoplasmic reticulum surrounding cytoplasmic organelles such as mitochondrion. Moreover, both derivatives affected mitochondrion leading to this organelle dysfunction, as reflected by the inhibition in oxygen consumption and the loss of mitochondrial membrane potential. Altogether, the findings exposed in the present study propose autophagic processes and mitochondrial machinery as part of the mode of action of both 5-nitroindazolinones 22 and 24 on T. cruzi trypomastigotes.

  19. In vitro activity of Etanidazole against the protozoan parasite Trypanosoma cruzi

    OpenAIRE

    Petray, Patricia B; Morilla, María J; Corral, Ricardo S; Romero, Eder L

    2004-01-01

    We investigated the in vitro action of an hydrosoluble 2-nitroimidazole, Etanidazole (EZL), against Trypanosoma cruzi, the etiologic agent of Chagas disease. EZL displayed lethal activity against isolated trypomastigotes as well as amastigotes of T. cruzi (RA strain) growing in Vero cells or J774 macrophages, without affecting host cell viability. Although not completely equivalent to Benznidazole (BZL), the reference drug for Chagas chemotherapy, EZL takes advantage in exertingits anti-T. cr...

  20. Active transcription and ultrastructural changes during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Ludmila R.P. Ferreira

    2008-03-01

    Full Text Available The differentiation of proliferating epimastigote forms of Trypanosoma cruzi , the protozoan parasite that causes Chagas’ disease, into the infective and non-proliferating metacyclic forms can be reproduced in the laboratory by incubating the cells in a chemically-defined medium that mimics the urine of the insect vector. Epimastigotes have a spherical nucleus, a flagellum protruding from the middle of the protozoan cell, and a disk-shaped kinetoplast - an organelle that corresponds to the mitochondrial DNA. Metacyclic trypomastigotes have an elongated shape with the flagellum protruding from the posterior portion of the cell and associated with a spherical kinetoplast. Here we describe the morphological events of this transformation and characterize a novel intermediate stage by three-dimensional reconstruction of electron microscope serial sections. This new intermediate stage is characterized by a kinetoplast compressing an already elongated nucleus, indicating that metacyclogenesis involves active movements of the flagellar structure relative to the cell body. As transcription occurs more intensely in proliferating epimastigotes than in metacyclics, we also examined the presence of RNA polymerase II and measured transcriptional activity during the differentiation process. Both the presence of the enzyme and transcriptional activity remain unchanged during all steps of metacyclogenesis. RNA polymerase II levels and transcriptional activity only decrease after metacyclics are formed. We suggest that transcription is required during the epimastigote-to-metacyclic trypomastigote differentiation process, until the kinetoplast and flagellum reach the posterior position of the parasites in the infective form.A diferenciação de formas epimastigotas (proliferativas do Trypanosoma cruzi, parasita protozoário causador da doença de Chagas, em formas metacíclicas tripomastigotas (infectivas e não proliferativas, pode ser reproduzida em laborat

  1. In vitro activity of Etanidazole against the protozoan parasite Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Patricia B Petray

    2004-03-01

    Full Text Available We investigated the in vitro action of an hydrosoluble 2-nitroimidazole, Etanidazole (EZL, against Trypanosoma cruzi, the etiologic agent of Chagas disease. EZL displayed lethal activity against isolated trypomastigotes as well as amastigotes of T. cruzi (RA strain growing in Vero cells or J774 macrophages, without affecting host cell viability. Although not completely equivalent to Benznidazole (BZL, the reference drug for Chagas chemotherapy, EZL takes advantage in exertingits anti-T. cruzi activity for longer periods without serious toxic side effects, as those recorded in BZL-treated patients. Our present results encourage further experiments to study in depth the trypanocidal properties of this drug already licensed for use in human cancers.

  2. Activity of P536, a UDP-glucose analog, against Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Alcina, A.; Fresno, M.; Alarcon, B.

    1988-09-01

    P536, a UDP-glucose analog which was previously described as an antiviral agent, has a potent and selective activity against the intracellular and extracellular stages of Trypanosoma cruzi in vitro. It had a 50% inhibitory concentration of less than 5 micrograms/ml for T. cruzi extracellular cultured forms (epimastigote) and of 25 micrograms/ml for T. cruzi intracellular forms (amastigote) growing inside J774G8 macrophage-like cells. In contrast, the 50% inhibitory concentration was 100 micrograms/ml or greater for cultured mammalian cells and 180 micrograms/ml for the proliferation of mouse spleen lymphocytes. Furthermore, the addition of P536 (50 micrograms/ml) to T. cruzi-infected J774G8 cells cured the infected macrophages, making them able to grow and function normally. Studies on the mechanism of action of this drug indicated that it inhibited incorporation of (TVS)methionine, (TH)thymidine, (TH)mannose, ( UC)-N-acetylglucosamine, and (TH)uridine into macromolecules by T. cruzi epimastigotes, the last being the most sensitive.

  3. Antichagasic Activity of Komaroviquinone Is Due to Generation of Reactive Oxygen Species Catalyzed by Trypanosoma cruzi Old Yellow Enzyme

    OpenAIRE

    Uchiyama, Nahoko; Kabututu, Zakayi; Kubata, Bruno K.; Kiuchi, Fumiyuki; Ito, Michiho; Nakajima-Shimada, Junko; Aoki, Takashi; Ohkubo, Kei; Fukuzumi, Shunichi; Martin, Samuel K.; Honda, Gisho; Urade, Yoshihiro

    2005-01-01

    A novel potent trypanocidal diterpene, komaroviquinone, was reduced by Trypanosoma cruzi old yellow enzyme (TcOYE) to its semiquinone radical. The reductase activity in trypanosome lysates was completely immunoabsorbed by anti-TcOYE antibody. Since TcOYE is expressed throughout the T. cruzi life cycle, komaroviquinone is an interesting candidate for developing new antichagasic drugs.

  4. Design, synthesis, molecular docking and biological evaluation of thiophen-2-iminothiazolidine derivatives for use against Trypanosoma cruzi.

    Science.gov (United States)

    Silva-Júnior, E F; Silva, E P S; França, P H B; Silva, J P N; Barreto, E O; Silva, E B; Ferreira, R S; Gatto, C C; Moreira, D R M; Siqueira-Neto, J L; Mendonça-Júnior, F J B; Lima, M C A; Bortoluzzi, J H; Scotti, M T; Scotti, L; Meneghetti, M R; Aquino, T M; Araújo-Júnior, J X

    2016-09-15

    In this study, we designed and synthesized a series of thiophen-2-iminothiazolidine derivatives from thiophen-2-thioureic with good anti-Trypanosoma cruzi activity. Several of the final compounds displayed remarkable trypanocidal activity. The ability of the new compounds to inhibit the activity of the enzyme cruzain, the major cysteine protease of T. cruzi, was also explored. The compounds 3b, 4b, 8b and 8c were the most active derivatives against amastigote form, with significant IC50 values between 9.7 and 6.03μM. The 8c derivative showed the highest potency against cruzain (IC50=2.4μM). Molecular docking study showed that this compound can interact with subsites S1 and S2 simultaneously, and the negative values for the theoretical energy binding (Eb=-7.39kcal·mol(-1)) indicates interaction (via dipole-dipole) between the hybridized sulfur sp(3) atom at the thiazolidine ring and Gly66. Finally, the results suggest that the thiophen-2-iminothiazolidines synthesized are important lead compounds for the continuing battle against Chagas disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Trypanosoma cruzi

    Science.gov (United States)

    Ramírez-Toloza, Galia; Ferreira, Arturo

    2017-01-01

    American Trypanosomiasis is an important neglected reemerging tropical parasitism, infecting about 8 million people worldwide. Its agent, Trypanosoma cruzi , exhibits multiple mechanisms to evade the host immune response and infect host cells. An important immune evasion strategy of T. cruzi infective stages is its capacity to inhibit the complement system activation on the parasite surface, avoiding opsonizing, immune stimulating and lytic effects. Epimastigotes, the non-infective form of the parasite, present in triatomine arthropod vectors, are highly susceptible to complement-mediated lysis while trypomastigotes, the infective form, present in host bloodstream, are resistant. Thus T. cruzi susceptibility to complement varies depending on the parasite stage (amastigote, trypomastigotes or epimastigote) and on the T. cruzi strain. To avoid complement-mediated lysis, T. cruzi trypomastigotes express on the parasite surface a variety of complement regulatory proteins, such as glycoprotein 58/68 (gp58/68), T. cruzi complement regulatory protein (TcCRP), trypomastigote decay-accelerating factor (T-DAF), C2 receptor inhibitor trispanning (CRIT) and T. cruzi calreticulin (TcCRT). Alternatively, or concomitantly, the parasite captures components with complement regulatory activity from the host bloodstream, such as factor H (FH) and plasma membrane-derived vesicles (PMVs). All these proteins inhibit different steps of the classical (CP), alternative (AP) or lectin pathways (LP). Thus, TcCRP inhibits the CP C3 convertase assembling, gp58/68 inhibits the AP C3 convertase, T-DAF interferes with the CP and AP convertases assembling, TcCRT inhibits the CP and LP, CRIT confers ability to resist the CP and LP, FH is used by trypomastigotes to inhibit the AP convertases and PMVs inhibit the CP and LP C3 convertases. Many of these proteins have similar molecular inhibitory mechanisms. Our laboratory has contributed to elucidate the role of TcCRT in the host-parasite interplay

  6. Chemical constituents from Waltheria indica exert in vitro activity against Trypanosoma brucei and T. cruzi.

    Science.gov (United States)

    Cretton, Sylvian; Bréant, Lise; Pourrez, Lucie; Ambuehl, Chiara; Perozzo, Remo; Marcourt, Laurence; Kaiser, Marcel; Cuendet, Muriel; Christen, Philippe

    2015-09-01

    Six extracts from the roots and the aerial parts of Waltheria indica L. (Malvaceae) were screened for their in vitro antitrypanosomal activity towards Trypanosoma brucei brucei STIB 427 strain, T. brucei rhodesiense STIB 900 and Trypanosoma cruzi Tulahuen C4. The dichloromethane extract from the roots showed the highest activity against T. cruzi (IC50=0.74 μg/mL) as well as a good selectivity index (SI value of 35). Based on these results, this extract was fractionated and led to the isolation of three alkaloids (adouetin X (1), waltheriones A (2) and C (3)) and three pentacyclic triterpene derivatives (betulinic acid (4), 3β-acetoxy-27-trans-caffeoyloxyolean-12-en-28-oic acid methyl ester (5) and 3β-acetoxy-27-cis-caffeoyloxyolean-12-en-28-oic acid methyl ester (6)) identified by 1D and 2D NMR, UV, IR and MS analyses. Among these, waltherione C exhibited the highest and selective antitrypanosomal activity towards T. cruzi (IC50=1.93 μM) with low cytotoxicity (IC50=101.23 μM), resulting in a selectivity index value of 52. Waltherione C conforms to hit activity criteria with respect to T. cruzi as required by the WHO/TDR. Copyright © 2015. Published by Elsevier B.V.

  7. Fibronectin-degrading activity of Trypanosoma cruzi cysteine proteinase plays a role in host cell invasion.

    Science.gov (United States)

    Maeda, Fernando Yukio; Cortez, Cristian; Izidoro, Mario Augusto; Juliano, Luiz; Yoshida, Nobuko

    2014-12-01

    Trypanosoma cruzi, the agent of Chagas disease, binds to diverse extracellular matrix proteins. Such an ability prevails in the parasite forms that circulate in the bloodstream and contributes to host cell invasion. Whether this also applies to the insect-stage metacyclic trypomastigotes, the developmental forms that initiate infection in the mammalian host, is not clear. Using T. cruzi CL strain metacyclic forms, we investigated whether fibronectin bound to the parasites and affected target cell invasion. Fibronectin present in cell culture medium bound to metacyclic forms and was digested by cruzipain, the major T. cruzi cysteine proteinase. G strain, with negligible cruzipain activity, displayed a minimal fibronectin-degrading effect. Binding to fibronectin was mediated by gp82, the metacyclic stage-specific surface molecule implicated in parasite internalization. When exogenous fibronectin was present at concentrations higher than cruzipain can properly digest, or fibronectin expression was stimulated by treatment of epithelial HeLa cells with transforming growth factor beta, the parasite invasion was reduced. Treatment of HeLa cells with purified recombinant cruzipain increased parasite internalization, whereas the treatment of parasites with cysteine proteinase inhibitor had the opposite effect. Metacyclic trypomastigote entry into HeLa cells was not affected by anti-β1 integrin antibody but was inhibited by anti-fibronectin antibody. Overall, our results have indicated that the cysteine proteinase of T. cruzi metacyclic forms, through its fibronectin-degrading activity, is implicated in host cell invasion. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Cruzipain Activates Latent TGF-β from Host Cells during T. cruzi Invasion.

    Directory of Open Access Journals (Sweden)

    Patrícia Mello Ferrão

    Full Text Available Several studies indicate that the activity of cruzipain, the main lysosomal cysteine peptidase of Trypanosoma cruzi, contributes to parasite infectivity. In addition, the parasitic invasion process of mammalian host cells is described to be dependent on the activation of the host TGF-β signaling pathway by T. cruzi. Here, we tested the hypothesis that cruzipain could be an important activator of latent TGF-β and thereby trigger TGF-β-mediated events crucial for the development of Chagas disease. We found that live epimastigotes of T. cruzi, parasite lysates and purified cruzipain were able to activate latent TGF-β in vitro. This activation could be inhibited by the cysteine peptidase inhibitor Z-Phe-Ala-FMK. Moreover, transfected parasites overexpressing chagasin, a potent endogenous cruzipain inhibitor, prevented latent TGF-β activation. We also observed that T. cruzi invasion, as well as parasite intracellular growth, were inhibited by the administration of Z-Phe-Ala-FMK or anti-TGF-β neutralizing antibody to Vero cell cultures. We further demonstrated that addition of purified cruzipain enhanced the invasive activity of trypomastigotes and that this effect could be completely inhibited by addition of a neutralizing anti-TGF-β antibody. Taken together, these results demonstrate that the activities of cruzipain and TGF-β in the process of cell invasion are functionally linked. Our data suggest that cruzipain inhibition is an interesting chemotherapeutic approach for Chagas disease not only because of its trypanocidal activity, but also due to the inhibitory effect on TGF-β activation.

  9. The in vitro activity of fatty diamines and amino alcohols against mixed amastigote and trypomastigote Trypanosoma cruzi forms

    Directory of Open Access Journals (Sweden)

    Policarpo Ademar Sales Júnior

    2014-06-01

    Full Text Available Four diamines and three amino alcohols derived from 1-decanol, 1-dodecanol and 1,2-dodecanediol were evaluated in an in vitro assay against a mixture of trypomastigote and intracellular amastigote forms of Trypanosoma cruzi. Two of these compounds (6 and 7 showed better activity against both proliferative stages of T. cruzi than the positive control benznidazole, three were of similar potency (1, 2 and 5 and two were less active (3 and 4.

  10. Influence of Ecto-nucleoside triphosphate diphosphohydrolase activity on Trypanosoma cruzi infectivity and virulence.

    Directory of Open Access Journals (Sweden)

    Ramon F Santos

    Full Text Available BACKGROUND: The protozoan Trypanosoma cruzi is the causative agent of Chagas disease. There are no vaccines or effective treatment, especially in the chronic phase when most patients are diagnosed. There is a clear necessity to develop new drugs and strategies for the control and treatment of Chagas disease. Recent papers have suggested the ecto-nucleotidases (from CD39 family from pathogenic agents as important virulence factors. In this study we evaluated the influence of Ecto-Nucleoside-Triphosphate-Diphosphohydrolase (Ecto-NTPDase activity on infectivity and virulence of T. cruzi using both in vivo and in vitro models. METHODOLOGY/PRINCIPAL FINDINGS: We followed Ecto-NTPDase activities of Y strain infective forms (trypomastigotes obtained during sequential sub-cultivation in mammalian cells. ATPase/ADPase activity ratios of cell-derived trypomastigotes decreased 3- to 6-fold and infectivity was substantially reduced during sequential sub-cultivation. Surprisingly, at third to fourth passages most of the cell-derived trypomastigotes could not penetrate mammalian cells and had differentiated into amastigote-like parasites that exhibited 3- to 4-fold lower levels of Ecto-NTPDase activities. To evidence the participation of T. cruzi Ecto-NTPDase1 in the infective process, we evaluated the effect of known Ecto-ATPDase inhibitors (ARL 67156, Gadolinium and Suramin, or anti-NTPDase-1 polyclonal antiserum on ATPase and ADPase hydrolytic activities in recombinant T. cruzi NTPDase-1 and in live trypomastigotes. All tests showed a partial inhibition of Ecto-ATPDase activities and a marked inhibition of trypomastigotes infectivity. Mice infections with Ecto-NTPDase-inhibited trypomastigotes produced lower levels of parasitemia and higher host survival than with non-inhibited control parasites. CONCLUSIONS/SIGNIFICANCE: Our results suggest that Ecto-ATPDases act as facilitators of infection and virulence in vitro and in vivo and emerge as target

  11. Distinct Trypanosoma cruzi isolates induce activation and apoptosis of human neutrophils

    Science.gov (United States)

    Magalhães, Luísa M. D.; Viana, Agostinho; de Jesus, Augusto C.; Chiari, Egler; Galvão, Lúcia; Gomes, Juliana A.; Gollob, Kenneth J.

    2017-01-01

    Neutrophils are critical players in the first line of defense against pathogens and in the activation of subsequent cellular responses. We aimed to determine the effects of the interaction of Trypanosoma cruzi with human neutrophils, using isolates of the two major discrete type units (DTUs) associated with Chagas’ disease in Latin America (clone Col1.7G2 and Y strain, DTU I and II, respectively). Thus, we used CFSE-stained trypomastigotes to measure neutrophil-T. cruzi interaction, neutrophil activation, cytokine expression and death, after infection with Col1.7G2 and Y strain. Our results show that the frequency of CFSE+ neutrophils, indicative of interaction, and CFSE intensity on a cell-per-cell basis were similar when comparing Col1.7G2 and Y strains. Interaction with T. cruzi increased neutrophil activation, as measured by CD282, CD284, TNF and IL-12 expression, although at different levels between the two strains. No change in IL-10 expression was observed after interaction of neutrophils with either strain. We observed that exposure to Y and Col1.7G2 caused marked neutrophil death. This was specific to neutrophils, since interaction of either strain with monocytes did not cause death. Our further analysis showed that neutrophil death was a result of apoptosis, which was associated with an upregulation of TNF-receptor, TNF and FasLigand, but not of Fas. Induction of TNF-associated neutrophil apoptosis by the different T. cruzi isolates may act as an effective common mechanism to decrease the host’s immune response and favor parasite survival. PMID:29176759

  12. Distinct Trypanosoma cruzi isolates induce activation and apoptosis of human neutrophils.

    Directory of Open Access Journals (Sweden)

    Luísa M D Magalhães

    Full Text Available Neutrophils are critical players in the first line of defense against pathogens and in the activation of subsequent cellular responses. We aimed to determine the effects of the interaction of Trypanosoma cruzi with human neutrophils, using isolates of the two major discrete type units (DTUs associated with Chagas' disease in Latin America (clone Col1.7G2 and Y strain, DTU I and II, respectively. Thus, we used CFSE-stained trypomastigotes to measure neutrophil-T. cruzi interaction, neutrophil activation, cytokine expression and death, after infection with Col1.7G2 and Y strain. Our results show that the frequency of CFSE+ neutrophils, indicative of interaction, and CFSE intensity on a cell-per-cell basis were similar when comparing Col1.7G2 and Y strains. Interaction with T. cruzi increased neutrophil activation, as measured by CD282, CD284, TNF and IL-12 expression, although at different levels between the two strains. No change in IL-10 expression was observed after interaction of neutrophils with either strain. We observed that exposure to Y and Col1.7G2 caused marked neutrophil death. This was specific to neutrophils, since interaction of either strain with monocytes did not cause death. Our further analysis showed that neutrophil death was a result of apoptosis, which was associated with an upregulation of TNF-receptor, TNF and FasLigand, but not of Fas. Induction of TNF-associated neutrophil apoptosis by the different T. cruzi isolates may act as an effective common mechanism to decrease the host's immune response and favor parasite survival.

  13. Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening.

    Directory of Open Access Journals (Sweden)

    Esther Bettiol

    Full Text Available The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain expressing beta-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC(50: 54, 190 and 23 nM, respectively. Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti-T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC(50 values of 2 nM (PCH6 and CX2. These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis.

  14. Trypanosoma cruzi: activities of lapachol and alpha- and beta-lapachone derivatives against epimastigote and trypomastigote forms.

    Science.gov (United States)

    Salas, Cristian; Tapia, Ricardo A; Ciudad, Karina; Armstrong, Verónica; Orellana, Myriam; Kemmerling, Ulrike; Ferreira, Jorge; Maya, Juan Diego; Morello, Antonio

    2008-01-15

    Derivatives of natural quinones with biological activities, such as lapachol, alpha- and beta-lapachones, have been synthesized and their trypanocidal activity evaluated in vitro in Trypanosoma cruzi cells. All tested compounds inhibited epimastigote growth and trypomastigote viability. Several compounds showed similar or higher activity as compared with current trypanocidal drugs, nifurtimox and benznidazole. The results presented here show that the anti-T. cruzi activity of the alpha-lapachone derivatives can be increased by the replacement of the benzene ring by a pyridine moiety. Free radical production and consequently oxidative stress through redox cycling or production of electrophilic metabolites are the potential biological mechanism of action for these synthetic quinones.

  15. Secondary metabolites from Vietnamese marine invertebrates with activity against Trypanosoma brucei and T. cruzi.

    Science.gov (United States)

    Thao, Nguyen Phuong; No, Joo Hwan; Luyen, Bui Thi Thuy; Yang, Gyongseon; Byun, Soo Young; Goo, Junghyun; Kim, Kyung Tae; Cuong, Nguyen Xuan; Nam, Nguyen Hoai; Van Minh, Chau; Schmidt, Thomas J; Kang, Jong Seong; Kim, Young Ho

    2014-06-11

    Marine-derived natural products from invertebrates comprise an extremely diverse and promising source of the compounds from a wide variety of structural classes. This study describes the discovery of five marine natural products with activity against Trypanosoma species by natural product library screening using whole cell in vitro assays. We investigated the anti-trypanosomal activity of the extracts from the soft corals and echinoderms living in Vietnamese seas. Of the samples screened, the methanolic extracts of several marine organisms exhibited potent activities against cultures of Trypanosoma brucei and T. cruzi (EC50 activity against T. brucei with EC50 values ranging from 1.57 ± 0.14 to 14.6 ± 1.36 μM, relative to the positive control, pentamidine (EC50 = 0.015 ± 0.003 μM). Laevigatol B (1) and 5α-cholest-8(14)-ene-3β,7α-diol (5) exhibited also significant inhibitory effects on T. cruzi. The cytotoxic activity of the pure compounds on mammalian cells was also assessed and found to be insignificant in all cases. This is the first report on the inhibitory effects of marine organisms collected in Vietnamese seas against Trypanosoma species responsible for neglected tropical diseases.

  16. Biological activity of the azlactone derivative EPA-35 against Trypanosoma cruzi.

    Science.gov (United States)

    de Azeredo, Camila Maria Oliveira; Ávila, Eloah Pereira; Pinheiro, Danielle Lobo Justo; Amarante, Giovanni Wilson; Soares, Maurilio José

    2017-02-01

    Chagas disease, caused by Trypanosoma cruzi, affects six to seven million people worldwide. Treatment is based on benznidazole, producing several side effects and debatable efficacy, highlighting the need for new alternative drugs. We investigated the activity of four C-4 functionalized azlactone derivatives (EPA-27, EPA-35, EPA-63 and EPA-91) as potential T. cruzi inhibitors. Screening with epimastigotes indicated EPA-35 as the best compound (IC50/24 h: 33 μM). This compound was 14.1 times more potent against intracellular amastigotes (IC50/24 h: 2.34 μM). Treatment of infected Vero cells for 72 h (up to 30 μM EPA-35) resulted in a dose-dependent decrease in number of trypomastigotes and amastigotes released in the supernatant, but the amastigote/trypomastigote ratio remained constant, indicating that amastigote growth was disturbed, but cell differentiation was unaffected. Analysis of treated epimastigotes by flow cytometry indicated that the plasma membrane remained intact, but there was a significant decrease in mitochondrial membrane potential. The pattern of cell distribution in the cell cycle stages (G1, G2, M) was unaltered in treated epimastigotes, indicating a trypanocidal rather than a trypanostatic activity. Scanning electron microscopy and flow cytometry showed epimastigotes with a round shape and decrease in cell size. Taken together, our data indicate that the EPA-35 is effective against T. cruzi. Synthetic transformation of EPA-35 into other derivatives may provide promising compounds for further evaluation against this parasite. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Plants of Brazilian restingas with tripanocide activity against Trypanosoma cruzi strains.

    Science.gov (United States)

    Faria, Robson Xavier; Souza, André Luis Almeida; Lima, Barbara; Tietbohl, Luis Armando Candido; Fernandes, Caio Pinho; Amaral, Raquel Rodrigues; Ruppelt, Bettina Monika; Santos, Marcelo Guerra; Rocha, Leandro

    2017-12-01

    Chagas disease is caused by the Trypanosoma cruzi affecting millions of people, and widespread throughout Latin America. This disease exhibits a problematic chemotherapy. Benznidazole, which is the drug currently used as standard treatment, lamentably evokes several adverse reactions. Among other options, natural products have been tested to discover a novel therapeutic drug for this disease. A lot of plants from the Brazilian flora did not contain studies about their biological effects. Restinga de Jurubatiba from Brazil is a sandbank ecosystem poorly studied in relation to plant biological activity. Thus, three plant species from Restinga de Jurubatiba were tested against in vitro antiprotozoal activity. Among six extracts obtained from leaves and stem parts and 2 essential oils derived from leave parts, only 3 extracts inhibited epimastigote proliferation. Substances present in the extracts with activity were isolated (quercetin, myricetin, and ursolic acid), and evaluated in relation to antiprotozoal activity against epimastigote Y and Dm28 Trypanosoma cruzi strains. All isolated substances were effective to reduce protozoal proliferation. Essentially, quercetin and myricetin did not cause mammalian cell toxicity. In summary, myricetin and quercetin molecule can be used as a scaffold to develop new effective drugs against Chagas's disease.

  18. Preparation and evaluation of a coumarin library towards the inhibitory activity of the enzyme gGAPDH from Trypanosoma cruzi

    International Nuclear Information System (INIS)

    Alvim Junior, Joel; Dias, Ricardo L.A.; Correa, Arlene G.; Castilho, Marcelo S.; Oliva, Glaucius

    2005-01-01

    Chagas' disease, caused by Trypanosoma cruzi, is endemic in 15 countries in Latin America. In this work a library of 38 coumarins was prepared in solution phase and evaluated against T. cruzi glycolytic enzyme glyceraldehyde-3-phosphate-dehydrogenase (gGAPDH). The synthetic route was based on the Knoevenagel condensation of different 2-hydroxybenzaldehydes with Meldrum's acid or diethyl malonate, followed by O-alkylation and/or transesterification reactions. Among the prepared coumarins, the best values obtained to inhibit 50% of the enzymatic activity range from 80 to 130 μM. (author)

  19. Preparation and evaluation of a coumarin library towards the inhibitory activity of the enzyme gGAPDH from Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Alvim Junior, Joel; Dias, Ricardo L.A.; Correa, Arlene G. [Universidade Federal de Sao Carlos, SP (Brazil). Dept. de Quimica]. E-mail: agcorrea@power.ufscar.br; Castilho, Marcelo S.; Oliva, Glaucius [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica

    2005-07-15

    Chagas' disease, caused by Trypanosoma cruzi, is endemic in 15 countries in Latin America. In this work a library of 38 coumarins was prepared in solution phase and evaluated against T. cruzi glycolytic enzyme glyceraldehyde-3-phosphate-dehydrogenase (gGAPDH). The synthetic route was based on the Knoevenagel condensation of different 2-hydroxybenzaldehydes with Meldrum's acid or diethyl malonate, followed by O-alkylation and/or transesterification reactions. Among the prepared coumarins, the best values obtained to inhibit 50% of the enzymatic activity range from 80 to 130 {mu}M. (author)

  20. Multi-Anti-Parasitic Activity of Arylidene Ketones and Thiazolidene Hydrazines against Trypanosoma cruzi and Leishmania spp.

    Science.gov (United States)

    Álvarez, Guzmán; Perdomo, Cintya; Coronel, Cathia; Aguilera, Elena; Varela, Javier; Aparicio, Gonzalo; Zolessi, Flavio R; Cabrera, Nallely; Vega, Celeste; Rolón, Miriam; Rojas de Arias, Antonieta; Pérez-Montfort, Ruy; Cerecetto, Hugo; González, Mercedes

    2017-05-07

    A series of fifty arylideneketones and thiazolidenehydrazines was evaluated against Leishmania infantum and Leishmania braziliensis . Furthermore, new simplified thiazolidenehydrazine derivatives were evaluated against Trypanosoma cruzi . The cytotoxicity of the active compounds on non-infected fibroblasts or macrophages was established in vitro to evaluate the selectivity of their anti-parasitic effects. Seven thiazolidenehydrazine derivatives and ten arylideneketones had good activity against the three parasites. The IC 50 values for T. cruzi and Leishmania spp. ranged from 90 nM-25 µM. Eight compounds had multi-trypanocidal activity against T. cruzi and Leishmania spp. (the etiological agents of cutaneous and visceral forms). The selectivity of these active compounds was better than the three reference drugs: benznidazole, glucantime and miltefosine. They also had low toxicity when tested in vivo on zebrafish. Trying to understand the mechanism of action of these compounds, two possible molecular targets were investigated: triosephosphate isomerase and cruzipain. We also used a molecular stripping approach to elucidate the minimal structural requirements for their anti- T. cruzi activity.

  1. A new bianthron glycoside as inhibitor of Trypanosoma cruzi glyceraldehyde 3-phosphate dehydrogenase activity

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Edangelo M.S. de; Silva, Maria G.V. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Analitica e Fisico-Quimica; Wiggers, Helton J.; Montanari, Carlos A. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, (Brazil). Setor de Quimica de Produtos Naturais; Andricopulo, Adriano D. [Universidade de Sao Paulo (USP), Sao Carlos SP (Brazil). Inst. de Fisica

    2009-07-01

    A phytochemical investigation of the ethanolic extract of stalks of Senna martiana Benth. (Leguminoseae), native specie of northeast Brazil, resulted in the isolation and spectroscopic characterization of a new bianthrone glycoside, martianine 1 (10,10'-il-chrysophanol-10-oxi- 10,10'-bi-glucosyl). Its identification was established by HRMS, IR and 2D NMR experiments. The evaluation of martianine trypanocidal activity was carried out against gliceraldehyde 3-phosphate dehydrogenase enzyme from Trypanosoma cruzi. Its inhibitory constant (K{sub i}) is in the low micromolar concentration and it was determined by isothermal titration calorimetry to be 27.3 +-2.47 {mu}mol L{sup -1}. The non-competitive mechanism is asserted to be putative of the mode of action martianine displays against T. cruzi GAPDH. Results show that martianine has a great potential to become new lead molecule by inhibiting this key enzyme and for the development of new drugs against Chagas disease. (author)

  2. New alkenyl derivative from Piper malacophyllum and analogues: Antiparasitic activity against Trypanosoma cruzi and Leishmania infantum.

    Science.gov (United States)

    Varela, Marina T; Lima, Marta L; Galuppo, Mariana K; Tempone, Andre G; de Oliveira, Alberto; Lago, João Henrique G; Fernandes, João Paulo S

    2017-11-01

    Alkylphenols isolated from Piper malacophyllum (Piperaceae), gibbilimbols A and B, showed interesting activity against the parasites Trypanosoma cruzi and Leishmania infantum. In continuation to our previous work, a new natural product from the essential oil of the leaves of P. malacophyllum was isolated, the 5-[(3E)-oct-3-en-1-il]-1,3-benzodioxole, and also a new set of five compounds was prepared. The antiparasitic activity of the natural product was evaluated in vitro against these parasites, indicating potential against the promastigote/trypomastigote/amastigote forms (IC 50 32-83 μm) of the parasites and low toxicity (CC 50  > 200 μm) to mammalian cells. The results obtained to the synthetic compounds indicated that the new derivatives maintained the promising antiparasitic activity, but the cytotoxicity was considerably lowered. The amine derivative LINS03011 displayed the most potent IC 50 values (13.3 and 16.7 μm) against amastigotes of T. cruzi and L. infantum, respectively, indicating comparable activity to the phenolic prototype LINS03003, with threefold decreased (CC 50 73.5 μm) cytotoxicity, leading the selectivity index (SI) towards the parasites up to 24.5. In counterpart, LINS03011 has not shown membrane disruptor activity in SYTOX Green model. In summary, this new set showed the hydroxyl is not essential for the antiparasitic activity, and its substitution could decrease the toxicity to mammalian cells. © 2017 John Wiley & Sons A/S.

  3. Secondary Metabolites from Vietnamese Marine Invertebrates with Activity against Trypanosoma brucei and T. cruzi

    Directory of Open Access Journals (Sweden)

    Nguyen Phuong Thao

    2014-06-01

    Full Text Available Marine-derived natural products from invertebrates comprise an extremely diverse and promising source of the compounds from a wide variety of structural classes. This study describes the discovery of five marine natural products with activity against Trypanosoma species by natural product library screening using whole cell in vitro assays. We investigated the anti-trypanosomal activity of the extracts from the soft corals and echinoderms living in Vietnamese seas. Of the samples screened, the methanolic extracts of several marine organisms exhibited potent activities against cultures of Trypanosoma brucei and T. cruzi (EC50 < 5.0 μg/mL. Among the compounds isolated from these extracts, laevigatol B (1 from Lobophytum crassum and L. laevigatum, (24S-ergost-4-ene-3-one (2 from Sinularia dissecta, astropectenol A (3 from Astropecten polyacanthus, and cholest-8-ene-3β,5α,6β,7α-tetraol (4 from Diadema savignyi showed inhibitory activity against T. brucei with EC50 values ranging from 1.57 ± 0.14 to 14.6 ± 1.36 μM, relative to the positive control, pentamidine (EC50 = 0.015 ± 0.003 μM. Laevigatol B (1 and 5α-cholest-8(14-ene-3β,7α-diol (5 exhibited also significant inhibitory effects on T. cruzi. The cytotoxic activity of the pure compounds on mammalian cells was also assessed and found to be insignificant in all cases. This is the first report on the inhibitory effects of marine organisms collected in Vietnamese seas against Trypanosoma species responsible for neglected tropical diseases.

  4. Search for a platelet-activating factor receptor in the Trypanosoma cruzi proteome: a potential target for Chagas disease chemotherapy

    Directory of Open Access Journals (Sweden)

    Daniel Fábio Kawano

    2011-12-01

    Full Text Available Chagas disease (CD causes the highest burden of parasitic diseases in the Western Hemisphere and is therefore a priority for drug research and development. Platelet-activating factor (PAF causes the CD parasite Trypanosoma cruzi to differentiate, which suggests that the parasite may express PAF receptors. Here, we explored the T. cruzi proteome for PAF receptor-like proteins. From a total of 23,000 protein sequences, we identified 29 hypothetical proteins that are predicted to have seven transmembrane domains (TMDs, which is the main characteristic of the G protein-coupled receptors (GPCRs, including the PAF receptor. The TMDs of these sequences were independently aligned with domains from 25 animal PAF receptors and the sequences were analysed for conserved residues. The conservation score mean values for the TMDs of the hypothetical proteins ranged from 31.7-44.1%, which suggests that if the putative T. cruzi PAF receptor is among the sequences identified, the TMDs are not highly conserved. These results suggest that T. cruzi contains several GPCR-like proteins and that one of these GPCRs may be a PAF receptor. Future studies may further validate the PAF receptor as a target for CD chemotherapy.

  5. In vitro investigation of Brazilian Cerrado plant extract activity against Plasmodium falciparum, Trypanosoma cruzi and T. brucei gambiense.

    Science.gov (United States)

    Charneau, Sébastien; de Mesquita, Mariana Laundry; Bastos, Izabela Marques Dourado; Santana, Jaime Martins; de Paula, José Elias; Grellier, Philippe; Espindola, Laila Salmen

    2016-06-01

    The threatened Brazilian Cerrado biome is an important biodiversity hotspot but still few explored that constitutes a potential reservoir of molecules to treat infectious diseases. We selected eight Cerrado plant species for screening against the erythrocytic stages of Plasmodium falciparum, human intracellular stages of Trypanosoma cruzi and bloodstream forms of T. brucei gambiense, and for their cytotoxicity upon the rat L6-myoblast cell line. Bioassays were performed with 37 hexane, ethyl acetate and ethanol extracts prepared from different plant organs. Activities against parasites were observed for 24 extracts: 9 with anti-P. falciparum, 4 with anti-T. cruzi and 11 with anti-T. brucei gambiense activities. High anti-protozoal activity (IC50 values Cerrado conservation and sustainable development.

  6. Trypanocidal activity of Brazilian plants against epimastigote forms from Y and Bolivia strains of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Renata Tomé Alves

    2012-01-01

    Full Text Available Chagas disease is one of the main public health problems in Latin America. Since the available treatments for this disease are not effective in providing cure, the screening of potential antiprotozoal agents is essential, mainly of those obtained from natural sources. This study aimed to provide an evaluation of the trypanocidal activity of 92 ethanol extracts from species belonging to the families Annonaceae, Apiaceae, Cucurbitaceae, Lamiaceae, Lauraceae, Moraceae, Nyctaginaceae, and Verbenaceae against the Y and Bolivia strains of Trypanosoma cruzi. Additionally, cytotoxic activity on LLCMK2 fibroblasts was evaluated. Both the trypanocidal activity and cytotoxicity were evaluated using the MTT method, in the following concentrations: 500, 350, 250, and 100 µg/mL. Benznidazole was used for positive control. The best results among the 92 samples evaluated were obtained with ethanol extracts of Ocotea paranapiacabensis (Am93 and Aegiphila lhotzkiana (Am160. Am93 showed trypanocidal activity against epimastigote forms of the Bolivia strain and was moderately toxic to LLCMK2 cells, its Selectivity Index (SI being 14.56, while Am160 showed moderate trypanocidal activity against the Bolivia strain and moderate toxicicity, its SI being equal to 1.15. The screening of Brazilian plants has indicated the potential effect of ethanol extracts obtained from Ocotea paranapiacabensis and Aegiphila lhotzkiana against Chagas disease.

  7. Caspase-8 activity is part of the BeWo trophoblast cell defense mechanisms against Trypanosoma cruzi infection.

    Science.gov (United States)

    Carrillo, Ileana; Droguett, Daniel; Castillo, Christian; Liempi, Ana; Muñoz, Lorena; Maya, Juan Diego; Galanti, Norbel; Kemmerling, Ulrike

    2016-09-01

    Congenital Chagas disease is caused by the protozoan parasite Trypanosoma cruzi that must cross the placental barrier during transmission. The trophoblast constitutes the first tissue in contact with the maternal-blood circulating parasite. Importantly, the congenital transmission rates are low, suggesting the presence of local placental defense mechanisms. Cellular proliferation and differentiation as well as apoptotic cell death are induced by the parasite and constitute part of the epithelial turnover of the trophoblast, which has been suggested to be part of those placental defenses. On the other hand, caspase-8 is an essential molecule in the modulation of trophoblast turnover by apoptosis and by epithelial differentiation. As an approach to study whether T. cruzi induced trophoblast turnover and infection is mediated by caspase-8, we infected BeWo cells (a trophoblastic cell line) with the parasite and determined in the infected cells the expression and enzymatic activity of caspase-8, DNA synthesis (as proliferation marker), β-human chorionic gonadotropin (β-hCG) (as differentiation marker) and activity of Caspase-3 (as apoptotic death marker). Parasite load in BeWo cells was measured by DNA quantification using qPCR and cell counting. Our results show that T. cruzi induces caspase-8 activity and that its inhibition increases trophoblast cells infection while decreases parasite induced cellular differentiation and apoptotic cell death, but not cellular proliferation. Thus, caspase-8 activity is part of the BeWo trophoblast cell defense mechanisms against T. cruzi infection. Together with our previous results, we suggest that the trophoblast turnover is part of local placental anti-parasite mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. In vitro antiparasitic activity and chemical composition of the essential oil from Protium ovatum leaves (Burceraceae).

    Science.gov (United States)

    Estevam, Elisângela B B; Deus, Isabella P B DE; Silva, Vanessa P DA; Silva, Elizabeth A J DA; Alves, Cassia C F; Alves, José Milton; Cazal, Cristiane M; Magalhães, Lizandra G; Pagotti, Mariana C; Esperandim, Viviane R; Souza, Alex F; Miranda, Mayker L D

    2017-01-01

    Leishmaniasis and trypanosomiasis are globally widespread parasitic diseases which have been responsible for high mortality rates. Since drugs available for their treatment are highly hepatotoxic, nephrotoxic and cardiotoxic, adherence to therapy has been affected. Thus, the search for new, more effective and safer drugs for the treatment of these diseases is necessary. Natural products have stood out as an alternative to searching for new bioactive molecules with therapeutic potential. In this study, the chemical composition and antiparasitic activity of the essential oil from Protium ovatum leaves against trypomastigote forms of Trypanosoma cruzi and the promastigote forms of Leishmania amazonensis were evaluated. The essential oil was promising against trypomastigote forms of T. cruzi (IC50= 28.55 μg.mL-1) and L. amazonensis promastigotes (IC50 = 2.28 μg.mL-1). Eighteen chemical constituents were identified by Gas Chromatography coupled to Mass Spectrometry (GC-MS) in the essential oil, whose major constituents were spathulenol (17.6 %), caryophyllene oxide (16.4 %), β-caryophyllene (14.0 %) and myrcene (8.4 %). In addition, the essential oil from P. ovatum leaves had moderate cytotoxicity against LLCMK2 adherent epithelial cell at the concentration range under analysis (CC50 = 150.9 μg.mL-1). It should be highlighted that this is the first report of the chemical composition and anti-Trypanosoma cruzi and anti-Leishmania amazonensis activities of the essential oil from Protium ovatum leaves.

  9. In vitro antiparasitic activity and chemical composition of the essential oil from Protium ovatum leaves (Burceraceae

    Directory of Open Access Journals (Sweden)

    ELISÂNGELA B.B. ESTEVAM

    2017-10-01

    Full Text Available ABSTRACT Leishmaniasis and trypanosomiasis are globally widespread parasitic diseases which have been responsible for high mortality rates. Since drugs available for their treatment are highly hepatotoxic, nephrotoxic and cardiotoxic, adherence to therapy has been affected. Thus, the search for new, more effective and safer drugs for the treatment of these diseases is necessary. Natural products have stood out as an alternative to searching for new bioactive molecules with therapeutic potential. In this study, the chemical composition and antiparasitic activity of the essential oil from Protium ovatum leaves against trypomastigote forms of Trypanosoma cruzi and the promastigote forms of Leishmania amazonensis were evaluated. The essential oil was promising against trypomastigote forms of T. cruzi (IC50= 28.55 μg.mL-1 and L. amazonensis promastigotes (IC50 = 2.28 μg.mL-1. Eighteen chemical constituents were identified by Gas Chromatography coupled to Mass Spectrometry (GC-MS in the essential oil, whose major constituents were spathulenol (17.6 %, caryophyllene oxide (16.4 %, β-caryophyllene (14.0 % and myrcene (8.4 %. In addition, the essential oil from P. ovatum leaves had moderate cytotoxicity against LLCMK2 adherent epithelial cell at the concentration range under analysis (CC50 = 150.9 μg.mL-1. It should be highlighted that this is the first report of the chemical composition and anti-Trypanosoma cruzi and anti-Leishmania amazonensis activities of the essential oil from Protium ovatum leaves.

  10. A rapid method for testing in vivo the susceptibility of different strains of Trypanosoma cruzi to active chemotherapeutic agents

    Directory of Open Access Journals (Sweden)

    Leny S. Filardi

    1984-06-01

    Full Text Available A method is described which permits to determine in vivo an in a short period of time (4-6 hours the sensitivity of T. cruzo strains to known active chemotherapeutic agents. By using resistant- and sensitive T. cruzi stains a fairly good correlation was observed between the results obtained with this rapid method (which detects activity against the circulating blood forms and those obtained with long-term schedules which involve drug adminstration for at least 20 consecutive days and a prolonged period of assessment. This method may be used to characterize susceptibility to active drugs used clinically, provide infomation on the specific action against circulating trypomastigotes and screen active compounds. Differences in the natural susceptibility of Trypanosoma cruzi strains to active drugs have been already reported using different criteria, mostly demanding long-term study of the animal (Hauschka, 1949; Bock, Gonnert & Haberkorn, 1969; Brener, Costa & Chiari, 1976; Andrade & Figueira, 1977; Schlemper, 1982. In this paper we report a method which detects in 4-6 hours the effect of drugs on bloodstream forms in mice with established T. cruzi infections. The results obtained with this method show a fairly good correlation with those obtained by prolonged treatment schedules used to assess the action of drugs in experimental Chagas' disease and may be used to study the sensitivity of T. cruzi strains to active drugs.No presente trabalho descreve-se um metodo que permite determinar in vivo e em curto espaço de tempo (4-6 horas a sensibilidade de cepas de T. cruzi a agentes terapeuticos ativos na doença de Chagas. Usando-se cepas sensíveis e resistentes aos medicamentos foi possível observar uma boa correlação entre os resultados obtidos com o método rápido (que detecta atividade contra as formas circulantes do parasita e aqueles obtidos com esquema de acao prolongada que envolve a administração da droga por 20 dias e posterior avalia

  11. Assessment of the Anti-Protozoal Activity of Crude Carica papaya Seed Extract against Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Karla Y. Acosta-Viana

    2013-10-01

    Full Text Available In order to determine the in vivo activity against the protozoan Trypanosoma cruzi, two doses (50 and 75 mg/kg of a chloroform extract of Carica papaya seeds were evaluated compared with a control group of allopurinol. The activity of a mixture of the three main compounds (oleic, palmitic and stearic acids in a proportion of 45.9% of oleic acid, 24.1% of palmitic and 8.52% of stearic acid previously identified in the crude extract of C. papaya was evaluated at doses of 100, 200 and 300 mg/kg. Both doses of the extracts were orally administered for 28 days. A significant reduction (p < 0.05 in the number of blood trypomastigotes was observed in animals treated with the evaluated doses of the C. papaya extract in comparison with the positive control group (allopurinol 8.5 mg/kg. Parasitemia in animals treated with the fatty acids mixture was also significantly reduced (p < 0.05, compared to negative control animals. These results demonstrate that the fatty acids identified in the seed extracts of C. papaya (from ripe fruit are able to reduce the number of parasites from both parasite stages, blood trypomastigote and amastigote (intracellular stage.

  12. Assessment of the anti-protozoal activity of crude Carica papaya seed extract against Trypanosoma cruzi.

    Science.gov (United States)

    Jiménez-Coello, Matilde; Guzman-Marín, Eugenia; Ortega-Pacheco, Antonio; Perez-Gutiérrez, Salud; Acosta-Viana, Karla Y

    2013-10-11

    In order to determine the in vivo activity against the protozoan Trypanosoma cruzi, two doses (50 and 75 mg/kg) of a chloroform extract of Carica papaya seeds were evaluated compared with a control group of allopurinol. The activity of a mixture of the three main compounds (oleic, palmitic and stearic acids in a proportion of 45.9% of oleic acid, 24.1% of palmitic and 8.52% of stearic acid previously identified in the crude extract of C. papaya was evaluated at doses of 100, 200 and 300 mg/kg. Both doses of the extracts were orally administered for 28 days. A significant reduction (p < 0.05) in the number of blood trypomastigotes was observed in animals treated with the evaluated doses of the C. papaya extract in comparison with the positive control group (allopurinol 8.5 mg/kg). Parasitemia in animals treated with the fatty acids mixture was also significantly reduced (p < 0.05), compared to negative control animals. These results demonstrate that the fatty acids identified in the seed extracts of C. papaya (from ripe fruit) are able to reduce the number of parasites from both parasite stages, blood trypomastigote and amastigote (intracellular stage).

  13. An abietane diterpene from Salvia cuspidata and some new derivatives are active against Trypanosoma cruzi.

    Science.gov (United States)

    Lozano, E S; Spina, R M; Tonn, C E; Sosa, M A; Cifuente, D A

    2015-12-01

    The Plant Kingdom is an excellent source for obtaining natural compounds with antiprotozoal activity. In the present work, we studied the effect of the diterpene 12-hydroxy-11,14-diketo-6,8,12-abietatrien-19,20-olide (HABTO) obtained from the aerial parts of Salvia cuspidata on Trypanosoma cruzi epimastigotes. This compound was found to inhibit parasite growth even at low concentrations (IC50 5 μg/mL) and with low toxicity on mammalian cells. In addition, this diterpene induced an intense vacuolization within the parasites. In order to obtain analogs with greater lipophilicity, chemical modifications on the enol moiety were carried out to obtain the acetyl (AABTO), the sylil (SABTO) and the allyl (ALLABTO) derivatives. We observed that the SABTO was the most effective one on the parasites, and the effect could be attributed to a greater lipophilicity of this compound. Taking into account these data we conclude that the increase of lipophilicity by chemical modifications is an adequate strategy for improving the trypanocidal activity of this kind abietane diterpenes. Copyright © 2015. Published by Elsevier Ltd.

  14. Antiparasitic activity and effect of casearins isolated from Casearia sylvestris on Leishmania and Trypanosoma cruzi plasma membrane.

    Science.gov (United States)

    Bou, Diego Dinis; Tempone, André G; Pinto, Érika G; Lago, João Henrique G; Sartorelli, Patricia

    2014-04-15

    Leishmaniasis and Chagas disease are infectious diseases caused by parasite Leishmania sp. and Trypanosoma cruzi, respectively, and are included among the most neglected diseases in several underdeveloped and developing countries, with an urgent demand for new drugs. Considering the antiparasitic potential of MeOH extract from leaves of Casearia sylvestris Sw. (Salicaceae), a bioguided fractionation was conducted and afforded four active clerodane diterpenes (casearins A, B, G, and J). The obtained results indicated a superior efficacy of tested casearins against trypomastigotes of T. cruzi, with IC50 values ranging from 0.53 to 2.77 μg/ml. Leishmania infantum promastigotes were also susceptible to casearins, with IC50 values in a range between 4.45 and 9.48 μg/ml. These substances were also evaluated for mammalian cytotoxicity against NCTC cells resulting in 50% cytotoxic concentrations (CC50) ranging from 1.46 to 13.76 μg/ml. Additionally, the action of casearins on parasite membranes was investigated using the fluorescent probe SYTOX Green. The obtained results demonstrated a strong interaction of casearins A and B to the plasma membrane of T. cruzi parasites, corroborating their higher efficacy against these parasites. In contrast, the tested casearins induced no alteration in the permeability of plasma membrane of Leishmania parasites, suggesting that biochemical differences between Leishmania and T. cruzi plasma membrane might have contributed to the target effect of casearins on trypomastigotes. Thus, considering the importance of studying novel and selective drug candidates against protozoans, casearins A, B, G, and J could be used as tools to future drug design studies. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Ravuconazole self-emulsifying delivery system: in vitro activity against Trypanosoma cruzi amastigotes and in vivo toxicity

    Directory of Open Access Journals (Sweden)

    Spósito PA

    2017-05-01

    Full Text Available Pollyanna Álvaro Spósito,1 Ana Lia Mazzeti,1,2 Caroline de Oliveira Faria,1 Julio A Urbina,3 Gwenaelle Pound-Lana,1 Maria Terezinha Bahia,2 Vanessa Furtado Mosqueira1 1Laboratory of Pharmaceutics and Nanotechnology Research, Pharmacy Department, School of Pharmacy, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; 2Parasite Diseases Research Laboratory, NUPEB, Medical School, Universidade Federal de Ouro Preto, MG, Brazil; 3Venezuelan Institute for Scientific Research, Apartado, Caracas, Venezuela Abstract: Self-emulsifying drug delivery systems (SEDDSs are lipid-based anhydrous formulations composed of an isotropic mixture of oil, surfactant, and cosurfactants usually presented in gelatin capsules. Ravuconazole (Biopharmaceutics Classification System [BCS] Class II is a poorly water-soluble drug, and a SEDDS type IIIA was designed to deliver it in a predissolved state, improving dissolution in gastrointestinal fluids. After emulsification, the droplets had mean hydrodynamic diameters <250 nm, zeta potential values in the range of −45 mV to −57 mV, and showed no signs of ravuconazole precipitation. Asymmetric flow field-flow fractionation with dynamic and multiangle laser light scattering was used to characterize these formulations in terms of size distribution and homogeneity. The fractograms obtained at 37°C showed a polydisperse profile for all blank and ravuconazole–SEDDS formulations but no large aggregates. SEDDS increased ravuconazole in vitro dissolution extent and rate (20% compared to free drug (3% in 6 h. The in vivo toxicity of blank SEDDS comprising Labrasol® surfactant in different concentrations and preliminary safety tests in repeated-dose oral administration (20 days showed a dose-dependent Labrasol toxicity in healthy mice. Ravuconazole–SEDDS at low surfactant content (10%, v/v in Trypanosoma cruzi-infected mice was safe during the 20-day treatment. The anti-T. cruzi activity of free ravuconazole

  16. Seroprevalencia de la infección por Trypanosoma cruzi y factores asociados en un área endémica de Venezuela

    OpenAIRE

    Bonfante-Cabarcas, Rafael; Rodríguez-Bonfante, Claudina; Vielma, Belkys Oviol; García, Douglas; Saldivia, Alexander Mogollón; Aldana, Elis; Curvelo, Juan Luis Concepción

    2011-01-01

    Determinamos factores de riesgo asociados a la seropositividad para anticuerpos anti-Trypanosoma cruzi en 26 poblaciones rurales, 905 viviendas, 2.156 individuos y 333 caninos en el Estado Lara, Venezuela. La seropositividad fue determinada mediante ELISA y MABA. Los datos fueron obtenidos mediante encuestas entomológicas, demográficas y médicas. Los factores de riesgo fueron establecidos mediante regresión logística binaria. La seroprevalencia humana fue de 7,24% y la canina 6,9%. La seropos...

  17. Quantitative Laser Biospeckle Method for the Evaluation of the Activity of Trypanosoma cruzi Using VDRL Plates and Digital Analysis.

    Science.gov (United States)

    Grassi, Hilda Cristina; García, Lisbette C; Lobo-Sulbarán, María Lorena; Velásquez, Ana; Andrades-Grassi, Francisco A; Cabrera, Humberto; Andrades-Grassi, Jesús E; Andrades, Efrén D J

    2016-12-01

    In this paper we report a quantitative laser Biospeckle method using VDRL plates to monitor the activity of Trypanosoma cruzi and the calibration conditions including three image processing algorithms and three programs (ImageJ and two programs designed in this work). Benznidazole was used as a test drug. Variable volume (constant density) and variable density (constant volume) were used for the quantitative evaluation of parasite activity in calibrated wells of the VDRL plate. The desiccation process within the well was monitored as a function of volume and of the activity of the Biospeckle pattern of the parasites as well as the quantitative effect of the surface parasite quantity (proportion of the object's plane). A statistical analysis was performed with ANOVA, Tukey post hoc and Descriptive Statistics using R and R Commander. Conditions of volume (100μl) and parasite density (2-4x104 parasites/well, in exponential growth phase), assay time (up to 204min), frame number (11 frames), algorithm and program (RCommander/SAGA) for image processing were selected to test the effect of variable concentrations of benznidazole (0.0195 to 20μg/mL / 0.075 to 76.8μM) at various times (1, 61, 128 and 204min) on the activity of the Biospeckle pattern. The flat wells of the VDRL plate were found to be suitable for the quantitative calibration of the activity of Trypanosoma cruzi using the appropriate algorithm and program. Under these conditions, benznidazole produces at 1min an instantaneous effect on the activity of the Biospeckle pattern of T. cruzi, which remains with a similar profile up to 1 hour. A second effect which is dependent on concentrations above 1.25μg/mL and is statistically different from the effect at lower concentrations causes a decrease in the activity of the Biospeckle pattern. This effect is better detected after 1 hour of drug action. This behavior may be explained by an instantaneous effect on a membrane protein of Trypanosoma cruzi that could

  18. Trypanosoma cruzi is lysed by coelomic cytolytic factor-1, an invertebrate analogue of tumor necrosis factor, and induces phenoloxidase activity in the coelomic fluid of Eisenia foetida foetida.

    Science.gov (United States)

    Olivares Fontt, Elizabeth; Beschin, Alain; Van Dijck, Els; Vercruysse, Vincent; Bilej, Martin; Lucas, Ralph; De Baetselier, Patrick; Vray, Bernard

    2002-01-01

    A cytolytic protein named Coelomic Cytolytic Factor-1 (CCF-1) was isolated from the coelomic fluid of the earthworm Eisenia foetida foetida. Despite the absence of any gene homology, CCF-1 showed functional analogy with the mammalian cytokine tumour necrosis factor (TNF), particularly based on similar lectin-like activity. Indeed, both CCF-1 and TNF recognise N,N'-diacetylchitobiose and exert lytic activity on African Trypanosoma brucei brucei. In this report, we show that South-American Trypanosoma cruzi trypomastigotes, but not epimastigotes, were lysed by earthworm coelomic fluid or purified CCF-1. However, T. cruzi was less susceptible to lysis than T. brucei brucei. This lytic effect of coelomic fluid and CCF-1 on T. cruzi trypomastigotes was partially inhibited in the presence of anti-CCF-1 monoclonal antibody, antibody neutralising the lectin-like activity of TNF or N,N'-diacetylchitobiose. In contrast, this lytic effect was completely inhibited when using T. b. brucei. In addition, T. cruzi components, upon recognition by CCF-1 in E. f. foetida coelomic fluid, triggered the prophenoloxidase cascade, an invertebrate defence mechanism. These results further extend the functional analogies of CCF-1 and TNF, suggesting that both molecules share a similar lectin-like activity that has been conserved as an innate recognition mechanism in invertebrates and vertebrates. They also establish a link between stercorarian (T. cruzi) and salivarian (T. brucei) trypanosomatids having divergent phylogenetic origins and patterns of evolution, but possessing closely related cell surface sugar moieties.

  19. Differential Activation of Human Monocytes and Lymphocytes by Distinct Strains of Trypanosoma cruzi

    Science.gov (United States)

    Magalhães, Luísa M. D.; Viana, Agostinho; Chiari, Egler; Galvão, Lúcia M. C.; Gollob, Kenneth J.; Dutra, Walderez O.

    2015-01-01

    Background Trypanosoma cruzi strains are currently classified into six discrete typing units (DTUs) named TcI to VI. It is known that these DTUs have different geographical distribution, as well as biological features. TcI and TcII are major DTUs found in patients from northern and southern Latin America, respectively. Our hypothesis is that upon infection of human peripheral blood cells, Y strain (Tc II) and Col cl1.7 (Tc I), cause distinct immunological changes, which might influence the clinical course of Chagas disease. Methodology/Principal Findings We evaluated the infectivity of CFSE-stained trypomastigotes of Col cl1.7 and Y strain in human monocytes for 15 and 72 hours, and determined the immunological profile of lymphocytes and monocytes exposed to the different isolates using multiparameter flow cytometry. Our results showed a similar percentage and intensity of monocyte infection by Y and Col cl1.7. We also observed an increased expression of CD80 and CD86 by monocytes infected with Col cl1.7, but not Y strain. IL-10 was significantly higher in monocytes infected with Col cl1.7, as compared to Y strain. Moreover, infection with Col cl1.7, but not Y strain, led to an increased expression of IL-17 by CD8+ T cells. On the other hand, we observed a positive correlation between the expression of TNF-alpha and granzyme A only after infection with Y strain. Conclusion/Significance Our study shows that while Col cl1.7 induces higher monocyte activation and, at the same time, production of IL-10, infection with Y strain leads to a lower monocyte activation but higher inflammatory profile. These results show that TcI and TcII have a distinct immunological impact on human cells during early infection, which might influence disease progression. PMID:26147698

  20. Crystal Structures of Trypanosoma cruzi UDP-Galactopyranose Mutase Implicate Flexibility of the Histidine Loop in Enzyme Activation

    Energy Technology Data Exchange (ETDEWEB)

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Sobrado, Pablo; Tanner, John J. (Virginia Tech); (UMC)

    2012-11-01

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitor design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3 {angstrom} movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45% identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10-50, primarily by decreasing k{sub cat}. Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens.

  1. Mechanistic Insights into the Anti-angiogenic Activity of Trypanosoma cruzi Protein 21 and its Potential Impact on the Onset of Chagasic Cardiomyopathy.

    Science.gov (United States)

    Teixeira, Samuel Cota; Lopes, Daiana Silva; Gimenes, Sarah Natalie Cirilo; Teixeira, Thaise Lara; da Silva, Marcelo Santos; Brígido, Rebecca Tavares E Silva; da Luz, Felipe Andrés Cordero; da Silva, Aline Alves; Silva, Makswell Almeida; Florentino, Pilar Veras; Tavares, Paula Cristina Brígido; Dos Santos, Marlus Alves; Ávila, Veridiana de Melo Rodrigues; Silva, Marcelo José Barbosa; Elias, Maria Carolina; Mortara, Renato Arruda; da Silva, Claudio Vieira

    2017-03-21

    Chronic chagasic cardiomyopathy (CCC) is arguably the most important form of the Chagas Disease, caused by the intracellular protozoan Trypanosoma cruzi; it is estimated that 10-30% of chronic patients develop this clinical manifestation. The most common and severe form of CCC can be related to ventricular abnormalities, such as heart failure, arrhythmias, heart blocks, thromboembolic events and sudden death. Therefore, in this study, we proposed to evaluate the anti-angiogenic activity of a recombinant protein from T. cruzi named P21 (rP21) and the potential impact of the native protein on CCC. Our data suggest that the anti-angiogenic activity of rP21 depends on the protein's direct interaction with the CXCR4 receptor. This capacity is likely related to the modulation of the expression of actin and angiogenesis-associated genes. Thus, our results indicate that T. cruzi P21 is an attractive target for the development of innovative therapeutic agents against CCC.

  2. A soluble factor from Trypanosoma cruzi inhibits transforming growth factor-ß-induced MAP kinase activation and gene expression in dermal fibroblasts.

    Directory of Open Access Journals (Sweden)

    G Adam Mott

    Full Text Available The protozoan parasite Trypanosoma cruzi, which causes human Chagas' disease, exerts a variety of effects on host extracellular matrix (ECM including proteolytic degradation of collagens and dampening of ECM gene expression. Exposure of primary human dermal fibroblasts to live infective T. cruzi trypomastigotes or their shed/secreted products results in a rapid down-regulation of the fibrogenic genes collagenIα1, fibronectin and connective tissue growth factor (CTGF/CCN2. Here we demonstrate the ability of a secreted/released T. cruzi factor to antagonize ctgf/ccn2 expression in dermal fibroblasts in response to TGF-ß, lysophosphatidic acid or serum, where agonist-induced phosphorylation of the mitogen-activated protein (MAP kinases Erk1/2, p38 and JNK was also inhibited. Global analysis of gene expression in dermal fibroblasts identified a discrete subset of TGF-ß-inducible genes involved in cell proliferation, wound repair, and immune regulation that are inhibited by T. cruzi secreted/released factors, where the genes exhibiting the highest sensitivity to T. cruzi are known to be regulated by MAP kinase-activated transcription factors. Consistent with this observation, the Ets-family transcription factor binding site in the proximal promoter region of the ctgf/ccn2 gene (-91 bp to -84 bp was shown to be required for T. cruzi-mediated down-regulation of ctgf/ccn2 reporter expression. The cumulative data suggest a model in which T. cruzi-derived molecules secreted/released early in the infective process dampen MAP kinase signaling and the activation of transcription factors that regulate expression of fibroblast genes involved in wound repair and tissue remodelling, including ctgf/ccn2. These findings have broader implications for local modulation of ECM synthesis/remodelling by T. cruzi during the early establishment of infection in the mammalian host and highlight the potential for pathogen-derived molecules to be exploited as tools to

  3. Endocytosis in Trypanosoma cruzi

    OpenAIRE

    Silva, Narcisa Leal da Cunha e; Sant’Anna, Celso; Pereira, Miria Gomes; Souza, Wanderley de

    2010-01-01

    Endocytic activity is particularly intense in Trypanosoma cruzi epimastigotes, while in amastigotes and trypomastigotes it is untraceable. Cargo molecules enters through the cytostome or flagellar pocket at the parasite anterior region, goes along a branched early endosomal network of tubules and vesicles spread from nuclear periphery to the posterior pole, until delivery to reservosomes, the final compartment. Reservosomes are acid compartments that store protein and lipid cargo and also acc...

  4. Prevalencia de anticuerpos anti-Trypanosoma cruzi en mujeres en edad fértil en Socotá, Boyacá, 2014

    Directory of Open Access Journals (Sweden)

    Ángela Liliana Monroy

    2016-04-01

    Conclusiones. Con base en los resultados del presente estudio, se sugiere una búsqueda activa de casos de la enfermedad de Chagas en zonas no endémicas de Colombia que presenten los factores de riesgo para la adquisición de la enfermedad, aun cuando las condiciones climáticas y la altura sobre el nivel del mar sean diferentes a las descritas en la literatura científica.

  5. Inhibitory action of marine algae extracts on the Trypanosoma cruzi dihydroorotate dehydrogenase activity and on the protozoan growth in mammalian cells.

    Science.gov (United States)

    Nara, Takeshi; Kamei, Yuto; Tsubouchi, Akiko; Annoura, Takeshi; Hirota, Kenichiro; Iizumi, Kyoichi; Dohmoto, Yuki; Ono, Takeaki; Aoki, Takashi

    2005-03-01

    Trypanosoma cruzi, the causative agent of Chagas' disease, replicates in mammalian cells and relies on the de novo pyrimidine biosynthetic pathway that supplies essential precursors for nucleic acid synthesis. The protozoan dihydroorotate dehydrogenase (DHOD), the fourth enzyme of the pathway catalyzing production of orotate from dihydroorotate, markedly differs from the human enzyme. This study was thus aimed to search for potent inhibitors against T. cruzi DHOD activity, and a number of methanol extracts prepared from green, brown, and red algae were assayed. The extracts from two brown algae, Fucus evanescens and Pelvetia babingtonii, yielded 59 and 58% decrease in the recombinant DHOD activity, respectively, at the concentration of 50 microg/ml. Inhibition by these extracts was noncompetitive with respect to dihydroorotate, with apparent Ki values of 35.3+/-5.9 and 10.3+/-4.4 microg/ml, respectively. Further, in an in vitro T. cruzi-HeLa cell infection system, ethanol-reconstituted F. evanescens and P. babingtonii extracts at the concentration of 1 microg/ml, respectively, decreased significantly the infection rate of host cells and the average parasite number per infected cell. These results imply that F. evanescens and P. babingtonii contain inhibitor(s) against the T. cruzi DHOD activity and against the protozoan infection and proliferation in mammalian cells. Identification of inhibitor(s) in these two brown algae and further screening of other marine algae may facilitate the discovery of new, anti-trypanosomal lead compounds.

  6. Activity on Trypanosoma cruzi, erythrocytes lysis and biologically relevant physicochemical properties of Pd(II) and Pt(II) complexes of thiosemicarbazones derived from 1-indanones.

    Science.gov (United States)

    Santos, Diego; Parajón-Costa, Beatriz; Rossi, Miriam; Caruso, Francesco; Benítez, Diego; Varela, Javier; Cerecetto, Hugo; González, Mercedes; Gómez, Natalia; Caputto, María E; Moglioni, Albertina G; Moltrasio, Graciela Y; Finkielsztein, Liliana M; Gambino, Dinorah

    2012-12-01

    American trypanosomiasis or Chagas disease, caused by the protist parasite Trypanosoma cruzi (T. cruzi), is a major health concern in Latin America. In the search for new bioactive compounds, eight Pd(II) and Pt(II) complexes of thiosemicarbazones derived from 1-indanones (HL) were evaluated as potential anti-T. cruzi compounds. Their unspecific cytotoxicity was determined on human erythrocytes. Two physicochemical features, lipophilicity and redox behavior, that could be potentially relevant for the biological activity of these complexes, were determined. Crystal structure of [Pd(HL1)(L1)]Cl·CH(3)OH, where HL1=1-indanone thiosemicarbazone, was solved by X-ray diffraction methods. Five of the eight metal complexes showed activity against T. cruzi with IC(50) values in the low micromolar range and showed significantly higher activity than the corresponding free ligands. Four of them resulted more active against the parasite than the reference antitrypanosomal drug Nifurtimox. Anti-T. cruzi activity and selectivity towards the parasite were both higher for the Pd(II) compounds than for the Pt(II) analogues, showing the effect of the metal center selection on the biological behavior. Among both physicochemical features tested for this series of compounds, lipophilicity and redox behavior, only the former seemed to show correlation with the antiproliferative effects observed. Metal coordination improved bioactivity but lead to an increase of mammalian cytotoxicity. Nevertheless, some of the metal complexes tested in this work still show suitable selectivity indexes and deserve further developments. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Development of bis-thiazoles as inhibitors of triosephosphate isomerase from Trypanosoma cruzi. Identification of new non-mutagenic agents that are active in vivo.

    Science.gov (United States)

    Álvarez, Guzmán; Martínez, Jennyfer; Varela, Javier; Birriel, Estefania; Cruces, Eugenia; Gabay, Martín; Leal, Sandra M; Escobar, Patricia; Aguirre-López, Beatriz; Cabrera, Nallely; Tuena de Gómez-Puyou, Marietta; Gómez Puyou, Armando; Pérez-Montfort, Ruy; Yaluff, Gloria; Torres, Susana; Serna, Elva; Vera de Bilbao, Ninfa; González, Mercedes; Cerecetto, Hugo

    2015-07-15

    The neglected disease American trypanosomiasis is one of the major health problems in Latin America. Triosephosphate isomerase from Trypanosoma cruzi (TcTIM), the etiologic agent of this disease, has been proposed as a druggable target. Some bis-benzothiazoles have been described as irreversible inhibitors of this enzyme. On the other hand, new bioactive furane-containing thiazoles have been described as excellent in vivo anti-T. cruzi agents. This encouraged us to design and develop new bis-thiazoles with potential use as drugs for American trypanosomiasis. The bis-thiazol 5, 3,3'-allyl-2,2'-bis[3-(2-furyl)-2-propenylidenehydrazono]-2,2',3,3'-tetrahydro-4,4'-bisthiazole, showed the best in vitro anti-T. cruzi profile with a higher selectivity index than the reference drugs Nifurtimox and Benznidazole against amastigote form of the parasite. This derivative displayed marginal activity against TcTIM however the bis-thiazol 14, 3-allyl-2-[3-(2-furyl)-2-propenylidenehydrazono]-3'-phenyl-2'-(3-phenyl-2-propenylidenehydrazono]-2,2',3,3'-tetrahydro-4,4'-bisthiazole, was an excellent inhibitor of the enzyme of the parasite. The absence of both in vitro mutagenic and in vivo toxicity effects, together with the activity of bis-thiazol 5in vivo, suggests that this compound is a promising anti-T. cruzi agent surpassing the "hit-to-lead" stage in the drug development process. Copyright © 2015. Published by Elsevier Masson SAS.

  8. Trypanothione Reductase and Superoxide Dismutase as Current Drug Targets for Trypanosoma cruzi: An Overview of Compounds with Activity against Chagas Disease.

    Science.gov (United States)

    Beltran-Hortelano, Ivan; Perez-Silanes, Silvia; Galiano, Silvia

    2017-05-31

    It has been over a century since Carlos Chagas discovered the Trypanosoma cruzi (T. cruzi) as the causative agent of Chagas disease (CD), a neglected tropical disease with several socioeconomic, epidemiological and human health repercussions. Currently, there are only two commercialized drugs to treat CD in acute phase, nifurtimox and benznidazol, with several adverse side effects. Thus, new orally available and safe drugs for this parasitic infection are urgently required. One strategy of great importance in new drug discovery programmes is based on the search of molecules enabling to interfere with enzymes involved in T. cruzi metabolism. This review will focus on two of the most promising targets for the therapy of CD: trypanothione reductase (TR) and the iron-containing superoxide dismutase (Fe- SOD), which protect the parasite against oxidative damage by reactive oxygen species. A brief comparison of the function, mechanism of action and the active sites between T. cruzi TR and Fe-SOD with their analogues enzymes in human, glutathione reductase (GR) and the corresponding SODs, will be discussed. This review will also summarize the recent development and structure-activity relationships of novel compounds reported for their ability to selectively inhibit these targets, aiming to define molecular bases in the search for new effective treatment of CD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Host cytoplasmic processing bodies assembled by Trypanosoma cruzi during infection exert anti-parasitic activity.

    Science.gov (United States)

    Seto, Eri; Onizuka, Yoko; Nakajima-Shimada, Junko

    2015-12-01

    Processing bodies (PBs) are cytoplasmic granules containing mRNAs and proteins involved in translation and degradation of mRNAs. PBs are constitutively present in cells and are induced to accumulate when external stressors including microbial infection are applied to cells, followed by a rapid translational arrest. We have examined the impact of Trypanosoma cruzi (T. cruzi, Tc) infection on host cytoplasmic PB assembly. Within 24h post-infection, we found the average number of PB foci per cell increased by more than 2-fold. Protein levels of PB components were unaltered during infection. These results indicated that Tc infection caused accumulation of PBs by changing the localization pattern of PB protein components. To elucidate the role of the accumulated PBs on Tc infection, we knocked down PBs using a siRNA specific for PB components EDC4 and Lsm14A, which are involved in mRNA decapping and translational repression, respectively. We observed that the inhibition of PB accumulation significantly enhanced the infectivity and growth of intracellular amastigotes. Depletion of PBs did not affect nitric oxide (NO) production during Tc infection, indicating that the growth promotion was not caused by modulation of NO-mediated killing of Tc. Our results suggest that the accumulated PBs partially contribute to anti-parasitic responses by manipulating the host's mRNA metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Linalool, a Piper aduncum essential oil component, has selective activity against Trypanosoma cruzi trypomastigote forms at 4°C.

    Science.gov (United States)

    Villamizar, Luz Helena; Cardoso, Maria das Graças; Andrade, Juliana de; Teixeira, Maria Luisa; Soares, Maurilio José

    2017-02-01

    Recent studies showed that essential oils from different pepper species (Piper spp.) have promising leishmanicidal and trypanocidal activities. In search for natural compounds against Trypanosoma cruzi, different forms of the parasite were incubated for 24 h at 28ºC or 4ºC with Piper aduncum essential oil (PaEO) or its main constituents linalool and nerolidol. PaEO chemical composition was obtained by GC-MS. Drug activity assays were based on cell counting, MTT data or infection index values. The effect of PaEO on the T. cruzi cell cycle and mitochondrial membrane potential was evaluated by flow cytometry. PaEO was effective against cell-derived (IC50/24 h: 2.8 μg/mL) and metacyclic (IC50/24 h: 12.1 μg/mL) trypomastigotes, as well as intracellular amastigotes (IC50/24 h: 9 μg/mL). At 4ºC - the temperature of red blood cells (RBCs) storage in blood banks - cell-derived trypomastigotes were more sensitive to PaEO (IC50/24 h = 3.8 μg/mL) than to gentian violet (IC50/24 h = 24.7 mg/mL). Cytotoxicity assays using Vero cells (37ºC) and RBCs (4ºC) showed that PaEO has increased selectivity for cell-derived trypomastigotes. Flow cytometry analysis showed that PaEO does not affect the cell cycle of T. cruzi epimastigotes, but decreases their mitochondrial membrane potential. GC-MS data identified nerolidol and linalool as major components of PaEO, and linalool had trypanocidal effect (IC50/24 h: 306 ng/mL) at 4ºC. The trypanocidal effect of PaEO is likely due to the presence of linalool, which may represent an interesting candidate for use in the treatment of potentially contaminated RBCs bags at low temperature.

  11. Linalool, a Piper aduncum essential oil component, has selective activity against Trypanosoma cruzi trypomastigote forms at 4°C

    Directory of Open Access Journals (Sweden)

    Luz Helena Villamizar

    Full Text Available BACKGROUND Recent studies showed that essential oils from different pepper species (Piper spp. have promising leishmanicidal and trypanocidal activities. OBJECTIVES In search for natural compounds against Trypanosoma cruzi, different forms of the parasite were incubated for 24 h at 28ºC or 4ºC with Piper aduncum essential oil (PaEO or its main constituents linalool and nerolidol. METHODS PaEO chemical composition was obtained by GC-MS. Drug activity assays were based on cell counting, MTT data or infection index values. The effect of PaEO on the T. cruzi cell cycle and mitochondrial membrane potential was evaluated by flow cytometry. FINDINGS PaEO was effective against cell-derived (IC50/24 h: 2.8 μg/mL and metacyclic (IC50/24 h: 12.1 μg/mL trypomastigotes, as well as intracellular amastigotes (IC50/24 h: 9 μg/mL. At 4ºC - the temperature of red blood cells (RBCs storage in blood banks - cell-derived trypomastigotes were more sensitive to PaEO (IC50/24 h = 3.8 μg/mL than to gentian violet (IC50/24 h = 24.7 mg/mL. Cytotoxicity assays using Vero cells (37ºC and RBCs (4ºC showed that PaEO has increased selectivity for cell-derived trypomastigotes. Flow cytometry analysis showed that PaEO does not affect the cell cycle of T. cruzi epimastigotes, but decreases their mitochondrial membrane potential. GC-MS data identified nerolidol and linalool as major components of PaEO, and linalool had trypanocidal effect (IC50/24 h: 306 ng/mL at 4ºC. MAIN CONCLUSION The trypanocidal effect of PaEO is likely due to the presence of linalool, which may represent an interesting candidate for use in the treatment of potentially contaminated RBCs bags at low temperature.

  12. Effects of organic solvents on the enzyme activity of Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase in calorimetric assays

    DEFF Research Database (Denmark)

    Wiggers, Henrik; Cheleski, J; Zottis, A

    2007-01-01

    OH), in the isothermal titration calorimetry (ITC) kinetic assays for the catalyzed reaction of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Trypanosoma cruzi. The solvent effects on T. cruzi GAPDH had not yet been studied. This enzyme was shown here to be affected by the organic solvents content up to 5...

  13. Plants used in Guatemala for the treatment of protozoal infections: II. Activity of extracts and fractions of five Guatemalan plants against Trypanosoma cruzi.

    Science.gov (United States)

    Berger, I; Barrientos, A C; Cáceres, A; Hernández, M; Rastrelli, L; Passreiter, C M; Kubelka, W

    1998-09-01

    The activities of crude plant extracts of five plants popularly used in Guatemala against bacterial and protozoal infections and some of their fractions have been evaluated against the trypomastigote and epimastigote forms of Trypanosoma cruzi in vitro. The most active fraction of Neurolaena lobata has also been screened in vivo. Main in vitro activities against trypomastigotes have been observed for the hexane and ethanol extracts of N. lobata (Asteraceae). Both extracts were also active against epimastigotes, whereas all other extracts tested had no effect on epimastigotes. For the hexane extracts of Petiveria alliacea (Phytolaccaceae) and Tridax procumbens (Asteraceae) a marked inhibition of trypomastigotes has been found. Also the ethanol extracts of Byrsonima crassifolia (Malpighiaceae) leafs and Gliricidia sepium (Papilionaceae) bark showed some trypanocidal activity. Fraction 2 of the ethanol extract of N. lobata was highly active against T. cruzi as well in vitro as in vivo. The chloroforme fraction of P. alliacea showed a high inhibition of trypomastigotes in vitro. Also three fractions of the active extract of B. crassifolia inhibited T. cruzi trypomastigotes. No fraction of G. sepium bark extract showed a marked trypanocidal activity.

  14. Comparison of the C-mediating killing activity and C-activating properties of mouse monoclonal and polyclonal antibodies against Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    T. L. Kipnis

    1992-01-01

    Full Text Available A Mouse polyclonal antiserum against Trypanosoma cruzi or its IgG and IgM fractions and five monoclonal antibodies (two IgM, two IgG1 and one IgG2a recognize and combine with membrane components of trypomastigote forms of the parasite as revealed by immunofluorescence. Although all these antibodies sensitize trypomastigotes and prepare them to activate the complement (C system, as measured by consumption of total C, C4, B and C3, only the polyclonal antiserum or its IgG, IgM and Fabμ fragments were able to induce trypanosome lysis by the alternative C pathway.

  15. Mechanistic Insights into the Anti-angiogenic Activity of Trypanosoma cruzi Protein 21 and its Potential Impact on the Onset of Chagasic Cardiomyopathy

    OpenAIRE

    Samuel Cota Teixeira; Daiana Silva Lopes; Sarah Natalie Cirilo Gimenes; Thaise Lara Teixeira; Marcelo Santos da Silva; Rebecca Tavares e Silva Brígido; Felipe Andrés Cordero da Luz; Aline Alves da Silva; Makswell Almeida Silva; Pilar Veras Florentino; Paula Cristina Brígido Tavares; Marlus Alves dos Santos; Veridiana de Melo Rodrigues Ávila; Marcelo José Barbosa Silva; Maria Carolina Elias

    2017-01-01

    Chronic chagasic cardiomyopathy (CCC) is arguably the most important form of the Chagas Disease, caused by the intracellular protozoan Trypanosoma cruzi; it is estimated that 10?30% of chronic patients develop this clinical manifestation. The most common and severe form of CCC can be related to ventricular abnormalities, such as heart failure, arrhythmias, heart blocks, thromboembolic events and sudden death. Therefore, in this study, we proposed to evaluate the anti-angiogenic activity of a ...

  16. Active surveillance of canine visceral leishmaniasis and american trypanossomiasis in rural dogs from non endemic area.

    Science.gov (United States)

    Tome, Rozeani Olimpio; Gaio, Fernanda Conceição; Generoso, Diego; Menozzi, Benedito Donizete; Langoni, Helio

    2011-01-01

    The canine visceral leishmaniasis (CVL) and american trypanosomiasis are important zoonoses in public health and dogs are the main domestic reservoir of the parasite for humans. The goal of this study was to estimate the prevalence of circulating antibodies anti-Trypanosoma cruzi and anti-Leishmania sp. in sera of dogs from the rural area of Botucatu, SP, Brazil. During the annual vaccination campaign against canine rabies in rural area, 689 blood samples were taken and processed by indirect immunofluorescent antibody test. The serological tests revealed the absence of antibodies anti-Leishmania spp., but anti-T. cruzi antibodies were detected in 3 (0.4%) dogs.

  17. An image-based algorithm for precise and accurate high throughput assessment of drug activity against the human parasite Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Seunghyun Moon

    Full Text Available We present a customized high content (image-based and high throughput screening algorithm for the quantification of Trypanosoma cruzi infection in host cells. Based solely on DNA staining and single-channel images, the algorithm precisely segments and identifies the nuclei and cytoplasm of mammalian host cells as well as the intracellular parasites infecting the cells. The algorithm outputs statistical parameters including the total number of cells, number of infected cells and the total number of parasites per image, the average number of parasites per infected cell, and the infection ratio (defined as the number of infected cells divided by the total number of cells. Accurate and precise estimation of these parameters allow for both quantification of compound activity against parasites, as well as the compound cytotoxicity, thus eliminating the need for an additional toxicity-assay, hereby reducing screening costs significantly. We validate the performance of the algorithm using two known drugs against T.cruzi: Benznidazole and Nifurtimox. Also, we have checked the performance of the cell detection with manual inspection of the images. Finally, from the titration of the two compounds, we confirm that the algorithm provides the expected half maximal effective concentration (EC50 of the anti-T. cruzi activity.

  18. An image-based algorithm for precise and accurate high throughput assessment of drug activity against the human parasite Trypanosoma cruzi.

    Science.gov (United States)

    Moon, Seunghyun; Siqueira-Neto, Jair L; Moraes, Carolina Borsoi; Yang, Gyongseon; Kang, Myungjoo; Freitas-Junior, Lucio H; Hansen, Michael A E

    2014-01-01

    We present a customized high content (image-based) and high throughput screening algorithm for the quantification of Trypanosoma cruzi infection in host cells. Based solely on DNA staining and single-channel images, the algorithm precisely segments and identifies the nuclei and cytoplasm of mammalian host cells as well as the intracellular parasites infecting the cells. The algorithm outputs statistical parameters including the total number of cells, number of infected cells and the total number of parasites per image, the average number of parasites per infected cell, and the infection ratio (defined as the number of infected cells divided by the total number of cells). Accurate and precise estimation of these parameters allow for both quantification of compound activity against parasites, as well as the compound cytotoxicity, thus eliminating the need for an additional toxicity-assay, hereby reducing screening costs significantly. We validate the performance of the algorithm using two known drugs against T.cruzi: Benznidazole and Nifurtimox. Also, we have checked the performance of the cell detection with manual inspection of the images. Finally, from the titration of the two compounds, we confirm that the algorithm provides the expected half maximal effective concentration (EC50) of the anti-T. cruzi activity.

  19. Activity of Fluorine-Containing Analogues of WC-9 and Structurally Related Analogues against Two Intracellular Parasites: Trypanosoma cruzi and Toxoplasma gondii.

    Science.gov (United States)

    Chao, María N; Li, Catherine; Storey, Melissa; Falcone, Bruno N; Szajnman, Sergio H; Bonesi, Sergio M; Docampo, Roberto; Moreno, Silvia N J; Rodriguez, Juan B

    2016-12-16

    Two obligate intracellular parasites, Trypanosoma cruzi, the agent of Chagas disease, and Toxoplasma gondii, an agent of toxoplasmosis, upregulate the mevalonate pathway of their host cells upon infection, which suggests that this host pathway could be a potential drug target. In this work, a number of compounds structurally related to WC-9 (4-phenoxyphenoxyethyl thiocyanate), a known squalene synthase inhibitor, were designed, synthesized, and evaluated for their effect on T. cruzi and T. gondii growth in tissue culture cells. Two fluorine-containing derivatives, the 3-(3-fluorophenoxy)- and 3-(4-fluorophenoxy)phenoxyethyl thiocyanates, exhibited half-maximal effective concentration (EC 50 ) values of 1.6 and 4.9 μm, respectively, against tachyzoites of T. gondii, whereas they showed similar potency to WC-9 against intracellular T. cruzi (EC 50 values of 5.4 and 5.7 μm, respectively). In addition, 2-[3- (phenoxy)phenoxyethylthio]ethyl-1,1-bisphosphonate, which is a hybrid inhibitor containing 3-phenoxyphenoxy and bisphosphonate groups, has activity against T. gondii proliferation at sub-micromolar levels (EC 50 =0.7 μm), which suggests a combined inhibitory effect of the two functional groups. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Prevalencia de anticuerpos para Trypanosoma cruzi en caninos de dos municipios endémicos de Boyacá

    Directory of Open Access Journals (Sweden)

    Diego Manrique Abril

    2012-04-01

    Full Text Available Objetivo. evaluar la prevalencia de anticuerpos anti Trypanosoma cruzi (T. cruzi en una muestra de caninos domésticos residentes en dos municipios endémicos. Materiales y métodos. Se tomaron muestras séricas de 20 caninos procedentes de hogares donde residen mujeres gestantes seropositivas y 40 perros habitantes de hogares de mujeres gestantes seronegativas en Miraflores y Moniquira, Boyacá. El análisis se realizó mediante prueba diagnóstica rápida dipstick de InBios. Resultados. Se encontró prevalencia del 16.7% en Moniquirá y del 13.3% Miraflores respectivamente con una prevalencia general del 15% en los dos municipios. Se halló riesgo 3 veces mayor de que ocurra la infección en caninos, en los hogares donde residen gestantes seropositivas; además la infestación por pulgas y garrapatas en el animal, hábitat cercano a la vivienda, se relacionan con mayor seropositividad en el canino. Conclusiones. La raza, el sexo, la presencia de aves en la casa y al examen clínico general son considerados factores pronósticos en en la infección por Trypanosoma cruzi en caninos. Como factores protectores se identificó la desparasitación y vacunación de los animales.

  1. Immunodiagnosis of Trypanosoma cruzi (Chagas' Disease Infection in Naturally Infected Dogs

    Directory of Open Access Journals (Sweden)

    Lauricella MA

    1998-01-01

    Full Text Available This study reports on the standardization of an enzyme-linked immunosorbent assay (ELISA for detecting specific antibodies anti-Trypanosoma cruzi in naturally infected dogs. Sera from 182 mongrel dogs of all ages residing in four rural villages in Santiago del Estero, Argentina, were collected in November 1994 and preserved in buffered neutral glycerin. All sera were tested by indirect hemagglutination test (IHAT, indirect immunofluorescence test (IFAT, and ELISA using the flagellar fraction of T. cruzi as antigen. Dog sera from an area without vectorial transmission were used to calculate ELISA specificity and cut-off value. Eighty-six percent of sera had concordant results for all tests. All sera reactive for IHAT and IFAT were also reactive for ELISA, except in one case. Sera tested by ELISA when diluted 1:200 allowed a clearer division between non-reactive and reactive sera than when 1:100 with greater agreement among serologic techniques. The specificity of ELISA was 96.2%. Among 34 adult dogs with a positive xenodiagnosis, sensitivity was 94% both for ELISA and IFAT. ELISA is the first choice for screening purposes and one of the pair of techniques recommended for diagnostic studies in dog populations

  2. Immunization of mice with Trypanosoma cruzi polyribosomes.

    Science.gov (United States)

    Leon, L L; Leon, W; Chaves, L; Costa, S C; Cruz, M Q; Brascher, H M; Lima, A O

    1980-01-01

    Studies were carried out with a polyribosomal fraction isolated from Trypanosoma cruzi Y epimastigotes, with the intention to determine both its immunogenic activity and the degree of protection it could induce against experimental T. cruzi infection. This fraction was assayed in four groups of mice by using different schedules of vaccination and varying the dose, intervals, and route of administration. Seven days after the last dose, the animals were sacrificed for immunological studies or subjected to challenge with T. cruzi trypomastigotes. The results obtained in all schedules showed that our polyribosomal fraction only induced a weak antibody response, but was capable of evoking an expressive cellular response. It was also shown that this fraction has the capacity of inducing a high degree of protection against T. cruzi infection, as determined by the decrease of parasitemia and the prolonged survival time of immunized animals.

  3. Trypanocidal Activity of Thioamide-Substituted Imidazoquinolinone: Electrochemical Properties and Biological Effects

    Directory of Open Access Journals (Sweden)

    Fernanda M. Frank

    2013-01-01

    Full Text Available Three thioamide-substituted imidazoquinolinone, which possess a heterocyclic center similar to tryptanthrin and are named C1, C2, and C3, were studied regarding (a their in vitro anti-Trypanosoma cruzi activity, (b their cytotoxicity and electrochemical behaviour, and (c their effect on cell viability, redox state, and mitochondrial function. The assayed compounds showed a significant activity against the proliferative forms, but only C1 showed activity on the trypomastigote form (for C1, IC50  epi=1.49 μM; IC50  amas=1.74 μM; and IC50  try=34.89 μM. The presence of an antioxidant compound such as ascorbic acid or dithiotreitol induced a threefold increase in the antiparasitic activity, whereas glutathione had a dual effect depending on its concentration. Our results indicate that these compounds, which exhibited low toxicity to the host cells, can be reduced inside the parasite by means of the pool of low molecular weight thiols, causing oxidative stress and parasite death by apoptosis. The antiparasitic activity of the compounds studied could be explained by a loss of the capacity of the antioxidant defense system of the parasite to keep its intracellular redox state. C1 could be considered a good candidate for in vivo evaluation.

  4. Avaliação da atividade antiparasitária do alopurinol, referente ao Trypanosoma cruzi, em sistema experimental que utiliza triatomíneos infectados Evaluation of antiparasitic activity of allopurinol, against Trypanosoma cruzi, in experimental system using infected triatomines

    Directory of Open Access Journals (Sweden)

    Fábio Luís Carignani

    2000-12-01

    Full Text Available Foi avaliada a atividade antiparasitária do alopurinol, referente ao Trypanosoma cruzi, através de procedimento que depende da utilização de triatomíneos infectados. De acordo com a metodologia usada, o fármaco não eliminou o protozoário do tubo digestivo dos insetos. Não ocorreu, portanto, obtenção de novo subsídio para melhor entendimento da posição do alopurinol no contexto do tratamento etiológico da infecção pelo T. cruzi, porquanto ela continua em foco, se bem que eivada de divergências e contradições.The antiparasitic activity of allopurinol, against Trypanosoma cruzi, was evaluated by a procedure using infected triatomines. This methodology indicated that the drug was unable to eliminate the protozoa in the digestive tract of the insects. Therefore, further knowledge to improve our understanding of allopurinol in the context of the etiologic treatment of infection by T. cruzi was not acquired. Despite this finding the drug continues to be used, even though its performance appears to be full of divergences and contradictions.

  5. Unraveling the differences of the hydrolytic activity of Trypanosoma cruzi trans-sialidase and Trypanosoma rangeli sialidase: a quantum mechanics-molecular mechanics modeling study.

    Science.gov (United States)

    Bueren-Calabuig, Juan A; Pierdominici-Sottile, Gustavo; Roitberg, Adrian E

    2014-06-05

    Chagas' disease, also known as American trypanosomiasis, is a lethal, chronic disease that currently affects more than 10 million people in Central and South America. The trans-sialidase from Trypanosoma cruzi (T. cruzi, TcTS) is a crucial enzyme for the survival of this parasite: sialic acids from the host are transferred to the cell surface glycoproteins of the trypanosome, thereby evading the host's immune system. On the other hand, the sialidase of T. rangeli (TrSA), which shares 70% sequence identity with TcTS, is a strict hydrolase and shows no trans-sialidase activity. Therefore, TcTS and TrSA represent an excellent framework to understand how different catalytic activities can be achieved with extremely similar structures. By means of combined quantum mechanics-molecular mechanics (QM/MM, SCC-DFTB/Amberff99SB) calculations and umbrella sampling simulations, we investigated the hydrolysis mechanisms of TcTS and TrSA and computed the free energy profiles of these reactions. The results, together with our previous computational investigations, are able to explain the catalytic mechanism of sialidases and describe how subtle differences in the active site make TrSA a strict hydrolase and TcTS a more efficient trans-sialidase.

  6. In vivo evaluation of Aloysia triphylla britton (lemon verbena) essential oil toxicity and citral anti-Trypanosma cruzi activity.

    OpenAIRE

    Rojas Armas, Juan; Palacios Agüero, Olga; Ortiz Sánchez, José Manuel; López de la Peña, Leavit

    2015-01-01

    Introducción: Existe escasa investigación en enfermedades olvidadas. Las plantas medicinales son una potencial fuente de compuestos antimicrobianos. Objetivos: Determinar la toxicidad del aceite esencial de Aloysia triphylla y la actividad del citral contra Trypanosoma cruzi en ratones. Diseño: Estudio experimental preclínico in vivo. Institución: Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú. Material: Ratones albinos. Intervenciones: La toxicidad aguda oral a do...

  7. Old Yellow Enzyme from Trypanosoma cruzi Exhibits In Vivo Prostaglandin F2α Synthase Activity and Has a Key Role in Parasite Infection and Drug Susceptibility

    Directory of Open Access Journals (Sweden)

    Florencia Díaz-Viraqué

    2018-03-01

    Full Text Available The discovery that trypanosomatids, unicellular organisms of the order Kinetoplastida, are capable of synthesizing prostaglandins raised questions about the role of these molecules during parasitic infections. Multiple studies indicate that prostaglandins could be related to the infection processes and pathogenesis in trypanosomatids. This work aimed to unveil the role of the prostaglandin F2α synthase TcOYE in the establishment of Trypanosoma cruzi infection, the causative agent of Chagas disease. This chronic disease affects several million people in Latin America causing high morbidity and mortality. Here, we propose a prokaryotic evolutionary origin for TcOYE, and then we used in vitro and in vivo experiments to show that T. cruzi prostaglandin F2α synthase plays an important role in modulating the infection process. TcOYE overexpressing parasites were less able to complete the infective cycle in cell culture infections and increased cardiac tissue parasitic load in infected mice. Additionally, parasites overexpressing the enzyme increased PGF2α synthesis from arachidonic acid. Finally, an increase in benznidazole and nifurtimox susceptibility in TcOYE overexpressing parasites showed its participation in activating the currently anti-chagasic drugs, which added to its observed ability to confer resistance to hydrogen peroxide, highlights the relevance of this enzyme in multiple events including host–parasite interaction.

  8. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function

    Energy Technology Data Exchange (ETDEWEB)

    Schormann, N.; Senkovich, O.; Walker, K.; Wright, D.L.; Anderson, A.C.; Rosowsky, A.; Ananthan, S.; Shinkre, B.; Velu, S.; Chattopadhyay, D. (UAB); (Connecticut); (Southern Research); (DFCI)

    2009-07-10

    We have employed a structure-based three-dimensional quantitative structure-activity relationship (3D-QSAR) approach to predict the biochemical activity for inhibitors of T. cruzi dihydrofolate reductase-thymidylate synthase (DHFR-TS). Crystal structures of complexes of the enzyme with eight different inhibitors of the DHFR activity together with the structure in the substrate-free state (DHFR domain) were used to validate and refine docking poses of ligands that constitute likely active conformations. Structural information from these complexes formed the basis for the structure-based alignment used as input for the QSAR study. Contrary to indirect ligand-based approaches the strategy described here employs a direct receptor-based approach. The goal is to generate a library of selective lead inhibitors for further development as antiparasitic agents. 3D-QSAR models were obtained for T. cruzi DHFR-TS (30 inhibitors in learning set) and human DHFR (36 inhibitors in learning set) that show a very good agreement between experimental and predicted enzyme inhibition data. For crossvalidation of the QSAR model(s), we have used the 10% leave-one-out method. The derived 3D-QSAR models were tested against a few selected compounds (a small test set of six inhibitors for each enzyme) with known activity, which were not part of the learning set, and the quality of prediction of the initial 3D-QSAR models demonstrated that such studies are feasible. Further refinement of the models through integration of additional activity data and optimization of reliable docking poses is expected to lead to an improved predictive ability.

  9. Molecular characterization of Trypanosoma cruzi SAP proteins with host-cell lysosome exocytosis-inducing activity required for parasite invasion.

    Science.gov (United States)

    Zanforlin, Tamiris; Bayer-Santos, Ethel; Cortez, Cristian; Almeida, Igor C; Yoshida, Nobuko; da Silveira, José Franco

    2013-01-01

    To invade target cells, Trypanosoma cruzi metacyclic forms engage distinct sets of surface and secreted molecules that interact with host components. Serine-, alanine-, and proline-rich proteins (SAP) comprise a multigene family constituted of molecules with a high serine, alanine and proline residue content. SAP proteins have a central domain (SAP-CD) responsible for interaction with and invasion of mammalian cells by metacyclic forms. Using a 513 bp sequence from SAP-CD in blastn analysis, we identified 39 full-length SAP genes in the genome of T. cruzi. Although most of these genes were mapped in the T. cruzi in silico chromosome TcChr41, several SAP sequences were spread out across the genome. The level of SAP transcripts was twice as high in metacyclic forms as in epimastigotes. Monoclonal (MAb-SAP) and polyclonal (anti-SAP) antibodies produced against the recombinant protein SAP-CD were used to investigate the expression and localization of SAP proteins. MAb-SAP reacted with a 55 kDa SAP protein released by epimastigotes and metacyclic forms and with distinct sets of SAP variants expressed in amastigotes and tissue culture-derived trypomastigotes (TCTs). Anti-SAP antibodies reacted with components located in the anterior region of epimastigotes and between the nucleus and the kinetoplast in metacyclic trypomastigotes. In contrast, anti-SAP recognized surface components of amastigotes and TCTs, suggesting that SAP proteins are directed to different cellular compartments. Ten SAP peptides were identified by mass spectrometry in vesicle and soluble-protein fractions obtained from parasite conditioned medium. Using overlapping sequences from SAP-CD, we identified a 54-aa peptide (SAP-CE) that was able to induce host-cell lysosome exocytosis and inhibit parasite internalization by 52%. This study provides novel information about the genomic organization, expression and cellular localization of SAP proteins and proposes a triggering role for extracellular SAP

  10. Molecular characterization of Trypanosoma cruzi SAP proteins with host-cell lysosome exocytosis-inducing activity required for parasite invasion.

    Directory of Open Access Journals (Sweden)

    Tamiris Zanforlin

    Full Text Available BACKGROUND: To invade target cells, Trypanosoma cruzi metacyclic forms engage distinct sets of surface and secreted molecules that interact with host components. Serine-, alanine-, and proline-rich proteins (SAP comprise a multigene family constituted of molecules with a high serine, alanine and proline residue content. SAP proteins have a central domain (SAP-CD responsible for interaction with and invasion of mammalian cells by metacyclic forms. METHODS AND FINDINGS: Using a 513 bp sequence from SAP-CD in blastn analysis, we identified 39 full-length SAP genes in the genome of T. cruzi. Although most of these genes were mapped in the T. cruzi in silico chromosome TcChr41, several SAP sequences were spread out across the genome. The level of SAP transcripts was twice as high in metacyclic forms as in epimastigotes. Monoclonal (MAb-SAP and polyclonal (anti-SAP antibodies produced against the recombinant protein SAP-CD were used to investigate the expression and localization of SAP proteins. MAb-SAP reacted with a 55 kDa SAP protein released by epimastigotes and metacyclic forms and with distinct sets of SAP variants expressed in amastigotes and tissue culture-derived trypomastigotes (TCTs. Anti-SAP antibodies reacted with components located in the anterior region of epimastigotes and between the nucleus and the kinetoplast in metacyclic trypomastigotes. In contrast, anti-SAP recognized surface components of amastigotes and TCTs, suggesting that SAP proteins are directed to different cellular compartments. Ten SAP peptides were identified by mass spectrometry in vesicle and soluble-protein fractions obtained from parasite conditioned medium. Using overlapping sequences from SAP-CD, we identified a 54-aa peptide (SAP-CE that was able to induce host-cell lysosome exocytosis and inhibit parasite internalization by 52%. CONCLUSIONS: This study provides novel information about the genomic organization, expression and cellular localization of SAP

  11. Initial studies on mechanism of action and cell death of active N-oxide-containing heterocycles in Trypanosoma cruzi epimastigotes in vitro.

    Science.gov (United States)

    Benítez, Diego; Casanova, Gabriela; Cabrera, Gonzalo; Galanti, Norbel; Cerecetto, Hugo; González, Mercedes

    2014-04-01

    Chagas disease, endemic in 21 countries across Latin America, kills more people in the region each year than any other parasite-borne disease. Therapeutic options have problems ranging from toxicity, poor efficacy, drug resistance and high cost. Thus, cheaper and less toxic treatments are necessary. From our in-house chemical library of agents against Trypanosoma cruzi the most relevant N-oxide-containing heterocycles were selected for mode of action and type of death studies. Also included in these studies were two active nitrofuranes. Epimastigotes of T. cruzi were used as the biological model in this study. The metabolic profile was studied by 1H NMR in association with the MTT assay. Excreted catabolites data, using 1H NMR spectroscopy, showed that most of the studied N-oxides were capable of decreasing both the release of succinate and acetate shedding, the compounds therefore possibly acting on mitochondria. Only quinoxalines and the nitrofurane Nf1 showed significant mitochondrial dehydrogenase inhibitions, but with different dose-time profiles. In the particular case of quinoxaline Qx2 the glucose uptake study revealed that the integrity of some pathways into the glycosome could be affected. Optic, fluorescence (TUNEL and propidium iodide) and transmission electron microscopy (TEM) were employed for type of death studies. These studies were complemented with 1H NMR to visualize mobile lipids. At low concentrations none of the selected compounds showed a positive TUNEL assay. However, both quinoxalines, one furoxan and one benzofuroxan showed a necrotic effect at high concentrations. Curiously, one furoxan, Fx1, one benzofuroxan, Bfx1, and one nitrofurane, Nf1, caused a particular phenotype, with a big cytoplasmatic vacuole being observed while the parasite was still alive. Studies of TEM and employing a protease inhibitor (3-methyladenine) suggested an autophagic phenotype for Bfx1 and Nf1 and a 'BigEye' phenotype for Fx1.

  12. Interferon-Gamma Promotes Infection of Astrocytes by Trypanosoma cruzi

    Science.gov (United States)

    Silva, Rafael Rodrigues; Mariante, Rafael M.; Silva, Andrea Alice; dos Santos, Ana Luiza Barbosa; Roffê, Ester; Santiago, Helton; Gazzinelli, Ricardo Tostes; Lannes-Vieira, Joseli

    2015-01-01

    The inflammatory cytokine interferon-gamma (IFNγ) is crucial for immunity against intracellular pathogens such as the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (CD). IFNγ is a pleiotropic cytokine which regulates activation of immune and non-immune cells; however, the effect of IFNγ in the central nervous system (CNS) and astrocytes during CD is unknown. Here we show that parasite persists in the CNS of C3H/He mice chronically infected with the Colombian T. cruzi strain despite the increased expression of IFNγ mRNA. Furthermore, most of the T. cruzi-bearing cells were astrocytes located near IFNγ+ cells. Surprisingly, in vitro experiments revealed that pretreatment with IFNγ promoted the infection of astrocytes by T. cruzi increasing uptake and proliferation of intracellular forms, despite inducing increased production of nitric oxide (NO). Importantly, the effect of IFNγ on T. cruzi uptake and growth is completely blocked by the anti-tumor necrosis factor (TNF) antibody Infliximab and partially blocked by the inhibitor of nitric oxide synthesis L-NAME. These data support that IFNγ fuels astrocyte infection by T. cruzi and critically implicate IFNγ-stimulated T. cruzi-infected astrocytes as sources of TNF and NO, which may contribute to parasite persistence and CNS pathology in CD. PMID:25695249

  13. Interferon-gamma promotes infection of astrocytes by Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Rafael Rodrigues Silva

    Full Text Available The inflammatory cytokine interferon-gamma (IFNγ is crucial for immunity against intracellular pathogens such as the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (CD. IFNγ is a pleiotropic cytokine which regulates activation of immune and non-immune cells; however, the effect of IFNγ in the central nervous system (CNS and astrocytes during CD is unknown. Here we show that parasite persists in the CNS of C3H/He mice chronically infected with the Colombian T. cruzi strain despite the increased expression of IFNγ mRNA. Furthermore, most of the T. cruzi-bearing cells were astrocytes located near IFNγ+ cells. Surprisingly, in vitro experiments revealed that pretreatment with IFNγ promoted the infection of astrocytes by T. cruzi increasing uptake and proliferation of intracellular forms, despite inducing increased production of nitric oxide (NO. Importantly, the effect of IFNγ on T. cruzi uptake and growth is completely blocked by the anti-tumor necrosis factor (TNF antibody Infliximab and partially blocked by the inhibitor of nitric oxide synthesis L-NAME. These data support that IFNγ fuels astrocyte infection by T. cruzi and critically implicate IFNγ-stimulated T. cruzi-infected astrocytes as sources of TNF and NO, which may contribute to parasite persistence and CNS pathology in CD.

  14. Trypanocidal activity of genotoxic concentration of benznidazole on epimastigote forms of Trypanosoma cruzi = Atividade tripanocida da concentração genotóxica do benzonidazol em formas epimastigotas de Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Edilson Nobuyoshi Kaneshima

    2012-10-01

    Full Text Available The genotoxicity of benznidazole at a concentration of 75 µM, used in the treatment of Chagas’ disease, has been recently reported. The present study evaluated the inhibitory effect of benznidazole on the growth of epimastigote forms of T. cruzi I and II by using genotoxic (75 µM and non-genotoxic (50 µM concentrations. To assess the growth rates of T. cruzi strains G2, A2.1A, CL, Y, and 2052, parasites in the epimastigote form were cultured in LIT medium for 192 h at 28ºC, with (50 and 75 µM and without (negative control benznidazole. Benznidazole at both concentrations inhibited all the strains, regardless of genetic group. In the 75 µM concentration, there was a significant decrease in the number of parasites inoculated at T0 after 96 h incubation. The results showed that although genotoxic and non-genotoxic doses of benznidazole inhibit the growth of the epimastigote forms of T. cruzi I and II, only the 75 µM dose seem to indicate a possible trypanocidal effect.O benzonidazol é um medicamento utilizado no tratamento da doença de Chagas, cuja genotoxicidade foi recentemente observada em concentrações a partir de 75 µM. O efeito inibitório do benzonidazol sobre o crescimento de formas epimastigotas de T. cruzi I e II foi avaliado no presente trabalho, utilizando-se concentrações genotóxica (75 µM e não genotóxica (50 µM deste medicamento. Para avaliação da taxa de crescimento das cepas G2, A2.1A, CL, Y e 2052, os parasitos na forma epimastigota foram cultivados em meio LIT, durante 192 horas, à 28 o C, tanto em presença de benzonidazol (50 e 75 µM, quanto em sua ausência (controle negativo. O efeito inibitório do benzonidazol, em ambas concentrações, foi observado para todas as cepas analisadas, independentemente do grupo genético a que pertençam. Na concentração de 75 µM, observou-se após 96 horas de incubação, redução significativa do número de parasitos inoculados no tempo zero (T0. Os resultados

  15. Nelfinavir and lopinavir impair Trypanosoma cruzi trypomastigote infection in mammalian host cells and show anti-amastigote activity.

    Science.gov (United States)

    Sangenito, Leandro S; d'Avila-Levy, Claudia M; Branquinha, Marta H; Santos, André L S

    2016-12-01

    There is an urgent need to implement new strategies and to search for new chemotherapeutic targets to combat Chagas' disease. In this context, repositioning of clinically approved drugs appears as a viable tool to combat this and several other neglected pathologies. An example is the use of aspartic peptidase inhibitors (PIs) currently applied in human immunodeficiency virus (HIV) treatment against different infectious agents. Therefore, the main objective of this work was to verify the effects of the HIV-PIs nelfinavir and lopinavir against Trypanosoma cruzi using in vitro models of infection. Cytotoxicity assays with LLC-MK 2 epithelial cells and RAW macrophages allowed an evaluation of the effects of HIV-PIs on the interaction between trypomastigotes and these cells as well as the survival of intracellular amastigotes. Pre-treatment of trypomastigotes with nelfinavir and lopinavir inhibited the association index with LLC-MK 2 cells and RAW macrophages in a dose- and time-dependent manner. In addition, nelfinavir and lopinavir also significantly reduced the number of intracellular amastigotes in both mammalian cell lineages, particularly when administered in daily doses. Both compounds had no effect on nitric oxide production in infected RAW macrophages. These results open the possibility for the use of HIV-PIs as a tangible alternative in the treatment of Chagas' disease. However, the main mechanism of action of nelfinavir and lopinavir has yet to be elucidated, and more studies using in vivo models must be conducted. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  16. Treatment with a New Peroxisome Proliferator-Activated Receptor Gamma Agonist, Pyridinecarboxylic Acid Derivative, Increases Angiogenesis and Reduces Inflammatory Mediators in the Heart of Trypanosoma cruzi-Infected Mice

    Directory of Open Access Journals (Sweden)

    Federico Nicolás Penas

    2017-12-01

    Full Text Available Trypanosoma cruzi infection induces an intense inflammatory response in diverse host tissues. The immune response and the microvascular abnormalities associated with infection are crucial aspects in the generation of heart damage in Chagas disease. Upon parasite uptake, macrophages, which are involved in the clearance of infection, increase inflammatory mediators, leading to parasite killing. The exacerbation of the inflammatory response may lead to tissue damage. Peroxisome proliferator-activated receptor gamma (PPARγ is a ligand-dependent nuclear transcription factor that exerts important anti-inflammatory effects and is involved in improving endothelial functions and proangiogenic capacities. In this study, we evaluated the intermolecular interaction between PPARγ and a new synthetic PPARγ ligand, HP24, using virtual docking. Also, we showed that early treatment with HP24, decreases the expression of NOS2, a pro-inflammatory mediator, and stimulates proangiogenic mediators (vascular endothelial growth factor A, CD31, and Arginase I both in macrophages and in the heart of T. cruzi-infected mice. Moreover, HP24 reduces the inflammatory response, cardiac fibrosis and the levels of inflammatory cytokines (TNF-α, interleukin 6 released by macrophages of T. cruzi-infected mice. We consider that PPARγ agonists might be useful as coadjuvants of the antiparasitic treatment of Chagas disease, to delay, reverse, or preclude the onset of heart damage.

  17. Crassiflorone derivatives that inhibit Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (TbGAPDH) and Trypanosoma cruzi trypanothione reductase (TcTR) and display trypanocidal activity.

    Science.gov (United States)

    Uliassi, Elisa; Fiorani, Giulia; Krauth-Siegel, R Luise; Bergamini, Christian; Fato, Romana; Bianchini, Giulia; Carlos Menéndez, J; Molina, Maria Teresa; López-Montero, Eulogio; Falchi, Federico; Cavalli, Andrea; Gul, Sheraz; Kuzikov, Maria; Ellinger, Bernhard; Witt, Gesa; Moraes, Carolina B; Freitas-Junior, Lucio H; Borsari, Chiara; Costi, Maria Paola; Bolognesi, Maria Laura

    2017-12-01

    Crassiflorone is a natural product with anti-mycobacterial and anti-gonorrhoeal properties, isolated from the stem bark of the African ebony tree Diospyros crassiflora. We noticed that its pentacyclic core possesses structural resemblance to the quinone-coumarin hybrid 3, which we reported to exhibit a dual-targeted inhibitory profile towards Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (TbGAPDH) and Trypanosoma cruzi trypanothione reductase (TcTR). Following this basic idea, we synthesized a small library of crassiflorone derivatives 15-23 and investigated their potential as anti-trypanosomatid agents. 19 is the only compound of the series showing a balanced dual profile at 10 μM (% inhibition TbGAPDH  = 64% and % inhibition TcTR  = 65%). In phenotypic assay, the most active compounds were 18 and 21, which at 5 μM inhibited Tb bloodstream-form growth by 29% and 38%, respectively. Notably, all the newly synthesized compounds at 10 μM did not affect viability and the status of mitochondria in human A549 and 786-O cell lines, respectively. However, further optimization that addresses metabolic liabilities including solubility, as well as cytochromes P450 (CYP1A2, CYP2C9, CYP2C19, and CYP2D6) inhibition, is required before this class of natural product-derived compounds can be further progressed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Phospholipase A1: a novel virulence factor in Trypanosoma cruzi.

    Science.gov (United States)

    Belaunzarán, María Laura; Wilkowsky, Silvina Elizabeth; Lammel, Estela María; Giménez, Guadalupe; Bott, Emanuel; Barbieri, Manuel Alejandro; de Isola, Elvira Luisa Durante

    2013-02-01

    Phospholipase A1 (PLA1) has been described in the infective stages of Trypanosoma cruzi as a membrane-bound/secreted enzyme that significantly modified host cell lipid profile with generation of second lipid messengers and concomitant activation of protein kinase C. In the present work we determined higher levels of PLA1 expression in the infective amastigotes and trypomastigotes than in the non-infective epimastigotes of lethal RA strain. In addition, we found similar expression patterns but distinct PLA1 activity levels in bloodstream trypomastigotes from Cvd and RA (lethal) and K98 (non-lethal) T. cruzi strains, obtained at their corresponding parasitemia peaks. This fact was likely due to the presence of different levels of anti-T. cruzi PLA1 antibodies in sera of infected mice, that modulated the enzyme activity. Moreover, these antibodies significantly reduced in vitro parasite invasion indicating the participation of T. cruzi PLA1 in the early events of parasite-host cell interaction. We also demonstrated the presence of lysophospholipase activity in live infective stages that could account for self-protection against the toxic lysophospholipids generated by T. cruzi PLA1 action. At the genome level, we identified at least eight putative genes that codify for T. cruzi PLA1 with high amino acid sequence variability in their amino and carboxy-terminal regions; a putative PLA1 selected gene was cloned and expressed as a recombinant protein that possessed PLA1 activity. Collectively, the results presented here point out at T. cruzi PLA1 as a novel virulence factor implicated in parasite invasion. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. The diversity and expansion of the trans-sialidase gene family is a common feature in Trypanosoma cruzi clade members.

    Science.gov (United States)

    Chiurillo, Miguel Angel; Cortez, Danielle R; Lima, Fábio M; Cortez, Caroline; Ramírez, José Luis; Martins, Andre G; Serrano, Myrna G; Teixeira, Marta M G; da Silveira, José Franco

    2016-01-01

    Trans-sialidase (TS) is a polymorphic protein superfamily described in members of the protozoan genus Trypanosoma. Of the eight TS groups recently described, TS group I proteins (some of which have catalytic activity) are present in the distantly related Trypanosoma brucei and Trypanosoma cruzi phylogenetic clades, whereas other TS groups have only been described in some species belonging to the T. cruzi clade. In the present study we analyzed the repertoire, distribution and phylogenetic relationships of TS genes among species of the T. cruzi clade based on sequence similarity, multiple sequence alignment and tree-reconstruction approaches using TS sequences obtained with the aid of PCR-based strategies or retrieved from genome databases. We included the following representative isolates of the T. cruzi clade from South America: T. cruzi, T. cruzi Tcbat, Trypanosoma cruzi marinkellei, Trypanosoma dionisii, Trypanosoma rangeli and Trypanosoma conorhini. The cloned sequences encoded conserved TS protein motifs Asp-box and VTVxNVxLYNR but lacked the FRIP motif (conserved in TS group I). The T. conorhini sequences were the most divergent. The hybridization patterns of TS probes with chromosomal bands confirmed the abundance of these sequences in species in the T. cruzi clade. Divergence and relationship analysis placed most of the TS sequences in the groups defined in T. cruzi. Further examination of members of TS group II, which includes T. cruzi surface glycoproteins implicated in host cell attachment and invasion, showed that sequences of T. cruzi Tcbat grouped with those of T. cruzi genotype TcI. Our analysis indicates that different members of the T. cruzi clade, with different vertebrate hosts, vectors and pathogenicity, share the extensive expansion and sequence diversification of the TS gene family. Altogether, our results are congruent with the evolutionary history of the T. cruzi clade and represent a contribution to the understanding of the molecular

  20. Dissecting biochemical peculiarities of the ATPase activity of TcSub2, a component of the mRNA export pathway in Trypanosoma cruzi.

    Science.gov (United States)

    Bittencourt, Ize de Aguiar; Serpeloni, Mariana; Hiraiwa, Priscila Mazzochi; de Arruda Campos Brasil de Souza, Tatiana; Ávila, Andréa Rodrigues

    2017-05-01

    The RNA helicase DEAD-box protein Sub2 (yeast)/UAP56 (mammals) is conserved across eukaryotes and is essential for mRNA export in trypanosomes. Despite the high conservation of Sub2 in lower eukaryotes such as Trypanosoma cruzi, the low conservation of other mRNA export factors raises questions regarding whether the mode of action of TcSub2 is similar to that of orthologs from other eukaryotes. Mutation of the conserved K87 residue of TcSub2 abolishes ATPase activity, showing that its ATPase domain is functional. However, the Vmax of TcSub2 was much higher than the Vmax described for the human protein UAP56, which suggests that the TcSub2 enzyme hydrolyzes ATP faster than its human homolog. Furthermore, we demonstrate that RNA association is less important to the activity of TcSub2 compared to UAP56. Our results show differences in activity of this protein, even though the structure of TcSub2 is very similar to UAP56. Functional complementation assays indicate that these differences may be common to other trypanosomatids. Distinct features of RNA influence and ATPase efficiency between UAP56 and TcSub2 may reflect distinct structures for functional sites of TcSub2. For this reason, ligand-based or structure-based methodologies can be applied to investigate the potential of TcSub2 as a target for new drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Efficacy of some essential oils in mice infected with Trypanosoma cruzi

    African Journals Online (AJOL)

    been shown to be effective against T. cruzi. Different essential oils (EOs) have already been tested in vitro against T. Cruzi, demonstrating biological activity. Among ... medium according to the protocol described by. Dias et al [9] and modified by Teston et al [10]. Experimental groups, treatment schedules and essential oils.

  2. Synthesis and 2D-QSAR studies of neolignan-based diaryl-tetrahydrofuran and -furan analogues with remarkable activity against Trypanosoma cruzi and assessment of the trypanothione reductase activity.

    Science.gov (United States)

    Hartmann, Ana Paula; de Carvalho, Marcelo Rodrigues; Bernardes, Lilian Sibelle Campos; Moraes, Milena Hoehr de; de Melo, Eduardo Borges; Lopes, Carla Duque; Steindel, Mario; da Silva, João Santana; Carvalho, Ivone

    2017-11-10

    Two series of diaryl-tetrahydrofuran and -furan were synthesised and screened for anti-trypanosomal activity against trypomastigote and amastigote forms of Trypanosoma cruzi, the causative agent of Chagas disease. Based on evidence that modification of a natural product may result in a more effective drug than the natural product itself, and using known neolignan inhibitors veraguensin 1 and grandisin 2 as templates to synthesise simpler analogues, remarkable anti-trypanosomal activity and selectivity were found for 3,5-dimethoxylated diaryl-furan 5c and 2,4-dimethoxylated diaryl-tetrahydrofuran 4e analogues with EC 50 0.01 μM and EC 50 0.75 μM, respectively, the former being 260-fold more potent than veraguensin 1 and 150-fold better than benznidazole, the current available drugs for Chagas disease treatment. The ability of the most potent anti-trypanosomal compounds to penetrate LLC-MK2 cells infected with T. cruzi amastigotes parasite was tested, which revealed 4e and 5e analogues as the most effective, causing no damage to mammalian cells. In particular, the majority of the derivatives were non-toxic against mice spleen cells. 2D-QSAR studies show the rigid central core and the position of dimethoxy-aryl substituents dramatically affect the anti-trypanosomal activity. The mode of action of the most active anti-trypanosomal derivatives was investigated by exploring the anti-oxidant functions of Trypanothione reductase (TR). As a result, diarylfuran series displayed the strongest inhibition, highlighting compounds 5d-e (IC 50 19.2 and 17.7 μM) and 5f-g (IC 50 8.9 and 7.4 μM), respectively, with similar or 2-fold higher than the reference inhibitor clomipramine (IC 50 15.2 μM). Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Novel drug design for Chagas disease via targeting Trypanosoma cruzi tubulin: Homology modeling and binding pocket prediction on Trypanosoma cruzi tubulin polymerization inhibition by naphthoquinone derivatives.

    Science.gov (United States)

    Ogindo, Charles O; Khraiwesh, Mozna H; George, Matthew; Brandy, Yakini; Brandy, Nailah; Gugssa, Ayele; Ashraf, Mohammad; Abbas, Muneer; Southerland, William M; Lee, Clarence M; Bakare, Oladapo; Fang, Yayin

    2016-08-15

    Chagas disease, also called American trypanosomiasis, is a parasitic disease caused by Trypanosoma cruzi (T. cruzi). Recent findings have underscored the abundance of the causative organism, (T. cruzi), especially in the southern tier states of the US and the risk burden for the rural farming communities there. Due to a lack of safe and effective drugs, there is an urgent need for novel therapeutic options for treating Chagas disease. We report here our first scientific effort to pursue a novel drug design for treating Chagas disease via the targeting of T. cruzi tubulin. First, the anti T. cruzi tubulin activities of five naphthoquinone derivatives were determined and correlated to their anti-trypanosomal activities. The correlation between the ligand activities against the T. cruzi organism and their tubulin inhibitory activities was very strong with a Pearson's r value of 0.88 (P value cruzi tubulin polymerization inhibition. Subsequent molecular modeling studies were carried out to understand the mechanisms of the anti-tubulin activities, wherein, the homology model of T. cruzi tubulin dimer was generated and the putative binding site of naphthoquinone derivatives was predicted. The correlation coefficient for ligand anti-tubulin activities and their binding energies at the putative pocket was found to be r=0.79, a high correlation efficiency that was not replicated in contiguous candidate pockets. The homology model of T. cruzi tubulin and the identification of its putative binding site lay a solid ground for further structure based drug design, including molecular docking and pharmacophore analysis. This study presents a new opportunity for designing potent and selective drugs for Chagas disease. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Targeting polyamine transport in Trypanosoma cruzi.

    Science.gov (United States)

    Reigada, Chantal; Phanstiel, Otto; Miranda, Mariana R; Pereira, Claudio A

    2018-03-10

    Polyamines play critical roles as regulators of cell growth and differentiation. In contrast with other protozoa, the human parasite Trypanosoma cruzi, the etiological agent of Chagas disease, is auxotrophic for polyamines. Therefore, their intracellular availability depends exclusively on polyamine transport and inhibition of these uptake processes can alter the viability of the parasite. The polyamine analogues used in this work were successfully tested as antiproliferative agents in cancer cells, bacteria, fungi and also showed a potent antiplasmodial effect. We evaluated the activity of these compounds on polyamine transport in T. cruzi and assessed the effects on parasite viability. Three polyamine derivatives, AMXT1501, Ant4 and Ant44, inhibited the putrescine transport in epimastigotes (the insect stage of T. cruzi) with calculated IC 50 values of 2.43, 5.02 and 3.98 μM, respectively. In addition, only Ant4 and Ant44 inhibited spermidine transport with IC 50 of 8.78 μM and 13.34 μM, respectively. The Ant4 analogue showed a high trypanocidal effect on trypomastigotes (the bloodstream stage of T. cruzi) with an IC 50 of 460 nM, (SI = 12.7) while in epimastigotes the IC 50 was significantly higher (16.97 μM). In addition, we studied the effect of the combination of benznidazole, a drug used in treating Chagas disease, with Ant4 on the viability of epimastigotes. The combined treatment produced a significant increase on the inhibition of parasites growth compared with individual treatments. In summary, these results suggest that Ant4, a putrescine conjugate, is a promising compound for the treatment of Chagas disease because it showed a potent trypanocidal effect via its inhibition of polyamine import. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Functional studies of TcRjl, a novel GTPase of Trypanosoma cruzi, reveals phenotypes related with MAPK activation during parasite differentiation and after heterologous expression in Drosophila model system

    International Nuclear Information System (INIS)

    Reis Monteiro dos-Santos, Guilherme Rodrigo; Fontenele, Marcio Ribeiro; Dias, Felipe de Almeida; Oliveira, Pedro Lagerblad de; Nepomuceno-Silva, José Luciano

    2015-01-01

    The life cycle of the protozoan parasite Trypanosoma cruzi comprises rounds of proliferative cycles and differentiation in distinct host environments. Ras GTPases are molecular switches that play pivotal regulatory functions in cell fate. Rjl is a novel GTPase with unknown function. Herein we show that TcRjl blocks in vivo cell differentiation. The forced expression of TcRjl leads to changes in the overall tyrosine protein phosphorylation profile of parasites. TcRjl expressing parasites sustained DNA synthesis regardless the external stimuli for differentiation. Heterologous expression in the Drosophila melanogaster genetic system strongly suggests a role from TcRjl protein in RTK-dependent pathways and MAPK activation.

  6. Functional studies of TcRjl, a novel GTPase of Trypanosoma cruzi, reveals phenotypes related with MAPK activation during parasite differentiation and after heterologous expression in Drosophila model system

    Energy Technology Data Exchange (ETDEWEB)

    Reis Monteiro dos-Santos, Guilherme Rodrigo [Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro (Brazil); Fontenele, Marcio Ribeiro [Laboratório de Biologia Molecular do Desenvolvimento Instituto de Ciências Biomédicas, CCS, UFRJ, Rio de Janeiro (Brazil); Dias, Felipe de Almeida [Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, CCS, UFRJ, Rio de Janeiro (Brazil); Oliveira, Pedro Lagerblad de [Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, CCS, UFRJ, Rio de Janeiro (Brazil); Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM) (Brazil); Nepomuceno-Silva, José Luciano [Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM/UFRJ, Pólo Barreto, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé (Brazil); and others

    2015-11-06

    The life cycle of the protozoan parasite Trypanosoma cruzi comprises rounds of proliferative cycles and differentiation in distinct host environments. Ras GTPases are molecular switches that play pivotal regulatory functions in cell fate. Rjl is a novel GTPase with unknown function. Herein we show that TcRjl blocks in vivo cell differentiation. The forced expression of TcRjl leads to changes in the overall tyrosine protein phosphorylation profile of parasites. TcRjl expressing parasites sustained DNA synthesis regardless the external stimuli for differentiation. Heterologous expression in the Drosophila melanogaster genetic system strongly suggests a role from TcRjl protein in RTK-dependent pathways and MAPK activation.

  7. The Complement System: A Prey of Trypanosoma cruzi

    Science.gov (United States)

    Lidani, Kárita C. F.; Bavia, Lorena; Ambrosio, Altair R.; de Messias-Reason, Iara J.

    2017-01-01

    Trypanosoma cruzi is a protozoan parasite known to cause Chagas disease (CD), a neglected sickness that affects around 6–8 million people worldwide. Originally, CD was mainly found in Latin America but more recently, it has been spread to countries in North America, Asia, and Europe due the international migration from endemic areas. Thus, at present CD represents an important concern of global public health. Most of individuals that are infected by T. cruzi may remain in asymptomatic form all lifelong, but up to 40% of them will develop cardiomyopathy, digestive mega syndromes, or both. The interaction between the T. cruzi infective forms and host-related immune factors represents a key point for a better understanding of the physiopathology of CD. In this context, the complement, as one of the first line of host defense against infection was shown to play an important role in recognizing T. cruzi metacyclic trypomastigotes and in controlling parasite invasion. The complement consists of at least 35 or more plasma proteins and cell surface receptors/regulators, which can be activated by three pathways: classical (CP), lectin (LP), and alternative (AP). The CP and LP are mainly initiated by immune complexes or pathogen-associated molecular patterns (PAMPs), respectively, whereas AP is spontaneously activated by hydrolysis of C3. Once activated, several relevant complement functions are generated which include opsonization and phagocytosis of particles or microorganisms and cell lysis. An important step during T. cruzi infection is when intracellular trypomastigotes are release to bloodstream where they may be target by complement. Nevertheless, the parasite uses a sequence of events in order to escape from complement-mediated lysis. In fact, several T. cruzi molecules are known to interfere in the initiation of all three pathways and in the assembly of C3 convertase, a key step in the activation of complement. Moreover, T. cruzi promotes secretion of plasma

  8. The Complement System: A Prey of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Kárita C. F. Lidani

    2017-04-01

    Full Text Available Trypanosoma cruzi is a protozoan parasite known to cause Chagas disease (CD, a neglected sickness that affects around 6–8 million people worldwide. Originally, CD was mainly found in Latin America but more recently, it has been spread to countries in North America, Asia, and Europe due the international migration from endemic areas. Thus, at present CD represents an important concern of global public health. Most of individuals that are infected by T. cruzi may remain in asymptomatic form all lifelong, but up to 40% of them will develop cardiomyopathy, digestive mega syndromes, or both. The interaction between the T. cruzi infective forms and host-related immune factors represents a key point for a better understanding of the physiopathology of CD. In this context, the complement, as one of the first line of host defense against infection was shown to play an important role in recognizing T. cruzi metacyclic trypomastigotes and in controlling parasite invasion. The complement consists of at least 35 or more plasma proteins and cell surface receptors/regulators, which can be activated by three pathways: classical (CP, lectin (LP, and alternative (AP. The CP and LP are mainly initiated by immune complexes or pathogen-associated molecular patterns (PAMPs, respectively, whereas AP is spontaneously activated by hydrolysis of C3. Once activated, several relevant complement functions are generated which include opsonization and phagocytosis of particles or microorganisms and cell lysis. An important step during T. cruzi infection is when intracellular trypomastigotes are release to bloodstream where they may be target by complement. Nevertheless, the parasite uses a sequence of events in order to escape from complement-mediated lysis. In fact, several T. cruzi molecules are known to interfere in the initiation of all three pathways and in the assembly of C3 convertase, a key step in the activation of complement. Moreover, T. cruzi promotes secretion

  9. The Complement System: A Prey ofTrypanosoma cruzi.

    Science.gov (United States)

    Lidani, Kárita C F; Bavia, Lorena; Ambrosio, Altair R; de Messias-Reason, Iara J

    2017-01-01

    Trypanosoma cruzi is a protozoan parasite known to cause Chagas disease (CD), a neglected sickness that affects around 6-8 million people worldwide. Originally, CD was mainly found in Latin America but more recently, it has been spread to countries in North America, Asia, and Europe due the international migration from endemic areas. Thus, at present CD represents an important concern of global public health. Most of individuals that are infected by T. cruzi may remain in asymptomatic form all lifelong, but up to 40% of them will develop cardiomyopathy, digestive mega syndromes, or both. The interaction between the T. cruzi infective forms and host-related immune factors represents a key point for a better understanding of the physiopathology of CD. In this context, the complement, as one of the first line of host defense against infection was shown to play an important role in recognizing T. cruzi metacyclic trypomastigotes and in controlling parasite invasion. The complement consists of at least 35 or more plasma proteins and cell surface receptors/regulators, which can be activated by three pathways: classical (CP), lectin (LP), and alternative (AP). The CP and LP are mainly initiated by immune complexes or pathogen-associated molecular patterns (PAMPs), respectively, whereas AP is spontaneously activated by hydrolysis of C3. Once activated, several relevant complement functions are generated which include opsonization and phagocytosis of particles or microorganisms and cell lysis. An important step during T. cruzi infection is when intracellular trypomastigotes are release to bloodstream where they may be target by complement. Nevertheless, the parasite uses a sequence of events in order to escape from complement-mediated lysis. In fact, several T. cruzi molecules are known to interfere in the initiation of all three pathways and in the assembly of C3 convertase, a key step in the activation of complement. Moreover, T. cruzi promotes secretion of plasma

  10. Searching for New Chemotherapies for Tropical Diseases: Ruthenium-Clotrimazole Complexes Display High in vitro Activity Against Leishmania major and Trypanosoma cruzi and Low Toxicity Toward Normal Mammalian Cells

    Science.gov (United States)

    Martínez, Alberto; Carreon, Teresia; Iniguez, Eva; Anzellotti, Atilio; Sánchez, Antonio; Tyan, Marina; Sattler, Aaron; Herrera, Linda; Maldonado, Rosa A.; Sánchez-Delgado, Roberto A.

    2012-01-01

    Eight new ruthenium complexes of clotrimazole (CTZ) with high antiparasitic activity have been synthesized, cis,fac-[RuIICl2(DMSO)3(CTZ)] (1), cis,cis,trans-[RuIICl2(DMSO)2(CTZ)2] (2), Na[RuIIICl4(DMSO)(CTZ)] (3) and Na[trans-RuIIICl4(CTZ)2] (4), [RuII(η6-p-cymene)Cl2(CTZ)] (5), [RuII(η6-p-cymene)(bipy)(CTZ)][BF4]2 (6), [RuII(η6-p-cymene)(en)(CTZ)][BF4]2 (7) and [RuII(η6-p-cymene)(acac)(CTZ)][BF4] (8) (bipy = bipyridine; en = ethlylenediamine; acac = acetylacetonate). The crystal structures of compounds 4-8 are described. Complexes 1-8 are active against promastigotes of Leishmania major and epimastigotes of Trypanosoma cruzi. Most notably complex 5 increases the activity of CTZ by factors of 110 and 58 against L. major and T. cruzi, with no appreciable toxicity to human osteoblasts, resulting in nanomolar and low micromolar lethal doses and therapeutic indexes of 500 and 75, respectively. In a high-content imaging assay on L. major infected intraperitoneal mice macrophages, complex 5 showed significant inhibition on the proliferation of intracellular amastigotes (IC70 = 29 nM), while complex 8 displayed some effect at a higher concentration (IC40 = 1 μM). PMID:22448965

  11. NLRP3 controls Trypanosoma cruzi infection through a caspase-1-dependent IL-1R-independent NO production.

    Science.gov (United States)

    Gonçalves, Virginia M; Matteucci, Kely C; Buzzo, Carina L; Miollo, Bruna H; Ferrante, Danny; Torrecilhas, Ana C; Rodrigues, Mauricio M; Alvarez, Jose M; Bortoluci, Karina R

    2013-01-01

    Trypanosoma cruzi (T. cruzi) is an intracellular protozoan parasite and the etiological agent of Chagas disease, a chronic infectious illness that affects millions of people worldwide. Although the role of TLR and Nod1 in the control of T. cruzi infection is well-established, the involvement of inflammasomes remains to be elucidated. Herein, we demonstrate for the first time that T. cruzi infection induces IL-1β production in an NLRP3- and caspase-1-dependent manner. Cathepsin B appears to be required for NLRP3 activation in response to infection with T. cruzi, as pharmacological inhibition of cathepsin B abrogates IL-1β secretion. NLRP3(-/-) and caspase1(-/-) mice exhibited high numbers of T. cruzi parasites, with a magnitude of peak parasitemia comparable to MyD88(-/-) and iNOS(-/-) mice (which are susceptible models for T. cruzi infection), indicating the involvement of NLRP3 inflammasome in the control of the acute phase of T. cruzi infection. Although the inflammatory cytokines IL-6 and IFN-γ were found in spleen cells from NLRP3(-/-) and caspase1(-/-) mice infected with T. cruzi, these mice exhibited severe defects in nitric oxide (NO) production and an impairment in macrophage-mediated parasite killing. Interestingly, neutralization of IL-1β and IL-18, and IL-1R genetic deficiency demonstrate that these cytokines have a minor effect on NO secretion and the capacity of macrophages to control T. cruzi infection. In contrast, inhibition of caspase-1 with z-YVAD-fmk abrogated NO production by WT and MyD88(-/-) macrophages and rendered them as susceptible to T. cruzi infection as NLRP3(-/-) and caspase-1(-/-) macrophages. Taken together, our results demonstrate a role for the NLRP3 inflammasome in the control of T. cruzi infection and identify NLRP3-mediated, caspase-1-dependent and IL-1R-independent NO production as a novel effector mechanism for these innate receptors.

  12. NLRP3 controls Trypanosoma cruzi infection through a caspase-1-dependent IL-1R-independent NO production.

    Directory of Open Access Journals (Sweden)

    Virginia M Gonçalves

    Full Text Available Trypanosoma cruzi (T. cruzi is an intracellular protozoan parasite and the etiological agent of Chagas disease, a chronic infectious illness that affects millions of people worldwide. Although the role of TLR and Nod1 in the control of T. cruzi infection is well-established, the involvement of inflammasomes remains to be elucidated. Herein, we demonstrate for the first time that T. cruzi infection induces IL-1β production in an NLRP3- and caspase-1-dependent manner. Cathepsin B appears to be required for NLRP3 activation in response to infection with T. cruzi, as pharmacological inhibition of cathepsin B abrogates IL-1β secretion. NLRP3(-/- and caspase1(-/- mice exhibited high numbers of T. cruzi parasites, with a magnitude of peak parasitemia comparable to MyD88(-/- and iNOS(-/- mice (which are susceptible models for T. cruzi infection, indicating the involvement of NLRP3 inflammasome in the control of the acute phase of T. cruzi infection. Although the inflammatory cytokines IL-6 and IFN-γ were found in spleen cells from NLRP3(-/- and caspase1(-/- mice infected with T. cruzi, these mice exhibited severe defects in nitric oxide (NO production and an impairment in macrophage-mediated parasite killing. Interestingly, neutralization of IL-1β and IL-18, and IL-1R genetic deficiency demonstrate that these cytokines have a minor effect on NO secretion and the capacity of macrophages to control T. cruzi infection. In contrast, inhibition of caspase-1 with z-YVAD-fmk abrogated NO production by WT and MyD88(-/- macrophages and rendered them as susceptible to T. cruzi infection as NLRP3(-/- and caspase-1(-/- macrophages. Taken together, our results demonstrate a role for the NLRP3 inflammasome in the control of T. cruzi infection and identify NLRP3-mediated, caspase-1-dependent and IL-1R-independent NO production as a novel effector mechanism for these innate receptors.

  13. The role of IL-12 in experimental Trypanosoma cruzi infection

    Directory of Open Access Journals (Sweden)

    J.S. Silva

    1998-01-01

    Full Text Available Host resistance to Trypanosoma cruzi infection is dependent on both natural and acquired immune responses. During the early acute phase of infection in mice, natural killer (NK cell-derived IFN-g is involved in controlling intracellular parasite replication, mainly through the induction of nitric oxide biosynthesis by activated macrophages. We have shown that IL-12, a powerful inducer of IFN-g production by NK cells, is synthesized soon after trypomastigote-macrophage interaction. The role of IL-12 in the control of T. cruzi infection in vivo was determined by treating infected mice with anti-IL-12 monoclonal antibody (mAb and analyzing both parasitemia and mortality during the acute phase of infection. The anti-IL-12 mAb-treated mice had higher levels of parasitemia and mortality compared to control mice. Also, treatment of infected mice with mAb specific for IFN-g or TNF-a inhibited the protective effect of exogenous IL-12. On the other hand, TGF-ß and IL-10 produced by infected macrophages inhibited the induction and effects of IL-12. Therefore, while IL-12, TNF-a and IFN-g correlate with resistance to T. cruzi infection, TGF-ß and IL-10 promote susceptibility. These results provide support for a role of innate immunity in the control of T. cruzi infection. In addition to its protective role, IL-12 may also be involved in the modulation of T. cruzi-induced myocarditis, since treatment of infected mice with IL-12 or anti-IL-12 mAb leads to an enhanced or decreased inflammatory infiltrate in the heart, respectively. Understanding the role of the cytokines produced during the acute phase of T. cruzi infection and their involvement in protection and pathogenesis would be essential to devise new vaccines or therapies.

  14. Anion inhibition studies of the α-carbonic anhydrase from the protozoan pathogen Trypanosoma cruzi, the causative agent of Chagas disease.

    Science.gov (United States)

    Pan, Peiwen; Vermelho, Alane Beatriz; Scozzafava, Andrea; Parkkila, Seppo; Capasso, Clemente; Supuran, Claudiu T

    2013-08-01

    The protozoan pathogen Trypanosoma cruzi, the causative agent of Chagas disease, encodes an α-class carbonic anhydrase (CA, EC 4.2.1.1), TcCA, which was recently shown to be crucial for its life cycle. Thiols, a class of strong TcCA inhibitors, were also shown to block the growth of the pathogen in vitro. Here we report the inhibition of TcCA by inorganic and complex anions and other molecules interacting with zinc proteins, such as sulfamide, sulfamic acid, phenylboronic/arsonic acids. TcCA was inhibited in the low micromolar range by iodide, cyanate, thiocyanate, hydrogensulfide and trithiocarbonate (KIs in the range of 44-93 μM), but the best inhibitor was diethyldithiocarbamate (KI=5 μM). Sulfamide showed an inhibition constant of 120 μM, but sulfamic acid was much less effective (KI of 10.6 mM). The discovery of diethyldithiocarbamate as a low micromolar TcCA inhibitor may be useful to detect leads for developing anti-Trypanosoma agents with a diverse mechanism of action compared to clinically used drugs (benznidazole, nifurtimox) for which significant resistance emerged. Copyright © 2013. Published by Elsevier Ltd.

  15. Seroprevalencia de la infección por Trypanosoma cruzi y factores asociados en un área endémica de Venezuela

    Directory of Open Access Journals (Sweden)

    Rafael Bonfante-Cabarcas

    2011-10-01

    Full Text Available Determinamos factores de riesgo asociados a la seropositividad para anticuerpos anti-Trypanosoma cruzi en 26 poblaciones rurales, 905 viviendas, 2.156 individuos y 333 caninos en el Estado Lara, Venezuela. La seropositividad fue determinada mediante ELISA y MABA. Los datos fueron obtenidos mediante encuestas entomológicas, demográficas y médicas. Los factores de riesgo fueron establecidos mediante regresión logística binaria. La seroprevalencia humana fue de 7,24% y la canina 6,9%. La seropositividad estuvo asociada positivamente al Rhodnius prolixus, la edad, madre con antecedentes de Chagas, consumo de chimó, presencia de mamíferos y aves en la vivienda, desorden en el domicilio, y anexos de bajareque, nidos y cuevas en el peridomicilio. Negativamente con hábitos de consumo de tabaco y alcohol, antecedentes de cáncer y a depósitos en el peridomicilio. En conclusión, la enfermedad de Chagas en el área rural estudiada es un fenómeno remoto transmitida por R. prolixus y vía transplacentaria, asociada a hábitos socioculturales relacionados con la pobreza, a entornos selváticos y antecedentes médicos del huésped.

  16. Trypanosoma cruzi: experimental Chagas' disease in Rhesus monkeys. II. Ultraestructural and cytochemical studies of peroxidase and acid phosphatase activities

    Directory of Open Access Journals (Sweden)

    Maria de Nazareth Leal de Meirelles

    1990-06-01

    Full Text Available Ultrastructural and cytochemical studies of peroxidase and acid phosphatase were performed in skin, lymph node and heart muscle tissue of thesus monkeys with experimental Chagas's disease. At the site of inoculation ther was a proliferative reaction with the presence of immature macrophages revealed by peroxidase technique. At the lymph node a difuse inflammatory exudate with mononuclear cells, fibroblasts and immature activated macrophages reproduces the human patrtern of acute Chagas' disease inflamatory lesions. The hearth muscle cells present different degrees of degenerative alterations and a striking increase in the number of lysosomal profiles that exhibit acid hydrolase reaction product. A strong inflammatory reaction was present due to lymphocytic infiltrate or due to eosinophil granulocytes associated to ruptured cells. The present study provides some experimental evidences that the monkey model could be used as a reliable model to characterize histopathological alterations of the human disease.

  17. Interactions between Trypanosoma cruzi secreted proteins and host cell signaling pathways

    Directory of Open Access Journals (Sweden)

    Renata Watanabe Costa

    2016-03-01

    Full Text Available Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6-7 million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma cruzi (T. cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection, the parasite invades and multiplies in the myocardium, leading to acute myocarditis that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate multiple host cell signaling pathways to promote host cell invasion. The primary secreted lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host immune response. Cruzipain hinders macrophage activation during the early stages of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows the parasite to survive and replicate, and may contribute to the spread of infection in acute Chagas disease. Another secreted protein P21, which is expressed in all of the developmental stages of T. cruzi, has been shown to modulate host phagocytosis signaling pathways. The parasite also secretes soluble factors that exert effects on host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted phospholipase A from T. cruzi contributes to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. Here we present a brief review of the interaction between secreted proteins from T. cruzi and the host cells, emphasizing the manipulation of host signaling pathways during invasion.

  18. Heme-induced ROS in Trypanosoma cruzi activates CaMKII-like that triggers epimastigote proliferation. One helpful effect of ROS.

    Directory of Open Access Journals (Sweden)

    Natália Pereira de Almeida Nogueira

    Full Text Available Heme is a ubiquitous molecule that has a number of physiological roles. The toxic effects of this molecule have been demonstrated in various models, based on both its pro-oxidant nature and through a detergent mechanism. It is estimated that about 10 mM of heme is released during blood digestion in the blood-sucking bug's midgut. The parasite Trypanosoma cruzi, the agent of Chagas' disease, proliferates in the midgut of the insect vector; however, heme metabolism in trypanosomatids remains to be elucidated. Here we provide a mechanistic explanation for the proliferative effects of heme on trypanosomatids. Heme, but not other porphyrins, induced T. cruzi proliferation, and this phenomenon was accompanied by a marked increase in reactive oxygen species (ROS formation in epimastigotes when monitored by ROS-sensitive fluorescent probes. Heme-induced ROS production was time- and concentration-dependent. In addition, lipid peroxidation and the formation of 4-hydroxy-2-nonenal (4-HNE adducts with parasite proteins were increased in epimastigotes in the presence of heme. Conversely, the antioxidants urate and GSH reversed the heme-induced ROS. Urate also decreased parasite proliferation. Among several protein kinase inhibitors tested only specific inhibitors of CaMKII, KN93 and Myr-AIP, were able to abolish heme-induced ROS formation in epimastigotes leading to parasite growth impairment. Taken together, these data provide new insight into T. cruzi- insect vector interactions: heme, a molecule from the blood digestion, triggers epimastigote proliferation through a redox-sensitive signalling mechanism.

  19. Aspirin Modulates Innate Inflammatory Response and Inhibits the Entry of Trypanosoma cruzi in Mouse Peritoneal Macrophages

    Directory of Open Access Journals (Sweden)

    Aparecida Donizette Malvezi

    2014-01-01

    Full Text Available The intracellular protozoan parasite Trypanosoma cruzi causes Chagas disease, a serious disorder that affects millions of people in Latin America. Cell invasion by T. cruzi and its intracellular replication are essential to the parasite’s life cycle and for the development of Chagas disease. Here, we present evidence suggesting the involvement of the host’s cyclooxygenase (COX enzyme during T. cruzi invasion. Pharmacological antagonist for COX-1, aspirin (ASA, caused marked inhibition of T. cruzi infection when peritoneal macrophages were pretreated with ASA for 30 min at 37°C before inoculation. This inhibition was associated with increased production of IL-1β and nitric oxide (NO∙ by macrophages. The treatment of macrophages with either NOS inhibitors or prostaglandin E2 (PGE2 restored the invasive action of T. cruzi in macrophages previously treated with ASA. Lipoxin ALX-receptor antagonist Boc2 reversed the inhibitory effect of ASA on trypomastigote invasion. Our results indicate that PGE2, NO∙, and lipoxins are involved in the regulation of anti-T. cruzi activity by macrophages, providing a better understanding of the role of prostaglandins in innate inflammatory response to T. cruzi infection as well as adding a new perspective to specific immune interventions.

  20. Implication of Apoptosis for the Pathogenesis of Trypanosoma cruzi Infection

    Directory of Open Access Journals (Sweden)

    Débora Decote-Ricardo

    2017-05-01

    Full Text Available Apoptosis is induced during the course of immune response to different infectious agents, and the ultimate fate is the recognition and uptake of apoptotic bodies by neighboring cells or by professional phagocytes. Apoptotic cells expose specific ligands to a set of conserved receptors expressed on macrophage cellular surface, which are the main cells involved in the clearance of the dying cells. These scavenger receptors, besides triggering the production of anti-inflammatory factors, also block the production of inflammatory mediators by phagocytes. Experimental infection of mice with the parasite Trypanosoma cruzi shows many pathological changes that parallels the evolution of human infection. Leukocytes undergoing intense apoptotic death are observed during the immune response to T. cruzi in the mouse model of the disease. T. cruzi replicate intensely and secrete molecules with immunomodulatory activities that interfere with T cell-mediated immune responses and secretion of pro-inflammatory cytokine secretion. This mechanism of immune evasion allows the infection to be established in the vertebrate host. Under inflammatory conditions, efferocytosis of apoptotic bodies generates an immune-regulatory phenotype in phagocytes, which is conducive to intracellular pathogen replication. However, the relevance of cellular apoptosis in the pathology of Chagas’ disease requires further studies. Here, we review the evidence of leukocyte apoptosis in T. cruzi infection and its immunomodulatory mechanism for disease progression.

  1. Purification and Partial Characterization of Trypanosoma cruzi Triosephosphate Isomerase

    Directory of Open Access Journals (Sweden)

    Bourguignon SC

    1998-01-01

    Full Text Available The enzyme triosephosphate isomerase (TPI, EC 5.3.1.1 was purified from extracts of epimastigote forms of Trypanosoma cruzi. The purification steps included: hydrophobic interaction chromatography on phenyl-Sepharose, CM-Sepharose, and high performance liquid gel filtration chromatography. The CM-Sepharose material contained two bands (27 and 25 kDa with similar isoelectric points (pI 9.3-9.5 which could be separated by gel filtration in high performance liquid chromatography. Polyclonal antibodies raised against the porcine TPI detected one single polypeptide on western blot with a molecular weight (27 kDa identical to that purified from T. cruzi. These antibodies also recognized only one band of identical molecular weight in western blots of several other trypanosomatids (Blastocrithidia culicis, Crithidia desouzai, Phytomonas serpens, Herpertomonas samuelpessoai. The presence of only one enzymatic form of TPI in T. cruzi epimastigotes was confirmed by agarose gel activity assay and its localization was established by immunocytochemical analysis. The T. cruzi purified TPI (as well as other trypanosomatid' TPIs is a dimeric protein, composed of two identical subunits with an approximate mw of 27,000 and it is resolved on two dimensional gel electrophoresis with a pI of 9.3. Sequence analysis of the N-terminal portion of the 27 kDa protein revealed a high homology to Leishmania mexicana and T. brucei proteins

  2. Papel do óxido nítrico no desenvolvimento de lesões cardíacas na fase aguda da infecção experimental pelo Trypanosoma cruzi Role of nitric oxide in the development of cardiac lesions during the acute phase of experimental infection by Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Cláudia Renata Bibiano Borges

    2009-04-01

    Full Text Available A doença de Chagas é causada pelo Trypanosoma cruzi e o coração é o órgão mais acometido. O óxido nítrico apresenta importante ação anti-Trypanosoma, porém, com pouca evidência de seu papel no mecanismo de lesão tecidual. O objetivo deste estudo foi analisar a contribuição do óxido nítrico no desenvolvimento da inflamação e da fibrose cardíaca na fase aguda da infecção experimental por cepas Y e Colombiana do Trypanosoma cruzi. A inflamação foi significativamente maior nos animais infectados pela cepa Colombiana, comparada com os infectados com a cepa Y, tanto nos animais C57BL/6 (3,98x1,87%; p=0,004 quanto nos animais C57BL/6 deficientes na sintase do óxido nítrico induzível (3,99x2,4%; p=0,013. O parasitismo cardíaco dos animais C57BL/6 deficientes na sintase do óxido nítrico induzível infectados pela cepa Colombiana foi significativamente maior que o destes mesmos animais infectados com a cepa Y (2,78x0,17 ninhos/mm²; p=0,004 assim como, os animais C57BL/6 infectados com a cepa Colombiana (2,78x1,33 ninhos/mm²; p=0,006 ou cepa Y (2,78x0,53 ninhos/mm²; p=0,005. Os dados reforçam o papel do óxido nítrico no controle do parasitismo e sugerem seu papel na proteção tecidual, controlando a inflamação e potencialmente diminuindo lesões cardíacas durante a fase aguda na doença de Chagas experimental.Chagas disease is caused by Trypanosoma cruzi and the heart is the organ most affected. Nitric oxide has notable anti-Trypanosoma action, but with little evidence regarding its role in the mechanism for tissue injury. The objective of this study was to analyze the contribution of nitric oxide towards the development of inflammation and cardiac fibrosis during the acute phase of experimental infection by Y and Colombian strains of Trypanosoma cruzi. The inflammation was significantly more intense in animals infected with the Colombian strain, compared with those infected with the Y strain, both in C57BL/6

  3. Nitric oxide-releasing polymeric nanoparticles against Trypanosoma cruzi

    Science.gov (United States)

    Seabra, A. B.; Kitice, N. A.; Pelegrino, M. T.; Lancheros, C. A. C.; Yamauchi, L. M.; Pinge-Filho, P.; Yamada-Ogatta, S. F.

    2015-05-01

    Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi (T. cruzi), and the disease remains a major health problem in many Latin American countries. Several papers report that the killing of the parasite is dependent on the production of nitric oxide (NO). The endogenous free radical NO is an important cellular signalling molecule that plays a key role in the defense against pathogens, including T. cruzi. As T. cruzi is able to compromise host macrophages decreasing endogenous NO production, the administration of exogenous NO donors represents an interesting strategy to combat Chagas disease. Thus, the aims of this study were to prepare and evaluate the antimicrobial activity of NO-releasing polymeric nanoparticles against T. cruzi. Biocompatible polymeric nanoparticles composed of chitosan/sodium tripolyphosphate(TPP) were prepared and used to encapsulate mercaptosuccinic acid (MSA), which is a thiol-containing molecule. Nitrosation of free thiols (SH) groups of MSA were performed by the addition of equimolar amount of sodium nitrite (NaNO2), leading to the formation of S-nitroso-MSA-containing nanoparticles. These polymeric nanoparticles act as spontaneous NO donors, with free NO release. The results show the formation of nanoparticles with average hydrodynamic diameter ranging from 270 to 500 nm, average of polydispersity index of 0.35, and encapsulation efficiency in the range of 99%. The NO release kinetics from the S-nitroso-MSA-containing nanoparticles showed sustained and controlled NO release over several hours. The microbicidal activity of S-nitroso-MSA-containing nanoparticles was evaluated by incubating NO-releasing nanoparticles (200 - 600 μg/mL) with replicative and non-infective epimastigote, and non-replicative and infective trypomastigote forms of T. cruzi. In addition, a significant decrease in the percentage of macrophage-infected (with amastigotes) and

  4. Nanoemulsions of sulfonamide carbonic anhydrase inhibitors strongly inhibit the growth of Trypanosoma cruzi.

    Science.gov (United States)

    Vermelho, Alane Beatriz; da Silva Cardoso, Verônica; Ricci Junior, Eduardo; Dos Santos, Elisabete Pereira; Supuran, Claudiu T

    2018-12-01

    Sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitors targeting the α-class enzyme from the protozoan pathogen Trypanosoma cruzi, responsible of Chagas disease, were recently reported. Although many such derivatives showed low nanomolar activity in vitro, they were inefficient anti-T. cruzi agents in vivo. Here, we show that by formulating such sulfonamides as nanoemulsions in clove (Eugenia caryophyllus) oil, highly efficient anti-protozoan effects are observed against two different strains of T. cruzi. These effects are probably due to an enhanced permeation of the enzyme inhibitor through the nanoemulsion formulation, interfering in this way with the life cycle of the pathogen either by inhibiting pH regulation or carboxylating reactions in which bicarbonate/CO 2 are involved. This type of formulation of sulfonamides with T. cruzi CA inhibitory effects may lead to novel therapeutic approaches against this orphan disease.

  5. Oral exposure to Phytomonas serpens attenuates thrombocytopenia and leukopenia during acute infection with Trypanosoma cruzi.

    Science.gov (United States)

    da Silva, Rosiane V; Malvezi, Aparecida D; Augusto, Leonardo da Silva; Kian, Danielle; Tatakihara, Vera Lúcia H; Yamauchi, Lucy M; Yamada-Ogatta, Sueli F; Rizzo, Luiz V; Schenkman, Sergio; Pinge-Filho, Phileno

    2013-01-01

    Mice infected with Trypanosoma cruzi, the agent of Chagas disease, rapidly develop anemia and thrombocytopenia. These effects are partially promoted by the parasite trans-sialidase (TS), which is shed in the blood and depletes sialic acid from the platelets, inducing accelerated platelet clearance and causing thrombocytopenia during the acute phase of disease. Here, we demonstrate that oral immunization of C57BL/6 mice with Phytomonas serpens, a phytoflagellate parasite that shares common antigens with T. cruzi but has no TS activity, reduces parasite burden and prevents thrombocytopenia and leukopenia. Immunization also reduces platelet loss after intraperitoneal injection of TS. In addition, passive transfer of immune sera raised in mice against P. serpens prevented platelet clearance. Thus, oral exposure to P. serpens attenuates the progression of thrombocytopenia induced by TS from T. cruzi. These findings are not only important for the understanding of the pathogenesis of T. cruzi infection but also for developing novel approaches of intervention in Chagas disease.

  6. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis

    Science.gov (United States)

    Vanrell, María Cristina; Losinno, Antonella Denisse; Cueto, Juan Agustín; Balcazar, Darío; Fraccaroli, Laura Virginia; Carrillo, Carolina

    2017-01-01

    Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients) to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression. PMID:29091711

  7. Trypanosoma cruzi maxicircle heterogeneity in Chagas disease patients from Brazil.

    Science.gov (United States)

    Carranza, Julio César; Valadares, Helder M S; D'Avila, Daniella A; Baptista, Rodrigo P; Moreno, Margoth; Galvão, Lúcia M C; Chiari, Egler; Sturm, Nancy R; Gontijo, Eliane D; Macedo, Andrea M; Zingales, Bianca

    2009-07-15

    The majority of individuals in the chronic phase of Chagas disease are asymptomatic (indeterminate form, IF). Each year, approximately 3% of them develop lesions in the heart or gastrointestinal tract. Cardiomyopathy (CCHD) is the most severe manifestation of Chagas disease. The factors that determine the outcome of the infection are unknown, but certainly depend on complex interactions amongst the genetic make-up of the parasite, the host immunogenetic background and environment. In a previous study we verified that the maxicircle gene NADH dehydrogenase (mitochondrial complex I) subunit 7 (ND7) from IF isolates had a 455 bp deletion compared with the wild type (WT) ND7 gene from CCHD strains. We proposed that ND7 could constitute a valuable target for PCR assays in the differential diagnosis of the infective strain. In the present study we evaluated this hypothesis by examination of ND7 structure in parasites from 75 patients with defined pathologies, from Southeast Brazil. We also analysed the structure of additional mitochondrial genes (ND4/CR4, COIII and COII) since the maxicircle is used for clustering Trypanosoma cruzi strains into three clades/haplogroups. We conclude that maxicircle genes do not discriminate parasite populations which induce IF or CCHD forms. Interestingly, the great majority of the analysed isolates belong to T. cruzi II (discrete typing unit, (DTU) IIb) genotype. This scenario is at variance with the prevalence of hybrid (DTU IId) human isolates in Bolivia, Chile and Argentina. The distribution of WT and deleted ND7 and ND4 genes in T. cruzi strains suggests that mutations in the two genes occurred in different ancestrals in the T. cruzi II cluster, allowing the identification of at least three mitochondrial sub-lineages within this group. The observation that T. cruzi strains accumulate mutations in several genes coding for complex I subunits favours the hypothesis that complex I may have a limited activity in this parasite.

  8. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis.

    Directory of Open Access Journals (Sweden)

    María Cristina Vanrell

    2017-11-01

    Full Text Available Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression.

  9. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis.

    Science.gov (United States)

    Vanrell, María Cristina; Losinno, Antonella Denisse; Cueto, Juan Agustín; Balcazar, Darío; Fraccaroli, Laura Virginia; Carrillo, Carolina; Romano, Patricia Silvia

    2017-11-01

    Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients) to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression.

  10. Nuclear structure of Trypanosoma cruzi.

    Science.gov (United States)

    Schenkman, Sergio; Pascoalino, Bruno dos Santos; Nardelli, Sheila C

    2011-01-01

    The presence of nucleus in living organisms characterizes the Eukaryote domain. The nucleus compartmentalizes the genetic material surrounded by a double membrane called nuclear envelope. The nucleus has been observed since the advent of the light microscope, and sub-compartments such as nucleoli, diverse nuclear bodies and condensed chromosomes have been later recognized, being part of highly organized and dynamic structure. The significance and function of such organization has increased with the understanding of transcription, replication, DNA repair, recombination processes. It is now recognized as consequence of adding complexity and regulation in more complex eukaryotic cells. Here we provide a description of the actual stage of knowledge of the nuclear structure of Trypanosoma cruzi. As an early divergent eukaryote, it presents unique and/or reduced events of DNA replication, transcription and repair as well as RNA processing and transport to the cytosol. Nevertheless, it shows peculiar structure changes accordingly to the cell cycle and stage of differentiation. T. cruzi proliferates only as epimastigote and amastigote stages, and when these forms differentiate in trypomastigote forms, their cell cycle is arrested. This arrested stage is capable of invading mammalian cells and of surviving harsh conditions, such as the gut of the insect vector and mammalian macrophages. Transcription and replication decrease during transformation in trypomastigotes implicating large alterations in the nuclear structure. Recent evidences also suggest that T. cruzi nucleus respond to oxidative and nutritional stresses. Due to the phylogenetic proximity with other well-known trypanosomes, such as Trypanosoma brucei and Leishmania major, they are expected to have similar nuclear organization, although differences are noticed due to distinct life cycles, cellular organizations and the specific adaptations for surviving in different host environments. Therefore, the general

  11. The Ly49E receptor inhibits the immune control of acute Trypanosoma cruzi infection

    Directory of Open Access Journals (Sweden)

    Jessica Filtjens

    2016-11-01

    Full Text Available The protozoan parasite Trypanosoma cruzi (T. cruzi circulates in the blood upon infection and invades a variety of cells. Parasites intensively multiply during the acute phase of infection and persist lifelong at low levels in tissues and blood during the chronic phase. Natural killer (NK and NKT cells play an important role in the immune control of T. cruzi infection, mainly by releasing the cytokine IFN-γ that activates the microbicidal action of macrophages and other cells and shapes a protective type 1 immune response. The mechanisms by which immune cells are regulated to produce IFN-γ during T. cruzi infection are still incompletely understood. Here, we show that urokinase plasminogen activator (uPA is induced early upon T. cruzi infection, and remains elevated until day 20 post inoculation. We previously demonstrated that the inhibitory receptor Ly49E, which is expressed, among others, on NK and NKT cells, is triggered by uPA. Therefore, we compared wild type (WT to Ly49E knockout (KO mice for their control of experimental T. cruzi infection. Our results show that young, i.e. 4- and 6-week-old, Ly49E KO mice control the infection better than WT mice, indicated by a lower parasite load and less cachexia. The beneficial effect of Ly49E depletion is more obvious in 4-week-old male than in female mice and weakens in 8-week-old mice. In young mice, the lower T. cruzi parasitemia in Ly49E KO mice is paralleled by higher IFN-γ production compared to their WT controls. Our data indicate that Ly49E receptor expression inhibits the immune control of T. cruzi infection. This is the first demonstration that the inhibitory Ly49E receptor can interfere with the immune response to a pathogen in vivo.

  12. Interactions between Trypanosoma cruzi Secreted Proteins and Host Cell Signaling Pathways

    Science.gov (United States)

    Watanabe Costa, Renata; da Silveira, Jose F.; Bahia, Diana

    2016-01-01

    Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6–7 million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection, the parasite invades and multiplies in the myocardium, leading to acute myocarditis that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate multiple host cell signaling pathways to promote host cell invasion. The primary secreted lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host immune response. Cruzipain hinders macrophage activation during the early stages of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows the parasite to survive and replicate, and may contribute to the spread of infection in acute Chagas disease. Another secreted protein P21, which is expressed in all of the developmental stages of T. cruzi, has been shown to modulate host phagocytosis signaling pathways. The parasite also secretes soluble factors that exert effects on host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted phospholipase A from T. cruzi contributes to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. Here, we present a brief review of the interaction between secreted proteins from T. cruzi and the host cells, emphasizing the manipulation of host signaling pathways during invasion. PMID:27065960

  13. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors required during Trypanosoma cruzi parasitophorous vacuole development.

    Science.gov (United States)

    Cueto, Juan Agustín; Vanrell, María Cristina; Salassa, Betiana Nebaí; Nola, Sébastien; Galli, Thierry; Colombo, María Isabel; Romano, Patricia Silvia

    2017-06-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is an obligate intracellular parasite that exploits different host vesicular pathways to invade the target cells. Vesicular and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are key proteins of the intracellular membrane fusion machinery. During the early times of T. cruzi infection, several vesicles are attracted to the parasite contact sites in the plasma membrane. Fusion of these vesicles promotes the formation of the parasitic vacuole and parasite entry. In this work, we study the requirement and the nature of SNAREs involved in the fusion events that take place during T. cruzi infection. Our results show that inhibition of N-ethylmaleimide-sensitive factor protein, a protein required for SNARE complex disassembly, impairs T. cruzi infection. Both TI-VAMP/VAMP7 and cellubrevin/VAMP3, two v-SNAREs of the endocytic and exocytic pathways, are specifically recruited to the parasitophorous vacuole membrane in a synchronized manner but, although VAMP3 is acquired earlier than VAMP7, impairment of VAMP3 by tetanus neurotoxin fails to reduce T. cruzi infection. In contrast, reduction of VAMP7 activity by expression of VAMP7's longin domain, depletion by small interfering RNA or knockout, significantly decreases T. cruzi infection susceptibility as a result of a minor acquisition of lysosomal components to the parasitic vacuole. In addition, overexpression of the VAMP7 partner Vti1b increases the infection, whereas expression of a KIF5 kinesin mutant reduces VAMP7 recruitment to vacuole and, concomitantly, T. cruzi infection. Altogether, these data support a key role of TI-VAMP/VAMP7 in the fusion events that culminate in the T. cruzi parasitophorous vacuole development. © 2016 John Wiley & Sons Ltd.

  14. Inhibition of HIV-1 replication in human monocyte-derived macrophages by parasite Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Guadalupe Andreani

    Full Text Available BACKGROUND: Cells of monocyte/macrophage lineage are one of the major targets of HIV-1 infection and serve as reservoirs for viral persistence in vivo. These cells are also the target of the protozoa Trypanosoma cruzi, the causative agent of Chagas disease, being one of the most important endemic protozoonoses in Latin America. It has been demonstrated in vitro that co-infection with other pathogens can modulate HIV replication. However, no studies at cellular level have suggested an interaction between T. cruzi and HIV-1 to date. METHODOLOGY/PRINCIPAL FINDINGS: By using a fully replicative wild-type virus, our study showed that T. cruzi inhibits HIV-1 antigen production by nearly 100% (p99% being stronger than HIV-T. cruzi (approximately 90% for BaL and approximately 85% for VSV-G infection. In MDM with established HIV-1 infection, T. cruzi significantly inhibited luciferate activity (p<0.01. By quantifying R-U5 and U5-gag transcripts by real time PCR, our study showed the expression of both transcripts significantly diminished in the presence of trypomastigotes (p<0.05. Thus, T. cruzi inhibits viral post-integration steps, early post-entry steps and entry into MDM. Trypomastigotes also caused a approximately 60-70% decrease of surface CCR5 expression on MDM. Multiplication of T. cruzi inside the MDM does not seem to be required for inhibiting HIV-1 replication since soluble factors secreted by trypomastigotes have shown similar effects. Moreover, the major parasite antigen cruzipain, which is secreted by the trypomastigote form, was able to inhibit viral production in MDM over 90% (p<0.01. CONCLUSIONS/SIGNIFICANCE: Our study showed that T. cruzi inhibits HIV-1 replication at several replication stages in macrophages, a major cell target for both pathogens.

  15. The trans-sialidase, the major Trypanosoma cruzi virulence factor: Three decades of studies.

    Science.gov (United States)

    Freire-de-Lima, L; Fonseca, L M; Oeltmann, T; Mendonça-Previato, L; Previato, J O

    2015-11-01

    Chagas' disease is a potentially life-threatening disease caused by the protozoan parasite Trypanosoma cruzi. Since the description of Chagas'disease in 1909 extensive research has identified important events in the disease in order to understand the biochemical mechanism that modulates T. cruzi-host cell interactions and the ability of the parasite to ensure its survival in the infected host. Exactly 30 years ago, we presented evidence for the first time of a trans-sialidase activity in T. cruzi (T. cruzi-TS). This enzyme transfers sialic acid from the host glycoconjugates to the terminal β-galactopyranosyl residues of mucin-like molecules on the parasite's cell surface. Thenceforth, many articles have provided convincing data showing that T. cruzi-TS is able to govern relevant mechanisms involved in the parasite's survival in the mammalian host, such as invasion, escape from the phagolysosomal vacuole, differentiation, down-modulation of host immune responses, among others. The aim of this review is to cover the history of the discovery of T. cruzi-TS, as well as some well-documented biological effects encompassed by this parasite's virulence factor, an enzyme with potential attributes to become a drug target against Chagas disease. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Trypanosoma cruzi uses macropinocytosis as an additional entry pathway into mammalian host cell.

    Science.gov (United States)

    Barrias, E S; Reignault, L C; De Souza, W; Carvalho, T M U

    2012-11-01

    Several intracellular pathogens are internalized by host cells via multiple endocytic pathways. It is no different with Trypanosoma cruzi. Evidences indicate that T. cruzi entry may occur by endocytosis/phagocytosis or by an active manner. Although macropinocytosis is largely considered an endocytic process where cells internalize only large amounts of solutes, several pathogens use this pathway to enter into host cells. To investigate whether T. cruzi entry into peritoneal macrophages and LLC-MK2 epithelial cells can be also mediated through a macropinocytosis-like process, we used several experimental strategies presently available to characterize macropinocytosis such as the use of different inhibitors. These macropinocytosis' inhibitors blocked internalization of T. cruzi by host cells. To further support this, immunofluorescence microscopy and scanning electron microscopy techniques were used. Field emission scanning electron microscopy revealed that after treatment, parasites remained attached to the external side of host cell plasma membrane. Proteins such as Rabankyrin 5, tyrosine kinases, Pak1 and actin microfilaments, which participate in macropinosome formation, were localized at T. cruzi entry sites. We also observed co-localization between the parasite and an endocytic fluid phase marker. All together, these results indicate that T. cruzi is able to use multiple mechanisms of penetration into host cell, including macropinocytosis. Copyright © 2012. Published by Elsevier Masson SAS.

  17. Recent, independent and anthropogenic origins of Trypanosoma cruzi hybrids.

    Directory of Open Access Journals (Sweden)

    Michael D Lewis

    2011-10-01

    Full Text Available The single celled eukaryote Trypanosoma cruzi, a parasite transmitted by numerous species of triatomine bug in the Americas, causes Chagas disease in humans. T. cruzi generally reproduces asexually and appears to have a clonal population structure. However, two of the six major circulating genetic lineages, TcV and TcVI, are TcII-TcIII inter-lineage hybrids that are frequently isolated from humans in regions where chronic Chagas disease is particularly severe. Nevertheless, a prevalent view is that hybridisation events in T. cruzi were evolutionarily ancient and that active recombination is of little epidemiological importance. We analysed genotypes of hybrid and non-hybrid T. cruzi strains for markers representing three distinct evolutionary rates: nuclear GPI sequences (n = 88, mitochondrial COII-ND1 sequences (n = 107 and 28 polymorphic microsatellite loci (n = 35. Using Maximum Likelihood and Bayesian phylogenetic approaches we dated key evolutionary events in the T. cruzi clade including the emergence of hybrid lineages TcV and TcVI, which we estimated to have occurred within the last 60,000 years. We also found evidence for recent genetic exchange between TcIII and TcIV and between TcI and TcIV. These findings show that evolution of novel recombinants remains a potential epidemiological risk. The clearly distinguishable microsatellite genotypes of TcV and TcVI were highly heterozygous and displayed minimal intra-lineage diversity indicative of even earlier origins than sequence-based estimates. Natural hybrid genotypes resembled typical meiotic F1 progeny, however, evidence for mitochondrial introgression, absence of haploid forms and previous experimental crosses indicate that sexual reproduction in T. cruzi may involve alternatives to canonical meiosis. Overall, the data support two independent hybridisation events between TcII and TcIII and a recent, rapid spread of the hybrid progeny in domestic transmission cycles

  18. Molecular characterization and interactome analysis of Trypanosoma cruzi tryparedoxin II.

    Science.gov (United States)

    Arias, Diego G; Piñeyro, María Dolores; Iglesias, Alberto A; Guerrero, Sergio A; Robello, Carlos

    2015-04-29

    Trypanosoma cruzi, the causative agent of Chagas disease, possesses two tryparedoxins (TcTXNI and TcTXNII), belonging to the thioredoxin superfamily. TXNs are oxidoreductases which mediate electron transfer between trypanothione and peroxiredoxins. This constitutes a difference with the host cells, in which these activities are mediated by thioredoxins. These differences make TXNs an attractive target for drug development. In a previous work we characterized TcTXNI, including the redox interactome. In this work we extend the study to TcTXNII. We demonstrate that TcTXNII is a transmembrane protein anchored to the surface of the mitochondria and endoplasmic reticulum, with a cytoplasmatic orientation of the redox domain. It would be expressed during the metacyclogenesis process. In order to continue with the characterization of the redox interactome of T. cruzi, we designed an active site mutant TcTXNII lacking the resolving cysteine, and through the expression of this mutant protein and incubation with T. cruzi proteins, heterodisulfide complexes were isolated by affinity chromatography and identified by mass spectrometry. This allowed us to identify sixteen TcTXNII interacting proteins, which are involved in a wide range of cellular processes, indicating the relevance of TcTXNII, and contributing to our understanding of the redox interactome of T. cruzi. T. cruzi, the causative agent of Chagas disease, constitutes a major sanitary problem in Latin America. The number of estimated infected persons is ca. 8 million, 28 million people are at risk of infection and ~20,000 deaths occur per year in endemic regions. No vaccines are available at present, and most drugs currently in use were developed decades ago and show variable efficacy with undesirable side effects. The parasite is able to live and prolipherate inside macrophage phagosomes, where it is exposed to cytotoxic reactive oxygen and nitrogen species, derived from macrophage activation. Therefore, T. cruzi

  19. Trypanosoma cruzi extracts elicit protective immune response against chemically induced colon and mammary cancers.

    Science.gov (United States)

    Ubillos, Luis; Freire, Teresa; Berriel, Edgardo; Chiribao, María Laura; Chiale, Carolina; Festari, María Florencia; Medeiros, Andrea; Mazal, Daniel; Rondán, Mariella; Bollati-Fogolín, Mariela; Rabinovich, Gabriel A; Robello, Carlos; Osinaga, Eduardo

    2016-04-01

    Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease, has anticancer effects mediated, at least in part, by parasite-derived products which inhibit growth of tumor cells. We investigated whether immunity to T. cruzi antigens could induce antitumor activity, using two rat models which reproduce human carcinogenesis: colon cancer induced by 1,2-dimethylhydrazine (DMH), and mammary cancer induced by N-nitroso-N-methylurea (NMU). We found that vaccination with T. cruzi epimastigote lysates strongly inhibits tumor development in both animal models. Rats immunized with T. cruzi antigens induce activation of both CD4(+) and CD8(+) T cells and splenocytes from these animals showed higher cytotoxic responses against tumors as compared to rats receiving adjuvant alone. Tumor-associated immune responses included increasing number of CD11b/c(+) His48(-) MHC II(+) cells corresponding to macrophages and/or dendritic cells, which exhibited augmented NADPH-oxidase activity. We also found that T. cruzi lysate vaccination developed antibodies specific for colon and mammary rat cancer cells, which were capable of mediating antibody-dependent cellular cytotoxicity (ADCC) in vitro. Anti-T. cruzi antibodies cross-reacted with human colon and breast cancer cell lines and recognized 41/60 (68%) colon cancer and 38/63 (60%) breast cancer samples in a series of 123 human tumors. Our results suggest that T. cruzi antigens can evoke an integrated antitumor response involving both the cellular and humoral components of the immune response and provide novel insights into the understanding of the intricate relationship between parasite infection and tumor growth. © 2015 UICC.

  20. Synthesis, Cytotoxic Activity on Leukemia Cell Lines and Quantitative Structure-Activity Relationships (QSAR) Studies of Morita-Baylis-Hillman Adducts.

    Science.gov (United States)

    Lima-, Claudio G; Faheina-Martins, Gláucia V; Bomfim, Caio C B; Dantas, Bruna B; Silva, Everton P; Araújo, Demetrius A M de; Filho, Edilson B A; Vasconcellos, Mário L A A

    2016-01-01

    The Morita-Baylis-Hillman reaction is an organocatalyzed chemical transformation that allows access to small poly-functionalized molecules and has considerable synthetic potential and promising biological profiles. The Morita-Baylis-Hillman adducts (MBHA) are a new class of bioactive compounds and highlight its potentialities to the discovery of new cheaper and efficient drugs, e.g. as anti-Leishmania chagasi and Leishmania amazonensis, anti- Trypanosoma cruzi, anti-Plasmodium falciparum and Plasmodium berghei, lethal against Biomphalaria glabrata, antibacterial, antifungal, herbicide and others. The goal of this work is to describe the primary cytotoxic activities against strains of human leukemia HL-60 cell line for thirty-four Morita-Baylis- Hillman adducts (MBHA), followed by a Quantitative Structure-Activity Relationships study (QSAR). The conventional or microwave-assisted syntheses of MBHA, derived from substituted aromatics or Isatin, were performed in good to excellent yields (70-100%) in short reaction times, using protocols recently developed by us. Isatin derivatives, MBHA 31 and 32, were the most active in this congener series of compounds, with IC50 values of 10.8 μM and 7.8 μM, respectively. The primary cytotoxic activities against chronic leukemia cells (K562) were also evaluated to these two most active compounds (MBHA 31 and 32), presenting IC50 values of 53 μM and 43 μM respectively. QSAR study was performed considering 3D, 2D and constitutional molecular descriptors. These were selected from Ordered Predictor Selection algorithm and submitted to Partial Least Squares Modeling. We present an interesting investigation about cytotoxic activities on human leukemia cell line (HL-60) for 34 synthetic MBHA. In a good way we discovered that the most cytotoxic compounds (31-32, 10.8 μM and 7.8 μM respectively) were also prepared quantitatively (100% yields) in a short reaction time using microwave irradiation. We demonstrate that 31 and 32 induced

  1. Molecular basis of mammalian cell invasion by Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Nobuko Yoshida

    2006-03-01

    Full Text Available Establishment of infection by Trypanosoma cruzi, the agent of Chagas' disease, depends on a series of events involving interactions of diverse parasite molecules with host components. Here we focus on the mechanisms of target cell invasion by metacyclic trypomastigotes (MT and mammalian tissue culture trypomastigotes (TCT. During MT or TCT internalization, signal transduction pathways are activated both in the parasite and the target cell, leading to Ca2+ mobilization. For cell adhesion, MT engage surface glycoproteins, such as gp82 and gp35/50, which are Ca2+ signal-inducing molecules. In T. cruzi isolates that enter host cells in gp82-mediated manner, parasite protein tyrosine kinase as well as phospholipase C are activated, and Ca2+ is released from I P3-sensitive stores, whereas in T. cruzi isolates that attach to target cells mainly through gp35/50, the signaling pathway involving adenylate cyclase appears to be stimulated, with Ca2+ release from acidocalciosomes. In addition, T. cruzi isolate-dependent inhibitory signals, mediated by MT-specific gp90, may be triggered both in the host cell and the parasite. The repertoire of TCT molecules implicated in cell invasion includes surface glycoproteins of gp85 family, with members containing binding sites for laminin and cytokeratin 18, enzymes such as cruzipain, trans-sialidase, and an oligopeptidase B that generates a Ca2+-agonist from a precursor molecule.O estabelecimento da infecção por Trypanosoma cruzi, o agente da doença de Chagas, depende de uma série de eventos envolvendo interações de diversas moléculas do parasita com componentes do hospedeiro. Focalizamos aqui os mecanismos de invasão celular por tripomastigotas metacíclicos (TM e por tripomastigotas de cultura de tecido (TCT. Durante a internalização de TM ou TCT, vias de transdução de sinal são ativadas tanto no parasita como na célula alvo, acarretando a mobilização de Ca2+. Para adesão, TM utiliza as glicoprote

  2. Synthesis and characterization of potent inhibitors of Trypanosoma cruzi dihydrofolate reductase

    Energy Technology Data Exchange (ETDEWEB)

    Schormann, Norbert; Velu, Sadanandan E.; Murugesan, Srinivasan; Senkovich, Olga; Walker, Kiera; Chenna, Bala C.; Shinkre, Bidhan; Desai, Amar; Chattopadhyay, Debasish (UAB)

    2010-09-17

    Dihydrofolate reductase (DHFR) of the parasite Trypanosoma cruzi (T. cruzi) is a potential target for developing drugs to treat Chagas disease. We have undertaken a detailed structure-activity study of this enzyme. We report here synthesis and characterization of six potent inhibitors of the parasitic enzyme. Inhibitory activity of each compound was determined against T. cruzi and human DHFR. One of these compounds, ethyl 4-(5-[(2,4-diamino-6-quinazolinyl)methyl]amino-2-methoxyphenoxy)butanoate (6b) was co-crystallized with the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of T. cruzi and the crystal structure of the ternary enzyme:cofactor:inhibitor complex was determined. Molecular docking was used to analyze the potential interactions of all inhibitors with T. cruzi DHFR and human DHFR. Inhibitory activities of these compounds are discussed in the light of enzyme-ligand interactions. Binding affinities of each inhibitor for the respective enzymes were calculated based on the experimental or docked binding mode. An estimated 60-70% of the total binding energy is contributed by the 2,4-diaminoquinazoline scaffold.

  3. Betulinic acid induces cell death by necrosis in Trypanosoma cruzi.

    Science.gov (United States)

    Sousa, Paloma Leão; Souza, Racquel Oliveira da Silva; Tessarolo, Louise Donadello; de Menezes, Ramon Róseo Paula Pessoa Bezerra; Sampaio, Tiago Lima; Canuto, Jader Almeida; Martins, Alice Maria Costa

    2017-10-01

    Chagas' disease is a neglected disease caused by the protozoan parasite Trypanosoma cruzi and constitutes a serious health problem worldwide. The treatment is limited, with variable efficacy of benznidazole and nifurtimox. Betulinic Acid (BA), a triterpene, can be found in medicinal herbs and has a wide variety of biological and pharmacological activities. The objective was to evaluate betulinic acid effects on the cell death mechanism in Trypanosoma cruzi strain Y. BA inhibited the growth of epimastigotes in periods of 24h (IC 50 =73.43μM), 48h (IC 50 =119.8μM) and 72h (IC 50 =212.2μM) of incubation; of trypomastigotes (IC 50 =51.88μM) in periods of 24h and intracellular amastigotes (IC 50 =25.94μM) in periods of 24 and 48h of incubation, no toxicity on LLC-MK 2 cells at the concentrations used. Analysis of the possible mechanism of parasite cell death showed alterations in mitochondrial membrane potential, alterations in cell membrane integrity, an increase in the formation of reactive oxygen species and increase swelling of the reservosomes. In conclusion, betulinic acid was be able to inhibition all developmental forms of Trypanosoma cruzi Y strain with necrotic mechanism and involvement of mitochondrial membrane potential alteration and increase in reactive oxygen species. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Machine Learning Models and Pathway Genome Data Base for Trypanosoma cruzi Drug Discovery

    Science.gov (United States)

    McCall, Laura-Isobel; Sarker, Malabika; Yadav, Maneesh; Ponder, Elizabeth L.; Kallel, E. Adam; Kellar, Danielle; Chen, Steven; Arkin, Michelle; Bunin, Barry A.; McKerrow, James H.; Talcott, Carolyn

    2015-01-01

    Background Chagas disease is a neglected tropical disease (NTD) caused by the eukaryotic parasite Trypanosoma cruzi. The current clinical and preclinical pipeline for T. cruzi is extremely sparse and lacks drug target diversity. Methodology/Principal Findings In the present study we developed a computational approach that utilized data from several public whole-cell, phenotypic high throughput screens that have been completed for T. cruzi by the Broad Institute, including a single screen of over 300,000 molecules in the search for chemical probes as part of the NIH Molecular Libraries program. We have also compiled and curated relevant biological and chemical compound screening data including (i) compounds and biological activity data from the literature, (ii) high throughput screening datasets, and (iii) predicted metabolites of T. cruzi metabolic pathways. This information was used to help us identify compounds and their potential targets. We have constructed a Pathway Genome Data Base for T. cruzi. In addition, we have developed Bayesian machine learning models that were used to virtually screen libraries of compounds. Ninety-seven compounds were selected for in vitro testing, and 11 of these were found to have EC50 discovery can bring interesting in vivo active molecules to light that may have been overlooked. The approach we have taken is broadly applicable to other NTDs. PMID:26114876

  5. Sympathetic glial cells and macrophages develop different responses to Trypanosoma cruzi infection or lipopolysaccharide stimulation.

    Science.gov (United States)

    de Almeida-Leite, Camila Megale; Silva, Isabel Cristina Costa; Galvão, Lúcia Maria da Cunha; Arantes, Rosa Maria Esteves

    2014-07-01

    Nitric oxide (NO) participates in neuronal lesions in the digestive form of Chagas disease and the proximity of parasitised glial cells and neurons in damaged myenteric ganglia is a frequent finding. Glial cells have crucial roles in many neuropathological situations and are potential sources of NO. Here, we investigate peripheral glial cell response to Trypanosoma cruzi infection to clarify the role of these cells in the neuronal lesion pathogenesis of Chagas disease. We used primary glial cell cultures from superior cervical ganglion to investigate cell activation and NO production after T. cruzi infection or lipopolysaccharide (LPS) exposure in comparison to peritoneal macrophages. T. cruzi infection was greater in glial cells, despite similar levels of NO production in both cell types. Glial cells responded similarly to T. cruzi and LPS, but were less responsive to LPS than macrophages were. Our observations contribute to the understanding of Chagas disease pathogenesis, as based on the high susceptibility of autonomic glial cells to T. cruzi infection with subsequent NO production. Moreover, our findings will facilitate future research into the immune responses and activation mechanisms of peripheral glial cells, which are important for understanding the paradoxical responses of this cell type in neuronal lesions and neuroprotection.

  6. Triatominae (Hemiptera, Reduviidae) in the Pantanal region: association with Trypanosoma cruzi, different habitats and vertebrate hosts.

    Science.gov (United States)

    Santos, Filipe Martins; Jansen, Ana Maria; Mourão, Guilherme de Miranda; Jurberg, José; Nunes, Alessandro Pacheco; Herrera, Heitor Miraglia

    2015-01-01

    The transmission cycle of Trypanosoma cruzi in the Brazilian Pantanal region has been studied during the last decade. Although considerable knowledge is available regarding the mammalian hosts infected by T. cruzi in this wetland, no studies have investigated its vectors in this region. This study aimed to investigate the presence of sylvatic triatomine species in different habitats of the Brazilian Pantanal region and to correlate their presence with the occurrences of vertebrate hosts and T. cruzi infection. The fieldwork involved passive search by using light traps and Noireau traps and active search by visual inspection. The light traps were placed at five selected points along forested areas for seven nights during each of the nine excursions. At each point where a light trap was set, eight Noireau traps were placed in palm trees and bromeliads. In all, 88 triatomine bugs were collected: two and one individuals from light traps and Noireau traps, respectively; three from peridomestic areas; 23 in coati nests; and 59 in thornbird nests. In this study, active search in microhabitats showed higher efficiency than passive search, since 95% of the triatomine bugs were caught in nests. Further, triatomine bugs were only found to be infected by T. cruzi in coati nests. Coati nests might act as a point of convergence and dispersion for triatomine bugs and mammal hosts infected by T. cruzi, thereby playing an important role in the sylvatic cycle of T. cruziin the Pantanal region.

  7. Heteroleptic oxidovanadium(IV) complexes of 2-hydroxynaphtylaldimine and polypyridyl ligands against Trypanosoma cruzi and prostate cancer cells.

    Science.gov (United States)

    Scalese, Gonzalo; Mosquillo, M Florencia; Rostán, Santiago; Castiglioni, Jorge; Alho, Irina; Pérez, Leticia; Correia, Isabel; Marques, Fernanda; Costa Pessoa, João; Gambino, Dinorah

    2017-10-01

    In Latin America Chagas disease is an endemic illness caused by the parasite Trypanosoma cruzi (T. cruzi), killing more people than any other parasitic disease. Current chemotherapies are old and inadequate, thus the development of efficient ones is urgently needed. Vanadium-based complexes have been shown to be a promising approach both against parasitic diseases and cancer and this study aims to achieve significant advances in the pursue of effective compounds. Heteroleptic vanadium complexes of Schiff bases and polypyridine compounds were prepared and their stability in solution evaluated by EPR (Electronic Paramagnetic Resonance) and NMR spectroscopy. Their in vitro activities were evaluated against T. cruzi and a set of cells lines representative of human cancer conditions, namely ovarian, breast and prostate cancer. In T. cruzi, most of the complexes depicted IC 50 values in the low μM range, induced changes of mitochondrial membrane potential and apoptosis. In cancer cells, complexes showed good to moderate activity and in metastatic cells (prostate PC3), some complexes inhibited the migratory ability, this suggesting that they display antimetastatic potential. Interestingly, complex 5 seemed to have a dual effect being the most cytotoxic complex on all cancer cells and also the most active anti-T-cruzi compound of the series. Globally the complexes showed promising anticancer and anti T. cruzi activities and also displayed some characteristics indicating they are worth to be further explored as antimetastatic drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Trypanosoma cruzi Evades the Complement System as an Efficient Strategy to Survive in the Mammalian Host: The Specific Roles of Host/Parasite Molecules and Trypanosoma cruzi Calreticulin

    Science.gov (United States)

    Ramírez-Toloza, Galia; Ferreira, Arturo

    2017-01-01

    American Trypanosomiasis is an important neglected reemerging tropical parasitism, infecting about 8 million people worldwide. Its agent, Trypanosoma cruzi, exhibits multiple mechanisms to evade the host immune response and infect host cells. An important immune evasion strategy of T. cruzi infective stages is its capacity to inhibit the complement system activation on the parasite surface, avoiding opsonizing, immune stimulating and lytic effects. Epimastigotes, the non-infective form of the parasite, present in triatomine arthropod vectors, are highly susceptible to complement-mediated lysis while trypomastigotes, the infective form, present in host bloodstream, are resistant. Thus T. cruzi susceptibility to complement varies depending on the parasite stage (amastigote, trypomastigotes or epimastigote) and on the T. cruzi strain. To avoid complement-mediated lysis, T. cruzi trypomastigotes express on the parasite surface a variety of complement regulatory proteins, such as glycoprotein 58/68 (gp58/68), T. cruzi complement regulatory protein (TcCRP), trypomastigote decay-accelerating factor (T-DAF), C2 receptor inhibitor trispanning (CRIT) and T. cruzi calreticulin (TcCRT). Alternatively, or concomitantly, the parasite captures components with complement regulatory activity from the host bloodstream, such as factor H (FH) and plasma membrane-derived vesicles (PMVs). All these proteins inhibit different steps of the classical (CP), alternative (AP) or lectin pathways (LP). Thus, TcCRP inhibits the CP C3 convertase assembling, gp58/68 inhibits the AP C3 convertase, T-DAF interferes with the CP and AP convertases assembling, TcCRT inhibits the CP and LP, CRIT confers ability to resist the CP and LP, FH is used by trypomastigotes to inhibit the AP convertases and PMVs inhibit the CP and LP C3 convertases. Many of these proteins have similar molecular inhibitory mechanisms. Our laboratory has contributed to elucidate the role of TcCRT in the host-parasite interplay

  9. Trypanosoma cruzi Evades the Complement System as an Efficient Strategy to Survive in the Mammalian Host: The Specific Roles of Host/Parasite Molecules and Trypanosoma cruzi Calreticulin

    Directory of Open Access Journals (Sweden)

    Galia Ramírez-Toloza

    2017-09-01

    Full Text Available American Trypanosomiasis is an important neglected reemerging tropical parasitism, infecting about 8 million people worldwide. Its agent, Trypanosoma cruzi, exhibits multiple mechanisms to evade the host immune response and infect host cells. An important immune evasion strategy of T. cruzi infective stages is its capacity to inhibit the complement system activation on the parasite surface, avoiding opsonizing, immune stimulating and lytic effects. Epimastigotes, the non-infective form of the parasite, present in triatomine arthropod vectors, are highly susceptible to complement-mediated lysis while trypomastigotes, the infective form, present in host bloodstream, are resistant. Thus T. cruzi susceptibility to complement varies depending on the parasite stage (amastigote, trypomastigotes or epimastigote and on the T. cruzi strain. To avoid complement-mediated lysis, T. cruzi trypomastigotes express on the parasite surface a variety of complement regulatory proteins, such as glycoprotein 58/68 (gp58/68, T. cruzi complement regulatory protein (TcCRP, trypomastigote decay-accelerating factor (T-DAF, C2 receptor inhibitor trispanning (CRIT and T. cruzi calreticulin (TcCRT. Alternatively, or concomitantly, the parasite captures components with complement regulatory activity from the host bloodstream, such as factor H (FH and plasma membrane-derived vesicles (PMVs. All these proteins inhibit different steps of the classical (CP, alternative (AP or lectin pathways (LP. Thus, TcCRP inhibits the CP C3 convertase assembling, gp58/68 inhibits the AP C3 convertase, T-DAF interferes with the CP and AP convertases assembling, TcCRT inhibits the CP and LP, CRIT confers ability to resist the CP and LP, FH is used by trypomastigotes to inhibit the AP convertases and PMVs inhibit the CP and LP C3 convertases. Many of these proteins have similar molecular inhibitory mechanisms. Our laboratory has contributed to elucidate the role of TcCRT in the host

  10. Diverse inhibitor chemotypes targeting Trypanosoma cruzi CYP51.

    Directory of Open Access Journals (Sweden)

    Shamila S Gunatilleke

    Full Text Available Chagas Disease, a WHO- and NIH-designated neglected tropical disease, is endemic in Latin America and an emerging infection in North America and Europe as a result of population moves. Although a major cause of morbidity and mortality due to heart failure, as well as inflicting a heavy economic burden in affected regions, Chagas Disease elicits scant notice from the pharmaceutical industry because of adverse economic incentives. The discovery and development of new routes to chemotherapy for Chagas Disease is a clear priority.The similarity between the membrane sterol requirements of pathogenic fungi and those of the parasitic protozoon Trypanosoma cruzi, the causative agent of Chagas human cardiopathy, has led to repurposing anti-fungal azole inhibitors of sterol 14α-demethylase (CYP51 for the treatment of Chagas Disease. To diversify the therapeutic pipeline of anti-Chagasic drug candidates we exploited an approach that included directly probing the T. cruzi CYP51 active site with a library of synthetic small molecules. Target-based high-throughput screening reduced the library of ∼104,000 small molecules to 185 hits with estimated nanomolar K(D values, while cross-validation against T. cruzi-infected skeletal myoblast cells yielded 57 active hits with EC(50 <10 µM. Two pools of hits partially overlapped. The top hit inhibited T. cruzi with EC(50 of 17 nM and was trypanocidal at 40 nM.The hits are structurally diverse, demonstrating that CYP51 is a rather permissive enzyme target for small molecules. Cheminformatic analysis of the hits suggests that CYP51 pharmacology is similar to that of other cytochromes P450 therapeutic targets, including thromboxane synthase (CYP5, fatty acid ω-hydroxylases (CYP4, 17α-hydroxylase/17,20-lyase (CYP17 and aromatase (CYP19. Surprisingly, strong similarity is suggested to glutaminyl-peptide cyclotransferase, which is unrelated to CYP51 by sequence or structure. Lead compounds developed by pharmaceutical

  11. Blocking of CD1d Decreases Trypanosoma cruzi-Induced Activation of CD4-CD8- T Cells and Modulates the Inflammatory Response in Patients With Chagas Heart Disease.

    Science.gov (United States)

    Passos, Lívia Silva Araújo; Villani, Fernanda Nobre Amaral; Magalhães, Luísa Mourão Dias; Gollob, Kenneth J; Antonelli, Lis Ribeiro do Vale; Nunes, Maria Carmo Pereira; Dutra, Walderez Ornelas

    2016-09-15

    The control of inflammatory responses to prevent the deadly cardiac pathology in human Chagas disease is a desirable and currently unattained goal. Double-negative (DN) T cells are important sources of inflammatory and antiinflammatory cytokines in patients with Chagas heart disease and those with the indeterminate clinical form of Chagas disease, respectively. Given the importance of DN T cells in immunoregulatory processes and their potential as targets for controlling inflammation-induced pathology, we studied the involvement of CD1 molecules in the activation and functional profile of Trypanosoma cruzi-specific DN T cells. We observed that parasite stimulation significantly increased the expression of CD1a, CD1b, CD1c, and CD1d by CD14(+) cells from patients with Chagas disease. Importantly, among the analyzed molecules, only CD1d expression showed an association with the activation of DN T cells, as well as with worse ventricular function in patients with Chagas disease. Blocking of CD1d-mediated antigen presentation led to a clear reduction of DN T-cell activation and a decrease in the expression of interferon γ (IFN-γ) by DN T cells. Thus, our results showed that antigen presentation via CD1d is associated with activation of DN T cells in Chagas disease and that CD1d blocking leads to downregulation of IFN-γ by DN T cells from patients with Chagas heart disease, which may be a potential target for preventing progression of inflammation-mediated dilated cardiomyopathy. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  12. Effects of buthionine sulfoximine nifurtimox and benznidazole upon trypanothione and metallothionein proteins in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    JUAN DIEGO MAYA

    2004-01-01

    Full Text Available Proteins rich in sulfhydryl groups, such as metallothionein, are present in several strains of the parasite Trypanosoma cruzi, the etiological agent of Chagas' disease. Metallothionein-like protein concentrations ranged from 5.1 to 13.2 pmol/mg protein depending on the parasite strain and growth phase. Nifurtimox and benznidazole, used in the treatment of Chagas' disease, decreased metallothionein activity by approximately 70%. T. cruzi metallothionein was induced by ZnCl2. Metallothionein from T. cruzi was partially purified and its monobromobimane derivative showed a molecular weight of approximately 10,000 Da by SDS-PAGE analysis. The concentration of trypanothione, the major glutathione conjugate in T. cruzi, ranged from 3.8 to 10.8 nmol/mg protein, depending on the culture phase. The addition of buthionine sulfoximine to the protozoal culture considerably reduced the concentration of trypanothione and had no effect upon the metallothionein concentration. The possible contribution of metallothionein-like proteins to drug resistance in T. cruzi is discussed.

  13. A high-affinity putrescine-cadaverine transporter from Trypanosoma cruzi

    Science.gov (United States)

    Hasne, Marie-Pierre; Coppens, Isabelle; Soysa, Radika; Ullman, Buddy

    2011-01-01

    Summary Whereas mammalian cells and most other organisms can synthesize polyamines from basic amino acids, the protozoan parasite Trypanosoma cruzi is incapable of polyamine biosynthesis de novo and therefore obligatorily relies upon putrescine acquisition from the host to meet its nutritional requirements. The cell surface proteins that mediate polyamine transport into T. cruzi, as well as most eukaryotes, however, have by-in-large eluded discovery at the molecular level. Here we report the identification and functional characterization of two polyamine transporters, TcPOT1.1 and TcPOT1.2, encoded by alleles from two T. cruzi haplotypes. Overexpression of the TcPOT1.1 and TcPOT1.2 genes in T. cruzi epimastigotes revealed that TcPOT1.1 and TcPOT1.2 were high-affinity transporters that recognized both putrescine and cadaverine but not spermidine or spermine. Furthermore, the activities and subcellular locations of both TcPOT1.1 and TcPOT1.2 in intact parasites were profoundly influenced by extracellular putrescine availability. These results establish TcPOT1.1 and TcPOT1.2 as key components of the T. cruzi polyamine transport pathway, an indispensable nutritional function for the parasite that may be amenable to therapeutic manipulation. PMID:20149109

  14. Role of Trypanosoma cruzi Trans-sialidase on the Escape from Host Immune Surveillance

    Science.gov (United States)

    Nardy, Ana F. F. R.; Freire-de-Lima, Celio G.; Pérez, Ana R.; Morrot, Alexandre

    2016-01-01

    Chagas disease is caused by the flagellate protozoan Trypanosoma cruzi, affecting millions of people throughout Latin America. The parasite dampens host immune response causing modifications in diverse lymphoid compartments, including the thymus. T. cruzi trans-sialidase (TS) seems to play a fundamental role in such immunopathological events. This unusual enzyme catalyses the transference of sialic acid molecules from host glycoconjugates to acceptor molecules placed on the parasite surface. TS activity mediates several biological effects leading to the subversion of host immune system, hence favoring both parasite survival and the establishment of chronic infection. This review summarizes current findings on the roles of TS in the immune response during T. cruzi infection. PMID:27047464

  15. JVG9, a benzimidazole derivative, alters the surface and cytoskeleton of Trypanosoma cruzi bloodstream trypomastigotes.

    Science.gov (United States)

    Díaz-Chiguer, Dylan L; Hernández-Luis, Francisco; Nogueda-Torres, Benjamín; Castillo, Rafael; Reynoso-Ducoing, Olivia; Hernández-Campos, Alicia; Ambrosio, Javier R

    2014-09-01

    Trypanosoma cruzi has a particular cytoskeleton that consists of a subpellicular network of microtubules and actin microfilaments. Therefore, it is an excellent target for the development of new anti-parasitic drugs. Benzimidazole 2-carbamates, a class of well-known broad-spectrum anthelmintics, have been shown to inhibit the in vitro growth of many protozoa. Therefore, to find efficient anti-trypanosomal (trypanocidal) drugs, our group has designed and synthesised several benzimidazole derivatives. One, named JVG9 (5-chloro-1H-benzimidazole-2-thiol), has been found to be effective against T. cruzi bloodstream trypomastigotes under both in vitro and in vivo conditions. Here, we present the in vitro effects observed by laser scanning confocal and scanning electron microscopy on T. cruzi trypomastigotes. Changes in the surface and the distribution of the cytoskeletal proteins are consistent with the hypothesis that the trypanocidal activity of JVG9 involves the cytoskeleton as a target.

  16. JVG9, a benzimidazole derivative, alters the surface and cytoskeleton of Trypanosoma cruzi bloodstream trypomastigotes

    Directory of Open Access Journals (Sweden)

    Dylan L Díaz-Chiguer

    2014-09-01

    Full Text Available Trypanosoma cruzi has a particular cytoskeleton that consists of a subpellicular network of microtubules and actin microfilaments. Therefore, it is an excellent target for the development of new anti-parasitic drugs. Benzimidazole 2-carbamates, a class of well-known broad-spectrum anthelmintics, have been shown to inhibit the in vitro growth of many protozoa. Therefore, to find efficient anti-trypanosomal (trypanocidal drugs, our group has designed and synthesised several benzimidazole derivatives. One, named JVG9 (5-chloro-1H-benzimidazole-2-thiol, has been found to be effective against T. cruzi bloodstream trypomastigotes under both in vitro and in vivo conditions. Here, we present the in vitro effects observed by laser scanning confocal and scanning electron microscopy on T. cruzi trypomastigotes. Changes in the surface and the distribution of the cytoskeletal proteins are consistent with the hypothesis that the trypanocidal activity of JVG9 involves the cytoskeleton as a target.

  17. Protein kinase CK1 from Trypanosoma cruzi.

    Science.gov (United States)

    Calabokis, Maritza; Kurz, Liliana; Gonzatti, Mary I; Bubis, José

    2003-08-01

    A protein kinase activity, which uses casein as a substrate, has been purified to homogeneity from the epimastigote stage of Trypanosoma cruzi, by sequential chromatography on Q sepharose, heparin sepharose, phenyl sepharose, and alpha-casein agarose. An apparent molecular weight of 36,000 was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel filtration chromatography and sedimentation analyses demonstrated that the purified native enzyme is a monomer with a sedimentation coefficient of 2.9 S. The hydrodynamic parameters indicated that the shape of the protein is globular with a frictional ratio f/f(o) = 1.36 and a Stokes radius of 27.7 A. When two selective peptide substrates for protein kinases CK1 and CK2 were used (RRKDLHDDEEDEAM. SITA and RRRADDSDDDDD, respectively), the purified kinase was shown to predominantly phosphorylate the CK1-specific peptide. Additionally, the enzyme was inhibited by N-(2-amino-ethyl)-5-chloroisoquinoline-8-sulfonamide, a specific inactivator of CK1s from mammals. Based on these results, we concluded that the purified kinase corresponds to a parasite CK1.

  18. Synergistic Effect of Lupenone and Caryophyllene Oxide against Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Glendy Polanco-Hernández

    2013-01-01

    Full Text Available The in vitro trypanocidal activity of a 1 : 4 mixture of lupenone and caryophyllene oxide confirmed a synergistic effect of the terpenoids against epimastigotes forms of T. cruzi (IC50=10.4 μg/mL, FIC = 0.46. In addition, testing of the terpenoid mixture for its capacity to reduce the number of amastigote nests in cardiac tissue and skeletal muscle of infected mice showed a reduction of more than 80% at a dose level of 20.8 mg·kg−1·day−1.

  19. Molecular characterization of the hexose transporter gene in benznidazole resistant and susceptible populations of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    dos Santos Paula F

    2012-08-01

    Full Text Available Abstract Background Hexose transporters (HT are membrane proteins involved in the uptake of energy-supplying glucose and other hexoses into the cell. Previous studies employing the Differential Display technique have shown that the transcription level of the HT gene from T. cruzi (TcrHT is higher in an in vitro-induced benznidazole (BZ-resistant population of the parasite (17 LER than in its susceptible counterpart (17 WTS. Methods In the present study, TcrHT has been characterized in populations and strains of T. cruzi that are resistant or susceptible to BZ. We investigated the copy number and chromosomal location of the gene, the levels of TcrHT mRNA and of TcrHT activity, and the phylogenetic relationship between TcrHT and HTs from other organisms. Results In silico analyses revealed that 15 sequences of the TcrHT gene are present in the T. cruzi genome, considering both CL Brener haplotypes. Southern blot analyses confirmed that the gene is present as a multicopy tandem array and indicated a nucleotide sequence polymorphism associated to T. cruzi group I or II. Karyotype analyses revealed that TcrHT is located in two chromosomal bands varying in size from 1.85 to 2.6 Mb depending on the strain of T. cruzi. The sequence of amino acids in the HT from T. cruzi is closely related to the HT sequences of Leishmania species according to phylogenetic analysis. Northern blot and quantitative real-time reverse transcriptase polymerase chain reaction analyses revealed that TcrHT transcripts are 2.6-fold higher in the resistant 17 LER population than in the susceptible 17 WTS. Interestingly, the hexose transporter activity was 40% lower in the 17 LER population than in all other T. cruzi samples analyzed. This phenotype was detected only in the in vitro-induced BZ resistant population, but not in the in vivo-selected or naturally BZ resistant T. cruzi samples. Sequencing analysis revealed that the amino acid sequences of the TcrHT from 17WTS and 17

  20. Evasion of the Immune Response by Trypanosoma cruzi during Acute Infection

    Science.gov (United States)

    Cardoso, Mariana S.; Reis-Cunha, João Luís; Bartholomeu, Daniella C.

    2016-01-01

    Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical disease that affects millions of people mainly in Latin America. To establish a life-long infection, T. cruzi must subvert the vertebrate host’s immune system, using strategies that can be traced to the parasite’s life cycle. Once inside the vertebrate host, metacyclic trypomastigotes rapidly invade a wide variety of nucleated host cells in a membrane-bound compartment known as the parasitophorous vacuole, which fuses to lysosomes, originating the phagolysosome. In this compartment, the parasite relies on a complex network of antioxidant enzymes to shield itself from lysosomal oxygen and nitrogen reactive species. Lysosomal acidification of the parasitophorous vacuole is an important factor that allows trypomastigote escape from the extremely oxidative environment of the phagolysosome to the cytoplasm, where it differentiates into amastigote forms. In the cytosol of infected macrophages, oxidative stress instead of being detrimental to the parasite, favors amastigote burden, which then differentiates into bloodstream trypomastigotes. Trypomastigotes released in the bloodstream upon the rupture of the host cell membrane express surface molecules, such as calreticulin and GP160 proteins, which disrupt initial and key components of the complement pathway, while others such as glycosylphosphatidylinositol-mucins stimulate immunoregulatory receptors, delaying the progression of a protective immune response. After an immunologically silent entry at the early phase of infection, T. cruzi elicits polyclonal B cell activation, hypergammaglobulinemia, and unspecific anti-T. cruzi antibodies, which are inefficient in controlling the infection. Additionally, the coexpression of several related, but not identical, epitopes derived from trypomastigote surface proteins delays the generation of T. cruzi-specific neutralizing antibodies. Later in the infection, the establishment of an anti-T. cruzi

  1. Evasion of the Immune Response by Trypanosoma cruzi during Acute Infection.

    Science.gov (United States)

    Cardoso, Mariana S; Reis-Cunha, João Luís; Bartholomeu, Daniella C

    2015-01-01

    Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical disease that affects millions of people mainly in Latin America. To establish a life-long infection, T. cruzi must subvert the vertebrate host's immune system, using strategies that can be traced to the parasite's life cycle. Once inside the vertebrate host, metacyclic trypomastigotes rapidly invade a wide variety of nucleated host cells in a membrane-bound compartment known as the parasitophorous vacuole, which fuses to lysosomes, originating the phagolysosome. In this compartment, the parasite relies on a complex network of antioxidant enzymes to shield itself from lysosomal oxygen and nitrogen reactive species. Lysosomal acidification of the parasitophorous vacuole is an important factor that allows trypomastigote escape from the extremely oxidative environment of the phagolysosome to the cytoplasm, where it differentiates into amastigote forms. In the cytosol of infected macrophages, oxidative stress instead of being detrimental to the parasite, favors amastigote burden, which then differentiates into bloodstream trypomastigotes. Trypomastigotes released in the bloodstream upon the rupture of the host cell membrane express surface molecules, such as calreticulin and GP160 proteins, which disrupt initial and key components of the complement pathway, while others such as glycosylphosphatidylinositol-mucins stimulate immunoregulatory receptors, delaying the progression of a protective immune response. After an immunologically silent entry at the early phase of infection, T. cruzi elicits polyclonal B cell activation, hypergammaglobulinemia, and unspecific anti-T. cruzi antibodies, which are inefficient in controlling the infection. Additionally, the coexpression of several related, but not identical, epitopes derived from trypomastigote surface proteins delays the generation of T. cruzi-specific neutralizing antibodies. Later in the infection, the establishment of an anti-T. cruzi CD8

  2. Structures of dihydrofolate reductase-thymidylate synthase of Trypanosoma cruzi in the folate-free state and in complex with two antifolate drugs, trimetrexate and methotrexate

    Energy Technology Data Exchange (ETDEWEB)

    Senkovich, Olga; Schormann, Norbert; Chattopadhyay, Debasish; (UAB)

    2010-11-22

    The flagellate protozoan parasite Trypanosoma cruzi is the pathogenic agent of Chagas disease (also called American trypanosomiasis), which causes approximately 50 000 deaths annually. The disease is endemic in South and Central America. The parasite is usually transmitted by a blood-feeding insect vector, but can also be transmitted via blood transfusion. In the chronic form, Chagas disease causes severe damage to the heart and other organs. There is no satisfactory treatment for chronic Chagas disease and no vaccine is available. There is an urgent need for the development of chemotherapeutic agents for the treatment of T. cruzi infection and therefore for the identification of potential drug targets. The dihydrofolate reductase activity of T. cruzi, which is expressed as part of a bifunctional enzyme, dihydrofolate reductase-thymidylate synthase (DHFR-TS), is a potential target for drug development. In order to gain a detailed understanding of the structure-function relationship of T. cruzi DHFR, the three-dimensional structure of this protein in complex with various ligands is being studied. Here, the crystal structures of T. cruzi DHFR-TS with three different compositions of the DHFR domain are reported: the folate-free state, the complex with the lipophilic antifolate trimetrexate (TMQ) and the complex with the classical antifolate methotrexate (MTX). These structures reveal that the enzyme is a homodimer with substantial interactions between the two TS domains of neighboring subunits. In contrast to the enzymes from Cryptosporidium hominis and Plasmodium falciparum, the DHFR and TS active sites of T. cruzi lie on the same side of the monomer. As in other parasitic DHFR-TS proteins, the N-terminal extension of the T. cruzi enzyme is involved in extensive interactions between the two domains. The DHFR active site of the T. cruzi enzyme shows subtle differences compared with its human counterpart. These differences may be exploited for the development of

  3. Structural design, synthesis and pharmacological evaluation of thiazoles against Trypanosoma cruzi.

    Science.gov (United States)

    de Oliveira Filho, Gevanio Bezerra; Cardoso, Marcos Veríssimo de Oliveira; Espíndola, José Wanderlan Pontes; Oliveira E Silva, Dayane Albuquerque; Ferreira, Rafaela Salgado; Coelho, Pollyanne Lacerda; Anjos, Pâmela Silva Dos; Santos, Emanuelle de Souza; Meira, Cássio Santana; Moreira, Diogo Rodrigo Magalhaes; Soares, Milena Botelho Pereira; Leite, Ana Cristina Lima

    2017-12-01

    Chagas disease is one of the most significant health problems in the American continent. benznidazole (BDZ) and nifurtimox (NFX) are the only drugs approved for treatment and exhibit strong side effects and ineffectiveness in the chronic stage, besides different susceptibility among T. cruzi DTUs (Discrete Typing Units). Therefore, new drugs to treat this disease are necessary. Thiazole compounds have been described as potent trypanocidal agents. Here we report the structural planning, synthesis and anti-T. cruzi evaluation of a new series of 1,3-thiazoles (7-28), which were designed by placing this heterocycle instead of thiazolidin-4-one ring. The synthesis was conducted in an ultrasonic bath with 2-propanol as solvent at room temperature. By varying substituents attached to the phenyl and thiazole rings, substituents were observed to retain, enhance or greatly increase their anti-T. cruzi activity. In some cases, methyl at position 5 of the thiazole (compounds 9, 12 and 23) increased trypanocidal property. The exchange of phenyl for pyridinyl heterocycle resulted in increased activity, giving rise to the most potent compound against the trypomasigote form (14, IC 50trypo  = 0.37 μM). Importantly, these new thiazoles were toxic for trypomastigotes without affecting macrophages and cardiomyoblast viability. The compounds were also evaluated against cruzain, and five of the most active compounds against trypomastigotes (7, 9, 12, 16 and 23) inhibited more than 70% of enzymatic activity at 10 μM, among which compound 7 had an IC 50 in the submicromolar range, suggesting a possible mechanism of action. In addition, examination of T. cruzi cell death showed that compound 14 induces apoptosis. We also examined the activity against intracellular parasites, revealing that compound 14 inhibited T. cruzi infection with potency similar to benznidazole. The antiparasitic effect of 14 and benznidazole in combination was also investigated against trypomastigotes and

  4. Trypanosoma cruzi contains two galactokinases; molecular and biochemical characterization.

    Science.gov (United States)

    Lobo-Rojas, Ángel E; González-Marcano, Eglys B; Valera-Vera, Edward A; Acosta, Héctor R; Quiñones, Wilfredo A; Burchmore, Richard J S; Concepción, Juan L; Cáceres, Ana J

    2016-10-01

    Two different putative galactokinase genes, found in the genome database of Trypanosoma cruzi were cloned and sequenced. Expression of the genes in Escherichia coli resulted for TcGALK-1 in the synthesis of a soluble and active enzyme, and in the case of TcGALK-2 gene a less soluble protein, with predicted molecular masses of 51.9kDa and 51.3kDa, respectively. The Km values determined for the recombinant proteins were for galactose 0.108mM (TcGALK-1) and 0.091mM (TcGALK-2) and for ATP 0.36mM (TcGALK-1) and 0.1mM (TcGALK-2). Substrate inhibition by ATP (Ki 0.414mM) was only observed for TcGALK-2. Gel-filtration chromatography showed that natural TcGALKs and recombinant TcGALK-1 are monomeric. In agreement with the possession of a type-1 peroxisome-targeting signal by both TcGALKs, they were found to be present inside glycosomes using two different methods of subcellular fractionation in conjunction with mass spectrometry. Both genes are expressed in epimastigote and trypomastigote stages since the respective proteins were immunodetected by western blotting. The T. cruzi galactokinases present their highest (52-47%) sequence identity with their counterpart from Leishmania spp., followed by prokaryotic galactokinases such as those from E. coli and Lactococcus lactis (26-23%). In a phylogenetic analysis, the trypanosomatid galactokinases form a separate cluster, showing an affiliation with bacteria. Epimastigotes of T. cruzi can grow in glucose-depleted LIT-medium supplemented with 20mM of galactose, suggesting that this hexose, upon phosphorylation by a TcGALK, could be used in the synthesis of UDP-galactose and also as a possible carbon and energy source. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Genetic immunization based on the ubiquitin-fusion degradation pathway against Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Bin [Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 (Japan); Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan); Hiromatsu, Kenji, E-mail: khiromatsu@fukuoka-u.ac.jp [Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 (Japan); Hisaeda, Hajime; Duan, Xuefeng; Imai, Takashi [Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan); Murata, Shigeo; Tanaka, Keiji [Department of Molecular Oncology, The Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613 (Japan); Himeno, Kunisuke [Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2010-02-12

    Cytotoxic CD8{sup +} T cells are particularly important to the development of protective immunity against the intracellular protozoan parasite, Trypanosoma cruzi, the etiological agent of Chagas disease. We have developed a new effective strategy of genetic immunization by activating CD8{sup +} T cells through the ubiquitin-fusion degradation (UFD) pathway. We constructed expression plasmids encoding the amastigote surface protein-2 (ASP-2) of T. cruzi. To induce the UFD pathway, a chimeric gene encoding ubiquitin fused to ASP-2 (pUB-ASP-2) was constructed. Mice immunized with pUB-ASP-2 presented lower parasitemia and longer survival period, compared with mice immunized with pASP-2 alone. Depletion of CD8{sup +} T cells abolished protection against T. cruzi in mice immunized with pUB-ASP-2 while depletion of CD4{sup +} T cells did not influence the effective immunity. Mice deficient in LMP2 or LMP7, subunits of immunoproteasomes, were not able to develop protective immunity induced. These results suggest that ubiquitin-fused antigens expressed in antigen-presenting cells were effectively degraded via the UFD pathway, and subsequently activated CD8{sup +} T cells. Consequently, immunization with pUB-ASP-2 was able to induce potent protective immunity against infection of T. cruzi.

  6. Comparative studies on the biochemical properties of the malic enzymes from Trypanosoma cruzi and Trypanosoma brucei.

    Science.gov (United States)

    Leroux, Alejandro E; Maugeri, Dante A; Opperdoes, Fred R; Cazzulo, Juan J; Nowicki, Cristina

    2011-01-01

    Comparative studies showed that, like Trypanosoma cruzi, Trypanosoma brucei exhibits functional cytosolic and mitochondrial malic enzymes (MEs), which are specifically linked to NADP. Kinetic studies provided evidence that T. cruzi and T. brucei MEs display similarly high affinities towards NADP(+) and are also almost equally efficient in catalyzing the production of NADPH. Nevertheless, in contrast to the cytosolic ME from T. cruzi, which is highly activated by l-aspartate (over 10-fold), the T. brucei homologue is slightly more active (50%) in the presence of this amino acid. In T. brucei, both isozymes appear to be clearly more abundant in the insect stage, although they can be immunodetected in the bloodstream forms. By contrast, in T. cruzi the expression of the mitochondrial ME seems to be clearly upregulated in amastigotes, whereas the cytosolic isoform appears to be more abundant in the insect stages of the parasite. It might be hypothesized that in those environments where glucose is very low or absent, these pathogens depend on NADP-linked dehydrogenases such as the MEs for NADPH production, as in those conditions the pentose phosphate pathway cannot serve as a source of essential reducing power. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Trypanosoma cruzi CYP51 inhibitor derived from a Mycobacterium tuberculosis screen hit.

    Directory of Open Access Journals (Sweden)

    Chiung-Kuang Chen

    Full Text Available The two front-line drugs for chronic Trypanosoma cruzi infections are limited by adverse side-effects and declining efficacy. One potential new target for Chagas' disease chemotherapy is sterol 14alpha-demethylase (CYP51, a cytochrome P450 enzyme involved in biosynthesis of membrane sterols.In a screening effort targeting Mycobacterium tuberculosis CYP51 (CYP51(Mt, we previously identified the N-[4-pyridyl]-formamide moiety as a building block capable of delivering a variety of chemotypes into the CYP51 active site. In that work, the binding modes of several second generation compounds carrying this scaffold were determined by high-resolution co-crystal structures with CYP51(Mt. Subsequent assays against the CYP51 orthologue in T. cruzi, CYP51(Tc, demonstrated that two of the compounds tested in the earlier effort bound tightly to this enzyme. Both were tested in vitro for inhibitory effects against T. cruzi and the related protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. One of the compounds had potent, selective anti-T. cruzi activity in infected mouse macrophages. Cure of treated host cells was confirmed by prolonged incubation in the absence of the inhibiting compound. Discrimination between T. cruzi and T. brucei CYP51 by the inhibitor was largely based on the variability (phenylalanine versus isoleucine of a single residue at a critical position in the active site.CYP51(Mt-based crystal structure analysis revealed that the functional groups of the two tightly bound compounds are likely to occupy different spaces in the CYP51 active site, suggesting the possibility of combining the beneficial features of both inhibitors in a third generation of compounds to achieve more potent and selective inhibition of CYP51(Tc.

  8. Relationships between altitude, triatomine (Triatoma dimidiata) immune response and virulence of Trypanosoma cruzi, the causal agent of Chagas' disease.

    Science.gov (United States)

    DE Fuentes-Vicente, J A; Cabrera-Bravo, M; Enríquez-Vara, J N; Bucio-Torres, M I; Gutiérrez-Cabrera, A E; Vidal-López, D G; Martínez-Ibarra, J A; Salazar-Schettino, P M; Córdoba-Aguilar, A

    2017-03-01

    Little is known about how the virulence of a human pathogen varies in the environment it shares with its vector. This study focused on whether the virulence of Trypanosoma cruzi (Trypanosomatida: Trypanosomatidae), the causal agent of Chagas' disease, is related to altitude. Accordingly, Triatoma dimidiata (Hemiptera: Reduviidae) specimens were collected at three different altitudes (300, 700 and 1400 m a.s.l.) in Chiapas, Mexico. The parasite was then isolated to infect uninfected T. dimidiata from the same altitudes, as well as female CD-1 mice. The response variables were phenoloxidase (PO) activity, a key insect immune response, parasitaemia in mice, and amastigote numbers in the heart, oesophagus, gastrocnemius and brain of the rodents. The highest levels of PO activity, parasitaemia and amastigotes were found for Tryp. cruzi isolates sourced from 700 m a.s.l., particularly in the mouse brain. A polymerase chain reaction-based analysis indicated that all Tryp. cruzi isolates belonged to a Tryp. cruzi I lineage. Thus, Tryp. cruzi from 700 m a.s.l. may be more dangerous than sources at other altitudes. At this altitude, T. dimidiata is more common, apparently because the conditions are more beneficial to its development. Control strategies should focus activity at altitudes around 700 m a.s.l., at least in relation to the region of the present study sites. © 2016 The Royal Entomological Society.

  9. Trypanosoma cruzi-induced depressive-like behavior is independent of meningoencephalitis but responsive to parasiticide and TNF-targeted therapeutic interventions.

    Science.gov (United States)

    Vilar-Pereira, Glaucia; Silva, Andrea Alice da; Pereira, Isabela Resende; Silva, Rafael Rodrigues; Moreira, Otacílio Cruz; de Almeida, Luciana Rodrigues; de Souza, Amanda Santos; Rocha, Monica Santos; Lannes-Vieira, Joseli

    2012-10-01

    Inflammatory cytokines and microbe-borne immunostimulators have emerged as triggers of depressive behavior. Behavioral alterations affect patients chronically infected by the parasite Trypanosoma cruzi. We have previously shown that C3H/He mice present acute phase-restricted meningoencephalitis with persistent central nervous system (CNS) parasitism, whereas C57BL/6 mice are resistant to T. cruzi-induced CNS inflammation. In the present study, we investigated whether depression is a long-term consequence of acute CNS inflammation and a contribution of the parasite strain that infects the host. C3H/He and C57BL/6 mice were infected with the Colombian (type I) and Y (type II) T. cruzi strains. Forced-swim and tail-suspension tests were used to assess depressive-like behavior. Independent of the mouse lineage, the Colombian-infected mice showed significant increases in immobility times during the acute and chronic phases of infection. Therefore, T. cruzi-induced depression is independent of active or prior CNS inflammation. Furthermore, chronic depressive-like behavior was triggered only by the type I Colombian T. cruzi strain. Acute and chronic T. cruzi infection increased indoleamine 2,3-dioxygenase (IDO) expression in the CNS. Treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine abrogated the T. cruzi-induced depressive-like behavior. Moreover, treatment with the parasiticide drug benznidazole abrogated depression. Chronic T. cruzi infection of C57BL/6 mice increased tumor necrosis factor (TNF) expression systemically but not in the CNS. Importantly, TNF modulators (anti-TNF and pentoxifylline) reduced immobility. Therefore, direct or indirect parasite-induced immune dysregulation may contribute to chronic depressive disorder in T. cruzi infection, which opens a new therapeutic pathway to be explored. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Molecular characterization of lipoamide dehydrogenase gene in Trypanosoma cruzi populations susceptible and resistant to benznidazole.

    Science.gov (United States)

    Dos Santos, Paula F; Moreira, Douglas S; Baba, Elio H; Volpe, Caroline M O; Ruiz, Jerônimo C; Romanha, Alvaro J; Murta, Silvane M F

    2016-11-01

    Lipoamide dehydrogenase (LipDH) is a flavin-containing disulfide oxidoreductase from the same group of thioredoxin reductase, glutathione reductase and trypanothione reductase. This enzyme is found in the mitochondria of all aerobic organisms where it takes part in at least three important multienzyme complexes from the citric acid cycle. In this study, we performed a phylogenetic analysis comparing the amino acid sequence of the LipDH from Trypanosoma cruzi (TcLipDH) with the LipDH from other organisms. Subsequently, the copy number of the TcLipDH gene, the mRNA and protein levels, and the enzymatic activity of the LipDH were determined in populations and strains of T. cruzi that were either resistant or susceptible to benznidazole (BZ). In silico analysis showed the presence of two TcLipDH alleles in the T. cruzi genome. It also showed that TcLipDH protein has less than 55% of identity in comparison to the human LipDH, but the active site is conserved in both of them. Southern blot results suggest that the TcLipDH is a single copy gene in the genome of the T. cruzi samples analyzed. Northern blot assays showed one transcript of 2.4 kb in all T. cruzi populations. Northern blot and Real Time RT-PCR data revealed that the TcLipDH mRNA levels were 2-fold more expressed in the BZ-resistant T. cruzi population (17LER) than in its susceptible pair (17WTS). Western blot results revealed that the TcLipDH protein level is 2-fold higher in 17LER sample in comparison to 17WTS sample. In addition, LipDH activity was higher in the 17LER population than in the 17WTS. Sequencing analysis revealed that the amino acid sequences of the TcLipDH from 17WTS and 17LER populations are identical. Our findings show that one of the mechanisms associated with in vitro-induced BZ resistance to T. cruzi correlates with upregulation of LipDH enzyme. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Evaluation of proline analogs as trypanocidal agents through the inhibition of a Trypanosoma cruzi proline transporter.

    Science.gov (United States)

    Sayé, Melisa; Fargnoli, Lucía; Reigada, Chantal; Labadie, Guillermo R; Pereira, Claudio A

    2017-11-01

    Trypanosoma cruzi, the etiological agent of Chagas disease, uses proline as its main carbon source, essential for parasite growth and stage differentiation in epimastigotes and amastigotes. Since proline is involved in many essential biological processes in T. cruzi, its transport and metabolism are interesting drug targets. Four synthetic proline analogues (ITP-1B/1C/1D/1G) were evaluated as inhibitors of proline transport mediated through the T. cruzi proline permease TcAAAP069. The trypanocidal activity of the compounds was also assessed. The compounds ITP-1B and ITP-1G inhibited proline transport mediated through TcAAAP069 permease in a dose-dependent manner. The analogues ITP-1B, -1D and -1G had trypanocidal effect on T. cruzi epimastigotes with IC 50 values between 30 and 40μM. However, only ITP-1G trypanocidal activity was related with its inhibitory effect on TcAAAP069 proline transporter. Furthermore, this analogue strongly inhibited the parasite stage differentiation from epimastigote to metacyclic trypomastigote. Finally, compounds ITP-1B and ITP-1G were also able to inhibit the transport mediated by other permeases from the same amino acid permeases family, TcAAAP. It is possible to design synthetic amino acid analogues with trypanocidal activity. The compound ITP-1G is an interesting starting point for new trypanocidal drug design which is also an inhibitor of transport of amino acids and polyamines mediated by permeases from the TcAAAP family, such as proline transporter TcAAAP069 among others. The Trypanosoma cruzi amino acid transporter family TcAAAP constitutes a multiple and promising therapeutic target for the development of new treatments against Chagas disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Trypanosoma cruzi Infection in Neotropical Wild Carnivores (Mammalia: Carnivora): At the Top of the T. cruzi Transmission Chain

    Science.gov (United States)

    Rocha, Fabiana Lopes; Roque, André Luiz Rodrigues; de Lima, Juliane Saab; Cheida, Carolina Carvalho; Lemos, Frederico Gemesio; de Azevedo, Fernanda Cavalcanti; Arrais, Ricardo Corassa; Bilac, Daniele; Herrera, Heitor Miraglia; Mourão, Guilherme; Jansen, Ana Maria

    2013-01-01

    Little is known on the role played by Neotropical wild carnivores in the Trypanosoma cruzi transmission cycles. We investigated T. cruzi infection in wild carnivores from three sites in Brazil through parasitological and serological tests. The seven carnivore species examined were infected by T. cruzi, but high parasitemias detectable by hemoculture were found only in two Procyonidae species. Genotyping by Mini-exon gene, PCR-RFLP (1f8/Akw21I) and kDNA genomic targets revealed that the raccoon (Procyon cancrivorus) harbored TcI and the coatis (Nasua nasua) harbored TcI, TcII, TcIII-IV and Trypanosoma rangeli, in single and mixed infections, besides four T. cruzi isolates that displayed odd band patterns in the Mini-exon assay. These findings corroborate the coati can be a bioaccumulator of T. cruzi Discrete Typing Units (DTU) and may act as a transmission hub, a connection point joining sylvatic transmission cycles within terrestrial and arboreal mammals and vectors. Also, the odd band patterns observed in coatis’ isolates reinforce that T. cruzi diversity might be much higher than currently acknowledged. Additionally, we assembled our data with T. cruzi infection on Neotropical carnivores’ literature records to provide a comprehensive analysis of the infection patterns among distinct carnivore species, especially considering their ecological traits and phylogeny. Altogether, fifteen Neotropical carnivore species were found naturally infected by T. cruzi. Species diet was associated with T. cruzi infection rates, supporting the hypothesis that predator-prey links are important mechanisms for T. cruzi maintenance and dispersion in the wild. Distinct T. cruzi infection patterns across carnivore species and study sites were notable. Musteloidea species consistently exhibit high parasitemias in different studies which indicate their high infectivity potential. Mesocarnivores that feed on both invertebrates and mammals, including the coati, a host that can be

  13. Trypanosoma cruzi infection in neotropical wild carnivores (Mammalia: Carnivora: at the top of the T. cruzi transmission chain.

    Directory of Open Access Journals (Sweden)

    Fabiana Lopes Rocha

    Full Text Available Little is known on the role played by Neotropical wild carnivores in the Trypanosoma cruzi transmission cycles. We investigated T. cruzi infection in wild carnivores from three sites in Brazil through parasitological and serological tests. The seven carnivore species examined were infected by T. cruzi, but high parasitemias detectable by hemoculture were found only in two Procyonidae species. Genotyping by Mini-exon gene, PCR-RFLP (1f8/Akw21I and kDNA genomic targets revealed that the raccoon (Procyon cancrivorus harbored TcI and the coatis (Nasua nasua harbored TcI, TcII, TcIII-IV and Trypanosoma rangeli, in single and mixed infections, besides four T. cruzi isolates that displayed odd band patterns in the Mini-exon assay. These findings corroborate the coati can be a bioaccumulator of T. cruzi Discrete Typing Units (DTU and may act as a transmission hub, a connection point joining sylvatic transmission cycles within terrestrial and arboreal mammals and vectors. Also, the odd band patterns observed in coatis' isolates reinforce that T. cruzi diversity might be much higher than currently acknowledged. Additionally, we assembled our data with T. cruzi infection on Neotropical carnivores' literature records to provide a comprehensive analysis of the infection patterns among distinct carnivore species, especially considering their ecological traits and phylogeny. Altogether, fifteen Neotropical carnivore species were found naturally infected by T. cruzi. Species diet was associated with T. cruzi infection rates, supporting the hypothesis that predator-prey links are important mechanisms for T. cruzi maintenance and dispersion in the wild. Distinct T. cruzi infection patterns across carnivore species and study sites were notable. Musteloidea species consistently exhibit high parasitemias in different studies which indicate their high infectivity potential. Mesocarnivores that feed on both invertebrates and mammals, including the coati, a host that

  14. The Trypanosoma cruzi nucleolus: a morphometrical analysis of cultured epimastigotes in the exponential and stationary phases.

    Science.gov (United States)

    Nepomuceno-Mejía, Tomás; Lara-Martínez, Reyna; Cevallos, Ana María; López-Villaseñor, Imelda; Jiménez-García, Luis Felipe; Hernández, Roberto

    2010-12-01

    Our group is interested in rRNA and ribosome biogenesis in the parasitic protozoan Trypanosoma cruzi. Epimastigotes represent an extracellular replicative stage of T. cruzi and can be cultured in axenic media. The growth curve of epimastigotes allows assessment of potential differences in the nucleoli of cells undergoing growth-rate transitions. To establish cellular parameters for studying ribosome biogenesis in T. cruzi, a morphometric analysis of the nucleoli of cultured cells in the exponential and stationary phases was conducted. Electron micrograph-based measurements of nuclear sections from independent cells demonstrated that the nucleolar area is over twofold higher in exponentially growing cells, as compared with epimastigotes in the stationary phase. The granular component of the nucleoli of actively growing cells was the main structural element. Cycloheximide moderately reduced the apparent size of the nucleoli without an apparent disruption of their architecture. Our results provide a firm basis for the establishment of an experimental model to study the organization of the nucleolus during the growth and development of T. cruzi. © 2010 Federation of European Microbiological Societies Published by Blackwell Publishing Ltd. All rights reserved.

  15. Oral exposure to Phytomonas serpens attenuates thrombocytopenia and leukopenia during acute infection with Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Rosiane V da Silva

    Full Text Available Mice infected with Trypanosoma cruzi, the agent of Chagas disease, rapidly develop anemia and thrombocytopenia. These effects are partially promoted by the parasite trans-sialidase (TS, which is shed in the blood and depletes sialic acid from the platelets, inducing accelerated platelet clearance and causing thrombocytopenia during the acute phase of disease. Here, we demonstrate that oral immunization of C57BL/6 mice with Phytomonas serpens, a phytoflagellate parasite that shares common antigens with T. cruzi but has no TS activity, reduces parasite burden and prevents thrombocytopenia and leukopenia. Immunization also reduces platelet loss after intraperitoneal injection of TS. In addition, passive transfer of immune sera raised in mice against P. serpens prevented platelet clearance. Thus, oral exposure to P. serpens attenuates the progression of thrombocytopenia induced by TS from T. cruzi. These findings are not only important for the understanding of the pathogenesis of T. cruzi infection but also for developing novel approaches of intervention in Chagas disease.

  16. Efficacy of a series of alpha-pyrone derivatives against Leishmania (L.) infantum and Trypanosoma cruzi.

    Science.gov (United States)

    Tempone, Andre Gustavo; Ferreira, Daiane Dias; Lima, Marta Lopes; Costa Silva, Thais Alves; Borborema, Samanta E T; Reimão, Juliana Quero; Galuppo, Mariana K; Guerra, Juliana Mariotti; Russell, Angelie J; Wynne, Graham M; Lai, Roy Y L; Cadelis, Melissa M; Copp, Brent R

    2017-10-20

    The neglected tropical diseases Chagas disease and leishmaniasis affect together more than 20 million people living mainly in developing countries. The mainstay of treatment is chemotherapy, however the drugs of choice, which include benznidazole and miltefosine, are toxic and have numerous side effects. Safe and effective therapies are urgently needed. Marine alpha-pyrones have been previously identified as scaffolds with potential antiprotozoan activities. In this work, using a phenotypic screen, twenty-seven examples of 3-substituted 4-hydroxy-6-methyl alpha-pyrones were synthesized and their antiparasitic efficacy evaluated against Leishmania (L.) infantum and Trypanosoma cruzi in order to evaluate structure-activity relationships within the series. The mechanism of action and the in vivo efficacy of the most selective compound against T. cruzi were evaluated using different techniques. In vitro data indicated that compounds 8, 15, 25, 26 and 28 presented IC 50 values in the range between 13 and 54 μM against L. infantum intracellular amastigotes. Among them, hexanoyl substituted pyrone 8 was the most selective and potent, with a Selectivity Index (SI) > 14. Fifteen of the alpha-pyrones were effective against T. cruzi trypomastigotes, with 3-undecanoyl (11) and 3-tetradecanoyl (12) substituted pyrones being the most potent against trypomastigotes, with IC 50 values of 1 and 2 μM, respectively, and SI higher than 70. Using flow cytometry and fluorescent-based assays, pyrone 12 was found to induce hyperpolarization of the mitochondrial membrane potential of T. cruzi, without affecting plasma membrane permeability. An experimental acute phase-murine model, demonstrated that in vivo dosing of 12 (30 mg/kg/day; 5 days), had no efficacy at the first parasitemia onset of T. cruzi, but reduced the second onset by 55% (p cruzi, and that one analogue exhibited moderate and non-toxic in vivo efficacy against T. cruzi is encouraging, and suggests that

  17. Phthalimido-thiazoles as building blocks and their effects on the growth and morphology of Trypanosoma cruzi.

    Science.gov (United States)

    Gomes, Paulo André Teixeira de Moraes; Oliveira, Arsênio Rodrigues; Cardoso, Marcos Veríssimo de Oliveira; Santiago, Edna de Farias; Barbosa, Miria de Oliveira; de Siqueira, Lucianna Rabelo Pessoa; Moreira, Diogo Rodrigo Magalhães; Bastos, Tanira Matutino; Brayner, Fábio André; Soares, Milena Botelho Pereira; Mendes, Andresa Pereira de Oliveira; de Castro, Maria Carolina Accioly Brelaz; Pereira, Valéria Rego Alves; Leite, Ana Cristina Lima

    2016-03-23

    Chagas disease is a parasitic infection caused by protozoan Trypanosoma cruzi that affects approximately 6-7 million people worldwide. Benznidazole is the only drug approved for treatment during the acute and asymptomatic chronic phases; however, its efficacy during the symptomatic chronic phase is controversial. The present work reports the synthesis and anti-T. cruzi activities of a novel series of phthalimido-thiazoles. Some of these compounds showed potent inhibition of the trypomastigote form of the parasite at low cytotoxicity concentrations in spleen cells, and the resulting structure-activity relationships are discussed. We also showed that phthalimido-thiazoles induced ultrastructural alterations on morphology, flagellum shortening, chromatin condensation, mitochondria swelling, reservosomes alterations and endoplasmic reticulum dilation. Together, these data revealed, for the first time, a novel series of phthalimido-thiazoles-structure-based compounds with potential effects against T. cruzi and lead-like characteristics against Chagas disease. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Sexual transmission of Trypanosoma cruzi in murine model.

    Science.gov (United States)

    Ribeiro, Marcelle; Nitz, Nadjar; Santana, Camilla; Moraes, Aline; Hagström, Luciana; Andrade, Rafael; Rios, Adriano; Sousa, Alessandro; Dallago, Bruno; Gurgel-Gonçalves, Rodrigo; Hecht, Mariana

    2016-03-01

    Trypanosoma cruzi is mainly transmitted by blood-sucking triatomines, but other routes also have epidemiological importance, such as blood transfusion and congenital transmission. Although the possibility of sexual transmission of T. cruzi has been suggested since its discovery, few studies have been published on this subject. We investigated acquisition of T. cruzi by sexual intercourse in an experimental murine model. Male and female mice in the chronic phase of Chagas disease were mated with naive partners. Parasitological, serological and molecular tests demonstrated the parasites in tissues and blood of partners. These results confirm the sexual transmission of T. cruzi in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Functional Characterization of ABCC Proteins from Trypanosoma cruzi and Their Involvement with Thiol Transport

    Directory of Open Access Journals (Sweden)

    Kelli Monteiro da Costa

    2018-02-01

    Full Text Available Chagas disease is a neglected disease caused by the protozoan Trypanosoma cruzi and affects 8 million people worldwide. The main chemotherapy is based on benznidazole. The efficacy in the treatment depends on factors such as the parasite strain, which may present different sensitivity to treatment. In this context, the expression of ABC transporters has been related to chemotherapy failure. ABC transporters share a well-conserved ABC domain, responsible for ATP binding and hydrolysis, whose the energy released is coupled to transport of molecules through membranes. The most known ABC transporters are ABCB1 and ABCC1, involved in the multidrug resistance phenotype in cancer, given their participation in cellular detoxification. In T. cruzi, 27 ABC genes were identified in the genome. Nonetheless, only four ABC genes were characterized: ABCA3, involved in vesicular trafficking; ABCG1, overexpressed in strains naturally resistant to benznidazole, and P-glycoprotein 1 and 2, whose participation in drug resistance is controversial. Considering P-glycoprotein genes are related to ABCC subfamily in T. cruzi according to the demonstration using BLASTP alignment, we evaluated both ABCB1-like and ABCC-like activities in epimastigote and trypomastigote forms of the Y strain. The transport activities were evaluated by the efflux of the fluorescent dyes Rhodamine 123 and Carboxyfluorescein in a flow cytometer. Results indicated that there was no ABCB1-like activity in both T. cruzi forms. Conversely, results demonstrated ABCC-like activity in both epimastigote and trypomastigote forms of T. cruzi. This activity was inhibited by ABCC transport modulators (probenecid, indomethacin, and MK-571, by ATP-depleting agents (sodium azide and iodoacetic acid and by the thiol-depleting agent N-ethylmaleimide. Additionally, the presence of ABCC-like activity was supported by direct inhibition of the thiol-conjugated compound efflux with indomethacin, characteristic of

  20. Trypanosoma Cruzi Cyp51 Inhibitor Derived from a Mycobacterium Tuberculosis Screen Hit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiung-Kuang; Doyle, Patricia S.; Yermalitskaya, Liudmila V.; Mackey, Zachary B.; Ang, Kenny K.H.; McKerrow, James H.; Podust, Larissa M.; (Vanderbilt); (UCSF)

    2009-02-18

    The two front-line drugs for chronic Trypanosoma cruzi infections are limited by adverse side-effects and declining efficacy. One potential new target for Chagas disease chemotherapy is sterol 14{alpha}-demethylase (CYP51), a cytochrome P450 enzyme involved in biosynthesis of membrane sterols. In a screening effort targeting Mycobacterium tuberculosis CYP51 (CYP51{sub Mt}), we previously identified the N-[4-pyridyl]-formamide moiety as a building block capable of delivering a variety of chemotypes into the CYP51 active site. In that work, the binding modes of several second generation compounds carrying this scaffold were determined by high-resolution co-crystal structures with CYP51{sub Mt}. Subsequent assays against the CYP51 orthologue in T. cruzi, CYP51{sub Tc}, demonstrated that two of the compounds tested in the earlier effort bound tightly to this enzyme. Both were tested in vitro for inhibitory effects against T. cruzi and the related protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. One of the compounds had potent, selective anti-T. cruzi activity in infected mouse macrophages. Cure of treated host cells was confirmed by prolonged incubation in the absence of the inhibiting compound. Discrimination between T. cruzi and T. brucei CYP51 by the inhibitor was largely based on the variability (phenylalanine versus isoleucine) of a single residue at a critical position in the active site. CYP51{sub Mt}-based crystal structure analysis revealed that the functional groups of the two tightly bound compounds are likely to occupy different spaces in the CYP51 active site, suggesting the possibility of combining the beneficial features of both inhibitors in a third generation of compounds to achieve more potent and selective inhibition of CYP51{sub Tc}. Enzyme sterol 14{alpha}-demethylase (CYP51) is a well-established target for anti-fungal therapy and is a prospective target for Chagas disease therapy. We previously identified a

  1. 1,3,4-Thiadiazole derivatives of R-(+)-limonene benzaldehyde-thiosemicarbazones cause death in Trypanosoma cruzi through oxidative stress.

    Science.gov (United States)

    Martins, Solange C; Lazarin-Bidóia, Danielle; Desoti, Vânia C; Falzirolli, Hugo; da Silva, Cleuza C; Ueda-Nakamura, Tania; Silva, Sueli de O; Nakamura, Celso V

    2016-12-01

    This work evaluated the in vitro and in vivo activity of TDZ 2 on Trypanosoma cruzi amastigotes and determined the possible mechanism of action of this compound on T. cruzi death. TDZ 2 inhibited T. cruzi proliferation in vitro and had low haemolytic potential. It also induced morphological and ultrastructural alterations. We observed a reduction of cell volume, the depolarization of the mitochondrial membrane, an increase in ROS production, lipoperoxidation of the cell membrane, lipid bodies formation and production of nitric oxide, a decrease in reduced thiols levels and, presence of autophagic vacuoles. The in vivo study found a reduction of parasitemia in animals treated with TDZ 2 alone or combined with benznidazole. Altogether, the alterations induced by TDZ 2 point to an oxidative stress condition that lead to T. cruzi cell death. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Inhibition of Trypanosoma cruzi growth in vitro by Solanum alkaloids: a comparison with ketoconazole.

    Science.gov (United States)

    Chataing, B; Concepción, J L; Lobatón, R; Usubillaga, A

    1998-02-01

    The glycoalkaloids alpha-chaconine, alpha-solamargine, alpha-solanine, solasonine, sycophantine, and tomatine, as well as the aglycones demissidine, solanidine, solanocapsine, solasodine, tomatidine, and veratrine were tested as growth inhibitors of Trypanosoma cruzi, strain EP, in LIT medium. Their activity was compared with the antifungal ketoconazole. Glycoalkaloids containing alpha-chacotriose showed trypanolytic activity against the epimastigote form and trypanocidal activity against the bloodstream and metacyclic trypomastigote form of Trypanosoma cruzi in culture medium in micromolar concentrations. Ketoconazole showed a lower activity, at the same concentrations of alpha-chaconine and alpha-solamargine. The observations indicate that the initial target of the compound is at the membrane level with a concomitant change in the parasite morphology. Moreover, internal compartments of the parasites were observed to be affected by the drugs, revealing the dissolution of some organelles as mitocondrias and glycosomes.

  3. Validation of N-myristoyltransferase as Potential Chemotherapeutic Target in Mammal-Dwelling Stages of Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Linda J Herrera

    2016-04-01

    Full Text Available Trypanosoma cruzi causes Chagas disease, an endemic and debilitating illness in Latin America. Lately, owing to extensive population movements, this neglected tropical disease has become a global health concern. The two clinically available drugs for the chemotherapy of Chagas disease have rather high toxicity and limited efficacy in the chronic phase of the disease, and may induce parasite resistance. The development of new anti-T. cruzi agents is therefore imperative. The enzyme N-myristoyltransferase (NMT has recently been biochemically characterized, shown to be essential in Leishmania major, Trypanosoma brucei, and T. cruzi¸ and proposed as promising chemotherapeutic target in these trypanosomatids.Here, using high-content imaging we assayed eight known trypanosomatid NMT inhibitors, against mammal-dwelling intracellular amastigote and trypomastigote stages and demonstrated that three of them (compounds 1, 5, and 8 have potent anti-proliferative effect at submicromolar concentrations against T. cruzi, with very low toxicity against human epithelial cells. Moreover, metabolic labeling using myristic acid, azide showed a considerable decrease in the myristoylation of proteins in parasites treated with NMT inhibitors, providing evidence of the on-target activity of the inhibitors.Taken together, our data point out to the potential use of NMT inhibitors as anti-T. cruzi chemotherapy.

  4. Rapidly progressive course of Trypanosoma cruzi infection in mice heterozygous for hexamethylene bis-acetamide inducible 1 (Hexim1) gene.

    Science.gov (United States)

    Mascareno, Eduardo; Gupta, Raavi; Martello, Laura A; Dhar-Mascareno, Manya; Salciccioli, Louis; Beckles, Daniel; Walsh, Michael G; Machado, Fabiana S; Tanowitz, Herbert B; Haseeb, M A

    2018-01-01

    Infection with Trypanosoma cruzi causes Chagas disease and results in myocardial inflammation and cardiomyopathy. Downregulated Hexim1 expression, as in Hexim1 +/- mice, reduces cardiac inflammation and fibrosis following ischemic stress. We asked whether reduced expression of Hexim1 would also afford protection against T. cruzi-induced cardiomyopathy. C57BL/6J (wild type - WT) and Hexim1 +/- mice were infected with sub-lethal doses of T. cruzi (Brazil strain), and cardiac function, serologic markers of inflammation and tissue pathology were examined. Infected Hexim1 +/- mice had compromised cardiac function, altered expression of both pro- and anti-inflammatory cytokines, and increased inflammation and fibrosis. Cardiac failure was evidenced by severely diminished heart rate, compensatory increase in respiratory rate, and abnormally high left ventricular mass with severe transmural inflammation. Lungs displayed intense peribronchial inflammation and fibrosis extending into the parenchyma. We also observed Smad3-serine 208 phosphorylation in hearts and lungs of infected mice, suggesting increased TGF-β signaling pathway activity. This was more pronounced in Hexim1 +/- mice and correlated with increased fibrosis in these tissues. Conspicuous splenomegaly in the Hexim1 +/- mice most likely resulted from the observed extensive white pulp expansion. T. cruzi infection induced colonic dilatation and marked villous atrophy in both the WT and Hexim1 +/- mice but more so in the latter. The profound exacerbation of pathologic findings suggests a protective role for Hexim1 in T. cruzi infection. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Validation of N-myristoyltransferase as Potential Chemotherapeutic Target in Mammal-Dwelling Stages of Trypanosoma cruzi.

    Science.gov (United States)

    Herrera, Linda J; Brand, Stephen; Santos, Andres; Nohara, Lilian L; Harrison, Justin; Norcross, Neil R; Thompson, Stephen; Smith, Victoria; Lema, Carolina; Varela-Ramirez, Armando; Gilbert, Ian H; Almeida, Igor C; Maldonado, Rosa A

    2016-04-01

    Trypanosoma cruzi causes Chagas disease, an endemic and debilitating illness in Latin America. Lately, owing to extensive population movements, this neglected tropical disease has become a global health concern. The two clinically available drugs for the chemotherapy of Chagas disease have rather high toxicity and limited efficacy in the chronic phase of the disease, and may induce parasite resistance. The development of new anti-T. cruzi agents is therefore imperative. The enzyme N-myristoyltransferase (NMT) has recently been biochemically characterized, shown to be essential in Leishmania major, Trypanosoma brucei, and T. cruzi¸ and proposed as promising chemotherapeutic target in these trypanosomatids. Here, using high-content imaging we assayed eight known trypanosomatid NMT inhibitors, against mammal-dwelling intracellular amastigote and trypomastigote stages and demonstrated that three of them (compounds 1, 5, and 8) have potent anti-proliferative effect at submicromolar concentrations against T. cruzi, with very low toxicity against human epithelial cells. Moreover, metabolic labeling using myristic acid, azide showed a considerable decrease in the myristoylation of proteins in parasites treated with NMT inhibitors, providing evidence of the on-target activity of the inhibitors. Taken together, our data point out to the potential use of NMT inhibitors as anti-T. cruzi chemotherapy.

  6. Assessing anti-T. cruzi candidates in vitro for sterile cidality

    Directory of Open Access Journals (Sweden)

    Monica Cal

    2016-12-01

    Full Text Available Total clearance of the T. cruzi infection – referred to herein as “sterile cure” – seems to be a critical prerequisite for new drug candidates for Chagas disease, ensuring long-term beneficial effects for patients in the chronic indeterminate stage. This requirement is notably supported by the recent findings of clinical studies involving posaconazole and fosravuconazole, where the majority of patients treated eventually relapsed after an apparent clearance of parasitaemia at the end of treatment. We have adapted an in vitro system to predict the ability of a compound to deliver sterile cure. It relies on mouse peritoneal macrophages as host cells for Trypanosoma cruzi amastigotes. The macrophages do not proliferate, allowing for long-term testing and wash-out experiments. Giemsa staining followed by microscopy provides a highly sensitive and specific tool to quantify the numbers of infected host cells. Combining macrophages as host cells and Giemsa staining as the read-out, we demonstrate that posaconazole and other CYP51 inhibitors are unable to achieve complete clearance of an established T. cruzi infection in vitro in spite of the fact that these compounds are active at significantly lower concentrations than the reference drugs benznidazole and nifurtimox. Indeed, a few macrophages remained infected after 96 h of drug incubation in the presence of CYP51 inhibitors–albeit at a very low parasite load. These residual T. cruzi amastigotes were shown to be viable and infective, as demonstrated by wash-out experiments. We advocate characterizing any new anti-T. cruzi early stage candidates for sterile cidality early in the discovery cascade, as a surrogate for delivery of sterile cure in vivo.

  7. Antitrypanosomal Activity of Sterol 14α-Demethylase (CYP51) Inhibitors VNI and VFV in the Swiss Mouse Models of Chagas Disease Induced by the Trypanosoma cruzi Y Strain.

    Science.gov (United States)

    Guedes-da-Silva, F H; Batista, D G J; Da Silva, C F; De Araújo, J S; Pavão, B P; Simões-Silva, M R; Batista, M M; Demarque, K C; Moreira, O C; Britto, C; Lepesheva, G I; Soeiro, M N C

    2017-04-01

    Chagas disease is a life-threatening infection caused by a variety of genetically diverse strains of the protozoan parasite Trypanosoma cruzi The current treatment (benznidazole and nifurtimox) is unsatisfactory, and potential alternatives include inhibitors of sterol 14α-demethylase (CYP51), the cytochrome P450 enzyme essential for the biosynthesis of sterols in eukaryotes and the major target of clinical and agricultural antifungals. Here we performed a comparative investigation of two protozoon-specific CYP51 inhibitors, VNI and its CYP51 structure-based derivative VFV, in the murine models of infection caused by the Y strain of T. cruzi The effects of different treatment regimens and drug delivery vehicles were evaluated in animals of both genders, with benznidazole serving as the reference drug. Regardless of the treatment scheme or delivery vehicle, VFV was more potent in both genders, causing a >99.7% peak parasitemia reduction, while the VNI values varied from 91 to 100%. Treatments with VNI and VFV resulted in 100% animal survival and 0% natural relapse after the end of therapy, though, except for the 120-day treatment schemes with VFV, relapses after three cycles of immunosuppression were observed in each animal group, and quantitative PCR analysis revealed a very light parasite load in the blood samples (sometimes below or near the detection limit, which was 1.5 parasite equivalents/ml). Our studies support further investigations of this class of compounds, including their testing against other T. cruzi strains and in combination with other drugs. Copyright © 2017 American Society for Microbiology.

  8. Synergy testing of FDA-approved drugs identifies potent drug combinations against Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Joseph D Planer

    2014-07-01

    Full Text Available An estimated 8 million persons, mainly in Latin America, are infected with Trypanosoma cruzi, the etiologic agent of Chagas disease. Existing antiparasitic drugs for Chagas disease have significant toxicities and suboptimal effectiveness, hence new therapeutic strategies need to be devised to address this neglected tropical disease. Due to the high research and development costs of bringing new chemical entities to the clinic, we and others have investigated the strategy of repurposing existing drugs for Chagas disease. Screens of FDA-approved drugs (described in this paper have revealed a variety of chemical classes that have growth inhibitory activity against mammalian stage Trypanosoma cruzi parasites. Aside from azole antifungal drugs that have low or sub-nanomolar activity, most of the active compounds revealed in these screens have effective concentrations causing 50% inhibition (EC50's in the low micromolar or high nanomolar range. For example, we have identified an antihistamine (clemastine, EC50 of 0.4 µM, a selective serotonin reuptake inhibitor (fluoxetine, EC50 of 4.4 µM, and an antifolate drug (pyrimethamine, EC50 of 3.8 µM and others. When tested alone in the murine model of Trypanosoma cruzi infection, most compounds had insufficient efficacy to lower parasitemia thus we investigated using combinations of compounds for additive or synergistic activity. Twenty-four active compounds were screened in vitro in all possible combinations. Follow up isobologram studies showed at least 8 drug pairs to have synergistic activity on T. cruzi growth. The combination of the calcium channel blocker, amlodipine, plus the antifungal drug, posaconazole, was found to be more effective at lowering parasitemia in mice than either drug alone, as was the combination of clemastine and posaconazole. Using combinations of FDA-approved drugs is a promising strategy for developing new treatments for Chagas disease.

  9. Survival of Trypanosoma cruzi in experimentally contaminated drinks Supervivencia de Trypanosoma cruzi en bebidas experimentalmente contaminadas

    Directory of Open Access Journals (Sweden)

    Diana Carolina Suárez

    2011-09-01

    Full Text Available

    Introduction. Trypanosoma cruzi is the causative agent of Chagas disease, transmitted primarily by triatomine insects. However, in 2005, oral transmission was documented in countries where the disease is endemic for Chagas disease. This trend may also occur in Colombia, a situation that motivated epidemiological alerts and the necessity for exploring the risk level of oral, human-to-human infection by T. cruzi.
    Objective. Survival times were established for the T. cruzi strain DS using juices involved in the outbreak of Lebrija County (Cesar, Colombia in 2008.
    Materials and methods. Survival of the T. cruzi strain was evaluated as defined by vitality (forward movement and viability (growth in isolation medium Novy, McNeal and Nicolle/liver infusion tryptose. This strain was molecularly characterized as TCLA, isolated from a patient associated with an outbreak in Aguachica County (Santander, very near Lebrija. Its survival was tested in tangerine juice, guava, soursop (guanábana, water and sugar water.
    Results. The T. cruzi strain DS remained vital in mandarin at room temperature for 72 hr, at refrigerated temperatures for 36 hr;, the soursop (guanábana for 48 hr at room temperature and 384 hr under refrigeration; and guava at both temperatures 24 hr. This strain was viable 2 and 24 hours post-infection in each of the other juices at the two temperature conditions.
    Conclusions: The DS T. cruzi strain survived in all drinks for more than 24 hours post-infection, with a survival time of 384 hr in the juice of soursop (guanábana under refrigeration.

    Introducción. Trypanosoma cruzi es el agente causal de la enfermedad de Chagas, el cual puede ser transmitido por diferentes vías. A partir de 2005 la transmisión oral se incrementó en aquellos países donde la enfermedad es considerada endémica por transmisión vectorial. Colombia no se aparta de esta tendencia, situación que motivó la alerta epidemiol

  10. The brighter (and evolutionarily older) face of the metabolic syndrome: evidence from Trypanosoma cruzi infection in CD-1 mice.

    Science.gov (United States)

    Brima, Wunnie; Eden, Daniel J; Mehdi, Syed Faizan; Bravo, Michelle; Wiese, Mohammad M; Stein, Joanna; Almonte, Vanessa; Zhao, Dazhi; Kurland, Irwin; Pessin, Jeffrey E; Zima, Tomas; Tanowitz, Herbert B; Weiss, Louis M; Roth, Jesse; Nagajyothi, Fnu

    2015-05-01

    Infection with Trypanosoma cruzi, the protozoan parasite that causes Chagas disease, results in chronic infection that leads to cardiomyopathy with increased mortality and morbidity in endemic regions. In a companion study, our group found that a high-fat diet (HFD) protected mice from T. cruzi-induced myocardial damage and significantly reduced post-infection mortality during acute T. cruzi infection. In the present study metabolic syndrome was induced prior to T. cruzi infection by feeding a high fat diet. Also, mice were treated with anti-diabetic drug metformin. In the present study, the lethality of T. cruzi (Brazil strain) infection in CD-1 mice was reduced from 55% to 20% by an 8-week pre-feeding of an HFD to induce obesity and metabolic syndrome. The addition of metformin reduced mortality to 3%. It is an interesting observation that both the high fat diet and the metformin, which are known to differentially attenuate host metabolism, effectively modified mortality in T. cruzi-infected mice. In humans, the metabolic syndrome, as presently construed, produces immune activation and metabolic alterations that promote complications of obesity and diseases of later life, such as myocardial infarction, stroke, diabetes, Alzheimer's disease and cancer. Using an evolutionary approach, we hypothesized that for millions of years, the channeling of host resources into immune defences starting early in life ameliorated the effects of infectious diseases, especially chronic infections, such as tuberculosis and Chagas disease. In economically developed countries in recent times, with control of the common devastating infections, epidemic obesity and lengthening of lifespan, the dwindling benefits of the immune activation in the first half of life have been overshadowed by the explosion of the syndrome's negative effects in later life. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Detection of Trypanosoma cruzi antibodies in multitransfused patients in Colombia

    Directory of Open Access Journals (Sweden)

    Mauricio Beltrán

    2017-09-01

    Conclusions: The results of this study showed a low frequency of T. cruzi infection in multitransfused patients, suggesting that the risk of transfusion infection in Colombia is low. Known risk factors for transfusion-related infection were not associated with the presence of anti-T. cruzi antibodies.

  12. Inhibition of cyclooxygenase-1 and cyclooxygenase-2 impairs Trypanosoma cruzi entry into cardiac cells and promotes differential modulation of the inflammatory response.

    Science.gov (United States)

    Malvezi, Aparecida D; Panis, Carolina; da Silva, Rosiane V; de Freitas, Rafael Carvalho; Lovo-Martins, Maria I; Tatakihara, Vera L H; Zanluqui, Nágela G; Neto, Edecio Cunha; Goldenberg, Samuel; Bordignon, Juliano; Yamada-Ogatta, Sueli F; Martins-Pinge, Marli C; Cecchini, Rubens; Pinge-Filho, Phileno

    2014-10-01

    The intracellular protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a serious disorder that affects millions of people in Latin America. Cell invasion by T. cruzi and its intracellular replication are essential to the parasite's life cycle and for the development of Chagas disease. Here, we present evidence suggesting the involvement of the host's cyclooxygenase (COX) enzymes during T. cruzi invasion. Pharmacological antagonists for COX-1 (aspirin) and COX-2 (celecoxib) caused marked inhibition of T. cruzi infection when rat cardiac cells were pretreated with these nonsteroidal anti-inflammatory drugs (NSAIDs) for 60 min at 37°C before inoculation. This inhibition was associated with an increase in the production of NO and interleukin-1β and decreased production of transforming growth factor β (TGF-β) by cells. Taken together, these results indicate that COX-1 more than COX-2 is involved in the regulation of anti-T. cruzi activity in cardiac cells, and they provide a better understanding of the influence of TGF-β-interfering therapies on the innate inflammatory response to T. cruzi infection and may represent a very pertinent target for new therapeutic treatments of Chagas disease. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Does native Trypanosoma cruzi calreticulin mediate growth inhibition of a mammary tumor during infection?

    Science.gov (United States)

    Abello-Cáceres, Paula; Pizarro-Bauerle, Javier; Rosas, Carlos; Maldonado, Ismael; Aguilar-Guzmán, Lorena; González, Carlos; Ramírez, Galia; Ferreira, Jorge; Ferreira, Arturo

    2016-09-13

    For several decades now an antagonism between Trypanosoma cruzi infection and tumor development has been detected. The molecular basis of this phenomenon remained basically unknown until our proposal that T. cruzi Calreticulin (TcCRT), an endoplasmic reticulum-resident chaperone, translocated-externalized by the parasite, may mediate at least an important part of this effect. Thus, recombinant TcCRT (rTcCRT) has important in vivo antiangiogenic and antitumor activities. However, the relevant question whether the in vivo antitumor effect of T. cruzi infection is indeed mediated by the native chaperone (nTcCRT), remains open. Herein, by using specific modified anti-rTcCRT antibodies (Abs), we have neutralized the antitumor activity of T. cruzi infection and extracts thereof, thus identifying nTcCRT as a valid mediator of this effect. Polyclonal anti-rTcCRT F(ab')2 Ab fragments were used to reverse the capacity of rTcCRT to inhibit EAhy926 endothelial cell (EC) proliferation, as detected by BrdU uptake. Using these F(ab')2 fragments, we also challenged the capacity of nTcCRT, during T. cruzi infection, to inhibit the growth of an aggressive mammary adenocarcinoma cell line (TA3-MTXR) in mice. Moreover, we determined the capacity of anti-rTcCRT Abs to reverse the antitumor effect of an epimastigote extract (EE). Finally, the effects of these treatments on tumor histology were evaluated. The rTcCRT capacity to inhibit ECs proliferation was reversed by anti-rTcCRT F(ab')2 Ab fragments, thus defining them as valid probes to interfere in vivo with this important TcCRT function. Consequently, during infection, these Ab fragments also reversed the in vivo experimental mammary tumor growth. Moreover, anti-rTcCRT Abs also neutralized the antitumor effect of an EE, again identifying the chaperone protein as an important mediator of this anti mammary tumor effect. Finally, as determined by conventional histological parameters, in infected animals and in those treated with EE

  14. The Effectiveness of Natural Diarylheptanoids against Trypanosoma cruzi: Cytotoxicity, Ultrastructural Alterations and Molecular Modeling Studies.

    Directory of Open Access Journals (Sweden)

    Vitor Sueth-Santiago

    Full Text Available Curcumin (CUR is the major constituent of the rhizomes of Curcuma longa and has been widely investigated for its chemotherapeutic properties. The well-known activity of CUR against Leishmania sp., Trypanosoma brucei and Plasmodium falciparum led us to investigate its activity against Trypanosoma cruzi. In this work, we tested the cytotoxic effects of CUR and other natural curcuminoids on different forms of T. cruzi, as well as the ultrastructural changes induced in epimastigote form of the parasite. CUR was verified as the curcuminoid with more significant trypanocidal properties (IC50 10.13 μM on epimastigotes. Demethoxycurcumin (DMC was equipotent to CUR (IC50 11.07 μM, but bisdemethoxycurcumin (BDMC was less active (IC50 45.33 μM and cyclocurcumin (CC was inactive. In the experiment with infected murine peritoneal macrophages all diarylheptanoids were more active than the control in the inhibition of the trypomastigotes release. The electron microscopy images showed ultrastructural changes associated with the cytoskeleton of the parasite, indicating tubulin as possible target of CUR in T. cruzi. The results obtained by flow cytometry analysis of DNA content of the parasites treated with natural curcuminoids suggested a mechanism of action on microtubules related to the paclitaxel`s mode of action. To better understand the mechanism of action highlighted by electron microscopy and flow cytometry experiments we performed the molecular docking of natural curcuminoids on tubulin of T. cruzi in a homology model and the results obtained showed that the observed interactions are in accordance with the IC50 values found, since there CUR and DMC perform similar interactions at the binding site on tubulin while BDMC do not realize a hydrogen bond with Lys163 residue due to the absence of methoxyl groups. These results indicate that trypanocidal properties of CUR may be related to the cytoskeletal alterations.

  15. Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.

    Directory of Open Access Journals (Sweden)

    Andrés B Lantos

    2016-04-01

    Full Text Available Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully

  16. A recombinant protein based on Trypanosoma cruzi P21 enhances phagocytosis.

    Science.gov (United States)

    Rodrigues, Adele A; Clemente, Tatiana M; Dos Santos, Marlus A; Machado, Fabrício C; Gomes, Rafael G B; Moreira, Heline Hellen T; Cruz, Mário C; Brígido, Paula C; Dos Santos, Paulo C F; Martins, Flávia A; Bahia, Diana; Maricato, Juliana T; Janini, Luiz M R; Reboredo, Eduardo H; Mortara, Renato A; da Silva, Claudio V

    2012-01-01

    P21 is a secreted protein expressed in all developmental stages of Trypanosoma cruzi. The aim of this study was to determine the effect of the recombinant protein based on P21 (P21-His(6)) on inflammatory macrophages during phagocytosis. Our results showed that P21-His(6) acts as a phagocytosis inducer by binding to CXCR4 chemokine receptor and activating actin polymerization in a way dependent onthe PI3-kinase signaling pathway. Thus, our results shed light on the notion that native P21 is a component related to T. cruzi evasion from the immune response and that CXCR4 may be involved in phagocytosis. P21-His(6) represents an important experimental control tool to study phagocytosis signaling pathways of different intracellular parasites and particles.

  17. A recombinant protein based on Trypanosoma cruzi P21 enhances phagocytosis.

    Directory of Open Access Journals (Sweden)

    Adele A Rodrigues

    Full Text Available BACKGROUND: P21 is a secreted protein expressed in all developmental stages of Trypanosoma cruzi. The aim of this study was to determine the effect of the recombinant protein based on P21 (P21-His(6 on inflammatory macrophages during phagocytosis. FINDINGS: Our results showed that P21-His(6 acts as a phagocytosis inducer by binding to CXCR4 chemokine receptor and activating actin polymerization in a way dependent onthe PI3-kinase signaling pathway. CONCLUSIONS: Thus, our results shed light on the notion that native P21 is a component related to T. cruzi evasion from the immune response and that CXCR4 may be involved in phagocytosis. P21-His(6 represents an important experimental control tool to study phagocytosis signaling pathways of different intracellular parasites and particles.

  18. A α-glycerophosphate dehydrogenase is present in Trypanosoma cruzi glycosomes

    Directory of Open Access Journals (Sweden)

    JL Concepcion

    2001-07-01

    Full Text Available α-glycerophosphate dehydrogenase (α-GPDH-EC.1.1.1.8 has been considered absent in Trypanosoma cruzi in contradiction with all other studied trypanosomatids. After observing that the sole malate dehydrogenase can not maintain the intraglycosomal redox balance, GPDH activity was looked for and found, although in very variable levels, in epimastigotes extracts. GPDH was shown to be exclusively located in the glycosome of T. cruzi by digitonin treatment and isopycnic centrifugation. Antibody against T. brucei GPDH showed that this enzyme seemed to be present in an essentially inactive form at the beginning of the epimastigotes growth. GPDH is apparently linked to a salicylhydroxmic-sensitive glycerophosphate reoxidizing system and plays an essential role in the glycosome redox balance.

  19. Efficacy of voriconazole in a murine model of acute Trypanosoma cruzi infection.

    Science.gov (United States)

    Gulin, J E N; Eagleson, M A; Postan, M; Cutrullis, R A; Freilij, H; Bournissen, F Garcia; Petray, P B; Altcheh, J

    2013-04-01

    Antifungal triazole derivatives have been studied as possible alternatives for the treatment of Chagas' disease. Voriconazole has demonstrated in vitro activity against Trypanosoma cruzi, but its efficacy in vivo has not yet been tested. We aimed to determine the effect of voriconazole in a murine model of acute T. cruzi infection. Treatment efficacy was evaluated by comparing parasitaemia, mortality and organ involvement (by histological examination) of infected mice. Treatment with voriconazole significantly lowered parasitaemia and mortality compared with controls, reduced the percentage of mice with amastigote nests in heart and skeletal muscle and moderately decreased myocardial inflammation. Our findings support the potential of voriconazole for the treatment of acute Chagas' disease and motivate future animal studies using varying doses and treatment schemes. Further evaluation of voriconazole for clinical use in human Chagas' patients is warranted.

  20. Occurrence of Trypanosoma cruzi in Maryland

    Science.gov (United States)

    Herman, C.M.; Bruce, J.I.

    1962-01-01

    During 1954-1960, 2005 mammals of 18 species collected at the Patuxent Wildlife Research Center, Maryland, were examined for trypanosomes. T. cruzi was found in 10 raccoons between October 31 and November 30. Infection occurred in 2 percent of all raccoons sampled, and in 11.3 percent of the 80 raccoons sampled in November. Examination was by direct smears, stained smears and cultures of heart blood. Although, in previous studies, at least two experimentally infected raccoons exhibited extended parasitemia (14 and 8 weeks), no such continuing parasitemia was observed in the natural infections. No trypanosomes were found in any of the other mammals examined.

  1. Trypanosoma cruzi and Chagas' Disease in the United States

    Science.gov (United States)

    Bern, Caryn; Kjos, Sonia; Yabsley, Michael J.; Montgomery, Susan P.

    2011-01-01

    Summary: Chagas' disease is caused by the protozoan parasite Trypanosoma cruzi and causes potentially life-threatening disease of the heart and gastrointestinal tract. The southern half of the United States contains enzootic cycles of T. cruzi, involving 11 recognized triatomine vector species. The greatest vector diversity and density occur in the western United States, where woodrats are the most common reservoir; other rodents, raccoons, skunks, and coyotes are also infected with T. cruzi. In the eastern United States, the prevalence of T. cruzi is highest in raccoons, opossums, armadillos, and skunks. A total of 7 autochthonous vector-borne human infections have been reported in Texas, California, Tennessee, and Louisiana; many others are thought to go unrecognized. Nevertheless, most T. cruzi-infected individuals in the United States are immigrants from areas of endemicity in Latin America. Seven transfusion-associated and 6 organ donor-derived T. cruzi infections have been documented in the United States and Canada. As improved control of vector- and blood-borne T. cruzi transmission decreases the burden in countries where the disease is historically endemic and imported Chagas' disease is increasingly recognized outside Latin America, the United States can play an important role in addressing the altered epidemiology of Chagas' disease in the 21st century. PMID:21976603

  2. Benznidazole biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics.

    Directory of Open Access Journals (Sweden)

    Andrea Trochine

    2014-05-01

    Full Text Available The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn. Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, γ-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi.

  3. Identification of Specific Inhibitors of Trypanosoma cruzi Malic Enzyme Isoforms by Target-Based HTS.

    Science.gov (United States)

    Ranzani, Americo T; Nowicki, Cristina; Wilkinson, Shane R; Cordeiro, Artur T

    2017-04-01

    Trypanosoma cruzi is the causative agent of Chagas disease. The lack of an efficient and safe treatment supports the research into novel metabolic targets, with the malic enzyme (ME) representing one such potential candidate. T. cruzi expresses a cytosolic (TcMEc) and a mitochondrial (TcMEm) ME isoform, with these activities functioning to generate NADPH, a key source of reducing equivalents that drives a range of anabolic and protective processes. To identify specific inhibitors that target TcMEs, two independent high-throughput screening strategies using a diversity library containing 30,000 compounds were employed. IC 50 values of 262 molecules were determined for both TcMEs, as well as for three human ME isoforms, with the inhibitors clustered into six groups according to their chemical similarity. The most potent hits belonged to a sulfonamide group that specifically target TcMEc. Moreover, several selected inhibitors of both TcMEs showed a trypanocidal effect against the replicative forms of T. cruzi. The chemical diversity observed among those compounds that inhibit TcMEs activity emphasizes the druggability of these enzymes, with a sulfonamide-based subset of compounds readily able to block TcMEc function at a low nanomolar range.

  4. Host cell poly(ADP-ribose glycohydrolase is crucial for Trypanosoma cruzi infection cycle.

    Directory of Open Access Journals (Sweden)

    Salomé C Vilchez Larrea

    Full Text Available Trypanosoma cruzi, etiological agent of Chagas' disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose glycohydrolase in a trypanosomatid (TcPARG. In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl pyrrolidinediol or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas' disease.

  5. Mode of Action of the Sesquiterpene Lactones Psilostachyin and Psilostachyin C on Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Valeria P Sülsen

    Full Text Available Trypanosoma cruzi is the causative agent of Chagas' disease, which is a major endemic disease in Latin America and is recognized by the WHO as one of the 17 neglected tropical diseases in the world. Psilostachyin and psilostachyin C, two sesquiterpene lactones isolated from Ambrosia spp., have been demonstrated to have trypanocidal activity. Considering both the potential therapeutic targets present in the parasite, and the several mechanisms of action proposed for sesquiterpene lactones, the aim of this work was to characterize the mode of action of psilostachyin and psilostachyin C on Trypanosoma cruzi and to identify the possible targets for these molecules. Psilostachyin and psilostachyin C were isolated from Ambrosia tenuifolia and Ambrosia scabra, respectively. Interaction of sesquiterpene lactones with hemin, the induction of oxidative stress, the inhibition of cruzipain and trypanothione reductase and their ability to inhibit sterol biosynthesis were evaluated. The induction of cell death by apoptosis was also evaluated by analyzing phosphatidylserine exposure detected using annexin-V/propidium iodide, decreased mitochondrial membrane potential, assessed with Rhodamine 123 and nuclear DNA fragmentation evaluated by the TUNEL assay. Both STLs were capable of interacting with hemin. Psilostachyin increased about 5 times the generation of reactive oxygen species in Trypanosoma cruzi after a 4h treatment, unlike psilostachyin C which induced an increase in reactive oxygen species levels of only 1.5 times. Only psilostachyin C was able to inhibit the biosynthesis of ergosterol, causing an accumulation of squalene. Both sesquiterpene lactones induced parasite death by apoptosis. Upon evaluating the combination of both compounds, and additive trypanocidal effect was observed. Despite their structural similarity, both sesquiterpene lactones exerted their anti-T. cruzi activity through interaction with different targets. Psilostachyin

  6. Mode of Action of the Sesquiterpene Lactones Psilostachyin and Psilostachyin C on Trypanosoma cruzi.

    Science.gov (United States)

    Sülsen, Valeria P; Puente, Vanesa; Papademetrio, Daniela; Batlle, Alcira; Martino, Virginia S; Frank, Fernanda M; Lombardo, María E

    2016-01-01

    Trypanosoma cruzi is the causative agent of Chagas' disease, which is a major endemic disease in Latin America and is recognized by the WHO as one of the 17 neglected tropical diseases in the world. Psilostachyin and psilostachyin C, two sesquiterpene lactones isolated from Ambrosia spp., have been demonstrated to have trypanocidal activity. Considering both the potential therapeutic targets present in the parasite, and the several mechanisms of action proposed for sesquiterpene lactones, the aim of this work was to characterize the mode of action of psilostachyin and psilostachyin C on Trypanosoma cruzi and to identify the possible targets for these molecules. Psilostachyin and psilostachyin C were isolated from Ambrosia tenuifolia and Ambrosia scabra, respectively. Interaction of sesquiterpene lactones with hemin, the induction of oxidative stress, the inhibition of cruzipain and trypanothione reductase and their ability to inhibit sterol biosynthesis were evaluated. The induction of cell death by apoptosis was also evaluated by analyzing phosphatidylserine exposure detected using annexin-V/propidium iodide, decreased mitochondrial membrane potential, assessed with Rhodamine 123 and nuclear DNA fragmentation evaluated by the TUNEL assay. Both STLs were capable of interacting with hemin. Psilostachyin increased about 5 times the generation of reactive oxygen species in Trypanosoma cruzi after a 4h treatment, unlike psilostachyin C which induced an increase in reactive oxygen species levels of only 1.5 times. Only psilostachyin C was able to inhibit the biosynthesis of ergosterol, causing an accumulation of squalene. Both sesquiterpene lactones induced parasite death by apoptosis. Upon evaluating the combination of both compounds, and additive trypanocidal effect was observed. Despite their structural similarity, both sesquiterpene lactones exerted their anti-T. cruzi activity through interaction with different targets. Psilostachyin accomplished its antiparasitic

  7. Critical importance of the de novo pyrimidine biosynthesis pathway for Trypanosoma cruzi growth in the mammalian host cell cytoplasm

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Muneaki, E-mail: muneaki@juntendo.ac.jp [Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Morales, Jorge; Fukai, Yoshihisa; Suzuki, Shigeo; Takamiya, Shinzaburo; Tsubouchi, Akiko; Inoue, Syou [Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Inoue, Masayuki [Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kita, Kiyoshi [Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Harada, Shigeharu [Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Tanaka, Akiko [Systems and Structural Biology Center, RIKEN, Tsurumi, Yokohama 230-0045 (Japan); Aoki, Takashi [Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Nara, Takeshi, E-mail: tnara@juntendo.ac.jp [Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer We established Trypanosoma cruzi lacking the gene for carbamoyl phosphate synthetase II. Black-Right-Pointing-Pointer Disruption of the cpsII gene significantly reduced the growth of epimastigotes. Black-Right-Pointing-Pointer In particular, the CPSII-null mutant severely retarded intracellular growth. Black-Right-Pointing-Pointer The de novo pyrimidine pathway is critical for the parasite growth in the host cell. -- Abstract: The intracellular parasitic protist Trypanosoma cruzi is the causative agent of Chagas disease in Latin America. In general, pyrimidine nucleotides are supplied by both de novo biosynthesis and salvage pathways. While epimastigotes-an insect form-possess both activities, amastigotes-an intracellular replicating form of T. cruzi-are unable to mediate the uptake of pyrimidine. However, the requirement of de novo pyrimidine biosynthesis for parasite growth and survival has not yet been elucidated. Carbamoyl-phosphate synthetase II (CPSII) is the first and rate-limiting enzyme of the de novo biosynthetic pathway, and increased CPSII activity is associated with the rapid proliferation of tumor cells. In the present study, we showed that disruption of the T. cruzicpsII gene significantly reduced parasite growth. In particular, the growth of amastigotes lacking the cpsII gene was severely suppressed. Thus, the de novo pyrimidine pathway is important for proliferation of T. cruzi in the host cell cytoplasm and represents a promising target for chemotherapy against Chagas disease.

  8. Assessment of sesquiterpene lactones isolated from Mikania plants species for their potential efficacy against Trypanosoma cruzi and Leishmania sp.

    Science.gov (United States)

    Laurella, Laura C; Cerny, Natacha; Bivona, Augusto E; Sánchez Alberti, Andrés; Giberti, Gustavo; Malchiodi, Emilio L; Martino, Virginia S; Catalan, Cesar A; Alonso, María Rosario; Cazorla, Silvia I; Sülsen, Valeria P

    2017-09-01

    Four sesquiterpene lactones, mikanolide, deoxymikanolide, dihydromikanolide and scandenolide, were isolated by a bioassay-guided fractionation of Mikania variifolia and Mikania micrantha dichloromethane extracts. Mikanolide and deoxymikanolide were the major compounds in both extracts (2.2% and 0.4% for Mikania variifolia and 21.0% and 6.4% for Mikania micrantha respectively, calculated on extract dry weight). Mikanolide, deoxymikanolide and dihydromikanolide were active against Trypanosoma cruzi epimastigotes (50% inhibitory concentrations of 0.7, 0.08 and 2.5 μg/mL, for each compound respectively). These sesquiterpene lactones were also active against the bloodstream trypomastigotes (50% inhibitory concentrations for each compound were 2.1, 1.5 and 0.3 μg/mL, respectively) and against amastigotes (50% inhibitory concentrations for each compound were 4.5, 6.3 and 8.5 μg/mL, respectively). By contrast, scandenolide was not active on Trypanosoma cruzi. Besides, mikanolide and deoxymikanolide were also active on Leishmania braziliensis promastigotes (50% inhibitory concentrations of 5.1 and 11.5 μg/mL, respectively). The four sesquiterpene lactones were tested for their cytotoxicity on THP 1 cells. Deoxymikanolide presented the highest selectivity index for trypomastigotes (SI = 54) and amastigotes (SI = 12.5). In an in vivo model of Trypanosoma cruzi infection, deoxymikanolide was able to decrease the parasitemia and the weight loss associated to the acute phase of the parasite infection. More importantly, while 100% of control mice died by day 22 after receiving a lethal T. cruzi infection, 70% of deoxymikanolide-treated mice survived. We also observed that this compound increased TNF-α and IL-12 production by macrophages, which could contribute to control T. cruzi infection.

  9. Effects of a marine serine protease inhibitor on viability and morphology of Trypanosoma cruzi, the agent of Chagas disease.

    Science.gov (United States)

    de Almeida Nogueira, Natália Pereira; Morgado-Díaz, José Andrés; Menna-Barreto, Rubem Figueiredo Sadok; Paes, Marcia Cristina; da Silva-López, Raquel Elisa

    2013-10-01

    It has been reported that serine peptidase activities of Trypanosoma cruzi play crucial roles in parasite dissemination and host cell invasion and therefore their inhibition could affect the progress of Chagas disease. The present study investigates the interference of the Stichodactyla helianthus Kunitz-type serine protease inhibitor (ShPI-I), a 55-amino acid peptide, in T. cruzi serine peptidase activities, parasite viability, and parasite morphology. The effect of this peptide was also studied in Leishmania amazonensis promastigotes and it was proved to be a powerful inhibitor of serine proteases activities and the parasite viability. The ultrastructural alterations caused by ShPI-I included vesiculation of the flagellar pocket membrane and the appearance of a cytoplasmic vesicle that resembles an autophagic vacuole. ShPI-I, which showed itself to be an important T. cruzi serine peptidase inhibitor, reduced the parasite viability, in a dose and time dependent manner. The maximum effect of peptide on T. cruzi viability was observed when ShPI-I at 1×10(-5)M was incubated for 24 and 48h which killed completely both metacyclic trypomastigote and epimastigote forms. At 1×10(-6)M ShPI-I, in the same periods of time, reduced parasite viability about 91-95% respectively. Ultrastructural analysis demonstrated the formation of concentric membranar structures especially in the cytosol, involving organelles and small vesicles. Profiles of endoplasmic reticulum were also detected, surrounding cytosolic vesicles that resembled autophagic vacuoles. These results suggest that serine peptidases are important in T. cruzi physiology since the inhibition of their activity killed parasites in vitro as well as inducing important morphological alterations. Protease inhibitors thus appear to have a potential role as anti-trypanosomatidal agents. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Flagellar Motility of Trypanosoma cruzi Epimastigotes

    Directory of Open Access Journals (Sweden)

    G. Ballesteros-Rodea

    2012-01-01

    Full Text Available The hemoflagellate Trypanosoma cruzi is the causative agent of American trypanosomiasis. Despite the importance of motility in the parasite life cycle, little is known about T. cruzi motility, and there is no quantitative description of its flagellar beating. Using video microscopy and quantitative vectorial analysis of epimastigote trajectories, we find a forward parasite motility defined by tip-to-base symmetrical flagellar beats. This motion is occasionally interrupted by base-to-tip highly asymmetric beats, which represent the ciliary beat of trypanosomatid flagella. The switch between flagellar and ciliary beating facilitates the parasite's reorientation, which produces a large variability of movement and trajectories that results in different distance ranges traveled by the cells. An analysis of the distance, speed, and rotational angle indicates that epimastigote movement is not completely random, and the phenomenon is highly dependent on the parasite behavior and is characterized by directed and tumbling parasite motion as well as their combination, resulting in the alternation of rectilinear and intricate motility paths.

  11. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  12. The major leucyl aminopeptidase of Trypanosoma cruzi (LAPTc assembles into a homohexamer and belongs to the M17 family of metallopeptidases

    Directory of Open Access Journals (Sweden)

    Assumpção Teresa C

    2011-08-01

    Full Text Available Abstract Background Pathogens depend on peptidase activities to accomplish many physiological processes, including interaction with their hosts, highlighting parasitic peptidases as potential drug targets. In this study, a major leucyl aminopeptidolytic activity was identified in Trypanosoma cruzi, the aetiological agent of Chagas disease. Results The enzyme was isolated from epimastigote forms of the parasite by a two-step chromatographic procedure and associated with a single 330-kDa homohexameric protein as determined by sedimentation velocity and light scattering experiments. Peptide mass fingerprinting identified the enzyme as the predicted T. cruzi aminopeptidase EAN97960. Molecular and enzymatic analysis indicated that this leucyl aminopeptidase of T. cruzi (LAPTc belongs to the peptidase family M17 or leucyl aminopeptidase family. LAPTc has a strong dependence on neutral pH, is mesophilic and retains its oligomeric form up to 80°C. Conversely, its recombinant form is thermophilic and requires alkaline pH. Conclusions LAPTc is a 330-kDa homohexameric metalloaminopeptidase expressed by all T. cruzi forms and mediates the major parasite leucyl aminopeptidolytic activity. Since biosynthetic pathways for essential amino acids, including leucine, are lacking in T. cruzi, LAPTc could have a function in nutritional supply.

  13. Combined Treatment of Heterocyclic Analogues and Benznidazole upon Trypanosoma cruzi In Vivo

    Science.gov (United States)

    Batista, Denise da Gama Jaén; Batista, Marcos Meuser; de Oliveira, Gabriel Melo; Britto, Constança Carvalho; Rodrigues, Ana Carolina Mondaine; Stephens, Chad E.; Boykin, David W.; Soeiro, Maria de Nazaré Correia

    2011-01-01

    Chagas disease caused by Trypanosoma cruzi is an important cause of mortality and morbidity in Latin America but no vaccines or safe chemotherapeutic agents are available. Combined therapy is envisioned as an ideal approach since it may enhance efficacy by acting upon different cellular targets, may reduce toxicity and minimize the risk of drug resistance. Therefore, we investigated the activity of benznidazole (Bz) in combination with the diamidine prodrug DB289 and in combination with the arylimidamide DB766 upon T. cruzi infection in vivo. The oral treatment of T.cruzi-infected mice with DB289 and Benznidazole (Bz) alone reduced the number of circulating parasites compared with untreated mice by about 70% and 90%, respectively. However, the combination of these two compounds decreased the parasitemia by 99% and protected against animal mortality by 100%, but without providing a parasitological cure. When Bz (p.o) was combined with DB766 (via ip route), at least a 99.5% decrease in parasitemia levels was observed. DB766+Bz also provided 100% protection against mice mortality while Bz alone provided about 87% protection. This combined therapy also reduced the tissular lesions induced by T. cruzi infection: Bz alone reduced GPT and CK plasma levels by about 12% and 78% compared to untreated mice group, the combination of Bz with DB766 resulted in a reduction of GPT and CK plasma levels of 56% and 91%. Cure assessment through hemocultive and PCR approaches showed that Bz did not provide a parasitological cure, however, DB766 alone or associated with Bz cured ≥13% of surviving animals. PMID:21814568

  14. Trypanosoma cruzi Disrupts Thymic Homeostasis by Altering Intrathymic and Systemic Stress-Related Endocrine Circuitries

    Science.gov (United States)

    Lepletier, Ailin; de Carvalho, Vinicius Frias; e Silva, Patricia Machado Rodrigues; Villar, Silvina; Pérez, Ana Rosa; Savino, Wilson; Morrot, Alexandre

    2013-01-01

    We have previously shown that experimental infection caused by Trypanosoma cruzi is associated with changes in the hypothalamus-pituitary-adrenal axis. Increased glucocorticoid (GC) levels are believed to be protective against the effects of acute stress during infection but result in depletion of CD4+CD8+ thymocytes by apoptosis, driving to thymic atrophy. However, very few data are available concerning prolactin (PRL), another stress-related hormone, which seems to be decreased during T. cruzi infection. Considering the immunomodulatory role of PRL upon the effects caused by GC, we investigated if intrathymic cross-talk between GC and PRL receptors (GR and PRLR, respectively) might influence T. cruzi-induced thymic atrophy. Using an acute experimental model, we observed changes in GR/PRLR cross-activation related with the survival of CD4+CD8+ thymocytes during infection. These alterations were closely related with systemic changes, characterized by a stress hormone imbalance, with progressive GC augmentation simultaneously to PRL reduction. The intrathymic hormone circuitry exhibited an inverse modulation that seemed to counteract the GC-related systemic deleterious effects. During infection, adrenalectomy protected the thymus from the increase in apoptosis ratio without changing PRL levels, whereas an additional inhibition of circulating PRL accelerated the thymic atrophy and led to an increase in corticosterone systemic levels. These results demonstrate that the PRL impairment during infection is not caused by the increase of corticosterone levels, but the opposite seems to occur. Accordingly, metoclopramide (MET)-induced enhancement of PRL secretion protected thymic atrophy in acutely infected animals as well as the abnormal export of immature and potentially autoreactive CD4+CD8+ thymocytes to the periphery. In conclusion, our findings clearly show that Trypanosoma cruzi subverts mouse thymus homeostasis by altering intrathymic and systemic stress

  15. Trypanosoma cruzi recognition by macrophages and muscle cells: perspectives after a 15-year study

    Directory of Open Access Journals (Sweden)

    Tania C. de Araujo-Jorge

    1992-01-01

    Full Text Available Macrophages and muscle cells are the main targets for invasion of Trypanosoma cruzi. Ultrastructural studies of this phenomenon in vitro showed that invasion occurs by endocytosis, with attachment and internalization being mediated by different components capable of recognizing epi-or trypomastigotes (TRY. A parasitophorus vacuole was formed in both cell types, thereafter fusing with lysosomes. Then, the mechanism of T. cruzi invasion of host cells (HC is essentially similar (during a primary infection in the abscence of a specific immune response, regardless of wether the target cell is a professional or a non-professional phagocytic cell. Using sugars, lectins, glycosidases, proteinases and proteinase inhibitors, we observed that the relative balance between exposed sialic acid and galactose/N-acetyl galactosamine (GAL residues on the TRY surface, determines the parasite's capacity to invade HC, and that lectin-mediated phagocytosis with GAL specificity is important for internalization of T. cruzi into macrophages. On the other hand, GAL on the surface to heart muscle cells participate on TRY adhesion. TRY need to process proteolytically both the HC and their own surface, to expose the necessary ligands and receptors that allow binding to, and internalization in the host cell. The diverse range of molecular mechanisms which the parasite could use to invade the host cell may correspond to differences in the available "receptors"on the surface of each specific cell type. Acute phase components, with lectin or proteinase inhibitory activities (a-macroglobulins, may also be involved in T. cruzi-host cell interaction.

  16. Perforin-expressing cytotoxic cells contribute to chronic cardiomyopathy in Trypanosoma cruzi infection.

    Science.gov (United States)

    Silverio, Jaline Coutinho; de-Oliveira-Pinto, Luzia Maria; da Silva, Andréa Alice; de Oliveira, Gabriel Melo; Lannes-Vieira, Joseli

    2010-02-01

    Understanding the dual participation of the immune response in controlling the invader and at the same time causing tissue damage might contribute to the design of effective new vaccines and therapies for Chagas disease. Perforin, a cytolytic protein product of killer cells, is involved in resistance to acute Trypanosoma cruzi infection. However, the contribution of perforin in parasite control and chronic chagasic cardiomyopathy is unclear. Perforin-positive cells were detected in the heart tissue during the acute and chronic phases of infection of C57BL/6 mice inoculated with low dose (10(2) parasites) of the Colombian T. cruzi strain. This protocol led to acute phase survival in both wild-type and perforin null (pfp(-/-)) mice lineages. During the chronic infection, parasitism and inducible nitric oxide synthase (iNOS) as well as interleukin (IL)-4+ and, mainly, interferon (IFN)-gamma+ cells were more elevated in the heart tissue of pfp(-/-) mice. Higher levels of circulating NO and anti-parasite immunoglobulin (Ig)G2c and IgG3, paralleled by a prominent frequency of IFN-gamma+ and IL-10+ splenocytes, were present in pfp(-/-)-infected mice. Therefore, although the perforin-dependent pathway plays a role, it is not crucial for anti-T. cruzi immunity and acute phase survival of mice infected with a low inoculum. Further, perforin deficiency resulted in lower activity of creatine kinase-muscle brain isoform (CK-MB) isoenzyme in serum and a more restricted connexin 43 loss, both of which are markers of the cardiomyocyte lesion. Moreover, perforin deficiency hampered the development of severe electrocardiographic abnormalities. Hence, our results corroborate that perforin-bearing cytotoxic cells might contribute to cardiomyocyte lesion and heart dysfunction during chronic T. cruzi infection, shedding light on immunopathogenesis of chronic chagasic cardiomyopathy.

  17. Trypanosoma cruzi: Entry Into Mammalian Host Cells and Parasitophorous Vacuole Formation

    Directory of Open Access Journals (Sweden)

    Emile Santos Barrias

    2013-08-01

    Full Text Available Trypanosoma cruzi, the causative agent of Chagas disease, is transmitted to vertebrate hosts by blood-sucking insects. This protozoan is an obligate intracellular parasite. The infective forms of the parasite are the metacyclic trypomastigotes, amastigotes and bloodstream trypomastigotes. The recognition between the parasite and mammalian host cell, involves numerous molecules present in both cell types, and similar to several intracellular pathogens, T.cruzi is internalized by host cells via multiple endocytic pathways. Morphological studies demonstrated that after the interaction of the infective forms of T.cruzi with phagocytic or non-phagocytic cell types, plasma membrane protrusions can form, showing similarity with those observed during canonical phagocytosis or macropinocytic events. Additionally, several molecules known to be molecular markers of membrane rafts, macropinocytosis and phagocytosis have been demonstrated to be present at the invasion site. These events may or may not depend on the host cell lysosomes and cytoskeleton. In addition, after penetration, components of the host endosomal-lysosomal system, such as early endosomes, late endosomes and lysosomes, participate in the formation of the nascent parasithophorous vacuole (VP. Dynamin, a molecule involved in vesicle formation, has been shown to be involved in the parasitophorous vacuole release from the host cell plasma membrane. This review focuses on the multiple pathways that T.cruzi can use to enter the host cells until complete VP formation. We will describe different endocytic processes, such as phagocytosis, macropinocytosis, endocytosis using membrane microdomains and clathrin-dependent endocytosis and show results that are consistent with their use by this smart parasite. We will also discuss other mechanisms that have been described, such as active penetration and the process that takes advantage of cell membrane wound repair.

  18. Structural Insights into Inhibition of Sterol 14[alpha]-Demethylase in the Human Pathogen Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Lepesheva, Galina I.; Hargrove, Tatiana Y.; Anderson, Spencer; Kleshchenko, Yuliya; Furtak, Vyacheslav; Wawrzak, Zdzislaw; Villalta, Fernando; Waterman, Michael R. (Vanderbilt); (NWU); (Meharry)

    2010-09-02

    Trypanosoma cruzi causes Chagas disease (American trypanosomiasis), which threatens the lives of millions of people and remains incurable in its chronic stage. The antifungal drug posaconazole that blocks sterol biosynthesis in the parasite is the only compound entering clinical trials for the chronic form of this infection. Crystal structures of the drug target enzyme, Trypanosoma cruzi sterol 14{alpha}-demethylase (CYP51), complexed with posaconazole, another antifungal agent fluconazole and an experimental inhibitor, (R)-4{prime}-chloro-N-(1-(2,4-dichlorophenyl)-2-(1H-imid-azol-1-yl)ethyl)biphenyl-4-carboxamide (VNF), allow prediction of important chemical features that enhance the drug potencies. Combined with comparative analysis of inhibitor binding parameters, influence on the catalytic activity of the trypanosomal enzyme and its human counterpart, and their cellular effects at different stages of the Trypanosoma cruzi life cycle, the structural data provide a molecular background to CYP51 inhibition and azole resistance and enlighten the path for directed design of new, more potent and selective drugs to develop an efficient treatment for Chagas disease.

  19. Optical detection of Trypanosoma cruzi in blood samples for diagnosis purpose

    Science.gov (United States)

    Alanis, Elvio; Romero, Graciela; Alvarez, Liliana; Martinez, Carlos C.; Basombrio, Miguel A.

    2004-10-01

    An optical method for detection of Trypanosoma Cruzi (T. cruzi) parasites in blood samples of mice infected with Chagas disease is presented. The method is intended for use in human blood, for diagnosis purposes. A thin layer of blood infected by T. cruzi parasites, in small concentrations, is examined in an interferometric microscope in which the images of the vision field are taken by a CCD camera and temporarily stored in the memory of a host computer. The whole sample is scanned displacing the microscope plate by means of step motors driven by the computer. Several consecutive images of the same field are taken and digitally processed by means of image temporal differentiation in order to detect if a parasite is eventually present in the field. Each field of view is processed in the same fashion, until the full area of the sample is covered or until a parasite is detected, in which case an acoustical warning is activated and the corresponding image is displayed permitting the technician to corroborate the result visually. A discussion of the reliability of the method as well as a comparison with other well established techniques are presented.

  20. Trypanosoma cruzi benznidazole susceptibility in vitro does not predict the therapeutic outcome of human Chagas disease

    Directory of Open Access Journals (Sweden)

    Margoth Moreno

    2010-11-01

    Full Text Available Therapeutic failure of benznidazole (BZ is widely documented in Chagas disease and has been primarily associated with variations in the drug susceptibility of Trypanosoma cruzi strains. In humans, therapeutic success has been assessed by the negativation of anti-T. cruzi antibodies, a process that may take up to 10 years. A protocol for early screening of the drug resistance of infective strains would be valuable for orienting physicians towards alternative therapies, with a combination of existing drugs or new anti-T. cruzi agents. We developed a procedure that couples the isolation of parasites by haemoculture with quantification of BZ susceptibility in the resultant epimastigote forms. BZ activity was standardized with reference strains, which showed IC50 to BZ between 7.6-32 µM. The assay was then applied to isolates from seven chronic patients prior to administration of BZ therapy. The IC50 of the strains varied from 15.6 ± 3-51.4 ± 1 µM. Comparison of BZ susceptibility of the pre-treatment isolates of patients considered cured by several criteria and of non-cured patients indicates that the assay does not predict therapeutic outcome. A two-fold increase in BZ resistance in the post-treatment isolates of two patients was verified. Based on the profile of nine microsatellite loci, sub-population selection in non-cured patients was ruled out.

  1. In vitro drug susceptibility of two strains of the wildlife trypanosome, Trypanosoma copemani: A comparison with Trypanosoma cruzi.

    Science.gov (United States)

    Botero, Adriana; Keatley, Sarah; Peacock, Christopher; Thompson, R C Andrew

    2017-04-01

    Trypanosomes are blood protozoan parasites that are capable of producing illness in the vertebrate host. Within Australia, several native Trypanosoma species have been described infecting wildlife. However, only Trypanosoma copemani has been associated with pathological lesions in wildlife hosts and more recently has been associated with the drastic decline of the critically endangered woylie (Bettongia penicillata). The impact that some trypanosomes have on the health of the vertebrate host has led to the development of numerous drug compounds that could inhibit the growth or kill the parasite. This study investigated and compared the in vitro susceptibility of two strains of T. copemani (G1 and G2) and one strain of Trypanosoma cruzi (10R26) against drugs that are known to show trypanocidal activity (benznidazole, posaconazole, miltefosine and melarsoprol) and against four lead compounds, two fenarimols and two pyridine derivatives (EPL-BS1937, EPL-BS2391, EPL-BS0967, and EPL-BS1246), that have been developed primarily against T.cruzi. The in vitro cytotoxicity of all drugs against L6 rat myoblast cells was also assessed. Results showed that both strains of T. copemani were more susceptible to all drugs and lead compounds than T. cruzi, with all IC50 values in the low and sub-μM range for both species. Melarsoprol and miltefosine exhibited the highest drug activity against both T. copemani and T. cruzi, but they also showed the highest toxicity in L6 cells. Interestingly, both fenarimol and pyridine derivative compounds were more active against T. copemani and T. cruzi than the reference drugs benznidazole and posaconazole. T. copemani strains exhibited differences in susceptibility to all drugs demonstrating once again considerable differences in their biological behaviour. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Hosts and vectors of Trypanosoma cruzi discrete typing units in the Chagas disease endemic region of the Paraguayan Chaco.

    Science.gov (United States)

    Acosta, Nidia; López, Elsa; Lewis, Michael D; Llewellyn, Martin S; Gómez, Ana; Román, Fabiola; Miles, Michael A; Yeo, Matthew

    2017-06-01

    Active Trypanosoma cruzi transmission persists in the Gran Chaco region, which is considered hyperendemic for Chagas disease. Understanding domestic and sylvatic transmission cycles and therefore the relationship between vectors and mammalian hosts is crucial to designing and implementing improved effective control strategies. Here we describe the species of triatomine vectors and the sylvatic mammal reservoirs of T. cruzi, in different localities of the Paraguayan and Bolivian Chaco. We identify the T. cruzi genotypes discrete typing units (DTUs) and provide a map of their geographical distribution. A total of 1044 triatomines and 138 sylvatic mammals were captured. Five per cent of the triatomines were microscopically positive for T. cruzi (55 Triatoma infestans from Paraguay and one sylvatic Triatoma guasayana from Bolivia) and 17 animals (12·3%) comprising eight of 28 (28·5%) Dasypus novemcinctus, four of 27 (14·8%) Euphractus sexcinctus, three of 64 (4·7%) Chaetophractus spp. and two of 14 (14·3%) Didelphis albiventris. The most common DTU infecting domestic triatomine bugs was TcV (64%), followed by TcVI (28%), TcII (6·5%) and TcIII (1·5%). TcIII was overwhelmingly associated with armadillo species. We confirm the primary role of T. infestans in domestic transmission, armadillo species as the principal sylvatic hosts of TcIII, and consider the potential risk of TcIII as an agent of Chagas disease in the Chaco.

  3. TcruziDB, an Integrated Database, and the WWW Information Server for the Trypanosoma cruzi Genome Project

    Directory of Open Access Journals (Sweden)

    Degrave Wim

    1997-01-01

    Full Text Available Data analysis, presentation and distribution is of utmost importance to a genome project. A public domain software, ACeDB, has been chosen as the common basis for parasite genome databases, and a first release of TcruziDB, the Trypanosoma cruzi genome database, is available by ftp from ftp://iris.dbbm.fiocruz.br/pub/genomedb/TcruziDB as well as versions of the software for different operating systems (ftp://iris.dbbm.fiocruz.br/pub/unixsoft/. Moreover, data originated from the project are available from the WWW server at http://www.dbbm.fiocruz.br. It contains biological and parasitological data on CL Brener, its karyotype, all available T. cruzi sequences from Genbank, data on the EST-sequencing project and on available libraries, a T. cruzi codon table and a listing of activities and participating groups in the genome project, as well as meeting reports. T. cruzi discussion lists (tcruzi-l@iris.dbbm.fiocruz.br and tcgenics@iris.dbbm.fiocruz.br are being maintained for communication and to promote collaboration in the genome project

  4. Unconventional Pro-inflammatory CD4+ T Cell Response in B Cell-Deficient Mice Infected with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Melisa Gorosito Serrán

    2017-11-01

    Full Text Available Chagas disease, caused by the parasite Trypanosoma cruzi, is endemic in Latin America but has become a global public health concern by migration of infected people. It has been reported that parasite persistence as well as the intensity of the inflammatory immune response are determinants of the clinical manifestations of the disease. Even though inflammation is indispensable for host defense, when deregulated, it can contribute to tissue injury and organ dysfunction. Here, we report the importance of B cells in conditioning T cell response in T. cruzi infection. Mice deficient in mature B cells (muMT mice infected with T. cruzi exhibited an increase in plasma TNF concentration, TNF-producing CD4+ T cells, and mortality. The increase in TNF-producing CD4+ T cells was accompanied by a reduction in IFNγ+CD4+ T cells and a decrease of the frequency of regulatory Foxp3+, IL-10+, and IL17+CD4+ T cells populations. The CD4+ T cell population activated by T. cruzi infection, in absence of mature B cells, had a high frequency of Ly6C+ cells and showed a lower expression of inhibitory molecules such as CTLA-4, PD-1, and LAG3. CD4+ T cells from infected muMT mice presented a high frequency of CD62LhiCD44− cells, which is commonly associated with a naïve phenotype. Through transfer experiments we demonstrated that CD4+ T cells from infected muMT mice were able to condition the CD4+ T cells response from infected wild-type mice. Interestingly, using Blimp-flox/flox-CD23icre mice we observed that in absence of plasmablast/plasma cell T. cruzi-infected mice exhibited a higher number of TNF-producing CD4+ T cells. Our results showed that the absence of B cells during T. cruzi infection affected the T cell response at different levels and generated a favorable scenario for unconventional activation of CD4+ T cell leading to an uncontrolled effector response and inflammation. The product of B cell differentiation, the plasmablast/plasma cells, could be able

  5. Recombination-driven generation of the largest pathogen repository of antigen variants in the protozoan Trypanosoma cruzi.

    Science.gov (United States)

    Weatherly, D Brent; Peng, Duo; Tarleton, Rick L

    2016-09-13

    The protozoan parasite Trypanosoma cruzi, causative agent of Chagas disease, depends upon a cell surface-expressed trans-sialidase (ts) to avoid activation of complement-mediated lysis and to enhance intracellular invasion. However these functions alone fail to account for the size of this gene family in T. cruzi, especially considering that most of these genes encode proteins lacking ts enzyme activity. Previous whole genome sequencing of the CL Brener clone of T. cruzi identified ~1400 ts variants, but left many partially assembled sequences unannotated. In the current study we reevaluated the trans-sialidase-like sequences in this reference strain, identifying an additional 1779 full-length and partial ts genes with their important features annotated, and confirming the expression of previously annotated "pseudogenes" and newly annotated ts family members. Multiple EM for Motif Elicitation (MEME) analysis allowed us to generate a model T. cruzi ts (TcTS) based upon the most conserved motif patterns and demonstrated that a common motif order is highly conserved among ts family members. Using a newly developed pipeline for the analysis of recombination within large gene families, we further demonstrate that TcTS family members are undergoing frequent recombination, generating new variants from the thousands of functional and non-functional ts gene segments but retaining the overall structure of the core TcTS family members. The number and variety as well as high recombination frequency of TcTS family members supports strong evolutionary pressure, probably exerted by immune selection, for continued variation in ts sequences in T. cruzi, and thus for a unique immune evasion mechanism for the large ts gene family.

  6. Role of Δ1-pyrroline-5-carboxylate dehydrogenase supports mitochondrial metabolism and host-cell invasion of Trypanosoma cruzi.

    Science.gov (United States)

    Mantilla, Brian S; Paes, Lisvane S; Pral, Elizabeth M F; Martil, Daiana E; Thiemann, Otavio H; Fernández-Silva, Patricio; Bastos, Erick L; Silber, Ariel M

    2015-03-20

    Proline is crucial for energizing critical events throughout the life cycle of Trypanosoma cruzi, the etiological agent of Chagas disease. The proline breakdown pathway consists of two oxidation steps, both of which produce reducing equivalents as follows: the conversion of proline to Δ(1)-pyrroline-5-carboxylate (P5C), and the subsequent conversion of P5C to glutamate. We have identified and characterized the Δ(1)-pyrroline-5-carboxylate dehydrogenase from T. cruzi (TcP5CDH) and report here on how this enzyme contributes to a central metabolic pathway in this parasite. Size-exclusion chromatography, two-dimensional gel electrophoresis, and small angle x-ray scattering analysis of TcP5CDH revealed an oligomeric state composed of two subunits of six protomers. TcP5CDH was found to complement a yeast strain deficient in PUT2 activity, confirming the enzyme's functional role; and the biochemical parameters (Km, kcat, and kcat/Km) of the recombinant TcP5CDH were determined, exhibiting values comparable with those from T. cruzi lysates. In addition, TcP5CDH exhibited mitochondrial staining during the main stages of the T. cruzi life cycle. mRNA and enzymatic activity levels indicated the up-regulation (6-fold change) of TcP5CDH during the infective stages of the parasite. The participation of P5C as an energy source was also demonstrated. Overall, we propose that this enzymatic step is crucial for the viability of both replicative and infective forms of T. cruzi. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Role of dystrophin in acute Trypanosoma cruzi infection.

    Science.gov (United States)

    Malvestio, Lygia M; Celes, Mara R N; Milanezi, Cristiane; Silva, João S; Jelicks, Linda A; Tanowitz, Herbert B; Rossi, Marcos A; Prado, Cibele M

    2014-09-01

    Previous studies have demonstrated loss/reduction of dystrophin in cardiomyocytes in both acute and chronic stages of experimental Trypanosoma cruzi (T. cruzi) infection in mice. The mechanisms responsible for dystrophin disruption in the hearts of mice acutely infected with T. cruzi are not completely understood. The present in vivo and in vitro studies were undertaken to evaluate the role of inflammation in dystrophin disruption and its correlation with the high mortality rate during acute infection. C57BL/6 mice were infected with T. cruzi and killed 14, 20 and 26 days post infection (dpi). The intensity of inflammation, cardiac expression of dystrophin, calpain-1, NF-κB, TNF-α, and sarcolemmal permeability were evaluated. Cultured neonatal murine cardiomyocytes were incubated with serum, collected at the peak of cytokine production and free of parasites, from T. cruzi-infected mice and dystrophin, calpain-1, and NF-κB expression analyzed. Dystrophin disruption occurs at the peak of mortality and inflammation and is associated with increased expression of calpain-1, TNF-α, NF-κB, and increased sarcolemmal permeability in the heart of T. cruzi-infected mice at 20 dpi confirmed by in vitro studies. The peak of mortality occurred only when significant loss of dystrophin in the hearts of infected animals occurred, highlighting the correlation between inflammation, dystrophin loss and mortality. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Resultados de un programa de control de calidad externo del tamizaje serológico de anticuerpos contra Trypanosoma cruzi en donantes de sangre de Brasil

    Directory of Open Access Journals (Sweden)

    Amadeo Sáez-Alquézar

    2003-03-01

    Full Text Available OBJETIVOS: A partir de 1995 en Brasil se iniciaron programas de control de calidad externo de laboratorios de serología (PCCES abiertos a la participación de laboratorios de bancos de sangre públicos y privados. Estos programas se han puesto en práctica tres veces al año desde 1995 y cuentan con la participación de más de 100 entidades. El objetivo de este trabajo es analizar los resultados de los ocho últimos programas de evaluación del tamizaje serológico para la enfermedad de Chagas, que se realizaron entre abril de 1999 y agosto de 2001. MÉTODOS: Participaron en los ocho programas laboratorios de serología de instituciones públicas y privadas. El número de laboratorios participantes que entregó los resultados en cada uno de los ocho PCCES fue de 94, 90, 85, 94, 100, 103, 102 y 116, respectivamente. Al inicio de cada PCCES se envió un panel enmascarado a cada institución participante, con un plazo de 60 días para informar los resultados del procesamiento de las muestras. Se utilizaron pruebas de inmunoadsorción enzimática (ELISA, inmunofluorescencia indirecta (IFI y hemaglutinación indirecta (HAI. Posteriormente, cada institución recibió del centro organizador (PANEL la clave con los resultados correctos para su autoevaluación. Los paneles estaban compuestos por 24 muestras de sueros con diferentes reactividades a los marcadores obligatorios en el tamizaje serológico de donantes de sangre en Brasil, incluido el de muestras negativas. RESULTADOS: La técnica de ELISA fue la más utilizada en el tamizaje (92%-98%. La estrategia de tamizaje más usada por los laboratorios participantes fue la combinación de una prueba de ELISA y una de HAI (58%-83%. La mayoría de los laboratorios participantes obtuvieron resultados correctos en los diferentes programas sin resultados negativos falsos (83,6%-98,1%. De las 5 406 muestras de suero positivas a anti-Trypanosoma cruzi que hubo en los ocho programas, 85 (1,6% fueron

  9. EPIDEMIOLOGÍA MOLECULAR DE TRYPANOSOMA CRUZI

    Directory of Open Access Journals (Sweden)

    Felipe Guhl

    2013-01-01

    Full Text Available La enfermedad de Chagas causada por el parásito Trypanosoma cruzi es una zoonosis compleja, ampliamente distribuida en el continente americano. La infección puede ser adquirida a través de las heces de insectos triatominos, transfusión de sangre, trasplante de órganos, vía oral, por transmisión congénita y por accidentes de laboratorio. El completo entendimiento de la etiología y epidemiología de la enfermedad de Chagas a través de su distribución geográfica es complejo y permanece bajo intensa investigación hasta la actualidad. Los recientes estudios sobre la variabilidad genética del parásito han dado nuevas luces de los diferentes escenarios de los ciclos de transmisión de la enfermedad y su patogénesis en humanos. El propósito principal para la caracterización molecular de T.cruzi y sus múltiples genotipos está dirigido hacia su asociación con la clínica y la patogenesis de la enfermedad, así como al esclarecimiento de los diferentes escenarios de transmisión y los aspectos coevolutivos relacionados con reservorios e insectos vectores. La caracterización molecular de los diferentes aislamientos a partir de humanos, insectos y reservorios, ha permitido identificar la amplia variabilidad genética del parásito, abriendo nuevos caminos hacia la búsqueda de nuevos blancos terapéuticos y pruebas diagnósticas más específicas que contribuyan a mitigar la enfermedad de Chagas.

  10. CD8+ T-cells expressing interferon gamma or perforin play antagonistic roles in heart injury in experimental Trypanosoma cruzi-elicited cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Jaline Coutinho Silverio

    Full Text Available In Chagas disease, CD8(+ T-cells are critical for the control of Trypanosoma cruzi during acute infection. Conversely, CD8(+ T-cell accumulation in the myocardium during chronic infection may cause tissue injury leading to chronic chagasic cardiomyopathy (CCC. Here we explored the role of CD8(+ T-cells in T. cruzi-elicited heart injury in C57BL/6 mice infected with the Colombian strain. Cardiomyocyte lesion evaluated by creatine kinase-MB isoenzyme activity levels in the serum and electrical abnormalities revealed by electrocardiogram were not associated with the intensity of heart parasitism and myocarditis in the chronic infection. Further, there was no association between heart injury and systemic anti-T. cruzi CD8(+ T-cell capacity to produce interferon-gamma (IFNγ and to perform specific cytotoxicity. Heart injury, however, paralleled accumulation of anti-T. cruzi cells in the cardiac tissue. In T. cruzi infection, most of the CD8(+ T-cells segregated into IFNγ(+ perforin (Pfn(neg or IFNγ(negPfn(+ cell populations. Colonization of the cardiac tissue by anti-T. cruzi CD8(+Pfn(+ cells paralleled the worsening of CCC. The adoptive cell transfer to T. cruzi-infected cd8(-/- recipients showed that the CD8(+ cells from infected ifnγ(-/-pfn(+/+ donors migrate towards the cardiac tissue to a greater extent and caused a more severe cardiomyocyte lesion than CD8(+ cells from ifnγ(+/+pfn(-/- donors. Moreover, the reconstitution of naïve cd8(-/- mice with CD8(+ cells from naïve ifnγ(+/+pfn(-/- donors ameliorated T. cruzi-elicited heart injury paralleled IFNγ(+ cells accumulation, whereas reconstitution with CD8(+ cells from naïve ifnγ(-/-pfn(+/+ donors led to an aggravation of the cardiomyocyte lesion, which was associated with the accumulation of Pfn(+ cells in the cardiac tissue. Our data support a possible antagonist effect of CD8(+Pfn(+ and CD8(+IFNγ(+ cells during CCC. CD8(+IFNγ(+ cells may exert a beneficial role, whereas CD8(+Pfn

  11. CD8+ T-Cells Expressing Interferon Gamma or Perforin Play Antagonistic Roles in Heart Injury in Experimental Trypanosoma Cruzi-Elicited Cardiomyopathy

    Science.gov (United States)

    Cipitelli, Márcio da Costa; Vinagre, Nathália Ferreira; Rodrigues, Maurício Martins; Gazzinelli, Ricardo Tostes; Lannes-Vieira, Joseli

    2012-01-01

    In Chagas disease, CD8+ T-cells are critical for the control of Trypanosoma cruzi during acute infection. Conversely, CD8+ T-cell accumulation in the myocardium during chronic infection may cause tissue injury leading to chronic chagasic cardiomyopathy (CCC). Here we explored the role of CD8+ T-cells in T. cruzi-elicited heart injury in C57BL/6 mice infected with the Colombian strain. Cardiomyocyte lesion evaluated by creatine kinase-MB isoenzyme activity levels in the serum and electrical abnormalities revealed by electrocardiogram were not associated with the intensity of heart parasitism and myocarditis in the chronic infection. Further, there was no association between heart injury and systemic anti-T. cruzi CD8+ T-cell capacity to produce interferon-gamma (IFNγ) and to perform specific cytotoxicity. Heart injury, however, paralleled accumulation of anti-T. cruzi cells in the cardiac tissue. In T. cruzi infection, most of the CD8+ T-cells segregated into IFNγ+ perforin (Pfn)neg or IFNγnegPfn+ cell populations. Colonization of the cardiac tissue by anti-T. cruzi CD8+Pfn+ cells paralleled the worsening of CCC. The adoptive cell transfer to T. cruzi-infected cd8 −/− recipients showed that the CD8+ cells from infected ifnγ−/− pfn +/+ donors migrate towards the cardiac tissue to a greater extent and caused a more severe cardiomyocyte lesion than CD8+ cells from ifnγ +/+ pfn −/− donors. Moreover, the reconstitution of naïve cd8 −/− mice with CD8+ cells from naïve ifnγ +/+ pfn −/− donors ameliorated T. cruzi-elicited heart injury paralleled IFNγ+ cells accumulation, whereas reconstitution with CD8+ cells from naïve ifnγ −/− pfn +/+ donors led to an aggravation of the cardiomyocyte lesion, which was associated with the accumulation of Pfn+ cells in the cardiac tissue. Our data support a possible antagonist effect of CD8+Pfn+ and CD8+IFNγ+ cells during CCC. CD8+IFNγ+ cells may exert a beneficial role, whereas CD8+Pfn+ may play a

  12. Specific antibodies induce apoptosis in Trypanosoma cruzi epimastigotes.

    Science.gov (United States)

    Fernández-Presas, Ana María; Tato, Patricia; Becker, Ingeborg; Solano, Sandra; Copitin, Natalia; Kopitin, Natalia; Berzunza, Miriam; Willms, Kaethe; Hernández, Joselin; Molinari, José Luis

    2010-05-01

    The susceptibility of Trypanosoma cruzi epimastigotes to lysis by normal or immune sera in a complement-dependent reaction has been reported. Mouse immune sera depleted complement-induced damage in epimastigotes characterized by morphological changes and death. The purpose of this work was to study the mechanism of death in epimastigotes exposed to decomplemented mouse immune serum. Epimastigotes were maintained in RPMI medium. Immune sera were prepared in mice by immunization with whole crude epimastigote extracts. Viable epimastigotes were incubated with decomplemented normal or immune sera at 37 degrees C. By electron microscopy, agglutinated parasites showed characteristic patterns of membrane fusion between two or more parasites; this fusion also produced interdigitation of the subpellicular microtubules. Apoptosis was determined by flow cytometry using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and annexin V assays. Nuclear features were examined by 4'-,6-diamidino-2'-phenylindole diHCI cytochemistry that demonstrated apoptotic nuclear condensation. Caspase activity was also measured. TUNEL results showed that parasites incubated with decomplemented immune sera took up 26% of specific fluorescence as compared to 1.3% in parasites incubated with decomplemented normal sera. The Annexin-V-Fluos staining kit revealed that epimastigotes incubated with decomplemented immune sera exposed phosphatidylserine on the external leaflet of the plasma membrane. The incubation of parasites with immune sera showed caspase 3 activity. We conclude that specific antibodies are able to induce agglutination and apoptosis in epimastigotes, although the pathway is not elucidated.

  13. Sympatry influence in the interaction of Trypanosoma cruzi with triatomine.

    Science.gov (United States)

    Dworak, Elaine Schultz; Araújo, Silvana Marques de; Gomes, Mônica Lúcia; Massago, Miyoko; Ferreira, Érika Cristina; Toledo, Max Jean de Ornelas

    2017-01-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is widely distributed in nature, circulating between triatomine bugs and sylvatic mammals, and has large genetic diversity. Both the vector species and the genetic lineages of T. cruzi present a varied geographical distribution. This study aimed to verify the influence of sympatry in the interaction of T. cruzi with triatomines. Methods: The behavior of the strains PR2256 (T. cruzi II) and AM14 (T. cruzi IV) was studied in Triatoma sordida (TS) and Rhodnius robustus (RR). Eleven fifth-stage nymphs were fed by artificial xenodiagnosis with 5.6 × 103 blood trypomastigotes/0.1mL of each T. cruzi strain. Every 20 days, their excreta were examined for up to 100 days, and every 30 days, the intestinal content was examined for up to 120 days, by parasitological (fresh examination and differential count with Giemsa-stained smears) and molecular (PCR) methods. Rates of infectivity, metacyclogenesis and mortality, and mean number of parasites per insect and of excreted parasites were determined. Sympatric groups RR+AM14 and TS+PR2256 showed higher values of the four parameters, except for mortality rate, which was higher (27.3%) in the TS+AM14 group. General infectivity was 72.7%, which was mainly proven by PCR, showing the following decreasing order: RR+AM14 (100%), TS+PR2256 (81.8%), RR+PR2256 (72.7%) and TS+AM14 (36.4%). Our working hypothesis was confirmed once higher infectivity and vector capacity (flagellate production and elimination of infective metacyclic forms) were recorded in the groups that contained sympatric T. cruzi lineages and triatomine species.

  14. Secretome analysis of Trypanosoma cruzi by proteomics studies.

    Directory of Open Access Journals (Sweden)

    Jean-Yves Brossas

    Full Text Available Chagas disease is a debilitating often fatal disease resulting from infection by the protozoan parasite Trypanosoma cruzi. Chagas disease is endemic in 21 countries of the Americas, and it is an emerging disease in other countries as a result of migration. Given the chronic nature of the infection where intracellular parasites persist for years, the diagnosis of T. cruzi by direct detection is difficult, whereas serologic tests though sensitive may yield false-positive results. The development of new rapid test based on the identification of soluble parasitic antigens in serum would be a real innovation in the diagnosis of Chagas disease.To identify new soluble biomarkers that may improve diagnostic tests, we investigated the proteins secreted by T. cruzi using mass spectrometric analyses of conditioned culture media devoid of serum collected during the emergence of trypomastigotes from infected Vero cells. In addition, we compared the secretomes of two T. cruzi strains from DTU Tc VI (VD and CL Brener.Analysis of the secretome collected during the emergence of trypomastigotes from Vero cells led to the identification of 591 T. cruzi proteins. Three hundred sixty three proteins are common to both strains and most belong to different multigenic super families (i.e. TcS, GP63, MASP, and DGF1. Ultimately we have established a list of 94 secreted proteins, common to both DTU Tc VI strains that do not belong to members of multigene families.This study provides the first comparative analysis of the secretomes from two distinct T. cruzi strains of DTU TcVI. This led us to identify a subset of common secreted proteins that could potentially serve as serum markers for T. cruzi infection. Their potential could now be evaluated, with specific antibodies using sera collected from patients and residents from endemic regions.

  15. Secretome analysis of Trypanosoma cruzi by proteomics studies.

    Science.gov (United States)

    Brossas, Jean-Yves; Gulin, Julián Ernesto Nicolás; Bisio, Margarita Maria Catalina; Chapelle, Manuel; Marinach-Patrice, Carine; Bordessoules, Mallaury; Palazon Ruiz, George; Vion, Jeremy; Paris, Luc; Altcheh, Jaime; Mazier, Dominique

    2017-01-01

    Chagas disease is a debilitating often fatal disease resulting from infection by the protozoan parasite Trypanosoma cruzi. Chagas disease is endemic in 21 countries of the Americas, and it is an emerging disease in other countries as a result of migration. Given the chronic nature of the infection where intracellular parasites persist for years, the diagnosis of T. cruzi by direct detection is difficult, whereas serologic tests though sensitive may yield false-positive results. The development of new rapid test based on the identification of soluble parasitic antigens in serum would be a real innovation in the diagnosis of Chagas disease. To identify new soluble biomarkers that may improve diagnostic tests, we investigated the proteins secreted by T. cruzi using mass spectrometric analyses of conditioned culture media devoid of serum collected during the emergence of trypomastigotes from infected Vero cells. In addition, we compared the secretomes of two T. cruzi strains from DTU Tc VI (VD and CL Brener). Analysis of the secretome collected during the emergence of trypomastigotes from Vero cells led to the identification of 591 T. cruzi proteins. Three hundred sixty three proteins are common to both strains and most belong to different multigenic super families (i.e. TcS, GP63, MASP, and DGF1). Ultimately we have established a list of 94 secreted proteins, common to both DTU Tc VI strains that do not belong to members of multigene families. This study provides the first comparative analysis of the secretomes from two distinct T. cruzi strains of DTU TcVI. This led us to identify a subset of common secreted proteins that could potentially serve as serum markers for T. cruzi infection. Their potential could now be evaluated, with specific antibodies using sera collected from patients and residents from endemic regions.

  16. Miocardite no macaco Cebus após inoculações repetidas com Schizotrypanum cruzi

    Directory of Open Access Journals (Sweden)

    C. Magarinos Torres

    1958-07-01

    inoculated, four times through the intact ocular conjunctiva (one time with infected blood, and three times with dejections from infected bugs, and five times injected in the skin (four times with contaminated blood, and one time with dejections from infected bugs, and necropsied after 233 days. The microscopic picture was uniform presenting, however, considerable individual variations, and was represented by diffuse interstitial myocarditis, frequently more (marked in the right ventricle base of the heart, accompanied by lymphatic stasis. The infiltration consists of macrophages, plasma cells and lymphocytes, the cellular reaction having sometimes a perivascular distribution, involving the auriculo-ventricular system of conduction, endocardium, epicardium and cardiac sympathetic gangliae. The loss of cardiac muscle fibers was always minimal. Leishmanial forms of S. cruzi in myocardial fibers are scanty and, in two cases, absent. Fatty necrosis in the epicardium was noted in two cases. Obliterative changes of medium-sized branches of coronary arteries (hypersensitivity reaction? and multiple infarcts of the myocardium was found in one instance. The diffuse myocarditis induced by S. cruzi in several species of monkeys of the genus Cebus observed after 233 days (several inoculations and 252 days (single inoculation is not associated with disseminated fibrosis such as is reported in chronic cases of Chagas' disease. Definite capacity of reversion is another characteristic of the interstitial myocarditis observed in the series of Cebus monkeys here studied. The impression was gained that repeated inoculation with S. cruzi may influence the myocardial changes differently according to the period between the reinoculations. A short period after the first inoculation is followed by more marked changes, while long periods are accompanied by slight changes, which suggests an active immunisation produced by the first inoculation. More data are required, however before a definite

  17. A Flap Endonuclease (TcFEN1) Is Involved in Trypanosoma cruzi Cell Proliferation, DNA Repair, and Parasite Survival.

    Science.gov (United States)

    Ponce, Ivan; Aldunate, Carmen; Valenzuela, Lucia; Sepúlveda, Sofia; Garrido, Gilda; Kemmerling, Ulrike; Cabrera, Gonzalo; Galanti, Norbel

    2017-07-01

    FLAP endonucleases (FEN) are involved both in DNA replication and repair by processing DNA intermediaries presenting a nucleotide flap using its phosphodiesterase activity. In spite of these important functions in DNA metabolism, this enzyme was not yet studied in Trypanosomatids. Trypanosoma cruzi, the ethiological agent of Chagas disease, presents two dividing cellular forms (epimastigote and amastigote) and one non-proliferative, infective form (trypomastigote). The parasite survives DNA damage produced by reactive species generated in its hosts. The activity of a T. cruzi FLAP endonuclease (TcFEN1) was determined in the three cellular forms of the parasite using a DNA substrate generated by annealing three different oligonucleotides to form a double-stranded DNA with a 5' flap in the middle. This activity showed optimal pH and temperature similar to other known FENs. The substrate cut by the flap endonuclease activity could be ligated by the parasite generating a repaired DNA product. A DNA flap endonuclease coding sequence found in the T. cruzi genome (TcFEN1) was cloned, inserted in parasite expression vectors and transfected to epimastigotes. The purified native recombinant protein showed DNA flap endonuclease activity. This endonuclease was found located in the parasite nucleus of transfected epimastigotes and its over-expression increased both parasite proliferation and survival to H 2 O 2 . The presence of a flap endonuclease activity in T. cruzi and its nuclear location are indicative of the participation of this enzyme in DNA processing of flap fragments during DNA replication and repair in this parasite of ancient evolutive origin. J. Cell. Biochem. 118: 1722-1732, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Crystal Structure of Triosephosphate Isomerase from Trypanosoma cruzi in Hexane

    Science.gov (United States)

    Gao, Xiu-Gong; Maldonado, Ernesto; Perez-Montfort, Ruy; Garza-Ramos, Georgina; Tuena de Gomez-Puyou, Marietta; Gomez-Puyou, Armando; Rodriguez-Romero, Adela

    1999-08-01

    To gain insight into the mechanisms of enzyme catalysis in organic solvents, the x-ray structure of some monomeric enzymes in organic solvents was determined. However, it remained to be explored whether the structure of oligomeric proteins is also amenable to such analysis. The field acquired new perspectives when it was proposed that the x-ray structure of enzymes in nonaqueous media could reveal binding sites for organic solvents that in principle could represent the starting point for drug design. Here, a crystal of the dimeric enzyme triosephosphate isomerase from the pathogenic parasite Trypanosoma cruzi was soaked and diffracted in hexane and its structure solved at 2- angstrom resolution. Its overall structure and the dimer interface were not altered by hexane. However, there were differences in the orientation of the side chains of several amino acids, including that of the catalytic Glu-168 in one of the monomers. No hexane molecules were detected in the active site or in the dimer interface. However, three hexane molecules were identified on the surface of the protein at sites, which in the native crystal did not have water molecules. The number of water molecules in the hexane structure was higher than in the native crystal. Two hexanes localized at <4 angstrom from residues that form the dimer interface; they were in close proximity to a site that has been considered a potential target for drug design.

  19. Trypanosoma cruzi: Inhibition of infection of human monocytes by aspirin.

    Science.gov (United States)

    Carvalho de Freitas, Rafael; Lonien, Sandra Cristina Heim; Malvezi, Aparecida Donizette; Silveira, Guilherme Ferreira; Wowk, Pryscilla Fanini; da Silva, Rosiane Valeriano; Yamauchi, Lucy Megumi; Yamada-Ogatta, Sueli Fumie; Rizzo, Luiz Vicente; Bordignon, Juliano; Pinge-Filho, Phileno

    2017-11-01

    Cell invasion by Trypanosoma cruzi and its intracellular replication are essential for progression of the parasite life cycle and development of Chagas disease. Prostaglandin E2 (PGE 2 ) and other eicosanoids potently modulate host response and contribute to Chagas disease progression. In this study, we evaluated the effect of aspirin (ASA), a non-selective cyclooxygenase (COX) inhibitor on the T. cruzi invasion and its influence on nitric oxide and cytokine production in human monocytes. The pretreatment of monocytes with ASA or SQ 22536 (adenylate-cyclase inhibitor) induced a marked inhibition of T. cruzi infection. On the other hand, the treatment of monocytes with SQ 22536 after ASA restored the invasiveness of T. cruzi. This reestablishment was associated with a decrease in nitric oxide and PGE 2 production, and also an increase of interleukin-10 and interleukin-12 by cells pre-treated with ASA. Altogether, these results reinforce the idea that the cyclooxygenase pathway plays a fundamental role in the process of parasite invasion in an in vitro model of T. cruzi infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Inhibitors of Trypanosoma cruzi Sir2 related protein 1 as potential drugs against Chagas disease.

    Directory of Open Access Journals (Sweden)

    Luís Gaspar

    2018-01-01

    Full Text Available Chagas disease remains one of the most neglected diseases in the world despite being the most important parasitic disease in Latin America. The characteristic chronic manifestation of chagasic cardiomyopathy is the region's leading cause of heart-related illness, causing significant mortality and morbidity. Due to the limited available therapeutic options, new drugs are urgently needed to control the disease. Sirtuins, also called Silent information regulator 2 (Sir2 proteins have long been suggested as interesting targets to treat different diseases, including parasitic infections. Recent studies on Trypanosoma cruzi sirtuins have hinted at the possibility to exploit these enzymes as a possible drug targets. In the present work, the T. cruzi Sir2 related protein 1 (TcSir2rp1 is genetically validated as a drug target and biochemically characterized for its NAD+-dependent deacetylase activity and its inhibition by the classic sirtuin inhibitor nicotinamide, as well as by bisnaphthalimidopropyl (BNIP derivatives, a class of parasite sirtuin inhibitors. BNIPs ability to inhibit TcSir2rp1, and anti-parasitic activity against T. cruzi amastigotes in vitro were investigated. The compound BNIP Spermidine (BNIPSpd (9, was found to be the most potent inhibitor of TcSir2rp1. Moreover, this compound showed altered trypanocidal activity against TcSir2rp1 overexpressing epimastigotes and anti-parasitic activity similar to the reference drug benznidazole against the medically important amastigotes, while having the highest selectivity index amongst the compounds tested. Unfortunately, BNIPSpd failed to treat a mouse model of Chagas disease, possibly due to its pharmacokinetic profile. Medicinal chemistry modifications of the compound, as well as alternative formulations may improve activity and pharmacokinetics in the future. Additionally, an initial TcSIR2rp1 model in complex with p53 peptide substrate was obtained from low resolution X-ray data (3.5 Å to

  1. Characterization of TcCYC6 from Trypanosoma cruzi, a gene with homology to mitotic cyclins.

    Science.gov (United States)

    Di Renzo, María Agostina; Laverrière, Marc; Schenkman, Sergio; Wehrendt, Diana Patricia; Tellez-Iñón, María Teresa; Potenza, Mariana

    2016-06-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is a protozoan parasite with a life cycle that alternates between replicative and non-replicative forms, but the components and mechanisms that regulate its cell cycle are poorly described. In higher eukaryotes, cyclins are proteins that activate cyclin-dependent kinases (CDKs), by associating with them along the different stages of the cell cycle. These cyclin-CDK complexes exert their role as major modulators of the cell cycle by phosphorylating specific substrates. For the correct progression of the cell cycle, the mechanisms that regulate the activity of cyclins and their associated CDKs are diverse and must be controlled precisely. Different types of cyclins are involved in specific phases of the eukaryotic cell cycle, preferentially activating certain CDKs. In this work, we characterized TcCYC6, a putative coding sequence of T. cruzi which encodes a protein with homology to mitotic cyclins. The overexpression of this sequence, fused to a tag of nine amino acids from influenza virus hemagglutinin (TcCYC6-HA), showed to be detrimental for the proliferation of epimastigotes in axenic culture and affected the cell cycle progression. In silico analysis revealed an N-terminal segment similar to the consensus sequence of the destruction box, a hallmark for the degradation of several mitotic cyclins. We experimentally determined that the TcCYC6-HA turnover decreased in the presence of proteasome inhibitors, suggesting that TcCYC6 degradation occurs via ubiquitin-proteasome pathway. The results obtained in this study provide first evidence that TcCYC6 expression and degradation are finely regulated in T. cruzi. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. In vitro activity of 2-pyridinecarboxylic acid against trypanosomes of the subgenus Schizotrypanum isolated from the bat Phyllostomus hastatus - doi: 10.4025/actascibiolsci.v33i4.6482 In vitro activity of 2-pyridinecarboxylic acid against trypanosomes of the subgenus Schizotrypanum isolated from the bat Phyllostomus hastatus - doi: 10.4025/actascibiolsci.v33i4.6482

    Directory of Open Access Journals (Sweden)

    Sueli Fumie Yamada-Ogatta

    2011-09-01

    Full Text Available The effect of 2-pyridinecarboxylic acid (picolinic acid on trypanosomes of the subgenus Schizotrypanum isolated from the bat Phyllostomus hastatus was determined in this study. Picolinic acid, at 50 µg mL-1, inhibited epimastigote growth by 99% after 12 days incubation. In addition, trypomastigote motility decreased by 50% after 6h and completely after 24h in the presence of 50 µg mL-1 picolinic acid. The 50% cytotoxic concentration on HEp-2 cell line was 275 µg mL-1 after 4 days incubation. Altogether, these results indicate higher toxicity against trypanosomes. The inhibitory effect of picolinic acid on epimastigote growth can be partially reversed by nicotinic acid and L-tryptophan, suggesting a competitive inhibition. Furthermore, two anti-Trypanosoma (Schizotrypanum cruzi drugs were also evaluated with regard to bat trypanosome growth. Benznidazole, at 50 µg mL-1, inhibited epimastigote growth by 90% after 12 days incubation. Nifurtimox, at the same concentration, caused 96% growth inhibition after four days incubation. Corroborating a previous study, bat trypanosomes are a good model for screening new trypanocidal compounds. Moreover, they can be used to study many biological processes common to human pathogenic trypanosomatids.The effect of 2-pyridinecarboxylic acid (picolinic acid on trypanosomes of the subgenus Schizotrypanum isolated from the bat Phyllostomus hastatus was determined in this study. Picolinic acid, at 50 µg mL-1, inhibited epimastigote growth by 99% after 12 days incubation. In addition, trypomastigote motility decreased by 50% after 6h and completely after 24h in the presence of 50 µg mL-1 picolinic acid. The 50% cytotoxic concentration on HEp-2 cell line was 275 µg mL-1 after 4 days incubation. Altogether, these results indicate higher toxicity against trypanosomes. The inhibitory effect of picolinic acid on epimastigote growth can be partially reversed by nicotinic acid and L-tryptophan, suggesting a

  3. Inhibition of carbonic anhydrase from Trypanosoma cruzi for the management of Chagas disease: an underexplored therapeutic opportunity.

    Science.gov (United States)

    Supuran, Claudiu T

    2016-01-01

    An α-carbonic anhydrases (CAs, EC 4.2.1.1) was recently discovered, cloned and characterized in the genome of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, a neglected but widespread tropical disease. Inhibition of this α-CAs (TcCA) with anions, sulfonamides, sulfamates, thiols and hydroxamates has been investigated in detail, with several low nanomolar in vitro inhibitors. Although the sulfonamides were the best in vitro inhibitors, they showed no ex vivo anti-T. cruzi activity, due to poor penetration. However, some thiols and hydroxamates acting as low nanomolar TcCA inhibitors also showed significant antitrypanosomal ex vivo activity, making this enzyme an attractive yet underexplored drug target for the management of Chagas disease.

  4. Comparative effects of histone deacetylases inhibitors and resveratrol on Trypanosoma cruzi replication, differentiation, infectivity and gene expression

    Directory of Open Access Journals (Sweden)

    Vanina A. Campo

    2017-04-01

    Full Text Available Histone post-translational modification, mediated by histone acetyltransferases and deacetylases, is one of the most studied factors affecting gene expression. Recent data showing differential histone acetylation states during the Trypanosoma cruzi cell cycle suggest a role for epigenetics in the control of this process. As a starting point to study the role of histone deacetylases in the control of gene expression and the consequences of their inhibition and activation in the biology of T. cruzi, two inhibitors for different histone deacetylases: trichostatin A for class I/II and sirtinol for class III and the activator resveratrol for class III, were tested on proliferative and infective forms of this parasite. The two inhibitors tested caused histone hyperacetylation whereas resveratrol showed the opposite effect on both parasite forms, indicating that a biologically active in vivo level of these compounds was achieved. Histone deacetylase inhibitors caused life stage-specific effects, increasing trypomastigotes infectivity and blocking metacyclogenesis. Moreover, these inhibitors affected specific transcript levels, with sirtinol causing the most pronounced change. On the other hand, resveratrol showed strong anti-parasitic effects. This compound diminished epimastigotes growth, promoted metacyclogenesis, reduced in vitro infection and blocked differentiation and/or replication of intracellular amastigotes. In conclusion, the data presented here supports the notion that these compounds can modulate T. cruzi gene expression, differentiation, infection and histones deacetylase activity. Furthermore, among the compounds tested in this study, the results point to Resveratrol as promising trypanocidal drug candidate.

  5. Evaluation of the toxicity of 3-allyl-beta-lapachone against Trypanosoma cruzi bloodstream forms.

    Science.gov (United States)

    Gonçalves, A M; Vasconcellos, M E; Docampo, R; Cruz, F S; de Souza, W; Leon, W

    1980-06-01

    In vitro incubation of Trypanosoma cruzi (Y strain) with 3-allyl-beta-lapachone was followed by: (1) growth inhibition of epimastigotes, (2) damage to cellular membranes, especially of the mitochondria, alterations in the chromatin structure and swelling of mitochondria, (3) increase in the respiratory rate, (4) increase in the rate of H2O2 generation by the epimastigotes, (5) increase of the rate of lipid peroxidation as detected by malonyldialdehyde formation, (6) decrease or total disappearance of trypomastigotes from mouse-infected blood. This drug might therefore be useful in preventing transmission of Chagas' disease during blood transfusion. It is not, however, active against infections in mice.

  6. Effective gene delivery to Trypanosoma cruzi epimastigotes through nucleofection.

    Science.gov (United States)

    Pacheco-Lugo, Lisandro; Díaz-Olmos, Yirys; Sáenz-García, José; Probst, Christian Macagnan; DaRocha, Wanderson Duarte

    2017-06-01

    New opportunities have raised to study the gene function approaches of Trypanosoma cruzi after its genome sequencing in 2005. Functional genomic approaches in Trypanosoma cruzi are challenging due to the reduced tools available for genetic manipulation, as well as to the reduced efficiency of the transient transfection conducted through conventional methods. The Amaxa nucleofector device was systematically tested in the present study in order to improve the electroporation conditions in the epimastigote forms of T. cruzi. The transfection efficiency was quantified using the green fluorescent protein (GFP) as reporter gene followed by cell survival assessment. The herein used nucleofection parameters have increased the survival rates (>90%) and the transfection efficiency by approximately 35%. The small amount of epimastigotes and DNA required for the nucleofection can turn the method adopted here into an attractive tool for high throughput screening (HTS) applications, and for gene editing in parasites where genetic manipulation tools remain relatively scarce. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Molecular and biochemical characterisation of Trypanosoma cruzi phosphofructokinase.

    Science.gov (United States)

    Rodríguez, Evelyn; Lander, Noelia; Ramirez, Jose Luis

    2009-08-01

    The characterisation of the gene encoding Trypanosoma cruzi CL Brener phosphofructokinase (PFK) and the biochemical properties of the expressed enzyme are reported here. In contradiction with previous reports, the PFK genes of CL Brener and YBM strain T. cruzi were found to be similar to their Leishmania mexicana and Trypanosoma brucei homologs in terms of both kinetic properties and size, with open reading frames encoding polypeptides with a deduced molecular mass of 53,483. The predicted amino acid sequence contains the C-terminal glycosome-targeting tripeptide SKL; this localisation was confirmed by immunofluorescence assays. In sequence comparisons with the genes of other eukaryotes, it was found that, despite being an adenosine triphosphate-dependent enzyme, T. cruzi PFK shows significant sequence similarity with inorganic pyrophosphate-dependent PFKs.

  8. Molecular and biochemical characterisation of Trypanosoma cruzi phosphofructokinase

    Directory of Open Access Journals (Sweden)

    Evelyn Rodríguez

    2009-08-01

    Full Text Available The characterisation of the gene encoding Trypanosoma cruzi CL Brener phosphofructokinase (PFK and the biochemical properties of the expressed enzyme are reported here. In contradiction with previous reports, the PFK genes of CL Brener and YBM strain T. cruzi were found to be similar to their Leishmania mexicana and Trypanosoma brucei homologs in terms of both kinetic properties and size, with open reading frames encoding polypeptides with a deduced molecular mass of 53,483. The predicted amino acid sequence contains the C-terminal glycosome-targeting tripeptide SKL; this localisation was confirmed by immunofluorescence assays. In sequence comparisons with the genes of other eukaryotes, it was found that, despite being an adenosine triphosphate-dependent enzyme, T. cruzi PFK shows significant sequence similarity with inorganic pyrophosphate-dependent PFKs.

  9. Genitourinary changes in hamsters infected and reinfected with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Cabrine-Santos Marlene

    2003-01-01

    Full Text Available Authors describe genitourinary changes in male hamsters infected and reinfected with Trypanosoma cruzi. Changes in genital organs have been described in human and in experimental chagasic infection. Genital dysfunctions in chronic chagasic patients affect ejaculation, libido and sexual potency, and testis biopsies may show arrested maturation of germ cells, oligozoospermia and azoospermia. Sixty-five male hamsters were inoculated and reinoculated with 2x10³ trypomastigotes of T. cruzi VIC strain, and 22 non-infected animals constituted the control group. Animals were necropsied and fragments from testis, epididymis, seminal vesicle and bladder were collected and stained with hematoxylin-eosin. Peroxidase anti-peroxidase procedure was utilized to detect tissue parasitism. T. cruzi nests were found in testis, epididymis and seminal vesicle of these hamsters. Such parasitism plays a role in the origin of genital lesions observed in humans and laboratory animals during chronic chagasic infection.

  10. Inducible Nitric Oxide Synthase in Heart Tissue and Nitric Oxide in Serum of Trypanosoma cruzi-Infected Rhesus Monkeys: Association with Heart Injury

    Science.gov (United States)

    Carvalho, Cristiano Marcelo Espinola; Silverio, Jaline Coutinho; da Silva, Andrea Alice; Pereira, Isabela Resende; Coelho, Janice Mery Chicarino; Britto, Constança Carvalho; Moreira, Otacílio Cruz; Marchevsky, Renato Sergio; Xavier, Sergio Salles; Gazzinelli, Ricardo Tostes; da Glória Bonecini-Almeida, Maria; Lannes-Vieira, Joseli

    2012-01-01

    Background The factors contributing to chronic Chagas' heart disease remain unknown. High nitric oxide (NO) levels have been shown to be associated with cardiomyopathy severity in patients. Further, NO produced via inducible nitric oxide synthase (iNOS/NOS2) is proposed to play a role in Trypanosoma cruzi control. However, the participation of iNOS/NOS2 and NO in T. cruzi control and heart injury has been questioned. Here, using chronically infected rhesus monkeys and iNOS/NOS2-deficient (Nos2 −/−) mice we explored the participation of iNOS/NOS2-derived NO in heart injury in T. cruzi infection. Methodology Rhesus monkeys and C57BL/6 and Nos2 −/− mice were infected with the Colombian T. cruzi strain. Parasite DNA was detected by polymerase chain reaction, T. cruzi antigens and iNOS/NOS2+ cells were immunohistochemically detected in heart sections and NO levels in serum were determined by Griess reagent. Heart injury was assessed by electrocardiogram (ECG), echocardiogram (ECHO), creatine kinase heart isoenzyme (CK-MB) activity levels in serum and connexin 43 (Cx43) expression in the cardiac tissue. Results Chronically infected monkeys presented conduction abnormalities, cardiac inflammation and fibrosis, which resembled the spectrum of human chronic chagasic cardiomyopathy (CCC). Importantly, chronic myocarditis was associated with parasite persistence. Moreover, Cx43 loss and increased CK-MB activity levels were primarily correlated with iNOS/NOS2+ cells infiltrating the cardiac tissue and NO levels in serum. Studies in Nos2 −/− mice reinforced that the iNOS/NOS2-NO pathway plays a pivotal role in T. cruzi-elicited cardiomyocyte injury and in conduction abnormalities that were associated with Cx43 loss in the cardiac tissue. Conclusion T. cruzi-infected rhesus monkeys reproduce features of CCC. Moreover, our data support that in T. cruzi infection persistent parasite-triggered iNOS/NOS2 in the cardiac tissue and NO overproduction might contribute to CCC

  11. Inducible nitric oxide synthase in heart tissue and nitric oxide in serum of Trypanosoma cruzi-infected rhesus monkeys: association with heart injury.

    Directory of Open Access Journals (Sweden)

    Cristiano Marcelo Espinola Carvalho

    Full Text Available BACKGROUND: The factors contributing to chronic Chagas' heart disease remain unknown. High nitric oxide (NO levels have been shown to be associated with cardiomyopathy severity in patients. Further, NO produced via inducible nitric oxide synthase (iNOS/NOS2 is proposed to play a role in Trypanosoma cruzi control. However, the participation of iNOS/NOS2 and NO in T. cruzi control and heart injury has been questioned. Here, using chronically infected rhesus monkeys and iNOS/NOS2-deficient (Nos2(-/- mice we explored the participation of iNOS/NOS2-derived NO in heart injury in T. cruzi infection. METHODOLOGY: Rhesus monkeys and C57BL/6 and Nos2(-/- mice were infected with the Colombian T. cruzi strain. Parasite DNA was detected by polymerase chain reaction, T. cruzi antigens and iNOS/NOS2(+ cells were immunohistochemically detected in heart sections and NO levels in serum were determined by Griess reagent. Heart injury was assessed by electrocardiogram (ECG, echocardiogram (ECHO, creatine kinase heart isoenzyme (CK-MB activity levels in serum and connexin 43 (Cx43 expression in the cardiac tissue. RESULTS: Chronically infected monkeys presented conduction abnormalities, cardiac inflammation and fibrosis, which resembled the spectrum of human chronic chagasic cardiomyopathy (CCC. Importantly, chronic myocarditis was associated with parasite persistence. Moreover, Cx43 loss and increased CK-MB activity levels were primarily correlated with iNOS/NOS2(+ cells infiltrating the cardiac tissue and NO levels in serum. Studies in Nos2(-/- mice reinforced that the iNOS/NOS2-NO pathway plays a pivotal role in T. cruzi-elicited cardiomyocyte injury and in conduction abnormalities that were associated with Cx43 loss in the cardiac tissue. CONCLUSION: T. cruzi-infected rhesus monkeys reproduce features of CCC. Moreover, our data support that in T. cruzi infection persistent parasite-triggered iNOS/NOS2 in the cardiac tissue and NO overproduction might contribute

  12. Human mixed infections of Leishmania spp. and Leishmania-Trypanosoma cruzi in a sub Andean Bolivian area: identification by polymerase chain reaction/hybridization and isoenzyme

    Directory of Open Access Journals (Sweden)

    B Bastrenta

    2003-03-01

    Full Text Available Parasites belonging to Leishmania braziliensis, Leishmania donovani, Leishmania mexicana complexes and Trypanosoma cruzi (clones 20 and 39 were searched in blood, lesions and strains collected from 28 patients with active cutaneous leishmaniasis and one patient with visceral leishmaniasis. PCR-hybridization with specific probes of Leishmania complexes (L. braziliensis, L. donovani and L. mexicana and T. cruzi clones was applied to the different DNA samples. Over 29 patients, 8 (27.6% presented a mixed infection Leishmania complex species, 17 (58.6% a mixed infection Leishmania-T. cruzi, and 4 (13.8% a multi Leishmania-T. cruzi infection. Several patients were infected by the two Bolivian major clones 20 and 39 of T. cruzi (44.8%. The L. braziliensis complex was more frequently detected in lesions than in blood and a reverse result was observed for L. mexicana complex. The polymerase chain reaction-hybridization design offers new arguments supporting the idea of an underestimated rate of visceral leishmanisis in Bolivia. Parasites were isolated by culture from the blood of two patients and lesions of 10 patients. The UPGMA (unweighted pair-group method with arithmetic averages dendrogram computed from Jaccard's distances obtained from 11 isoenzyme loci data confirmed the presence of the three Leishmania complexes and undoubtedly identified human infections by L. (V. braziliensis, L. (L. chagasi and L. (L. mexicana species. Additional evidence of parasite mixtures was visualized through mixed isoenzyme profiles, L. (V. braziliensis-L. (L. mexicana and Leishmania spp.-T. cruzi.The epidemiological profile in the studied area appeared more complex than currently known. This is the first report of parasitological evidence of Bolivian patients with trypanosomatidae multi infections and consequences on the diseases' control and patient treatments are discussed.

  13. The United States Trypanosoma cruzi Infection Study: evidence for vector-borne transmission of the parasite that causes Chagas disease among United States blood donors.

    Science.gov (United States)

    Cantey, Paul T; Stramer, Susan L; Townsend, Rebecca L; Kamel, Hany; Ofafa, Karen; Todd, Charles W; Currier, Mary; Hand, Sheryl; Varnado, Wendy; Dotson, Ellen; Hall, Chris; Jett, Pamela L; Montgomery, Susan P

    2012-09-01

    Screening US blood donors for Trypanosoma cruzi infection is identifying autochthonous, chronic infections. Two donors in Mississippi were identified through screening and investigated as probable domestically acquired vector-borne infections, and the US T. cruzi Infection Study was conducted to evaluate the burden of and describe putative risk factors for vector-borne infection in the United States. Blood donors who tested enzyme-linked immunosorbent assay repeat reactive and positive by radioimmunoprecipitation assay, and whose mode of infection could not be identified, were evaluated with a questionnaire to identify possible sources of infection and by additional serologic and hemoculture testing for T. cruzi infection. Of 54 eligible donors, 37 (69%) enrolled in the study. Fifteen (41%) enrollees had four or more positive serologic tests and were considered positive for T. cruzi infection; one was hemoculture positive. Of the 15, three (20%) donors had visited a rural area of an endemic country, although none had stayed for 2 or more weeks. All had lived in a state with documented T. cruzi vector(s) or infected mammalian reservoir(s), 13 (87%) reported outdoor leisure or work activities, and 11 (73%) reported seeing wild reservoir animals on their property. This report adds 16 cases, including one from the Mississippi investigation, of chronic T. cruzi infection presumably acquired via vector-borne transmission in the United States to the previously reported seven cases. The estimated prevalence of autochthonous infections based on this study is 1 in 354,000 donors. Determining US foci of vector-borne transmission is needed to better assess risk for infection. © 2012 American Association of Blood Banks.

  14. Signal transduction induced in Trypanosoma cruzi metacyclic trypomastigotes during the invasion of mammalian cells

    Directory of Open Access Journals (Sweden)

    N. Yoshida

    2000-03-01

    Full Text Available Penetration of Trypanosoma cruzi into mammalian cells depends on the activation of the parasite's protein tyrosine kinase and on the increase in cytosolic Ca2+ concentration. We used metacyclic trypomastigotes, the T. cruzi developmental forms that initiate infection in mammalian hosts, to investigate the association of these two events and to identify the various components of the parasite signal transduction pathway involved in host cell invasion. We have found that i both the protein tyrosine kinase activation, as measured by phosphorylation of a 175-kDa protein (p175, and Ca2+ mobilization were induced in the metacyclic forms by the HeLa cell extract but not by the extract of T. cruzi-resistant K562 cells; ii treatment of parasites with the tyrosine kinase inhibitor genistein blocked both p175 phosphorylation and the increase in cytosolic Ca2+ concentration; iii the recombinant protein J18, which contains the full-length sequence of gp82, a metacyclic stage surface glycoprotein involved in target cell invasion, interfered with tyrosine kinase and Ca2+ responses, whereas the monoclonal antibody 3F6 directed at gp82 induced parasite p175 phosphorylation and Ca2+ mobilization; iv treatment of metacyclic forms with phospholipase C inhibitor U73122 blocked Ca2+ signaling and impaired the ability of the parasites to enter HeLa cells, and v drugs such as heparin, a competitive IP3-receptor blocker, caffeine, which affects Ca2+ release from IP3-sensitive stores, in addition to thapsigargin, which depletes intracellular Ca2+ compartments and lithium ion, reduced the parasite infectivity. Taken together, these data suggest that protein tyrosine kinase, phospholipase C and IP3 are involved in the signaling cascade that is initiated on the parasite cell surface by gp82 and leads to Ca2+ mobilization required for target cell invasion.

  15. Temporizin and Temporizin-1 Peptides as Novel Candidates for Eliminating Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    André L A Souza

    Full Text Available Tropical diseases caused by parasitic infections continue to cause socioeconomic distress worldwide. Among these, Chagas disease has become a great concern because of globalization. Caused by Trypanosoma cruzi, there is an increasing need to discover new, more effective methods to manage infections that minimize disease onset. Antimicrobial peptides represent a possible solution to this challenge. As effector molecules of the innate immune response against pathogens, they are the first line of defense found in all multi-cellular organisms. In amphibians, temporins are a large family of antimicrobial peptides found in skin secretions. Their functional roles and modes of action present unique properties that indicate possible candidates for therapeutic applications. Here, we investigated the trypanocide activity of temporizin and temporizin-1. Temporizin is an artificial, hybrid peptide containing the N-terminal region of temporin A, the pore-forming region of gramicidin and a C-terminus consisting of alternating leucine and lysine. Temporizin-1 is a modification of temporizin with a reduction in the region responsible for insertion into membranes. Their activities were evaluated in a cell permeabilization assay by flow cytometry, an LDH release assay, electron microscopy, an MTT assay and patch clamp experiments. Both temporizin and temporizin-1 demonstrated toxicity against T. cruzi with temporizin displaying slightly more potency. At concentrations up to 100 μg/ ml, both peptides exhibited low toxicity in J774 cells, a macrophage lineage cell line, and no toxicity was observed in mouse primary peritoneal macrophages. In contrast, the peptides showed some toxicity in rat adenoma GH3 cells and Jurkat human lymphoma cells with temporizin-1 displaying lower toxicity. In summary, a shortened form of the hybrid temporizin peptide, temporizin-1, was efficient at killing T. cruzi and it has low toxicity in wild-type mammalian cells. These data suggest

  16. The biological in vitro effect and selectivity of aromatic dicationic compounds on Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Cristiane França da Silva

    2010-05-01

    Full Text Available Trypanosoma cruzi is a parasite that causes Chagas disease, which affects millions of individuals in endemic areas of Latin America. One hundred years after the discovery of Chagas disease, it is still considered a neglected illness because the available drugs are unsatisfactory. Aromatic compounds represent an important class of DNA minor groove-binding ligands that exhibit potent antimicrobial activity. This study focused on the in vitro activity of 10 aromatic dicationic compounds against bloodstream trypomastigotes and intracellular forms of T. cruzi. Our data demonstrated that these compounds display trypanocidal effects against both forms of the parasite and that seven out of the 10 compounds presented higher anti-parasitic activity against intracellular parasites compared with the bloodstream forms. Additional assays to determine the potential toxicity to mammalian cells showed that the majority of the dicationic compounds did not considerably decrease cellular viability. Fluorescent microscopy analysis demonstrated that although all compounds were localised to a greater extent within the kinetoplast than the nucleus, no correlation could be found between compound activity and kDNA accumulation. The present results stimulate further investigations of this class of compounds for the rational design of new chemotherapeutic agents for Chagas disease.

  17. Acetate oxidation by bloodstream forms of Trypanosoma cruzi.

    Science.gov (United States)

    Docampo, R; Cruz, F S; Leon, W; Schmunis, G A

    1979-05-01

    Bloodstream forms of Trypanosoma cruzi had a substantial increase in respiration in the presence of acetate. Oxidation of acetate took place via the tricarboxylic acid cycle and involved an antimycin A-sensitive respiratory pathway. Oxygen uptake in the presence of acetate was a sensitive to antimycin A inhibition as was CO2 production. There was a 6--7% residual O2 uptake which was not inhibited by high antimycin concentrations. Human anti-T. cruzi sera had no effect on oxygen uptake.

  18. A quinoxaline derivative as a potent chemotherapeutic agent, alone or in combination with benznidazole, against Trypanosoma cruzi.

    Science.gov (United States)

    Rodrigues, Jean Henrique da Silva; Ueda-Nakamura, Tânia; Corrêa, Arlene Gonçalves; Sangi, Diego Pereira; Nakamura, Celso Vataru

    2014-01-01

    Chagas' disease is a condition caused by the protozoan Trypanosoma cruzi that affects millions of people, mainly in Latin America where it is considered endemic. The chemotherapy for Chagas disease remains a problem; the standard treatment currently relies on a single drug, benznidazole, which unfortunately induces several side effects and it is not successful in the cure of most of the chronic patients. In order to improve the drug armamentarium against Chagas' disease, in the present study we describe the synthesis of the compound 3-chloro-7-methoxy-2-(methylsulfonyl) quinoxaline (quinoxaline 4) and its activity, alone or in combination with benznidazole, against Trypanosoma cruzi in vitro. Quinoxaline 4 was found to be strongly active against Trypanosoma cruzi Y strain and more effective against the proliferative forms. The cytotoxicity against LLCMK2 cells provided selective indices above one for all of the parasite forms. The drug induced very low hemolysis, but its anti-protozoan activity was partially inhibited when mouse blood was added in the experiment against trypomastigotes, an effect that was specifically related to blood cells. A synergistic effect between quinoxaline 4 and benznidazole was observed against epimastigotes and trypomastigotes, accompanied by an antagonistic interaction against LLCMK2 cells. Quinoxaline 4 induced several ultrastructural alterations, including formations of vesicular bodies, profiles of reticulum endoplasmic surrounding organelles and disorganization of Golgi complex. These alterations were also companied by cell volume reduction and maintenance of cell membrane integrity of treated-parasites. Our results demonstrated that quinoxaline 4, alone or in combination with benznidazole, has promising effects against all the main forms of T. cruzi. The compound at low concentrations induced several ultrastructural alterations and led the parasite to an autophagic-like cell death. Taken together these results may support the

  19. A quinoxaline derivative as a potent chemotherapeutic agent, alone or in combination with benznidazole, against Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Jean Henrique da Silva Rodrigues

    Full Text Available BACKGROUND: Chagas' disease is a condition caused by the protozoan Trypanosoma cruzi that affects millions of people, mainly in Latin America where it is considered endemic. The chemotherapy for Chagas disease remains a problem; the standard treatment currently relies on a single drug, benznidazole, which unfortunately induces several side effects and it is not successful in the cure of most of the chronic patients. In order to improve the drug armamentarium against Chagas' disease, in the present study we describe the synthesis of the compound 3-chloro-7-methoxy-2-(methylsulfonyl quinoxaline (quinoxaline 4 and its activity, alone or in combination with benznidazole, against Trypanosoma cruzi in vitro. METHODOLOGY/PRINCIPAL FINDINGS: Quinoxaline 4 was found to be strongly active against Trypanosoma cruzi Y strain and more effective against the proliferative forms. The cytotoxicity against LLCMK2 cells provided selective indices above one for all of the parasite forms. The drug induced very low hemolysis, but its anti-protozoan activity was partially inhibited when mouse blood was added in the experiment against trypomastigotes, an effect that was specifically related to blood cells. A synergistic effect between quinoxaline 4 and benznidazole was observed against epimastigotes and trypomastigotes, accompanied by an antagonistic interaction against LLCMK2 cells. Quinoxaline 4 induced several ultrastructural alterations, including formations of vesicular bodies, profiles of reticulum endoplasmic surrounding organelles and disorganization of Golgi complex. These alterations were also companied by cell volume reduction and maintenance of cell membrane integrity of treated-parasites. CONCLUSION/SIGNIFICANCE: Our results demonstrated that quinoxaline 4, alone or in combination with benznidazole, has promising effects against all the main forms of T. cruzi. The compound at low concentrations induced several ultrastructural alterations and led the

  20. Evaluation of a chemiluminescent enzyme-linked immunosorbent assay for the diagnosis of Trypanosoma cruzi infection in a nonendemic setting

    Directory of Open Access Journals (Sweden)

    Luis Izquierdo

    2013-11-01

    Full Text Available The disappearance of lytic, protective antibodies (Abs from the serum of patients with Chagas disease is accepted as a reliable indicator of parasitological cure. The efficiency of a chemiluminescent enzyme-linked immunosorbent assay based on a purified, trypomastigote-derived glycosylphosphatidylinositol-anchored mucin antigen for the serologic detection of lytic Abs against Trypanosoma cruzi was evaluated in a nonendemic setting using a panel of 92 positive and 58 negative human sera. The technique proved to be highly sensitive {100%; 95% confidence interval (CI = 96-100} and specific (98.3%; 95% CI = 90.7-99.7, with a kappa score of 0.99. Therefore, this assay can be used to detect active T. cruzi infection and to monitor trypanosomicidal treatment.

  1. Rational development of 4-aminopyridyl-based inhibitors targeting Trypanosoma cruzi CYP51 as anti-chagas agents.

    Science.gov (United States)

    Choi, Jun Yong; Calvet, Claudia M; Gunatilleke, Shamila S; Ruiz, Claudia; Cameron, Michael D; McKerrow, James H; Podust, Larissa M; Roush, William R

    2013-10-10

    A new series of 4-aminopyridyl-based lead inhibitors targeting Trypanosoma cruzi CYP51 (TcCYP51) has been developed using structure-based drug design as well as structure-property relationship (SPR) analyses. The screening hit starting point, LP10 (KD ≤ 42 nM; EC50 = 0.65 μM), has been optimized to give the potential leads 14t, 27i, 27q, 27r, and 27t, which have low-nanomolar binding affinity to TcCYP51 and significant activity against T. cruzi amastigotes cultured in human myoblasts (EC50 = 14-18 nM for 27i and 27r). Many of the optimized compounds have improved microsome stability, and most are selective against human CYPs 1A2, 2D6, and 3A4 (Trypanosoma brucei CYP51 (TbCYP51) orthologue has been characterized by X-ray structure analysis.

  2. Melatonin: Antioxidant and modulatory properties in age-related changes during Trypanosoma cruzi infection.

    Science.gov (United States)

    Brazão, Vânia; Santello, Fabricia H; Colato, Rafaela P; Mazotti, Tamires T; Tazinafo, Lucas F; Toldo, Míriam Paula A; do Vale, Gabriel T; Tirapelli, Carlos R; do Prado, José C

    2017-08-01

    The purpose of this study was to investigate the effects of melatonin on selected biomarkers of innate and humoral immune response as well as the antioxidant/oxidant status (superoxide dismutase-SOD and reduced glutathione levels (GSH) to understand whether age-related changes would influence the development of acute Trypanosoma cruzi (T. cruzi) infection. Young- (5 weeks) and middle-aged (18 months) Wistar rats were orally treated with melatonin (gavage) (05 mg/kg/day), 9 days after infection. A significant increase in both SOD activity and GSH levels was found in plasma from all middle-aged melatonin-treated animals. Melatonin triggered enhanced expression of major histocompatibility class II (MHC-II) antigens on antigen-presenting cell (APC) and peritoneal macrophages in all treated animals. High levels of CD4 + CD28-negative T cells (*PMelatonin induced a significant reduction (***PMelatonin also triggered an upregulation of CD80 and CD86 expression in all young-treated groups. Significant percentages of B and spleen dendritic cells in middle-aged infected and treated animals were observed. Our data reveal new features of melatonin action in inhibiting membrane lipid peroxidation, through the reduction in 8-isoprostane, upregulating the antioxidant defenses and triggering an effective balance in the antioxidant/oxidant status during acute infection. The ability of melatonin to counteract the immune alterations induced by aging added further support to its use as a potential therapeutic target not only for T. cruzi infection but also for other immunocompromised states. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Perturbation of the dimer interface of triosephosphate isomerase and its effect on Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Vanesa Olivares-Illana

    2007-10-01

    Full Text Available Chagas disease affects around 18 million people in the American continent. Unfortunately, there is no satisfactory treatment for the disease. The drugs currently used are not specific and exert serious toxic effects. Thus, there is an urgent need for drugs that are effective. Looking for molecules to eliminate the parasite, we have targeted a central enzyme of the glycolytic pathway: triosephosphate isomerase (TIM. The homodimeric enzyme is catalytically active only as a dimer. Because there are significant differences in the interface of the enzymes from the parasite and humans, we searched for small molecules that specifically disrupt contact between the two subunits of the enzyme from Trypanosoma cruzi but not those of TIM from Homo sapiens (HTIM, and tested if they kill the parasite.Dithiodianiline (DTDA at nanomolar concentrations completely inactivates recombinant TIM of T. cruzi (TcTIM. It also inactivated HTIM, but at concentrations around 400 times higher. DTDA was also tested on four TcTIM mutants with each of its four cysteines replaced with either valine or alanine. The sensitivity of the mutants to DTDA was markedly similar to that of the wild type. The crystal structure of the TcTIM soaked in DTDA at 2.15 A resolution, and the data on the mutants showed that inactivation resulted from alterations of the dimer interface. DTDA also prevented the growth of Escherichia coli cells transformed with TcTIM, had no effect on normal E. coli, and also killed T. cruzi epimastigotes in culture.By targeting on the dimer interface of oligomeric enzymes from parasites, it is possible to discover small molecules that selectively thwart the life of the parasite. Also, the conformational changes that DTDA induces in the dimer interface of the trypanosomal enzyme are unique and identify a region of the interface that could be targeted for drug discovery.

  4. Ecological, social and biological risk factors for continued Trypanosoma cruzi transmission by Triatoma dimidiata in Guatemala.

    Science.gov (United States)

    Bustamante, Dulce M; De Urioste-Stone, Sandra M; Juárez, José G; Pennington, Pamela M

    2014-01-01

    Chagas disease transmission by Triatoma dimidiata persists in Guatemala and elsewhere in Central America under undefined ecological, biological and social (eco-bio-social) conditions. Eco-bio-social risk factors associated with persistent domiciliary infestation were identified by a cross-sectional survey and qualitative participatory methods. Quantitative and qualitative data were generated regarding Trypanosoma cruzi reservoirs and triatomine hosts. Blood meal analysis and infection of insects, dogs and rodents were determined. Based on these data, multimodel inference was used to identify risk factors for domestic infestation with the greatest relative importance (>0.75). Blood meal analysis showed that 64% of 36 bugs fed on chickens, 50% on humans, 17% on dogs; 24% of 34 bugs fed on Rattus rattus and 21% on Mus musculus. Seroprevalence among 80 dogs was 37%. Eight (17%) of 46 M. musculus and three (43%) of seven R. rattus from households with infected triatomines were infected with T. cruzi Distinct Typing Unit I. Results from interviews and participatory meetings indicated that vector control personnel and some householders perceived chickens roosting and laying eggs in the house as bug infestation risk factors. House construction practices were seen as a risk factor for bug and rodent infestation, with rodents being perceived as a pest by study participants. Multimodel inference showed that house infestation risk factors of high relative importance are dog density, mouse presence, interior wall plaster condition, dirt floor, tile roofing and coffee tree presence. Persistent house infestation is closely related to eco-bio-social factors that maintain productive T. dimidiata habitats associated with dogs, chickens and rodents. Triatomine, dog and rodent infections indicate active T. cruzi transmission. Integrated vector control methods should include actions that consider the role of peridomestic animals in transmission and community memberś level of knowledge

  5. Integrate Study of a Bolivian Population Infected by Trypanosoma cruzi, the Agent of Chagas Disease

    Directory of Open Access Journals (Sweden)

    Brenière Simone Frédérique

    2002-01-01

    Full Text Available A cross section of a human population (501 individuals selected at random, and living in a Bolivian community, highly endemic for Chagas disease, was investigated combining together clinical, parasitological and molecular approaches. Conventional serology and polymerase chain reaction (PCR indicated an active transmission of the infection, a high seroprevalence (43.3% ranging from around 12% in 45 years, and a high sensitivity (83.8% and specificity of PCR. Abnormal ECG tracing was predominant in chagasic patients and was already present among individuals younger than 13 years. SAPA (shed acute phase antigen recombinant protein and the synthetic peptide R-13 were used as antigens in ELISA tests. The reactivity of SAPA was strongly associated to Trypanosoma cruzi infection and independent of the age of the patients but was not suitable neither for universal serodiagnosis nor for discrimination of specific phases of Chagas infection. Anti-R-13 response was observed in 27.5% only in chagasic patients. Moreover, anti-R13 reactivity was associated with early infection and not to cardiac pathology. This result questioned previous studies, which considered the anti-R-13 response as a marker of chronic Chagas heart disease. The major clonets 20 and 39 (belonging to Trypanosoma cruzi I and T. cruzi II respectively which circulate in equal proportions in vectors of the studied area, were identified in patients' blood by PCR. Clonet 39 was selected over clonet 20 in the circulation whatever the age of the patient. The only factor related to strain detected in patients' blood, was the anti-R-13 reactivity: 37% of the patients infected by clonet 39 (94 cases had anti-R13 antibodies contrasting with only 6% of the patients without clonet 39 (16 cases.

  6. Vesicles from different Trypanosoma cruzi strains trigger differential innate and chronic immune responses

    Directory of Open Access Journals (Sweden)

    Paula M. Nogueira

    2015-11-01

    Full Text Available Trypomastigote forms of Trypanosoma cruzi, the causative agent of Chagas Disease, shed extracellular vesicles (EVs enriched with glycoproteins of the gp85/trans-sialidase (TS superfamily and other α-galactosyl (α-Gal-containing glycoconjugates, such as mucins. Here, purified vesicles from T. cruzi strains (Y, Colombiana, CL-14 and YuYu were quantified according to size, intensity and concentration. Qualitative analysis revealed differences in their protein and α-galactosyl contents. Later, those polymorphisms were evaluated in the modulation of immune responses (innate and in the chronic phase in C57BL/6 mice. EVs isolated from YuYu and CL-14 strains induced in macrophages higher levels of proinflammatory cytokines (TNF-α and IL-6 and nitric oxide via TLR2. In general, no differences were observed in MAPKs activation (p38, JNK and ERK 1/2 after EVs stimulation. In splenic cells derived from chronically infected mice, a different modulation pattern was observed, where Colombiana (followed by Y strain EVs were more proinflammatory. This modulation was independent of the T. cruzi strain used in the mice infection. To test the functional importance of this modulation, the expression of intracellular cytokines after in vitro exposure was evaluated using EVs from YuYu and Colombiana strains. Both EVs induced cytokine production with the appearance of IL-10 in the chronically infected mice. A high frequency of IL-10 in CD4+ and CD8+ T lymphocytes was observed. A mixed profile of cytokine induction was observed in B cells with the production of TNF-α and IL-10. Finally, dendritic cells produced TNF-α after stimulation with EVs. Polymorphisms in the vesicles surface may be determinant in the immunopathologic events not only in the early steps of infection but also in the chronic phase.

  7. Production of cytokine and chemokines by human mononuclear cells and whole blood cells after infection with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Karine Rezende-Oliveira

    2012-02-01

    Full Text Available INTRODUCTION: The innate immune response is the first mechanism of protection against Trypanosoma cruzi, and the interaction of inflammatory cells with parasite molecules may activate this response and modulate the adaptive immune system. This study aimed to analyze the levels of cytokines and chemokines synthesized by the whole blood cells (WBC and peripheral blood mononuclear cells (PBMC of individuals seronegative for Chagas disease after interaction with live T. cruzi trypomastigotes. METHODS: IL-12, IL-10, TNF-α, TGF-β, CCL-5, CCL-2, CCL-3, and CXCL-9 were measured by ELISA. Nitrite was determined by the Griess method. RESULTS: IL-10 was produced at high levels by WBC compared with PBMC, even after incubation with live trypomastigotes. Production of TNF-α by both PBMC and WBC was significantly higher after stimulation with trypomastigotes. Only PBMC produced significantly higher levels of IL-12 after parasite stimulation. Stimulation of cultures with trypomastigotes induced an increase of CXCL-9 levels produced by WBC. Nitrite levels produced by PBMC increased after the addition of parasites to the culture. CONCLUSIONS: Surface molecules of T. cruzi may induce the production of cytokines and chemokines by cells of the innate immune system through the activation of specific receptors not evaluated in this experiment. The ability to induce IL-12 and TNF-α contributes to shift the adaptive response towards a Th1 profile.

  8. Cissampelos sympodialis Eichl (Menispermaceae leaf extract induces interleukin-10-dependent inhibition of Trypanosoma cruzi killing by macrophages

    Directory of Open Access Journals (Sweden)

    Alexandre-Moreira M.S.

    2003-01-01

    Full Text Available The aqueous fraction of the ethanolic extract (AFL of Cissampelos sympodialis Eichl (Menispermaceae, popularly known as milona, has been shown to have both immunosuppressive and anti-inflammatory effects. In the present study we investigated the modulation of macrophage antimicrobicidal activity by in vitro treatment with the extract from C. sympodialis. Normal and thioglycolate-elicited mouse peritoneal macrophages were infected in vitro with the protozoan Trypanosoma cruzi DM28c clone. We observed that the AFL (used at doses ranging from 13 to 100 µg/ml increased T. cruzi growth and induced a 75% reduction in nitric oxide production. This inhibition could be mediated by the stimulation of macrophage interleukin-10 (IL-10 secretion since the in vitro treatment with the AFL stimulated IL-10 production by T. cruzi-infected macrophages. These results suggest that the anti-inflammatory effect of the AFL from C. sympodialis could be, at least in part, mediated by the inhibition of macrophage functions and that the inhibition of macrophage microbicidal activity induced by the C. sympodialis extract may be mediated by the decrease in macrophage function mediated by interleukin-10 production.

  9. Trypanosoma cruzi Infection Imparts a Regulatory Program in Dendritic Cells and T Cells via Galectin-1-Dependent Mechanisms.

    Science.gov (United States)

    Poncini, Carolina V; Ilarregui, Juan M; Batalla, Estela I; Engels, Steef; Cerliani, Juan P; Cucher, Marcela A; van Kooyk, Yvette; González-Cappa, Stella M; Rabinovich, Gabriel A

    2015-10-01

    Galectin-1 (Gal-1), an endogenous glycan-binding protein, is widely distributed at sites of inflammation and microbial invasion. Despite considerable progress regarding the immunoregulatory activity of this lectin, the role of endogenous Gal-1 during acute parasite infections is uncertain. In this study, we show that Gal-1 functions as a negative regulator to limit host-protective immunity following intradermal infection with Trypanosoma cruzi. Concomitant with the upregulation of immune inhibitory mediators, including IL-10, TGF-β1, IDO, and programmed death ligand 2, T. cruzi infection induced an early increase of Gal-1 expression in vivo. Compared to their wild-type (WT) counterpart, Gal-1-deficient (Lgals1(-/-)) mice exhibited reduced mortality and lower parasite load in muscle tissue. Resistance of Lgals1(-/-) mice to T. cruzi infection was associated with a failure in the activation of Gal-1-driven tolerogenic circuits, otherwise orchestrated by WT dendritic cells, leading to secondary dysfunction in the induction of CD4(+)CD25(+)Foxp3(+) regulatory T cells. This effect was accompanied by an increased number of CD8(+) T cells and higher frequency of IFN-γ-producing CD4(+) T cells in muscle tissues and draining lymph nodes as well as reduced parasite burden in heart and hindlimb skeletal muscle. Moreover, dendritic cells lacking Gal-1 interrupted the Gal-1-mediated tolerogenic circuit and reinforced T cell-dependent anti-parasite immunity when adoptively transferred into WT mice. Thus, endogenous Gal-1 may influence T. cruzi infection by fueling tolerogenic circuits that hinder anti-parasite immunity. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. The Trypanosoma cruzi vitamin C dependent peroxidase confers protection against oxidative stress but is not a determinant of virulence.

    Directory of Open Access Journals (Sweden)

    Martin C Taylor

    2015-04-01

    Full Text Available The neglected parasitic infection Chagas disease is rapidly becoming a globalised public health issue due to migration. There are only two anti-parasitic drugs available to treat this disease, benznidazole and nifurtimox. Thus it is important to identify and validate new drug targets in Trypanosoma cruzi, the causative agent. T. cruzi expresses an ER-localised ascorbate-dependent peroxidase (TcAPx. This parasite-specific enzyme has attracted interest from the perspective of targeted chemotherapy.To assess the importance of TcAPx in protecting T. cruzi from oxidative stress and to determine if it is essential for virulence, we generated null mutants by targeted gene disruption. Loss of activity was associated with increased sensitivity to exogenous hydrogen peroxide, but had no effect on susceptibility to the front-line Chagas disease drug benznidazole. This suggests that increased oxidative stress in the ER does not play a significant role in its mechanism of action. Homozygous knockouts could proceed through the entire life-cycle in vitro, although they exhibited a significant decrease in their ability to infect mammalian cells. To investigate virulence, we exploited a highly sensitive bioluminescence imaging system which allows parasites to be monitored in real-time in the chronic stage of murine infections. This showed that depletion of enzyme activity had no effect on T. cruzi replication, dissemination or tissue tropism in vivo.TcAPx is not essential for parasite viability within the mammalian host, does not have a significant role in establishment or maintenance of chronic infections, and should therefore not be considered a priority for drug design.

  11. The Trypanosoma cruzi vitamin C dependent peroxidase confers protection against oxidative stress but is not a determinant of virulence.

    Science.gov (United States)

    Taylor, Martin C; Lewis, Michael D; Fortes Francisco, Amanda; Wilkinson, Shane R; Kelly, John M

    2015-04-01

    The neglected parasitic infection Chagas disease is rapidly becoming a globalised public health issue due to migration. There are only two anti-parasitic drugs available to treat this disease, benznidazole and nifurtimox. Thus it is important to identify and validate new drug targets in Trypanosoma cruzi, the causative agent. T. cruzi expresses an ER-localised ascorbate-dependent peroxidase (TcAPx). This parasite-specific enzyme has attracted interest from the perspective of targeted chemotherapy. To assess the importance of TcAPx in protecting T. cruzi from oxidative stress and to determine if it is essential for virulence, we generated null mutants by targeted gene disruption. Loss of activity was associated with increased sensitivity to exogenous hydrogen peroxide, but had no effect on susceptibility to the front-line Chagas disease drug benznidazole. This suggests that increased oxidative stress in the ER does not play a significant role in its mechanism of action. Homozygous knockouts could proceed through the entire life-cycle in vitro, although they exhibited a significant decrease in their ability to infect mammalian cells. To investigate virulence, we exploited a highly sensitive bioluminescence imaging system which allows parasites to be monitored in real-time in the chronic stage of murine infections. This showed that depletion of enzyme activity had no effect on T. cruzi replication, dissemination or tissue tropism in vivo. TcAPx is not essential for parasite viability within the mammalian host, does not have a significant role in establishment or maintenance of chronic infections, and should therefore not be considered a priority for drug design.

  12. Effect of cAMP on macromolecule synthesis in the pathogenic protozoa Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Dilvani O. Santos

    1988-09-01

    Full Text Available Macromolecule synthesis of Trypanosoma cruzi in culture was monitored using radioactive tracers. Cells of different days in culture displayed a preferential incorporation of precursors as follows: 1 day for (³H-thymidine cells; 3 days for (³H-uridine cells, and 4 days for (³H-leucine cells. Autoradiographic studies showed that (³H-thymidine was incorporated in the DNA of both kinetoplast and nucleus in this order. Shifts in the intracellular content of cAMP either by addition of dibutyryl-cAMP or by stimulation of the adenylcyclase by isoproterenol, caused an inhibition in the synthesis of DNA, RNA and proteins. Addition to the T. cruzi cultures of these agents which elevate the intracellular content ofcAMP provoked an interruption of cell proliferation as a result of the impairment of macromolecule synthesis. A discrimination was observed among the stereoisomers of isoproterenol, the L configuration showing to be most active.A síntese de macromoléculas de T. cruzi em cultura foi monitorada usando traçadores radioativos. Células de diferentes dias em cultura mostraram uma incorporação preferencial de precursores comco se seguez: 1 dia para (3H-timidina; 3 dias para (3H-uridina e 4 dias para (3H-leucina. Estudos autoradiográficos mostraram que (3H-leucina. Estudos autoradiográficos mostraram que (3H-timidina foi incorporada no DNA de ambos, cinetoplasto e núcleo, nesta ordem. Alterações no conteúdo intracelular de cAMP seja por adição de dibutiril-cAMP ou por estimulação de adenilciclase por isoproterenol, causav am inibição na síntese de DNA, RNA e proteínas. A adição destes agentes que elevam o conteúdo intracelular de cAMP em culturas de T.cruzi provocou inibição de crescimento, com resultado da síntese macromolecular imperfeita. Foi observada uma discriminação entre os estereoisômeros de isoproterenol, sendo a configuração L, a mais ativa.

  13. Effects of medicinal plant extracts on growth of Leishmania (L. amazonensis and Trypanosoma cruzi Efeito de extratos de plantas medicinais no crescimento de Leishmania (L. amazonensis e Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Patrícia Shima Luize

    2005-03-01

    Full Text Available This study describes the screening of extracts obtained from 19 species of plants used in Brazilian traditional medicine for treatment of a variety of diseases. The extracts were tested against axenic amastigote and promastigote forms of Leishmania (L. amazonensis, and epimastigote forms of Trypanosoma cruzi in vitro at a concentration of 100 mg/ml. Baccharis trimera, Cymbopogon citratus, Matricaria chamomilla, Mikania glomerata, Ocimum gratissimum, Piper regnellii, Prunus domestica, Psidium guajava, Sambucus canadensis, Stryphnodendron adstringens, Tanacetum parthenium, and Tanacetum vulgare showed significant effects against one or both parasites, with a percentage of growth inhibition between 49.5 and 99%. The extracts showed no cytotoxic effect on sheep erythrocytes. These medicinal plants may be sources of new compounds that are clinically active against L. amazonensis and T. cruzi.Este estudo descreve a triagem de extratos obtidos de 19 espécies de plantas usadas na medicina tradicional brasileira para o tratamento de várias doenças. Os extratos foram testados contra formas amastigota axênica e promastigota de Leishmania (L. amazonensis, e formas epimastigota de Trypanosoma cruzi in vitro na concentração de 100 mg/ml. Baccharis trimera, Cymbopogon citratus, Matricaria chamomilla, Mikania glomerata, Ocimum gratissimum, Piper regnellii, Prunus domestica, Psidium guajava, Sambucus canadensis, Stryphnodendron adstringens, Tanacetum parthenium, e Tanacetum vulgare apresentaram efeito significante contra um ou ambos parasitas, com a porcentagem de inibição de crescimento entre 49,5 e 99%. Os extratos não mostraram efeito citotóxico em hemácias de carneiro. Essas plantas medicinais podem ser fontes alternativas de novos compostos clinicamente ativos contra L. amazonensis e T. cruzi.

  14. Modulation of host cell mechanics by Trypanosoma cruzi.

    Science.gov (United States)

    Mott, Adam; Lenormand, Guillaume; Costales, Jaime; Fredberg, Jeffrey J; Burleigh, Barbara A

    2009-02-01

    To investigate the effects of Trypanosoma cruzi on the mechanical properties of infected host cells, cytoskeletal stiffness and remodeling dynamics were measured in parasite-infected fibroblasts. We find that cell stiffness decreases in a time-dependent fashion in T. cruzi-infected human foreskin fibroblasts without a significant change in the dynamics of cytoskeletal remodeling. In contrast, cells exposed to T. cruzi secreted/released components become significantly stiffer within 2 h of exposure and exhibit increased remodeling dynamics. These findings represent the first direct mechanical data to suggest a physical picture in which an intact, stiff, and rapidly remodeling cytoskeleton facilitates early stages of T. cruzi invasion and parasite retention, followed by subsequent softening and disassembly of the cytoskeleton to accommodate intracellular replication of parasites. We further suggest that these changes occur through protein kinase A and inhibition of the Rho/Rho kinase signaling pathway. In the context of tissue infection, changes in host cell mechanics could adversely affect the function of the infected organs, and may play an important role on the pathophysiology of Chagas' disease. (c) 2008 Wiley-Liss, Inc.

  15. Acute central nervous system infection by Trypanosoma cruzi and AIDS

    Directory of Open Access Journals (Sweden)

    Pasquale Gallo

    1992-09-01

    Full Text Available The acute infection of the CNS by Trypanosoma cruzi acquired by blood transfusion is uncommon. The concomitance of AIDS in the patient reported shows the importance of cellular immunity in restriction of this parasite, and reinforces the problem of blood transfusion in endemic zones.

  16. Leishmania major and Trypanosoma cruzi present distinct DNA damage responses.

    Science.gov (United States)

    Garcia, Juliana B F; Rocha, João P Vieira da; Costa-Silva, Héllida M; Alves, Ceres L; Machado, Carlos R; Cruz, Angela K

    2016-05-01

    Leishmania major and Trypanosoma cruzi are medically relevant parasites and interesting model organisms, as they present unique biological processes. Despite increasing data regarding the mechanisms of gene expression regulation, there is little information on how the DNA damage response (DDR) occurs in trypanosomatids. We found that L. major presented a higher radiosensitivity than T. cruzi. L. major showed G1 arrest and displayed high mortality in response to ionizing radiation as a result of the inefficient repair of double-strand breaks (DSBs). Conversely, T. cruzi exhibited arrest in the S/G2 cell cycle phase, was able to efficiently repair DSBs and did not display high rates of cell death after exposure to gamma irradiation. L. major showed higher resistance to alkylating DNA damage, and only L. major was able to promote DNA repair and growth recovery in the presence of MMS. ASF1c overexpression did not interfere with the efficiency of DNA repair in either of the parasites but did accentuate the DNA damage checkpoint response, thereby delaying cell fate after damage. The observed differences in the DNA damage responses of T. cruzi and L. major may originate from the distinct preferred routes of genetic plasticity of the two parasites, i.e., DNA recombination versus amplification. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Production of amastigotes from metacyclic trypomastigotes of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Víctor T Contreras

    2002-12-01

    Full Text Available Attempts to recreate all the developmental stages of Trypanosoma cruzi in vitro have thus far been met with partial success. It is possible, for instance, to produce trypomastigotes in tissue culture and to obtain metacyclic trypomastigotes in axenic conditions. Even though T. cruzi amastigotes are known to differentiate from trypomastigotes and metacyclic trypomastigotes, it has only been possible to generate amastigotes in vitro from the tissue-culture-derived trypomastigotes. The factors and culture conditions required to trigger the transformation of metacyclic trypomastigotes into amastigotes are as yet undetermined. We show here that pre-incubation of metacyclic trypomastigotes in culture (MEMTAU medium at 37°C for 48 h is sufficient to commit the parasites to the transformation process. After 72 h of incubation in fresh MEMTAU medium, 90% of the metacyclic parasites differentiate into forms that are morphologically indistinguishable from normal amastigotes. SDS-PAGE, Western blot and PAABS analyses indicate that the transformation of axenic metacyclic trypomastigotes to amastigotes is associated with protein, glycoprotein and antigenic modifications. These data suggest that (a T. cruzi amastigotes can be obtained axenically in large amounts from metacyclic trypomastigotes, and (b the amastigotes thus obtained are morphological, biological and antigenically similar to intracellular amastigotes. Consequently, this experimental system may facilitate a direct, in vitro assessment of the mechanisms that enable T. cruzi metacyclic trypomastigotes to transform into amastigotes in the cells of mammalian hosts.

  18. Early Trypanosoma cruzi Infection Reprograms Human Epithelial Cells

    Directory of Open Access Journals (Sweden)

    María Laura Chiribao

    2014-01-01

    Full Text Available Trypanosoma cruzi, the causative agent of Chagas disease, has the peculiarity, when compared with other intracellular parasites, that it is able to invade almost any type of cell. This property makes Chagas a complex parasitic disease in terms of prophylaxis and therapeutics. The identification of key host cellular factors that play a role in the T. cruzi invasion is important for the understanding of disease pathogenesis. In Chagas disease, most of the focus is on the response of macrophages and cardiomyocytes, since they are responsible for host defenses and cardiac lesions, respectively. In the present work, we studied the early response to infection of T. cruzi in human epithelial cells, which constitute the first barrier for establishment of infection. These studies identified up to 1700 significantly altered genes regulated by the immediate infection. The global analysis indicates that cells are literally reprogrammed by T. cruzi, which affects cellular stress responses (neutrophil chemotaxis, DNA damage response, a great number of transcription factors (including the majority of NFκB family members, and host metabolism (cholesterol, fatty acids, and phospholipids. These results raise the possibility that early host cell reprogramming is exploited by the parasite to establish the initial infection and posterior systemic dissemination.

  19. Trypanosoma cruzi: avirulence of the PF strain to Callithrix marmosets

    Directory of Open Access Journals (Sweden)

    Humberto Menezes

    1981-06-01

    Full Text Available Callithrix jacchus geoffroy marmosets (HumBol. 1812 were injected once subcutaneously with 10.000 parasites/g body weight and followed for a period of six months. The PF strain of Trypanosoma cruzi was used. Follow-up was done through blood cultures, xenodiagnosis, serological tests, and ECG. A small number of normaI animais served as control.

  20. Dasypus novemcinctus infestado con schizotrypanum cruzi en condiciones naturales

    Directory of Open Access Journals (Sweden)

    Augusto Corredor Arjona

    1963-04-01

    Full Text Available The present publication is the first of a series on Chagas disease in the region of Pizarreal, Municipality of Patios, department of North Santander, Colombia. The authors describe the second case in Colombia of Dasypus nouemcinctus infected in natural form by Schizotrypanum cruzi.

  1. Rab32 is essential for maintaining functional acidocalcisomes, and for growth and infectivity of Trypanosoma cruzi

    Science.gov (United States)

    Niyogi, Sayantanee; Jimenez, Veronica; Girard-Dias, Wendell; de Souza, Wanderley; Miranda, Kildare; Docampo, Roberto

    2015-01-01

    ABSTRACT The contractile vacuole complex (CVC) of Trypanosoma cruzi, the etiologic agent of Chagas disease, collects and expels excess water as a mechanism of regulatory volume decrease after hyposmotic stress; it also has a role in cell shrinking after hyperosmotic stress. Here, we report that, in addition to its role in osmoregulation, the CVC of T. cruzi has a role in the biogenesis of acidocalcisomes. Expression of dominant-negative mutants of the CVC-located small GTPase Rab32 (TcCLB.506289.80) results in lower numbers of less-electron-dense acidocalcisomes, lower content of polyphosphate, lower capacity for acidocalcisome acidification and Ca2+ uptake that is driven by the vacuolar proton pyrophosphatase and the Ca2+-ATPase, respectively, as well as less-infective parasites, revealing the role of this organelle in parasite infectivity. By using fluorescence, electron microscopy and electron tomography analyses, we provide further evidence of the active contact of acidocalcisomes with the CVC, indicating an active exchange of proteins between the two organelles. PMID:25964650

  2. Trypanosoma cruzi Differentiates and Multiplies within Chimeric Parasitophorous Vacuoles in Macrophages Coinfected with Leishmania amazonensis.

    Science.gov (United States)

    Pessoa, Carina Carraro; Ferreira, Éden Ramalho; Bayer-Santos, Ethel; Rabinovitch, Michel; Mortara, Renato Arruda; Real, Fernando

    2016-05-01

    The trypanosomatids Leishmania amazonensis and Trypanosoma cruzi are excellent models for the study of the cell biology of intracellular protozoan infections. After their uptake by mammalian cells, the parasitic protozoan flagellates L. amazonensis and T. cruzi lodge within acidified parasitophorous vacuoles (PVs). However, whereas L. amazonensis develops in spacious, phagolysosome-like PVs that may enclose numerous parasites, T. cruzi is transiently hosted within smaller vacuoles from which it soon escapes to the host cell cytosol. To investigate if parasite-specific vacuoles are required for the survival and differentiation of T. cruzi, we constructed chimeric vacuoles by infection of L. amazonensis amastigote-infected macrophages with T. cruzi epimastigotes (EPIs) or metacyclic trypomastigotes (MTs). These chimeric vacuoles, easily observed by microscopy, allowed the entry and fate of T. cruzi in L. amazonensis PVs to be dynamically recorded by multidimensional imaging of coinfected cells. We found that although T. cruzi EPIs remained motile and conserved their morphology in chimeric vacuoles, T. cruzi MTs differentiated into amastigote-like forms capable of multiplying. These results demonstrate that the large adaptive vacuoles of L. amazonensis are permissive to T. cruzi survival and differentiation and that noninfective EPIs are spared from destruction within the chimeric PVs. We conclude that T. cruzi differentiation can take place in Leishmania-containing vacuoles, suggesting this occurs prior to their escape into the host cell cytosol. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Trypanosoma cruzi: Genetic diversity influences the profile of immunoglobulins during experimental infection.

    Science.gov (United States)

    dos Santos, Daniela Maria; Talvani, André; Guedes, Paulo Marcos da Mata; Machado-Coelho, George Luiz Lins; de Lana, Marta; Bahia, Maria Terezinha

    2009-01-01

    The clonal evolution model postulated for Trypanosoma cruzi predicts a correlation between the phylogenetic divergence of T. cruzi clonal genotypes and their biological properties. In the present study, the linkage between phylogenetic divergence of the parasite and IgG, IgG1, IgG2a and IgG2b response has been evaluated during the acute and chronic phases of the experimental infection. Eight laboratory-cloned stocks representative of this phylogenetic diversity and including the lineages T. cruzi I (genotypes 19 and 20), T. cruzi II (genotype 32) and T. cruzi (genotype 39) have been studied. The results showed that the pattern of humoral immune response was correlated with T. cruzi genotype, and that stocks included in genotype 20 were responsible for the high IgG response in the acute and chronic phases. Moreover, T. cruzi I lineage was more efficient in over-expressing all subclasses of specific anti-parasite IgG than either T. cruzi II or T. cruzi lineages. Curiously, the alteration in the pattern of antibodies induced by Benznidazole treatment was related to the phase of the infection but not to the genotype of the parasite. The data suggest that genotypes of T. cruzi are able to drive levels/subclasses of specific IgG, hence giving rise to further concerns about the sensitivity of serological assays in the diagnosis of human Chagas disease.

  4. Broad patterns in domestic vector-borne Trypanosoma cruzi transmission dynamics: synanthropic animals and vector control.

    Science.gov (United States)

    Peterson, Jennifer K; Bartsch, Sarah M; Lee, Bruce Y; Dobson, Andrew P

    2015-10-22

    Chagas disease (caused by Trypanosoma cruzi) is the most important neglected tropical disease (NTD) in Latin America, infecting an estimated 5.7 million people in the 21 countries where it is endemic. It is one of the NTDs targeted for control and elimination by the 2020 London Declaration goals, with the first goal being to interrupt intra-domiciliary vector-borne T. cruzi transmission. A key question in domestic T. cruzi transmission is the role that synanthropic animals play in T. cruzi transmission to humans. Here, we ask, (1) do synanthropic animals need to be targeted in Chagas disease prevention policies?, and (2) how does the presence of animals affect the efficacy of vector control? We developed a simple mathematical model to simulate domestic vector-borne T. cruzi transmission and to specifically examine the interaction between the presence of synanthropic animals and effects of vector control. We used the model to explore how the interactions between triatomine bugs, humans and animals impact the number and proportion of T. cruzi-infected bugs and humans. We then examined how T. cruzi dynamics change when control measures targeting vector abundance are introduced into the system. We found that the presence of synanthropic animals slows the speed of T. cruzi transmission to humans, and increases the sensitivity of T. cruzi transmission dynamics to vector control measures at comparable triatomine carrying capacities. However, T. cruzi transmission is amplified when triatomine carrying capacity increases with the abundance of syntathoropic hosts. Our results suggest that in domestic T. cruzi transmission scenarios where no vector control measures are in place, a reduction in synanthropic animals may slow T. cruzi transmission to humans, but it would not completely eliminate transmission. To reach the 2020 goal of interrupting intra-domiciliary T. cruzi transmission, it is critical to target vector populations. Additionally, where vector control measures

  5. In vitro activity of 2-pyridinecarboxylic acid against trypanosomes of the subgenus Schizotrypanum isolated from the bat Phyllostomus hastatus = Atividade in vitro do ácido 2-piridinocarboxílico em tripanossoma do subgênero Schizotrypanum isolado do morcego Phyllostomus hastatus

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Ceridóreo Corrêa

    2011-09-01

    Full Text Available The effect of 2-pyridinecarboxylic acid (picolinic acid on trypanosomes of the subgenus Schizotrypanum isolated from the bat Phyllostomus hastatus was determined in this study. Picolinic acid, at 50 ƒÊg mL-1, inhibited epimastigote growth by 99% after 12 days incubation. In addition, trypomastigote motility decreased by 50% after 6h and completely after 24h in the presence of 50 ƒÊg mL-1 picolinic acid. The 50% cytotoxic concentration on HEp-2 cell line was275 ƒÊg mL-1 after 4 days incubation. Altogether, these results indicate higher toxicity against trypanosomes. The inhibitory effect of picolinic acid on epimastigote growth can be partially reversed by nicotinic acid and L-tryptophan, suggesting a competitive inhibition. Furthermore, two anti-Trypanosoma (Schizotrypanum cruzi drugs were also evaluated with regard to bat trypanosome growth. Benznidazole, at 50 ƒÊg mL-1, inhibited epimastigote growth by 90% after 12 days incubation. Nifurtimox, at the same concentration, caused 96% growth inhibition after four days incubation. Corroborating a previous study, bat trypanosomes are a good model for screening new trypanocidal compounds. Moreover, they can be used to study many biological processes common to human pathogenic trypanosomatids.O efeito do acido 2- piridinocarboxilico (acido picolinico sobre um tripanossoma do subgenero Schizotrypanum isolado do morcego Phyllostomus hastatus foi determinado neste estudo. O acido picolinico, na concentracao de 50 ƒÊg mL-1, inibiu 99% do crescimento de epimastigotas apos 12 dias de incubacao. Alem disso, houve um decrescimo de 50 e 100% na mobilidade dos tripomastigotas apos 6 e 24h, respectivamente, em presenca de acido picolinico na concentracao de 50 ƒÊg mL-1. A concentracao citotoxica 50% para celulas HEp-2 foi de 275 ƒÊg mL-1 apos quatro dias de incubacao. Esses resultados indicam maior toxicidade contra os tripanossomas. O efeito inibitoriodo acido picolinico sobre o crescimento de

  6. Role of T. cruzi exposure in the pattern of T cell cytokines among chronically infected HIV and Chagas disease patients

    Directory of Open Access Journals (Sweden)

    Tania Regina Tozetto-Mendoza

    Full Text Available OBJECTIVES: The impact of Chagas disease (CD in HIV-infected patients is relevant throughout the world. In fact, the characterization of the adaptive immune response in the context of co-infection is important for predicting the need for interventions in areas in which HIV and Chagas disease co-exist. METHODS: We described and compared the frequency of cytokine-producing T cells stimulated with soluble antigen of Trypanosoma cruzi (T. cruzi using a cytometric assay for the following groups: individuals with chronic Chagas disease (CHR, n=10, those with Chagas disease and HIV infection (CO, n=11, those with only HIV (HIV, n=14 and healthy individuals (C, n=15. RESULTS: We found 1 a constitutively lower frequency of IL-2+ and IFN-γ+ T cells in the CHR group compared with the HIV, CO and healthy groups; 2 a suppressive activity of soluble T. cruzi antigen, which down-regulated IL-2+CD4+ and IFN-γ+CD4+ phenotypes, notably in the healthy group; 3 a down-regulation of inflammatory cytokines on CD8+ T cells in the indeterminate form of Chagas disease; and 4 a significant increase in IL-10+CD8+ cells distinguishing the indeterminate form from the cardiac/digestive form of Chagas disease, even in the presence of HIV infection. CONCLUSIONS: Taken together, our data suggest the presence of an immunoregulatory response in chronic Chagas disease, which seems to be driven by T. cruzi antigens. Our findings provide new insights into immunotherapeutic strategies for people living with HIV/AIDS and Chagas disease.

  7. Role of T. cruzi exposure in the pattern of T cell cytokines among chronically infected HIV and Chagas disease patients.

    Science.gov (United States)

    Tozetto-Mendoza, Tania Regina; Vasconcelos, Dewton de Moraes; Ibrahim, Karim Yaqub; Sartori, Ana Marli Christovam; Bezerra, Rita C; Freitas, Vera Lúcia Teixeira de; Shikanai-Yasuda, Maria Aparecida

    2017-11-01

    The impact of Chagas disease (CD) in HIV-infected patients is relevant throughout the world. In fact, the characterization of the adaptive immune response in the context of co-infection is important for predicting the need for interventions in areas in which HIV and Chagas disease co-exist. We described and compared the frequency of cytokine-producing T cells stimulated with soluble antigen of Trypanosoma cruzi (T. cruzi) using a cytometric assay for the following groups: individuals with chronic Chagas disease (CHR, n=10), those with Chagas disease and HIV infection (CO, n=11), those with only HIV (HIV, n=14) and healthy individuals (C, n=15). We found 1) a constitutively lower frequency of IL-2+ and IFN-γ+ T cells in the CHR group compared with the HIV, CO and healthy groups; 2) a suppressive activity of soluble T. cruzi antigen, which down-regulated IL-2+CD4+ and IFN-γ+CD4+ phenotypes, notably in the healthy group; 3) a down-regulation of inflammatory cytokines on CD8+ T cells in the indeterminate form of Chagas disease; and 4) a significant increase in IL-10+CD8+ cells distinguishing the indeterminate form from the cardiac/digestive form of Chagas disease, even in the presence of HIV infection. Taken together, our data suggest the presence of an immunoregulatory response in chronic Chagas disease, which seems to be driven by T. cruzi antigens. Our findings provide new insights into immunotherapeutic strategies for people living with HIV/AIDS and Chagas disease.

  8. Modulation of cell sialoglycophenotype: a stylish mechanism adopted by Trypanosoma cruzi to ensure its persistence in the infected host

    Directory of Open Access Journals (Sweden)

    Leonardo eFreire-de-Lima

    2016-05-01

    Full Text Available Trypanosoma cruzi, the etiological agent of Chagas disease exhibits multiple mechanisms to guarantee its establishment and persistence in the infected host. It has been well demonstrated that T. cruzi is not able to synthesize sialic acids (Sia. To acquire the monosaccharide, the parasite makes use of a multifunctional enzyme called trans-sialidase (Tc-TS. Since this enzyme has no analogous in the vertebrate host, it has been used as a target in drug therapy development. Tc-TS preferentially catalyzes the transfer of Sia from the host glycoconjugates to the terminal β-galactopyranosyl residues of mucin-like molecules present on the parasite's cell surface. Alternatively, the enzyme can sialylate/re-sialylate glycoconjugates expressed on the surface of host cells. Since its discovery, several studies have shown that T. cruzi employs the Tc-TS activity to modulate the host cell sialoglycophenotype, thus favoring its perpetuation in the infected vertebrate. In this review, we summarize the dynamic of host/parasite sialylglycophenotype modulation, highlighting its role in the subversion of host immune response in order to promote the establishment of persistent chronic infection.

  9. Differential expression on mitochondrial tryparedoxin peroxidase (mTcTXNPx in Trypanosoma cruzi after ferrocenyl diamine hydrochlorides treatments

    Directory of Open Access Journals (Sweden)

    Andréa A.N. Kohatsu

    2017-03-01

    Full Text Available Resistance to benznidazole in certain strains of Trypanosoma cruzi may be caused by the increased production of enzymes that act on the oxidative metabolism, such as mitochondrial tryparedoxin peroxidase which catalyses the reduction of peroxides. This work presents cytotoxicity assays performed with ferrocenyl diamine hydrochlorides in six different strains of T. cruzi epimastigote forms (Y, Bolivia, SI1, SI8, QMII, and SIGR3. The last four strains have been recently isolated from triatominae and mammalian host (domestic cat. The expression of mitochondrial tryparedoxin peroxidase was analyzed by the Western blotting technique using polyclonal antibody anti mitochondrial tryparedoxin peroxidase obtained from a rabbit immunized with the mitochondrial tryparedoxin peroxidase recombinant protein. All the tested ferrocenyl diamine hydrochlorides were more cytotoxic than benznidazole. The expression of the 25.5 kDa polypeptide of mitochondrial tryparedoxin peroxidase did not increase in strains that were more resistant to the ferrocenyl compounds (SI8 and SIGR3. In addition, a 58 kDa polypeptide was also recognized in all strains. Ferrocenyl diamine hydrochlorides showed trypanocidal activity and the expression of 25.5 kDa mitochondrial tryparedoxin peroxidase is not necessarily increased in some T. cruzi strains. Most likely, other mechanisms, in addition to the over expression of this antioxidative enzyme, should be involved in the escape of parasites from cytotoxic oxidant agents.

  10. Differential expression on mitochondrial tryparedoxin peroxidase (mTcTXNPx) in Trypanosoma cruzi after ferrocenyl diamine hydrochlorides treatments.

    Science.gov (United States)

    Kohatsu, Andréa A N; Silva, Flávia A J; Francisco, Acácio I; Rimoldi, Aline; Silva, Marco T A; Vargas, Maria D; Rosa, João A da; Cicarelli, Regina M B

    Resistance to benznidazole in certain strains of Trypanosoma cruzi may be caused by the increased production of enzymes that act on the oxidative metabolism, such as mitochondrial tryparedoxin peroxidase which catalyses the reduction of peroxides. This work presents cytotoxicity assays performed with ferrocenyl diamine hydrochlorides in six different strains of T. cruzi epimastigote forms (Y, Bolivia, SI1, SI8, QMII, and SIGR3). The last four strains have been recently isolated from triatominae and mammalian host (domestic cat). The expression of mitochondrial tryparedoxin peroxidase was analyzed by the Western blotting technique using polyclonal antibody anti mitochondrial tryparedoxin peroxidase obtained from a rabbit immunized with the mitochondrial tryparedoxin peroxidase recombinant protein. All the tested ferrocenyl diamine hydrochlorides were more cytotoxic than benznidazole. The expression of the 25.5kDa polypeptide of mitochondrial tryparedoxin peroxidase did not increase in strains that were more resistant to the ferrocenyl compounds (SI8 and SIGR3). In addition, a 58kDa polypeptide was also recognized in all strains. Ferrocenyl diamine hydrochlorides showed trypanocidal activity and the expression of 25.5kDa mitochondrial tryparedoxin peroxidase is not necessarily increased in some T. cruzi strains. Most likely, other mechanisms, in addition to the over expression of this antioxidative enzyme, should be involved in the escape of parasites from cytotoxic oxidant agents. Copyright © 2016 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. Differentiation of Trypanosoma cruzi I (TcI) and T. cruzi II (TcII) genotypes using genes encoding serine carboxypeptidases.

    Science.gov (United States)

    de Araújo, Catarina Andréa Chaves; Mayer, Christoph; Waniek, Peter Josef; Azambuja, Patricia; Jansen, Ana Maria

    2016-11-01

    The parasite Trypanosoma cruzi (Kinetoplastida, Trypanosomatidae) can be classified based on biochemical and molecular markers, into six lineages or discrete typing units (DTUs), T. cruzi I-VI (TcI-VI), from which TcI and TcII are the parental genotypes. Trying to understand the dispersion of the subpopulations of T. cruzi in nature and its complex transmission cycles, the serine carboxypeptidase genes of T. cruzi were used as a molecular marker in the present study. DTUs of 25 T. cruzi isolates derived from different hosts and from different regions of Brazil were classified. Using specific primers, the complete serine carboxypeptidase open reading frame of 1401 bp was sequenced. The obtained data shows significant differences in the sequences of TcI and TcII. The analysis of the T. cruzi significantly different serine carboxypeptidase genes allowed distinguishing between the parental DTUs TcI to TcII and the hybrid DTU TcVI which grouped within the latter branch. The sequence diversity within the T. cruzi subpopulations was rather low. The analysis using the genes encoding proteases seems to be an interesting approach for the reconstruction of the origin and genotype evolution of T. cruzi.

  12. Screening of Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase enzyme inhibitors

    Directory of Open Access Journals (Sweden)

    Ana C. Leite

    Full Text Available The inhibitory activity of crude extracts of Meliaceae and Rutaceae plants on glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH enzyme from Trypanosoma cruzi was evaluated at 100 μg/mL. Forty-six extracts were tested and fifteen of them showed significant inhibitory activity (IA % > 50. The majority of the assayed extracts of Meliaceae plants (Cedrela fissilis, Cipadessa fruticosa and Trichilia ramalhoi showed high ability to inhibit the enzymatic activity. The fractionation of the hexane extract from branches of C. fruticosa led to the isolation of three flavonoids: flavone, 7-methoxyflavone and 3',4',5',5,7-pentamethoxyflavone. The two last compounds showed high ability to inhibit the gGAPDH activity. Therefore, the assayed Meliaceae species could be considered as a promising source of lead compounds against Chagas' disease.

  13. Trypanosoma cruzi: Transporte de metabolitos esenciales obtenidos del hospedador Trypanosoma cruzi: Transport of essential metabolites acquired from the host

    Directory of Open Access Journals (Sweden)

    Claudio A. Pereira

    2008-10-01

    Full Text Available El Trypanosoma cruzi es el agente causal de la enfermedad de Chagas, endémica en Argentina y en toda América Latina. Presenta numerosas características metabólicas diferenciales respecto a sus hospedadores insectos y mamíferos. Algunas de estas diferencias fueron consecuencia de millones de años de adaptación al parasitismo en los cuales estos organismos protozoarios reemplazaron, a lo largo de su evolución, muchas rutas metabólicas de biosíntesis por sistemas de transporte de metabolitos desde el hospedador. En esta revisión se describen los avances en el conocimiento de los sistemas de transporte tanto bioquímicos como también de las moléculas involucradas en dichos procesos. Se aborda con especial énfasis los transportadores de aminoácidos y poliaminas de T. cruzi de la familia AAAP (Amino Acid/Auxin Permeases ya que parece ser exclusiva de los tripanosomátidos. Teniendo en cuenta que estas moléculas se encuentran completamente ausentes en mamíferos podrían ser consideradas como potenciales blancos contra el Trypanosoma cruzi.Trypanosoma cruzi is the etiological agent of Chagas disease, a disease endemic not only in Argentina but also in all of Latinamerica. T. cruzi presents several metabolic characteristics which are completely absent in its insect vectors and in mammalian hosts. Some of these differences were acquired after millions of years of adaptation to parasitism, during which this protozoan replaced many biosynthetic routes for transport systems. In the present review, we describe the advances in the knowledge of T. cruzi transport processes and the molecules involved. In particular, we focus on aminoacid and polyamine transporters from the AAAP family (Amino Acid/Auxin Permeases, because they seem to be exclusive transporters from trypanosomatids. Taking into account that these permeases are completely absent in mammals, they could be considered as a potential target against Trypanosoma cruzi.

  14. Molecular and serological detection of Trypanosoma cruzi in dogs (Canis lupus familiaris) suggests potential transmission risk in areas of recent acute Chagas disease outbreaks in Colombia.

    Science.gov (United States)

    Jaimes-Dueñez, Jeiczon; Triana-Chávez, Omar; Cantillo-Barraza, Omar; Hernández, Carolina; Ramírez, Juan David; Góngora-Orjuela, Agustín

    2017-06-01

    Chagas disease is a zoonotic infection widely distributed in tropical and subtropical regions of America, including more than 50% of the Colombian territory. In the last years, an increase of outbreaks of acute Chagas disease has been observed in the east of the country due to environmental changes and mammal movements toward human settlements. Given the importance of dogs (Canis lupus familiaris) as reservoir hosts and sentinels of Trypanosoma cruzi infection across different regions of America, in this study we reported a serological and molecular detection of T. cruzi infection in 242 dogs from an endemic area of Meta department (East of Colombia), with recent emergence of acute Chagas disease outbreaks. The distribution of T. cruzi infection in dogs was not homogeneous, ranging from 0-41.4% and 0-5.1% in different sampling sectors, through serological (ELISA/IFAT) and molecular methods (conventional and real time PCR), respectively. Statistical analysis indicated that dog infection was associated with specific sampling sectors. Our results show a moderate seroprevalence of infection and active circulation of T. cruzi in dogs from this zone, which suggest areas with potential risk of infection to human that must be taken into consideration when Chagas disease control programs need to be implemented. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. [Seroprevalence of antibodies against Trypanosoma cruzi in 13 departments of Uruguay].

    Science.gov (United States)

    Salvatella, R; Calegari, L; Casserone, S; Civila, E; Carbajal, S; Pérez, G; Somma, R; Sampaio, I; Llanes, M E; Conti, M

    1989-08-01

    In 1985 a study was undertaken of the prevalence of Trypanosoma cruzi antibodies in 13 departments of Uruguay where transmission of the parasite by the vector Triatoma infestans persists. A total of 5,924 serum samples were selected using a probabilistic method--3,840 from individuals over the age of 12 (sample I) and 2,084 from subjects who were 12 years old (sample II). The population was classified according to place of residence (capital city, non-capital city, suburban area, and rural area). The percentage of positive sera detected by indirect immunofluorescence in the different departments ranged from 1 to 11%, and overall seroprevalence for the area was 3.4%. Based on the results obtained, it was possible to distinguish three areas: A, with seroprevalence from 6 to 11%; B, 2 to 3.2%, and C, 1 to 1.4%. In sample II from the Departments of Paysandú, Soriano, Flores, Florida, and Durazno, no cases of Chagas' disease were detected, which suggests that there is no active transmission of T. cruzi in this age group in the area studied. The number of persons estimated to have the disease was 36,952, or 1.3% of the total population of Uruguay and 4% of the population in the area surveyed. These seroprevalence figures are similar to those recorded in the province of Entre Ríos, Argentina, and in the neighboring municipalities of Rio Grande do Sul, Brazil.

  16. Molecular and Functional Characterization of a Trypanosoma cruzi Nuclear Adenylate Kinase Isoform

    Science.gov (United States)

    Cámara, María de los Milagros; Bouvier, León A.; Canepa, Gaspar E.; Miranda, Mariana R.; Pereira, Claudio A.

    2013-01-01

    Trypanosoma cruzi, the etiological agent of Chagas' disease, is an early divergent eukaryote in which control of gene expression relies mainly in post-transcriptional mechanisms. Transcription levels are globally up and down regulated during the transition between proliferating and non-proliferating life-cycle stages. In this work we characterized a nuclear adenylate kinase isoform (TcADKn) that is involved in ribosome biogenesis. Nuclear adenylate kinases have been recently described in a few organisms, being all related to RNA metabolism. Depending on active transcription and translation, TcADKn localizes in the nucleolus or the cytoplasm. A non-canonical nuclear localization signal was mapped towards the N-terminal of the protein, being the phosphate-binding loop essential for its localization. In addition, TcADKn nuclear exportation depends on the nuclear exportation adapter CRM1. TcADKn nuclear shuttling is governed by nutrient availability, oxidative stress and by the equivalent in T. cruzi of the mammalian TOR (Target of Rapamycin) pathway. One of the biological functions of TcADKn is ribosomal 18S RNA processing by direct interaction with ribosomal protein TcRps14. Finally, TcADKn expression is regulated by its 3′ UTR mRNA. Depending on extracellular conditions, cells modulate protein translation rates regulating ribosome biogenesis and nuclear adenylate kinases are probably key components in these processes. PMID:23409202

  17. Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II

    Energy Technology Data Exchange (ETDEWEB)

    Souza, C.F. [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Carneiro, A.B.; Silveira, A.B. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); Laranja, G.A.T. [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); Silva-Neto, M.A.C. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); INCT, Entomologia Molecular (Brazil); Costa, S.C. Goncalves da [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Paes, M.C., E-mail: mcpaes@uerj.br [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); INCT, Entomologia Molecular (Brazil)

    2009-12-18

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted through triatomine vectors during their blood-meal on vertebrate hosts. These hematophagous insects usually ingest approximately 10 mM of heme bound to hemoglobin in a single meal. Blood forms of the parasite are transformed into epimastigotes in the crop which initiates a few hours after parasite ingestion. In a previous work, we investigated the role of heme in parasite cell proliferation and showed that the addition of heme significantly increased parasite proliferation in a dose-dependent manner . To investigate whether the heme effect is mediated by protein kinase signalling pathways, parasite proliferation was evaluated in the presence of several protein kinase (PK) inhibitors. We found that only KN-93, a classical inhibitor of calcium-calmodulin-dependent kinases (CaMKs), blocked heme-induced cell proliferation. KN-92, an inactive analogue of KN-93, was not able to block this effect. A T. cruzi CaMKII homologue is most likely the main enzyme involved in this process since parasite proliferation was also blocked when Myr-AIP, an inhibitory peptide for mammalian CaMKII, was included in the cell proliferation assay. Moreover, CaMK activity increased in parasite cells with the addition of heme as shown by immunological and biochemical assays. In conclusion, the present results are the first strong indications that CaMKII is involved in the heme-induced cell signalling pathway that mediates parasite proliferation.

  18. Removal of Trypanosoma cruzi by white cell-reduction filters: an electronmicroscopic study

    Directory of Open Access Journals (Sweden)

    Fabron Junior Antonio

    1999-01-01

    Full Text Available White cell (WBC-reduction filters have been shown to be effective in removing infectious agents from infected blood products. In this study, the mechanisms of Trypanosoma cruzi (T. cruzi retention by WBC-reduction filters were assessed. Human packed red blood cell (PRBC and platelet concentrate (PC samples were contaminated with T. cruzi organisms (Y strain; 3.4 x 10(6/ml, and then filtered using WBC-reduction experimental filters that provided about 3 log10 WBC removal. Transmission electron microscopy sections showed that T. cruzi parasites were removed from contaminated PRBC and PC samples primarily by mechanical mechanism without interacting with filter fibbers or blood cells. In addition, we found that T. cruzi parasites were also removed by a direct fibber adhesion. These data indicate that T. cruzi parasites are removed from infected blood not only by mechanical mechanism but also by biological mechanism probably mediated by parasite surface proteins.

  19. Comprehensive glycoprofiling of the epimastigote and trypomastigote stages of Trypanosoma cruzi

    DEFF Research Database (Denmark)

    Alves, Maria Julia Manso; Kawahara, Rebeca; Viner, Rosa

    2017-01-01

    Trypanosoma cruzi, the protozoan that causes Chagas disease, has a complex life cycle involving insect and mammalian hosts and distinct developmental stages. During T. cruzi developmental stages, glycoproteins play important role in the host-parasite interaction, such as cellular recognition, host......-specific characterization of the N- and O-linked glycan heterogeneity in the two life stages of T. cruzi was achieved by intact glycopeptide analysis, revealing 144/466 unique N-linked and 10/97 unique O-linked intact glycopeptides in epimastigotes/trypomastigotes, respectively. Conclusively, this study documents...... the significant T. cruzi stage-specific expression of glycoproteins that can help to better understand the T. cruzi phenotype and response caused by the interaction with different hosts during its complex life cycle. BIOLOGICAL SIGNIFICANCE: Chagas disease caused by the protozoan Trypanosoma cruzi is a neglected...

  20. Trypanosoma cruzi infection: a continuous invader-host cell cross talk with participation of extracellular matrix and adhesion and chemoattractant molecules

    Directory of Open Access Journals (Sweden)

    Marino A.P.M.P.

    2003-01-01

    Full Text Available Several lines of evidence have shown that Trypanosoma cruzi interacts with host extracellular matrix (ECM components producing breakdown products that play an important role in parasite mobilization and infectivity. Parasite-released antigens also modulate ECM expression that could participate in cell-cell and/or cell-parasite interactions. Increased expression of ECM components has been described in the cardiac tissue of chronic chagasic patients and diverse target tissues including heart, thymus, central nervous system and skeletal muscle of experimentally T. cruzi-infected mice. ECM components may adsorb parasite antigens and cytokines that could contribute to the establishment and perpetuation of inflammation. Furthermore, T. cruzi-infected mammalian cells produce cytokines and chemokines that not only participate in the control of parasitism but also contribute to the establishment of chronic inflammatory lesions in several target tissues and most frequently lead to severe myocarditis. T. cruzi-driven cytokines and chemokines may also modulate VCAM-1 and ICAM-1 adhesion molecules on endothelial cells of target tissues and play a key role in cell recruitment, especially of activated VLA-4+LFA-1+CD8+ T lymphocytes, resulting in a predominance of this cell population in the inflamed heart, central nervous system and skeletal muscle. The VLA-4+-invading cells are surrounded by a fine network of fibronectin that could contribute to cell anchorage, activation and effector functions. Since persistent "danger signals" triggered by the parasite and its antigens are required for the establishment of inflammation and ECM alterations, therapeutic interventions that control parasitism and selectively modulate cell migration improve ECM abnormalities, paving the way for the development of new therapeutic strategies improving the prognosis of T. cruzi-infected individuals.

  1. Evaluation of an ethnopharmacologically selected Bhutanese medicinal plants for their major classes of phytochemicals and biological activities.

    Science.gov (United States)

    Wangchuk, Phurpa; Keller, Paul A; Pyne, Stephen G; Taweechotipatr, Malai; Tonsomboon, Aunchalee; Rattanajak, Roonglawan; Kamchonwongpaisan, Sumalee

    2011-09-01

    As many as 229 medicinal plants have been currently used in the Bhutanese Traditional Medicine (BTM) as a chief ingredient of polyherbal formulations and these plants have been individually indicated for treating various types of infections including malaria, tumor, and microbial. We have focused our study only on seven species of these plants. We aim to evaluate the antiplasmodial, antimicrobial, anti-Trypanosoma brucei rhodesiense and cytotoxicity activities of the seven medicinal plants of Bhutan selected using an ethno-directed bio-rational approach. This study creates a scientific basis for their use in the BTM and gives foundation for further phytochemical and biological evaluations which can result in the discovery of new drug lead compounds. A three stage process was conducted which consisted of: (1) an assessment of a pharmacopoeia and a formulary book of the BTM for their mode of plant uses; (2) selecting 25 anti-infective medicinal plants based on the five established criteria, collecting them, and screening for their major classes of phytochemicals using appropriate test protocols; and (3) finally analyzing the crude extracts of the seven medicinal plants, using the standard test protocols, for their antiplasmodial, antimicrobial, anti-Trypanosoma brucei rhodesiense and cytotoxicity activities as directed by the ethnopharmacological uses of each plant. Out of 25 medicinal plants screened for their major classes of phytochemicals, the majority contained tannins, alkaloids and flavonoids. Out of the seven plant species investigated for their biological activities, all seven of them exhibited mild antimicrobial properties, five plants gave significant in vitro antiplasmodial activities, two plants gave moderate anti-Trypanosoma brucei rhodesiense activity, and one plant showed mild cytotoxicity. Meconopsis simplicifolia showed the highest antiplasmodial activity with IC(50) values of 0.40 μg/ml against TM4/8.2 strain (a wild type chloroquine and

  2. Astrocyte Apoptosis and HIV Replication Are Modulated in Host Cells Coinfected with Trypanosoma cruzi

    Science.gov (United States)

    Urquiza, Javier M.; Burgos, Juan M.; Ojeda, Diego S.; Pascuale, Carla A.; Leguizamón, M. Susana; Quarleri, Jorge F.

    2017-01-01

    The protozoan Trypanosoma cruzi is the etiological agent of Chagas disease. In immunosuppressed individuals, as it occurs in the coinfection with human immunodeficiency virus (HIV), the central nervous system may be affected. In this regard, reactivation of Chagas disease is severe and often lethal, and it accounts for meningoencephalitis. Astrocytes play a crucial role in the environment maintenance of healthy neurons; however, they can host HIV and T. cruzi. In this report, human astrocytes were infected in vitro with both genetically modified-pathogens to express alternative fluorophore. As evidenced by fluorescence microscopy and flow cytometry, HIV and T. cruzi coexist in the same astrocyte, likely favoring reciprocal interactions. In this context, lower rates of cell death were observed in both T. cruzi monoinfected-astrocytes and HIV-T. cruzi coinfection in comparison with those infected only with HIV. The level of HIV replication is significantly diminished under T. cruzi coinfection, but without affecting the infectivity of the HIV progeny. This interference with viral replication appears to be related to the T. cruzi multiplication rate or its increased intracellular presence but does not require their intracellular cohabitation or infected cell-to-cell contact. Among several Th1/Th2/Th17 profile-related cytokines, only IL-6 was overexpressed in HIV-T. cruzi coinfection exhibiting its cytoprotective role. This study demonstrates that T. cruzi and HIV are able to coinfect astrocytes thus altering viral replication and apoptosis. PMID:28824880

  3. Astrocyte Apoptosis and HIV Replication Are Modulated in Host Cells Coinfected with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Javier M. Urquiza

    2017-08-01

    Full Text Available The protozoan Trypanosoma cruzi is the etiological agent of Chagas disease. In immunosuppressed individuals, as it occurs in the coinfection with human immunodeficiency virus (HIV, the central nervous system may be affected. In this regard, reactivation of Chagas disease is severe and often lethal, and it accounts for meningoencephalitis. Astrocytes play a crucial role in the environment maintenance of healthy neurons; however, they can host HIV and T. cruzi. In this report, human astrocytes were infected in vitro with both genetically modified-pathogens to express alternative fluorophore. As evidenced by fluorescence microscopy and flow cytometry, HIV and T. cruzi coexist in the same astrocyte, likely favoring reciprocal interactions. In this context, lower rates of cell death were observed in both T. cruzi monoinfected-astrocytes and HIV-T. cruzi coinfection in comparison with those infected only with HIV. The level of HIV replication is significantly diminished under T. cruzi coinfection, but without affecting the infectivity of the HIV progeny. This interference with viral replication appears to be related to the T. cruzi multiplication rate or its increased intracellular presence but does not require their intracellular cohabitation or infected cell-to-cell contact. Among several Th1/Th2/Th17 profile-related cytokines, only IL-6 was overexpressed in HIV-T. cruzi coinfection exhibiting its cytoprotective role. This study demonstrates that T. cruzi and HIV are able to coinfect astrocytes thus altering viral replication and apoptosis.

  4. Trypanosoma cruzi infection induces up-regulation of cardiac muscarinic acetylcholine receptors in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    K. Peraza-Cruces

    2008-09-01

    Full Text Available The pathogenesis of chagasic cardiomyopathy is not completely understood, but it has been correlated with parasympathetic denervation (neurogenic theory and inflammatory activity (immunogenic theory that could affect heart muscarinic acetylcholine receptor (mAChR expression. In order to further understand whether neurogenic and/or immunogenic alterations are related to changes in mAChR expression, we studied two models of Trypanosoma cruzi infection: 1 in 3-week-old male Sprague Dawley rats chronically infected with T. cruzi and 2 isolated primary cardiomyocytes co-cultured with T. cruzi and peripheral blood mononuclear cells (PBMC. Using [³H]-quinuclidinylbenzilate ([³H]-QNB binding assays, we evaluated mAChR expression in homogenates from selected cardiac regions, PBMC, and cultured cardiomyocytes. We also determined in vitro protein expression and pro-inflammatory cytokine expression in serum and cell culture medium by ELISA. Our results showed that: 1 mAChR were significantly (P < 0.05 up-regulated in right ventricular myocardium (means ± SEM; control: 58.69 ± 5.54, N = 29; Chagas: 72.29 ± 5.79 fmol/mg, N = 34 and PBMC (control: 12.88 ± 2.45, N = 18; Chagas: 20.22 ± 1.82 fmol/mg, N = 19, as well as in cardiomyocyte transmembranes cultured with either PBMC/T. cruzi co-cultures (control: 24.33 ± 3.83; Chagas: 43.62 ± 5.08 fmol/mg, N = 7 for both or their conditioned medium (control: 37.84 ± 3.84, N = 4; Chagas: 54.38 ± 6.28 fmol/mg, N = 20; 2 [³H]-leucine uptake was increased in cardiomyocytes co-cultured with PBMC/T. cruzi-conditioned medium (Chagas: 21,030 ± 2321; control 10,940 ± 2385 dpm, N = 7 for both; P < 0.05; 3 plasma IL-6 was increased in chagasic rats, IL-1β, was increased in both plasma of chagasic rats and in the culture medium, and TNF-α level was decreased in the culture medium. In conclusion, our results suggest that cytokines are involved in the up-regulation of mAChR in chronic Chagas disease.

  5. Mammalian Target of Rapamycin Inhibition in Trypanosoma cruzi-Infected Macrophages Leads to an Intracellular Profile That Is Detrimental for Infection

    Directory of Open Access Journals (Sweden)

    Jorge David Rojas Márquez

    2018-02-01

    Full Text Available The causative agent of Chagas’ disease, Trypanosoma cruzi, affects approximately 10 million people living mainly in Latin America, with macrophages being one of the first cellular actors confronting the invasion during T. cruzi infection and their function depending on their proper activation and polarization into distinct M1 and M2 subtypes. Macrophage polarization is thought to be regulated not only by cytokines and growth factors but also by environmental signals. The metabolic checkpoint kinase mammalian target of rapamycin (mTOR-mediated sensing of environmental and metabolic cues influences macrophage polarization in a complex and as of yet incompletely understood manner. Here, we studied the role of the mTOR pathway in macrophages during T. cruzi infection. We demonstrated that the parasite activated mTOR, which was beneficial for its replication since inhibition of mTOR in macrophages by different inhibitors decreased parasite replication. Moreover, in rapamycin pretreated and infected macrophages, we observed a decreased arginase activity and expression, reduced IL-10 and increased interleukin-12 production, compared to control infected macrophages treated with DMSO. Surprisingly, we also found a reduced iNOS activity and expression in these macrophages. Therefore, we investigated possible alternative mechanisms involved in controlling parasite replication in rapamycin pretreated and infected macrophages. Although, cytoplasmic ROS and the enzyme indoleamine 2, 3-dioxygenase (IDO were not involved, we observed a significant increase in IL-6, TNF-α, and IL-1β production. Taking into account that IL-1β is produced by activation of the cytoplasmic receptor NLRP3, which is one of the main components of the inflammasome, we evaluated NLRP3 expression during mTOR inhibition and T. cruzi infection. We observed that rapamycin-pretreated and infected macrophages showed a significant increase in NLRP3 expression and produced higher levels of

  6. Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi.

    Science.gov (United States)

    Lechuga, Guilherme Curty; Borges, Júlio Cesar; Calvet, Claudia Magalhães; de Araújo, Humberto Pinheiro; Zuma, Aline Araujo; do Nascimento, Samara Braga; Motta, Maria Cristina Machado; Bernardino, Alice Maria Rolim; Pereira, Mirian Claudia de Souza; Bourguignon, Saulo Cabral

    2016-12-01

    Chagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 μM), with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 μM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies. Copyright © 2016 The Authors. Published by Elsevier

  7. Quantitative Proteomic and Phosphoproteomic Analysis of Trypanosoma cruzi Amastigogenesis

    DEFF Research Database (Denmark)

    Queiroz, Rayner M L; Charneau, Sebastien; Mandacaru, Samuel C

    2014-01-01

    this well-established differentiation protocol to perform a comprehensive quantitative proteomic and phosphoproteomic analysis of the T. cruzi amastigogenesis. Samples from fully differentiated forms and two biologically relevant intermediate time points were Lys-C/trypsin digested, i......TRAQ-labeled and multiplexed. Subsequently, phosphopeptides were enriched using TiO2 matrix. Non-phosphorylated peptides were HILIC-fractionated prior to LC-MS/MS analysis. LC-MS/MS and bioinformatics procedures were used for protein and phosphopeptide quantitation, identification and phosphorylation site assignment. We could...... induced by incubation in acidic medium were also evinced. To our knowledge, this work is the most comprehensive quantitative proteomics study of the T. cruzi amastigogenesis and this data will provide trustworthy basis for future studies and possibly for new potential drug targets....

  8. Surface electrical charge of bloodstream trypomastigotes of Trypanosoma cruzi strains

    Directory of Open Access Journals (Sweden)

    Maria Auxiliadora de Sousa

    1983-12-01

    Full Text Available Bloodstream trypomastigotes of some Trypanosoma cruzi strains were processed through DEAE-cellulose columns under standardized conditions. The results obtained suggest mainly that these strains present different surface charges, that there are subpopulations of bloodstream trypomastigotes as regards electrical charges and that the broad forms are less negative than the slender ones.Tripomastigotas sanguíneos de algumas cepas de Trypanosoma cruzi foram processadas em colunas de DEAE-celulose sob condições padronizadas. Os resultados obtidos sugerem principalmente que estas cepas possuem cargas superficiais diferentes, que em relação a este aspecto existem subpopulações de tripomastigotas e que as formas largas são menos negativas do que as finas.

  9. Electron Microscopy Analysis of the Nucleolus of Trypanosoma cruzi

    Science.gov (United States)

    López-Velázquez, Gabriel; Hernández, Roberto; López-Villaseñor, Imelda; Reyes-Vivas, Horacio; Segura-Valdez, María De L.; Jiménez-García, Luis F.

    2005-08-01

    The nucleolus is the main site for synthesis and processing of ribosomal RNA in eukaryotes. In mammals, plants, and yeast the nucleolus has been extensively characterized by electron microscopy, but in the majority of the unicellular eukaryotes no such studies have been performed. Here we used ultrastructural cytochemical and immunocytochemical techniques as well as three-dimensional reconstruction to analyze the nucleolus of Trypanosoma cruzi, which is an early divergent eukaryote of medical importance. In T. cruzi epimastigotes the nucleolus is a spherical intranuclear ribonucleoprotein organelle localized in a relatively central position within the nucleus. Dense fibrillar and granular components but not fibrillar centers were observed. In addition, nuclear bodies resembling Cajal bodies were observed associated to the nucleolus in the surrounding nucleoplasm. Our results provide additional morphological data to better understand the synthesis and processing of the ribosomal RNA in kinetoplastids.

  10. The effect of Bulgarian propolis against Trypanosoma cruzi and during its interaction with host cells

    Directory of Open Access Journals (Sweden)

    Andréia Pires Dantas

    2006-03-01

    Full Text Available Propolis has shown activity against pathogenic microorganisms that cause diseases in humans and animals. The ethanol (Et-Blg and acetone (Ket-Blg extracts from a Bulgarian propolis, with known chemical compositions, presented similar activity against tissue culture-derived amastigotes. The treatment of Trypanosoma cruzi-infected skeletal muscle cells with Et-Blg led to a decrease of infection and of the intracellular proliferation of amastigotes, while damage to the host cell was observed only at concentration 12.5 times higher than those affecting the parasite. Ultrastructural analysis of the effect of both extracts in epimastigotes revealed that the main targets were the mitochondrion and reservosomes. Et-Blg also affected the mitochondrion-kinetoplast complex in trypomastigotes, offering a potential target for chemotherapeutic agents.

  11. Trypanozoma cruzi Infection in Patients Undergoing Solid Organ Transplantation

    OpenAIRE

    Mañez, Noelia; Alderete, Manuel; Benso, Jose; Valledor, Alejandra; Smud, Astrid; Schijman, Alejandro; Besuschio, Susana; Barcan, Laura

    2017-01-01

    Abstract Background It is estimated that 1.5 million people are infected with T. cruzi in Argentina (4%). Chagas reactivation rate (R) in patients with solid organ transplantation (SOT) is around 33%, being higher in cardiac transplantation (Tx). Objective To describe the clinical characteristics, evolution, mortality, to evaluate reactivation risk factors and to analyze the usefulness of molecular tests in patients undergoing at SOT with Chagas’ disease risk (ChR) (R or Donor-derived transmi...

  12. Immunotherapy of Trypanosoma cruzi Infection with DNA Vaccines in Mice

    OpenAIRE

    Dumonteil, Eric; Escobedo-Ortegon, Javier; Reyes-Rodriguez, Norma; Arjona-Torres, Arletty; Ramirez-Sierra, Maria Jesus

    2004-01-01

    The mechanisms involved in the pathology of chronic chagasic cardiomyopathy are still debated, and the controversy has interfered with the development of new treatments and vaccines. Because of the potential of DNA vaccines for immunotherapy of chronic and infectious diseases, we tested if DNA vaccines could control an ongoing Trypanosoma cruzi infection. BALB/c mice were infected with a lethal dose (5 × 104 parasites) as a model of acute infection, and then they were treated with two injecti...

  13. Protein 3-nitrotyrosine formation during Trypanosoma cruzi infection in mice

    Directory of Open Access Journals (Sweden)

    M. Naviliat

    2005-12-01

    Full Text Available Nitric oxide (·NO is a diffusible messenger implicated in Trypanosoma cruzi resistance. Excess production of ·NO and oxidants leads to the generation of nitrogen dioxide (·NO2, a strong nitrating agent. Tyrosine nitration is a post-translational modification resulting from the addition of a nitro (-NO2 group to the ortho-position of tyrosine residues. Detection of protein 3-nitrotyrosine is regarded as a marker of nitro-oxidative stress and is observed in inflammatory processes. The formation and role of nitrating species in the control and myocardiopathy of T. cruzi infection remain to be studied. We investigated the levels of ·NO and protein 3-nitrotyrosine in the plasma of C3H and BALB/c mice and pharmacologically modulated their production during the acute phase of T. cruzi infection. We also looked for protein 3-nitrotyrosine in the hearts of infected animals. Our results demonstrated that C3H animals produced higher amounts of ·NO than BALB/c mice, but their generation of peroxynitrite was not proportionally enhanced and they had higher parasitemias. While N G-nitro-arginine methyl ester treatment abolished ·NO production and drastically augmented the parasitism, mercaptoethylguanidine and guanido-ethyl disulfide, at doses that moderately reduced the ·NO and 3-nitrotyrosine levels, paradoxically diminished the parasitemia in both strains. Nitrated proteins were also demonstrated in myocardial cells of infected mice. These data suggest that the control of T. cruzi infection depends not only on the capacity to produce ·NO, but also on its metabolic fate, including the generation of nitrating species that may constitute an important element in parasite resistance and collateral myocardial damage.

  14. Functional characterization of 8-oxoguanine DNA glycosylase of Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Carolina Furtado

    Full Text Available The oxidative lesion 8-oxoguanine (8-oxoG is removed during base excision repair by the 8-oxoguanine DNA glycosylase 1 (Ogg1. This lesion can erroneously pair with adenine, and the excision of this damaged base by Ogg1 enables the insertion of a guanine and prevents DNA mutation. In this report, we identified and characterized Ogg1 from the protozoan parasite Trypanosoma cruzi (TcOgg1, the causative agent of Chagas disease. Like most living organisms, T. cruzi is susceptible to oxidative stress, hence DNA repair is essential for its survival and improvement of infection. We verified that the TcOGG1 gene encodes an 8-oxoG DNA glycosylase by complementing an Ogg1-defective Saccharomyces cerevisiae strain. Heterologous expression of TcOGG1 reestablished the mutation frequency of the yeast mutant ogg1(-/- (CD138 to wild type levels. We also demonstrate that the overexpression of TcOGG1 increases T. cruzi sensitivity to hydrogen peroxide (H(2O(2. Analysis of DNA lesions using quantitative PCR suggests that the increased susceptibility to H(2O(2 of TcOGG1-overexpressor could be a consequence of uncoupled BER in abasic sites and/or strand breaks generated after TcOgg1 removes 8-oxoG, which are not rapidly repaired by the subsequent BER enzymes. This hypothesis is supported by the observation that TcOGG1-overexpressors have reduced levels of 8-oxoG both in the nucleus and in the parasite mitochondrion. The localization of TcOgg1 was examined in parasite transfected with a TcOgg1-GFP fusion, which confirmed that this enzyme is in both organelles. Taken together, our data indicate that T. cruzi has a functional Ogg1 ortholog that participates in nuclear and mitochondrial BER.

  15. Action of the medicine Canova® on peritoneal resident macrophages infected with Trypanosoma cruzi = Ação do medicamento Canova® em macrófagos peritoniais residentes infectados por Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Vanessa Tagawa Cardoso de Oliveira

    2008-01-01

    Full Text Available Approximately 20 million of people are chronically infected withTrypanosoma cruzi in Latin America. The present work investigated the action of the homeopathic medicine Canova® on in vitro experimental infections with T. cruzi Y strain, using Swiss mice resident peritoneal macrophages. Our results demonstrated that Canova®induced a decrease in the production of H2O2 and TNF-a at 20 and 40% concentrations when compared to the control RPMI. However, when compared with this medicine excipient, a significant decrease in these mediators was observed with Canova® at 40% concentration only. The production of NO and phagocytic activity were not affected. TNF-a inhibits T. cruzi replication in peritoneal macrophages in vitro, becoming an important agent of infection control by this parasite. Within this context, Canova®, unlike what has been reported with other infections, would function as a stimulator of the infection, since it inhibited the production of TNF-α by peritoneal resident macrophages in vitro. Further studies should be carried out with elicited macrophages, in order to confirm the inhibitoryactivity of Canova® on the production of TNF-α and other mediators in macrophages infected by T. cruzi.Aproximadamente 20 milhões de pessoas são cronicamente infectadas pelo Trypanosoma cruzi na América Latina. O presente trabalhoinvestigou a ação do medicamento homeopático Canova® em infecções experimentais “in vitro” com Trypanosoma cruzi, cepa Y, usando macrófagos residentes peritoniais de camundongos Swiss. Os resultados indicaram que Canova® induz a diminuição significativa da produção de H2O2 e TNF-α em concentrações de 20 e 40%, quando comparado com ocontrole RPMI. Quando comparado com o excipiente do medicamento, observou-se diminuição na concentração destes mediadores apenas na concentração de 40%. A produção de NO e a atividade fagocítica não foram afetadas. TNF-α inibe a replicação do protozoário em

  16. Repertoire, Genealogy and Genomic Organization of Cruzipain and Homologous Genes in Trypanosoma cruzi, T. cruzi-Like and Other Trypanosome Species

    Science.gov (United States)

    Lima, Luciana; Ortiz, Paola A.; da Silva, Flávia Maia; Alves, João Marcelo P.; Serrano, Myrna G.; Cortez, Alane P.; Alfieri, Silvia C.; Buck, Gregory A.; Teixeira, Marta M. G.

    2012-01-01

    Trypanosoma cruzi, the agent of Chagas disease, is a complex of genetically diverse isolates highly phylogenetically related to T. cruzi-like species, Trypanosoma cruzi marinkellei and Trypanosoma dionisii, all sharing morphology of blood and culture forms and development within cells. However, they differ in hosts, vectors and pathogenicity: T. cruzi is a human pathogen infective to virtually all mammals whilst the other two species are non-pathogenic and bat restricted. Previous studies suggest that variations in expression levels and genetic diversity of cruzipain, the major isoform of cathepsin L-like (CATL) enzymes of T. cruzi, correlate with levels of cellular invasion, differentiation, virulence and pathogenicity of distinct strains. In this study, we compared 80 sequences of genes encoding cruzipain from 25 T. cruzi isolates representative of all discrete typing units (DTUs TcI-TcVI) and the new genotype Tcbat and 10 sequences of homologous genes from other species. The catalytic domain repertoires diverged according to DTUs and trypanosome species. Relatively homogeneous sequences are found within and among isolates of the same DTU except TcV and TcVI, which displayed sequences unique or identical to those of TcII and TcIII, supporting their origin from the hybridization between these two DTUs. In network genealogies, sequences from T. cruzi clustered tightly together and closer to T. c. marinkellei than to T. dionisii and largely differed from homologues of T. rangeli and T. b. brucei. Here, analysis of isolates representative of the overall biological and genetic diversity of T. cruzi and closest T. cruzi-like species evidenced DTU- and species-specific polymorphisms corroborating phylogenetic relationships inferred with other genes. Comparison of both phylogenetically close and distant trypanosomes is valuable to understand host-parasite interactions, virulence and pathogenicity. Our findings corroborate cruzipain as valuable target for drugs, vaccine

  17. Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection

    Science.gov (United States)

    Li, Yuan; Shah-Simpson, Sheena; Okrah, Kwame; Belew, A. Trey; Choi, Jungmin; Caradonna, Kacey L.; Padmanabhan, Prasad; Ndegwa, David M.; Temanni, M. Ramzi; Corrada Bravo, Héctor; El-Sayed, Najib M.; Burleigh, Barbara A.

    2016-01-01

    Intracellular colonization and persistent infection by the kinetoplastid protozoan parasite, Trypanosoma cruzi, underlie the pathogenesis of human Chagas disease. To obtain global insights into the T. cruzi infective process, transcriptome dynamics were simultaneously captured in the parasite and host cells in an infection time course of human fibroblasts. Extensive remodeling of the T. cruzi transcriptome was observed during the early establishment of intracellular infection, coincident with a major developmental transition in the parasite. Contrasting this early response, few additional changes in steady state mRNA levels were detected once mature T. cruzi amastigotes were formed. Our findings suggest that transcriptome remodeling is required to establish a modified template to guide developmental transitions in the parasite, whereas homeostatic functions are regulated independently of transcriptomic changes, similar to that reported in related trypanosomatids. Despite complex mechanisms for regulation of phenotypic expression in T. cruzi, transcriptomic signatures derived from distinct developmental stages mirror known or projected characteristics of T. cruzi biology. Focusing on energy metabolism, we were able to validate predictions forecast in the mRNA expression profiles. We demonstrate measurable differences in the bioenergetic properties of the different mammalian-infective stages of T. cruzi and present additional findings that underscore the importance of mitochondrial electron transport in T. cruzi amastigote growth and survival. Consequences of T. cruzi colonization for the host include dynamic expression of immune response genes and cell cycle regulators with upregulation of host cholesterol and lipid synthesis pathways, which may serve to fuel intracellular T. cruzi growth. Thus, in addition to the biological inferences gained from gene ontology and functional enrichment analysis of differentially expressed genes in parasite and host, our

  18. Interactions Between Trypanosoma cruzi the Chagas Disease Parasite and Naturally Infected Wild Mepraia Vectors of Chile.

    Science.gov (United States)

    Campos-Soto, Ricardo; Ortiz, Sylvia; Cordova, Ivan; Bruneau, Nicole; Botto-Mahan, Carezza; Solari, Aldo

    2016-03-01

    Chagas disease, which ranks among the world's most neglected diseases, is a chronic, systemic, parasitic infection caused by the protozoan Trypanosoma cruzi. Mepraia species are the wild vectors of this parasite in Chile. Host-parasite interactions can occur at several levels, such as co-speciation and ecological host fitting, among others. Thus, we are exploring the interactions between T. cruzi circulating in naturally infected Mepraia species in all areas endemic of Chile. We evaluated T. cruzi infection rates of 27 different haplotypes of the wild Mepraia species and identified their parasite genotypes using minicircle PCR amplification and hybridization tests with genotype-specific DNA probes. Infection rates were lower in northern Chile where Mepraia gajardoi circulates (10-35%); in central Chile, Mepraia spinolai is most abundant, and infection rates varied in space and time (0-55%). T. cruzi discrete typing units (DTUs) TcI, TcII, TcV, and Tc VI were detected. Mixed infections with two or more DTUs are frequently found in highly infected insects. T. cruzi DTUs have distinct, but not exclusive, ecological and epidemiological associations with their hosts. T. cruzi infection rates of M. spinolai were higher than in M. gajardoi, but the presence of mixed infection with more than one T. cruzi DTU was the same. The same T. cruzi DTUs (TcI, TcII, TcV, and TcVI) were found circulating in both vector species, even though TcI was not equally distributed. These results suggest that T. cruzi DTUs are not associated with any of the two genetically related vector species nor with the geographic area. The T. cruzi vectors interactions are discussed in terms of old and recent events. By exploring T. cruzi DTUs present in Mepraia haplotypes and species from northern to central Chile, we open the analysis on these invertebrate host-parasite interactions.

  19. Vector-borne transmission of Trypanosoma cruzi among captive Neotropical primates in a Brazilian zoo.

    Science.gov (United States)

    Minuzzi-Souza, Thaís Tâmara Castro; Nitz, Nadjar; Knox, Monique Britto; Reis, Filipe; Hagström, Luciana; Cuba, César A Cuba; Hecht, Mariana Machado; Gurgel-Gonçalves, Rodrigo

    2016-01-26

    Neotropical primates are important sylvatic hosts of Trypanosoma cruzi, the etiological agent of Chagas disease. Infection is often subclinical, but severe disease has been described in both free-ranging and captive primates. Panstrongylus megistus, a major T. cruzi vector, was found infesting a small-primate unit at Brasília zoo (ZooB), Brazil. ZooB lies close to a gallery-forest patch where T. cruzi circulates naturally. Here, we combine parasitological and molecular methods to investigate a focus of T. cruzi infection involving triatomine bugs and Neotropical primates at a zoo located in the Brazilian Savannah. We assessed T. cruzi infection in vectors using optical microscopy (n = 34) and nested PCR (n = 50). We used quantitative PCR (qPCR) to examine blood samples from 26 primates and necropsy samples from two primates that died during the study. We determined parasite lineages in five vectors and two primates by comparing glucose-6-phosphate isomerase (G6pi) gene sequences. Trypanosoma cruzi was found in 44 vectors and 17 primates (six genera and eight species); one Mico chrysoleucus and one Saguinus niger had high parasitaemias. Trypanosoma cruzi DNA was detected in three primates born to qPCR-negative mothers at ZooB and in the two dead specimens. One Callithrix geoffroyi became qPCR-positive over a two-year follow-up. All G6pi sequences matched T. cruzi lineage TcI. Our findings strongly suggest vector-borne T. cruzi transmission within a small-primate unit at ZooB - with vectors, and perhaps also parasites, presumably coming from nearby gallery forest. Periodic checks for vectors and parasites would help eliminate T. cruzi transmission foci in captive-animal facilities. This should be of special importance for captive-breeding programs involving endangered mammals, and would reduce the risk of accidental T. cruzi transmission to keepers and veterinarians.

  20. Prevalence of Trypanosoma cruzi/HIV coinfection in southern Brazil

    Directory of Open Access Journals (Sweden)

    Dulce Stauffert

    2017-03-01

    Full Text Available Chagas disease reactivation has been a defining condition for acquired immune deficiency syndrome in Brazil for individuals coinfected with Trypanosoma cruzi and HIV since 2004. Although the first coinfection case was reported in the 1980s, its prevalence has not been firmly established. In order to know coinfection prevalence, a cross-sectional study of 200 HIV patients was performed between January and July 2013 in the city of Pelotas, in southern Rio Grande do Sul, an endemic area for Chagas disease. Ten subjects were found positive for T. cruzi infection by chemiluminescence microparticle immunoassay and indirect immunofluorescence. The survey showed 5% coinfection prevalence among HIV patients (95% CI: 2.0–8.0, which was 3.8 times as high as that estimated by the Ministry of Health of Brazil. Six individuals had a viral load higher than 100,000 copies per μL, a statistically significant difference for T. cruzi presence. These findings highlight the importance of screening HIV patients from Chagas disease endemic areas.

  1. Geographical Distribution of Trypanosoma cruzi Genotypes in Venezuela

    Science.gov (United States)

    Carrasco, Hernán J.; Segovia, Maikell; Llewellyn, Martin S.; Morocoima, Antonio; Urdaneta-Morales, Servio; Martínez, Cinda; Martínez, Clara E.; Garcia, Carlos; Rodríguez, Marlenes; Espinosa, Raul; de Noya, Belkisyolé A.; Díaz-Bello, Zoraida; Herrera, Leidi; Fitzpatrick, Sinead; Yeo, Matthew; Miles, Michael A.; Feliciangeli, M. Dora

    2012-01-01

    Chagas disease is an endemic zoonosis native to the Americas and is caused by the kinetoplastid protozoan parasite Trypanosoma cruzi. The parasite is also highly genetically diverse, with six discrete typing units (DTUs) reported TcI – TcVI. These DTUs broadly correlate with several epidemiogical, ecological and pathological features of Chagas disease. In this manuscript we report the most comprehensive evaluation to date of the genetic diversity of T. cruzi in Venezuela. The dataset includes 778 samples collected and genotyped over the last twelve years from multiple hosts and vectors, including nine wild and domestic mammalian host species, and seven species of triatomine bug, as well as from human sources. Most isolates (732) can be assigned to the TcI clade (94.1%); 24 to the TcIV group (3.1%) and 22 to TcIII (2.8%). Importantly, among the 95 isolates genotyped from human disease cases, 79% belonged to TcI - a DTU common in the Americas, however, 21% belonged to TcIV- a little known genotype previously thought to be rare in humans. Furthermore, were able to assign multiple oral Chagas diseases cases to TcI in the area around the capital, Caracas. We discuss our findings in the context of T. cruzi DTU distributions elsewhere in the Americas, and evaluate the impact they have on the future of Chagas disease control in Venezuela. PMID:22745843

  2. Trypanosoma cruzi strain TcIV infects raccoons from Illinois

    Directory of Open Access Journals (Sweden)

    Cailey Vandermark

    Full Text Available BACKGROUND The northern limits of Trypanosoma cruzi across the territory of the United States remain unknown. The known vectors Triatoma sanguisuga and T. lecticularia find their northernmost limits in Illinois; yet, earlier screenings of those insects did not reveal the presence of the pathogen, which has not been reported in vectors or reservoir hosts in this state. OBJECTIVES Five species of medium-sized mammals were screened for the presence of T. cruzi. METHODS Genomic DNA was isolated from heart, spleen and skeletal muscle of bobcats (Lynx rufus, n = 60, raccoons (Procyon lotor, n = 37, nine-banded armadillos (Dasypus novemcinctus, n = 5, Virginia opossums (Didelphis virginiana, n = 3, and a red fox (Vulpes vulpes. Infections were detected targeting DNA from the kinetoplast DNA minicircle (kDNA and satellite DNA (satDNA. The discrete typing unit (DTU was determined by amplifying two gene regions: the Spliced Leader Intergenic Region (SL, via a multiplex polymerase chain reaction, and the 24Sα ribosomal DNA via a heminested reaction. Resulting sequences were used to calculate their genetic distance against reference DTUs. FINDINGS 18.9% of raccoons were positive for strain TcIV; the rest of mammals tested negative. MAIN CONCLUSIONS These results confirm for the first time the presence of T. cruzi in wildlife from Illinois, suggesting that a sylvatic life cycle is likely to occur in the region. The analyses of sequences of SL suggest that amplicons resulting from a commonly used multiplex reaction may yield non-homologous fragments.

  3. Heterogeneous infectiousness in guinea pigs experimentally infected with Trypanosoma cruzi.

    Science.gov (United States)

    Castillo-Neyra, Ricardo; Borrini Mayorí, Katty; Salazar Sánchez, Renzo; Ancca Suarez, Jenny; Xie, Sherrie; Náquira Velarde, Cesar; Levy, Michael Z

    2016-02-01

    Guinea pigs are important reservoirs of Trypanosoma cruzi, the causative parasite of Chagas disease, and in the Southern Cone of South America, transmission is mediated mainly by the vector Triatoma infestans. Interestingly, colonies of Triatoma infestans captured from guinea pig corrals sporadically have infection prevalence rates above 80%. Such high values are not consistent with the relatively short 7-8 week parasitemic period that has been reported for guinea pigs in the literature. We experimentally measured the infectious periods of a group of T. cruzi-infected guinea pigs by performing xenodiagnosis and direct microscopy each week for one year. Another group of infected guinea pigs received only direct microscopy to control for the effect that inoculation by triatomine saliva may have on parasitemia in the host. We observed infectious periods longer than those previously reported in a number of guinea pigs from both the xenodiagnosis and control groups. While some guinea pigs were infectious for a short time, other "super-shedders" were parasitemic up to 22 weeks after infection, and/or positive by xenodiagnosis for a year after infection. This heterogeneity in infectiousness has strong implications for T. cruzi transmission dynamics and control, as super-shedder guinea pigs may play a disproportionate role in pathogen spread. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Circulating levels of cyclooxygenase metabolites in experimental Trypanosoma cruzi infections

    Directory of Open Access Journals (Sweden)

    Rita L. Cardoni

    2004-01-01

    Full Text Available TRYPANOSOMA cruzi induces inflammatory reactions in several tissues. The production of prostaglandin F2α, 6-keto-prostaglandin F1α and thromboxane B2, known to regulate the immune response and to participate in inflammatory reactions, was studied in mice experimentally infected with T. cruzi. The generation of nitric oxide (NO, which could be regulated by cyclooxygenase metabolites, was also evaluated. In the acute infection the extension of inflammatory infiltrates in skeletal muscle as well as the circulating levels of cyclooxygenase metabolites and NO were higher in resistant C3H mice than in susceptible BALB/c mice. In addition, the spontaneous release of NO by spleen cells increased earlier in the C3H mouse strain. In the chronic infections, the tissue inflammatory reaction was still prominent in both groups of mice, but a moderate increase of thromboxane B2 concentration and in NO released by spleen cells was observed only in C3H mice. This comparative study shows that these mediators could be mainly related to protective mechanisms in the acute phase, but seem not to be involved in its maintenance in the chronic T. cruzi infections.

  5. Comparative effects of histone deacetylases inhibitors and resveratrol on Trypanosoma cruzi replication, differentiation, infectivity and gene expression.

    Science.gov (United States)

    Campo, Vanina A

    2017-04-01

    Histone post-translational modification, mediated by histone acetyltransferases and deacetylases, is one of the most studied factors affecting gene expression. Recent data showing differential histone acetylation states during the Trypanosoma cruzi cell cycle suggest a role for epigenetics in the control of this process. As a starting point to study the role of histone deacetylases in the control of gene expression and the consequences of their inhibition and activation in the biology of T. cruzi, two inhibitors for different histone deacetylases: trichostatin A for class I/II and sirtinol for class III and the activator resveratrol for class III, were tested on proliferative and infective forms of this parasite. The two inhibitors tested caused histone hyperacetylation whereas resveratrol showed the opposite effect on both parasite forms, indicating that a biologically active in vivo level of these compounds was achieved. Histone deacetylase inhibitors caused life stage-specific effects, increasing trypomastigotes infectivity and blocking metacyclogenesis. Moreover, these inhibitors affected specific transcript levels, with sirtinol causing the most pronounced change. On the other hand, resveratrol showed strong anti-parasitic effects. This compound diminished epimastigotes growth, promoted metacyclogenesis, reduced in vitro infection and blocked differentiation and/or replication of intracellular amastigotes. In conclusion, the data presented here supports the notion that these compounds can modulate T. cruzi gene expression, differentiation, infection and histones deacetylase activity. Furthermore, among the compounds tested in this study, the results point to Resveratrol as promising trypanocidal drug candidate. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  6. Computational studies on sirtuins from Trypanosoma cruzi: structures, conformations and interactions with phytochemicals.

    Directory of Open Access Journals (Sweden)

    Lionel Sacconnay

    2014-02-01

    Full Text Available BACKGROUND: The silent-information regulator 2 proteins, otherwise called sirtuins, are currently considered as emerging anti-parasitic targets. Nicotinamide, a pan-sirtuin inhibitor, is known to cause kinetoplast alterations and the arrested growth of T. cruzi, the protozoan responsible for Chagas disease. These observations suggested that sirtuins from this parasite (TcSir2rp1 and TcSir2rp3 could play an important role in the regulation of the parasitic cell cycle. Thus, their inhibition could be exploited for the development of novel anti-trypanosomal compounds. METHODS: Homology modeling was used to determine the three-dimensional features of the sirtuin TcSir2rp1 from T. cruzi. The apo-form of human SIRT2 and the same structure solved in complex with its co-substrate NAD(+ allowed the modeling of TcSir2rp1 in the open and closed conformational states. Molecular docking studies were then carried out. A library composed of fifty natural and diverse compounds that are known to be active against this parasite, was established based on the literature and virtually screened against TcSir2rp1 and TcSir2rp3, which was previously modeled by our group. RESULTS: In this study, two conformational states of TcSir2rp1 were described for the first time. The molecular docking results of compounds capable of binding sirtuins proved to be meaningful when the closed conformation of the protein was taken into account for calculations. This specific conformation was then used for the virtual screening of antritrypanosomal phytochemicals against TcSir2rp1 and TcSir2rp3. The calculations identified a limited number of scaffolds extracted from Vismia orientalis, Cussonia zimmermannii, Amomum aculeatum and Anacardium occidentale that potentially interact with both proteins. CONCLUSIONS: The study provided reliable models for future structure-based drug design projects concerning sirtuins from T. cruzi. Molecular docking studies highlighted not only the advantages

  7. Toxicity of oleoresins from the genus Copaifera in Trypanosoma cruzi: a comparative study.

    Science.gov (United States)

    Izumi, Erika; Ueda-Nakamura, Tânia; Veiga-Júnior, Valdir F; Nakamura, Celso V

    2013-07-01

    Several members of the genus Copaifera are present in Latin America, mainly in the Amazon region. These plants produce oleoresins that are used by indigenous people for medicinal purposes, with no distinction among species. Their medicinal properties include the treatment of cutaneous ulcerations associated with leishmaniasis and wounds caused by insect bites. However, to date, no comparative studies of the antiparasitic activity of copaiba oleoresins from different species against Trypanosoma cruzi have been published. In the present study, copaiba oleoresins from eight species were evaluated for activity against T. cruzi, including observations of cytotoxic effects in mammalian cells and parasite cells. All of the copaiba oleoresins exerted effects on all parasite life stages, especially against the replicative forms. C. martii and C. officinalis exhibited the best activity. For intracellular amastigotes, the IC50 values varied from less than 5.0 µg/mL to 10.0 µg/mL. For epimastigotes and trypomastigotes, the maximum inhibition was obtained with IC50 values of 17.0 µg/mL and 97.0 µg/mL, respectively. Oleoresins showed moderate cytotoxicity to nucleated cells, 17.5 to 32.5 µg/mL being the concentration range needed to reduce the monolayer integrity by 50 %. Toxicity to erythrocytes was observed by a hemolytic effect of 50 % above 500 µg/mL for half of the oleoresins from different species. Different oleoresins caused lipid peroxidation, increased cell-membrane permeability and changed the mitochondrial potential. Ultrastructural changes were observed after the treatment of the intracellular amastigote forms of the parasite. The toxic potential differed among oleoresins from distinct copaiba species, which can influence medicinal efficacy. This is especially relevant for people who live far from medical assistance and depend on medicinal plants. Georg Thieme Verlag KG Stuttgart · New York.

  8. Expression and purification of functional, recombinant Trypanosoma cruzi complement regulatory protein.

    Science.gov (United States)

    Beucher, Margaret; Meira, Wendell S F; Zegarra, Vasthy; Galvão, Lúcia M C; Chiari, Egler; Norris, Karen A

    2003-01-01

    The complement regulatory protein (CRP) of Trypanosoma cruzi is a developmentally regulated glycosylphosphatidylinositol (GPI)-anchored membrane protein that protects the parasite from complement-mediated killing, and is an important virulence determinant of the microorganism. CRP binds human complement components C3b and C4b to restrict activation of the complement cascade. Here, we report production of functional, recombinant T. cruzi CRP in mammalian cells and a one-step purification of the recombinant protein. Exchange of the crp DNA sequence encoding the carboxy-terminal GPI signal sequence with the corresponding sequence of decay accelerating factor (DAF) was necessary for recognition, cleavage, and addition of GPI in mammalian cells. CRP production was assessed in two mammalian cell lines with crp-daf gene expression driven by three different transcription control regions: Rous sarcoma virus long terminal repeat, cytomegalovirus (CMV) immediate early gene, and chicken beta-actin promoter/CMV enhancer. We present evidence that CRP produced in transfected Chinese hamster Ovary (CHO) cells was functional and protected the cells from complement-mediated lysis. To facilitate purification of the recombinant protein, a hexahistidyl tag was incorporated at 3(') end of the cDNA upstream of the GPI anchor addition sequence. An additional histidine fusion construct was made that allowed for secretion and recovery of recombinant protein from culture supernatant fluid. Both membrane and secreted forms of the protein were purified in one step by nickel nitrilotriacetic acid. The production and purification of functionally active CRP in a non-infectious expression system will allow for structure and function studies aimed at identifying the active site(s) of this protein.

  9. Risk Factors and Screening for Trypanosoma cruzi Infection of Dutch Blood Donors

    NARCIS (Netherlands)

    Slot, Ed; Hogema, Boris M.; Molier, Michel; Bart, Aldert; Zaaijer, Hans L.

    2016-01-01

    Blood donors unaware of Trypanosoma cruzi infection may donate infectious blood. Risk factors and the presence of T. cruzi antibodies in at-risk Dutch blood donors were studied to assess whether specific blood safety measures are warranted in the Netherlands. Birth in a country endemic for Chagas

  10. Comprehensive proteomic analysis of Trypanosoma cruzi epimastigote cell surface proteins by two complementary methods

    DEFF Research Database (Denmark)

    Queiroz, Rayner M L; Charneau, Sébastien; Motta, Flávia N

    2013-01-01

    Trypanosoma cruzi is a protozoan that causes Chagas' disease, a neglected infectious illness that affects millions of people, mostly in Latin America. Here, the cell surface subproteome of the T. cruzi epimastigote life form was characterized. In order to prepare samples enriched in epimastigote...

  11. Identification of novel Trypanosoma cruzi prolyl oligopeptidase inhibitors by structure-based virtual screening

    Science.gov (United States)

    de Almeida, Hugo; Leroux, Vincent; Motta, Flávia Nader; Grellier, Philippe; Maigret, Bernard; Santana, Jaime M.; Bastos, Izabela Marques Dourado

    2016-12-01

    We have previously demonstrated that the secreted prolyl oligopeptidase of Trypanosoma cruzi (POPTc80) is involved in the infection process by facilitating parasite migration through the extracellular matrix. We have built a 3D structural model where POPTc80 is formed by a catalytic α/β-hydrolase domain and a β-propeller domain, and in which the substrate docks at the inter-domain interface, suggesting a "jaw opening" gating access mechanism. This preliminary model was refined by molecular dynamics simulations and next used for a virtual screening campaign, whose predictions were tested by standard binding assays. This strategy was successful as all 13 tested molecules suggested from the in silico calculations were found out to be active POPTc80 inhibitors in the micromolar range (lowest K i at 667 nM). This work paves the way for future development of innovative drugs against Chagas disease.

  12. Trypanosoma cruzi: effect of phenothiazines on the parasite and its interaction with host cells

    Directory of Open Access Journals (Sweden)

    Solange L. de Castro

    1992-06-01

    Full Text Available Phenothiazines were observed to have a direct effect on Trypanosoma cruzi and on its in vitro interaction with host cells. They caused lysis of trypomastigotes (50 uM/24 h and,to a lesser extent, epimastigote proliferation. Treatment of infected peritoneal macrophages with 12.5 uM chlorpromazine or triflupromazine inhibited the infection; this effect was found to be partially reversible if the drugs were removed after 24 h of treatment. At 60 uM, the drugs caused damage to amastigotes interiorized in heart muscle cells. However, the narrow margin of toxity between anti-trypanossomal activity and damage to host cells mitigates against in vivo investigation at the present time. Possible hypothesis for the mechanism of action of phenothiazines are discussed.

  13. Vector Competence of Lutzomyia cruzi Naturally Demonstrated for Leishmania infantum and Suspected for Leishmania amazonensis.

    Science.gov (United States)

    de Oliveira, Everton Falcão; Oshiro, Elisa Teruya; Fernandes, Wagner Souza; Ferreira, Alda Maria Teixeira; de Oliveira, Alessandra Gutierrez; Galati, Eunice Aparecida Bianchi

    2017-01-11

    Corumbá city is one of the oldest visceral leishmaniasis-endemic foci in the state of Mato Grosso do Sul, Brazil, where the transmission of Leishmania infantum has been attributed to Lutzomyia cruzi Aiming at investigating the parameters of the vectorial capacity of Lu. cruzi for L. infantum, a project was undertaken in this city. Among these parameters, vector competence was investigated and the results obtained are reported herein. Of the 12 hamsters exposed to feed wild-caught female sandflies, two developed infection with L. infantum and surprisingly, one with Leishmania amazonensis In addition, hamsters with L. infantum infection were bitten only by females of Lu. cruzi, whereas the hamster infected with L. amazonensis was bitten by 124 Lu. cruzi females and one of Evandromyia corumbaensis Although there is a strong suspicion regarding the competence of Lu. cruzi in transmitting L. amazonensis naturally, it was not demonstrated. © The American Society of Tropical Medicine and Hygiene.

  14. Cardioprotective actions of curcumin on the pathogenic NFAT/COX-2/prostaglandin E2pathway induced during Trypanosoma cruzi infection.

    Science.gov (United States)

    Hernández, Matías; Wicz, Susana; Corral, Ricardo S

    2016-11-15

    Diverse cardiovascular signaling routes have been considered critical for Chagas cardiomyopathy caused by the protozoan parasite Trypanosoma cruzi. Along this line, T. cruzi infection and endothelin-1 (ET-1) have been shown to cooperatively activate the Ca 2+ /NFAT cascade in cardiomyocytes, leading to cyclooxygenase type 2 (COX-2) induction and increased release of prostanoids and prohypertrophic peptides. To determine whether the well-known cardioprotective and anti-inflammatory effects of curcumin (Cur) could be helpful to interfere with this key machinery for pathogenesis of Chagas myocarditis. Cur treatment was evaluated through in vivo studies using a murine model of acute T. cruzi infection and in vitro experiments using ET-1-stimulated and parasite-infected mouse cardiomyocytes. Cur-treated and untreated infected mice were followed-up to estimate survival postinfection and heart tissues from both groups were analyzed for inflammatory infiltration by histopathology, whereas parasite load, induction of arachidonic acid pathway and natriuretic peptide expression were determined by real-time PCR. Molecular analysis of Cur myocardial targets included intracellular calcium measurement, NFAT and COX-2 induction in transfected cells, and assessment of NFAT, COX-2 and microsomal prostaglandin E synthase-1 (mPGES-1) levels by immunoblotting, prostaglandin E 2 (PGE 2 ) by ELISA, b-type natriuretic peptide (BNP) by real-time PCR, and PGE 2 /EP4 receptor/BNP interaction by transwell experiments. Cur treatment of acute Chagas mice enhanced survival and proved to hinder relevant inflammatory processes in the heart, including leukocyte recruitment, activation of the eicosanoid pathway and BNP overexpression, without modifying parasite burden in the organ. Cur was capable of blocking Ca 2+ -dependent NFATc1 transcriptional activity, COX-2 and mPGES-1 induction, and subsequent PGE 2 production in ET-1-stimulated and parasite-infected cardiomyocytes. Furthermore, the decline

  15. Mitochondrial complex III defects contribute to inefficient respiration and ATP synthesis in the myocardium of Trypanosoma cruzi-infected mice.

    Science.gov (United States)

    Wen, Jian-Jun; Garg, Nisha Jain

    2010-01-01

    In this study, we conducted a thorough analysis of mitochondrial bioenergetic function as well as the biochemical and molecular factors that are deregulated and contribute to compromised adenosine triphosphate (ATP) production in the myocardium during Trypanosoma cruzi infection. We show that ADP-stimulated state 3 respiration and ATP synthesis supported by pyruvate/malate (provides electrons to complex I) and succinate (provides electrons to complex II) substrates were significantly decreased in left ventricular tissue and isolated cardiac mitochondria of infected mice. The decreased mitochondrial ATP synthesis in infected murine hearts was not a result of uncoupling between the electron-transport chain and oxidative phosphorylation and decreased availability of the intermediary metabolites (e.g., NADH). The observed decline in the activities of complex-I, -IV, and -V was not physiologically relevant and did not contribute to compromised respiration and ATP synthesis in infected myocardium. Instead, complex III activity was decreased above the threshold level and contributed to respiratory-chain inefficiency and the resulting decline in mitochondrial ATP synthesis in infected myocardium. The loss in complex III activity occurred as a consequence of cytochrome b depletion. Treatment of infected mice with phenyl-alpha-tert-butyl nitrone (PBN, antioxidant) was beneficial in preserving the mtDNA-encoded cytochrome b expression, and subsequently resulted in improved complex III activity, mitochondrial respiration, and ATP production in infected myocardium. Overall, we provide novel data on the mechanism(s) involved in cardiac bioenergetic inefficiency during T. cruzi infection.

  16. Synthesis and biological evaluation of 2-methyl-1H-benzimidazole-5-carbohydrazides derivatives as modifiers of redox homeostasis of Trypanosoma cruzi.

    Science.gov (United States)

    Melchor-Doncel de la Torre, Silvia; Vázquez, Citlali; González-Chávez, Zabdi; Yépez-Mulia, Lilián; Nieto-Meneses, Rocío; Jasso-Chávez, Ricardo; Saavedra, Emma; Hernández-Luis, Francisco

    2017-08-01

    Twelve novel benzimidazole derivatives were synthesized and their in vitro activities against epimastigotes of Trypanosoma cruzi were evaluated. Two derivatives (6 and 7), which have 4-hydroxy-3-methoxyphenyl moiety in their structures, proved to be the most active in inhibiting the parasite growth. Compound 6 showed a trypanocidal activity higher than benznidazole (IC 50 =5µM and 7.5µM, respectively) and less than nifurtimox (IC 50 =3.6µM). In addition, the ability of 6 and 7 to modify the redox homeostasis in T cruzi epimastigote was studied; cysteine and glutathione increased in parasites exposed to both compounds, whereas trypanothione only increased with 7 treatment. These results suggest that the decrease in viability of T. cruzi may be attributed to the change in cellular redox balance caused by compound 6 or 7. Furthermore, compounds 6 and 7 showed CC 50 values of 160.64 and 160.66µM when tested in mouse macrophage cell line J774 and selectivity indexes (macrophage/parasite) of 32 and 20.1, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Down regulation of NO signaling in Trypanosoma cruzi upon parasite-extracellular matrix interaction: changes in protein modification by nitrosylation and nitration.

    Directory of Open Access Journals (Sweden)

    Milton Pereira

    2015-04-01

    Full Text Available Adhesion of the Trypanosoma cruzi trypomastigotes, the causative agent of Chagas' disease in humans, to components of the extracellular matrix (ECM is an important step in host cell invasion. The signaling events triggered in the parasite upon binding to ECM are less explored and, to our knowledge, there is no data available regarding •NO signaling.Trypomastigotes were incubated with ECM for different periods of time. Nitrated and S-nitrosylated proteins were analyzed by Western blotting using anti-nitrotyrosine and S-nitrosyl cysteine antibodies. At 2 h incubation time, a decrease in NO synthase activity, •NO, citrulline, arginine and cGMP concentrations, as well as the protein modifications levels have been observed in the parasite. The modified proteins were enriched by immunoprecipitation with anti-nitrotyrosine antibodies (nitrated proteins or by the biotin switch method (S-nitrosylated proteins and identified by MS/MS. The presence of both modifications was confirmed in proteins of interest by immunoblotting or immunoprecipitation.For the first time it was shown that T. cruzi proteins are amenable to modifications by S-nitrosylation and nitration. When T. cruzi trypomastigotes are incubated with the extracellular matrix there is a general down regulation of these reactions, including a decrease in both NOS activity and cGMP concentration. Notwithstanding, some specific proteins, such as enolase or histones had, at least, their nitration levels increased. This suggests that post-translational modifications of T. cruzi proteins are not only a reflex of NOS activity, implying other mechanisms that circumvent a relatively low synthesis of •NO. In conclusion, the extracellular matrix, a cell surrounding layer of macromolecules that have to be trespassed by the parasite in order to be internalized into host cells, contributes to the modification of •NO signaling in the parasite, probably an essential move for the ensuing invasion step.

  18. A Two-Component DNA-Prime/Protein-Boost Vaccination Strategy for Eliciting Long-Term, Protective T Cell Immunity against Trypanosoma cruzi.

    Science.gov (United States)

    Gupta, Shivali; Garg, Nisha J

    2015-05-01

    In this study, we evaluated the long-term efficacy of a two-component subunit vaccine against Trypanosoma cruzi infection. C57BL/6 mice were immunized with TcG2/TcG4 vaccine delivered by a DNA-prime/Protein-boost (D/P) approach and challenged with T. cruzi at 120 or 180 days post-vaccination (dpv). We examined whether vaccine-primed T cell immunity was capable of rapid expansion and intercepting the infecting T. cruzi. Our data showed that D/P vaccine elicited CD4+ (30-38%) and CD8+ (22-42%) T cells maintained an effector phenotype up to 180 dpv, and were capable of responding to antigenic stimulus or challenge infection by a rapid expansion (CD8>CD4) with type 1 cytokine (IFNγ+ and TFNα+) production and cytolytic T lymphocyte (CTL) activity. Subsequently, challenge infection at 120 or 180 dpv, resulted in 2-3-fold lower parasite burden in vaccinated mice than was noted in unvaccinated/infected mice. Co-delivery of IL-12- and GMCSF-encoding expression plasmids provided no significant benefits in enhancing the anti-parasite efficacy of the vaccine-induced T cell immunity. Booster immunization (bi) with recombinant TcG2/TcG4 proteins 3-months after primary vaccine enhanced the protective efficacy, evidenced by an enhanced expansion (1.2-2.8-fold increase) of parasite-specific, type 1 CD4+ and CD8+ T cells and a potent CTL response capable of providing significantly improved (3-4.5-fold) control of infecting T. cruzi. Further, CD8+T cells in vaccinated/bi mice were predominantly of central memory phenotype, and capable of responding to challenge infection 4-6-months post bi by a rapid expansion to a poly-functional effector phenotype, and providing a 1.5-2.3-fold reduction in tissue parasite replication. We conclude that the TcG2/TcG4 D/P vaccine provided long-term anti-T. cruzi T cell immunity, and bi would be an effective strategy to maintain or enhance the vaccine-induced protective immunity against T. cruzi infection and Chagas disease.

  19. A Two-Component DNA-Prime/Protein-Boost Vaccination Strategy for Eliciting Long-Term, Protective T Cell Immunity against Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Shivali Gupta

    2015-05-01

    Full Text Available In this study, we evaluated the long-term efficacy of a two-component subunit vaccine against Trypanosoma cruzi infection. C57BL/6 mice were immunized with TcG2/TcG4 vaccine delivered by a DNA-prime/Protein-boost (D/P approach and challenged with T. cruzi at 120 or 180 days post-vaccination (dpv. We examined whether vaccine-primed T cell immunity was capable of rapid expansion and intercepting the infecting T. cruzi. Our data showed that D/P vaccine elicited CD4+ (30-38% and CD8+ (22-42% T cells maintained an effector phenotype up to 180 dpv, and were capable of responding to antigenic stimulus or challenge infection by a rapid expansion (CD8>CD4 with type 1 cytokine (IFNγ+ and TFNα+ production and cytolytic T lymphocyte (CTL activity. Subsequently, challenge infection at 120 or 180 dpv, resulted in 2-3-fold lower parasite burden in vaccinated mice than was noted in unvaccinated/infected mice. Co-delivery of IL-12- and GMCSF-encoding expression plasmids provided no significant benefits in enhancing the anti-parasite efficacy of the vaccine-induced T cell immunity. Booster immunization (bi with recombinant TcG2/TcG4 proteins 3-months after primary vaccine enhanced the protective efficacy, evidenced by an enhanced expansion (1.2-2.8-fold increase of parasite-specific, type 1 CD4+ and CD8+ T cells and a potent CTL response capable of providing significantly improved (3-4.5-fold control of infecting T. cruzi. Further, CD8+T cells in vaccinated/bi mice were predominantly of central memory phenotype, and capable of responding to challenge infection 4-6-months post bi by a rapid expansion to a poly-functional effector phenotype, and providing a 1.5-2.3-fold reduction in tissue parasite replication. We conclude that the TcG2/TcG4 D/P vaccine provided long-term anti-T. cruzi T cell immunity, and bi would be an effective strategy to maintain or enhance the vaccine-induced protective immunity against T. cruzi infection and Chagas disease.

  20. Biochemical Characterization and Substrate Specificity of Autophagin-2 from the Parasite Trypanosoma cruzi*

    Science.gov (United States)

    Rajković, Jelena; Poreba, Marcin; Caglič, Dejan; Vidmar, Robert; Wilk, Aleksandra; Borowik, Agata; Salvesen, Guy; Turk, Vito; Drag, Marcin; Turk, Boris

    2015-01-01

    The genome of the parasite Trypanosoma cruzi encodes two copies of autophagy-related cysteine proteases, Atg4.1 and Atg4.2. T. cruzi autophagin-2 (TcAtg4.2) carries the majority of proteolytic activity and is responsible for processing Atg8 proteins near the carboxyl terminus, exposing a conserved glycine. This enables progression of autophagy and differentiation of the parasite, which is required for successful colonization of humans. The mechanism of substrate hydrolysis by Atg4 was found to be highly conserved among the species as critical mutations in the TcAtg4.2, including mutation of the conserved Gly-244 residue in the hinge region enabling flexibility of the regulatory loop, and deletion of the regulatory loop, completely abolished processing capacity of the mutants. Using the positional scanning-substrate combinatorial library (PS-SCL) we determined that TcAtg4.2 tolerates a broad spectrum of amino acids in the P4 and P3 positions, similar to the human orthologue autophagin-1 (HsAtg4B). In contrast, both human and trypanosome Atg4 orthologues exhibited exclusive preference for aromatic amino acid residues in the P2 position, and for Gly in the P1 position, which is absolutely conserved in the natural Atg8 substrates. Using an extended P2 substrate library, which also included the unnatural amino acid cyclohexylalanine (Cha) derivative of Phe, we generated highly selective tetrapeptide substrates acetyl-Lys-Lys-Cha-Gly-AFC (Ac-KKChaG-AFC) and acetyl-Lys-Thr-Cha-Gly-AFC (Ac-KTChaG-AFC). Althoughthese substrates were cleaved by cathepsins, making them unsuitable for analysis of complex cellular systems, they were recognized exclusively by TcAtg4.2, but not by HsAtg4B nor by the structurally related human proteases SENP1, SENP2, and UCH-L3. PMID:26446788

  1. Biochemical Characterization and Substrate Specificity of Autophagin-2 from the Parasite Trypanosoma cruzi.

    Science.gov (United States)

    Rajković, Jelena; Poreba, Marcin; Caglič, Dejan; Vidmar, Robert; Wilk, Aleksandra; Borowik, Agata; Salvesen, Guy; Turk, Vito; Drag, Marcin; Turk, Boris

    2015-11-20

    The genome of the parasite Trypanosoma cruzi encodes two copies of autophagy-related cysteine proteases, Atg4.1 and Atg4.2. T. cruzi autophagin-2 (TcAtg4.2) carries the majority of proteolytic activity and is responsible for processing Atg8 proteins near the carboxyl terminus, exposing a conserved glycine. This enables progression of autophagy and differentiation of the parasite, which is required for successful colonization of humans. The mechanism of substrate hydrolysis by Atg4 was found to be highly conserved among the species as critical mutations in the TcAtg4.2, including mutation of the conserved Gly-244 residue in the hinge region enabling flexibility of the regulatory loop, and deletion of the regulatory loop, completely abolished processing capacity of the mutants. Using the positional scanning-substrate combinatorial library (PS-SCL) we determined that TcAtg4.2 tolerates a broad spectrum of amino acids in the P4 and P3 positions, similar to the human orthologue autophagin-1 (HsAtg4B). In contrast, both human and trypanosome Atg4 orthologues exhibited exclusive preference for aromatic amino acid residues in the P2 position, and for Gly in the P1 position, which is absolutely conserved in the natural Atg8 substrates. Using an extended P2 substrate library, which also included the unnatural amino acid cyclohexylalanine (Cha) derivative of Phe, we generated highly selective tetrapeptide substrates acetyl-Lys-Lys-Cha-Gly-AFC (Ac-KKChaG-AFC) and acetyl-Lys-Thr-Cha-Gly-AFC (Ac-KTChaG-AFC). Althoughthese substrates were cleaved by cathepsins, making them unsuitable for analysis of complex cellular systems, they were recognized exclusively by TcAtg4.2, but not by HsAtg4B nor by the structurally related human proteases SENP1, SENP2, and UCH-L3. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Congenital Trypanosoma cruzi Transmission in Santa Cruz, Bolivia

    Science.gov (United States)

    Bern, Caryn; Verastegui, Manuela; Gilman, Robert H.; LaFuente, Carlos; Galdos-Cardenas, Gerson; Calderon, Maritza; Pacori, Juan; Abastoflor, Maria del Carmen; Aparicio, Hugo; Brady, Mark F.; Ferrufino, Lisbeth; Angulo, Noelia; Marcus, Sarah; Sterling, Charles; Maguire, James H.

    2017-01-01

    Background We conducted a study of congenital Trypanosoma cruzi infection in Santa Cruz, Bolivia. Our objective was to apply new tools to identify weak points in current screening algorithms, and find ways to improve them. Methods Women presenting for delivery were screened by rapid and conventional serological tests. For infants of infected mothers, blood specimens obtained on days 0, 7, 21, 30, 90, 180, and 270 were concentrated and examined microscopically; serological tests were performed for the day 90, 180, and 270 specimens. Maternal and infant specimens, including umbilical tissue, were tested by polymerase chain reaction (PCR) targeting the kinetoplast minicircle and by quantitative PCR. Results Of 530 women, 154 (29%) were seropositive. Ten infants had congenital T. cruzi infection. Only 4 infants had positive results of microscopy evaluation in the first month, and none had positive cord blood microscopy results. PCR results were positive for 6 (67%) of 9 cord blood and 7 (87.5%) of 8 umbilical tissue specimens. PCR-positive women were more likely to transmit T. cruzi than were seropositive women with negative PCR results (P < .05). Parasite loads determined by quantitative PCR were higher for mothers of infected infants than for seropositive mothers of uninfected infants (P < .01). Despite intensive efforts, only 58% of at-risk infants had a month 9 specimen collected. Conclusions On the basis of the low sensitivity of microscopy in cord blood and high rate of loss to follow-up, we estimate that current screening programs miss one-half of all infected infants. Molecular techniques may improve early detection. PMID:19877966

  3. Effects of a novel β-lapachone derivative on Trypanosoma cruzi: Parasite death involving apoptosis, autophagy and necrosis.

    Science.gov (United States)

    Dos Anjos, Danielle Oliveira; Sobral Alves, Eliomara Sousa; Gonçalves, Vinicius Tomaz; Fontes, Sheila Suarez; Nogueira, Mateus Lima; Suarez-Fontes, Ana Márcia; Neves da Costa, João Batista; Rios-Santos, Fabricio; Vannier-Santos, Marcos André

    2016-12-01

    Natural products comprise valuable sources for new antiparasitic drugs. Here we tested the effects of a novel β-lapachone derivative on Trypanosoma cruzi parasite survival and proliferation and used microscopy and cytometry techniques to approach the mechanism(s) underlying parasite death. The selectivity index determination indicate that the compound trypanocidal activity was over ten-fold more cytotoxic to epimastigotes than to macrophages or splenocytes. Scanning electron microscopy analysis revealed that the R72 β-lapachone derivative affected the T. cruzi morphology and surface topography. General plasma membrane waving and blebbing particularly on the cytostome region were observed in the R72-treated parasites. Transmission electron microscopy observations confirmed the surface damage at the cytostome opening vicinity. We also observed ultrastructural evidence of the autophagic mechanism termed macroautophagy. Some of the autophagosomes involved large portions of the parasite cytoplasm and their fusion/confluence may lead to necrotic parasite death. The remarkably enhanced frequency of autophagy triggering was confirmed by quantitating monodansylcadaverine labeling. Some cells displayed evidence of chromatin pycnosis and nuclear fragmentation were detected. This latter phenomenon was also indicated by DAPI staining of R72-treated cells. The apoptotis induction was suggested to take place in circa one-third of the parasites assessed by annexin V labeling measured by flow cytometry. TUNEL staining corroborated the apoptosis induction. Propidium iodide labeling indicate that at least 10% of the R72-treated parasites suffered necrosis within 24 h. The present data indicate that the β-lapachone derivative R72 selectively triggers T. cruzi cell death, involving both apoptosis and autophagy-induced necrosis. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Structure-based approach to the identification of a novel group of selective glucosamine analogue inhibitors of Trypanosoma cruzi glucokinase.

    Science.gov (United States)

    D'Antonio, Edward L; Deinema, Mason S; Kearns, Sean P; Frey, Tyler A; Tanghe, Scott; Perry, Kay; Roy, Timothy A; Gracz, Hanna S; Rodriguez, Ana; D'Antonio, Jennifer

    2015-12-01

    Glucokinase and hexokinase from pathogenic protozoa Trypanosoma cruzi are potential drug targets for antiparasitic chemotherapy of Chagas' disease. These glucose kinases phosphorylate d-glucose with co-substrate ATP and yield glucose 6-phosphate and are involved in essential metabolic pathways, such as glycolysis and the pentose phosphate pathway. An inhibitor class was conceived that is selective for T. cruzi glucokinase (TcGlcK) using structure-based drug design involving glucosamine having a linker from the C2 amino that terminates with a hydrophobic group either being phenyl, p-hydroxyphenyl, or dioxobenzo[b]thiophenyl groups. The synthesis and characterization for two of the four compounds are presented while the other two compounds were commercially available. Four high-resolution X-ray crystal structures of TcGlcK inhibitor complexes are reported along with enzyme inhibition constants (Ki) for TcGlcK and Homo sapiens hexokinase IV (HsHxKIV). These glucosamine analogue inhibitors include three strongly selective TcGlcK inhibitors and a fourth inhibitor, benzoyl glucosamine (BENZ-GlcN), which is a similar variant exhibiting a shorter linker. Carboxybenzyl glucosamine (CBZ-GlcN) was found to be the strongest glucokinase inhibitor known to date, having a Ki of 0.71±0.05μM. Also reported are two biologically active inhibitors against in vitro T. cruzi culture that were BENZ-GlcN and CBZ-GlcN, with intracellular amastigote growth inhibition IC50 values of 16.08±0.16μM and 48.73±0.69μM, respectively. These compounds revealed little to no toxicity against mammalian NIH-3T3 fibroblasts and provide a key starting point for further drug development with this class of compound. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Cationic Amino Acid Uptake Constitutes a Metabolic Regulation Mechanism and Occurs in the Flagellar Pocket of Trypanosoma cruzi

    Science.gov (United States)

    Bouvier, León A.; Cámara, María de los Milagros; Montserrat, Javier; Pereira, Claudio A.

    2012-01-01

    Trypanosomatids' amino acid permeases are key proteins in parasite metabolism since they participate in the adaptation of parasites to different environments. Here, we report that TcAAP3, a member of a Trypanosoma cruzi multigene family of permeases, is a bona fide arginine transporter. Most higher eukaryotic cells incorporate cationic amino acids through a single transporter. In contrast, T. cruzi can recognize and transport cationic amino acids by mono-specific permeases since a 100-fold molar excess of lysine could not affect the arginine transport in parasites that over-express the arginine permease (TcAAP3 epimastigotes). In order to test if the permease activity regulates downstream processes of the arginine metabolism, the expression of the single T. cruzi enzyme that uses arginine as substrate, arginine kinase, was evaluated in TcAAP3 epimastigotes. In this parasite model, intracellular arginine concentration increases 4-folds and ATP level remains constant until cultures reach the stationary phase of growth, with decreases of about 6-folds in respect to the controls. Interestingly, Western Blot analysis demonstrated that arginine kinase is significantly down-regulated during the stationary phase of growth in TcAAP3 epimastigotes. This decrease could represent a compensatory mechanism for the increase in ATP consumption as a consequence of the displacement of the reaction equilibrium of arginine kinase, when the intracellular arginine concentration augments and the glucose from the medium is exhausted. Using immunofluorescence techniques we also determined that TcAAP3 and the specific lysine transporter TcAAP7 co-localize in a specialized region of the plasma membrane named flag