WorldWideScience

Sample records for anti-stokes raman scattering

  1. Noise figure and photon probability distribution in Coherent Anti-Stokes Raman Scattering (CARS)

    OpenAIRE

    Dimitropoulos, D.; Solli, D. R.; Claps, R.; Jalali, B.

    2006-01-01

    The noise figure and photon probability distribution are calculated for coherent anti-Stokes Raman scattering (CARS) where an anti-Stokes signal is converted to Stokes. We find that the minimum noise figure is ~ 3dB.

  2. Compressive coherent anti-Stokes Raman scattering holography.

    Science.gov (United States)

    Cocking, Alexander; Mehta, Nikhil; Shi, Kebin; Liu, Zhiwen

    2015-09-21

    Coherent anti-Stokes Raman scattering (CARS) holography captures both the amplitude and the phase of the anti-Stokes field generated from a sample and can thus perform single-shot, chemically selective three-dimensional imaging. We present compressive CARS holography, a numerical technique based on the concept of compressive sensing, to improve the quality of reconstructed images by leveraging sparsity in the source distribution and reducing the out-of-focus background noise. In particular, we use the two-step iterative shrinkage threshold (TwIST) algorithm with an l1 norm regularizer to iteratively retrieve images from an off axis CARS digital hologram. It is shown that the use of compressive CARS holography enhances the CARS holographic imaging technique by reducing noise and thereby effectively emulating a higher axial resolution using only a single shot hologram. PMID:26406699

  3. Imaging properties of coherent anti-Stokes Raman scattering microscope

    Institute of Scientific and Technical Information of China (English)

    Yuan Jing-He; Xiao Fan-Rong; Wang Gui-Ying; Xu Zhi-Zhan

    2005-01-01

    The coherent anti-Stokes Raman scattering (CARS) microscope with the combination of confocal and CARS techniques is a remarkable alternative for imaging chemical or biological specimens that neither fluoresce nor tolerate labelling. CARS is a nonlinear optical process, the imaging properties of CARS microscopy will be very different from the conventional confocal microscope. In this paper, the intensity distribution and the polarization property of the optical field near the focus was calculated. By using the Green function, the precise analytic solution to the wave equation of a Hertzian dipole source was obtained. We found that the intensity distributions vary considerably with the different experimental configurations and the different specimen shapes. So the conventional description of microscope (e.g. the point spread function) will fail to describe the imaging properties of the CARS microscope.

  4. Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source

    DEFF Research Database (Denmark)

    Paulsen, H.N.; Hilligsøe, Karen Marie; Thøgersen, J.;

    2003-01-01

    A coherent anti-Stokes Raman scattering microscope based on a Ti:sapphire femtosecond oscillator and a photonic crystal fiber is demonstrated. The nonlinear response of the fiber is used to generate the additional wavelength needed in the Raman process. The applicability of the setup is demonstra......A coherent anti-Stokes Raman scattering microscope based on a Ti:sapphire femtosecond oscillator and a photonic crystal fiber is demonstrated. The nonlinear response of the fiber is used to generate the additional wavelength needed in the Raman process. The applicability of the setup...

  5. Supercontinuum generation for coherent anti- Stokes Raman scattering microscopy with photonic crystal fibers

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Isomäki, Antti; Hansen, Kim P.;

    2011-01-01

    Photonic crystal fiber (PCF) designs with two zero-dispersion wavelengths (ZDWs) are experimentally investigated in order to suggest a novel PCF for coherent anti-Stokes Raman scattering (CARS) microscopy. From our investigation, we select the optimum PCF design and demonstrate a tailored spectru...... analysis, the nonlinear effects responsible for the spectral broadening are explained to be soliton fission processes, dispersive waves, and stimulated Raman scattering.......Photonic crystal fiber (PCF) designs with two zero-dispersion wavelengths (ZDWs) are experimentally investigated in order to suggest a novel PCF for coherent anti-Stokes Raman scattering (CARS) microscopy. From our investigation, we select the optimum PCF design and demonstrate a tailored spectrum...

  6. Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications

    Science.gov (United States)

    Krafft, Christoph; Dietzek, Benjamin; Schmitt, Michael; Popp, Jürgen

    2012-04-01

    A tutorial article is presented for the use of linear and nonlinear Raman microspectroscopies in biomedical diagnostics. Coherent anti-Stokes Raman scattering (CARS) is the most frequently applied nonlinear variant of Raman spectroscopy. The basic concepts of Raman and CARS are introduced first, and subsequent biomedical applications of Raman and CARS are described. Raman microspectroscopy is applied to both in-vivo and in-vitro tissue diagnostics, and the characterization and identification of individual mammalian cells. These applications benefit from the fact that Raman spectra provide specific information on the chemical composition and molecular structure in a label-free and nondestructive manner. Combining the chemical specificity of Raman spectroscopy with the spatial resolution of an optical microscope allows recording hyperspectral images with molecular contrast. We also elaborate on interfacing Raman spectroscopic tools with other technologies such as optical tweezing, microfluidics and fiber optic probes. Thereby, we aim at presenting a guide into one exciting branch of modern biophotonics research.

  7. Coherent anti-Stokes Raman scattering microscopy for pharmaceutics: a shift in the right direction

    NARCIS (Netherlands)

    Fussell, Andrew Luke

    2014-01-01

    This dissertation demonstrates coherent anti-Stokes Raman scattering (CARS) microscopy as a tool in pharmaceutical solid state development. CARS microscopy is a nonlinear optical imaging technique that uses inelastic scattering of light to provide chemically specific imaging. CARS microscopy is suit

  8. Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers

    DEFF Research Database (Denmark)

    Andresen, Esben Ravn; Paulsen, Henrik Nørgaard; Birkedal, Victoria;

    2006-01-01

    We demonstrate spectral multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy and microscopy based on a single Ti:sapphire oscillator and a nonlinear photonic-crystal fiber (PCF). The Stokes pulse is generated by spectral conversion of the laser pulse in a PCF. The pump pulse is eit...

  9. Coherent anti-Stokes Raman Scattering (CARS) Microscopy Visualizes Pharmaceutical Tablets During Dissolution

    OpenAIRE

    Fussell, A.L.; Kleinebudde, P.; Herek, J. L.; Strachan, C J; Offerhaus, H. L.

    2014-01-01

    Traditional pharmaceutical dissolution tests determine the amount of drug dissolved over time by measuring drug content in the dissolution medium. This method provides little direct information about what is happening on the surface of the dissolving tablet. As the tablet surface composition and structure can change during dissolution, it is essential to monitor it during dissolution testing. In this work coherent anti-Stokes Raman scattering microscopy is used to image the surface of tablets...

  10. Design of supercontinuum source for coherent anti-Stokes Raman scattering microscopy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; CHANG Sheng-jiang; ZHANG Yan-xin; ZHAO Xiang-ting

    2008-01-01

    A new method to obtain supemontinuum(SC)source for multiplex coherent anti-stokes Raman scattering(CARS)micros-copy is proposed.The nonlinear propagation in photonic-crystal fibers(PCF)of femtosecond pulse laser with central wavelength at 800.9 nm is studied with scalar wave theory.Based on the incident laser power and dispersion of PCF,super broadband source for multiplex CARS microscopy is designed.

  11. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses.

    Science.gov (United States)

    Zeng, Jianhua; Chen, Lei; Dai, Qiaofeng; Lan, Sheng; Tie, Shaolong

    2016-01-21

    We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into "coffee" rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly revealed in the anti-Stokes hyper-Raman scattering. Apart from the strong anti-Stokes hyper-Raman scattering, Stokes hyper-Raman scattering with small Raman shifts was detected during the ablation process of thick MoS2 layers. It was also observed by slightly defocusing the excitation light. The detection of anti-Stokes hyper-Raman scattering may serve as a new technique for studying the Raman inactive vibration modes in nanomaterials. PMID:26690965

  12. Evaluation of turbulence induced noise in coherent anti-Stokes Raman scattering

    Science.gov (United States)

    Elliott, R. A.

    1982-01-01

    The effect of turbulence in a transonic wind tunnel on coherent anti-Stokes Raman scattering is considered. The driving pump and Stokes waves are taken to be coaxially propagating Gaussian beam waves which are focused on the Raman active medium through the turbulent boundary layer of the flow tube. The random index of refraction variations in the layer are modeled as phase perturbations of the driving waves which cause a reduction of the mean on-axis field and an increase in the mean diameter of the beams. Effective Gaussian beam parameters are developed and the radiated anti-Stokes power calculated as a function of the phase screen parameters. A significant reduction in signal strength occurs for realistic estimates of the phase screen parameter appropriate to a confined transonic flow. A method for estimating the signal degradation which could be applied to other experimental situations is presented.

  13. Raman scattering and anomalous Stokes–anti-Stokes ratio in MoTe2 atomic layers

    Science.gov (United States)

    Goldstein, Thomas; Chen, Shao-Yu; Tong, Jiayue; Xiao, Di; Ramasubramaniam, Ashwin; Yan, Jun

    2016-06-01

    Stokes and anti-Stokes Raman scattering are performed on atomic layers of hexagonal molybdenum ditelluride (MoTe2), a prototypical transition metal dichalcogenide (TMDC) semiconductor. The data reveal all six types of zone center optical phonons, along with their corresponding Davydov splittings, which have been challenging to see in other TMDCs. We discover that the anti-Stokes Raman intensity of the low energy layer-breathing mode becomes more intense than the Stokes peak under certain experimental conditions, and find the effect to be tunable by excitation frequency and number of atomic layers. These observations are interpreted as a result of resonance effects arising from the C excitons in the vicinity of the Brillouin zone center in the photon-electron-phonon interaction process.

  14. Raman scattering and anomalous Stokes-anti-Stokes ratio in MoTe2 atomic layers.

    Science.gov (United States)

    Goldstein, Thomas; Chen, Shao-Yu; Tong, Jiayue; Xiao, Di; Ramasubramaniam, Ashwin; Yan, Jun

    2016-01-01

    Stokes and anti-Stokes Raman scattering are performed on atomic layers of hexagonal molybdenum ditelluride (MoTe2), a prototypical transition metal dichalcogenide (TMDC) semiconductor. The data reveal all six types of zone center optical phonons, along with their corresponding Davydov splittings, which have been challenging to see in other TMDCs. We discover that the anti-Stokes Raman intensity of the low energy layer-breathing mode becomes more intense than the Stokes peak under certain experimental conditions, and find the effect to be tunable by excitation frequency and number of atomic layers. These observations are interpreted as a result of resonance effects arising from the C excitons in the vicinity of the Brillouin zone center in the photon-electron-phonon interaction process. PMID:27324297

  15. Coherent anti-Stokes Raman scattering microscopy with dynamic speckle illumination

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Christoph; Hofer, Alexander; Bernet, Stefan; Ritsch-Marte, Monika [Division for Biomedical Physics, Innsbruck Medical University, Muellerstrasse. 44, A-6020 Innsbruck (Austria)], E-mail: Stefan.Bernet@i-med.ac.at

    2008-02-15

    We demonstrate that dynamic speckle patterns can be utilized to improve the optical sectioning power of wide-field coherent anti-Stokes Raman scattering (CARS) microscopy. The time-dependent speckle patterns are generated by randomly moving a multimode fiber delivering one of the excitation laser pulses. The standard deviation of various CARS images with changing speckle illumination yields an enhanced axial resolution as compared with a simply averaged CARS image. The procedure makes use of the intrinsically high speckle contrast even in scattering materials.

  16. Experimental Investigation on Selective Excitation of Two-Pulse Coherent Anti-Stokes Raman Scattering

    Institute of Scientific and Technical Information of China (English)

    LI Xia; ZHANG Hui; ZHANG Xiang-Yun; ZHANG Shi-An; WANG Zu-Geng; SUN Zhen-Rong

    2008-01-01

    Selective excitation of coherent anti-Stokes Raman scattering from the benzene solution is achieved by adaptive pulse shaping based on genetic algorithm, and second harmonic generation frequency-resolved optical gating (SHG-FROG) technique is adopted to characterize the original and optimal laser pulses. The mechanism for two-pulse coherent mode-selective excitation of Raman scattering is experimentally investigated by modulating the pump pulse in the frequency domain, and it is indicated that two-pulse coherent mode-selective excitation of Raman scattering mainly depends on the effective frequency components of the pump pulse related to specific vibrational mode. The experimental results suggest that two-pulse CARS has good signal-to-background ratio and high sensitivity, and it has attractive potential applications in the complicated molecular system.

  17. Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping

    Science.gov (United States)

    Yang, Wenlong; Sokolov, Alexei

    2010-10-01

    The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.

  18. Spectral model of time-domain coherent anti-Stokes Raman scattering

    CERN Document Server

    Marrocco, Michele

    2014-01-01

    We show that the increasingly popular nonlinear optical technique of time-domain coherent anti-Stokes Raman scattering (CARS), which is usually understood in terms of the semiclassical time-dependent third-order polarization, can be equally explained in terms of the time-delayed version of the Yuratich equation so popular in traditional frequency-domain CARS. The method brings out the strong dependence of CARS time traces and time-delayed CARS lineshapes on the spectral envelope of the probe laser electric field. Examples are analytically shown for experimental results that are otherwise treated by means of numerical methods only.

  19. Direct imaging of molecular symmetry by coherent anti-Stokes Raman scattering

    CERN Document Server

    Cleff, Carsten; Ferrand, Patrick; Rigneault, Hervé; Brasselet, Sophie; Duboisset, Julien

    2015-01-01

    Nonlinear optical methods, such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS), are able to perform label free imaging, with chemical bonds specificity. Here, we demonstrate that the use of circularly polarized light allows to retrieve not only the chemical nature but also the symmetry of the probed sample, in a single shot measurement. Our symmetry-resolved scheme offers simple access to the local organization of vibrational bonds and as a result provides enhanced image contrast for anisotropic samples as well as an improved chemical selectivity. We quantify the local organization of vibrational bonds on crystalline and biological samples, thus providing new information not accessible by spontaneous Raman and SRS techniques. This work stands for a novel symmetry-resolved contrast in vibrational microscopy, with potential application in biological diagnostic.

  20. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses

    Science.gov (United States)

    Zeng, Jianhua; Chen, Lei; Dai, Qiaofeng; Lan, Sheng; Tie, Shaolong

    2016-01-01

    We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into ``coffee'' rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly revealed in the anti-Stokes hyper-Raman scattering. Apart from the strong anti-Stokes hyper-Raman scattering, Stokes hyper-Raman scattering with small Raman shifts was detected during the ablation process of thick MoS2 layers. It was also observed by slightly defocusing the excitation light. The detection of anti-Stokes hyper-Raman scattering may serve as a new technique for studying the Raman inactive vibration modes in nanomaterials.We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into ``coffee'' rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly

  1. Quantitative, Comparable Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopy: Correcting Errors in Phase Retrieval

    CERN Document Server

    Camp, Charles H; Cicerone, Marcus T

    2015-01-01

    Coherent anti-Stokes Raman scattering (CARS) microspectroscopy has demonstrated significant potential for biological and materials imaging. To date, however, the primary mechanism of disseminating CARS spectroscopic information is through pseudocolor imagery, which explicitly neglects a vast majority of the hyperspectral data. Furthermore, current paradigms in CARS spectral processing do not lend themselves to quantitative sample-to-sample comparability. The primary limitation stems from the need to accurately measure the so-called nonresonant background (NRB) that is used to extract the chemically-sensitive Raman information from the raw spectra. Measurement of the NRB on a pixel-by-pixel basis is a nontrivial task; thus, reference NRB from glass or water are typically utilized, resulting in error between the actual and estimated amplitude and phase. In this manuscript, we present a new methodology for extracting the Raman spectral features that significantly suppresses these errors through phase detrending ...

  2. Broadband coherent anti-Stokes Raman scattering light generation in BBO crystal by using two crossing femtosecond laser pulses.

    Science.gov (United States)

    Liu, Jun; Zhang, Jun; Kobayashi, Takayoshi

    2008-07-01

    As broad as 12000 cm(-1) coherent anti-Stokes Raman scattering (CARS) light from ultraviolet to infrared was generated in a BBO crystal by using two crossing femtosecond laser pulses with 30% conversion efficiency. More than fifteenth-order anti-Stokes and second-order Stokes Raman sidebands were observed with nice Gaussian spatial mode. The effect of the crossing angle between two input beams on the spectrum and emitting angle of the Raman sidebands was studied in detail. Calculation shows that the phase-matching condition determines the frequencies and angles of the sidebands.

  3. Broadband coherent anti-Stokes Raman scattering light generation in BBO crystal by using two crossing femtosecond laser pulses.

    Science.gov (United States)

    Liu, Jun; Zhang, Jun; Kobayashi, Takayoshi

    2008-07-01

    As broad as 12000 cm(-1) coherent anti-Stokes Raman scattering (CARS) light from ultraviolet to infrared was generated in a BBO crystal by using two crossing femtosecond laser pulses with 30% conversion efficiency. More than fifteenth-order anti-Stokes and second-order Stokes Raman sidebands were observed with nice Gaussian spatial mode. The effect of the crossing angle between two input beams on the spectrum and emitting angle of the Raman sidebands was studied in detail. Calculation shows that the phase-matching condition determines the frequencies and angles of the sidebands. PMID:18594676

  4. Coherent anti-Stokes Raman scattering for label-free biomedical imaging

    International Nuclear Information System (INIS)

    Coherent anti-Stokes Raman scattering (CARS) has established itself as an imaging technique capable of providing video-rate imaging of biological specimens through vibrational coherence of endogenous molecules. Current techniques predominantly involve the application of costly, invasive and potentially non-specific dyes or labels for imaging biomolecules. CARS microscopy can however provide a high-resolution and non-invasive alternative for imaging biomolecules of interest without the need for exogenous labels. Here we provide an overview of CARS including the technique and common instrumentation as well as its applications in biomedical imaging. We discuss the major biomedical areas where CARS has been applied such as in evaluating liver disease, progression of atherosclerosis, tumour classification and tracking drug delivery, whilst also assessing the future challenges for clinical translation. (special issue article)

  5. Visualizing resonances in the complex plane with vibrational phase contrast coherent anti-Stokes Raman scattering.

    Science.gov (United States)

    Jurna, Martin; Garbacik, Erik T; Korterik, Jeroen P; Herek, Jennifer L; Otto, Cees; Offerhaus, Herman L

    2010-09-15

    In coherent anti-Stokes Raman scattering (CARS), the emitted signal carries both amplitude and phase information of the molecules in the focal volume. Most CARS experiments ignore the phase component, but its detection allows for two advantages over intensity-only CARS. First, the pure resonant response can be determined, and the nonresonant background rejected, by extracting the imaginary component of the complex response, enhancing the sensitivity of CARS measurements. Second, selectivity is increased via determination of the phase and amplitude, allowing separation of individual molecular components of a sample even when their vibrational bands overlap. Here, using vibrational phase contrast CARS (VPC-CARS), we demonstrate enhanced sensitivity in quantitative measurements of ethanol/methanol mixtures and increased selectivity in a heterogeneous mixture of plastics and water. This powerful technique opens a wide range of possibilities for studies of complicated systems where overlapping resonances limit standard methodologies. PMID:20731373

  6. Combined spontaneous Stokes and coherent anti-Stokes Raman scattering spectroscopy

    Science.gov (United States)

    Becker, Karina; Kiefer, Johannes

    2016-05-01

    The simultaneous determination of multiple parameters is the key in the characterization of processes and materials that change with time. In combustion environments, the combined measurement of temperature and chemical composition is particularly desirable. In the present work, possible approaches for the simultaneous application of spontaneous Raman scattering (RS) and coherent anti-Stokes Raman scattering (CARS) spectroscopy are proposed and analyzed. While RS provides concentration information of all major species, vibrational CARS is a highly accurate thermometry tool at flame conditions. Five experimentally feasible CARS-RS schemes are identified and discussed with respect to signal intensity, measurement volume, and experimental complexity. From this analysis, one scheme was found to be the best option. It utilizes a broadband dye laser centered at 852 nm as a pump and the fundamental 1064-nm radiation of the Nd:YAG as Stokes laser. The third harmonic is used as CARS probe and RS laser. The experimentally most elegant scheme replaces the third harmonic in the above scheme by the second harmonic hence involving the smallest number of optical components in the setup.

  7. Characterization of Microstructures Fabricated by Two-Photon Polymerization Using Coherent Anti-Stokes Raman Scattering Microscopy

    OpenAIRE

    Baldacchini, Tommaso; Zimmerley, Maxwell; Kuo, Chun-Hung; Potma, Eric O.; Zadoyan, Ruben

    2009-01-01

    We demonstrate the possibility to image microstructures fabricated by two-photon polymerization (TPP) using coherent anti-Stokes Raman scattering (CARS) microscopy. The imaging contrast based on chemical selectivity attained by CARS microscopy is used to gather qualitative information on TPP. Upon the basis of detailed knowledge of the characteristic signatures of the photoresist Raman spectrum, quantitative relationships between laser writing conditions and polymer cross-linking are demonstr...

  8. Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration

    Science.gov (United States)

    Moura, Catarina Costa; Tare, Rahul S.; Oreffo, Richard O. C.; Mahajan, Sumeet

    2016-01-01

    The use of skeletal stem cells (SSCs) for cell-based therapies is currently one of the most promising areas for skeletal disease treatment and skeletal tissue repair. The ability for controlled modification of SSCs could provide significant therapeutic potential in regenerative medicine, with the prospect to permanently repopulate a host with stem cells and their progeny. Currently, SSC differentiation into the stromal lineages of bone, fat and cartilage is assessed using different approaches that typically require cell fixation or lysis, which are invasive or even destructive. Raman spectroscopy and coherent anti-Stokes Raman scattering (CARS) microscopy present an exciting alternative for studying biological systems in their natural state, without any perturbation. Here we review the applications of Raman spectroscopy and CARS imaging in stem-cell research, and discuss the potential of these two techniques for evaluating SSCs, skeletal tissues and skeletal regeneration as an exemplar. PMID:27170652

  9. Femtosecond Coherent Anti-Stokes Raman Scattering Gas Phase Thermometry at 5 kHz

    Science.gov (United States)

    Fineman, Claresta; Lucht, Robert

    2014-05-01

    Understanding the thermal instabilities occurring in turbulent combustion, such as in modern gas turbine combustors, is critical for more reliable and fuel-efficient operation. Non-intrusive laser based spectroscopy methods have been documented as the techniques of choice for turbulent combustion diagnostics. Specifically, femtosecond coherent anti-Stokes Raman scattering (fs-CARS) thermometry has been established for temporal resolution of turbulent fluctuations in flame structure and provides accurate measurements across a wide range of temperatures. Experiments performed to date include 5 kHz pure vibrational N2 chirped probe-pulse fs-CARS thermometry on non-premixed hydrogen jet diffusion flames, methane jet diffusion flames, and the DLR gas turbine model combustor (GTMC). The fs-CARS signal generation process requires precise spatial and temporal overlap of tightly focused pulsed laser beams of less than 100 fs pulse duration. Here, signal loss due to beam steering, pressure fluctuations, or shear layer density gradients can become a problem. The effect of such interferences has been investigated using high velocity flow of compressed nitrogen gas from a converging-diverging nozzle. Resulting changes in fs-CARS spectra have been studied. Funding for this work was provided by the U.S. Department of Energy, Division of Chemical Sciences, Geosciences and Biosciences.

  10. Coherent anti-Stokes Raman scattering microscopy of human smooth muscle cells in bioengineered tissue scaffolds

    Science.gov (United States)

    Brackmann, Christian; Esguerra, Maricris; Olausson, Daniel; Delbro, Dick; Krettek, Alexandra; Gatenholm, Paul; Enejder, Annika

    2011-02-01

    The integration of living, human smooth muscle cells in biosynthesized cellulose scaffolds was monitored by nonlinear microscopy toward contractile artificial blood vessels. Combined coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy was applied for studies of the cell interaction with the biopolymer network. CARS microscopy probing CH2-groups at 2845 cm-1 permitted three-dimensional imaging of the cells with high contrast for lipid-rich intracellular structures. SHG microscopy visualized the fibers of the cellulose scaffold, together with a small signal obtained from the cytoplasmic myosin of the muscle cells. From the overlay images we conclude a close interaction between cells and cellulose fibers. We followed the cell migration into the three-dimensional structure, illustrating that while the cells submerge into the scaffold they extrude filopodia on top of the surface. A comparison between compact and porous scaffolds reveals a migration depth of <10 μm for the former, whereas the porous type shows cells further submerged into the cellulose. Thus, the scaffold architecture determines the degree of cell integration. We conclude that the unique ability of nonlinear microscopy to visualize the three-dimensional composition of living, soft matter makes it an ideal instrument within tissue engineering.

  11. Coherent anti-Stokes Raman scattering (CARS) microscopy visualizes pharmaceutical tablets during dissolution.

    Science.gov (United States)

    Fussell, Andrew L; Kleinebudde, Peter; Herek, Jennifer; Strachan, Clare J; Offerhaus, Herman L

    2014-01-01

    Traditional pharmaceutical dissolution tests determine the amount of drug dissolved over time by measuring drug content in the dissolution medium. This method provides little direct information about what is happening on the surface of the dissolving tablet. As the tablet surface composition and structure can change during dissolution, it is essential to monitor it during dissolution testing. In this work coherent anti-Stokes Raman scattering microscopy is used to image the surface of tablets during dissolution while UV absorption spectroscopy is simultaneously providing inline analysis of dissolved drug concentration for tablets containing a 50% mixture of theophylline anhydrate and ethyl cellulose. The measurements showed that in situ CARS microscopy is capable of imaging selectively theophylline in the presence of ethyl cellulose. Additionally, the theophylline anhydrate converted to theophylline monohydrate during dissolution, with needle-shaped crystals growing on the tablet surface during dissolution. The conversion of theophylline anhydrate to monohydrate, combined with reduced exposure of the drug to the flowing dissolution medium resulted in decreased dissolution rates. Our results show that in situ CARS microscopy combined with inline UV absorption spectroscopy is capable of monitoring pharmaceutical tablet dissolution and correlating surface changes with changes in dissolution rate. PMID:25045833

  12. In situ dissolution analysis using coherent anti-Stokes Raman scattering (CARS) and hyperspectral CARS microscopy.

    Science.gov (United States)

    Fussell, Andrew; Garbacik, Erik; Offerhaus, Herman; Kleinebudde, Peter; Strachan, Clare

    2013-11-01

    The solid-state form of an active pharmaceutical ingredient (API) in an oral dosage form plays an important role in determining the dissolution rate of the API. As the solid-state form can change during dissolution, there is a need to monitor the oral dosage form during dissolution testing. Coherent anti-Stokes Raman scattering (CARS) microscopy provides rapid, spectrally selective imaging to monitor the oral dosage form during dissolution. In this study, in situ CARS microscopy was combined with inline UV absorption spectroscopy to monitor the solid-state change in oral dosage forms containing theophylline anhydrate undergoing dissolution and to correlate the solid-state change with a change in dissolution rate. The results from in situ CARS microscopy showed that theophylline anhydrate converted to theophylline monohydrate during dissolution resulting in a reduction in the dissolution rate. The addition of methyl cellulose to the dissolution medium was found to delay the theophylline monohydrate growth and changed the morphology of the monohydrate. The net effect was an increased dissolution rate for theophylline anhydrate. Our results show that in situ CARS microscopy combined with inline UV absorption spectroscopy is capable of monitoring oral dosage forms undergoing dissolution and correlating changes in solid-state form with changes in dissolution rate. PMID:23994672

  13. Coherent anti-Stokes Raman scattering hyperspectral imaging of cartilage aiming for state discrimination of cell

    Science.gov (United States)

    Shiozawa, Manabu; Shirai, Masataka; Izumisawa, Junko; Tanabe, Maiko; Watanabe, Koich

    2016-07-01

    Noninvasive cell analyses are increasingly important in the medical field. A coherent anti-Stokes Raman scattering (CARS) microscope is the noninvasive imaging equipment and enables to obtain images indicating molecular distribution. However, due to low-signal intensity, it is still challenging to obtain images of the fingerprint region, in which many spectrum peaks correspond to compositions of a cell. Here, to identify cell differentiation by using multiplex CARS, we investigated hyperspectral imaging of the fingerprint region of living cells. To perform multiplex CARS, we used a prototype of a compact light source generating both pump light and broadband Stokes light. Assuming application to regenerative medicine, we chose a cartilage cell, whose differentiation is difficult to be identified by change of the cell morphology. Because one of the major components of cartilage is collagen, we focused on distribution of proline, which accounts for approximately 20% of collagen. The spectrum quality was improved by optical adjustments of the power branching ratio and divergence of Stokes light. Periphery of a cartilage cell was highlighted in a CARS image of proline, and this result suggests correspondence with collagen generated as an extracellular matrix. The possibility of noninvasive analyses by using CARS hyperspectral imaging was indicated.

  14. Investigation of lipid homeostasis in living Drosophila by coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Chien, Cheng-Hao; Chen, Wei-Wen; Wu, June-Tai; Chang, Ta-Chau

    2012-12-01

    To improve our understanding of lipid metabolism, Drosophila is used as a model animal, and its lipid homeostasis is monitored by coherent anti-Stokes Raman scattering microscopy. We are able to achieve in vivo imaging of larval fat body (analogous to adipose tissue in mammals) and oenocytes (analogous to hepatocytes) in Drosophila larvae at subcellular level without any labeling. By overexpressing two lipid regulatory proteins-Brummer lipase (Bmm) and lipid storage droplet-2 (Lsd-2)-we found different phenotypes and responses under fed and starved conditions. Comparing with the control larva, we observed more lipid droplet accumulation by ˜twofold in oenocytes of fat-body-Bmm-overexpressing (FB-Bmm-overexpressing) mutant under fed condition, and less lipid by ˜fourfold in oenocytes of fat-body-Lsd-2-overexpressing (FB-Lsd-2-overexpressing) mutant under starved condition. Moreover, together with reduced size of lipid droplets, the lipid content in the fat body of FB-Bmm-overexpressing mutant decreases much faster than that of the control and FB-Lsd-2-overexpressing mutant during starvation. From long-term starvation assay, we found FB-Bmm-overexpressing mutant has a shorter lifespan, which can be attributed to faster consumption of lipid in its fat body. Our results demonstrate in vivo observations of direct influences of Bmm and Lsd-2 on lipid homeostasis in Drosophila larvae.

  15. Rotational coherence imaging and control for CN molecules through time-frequency resolved coherent anti-Stokes Raman scattering

    OpenAIRE

    Lindgren, Johan; Hulkko, Eero; Pettersson, Mika; Kiljunen, Toni

    2011-01-01

    Numerical wave packet simulations are performed for studying coherent anti-Stokes Raman scattering (CARS) for CN radicals. Electronic coherence is created by femtosecond laser pulses between the X²Σ and B²Σ states. Due to the large energy separation of vibrational states, the wave packets are superpositions of rotational states only. This allows for a specially detailed inspection of the second- and third-order coherences by a two-dimensional imaging approach. We present the time-frequency do...

  16. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for gas-phase temperature measurements

    Science.gov (United States)

    Miller, Joseph Daniel

    Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) is employed for quantitative gas-phase temperature measurements in combustion processes and heated flows. In this approach, ultrafast 100-fs laser pulses are used to induce vibrational and rotational transitions in N2 and O2, while a third spectrally narrowed picosecond pulse is used to probe the molecular response. Temporal suppression of the nonresonant contribution and elimination of collisional effects are achieved by delay of the probe pulse, while sufficient spectral resolution is maintained for frequency-domain detection and thermometry. A theoretical framework is developed to model experimental spectra by phenomenologically describing the temporal evolution of the vibrational and rotational wavepackets as a function of temperature and pressure. Interference-free, single-shot vibrational fs/ps CARS thermometry is demonstrated at 1-kHz from 1400-2400 K in a H2-air flame, with accuracy better than 3%. A time-asymmetric exponential pulse shape is introduced to optimize nonresonant suppression with a 103 reduction at a probe delay of 0.31 ps. Low-temperature single-shot thermometry (300-700 K) with better than 1.5% accuracy is demonstrated using a fully degenerate rotational fs/ps CARS scheme, and the influence of collision energy transfer on thermometry error is quantified at atmospheric pressure. Interference-free thermometry, without nonresonant contributions and collision-induced error, is demonstrated for the first time using rotational fs/ps CARS at room temperature and pressures from 1-15 atm. Finally, the temporal and spectral resolution of fs/ps CARS is exploited for transition-resolved time-domain measurements of N2 and O2 self-broadened S-branch Raman linewidths at pressures of 1-20 atm.

  17. Diagnosing lung cancer using coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Gao, Liang; Yang, Yaliang; Xing, Jiong; Thrall, Michael J.; Wang, Zhiyong; Li, Fuhai; Luo, Pengfei; Wong, Kelvin K.; Zhao, Hong; Wong, Stephen T. C.

    2011-03-01

    Lung carcinoma is the most prevalent type of cancer in the world, and it is responsible for more deaths than other types of cancer. During diagnosis, a pathologist primarily aims to differentiate small cell carcinoma from non-small cell carcinoma on biopsy and cytology specimens, which is time consuming due to the time required for tissue processing and staining. To speed up the diagnostic process, we investigated the feasibility of using coherent anti-Stokes Raman scattering (CARS) microscopy as a label-free strategy to image lung lesions and differentiate subtypes of lung cancers. Different mouse lung cancer models were developed by injecting human lung cancer cell lines, including adenocarcinoma, squamous cell carcinoma, and small cell carcinoma, into lungs of the nude mice. CARS images were acquired from normal lung tissues and different subtypes of cancer lesions ex vivo using intrinsic contrasts from symmetric CH2 bonds. These images showed good correlation with the hematoxylin and eosin (H&E) stained sections from the same tissue samples with regard to cell size, density, and cell-cell distance. These features are routinely used in diagnosing lung lesions. Our results showed that the CARS technique is capable of providing a visualizable platform to differentiate different kinds of lung cancers using the same pathological features without histological staining and thus has the potential to serve as a more efficient examination tool for diagnostic pathology. In addition, incorporating with suitable fiber-optic probes would render the CARS technique as a promising approach for in vivo diagnosis of lung cancer.

  18. Rotational coherence imaging and control for CN molecules through time-frequency resolved coherent anti-Stokes Raman scattering.

    Science.gov (United States)

    Lindgren, Johan; Hulkko, Eero; Pettersson, Mika; Kiljunen, Toni

    2011-12-14

    Numerical wave packet simulations are performed for studying coherent anti-Stokes Raman scattering (CARS) for CN radicals. Electronic coherence is created by femtosecond laser pulses between the X(2)Σ and B(2)Σ states. Due to the large energy separation of vibrational states, the wave packets are superpositions of rotational states only. This allows for a specially detailed inspection of the second- and third-order coherences by a two-dimensional imaging approach. We present the time-frequency domain images to illustrate the intra- and intermolecular interferences, and discuss the procedure to rationally control and experimentally detect the interferograms in solid Xe environment. PMID:22168710

  19. Compact fibre-based coherent anti-Stokes Raman scattering spectroscopy and interferometric coherent anti-Stokes Raman scattering from a single femtosecond fibre-laser oscillator

    Indian Academy of Sciences (India)

    Vikas Kumar; Alessio Gambetta; Cristian Manzoni; Roberta Ramponi; Giulio Cerullo; Marco Marangoni

    2010-12-01

    We demonstrate a new approach to CARS spectroscopy by efficiently synthesizing synchronized narrow-bandwidth (less than 10 cm-1) pump and Stokes pulses (frequency difference continuously tunable upto ∼ 3000 cm-1) based on spectral compression together with second harmonic generation (in periodically-poled nonlinear crystals) of femtosecond pulses emitted by a single compact Er-fibre oscillator. For a far better signal to non-resonant background contrast, interferometric CARS (I-CARS) is demonstrated and CARS signal enhancement upto three orders of magnitude is achieved by constructive interference with an auxiliary local oscillator at anti-Stokes field, also synthesized by spectral compression of pulses emitted from the same fibre oscillator.

  20. Detection of chemical interfaces in coherent anti-Stokes Raman scattering microscopy: Dk-CARS. I. Axial interfaces.

    Science.gov (United States)

    Gachet, David; Rigneault, Hervé

    2011-12-01

    We develop a full vectorial theoretical investigation of the chemical interface detection in conventional coherent anti-Stokes Raman scattering (CARS) microscopy. In Part I, we focus on the detection of axial interfaces (i.e., parallel to the optical axis) following a recent experimental demonstration of the concept [Phys. Rev. Lett. 104, 213905 (2010)]. By revisiting the Young's double slit experiment, we show that background-free microscopy and spectroscopy is achievable through the angular analysis of the CARS far-field radiation pattern. This differential CARS in k space (Dk-CARS) technique is interesting for fast detection of interfaces between molecularly different media. It may be adapted to other coherent and resonant scattering processes.

  1. Longitudinal in vivo coherent anti-Stokes Raman scattering imaging of demyelination and remyelination in injured spinal cord

    Science.gov (United States)

    Shi, Yunzhou; Zhang, Delong; Huff, Terry B.; Wang, Xiaofei; Shi, Riyi; Xu, Xiao-Ming; Cheng, Ji-Xin

    2011-10-01

    In vivo imaging of white matter is important for the mechanistic understanding of demyelination and evaluation of remyelination therapies. Although white matter can be visualized by a strong coherent anti-Stokes Raman scattering (CARS) signal from axonal myelin, in vivo repetitive CARS imaging of the spinal cord remains a challenge due to complexities induced by the laminectomy surgery. We present a careful experimental design that enabled longitudinal CARS imaging of de- and remyelination at single axon level in live rats. In vivo CARS imaging of secretory phospholipase A2 induced myelin vesiculation, macrophage uptake of myelin debris, and spontaneous remyelination by Schwann cells are sequentially monitored over a 3 week period. Longitudinal visualization of de- and remyelination at a single axon level provides a novel platform for rational design of therapies aimed at promoting myelin plasticity and repair.

  2. In vivo histology: optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography

    Science.gov (United States)

    Weinigel, M.; Breunig, H. G.; Kellner-Höfer, M.; Bückle, R.; Darvin, M. E.; Klemp, M.; Lademann, J.; König, K.

    2014-05-01

    The majority of existing coherent anti-Stokes Raman scattering (CARS) imaging systems are still huge and complicated laboratory systems and neither compact nor user-friendly nor mobile medically certified CARS systems. We have developed a new flexible multiphoton/CARS tomograph for imaging in a clinical environment. The system offers exceptional 360° flexibility with a very stable setup and enables label free ‘in vivo histology’ with chemical contrast within seconds. It can be completely operated by briefly trained non-laser experts. The imaging capability and flexibility of the novel in vivo tomograph are shown on optical biopsies with subcellular resolution and chemical contrast of patients suffering from psoriasis and squamous cell carcinoma.

  3. In vivo histology: optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography

    International Nuclear Information System (INIS)

    The majority of existing coherent anti-Stokes Raman scattering (CARS) imaging systems are still huge and complicated laboratory systems and neither compact nor user-friendly nor mobile medically certified CARS systems. We have developed a new flexible multiphoton/CARS tomograph for imaging in a clinical environment. The system offers exceptional 360° flexibility with a very stable setup and enables label free ‘in vivo histology’ with chemical contrast within seconds. It can be completely operated by briefly trained non-laser experts. The imaging capability and flexibility of the novel in vivo tomograph are shown on optical biopsies with subcellular resolution and chemical contrast of patients suffering from psoriasis and squamous cell carcinoma

  4. Dual-soliton Stokes-based background-free coherent anti-Stokes Raman scattering spectroscopy and microscopy.

    Science.gov (United States)

    Chen, Kun; Wu, Tao; Wei, Haoyun; Li, Yan

    2016-06-01

    We propose an all-fiber-generated, dual-soliton, Stokes-based scheme for background-free coherent anti-Stokes Raman scattering (CARS) under the spectral focusing mechanism. Owing to the strong birefringence and high nonlinearity of a polarization-maintaining PCF (PM-PCF), two soliton pulses can be simultaneously emitted along different eigenpolarization axes and both serve as Stokes pulses, while allowing feasible tunability of frequency distance and temporal interval between them. This proposed scheme, based on an all-fiber light source, exploits a unique combination of slight frequency-shift temporal walk-off of these two solitons to achieve efficient suppression of the nonresonant background and beat the inaccessibility and complexity of the excitation source. Capability is experimentally demonstrated by background-free CARS spectroscopy and unambiguous CARS microscopy in the fingerprint region. PMID:27244431

  5. Seeing the vibrational breathing of a single molecule through time-resolved coherent anti-Stokes Raman scattering

    CERN Document Server

    Yampolsky, Steven; Dey, Shirshendu; Hulkko, Eero; Banik, Mayukh; Potma, Eric O; Apkarian, Vartkess A

    2014-01-01

    The motion of chemical bonds within molecules can be observed in real time, in the form of vibrational wavepackets prepared and interrogated through ultrafast nonlinear spectroscopy. Such nonlinear optical measurements are commonly performed on large ensembles of molecules, and as such, are limited to the extent that ensemble coherence can be maintained. Here, we describe vibrational wavepacket motion on single molecules, recorded through time-resolved, surface-enhanced, coherent anti-Stokes Raman scattering. The required sensitivity to detect the motion of a single molecule, under ambient conditions, is achieved by equipping the molecule with a dipolar nano-antenna (a gold dumbbell). In contrast with measurements in ensembles, the vibrational coherence on a single molecule does not dephase. It develops phase fluctuations with characteristic statistics. We present the time evolution of discretely sampled statistical states, and highlight the unique information content in the characteristic, early-time probabi...

  6. Selective excitation of molecular mode in a mixture by femtosecond resonance-enhanced coherent anti-Stokes Raman scattering spectroscopy

    Institute of Scientific and Technical Information of China (English)

    He Ping; Li Si-Ning; Fan Rong-Wei; Li Xiao-Hui; Xia Yuan-Qin; Yu Xin; Chen De-Ying

    2012-01-01

    Femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to investigate gaseous molecular dynamics.Due to the spectrally broad laser pulses,usually poorly resolved spectra result from this broad spectroscopy.However,it can be demonstrated that by the electronic resonance enhancement optimization control a selective excitation of specific vibrational mode is possible.Using an electronically resonance-enhanced effect,iodine molecule specific CARS spectroscopy can be obtained from a mixture of iodine-air at room temperature and a pressure of 1 atm (corresponding to a saturation iodine vapour as low as about 35 Pa).The dynamics on either the electronically excited state or the ground state of iodine molecules obtained is consistent with previous studies (vacuum,heated and pure iodine) in the femtosecond time resolved CARS spectroscopy,showing that an effective method of suppressing the non-resonant CARS background and other interferences is demonstrated.

  7. Coherent Anti-Stokes Raman Scattering Spectroscopy of Single Molecules in Solution

    Energy Technology Data Exchange (ETDEWEB)

    Sunney Xie, Wei Min, Chris Freudiger, Sijia Lu

    2012-01-18

    During this funding period, we have developed two breakthrough techniques. The first is stimulated Raman scattering microscopy, providing label-free chemical contrast for chemical and biomedical imaging based on vibrational spectroscopy. Spontaneous Raman microscopy provides specific vibrational signatures of chemical bonds, but is often hindered by low sensitivity. We developed a three-dimensional multiphoton vibrational imaging technique based on stimulated Raman scattering (SRS). The sensitivity of SRS imaging is significantly greater than that of spontaneous Raman microscopy, which is achieved by implementing high-frequency (megahertz) phase-sensitive detection. SRS microscopy has a major advantage over previous coherent Raman techniques in that it offers background-free and readily interpretable chemical contrast. We demonstrated a variety of biomedical applications, such as differentiating distributions of omega-3 fatty acids and saturated lipids in living cells, imaging of brain and skin tissues based on intrinsic lipid contrast, and monitoring drug delivery through the epidermis. This technology offers exciting prospect for medical imaging. The second technology we developed is stimulated emission microscopy. Many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay. Yet the detection of their absorption is difficult under a microscope. We use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, as a new contrast mechanism for optical microscopy. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distribu- tions without histological sectioning, and label-free microvascular

  8. Spectral interferometric polarised coherent anti-Stokes Raman spectroscopy

    CERN Document Server

    Littleton, Brad; Festy, Frederic; Richards, David

    2013-01-01

    We have developed an interferometric implementation of coherent anti-Stokes Raman scattering (CARS) which enables broadband coherent Raman spectroscopy free from non-resonant background (NRB), with a signal strength proportional to concentration. Spectra encode mode symmetry information into the amplitude response which can be directly compared to polarised spontaneous Raman spectra. The method requires only passive polarisation optics and is suitable for a wide range of laser linewidths and pulse durations

  9. Detecting polymeric nanoparticles with coherent anti-stokes Raman scattering microscopy in tissues exhibiting fixative-induced autofluorescence

    Science.gov (United States)

    Garrett, N. L.; Godfrey, L.; Lalatsa, A.; Serrano, D. R.; Uchegbu, I. F.; Schatzlein, A.; Moger, J.

    2015-03-01

    Recent advances in pharmaceutical nanotechnology have enabled the development of nano-particulate medicines with enhanced drug performance. Although the fate of these nano-particles can be macroscopically tracked in the body (e.g. using radio-labeling techniques), there is little information about the sub-cellular scale mechanistic processes underlying the particle-tissue interactions, or how these interactions may correlate with pharmaceutical efficacy. To rationally engineer these nano-particles and thus optimize their performance, these mechanistic interactions must be fully understood. Coherent Anti-Stokes Raman scattering (CARS) microscopy provides a label-free means for visualizing biological samples, but can suffer from a strong non-resonant background in samples that are prepared using aldehyde-based fixatives. We demonstrate how formalin fixative affects the detection of polymeric nanoparticles within kidneys following oral administration using CARS microscopy, compared with samples that were snap-frozen. These findings have implications for clinical applications of CARS for probing nanoparticle distribution in tissue biopsies.

  10. Detection of Lipid-Rich Prostate Circulating Tumour Cells with Coherent Anti-Stokes Raman Scattering Microscopy

    Directory of Open Access Journals (Sweden)

    Mitra Ranjana

    2012-11-01

    Full Text Available Abstract Background Circulating tumour cells (CTC are an important indicator of metastasis and associated with a poor prognosis. Detection sensitivity and specificity of CTC in the peripheral blood of metastatic cancer patient remain a technical challenge. Methods Coherent anti-Stokes Raman scattering (CARS microscopy was employed to examine the lipid content of CTC isolated from the peripheral blood of metastatic prostate cancer patients. CARS microscopy was also employed to evaluate lipid uptake and mobilization kinetics of a metastatic human prostate cancer cell line. Results One hundred CTC from eight metastatic prostate cancer patients exhibited strong CARS signal which arose from intracellular lipid. In contrast, leukocytes exhibited weak CARS signal which arose mostly from cellular membrane. On average, CARS signal intensity of prostate CTC was 7-fold higher than that of leukocytes (P Conclusions Intracellular lipid could serve as a biomarker for prostate CTC which could be sensitively detected with CARS microscopy in a label-free manner. Strong affinity for lipid by metastatic prostate cancer cells could be used to improve detection sensitivity and therapeutic targeting of prostate CTC.

  11. Polyglutamine aggregate structure in vitro and in vivo; new avenues for coherent anti-Stokes Raman scattering microscopy.

    Science.gov (United States)

    Perney, Nicolas M; Braddick, Lucy; Jurna, Martin; Garbacik, Erik T; Offerhaus, Herman L; Serpell, Louise C; Blanch, Ewan; Holden-Dye, Lindy; Brocklesby, William S; Melvin, Tracy

    2012-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is applied for the first time for the evaluation of the protein secondary structure of polyglutamine (polyQ) aggregates in vivo. Our approach demonstrates the potential for translating information about protein structure that has been obtained in vitro by X-ray diffraction into a microscopy technique that allows the same protein structure to be detected in vivo. For these studies, fibres of polyQ containing peptides (D(2)Q(15)K(2)) were assembled in vitro and examined by electron microscopy and X-ray diffraction methods; the fibril structure was shown to be cross β-sheet. The same polyQ fibres were evaluated by Raman spectroscopy and this further confirmed the β-sheet structure, but indicated that the structure is highly rigid, as indicated by the strong Amide I signal at 1659 cm(-1). CARS spectra were simulated using the Raman spectrum taking into account potential non-resonant contributions, providing evidence that the Amide I signal remains strong, but slightly shifted to lower wavenumbers. Combined CARS (1657 cm(-1)) and multi-photon fluorescence microscopy of chimeric fusions of yellow fluorescent protein (YFP) with polyQ (Q40) expressed in the body wall muscle cells of Caenorhabditis elegans nematodes (1 day old adult hermaphrodites) revealed diffuse and foci patterns of Q40-YFP that were both fluorescent and exhibited stronger CARS (1657 cm(-1)) signals than in surrounding tissues at the resonance for the cross β-sheet polyQ in vitro. PMID:22911702

  12. Polyglutamine aggregate structure in vitro and in vivo; new avenues for coherent anti-Stokes Raman scattering microscopy.

    Directory of Open Access Journals (Sweden)

    Nicolas M Perney

    Full Text Available Coherent anti-Stokes Raman scattering (CARS microscopy is applied for the first time for the evaluation of the protein secondary structure of polyglutamine (polyQ aggregates in vivo. Our approach demonstrates the potential for translating information about protein structure that has been obtained in vitro by X-ray diffraction into a microscopy technique that allows the same protein structure to be detected in vivo. For these studies, fibres of polyQ containing peptides (D(2Q(15K(2 were assembled in vitro and examined by electron microscopy and X-ray diffraction methods; the fibril structure was shown to be cross β-sheet. The same polyQ fibres were evaluated by Raman spectroscopy and this further confirmed the β-sheet structure, but indicated that the structure is highly rigid, as indicated by the strong Amide I signal at 1659 cm(-1. CARS spectra were simulated using the Raman spectrum taking into account potential non-resonant contributions, providing evidence that the Amide I signal remains strong, but slightly shifted to lower wavenumbers. Combined CARS (1657 cm(-1 and multi-photon fluorescence microscopy of chimeric fusions of yellow fluorescent protein (YFP with polyQ (Q40 expressed in the body wall muscle cells of Caenorhabditis elegans nematodes (1 day old adult hermaphrodites revealed diffuse and foci patterns of Q40-YFP that were both fluorescent and exhibited stronger CARS (1657 cm(-1 signals than in surrounding tissues at the resonance for the cross β-sheet polyQ in vitro.

  13. Temperature measurements in metalized propellant combustion using hybrid fs/ps coherent anti-Stokes Raman scattering.

    Science.gov (United States)

    Kearney, Sean P; Guildenbecher, Daniel R

    2016-06-20

    We apply ultrafast pure-rotational coherent anti-Stokes Raman scattering (CARS) for temperature and relative oxygen concentration measurements in the plume emanating from a burning, aluminized ammonium-perchlorate propellant strand. Combustion of these metal-based propellants is a particularly hostile environment for laser-based diagnostics, with intense background luminosity and scattering from hot metal particles as large as several hundred micrometers in diameter. CARS spectra that were previously obtained using nanosecond pulsed lasers in an aluminum-particle-seeded flame are examined and are determined to be severely impacted by nonresonant background, presumably as a result of the plasma formed by particulate-enhanced laser-induced breakdown. Introduction of femtosecond/picosecond (fs/ps) laser pulses improves CARS detection by providing time-gated elimination of strong nonresonant background interference. Single-laser-shot fs/ps CARS spectra were acquired from the burning propellant plume, with picosecond probe-pulse delays of 0 and 16 ps from the femtosecond pump and Stokes pulses. At zero delay, nonresonant background overwhelms the Raman-resonant spectroscopic features. Time-delayed probing results in the acquisition of background-free spectra that were successfully fit for temperature and relative oxygen content. Temperature probability densities and temperature/oxygen correlations were constructed from ensembles of several thousand single-laser-shot measurements with the CARS measurement volume positioned within 3 mm or less of the burning propellant surface. The results show that ultrafast CARS is a potentially enabling technology for probing harsh, particle-laden flame environments. PMID:27409125

  14. Pressure measurements using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering.

    Science.gov (United States)

    Kearney, Sean P; Danehy, Paul M

    2015-09-01

    We investigate the feasibility of gas-phase pressure measurements using fs/ps rotational CARS. Femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is probed by a high-energy 5-ps pulse introduced at a time delay from the Raman preparation. These ultrafast laser pulses are shorter than collisional-dephasing time scales, enabling a new hybrid time- and frequency-domain detection scheme for pressure. Single-laser-shot rotational CARS spectra were recorded from N2 contained in a room-temperature gas cell for pressures from 0.4 to 3 atm and probe delays ranging from 16 to 298 ps. Sensitivity of the accuracy and precision of the pressure data to probe delay was investigated. The technique exhibits superior precision and comparable accuracy to previous laser-diagnostic pressure measurements. PMID:26368717

  15. Experimental demonstration of mode-selective phonon excitation of 6H-SiC by a mid-infrared laser with anti-Stokes Raman scattering spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kyohei; Hachiya, Kan; Okumura, Kensuke; Mishima, Kenta; Inukai, Motoharu; Torgasin, Konstantin; Omer, Mohamed [Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Sonobe, Taro [Kyoto University Research Administration Office, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Zen, Heishun; Negm, Hani; Kii, Toshiteru; Masuda, Kai; Ohgaki, Hideaki [Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto 611-0011 (Japan)

    2013-10-28

    Mode-selective phonon excitation by a mid-infrared laser (MIR-FEL) is demonstrated via anti-Stokes Raman scattering measurements of 6H-silicon carbide (SiC). Irradiation of SiC with MIR-FEL and a Nd-YAG laser at 14 K produced a peak where the Raman shift corresponds to a photon energy of 119 meV (10.4 μm). This phenomenon is induced by mode-selective phonon excitation through the irradiation of MIR-FEL, whose photon energy corresponds to the photon-absorption of a particular phonon mode.

  16. Dynamical study of the water penetration process into a cellulose acetate film studied by coherent anti-Stokes Raman scattering (CARS) microspectroscopy

    Science.gov (United States)

    Fujisawa, Rie; Ohno, Tomoya; Kaneyasu, Junya F.; Leproux, Philippe; Couderc, Vincent; Kita, Hiroshi; Kano, Hideaki

    2016-07-01

    The penetration process of water into a cellulose acetate film was traced in real time by coherent anti-Stokes Raman scattering (CARS) microspectroscopy. The Cdbnd O stretch mode was red-shifted due to hydrogen-bond formation. We also found that two Raman bands at 1605 cm-1 and 1665 cm-1 emerged only in the early stage of the water penetration process. Based on the combined analysis of the experimental and computational studies, these bands at 1605 cm-1 and 1665 cm-1 were assigned as the OH bend mode due to hydrogen-bonded penetrated water and hydrogen-bonded OH groups in pyranose rings, respectively.

  17. Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells

    Science.gov (United States)

    Potcoava, Mariana C.; Futia, Gregory L.; Aughenbaugh, Jessica; Schlaepfer, Isabel R.; Gibson, Emily A.

    2014-11-01

    Increasing interest in the role of lipids in cancer cell proliferation and resistance to drug therapies has motivated the need to develop better tools for cellular lipid analysis. Quantification of lipids in cells is typically done by destructive chromatography protocols that do not provide spatial information on lipid distribution and prevent dynamic live cell studies. Methods that allow the analysis of lipid content in live cells are therefore of great importance. Using micro-Raman spectroscopy and coherent anti-Stokes Raman scattering (CARS) microscopy, we generated a lipid profile for breast (T47D, MDA-MB-231) and prostate (LNCaP, PC3) cancer cells upon exposure to medroxyprogesterone acetate (MPA) and synthetic androgen R1881. Combining Raman spectra with CARS imaging, we can study the process of hormone-mediated lipogenesis. Our results show that hormone-treated cancer cells T47D and LNCaP have an increased number and size of intracellular lipid droplets and higher degree of saturation than untreated cells. MDA-MB-231 and PC3 cancer cells showed no significant changes upon treatment. Principal component analysis with linear discriminant analysis of the Raman spectra was able to differentiate between cancer cells that were treated with MPA, R1881, and untreated.

  18. Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering.

    Science.gov (United States)

    Miller, Joseph D; Dedic, Chloe E; Roy, Sukesh; Gord, James R; Meyer, Terrence R

    2012-02-27

    Rotational-level-dependent dephasing rates and nonresonant background can lead to significant uncertainties in coherent anti-Stokes Raman scattering (CARS) thermometry under high-pressure, low-temperature conditions if the gas composition is unknown. Hybrid femtosecond/picosecond rotational CARS is employed to minimize or eliminate the influence of collisions and nonresonant background for accurate, frequency-domain thermometry at elevated pressure. The ability to ignore these interferences and achieve thermometric errors of <5% is demonstrated for N2 and O2 at pressures up to 15 atm. Beyond 15 atm, the effects of collisions cannot be ignored but can be minimized using a short probe delay (~6.5 ps) after Raman excitation, thereby improving thermometric accuracy with a time- and frequency-resolved theoretical model. PMID:22418304

  19. Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering at flame temperatures using a second-harmonic bandwidth-compressed probe.

    Science.gov (United States)

    Kearney, Sean P; Scoglietti, Daniel J

    2013-03-15

    We demonstrate an approach for picosecond probe-beam generation that enables hybrid femtosecond/picosecond pure-rotational coherent anti-Stokes Raman scattering (CARS) measurements in flames. Sum-frequency generation of bandwidth-compressed picosecond radiation from femtosecond pumps with phase-conjugate chirps provides probe pulses with energies in excess of 1 mJ that are temporally locked to the femtosecond pump/Stokes preparation. This method overcomes previous limitations on hybrid femtosecond/picosecond rotational CARS techniques, which have relied upon less efficient bandwidth-reduction processes that have generally resulted in prohibitively low probe energy for flame measurements. We provide the details of the second-harmonic approach and demonstrate the technique in near-adiabatic hydrogen/air flames. PMID:23503231

  20. Theoretical and experimental investigations of coherent phonon dynamics in sapphire crystal using femtosecond time-resolved coherent anti-Stokes Raman scattering

    Institute of Scientific and Technical Information of China (English)

    Du Xin; Zhang Ming-Fu; He Xing; Meng Qing-Kun; Song Yun-Fei; Yang Yan-Qiang; Han Jie-Cai

    2011-01-01

    We report on the theoretical and the experimental investigations of the coherent phonon dynamics in sapphire crystal using the femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) technique.The temporal chirped white-light continuum (WLC) is used for the Stokes pulse,therefore we can perform the selective excitation of the phonon modes without using a complicated laser system.The expected quantum beat phenomenon is clearly observed.The theoretical formulas consist very well with the experimental results.The dephasing times of the excited phonon modes,the wavenumber difference,and the phase shift between the simultaneously excited modes are obtained and discussed.This work opens up a way to study directly high-frequency coherent phonon dynamics in bulk crystals on a femtosecond time scale and is especially helpful for understanding the nature of coherent phonons.

  1. The manipulation of massive ro-vibronic superpositions using time-frequency-resolved coherent anti-Stokes Raman scattering (TFRCARS) from quantum control to quantum computing

    CERN Document Server

    Zadoyan, R; Lidar, D A; Apkarian, V A

    2001-01-01

    Molecular ro-vibronic coherences, joint energy-time distributions of quantum amplitudes, are selectively prepared, manipulated, and imaged in Time-Frequency-Resolved Coherent Anti-Stokes Raman Scattering (TFRCARS) measurements using femtosecond laser pulses. The studies are implemented in iodine vapor, with its thermally occupied statistical ro-vibrational density serving as initial state. The evolution of the massive ro-vibronic superpositions, consisting of 1000 eigenstates, is followed through two-dimensional images. The first- and second-order coherences are captured using time-integrated frequency-resolved CARS, while the third-order coherence is captured using time-gated frequency-resolved CARS. The Fourier filtering provided by time integrated detection projects out single ro-vibronic transitions, while time-gated detection allows the projection of arbitrary ro-vibronic superpositions from the coherent third-order polarization. Beside the control and imaging of chemistry, the controlled manipulation of...

  2. Investigation of protein distribution in solid lipid particles and its impact on protein release using coherent anti-Stokes Raman scattering microscopy

    DEFF Research Database (Denmark)

    Christophersen, Philip C.; Birch, Ditlev; Saarinen, Jukka;

    2015-01-01

    solid lipid matrix, which required full lipolysis of the entire matrix to release lysozyme completely. Therefore, SLMs with lysozyme incorporated in an aqueous solution released lysozyme much faster than with lysozyme incorporated as a solid. In conclusion, CARS microscopy was an efficient and non-destructive......The aim of this study was to gain new insights into protein distribution in solid lipid microparticles (SLMs) and subsequent release mechanisms using a novel label-free chemical imaging method, coherent anti-Stokes Raman scattering (CARS) microscopy. Lysozyme-loaded SLMs were prepared using...... conditions in the human duodenum. Both preparation method and lipid excipient affected the lysozyme distribution and release from SLMs. Lysozyme resided in a hollow core within the SLMs when incorporated as an aqueous solution. In contrast, lysozyme incorporated as a solid was embedded in clusters in the...

  3. In planta imaging of Δ9-tetrahydrocannabinolic acid in Cannabis sativa L. with hyperspectral coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Garbacik, Erik T.; Korai, Roza P.; Frater, Eric H.; Korterik, Jeroen P.; Otto, Cees; Offerhaus, Herman L.

    2013-04-01

    Nature has developed many pathways to produce medicinal products of extraordinary potency and specificity with significantly higher efficiencies than current synthetic methods can achieve. Identification of these mechanisms and their precise locations within plants could substantially increase the yield of a number of natural pharmaceutics. We report label-free imaging of Δ9-tetrahydrocannabinolic acid (THCa) in Cannabis sativa L. using coherent anti-Stokes Raman scattering microscopy. In line with previous observations we find high concentrations of THCa in pistillate flowering bodies and relatively low amounts within flowering bracts. Surprisingly, we find differences in the local morphologies of the THCa-containing bodies: organelles within bracts are large, diffuse, and spheroidal, whereas in pistillate flowers they are generally compact, dense, and have heterogeneous structures. We have also identified two distinct vibrational signatures associated with THCa, both in pure crystalline form and within Cannabis plants; at present the exact natures of these spectra remain an open question.

  4. Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source

    International Nuclear Information System (INIS)

    Highlights: ► We have developed a simultaneous measurement system of CARS and CSRS. ► We can obtain information on the electronic resonance effect with the measurement. ► The simultaneous measurement provides us with more reliable spectral information. - Abstract: We have developed a three-pulse non-degenerate multiplex coherent Raman microspectroscopic system using a white-light laser source. The fundamental output (1064 nm) of a Nd:YAG laser is used for the pump radiation with the white-light laser output (1100–1700 nm) for the Stokes radiation to achieve broadband multiplex excitations of vibrational coherences. The second harmonic (532 nm) of the same Nd:YAG laser is used for the probe radiation. Thanks to the large wavelength difference between the pump and probe radiations, coherent anti-Stokes Raman scattering (CARS) and coherent Stokes Raman scattering (CSRS) can be detected simultaneously. Simultaneous detection of CARS and CSRS enables us to obtain information on the electronic resonance effect that affects differently the CARS and CSRS signals. Simultaneous analysis of the CARS and CSRS signals provides us the imaginary part of χ(3) without introducing any arbitrary parameter in the maximum entropy method (MEM)

  5. Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature.

    Science.gov (United States)

    Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R

    2011-07-01

    Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) offers accurate thermometry at kHz rates for combustion diagnostics. In high-temperature flames, selection of probe-pulse characteristics is key to simultaneously optimizing signal-to-nonresonant-background ratio, signal strength, and spectral resolution. We demonstrate a simple method for enhancing signal-to-nonresonant-background ratio by using a narrowband Lorentzian filter to generate a time-asymmetric probe pulse with full-width-half-maximum (FWHM) pulse width of only 240 fs. This allows detection within just 310 fs after the Raman excitation for eliminating nonresonant background while retaining 45% of the resonant signal at 2000 K. The narrow linewidth is comparable to that of a time-symmetric sinc2 probe pulse with a pulse width of ~2.4 ps generated with a conventional 4-f pulse shaper. This allows nonresonant-background-free, frequency-domain vibrational spectroscopy at high temperature, as verified using comparisons to a time-dependent theoretical fs/ps CARS model. PMID:21747487

  6. Implementation of a Coherent Anti-Stokes Raman Scattering (CARS) System on a Ti:Sapphire and OPO Laser Based Standard Laser Scanning Microscope.

    Science.gov (United States)

    Mytskaniuk, Vasyl; Bardin, Fabrice; Boukhaddaoui, Hassan; Rigneault, Herve; Tricaud, Nicolas

    2016-01-01

    Laser scanning microscopes combining a femtosecond Ti:sapphire laser and an optical parametric oscillator (OPO) to duplicate the laser line have become available for biologists. These systems are primarily designed for multi-channel two-photon fluorescence microscopy. However, without any modification, complementary non-linear optical microscopy such as second-harmonic generation (SHG) or third harmonic generation (THG) can also be performed with this set-up, allowing label-free imaging of structured molecules or aqueous medium-lipid interfaces. These techniques are well suited for in-vivo observation, but are limited in chemical specificity. Chemically selective imaging can be obtained from inherent vibration signals based on Raman scattering. Confocal Raman microscopy provides 3D spatial resolution, but it requires high average power and long acquisition time. To overcome these difficulties, recent advances in laser technology have permitted the development of nonlinear optical vibrational microscopy, in particular coherent anti-Stokes Raman scattering (CARS). CARS microscopy has therefore emerged as a powerful tool for biological and live cell imaging, by chemically mapping lipids (via C-H stretch vibration), water (via O-H stretch vibrations), proteins or DNA. In this work, we describe the implementation of the CARS technique on a standard OPO-coupled multiphoton laser scanning microscope. It is based on the in-time synchronization of the two laser lines by adjusting the length of one of the laser beam path. We present a step-by-step implementation of this technique on an existing multiphoton system. A basic background in experimental optics is helpful and the presented system does not require expensive supplementary equipment. We also illustrate CARS imaging obtained on myelin sheaths of sciatic nerve of rodent, and we show that this imaging can be performed simultaneously with other nonlinear optical imaging, such as standard two-photon fluorescence technique

  7. Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice

    Science.gov (United States)

    Imitola, Jaime; Côté, Daniel; Rasmussen, Stine; Xie, X. Sunney; Liu, Yingru; Chitnis, Tanuja; Sidman, Richard L.; Lin, Charles. P.; Khoury, Samia J.

    2011-02-01

    Myelin loss and axonal degeneration predominate in many neurological disorders; however, methods to visualize them simultaneously in live tissue are unavailable. We describe a new imaging strategy combining video rate reflectance and fluorescence confocal imaging with coherent anti-Stokes Raman scattering (CARS) microscopy tuned to CH2 vibration of myelin lipids, applied in live tissue of animals with chronic experimental autoimmune encephalomyelitis (EAE). Our method allows monitoring over time of demyelination and neurodegeneration in brain slices with high spatial resolution and signal-to-noise ratio. Local areas of severe loss of lipid signal indicative of demyelination and loss of the reflectance signal from axons were seen in the corpus callosum and spinal cord of EAE animals. Even in myelinated areas of EAE mice, the intensity of myelin lipid signals is significantly reduced. Using heterozygous knock-in mice in which green fluorescent protein replaces the CX3CR1 coding sequence that labels central nervous system microglia, we find areas of activated microglia colocalized with areas of altered reflectance and CARS signals reflecting axonal injury and demyelination. Our data demonstrate the use of multimodal CARS microscopy for characterization of demyelinating and neurodegenerative pathology in a mouse model of multiple sclerosis, and further confirm the critical role of microglia in chronic inflammatory neurodegeneration.

  8. Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering

    Science.gov (United States)

    Miller, Joseph D.; Roy, Sukesh; Slipchenko, Mikhail N.; Gord, James R.; Meyer, Terrence R.

    2011-08-01

    High-repetition-rate, single-laser-shot measurements are important for the investigation of unsteady flows where temperature and species concentrations can vary significantly. Here, we demonstrate single-shot, pure-rotational, hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps RCARS) thermometry based on a kHz-rate fs laser source. Interferences that can affect nanosecond (ns) and ps CARS, such as nonresonant background and collisional dephasing, are eliminated by selecting an appropriate time delay between the 100-fs pump/Stokes pulses and the pulse-shaped 8.4-ps probe. A time- and frequency-domain theoretical model is introduced to account for rotational-level dependent collisional dephasing and indicates that the optimal probe-pulse time delay is 13.5 ps to 30 ps. This time delay allows for uncorrected best-fit N2-RCARS temperature measurements with ~1% accuracy. Hence, the hybrid fs/ps RCARS approach can be performed with kHz-rate laser sources while avoiding corrections that can be difficult to predict in unsteady flows.

  9. Impact of refractive index mismatches on coherent anti-Stokes Raman scattering and multiphoton autofluorescence tomography of human skin in vivo

    International Nuclear Information System (INIS)

    Optical non-linear multimodal tomography is a powerful diagnostic imaging tool to analyse human skin based on its autofluorescence and second-harmonic generation signals. Recently, the field of clinical non-linear imaging has been extended by adding coherent anti-Stokes Raman scattering (CARS)—a further optical sectioning method for the detection of non-fluorescent molecules. However, the heterogeneity of refractive indices of different substances in complex tissues like human skin can have a strong influence on CARS image formation and requires careful clinical interpretation of the detected signals. Interestingly, very regular patterns are present in the CARS images, which have no correspondence to the morphology revealed by autofluorescence at the same depth. The purpose of this paper is to clarify this phenomenon and to sensitize users for possible artefacts. A further part of this paper is the detailed comparison of CARS and autofluorescence images of healthy human skin in vivo covering the complete epidermis and part of the upper dermis by employing the flexible medical non-linear tomograph MPTflex CARS. (paper)

  10. Lipid droplet pattern and nondroplet-like structure in two fat mutants of Caenorhabditis elegans revealed by coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Yi, Yung-Hsiang; Chien, Cheng-Hao; Chen, Wei-Wen; Ma, Tian-Hsiang; Liu, Kuan-Yu; Chang, Yu-Sun; Chang, Ta-Chau; Lo, Szecheng J.

    2014-01-01

    Lipid is an important energy source and essential component for plasma and organelle membranes in all kinds of cells. Coherent anti-Stokes Raman scattering (CARS) microscopy is a label-free and nonlinear optical technique that can be used to monitor the lipid distribution in live organisms. Here, we utilize CARS microscopy to investigate the pattern of lipid droplets in two live Caenorhabditis elegans mutants (fat-2 and fat-3). The CARS images showed a striking decrease in the size, number, and content of lipid droplets in the fat-2 mutant but a slight difference in the fat-3 mutant as compared with the wild-type worm. Moreover, a nondroplet-like structure with enhanced CARS signal was detected for the first time in the uterus of fat-2 and fat-3 mutants. In addition, transgenic fat-2 mutant expressing a GFP fusion protein of vitellogenin-2 (a yolk lipoprotein) revealed that the enhanced CARS signal colocalized with the GFP signal, which suggests that the nondroplet-like structure is primarily due to the accumulation of yolk lipoproteins. Together, this study implies that CARS microscopy is a potential tool to study the distribution of yolk lipoproteins, in addition to lipid droplets, in live animals.

  11. Simultaneous measurements of global vibrational spectra and dephasing times of molecular vibrational modes by broadband time-resolved coherent anti-Stokes Raman scattering spectrography

    Institute of Scientific and Technical Information of China (English)

    Yin Jun; Yu Ling-Yao; Liu Xing; Wan Hui; Lin Zi-Yang; Niu Han-Ben

    2011-01-01

    In broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy with supercontinuum (SC), the simultaneously detectable spectral coverage is limited by the spectral continuity and the simultaneity of various spectral components of SC in an enough bandwidth. By numerical simulations, the optimal experimental conditions for improving the SC are obtained. The broadband time-resolved CARS spectrography based on the SC with required temporal and spectral distributions is realised. The global molecular vibrational spectrum with well suppressed nonresonant background noise can be obtained in a single measurement. At the same time, the measurements of dephasing times of verious molecular vibrational modes can be conveniently achieved from intensities of a sequence of time-resolved CARS signals. It will be more helpful to provide a complete picture of molecular vibrations, and to exhibit a potential to understand not only both the solvent dynamics and the solute-solvent interactions, but also the mechanisms of chemical reactious in the fields of biology, chemistry and naterial science.

  12. Simultaneous measurements of global vibrational spectra and dephasing times of molecular vibrational modes by broadband time-resolved coherent anti-Stokes Raman scattering spectrography

    International Nuclear Information System (INIS)

    In broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy with supercontinuum (SC), the simultaneously detectable spectral coverage is limited by the spectral continuity and the simultaneity of various spectral components of SC in an enough bandwidth. By numerical simulations, the optimal experimental conditions for improving the SC are obtained. The broadband time-resolved CARS spectrography based on the SC with required temporal and spectral distributions is realised. The global molecular vibrational spectrum with well suppressed nonresonant background noise can be obtained in a single measurement. At the same time, the measurements of dephasing times of various molecular vibrational modes can be conveniently achieved from intensities of a sequence of time-resolved CARS signals. It will be more helpful to provide a complete picture of molecular vibrations, and to exhibit a potential to understand not only both the solvent dynamics and the solute-solvent interactions, but also the mechanisms of chemical reactions in the fields of biology, chemistry and material science. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Label-free assessment of adipose-derived stem cell differentiation using coherent anti-Stokes Raman scattering and multiphoton microscopy

    Science.gov (United States)

    Mouras, Rabah; Bagnaninchi, Pierre O.; Downes, Andrew R.; Elfick, Alistair P. D.

    2012-11-01

    Adult stem cells (SCs) hold great potential as likely candidates for disease therapy but also as sources of differentiated human cells in vitro models of disease. In both cases, the label-free assessment of SC differentiation state is highly desirable, either as a quality-control technology ensuring cells to be used clinically are of the desired lineage or to facilitate in vitro time-course studies of cell differentiation. We investigate the potential of nonlinear optical microscopy as a minimally invasive technology to monitor the differentiation of adipose-derived stem cells (ADSCs) into adipocytes and osteoblasts. The induction of ADSCs toward these two different cell lineages was monitored simultaneously using coherent anti-Stokes Raman scattering, two photon excitation fluorescence (TPEF), and second harmonic generation at different time points. Changes in the cell's morphology, together with the appearance of biochemical markers of cell maturity were observed, such as lipid droplet accumulation for adipo-induced cells and the formation of extra-cellular matrix for osteo-induced cells. In addition, TPEF of flavoproteins was identified as a proxy for changes in cell metabolism that occurred throughout ADSC differentiation toward both osteoblasts and adipocytes. These results indicate that multimodal microscopy has significant potential as an enabling technology for the label-free investigation of SC differentiation.

  14. Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman

    NARCIS (Netherlands)

    Cleff, C.; Groß, P.; Fallnich, C.; Offerhaus, H. L.; Herek, J.; Kruse, K.; Beeker, W. P.; Lee, C. J.; Boller, K. J.

    2012-01-01

    We theoretically investigate ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering (CARS) microscopy. We propose a scheme based on ground-state depopulation, which is achieved via a control laser light field incident prior to the CARS excitatio

  15. Spectral interferometric Implementation with Passive Polarization Optics of Coherent Anti-Stokes Raman Spectroscopy

    OpenAIRE

    Littleton, Bradley; KAVANAGH, THOMAS; Festy, Frederic; Richards, David

    2013-01-01

    We have developed an interferometric implementation of coherent anti-Stokes Raman scattering which enables broadband coherent Raman spectroscopy free from the nonresonant background, with a signal strength proportional to concentration. Spectra encode mode symmetry information into the amplitude response, which can be directly compared to polarized spontaneous Raman spectra. The method requires only passive polarization optics and is suitable for a wide range of laser linewidths and pulse dur...

  16. Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse

    Science.gov (United States)

    Stauffer, Hans U.; Miller, Joseph D.; Slipchenko, Mikhail N.; Meyer, Terrence R.; Prince, Benjamin D.; Roy, Sukesh; Gord, James R.

    2014-01-01

    The hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs/ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs/ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs/ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications.

  17. Investigation of anti-Stokes Raman processes at phonon-polariton resonance: from Raman oscillation, frequency upconversion to Raman amplification.

    Science.gov (United States)

    Ding, Yujie J

    2015-03-01

    Raman oscillation, frequency upconversion, and Raman amplification can be achieved in a second-order nonlinear medium at the phonon-polariton resonance. By beating two optical fields, a second-order nonlinear polarization is generated inside the medium. Such a polarization induces a spatially uniform nonpropagating electric field at the beat frequency, which in turn mixes with the input optical field at the lower frequency to generate or amplify the anti-Stokes optical field. Raman oscillation can be efficiently reached for the copropagating configuration. In comparison, efficient frequency upconversion and large amplifications are achievable for the counterpropagating configuration. These Raman processes can be used to effectively remove transverse-optical phonons before decaying to lower-frequency phonons, achieve laser cooling, and significantly enhance coherent anti-Stokes Raman scattering. The counterpropagating configuration offers advantages for amplifying extremely weak signals. PMID:25723418

  18. Quantitative interpretation of time-resolved coherent anti-Stokes Raman spectroscopy with all Gaussian pulses

    CERN Document Server

    Ariunbold, Gombojav O

    2016-01-01

    Coherent Raman scattering spectroscopy is studied purposely, with the Gaussian ultrashort pulses as a hands-on elucidatory extraction tool of the clean coherent Raman resonant spectra from the overall measured data contaminated with the non-resonant four wave mixing background. The integral formulae for both the coherent anti-Stokes and Stokes Raman scattering are given in the semiclassical picture, and the closed-form solutions in terms of a complex error function are obtained. An analytic form of maximum enhancement of pure coherent Raman spectra at threshold time delay depending on bandwidth of probe pulse is also obtained. The observed experimental data for pyridine in liquid-phase are quantitatively elucidated and the inferred time-resolved coherent Raman resonant results are reconstructed with a new insight.

  19. Investigation of enhanced forward and backward anti-stokes Raman signals in lithium niobate waveguides

    International Nuclear Information System (INIS)

    We have observed enhancements of the anti-Stokes Raman signals generated in lithium niobate waveguides in the forward and backward configurations by at least one order of magnitude under the pump power of the microwatt level. These output signals were measured using a single photon detector. The forward and backward propagating anti-Stokes signals exhibited different spectral features

  20. Molecular vibrational dynamics in water studied by femtosecond coherent anti-Stokes Raman spectroscopy

    Science.gov (United States)

    Zhao, Yang; Zhang, Sheng; Zhou, Boyang; Dong, Zhiwei; Chen, Deying; Zhang, Zhonghua; Xia, Yuanqin

    2014-10-01

    We utilized femtosecond time-resolved coherent anti-Stokes Raman spectroscopy (CARS) to study the ultrafast vibrational dynamics in distilled water at room temperature. The CARS signals from the broad OH-stretching modes between 3100 cm-1 and 3700 cm-1 were obtained and analyzed. The dephasing times of four Raman modes in water were detected and compared.

  1. Langevin analysis of fundamental noise limits in coherent anti-Stokes Raman spectroscopy

    International Nuclear Information System (INIS)

    We use a Langevin approach to analyze the quantum noise in coherent anti-Stokes Raman spectroscopy in several experimental scenarios: with continuous-wave input fields acting simultaneously and with fast sequential pulsed lasers where one field scatters off the coherence generated by other fields and for interactions within a cavity and in free space. In all cases, the signal and quantum noise due to spontaneous decay and decoherence in the medium are shown to be described by the same general expression. Our theory in particular shows that for short interaction times, the medium noise is not important and the efficiency is limited only by the intrinsic quantum nature of the photon. We obtain fully analytic results without making an adiabatic approximation; the fluctuations of the medium and the fields are solved self-consistently

  2. Single-pulse coherent anti-Stokes Raman spectroscopy via fiber Bragg grating

    Science.gov (United States)

    Oh, Seung Ryeol; Park, Joo Hyun; Kwon, Won Sik; Kim, Jin Hwan; Kim, Kyung-Soo; Lee, Jae Yong; Kim, Soohyun

    2016-03-01

    Fiber Bragg grating is used in a variety of applications. In this study, we suggest compact, cost-effective coherent anti- Stokes Raman spectroscopy which is based on the pulse shaping methods via commercialized fiber Bragg grating. The experiment is performed incorporating a commercialized femtosecond pulse laser system (MICRA, Coherent) with a 100 mm length of 780-HP fiber which is inscribed 50 mm of Bragg grating. The pump laser for coherent anti-Stokes Raman spectroscopy has a bandwidth of 90 nm and central wavelength of 815 nm with a notch shaped at 785 nm. The positive chirped pulse is compensated by chirped mirror set. We compensate almost 14000 fs2 of positive group delay dispersion for the transform-limited pulse at the sample position. The pulse duration was 15 fs with average power of 50 mW, and showed an adequate notch shape. Finally, coherent anti-Stokes Raman signals are observed using a spectrometer (Jobin Yvon Triax320 and TE-cooled Andor Newton EMCCD). We obtained coherent anti-Stokes Raman signal of acetone sample which have Raman peak at the spectral finger-print region. In conclusion, the proposed method is more simple and cost-effective than the methods of previous research which use grating pairs and resonant photonic crystal slab. Furthermore, the proposed method can be used as endoscope application.

  3. Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering temperature and concentration measurements using two different picosecond-duration probes.

    Science.gov (United States)

    Kearney, Sean P; Scoglietti, Daniel J; Kliewer, Christopher J

    2013-05-20

    A hybrid fs/ps pure-rotational CARS scheme is characterized in furnace-heated air at temperatures from 290 to 800 K. Impulsive femtosecond excitation is used to prepare a rotational Raman coherence that is probed with a ps-duration beam generated from an initially broadband fs pulse that is bandwidth limited using air-spaced Fabry-Perot etalons. CARS spectra are generated using 1.5- and 7.0-ps duration probe beams with corresponding coarse and narrow spectral widths. The spectra are fitted using a simple phenomenological model for both shot-averaged and single-shot measurements of temperature and oxygen mole fraction. Our single-shot temperature measurements exhibit high levels of precision and accuracy when the spectrally coarse 1.5-ps probe beam is used, demonstrating that high spectral resolution is not required for thermometry. An initial assessment of concentration measurements in air is also provided, with best results obtained using the higher resolution 7.0-ps probe. This systematic assessment of the hybrid CARS technique demonstrates its utility for practical application in low-temperature gas-phase systems. PMID:23736451

  4. Spontaneous Raman and Coherent Anti-Stokes Raman Spectroscopy of Infrared Multiphoton-Excited Molecules.

    Science.gov (United States)

    Chen, Kuei-Hsien

    This thesis is a study of infrared multiphoton excitation using spontaneous and coherent anti-Stokes Raman spectroscopy. The spontaneous Raman measurements provide information on the intramolecular vibrational energy distribution over the different modes. This information is complemented by the CARS measurements which make it possible to perform state-specific studies of the vibrational and rotational distribution. For SF_6, the time-resolved spontaneous Raman measurements show complete equilibrium of energy from the pump mode to other vibrational modes. In contrast, for smaller molecules such as CF_2 Cl_2, a nonthermal energy distribution is observed after excitation. These measurements therefore disprove the general belief that the intramolecular energy distribution in infrared multiphoton molecules is always in equilibrium. The CARS measurements on bulk OCS provide values for the anharmonicities and for the energy transfer rates between modes. In addition the spectra show a very fast relaxation of the vibrational energy within the nu_2 mode. For SO_2 , the CARS measurements show that it is the nu_1 symmetric stretching mode and not the overtone excitation of the nu_2 bending mode that is pumped by the CO_2 laser. Moreover, it is shown that the hot bands of SO_2 have been incorrectly assigned up to now. Corrected values for the anharmonicities are given. In the second half of the thesis, a pulsed supersonic molecular beam is added to the infrared multiphoton excitation study. Combined with the state-specific CARS technique, the collisionless and internally cooled molecules in the beam open the door to a more detailed study of the excitation process. Pure rotational CARS is used to study the change in rotational distribution of ethylene due to infrared excitation in the beam. The appearance of rotational holes reveal which rotational states are pumped by the CO _2 laser. For OCS the evolution of the overtone population into a thermal distribution is studied

  5. Coherent anti-stokes Raman spectroscopy for detecting explosives in real time

    Science.gov (United States)

    Dogariu, Arthur; Pidwerbetsky, Alex

    2012-06-01

    We demonstrate real-time stand-off detection and imaging of trace explosives using collinear, backscattered Coherent Anti-Stokes Raman Spectroscopy (CARS). Using a hybrid time-resolved broad-band CARS we identify nanograms of explosives on the millisecond time scale. The broad-band excitation in the near-mid-infrared region excites the vibrational modes in the fingerprint region, and the time-delayed probe beam ensures the reduction of any non-resonant contributions to the CARS signal. The strong coherent enhancement allows for recording Raman spectra in real-time. We demonstrate stand-off detection by acquiring, analyzing, and identifying vibrational fingerprints in real-time with very high sensitivity and selectivity. By extending the focused region from a 100-micron sized spot to a 5mm long line we can obtain the spectral information from an extended region of the remote target with high spatial resolution. We demonstrate fast hyperspectral imaging by one-dimensional scanning of the Line-CARS. The three-dimensional data structure contains the vibrational spectra of the target at each sampled location, which allows for chemical mapping of the remote target.

  6. Investigation of porous media combustion by coherent anti-Stokes Raman spectroscopy

    Science.gov (United States)

    Weikl, M. C.; Tedder, S. A.; Seeger, T.; Leipertz, A.

    2010-10-01

    High efficiency, marginal pollutant emissions and low fuel consumption are desirable standards for modern combustion devices. The porous burner technology is a modern type of energy conversion with a strong potential to achieve these standards. However, due to the solid ceramic framework investigation of the thermodynamic properties of combustion, for example temperature, is difficult. The combustion process inside the ceramic structure of a porous burner was experimentally investigated by coherent anti-Stokes Raman spectroscopy (CARS). In this work, we present measurements using dual-pump dual-broadband CARS (DP-DBB-CARS) of temperature and species concentrations inside the reaction and flue gas zone of a porous media burner. Improvements to the setup and data evaluation procedure in contrast to previous measurements are discussed in detail. The results at varied thermal power and stoichiometry are presented. In addition, measurements at a range of radial positions inside a pore are conducted and correlated with the solid structure of the porous foam, which was determined by X-ray computer tomography.

  7. High-order Stokes and anti-Stokes Raman generation in monoisotopic CVD {sup 12}C-diamond

    Energy Technology Data Exchange (ETDEWEB)

    Kaminskii, Alexander A. [Institute of Crystallography, Russian Academy of Sciences, Moscow (Russian Federation); Lux, Oliver; Rhee, Hanjo; Eichler, Hans J. [Institute of Optics and Atomic Physics, Technische Universitaet Berlin (Germany); Ralchenko, Victor G.; Bolshakov, Andrey P. [General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Shirakawa, Akira; Yoneda, Hitoki [Institute for Laser Science, University of Electro-Communications, Tokyo (Japan)

    2016-06-15

    We determined, for the first time, the room temperature phonon energy related to the F{sub 2g} vibration mode (ω{sub SRS(12C)} ∝ 1333.2 cm{sup -1}) in a mono-crystalline single-isotope CVD {sup 12}C-diamond crystal by means of stimulated Raman scattering (SRS) spectroscopy. Picosecond one-micron excitation using a Nd{sup 3+}:Y{sub 3}Al{sub 5}O{sub 12}-laser generates a nearly two-octave spanning SRS frequency comb (∝12000 cm{sup -1}) consisting of higher-order Stokes and anti-Stokes components. The spacing of the spectral lines was found to differ by Δω{sub SRS} ∝ 0.9 cm{sup -1} from the comb spacing (ω{sub SRS(natC)} ∝ 1332.3 cm{sup -1}) when pumping a conventional CVD diamond crystal with a natural composition of the two stable carbon isotopes {sup 12}C (98.93%) and {sup 13}C (1.07%). (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. In vivo lipid saturation study of C. elegans using quantitative broadband coherent anti-Stokes Raman imaging (Conference Presentation)

    Science.gov (United States)

    Littleton, Bradley; Kavanagh, Thomas; Nie, Yu; Abbate, Vincenzo; Hylands, Peter; Sturzenbaum, Stephen; Richards, David

    2016-03-01

    In vivo lipid saturation maps of microscopic nematodes (Caenorhabditis elegans) have been produced using our novel Spectral Interferometric Polarisation Coherent anti-Stokes Raman Scattering (SIP-CARS) imaging technique. This technique employs simple passive polarisation optics and a balanced homodyne detection scheme to exploit symmetries in the CARS polarisation response resulting in the complete cancellation of the non-resonant background (NRB) and real component of the CARS signal (with no prior or post assumptions as regards to their form). The remaining imaginary component of the CARS response is linear with analyte concentration and directly relatable to the spontaneous Raman spectrum [1]. Furthermore, the resonant CARS signal is interferometrically amplified by the non-resonant response, a necessity for rapid imaging at biologically relevant powers [2]. This technique permits acquisition of a broad NRB-free spectrum, in excess of 1800cm-1, in a single exposure at each pixel. This allows simultaneous determination of lipid droplet saturation, from the fingerprint region, and lipid order, from the C-H stretch region from which maps can be readily constructed. Additionally exploiting the dispersive nature of our signal collection two-photon autofluorescence can be isolated and images subsequently produced. We have successfully applied this technique to identify differences in lipid saturation distributions in selective C. elegans mutants and demonstrated that the technique is sufficiently sensitive to detect the effects of lipid metabolism altering drugs on wild type C. elegans. [1] Littleton et al, Phys Rev Lett, 111, 103902 (2013) [2] Parekh et al, Biophys J, 99, 2695-2704 (2010)

  9. The application of Raman and anti-stokes Raman spectroscopy for in situ monitoring of structural changes in laser irradiated titanium dioxide materials

    Energy Technology Data Exchange (ETDEWEB)

    Rigby, Stephanie J. [Centre for Research in Energy and Environment, School of Engineering, Robert Gordon University, Aberdeen AB10 1FR (United Kingdom); Al-Obaidi, Ala H.R. [Smart Light Devices, Unit 13, Tyseal Base, Craigshaw Crescent Aberdeen, West Tullos Industrial Estate, Aberdeen AB12 3AW (United Kingdom); Lee, Soo-Keun [School of Environmental Science and Engineering, POSTECH, San 31 Hyoja Dong Nam-Gu, Pohang, Kyungpook 790-784 (Korea, Republic of); McStay, Daniel [Discovery Technologies Ltd., Redshank House, Alness Point Business Park, Alness IV17 0IJ (United Kingdom); Robertson, Peter K.J. [Centre for Research in Energy and Environment, School of Engineering, The Robert Gordon University, Aberdeen AB10 1FR (United Kingdom)]. E-mail: peter.robertson@rgu.ac.uk

    2006-09-15

    The use of Raman and anti-stokes Raman spectroscopy to investigate the effect of exposure to high power laser radiation on the crystalline phases of TiO{sub 2} has been investigated. Measurement of the changes, over several time integrals, in the Raman and anti-stokes Raman of TiO{sub 2} spectra with exposure to laser radiation is reported. Raman and anti-stokes Raman provide detail on both the structure and the kinetic process of changes in crystalline phases in the titania material. The effect of laser exposure resulted in the generation of increasing amounts of the rutile crystalline phase from the anatase crystalline phase during exposure. The Raman spectra displayed bands at 144 cm{sup -1} (A1g), 197 cm{sup -1} (Eg), 398 cm{sup -1} (B1g), 515 cm{sup -1} (A1g), and 640 cm{sup -1} (Eg) assigned to anatase which were replaced by bands at 143 cm{sup -1} (B1g), 235 cm{sup -1} (2 phonon process), 448 cm{sup -1} (Eg) and 612 cm{sup -1} (A1g) which were assigned to rutile. This indicated that laser irradiation of TiO{sub 2} changes the crystalline phase from anatase to rutile. Raman and anti-stokes Raman are highly sensitive to the crystalline forms of TiO{sub 2} and allow characterisation of the effect of laser irradiation upon TiO{sub 2}. This technique would also be applicable as an in situ method for monitoring changes during the laser irradiation process.

  10. Background-free coherent anti-stokes Raman spectroscopy and microscopy by dual-soliton pulse generation

    CERN Document Server

    Chen, Kun; Wei, Haoyun; Li, Yan

    2016-01-01

    We propose an all-fiber-generated dual-soliton pulses based scheme for the background-free detection of coherent anti-Stokes Raman spectroscopy under the spectral focusing mechanism. Due to the strong birefringence and high nonlinearity of a polarization-maintaining photonic crystal fiber (PM-PCF), two redshifted soliton pulses can be simultaneously generated relying on high-order dispersion and nonlinear effects along two eigenpolarization axes in the anomalous dispersion regime, while allowing feasible tunability of the frequency distance and temporal interval between them. This proposed scheme, termed as DS-CARS, exploits a unique combination of slight frequency-shift and advisable temporal walk-off of this two soliton pulses to achieve robust and efficient suppression of nonresonant background with compact all-fiber coherent excitation source. Capability of the DS-CARS is experimentally demonstrated by the background-free CARS spectroscopy and unambiguous CARS microscopy of polymer beads in the fingerprin...

  11. Stimulated Raman Scattering in Nanorod Silicon Carbide Films

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    When the film is excited by a very low excitation energy, the spontaneous Raman scattering emerges. The intensity of Raman scattering is proportional to the excitation power below the threshold excitation. When the excited power reaches the excitation threshold, the intensity of Stokes light strongly increases. Meanwhile an anti-Stokes light at 495nm and multiple order but small Stokes peaks occur. The intensity of Stokes light is much larger than that of anti-Stokes. The full width of half maximum (FWHM) of Stokes peak is reduced from 0.4nm to less than 0.2nm, the scattering angle between both Stokes and incident lights becomes less than 1°, and the angle between the Stokes and anti-Stokes lights is about 3°. When the exciting power is in excess of the threshold, anti-Stokes and multiple Raman scattering peaks reappear. These experiments can be unlimitedly repeated. From this experiment, we can exclude the possibility of spontaneous Raman scattering. It is suggested that the nanorods are a quantum line dimension having a large surface. There will be Raman differential scattering section so long as the nanorod films become very strong scattering media; the surface-enhanced Raman scattering will be produced, the nanorod films of SiC will form a strong multiple scattering resonance cavities so as to form the stimulated Raman scattering oscillation.

  12. 超衍射极限相干反斯托克斯拉曼散射显微成像技术及其探测极限分析*%Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy and detection limitanalysis*

    Institute of Scientific and Technical Information of China (English)

    刘伟; 陈丹妮; 刘双龙; 牛憨笨

    2013-01-01

    We provide an approach to breaking the diffraction limit in coherent anti-Stokes Raman scattering (CARS) microscopy and report a theoretical analysis of detection limit (DL) forit. The additional probe beam, whose profile is doughnut shaped and wavelength is different from the size of Gaussian probe beam, interacts with the coherent phonons at the rim of the diffraction-limited spot to increase theresolution by re-engineering the point spreadfunction of the system. The signal strength reduces with the size of focal volume decreasing, besides, when CARS is used in biology, the molecules of interest are usually in low concentration, which makes the signal detection more difficult. Accordingly, a remaining crucial problem is whether the reduced signal generated in the suppressed focal volume can be detected from the noise background and the analysis of DL, so it is an important precise in implementation of CARS nanoscopy. We describe T-CARS process with full quantum theory and estimate the extreme power density levels of the pump and Stokes beams determined by saturation behavior of coherent phonons. When the pump and Stokes intensities reach such extreme values and total intensity of the excitation beams arrives at a maximum tolerable by most biological samples in acertain suppressed focal volume, the DL of T-CARS nanoscopy correspondingly varies with the exposure time. For an attainable spatial resolution of∼40 nm in three dimension and areasonable exposure time of 20 ms, the DL in the suppressed focal volume is approximately∼103 . The signal can be well detected from the noise fluctuation only if the number of molecules of interest exceeds this limit.%  理论上提出一种突破衍射极限限制的相干反斯托克斯拉曼散射显微成像方法,并对其探测极限进行分析。通过引入环形附加探测光与艾里斑周边的声子作用,实现点扩展函数的改造,提高相干反斯托克斯拉曼散射显微成像系统的横向空间

  13. Quantitative Chemical Imaging with Multiplex Stimulated Raman Scattering Microscopy

    OpenAIRE

    Fu, Dan; Lu, Fake; Zhang, Xu; Freudiger, Christian Wilhelm; Pernik, Douglas R.; Holtom, Gary; Xie, Xiaoliang Sunney

    2012-01-01

    Stimulated Raman scattering (SRS) microscopy is a newly developed label-free chemical imaging technique that overcomes the speed limitation of confocal Raman microscopy while avoiding the nonresonant background problem of coherent anti-Stokes Raman scattering (CARS) microscopy. Previous demonstrations have been limited to single Raman band measurements. We present a novel modulation multiplexing approach that allows real-time detection of multiple species using the fast Fourier transform. ...

  14. Quantum-statistical theory of Raman scattering processes

    CERN Document Server

    Miranowicz, Adam

    2011-01-01

    Raman scattering from a great number of phonon modes is described from a quantum-statistical point of view within the standing-wave model. The master equation for the completely quantum case, including laser pump depletion and stochastic coupling of Stokes and anti-Stokes modes, is derived and converted to classical equations: either into a generalized Fokker-Planck equation and an equation of motion for the characteristic function or into the master equation in Fock representation. These two approaches are developed both in linear and nonlinear regime. A detailed analysis of scattering into Stokes and anti-Stokes modes in linear regime, i.e., under parametric approximation, is presented. The existence of s-parametrized quasiprobability distributions, in particular the Glauber-Sudarshan P-function, is investigated. An analysis of Raman scattering into separate Stokes and anti-Stokes modes in nonlinear regime, thus including pump depletion, is given. The master equation in Fock representation is solved exactly...

  15. Anti-Stokes Resonance Raman of Ir Illuminated Dendrimer Iron (III)-Porphyrins%红外辐照下树枝状铁(iii)卟啉的反斯托克斯共振拉曼

    Institute of Scientific and Technical Information of China (English)

    MO Yu-jun; D.L.Jiang; M.Uymura; T.Aida; T.Kitagawa

    2005-01-01

    The benzene dendrimers of Fe(Ⅲ) tetraphenyl porphyrin chloride[LnFe(Ⅲ)TPPCl] with n = 3, 4, and 5 (n: number of layers) have been synthesized and the IR illumination effects at benzene bands were examined with anti- Stokes resonance Raman speetroseopy for their dioxane solutions.Boltzman temperatures were determined from the Stokes to anti - Stokes intensity ratio for the speetra excited at 413.1 nm in the presence and absence of IR illumination.

  16. Application of a backside-illuminated charge-coupled-device camera for single-pulse coherent anti-Stokes Raman spectroscopy N(2) thermometry.

    Science.gov (United States)

    Plath, I; Meier, W; Stricker, W

    1992-01-01

    The application of an unintensified backside-illuminated CCD for the acquisition of broadband single-pulse coherent anti-Stokes Raman spectroscopy (CARS) spectra is demonstrated. This CCD shows a quantum efficiency 5 times higher than a front-illuminated CCD and offers significant advantages compared with intensified linear photodiode array detectors generally used for single-pulse CARS thermometry. It overcomes the main drawbacks of the intensified linear photodiode array detector in single-pulse CARS N(2) spectroscopy: nonlinearity, limited dynamic range, and image persistence. A method for extending the dynamic range is demonstrated in a highly turbulent flame. PMID:19784236

  17. Application of a backside-illuminated charge-coupled-device camera for single-pulse coherent anti-Stokes Raman spectroscopy N2 thermometry

    Science.gov (United States)

    Plath, I.; Meier, W.; Stricker, W.

    1992-01-01

    The application of an unintensified backside-illuminated CCD for the acquisition of broadband single-pulse coherent anti-Stokes Raman spectroscopy (CARS) spectra is demonstrated. This CCD shows a quantum efficiency 5 times higher than a front-illuminated CCD and offers significant advantages compared with intensified linear photodiode array detectors generally used for single-pulse CARS thermometry. It overcomes the main drawbacks of the intensified linear photodiode array detector in single-pulse CARS N2 spectroscopy: nonlinearity, limited dynamic range, and image persistence. A method for extending the dynamic range is demonstrated in a highly turbulent flame.

  18. Observation of anomalous Stokes versus anti-Stokes ratio in MoTe2 atomic layers

    Science.gov (United States)

    Goldstein, Thomas; Chen, Shao-Yu; Xiao, Di; Ramasubramaniam, Ashwin; Yan, Jun

    We grow hexagonal molybdenum ditelluride (MoTe2), a prototypical transition metal dichalcogenide (TMDC) semiconductor, with chemical vapor transport methods and investigate its atomic layers with Stokes and anti-Stokes Raman scattering. We report observation of all six types of zone center optical phonons. Quite remarkably, the anti-Stokes Raman intensity of the low energy layer-breathing mode becomes more intense than the Stokes peak under certain experimental conditions, creating an illusion of 'negative temperature'. This effect is tunable, and can be switched from anti-Stokes enhancement to suppression by varying the excitation wavelength. We interpret this observation to be a result of resonance effects arising from the C excitons in the vicinity of the Brillouin zone center, which are robust even for multiple layers of MoTe2. The intense anti-Stokes Raman scattering provides a cooling channel for the crystal and opens up opportunities for laser cooling of atomically thin TMDC semiconductor devices. Supported by the University of Massachusetts Amherst, the National Science Foundation Center for Hierarchical Manufacturing (CMMI-1025020) and Office of Emerging Frontiers in Research and Innovation (EFRI-1433496).

  19. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Kai [School of Science, Tianjin University of Technology and Education, Tianjin, 300222 (China); Lee, Soo-Y., E-mail: sooying@ntu.edu.sg [Division of Physics & Applied Physics, and Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)

    2015-12-15

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

  20. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    Directory of Open Access Journals (Sweden)

    Kai Niu

    2015-12-01

    Full Text Available Coherent anti-Stokes Raman spectroscopy (CARS is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

  1. Raman scattering in Si/SiGe nanostructures: Revealing chemical composition, strain, intermixing, and heat dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Mala, S. A.; Tsybeskov, L., E-mail: tsybesko@njit.edu [Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States); Lockwood, D. J.; Wu, X.; Baribeau, J.-M. [National Research Council, Ottawa, Ontario K1A 0R6 (Canada)

    2014-07-07

    We present a quantitative analysis of Raman scattering in various Si/Si{sub 1-x}Ge{sub x} multilayered nanostructures with well-defined Ge composition (x) and layer thicknesses. Using Raman and transmission electron microscopy data, we discuss and model Si/SiGe intermixing and strain. By analyzing Stokes and anti-Stokes Raman signals, we calculate temperature and discuss heat dissipation in the samples under intense laser illumination.

  2. Mapping the energy distribution of SERRS hot spots from anti-Stokes to Stokes intensity ratios.

    Science.gov (United States)

    dos Santos, Diego P; Temperini, Marcia L A; Brolo, Alexandre G

    2012-08-15

    The anomalies in the anti-Stokes to Stokes intensity ratios in single-molecule surface-enhanced resonance Raman scattering were investigated. Brilliant green and crystal violet dyes were the molecular probes, and the experiments were carried out on an electrochemically activated Ag surface. The results allowed new insights into the origin of these anomalies and led to a new method to confirm the single-molecule regime in surface-enhanced Raman scattering. Moreover, a methodology to estimate the distribution of resonance energies that contributed to the imbalance in the anti-Stokes to Stokes intensity ratios at the electromagnetic hot spots was proposed. This method allowed the local plasmonic resonance energies on the metallic surface to be spatially mapped. PMID:22804227

  3. Coherent anti-Stokes Raman Scattering (CARS) Microscopy Visualizes Pharmaceutical Tablets During Dissolution

    NARCIS (Netherlands)

    Fussell, A.L.; Kleinebudde, P.; Herek, J.L.; Strachan, C.J.; Offerhaus, H.L.

    2014-01-01

    Traditional pharmaceutical dissolution tests determine the amount of drug dissolved over time by measuring drug content in the dissolution medium. This method provides little direct information about what is happening on the surface of the dissolving tablet. As the tablet surface composition and str

  4. In situ dissolution analysis using coherent anti-Stokes Raman scattering (CARS) and hyperspectral CARS microscopy

    NARCIS (Netherlands)

    Fussell, Andrew; Garbacik, Erik; Offerhaus, Herman; Kleinebudde, Peter; Strachan, Clare

    2013-01-01

    The solid-state form of an active pharmaceutical ingredient (API) in an oral dosage form plays an important role in determining the dissolution rate of the API. As the solid-state form can change during dissolution, there is a need to monitor the oral dosage form during dissolution testing. Coherent

  5. Can surface-enhanced Raman scattering serve as a channel for strong optical pumping?

    Science.gov (United States)

    Haslett, T. L.; Tay, L.; Moskovits, M.

    2000-07-01

    The surface-enhanced Raman scattering spectra of a number of dye and colorless molecules adsorbed on deposited coloidal silver films were systematically studied as a function of power and position using a Raman microscope. The anti-Stokes portions of the spectra of the dyes reproducibly show line intensities much greater than what is expected on the basis of the equilibrium population of the excited vibrational states, even at the lowest incident light intensities used. This behavior was observed previously and attributed to optical pumping of vibrationally excited states of the molecules by unusually intense surface-enhanced Raman transitions, [Phys. Rev. Lett. 76, 2444 (1996)] suggesting either uncommonly large Raman cross-sections or very intense local field strengths exceeding those encountered in the most powerful currently available lasers. Based on this work, however, we ascribe the apparently large anti-Stokes intensities primarily to a difference in the Stokes and anti-Stokes Raman cross-sections resulting from resonance or pre-resonance Raman processes in the adsorbate-surface complex rather than to strongly nonequilibrium populations in the molecular vibrational states. Finally, we observed no significant inhomogeneity in the Raman enhancement in the images of the deposited silver coloid samples down to spatial resolutions of ˜1 μm.

  6. Phase-interfacial stimulated Raman scattering generated in strongly pumped water.

    Science.gov (United States)

    Yuan, Hong; Gai, Baodong; Liu, Jinbo; Guo, Jingwei; Li, Hui; Hu, Shu; Deng, Liezheng; Jin, Yuqi; Sang, Fengting

    2016-07-15

    We have observed unusual blue-shifted radiations in water pumped by a strong 532-nm nanosecond laser. Properties including divergence, polarizations, and pulse shapes of the unusual radiations are measured and compared with those of the regular stimulated Raman scattering (SRS) in water. The unusual radiations are attributed to the parametric anti-Stokes SRS that occurs on the interface of water and ionization plasma (or gas) formed in the laser-induced breakdown of water. PMID:27420529

  7. Raman scattering in crystals

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.F.

    1988-09-30

    A tutorial presentation is given of Raman scattering in crystals. The physical concepts are emphasized rather than the detailed mathematical formalism. Starting with an introduction to the concepts of phonons and conservation laws, the effects of photon-phonon interactions are presented. This interaction concept is shown for a simple cubic crystal and is extended to a uniaxial crystal. The correlation table method is used for determining the number and symmetry of the Raman active modes. Finally, examples are given to illustrate the relative ease of using this group theoretical method and the predictions are compared with measured Raman spectra. 37 refs., 17 figs., 6 tabs.

  8. Quantum Mechanical Description of Raman Scattering from Molecules in Plasmonic Cavities.

    Science.gov (United States)

    Schmidt, Mikolaj K; Esteban, Ruben; González-Tudela, Alejandro; Giedke, Geza; Aizpurua, Javier

    2016-06-28

    Plasmon-enhanced Raman scattering can push single-molecule vibrational spectroscopy beyond a regime addressable by classical electrodynamics. We employ a quantum electrodynamics (QED) description of the coherent interaction of plasmons and molecular vibrations that reveal the emergence of nonlinearities in the inelastic response of the system. For realistic situations, we predict the onset of phonon-stimulated Raman scattering and a counterintuitive dependence of the anti-Stokes emission on the frequency of excitation. We further show that this QED framework opens a venue to analyze the correlations of photons emitted from a plasmonic cavity. PMID:27203727

  9. Surface enhanced Raman scattering

    CERN Document Server

    Furtak, Thomas

    1982-01-01

    In the course of the development of surface science, advances have been identified with the introduction of new diagnostic probes for analytical characterization of the adsorbates and microscopic structure of surfaces and interfaces. Among the most recently de­ veloped techniques, and one around which a storm of controversy has developed, is what has now been earmarked as surface enhanced Raman scattering (SERS). Within this phenomenon, molecules adsorbed onto metal surfaces under certain conditions exhibit an anomalously large interaction cross section for the Raman effect. This makes it possible to observe the detailed vibrational signature of the adsorbate in the ambient phase with an energy resolution much higher than that which is presently available in electron energy loss spectroscopy and when the surface is in contact with a much larger amount of material than that which can be tolerated in infrared absorption experiments. The ability to perform vibrational spectroscopy under these conditions would l...

  10. Raman scattering mediated by neighboring molecules.

    Science.gov (United States)

    Williams, Mathew D; Bradshaw, David S; Andrews, David L

    2016-05-01

    Raman scattering is most commonly associated with a change in vibrational state within individual molecules, the corresponding frequency shift in the scattered light affording a key way of identifying material structures. In theories where both matter and light are treated quantum mechanically, the fundamental scattering process is represented as the concurrent annihilation of a photon from one radiation mode and creation of another in a different mode. Developing this quantum electrodynamical formulation, the focus of the present work is on the spectroscopic consequences of electrodynamic coupling between neighboring molecules or other kinds of optical center. To encompass these nanoscale interactions, through which the molecular states evolve under the dual influence of the input light and local fields, this work identifies and determines two major mechanisms for each of which different selection rules apply. The constituent optical centers are considered to be chemically different and held in a fixed orientation with respect to each other, either as two components of a larger molecule or a molecular assembly that can undergo free rotation in a fluid medium or as parts of a larger, solid material. The two centers are considered to be separated beyond wavefunction overlap but close enough together to fall within an optical near-field limit, which leads to high inverse power dependences on their local separation. In this investigation, individual centers undergo a Stokes transition, whilst each neighbor of a different species remains in its original electronic and vibrational state. Analogous principles are applicable for the anti-Stokes case. The analysis concludes by considering the experimental consequences of applying this spectroscopic interpretation to fluid media; explicitly, the selection rules and the impact of pressure on the radiant intensity of this process.

  11. Raman scattering mediated by neighboring molecules

    Science.gov (United States)

    Williams, Mathew D.; Bradshaw, David S.; Andrews, David L.

    2016-05-01

    Raman scattering is most commonly associated with a change in vibrational state within individual molecules, the corresponding frequency shift in the scattered light affording a key way of identifying material structures. In theories where both matter and light are treated quantum mechanically, the fundamental scattering process is represented as the concurrent annihilation of a photon from one radiation mode and creation of another in a different mode. Developing this quantum electrodynamical formulation, the focus of the present work is on the spectroscopic consequences of electrodynamic coupling between neighboring molecules or other kinds of optical center. To encompass these nanoscale interactions, through which the molecular states evolve under the dual influence of the input light and local fields, this work identifies and determines two major mechanisms for each of which different selection rules apply. The constituent optical centers are considered to be chemically different and held in a fixed orientation with respect to each other, either as two components of a larger molecule or a molecular assembly that can undergo free rotation in a fluid medium or as parts of a larger, solid material. The two centers are considered to be separated beyond wavefunction overlap but close enough together to fall within an optical near-field limit, which leads to high inverse power dependences on their local separation. In this investigation, individual centers undergo a Stokes transition, whilst each neighbor of a different species remains in its original electronic and vibrational state. Analogous principles are applicable for the anti-Stokes case. The analysis concludes by considering the experimental consequences of applying this spectroscopic interpretation to fluid media; explicitly, the selection rules and the impact of pressure on the radiant intensity of this process.

  12. Resonant Raman scattering in GaAsN: Mixing, localization and band impurity formation of electronic states

    OpenAIRE

    Bachelier, Guillaume; Mlayah, A.; Cazayous, M.; Groenen, J.; Zwick, Antoine; Carrère, Hélène; Bedel, Eléna; Arnoult, Alexandre; Rocher, A.; Ponchet, A.

    2003-01-01

    Raman measurements on a thick GaAsN layer and on GaAsN/GaAs quantum well structures are reported. The scattering was excited close to resonance with the N-induced E+ transition, and detected in both Stokes and anti-Stokes regions including the low-frequency range around the Rayleigh line. A broad continuous scattering due to acoustic phonons is observed on the thick GaAsN layer. Calculations of the Raman efficiency showed that localization and mixing of the resonant electronic states well acc...

  13. Stimulated Stokes and Antistokes Raman Scattering in Microspherical Whispering Gallery Mode Resonators.

    Science.gov (United States)

    Farnesi, Daniele; Berneschi, Simone; Cosi, Franco; Righini, Giancarlo C; Soria, Silvia; Nunzi Conti, Gualtiero

    2016-01-01

    Dielectric microspheres can confine light and sound for a length of time through high quality factor whispering gallery modes (WGM). Glass microspheres can be thought as a store of energy with a huge variety of applications: compact laser sources, highly sensitive biochemical sensors and nonlinear phenomena. A protocol for the fabrication of both the microspheres and coupling system is given. The couplers described here are tapered fibers. Efficient generation of nonlinear phenomena related to third order optical non-linear susceptibility Χ((3)) interactions in triply resonant silica microspheres is presented in this paper. The interactions here reported are: Stimulated Raman Scattering (SRS), and four wave mixing processes comprising Stimulated Anti-stokes Raman Scattering (SARS). A proof of the cavity-enhanced phenomenon is given by the lack of correlation among the pump, signal and idler: a resonant mode has to exist in order to obtain the pair of signal and idler. In the case of hyperparametric oscillations (four wave mixing and stimulated anti-stokes Raman scattering), the modes must fulfill the energy and momentum conservation and, last but not least, have a good spatial overlap. PMID:27078752

  14. Generation and delayed retrieval of spatially multimode Raman scattering in warm rubidium vapors

    CERN Document Server

    Chrapkiewicz, Radoslaw

    2014-01-01

    We apply collective Raman scattering to create, store and retrieve spatially multimode light in warm rubidium-87 vapors. The light is created in a spontaneous Stokes scattering process. This is accompanied by the creation of counterpart collective excitations in the atomic ensemble -- the spin waves. After a certain storage time we coherently convert the spin waves into the light in deterministic anti-Stokes scattering. The whole process can be regarded as a delayed four-wave mixing which produces pairs of correlated, delayed random images. Storage of higher order spatial modes up to microseconds is possible owing to usage of a buffer gas. We study the performance of the Raman scattering, storage and retrieval of collective excitations focusing on spatial effects and the influence of decoherence caused by diffusion of rubidium atoms in different buffer gases. We quantify the number of modes created and retrieved by analyzing statistical correlations of intensity fluctuations between portions of the light scat...

  15. Use of a charge-coupled device camera for broadband coherent anti-Stokes Raman scattering measurements.

    Science.gov (United States)

    Rakestraw, D J; Lucht, R P; Dreier, T

    1989-10-01

    The use of an unintensified charge-coupled device (CCD) camera for the acquisition of broadband CARS signals is demonstrated. The CCD camera offers significant advantages compared to intensified, linear photodiode array (PDA) detectors that are generally used for broadband CARS measurements. These advantages include higher spectral resolution and improved instrument function, larger dynamic range, and a 2-D format. PMID:20555836

  16. Distinguishing non-resonant four-wave-mixing noise in coherent stokes and anti-stokes Raman scattering

    Science.gov (United States)

    Marks, Daniel L. (Inventor); Boppart, Stephen A. (Inventor)

    2009-01-01

    A method of examining a sample comprises exposing the sample to a pump pulse of electromagnetic radiation for a first period of time, exposing the sample to a stimulant pulse of electromagnetic radiation for a second period of time which overlaps in time with at least a portion of the first exposing, to produce a signal pulse of electromagnetic radiation for a third period of time, and interfering the signal pulse with a reference pulse of electromagnetic radiation, to determine which portions of the signal pulse were produced during the exposing of the sample to the stimulant pulse. The first and third periods of time are each greater than the second period of time.

  17. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy

    OpenAIRE

    Evans, Conor L.; Potma, Eric O.; Puoris'haag, Mehron; Côté, Daniel; Lin, Charles P.; Xie, X. Sunney

    2005-01-01

    Imaging living organisms with molecular selectivity typically requires the introduction of specific labels. Many applications in biology and medicine, however, would significantly benefit from a noninvasive imaging technique that circumvents such exogenous probes. In vivo microscopy based on vibrational spectroscopic contrast offers a unique approach for visualizing tissue architecture with molecular specificity. We have developed a sensitive technique for vibrational imaging of tissues by co...

  18. Seeing the vibrational breathing of a single molecule through time-resolved coherent anti-Stokes Raman scattering

    OpenAIRE

    Yampolsky, S; Fishman, DA; Dey, S; Hulkko, E.; Banik, M; Potma, EO; Apkarian, VA

    2014-01-01

    The motion of chemical bonds within molecules can be observed in real time, in the form of vibrational wavepackets prepared and interrogated through ultrafast nonlinear spectroscopy. Such nonlinear optical measurements are commonly performed on large ensembles of molecules, and as such, are limited to the extent that ensemble coherence can be maintained. Here, we describe vibrational wavepacket motion on single molecules, recorded through time-resolved, surface-enhanced, coh...

  19. Phase-shift effect of amplitude spread function on spectrum and image formation in coherent Raman scattering microspectroscopy.

    Science.gov (United States)

    Fukutake, Naoki

    2016-03-01

    Coherent Raman scattering microspectroscopy, which includes coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microspectroscopy, permits label-free hyperspectral imaging. We report the theoretical study of the phase-shift effect of the impulse response function on the spectral and image-forming properties of coherent Raman scattering microspectroscopy. We show that the spectrum and image are influenced by not only the NA of objective for excitation (NA(ex)) but also that for signal collection (NA(col)), in association with the phase-shift effect. We discuss that, under the condition NA(ex)≠NA(col), both the spectrum and the image become deformed by the phase-shift effect, which can be applied to the direct measurement of the imaginary part of the nonlinear susceptibility in CARS spectroscopy. We point out that, even in SRS microscopy, the nonresonant background can contribute to the image formation and cause the artifact in the image.

  20. Second order resonant Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Cristobal, A.; Catarero, A. [Valencia Univ. (Spain). Dept. de Fisica Aplicada; Trallero-Giner, C. [Instituto Politecnico Nacional, Mexico City (Mexico). Centro de Investigacion y de Estudios Avanzados

    1996-03-01

    A theoretical model for resonant Raman scattering by two optical phonons in zincblende-type semiconductors is presented. The effect of Coulomb interaction between electrons and holes is taken into account by introducing discrete and continuous excitonic intermediate states. The model can be applied for laser frequencies below and above the band gap. We consider deformation potential and Froehlich interaction for the electron-one-phonon coupling. The absolute value of the scattering efficiency is evaluated for the L-O-phonons, TO-plus LO-phonon and two-TO-photons Raman processes, around the E{sub o} absorption edge of II-VI compound semiconductors. Comparison with the electron-hole uncorrelated theory and experimental data emphasizes the role if the excitonic effects. (author). 10 refs., 2 figs.

  1. Electronic Raman Scattering in Graphene

    Institute of Scientific and Technical Information of China (English)

    LU Hong-Yan; WANG Qiang-Hua

    2008-01-01

    Linear dispersion near the Dirac points in the band structure of graphenes can give rise to novel physical properties.We calculate the electronic contribution to the Raman spectra in graphenes, which also shows novel features.In the clean limit, the Raman spectrum in the undoped graphene is linear (with a universal slope against impurity scattering) at low energy due to the linear dispersion near the Dirac points, and it peaks at a position corresponding to the van Hove singularity in the band structure. In a doped graphene, the electronic Raman absorption is forbidden up to a vertical inter-band particle-hole gap. Beyond the gap the spectrum follows the undoped case. In the presence of impurities, absorption within the gap (in the otherwise clean case) is induced, which is identified as the intra-band contribution. The Drude-like intra-band contribution is seen to be comparable to the higher energy inter-band Raman peak. The results are discussed in connection to experiments.

  2. All chalcogenide Raman parametric Laser, Wavelength Converter and Amplifier in a Single Microwire

    CERN Document Server

    Ahmad, Raja

    2013-01-01

    Compact, power efficient and fiber compatible lasers, wavelength converters and amplifiers are vital ingredients for the future fiber optic systems and networks. Nonlinear optical effects, like Raman scattering and parametric four wave mixing, offer a way to realize such devices. Here we use a single chalcogenide microwire to realize a device that provides the functions of a Stokes Raman parametric laser, a four wave mixing anti Stokes wavelength converter, and an ultra broadband Stokes/anti Stokes Raman amplifier or supercontinuum generator. The device operation relies on ultrahigh Raman and Kerr gain (upto five orders of magnitude larger than in silica fibers), precisely engineered chromatic dispersion and high photosensitivity of the chalcogenide microwire. The Raman parametric laser operates at a record low threshold average (peak) pump power of 52 \\muW (207 mW) and a slope efficiency of >2%. A powerful anti Stokes signal is generated via the nonlinear four wave mixing process. As amplifier or the broadba...

  3. CARS and Raman spectroscopy of function-related conformational changes of chymotrypsin

    NARCIS (Netherlands)

    Brandt, N.N.; Chikishev, A.Yu.; Greve, J.; Koroteev, N.I.; Otto, C.; Sakodynskaya, I.K.

    2000-01-01

    We report on the comparative analysis of the conformation-sensitive bands of free enzyme (chymotrypsin), liganded enzyme (chymotrypsin anthranilate) and enzyme complex with 18-crown-6. The studies were carried out by Raman scattering spectroscopy and polarization-sensitive coherent anti-Stokes Raman

  4. Coherent Raman scattering microscopy for label-free imaging of live amphioxus

    Science.gov (United States)

    Yu, Zhilong; Chen, Tao; Zhang, Xiannian; Shen, Jie; Chen, Junyuan; Huang, Yanyi

    2012-03-01

    The existence of notochord distinguishes chordates from other phyla. Amphioxus is the only animal that keeps notochord during the whole life. Notochord is a unique organ for amphioxus, with its vertically arranged muscular notochordal plates, which is different from notochords in embryos of other chordates. We use stimulated Raman scattering (SRS) microscopy as a non-invasive technique to image the chemical components in amphioxus notochord. SRS provides chemical specificity as spontaneous Raman does and offers a higher sensitivity for fast acquisition. Unlike coherent anti- Stokes Raman scattering (CARS) microscopy, SRS microscopy doesn't have non-resonant background and can better differentiate different components in the specimen. We verify that the notochord is a protein-rich organ, which agrees well with the result of conventional staining methods. Detailed structures in notochordal plates and notochordal sheath are revealed by SRS microscopy with diffraction limited resolution. Our experiment shows that SRS microscopy is an excellent imaging tool for biochemical research with its intrinsic chemical selectivity, high spatiotemporal resolution and native 3D optical sectioning ability.

  5. Observation and analysis of Fano-like lineshapes in the Raman spectra of molecules adsorbed at metal interfaces

    Science.gov (United States)

    Dey, S.; Banik, M.; Hulkko, E.; Rodriguez, K.; Apkarian, V. A.; Galperin, M.; Nitzan, A.

    2016-01-01

    Surface-enhanced Raman scattering (SERS) from bipyridyl ethylene adsorbed on gold dumbbells shows Fano-like spectra at high incident light intensity. This is accompanied by an increased electronic temperature, while no vibrational anti-Stokes scattering is observed. Theory indicates that interference between vibrational and electronic Raman scattering can yield such asymmetric scattering lineshapes. The best fit to observations is however obtained by disregarding this coupling and accounting for the detailed lineshape of the continuous electronic component of the SERS.

  6. Collective spectral properties of Raman scattering

    International Nuclear Information System (INIS)

    The theory of collective Raman scattering has been developed by using the quantum-mechanical master-equation approach and secular approximation. The influence of the frequency detuning of resonance and other parameters on the collective spectral properties of scattered light is investigated

  7. Surface-Enhanced Raman Scattering and Biophysics

    Science.gov (United States)

    Kneipp, Katrin

    2001-03-01

    Surface-enhanced Raman scattering (SERS) is a phenomenon resulting in strongly increased Raman signals from molecules which have been attached to metallic nanostructures such as colloidal silver or gold particles. The effect combines the structural information content of a vibrational spectroscopy with extremely high sensitivity and in some cases, it showes promise in overcoming the low-sensitivity problems inherent in Raman spectroscopy. Cross sections effective in SERS can reach 10 16 to 10 15 cm2 per molecule corresponding to enhancement factors of about fourteen orders of magnitude compared with “normal” non-resonant Raman scattering. Such extremely large cross sections are sufficient for single molecule Raman spectroscopy. The high sensitivity and particularly the single molecule capabilities open up exciting perspectives for SERS as tool for basic research in biophysics, biochemistry and in laboratory medicine, where it allows to study extremely small amounts of biolomedically relevant molecules in order to understand development of diseases, treatment and therapy control based on molecular structural information at the single molecule level. The most spectacular applications might appear in rapidly spectroscopic characterization of specific DNA fragments down to structurally sensitive detection of single bases in order to elucidate the human genome sequence without any labeling technology. I will briefly introduce the SERS effect and report experiments with Raman scattering of single molecules. Potential and limitations of surface-enhanced Raman techniques as a tool in biophysics and biomedical spectroscopy will be considered.

  8. Transverse stimulated Raman scattering in KDP

    Energy Technology Data Exchange (ETDEWEB)

    Barker, C.E.; Sacks, R.A.; Wonterghem, B.M. Van; Caird, J.A.; Murray, J.R.; Campbell, J.H.; Kyle, K.; Ehrlich, R.E.; Nielsen, N.D.

    1995-09-12

    Optical components of large-aperture, high irradiance and high fluence lasers can experience significant levels of stimulated scattering along their transverse dimensions. The authors have observed transverse stimulated Raman scattering in large aperture KDP crystals, and have measured the stimulated gain coefficient. With sufficiently high gain, transverse stimulated scattering can lead to energy loss from the main beam and, more importantly, optical damage in the components in which this scattering occurs. Thus transverse stimulated,scattering is of concern in large aperture fusion lasers such as Nova and Beamlet, which is a single-aperture, full-scale scientific prototype of the laser driver for the proposed National Ignition Facility.

  9. Label-free assessment of adipose-derived stem cell differentiation using coherent anti-Stokes Raman scattering and multiphoton microscopy

    OpenAIRE

    Mouras, Rabah; Bagnaninchi, Pierre O.; Downes, Andrew R; Elfick, Alistair P D

    2012-01-01

    ABSTRACT. Adult stem cells (SCs) hold great potential as likely candidates for disease therapy but also as sources of differentiated human cells in vitro models of disease. In both cases, the label-free assessment of SC differentiation state is highly desirable, either as a quality-control technology ensuring cells to be used clinically are of the desired lineage or to facilitate in vitro time-course studies of cell differentiation. We investigate the potential of nonlinear optical microscopy...

  10. Random number generation from spontaneous Raman scattering

    Science.gov (United States)

    Collins, M. J.; Clark, A. S.; Xiong, C.; Mägi, E.; Steel, M. J.; Eggleton, B. J.

    2015-10-01

    We investigate the generation of random numbers via the quantum process of spontaneous Raman scattering. Spontaneous Raman photons are produced by illuminating a highly nonlinear chalcogenide glass ( As 2 S 3 ) fiber with a CW laser at a power well below the stimulated Raman threshold. Single Raman photons are collected and separated into two discrete wavelength detuning bins of equal scattering probability. The sequence of photon detection clicks is converted into a random bit stream. Postprocessing is applied to remove detector bias, resulting in a final bit rate of ˜650 kb/s. The collected random bit-sequences pass the NIST statistical test suite for one hundred 1 Mb samples, with the significance level set to α = 0.01 . The fiber is stable, robust and the high nonlinearity (compared to silica) allows for a short fiber length and low pump power favourable for real world application.

  11. Single-pulse stimulated Raman scattering spectroscopy

    CERN Document Server

    Frostig, Hadas; Natan, Adi; Silberberg, Yaron

    2010-01-01

    We demonstrate the acquisition of stimulated Raman scattering spectra with the use of a single femtosecond pulse. High resolution vibrational spectra are obtained by shifting the phase of a narrow band of frequencies in the broadband input pulse spectrum, using spectral shaping. The vibrational spectrum is resolved by examining the amplitude features formed in the spectrum after interaction with the sample. Using this technique, low frequency Raman lines (<100cm^-1) are resolved in a straightforward manner.

  12. Ice thickness measurements by Raman scattering

    CERN Document Server

    Pershin, Sergey M; Klinkov, Vladimir K; Yulmetov, Renat N; Bunkin, Alexey F

    2014-01-01

    A compact Raman LIDAR system with a spectrograph was used for express ice thickness measurements. The difference between the Raman spectra of ice and liquid water is employed to locate the ice-water interface while elastic scattering was used for air-ice surface detection. This approach yields an error of only 2 mm for an 80-mm-thick ice sample, indicating that it is promising express noncontact thickness measurements technique in field experiments.

  13. Integrated coherent Raman scattering and multiphoton microscopy for label-free imaging of the dentin in the tooth

    Science.gov (United States)

    Wang, Zi; Zheng, Wei; Lin, Jian; Hsu, Chin-Ying; Huang, Zhiwei

    2014-02-01

    We report the implementation of a unique multimodal nonlinear optical microscopy (i.e., coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), third harmonic generation (THG) and two photon excitation fluorescence (TPEF)) platform for label-free imaging of dentin. A picosecond tunable laser together with an OPO is used as the excitation source for simultaneously multimodal imaging. CARS shows similar information as TPEF in dentin, but it has a higher sectioning performance than TPEF and thus it is a good alternative for TPEF. Microtubule structure is revealed nearby dentin enamel junction (DEJ) from the multimodal images. This work demonstrates that combining different nonlinear optical imaging modalities can provide new insights into the understanding of morphological structures and biochemical/biomolecular distributions of the dentine without the need of labeling.

  14. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Matthew W. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  15. Raman properties of GaSb nanoparticles embedded in SiO2 films

    Institute of Scientific and Technical Information of China (English)

    Liu Fa-Min; Wang Tian-Min; Zhang Li-De

    2004-01-01

    The Raman shifts of nanocrystalline GaSb excited by an Ar+ ion laser at wavelengths 514.5, 496.5, 488.0, 476.5,and 457.9nm are studied by an SPEX-1403 laser Raman spectrometer respectively, and they are explained by phonon confinement, tensile stress, resonant Raman scattering and quantum size effects. The Stokes and anti-Stokes Raman spectra of GaSb nanocrystals strongly support the Raman feature of GaSb nanocrystals. The calculated optical spectra compare well with experimental data on Raman scattering GaSb nanocrystals.

  16. Raman and Surface-enhanced Raman Scattering of Chlorophenols

    Institute of Scientific and Technical Information of China (English)

    SONG Wei; SHANG Xiao-hong; LU Yong; LIU Bing-bing; WANG Xu

    2011-01-01

    Raman spectrum is a powerful analytical tool for determining the chemical information of compounds.In this study,we obtained analytical results of chlorophenols(CPs) molecules including 4-chlorophenol(4-CP),2,6-dichlorophenol(2,6-DCP) and 2,4,6-trichlorophenol(2,4,6-TCP) on the surface of Ag dendrites by surface-enhanced Raman scattering(SERS) spectra.SEM images indicate that the SERS substrate of Ag dendrites is composed of a large number of polygonal nanocrystallites,which self-assembled into a 3D hierarchical structure.It was found that there were distinct differences for those three molecules from Raman and SERS spectra.This indicates that SERS could be a new tool of detection technique regarding trace amounts of CPs.

  17. Hyperspectral Imaging with Stimulated Raman Scattering by Chirped Femtosecond Lasers

    OpenAIRE

    Xie, Xiaoliang Sunney; Fu, Dan; Freudiger, Christian Wilhelm; Zhang, Xu; Holtom, Gary

    2013-01-01

    Raman microscopy is a quantitative, label-free, and noninvasive optical imaging technique for studying inhomogeneous systems. However, the feebleness of Raman scattering significantly limits the use of Raman microscopy to low time resolutions and primarily static samples. Recent developments in narrowband stimulated Raman scattering (SRS) microscopy have significantly increased the acquisition speed of Raman based label-free imaging by a few orders of magnitude, at the expense of reduced spec...

  18. High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues

    CERN Document Server

    Camp, Charles H; Heddleston, John M; Hartshorn, Christopher M; Walker, Angela R Hight; Rich, Jeremy N; Lathia, Justin D; Cicerone, Marcus T

    2014-01-01

    We have developed a coherent Raman imaging platform using broadband coherent anti-Stokes Raman scattering (BCARS) that provides an unprecedented combination of speed, sensitivity, and spectral breadth. The system utilizes a unique configuration of laser sources that probes the Raman spectrum over 3,000 cm$^{-1}$ and generates an especially strong response in the typically weak Raman "fingerprint" region through heterodyne amplification of the anti-Stokes photons with a large nonresonant background (NRB) while maintaining high spectral resolution of $<$ 13 cm$^{-1}$. For histology and pathology, this system shows promise in highlighting major tissue components in a non-destructive, label-free manner. We demonstrate high-speed chemical imaging in two- and three-dimensional views of healthy murine liver and pancreas tissues and interfaces between xenograft brain tumors and the surrounding healthy brain matter.

  19. Raman Scattering in Coherently Prepared Atomic System

    Institute of Scientific and Technical Information of China (English)

    LIN Fu-Cheng(林福成); Yongjoo Rhee; Jonghoon Yi; Hyunmin Park

    2001-01-01

    Atoms in the coherent superposition state prepared by a pulse pair are used as a novel optical memory material where a single interrogation pulse will produce a new pulse pair preserving the relative amplitudes and phases of the preparing pulse pair. Such a coherent superposition state can also be specially tailored along the propagation path to generate Raman scattering in a relatively short distance with very high efficiency.

  20. 在Na2(A1∑_u+)与H2碰撞中的相干反斯托克斯拉曼谱研究%Coherent Anti-Stokes Raman Spectroscopy Study in the Na2(A1∑_u~+)-H2 Collision

    Institute of Scientific and Technical Information of China (English)

    蔡勤; 张利平; 栾楠楠; 程玉锋; 戴康; 沈异凡

    2011-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been used to analyze the internal state distribution of H2 after energy transfer with Na2 (A1 S,f ). The scanned CARS reveals that during energy transfer processes H2 molecules are produced at the V=l, 2 and 3 vibrational levels. Two possible populations ratios (w,/ra2) are obtained from scanned CARS peaks. The actual population ratio Hi/n2 is determined to be 1. 82 through shape simulations of the time resolved CARS profiles under a kinetic model. The n,/n2 ratio indicates that the H2 molecules produced by the energy transfer process are 0.53 populated at the V=l level, 0.30 at V=2 and 0.17 at V=3. The relative fraction (, ) of average energy disposal is derived as 0.51, 0.46, 0.03, which has a major energy releases in vibrational and translational. This consequence supports the col linear collision geometry in ratio Na2-H2 energy transfer.%利用相干反斯托克斯拉曼谱(CARS)分析了H:在与Na2(A1∑_u~+)碰撞后的振转态布居数分布.扫描CARS表明了在能量转移过程中H:在V=1,2,3振动能级上得到布居.由扫描CARS的峰值得到2个可能的布居数比值,通过解速率方程组及时间分辨CARS轮廓模拟,确定实际的布居数比n1//n2为1.82,得到了在能量转移中H2在V=1,2,3振动能级上的布居数之比为0.53:0.30:0.17.平均转移能量分配的相对值,,分别为0.51,0.46,0.03,能量主要配置在振动和平动上,支持Na2-H2的直线式碰撞传能机制.

  1. Seventy years of combination (Raman) scattering

    International Nuclear Information System (INIS)

    The discovery of the combination scattering of light (the Raman effect) is discussed briefly in historical perspective. Landsberg and Mandel'shtam in Moscow observed spectral lines of the new phenomenon for the first time in crystals on February 21, 1928, and published their results on July 13, 1928, while Raman and Krishnan, in Calcutta, observed similar lines in a number of liquids on February 28, 1928, and published their results on April 21, 1928. Landsberg and Mandel'shtam gave the right interpretation of the new phenomenon in their first publication. The reason for the delay of this publication is explained. A brief note is given on the fate of the discovery and of the people who made it. Raman is the only one who was awarded the Nobel Prize for physics in 1930. The list of the 1930 Nobel Prize nominees in physics is presented. Developments in the field of combination scattering are discussed and the role of the phenomenon in applied research and science illustrated. (from the history of physics)

  2. Diffusion Raman et luminescence dans des aerogels de silice purs ou dopes Dy

    Science.gov (United States)

    Guerri, F.; Fabre, F.; Zwick, A.; Bournett, D.

    1994-02-01

    Light scattering studies of pure and Dy doped aerogels are presented. Careful examination of Stokes and anti-Stokes spectra allow the discrimination between Raman and luminescence processes. It is shown that in pure aerogels, scattered intensity is due to Raman processes only, and the density of vibrational states does not exhibit any singularity. The fractal properties of the structure imply modifications not only in the spectral distribution of the low frequency modes (usually labelled phonons and fractons) but alsoin the high frequency one, at least up to 600 cm-1. In Dy-doped dense silica, coupling between electronic and vibronic excitations is evidenced by the presence of anti-Stokes luminescence. In Dy-doped aerogels, the enlarged Dy3+ electronic levels, strongly coupled with vibrational states give rise to emission processes traducing the response of the sample as a whole, rather than resonant Raman scattering or luminescence processes.

  3. Rotational Raman scattering in sup 127 I

    Energy Technology Data Exchange (ETDEWEB)

    Mondry, G.; Wissmann, F.; Mueller, G.; Schroeder, F.; Rullhusen, P.; Smend, F.; Schumacher, M. (2. Physikalisches Inst., Univ. Goettingen (Germany)); Fettweis, P.; Carchon, R. (Studiecentrum voor Kernenergie, Centre de l' Etudes de l' Energie Nucleaire, Mol (Belgium))

    1991-09-02

    Elastic and Raman scattering of photons by {sup 181}Ta and {sup 127}I are studied using the 11.4 MeV mono-energetic photon beam installed at the Mol BR2 reactor. For the strongly deformed prolate nucleus {sup 181}Ta the simple rotator model is re-investigated and found to be valid. The intrinsic quadrupole moment Q{sub 0} derived from spectroscopic data by assuming a strong particle-surface coupling was found to be in agreement with the splitting of the giant dipole resonance, thus removing previous inconsistencies. When applying the same model to the oblate nucleus {sup 127}I a severe discrepancy between experimental and predicted Raman cross sections was observed; this discrepancy is discussed in terms of nuclear-structure properties. (orig.).

  4. Surface Raman scattering from effervescent magnetic peroxyborates

    Science.gov (United States)

    Walrafen, G. E.; Krishnan, P. N.; Hokmabadi, M.; Griscom, D. L.; Munro, R. G.

    1982-10-01

    Surface Raman scattering using a spinning technique was investigated for solid NaBO3ṡ4H2O and NaBO3ṡH2O, as well as for electron bombarded peroxyborates, for peroxyborates heated for various times and at temperatures for 110-180 °C, and for solid Na2O2 and BaO2. The Raman spectra indicate that the breakdown of peroxy groups is accompanied by the formation of trapped molecular O2. Quantitative Raman intensity data were also obtained as functions of heating time at 115 °C for the 1556 cm-1 line from O2 and for the 890 and 705 cm-1 lines whose intensities scale with the peroxy concentration. These intensity data were treated by logistics theory, and they were found to be consistent with a second-order autocatalyzed forward reaction dependent on the product of the peroxy and O2 concentrations, plus a first-order reverse reaction dependent only on the O2 concentration.

  5. Raman Scattering by Molecular Hydrogen and Nitrogen in Exoplanetary Atmospheres

    CERN Document Server

    Oklopčić, Antonija; Heng, Kevin

    2016-01-01

    An important source of opacity in the atmospheres of exoplanets at short visible and near-UV wavelengths is Rayleigh scattering of light on molecules. It is accompanied by a related, albeit weaker process -- Raman scattering. In this paper, we analyze the signatures of Raman scattering imprinted in the reflected light and the geometric albedo of exoplanets, which could provide valuable information about planetary atmospheres. Raman scattering affects the geometric albedo spectra of planets in two main ways. Firstly, it causes filling-in of strong absorption lines in the incident radiation, thus producing sharp peaks in the albedo. Secondly, it shifts the wavelengths of spectral features in the reflected light causing the so-called Raman ghost lines. Observing the Raman peaks in the albedo could be used to measure the column density of the scattering molecule, thus providing constrains on the presence of clouds and hazes in the atmosphere. Observing the Raman ghost lines could be used to spectroscopically iden...

  6. Enhanced Raman scattering of biological molecules

    Science.gov (United States)

    Montoya, Joseph R.

    The results presented in this thesis, originate from the aspiration to develop an identification algorithm for Salmonella enterica Serovar Enteritidis (S. enterica), Escherichia coli (E. coli), Bacillus globigii ( B. globigii), and Bacillus megaterium ( B. megaterium) using "enhanced" Raman scattering. We realized our goal, with a method utilizing an immunoassay process in a spectroscopic technique, and the direct use of the enhanced spectral response due to bacterial surface elements. The enhanced Raman signal originates from Surface Enhanced Raman Scattering (SERS) and/or Morphological Dependent Resonances (MDR's). We utilized a modified Lee-Meisel colloidal production method to produce a SERS active substrate, which was applied to a SERS application for the amino acid Glycine. The comparison indicates that the SERS/FRACTAL/MDR process can produce an increase of 107 times more signal than the bulk Raman signal from Glycine. In the extension of the Glycine results, we studied the use of SERS related to S. enterica, where we have shown that the aromatic amino acid contribution from Phenylalanine, Tyrosine, and Tryptophan produces a SERS response that can be used to identify the associated SERS vibrational modes of a S. enterica one or two antibody complexes. The "fingerprint" associated with the spectral signature in conjunction with an enhanced Raman signal allows conclusions to be made: (1) about the orientation of the secondary structure on the metal; (2) whether bound/unbound antibody can be neglected; (3) whether we can lower the detection limit. We have lowered the detection limit of S. enterica to 106 bacteria/ml. We also show a profound difference between S. enterica and E. coli SERS spectra even when there exists non-specific binding on E. coli indicating a protein conformation change induced by the addition of the antigen S. enterica. We confirm TEM imagery data, indicating that the source of the aromatic amino acid SERS response is originating from

  7. First 50 pps Thomson scattering diagnostics in a tokamak

    International Nuclear Information System (INIS)

    Electron temperature and density measurements by Thomson scattering were performed for the first time for the whole duration of a tokamak discharge. A 50 pps Nd:YAG laser at 1.06 μm was used in ASDEX in combination with Si avalanche photodiode detectors. Density calibration was done by rotational anti-Stokes Raman scattering from hydrogen. The system is used for measurements at electron densities of as low as 2 x 1012 cm-3. (orig.)

  8. Observation and analysis of Fano-like lineshapes in the Raman spectra of molecules adsorbed at metal interfaces

    OpenAIRE

    Dey, S; Banik, M; Hulkko, E.; Rodriguez, K.; Apkarian, V. A.; Galperin, M.; Nitzan, A.

    2015-01-01

    Surface enhanced Raman spectra from molecules (bipyridyl ethylene) adsorbed on gold dumbells are observed to become increasingly asymmetric (Fano-like) at higher incident light intensity. The electronic temperature (inferred from the anti-Stokes (AS) electronic Raman signal increases at the same time while no vibrational AS scattering is seen. These observations are analyzed by assuming that the molecule-metal coupling contains an intensity dependent contribution (resulting from light-induced...

  9. Additional Raman Scattering Mechanism due to Transverse Polar Modes

    Institute of Scientific and Technical Information of China (English)

    CHENG Ze

    2001-01-01

    Longitudinal polar modes generate a macroscopic electric field in piezoelectric crystals and cause an additional mechanism of Raman scattering. The classical theory holds that transverse polar modes cannot produce such an additional mechanism. Our quantum theory shows that there is an additional Raman scattering mechanism arising from the electro-optic effect of transverse polar modes.``

  10. Stimulated Raman scattering instability in partially ionized laser-plasma

    Institute of Scientific and Technical Information of China (English)

    张家泰

    2005-01-01

    In a partially ionized plasma the presence of bound electrons can significantly alter the laser plasma parametric instabilities. In this paper the nonlinear dispersion relation in intense laser partially ionized plasma is analysed. The growth rate of the forward stimulated Raman scattering is significantly enhanced by the presence of bound electrons;on the other hand the backward stimulated Raman scattering is unaffected.

  11. Enhanced noise and Raman scattering in plasma

    International Nuclear Information System (INIS)

    Observations of Raman scattering from laser-produced plasma have shown a number of puzzling features. These can be explained by assuming the presence of a bump-on-tail electron distribution created by pulses of fast electrons arising from instabilities at the critical (n/sub c/) or the quarter-critical (n/sub c//4) surface. Experiments using thin foils, in which the target density drops below n/sub c/ and even n/sub c//4 early in the laser pulse, have continued to show the same agreement as is seen for thick targets between the observed Raman spectrum and the predictions of this theory. This raises the issue of the time scale on which such directed pulses of fast electrons can continue to exist in the plasma after their source at n/sub c/ or n/sub c//4 disappears. We show that the classical degradation process is quite slow (of the order of 100 ps or more). Collective processes would appear to broaden and flatten the beam on a faster time scale. However, inclusion of finite spatial size strongly reduces the effect. Furthermore, we will show that broadening of the beam has little effect on the predicted spectrum

  12. New imaging-based biomarkers for melanoma diagnosis using coherent Raman Scattering microscopy (Conference Presentation)

    Science.gov (United States)

    Wang, Hequn; Osseiran, Sam; Roider, Elisabeth; Fisher, David E.; Evans, Conor L.

    2016-02-01

    Recently, pheomelanin has been found to play a critical role in melanoma progression given its pro-oxidant chemical properties as well as its marked presence in pre-cancerous and malignant melanoma lesions, even in the absence of ultraviolet radiation. In addition, epidemiological evidence indicates a strong correlation between melanoma incidence and skin type, with the highest incidence occurring in individuals of the red-haired/fair-skinned phenotype. Interestingly, nevus count correlates well with melanoma incidence and skin type, except in the population most prone to developing melanoma, where nevus count strikingly drops. As such, a current hypothesis proposes that fair-skinned red-haired individuals, who are unable to stimulate production of eumelanin due to a mutation in MC1R in melanocytes, may actually harbor numerous "invisible", pheomelanin-rich nevi that evade clinical detection, supporting the high incidence of melanoma in that population. Here, we show for the very first time that melanocytes extracted from genetically modified MC1R-mutant, red-haired mice displayed bright perinuclear distributions of signal within the cells under coherent anti-Stokes Raman scattering (CARS) microscopy. Changes in pheomelanin production in siRNA knockdowns of cultured human melanoma cells were also sensed. We then successfully imaged pheomelanin distributions in both ex vivo and in vivo mouse ear skin. Finally, melanosomes within amelanotic melanoma patient tissue sections were found to show bright pheomelanin signals. This is the first time, to our knowledge, that pheomelanin has been found spatially localized in a human amelanotic melanoma sample. These pheomelanotic CARS features may be used as potential biomarkers for melanoma detection, especially for amelanotic melanomas.

  13. Raman scattering in a two-layer antiferromagnet

    OpenAIRE

    Morr, Dirk K.; Chubukov, Andrey V.; Kampf, Arno P.; Blumberg, G.

    1995-01-01

    Two--magnon Raman scattering is a useful tool to verify recent suggestions concerning the value of the interplanar exchange constant in antiferromagnetic two--layer systems, such as $YBa_2Cu_3O_{6+x}$. We present a theory for Raman scattering in a two--layer antiferromagnet. We study the spectra for the electronic and magnetic excitations across the charge transfer gap within the one--band Hubbard model and derive the matrix elements for the Raman scattering cross section in a diagrammatic fo...

  14. Picosecond anti-Stokes generation in a photonic-crystal fiber for interferometric CARS microscopy

    DEFF Research Database (Denmark)

    Andresen, Esben Ravn

    2006-01-01

    We generate tunable picosecond anti-Stokes pulses by four-wave mixing of two picosecond pump and Stokes pulse trains in a photonic-crystal fiber. The visible, spectrally narrow anti-Stokes pulses with shifts over 150 nm are generated without generating other spectral features. As a demonstration,...

  15. Nanopillars array for surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    S.P. Chang, A; Bora, M; Nguyen, H T; Behymer, E M; Larson, C C; Britten, J A; Carter, J C; Bond, T C

    2011-04-14

    The authors present a new class of surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. Two types of nanopillars within this class are discussed: vertical pillars and tapered pillars. For the vertical pillars, the gap between each pair of nanopillars is small enough (< 50 nm) such that highly confined plasmonic cavity resonances are supported between the pillars when light is incident upon them, and the anti-nodes of these resonances act as three-dimensional hotspots for SERS. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of 1,2 bis-(4-pyridyl)-ethylene (BPE), benzenethiol (BT) monolayer and toluene vapor. The results show that SERS enhancement factor of over 0.5 x 10{sup 9} can be achieved, and BPE can be detected down to femto-molar concentration level. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors such as volatile organic compounds.

  16. Effect of nonstoichiometry on Raman scattering of VO2 films

    Institute of Scientific and Technical Information of China (English)

    Yuan Hong-Tao; Feng Ke-Cheng; Wang Xue-Jin; Li Chao; He Chen-Juan; Nie Yu-Xin

    2004-01-01

    @@ We report on Raman scattering of VO2 films prepared by radio frequency magnetron sputtering under different conditions. Our investigations revealed that the dominated Raman peaks shift towards high frequency for both V-rich and O-rich VO2 films, compared with the stoichiometry VO2 films. The experimental evidence is presented and the cause for nonstoichiometry dependence of Raman spectra of VO2 films is discussed.

  17. Raman scattering investigation of large positive magnetoresistance material WTe$_2$

    OpenAIRE

    Kong, W. -D.; Wu, S. -F.; Richard, P.; Lian, C. -S.; Wang, J. -T.; Yang, C. -L.; Shi, Y. -G.; H. Ding

    2015-01-01

    We have performed polarized Raman scattering measurements on WTe$_2$, for which an extremely large positive magnetoresistance has been reported recently. We observe 5 A$_1$ phonon modes and 2 A$_2$ phonon modes out of 33 Raman active modes, with frequencies in good accordance with first-principles calculations. The angular dependence of the intensity of the peaks observed is consistent with the Raman tensors of the $C_{2v}$ point group symmetry attributed to WTe$_2$. Although the phonon spect...

  18. Revisiting the Young's double slit experiment for background-free nonlinear Raman spectroscopy and microscopy.

    Science.gov (United States)

    Gachet, David; Brustlein, Sophie; Rigneault, Hervé

    2010-05-28

    In the Young's double slit experiment, the spatial shift of the interference pattern projected onto a screen is directly related to the phase difference between the fields diffracted by the two slits. We apply this property to fields emitted by nonlinear processes and thus demonstrate background-free coherent anti-Stokes Raman scattering microscopy near an axial interface between a resonant and a nonresonant medium. This method is relevant to remove the nonresonant background in other coherent resonant processes.

  19. Raman Scattering of Azafullerene C48N12

    Energy Technology Data Exchange (ETDEWEB)

    Manaa, M R

    2004-09-22

    Raman scattering activities and Raman-active frequencies are reported for the minimum energy structure of azafullerene C{sub 48}N{sub 12} at the B3LYP/6-31G* level of theory. Analysis of the vibrational spectrum shows that the most intense IR and Raman bands are those associated with C-C vibrations, and that strong IR and Raman C-N vibrations occur below 1400 cm{sup -1}. Together with the recently reported infrared, optical absorption and x-ray spectroscopies, a complete identification of this cluster should now be feasible.

  20. Raman and surface-enhanced Raman scattering (SERS) studies of the thrombin-binding aptamer.

    Science.gov (United States)

    Wu, Tsai-Chin; Vasudev, Milana; Dutta, Mitra; Stroscio, Michael A

    2013-06-01

    Surface-enhanced Raman scattering is used to study the Raman spectra and peak shifts the thrombin-binding aptamer (TBA) on substrates having two different geometries; one with a single stranded sequence and one with double stranded sequence. The Raman signals of the deoxyribonucleic acids on both substrates are enhanced and specific peaks of bases are identified. These results are highly reproducible and have promising applications in low cost nucleic acid detection.

  1. On surface Raman scattering and luminescence radiation in boron carbide.

    Science.gov (United States)

    Werheit, H; Filipov, V; Schwarz, U; Armbrüster, M; Leithe-Jasper, A; Tanaka, T; Shalamberidze, S O

    2010-02-01

    The discrepancy between Raman spectra of boron carbide obtained by Fourier transform Raman and conventional Raman spectrometry is systematically investigated. While at photon energies below the exciton energy (1.560 eV), Raman scattering of bulk phonons of boron carbide occurs, photon energies exceeding the fundamental absorption edge (2.09 eV) evoke additional patterns, which may essentially be attributed to luminescence or to the excitation of Raman-active processes in the surface region. The reason for this is the very high fundamental absorption in boron carbide inducing a very small penetration depth of the exciting laser radiation. Raman excitations essentially restricted to the boron carbide surface region yield spectra which considerably differ from bulk phonon ones, thus indicating structural modifications.

  2. Raman Scattering of Water and Photoluminescence of Pollutants Arising from Solid-Water Interaction

    CERN Document Server

    Vallée, P; Ghomi, M; Jouanne, M; Vall\\'{e}e, Philippe; Lafait, Jacques; Ghomi, Mahmoud; Jouanne, Michel

    2003-01-01

    Systematic Raman experiments performed on water and water-ethanol samples, stored in different containers (fused silica, polypropylene, soda-lime glass type III) for several hours, have shown that the luminescence contribution to the Raman signal fluctuations is directly related to the container composition. Intensity fluctuations as large as 98%, have been observed in the spectral regions corresponding to the both water intramolecular and intermolecular vibrations, despite the fact that the wavenumbers of the modes remained unchanged. We undoubtedly attribute these fluctuations to a luminescence phenomenon on the basis of : i) the absence of such effect in the anti-Stokes domain, ii) its dependence on the excitation laser wavelength, iii) other relevant photoluminescence experiments. This luminescence is attributed to pollutants at ultra-low concentration coming from the different containers.

  3. Raman scattering in a two-layer antiferromagnet

    Science.gov (United States)

    Morr, Dirk K.; Chubukov, Andrey V.; Kampf, Arno P.; Blumberg, G.

    1996-08-01

    Two-magnon Raman scattering is a useful tool to verify recent suggestions concerning the value of the interplanar exchange constant in antiferromagnetic two-layer systems, such as YBa2Cu3O6+x. We present a theory for Raman scattering in a two-layer antiferromagnet. We study the spectra for the electronic and magnetic excitations across the charge transfer gap within the one-band Hubbard model and derive the matrix elements for the Raman scattering cross section in a diagrammatic formalism. We analyze the effect of the interlayer exchange coupling J2 for the Raman spectra in A1g and B1g scattering geometries both in the nonresonant regime (when the Loudon-Fleury model is valid) and at resonance. We show that within the Loudon-Fleury approximation, a nonzero J2 gives rise to a finite signal in A1g scattering geometry. Both in this approximation and at resonance the intensity in the A1g channel has a peak at small transferred frequency equal to twice the gap in the spin-wave spectrum. We compare our results with experiments in YBa2Cu3O6.1 and Sr2CuO2Cl2 compounds and argue that the large value of J2 suggested in a number of recent studies is incompatible with Raman experiments in A1g geometry.

  4. Time—dependent Theory of Raman Scattering with Pulses—Application to Continuum Raman Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Soo-Y.Lee

    1995-01-01

    A theory of real-time dependence of Raman scattering for a pulse-mode laser is developed within second-order perturbation theory and using the wavepacket terminology.We apply the theory to continuum Raman scattering for short and long pulses and varying pulse carrier frequency,For an initial ground virational state,it is shown that the rate of Raman emission as a funcition of time and pulse carrier frequency is structureless for all pulses,and for pulses that are longer than the dissociation time the rate also decays with the pulses.This is contrary to recently reported resonance fluorescence type structures at long times (M.Shapiro,J.Chem.Phys.99,2453(1993),We explain why such structures are unphysical for continuum Raman scattering.

  5. Raman Scattering at Plasmonic Junctions Shorted by Conductive Molecular Bridges

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, Patrick Z.; Hu, Dehong; Apkarian, V. Ara; Hess, Wayne P.

    2013-04-10

    Intensity spikes in Raman scattering, accompanied by switching between line spectra and band spectra, can be assigned to shorting the junction plasmon through molecular conductive bridges. This is demonstrated through Raman trajectories recorded at a plasmonic junction formed by a gold AFM tip in contact with a silver surface coated either with biphenyl-4,4’-dithiol or biphenyl-4-thiol. The fluctuations are absent in the monothiol. In effect, the making and breaking of chemical bonds is tracked.

  6. Coherent Raman Scattering Microscopy in Biology and Medicine

    OpenAIRE

    Zhang, Chi; Zhang, Delong; Cheng, Ji-Xin

    2015-01-01

    Advancements in coherent Raman scattering (CRS) microscopy have enabled label-free visualization and analysis of functional, endogenous biomolecules in living systems. When compared with spontaneous Raman microscopy, a key advantage of CRS microscopy is the dramatic improvement in imaging speed, which gives rise to real-time vibrational imaging of live biological samples. Using molecular vibrational signatures, recently developed hyperspectral CRS microscopy has improved the readout of chemic...

  7. Integrated Raman and angular scattering of single biological cells

    Science.gov (United States)

    Smith, Zachary J.

    2009-12-01

    Raman, or inelastic, scattering and angle-resolved elastic scattering are two optical processes that have found wide use in the study of biological systems. Raman scattering quantitatively reports on the chemical composition of a sample by probing molecular vibrations, while elastic scattering reports on the morphology of a sample by detecting structure-induced coherent interference between incident and scattered light. We present the construction of a multimodal microscope platform capable of gathering both elastically and inelastically scattered light from a 38 mum2 region in both epi- and trans-illumination geometries. Simultaneous monitoring of elastic and inelastic scattering from a microscopic region allows noninvasive characterization of a living sample without the need for exogenous dyes or labels. A sample is illuminated either from above or below with a focused 785 nm TEM00 mode laser beam, with elastic and inelastic scattering collected by two separate measurement arms. The measurements may be made either simultaneously, if identical illumination geometries are used, or sequentially, if the two modalities utilize opposing illumination paths. In the inelastic arm, Stokes-shifted light is dispersed by a spectrograph onto a CCD array. In the elastic scattering collection arm, a relay system images the microscope's back aperture onto a CCD detector array to yield an angle-resolved elastic scattering pattern. Post-processing of the inelastic scattering to remove fluorescence signals yields high quality Raman spectra that report on the sample's chemical makeup. Comparison of the elastically scattered pupil images to generalized Lorenz-Mie theory yields estimated size distributions of scatterers within the sample. In this thesis we will present validations of the IRAM instrument through measurements performed on single beads of a few microns in size, as well as on ensembles of sub-micron particles of known size distributions. The benefits and drawbacks of the

  8. Simulations of Stimulated Raman Scattering in Low-Density Plasmas

    Institute of Scientific and Technical Information of China (English)

    CAO Lihua; CHANG Tieqiang; LIU Zhanjun; ZHENG Chunyang

    2007-01-01

    Stimulated Raman scattering(SRS)in a low-density plasma slab is investigated by particle-in-cell(PIC)simulations.The backward stimulated Raman scattering(B-SRS)dominates initially and erodes the head of the pump wave,while the forward stimulated Raman scattering (F-SRS)subsequently develops and is located at the rear part of the slab.Two-stage electron acceleration may be more efficient due to the coexistence of these two instabilities.The B-SRS plasma wave with low phase velocities can accelerate the background electrons which may be further boosted to higher energies by the F-SRS plasma wave with high phase velocities.The simulations show that the peaks of the main components in both the frequency and wave number spectra occur at the positions estimated from the phase-matching conditions.

  9. Surface-Enhanced Raman Scattering Physics and Applications

    CERN Document Server

    Kneipp, Katrin; Kneipp, Harald

    2006-01-01

    Almost 30 years after the first reports on surface-enhanced Raman signals, the phenomenon of surface-enhanced Raman scattering (SERS) is now well established. Yet, explaining the enhancement of a spectroscopic signal by fouteen orders of magnitude continues to attract the attention of physicists and chemists alike. And, at the same time and rapidly growing, SERS is becoming a very useful spectroscopic tool with exciting applications in many fields. SERS gained particular interest after single-molecule Raman spectroscopy had been demonstrated. This bookl summarizes and discusses present theoretical approaches that explain the phenomenon of SERS and reports on new and exciting experiments and applications of the fascinating spectroscopic effect.

  10. Raman Cooling of Solids through Photonic Density of States Engineering

    CERN Document Server

    Chen, Yin-Chung

    2015-01-01

    The laser cooling of vibrational states of solids has been achieved through photoluminescence in rare-earth elements, optical forces in optomechanics, and the Brillouin scattering light-sound interaction. The net cooling of solids through spontaneous Raman scattering, and laser refrigeration of indirect band gap semiconductors, both remain unsolved challenges. Here, we analytically show that photonic density of states (DoS) engineering can address the two fundamental requirements for achieving spontaneous Raman cooling: suppressing the dominance of Stokes (heating) transitions, and the enhancement of anti-Stokes (cooling) efficiency beyond the natural optical absorption of the material. We develop a general model for the DoS modification to spontaneous Raman scattering probabilities, and elucidate the necessary and minimum condition required for achieving net Raman cooling. With a suitably engineered DoS, we establish the enticing possibility of refrigeration of intrinsic silicon by annihilating phonons from ...

  11. Resonance electronic Raman scattering in rare earth crystals

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.M.

    1988-11-10

    The intensities of Raman scattering transitions between electronic energy levels of trivalent rare earth ions doped into transparent crystals were measured and compared to theory. A particle emphasis was placed on the examination of the effect of intermediate state resonances on the Raman scattering intensities. Two specific systems were studied: Ce/sup 3 +/(4f/sup 1/) in single crystals of LuPO/sub 4/ and Er/sup 3 +/(4f/sup 11/) in single crystals of ErPO/sub 4/. 134 refs., 92 figs., 33 tabs.

  12. Resonant Raman Scattering from Silicon Nanoparticles Enhanced by Magnetic Response

    CERN Document Server

    Dmitriev, Pavel A; Milichko, Valentin A; Makarov, Sergey V; Mukhin, Ivan S; Samusev, Anton K; Krasnok, Alexander E; Belov, Pavel A; Kivshar, Yuri S

    2016-01-01

    Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions.

  13. Resonance electronic Raman scattering in rare earth crystals

    International Nuclear Information System (INIS)

    The intensities of Raman scattering transitions between electronic energy levels of trivalent rare earth ions doped into transparent crystals were measured and compared to theory. A particle emphasis was placed on the examination of the effect of intermediate state resonances on the Raman scattering intensities. Two specific systems were studied: Ce3+(4f1) in single crystals of LuPO4 and Er3+(4f11) in single crystals of ErPO4. 134 refs., 92 figs., 33 tabs

  14. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response.

    Science.gov (United States)

    Dmitriev, Pavel A; Baranov, Denis G; Milichko, Valentin A; Makarov, Sergey V; Mukhin, Ivan S; Samusev, Anton K; Krasnok, Alexander E; Belov, Pavel A; Kivshar, Yuri S

    2016-05-01

    Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions. PMID:27113352

  15. Raman scattering and in-water ocean optical properties

    Science.gov (United States)

    Marshall, Bruce R.; Smith, Raymond C.

    1990-01-01

    Inelastic (transpectral) scattering may contribute significantly to the in-water light field. Major mechanisms for inelastic scattering include Raman scattering, which is important in clear ocean waters, and fluorescence from a variety of sources, which may be important in more turbid waters. The Raman cross section for liquid water is found to be 8.2 x 10 to the -30th sq cm/sr molecule, which is in agreement with the lower range of published values. Inelastic scattering has important ramifications for several aspects of marine biooptics, including the determination of in-water spectral absorption, the estimation of clear-water ocean optical properties, and possibly various aspects of algal photobiology.

  16. Fiber sensors for molecular detection using Raman and surface enhanced Raman scattering

    OpenAIRE

    Yang, Xuan

    2013-01-01

    In this dissertation, highly sensitive optical fiber sensors based on Raman spectroscopy (RS) and surface-enhanced Raman scattering (SERS) are studied with focus on applications in various chemical and biological detections. In particular, two main categories of optical fibers have been used as the sensing platforms: one is the conventional multimode optical fiber and the other is the hollow core photonic crystal fiber (HCPCF). For the conventional multimode optical fiber, we've developed two...

  17. Using Raman scattering for water areas monitoring

    Science.gov (United States)

    Timchenko, E. V.; Timchenko, P. E.; Platonov, I. A.; Tregub, N. V.; Asadova, A. A.; Mukhanova, I. M.

    2016-04-01

    The results of studies on the effects of heavy metals on aquatic plants using the method of Raman spectroscopy (RS). Introduced optical coefficient, reflecting changes in chlorophyll and carotinoids in relation to the hemicellulose under the influence of heavy metals, defined as the ratio of the intensities of the RS on the wavenumbers 1547 cm-1, 1522 cm-1 to the intensity of the line 1734 cm-1. Was monitored waters of the Samara region on the basis of this coefficient.

  18. Temperature dependence of surface enhanced Raman scattering on C70

    Institute of Scientific and Technical Information of China (English)

    GAO Ying; Zhang Zhenlong; DU Yinxiao; DONG Hua; MO Yujun

    2005-01-01

    The temperature dependence of surface enhanced Raman scattering of the C70 molecule is reported.The Raman scattering of C70 molecules adsorbed on the surface of a silver mirror was measured at different temperatures. The experimental results indicate that the relative intensities of the Raman features vary with the temperature of the sample. When the temperature decreases from room temperature to 0℃, the relative intensities of certain Raman bands decrease abruptly. If we take the strongest band 1565cm-1 as a standard value 100, the greatest decrease approaches to 43%. However, with the further decrease in the temperature these relative intensities increase and resume the value at room temperature. And such a temperature dependence is reversible. Our results show that the adsorption state of the C70 molecules on the silver surface around 0℃changes greatly with the temperature, resulting in a decrease in relative intensities for some main Raman features of C70molecule. When the temperature is lower than 0℃, the adsorption state changes continually and more slowly. Synchronously, eight new Raman featu res, which have not ever been reported in literature, are observed in our experiment and this enriches the basic information of the vibrational modes for C70 molecule.

  19. Generation of a VUV-to-visible Raman frequency comb in hydrogen-filled kagom\\'e photonic crystal fiber

    CERN Document Server

    Mridha, M K; Bauerschmidt, S T; Abdolvand, A; Russell, P St J

    2016-01-01

    We report the generation of a purely vibrational Raman comb, extending from the vacuum ultraviolet (184 nm) to the visible (478 nm), in hydrogen-filled kagom\\'e-style photonic crystal fiber pumped at 266 nm. Stimulated Raman scattering and molecular modulation processes are enhanced by higher Raman gain in the ultraviolet. Owing to the pressure-tunable normal dispersion landscape of the fiber-gas system in the ultraviolet, higher-order anti-Stokes bands are generated preferentially in higher-order fiber modes. The results pave the way towards tunable fiber-based sources of deep- and vacuum ultraviolet light for applications in, e.g., spectroscopy and biomedicine.

  20. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan

    2015-11-03

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  1. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  2. Standoff ultraviolet raman scattering detection of trace levels of explosives.

    Energy Technology Data Exchange (ETDEWEB)

    Kulp, Thomas J.; Bisson, Scott E.; Reichardt, Thomas A.

    2011-10-01

    Ultraviolet (UV) Raman scattering with a 244-nm laser is evaluated for standoff detection of explosive compounds. The measured Raman scattering albedo is incorporated into a performance model that focused on standoff detection of trace levels of explosives. This model shows that detection at {approx}100 m would likely require tens of seconds, discouraging application at such ranges, and prohibiting search-mode detection, while leaving open the possibility of short-range point-and-stare detection. UV Raman spectra are also acquired for a number of anticipated background surfaces: tile, concrete, aluminum, cloth, and two different car paints (black and silver). While these spectra contained features in the same spectral range as those for TNT, we do not observe any spectra similar to that of TNT.

  3. The Discovery of Raman Scattering in HII Regions

    CERN Document Server

    Dopita, Michael A; Sutherland, Ralph S; Kewley, Lisa J; Groves, Brent A

    2016-01-01

    We report here on the discovery of faint extended wings of H\\alpha\\ observed out to an apparent velocity of ~ 7600 km/s in the Orion Nebula (M42) and in five HII regions in the Large and the Small Magellanic Clouds. We show that, these wings are caused by Raman scattering of both the O I and Si II resonance lines and stellar continuum UV photons with H I followed by radiative decay to the H I n=2 level. The broad wings also seen in H\\beta\\ and in H\\gamma\\ result from Raman scattering of the UV continuum in the H I n=4 and n=5 levels respectively.The Raman scattering fluorescence is correlated with the intensity of the narrow permitted lines of O I and Si II. In the case of Si II, this is explained by radiative pumping of the same 1023.7\\AA\\ resonance line involved in the Raman scattering by the Ly\\beta\\ radiation field. The subsequent radiative cascade produces enhanced Si II 5978.9, 6347.1$ and 6371.4\\AA\\ permitted transitions. Finally we show that in O I, radiative pumping of the 1025.76\\AA\\ resonance line ...

  4. RADIATION-DAMAGE IN NACL .4. RAMAN-SCATTERING

    NARCIS (Netherlands)

    GROOTE, JC; WEERKAMP, JRW; SEINEN, J; DENHARTOG, HW

    1994-01-01

    Raman-scattering experiments on heavily irradiated pure and doped NaCl crystals are described. The experiments have been performed at room temperature and at approximately 25 K. The crystals had been irradiated up to a maximum dose of 95 Grad by means of electrons from a Van de Graaff accelerator. T

  5. Stimulated Raman-Brillouin scattering processes in magnetoactive semiconductor plasma

    International Nuclear Information System (INIS)

    A simple analytical treatment based on hydrodynamic model of plasma is developed to study both steady-state and transient stimulated Raman and Brillouin scattering processes (SRS and SBS) in centrosymmetric or weakly non centrosymmetric semiconductors. Gain constants, threshold-pump intensities, and optimum-pulse durations for the onset of Raman and Brillouin instabilities are estimated. Authors have also addressed themselves to the question of behaviour of the transient gain factors (Raman and Brillouin) as function of different physical parameters such as external magnetic field, pump pulse durations etc. The quantitative behaviour of transient gain factors is found to be in agreement with the experimental and other theoretical observations. The analysis explain satisfactorily the competition between stimulated Raman and Brillouin processes in the short and long pulse duration regimes. The highlight of present theory is that both SRS and SBS (steady-state as well as transient) can be studied in centrosymmetric or weakly non centrosymmetric dielectrics using simple classical treatment. (author)

  6. Cutaneous porphyrins exhibit anti-stokes fluorescence that is detectable in sebum (Conference Presentation)

    Science.gov (United States)

    Tian, Giselle; Zeng, Haishan; Zhao, Jianhua; Wu, Zhenguo; Al Jasser, Mohammed; Lui, Harvey; Mclean, David I.

    2016-02-01

    Porphyrins produced by Propionibacterium acnes represent the principal fluorophore associated with acne, and appear as orange-red luminescence under the Wood's lamp. Assessment of acne based on Wood's lamp (UV) or visible light illumination is limited by photon penetration depth and has limited sensitivity for earlier stage lesions. Inducing fluorescence with near infrared (NIR) excitation may provide an alternative way to assess porphyrin-related skin disorders. We discovered that under 785 nm CW laser excitation PpIX powder exhibits fluorescence emission in the shorter wavelength range of 600-715 nm with an intensity that is linearly dependent on the excitation power. We attribute this shorter wavelength emission to anti-Stokes fluorescence. Similar anti-Stokes fluorescence was also detected focally in all skin-derived samples containing porphyrins. Regular (Stokes) fluorescence was present under UV and visible light excitation on ex vivo nasal skin and sebum from uninflamed acne, but not on nose surface smears or sebum from inflamed acne. Co-registered CW laser-excited anti-Stokes fluorescence and fs laser-excited multi-photon fluorescence images of PpIX powder showed similar features. In the skin samples because of the anti-Stokes effect, the NIR-induced fluorescence was presumably specific for porphyrins since there appeared to be no anti-Stokes emission signals from other typical skin fluorophores such as lipids, keratins and collagen. Anti-Stokes fluorescence under NIR CW excitation is more sensitive and specific for porphyrin detection than UV- or visible light-excited regular fluorescence and fs laser-excited multi-photon fluorescence. This approach also has higher image contrast compared to NIR fs laser-based multi-photon fluorescence imaging. The anti-Stokes fluorescence of porphyrins within sebum could potentially be applied to detecting and targeting acne lesions for treatment via fluorescence image guidance.

  7. Raman crystal lasers in the visible and near-infrared

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Raman lasers based on potassium gadolinium tungstate and lead tungstate crystals pumped by a≈120 ps Nd: YAG laser at 1.064 μm were developed. High reflection mirrors for the Stokes wavelength have been used to generate near-infrared and eye safe spectral region of 1.15-1.32 μm. Second harmonic generation of the generated Raman lasers was observed. Eifficient multiple Stokes and anti-Stokes picosecond generation in 64 crystals have been shown to exhibit stimulated Raman scattering on about 700 lines covering the whole visible and near-infrared spectrum. All stimulated Raman scattering (SRS) wavelengths in the visible and near-infrared spectrum are identified and attributed to the SRS-active vibration modes of these crystals.

  8. Raman crystal lasers in the visible and near-infrared

    Institute of Scientific and Technical Information of China (English)

    EICHLERH.J.; GADG.M.A.; KAMINSKIIA.A.; RHEEH.

    2003-01-01

    Raman lasers based on potassium gadolinium tungstate and lead tungstate crystals pumped by a≈120 ps Nd: YAG laser at 1.064/μm were developed. High reflection mirrors for the Stokes wavelength have been used to generate near-infrared and eye safe spectral region of 1.15 - 1.32/μm. Second harmonic generation of the generated Raman lasers was observed. Eifficient multiple Stokes and anti-Stokes picosecond generation in 64 crystals have been shown to exhibit stimulated Raman scattering on about 700 lines covering the whole visible and near-infrared spectrum. All stimulated Raman scattering (SRS) wavelengths in the visible and near-infrared spectrum are identified and attributed to the SRS-active vibration modes of these crystals.

  9. Surface enhanced Raman scattering spectroscopic waveguide

    Science.gov (United States)

    Lascola, Robert J; McWhorter, Christopher S; Murph, Simona H

    2015-04-14

    A waveguide for use with surface-enhanced Raman spectroscopy is provided that includes a base structure with an inner surface that defines a cavity and that has an axis. Multiple molecules of an analyte are capable of being located within the cavity at the same time. A base layer is located on the inner surface of the base structure. The base layer extends in an axial direction along an axial length of an excitation section. Nanoparticles are carried by the base layer and may be uniformly distributed along the entire axial length of the excitation section. A flow cell for introducing analyte and excitation light into the waveguide and a method of applying nanoparticles may also be provided.

  10. Graphene-Enhanced Raman Scattering from the Adenine Molecules

    Science.gov (United States)

    Dolgov, Leonid; Pidhirnyi, Denys; Dovbeshko, Galyna; Lebedieva, Tetiana; Kiisk, Valter; Heinsalu, Siim; Lange, Sven; Jaaniso, Raivo; Sildos, Ilmo

    2016-04-01

    An enhanced Raman scattering from a thin layer of adenine molecules deposited on graphene substrate was detected. The value of enhancement depends on the photon energy of the exciting light. The benzene ring in the structure of adenine molecule suggests π-stacking of adenine molecule on top of graphene. So, it is proposed that the enhancement in the adenine Raman signal is explained by the resonance electron transfer from the Fermi level of graphene to the lowest unoccupied molecular orbital (LUMO) level of adenine.

  11. Graphene-Enhanced Raman Scattering from the Adenine Molecules.

    Science.gov (United States)

    Dolgov, Leonid; Pidhirnyi, Denys; Dovbeshko, Galyna; Lebedieva, Tetiana; Kiisk, Valter; Heinsalu, Siim; Lange, Sven; Jaaniso, Raivo; Sildos, Ilmo

    2016-12-01

    An enhanced Raman scattering from a thin layer of adenine molecules deposited on graphene substrate was detected. The value of enhancement depends on the photon energy of the exciting light. The benzene ring in the structure of adenine molecule suggests π-stacking of adenine molecule on top of graphene. So, it is proposed that the enhancement in the adenine Raman signal is explained by the resonance electron transfer from the Fermi level of graphene to the lowest unoccupied molecular orbital (LUMO) level of adenine. PMID:27075339

  12. Quantum interference in the Raman scattering from the silicon nanostructures

    International Nuclear Information System (INIS)

    We report here microscopic process involved in the photo-excited Fano interaction due to nonlinear process in the silicon nanostructures. Photo-excited Raman line-shapes are investigated to reveal the presence of nonlinear Fano interaction in the silicon nanostructures for three different sizes. The Fano interaction is found to be more prominent due to the phase matching between electronic and phonon Raman scatterings for smaller sized nanostructures. Phase matching is achieved by nonlinear process of two-wave mixing in the silicon nanostructures followed by the formation of electron-phonon bound state.

  13. Fast Hyperspectral Imaging with Stimulated Raman Scattering by Chirped Femtosecond Lasers

    OpenAIRE

    Fu, Dan; Holtom, Gary; Freudiger, Christian; Zhang, Xu; Xie, Xiaoliang Sunney

    2013-01-01

    Raman microscopy is a quantitative, label-free and noninvasive optical imaging technique for studying inhomogeneous systems. However, the feebleness of Raman scattering significantly limits the use of Raman microscopy to low time resolutions and primarily static samples. Recent developments in narrowband stimulated Raman Scattering (SRS) microscopy have significantly increased the sensitivity of Raman based label-free chemical imaging by a few orders of magnitude, at the expense of reduced sp...

  14. Direct observation of the cyclic dimer in liquid acetic acid by probing the C=O vibration with ultrafast coherent Raman spectroscopy.

    Science.gov (United States)

    Lütgens, Matthias; Friedriszik, Frank; Lochbrunner, Stefan

    2014-09-01

    We present a comparison of spontaneous Raman and ultrafast coherent anti-Stokes Raman scattering (CARS) spectra of the C=O vibration of liquid acetic acid. The former technique cannot clearly reveal the number of contributions in the spectrum. However, the additional time and spectrally resolved CARS experiment supports strictly the existence of four modes, which proves the coexistence of more than one H-bonded configuration in liquid acetic acid. A comparably slowly dephasing mode which is obscured by a broad band in the linear Raman spectrum is assigned to the cyclic dimer and can be observed freed from all other contributions by ultrafast CARS.

  15. Low-frequency Raman scattering in alkali tellurite glasses

    Indian Academy of Sciences (India)

    Angelos G Kalampounias

    2008-10-01

    Raman scattering has been employed to study the alkali-cation size dependence and the polarization characteristics of the low-frequency modes for the glass-forming tellurite mixtures, 0.1M2O–0.9TeO2 (M = Na, K, Rb and Cs). The analysis has shown that the Raman coupling coefficient alters by varying the type of the alkali cation. The addition of alkali modifier in the tellurite network leads to the conversion of the TeO4 units to TeO3 units with a varying number of non-bridging oxygen atoms. Emphasis has also been given to the lowfrequency modes and particular points related to the low-frequency Raman phenomenology are discussed in view of the experimental findings.

  16. Raman scattering investigation of large positive magnetoresistance material WTe2

    Science.gov (United States)

    Kong, W.-D.; Wu, S.-F.; Richard, P.; Lian, C.-S.; Wang, J.-T.; Yang, C.-L.; Shi, Y.-G.; Ding, H.

    2015-02-01

    We have performed polarized Raman scattering measurements on WTe2, for which an extremely large positive magnetoresistance has been reported recently. We observe 5 A1 phonon modes and 2 A2 phonon modes out of 33 Raman active modes, with frequencies in good accordance with first-principles calculations. The angular dependence of the intensity of the peaks observed is consistent with the Raman tensors of the C2v point group symmetry attributed to WTe2. Although the phonon spectra suggest neither strong electron-phonon nor spin-phonon coupling, the intensity of the A1 phonon mode at 160.6 cm-1 shows an unconventional decrease with temperature decreasing, for which the origin remains unclear.

  17. Raman scattering investigation of large positive magnetoresistance material WTe2

    International Nuclear Information System (INIS)

    We have performed polarized Raman scattering measurements on WTe2, for which an extremely large positive magnetoresistance has been reported recently. We observe 5 A1 phonon modes and 2 A2 phonon modes out of 33 Raman active modes, with frequencies in good accordance with first-principles calculations. The angular dependence of the intensity of the peaks observed is consistent with the Raman tensors of the C2v point group symmetry attributed to WTe2. Although the phonon spectra suggest neither strong electron-phonon nor spin-phonon coupling, the intensity of the A1 phonon mode at 160.6 cm−1 shows an unconventional decrease with temperature decreasing, for which the origin remains unclear

  18. Measurement of Fuel Concentration Distribution in a Sooting Flame through Raman Scattering

    OpenAIRE

    HAYASHIDA, Kazuhiro; AMAGAI, Kenji; SATOH, Keiji; Arai, Masataka

    2006-01-01

    Spontaneous Raman spectroscopy with KrF excimer laser was applied to obtain a fuel concentration distribution in a sooting flame. In the case of sooting flame, fluorescence from polycyclic aromatic hydrocarbons (PAH) and laser-induced incandescence (LII) from soot particles appeared with Raman scattering. These background emissions overlapped on the Raman scattering. In order to separate the Raman scattering and the background emissions, polarization property of laser-induced emissions was ut...

  19. Pure electrical, highly-efficient and sidelobe free coherent Raman spectroscopy using acousto-optics tunable filter (AOTF)

    Science.gov (United States)

    Meng, Zhaokai; Petrov, Georgi I.; Yakovlev, Vladislav V.

    2016-02-01

    Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. Stimulated Raman spectroscopy offers a substantial improvement in the signal-to-noise ratio but is often limited to a discrete number of wavelengths. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, a novel approach to a broadband stimulated Raman spectroscopy is demonstrated. The corresponding Raman shift covers the spectral range from 600 cm-1 to 4500 cm-1, sufficient for probing most vibrational Raman transitions. We validated the use of the new instrumentation to both coherent anti-Stokes scattering (CARS) and stimulated Raman scattering (SRS) spectroscopies.

  20. Raman scattering with strongly coupled vibron-polaritons

    CERN Document Server

    Strashko, Artem

    2016-01-01

    Strong coupling between cavity photons and molecular vibrations can lead to the formation of vibron-polaritons. In a recent experiment with PVAc molecules in a metal-metal microcavity [A.Shalabney et al., Ang.Chem.Int.Ed. 54 7971 (2015)], such a coupling was observed to enhance the Raman scattering probability by several orders of magnitude. Inspired by this, we theoretically analyze the effect of strong photon-vibron coupling on the Raman scattering amplitude of organic molecules. This problem has recently been addressed in [J.del Pino, J.Feist and F.J.Garcia-Vidal; J.Phys.Chem.C 119 29132 (2015)] using exact numerics for a small number of molecules. In this paper we derive compact analytic results for any number of molecules, also including the ultra-strong coupling regime. Our calculations predict a division of the Raman signal into upper and lower polariton modes,with some enhancement to the lower polariton Raman amplitude due to the mode softening under strong coupling.

  1. Raman scattering with strongly coupled vibron-polaritons

    Science.gov (United States)

    Strashko, Artem; Keeling, Jonathan

    2016-08-01

    Strong coupling between cavity photons and molecular vibrations can lead to the formation of vibron-polaritons. In a recent experiment with PVAc molecules in a metal-metal microcavity [Shalabney et al., Angew. Chem., Int. Ed. 54, 7971 (2015), 10.1002/anie.201502979], such a coupling was observed to enhance the Raman scattering probability by several orders of magnitude. Inspired by this, we theoretically analyze the effect of strong photon-vibron coupling on the Raman scattering amplitude of organic molecules. This problem has recently been addressed by del Pino, Feist, and Garcia-Vidal [J. Phys. Chem. C 119, 29132 (2015), 10.1021/acs.jpcc.5b11654] using exact numerics for a small number of molecules. In this paper we derive compact analytic results for any number of molecules, also including the ultrastrong-coupling regime. Our calculations predict a division of the Raman signal into upper and lower polariton modes, with some enhancement to the lower polariton Raman amplitude due to the mode softening under strong coupling.

  2. Studying stimulated Raman scattering using relativistic Vlasov equation

    Directory of Open Access Journals (Sweden)

    M Sharifi

    2014-11-01

    Full Text Available Backward stimulated Raman scattering using one-dimensional relativistic Vlasov code is investigated. For conditions similar to those of Single-Hot-Spot experiments, the growth and saturation of SRS are studied. Analysis of electron distribution function, longitudinal electrostatic fields, transverse electromagnetic fields, and electron density shows that kinetic effects play an important role in the saturation of this instability. SRS amplifies the longitudinal field amplitude and could trap, accelerate, and preheat the electrons.

  3. Raman scattering of few-layers MoTe2

    Science.gov (United States)

    Grzeszczyk, M.; Gołasa, K.; Zinkiewicz, M.; Nogajewski, K.; Molas, M. R.; Potemski, M.; Wysmołek, A.; Babiński, A.

    2016-06-01

    We report on room-temperature Raman scattering measurements in few-layer crystals of exfoliated molybdenum ditelluride (MoTe2) performed with the use of 632.8 nm (1.96 eV) laser light excitation. In agreement with a recent study reported by Froehlicher et al (2015 Nano Lett. 15 6481) we observe a complex structure of the out-of-plane vibrational modes ({{{A}}}1{{g}}{/{{A}}}1\\prime ), which can be explained in terms of interlayer interactions between single atomic planes of MoTe2. In the case of low-energy shear and breathing modes of rigid interlayer vibrations, it is shown that their energy evolution with the number of layers can be well reproduced within a linear chain model with only the nearest neighbor interaction taken into account. Based on this model the corresponding in-plane and out-of-plane force constants are determined. We also show that the Raman scattering in MoTe2 measured using 514.5 nm (2.41 eV) laser light excitation results in much simpler spectra. We argue that the rich structure of the out-of-plane vibrational modes observed in Raman scattering spectra excited with the use of 632.8 nm laser light results from its resonance with the electronic transition at the M point of the MoTe2 first Brillouin zone.

  4. Unconventional physical mechanisms between stimulated Brillouin scattering and backward stimulated Raman scattering in liquid water

    International Nuclear Information System (INIS)

    In this paper, the stimulated Brillouin scattering (SBS) and the backward stimulated Raman scattering (BSRS) excited by a focused Gaussian laser in liquid water with different attenuation coefficients are investigated experimentally. Experimental results indicate that the relationships between SBS and BSRS are not merely competitive; the former has an obvious amplifying effect on the latter. Also, two different physical mechanisms were discussed in order to explain these phenomena

  5. Phonon-Assisted Anti-Stokes Lasing in ZnTe Nanoribbons.

    Science.gov (United States)

    Zhang, Qing; Liu, Xinfeng; Utama, M Iqbal Bakti; Xing, Guichuan; Sum, Tze Chien; Xiong, Qihua

    2016-01-13

    Phonon-assisted anti-Stokes emission and its stimulated emission in polar semiconductor ZnTe are demonstrated via the annihilation of phonons as a result of strong exciton-phonon coupling. The findings are not only important for developing high-power radiation-balanced lasers, but are also promising for manufacturing ultraefficient solid-state laser coolers. PMID:26573758

  6. Raman scattering or fluorescence emission? Raman spectroscopy study on lime-based building and conservation materials.

    Science.gov (United States)

    Kaszowska, Zofia; Malek, Kamilla; Staniszewska-Slezak, Emilia; Niedzielska, Karina

    2016-12-01

    This work presents an in-depth study on Raman spectra excited with 1064 and 532nm lasers of lime binders employed in the past as building materials and revealed today as valuable conservation materials. We focus our interest on the bands of strong intensity, which are present in the spectra of all binders acquired with laser excitation at 1064nm, but absent in the corresponding spectra acquired with laser excitation at 532nm. We suggest, that the first group of spectra represents fluorescence phenomena of unknown origin and the second true Raman scattering. In our studies, we also include two other phases of lime cycle, i.e. calcium carbonate (a few samples of calcite of various origins) and calcium oxide (quicklime) to assess how structural and chemical transformations of lime phases affect the NIR-Raman spectral profile. Furthermore, we analyse a set of carbonated limewashes and lime binders derived from old plasters to give an insight into their spectral characteristics after excitation with the 1064nm laser line. NIR-Raman micro-mapping results are also presented to reveal the spatial distribution of building materials and fluorescent species in the cross-section of plaster samples taken from a 15th century chapel. Our study shows that the Raman analysis can help identify lime-based building and conservation materials, however, a caution is advised in the interpretation of the spectra acquired using 1064nm excitation. PMID:27314909

  7. Coherent Raman spectro-imaging with laser frequency combs

    CERN Document Server

    Ideguchi, Takuro; Bernhardt, Birgitta; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W

    2013-01-01

    Optical spectroscopy and imaging of microscopic samples have opened up a wide range of applications throughout the physical, chemical, and biological sciences. High chemical specificity may be achieved by directly interrogating the fundamental or low-lying vibrational energy levels of the compound molecules. Amongst the available prevailing label-free techniques, coherent Raman scattering has the distinguishing features of high spatial resolution down to 200 nm and three-dimensional sectioning. However, combining fast imaging speed and identification of multiple - and possibly unexpected- compounds remains challenging: existing high spectral resolution schemes require long measurement times to achieve broad spectral spans. Here we overcome this difficulty and introduce a novel concept of coherent anti-Stokes Raman scattering (CARS) spectro-imaging with two laser frequency combs. We illustrate the power of our technique with high resolution (4 cm-1) Raman spectra spanning more than 1200 cm-1 recorded within le...

  8. Breast cancer study in rats by using Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Martinez E, J. C. [IPN, Unidad Profesional Interdisciplinaria de Ingenieria, Campus Guanajuato, Av. Mineral de Valenciana 200, Col. Fracc. Industrial Puerto Interior, 36275 Silao, Guanajuato (Mexico); Cordova F, T.; Roca Ch, J. M.; Hernandez R, A., E-mail: jcmartineze@ipn.mx [Universidad de Guanajuato, Division de Ciencias e Ingenierias, Departamento de Ingenieria Fisica, Loma del Bosque 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico)

    2015-10-15

    Full text: The use of Raman scattering to differentiate the biochemistry and hence distinguish between normal and abnormal samples of breast cancer with induced stress was investigated. Twelve different rat serum samples (5 control samples and 7 breast cancer samples) were measured. 25 spectra per sample were acquired in a region of 50 X 50 microns. Three hundred spectra were recorded and the spectral diagnostic models were constructed by using multivariate statistical analysis on the spectral matrix to carry out the discrimination between the control samples and cancers samples with induced stress. The spectral recording was performed with Raman microscopy system Thermo Scientific XRD in the range from 200 to 2000 cm{sup -1} with a laser source of 780 nm, 24 m W of power and 50 s and exposure time were used for each spectrum. It is shown that the serum samples from rats with breast cancer and the control group can be discriminate when the multivariate analysis methods are applied to their Raman data set. The ratios were significant and correspond to proteins and phospholipids. The preliminary results suggest that the Raman spectroscopy could be an alternative technique to study the breast cancer in humans in a near future. (Author)

  9. Vibronic Raman Scattering at the Quantum Limit of Plasmons

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, Patrick Z.; Hess, Wayne P.

    2014-07-09

    We record sequences of Raman spectra at a plasmonic junction formed by a gold AFM tip in contact with a silver surface coated with 4,4’-dimercaptostilbene (DMS). A 2D correlation analysis of the recorded trajectories reveals that the observable vibrational states can be divided into sub-sets. The first set comprises the totally symmetric vibrations of DMS (ag) that are neither correlated with each other nor to the fluctuating background, which is assigned to the signature of charge transfer plasmons tunneling through DMS. The second set consists of bu vibrations, which are correlated both with each other and with the continuum. Our findings are rationalized on the basis of the charge-transfer theory of Raman scattering, and illustrate how the tunneling plasmons modulate the vibronic coupling term from which the intensities of the bu states are derived.

  10. Resonant electronic Raman scattering: A BCS-like system

    Science.gov (United States)

    Rodrigues, Leonarde N.; Arantes, A.; Schüller, C.; Bell, M. J. V.; Anjos, V.

    2016-05-01

    In this paper we investigate the resonant intersubband Raman scattering of two-dimensional electron systems in GaAs-AlGaAs single quantum wells. Self-consistent calculations of the polarized and depolarized Raman cross sections show that the appearance of excitations at the unrenormalized single-particle energy are related to three factors: the extreme resonance regime, the existence of degeneracy in intersubband excitations of the electron gas, and, finally, degeneracy in the interactions between pairs of excitations. It is demonstrated that the physics that governs the problem is similar to the one that gives rise to the formation of the superconducting state in the BCS theory of normal metals. Comparison between experiment and theory shows an excellent agreement.

  11. Dental caries imaging using hyperspectral stimulated Raman scattering microscopy

    Science.gov (United States)

    Wang, Zi; Zheng, Wei; Jian, Lin; Huang, Zhiwei

    2016-03-01

    We report the development of a polarization-resolved hyperspectral stimulated Raman scattering (SRS) imaging technique based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of dental caries. In our imaging system, hyperspectral SRS images (512×512 pixels) in both fingerprint region (800-1800 cm-1) and high-wavenumber region (2800-3600 cm-1) are acquired in minutes by scanning the wavelength of OPO output, which is a thousand times faster than conventional confocal micro Raman imaging. SRS spectra variations from normal enamel to caries obtained from the hyperspectral SRS images show the loss of phosphate and carbonate in the carious region. While polarization-resolved SRS images at 959 cm-1 demonstrate that the caries has higher depolarization ratio. Our results demonstrate that the polarization resolved-hyperspectral SRS imaging technique developed allows for rapid identification of the biochemical and structural changes of dental caries.

  12. Coherent Raman Scattering Microscopy in Biology and Medicine.

    Science.gov (United States)

    Zhang, Chi; Zhang, Delong; Cheng, Ji-Xin

    2015-01-01

    Advancements in coherent Raman scattering (CRS) microscopy have enabled label-free visualization and analysis of functional, endogenous biomolecules in living systems. When compared with spontaneous Raman microscopy, a key advantage of CRS microscopy is the dramatic improvement in imaging speed, which gives rise to real-time vibrational imaging of live biological samples. Using molecular vibrational signatures, recently developed hyperspectral CRS microscopy has improved the readout of chemical information available from CRS images. In this article, we review recent achievements in CRS microscopy, focusing on the theory of the CRS signal-to-noise ratio, imaging speed, technical developments, and applications of CRS imaging in bioscience and clinical settings. In addition, we present possible future directions that the use of this technology may take. PMID:26514285

  13. Smart surface-enhanced Raman scattering traceable drug delivery systems

    Science.gov (United States)

    Liu, Lei; Tang, Yonghong; Dai, Sheng; Kleitz, Freddy; Qiao, Shi Zhang

    2016-06-01

    A novel smart nanoparticle-based system has been developed for tracking intracellular drug delivery through surface-enhanced Raman scattering (SERS). This new drug delivery system (DDS) shows targeted cytotoxicity towards cancer cells via pH-cleavable covalent carboxylic hydrazone links and the SERS tracing capability based on gold@silica nanocarriers. Doxorubicin, as a model anticancer drug, was employed to compare SERS with conventional fluorescence tracing approaches. It is evident that SERS demonstrates higher sensitivity and resolution, revealing intracellular details, as the strengths of the original Raman signals can be amplified by SERS. Importantly, non-destructive SERS will provide the designed DDS with great autonomy and potential to study the dynamic procedures of non-fluorescent drug delivery into living cells.A novel smart nanoparticle-based system has been developed for tracking intracellular drug delivery through surface-enhanced Raman scattering (SERS). This new drug delivery system (DDS) shows targeted cytotoxicity towards cancer cells via pH-cleavable covalent carboxylic hydrazone links and the SERS tracing capability based on gold@silica nanocarriers. Doxorubicin, as a model anticancer drug, was employed to compare SERS with conventional fluorescence tracing approaches. It is evident that SERS demonstrates higher sensitivity and resolution, revealing intracellular details, as the strengths of the original Raman signals can be amplified by SERS. Importantly, non-destructive SERS will provide the designed DDS with great autonomy and potential to study the dynamic procedures of non-fluorescent drug delivery into living cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03869g

  14. Return Current Electron Beams and Their Generation of "Raman" Scattering

    Science.gov (United States)

    Simon, A.

    1998-11-01

    For some years, we(A. Simon and R. W. Short, Phys. Rev. Lett. 53), 1912 (1984). have proposed that the only reasonable explanation for many of the observations of "Raman" scattering is the presence of an electron beam in the plasma. (The beam creates a bump-on-tail instability.) Two major objections to this picture have been observation of Raman when no n_c/4 surface was present, with no likely source for the electron beam, and the necessity for the initially outward directed beam to bounce once to create the proper waves. Now new observations on LLE's OMEGA(R. Petrasso et al), this conference. and at LULI(C. Labaune et al)., Phys. Plasma 5, 234 (1998). have suggested a new origin for the electron beam. This new scenario answers the previous objections, maintains electron beams as the explanation of the older experiments, and may clear up puzzling observations that have remained unexplained. The new scenario is based on two assumptions: (1) High positive potentials develop in target plasmas during their creation. (2) A high-intensity laser beam initiates spark discharges from nearby surfaces to the target plasma. The resulting return current of electrons should be much more delta-like, is initially inwardly directed, and no longer requires the continued presence of a n_c/4 surface. Scattering of the interaction beam from the BOT waves yields the observed Raman signal. Experimental observations that support this picture will be cited. ``Pulsation'' of the scattering and broadband ``flashes'' are a natural part of this scenario. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  15. Theory of polariton-mediated Raman scattering in microcavities.

    Science.gov (United States)

    León Hilario, L M; Bruchhausen, A; Lobos, A M; Aligia, A A

    2007-04-30

    We calculate the intensity of the polariton-mediated inelastic light scattering in semiconductor microcavities. We treat the exciton-photon coupling nonperturbatively and incorporate lifetime effects in both excitons and photons, and a coupling of the photons to the electron-hole continuum. Taking the matrix elements as fitting parameters, the results are in excellent agreement with measured Raman intensities due to optical phonons that are resonant with the upper polariton branches in II-VI microcavities with embedded CdTe quantum wells. PMID:21690956

  16. {alpha}-Glycine under high pressures: a Raman scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Murli, Chitra; Sharma, S.M.Surinder M.; Karmakar, S.; Sikka, S.K

    2003-11-01

    High-pressure behaviour of {alpha}-glycine has been investigated up to {approx}23 GPa using Raman scattering technique. The experimental results show slope change in the CO{sub 2} bending, NH{sub 3} torsional and NH{sub 3} rocking modes around 3 GPa and are interpreted in terms of change in the nature of an N-H...O-C intra-layer hydrogen bond at this pressure. Several other spectral features seem to arise from pressure-induced variations in the inter-molecular coupling.

  17. Electromagnetic field in matter. Surface enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Marian Apostol

    2013-07-01

    Full Text Available The polarization and magnetization degrees of freedom are included in the general treatment of the electromagnetic field in matter, and their governing equations are given. Particular cases of solutions are discussed for polarizable, non-magnetic matter, including quasi-static fields, surface plasmons, propagation, zero-point fluctuations of the eigenmodes, especially for a semi-infinite homogeneous body (half-space. The van der Waals London-Casimir force acting between a neutral nano-particle and a half-space is computed and the response of this electromagnetically coupled system to an external field is given, with relevance for the surface enhanced Raman scattering.

  18. Multiple electronic Raman scatterings in a single metallic carbon nanotube

    Science.gov (United States)

    Zhang, Daqi; Yang, Juan; Hasdeo, Eddwi H.; Liu, Can; Liu, Kaihui; Saito, Riichiro; Li, Yan

    2016-06-01

    We observe multiple electronic Raman scatterings (ERSs) in a single suspended metallic single-walled carbon nanotube. The ERS process originates from the inelastic scattering of photoexcited excitons by a continuum of low-lying electron-hole pairs. In previous work, the observed Fano factor of the G band line shape is always negative; however, in this work we find that the Fano factor can be either positive or negative depending on the relative position of the nearest ERS with respect to the G band. This supports the idea that the origin of the G band asymmetry is an interference between the discrete G band and the continuous ERS. We also report that the ERS position and intensity are sensitive to the nanotube bundling effect and the laser heating effect.

  19. Thomson Scattering Density Calibration by Rayleigh and Rotational Raman Scattering on NSTX

    Energy Technology Data Exchange (ETDEWEB)

    B.P. LeBlanc

    2008-07-16

    The multi-point Thomson scattering (MPTS) diagnostic measures the profiles of the electron temperature Te(R) and density ne(R) on the horizontal midplane of NSTX. Normal operation makes use of Rayleigh scattering in nitrogen or argon to derive the density profile. While the Rayleigh scattering ne(R) calibration has been validated by comparison with other density measurements and through its correlation with plasma phenomena, it does require dedicated detectors at the laser wavelength in this filter polychromator based diagnostic. The presence of dust and/or stray laser light precludes routine use of these dedicated spectral channels for Thomson scattering measurement. Hence it is of interest to investigate the use of Raman scattering in nitrogen for the purpose of density calibration, since it could free up detection equipment, which could then be used for the instrumentation of additional radial channels. In this paper the viewing optics "geometrical factor" profiles obtained from Rayleigh and Raman scattering are compared. While both techniques agree nominally, residual effects on the order of 10% remain and will be discussed.

  20. Photocreation of a quantum domain and its detection by inelastic X-ray scattering and X-ray CARS

    International Nuclear Information System (INIS)

    We briefly argue the concept of a quantum domain and propose its detection using X-ray inelastic scattering and X-ray coherent anti-Stokes Raman scattering (CARS). The quantum domain is defined as a spatial region of which the phase state is converted to a different one from that in the background. In a case where photoinduced phase transitions are allowed to exhibit, such a domain has a relatively low excitation energy and is expected to be detected experimentally. Especially the X-ray inelastic scattering and the CARS are attractive methods, since they can give information of both the momentum and the energy.

  1. Applications of Raman and Surface-Enhanced Raman Scattering to the Analysis of Eukaryotic Samples

    Science.gov (United States)

    Schulte, Franziska; Joseph, Virginia; Panne, Ulrich; Kneipp, Janina

    In this chapter, we discuss Raman scattering and surface-enhanced Raman scattering (SERS) for the analysis of cellular samples of plant and animal origin which are several tens to hundreds of microns in size. As was shown in the past several years, the favorable properties of noble metal nanostructures can be used to generate SERS signals in very complex biological samples such as cells, and result in an improved sensitivity and spatial resolution. Pollen grains, the physiological containers that produce the male gametes of seed plants, consist of a few vegetative cells and one generative cell, surrounded by a biopolymer shell. Their chemical composition has been a subject of research of plant physiologists, biochemists [1, 2], and lately even materials scientists [3, 4] for various reasons. In spite of a multitude of applied analytical approaches it could not be elucidated in its entirety yet. Animal cells from cell cultures have been a subject of intense studies due to their application in virtually all fields of biomedical research, ranging from studies of basic biological mechanisms to models for pharmaceutical and diagnostic research. Many aspects of all kinds of cellular processes including signalling, transport, and gene regulation have been elucidated, but many more facts about cell biology will need to be understood in order to efficiently address issues such as cancer, viral infection or genetic disorder. Using the information from spectroscopic methods, in particular combining normal Raman spectroscopy and SERS may open up new perspectives on cellular biochemistry. New sensitive Raman-based tools are being developed for the biochemical analysis of cellular processes [5-8].

  2. Method and system to measure temperature of gases using coherent anti-stokes doppler spectroscopy

    Science.gov (United States)

    Rhodes, Mark

    2013-12-17

    A method of measuring a temperature of a noble gas in a chamber includes providing the noble gas in the chamber. The noble gas is characterized by a pressure and a temperature. The method also includes directing a first laser beam into the chamber and directing a second laser beam into the chamber. The first laser beam is characterized by a first frequency and the second laser beam is characterized by a second frequency. The method further includes converting at least a portion of the first laser beam and the second laser beam into a coherent anti-Stokes beam, measuring a Doppler broadening of the coherent anti-Stokes beam, and computing the temperature using the Doppler broadening.

  3. Observation of anti-stokes fluorescence cooling in thulium-doped glass

    Science.gov (United States)

    Hoyt; Sheik-Bahae; Epstein; Edwards; Anderson

    2000-10-23

    We report the first observation of anti-Stokes fluorescence cooling in a thulium-doped solid with pump excitation at 1.82 &mgr;mPbF2) sample cooled to -1.2 degrees C from room temperature for a single pass of the pump beam. This corresponds to an absorbed pump power of approximately 40 mW and a peak temperature change per absorbed power of approximately -30 degrees C/W from room temperature. PMID:11030960

  4. Local temperature variation measurement by anti-Stokes luminescence in attenuated total reflection geometry.

    Science.gov (United States)

    Yamamoto, Ken; Togawa, Ryotaro; Fujimura, Ryushi; Kajikawa, Kotaro

    2016-08-22

    Strong temperature dependence of anti-Stokes luminescence intensity from Rhodamine 101 is used to probe local temperature variation at a surface region in the attenuated total reflection geometry (ATR), when heating with laser light. In this method, the measured region can be limited by observing evanescent luminescence. The near-field depth (penetration depth) was changed by the observation angle θout of the evanescent luminescence and the spatial temperature variation was observed. PMID:27557182

  5. Raman scattering of nanocrystalline silicon embedded in SiO2

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Raman scattering of nanocrystalline silicon embedded in SiO2 matrix is systematically investigated. It is found that the Raman spectra can be well fitted by 5 Lorentzian lines in the Raman shift range of 100-600 cm-1. The two-phonon scattering is also observed in the range of 600-1100 cm-1. The experimental results indicate that the silicon crystallites in the films consist of nanocrystalline phase and amorphous phase; both can contribute to the Raman scattering. Besides the red-shift of the first order optical phonon modes with the decreasing size of silicon nanocrystallites, we have also found an enhancement effect on the second order Raman scattering, and the size effect on their Raman shift.

  6. Raman scattering of nanocrystalline silicon embedded in SiO2

    Institute of Scientific and Technical Information of China (English)

    马智训; 廖显伯; 孔光临; 褚君浩

    2000-01-01

    Raman scattering of nanocrystalline silicon embedded in SiO2 matrix is systematically in-vestigated. it is found that the Raman spectra can be well fitted by 5 Lorentzian lines in the Raman shift range of 100-600 cm-1. The two-phonon scattering is also observed in the range of 600-1100 cM-1 The experimental results indicate that the silicon crystallites in the films consist of nanocrystalline phase and amorphous phase; both can contribute to the Raman scattering. Besides the red-shift of the first order optical phonon modes with the decreasing size of silicon nanocrystallites, we have also found an enhancement effect on the second order Raman scattering, and the size effect on their Raman shift.

  7. Origin of the frequency shift of Raman scattering in chalcogenide glasses

    DEFF Research Database (Denmark)

    Han, X.C.; Tao, H.Z.; Gong, L.J.;

    2014-01-01

    Raman scattering is a sensitive method for probing the structural evolution in glasses, especially in covalent ones. Usually the main Raman scattering frequency shifts with composition for Gesingle bondSe chalcogenide glasses. However, it has not been well established whether and how the dependen...

  8. Effects of Raman scattering in quantum state-preserving frequency conversion

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Andersen, Lasse Mejling; Castaneda, Mario A. Usuga;

    2014-01-01

    We analyse frequency conversion by Bragg scattering numerically including Raman scattering. The frequency configuration that performs the best under influence of Raman noise results in 95% conversion over a 3.25 THz bandwidth with a 2.5-dB noise figure....

  9. Analysis of polymer surfaces and thin-film coatings with Raman and surface enhanced Raman scattering

    CERN Document Server

    McAnally, G D

    2001-01-01

    This thesis investigates the potential of surface-enhanced Raman scattering (SERS) for the analysis and characterisation of polymer surfaces. The Raman and SERS spectra from a PET film are presented. The SERS spectra from the related polyester PBT and from the monomer DMT are identical to PET, showing that only the aromatic signals are enhanced. Evidence from other compounds is presented to show that loss of the carbonyl stretch (1725 cm sup - sup 1) from the spectra is due to a chemical interaction between the silver and surface carbonyl groups. The interaction of other polymer functional groups with silver is discussed. A comparison of Raman and SERS spectra collected from three faces of a single crystal shows the SERS spectra are depolarised. AFM images of the silver films used to obtain SERS are presented. They consist of regular islands of silver, fused together to form a complete film. The stability and reproducibility and of these surfaces is assessed. Band assignments for the SERS spectrum of PET are ...

  10. Enhanced Raman Scattering from Aromatic Dithiols Electrosprayed into Plasmonic Nanojunctions

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, Patrick Z.; Johnson, Grant E.; Novikova, Irina V.; Gong, Yu; Joly, Alan G.; Evans, James E.; Zamkov, Mikhail; Laskin, Julia; Hess, Wayne P.

    2015-12-01

    We describe surface enhanced Raman spectroscopy (SERS) experiments in which molecular coverage is systematically varied from 3.8 x 105 to 3.8 x 102 to 0.38 molecules/μm2 using electrospray deposition of ethanolic 4,4’-dimercaptostilbene (DMS) solutions. The plasmonic SERS substrate used herein consists of a well-characterized 2-dimensional (2D) array of silver nanospheres [see El-Khoury et al., J. Chem. Phys., 2014, 141, 214308], previously shown to feature uniform topography and plasmonic response, as well as intense SERS activity. When compared to their ensemble averaged analogues, the spatially and temporally averaged spectra of a single molecule exhibit several unique features including: (i) distinct relative intensities of the observable Raman-active vibrational states, (ii) more pronounced SERS backgrounds, and (iii) broader Raman lines indicative of faster vibrational dephasing. The first observation may be understood on the basis of an intuitive physical picture in which removal of averaging over multiple molecules exposes the tensorial nature of Raman scattering. When an oriented single molecule gives rise to the recorded SERS spectra, the relative orientation of the molecule with respect to vector components of the local electric field determines the relative intensities of the observable vibrational states. Using a single molecule SERS framework described herein, we derive a unique molecular orientation in which a single DMS molecule is isolated at a nanojunction formed between two silver nanospheres in the 2D array. The DMS molecule is found lying nearly flat with respect to the metal surface. The derived orientation of a single molecule at a plasmonic nanojunction is consistent with observations (ii) and (iii). In particular, a careful inspection of the temporal spectral variations along the recorded single molecule SERS time sequences reveals that the time-averaged SERS backgrounds arise from individual molecular events, marked by broadened SERS

  11. Multimode Raman light-atom interface in warm atomic ensemble as multiple three-mode quantum operations

    CERN Document Server

    Parniak, Michał; Wasilewski, Wojciech

    2015-01-01

    We analyze the properties of a Raman quantum light-atom interface in long atomic ensemble and its applications as a quantum memory or two-mode squeezed state generator. We include both Stokes and anti-Stokes scattering and the effects of Doppler broadening in buffer gas assuming frequent velocity-averaging collisions. We find the Green functions describing multimode transformation from input to output fields of photons and atomic excitations. Proper mode basis is found via singular value decomposition. It reveals that triples of modes are coupled by a transformation equivalent to a combination of two beamsplitters and a two-mode squeezing operation. We analyze the possible transformations on an example of warm rubidium-87 vapor. We find that the fidelity of the mapping of a single excitation between the memory and light is strictly limited by the fractional contribution of the Stokes scattering in predominantly anti-Stokes process. The model we present bridges the gap between the Stokes only and anti-Stokes o...

  12. Structural analysis of molybdo-zinc-phosphate glasses: Neutron scattering, FTIR, Raman scattering, MAS NMR studies

    Science.gov (United States)

    Renuka, C.; Shinde, A. B.; Krishna, P. S. R.; Reddy, C. Narayana

    2016-08-01

    Vitreous samples were prepared in the xMoO3-17ZnO-(83-x) NaPO3 with 35 ≥ x ≥ 55 glass forming system by energy efficient microwave heating method. Structural evolution of the vitreous network was monitored as a function of composition by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Raman scattering, Magic Angle Spin Nuclear magnetic resonance (MAS NMR) and Neutron scattering. Addition of MoO3 to the ZnO-NaPO3 glass leads to a pronounced increase in glass transition temperature (Tg) suggesting a significant increase in network connectivity and strength. In order to analyze FTIR and Raman scattering, a simple structural model is presented to rationalize the experimental observations. A number of structural units are formed due to network modification, and the resulting glass may be characterized by a network polyhedral with different numbers of unshared corners. 31P MAS NMR confirms a clear distinction between structural species having 3, 2, 1, 0 bridging oxygens (BOs). Further, Neutron scattering studies were used to probe the structure of these glasses. The result suggests that all the investigated glasses have structures based on chains of four coordinated phosphate and six coordinated molybdate units, besides, two different lengths of P-O bonds in tetrahedral phosphate units that are assigned to bonds of the P-atom with terminal and bridging oxygen atoms.

  13. Light source for narrow and broadband coherent Raman scattering microspectroscopy.

    Science.gov (United States)

    Brinkmann, Maximilian; Dobner, Sven; Fallnich, Carsten

    2015-12-01

    We present a light source that is well adapted to both narrow- and broadband coherent Raman scattering (CRS) methods. Based on a single oscillator, the light source delivers synchronized broadband pulses via supercontinuum generation and narrowband, frequency-tunable pulses via four-wave mixing in a photonic crystal fiber. Seeding the four-wave mixing with a spectrally filtered part of the supercontinuum yields high-pulse energies up to 8 nJ and the possibility of scanning a bandwidth of 2000  cm(-1) in 25 ms. All pulses are emitted with a repetition frequency of 1 MHz, which ensures efficient generation of CRS signals while avoiding significant damage of the samples. Consequently, the light source combines the performance of individual narrow- and broadband CRS light sources in one setup, thus enabling hyperspectral imaging and rapid single-resonance imaging in parallel. PMID:26625022

  14. Counter-Intuitive Vacuum-Stimulated Raman Scattering

    CERN Document Server

    Hennrich, M; Kuhn, A; Rempe, G; Hennrich, Markus; Legero, Thomas; Kuhn, Axel; Rempe, Gerhard

    2002-01-01

    Vacuum-stimulated Raman scattering in strongly coupled atom-cavity systems allows one to generate free-running single photon pulses on demand. Most properties of the emitted photons are well defined, provided spontaneous emission processes do not contribute. Therefore, electronic excitation of the atom must not occur, which is assured for a system adiabatically following a dark state during the photon-generation process. We experimentally investigate the conditions that must be met for adiabatic following in a time-of-flight driven system, with atoms passing through a cavity and a pump beam oriented transverse to the cavity axis. From our results, we infer the optimal intensity and relative pump-beam position with respect to the cavity axis.

  15. Detection of volatile organic compounds using surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chang, A S; Maiti, A; Ileri, N; Bora, M; Larson, C C; Britten, J A; Bond, T C

    2012-03-22

    The authors present the detection of volatile organic compounds directly in their vapor phase by surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. The type of nanopillars is known as the tapered pillars. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of toluene vapor. The results show that SERS signal from a toluene vapor concentration of ppm level can be achieved, and the toluene vapor can be detected within minutes of exposing the SERS substrate to the vapor. A simple adsorption model is developed which gives results matching the experimental data. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors.

  16. Reduced Modeling of Electron Trapping Nonlinearity in Raman Scattering

    Science.gov (United States)

    Strozzi, D. J.; Berger, R. L.; Rose, H. A.; Langdon, A. B.; Williams, E. A.

    2009-11-01

    The trapping of resonant electrons in Langmuir waves generated by stimulated Raman scattering (SRS) gives rise to several nonlinear effects, which can either increase or decrease the reflectivity. We have implemented a reduced model of these nonlinearities in the paraxial propagation code pF3D [R. L. Berger et al., Phys. Plasmas 5 (1998)], consisting of a Landau damping reduction and Langmuir-wave frequency downshift. Both effects depend on the local wave amplitude, and gradually turn on with amplitude. This model is compared with 1D seeded Vlasov simulations, that include a Krook relaxation operator to mimic, e.g., transverse sideloss out of a multi-D, finite laser speckle. SRS in these runs develops from a counter-propagating seed light wave. Applications to ICF experiments will also be presented.

  17. Surface-enhanced Raman scattering on gold nanotrenches and nanoholes

    KAUST Repository

    Yue, Weisheng

    2012-04-01

    Dependent effects on edge-to-edge distance and incidence polarization in surface-enhanced Raman Scattering (SERS) were studied in detection of 4-mercaptopyridine (4-MPy) molecules absorbed on gold nanotrenches and nanoholes. The gold nanostructures with controllable size and period were fabricated using electron-beam lithography. Large SERS enhancement in detection of 4-MPy molecules on both nanostructred substrates was observed. The SERS enhancement increased exponentially with decrease of edge to-edge distance for both the nanotrenches and nanoholes while keeping the sizes of the nanotrenches and nanoholes unchanged. Investigation of polarization dependence showed that the SERS enhancement of nanotrenches was much more sensitive to the incidence polarizations than that of nanoholes. © 2012 American Scientific Publishers.

  18. Q-branch Raman scattering and modern kinetic thoery

    Energy Technology Data Exchange (ETDEWEB)

    Monchick, L. [The Johns Hopkins Univ., Laurel, MD (United States)

    1993-12-01

    The program is an extension of previous APL work whose general aim was to calculate line shapes of nearly resonant isolated line transitions with solutions of a popular quantum kinetic equation-the Waldmann-Snider equation-using well known advanced solution techniques developed for the classical Boltzmann equation. The advanced techniques explored have been a BGK type approximation, which is termed the Generalized Hess Method (GHM), and conversion of the collision operator to a block diagonal matrix of symmetric collision kernels which then can be approximated by discrete ordinate methods. The latter method, which is termed the Collision Kernel method (CC), is capable of the highest accuracy and has been used quite successfully for Q-branch Raman scattering. The GHM method, not quite as accurate, is applicable over a wider range of pressures and has proven quite useful.

  19. Ultrasensitive surface-enhanced Raman scattering detection in common fluids.

    Science.gov (United States)

    Yang, Shikuan; Dai, Xianming; Stogin, Birgitt Boschitsch; Wong, Tak-Sing

    2016-01-12

    Detecting target analytes with high specificity and sensitivity in any fluid is of fundamental importance to analytical science and technology. Surface-enhanced Raman scattering (SERS) has proven to be capable of detecting single molecules with high specificity, but achieving single-molecule sensitivity in any highly diluted solutions remains a challenge. Here we demonstrate a universal platform that allows for the enrichment and delivery of analytes into the SERS-sensitive sites in both aqueous and nonaqueous fluids, and its subsequent quantitative detection of Rhodamine 6G (R6G) down to ∼75 fM level (10(-15) mol⋅L(-1)). Our platform, termed slippery liquid-infused porous surface-enhanced Raman scattering (SLIPSERS), is based on a slippery, omniphobic substrate that enables the complete concentration of analytes and SERS substrates (e.g., Au nanoparticles) within an evaporating liquid droplet. Combining our SLIPSERS platform with a SERS mapping technique, we have systematically quantified the probability, p(c), of detecting R6G molecules at concentrations c ranging from 750 fM (p > 90%) down to 75 aM (10(-18) mol⋅L(-1)) levels (p ≤ 1.4%). The ability to detect analytes down to attomolar level is the lowest limit of detection for any SERS-based detection reported thus far. We have shown that analytes present in liquid, solid, or air phases can be extracted using a suitable liquid solvent and subsequently detected through SLIPSERS. Based on this platform, we have further demonstrated ultrasensitive detection of chemical and biological molecules as well as environmental contaminants within a broad range of common fluids for potential applications related to analytical chemistry, molecular diagnostics, environmental monitoring, and national security. PMID:26719413

  20. Resonant Raman and micro-Raman scattering from Si matrix with unburied beta-FeSi2 nanolayers.

    Science.gov (United States)

    Marinova, M; Baleva, M; Zlateva, G

    2008-02-01

    Samples, representing Si matrix with nanolayers of the semiconducting beta-FeSi2 silicide are studied by Raman scattering. The unpolarized Raman spectra of the samples are measured in two different configurations. It is found that the characteristic beta-FeSi2 Raman modes are seen in the spectra, taken at incident angle of about 45 degrees , while only comparatively intensive broad feature is detected in a back-scattering geometry. The difference in the spectra is interpreted with the appearance of surface polariton modes of the optical phonons in the nanosized layers in near back-scattering geometry. The resonant Raman scattering is investigated at incident light angle of about 45 degrees and the energies of the interband transitions in the investigated energy range are determined. It is known that the resonant Raman scattering appears to be even more precise method for the determination of the interband transitions energies than the modulation spectroscopy. Thus we claim that the energies determined here are firstly determined with such a precision. PMID:18464405

  1. Amplification Effect on Rayleigh Scattering and SBS in 25 km Distributed Fiber Raman Amplifier

    Institute of Scientific and Technical Information of China (English)

    Hua-Ping Gong; Zai-Xuan Zhang

    2008-01-01

    The amplification effect on stimulated Brillouin scattering (SBS) and Rayleigh scattering in the backward pumped G652 fibers Raman amplifier have been researched. The signal source is a tunable narrow spectral bandwidth (<10 MHz) ECL laser and is pumped by the tunable power 1427.2 nm fiber Raman laser. The Rayleigh scattering lines are amplified by fiber Raman amplifier, and Stokes stimulated Brillouin scattering lines are amplified by fiber Raman amplifier and fiber BriUouin amplifier. The SBS lines total gain is a production of the gain of Raman and the gain of Brillouin amplifier. In experiment, the gain of SBS is about 42 dB and the saturation gain of 25 km G652 backward FRA is about 25 dB, so the gain of fiber Brillouin amplifier is about 17 dB.

  2. Laser Thomson Scattering, Raman Scattering and laser-absorption diagnostics of high pressure microdischarges

    International Nuclear Information System (INIS)

    Laser scattering experiments were performed in high pressure (100s of Torr) parallel-plate, slot-type DC microdischarges operating in argon or nitrogen. Laser Thomson Scattering (LTS) and Rotational Raman Scattering were employed in a novel, backscattering, confocal configuration. LTS allows direct and simultaneous measurement of both electron density (ne) and electron temperature (Te). For 50 mA current and over the pressure range of 300 - 700 Torr, LTS yielded Te = 0.9 ± 0.3 eV and ne = (6 ± 3)·1013 cm-3, in reasonable agreement with the predictions of a mathematical model. Rotational Raman spectroscopy (RRS) was employed for absolute calibration of the LTS signal. RRS was also applied to measure the 3D gas temperature (Tg) in nitrogen DC microdischarges. In addition, diode laser absorption spectroscopy was employed to measure the density of argon metastables (1s5 in Paschen notations) in argon microdischarges. The gas temperature, extracted from the width of the absorption profile, was compared with Tg values obtained by optical emission spectroscopy.

  3. Laser Thomson Scattering, Raman Scattering and laser-absorption diagnostics of high pressure microdischarges

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Vincent M; Belostotskiy, Sergey G; Economou, Demetre J [Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204 (United States); Sadeghi, Nader, E-mail: vmdonnelly@uh.ed [Laboratoire de Spectrometrie Physique (UMR C5588), Universite J. Fourier de Grenoble, B P 87, F-38402 Saint-Martin d' Heres Cedex (France)

    2010-05-01

    Laser scattering experiments were performed in high pressure (100s of Torr) parallel-plate, slot-type DC microdischarges operating in argon or nitrogen. Laser Thomson Scattering (LTS) and Rotational Raman Scattering were employed in a novel, backscattering, confocal configuration. LTS allows direct and simultaneous measurement of both electron density (n{sub e}) and electron temperature (T{sub e}). For 50 mA current and over the pressure range of 300 - 700 Torr, LTS yielded T{sub e} = 0.9 {+-} 0.3 eV and n{sub e} = (6 {+-} 3){center_dot}10{sup 13} cm{sup -3}, in reasonable agreement with the predictions of a mathematical model. Rotational Raman spectroscopy (RRS) was employed for absolute calibration of the LTS signal. RRS was also applied to measure the 3D gas temperature (T{sub g}) in nitrogen DC microdischarges. In addition, diode laser absorption spectroscopy was employed to measure the density of argon metastables (1s5 in Paschen notations) in argon microdischarges. The gas temperature, extracted from the width of the absorption profile, was compared with T{sub g} values obtained by optical emission spectroscopy.

  4. Coherent anti-Stokes Raman spectroscopy in the presence of strong resonant signal from background molecules

    CERN Document Server

    Bitter, Martin

    2012-01-01

    Optical spectroscopy with broadband femtosecond laser pulses often involves simultaneous excitation of multiple molecular species with close resonance frequencies. Interpreting the collective optical response from molecular mixtures typically requires Fourier analysis of the detected time-resolved signal. We propose an alternative method of separating coherent optical responses from two molecular species with neighboring excitation resonances (here, vibrational modes of oxygen and carbon dioxide). We utilize ro-vibrational coupling as a mechanism of suppressing the strong vibrational response from the dominating molecular species (O$_{2}$). Coherent ro-vibrational dynamics lead to long "silence windows" of zero signal from oxygen molecules. In these silence windows, the detected signal stems solely from the minority species (CO$_{2}$) enabling background-free detection and characterization of the O$_2$/CO$_2$ mixing ratio. In comparison to a Fourier analysis, our technique does not require femtosecond time re...

  5. Amorphous silicon deposition diagnostics using coherent anti-Stokes Raman spectroscopy

    Science.gov (United States)

    Shing, Y. H.; Perry, J. W.; Coulter, D. R.; Radhakrishnan, G.

    1987-01-01

    This paper reports on an in situ silicon deposition process diagnostics, using CARS performed at state-of-the-art a-Si:H film deposition conditions in a reactor designed for a-Si:H solar cell fabrication. The diagnostics procedure measures the silane depletion in an RF plasma as a function of the silane flow rate (where the relationship is linear between 50-percent depletion, at a flow rate of 5.6 sccm, and about 8-percent depletion, at 80 sccm) and the RF power (where the silane depletion is linearly dependent on the RF power in the region of 4 to 12 W). The linear RF power dependence of the silane depletion is considered to be consistent with the mechanism of silane decomposition primarily by electron impact dissociations, while the flow rate dependence is interpreted in terms of the residence time of the SiH4 molecules in the glow discharge region, where an increase of the residence time at a low flow rate results in a high depletion ratio.

  6. Tip-enhanced THz Raman spectroscopy for local temperature determination at the nanoscale.

    Science.gov (United States)

    Balois, Maria Vanessa; Hayazawa, Norihiko; Catalan, Francesca Celine; Kawata, Satoshi; Yano, Taka-Aki; Hayashi, Tomohiro

    2015-11-01

    Local temperature of a nanoscale volume is precisely determined by tip-enhanced terahertz Raman spectroscopy in the low temperature range of several tens of degrees. Heat generated by the tip-enhanced electric field is directly transferred to single-walled carbon nanotubes by heat conduction and radiation at the nanoscale. This heating modulates the intensity ratio of anti-Stokes/Stokes Raman scattering of the radial breathing mode of the carbon nanotube based on the Boltzmann distribution at elevated temperatures. Owing to the low-energy feature of the radial breathing mode, the local temperature of the probing volume has been successfully extracted with high sensitivity. The dependence of the temperature rise underneath the tip apex on the incident power coincides with the analytical results calculated by finite element method based on the tip enhancement effect and the consequent steady-state temperature via Joule heat generation. The results show that the local temperature at the nanoscale can be controlled in the low temperature range simply by the incident laser power while exhibiting a sufficiently high tip enhancement effect as an analytical tool for thermally sensitive materials (e.g., proteins, DNA). Graphical Abstract Tip-enhanced THz Raman spectroscopy detects the low frequency Raman mode both in Stokes and anti-Stokes shifts, which precisely reflects the local temperature of the sample volume. PMID:26164304

  7. Single-Molecule Surface-Enhanced Raman Scattering Spectrum of Non-Resonant Aromatic Amine Showing Raman Forbidden Bands

    CERN Document Server

    Yamamoto, Yuko S; Ozaki, Yukihiro; Zhang, Zhenglong; Kozu, Tomomi; Itoh, Tamitake; Nakanishi, Shunsuke

    2016-01-01

    We present the experimentally obtained single-molecule (SM) surface-enhanced Raman scattering (SERS) spectrum of 4-aminibenzenethiol (4-ABT), also known as para-aminothiophenol (PATP). Measured at a 4-ABT concentration of 8 * 10^-10 M, the spectra show Raman forbidden modes. The SM-SERS spectrum of 4-ABT obtained using a non-resonant visible laser is different from the previously reported SERS spectra of 4-ABT, and could not be reconstructed using quantum mechanical calculations. Careful classical assignments (not based on quantum-mechanical calculations) are reported, and indicate that differences in the reported spectra of 4-ABT are mainly due to the appearance of Raman forbidden bands. The presence of Raman forbidden bands can be explained by the charge-transfer (CT) effect of 4-ABT adsorbed on the silver nanostructures, indicating a breakdown of Raman selection rules at the SERS hotspot.

  8. A fiber-laser-based stimulated Raman scattering spectral microscope

    Science.gov (United States)

    Nose, Keisuke; Ozeki, Yasuyuki; Kishi, Tatsuya; Sumimura, Kazuhiko; Kanematsu, Yasuo; Itoh, Kazuyoshi

    2013-02-01

    Stimulated Raman scattering (SRS) spectral microscopy is a powerful technique for label-free biological imaging because it allows us to distinguish chemical species with overlapping Raman bands. Here we present an SRS spectral microscope based only on fiber lasers (FL's), which offer the possibilities of downsizing and simplification of the system. A femtosecond figure-8 Er-FL at a repetition rate of 54.4 MHz is used to generate pump pulses. After amplified by an Er doped fiber amplifier, Er-FL pulses are spectrally compressed to 2-ps second harmonic pulses. For generating Stokes pulses, a femtosecond Yb-FL pulses at a repetition rate of 27.2 MHz is used. Then these lasers are synchronized by a phase locked loop, which consists of a two-photon absorption photodetector, a loop filter, a phase modulator in the Er- FL cavity, and a piezo electric transducer in the Yb-FL cavity. The intensity noise of pump pulses is reduced by the collinear balanced detection (CBD) technique based on delay-and-add fiber lines. Experimentally, we confirmed that the intensity noise level of probe pulses was close to the shot noise limit. The Stokes pulses are introduced to a wavelength tunable band pass filter (BPF), which consists of a galvanomirror scanner, a 4-f optical system, a reflection grating, and a collimator. This system is able to scan the wavenumber from 2850 cm-1 to 3100 cm-1 by tuning the BPF. We succeeded in the spectral imaging of a mixture of polystyrene beads and poly(methyl methacrylate) beads.

  9. Surface-enhanced Raman scattering sensing on black silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gervinskas, Gediminas; Seniutinas, Gediminas; Hartley, Jennifer S.; Stoddart, Paul R.; Juodkazis, Saulius [Centre for Micro-Photonics and Industrial Research Institute Swinburne, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC (Australia); The Australian National Fabrication Facility-ANFF, Victoria node, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC (Australia); Kandasamy, Sasikaran [Melbourne Centre for Nanofabrication, Clayton, VIC (Australia); Fahim, Narges F. [Centre for Micro-Photonics and Industrial Research Institute Swinburne, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC (Australia)

    2013-12-15

    Reactive ion etching was used to fabricate black-Si over the entire surface area of 4-inch Si wafers. After 20 min of the plasma treatment, surface reflection well below 2% was achieved over the 300-1000 nm spectral range. The spikes of the black-Si substrates were coated by gold, resulting in an island film for surface-enhanced Raman scattering (SERS) sensing. A detection limit of 1 x 10{sup -6} M (at count rate > 10{sup 2} s{sup -1}. mW{sup -1}) was achieved for rhodamine 6G in aqueous solution when drop cast onto a {proportional_to} 100-nm-thick Au coating. The sensitivity increases for thicker coatings. A mixed mobile-on-immobile platform for SERS sensing is introduced by using dog-bone Au nanoparticles on the Au/black-Si substrate. The SERS intensity shows a non-linear dependence on the solid angle (numerical aperture of excitation/collection optics) for a thick gold coating that exhibits a 10 times higher enhancement. This shows promise for augmented sensitivity in SERS applications. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Graphene thickness-controlled photocatalysis and surface enhanced Raman scattering.

    Science.gov (United States)

    Kuo, Cheng-Chi; Chen, Chun-Hu

    2014-11-01

    Exceptional photocatalytic enhancement of graphene-semiconductor composites has been widely reported, but our understanding of the role that graphene plays in this enhancement remains limited, which arises from the difficulty of precisely controlling graphene hybridization. Here we present a general platform of a graphene-semiconductor hybrid panel (GHP) system wherein a precise number of layers of graphene are hybridized with photoactive semiconductors (e.g. TiO2, ZnO) to study systematically how graphene affects the photocatalysis. The results show that the graphene enhancement of the photocatalysis depends on the number of graphene layers, with the maximum performance observed at 3 layers. Photodeposited indicators of gold particles further reveal that graphene thickness governs the density of photocatalytic sites and charge transfer efficiency at the graphene-semiconductor interfaces. We suggest that quantized energy levels caused by different numbers of stacked graphene sheets along the vector normal to the graphene basal plane affect the charge transfer routes and lead to the graphene thickness-controlled photocatalysis. GHP substrates deposited with gold particles are promising, uniform substrates for surface enhanced Raman scattering (SERS) applications with the enhancement factor as high as ∼10(8) on 3-layer graphene.

  11. Photon-phonon anti-stokes upconversion of a photonically, electronically, and thermally isolated opal

    Science.gov (United States)

    Stem, Michelle R.

    2016-05-01

    The purpose of the present research was to investigate an intense violet shift displayed by a non-toxic, natural silicate material with a highly ordered nanostructure. The material displayed an unexpected, nonlinear 2:3 photon-phonon anti-Stokes upconversion while photonically, electronically, and thermally isolated. Conducted aphotonically and at ambient temperatures, the specimen upconverted a low-power, 650 nm constant wave red laser to an internally highly dispersed 433 nm violet wavelength. The strong dispersion was largely due to nearly total internal reflection of the laser. The upconversion had an efficiency of about 78 %, based on specimen volume, with no detectable thermal variance. The 2:3 anti-Stokes upconversion displayed by this material is likely the result of a previously unknown photon-phonon evanescence response that amplified the energy of a portion of the incident laser photons. Thus, a portion of the incident laser photons were upconverted, and the material converted another portion into an amplified energy that caused the upconversion. Internal micro-lasing appeared to be a means of photon-phonon evanescent energy redistribution, enabling dispersed photonic upconversion. Additional analyses also found an unexpectedly rhythmic photonic structure in spectrophotometric scans, polariscopic color changing, and previously undocumented ultraviolet responses.

  12. Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine

    DEFF Research Database (Denmark)

    Kneipp, J.; Wittig, B.; Bohr, Henrik;

    2010-01-01

    Sensitive and detailed molecular structural information plays an increasing role in molecular biophysics and molecular medicine. Therefore, vibrational spectroscopic techniques, such as Raman scattering, which provide high structural information content are of growing interest in biophysical and ...

  13. Accounting for Transverse Inhomogeneity of Radiation Beams in Laser Raman Scattering

    Science.gov (United States)

    Apanasevich, P. A.; Dashkevich, V. I.; Timofeeva, G. I.

    2016-05-01

    A simple method of accounting for transverse inhomogeneity of the pump and Stokes radiation beams in the description of stimulated Raman scattering (SRS) using intensity-transfer equations for interacting beams is proposed. Features of the method are illustrated using the calculated dependences of the Raman laser efficiency on the output mirror reflectivity and the pump pulse energy as examples.

  14. Electron and donor-impurity-related Raman scattering and Raman gain in triangular quantum dots under an applied electric field

    Science.gov (United States)

    Tiutiunnyk, Anton; Akimov, Volodymyr; Tulupenko, Viktor; Mora-Ramos, Miguel E.; Kasapoglu, Esin; Morales, Alvaro L.; Duque, Carlos Alberto

    2016-04-01

    The differential cross-section of electron Raman scattering and the Raman gain are calculated and analysed in the case of prismatic quantum dots with equilateral triangle base shape. The study takes into account their dependencies on the size of the triangle, the influence of externally applied electric field as well as the presence of an ionized donor center located at the triangle's orthocenter. The calculations are made within the effective mass and parabolic band approximations, with a diagonalization scheme being applied to obtain the eigenfunctions and eigenvalues of the x- y Hamiltonian. The incident and secondary (scattered) radiation have been considered linearly-polarized along the y-direction, coinciding with the direction of the applied electric field. For the case with an impurity center, Raman scattering with the intermediate state energy below the initial state one has been found to show maximum differential cross-section more than by an order of magnitude bigger than that resulting from the scheme with lower intermediate state energy. The Raman gain has maximum magnitude around 35 nm dot size and electric field of 40 kV/cm for the case without impurity and at maximum considered values of the input parameters for the case with impurity. Values of Raman gain of the order of up to 104cm-1 are predicted in both cases.

  15. Measurement of Concentration Distribution of Hydrogen Gas Flow by Measuring the Intensity of Raman Scattering Light

    Science.gov (United States)

    Asahi, Ippei; Ninomiya, Hideki

    An experimental study to visualize and measure the concentration distribution of hydrogen gas flow using the Raman scattering was performed. A Nd:YAG laser of wavelength at 355 nm was used, and the beam pattern was transformed into a rectangle and a sheet beam was formed. The Raman scattered light was observed at a right angle with respect to the laser beam axis using a gated ICCD camera and an interference filter. Shadowgraph images were obtained at the same condition. The Raman scattering light image from atmospheric nitrogen was first acquired and the function of Raman scattering light acquisition and the background light suppression was confirmed. Next, images of the Raman scattering light image and shadowgraph of hydrogen gas discharged from a nozzle into the atmosphere were acquired. The two obtained Raman images were compared and the spatial concentration distribution of the flow of the hydrogen gas at different flow rates was calculated. This method is effective for visualizing the gas flow and measuring the concentration distribution of the Raman active molecules, such as hydrogen gas.

  16. Impulsive rotational Raman scattering of N2 by a remote "air laser" in femtosecond laser filament

    CERN Document Server

    Ni, Jielei; Zhang, Haisu; Zeng, Bin; Yao, Jinping; Li, Guihua; Jing, Chenrui; Xie, Hongqiang; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2014-01-01

    We report on experimental realization of impulsive rotational Raman scattering from neutral nitrogen molecules in a femtosecond laser filament using an intense self-induced white-light seeding "air laser" generated during the filamentation of an 800 nm Ti: Sapphire laser in nitrogen gas. The impulsive rotational Raman fingerprint signals are observed with a maximum conversion efficiency of ~0.8%. Our observation provides a promising way of remote identification and location of chemical species in atmosphere by rotational Raman scattering of molecules.

  17. Charged defects in chalcogenide vitreous semiconductors studied with combined Raman scattering and PALS methods

    International Nuclear Information System (INIS)

    A combination of Raman scattering and positron annihilation lifetime spectroscopy (PALS) techniques to study charged defects in chalcogenide vitreous semiconductors (ChVSs) was applied for the first time in this study. In the case of Ge15.8As21S63.2 glass, it is found that the main radiation-induced switching of heteropolar Ge-S bonds into heteropolar As-S ones, previously detected by IR fast Fourier transform spectroscopy, can also be identified by Raman spectroscopy in the depolarized configuration. Results obtained by Raman scattering are in good agreement with PALS data for the investigated glass composition

  18. Charged defects in chalcogenide vitreous semiconductors studied with combined Raman scattering and PALS methods

    Energy Technology Data Exchange (ETDEWEB)

    Kavetskyy, T.; Vakiv, M. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); Shpotyuk, O. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine)], E-mail: shpotyuk@novas.lviv.ua

    2007-04-15

    A combination of Raman scattering and positron annihilation lifetime spectroscopy (PALS) techniques to study charged defects in chalcogenide vitreous semiconductors (ChVSs) was applied for the first time in this study. In the case of Ge{sub 15.8}As{sub 21}S{sub 63.2} glass, it is found that the main radiation-induced switching of heteropolar Ge-S bonds into heteropolar As-S ones, previously detected by IR fast Fourier transform spectroscopy, can also be identified by Raman spectroscopy in the depolarized configuration. Results obtained by Raman scattering are in good agreement with PALS data for the investigated glass composition.

  19. Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances

    CERN Document Server

    Guddala, Sriram; Ramakrishna, S Anantha

    2016-01-01

    A tri-layer metamaterial perfect absorber of light, consisting of (Al/ZnS/Al) films with the top aluminium layer patterned as an array of circular disk nanoantennas, is investigated for resonantly enhancing Raman scattering from C-60 fullerene molecules deposited on the metamaterial. The metamaterial is designed to have resonant bands due to plasmonic and electromagnetic resonances at the Raman pump frequency (725 nm) as well as Stokes emission bands. The Raman scattering from C60 on the metamaterial with resonantly matched bands is measured to be enhanced by an order of magnitude more than from C60 on metamaterials with off-resonant absorption bands peaked at 1090 nm. The Raman pump is significantly enhanced due to the resonance with a propagating surface plasmon band, while the highly impedance matched electromagnetic resonance is expected to couple out the Raman emission efficiently. The nature and hybridization of the plasmonic and electromagnetic resonances to form compound resonances are investigated by...

  20. Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering

    Science.gov (United States)

    McAnally, Michael O.; McMahon, Jeffrey M.; Van Duyne, Richard P.; Schatz, George C.

    2016-09-01

    We present a coupled wave semiclassical theory to describe plasmonic enhancement effects in surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS). A key result is that the plasmon enhanced fields which drive the vibrational equation of motion for each normal mode results in dispersive lineshapes in the SE-FSRS spectrum. This result, which reproduces experimental lineshapes, demonstrates that plasmon-enhanced stimulated Raman methods provide unique sensitivity to a plasmonic response. Our derived SE-FSRS theory shows a plasmonic enhancement of |gp u|2I m {" separators="χR(ω ) gst 2 }/I m {" separators="χR(ω ) }, where |gpu|2 is the absolute square of the plasmonic enhancement from the Raman pump, χR(ω) is the Raman susceptibility, and gst is the plasmonic enhancement of the Stokes field in SE-FSRS. We conclude with a discussion on potential future experimental and theoretical directions for the field of plasmonically enhanced coherent Raman scattering.

  1. Raman Spectroscopy and Related Techniques in Biomedicine

    OpenAIRE

    Alistair Elfick; Andrew Downes

    2010-01-01

    In this review we describe label-free optical spectroscopy techniques which are able to non-invasively measure the (bio)chemistry in biological systems. Raman spectroscopy uses visible or near-infrared light to measure a spectrum of vibrational bonds in seconds. Coherent anti-Stokes Raman (CARS) microscopy and stimulated Raman loss (SRL) microscopy are orders of magnitude more efficient than Raman spectroscopy, and are able to acquire high quality chemically-specific images in seconds. We dis...

  2. High-density metallic nanogaps fabricated on solid substrates used for surface enhanced Raman scattering.

    Science.gov (United States)

    Lu, Gang; Li, Hai; Wu, Shixin; Chen, Peng; Zhang, Hua

    2012-02-01

    The Raman signal of adsorbed molecules can be significantly enhanced by utilizing metallic structures with high-density Raman hot spots used as surface enhanced Raman scattering (SERS) substrates. In this work, we develop a simple, convenient and tunable method to fabricate high-density Ag or Au nanogaps on Si wafers. These nanogaps can serve as Raman hot spots, leading to dramatic enhancement of the Raman signal. The high-density nanogaps can be formed by repeating the electroless deposition of Ag NPs (or Au NPs) and coating of p-aminothiophenol (PATP, a Raman probe) on the deposited Ag NPs (or Au NPs) through the self-assembly process. After removal of PATP by O(2) plasma, the as-fabricated SERS substrate can be reused for the detection of other molecules. PMID:22159183

  3. High-efficiency broadband anti-Stokes emission from Yb3+-doped bulk crystals.

    Science.gov (United States)

    Zhu, Siqi; Wang, Chunhao; Li, Zhen; Jiang, Wei; Wang, Yichuan; Yin, Hao; Wu, Lidan; Chen, Zhenqiang; Zhang, Ge

    2016-05-15

    We investigate the broadband anti-Stokes emission (BASE) from Yb3+-doped crystals with a laser diode (LD) pumping at 940 nm. Our experiment reveals that Yb3+-doped crystals with random cracks are able to generate bright BASE at room temperature and atmospheric pressure. By examining the various characteristics of the crystals and the emitted light, we supply a theory for interpreting the underlying physics for this variety of BASE. In particular, we take into consideration the effects of energy migration, avalanche process, and charge-transfer luminescence. This represents the first time, to the best of our knowledge, that BASE was obtained from Yb3+-doped bulk crystals with a high optical-optical efficiency. PMID:27176947

  4. Laser induced broad band anti-Stokes white emission from LiYbF4 nanocrystals

    Institute of Scientific and Technical Information of China (English)

    L. Marciniak; R. Tomala; M. Stefanski; D. Hreniak; W. Strek

    2016-01-01

    Spectroscopic properties of tetragonal LiYbF4 nanocrystals under high dense NIR excitation at vacuum condition were in-vestigated. White, broad band emission covering whole visible part of the spectrum from LiYbF4 nanocrystals was observed. Its in-tensity strongly depended on the excitation power, excitation wavelength and ambient pressure. Temperature of the nanocrystals un-der 975 nm excitation was determined as a function of excitation power. Strong photo-induced current was observed from LiYbF4 pallet. The emission kinetic was analyzed. The mechanism of the anti-Stokes white emission was discussed in terms of the la-ser-induced charge transfer emission from Yb2+ states.

  5. Nonlinear Evolutions of Stimulated Raman and Brillouin Scattering Processes in Partially Stripped-Ion Plasmas

    Institute of Scientific and Technical Information of China (English)

    胡业民; 胡希伟

    2001-01-01

    Numerical analyses for the nonlinear evolutions of stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) processes are given. Various effects of the second- and third-order nonlinear susceptibilities on the SRS and SBS processes are studied. The nonlinear evolutions of SRS and SBS processes are atfected more efficiently than their linear growth rates by the nonlinear susceptibility.

  6. Influence of Stimuled Raman Scattering on Transmitted Optical Signal in WDM System

    Directory of Open Access Journals (Sweden)

    Ján Ružbarský

    2015-12-01

    Full Text Available Paper is focused on simulations behavior of signals in high-speed networks. Huge amount of transmitted information and increase in transmission speed create unwanted events in optical fiber. The main influences comprise effects such as: stimulated Raman scattering and stimulated Brillouin scattering. This paper is focused only on Raman scattering. For transmitting a signal through optical fiber one needs to select an appropriate wavelength. This is one of goals the experiment in this article. Signals were transmitted accordance with Dense Wavelength Division Multiplexing (DWDM and spacing among channels 100GHz.

  7. Anomalous lattice vibrations of monolayer MoS 2 probed by ultraviolet Raman scattering

    KAUST Repository

    Liu, Hsiang Lin

    2015-01-01

    We present a comprehensive Raman scattering study of monolayer MoS2 with increasing laser excitation energies ranging from the near-infrared to the deep-ultraviolet. The Raman scattering intensities from the second-order phonon modes are revealed to be enhanced anomalously by only the ultraviolet excitation wavelength 354 nm. We demonstrate theoretically that such resonant behavior arises from a strong optical absorption that forms near the Γ point and of the band structure and an inter-valley resonant electronic scattering by the M-point phonons. These results advance our understanding of the double resonance Raman scattering process in low-dimensional semiconducting nanomaterials and provide a foundation for the technological development of monolayer MoS2 in the ultraviolet frequency range. © the Owner Societies 2015.

  8. Simulation of Stimulated Brillouin Scattering and Stimulated Raman Scattering In Shock Ignition

    CERN Document Server

    Hao, L; Liu, W D; Yan, R; Ren, C

    2016-01-01

    We study stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) in shock ignition by comparing fluid and PIC simulations. Under typical parameters for the OMEGA experiments [Theobald \\emph{et al}., Phys. Plasmas \\textbf{19}, 102706 (2012)], a series of 1D fluid simulations with laser intensities ranging between 2$\\times$10$^{15}$ and 2$\\times$10$^{16}$ W/cm$^2$ finds that SBS is the dominant instability, which increases significantly with the incident intensity. Strong pump depletion caused by SBS and SRS limits the transmitted intensity at the 0.17n$_c$ to be less than 3.5$\\times$10$^{15}$ W/cm$^2$. The PIC simulations show similar physics but with higher saturation levels for SBS and SRS convective modes and stronger pump depletion due to higher seed levels for the electromagnetic fields in PIC codes. Plasma flow profiles are found to be important in proper modeling of SBS and limiting its reflectivity in both the fluid and PIC simulations.

  9. Enhanced Raman scattering of graphene on Ag nanoislands

    Institute of Scientific and Technical Information of China (English)

    HU Wei; HUANG ZhiYi; ZHOU YingHui; CAI WeiWei; KANG JunYong

    2014-01-01

    The effect of Ag nanoislands on the Raman of graphene was investigated in this work.Compared with that on the bare silicon wafer,Raman enhancement was observed in the graphene film that covered on Ag/Si surface with nanoscale Ag islands,which would be induced by the localized plasmon resonance in Ag nanostructures.The interaction between the graphene sheet and Ag/Si substrate was further studied.The peak shift and line shape of Raman spectroscopy indicated a nonuniform strain distribution in the Ag/Si supported graphene film.

  10. Time-gated optical imaging through turbid media using stimulated Raman scattering: Studies on image contrast

    Indian Academy of Sciences (India)

    K Divakar Rao; H S Patel; B Jain; P K Gupta

    2005-02-01

    In this paper, we report the development of experimental set-up for timegated optical imaging through turbid media using stimulated Raman scattering. Our studies on the contrast of time-gated images show that for a given optical thickness, the image contrast is better for sample with lower scattering coefficient and higher physical thickness, and that the contrast improves with decreasing value of anisotropy parameters of the scatterers. These results are consistent with time-resolved Monte Carlo simulations.

  11. Raman Scattering at Resonant or Near-Resonant Conditions: A Generalized Short-Time Approximation

    Institute of Scientific and Technical Information of China (English)

    Abdelsalam Mohammed; Yu-Ping Sun; Quan Miao; Hans (A)gren; Faris Gel'mukhanov

    2012-01-01

    We investigate the dynamics of resonant Raman scattering in the course of the frequency detuning.The dephasing in the time domain makes the scattering fast when the photon energy is tuned from the absorption resonance.This makes frequency detuning to act as a camera shutter with a regulated scattering duration and provides a practical tool of controlling the scattering time in ordinary stationary measurements.The theory is applied to resonant Raman spectra of a couple of few-mode model systems and to trans-1,3,5-hexatriene and guanine-cytosine (G-C) Watson-Crick base pairs (DNA) molecules.Besides some particular physical effects,the regime of fast scattering leads to a simplification of the spectrum as well as to the scattering theory itself.Strong overtones appear in the Raman spectra when the photon frequency is tuned in the resonant region,while in the mode of fast scattering,the overtones are gradually quenched when the photon frequency is tuned more than one vibrational quantum below the first absorption resonance.The detuning from the resonant region thus leads to a strong purification of the Raman spectrum from the contamination by higher overtones and soft modes and purifies the spectrum also in terms of avoidance of dissociation and interfering fluorescence decay of the resonant state.This makes frequency detuning a very useful practical tool in the analysis of the resonant Raman spectra of complex systems and considerably improves the prospects for using the Raman effect for detection of foreign substances at ultra-low concentrations.

  12. Advantages and Artifacts of Higher Order Modes in Nanoparticle Enhanced Back-Scattering Raman Imaging

    OpenAIRE

    Schultz, Zachary D.; Stephan J. Stranick; Levin, Ira W.

    2009-01-01

    In order to facilitate nanoparticle enhanced Raman imaging of complicated biological specimens, we have examined the use of higher order modes with radial and azimuthal polarizations focused onto a Au nanoparticle AFM tip utilizing a back-scattering reflection configuration. When comparing the Raman intensity profiles with the observed sample topography, the radial polarized configuration demonstrates enhanced spatial resolution. This enhanced resolution results from the direction of the indu...

  13. Hyper-Raman scattering and three-photon resonant ionization: Competitive effects

    International Nuclear Information System (INIS)

    A semiclassical theory of hyper-Raman scattering and three-photon resonant ionization via the coupled density-matrix and Maxwell equations is presented. A simplified three-level atom model is obtained, which includes two-photon resonant pumping and time dependent photoionization rates. We consider conditions typically encountered in atomic vapours to simulate numerically pulse propagation. A strong depletion of the photoionization probability in the hyper-Raman field saturation regime is predicted. (author). 17 refs, 8 figs

  14. Ultra thin films of nanocrystalline Ge studied by AFM and interference enhanced Raman scattering

    OpenAIRE

    Balaji, S.; S. Mohan; Muthu, DVS; Sood, AK

    2003-01-01

    Initial growth stages of the ultra thin films of germanium (Ge) prepared by ion beam sputter deposition have been studied using atomic force microscope (AFM) and interference enhanced Raman scattering. The growth of the films follows Volmer–Weber growth mechanism. Analysis of the AFM images shows that Ostwald ripening of the grains occurs as the thickness of the film increases. Raman spectra of the Ge films reveal phonon confinement along the growth direction and show that the misfit str...

  15. Electroless Gold-Modified Diatoms as Surface-Enhanced Raman Scattering Supports

    Science.gov (United States)

    Pannico, Marianna; Rea, Ilaria; Chandrasekaran, Soundarrajan; Musto, Pellegrino; Voelcker, Nicolas H.; De Stefano, Luca

    2016-06-01

    Porous biosilica from diatom frustules is well known for its peculiar optical and mechanical properties. In this work, gold-coated diatom frustules are used as low-cost, ready available, functional support for surface-enhanced Raman scattering. Due to the morphology of the nanostructured surface and the smoothness of gold deposition via an electroless process, an enhancement factor for the p-mercaptoaniline Raman signal of the order of 105 is obtained.

  16. Impulsive rotational Raman scattering of N2 by a remote "air laser" in femtosecond laser filament

    OpenAIRE

    Ni, Jielei; Chu, Wei; Zhang, Haisu; Zeng, Bin; Yao, Jinping; Li, Guihua; Jing, Chenrui; Xie, Hongqiang; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2014-01-01

    We report on experimental realization of impulsive rotational Raman scattering from neutral nitrogen molecules in a femtosecond laser filament using an intense self-induced white-light seeding "air laser" generated during the filamentation of an 800 nm Ti: Sapphire laser in nitrogen gas. The impulsive rotational Raman fingerprint signals are observed with a maximum conversion efficiency of ~0.8%. Our observation provides a promising way of remote identification and location of chemical specie...

  17. Electroless Gold-Modified Diatoms as Surface-Enhanced Raman Scattering Supports.

    Science.gov (United States)

    Pannico, Marianna; Rea, Ilaria; Chandrasekaran, Soundarrajan; Musto, Pellegrino; Voelcker, Nicolas H; De Stefano, Luca

    2016-12-01

    Porous biosilica from diatom frustules is well known for its peculiar optical and mechanical properties. In this work, gold-coated diatom frustules are used as low-cost, ready available, functional support for surface-enhanced Raman scattering. Due to the morphology of the nanostructured surface and the smoothness of gold deposition via an electroless process, an enhancement factor for the p-mercaptoaniline Raman signal of the order of 10(5) is obtained. PMID:27356562

  18. A study of surface enhanced Raman scattering for furfural adsorbed on silver surface

    Science.gov (United States)

    Jia, Ting-jian; Li, Peng-wei; Shang, Zhi-guo; Zhang, Ling; He, Ting-chao; Mo, Yu-jun

    2008-02-01

    The normal Raman spectrum (NRS) and the surface enhanced Raman scattering (SERS) spectrum of furfural in silver colloid were recorded and analyzed in this paper. The assignment of these bands to furfural molecules was performed by density functional theory (DFT) calculation. The data of the SERS by comparing with the one of NRS show that furfural molecules are adsorbed on the silver surface via the nonbonding electrons of the carbonyl oxygen.

  19. Raman scattering from a superconductivity-induced bound state in MgB2.

    Science.gov (United States)

    Zeyher, R

    2003-03-14

    It is shown that the sharp peak in the E(2g) Raman spectrum of superconducting MgB2 is due to a bound state caused by the electron-phonon coupling. Our theory explains why this peak appears only in the spectra with E(2g) symmetry and only in the sigma but not the pi bands. The properties of the bound state and the Raman spectrum are investigated, also in the presence of impurity scattering.

  20. Optical wavefront shaping for the enhancement of Raman signal in scattering media

    Science.gov (United States)

    Thompson, Jonathan V.; Throckmorton, Graham A.; Hokr, Brett H.; Yakovlev, Vladislav V.

    2016-03-01

    The ability to non-invasively focus light through scattering media has significant applications in many fields ranging from nanotechnology to deep tissue sensing. Until recently, the multiple light scattering events that occur in complex media such as biological tissue have inhibited the focusing ability and penetration depth of optical tools. Through the use of optical wavefront shaping, the spatial distortions due to these scattering events can be corrected, and the incident light can be focused through the scattering medium. Here, we demonstrate that wavefront shaping can be used to non-invasively enhance the Raman signal of a material through a scattering medium. Raman signal enhancement was achieved using backscattered light and a continuous sequential algorithm. Our results show the potential of wavefront shaping as an important addition to non-invasive detection techniques.

  1. Simultaneous stimulated Raman forward and backward scattering in hot, well-underdense plasmas

    International Nuclear Information System (INIS)

    The competition of stimulated Raman forward scattering and backscattering in a high-temperature, underdense, nearly homogeneous plasma slab is investigated. In such plasmas Landau damping limits the growth of the Raman backscattering, and the weaker forward process may reach comparable levels. A modest seeding of one of the scattered electromagnetic waves influences the competition to a large extent. The conversion of the pump wave to scattered waves is calculated. The simultaneous operation of the two processes can lead to considerable modifications in the electron distribution; e.g., two hot tail components are formed because the plasma waves involved have different phase velocities. The generation regions of the scattering processes are spatially separated. Consequently, a large number of thermal electrons can be accelerated to very high energies in two stages. The backward plasmons preaccelerate the electrons and the faster plasmons, excited in the forward scattering, operate as a booster. (Author)

  2. Implementation of Rotational Raman Channel in Multiwavelength Aerosol Lidar to Improve Measurements of Particle Extinction and Backscattering at 532 NM

    Directory of Open Access Journals (Sweden)

    Veselovskii Igor

    2016-01-01

    Full Text Available We describe a practical implementation of rotational Raman (RR measurements in an existing Mie-Raman lidar to obtain measurements of aerosol extinction and backscattering at 532 nm. A 2.3 nm width interference filter was used to select a spectral range characterized by low temperature sensitivity within the anti-Stokes branch of the RR spectrum. Simulations demonstrate that the temperature dependence of the scattering cross section does not exceed 1.0% in the 230-300K range making accurate correction for this dependence quite easy. With this upgrade, the NASA/GSFC multiwavelength Raman lidar has demonstrated useful α532 measurements and was used for regular observations. Examples of lidar measurements and inversion of optical data to the particle microphysics will be given in presentation.

  3. Surface-enhanced Raman scattering from AgNP-graphene-AgNP sandwiched nanostructures

    Science.gov (United States)

    Wu, Jian; Xu, Yijun; Xu, Pengyu; Pan, Zhenghui; Chen, Sheng; Shen, Qishen; Zhan, Li; Zhang, Yuegang; Ni, Weihai

    2015-10-01

    We developed a facile approach toward hybrid AgNP-graphene-AgNP sandwiched structures using self-organized monolayered AgNPs from wet chemical synthesis for the optimized enhancement of the Raman response of monolayer graphene. We demonstrate that the Raman scattering of graphene can be enhanced 530 fold in the hybrid structure. The Raman enhancement is sensitively dependent on the hybrid structure, incident angle, and excitation wavelength. A systematic simulation is performed, which well explains the enhancement mechanism. Our study indicates that the enhancement resulted from the plasmonic coupling between the AgNPs on the opposite sides of graphene. Our approach towards ideal substrates offers great potential to produce a ``hot surface'' for enhancing the Raman response of two-dimensional materials.We developed a facile approach toward hybrid AgNP-graphene-AgNP sandwiched structures using self-organized monolayered AgNPs from wet chemical synthesis for the optimized enhancement of the Raman response of monolayer graphene. We demonstrate that the Raman scattering of graphene can be enhanced 530 fold in the hybrid structure. The Raman enhancement is sensitively dependent on the hybrid structure, incident angle, and excitation wavelength. A systematic simulation is performed, which well explains the enhancement mechanism. Our study indicates that the enhancement resulted from the plasmonic coupling between the AgNPs on the opposite sides of graphene. Our approach towards ideal substrates offers great potential to produce a ``hot surface'' for enhancing the Raman response of two-dimensional materials. Electronic supplementary information (ESI) available: Additional SEM images, electric field enhancement profiles, Raman scattering spectra, and structure-dependent peak ratios. See DOI: 10.1039/c5nr04500b

  4. Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Russo, V.; Ghidelli, M.; Gondoni, P. [Dipartimento di Energia and NEMAS, Center for Nanoengineered Materials and Surfaces, Politecnico di Milano, via Ponzio 34/3, I-20133 Milano (Italy); Casari, C. S.; Li Bassi, A. [Dipartimento di Energia and NEMAS, Center for Nanoengineered Materials and Surfaces, Politecnico di Milano, via Ponzio 34/3, I-20133 Milano (Italy); Center for Nano Science and Technology PoliMI, Istituto Italiano di Tecnologia, Via Pascoli 70/3, I-20133 Milano (Italy)

    2014-02-21

    In this work we present a detailed Raman scattering investigation of zinc oxide and aluminum-doped zinc oxide (AZO) films characterized by a variety of nanoscale structures and morphologies and synthesized by pulsed laser deposition under different oxygen pressure conditions. The comparison of Raman spectra for pure ZnO and AZO films with similar morphology at the nano/mesoscale allows to investigate the relation between Raman features (peak or band positions, width, relative intensity) and material properties such as local structural order, stoichiometry, and doping. Moreover Raman measurements with three different excitation lines (532, 457, and 325 nm) point out a strong correlation between vibrational and electronic properties. This observation confirms the relevance of a multi-wavelength Raman investigation to obtain a complete structural characterization of advanced doped oxide materials.

  5. Biophotonics of skin: method for correction of deep Raman spectra distorted by elastic scattering

    Science.gov (United States)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Gobinet, Cyril; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Confocal Raman microspectroscopy allows in-depth molecular and conformational characterization of biological tissues non-invasively. Unfortunately, spectral distortions occur due to elastic scattering. Our objective is to correct the attenuation of in-depth Raman peaks intensity by considering this phenomenon, enabling thus quantitative diagnosis. In this purpose, we developed PDMS phantoms mimicking skin optical properties used as tools for instrument calibration and data processing method validation. An optical system based on a fibers bundle has been previously developed for in vivo skin characterization with Diffuse Reflectance Spectroscopy (DRS). Used on our phantoms, this technique allows checking their optical properties: the targeted ones were retrieved. Raman microspectroscopy was performed using a commercial confocal microscope. Depth profiles were constructed from integrated intensity of some specific PDMS Raman vibrations. Acquired on monolayer phantoms, they display a decline which is increasing with the scattering coefficient. Furthermore, when acquiring Raman spectra on multilayered phantoms, the signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties of any biological sample, obtained with DRS for example, is crucial to correct properly Raman depth profiles. A model, inspired from S.L. Jacques's expression for Confocal Reflectance Microscopy and modified at some points, is proposed and tested to fit the depth profiles obtained on the phantoms as function of the reduced scattering coefficient. Consequently, once the optical properties of a biological sample are known, the intensity of deep Raman spectra distorted by elastic scattering can be corrected with our reliable model, permitting thus to consider quantitative studies for purposes of characterization or diagnosis.

  6. Dramatic Raman Gain Suppression in the Vicinity of the Zero Dispersion Point in Gas-Filled Hollow-Core Photonic Crystal Fiber

    CERN Document Server

    Bauerschmidt, Sebastian T; Russell, Philip St J

    2015-01-01

    In 1964 Bloembergen and Shen predicted that Raman gain could be suppressed if the rates of phonon creation and annihilation (by inelastic scattering) exactly balance. This is only possible if the momentum required for each process is identical, i.e., phonon coherence waves created by pump-to-Stokes scattering are identical to those annihilated in pump-to-anti-Stokes scattering. In bulk gas cells, this can only be achieved over limited interaction lengths at an oblique angle to the pump axis. Here we report a simple system that provides dramatic Raman gain suppression over long collinear path-lengths in hydrogen. It consists of a gas-filled hollow-core photonic crystal fiber whose zero dispersion point is pressure-adjusted to lie close to the pump laser wavelength. At a certain precise pressure, generation of Stokes light in the fundamental mode is completely suppressed, allowing other much weaker nonlinear processes to be explored.

  7. Surface-enhanced Raman scattering from finite arrays of gold nano-patches

    International Nuclear Information System (INIS)

    We experimentally investigate the surface-enhanced Raman scattering (SERS) response of a 2D-periodic array of square gold nano-patches, functionalized by means of a conjugated, rigid thiol. We measure a Raman signal enhancement up to 200 times more intense compared to other plasmon-based nanostructures functionalized with the same molecule, and show that the enhancement is not strictly correlated to the presence of plasmonic resonances. The agreement between experimental and theoretical results reveals the importance of a full-wave analysis based on the inclusion of the actual scattering cross section of the molecule. The proposed numerical approach may serve not only as a tool to predict the enhancement of Raman signal scattered from strongly resonant nanostructure but also as an effective instrument to engineer SERS platforms that target specific molecules.

  8. Amplification effect on SBS and Rayleigh scattering in the backward pumped distributed fiber Raman amplifier

    Institute of Scientific and Technical Information of China (English)

    Zaixuan Zhang; Huaping Gong

    2009-01-01

    The amplification effect on stimulated Brillouin scattering(SBS)and Rayleigh scattering in the backward pumped G652 fiber Raman amplifier(FRA)is studied.The pump source is a 1427.2-nm fiber Raman laser whose power is tunable between 0-1200 mW,and the signal source is a tunable narrow spectral bandwidth(<10 MHz)external cavity laser(ECL).The Rayleigh scattering lines are amplified by the FRA and Stokes SBS lines are amplified by the FRA and the fiber Brillouin amplifier.The total gain of SBS lines is the production of the gain of Raman amplifier and that of Brillouin amplifier.In experiment,the SBS gain is about 42 dB and the saturation gain of 25-km G652 backward FRA is about 25 dB,so the gain of fiber Brillouin amplifier is about 17 dB.

  9. High-sensitivity pesticide detection using particle-enhanced resonant Raman scattering

    Science.gov (United States)

    Ranjan, Bikas; Saito, Yuika; Verma, Prabhat

    2016-03-01

    The use of pesticides in agriculture has raised concerns, as even a small residual of pesticide on food can be harmful. It is therefore of great importance to develop a robust technique to detect tiny amounts of pesticides. Although Raman spectroscopy is frequently used for chemical identification, it is not suitable for extremely low molecular concentrations. We propose a technique called particle-enhanced resonant Raman spectroscopy to detect extremely low concentrations of pesticides, where gold nanoparticles of desired plasmonic resonance are synthesized to match the resonance in Raman scattering. We successfully demonstrated the detection of extremely low amounts of pesticides on oranges.

  10. Frabrication of Au Nanoparticles in Various Shapes and Their Application in Surface-enhanced Raman Scattering

    Institute of Scientific and Technical Information of China (English)

    Chen-yang XUE; Hui-juan WANG; Yong-feng LIANG; Rong CHEN; Jun LIU

    2010-01-01

    Anisotropic metallic Nanoparticles (NPs) have unique optical properties, such as Surface Enhanced Raman Scattering (SERS)spectroscopy. In this paper, star-shaped and sphere gold NPs were prepared by seed-mediated growth and Frence methods respectively. The reaction process and the effect of reagent in seed-mediated growth of gold nanostar particles were systematically described. After fabricating NPs the authors test their Raman enhancement using Crystal Violet (CV) molecules apart. The experimental results indicated that star-shaped Au NPs had stronger Raman enhancement spectrum than that of sphere Au NPs.

  11. Stimulated Raman scattering in soft glass fluoride fibers

    DEFF Research Database (Denmark)

    Petersen, Christian; Dupont, Sune Vestergaard Lund; Agger, Christian;

    2011-01-01

    We have measured the absolute Raman gain spectrum in short fluoride soft glass fibers with a pump wavelength of 1650 nm. We found a peak gain of gR=4.0±2×10−14 m W−1.......We have measured the absolute Raman gain spectrum in short fluoride soft glass fibers with a pump wavelength of 1650 nm. We found a peak gain of gR=4.0±2×10−14 m W−1....

  12. Stimulated Raman scattering in soft glass fluoride fibers

    DEFF Research Database (Denmark)

    Petersen, Christian; Dupont, Sune; Agger, Christian;

    2011-01-01

    We have measured the absolute Raman gain spectrum in short fluoride soft glass fibers with a pump wavelength of 1650nm. We found a peak gain of gR ¼ 4:0 2 × 10−14mW−1.......We have measured the absolute Raman gain spectrum in short fluoride soft glass fibers with a pump wavelength of 1650nm. We found a peak gain of gR ¼ 4:0 2 × 10−14mW−1....

  13. Accurate and Approximate Calculations of Raman Scattering in the Atmosphere of Neptune

    CERN Document Server

    Sromovsky, Lawrence

    2015-01-01

    Raman scattering by H$_2$ in Neptune's atmosphere has significant effects on its reflectivity for $\\lambda <$ 0.5 $\\mu$m, producing baseline decreases of $\\sim$ 20% in a clear atmosphere and $\\sim$ 10% in a hazy atmosphere. Here we present the first radiation transfer algorithm that includes both polarization and Raman scattering and facilitates computation of spatially resolved spectra. New calculations show that Cochran and Trafton's (1978, Astrophys. J. 219, 756-762) suggestion that light reflected in the deep CH$_4$ bands is mainly Raman scattered is not valid for current estimates of the CH$_4$vertical distribution, which implies only a 4% Raman contribution. Comparisons with IUE, HST, and groundbased observations confirm that high altitude haze absorption is reducing Neptune's geometric albedo by $\\sim$6% in the 0.22-0.26 $\\mu$m range and by $\\sim$13% in the 0.35-0.45 $\\mu$m range. We used accurate calculations to evaluate several approximations of Raman scattering. The Karkoschka (1994, Icarus 111, ...

  14. Time-encoded Raman scattering (TICO-Raman) with Fourier domain mode locked (FDML) lasers

    Science.gov (United States)

    Karpf, Sebastian; Eibl, Matthias; Wieser, Wolfgang; Klein, Thomas; Huber, Robert

    2015-07-01

    We present a new concept for performing stimulated Raman spectroscopy and microscopy by employing rapidly wavelength swept Fourier Domain Mode locked (FDML) lasers [1]. FDML lasers are known for fastest imaging in swept-source optical coherence tomography [2, 3]. We employ this continuous and repetitive wavelength sweep to generate broadband, high resolution stimulated Raman spectra with a new, time-encoded (TICO) concept [4]. This allows for encoding and detecting the stimulated Raman gain on the FDML laser intensity directly in time. Therefore we use actively modulated pump lasers, which are electronically synchronized to the FDML laser, in combination with a fast analog-to-digital converter (ADC) at 1.8 GSamples/s. We present hyperspectral Raman images with color-coded, molecular contrast.

  15. One phonon resonant Raman scattering in semiconductor quantum wires: Magnetic field effect

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt-Riera, Re., E-mail: rbriera@posgrado.cifus.uson.mx [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonor, (Mexico); Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico); Betancourt-Riera, Ri. [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonora (Mexico); Nieto Jalil, J.M. [Tecnologico de Monterrey-Campus Sonora Norte, Bulevar Enrique Mazon Lopez No. 965, C.P. 83000, Hermosillo, Sonora (Mexico); Riera, R. [Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico)

    2013-02-01

    We have developed a theory of one phonon resonant Raman scattering in a semiconductor quantum wire of cylindrical geometry in the presence of an external magnetic field distribution, parallel to the cylinder axis. The effect of the magnetic field in the electron and hole states, and in the Raman scattering efficiency, is determinate. We consider the electron-phonon interaction using a Froehlich-type Hamiltonian, deduced for the case of complete confinement phonon modes by Comas and his collaborators. We also assume T=0 K, a single parabolic conduction and valence bands. The spectra are discussed for different magnetic field values and the selection rules for the processes are also studied.

  16. Raman Scattering Spectrum Analysis of GaP and Its Luminous Materials①②

    Institute of Scientific and Technical Information of China (English)

    ZHANGFujia; QILi; 等

    1997-01-01

    The Raman scattering spectra of n-type GaP(doped S) single crystal and red and green luminous materials grown on the n-type GaP(doped S)single crystal substrate by liquid-phase epitaxy are analyed.The results show that the spectra of GaP single crystal and its luminous materials include not only the first-order longitudinal optical photons and transverse optical phonons Raman scattering peaks,but also the peaks of the bound excitons,bound electrons and bound holes.

  17. Asphaltene detection using surface enhanced Raman scattering (SERS).

    Science.gov (United States)

    Alabi, O O; Edilbi, A N F; Brolly, C; Muirhead, D; Parnell, J; Stacey, R; Bowden, S A

    2015-04-28

    Surface enhanced Raman spectroscopy using a gold substrate and excitation at 514 nm can detect sub parts per million quantities of asphaltene and thereby petroleum. This simple format and sensitivity make it transformative for applications including sample triage, flow assurance, environmental protection and analysis of unique one of a kind materials. PMID:25812164

  18. X-ray Raman scattering with Bragg diffraction in a La-based superlattice

    OpenAIRE

    André, Jean-Michel; Jonnard, Philippe; Bonnelle, Christiane; O. Filatova, E.; Michaelsen, C.; Wiesmann, J

    2005-01-01

    11 pages The non-dispersed soft x-ray emission from a La/B4C periodic multilayer irradiated by monochromatic x-rays has been measured as a function of the incident photon energy in the 125-200 eV range for different scattering angles. We have observed a scattered intensity peak at incident energies which shift towards the low-energy side as the value of the scattering angle increases. These observations are interpreted as Raman scattering by the 5p level of lanthanum assisted by Bragg diff...

  19. Resonant Raman scattering theory for Kitaev models and their Majorana fermion boundary modes

    Science.gov (United States)

    Perreault, Brent; Knolle, Johannes; Perkins, Natalia B.; Burnell, F. J.

    2016-09-01

    We study the inelastic light scattering response in two- (2D) and three-dimensional (3D) Kitaev spin-liquid models with Majorana spinon band structures in the symmetry classes BDI and D leading to protected gapless surface modes. We present a detailed calculation of the resonant Raman/Brillouin scattering vertex relevant to iridate and ruthenate compounds whose low-energy physics is believed to be proximate to these spin-liquid phases. In the symmetry class BDI, we find that while the resonant scattering on thin films can detect the gapless boundary modes of spin liquids, the nonresonant processes do not couple to them. For the symmetry class D, however, we find that the coupling between both types of light-scattering processes and the low-energy surface states is strongly suppressed. Additionally, we describe the effect of weak time-reversal symmetry breaking perturbations on the bulk Raman response of these systems.

  20. Raman scattering evidence of hydrohalite formation on frozen yeast cells

    CERN Document Server

    Okotrub, K A

    2012-01-01

    We studied yeast cells in physiological solution during freezing by Raman microspectroscopy technique. The purpose was to find out the origin of a sharp peak near ~3430 cm^-1 in Raman spectrum of frozen mammalian cells, observed earlier (J. Dong et al, Biophys. J., 99 (2010) 2453), which presumably could be used as an indicator of intracellar ice appearance. We have shown that this line (actually doublet of 3408 and 3425 cm^-1) corresponds to Raman spectrum of hydrohalite (NaCl-2H2O), which is formed as the result of the eutectic crystallization of the liquid solution around the cells. We also show that the spatial distribution of hydrohalite in the sample significantly depends on the cooling rate. At lower cooling rate (1{\\deg}C/min), products of eutectic crystallization form layer on the cell surface which thickness varies for different cells and can reach ~1 {\\mu}m in thickness. At higher cooling rate (20{\\deg}C/min), the hydrohalite distribution appears more homogeneous, in the sample, and the eutectic cr...

  1. Theory of Raman Scattering by Phonons in Germanium Nanostructures

    Directory of Open Access Journals (Sweden)

    Wang-Chen Chumin

    2007-01-01

    Full Text Available AbstractWithin the linear response theory, a local bond-polarization model based on the displacement–displacement Green’s function and the Born potential including central and non-central interatomic forces is used to investigate the Raman response and the phonon band structure of Ge nanostructures. In particular, a supercell model is employed, in which along the [001] direction empty-column pores and nanowires are constructed preserving the crystalline Ge atomic structure. An advantage of this model is the interconnection between Ge nanocrystals in porous Ge and then, all the phonon states are delocalized. The results of both porous Ge and nanowires show a shift of the highest-energy Raman peak toward lower frequencies with respect to the Raman response of bulk crystalline Ge. This fact could be related to the confinement of phonons and is in good agreement with the experimental data. Finally, a detailed discussion of the dynamical matrix is given in the appendix section.

  2. Raman scattering in sodium nitrite crystals near the phase transition

    Science.gov (United States)

    Gorelik, V. S.; Pyatyshev, A. Yu.; Krylov, A. S.

    2016-01-01

    Optical Raman spectra of a ferroelectric sodium nitrite crystal have been detected in a wide spectrum range at various temperatures, including the region of the ferroelectric phase transition. A manifestation of a transverse soft polar mode of the A 1( z) type responsible for the ferroelectric phase transition has been discovered in the spectrum at room temperature. This mode has been found to become overdamped even far from the ferroelectric phase transition temperature. This mode also appears as a central peak under heating. It has been found that the pseudoscalar mode of the A 2 type has the highest intensity in the Raman spectrum of sodium nitrite. The frequency corresponding to the maximum intensity of this mode in the Raman spectrum varies from 130 cm-1 at 123 K to 106 cm-1 at T = 513 K. A fair agreement of the experimental data for the A 1( z) mode with the Lyddane-Sachs-Teller relation has been established. The polariton curves for the A 1( z) polar mode and the dispersion curves for axinons has been plotted.

  3. Single-Beam Coherent Raman Spectroscopy and Microscopy via Spectral Notch Shaping

    CERN Document Server

    Katz, Ori; Grinvald, Eran; Silberberg, Yaron

    2010-01-01

    Raman spectroscopy is one of the key techniques in the study of vibrational modes and molecular structures. In Coherent Anti-Stokes Raman Scattering (CARS) spectroscopy, a molecular vibrational spectrum is resolved via the third-order nonlinear interaction of pump, Stokes and probe photons, typically using a complex experimental setup with multiple beams and laser sources. Although CARS has become a widespread technique for label-free chemical imaging and detection of contaminants, its multi-source, multi-beam experimental implementation is challenging. In this work we present a simple and easily implementable scheme for performing single-beam CARS spectroscopy and microscopy using a single femtosecond pulse, shaped by a tunable narrowband notch filter. As a substitute for multiple sources, the single broadband pulse simultaneously provides the pump, Stokes and probe photons, exciting a broad band of vibrational levels. High spectroscopic resolution is obtained by utilizing a tunable spectral notch, shaped wi...

  4. Resonance surface enhanced Raman optical activity of myoglobin as a result of optimized resonance surface enhanced Raman scattering conditions

    DEFF Research Database (Denmark)

    Abdali, Salim; Johannessen, Christian; Nygaard, Jesper;

    2007-01-01

    Using Surface enhanced ROA (SEROA), novel results are achieved by combining Raman Optical Activity (ROA) and resonance Surface Enhanced Raman Scattering (SERRS), applied on myoglobin. The novelty of this work is ascribed the first time reporting on chiral results of a study performed on a protein...... has shown that the SERS effect behaves consequently, depending on the concentration ratio of each component, i.e., myoglobin, Ag colloids and NaCl. Accordingly, it is shown here that SERS intensity has its maximum at certain concentration of these components, whereas below or above this value......, the intensity decreases. The optimization results can be considered as a completion of the hitherto known phenomenon "dilution effect", which takes only account for higher concentrations. Furthermore, the optimization of the parameters seems to be necessary for a successful SEROA measurement, which enables...

  5. Rapid detection of benzoyl peroxide in wheat flour by using Raman scattering spectroscopy

    Science.gov (United States)

    Zhao, Juan; Peng, Yankun; Chao, Kuanglin; Qin, Jianwei; Dhakal, Sagar; Xu, Tianfeng

    2015-05-01

    Benzoyl peroxide is a common flour additive that improves the whiteness of flour and the storage properties of flour products. However, benzoyl peroxide adversely affects the nutritional content of flour, and excess consumption causes nausea, dizziness, other poisoning, and serious liver damage. This study was focus on detection of the benzoyl peroxide added in wheat flour. A Raman scattering spectroscopy system was used to acquire spectral signal from sample data and identify benzoyl peroxide based on Raman spectral peak position. The optical devices consisted of Raman spectrometer and CCD camera, 785 nm laser module, optical fiber, prober, and a translation stage to develop a real-time, nondestructive detection system. Pure flour, pure benzoyl peroxide and different concentrations of benzoyl peroxide mixed with flour were prepared as three sets samples to measure the Raman spectrum. These samples were placed in the same type of petri dish to maintain a fixed distance between the Raman CCD and petri dish during spectral collection. The mixed samples were worked by pretreatment of homogenization and collected multiple sets of data of each mixture. The exposure time of this experiment was set at 0.5s. The Savitzky Golay (S-G) algorithm and polynomial curve-fitting method was applied to remove the fluorescence background from the Raman spectrum. The Raman spectral peaks at 619 cm-1, 848 cm-1, 890 cm-1, 1001 cm-1, 1234 cm-1, 1603cm-1, 1777cm-1 were identified as the Raman fingerprint of benzoyl peroxide. Based on the relationship between the Raman intensity of the most prominent peak at around 1001 cm-1 and log values of benzoyl peroxide concentrations, the chemical concentration prediction model was developed. This research demonstrated that Raman detection system could effectively and rapidly identify benzoyl peroxide adulteration in wheat flour. The experimental result is promising and the system with further modification can be applicable for more products in near

  6. CuO-chain Raman scattering and photoinduced metastability in YBa2Cu3Ox

    DEFF Research Database (Denmark)

    Käll, M.; Osada, M.; Kakihana, M.;

    1998-01-01

    Raman measurements in YBa2Cu3Ox (x=6.72-6.82) high-T-c superconductors reveal intense phonon scattering due to an electronic resonance localized near oxygen vacancies on the CuO chains. Below room temperature the resonance can be photobleached in a manner similar to reported persistent photoinduc...... superconductivity effects, indicating photon-assisted oxygen ordering or electron vacancy capture. By comparing Raman and x-ray diffraction data we establish a correlation between the stability of the photoinduced state and the oxygen-ordering kinetics in the CuO chains.......Raman measurements in YBa2Cu3Ox (x=6.72-6.82) high-T-c superconductors reveal intense phonon scattering due to an electronic resonance localized near oxygen vacancies on the CuO chains. Below room temperature the resonance can be photobleached in a manner similar to reported persistent photoinduced...

  7. Simulations and analysis of the Raman scattering and differential Raman scattering/Raman optical activity (ROA) spectra of amino acids, peptides and proteins in aqueous solution

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R. M.; Bohr, Jakob

    2000-01-01

    The Raman and Raman optical activity (ROA) spectra of amino acids and small peptides in aqueous solution have been simulated by density functional theory and restricted Hartree/Fock methods. The treatment of the aqueous environment in treated in two ways. The water molecules in the first hydration...... shell which strongly interact with the molecule are treated explicitly while the waters in the bulk are treated by a continuum model. The structures are optimized and the harmonic force elds are calculated. The derivatives needed to simulate the Raman and ROA intensities are calculated from first...... principles. The simulated Raman and ROA spectra have been compared to recently meassured spectra on amino acids and peptides. The simulations and understanding from them are used to interpret the Raman and ROA spectra of proteins. A comparison to vibrational absorption (VA) and vibrational circular dichroism...

  8. Raman scattering and quantum confinement in heavily electron-irradiated alkali halides

    NARCIS (Netherlands)

    Shtyrkov, E.I.; Klimovitskii, A.; Hartog, H.W. den; Vainshtein, D.I.

    2002-01-01

    In this paper we will study the properties of several unusual Raman scattering peaks in heavily irradiated NaCl with vast amounts of colloidal sodium and chlorine precipitates. It appears that the laser excitation light interacts with both the electronic and vibration systems of the Na colloids, whi

  9. Surface-enhanced Raman Scattering from Molecules Adsorbed on Mixed Silver/Gold Nanoparticle Surfaces

    Institute of Scientific and Technical Information of China (English)

    FANG Jing-huai; HUANG Yun-xia; LI Xia; DOU Xiao-ming

    2004-01-01

    @@ Introduction Since the first discovery of Surface-Enhanced Raman Scattering(SERS) from pyridine molecules adsorbed at roughened silver electrodes in 1974 by Fleischmann et al.[1],the research of SERS has made tremendous progress in applications of it to various fields of science and technology[2-8].

  10. Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium and methane

    OpenAIRE

    Hanna, D.C.; Pointer, D.J.; Pratt, D.J.

    1986-01-01

    Experimental results are presented on stimulated Raman scattering of short pulses of approximately 100 ps duration in H2, D2, and CH4, both in capillary waveguides and in a tight focusing geometry. Experimentally determined thresholds are in good agreement with calculation. Low thresholds (

  11. A comparison study on Raman scattering properties of alpha- and beta-MnO2

    DEFF Research Database (Denmark)

    Gao, Tao; Fjellväg, Helmer; Norby, Poul

    2009-01-01

    In this comment to a recent paper [Anal. Chim. Acta 585 (2007) 241–245], we report a comparison study on Mn oxide-related compounds with different crystallographic forms, which distinguish between β-MnO2 and α-MnO2 type materials via Raman scattering (RS) spectroscopy. The tetragonal rutile-type β...

  12. Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Gühlke, Marina; Kneipp, Janina;

    2014-01-01

    We observed strong surface-enhanced Raman scattering on discontinuous nanostructured aluminum films using 785 nm excitation even though dielectric constants of this metal suggest plasmon supported spectroscopy in the ultraviolet range. The excitation of SERS correlates with plasmon resonances in ...

  13. Optical Coherence Tomography and Biomolecular Imaging with Coherent Raman Scattering Microscopy

    DEFF Research Database (Denmark)

    Andersson-Engels, Stefan; Andersen, Peter E.

    2014-01-01

    The Special Section on Selected Topics in Biophotonics: Optical Coherence Tomography and Biomolecular Imaging with Coherent Raman Scattering Microscopy comprises two invited review papers and several contributed papers from the summer school Biophotonics ’13, as well as contributed papers within...

  14. Stimulated Raman scattering of picosecond pulses in a YVO4 crystal

    Science.gov (United States)

    Zong, N.; Zhang, X. F.; Li, C. M.; Cui, D. F.; Xu, Z. Y.; Zhang, H. J.; Wang, J. Y.

    2008-12-01

    Stimulated Raman scattering (SRS) with a picosecond pulse in YVO4 crystals in a transient state was investigated. The picosecond gain of YVO4 crystals pumped by a 532-nm laser evaluated by means of the threshold was 16.13 cm/GW.

  15. Intermolecular and low-frequency intramolecular Raman scattering study of racemic ibuprofen

    Science.gov (United States)

    Lazarević, J. J.; Uskoković-Marković, S.; Jelikić-Stankov, M.; Radonjić, M.; Tanasković, D.; Lazarević, N.; Popović, Z. V.

    We report the low-temperature Raman scattering study of racemic ibuprofen. Detailed analysis of the racemic ibuprofen crystal symmetry, related to the vibrational properties of the system, has been presented. The first principle calculations of a single ibuprofen molecule dynamical properties are compered with experimental data. Nineteen, out of 26 modes expected for the spectral region below 200 cm-1, have been observed.

  16. Green and red Anti-Stokes emission of U3+: LaCl3produced by infrared laser

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Anti-Stokes green and red emission from U3+: LaCl3 can be produced by infrared laser excitation at 975.3 nm, 977.7 nm and 979.4 nm at 8K. The upconversion luminescence intensity dependence upon the excitation laser power was measured and analyzed. The results show that depending on the excitation wavelength, the mechanisms responsible for the upconversion process are two-photon absorption and excited-state absorption.

  17. Raman Scattering Study of PbSe Grown on (111) BaF2 Substrate

    Institute of Scientific and Technical Information of China (English)

    YANG Ai-Ling; WU Hui-Zhen; LI Zhi-Feng; QIU Dong-Jiang; CHANG Yong; LI Jian-Feng; P. J. McCann; X. M. Fang4

    2000-01-01

    PbSe films were grown on (111)-oriented BaF2 substrates by using molecular beam epitaxy. High resolution x-ray diffraction characterization showed good crystalline quality of PbSe films. Both longitudinal optical phonon at 135cm-1 and transverse optical phonon at 47.6cm-1 were observed by Raman scattering measurements. The Raman tensor calculation demonstrates that both transverse-optical and longitudinal-optical (LO) phonons in PbSe crystal are Raman active on (111)-oriented surface, Furthermore, 2LO phonon at about 270cm-1 and polaron at about 800cm-1 in PbSe, were also observed. The observed Raman frequencies are in good agreement with theoretical calculations using point ion model.

  18. Communication: Significant contributions of Albrecht's $A$ term to non-resonant Raman scattering processes

    CERN Document Server

    Duan, Sai; Luo, Yi

    2015-01-01

    The Raman intensity can be well described by the famous Albrecht equation that consists of $A$ and $B$ terms. It has become a textbook knowledge that the contribution from Albrecht's $A$ term can be neglected without loss of accuracy for non-resonant Raman scattering processes. However, as demonstrated in this study, we have found that this widely accepted long-standing assumption fails drastically for totally symmetric vibration modes of molecules. Perturbed first principles calculations for water molecule show that strong constructive interference between the $A$ and $B$ terms occurs for the Raman intensity of the symmetric O-H stretching mode, which can account for about 40% of the total intensity. Meanwhile, a minor destructive interference is found for the angle bending mode. The state to state mapping between the Albrecht's theory and the perturbation theory allows us to verify the accuracy of the widely employed perturbation method for the dynamic/resonant Raman intensities. The model calculations show...

  19. Raman facility

    Data.gov (United States)

    Federal Laboratory Consortium — Raman scattering is a powerful light scattering technique used to diagnose the internal structure of molecules and crystals. In a light scattering experiment, light...

  20. Time-resolved spatially offset Raman spectroscopy for depth analysis of diffusely scattering layers.

    Science.gov (United States)

    Iping Petterson, Ingeborg E; Dvořák, Patrick; Buijs, Joost B; Gooijer, Cees; Ariese, Freek

    2010-12-01

    The objective of this study is to use time-resolved (TR) Raman spectroscopy, spatially offset Raman spectroscopy (SORS), and a combination of these approaches to obtain high quality Raman spectra from materials hidden underneath an opaque layer. Both TR Raman and SORS are advanced techniques that allow for an increased relative selectivity of photons from deeper layers within a sample. Time-resolved detection reduces fluorescence background, and the selectivity for the second layer is improved. By combining this with spatially offset excitation we additionally increased selectivity for deeper layers. Test samples were opaque white polymer blocks of several mm thicknesses. Excitation was carried out with a frequency-doubled Ti:sapphire laser at 460 nm, 3 ps pulse width and 76 MHz repetition rate. Detection was either with a continuous-wave CCD camera or in time-resolved mode using an intensified CCD camera with a 250 ps gate width. The Raman photons were collected in backscatter mode, with or without lateral offset. By measuring the delay of the Raman signal from the second layer (polyethylene terephthalate/PET/Arnite), the net photon migration speeds through Teflon, polythene, Delrin and Nylon were determined. Raman spectra could be obtained from a second layer of PET through Teflon layers up to 7 mm of thickness. The ability to obtain chemical information through layers of diffusely scattering materials has powerful potential for biomedical applications.

  1. Raman scattering in silicon disordered by gold ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Lavrentiev, Vasily; Vacik, Jiri; Vosecek, Vaclav [NS Lab, Nuclear Physics Institute AS CR, Rez-130, Husinec 250 68 (Czech Republic); Vorlicek, Vladimir [Institute of Physics AS CR, Na Slovance 2, Prague 182 21 (Czech Republic)

    2010-08-15

    Si (111) covered by a 250-nm thick SiO{sub 2} surface layer has been disordered through implantation of 3.035 MeV gold ions within broad range of fluences from 1 x 10{sup 13} ions/cm{sup 2} to 1 x 10{sup 16} ions/cm{sup 2}. Raman spectroscopy (514.5 nm laser) was applied for characterization of the silicon disordering. Variation of the Raman spectra of silicon after low-fluence implantation (fluences lower than 5 x 10{sup 14} ions/cm{sup 2}) in the vicinity of the transverse optical phonon (1TO) peak reflects the coexistence of bulk Si crystals (c-Si) and Si nanocrystals (nc-Si) in the implanted layer. Implantation with higher fluences yields only the stable 470 cm{sup -1} 1TO peak, corresponding to formation of amorphous phase (a-Si), in this region of the spectra. Detailed analysis of the silicon disorder was performed through calculation of the transverse acoustical phonon (1TA) peak area. The fluence dependence of the peak area reveals qualitative correlation with the depth profile of structural defects in the modified Si layer evaluated from RBS (Rutherford backscattering) experiment and from SRIM (stopping and range of ions in matter) code simulation. This correlation suggests a decrease of the structural disorder in the modified layer region enriched by vacancies. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Raman Scattering from Pt Island-Decorated Graphene

    Science.gov (United States)

    Gupta, Awnish; Gutierrez, Humberto; Eklund, Peter

    2009-03-01

    We performed microRaman studies of decorated n-Graphene Layers (nGLs). Nano-islands (NI; dia˜5-10 nm) of Pt were created by deposition on the nGL with gaps between the NI in the range of few nm. When the NI were present, we observed D and D' Raman bands as well as splitting of the G-band into G^+ and G^- (most pronounced for 1GL). The observations may be related to graphene ``confined'' in the interstitial spaces between NIs. The D and D' bands show the following properties: (1) Intensity of D and D' relative to G band decreases with increasing number of layers n in the nGL. (2) Peak frequencies, φD decreases linearly with 1/n while φD'remains constant. (3) Linewidth γD decreases linearly with 1/n , while γD' increases linearly with 1/n. Our results will be discussed in terms of results theoretically predicted by zone folding (Jishi et al).

  3. Electron Raman scattering in semiconductor quantum well wire of cylindrical ring geometry

    Institute of Scientific and Technical Information of China (English)

    Re. Betancourt-Riera; Ri. Betancourt-Riera; J. M. Nieto Jalil; R. Riera

    2015-01-01

    We study the electron states and the differential cross section for an electron Raman scattering process in a semi-conductor quantum well wire of cylindrical ring geometry. The electron Raman scattering developed here can be used to provide direct information about the electron band structures of these confinement systems. We assume that the system grows in a GaAs/Al0.35Ga0.65As matrix. The system is modeled by considering T =0 K and also a single parabolic con-duction band, which is split into a sub-band system due to the confinement. The emission spectra are discussed for different scattering configurations, and the selection rules for the processes are also studied. Singularities in the spectra are found and interpreted.

  4. Raman scattering from superhard rhenium diboride under high pressure

    International Nuclear Information System (INIS)

    Lattice vibrational properties of superhard rhenium diboride (ReB2) were examined up to 8 GPa in a diamond anvil cell using Raman spectroscopy techniques. Linear pressure coefficients and mode Grüneisen parameters are obtained. Good agreement is found between the experimental and theoretical calculated Grüneisen parameters. Examination of the calculated mode Grüneisen parameters reveals that both B-B and Re-B covalent bonds play a dominant role in supporting the applied load under pressure. A comparison of vibrations parallel and perpendicular to the c-axis indicates that bonds along the c-axis tend to take greater loads. Our results agree with observations of elastic lattice anisotropy obtained from both in situ X-ray diffraction measurements and ultrasonic resonance spectra

  5. Resonance Raman scattering and excitonic spectra in TlInS{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zalamai, V.V. [Institute of Applied Physics, Academy of Sciences of Moldova, 5 Academy Street, 2028 Chisinau, Republic of Moldova (Moldova, Republic of); Stamov, I.G. [T.G. Shevchenko State University of Pridnestrovie, 25 Oktyabrya Street 107, 3300 Tiraspol, Republic of Moldova (Moldova, Republic of); Syrbu, N.N., E-mail: sirbunn@yahoo.com [Technical University of Moldova, 168 Stefan cel Mare Avenue, 2004 Chisinau, Republic of Moldova (Moldova, Republic of); Ursaki, V.V. [Institute of Applied Physics, Academy of Sciences of Moldova, 5 Academy Street, 2028 Chisinau, Republic of Moldova (Moldova, Republic of); Dorogan, V. [Technical University of Moldova, 168 Stefan cel Mare Avenue, 2004 Chisinau, Republic of Moldova (Moldova, Republic of)

    2015-04-15

    The excitons ground and excited states for E∥a and E∥b polarizations in absorption and reflection spectra of TlInS{sub 2} crystals were detected. The fundamental parameters of excitons and bands were determined at k=0. The resonance Raman spectra were investigated in the region of excitons transitions. The resonance Raman scattering spectra with participation of optical phonons that are active at the center of Brillouin zone were identified. The Raman scattering in Y(YX)Z and Y(ZX)Z geometries at 10 K with excitation by He–Ne laser was researched. Energies of phonons with A{sub g} and B{sub g} symmetries were determined. It was shown that the number of modes at 10 K was two times lower than expected according to theoretical calculations. - Highlights: • The resonance Raman scattering in geometry Y(YX)Z and Y(ZX)Z at 10 K was investigated. • Energies of phonons with A{sub g} and B{sub g} symmetries were determined. • The experimental and theoretical calculations completely conform if crystals are described by symmetry group D{sub 4h}{sup 15}. • The main parameters of excitons and bands were determined. • The model of electron transitions in k=0 was suggested.

  6. Theory of two-magnon Raman scattering in alkaline iron selenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.S. [Department of Physics, Yanshan University, Qinhuangdao 006004 (China); Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Zhang, A.M. [Department of Physics, Renmin University of China, Beijing 100872 (China); Xu, T.F. [Department of Physics, Yanshan University, Qinhuangdao 006004 (China); Wu, W.C., E-mail: wu@phy.ntnu.edu.tw [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China)

    2014-11-15

    Highlights: • Two-magnon Raman scattering is theoretically studied for alkaline iron selenides. • Underlying spin interactions of the √(5)×√(5) AF superstructure are investigated in details. • Optimal set of exchange parameters is revealed when fitting to experiments. - Abstract: Motivated by the recent experiment of two-magnon Raman scattering in alkaline iron selenide superconductors (Zhang et al., 2012), we investigate in details the underlying spin interactions of the √(5)×√(5) antiferromagnetic superstructure. Based on the linear spin wave approximation, the Fleury-London (FL) two-magnon Raman cross-sections are calculated. By comparing theoretical results with the Raman data in both A{sub g} and B{sub g} channels, an optimal set of exchange parameters which are consistent with the fitting to the neutron scattering data are obtained. It reveals that the experimentally observed broad and asymmetric peaks around 1600 cm{sup −1} are dominantly originated from quasiparticle excitations in two nearly degenerate magnon bands in the (0,±π) and (±π,0) directions. The result thus supports that the magnetic properties in alkaline iron selenide AFe{sub 1.6+x}Se{sub 6} superconductors can be basically described by the quantum spin model with up to third nearest-neighbor exchange couplings.

  7. Ultra thin films of nanocrystalline Ge studied by AFM and interference enhanced Raman scattering

    Indian Academy of Sciences (India)

    S Balaji; S Mohan; D V S Muthu; A K Sood

    2003-10-01

    Initial growth stages of the ultra thin films of germanium (Ge) prepared by ion beam sputter deposition have been studied using atomic force microscope (AFM) and interference enhanced Raman scattering. The growth of the films follows Volmer-Weber growth mechanism. Analysis of the AFM images shows that Ostwald ripening of the grains occurs as the thickness of the film increases. Raman spectra of the Ge films reveal phonon confinement along the growth direction and show that the misfit strain is relieved for film thickness greater than 4 nm.

  8. Raman Scattering from 1,3-Propanedithiol at a Hot Spot: Theory Meets Experiment

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, Patrick Z.; Hess, Wayne P.

    2013-08-21

    We compute the Raman spectra of 1,3-propanedithiol (PDT) in the gas phase, in methanol, linked either to the face or vertex of a finite tetrahedral Ag20 cluster, and linking two Ag20 clusters using tools of density functional theory. The calculated normal mode-dependent molecular polarizability derivative tensors are employed to simulate single molecule surface-enhanced Raman (SERS) spectra. This is achieved by rotating the polarizability tensors of an individual molecule with respect to explicitly defined vector components of the incident and scattered radiation. Our results provide a basis for understanding commonly observed phenomena in single molecule SERS spectroscopy.

  9. RAMAN SCATTERING AND EXCITATION SPECTROSCOPY IN CdTe/CdMnTe SUPERLATTICES

    OpenAIRE

    Viña, L.; Chang, L; J. Yoshino

    1987-01-01

    We have observed oscillatory structure in the excitation spectra of CdTe/CdxMN1-xTe superlattices. A comparison of these spectra with conventional Raman spectra shows that the structures correspond to first and higher order LO-phonons of the CdTe wells and the CdTe/CdxMn1-xTe barriers, as well as combination of them. A strong enhancement in Resonance Raman scattering of both the CdTe and the CdMnTe phonons, at the energy of the heavy-hole exciton of the superlattice, suggests a small valence-...

  10. Surface enhanced Raman scattering of biospecies on anodized aluminum oxide films

    Science.gov (United States)

    Zhang, C.; Smirnov, A. I.; Hahn, D.; Grebel, H.

    2007-06-01

    Traditionally, aluminum and anodized aluminum oxide films (AAO) are not the platforms of choice for surface-enhanced raman scattering (SERS) experiments despite of the aluminum's large negative permittivity value. Here we examine the usefulness of aluminum and nanoporous alumina platforms for detecting soft biospecies ranging from bacterial spores to protein markers. We used these flat platforms to examine SERS of a model protein (cytochrome c from bovine heart tissue) and bacterial cells (spores of Bacillus subtilis ATCC13933 used as Anthrax simulant) and demonstrated clear Raman amplification.

  11. Rapid detection of Escherichia coli and Salmonella typhimurium by surface-enhanced Raman scattering

    Science.gov (United States)

    Su, Lan; Zhang, Ping; Zheng, Da-wei; Wang, Yang-jun-qi; Zhong, Ru-gang

    2015-03-01

    In this paper, the surface-enhanced Raman scattering (SERS) is used as an analytical tool for the detection and identification of pathogenic bacteria of Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium). Compared with normal Raman signal, the intensity of SERS signal is greatly enhanced. After processing all SERS data, the obvious differences between the SERS spectra of two species are determined. And applying the chemometric tools of principal component analysis and hierarchical cluster analysis (PCA-HCA), the SERS spectra of two species are distinguished more accurately. The results indicate that SERS analysis can provide a rapid and sensitive method for the detection of pathogenic bacteria.

  12. Raman scattering studies on ZnO doped with Ga and N (codoping), and magnetic impurities

    International Nuclear Information System (INIS)

    ZnO layers doped simultaneously with Ga and N (codoping), and magnetic elements (V, Co) were characterized by Raman scattering to study their structural stability. Five impurity modes were observed in range 200-900 cm-1 in the doped samples, and showed characteristic variation with the doping level. It is shown that these modes can be used as a good measure of lattice defects induced by doping. The Raman spectra showed that the magnetic elements were incorporated up to 5 mol% without serious deterioration in crystallinity

  13. Improved surface-enhanced Raman scattering of patterned gold nanoparticles deposited on silicon nanoporous pillar arrays

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Weifen, E-mail: gingerwfj@yahoo.com.cn [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Li Xingfu; Cai Hongtao [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Li Xinjian [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2011-07-01

    Large-area silicon nanoporous pillar arrays (Si-NPA) uniformly coated with gold nanoparticles was synthesized, and surface-enhanced Raman scattering of rhodamine 6G adsorbed on these gold nanoparticles were studied and compared. It's found that Au/Si-NPA substrate has a significantly high Raman signal sensitivity and good homogeneity. These are attributed to gold nanoparticles with narrow particle-size distribution uniformly coated on the surface and to the enlarged specific surface area for adsorption of target molecules brought by the porous silicon pillars.

  14. Polarized Raman scattering study of kesterite type Cu2ZnSnS4 single crystals

    Science.gov (United States)

    Guc, Maxim; Levcenko, Sergiu; Bodnar, Ivan V.; Izquierdo-Roca, Victor; Fontane, Xavier; Volkova, Larisa V.; Arushanov, Ernest; Pérez-Rodríguez, Alejandro

    2016-01-01

    A non-destructive Raman spectroscopy has been widely used as a complimentary method to X-ray diffraction characterization of Cu2ZnSnS4 (CZTS) thin films, yet our knowledge of the Raman active fundamental modes in this material is far from complete. Focusing on polarized Raman spectroscopy provides important information about the relationship between Raman modes and CZTS crystal structure. In this framework the zone-center optical phonons of CZTS, which is most usually examined in active layers of the CZTS based solar cells, are studied by polarized resonant and non-resonant Raman spectroscopy in the range from 60 to 500 cm-1 on an oriented single crystal. The phonon mode symmetry of 20 modes from the 27 possible vibrational modes of the kesterite structure is experimentally determined. From in-plane angular dependences of the phonon modes intensities Raman tensor elements are also derived. Whereas a strong intensity enhancement of the polar E and B symmetry modes is induced under resonance conditions, no mode intensity dependence on the incident and scattered light polarization configurations was found in these conditions. Finally, Lyddane-Sachs-Teller relations are applied to estimate the ratios of the static to high-frequency optic dielectric constants parallel and perpendicular to c-optical axis.

  15. Implementation of an Analytical Raman Scattering Correction for Satellite Ocean-Color Processing

    Science.gov (United States)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Proctor, Christopher W.

    2016-01-01

    Raman scattering of photons by seawater molecules is an inelastic scattering process. This effect can contribute significantly to the water-leaving radiance signal observed by space-borne ocean-color spectroradiometers. If not accounted for during ocean-color processing, Raman scattering can cause biases in derived inherent optical properties (IOPs). Here we describe a Raman scattering correction (RSC) algorithm that has been integrated within NASA's standard ocean-color processing software. We tested the RSC with NASA's Generalized Inherent Optical Properties algorithm (GIOP). A comparison between derived IOPs and in situ data revealed that the magnitude of the derived backscattering coefficient and the phytoplankton absorption coefficient were reduced when the RSC was applied, whilst the absorption coefficient of colored dissolved and detrital matter remained unchanged. Importantly, our results show that the RSC did not degrade the retrieval skill of the GIOP. In addition, a timeseries study of oligotrophic waters near Bermuda showed that the RSC did not introduce unwanted temporal trends or artifacts into derived IOPs.

  16. Implementation of an analytical Raman scattering correction for satellite ocean-color processing.

    Science.gov (United States)

    McKinna, Lachlan I W; Werdell, P Jeremy; Proctor, Christopher W

    2016-07-11

    Raman scattering of photons by seawater molecules is an inelastic scattering process. This effect can contribute significantly to the water-leaving radiance signal observed by space-borne ocean-color spectroradiometers. If not accounted for during ocean-color processing, Raman scattering can cause biases in derived inherent optical properties (IOPs). Here we describe a Raman scattering correction (RSC) algorithm that has been integrated within NASA's standard ocean-color processing software. We tested the RSC with NASA's Generalized Inherent Optical Properties algorithm (GIOP). A comparison between derived IOPs and in situ data revealed that the magnitude of the derived backscattering coefficient and the phytoplankton absorption coefficient were reduced when the RSC was applied, whilst the absorption coefficient of colored dissolved and detrital matter remained unchanged. Importantly, our results show that the RSC did not degrade the retrieval skill of the GIOP. In addition, a time-series study of oligotrophic waters near Bermuda showed that the RSC did not introduce unwanted temporal trends or artifacts into derived IOPs.

  17. Porous silicon nanowire arrays decorated by Ag nanoparticles for surface enhanced Raman scattering study

    Science.gov (United States)

    Su, L.; Xu, H. J.; Chan, Y. F.; Sun, X. M.

    2012-02-01

    A large scale and highly ordered Ag nanoparticle-decorated porous silicon nanowire array was fabricated for a uniform and reproducible surface-enhanced Raman scattering (SERS) substrate. The overall process for the proposed structure is simple and reliable with the use of only chemical etching and metal reduction processes. The SERS sensitivity of the novel substrate as low as 10-16 M for rhodamine 6G (R6G) and the Raman enhancement factor as high as 10^14 were obtained. The excellent SERS performances were mainly attributed to the strong local electromagnetic effect which is associated with the formation of large-quantity Ag nanoparticles on porous silicon nanowire array and the existence of semiconductor silicon nanowires. Significantly, the quadratic relation between the logarithmic concentrations and the logarithmic integrated Raman peak intensities provided quantitative detection of R6G. Our results open new possibilities for applying SERS to trace detection of low-concentration biomolecules.

  18. Surface Enhanced Raman Scattering (SERS Studies of Gold and Silver Nanoparticles Prepared by Laser Ablation

    Directory of Open Access Journals (Sweden)

    Samuel P. Hernandez-Rivera

    2013-03-01

    Full Text Available Gold and silver nanoparticles (NPs were prepared in water, acetonitrile and isopropanol by laser ablation methodologies. The average characteristic (longer size of the NPs obtained ranged from 3 to 70 nm. 4-Aminobenzebethiol (4-ABT was chosen as the surface enhanced Raman scattering (SERS probe molecule to determine the optimum irradiation time and the pH of aqueous synthesis of the laser ablation-based synthesis of metallic NPs. The synthesized NPs were used to evaluate their capacity as substrates for developing more analytical applications based on SERS measurements. A highly energetic material, TNT, was used as the target compound in the SERS experiments. The Raman spectra were measured with a Raman microspectrometer. The results demonstrate that gold and silver NP substrates fabricated by the methods developed show promising results for SERS-based studies and could lead to the development of micro sensors.

  19. Metal-coated magnetic nanoparticles for surface enhanced Raman scattering studies

    Indian Academy of Sciences (India)

    G V Pavan Kumar; N Rangarajan; B Sonia; P Deepika; Nashiour Rohman; Chandrabhas Narayana

    2011-04-01

    We report the optimization and usage of surfactantless, water dispersible Ag and Au-coated –Fe2O3 nanoparticles for applications in surface-enhanced Raman scattering (SERS). These nanoparticles, with plasmonic as well as super paramagnetic properties exhibit Raman enhancement factors of the order of 106 (105) for Ag (Au) coating, which are on par with the conventional Ag and Au nanoparticles. Raman markers like 2-naphthalenethiol, rhodamine-B and rhodamine-6G have been adsorbed to these nanoparticles and tested for nonresonant SERS at low concentrations. Further, to confirm the robustness of Ag-coated nanoparticles, we have performed temperaturedependent SERS in the temperature range of 77–473 K. The adsorbed molecules exhibit stable SERS spectra except at temperatures >323 K, where the thermal desorption of test molecule (naphthalenethiol) were evident. The magnetic properties of these nanoparticles combined with SERS provide a wide range of applications.

  20. Raman scattering investigation of large positive magnetoresistance material WTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kong, W.-D.; Wu, S.-F.; Lian, C.-S.; Wang, J.-T.; Yang, C.-L.; Shi, Y.-G. [Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Richard, P., E-mail: p.richard@iphy.ac.cn; Ding, H., E-mail: dingh@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2015-02-23

    We have performed polarized Raman scattering measurements on WTe{sub 2}, for which an extremely large positive magnetoresistance has been reported recently. We observe 5 A{sub 1} phonon modes and 2 A{sub 2} phonon modes out of 33 Raman active modes, with frequencies in good accordance with first-principles calculations. The angular dependence of the intensity of the peaks observed is consistent with the Raman tensors of the C{sub 2v} point group symmetry attributed to WTe{sub 2}. Although the phonon spectra suggest neither strong electron-phonon nor spin-phonon coupling, the intensity of the A{sub 1} phonon mode at 160.6 cm{sup −1} shows an unconventional decrease with temperature decreasing, for which the origin remains unclear.

  1. Photoluminescence and Raman scattering study in ZnO:Cu nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    El Filali, B. [UPIITA – National Polytechnic Institute, Mexico D.F. 07738 (Mexico); Torchynska, T.V., E-mail: ttorch@esfm.ipn.mx [ESFM – National Polytechnic Institute, Mexico D.F. 07738 (Mexico); Diaz Cano, A.I. [UPIITA – National Polytechnic Institute, Mexico D.F. 07738 (Mexico)

    2015-05-15

    Photoluminescence (PL), scanning electronic microscopy (SEM), Raman scattering, X ray diffraction (XRD) and energy dispersion spectroscopy (EDS) have been applied for the comparative study of ZnO and ZnO:Cu nanocrystals (NCs). NCs were created by the electrochemical (anodization) method with different NC sizes (from 300×550 nm down to 170×320 nm) and were annealed at 400 °C for 2 h in ambient air. Raman and XRD studies have shown that thermal annealing stimulates the ZnO crystallization with the creation of wurtzite crystal lattice. XRD and EDS methods have been used for the confirmation doping of the ZnO NCs by Cu atoms and to show that the metallic Cu nanoparticles have been embedded in the porous ZnO NC films. It is shown that the Raman intensity for all Raman peaks in ZnO Cu NC systems is higher threefold in comparison with those in ZnO NC films owing to, apparently, the surface enhanced Raman scattering (SERS) effect. In crystalline ZnO and ZnO Cu NCs four PL bands appear with the PL peaks at 1.54, 2.08, 2.50 and 3.08 eV. The reasons of emission transformation in different samples and the nature of optical transitions have been discussed. It is shown that the plasmon generation in metallic Cu nanoparticles stimulates the SERS effect at Raman scattering, the PL intensity enhancement of defect related emission bands, but, at the same time, leads to decreasing the PL intensity of near band edge emission in ZnO Cu NC systems. - Highlight: • ZnO:Cu NCs were prepared by the electrochemical method and were annealed at 400 °C for 2 h. • XRD and EDS methods have confirmed the metallic Cu nanoparticles in the porous ZnO NC films. • The surface enhanced Raman scattering (SERS) effect is revealed in ZnO Cu NCs. • PL intensity enhancement of defect related emission bands is detected as well. • PL intensity of near band edge emission decreases in ZnO Cu NC systems.

  2. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    Science.gov (United States)

    Guddala, Sriram; Dwivedi, Vindesh K.; Vijaya Prakash, G.; Narayana Rao, D.

    2013-12-01

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm-1) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies.

  3. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Guddala, Sriram; Narayana Rao, D., E-mail: dnr.laserlab@gmail.com, E-mail: dnrsp@uohyd.ernet.in [School of Physics, University of Hyderabad, Hyderabad 500 046 (India); Dwivedi, Vindesh K.; Vijaya Prakash, G. [Nanophotonics Laboratory, Department of Physics, IIT Delhi, New Delhi 110 016 (India)

    2013-12-14

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm{sup −1}) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies.

  4. Stimulated Raman Scattering and Nonlinear Focusing of High-Power Laser Beams Propagating in Water

    CERN Document Server

    Hafizi, B; Penano, J R; Gordon, D F; Jones, T G; Helle, M H; Kaganovich, D

    2015-01-01

    The physical processes associated with propagation of a high-power (power > critical power for self-focusing) laser beam in water include nonlinear focusing, stimulated Raman scattering (SRS), optical breakdown and plasma formation. The interplay between nonlinear focusing and SRS is analyzed for cases where a significant portion of the pump power is channeled into the Stokes wave. Propagation simulations and an analytical model demonstrate that the Stokes wave can re-focus the pump wave after the power in the latter falls below the critical power. It is shown that this novel focusing mechanism is distinct from cross-phase focusing. While discussed here in the context of propagation in water, the gain-focusing phenomenon is general to any medium supporting nonlinear focusing and stimulated forward Raman scattering.

  5. Stimulated Raman scattering and nonlinear focusing of high-power laser beams propagating in water.

    Science.gov (United States)

    Hafizi, B; Palastro, J P; Peñano, J R; Gordon, D F; Jones, T G; Helle, M H; Kaganovich, D

    2015-04-01

    The physical processes associated with propagation of a high-power (power > critical power for self-focusing) laser beam in water include nonlinear focusing, stimulated Raman scattering (SRS), optical breakdown, and plasma formation. The interplay between nonlinear focusing and SRS is analyzed for cases where a significant portion of the pump power is channeled into the Stokes wave. Propagation simulations and an analytical model demonstrate that the Stokes wave can re-focus the pump wave after the power in the latter falls below the critical power. It is shown that this novel focusing mechanism is distinct from cross-phase focusing. The phenomenon of gain-focusing discussed here for propagation in water is expected to be of general occurrence applicable to any medium supporting nonlinear focusing and stimulated Raman scattering. PMID:25831383

  6. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    International Nuclear Information System (INIS)

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm−1) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies

  7. Structural and Raman scattering study of Ni-doped CoFe2O4

    International Nuclear Information System (INIS)

    Raman scattering measurements were made on polycrystalline CoFe2O4 and Co0.5Ni0.5Fe2O4 ferrites as prepared by solid-state reaction route. Rietveld refined X-ray diffraction pattern confirmed the formation of single-phase and both of the samples perfectly indexed in cubic spinel structure with Fd3m space group. Slight reduction in the lattice parameter of Co0.5Ni0.5Fe2O4 has been observed as compared to CoFe2O4. From Raman scattering spectra, a shoulder like feature has been observed in both of the compounds reveals that octahedral site is occupied by Co, Ni and Fe ions and tetrahedral site is occupied by only Fe ion

  8. Self-assembly of mildly reduced graphene oxide monolayer for enhanced Raman scattering

    Science.gov (United States)

    Yin, Fenping; Wu, Shang; Wang, Yanbin; Wu, Lan; Yuan, Peilin; Wang, Xia

    2016-05-01

    Graphene-enhanced Raman scattering (GERS) has attracted much attention recently. In present study, monolayer of chemically reduced graphene oxide (RGO) nanosheets was chemically bonded on Si substrates and their possible applications in Raman scattering were investigated. In comparison with the mechanically exfoliated graphene, mildly reduced graphene oxide (MR-GO) monolayer is a better substrate to quench the fluorescence (FL) signals and simultaneously enhance the Raman signals of adsorbed Rhodamin 6G (R6G) molecules. Raman and X-ray photoelectron spectra indicate that π-π stacking and the residual polarized oxygen groups on MRGO surface, which can produce a strong local electric field under laser excitation, are mainly responsible for the excellent GERS effect of MR-GO substrate, while the charge transfer between R6G and MR-GO has a relatively low contribution for GERS effect. Our results not only provide a new approach to realize sensitive GERS substrate, but also are helpful for improving the fundamental understanding of GERS effect on RGO substrate.

  9. Entangled valence electron-hole dynamics revealed by stimulated attosecond x-ray Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Healion, Daniel; Zhang, Yu; Biggs, Jason D.; Govind, Niranjan; Mukamel, Shaul

    2012-09-06

    We show that broadband x-ray pulses can create wavepackets of valence electrons and holes localized in the vicinity of a selected atom (nitrogen, oxygen or sulfur in cysteine) by resonant stimulated Raman scattering. The subsequent dynamics reveals highly correlated motions of entangled electrons and hole quasiparticles. This information goes beyond the time-dependent total charge density derived from x-ray diffraction.

  10. Raman Back-scattering study of Damaged and Strain Subsurface Layers in GaAs Wafers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The damaged and strain subsurface layers of semi-insulating(SI) GaAs substrate were characterized non-destructively by Raman back-scattering.The study shows that the thicknesses of the damaged and strain layers are less than 3μm.The damaged and strain layer can be removed after being etched in H2SO4·H2O2·H2O for 1.5 min.

  11. Raman scattering determination of strain in CdTe/ZnTe superlattices

    OpenAIRE

    Jackson, M K; Miles, R. H.; McGill, T. C.; Faurie, J. P.

    1989-01-01

    The strain configuration in CdTe/ZnTe strained-layer superlattices has been measured by Raman scattering near resonance. The ZnTe-like longitudinal optical phonon energy in the superlattice is significantly shifted from the bulk value to lower energies and the shift increases with increasing superlattice CdTe fraction. The observed shifts agree with calculations of strain shifts based on a free-standing strain distribution.

  12. Raman scattering spectra and crystal structure of acid potassium-lithium sulfate

    International Nuclear Information System (INIS)

    Paper presents the results of the comprehensive investigation into Raman scattering in potassium-lithium acid sulfate crystal. A model of crystal structure is suggested on the basis of the study data. The suggested consistent model of the crystalline structure of potassium-lithium acid sulfate crystal describes well both spectrum high-frequency and low-frequency sections and may be used to analyze models of phase transformation

  13. One- and two-magnon Raman scattering in the canted antiferromagnet NiF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Meloche, E. [Department of Physics and Astronomy, University of Western Ont., London, Ont., N6A 3K7 (Canada); Cottam, M.G. [Department of Physics and Astronomy, University of Western Ont., London, Ont., N6A 3K7 (Canada)]. E-mail: cottam@uwo.ca; Gnezdilov, V.P. [Institute for Microstructural Sciences, National Research Council, Ottawa, Ont., K1A 0R6 (Canada); Lockwood, D.J. [Institute for Microstructural Sciences, National Research Council, Ottawa, Ont., K1A 0R6 (Canada)

    2007-03-15

    The magnons in the canted rutile-structure antiferromagnet NiF{sub 2} have been studied by Raman scattering. Results are presented for the polarization dependences of the one-magnon spectum over a wide range of temperatures below T {sub N} and the two-magnon spectrums at low temperatures. A theoretical analysis of the data, including the important role of the spin canting for the one-magnon properties, is shown to provide good agreement with the measurements.

  14. Fiber delivered two-color picosecond source through nonlinear spectral transformation for coherent Raman scattering imaging

    OpenAIRE

    Wang, Ke; Xu, Chris

    2012-01-01

    We demonstrate a two-color, fiber-delivered picosecond source for coherent Raman scattering (CRS) imaging through nonlinear spectral transformation. The wavelength tunable picosecond pump is generated by nonlinear spectral compression of a prechirped femtosecond pulse in a fiber wavelength division multiplexer (WDM). The 1064-nm synchronized picosecond Stokes pulse is generated through pulse carving of a continuous wave laser, nonlinear spectral broadening in 100-m standard single-mode fiber,...

  15. Morphology, structure and Raman scattering of carbon nanotubes produced by using mesoporous materials

    Institute of Scientific and Technical Information of China (English)

    解思深; 李文治; 王超英; 徐丽雯; 张昊; 张云; 钱露茜

    1997-01-01

    Carbon nanotubes were prepared by chemical vapor deposition (CVD) of hydrocarbon gas on various substrates.The effect of substrates on the growth,morphology and structure of carbon nanotubes were investigated.Aligned carbon nanotubes with high density and purity were achieved by CVD on mesoporous silica substrate.The Raman scattering of aligned carbon nanotubes was carried out,and the dependence of the phonon properties on the mi-crostructure of the nanotubes has been discussed.

  16. Growth and Raman scattering characterization of Cu2ZnSnS4 thin films

    OpenAIRE

    Fernandes, P. A; Salomé, P M P; Cunha, A. F. da

    2009-01-01

    In the present work we report the results of the growth, morphological and structural characterization of Cu2ZnSnS4 (CZTS) thin films prepared by sulfurization of DC magnetron sputtered Cu/Zn/Sn precursor layers. The adjustment of the thicknesses and the properties of the precursors were used to control the final composition of the films. Its properties were studied by SEM/EDS, XRD and Raman scattering. The influence of the sulfurization temperature on the morphology, composition ...

  17. Coherent Raman scattering microscopy: an emerging platform for biology and medicine (Conference Presentation)

    Science.gov (United States)

    Xie, Sunney S.

    2016-03-01

    Stimulated Raman scattering (SRS) microscopy is a label-free and noninvasive imaging technique using vibration spectroscopy as the contrast mechanism. Recent advances have allowed significant improvements in sensitivity, selectivity, robustness, and cost reduction, opening a wide range of biomedical applications. In particular, it provides instant tissue examination without the need of previous histological staining, and is best suited for imaging small metabolite molecules. An overview will be given to a variety of biomedical applications of SRS microscopy.

  18. Strongly polarized scattering in surface enhanced Raman spectroscopy of randomly distributed molecules on gold nanowires

    Directory of Open Access Journals (Sweden)

    B. Fazio

    2011-09-01

    Full Text Available We study the polarized Surface Enhanced Raman Scattering from randomly oriented molecules adsorbed on near-field coupled gold nanowires. We show that the scattering is polarized always along the wire-to-wire nanocavities. We find the exact angular dependence for the polarized, unpolarized, parallel- and cross-polarized SERS intensity. Finally we develop a model that fits the experimental data and allows to measure the field enhancement and the re-radiation enhancement factors, independently, and retrieve the depolarization ratio of the probe molecules.

  19. Strongly enhanced Raman scattering of graphene by a single gold nanorod

    Energy Technology Data Exchange (ETDEWEB)

    He, Yingbo; Shen, Hongming; Cheng, Yuqing [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Lu, Guowei, E-mail: guowei.lu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2015-08-03

    Individual gold nanorods (AuNRs) and monolayer graphene hybrid system is investigated experimentally. Surface enhanced Raman scattering (SERS) signal of the graphene is observed due to a single AuNR with enhancement factor up to ∼1000-fold. The SERS intensity is strongly polarization dependent and the enhancement effect varies with the detuning between the excitation laser and the AuNR resonance. The SERS effect is highest when the resonant wavelength of the AuNRs matches well with the excitation light. By correlating the scattering and photoluminescence, it is demonstrated that the conventional background in SERS ascribes to the photon emission of metallic nanostructures.

  20. Suppression of resonance Raman scattering via ground state depletion towards sub-diffraction-limited label-free microscopy

    NARCIS (Netherlands)

    Rieger, S.; Fischedick, M.; Boller, K-J.; Fallnich, C.

    2016-01-01

    We report on the first experimental demonstration of the suppression of spontaneous Raman scattering via ground state depletion. The concept of Raman suppression can be used to achieve sub-diffraction-limited resolution in label-free microscopy by exploiting spatially selective signal suppression wh

  1. The disorder-induced Raman scattering in Au/MoS2 heterostructures

    Directory of Open Access Journals (Sweden)

    K. Gołasa

    2015-07-01

    Full Text Available The Raman scattering has been studied in heterostructures composed of a thin MoS2 flake and a 1-1.5 nm layer of thermally evaporated gold (Au. There have been Au nanoislands detected in the heterostructure. It has been found that their surface density and the average size depend on the MoS2 thickness. The Raman scattering spectrum in the heterostructure with a few monolayer MoS2 only weakly depends on the excitation (resonant vs. non-resonant mode. The overall Raman spectrum corresponds to the total density of phonon states, which is characteristic for disordered systems. The disorder in the MoS2 layer is related to the mechanical strain induced in the MoS2 layer by the Au nanoislands. The strain results in the localization of phonon modes, which leads to the relaxation of the momentum conservation rule in the scattering process. The relaxation allows phonons from the whole MoS2 Brillouin zone to interact with electronic excitations. Our results show that the Au nanoislands resulted from thermal evaporation of a thin metal layer introduce substantial disorder into the crystalline structure of the thin MoS2 layers.

  2. Monitoring intra-cellular lipid metabolism in macrophages by Raman- and CARS-microscopy

    Science.gov (United States)

    Matthäus, Christian; Bergner, Gero; Krafft, Christoph; Dietzek, Benjamin; Lorkowski, Stefan; Popp, Jürgen

    2010-04-01

    Monocyte-derived macrophages play a key role in lipid metabolism in vessel wall tissues. Macrophages can take up lipids by various mechanisms. As phagocytes, macrophages are important for the decomposition of lipid plaques within arterial walls that contribute to arteriosclerosis. Of special interest are uptake dynamics and intra-cellular fate of different individual types of lipids as, for example, fatty acids, triglycerides or free and esterified cholesterol. Here we utilize Raman microscopy to image the metabolism of such lipids and follow subsequent storage or degradation patterns. The combination of optical microscopy with Raman spectroscopy allows visualization at the diffraction limit of the employed laser light and biochemical characterization through the associated spectral information. Relatively long measuring times, due to the weakness of Raman scattering can be overcome by non-linear effects such as coherent anti-Stokes Raman scattering (CARS). With this contribution we introduce first results to monitor the incorporation of lipid components into individual cells employing Raman and CARS microscopy.

  3. Resonant Raman scattering in GaSe and GaS/sub x/Se/sub 1-x/

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, T.C.; Camassel, J.; Voitchovsky, J.P.; Shen, Y.R.

    1976-07-01

    Multiphonon resonant Raman scattering up to four phonons in GaSe and one and two phonon resonant Raman scattering in the mixed GaS/sub x/Se/sub 1 - x/ crystals with x less than or equal to 0.23 were investigated. The results can be explained by a simple theory in which the dispersion of the resonance behavior is mainly dominated by resonances with the 1s direct exciton state.

  4. Interaction of the CLPFFD peptide with gold nanospheres. A Raman, surface enhanced Raman scattering and theoretical study.

    Science.gov (United States)

    Vera, A M; Cárcamo, J J; Aliaga, A E; Gómez-Jeria, J S; Kogan, M J; Campos-Vallette, M M

    2015-01-01

    In a previous work we demonstrated that toxic aggregates of the protein β-amyloid (ATAβ) involved in the Alzheimer's disease (AD) can be destabilized upon electromagnetic irradiation of the peptide Cys-Leu-Pro-Phe-Phe-Asp (CLPFFD) adsorbed on gold nanospheres (AuNSs). For a selective recognition of the therapeutic target (i.e. ATAβ) of AD by the conjugates peptide-nanoparticle it is relevant to understand how the interaction between attached ligands and nanoparticles occurs. In this work a surface enhanced Raman scattering spectroscopy (SERS) study of the interactions of CLPFFD with AuNSs of 10nm average diameter was carried out. The SERS data suggest that phenylalanine displays its aromatic ring coplanar to the surface which is supported by theoretical data obtained from molecular mechanics (MM) and Extended Hückel Theory (EHT) calculations. PMID:25022496

  5. Lock-in-detection-free line-scan stimulated Raman scattering microscopy for near video-rate Raman imaging.

    Science.gov (United States)

    Wang, Zi; Zheng, Wei; Huang, Zhiwei

    2016-09-01

    We report on the development of a unique lock-in-detection-free line-scan stimulated Raman scattering microscopy technique based on a linear detector with a large full well capacity controlled by a field-programmable gate array (FPGA) for near video-rate Raman imaging. With the use of parallel excitation and detection scheme, the line-scan SRS imaging at 20 frames per second can be acquired with a ∼5-fold lower excitation power density, compared to conventional point-scan SRS imaging. The rapid data communication between the FPGA and the linear detector allows a high line-scanning rate to boost the SRS imaging speed without the need for lock-in detection. We demonstrate this lock-in-detection-free line-scan SRS imaging technique using the 0.5 μm polystyrene and 1.0 μm poly(methyl methacrylate) beads mixed in water, as well as living gastric cancer cells.

  6. High precision stress measurements in semiconductor structures by Raman microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, Benjamin

    2009-07-01

    Stress in silicon structures plays an essential role in modern semiconductor technology. This stress has to be measured and due to the ongoing miniaturization in today's semiconductor industry, the measuring method has to meet certain requirements. The present thesis deals with the question how Raman spectroscopy can be used to measure the state of stress in semiconductor structures. In the first chapter the relation between Raman peakshift and stress in the material is explained. It is shown that detailed stress maps with a spatial resolution close to the diffraction limit can be obtained in structured semiconductor samples. Furthermore a novel procedure, the so called Stokes-AntiStokes-Difference method is introduced. With this method, topography, tool or drift effects can be distinguished from stress related influences in the sample. In the next chapter Tip-enhanced Raman Scattering (TERS) and its application for an improvement in lateral resolution is discussed. For this, a study is presented, which shows the influence of metal particles on the intensity and localization of the Raman signal. A method to attach metal particles to scannable tips is successfully applied. First TERS scans are shown and their impact on and challenges for high resolution stress measurements on semiconductor structures is explained. (orig.)

  7. Raman-based imaging uncovers the effects of alginate hydrogel implants in spinal cord injury

    Science.gov (United States)

    Galli, Roberta; Tamosaityte, Sandra; Koch, Maria; Sitoci-Ficici, Kerim H.; Later, Robert; Uckermann, Ortrud; Beiermeister, Rudolf; Gelinsky, Michael; Schackert, Gabriele; Kirsch, Matthias; Koch, Edmund; Steiner, Gerald

    2015-07-01

    The treatment of spinal cord injury by using implants that provide a permissive environment for axonal growth is in the focus of the research for regenerative therapies. Here, Raman-based label-free techniques were applied for the characterization of morphochemical properties of surgically induced spinal cord injury in the rat that received an implant of soft unfunctionalized alginate hydrogel. Raman microspectroscopy followed by chemometrics allowed mapping the different degenerative areas, while multimodal multiphoton microscopy (e.g. the combination of coherent anti-Stokes Raman scattering (CARS), endogenous two-photon fluorescence and second harmonic generation on the same platform) enabled to address the morphochemistry of the tissue at cellular level. The regions of injury, characterized by demyelination and scarring, were retrieved and the distribution of key tissue components was evaluated by Raman mapping. The alginate hydrogel was detected in the lesion up to six months after implantation and had positive effects on the nervous tissue. For instance, multimodal multiphoton microscopy complemented the results of Raman mapping, providing the micromorphology of lipid-rich tissue structures by CARS and enabling to discern lipid-rich regions that contained myelinated axons from degenerative regions characterized by myelin fragmentation and presence of foam cells. These findings demonstrate that Raman-based imaging methods provide useful information for the evaluation of alginate implant effects and have therefore the potential to contribute to new strategies for monitoring degenerative and regenerative processes induced in SCI, thereby improving the effectiveness of therapies.

  8. Raman Spectroscopy and Microscopy of Individual Cells andCellular Components

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J; Fore, S; Wachsmann-Hogiu, S; Huser, T

    2008-05-15

    Raman spectroscopy provides the unique opportunity to non-destructively analyze chemical concentrations on the submicron length scale in individual cells without the need for optical labels. This enables the rapid assessment of cellular biochemistry inside living cells, and it allows for their continuous analysis to determine cellular response to external events. Here, we review recent developments in the analysis of single cells, subcellular compartments, and chemical imaging based on Raman spectroscopic techniques. Spontaneous Raman spectroscopy provides for the full spectral assessment of cellular biochemistry, while coherent Raman techniques, such as coherent anti-Stokes Raman scattering is primarily used as an imaging tool comparable to confocal fluorescence microscopy. These techniques are complemented by surface-enhanced Raman spectroscopy, which provides higher sensitivity and local specificity, and also extends the techniques to chemical indicators, i.e. pH sensing. We review the strengths and weaknesses of each technique, demonstrate some of their applications and discuss their potential for future research in cell biology and biomedicine.

  9. Raman-scattering-assistant broadband noise-like pulse generation in all-normal-dispersion fiber lasers.

    Science.gov (United States)

    Li, Daojing; Shen, Deyuan; Li, Lei; Chen, Hao; Tang, Dingyuan; Zhao, Luming

    2015-10-01

    We report on the observation of both stable dissipative solitons and noise-like pulses with the presence of strong Raman scattering in a relatively short all-normal-dispersion Yb-doped fiber laser. We show that Raman scattering can be filtered out by intracavity filter. Furthermore, by appropriate intracavity polarization control, the Raman effect can be utilized to generate broadband noise-like pulses (NLPs) with bandwidth up to 61.4 nm. To the best of our knowledge, this is the broadest NLP achieved in all-normal-dispersion fiber lasers. PMID:26480103

  10. Raman-scattering-assistant broadband noise-like pulse generation in all-normal-dispersion fiber lasers

    CERN Document Server

    Li, Daojing; Li, Lei; Chen, Hao; Tang, Dingyuan; Zhao, Luming

    2015-01-01

    We report on the observation of both stable dissipative solitons and noise-like pulses with the presence of strong Raman scattering in a relatively short all-normal-dispersion Yb-doped fiber laser. We show that Raman scattering can be filtered out by intracavity filter. Furthermore, by appropriate intracavity polarization control, the Raman effect can be utilized to generate broadband noise-like pulses (NLPs) with bandwidth up to 61.4 nm. To the best of our knowledge, this is the broadest NLP achieved in all-normal-dispersion fiber lasers

  11. Raman-scattering-assistant broadband noise-like pulse generation in all-normal-dispersion fiber lasers

    Science.gov (United States)

    Li, Daojing; Shen, Deyuan; Li, Lei; Chen, Hao; Tang, Dingyuan; Zhao, Luming

    2015-10-01

    We report on the observation of both stable dissipative solitons and noise-like pulses with the presence of strong Raman scattering in a relatively short all-normal-dispersion Yb-doped fiber laser. We show that Raman scattering can be filtered out by intracavity filter. Furthermore, by appropriate intracavity polarization control, the Raman effect can be utilized to generate broadband noise-like pulses (NLPs) with bandwidth up to 61.4 nm. To the best of our knowledge, this is the broadest NLP achieved in all-normal-dispersion fiber lasers

  12. Raman-scattering-assistant broadband noise-like pulse generation in all-normal-dispersion fiber lasers

    OpenAIRE

    Li, Daojing; Shen, Deyuan; Li, Lei; Chen, Hao; Tang, Dingyuan; Zhao, Luming

    2015-01-01

    We report on the observation of both stable dissipative solitons and noise-like pulses with the presence of strong Raman scattering in a relatively short all-normal-dispersion Yb-doped fiber laser. We show that Raman scattering can be filtered out by intracavity filter. Furthermore, by appropriate intracavity polarization control, the Raman effect can be utilized to generate broadband noise-like pulses (NLPs) with bandwidth up to 61.4 nm. To the best of our knowledge, this is the broadest NLP...

  13. A Biomedical Surface Enhanced Raman Scattering Substrate: Functionalized Three-Dimensional Porous Membrane Decorated with Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Li Yuan

    2015-01-01

    Full Text Available We fabricated a simple, cheap, and functional surface enhanced Raman scattering substrate for biomedical application. Hot spots between two close silver nanoparticles distributed in the skeleton of a three-dimensional porous membrane, especially in the pores, were formed. The dual poles of micropores in the membrane were discussed. The pores could protect the silver nanoparticles in the pores from being oxidized, which makes the membrane effective for a longer period of time. In addition, Staphylococcus aureus cells could be trapped by the micropores and then the Raman signal became stronger, indicating that the functional surface enhanced Raman scattering substrate is reliable.

  14. Polarized Raman scattering study of PSN single crystals and epitaxial thin films

    Science.gov (United States)

    Pokorný, J.; Rafalovskyi, I.; Gregora, I.; Borodavka, F.; Savinov, M.; Drahokoupil, J.; Tyunina, M.; Kocourek, T.; Jelinek, M.; Bing, Y.; Ye, Z.-G.; Hlinka, J.

    2015-06-01

    This paper describes a detailed analysis of the dependence of Raman scattering intensity on the polarization of the incident and inelastically scattered light in PbSc0.5Nb0.5O3 (PSN) single crystals and epitaxially compressed thin films grown on (100)-oriented MgO substrates. It is found that there are significant differences between the properties of the crystals and films, and that these differences can be attributed to the anticipated structural differences between these two forms of the same material. In particular, the scattering characteristics of the oxygen octahedra breathing mode near 810 cm-1 indicate a ferroelectric state for the crystals and a relaxor state for the films, which is consistent with the dielectric behaviors of these materials.

  15. Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters

    International Nuclear Information System (INIS)

    A study of the Surface Enhanced Raman Scattering (SERS) from micrometric metallic nanoparticle aggregates is presented. The sample is obtained from the self-assembly on glass slides of micro-clusters of silver nanoparticles (60 and 100 nm diameter), functionalized with the organic molecule 4-aminothiophenol in water solution. For nanoparticle clusters at the micron scale, a maximum enhancement factor of 109 is estimated from the SERS over the Raman intensity ratio normalized to the single molecule contribution. Atomic force microscopy, correlated to spatially resolved Raman measurements, allows highlighting the connection between morphology and efficiency of the plasmonic system. The correlation between geometric features and SERS response of the metallic structures reveals a linear trend of the cluster maximum scattered intensity as a function of the surface area of the aggregate. On given clusters, the intensity turns out to be also influenced by the number of stacking planes of the aggregate, thus suggesting a plasmonic waveguide effect. The linear dependence results weakened for the largest area clusters, suggesting 30 μm2 as the upper limit for exploiting the coherence over large scale of the plasmonic response.

  16. Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters

    Energy Technology Data Exchange (ETDEWEB)

    Fasolato, C. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Center for Life Nanoscience@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena, 291, 00185 Rome (Italy); Domenici, F., E-mail: fabiodomenici@gmail.com, E-mail: paolo.postorino@roma1.infn.it; De Angelis, L.; Luongo, F.; Postorino, P., E-mail: fabiodomenici@gmail.com, E-mail: paolo.postorino@roma1.infn.it [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Sennato, S. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); CNR-IPCS UOS Roma, Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Mura, F. [Dip. Scienze di Base Applicate all' Ingegneria, Università Sapienza, Via A. Scarpa, 16, 00185 Rome (Italy); Costantini, F. [Dip. Ingegneria Astronautica Elettrica ed Energetica, Università Sapienza, Via Eudossiana, 18, 00184 Rome (Italy); Bordi, F. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Center for Life Nanoscience@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena, 291, 00185 Rome (Italy); CNR-IPCS UOS Roma, Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy)

    2014-08-18

    A study of the Surface Enhanced Raman Scattering (SERS) from micrometric metallic nanoparticle aggregates is presented. The sample is obtained from the self-assembly on glass slides of micro-clusters of silver nanoparticles (60 and 100 nm diameter), functionalized with the organic molecule 4-aminothiophenol in water solution. For nanoparticle clusters at the micron scale, a maximum enhancement factor of 10{sup 9} is estimated from the SERS over the Raman intensity ratio normalized to the single molecule contribution. Atomic force microscopy, correlated to spatially resolved Raman measurements, allows highlighting the connection between morphology and efficiency of the plasmonic system. The correlation between geometric features and SERS response of the metallic structures reveals a linear trend of the cluster maximum scattered intensity as a function of the surface area of the aggregate. On given clusters, the intensity turns out to be also influenced by the number of stacking planes of the aggregate, thus suggesting a plasmonic waveguide effect. The linear dependence results weakened for the largest area clusters, suggesting 30 μm{sup 2} as the upper limit for exploiting the coherence over large scale of the plasmonic response.

  17. Spatial correlation of confocal Raman scattering and secondary ion mass spectrometric molecular images of lignocellulosic materials.

    Science.gov (United States)

    Li, Zhen; Chu, Li-Qiang; Sweedler, Jonathan V; Bohn, Paul W

    2010-04-01

    A detailed chemical and structural understanding of pre-enzymatic processing of lignocellulosic materials (LCMs) is a key objective in the development of renewable energy. Efficient rendering of biomass components into fermentable substrates for conversion into biofuel feedstocks would benefit greatly from the development of new technologies to provide high-quality, spatially resolved chemical information about LCMs during the various processing states. In an effort to realize this important goal, spatially correlated confocal Raman and mass spectrometric images allow the extraction of three-dimensional information from the perennial grass, Miscanthus x giganteus. An optical microscopy-based landmark registry scheme was developed that allows samples to be transferred between laboratories at different institutions, while retaining the capability to access the same physical regions of the samples. Subsequent to higher resolution imaging via confocal Raman microscopy and secondary ion mass spectrometry (SIMS), laser desorption-ionization mass spectrometry was used to place these regions within the overall sample architecture. Excellent sample registry was evident in the highly correlated Raman and SIMS images. In addition, the correlation of vibrational Raman scattering with mass spectra from specific spatial locations allowed confirmation of the assignment of intracellular globular structures to hemicellulose-rich lignin complexes, an assignment which could only be made tentatively from either image alone. PMID:20205411

  18. Polarization modulated background-free hyperspectral stimulated Raman scattering microscopy (Conference Presentation)

    Science.gov (United States)

    Houle, Marie-Andrée.; Andreana, Marco; Ridsdale, Andrew; Moffatt, Doug; Lausten, Rune; Légaré, François; Stolow, Albert

    2016-03-01

    Stimulated Raman Scattering (SRS) microscopy is a nonlinear microscopy technique based on Raman vibrational resonances determined by the frequency difference between Pump and Stokes laser pulses. Modulation of one laser beam transfers the modulation to the other, as either a gain in Stokes (SRG) or a loss in Pump power (SRL). SRS microscopy does not exhibit the four-wave mixing nonresonant background characteristic of CARS microscopy. However, other background signals due to two-photon absorption, thermal lensing or cross-phase modulation (XPM) do reduce the detection sensitivity and can distort the hyperspectral scans. Phase sensitive lock-in detection can reduce contributions from two-photon absorption, which is out-of-phase for the SRG case. However, the background signal due to XPM, which can be in-phase with SRS, can reduce the detection sensitivity. We present a novel polarization modulation (PM) scheme in SRS microscopy which greatly reduces the nonresonant XPM background, demonstrated here for the SRL case. Since many Raman vibrational transitions are parallel polarized, the SRS signal is maximum (minimum) when the polarizations of the pump and the Stokes beams are parallel (perpendicular). However, in both parallel and perpendicular Pump-Stokes geometries, XPM is non-zero in many media. Therefore, PM can remove the XPM background without significantly reducing the SRS signal. Our results show that the PM-SRS successfully removes the nonresonant signal due to XPM. High imaging contrast is observed, concomitant with high sensitivity at very low analyte concentrations and undistorted Raman spectra.

  19. Enhancing the efficiency of silicon Raman converters

    Science.gov (United States)

    Vermeulen, Nathalie; Sipe, John E.; Thienpont, Hugo

    2010-05-01

    We propose a silicon ring Raman converter in which the spatial variation of the Raman gain along the ring for TE polarization is used to quasi-phase-match the CARS process. If in addition the pump, Stokes, and anti-Stokes waves involved in the CARS interaction are resonantly enhanced by the ring structure, the Stokes-to-anti-Stokes conversion efficiency can be increased by at least four orders of magnitude over that of one-dimensional perfectly phase-matched silicon Raman converters, and can reach values larger than unity with relatively low input pump intensities. These improvements in conversion performance could substantially expand the practical applicability of the CARS process for optical wavelength conversion.

  20. Surface plasmon near-field back-action and displacement of enhanced Raman scattering spectrum in graphene

    Science.gov (United States)

    Ghamsari, Behnood G.; Berini, Pierre

    2016-07-01

    It has been recently observed that plasmonic nanoantennas tuned to the Stokes wavelengths associated with the G and 2D Raman bands of graphene, rather than the laser pump, not only enhance Raman scattering in graphene but also displace and broaden the Raman spectra Ghamsari et al (2015 Phys. Rev. B 91 201408(R)). This paper presents a model to explain the frequency pulling and lineshape broadening effects based on the back-action of surface plasmons near-field on the induced microscopic Raman dipoles in graphene. The model provides the relation among Raman enhancement factor, Raman frequency displacement, and broadening caused by Stokes-tuned resonant nanoantennas and compares the results to the previously reported experimental data.

  1. Structure-property relations in crystalline L-leucine obtained from calorimetry, X-rays, neutron and Raman scattering

    DEFF Research Database (Denmark)

    Facanha Filho, Pedro F.; Jiao, Xueshe; Freire, Paulo T. C.;

    2011-01-01

    We have studied the amino acid L-leucine (LEU) using inelastic neutron scattering, X-rays and neutron diffraction, calorimetry and Raman scattering as a function of temperature, focusing on the relationship between the local dynamics of the NH(3), CH(3), CH(2) and CO(2) moieties and the molecular...

  2. Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction

    Science.gov (United States)

    Veselovskii, I.; Whiteman, D. N.; Korenskiy, M.; Suvorina, A.; Pérez-Ramírez, D.

    2015-10-01

    Vibrational Raman scattering from nitrogen is commonly used in aerosol lidars for evaluation of particle backscattering (β) and extinction (α) coefficients. However, at mid-visible wavelengths, particularly in the daytime, previous measurements have possessed low signal-to-noise ratio. Also, vibrational scattering is characterized by a significant frequency shift of the Raman component, so for the calculation of α and β information about the extinction Ångström exponent is needed. Simulation results presented in this study demonstrate that ambiguity in the choice of Ångström exponent can be the a significant source of uncertainty in the calculation of backscattering coefficients when optically thick aerosol layers are considered. Both of these issues are addressed by the use of pure-rotational Raman (RR) scattering, which is characterized by a higher cross section compared to nitrogen vibrational scattering, and by a much smaller frequency shift, which essentially removes the sensitivity to changes in the Ångström exponent. We describe a practical implementation of rotational Raman measurements in an existing Mie-Raman lidar to obtain aerosol extinction and backscattering at 532 nm. A 2.3 nm width interference filter was used to select a spectral range characterized by low temperature sensitivity within the anti-Stokes branch of the RR spectrum. Simulations demonstrate that the temperature dependence of the scattering cross section does not exceed 1.5 % in the 230-300 K range, making correction for this dependence quite easy. With this upgrade, the NASA GSFC multiwavelength Raman lidar has demonstrated useful α532 measurements and was used for regular observations. Examples of lidar measurements and inversion of optical data to the particle microphysics are given.

  3. The Inclusion of Raman Scattering Effects in the Combined Ocean-Atmosphere Radiative Transfer Model MOMO to Estimate the Influence of Raman Scattering in Case 1 Waters on Satellite Ocean Remote Sensing Applications

    Science.gov (United States)

    von Bismarck, J.; Fischer, J.

    2011-12-01

    Raman scattering of the solar lightfield, due to energy absorption by vibrational modes of water molecules, may contribute significantly to the signals observed by remote sensing satellites over water. The inelastic fraction of the water-leaving radiance for clear water reaches values of 30% in the red part of the visible spectrum, and still reaches values of several percent in moderately turbid waters. Furthermore, inelastic scattering due to chlorophyll and yellow substance fluorescence adds to this fraction. For these reasons the inclusion of inelastic scattering sources into radiative-transfer models, used in ocean remote sensing applications or atmosphere remote sensing over the ocean, can be important. MOMO is a computer code based on the matrix-operator method designed to calculate the lightfield in the stratified atmosphere-ocean system. It has been developed at the Institute for Space Sciences of the Freie Universität Berlin and provides the full polarization state (in the newest version) and an air-sea interface accounting for radiative effects of the wind roughened water surface. The inclusion of Raman scattering effects is done by a processing module, that starts a primary MOMO program run with a high spectral resolution, to calculate the radiative energy available for inelastic scattering at each model layer boundary. The processing module then calculates the first order Raman source-terms for every observation wavelength at every layer boundary, accounting for the non-isotropicity (including the azimuthal dependence) of the Raman phase-function, the spectral redistribution, and the spectral dependence of the Raman scattering coefficient. These elementary source-terms then serve as input for the second program run, which then calculates the source-terms of all model layers, using the doubling-adding method, and the resulting radiance field. Higher orders of the Raman contribution can be computed with additional program runs. Apart from the Raman

  4. Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform

    Science.gov (United States)

    Pinkhasova, Polina; Chen, Hui; Kanka, Jiri; Mergo, Pawel; Du, Henry

    2015-02-01

    Core-shell nanotags that are active in surface-enhanced Raman scattering (SERS) and entrapped with thiocyanate (SCN) label molecules were immobilized in the air channels of suspended-core photonic crystal fiber (PCF) to impart quantitative capacity to SERS-based PCF optofluidic sensing platform. The Raman intensity of Rhodamine 6G increases with concentration, whereas the intensity of SCN remains constant when measured using this platform. The signal from the SCN label can be used as an internal reference to establish calibration for quantitative measurements of analytes of unknown concentrations. The long optical path-length PCF optofluidic platform integrated with SERS-active core-shell nanotags holds significant promise for sensitive quantitative chem/bio measurements with the added benefit of small sampling volume. The dependence of SERS intensity on the nanotag coverage density and PCF length was interpreted based on numerical-analytical simulations.

  5. Surface-enhanced resonance Raman scattering spectroscopy of single R6G molecules

    Institute of Scientific and Technical Information of China (English)

    Zhou Zeng-Hui; Liu Li; Wang Gui-Ying; Xu Zhi-Zhan

    2006-01-01

    Surface-enhanced resonance Raman scattering (SERRS) of Rhodamine 6G (R6G) adsorbed on colloidal silver clusters has been studied. Based on the great enhancement of the Raman signal and the quench of the fluorescence, the SERRS spectra of R6G were recorded for the samples of dye colloidal solution with different concentrations. Spectral inhomogeneity behaviours from single molecules in the dried sample films were observed with complementary evidences, such as spectral polarization, spectral diffusion, intensity fluctuation of vibrational lines and even "breathing" of the molecules. Sequential spectra observed from a liquid sample with an average of 0.3 dye molecules in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1 or 2 molecules. Difference between the SERRS spectra of R6G excited by linearly and circularly polarized light were experimentally measured.

  6. Immunoassay utilizing biochemistry reaction product via surface-enhanced Raman scattering in near field

    Institute of Scientific and Technical Information of China (English)

    ZHAO Haiying; NI Yi; JIANG Wei; LUO Peiqing; HUANG Meizheng; YIN Guangzhong; DOU Xiaoming

    2005-01-01

    We propose here a kind of applications of surface-enhanced Raman scattering (SERS) to immunology. It is a new enzyme immunoassay based on SERS. In the proposed system, antibody immobilized on a solid substrate reacts with antigen, which binds with another antibody labeled with peroxidase. If this immunocomplex is subjected to reaction with o-phenylenediamine and hydrogenperoxide, azoaniline is generated. This azo compound is adsorbed on a silver colloid and only the azo compound gives a strong surface-enhanced resonance Raman (SERRS) spectrum. A linear relationship was observed between the peak intensity of the N=N stretching band and the concentration of antigen, revealing that one can determine the concentration of antigen by the SERRS measurement of the reaction product. The detection limit of this SERS enzyme immunoassay method was found to be about 10-15 mol/L.

  7. In Situ and In Vivo Molecular Analysis by Coherent Raman Scattering Microscopy

    Science.gov (United States)

    Liao, Chien-Sheng; Cheng, Ji-Xin

    2016-06-01

    Coherent Raman scattering (CRS) microscopy is a high-speed vibrational imaging platform with the ability to visualize the chemical content of a living specimen by using molecular vibrational fingerprints. We review technical advances and biological applications of CRS microscopy. The basic theory of CRS and the state-of-the-art instrumentation of a CRS microscope are presented. We further summarize and compare the algorithms that are used to separate the Raman signal from the nonresonant background, to denoise a CRS image, and to decompose a hyperspectral CRS image into concentration maps of principal components. Important applications of single-frequency and hyperspectral CRS microscopy are highlighted. Potential directions of CRS microscopy are discussed.

  8. Carbon nanotubes doped with trivalent elements by using back - scattering Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    S. A. Babanejad

    2008-12-01

    Full Text Available  In this paper by using DC arc discharge method and acetylene gas, as the carbon source, and nitrogen, as the carrier gas, canrbon nanotubes, CNTs, doped with trivalent element boron, B, have been produced. The deposited CNTs on the cathod electrod, which have structural doped properties to boron element, have been collected and after purification have been investigated by back-scattering Raman spectroscopy. The results reveal that the high frequency G mode component in CNTs doped with electron acceptor element, B, shift to higher wavenumbers. The low frequency G mode component which can appear at approximately 1540–1570 cm-1 wavenumber region, called BWF mode, is a sign of metallic CNT. In the synthesized doped CNTs due to the presence of boron dopant, D mode has sharp peaks and has relatively high intensity in the Raman spectra .

  9. Formation Regularities of Plasmonic Silver Nanostructures on Porous Silicon for Effective Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Bandarenka, Hanna V; Girel, Kseniya V; Bondarenko, Vitaly P; Khodasevich, Inna A; Panarin, Andrei Yu; Terekhov, Sergei N

    2016-12-01

    Plasmonic nanostructures demonstrating an activity in the surface-enhanced Raman scattering (SERS) spectroscopy have been fabricated by an immersion deposition of silver nanoparticles from silver salt solution on mesoporous silicon (meso-PS). The SERS signal intensity has been found to follow the periodical repacking of the silver nanoparticles, which grow according to the Volmer-Weber mechanism. The ratio of silver salt concentration and immersion time substantially manages the SERS intensity. It has been established that optimal conditions of nanostructured silver layers formation for a maximal Raman enhancement can be chosen taking into account a special parameter called effective time: a product of the silver salt concentration on the immersion deposition time. The detection limit for porphyrin molecules CuTMPyP4 adsorbed on the silvered PS has been evaluated as 10(-11) M.

  10. Surface-enhanced Raman scattering activity of niobium surface after irradiation with femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Victor G. [Faculty of Physics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia (Bulgaria); Georgi Nadjakov Institute of Solid State Physics, BAS, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Vlakhov, Emil S. [Georgi Nadjakov Institute of Solid State Physics, BAS, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Stan, George E.; Socol, Marcela [National Institute of Material Physics, 105 bis Atomistilor Street, 077125 Magurele-Ilfov (Romania); Zamfirescu, Marian; Albu, Catalina; Mihailescu, Natalia; Negut, Irina; Luculescu, Catalin; Ristoscu, Carmen; Mihailescu, Ion N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele-Ilfov (Romania)

    2015-11-28

    The chemical modification of the niobium (Nb) surface after irradiation with femtosecond laser pulses was investigated by scanning electron microscopy coupled with energy dispersive spectroscopy, atomic force microscopy, grazing incidence X-ray diffraction, and micro-Raman spectroscopy. The physical-chemical analyses indicated that the laser treatment results in oxidation of the Nb surface, as well as in the formation of Nb hydrides. Remarkably, after the samples' washing in ethanol, a strong Surface-Enhanced Raman Scattering (SERS) signal originating from the toluene residual traces was evidenced. Further, it was observed that the laser irradiated Nb surface is able to provide a SERS enhancement of ∼1.3 × 10{sup 3} times for rhodamine 6G solutions. Thus, for the first time it was shown that Nb/Nb oxide surfaces could exhibit SERS functionality, and so one can expect applications in biological/biochemical screening or for sensing of dangerous environmental substances.

  11. A filter based analyzer for studies of X-ray Raman scattering

    CERN Document Server

    Seidler, G T

    2001-01-01

    Non-resonant X-ray Raman scattering (XRS) with hard X-rays holds the potential for measuring local structure and local electronic properties around low-Z atoms in environments where traditional soft X-ray techniques are inapplicable. However, the small cross-section for XRS requires that experiments must simultaneously achieve high detection efficiency, large collection solid angles, and good energy resolution. We report here that a simple X-ray analyzer consisting of an absorber and a point-focusing spatial filter can be used to study some X-ray Raman near-edge features. This apparatus has greater than 10% detection efficiency, has an energy resolution of 8 eV, and can be readily extended to collection angles of more than 1 sr. We present preliminary measurements of the XRS from the nitrogen 1 s shell in pyrolitic boron nitride.

  12. Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform

    Energy Technology Data Exchange (ETDEWEB)

    Pinkhasova, Polina; Chen, Hui; Du, Henry, E-mail: hdu@stevens.edu [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030 (United States); Kanka, Jiri [Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberska 57, 182 31 Prague (Czech Republic); Mergo, Pawel [Department of Optical Fibres Technology, Maria Curie-Sklodovska University, PI. M. Currie-Sklodowskiej 5, 20-031 Lublin (Poland)

    2015-02-16

    Core-shell nanotags that are active in surface-enhanced Raman scattering (SERS) and entrapped with thiocyanate (SCN) label molecules were immobilized in the air channels of suspended-core photonic crystal fiber (PCF) to impart quantitative capacity to SERS-based PCF optofluidic sensing platform. The Raman intensity of Rhodamine 6G increases with concentration, whereas the intensity of SCN remains constant when measured using this platform. The signal from the SCN label can be used as an internal reference to establish calibration for quantitative measurements of analytes of unknown concentrations. The long optical path-length PCF optofluidic platform integrated with SERS-active core-shell nanotags holds significant promise for sensitive quantitative chem/bio measurements with the added benefit of small sampling volume. The dependence of SERS intensity on the nanotag coverage density and PCF length was interpreted based on numerical-analytical simulations.

  13. Surface-enhanced Raman scattering activity of niobium surface after irradiation with femtosecond laser pulses

    International Nuclear Information System (INIS)

    The chemical modification of the niobium (Nb) surface after irradiation with femtosecond laser pulses was investigated by scanning electron microscopy coupled with energy dispersive spectroscopy, atomic force microscopy, grazing incidence X-ray diffraction, and micro-Raman spectroscopy. The physical-chemical analyses indicated that the laser treatment results in oxidation of the Nb surface, as well as in the formation of Nb hydrides. Remarkably, after the samples' washing in ethanol, a strong Surface-Enhanced Raman Scattering (SERS) signal originating from the toluene residual traces was evidenced. Further, it was observed that the laser irradiated Nb surface is able to provide a SERS enhancement of ∼1.3 × 103 times for rhodamine 6G solutions. Thus, for the first time it was shown that Nb/Nb oxide surfaces could exhibit SERS functionality, and so one can expect applications in biological/biochemical screening or for sensing of dangerous environmental substances

  14. Formation Regularities of Plasmonic Silver Nanostructures on Porous Silicon for Effective Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Bandarenka, Hanna V; Girel, Kseniya V; Bondarenko, Vitaly P; Khodasevich, Inna A; Panarin, Andrei Yu; Terekhov, Sergei N

    2016-12-01

    Plasmonic nanostructures demonstrating an activity in the surface-enhanced Raman scattering (SERS) spectroscopy have been fabricated by an immersion deposition of silver nanoparticles from silver salt solution on mesoporous silicon (meso-PS). The SERS signal intensity has been found to follow the periodical repacking of the silver nanoparticles, which grow according to the Volmer-Weber mechanism. The ratio of silver salt concentration and immersion time substantially manages the SERS intensity. It has been established that optimal conditions of nanostructured silver layers formation for a maximal Raman enhancement can be chosen taking into account a special parameter called effective time: a product of the silver salt concentration on the immersion deposition time. The detection limit for porphyrin molecules CuTMPyP4 adsorbed on the silvered PS has been evaluated as 10(-11) M. PMID:27209406

  15. Surface-enhanced Raman scattering activity of niobium surface after irradiation with femtosecond laser pulses

    Science.gov (United States)

    Ivanov, Victor G.; Vlakhov, Emil S.; Stan, George E.; Zamfirescu, Marian; Albu, Catalina; Mihailescu, Natalia; Negut, Irina; Luculescu, Catalin; Socol, Marcela; Ristoscu, Carmen; Mihailescu, Ion N.

    2015-11-01

    The chemical modification of the niobium (Nb) surface after irradiation with femtosecond laser pulses was investigated by scanning electron microscopy coupled with energy dispersive spectroscopy, atomic force microscopy, grazing incidence X-ray diffraction, and micro-Raman spectroscopy. The physical-chemical analyses indicated that the laser treatment results in oxidation of the Nb surface, as well as in the formation of Nb hydrides. Remarkably, after the samples' washing in ethanol, a strong Surface-Enhanced Raman Scattering (SERS) signal originating from the toluene residual traces was evidenced. Further, it was observed that the laser irradiated Nb surface is able to provide a SERS enhancement of ˜1.3 × 103 times for rhodamine 6G solutions. Thus, for the first time it was shown that Nb/Nb oxide surfaces could exhibit SERS functionality, and so one can expect applications in biological/biochemical screening or for sensing of dangerous environmental substances.

  16. Formation Regularities of Plasmonic Silver Nanostructures on Porous Silicon for Effective Surface-Enhanced Raman Scattering

    Science.gov (United States)

    Bandarenka, Hanna V.; Girel, Kseniya V.; Bondarenko, Vitaly P.; Khodasevich, Inna A.; Panarin, Andrei Yu.; Terekhov, Sergei N.

    2016-05-01

    Plasmonic nanostructures demonstrating an activity in the surface-enhanced Raman scattering (SERS) spectroscopy have been fabricated by an immersion deposition of silver nanoparticles from silver salt solution on mesoporous silicon (meso-PS). The SERS signal intensity has been found to follow the periodical repacking of the silver nanoparticles, which grow according to the Volmer-Weber mechanism. The ratio of silver salt concentration and immersion time substantially manages the SERS intensity. It has been established that optimal conditions of nanostructured silver layers formation for a maximal Raman enhancement can be chosen taking into account a special parameter called effective time: a product of the silver salt concentration on the immersion deposition time. The detection limit for porphyrin molecules CuTMPyP4 adsorbed on the silvered PS has been evaluated as 10-11 M.

  17. Probing the pairing symmetry of the iron pnictides with electronic Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.R.

    2010-04-29

    An important issue in the study of the iron-arsenic based superconductors is the symmetry of the superconducting gap, a problem complicated by multiple gaps on different Fermi surface sheets. Electronic Raman scattering is a flexible bulk probe which allows one in principle to determine gap magnitudes and test for gap nodes in different regions of the Brillouin zone by employing different photon polarization states. Here we calculate the clean Raman intensity for A{sub 1g}, B{sub 1g} and B{sub 2g} polarizations, and discuss the peak structures and low-energy power laws which might be expected for several popular models of the superconducting gap in these systems.

  18. Temperature dependences of Raman scattering in different types of GaN epilayers

    Institute of Scientific and Technical Information of China (English)

    Xue Xiao-Yong; Xu Sheng-Rui; Zhang Jin-Cheng; Lin Zhi-Yu; Ma Jun-Cai; Liu Zi-Yang; Xue Jun-Shuai; Hao Yue

    2012-01-01

    First-order Raman scatterings of hexagonal GaN layers deposited by the hydride vapour phase epitaxy and by metal-organic chemical vapour deposition on SiC and sapphire substrates are studied in a temperature range between 303 K and 503 K.The temperature dependences of two GaN Raman modes (A1 (LO) and E2 (high)) are obtained.We focus our attention on the temperature dependence of E2 (high) mode and find that for different types of GaN epilayers their temperature dependences are somewhat different.We compare their differences and give them an explanation.The simplified formulas we obtained are in good accordance with experiment data.The results can be used to determine the temperature of a GaN sample.

  19. Raman scattering investigation of the quasi-one-dimensional superconductor Ta₄Pd₃Te₁₆.

    Science.gov (United States)

    Chen, D; Richard, P; Song, Z-D; Zhang, W-L; Wu, S-F; Jiao, W H; Fang, Z; Cao, G-H; Ding, H

    2015-12-16

    We have performed polarized Raman scattering measurements on the newly discovered superconductor Ta4Pd3Te16 (T(c) = 4.6 K). We observe 28 out of 33 Raman active modes, with frequencies in good accordance with first-principles calculations. Although most of the phonons observed vary only slightly with temperature and do not exhibit any asymmetric profile that would suggest strong electron-phonon coupling, the linewidth of the A(g) phonon mode at 89.9 cm(-1) shows an unconventional increase with temperature decreasing, which is possibly due to a charge-density-wave transition or the emergence of charge-density-wave fluctuations below a temperature estimated to fall in the 140-200 K range.

  20. Surface-enhanced Raman scattering (SERS) detection for chemical and biological agents

    Science.gov (United States)

    Yan, Fei; Stokes, David L.; Wabuyele, Musundi B.; Griffin, Guy D.; Vass, Arpad A.; Vo-Dinh, Tuan

    2004-07-01

    Surface-enhanced Raman scattering (SERS) spectra of chemical agent simulants such as dimethyl methylphonate (DMMP), pinacolyl methylphosphonate (PMP), diethyl phosphoramidate (DEPA), and 2-chloroethyl ethylsulfide (CEES), and biological agent simulants such as bacillus globigii (BG), erwinia herbicola (EH), and bacillus thuringiensis (BT) were obtained from silver oxide film-deposited substrates. Thin AgO films ranging in thickness from 50 nm to 250 nm were produced by chemical bath deposition onto glass slides. Further Raman intensity enhancements were noticed in UV irradiated surfaces due to photo-induced Ag nanocluster formation, which may provide a possible route to producing highly useful plasmonic sensors for the detection of chemical and biological agents upon visible light illumination.

  1. Tip-enhanced Raman scattering microscopy: Recent advance in tip production

    Science.gov (United States)

    Fujita, Yasuhiko; Walke, Peter; De Feyter, Steven; Uji-i, Hiroshi

    2016-08-01

    Tip-enhanced Raman scattering (TERS) microscopy is a technique that combines the chemical sensitivity of Raman spectroscopy with the resolving power of scanning probe microscopy. The key component of any TERS setup is a plasmonically-active noble metal tip, which serves to couple far-field incident radiation with the near-field. Thus, the design and implementation of reproducible probes are crucial for the continued development of TERS as a tool for nanoscopic analysis. Here we discuss conventional methods for the fabrication of TERS-ready tips, highlighting the problems therein, as well as detailing more recent developments to improve reducibility. In addition, the idea of remote excitation-TERS is enlightened upon, whereby TERS sensitivity is further improved by using propagating surface plasmons to separate the incident radiation from the tip apex, as well as how this can be incorporated into the fabrication process.

  2. In vitro colocalization of plasmonic nano-biolabels and biomolecules using plasmonic and Raman scattering microspectroscopy

    Science.gov (United States)

    Chaudhari, Kamalesh; Pradeep, Thalappil

    2015-04-01

    An insight into the intracellular fate of theranostics is important for improving their potential in biological applications. In vivo efficacy of plasmonic theranostics depends on our ability to monitor temporal changes in their size, shape, and state of aggregation, and the identification of molecules adsorbed on their surfaces. We develop a technique which combines plasmonic and Raman scattering microspectroscopy to colocalize plasmonic scattering from metallic nanoparticles with the Raman signatures of biomolecules adsorbed on the surface of the former. Using this technique, we have colocalized biomolecules with the plasmonic scattering from silver nanoparticles in the vicinity of Escherichia coli bacteria. To prove the applicability of this setup for the measurements on mammalian cells, imaging of HEK293 cells treated with gold nanoparticles was performed. We discuss the importance of such correlated measurements over individual techniques, although the latter may lead to misinterpretation of results. Finally, with the above-mentioned examples, we have given criteria to improve the specificity of theranostics. We believe that this methodology will be considered as a prime development in the assessment of theranostics.

  3. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering.

    Science.gov (United States)

    Feng, Simin; Dos Santos, Maria Cristina; Carvalho, Bruno R; Lv, Ruitao; Li, Qing; Fujisawa, Kazunori; Elías, Ana Laura; Lei, Yu; Perea-López, Nestor; Endo, Morinobu; Pan, Minghu; Pimenta, Marcos A; Terrones, Mauricio

    2016-07-01

    As a novel and efficient surface analysis technique, graphene-enhanced Raman scattering (GERS) has attracted increasing research attention in recent years. In particular, chemically doped graphene exhibits improved GERS effects when compared with pristine graphene for certain dyes, and it can be used to efficiently detect trace amounts of molecules. However, the GERS mechanism remains an open question. We present a comprehensive study on the GERS effect of pristine graphene and nitrogen-doped graphene. By controlling nitrogen doping, the Fermi level (E F) of graphene shifts, and if this shift aligns with the lowest unoccupied molecular orbital (LUMO) of a molecule, charge transfer is enhanced, thus significantly amplifying the molecule's vibrational Raman modes. We confirmed these findings using different organic fluorescent molecules: rhodamine B, crystal violet, and methylene blue. The Raman signals from these dye molecules can be detected even for concentrations as low as 10(-11) M, thus providing outstanding molecular sensing capabilities. To explain our results, these nitrogen-doped graphene-molecule systems were modeled using dispersion-corrected density functional theory. Furthermore, we demonstrated that it is possible to determine the gaps between the highest occupied and the lowest unoccupied molecular orbitals (HOMO-LUMO) of different molecules when different laser excitations are used. Our simulated Raman spectra of the molecules also suggest that the measured Raman shifts come from the dyes that have an extra electron. This work demonstrates that nitrogen-doped graphene has enormous potential as a substrate when detecting low concentrations of molecules and could also allow for an effective identification of their HOMO-LUMO gaps.

  4. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering.

    Science.gov (United States)

    Feng, Simin; Dos Santos, Maria Cristina; Carvalho, Bruno R; Lv, Ruitao; Li, Qing; Fujisawa, Kazunori; Elías, Ana Laura; Lei, Yu; Perea-López, Nestor; Endo, Morinobu; Pan, Minghu; Pimenta, Marcos A; Terrones, Mauricio

    2016-07-01

    As a novel and efficient surface analysis technique, graphene-enhanced Raman scattering (GERS) has attracted increasing research attention in recent years. In particular, chemically doped graphene exhibits improved GERS effects when compared with pristine graphene for certain dyes, and it can be used to efficiently detect trace amounts of molecules. However, the GERS mechanism remains an open question. We present a comprehensive study on the GERS effect of pristine graphene and nitrogen-doped graphene. By controlling nitrogen doping, the Fermi level (E F) of graphene shifts, and if this shift aligns with the lowest unoccupied molecular orbital (LUMO) of a molecule, charge transfer is enhanced, thus significantly amplifying the molecule's vibrational Raman modes. We confirmed these findings using different organic fluorescent molecules: rhodamine B, crystal violet, and methylene blue. The Raman signals from these dye molecules can be detected even for concentrations as low as 10(-11) M, thus providing outstanding molecular sensing capabilities. To explain our results, these nitrogen-doped graphene-molecule systems were modeled using dispersion-corrected density functional theory. Furthermore, we demonstrated that it is possible to determine the gaps between the highest occupied and the lowest unoccupied molecular orbitals (HOMO-LUMO) of different molecules when different laser excitations are used. Our simulated Raman spectra of the molecules also suggest that the measured Raman shifts come from the dyes that have an extra electron. This work demonstrates that nitrogen-doped graphene has enormous potential as a substrate when detecting low concentrations of molecules and could also allow for an effective identification of their HOMO-LUMO gaps. PMID:27532043

  5. Chip-Scale Bioassays Based on Surface-Enhanced Raman Scattering: Fundamentals and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hye-Young Park

    2005-12-17

    This work explores the development and application of chip-scale bioassays based on surface-enhanced Raman scattering (SERS) for high throughput and high sensitivity analysis of biomolecules. The size effect of gold nanoparticles on the intensity of SERS is first presented. A sandwich immunoassay was performed using Raman-labeled immunogold nanoparticles with various sizes. The SERS responses were correlated to particle densities, which were obtained by atomic force microscopy (AFM). The response of individual particles was also investigated using Raman-microscope and an array of gold islands on a silicon substrate. The location and the size of individual particles were mapped using AFM. The next study describes a low-level detection of Escherichia coli 0157:H7 and simulants of biological warfare agents in a sandwich immunoassay format using SERS labels, which have been termed Extrinsic Raman labels (ERLs). A new ERL scheme based on a mixed monolayer is also introduced. The mixed monolayer ERLs were created by covering the gold nanoparticles with a mixture of two thiolates, one thiolate for covalently binding antibody to the particle and the other thiolate for producing a strong Raman signal. An assay platform based on mixed self-assembled monolayers (SAMs) on gold is then presented. The mixed SAMs were prepared from dithiobis(succinimidyl undecanoate) (DSU) to covalently bind antibodies on gold substrate and oligo(ethylene glycol)-terminated thiol to prevent nonspecific adsorption of antibodies. After the mixed SAMs surfaces, formed from various mole fraction of DSU were incubated with antibodies, AFM was used to image individual antibodies on the surface. The final study presents a collaborative work on the single molecule adsorption of YOYO-I labeled {lambda}-DNA at compositionally patterned SAMs using total internal reflection fluorescence microscopy. The role of solution pH, {lambda}-DNA concentration, and domain size was investigated. This work also revealed

  6. Chip-Scale Bioassays Based on Surface-Enhanced Raman Scattering: Fundamentals and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye-Young [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    This work explores the development and application of chip-scale bioassays based on surface-enhanced Raman scattering (SERS) for high throughput and high sensitivity analysis of biomolecules. The size effect of gold nanoparticles on the intensity of SERS is first presented. A sandwich immunoassay was performed using Raman-labeled immunogold nanoparticles with various sizes. The SERS responses were correlated to particle densities, which were obtained by atomic force microscopy (AFM). The response of individual particles was also investigated using Raman-microscope and an array of gold islands on a silicon substrate. The location and the size of individual particles were mapped using AFM. The next study describes a low-level detection of Escherichia coli 0157:H7 and simulants of biological warfare agents in a sandwich immunoassay format using SERS labels, which have been termed Extrinsic Raman labels (ERLs). A new ERL scheme based on a mixed monolayer is also introduced. The mixed monolayer ERLs were created by covering the gold nanoparticles with a mixture of two thiolates, one thiolate for covalently binding antibody to the particle and the other thiolate for producing a strong Raman signal. An assay platform based on mixed self-assembled monolayers (SAMs) on gold is then presented. The mixed SAMs were prepared from dithiobis(succinimidyl undecanoate) (DSU) to covalently bind antibodies on gold substrate and oligo(ethylene glycol)-terminated thiol to prevent nonspecific adsorption of antibodies. After the mixed SAMs surfaces, formed from various mole fraction of DSU were incubated with antibodies, AFM was used to image individual antibodies on the surface. The final study presents a collaborative work on the single molecule adsorption of YOYO-I labeled {lambda}-DNA at compositionally patterned SAMs using total internal reflection fluorescence microscopy. The role of solution pH, {lambda}-DNA concentration, and domain size was investigated. This work also revealed

  7. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering

    Science.gov (United States)

    Feng, Simin; dos Santos, Maria Cristina; Carvalho, Bruno R.; Lv, Ruitao; Li, Qing; Fujisawa, Kazunori; Elías, Ana Laura; Lei, Yu; Perea-López, Nestor; Endo, Morinobu; Pan, Minghu; Pimenta, Marcos A.; Terrones, Mauricio

    2016-01-01

    As a novel and efficient surface analysis technique, graphene-enhanced Raman scattering (GERS) has attracted increasing research attention in recent years. In particular, chemically doped graphene exhibits improved GERS effects when compared with pristine graphene for certain dyes, and it can be used to efficiently detect trace amounts of molecules. However, the GERS mechanism remains an open question. We present a comprehensive study on the GERS effect of pristine graphene and nitrogen-doped graphene. By controlling nitrogen doping, the Fermi level (EF) of graphene shifts, and if this shift aligns with the lowest unoccupied molecular orbital (LUMO) of a molecule, charge transfer is enhanced, thus significantly amplifying the molecule’s vibrational Raman modes. We confirmed these findings using different organic fluorescent molecules: rhodamine B, crystal violet, and methylene blue. The Raman signals from these dye molecules can be detected even for concentrations as low as 10−11 M, thus providing outstanding molecular sensing capabilities. To explain our results, these nitrogen-doped graphene-molecule systems were modeled using dispersion-corrected density functional theory. Furthermore, we demonstrated that it is possible to determine the gaps between the highest occupied and the lowest unoccupied molecular orbitals (HOMO-LUMO) of different molecules when different laser excitations are used. Our simulated Raman spectra of the molecules also suggest that the measured Raman shifts come from the dyes that have an extra electron. This work demonstrates that nitrogen-doped graphene has enormous potential as a substrate when detecting low concentrations of molecules and could also allow for an effective identification of their HOMO-LUMO gaps. PMID:27532043

  8. Raman scattering in orthorhombic CuInS{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Dzhagan, V.M.; Valakh, M.Ya. [Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv (Ukraine); Litvinchuk, A.P. [Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, TX (United States); Kruszynska, M.; Kolny-Olesiak, J. [Energy and Semiconductor Research Laboratory, Department of Physics, Carl von Ossietzky University of Oldenburg (Germany); Himcinschi, C. [Institute of Theoretical Physics, TU Bergakademie Freiberg (Germany); Zahn, D.R.T. [Semiconductor Physics, Chemnitz University of Technology (Germany)

    2014-01-15

    We report the results of non-resonant and resonant Raman scattering in orthorhombic nanocrystalline CuInS{sub 2} semiconductor, supported by density functional first principle lattice dynamics calculations. A larger number of dominant phonon modes in comparison with standard tetragonal CuInS{sub 2} phases is shown to be associated with peculiarities of cation sublattice ordering and is the ''fingerprint'' of the corresponding structural polymorph. Good overall agreement is found between theoretical and experimental phonon mode frequencies. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Intensity dependent waiting time for strong electron trapping events in speckle stimulated raman scatter

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Harvey [Los Alamos National Laboratory; Daughton, W [Los Alamos National Laboratory; Yin, L [Los Alamos National Laboratory

    2009-01-01

    The onset of Stimulated Raman scatter from an intense laser speckle is the simplest experimentally realizable laser-plasma-interaction environment. Despite this data and recent 3D particle simulations, the controlling mechanism at the onset of backscatter in the kinetic regime when strong electron trapping in the daughter Langmuir wave is a dominant nonlinearity is not understood. This paper explores the consequences of assuming that onset is controlled by large thermal fluctuations. A super exponential dependence of mean reflectivity on speckle intensity in the onset regime is predicted.

  10. In situ monitoring of biomolecular processes in living systems using surface-enhanced Raman scattering

    Science.gov (United States)

    Altunbek, Mine; Kelestemur, Seda; Culha, Mustafa

    2015-12-01

    Surface-enhanced Raman scattering (SERS) continues to strive to gather molecular level information from dynamic biological systems. It is our ongoing effort to utilize the technique for understanding of the biomolecular processes in living systems such as eukaryotic and prokaryotic cells. In this study, the technique is investigated to identify cell death mechanisms in 2D and 3D in vitro cell culture models, which is a very important process in tissue engineering and pharmaceutical applications. Second, in situ biofilm formation monitoring is investigated to understand how microorganisms respond to the environmental stimuli, which inferred information can be used to interfere with biofilm formation and fight against their pathogenic activity.

  11. Polarized micro Raman scattering spectroscopy for curved edges of epitaxial graphene

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Md. Sherajul, E-mail: sheraj-ruet@yahoo.com; Makino, T.; Hashimoto, A. [Graduate School of Electrical and Electronic Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507 (Japan); Bhuiyan, A. G. [Department of Electrical and Electronic Engineering, Khulna University of Engineering and Technology, Khulna 9203 (Bangladesh); Tanaka, S. [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan)

    2014-12-15

    This letter performed polarized microscopic laser Raman scattering spectroscopy on the curved edges of transferred epitaxial graphene on SiO{sub 2}/Si. The intensity ratio between the parallel and perpendicular polarized D band is evolved, providing a spectroscopy-based technique to probe the atomic-scale edge structures in graphene. A detailed analysis procedure for non-ideal disordered curved edges of graphene is developed combining the atomic-scale zigzag and armchair edge structures along with some point defects. These results could provide valuable information of the realistic edges of graphene at the atomic-scale that can strongly influence the performance of graphene-based nanodevices.

  12. Adsorption study of antibiotics on silver nanoparticle surfaces by surface-enhanced Raman scattering spectroscopy

    Science.gov (United States)

    Filgueiras, Aline Luciano; Paschoal, Diego; Dos Santos, Hélio F.; Sant'Ana, Antonio C.

    2015-02-01

    In this work the adsorption of the antibiotics levofloxacin (LV), tetracycline (TC) and benzylpenicillin (BP) on the surface of silver nanoparticles (AgNP) have been investigated through both surface-enhanced Raman scattering (SERS) and UV-VIS-NIR spectroscopies. The SERS spectra were obtained using 1064 nm exciting radiation. Theoretical models for the antibiotic molecules were obtained from DFT calculations, and used in the vibrational assignment. The adsorption geometries were proposed based on the changes in the spectral patterns. The LV compound adsorbs through carboxylate group, TC compound interacts with silver atoms through carbonyl from intermediate ring, and BP compound adsorbs by carbonyl moieties from carboxylate and acyclic amide.

  13. Raman scattering enhanced by plasmonic clusters and its application to single-molecule imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yasuike, Tomokazu [The Open University of Japan, Wakaba 2-11, Mihama-ku, Chiba 261-8586 (Japan); ESICB, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8530 (Japan); Nobusada, Katsuyuki [Institute for Molecular Science and SOKENDAI, Nishigonaka 38, Okazaki, 444-8585 (Japan); ESICB, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8530 (Japan)

    2015-12-31

    The optical response of the linear Au{sub 8} cluster is investigated by the linear response theory based on the density functional theory. It is revealed that the observed many peaks in the visible region originate from the interaction of the ideal plasmonic excitation along the molecular axis with the background d-electron excitations, i.e., the Landau damping. In spite of the existence of the damping, the Raman scattering is shown to be enhanced remarkably by the incident light resonant to the visible excitations. The novel imaging experiment with the atomic resolution is proposed by utilizing a plasmonic cluster as the probing tip.

  14. High-energy laser-summator based on Raman scattering principle

    Science.gov (United States)

    Eugeniy Mikhalovich, Zemskov; Zarubin, Peter Vasilievich; Cook, Joung

    2013-02-01

    This paper is a summary of the history, theory, and development efforts of summator, an all-in-one device that coherently combines multiple high-power laser beams, lowers the beam divergence, and shifts the wavelength based on stimulated Raman scattering principle in USSR from early 1960s to late 1970s. This was a part of the Terra-3 program, which was an umbrella program of highly classified high-energy laser weapons development efforts. Some parts of the Terra-3 program, specifically the terminal missile defense portion, were declassified recently, including the information on summator development efforts.

  15. Optical properties of individual nano-sized gold particle pairs. Mie-scattering, fluorescence, and Raman-scattering

    Energy Technology Data Exchange (ETDEWEB)

    Olk, Phillip

    2008-07-01

    This thesis examines and exploits the optical properties of pairs of MNPs. Pairs of MNPs offer two further parameters not existent at single MNPs, which both affect the local optical fields in their vicinity: the distance between them, and their relative orientation with respect to the polarisation of the excitation light. These properties are subject of three chapters: One section examines the distance-dependent and orientation-sensitive scattering cross section (SCS) of two equally sized MNPs. Both near- and far-field interactions affect the spectral position and spectral width of the SCS. Far-field coupling affects the SCS even in such a way that a two-particle system may show both a blue- and redshifted SCS, depending only on the distance between the two MNPs. The maximum distance for this effect is the coherence length of the illumination source - a fact of importance for SCS-based experiments using laser sources. Another part of this thesis examines the near-field between two MNPs and the dependence of the locally enhanced field on the relative particle orientation with respect to the polarisation of the excitation light. To attain a figure of merit, the intensity of fluorescence light from dye molecules in the surrounding medium was measured at various directions of polarisation. The field enhancement was turned into fluorescence enhancement, even providing a means for sensing the presence of very small MNPs of 12 nm in diameter. In order to quantify the near-field experimentally, a different technique is devised in a third section of this thesis - scanning particle-enhanced Raman microscopy (SPRM). This device comprises a scanning probe carrying an MNP which in turn is coated with a molecule of known Raman signature. By manoeuvring this outfit MNP into the vicinity of an illuminated second MNP and by measuring the Raman signal intensity, a spatial mapping of the field enhancement was possible. (orig.)

  16. Inflammation-related alterations of lipids after spinal cord injury revealed by Raman spectroscopy

    Science.gov (United States)

    Tamosaityte, Sandra; Galli, Roberta; Uckermann, Ortrud; Sitoci-Ficici, Kerim H.; Koch, Maria; Later, Robert; Schackert, Gabriele; Koch, Edmund; Steiner, Gerald; Kirsch, Matthias

    2016-06-01

    Spinal cord injury (SCI) triggers several lipid alterations in nervous tissue. It is characterized by extensive demyelination and the inflammatory response leads to accumulation of activated microglia/macrophages, which often transform into foam cells by accumulation of lipid droplets after engulfment of the damaged myelin sheaths. Using an experimental rat model, Raman microspectroscopy was applied to retrieve the modifications of the lipid distribution following SCI. Coherent anti-Stokes Raman scattering (CARS) and endogenous two-photon fluorescence (TPEF) microscopies were used for the detection of lipid-laden inflammatory cells. The Raman mapping of CH2 deformation mode intensity at 1440 cm-1 retrieved the lipid-depleted injury core. Preserved white matter and inflammatory regions with myelin fragmentation and foam cells were localized by specifically addressing the distribution of esterified lipids, i.e., by mapping the intensity of the carbonyl Raman band at 1743 cm-1, and were in agreement with CARS/TPEF microscopy. Principal component analysis revealed that the inflammatory regions are notably rich in saturated fatty acids. Therefore, Raman spectroscopy enabled to specifically detect inflammation after SCI and myelin degradation products.

  17. Collision-induced Raman scattering and the peculiar case of neon: Anisotropic spectrum, anisotropy, and the inverse scattering problem

    Energy Technology Data Exchange (ETDEWEB)

    Dixneuf, Sophie [Forschungszentrum Jülich GmbH IEK-8: Troposphere, 52425 Jülich (Germany); Rachet, Florent; Chrysos, Michael, E-mail: michel.chrysos@univ-angers.fr [LUNAM Université, Université d’Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 Bd Lavoisier, 49045 Angers (France)

    2015-02-28

    Owing in part to the p orbitals of its filled L shell, neon has repeatedly come on stage for its peculiar properties. In the context of collision-induced Raman spectroscopy, in particular, we have shown, in a brief report published a few years ago [M. Chrysos et al., Phys. Rev. A 80, 054701 (2009)], that the room-temperature anisotropic Raman lineshape of Ne–Ne exhibits, in the far wing of the spectrum, a peculiar structure with an aspect other than a smooth wing (on a logarithmic plot) which contrasts with any of the existing studies, and whose explanation lies in the distinct way in which overlap and exchange interactions interfere with the classical electrostatic ones in making the polarizability anisotropy, α{sub ∥} − α{sub ⊥}. Here, we delve deeper into that study by reporting data for that spectrum up to 450 cm{sup −1} and for even- and odd-order spectral moments up to M{sub 6}, as well as quantum lineshapes, generated from SCF, CCSD, and CCSD(T) models for α{sub ∥} − α{sub ⊥}, which are critically compared with the experiment. On account of the knowledge of the spectrum over the augmented frequency domain, we show how the inverse scattering problem can be tackled both effectively and economically, and we report an analytic function for the anisotropy whose quantum lineshape faithfully reproduces our observations.

  18. Collision-induced Raman scattering and the peculiar case of neon: anisotropic spectrum, anisotropy, and the inverse scattering problem.

    Science.gov (United States)

    Dixneuf, Sophie; Rachet, Florent; Chrysos, Michael

    2015-02-28

    Owing in part to the p orbitals of its filled L shell, neon has repeatedly come on stage for its peculiar properties. In the context of collision-induced Raman spectroscopy, in particular, we have shown, in a brief report published a few years ago [M. Chrysos et al., Phys. Rev. A 80, 054701 (2009)], that the room-temperature anisotropic Raman lineshape of Ne-Ne exhibits, in the far wing of the spectrum, a peculiar structure with an aspect other than a smooth wing (on a logarithmic plot) which contrasts with any of the existing studies, and whose explanation lies in the distinct way in which overlap and exchange interactions interfere with the classical electrostatic ones in making the polarizability anisotropy, α∥ - α⊥. Here, we delve deeper into that study by reporting data for that spectrum up to 450 cm(-1) and for even- and odd-order spectral moments up to M6, as well as quantum lineshapes, generated from SCF, CCSD, and CCSD(T) models for α∥ - α⊥, which are critically compared with the experiment. On account of the knowledge of the spectrum over the augmented frequency domain, we show how the inverse scattering problem can be tackled both effectively and economically, and we report an analytic function for the anisotropy whose quantum lineshape faithfully reproduces our observations.

  19. Measurements of density field in a swirling flame by 2D spontaneous Raman scattering

    Science.gov (United States)

    Sharaborin, D. K.; Dulin, V. M.; Lobasov, A. S.; Markovich, D. M.

    2016-10-01

    This paper presents an evaluation of the density distribution in swirling turbulent premixed flames. The measurement principle is based on registration of spontaneous Raman scattering, when the reacting gas flow is illuminated by a laser sheet. Evaluation of 1D and 2D distributions of density and temperature were performed in a laminar Bunsen flame as a test case for validation of experimental technique. Time-averaged 2D images of the scattering during rovibronic transitions of nitrogen molecules were captured in turbulent premixed low-swirl and high-swirl (Re = 5000) propane-air flames in a wide range of equivalence ratio. The obtained density fields are useful for better understanding of heat and mass transfer in swirl-stabilized turbulent flames and for validation of CFD results.

  20. Anomalously Hot Electrons due to Rescatter of Stimulated Raman Scattering in the Kinetic Regime

    CERN Document Server

    Winjum, B J; Tsung, F S; Mori, W B

    2012-01-01

    Using particle-in-cell simulations, we examine hot electron generation from electron plasma waves excited by stimulated Raman scattering and rescattering in the kinetic regime where the wavenumber times the Debye length (k\\lambda_D) is greater than 0.3 for backscatter. We find that for laser and plasma conditions of possible relevance to experiments at the National Ignition Facility (NIF), anomalously energetic electrons can be produced through the interaction of a discrete spectrum of plasma waves generated from SRS (back and forward scatter), rescatter, and the Langmuir decay of the rescatter-generated plasma waves. Electrons are bootstrapped in energy as they propagate into plasma waves with progressively higher phase velocities.

  1. Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis

    Science.gov (United States)

    Meyer, Tobias; Bergner, Norbert; Bielecki, Christiane; Krafft, Christoph; Akimov, Denis; Romeike, Bernd F. M.; Reichart, Rupert; Kalff, Rolf; Dietzek, Benjamin; Popp, Jürgen

    2011-02-01

    Contemporary brain tumor research focuses on two challenges: First, tumor typing and grading by analyzing excised tissue is of utmost importance for choosing a therapy. Second, for prognostication the tumor has to be removed as completely as possible. Nowadays, histopathology of excised tissue using haematoxylin-eosine staining is the gold standard for the definitive diagnosis of surgical pathology specimens. However, it is neither applicable in vivo, nor does it allow for precise tumor typing in those cases when only nonrepresentative specimens are procured. Infrared and Raman spectroscopy allow for very precise cancer analysis due to their molecular specificity, while nonlinear microscopy is a suitable tool for rapid imaging of large tissue sections. Here, unstained samples from the brain of a domestic pig have been investigated by a multimodal nonlinear imaging approach combining coherent anti-Stokes Raman scattering, second harmonic generation, and two photon excited fluorescence microscopy. Furthermore, a brain tumor specimen was additionally analyzed by linear Raman and Fourier transform infrared imaging for a detailed assessment of the tissue types that is required for classification and to validate the multimodal imaging approach. Hence label-free vibrational microspectroscopic imaging is a promising tool for fast and precise in vivo diagnostics of brain tumors.

  2. Raman scattering studies on the collapsed phase of CaCo2As2

    Science.gov (United States)

    Jianting, Ji; Anmin, Zhang; Run, Yang; Yong, Tian; Feng, Jin; Xianggang, Qiu; Qingming, Zhang

    2016-06-01

    In this work, Raman scattering measurements have been performed on the collapsed phase CaCo2As2 crystals. At least 8 Raman modes were observed at room temperature though CaCo2As2 is structurally similar to other 122 compounds like BaFe2As2. Two Raman modes are assigned to the intrinsic A1g and B1g of this material system respectively. The other ones are considered to originate from the local vibrations relevant to cobalt vacancies. Careful polarized measurements allow us to clearly resolve the four-fold symmetry of the B1g mode, which put strong constraints on possible point group symmetries of the system with Co vacancies. The temperature-dependent measurements demonstrate that the anomalies in both frequency and width of the B1g mode occur around Neel temperature T N. The anomalies are considered to be related to the gap opening near the magnetic transition. The study may shed light on the structural and magnetic changes and their correlations with superconductivity in 122 systems. Project supported by the National Basic Research Program of China (Grant No. 2012CB921701), the National Natural Science Foundation of China (Grant No. 11474357), and the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China.

  3. Surface-Enhanced Raman Scattering of Silicon Nanocrystals in a Silica Film

    Science.gov (United States)

    Novikov, Sergei; Khriachtchev, Leonid

    2016-06-01

    Surface-enhanced Raman scattering (SERS) is an intriguing effect, efficiency of which depends on many factors and whose applicability to a given system is not obvious before the experiment. The motivation of the present work is to demonstrate the SERS effect on silicon nanocrystals (Si-nc) embedded in silica, the material of high technological importance. Using the Ag overlayer method, we have found the SERS effect for this material. The best result is obtained for Ag layers of a weight thickness of 12 nm, whose surface plasmons are in a resonance with the laser wavelength (488 nm). The enhancement obtained for the Raman signal from 3-4-nm Si-nc in a 40-nm SiOx film is above 100. The SERS effect is about twice stronger for ultra-small Si-nc (~1 nm) and/or disordered silicon compared to Si-nc with sizes of 3-4 nm. The SERS measurements with an Ag overlayer allow detecting silicon crystallization for ultra-thin SiOx films and/or for very low Si excess and suppress the Raman signal from the substrate and the photoluminescence of the film.

  4. Surfactant size effect on surface-enhanced Raman scattering intensity from silver nanoparticles.

    Science.gov (United States)

    Bae, Doo Ri; Chang, Sung-Jin; Huh, Yun Suk; Han, Young-Kyu; Lee, You-Jin; Yi, Gi-Ra; Kim, Soohyun; Lee, Gaehang

    2013-08-01

    We report on the synthesis of two types of Ag nanoparticles (NPs) and the influence of adsorbed surfactant size on the NP surface for surface-enhanced Raman scattering (SERS) signals. Both particles were of similar size and morphology but were covered by surfactants of different sizes; one surfactant was sodium citrate (molecular weight: 258) and the other was sodium polyacrylate (molecular weight: 2100). For SERS measurement, 4-mecapobenzoic acid and 4-naphthalene thiol as Raman-active dyes were immobilized on the surface of each AgNP. The signals from Raman-active dyes on AgNPs covered with citrate displayed 10 times higher intensity than those from polyacrylate-stabilized AgNPs. Elemental analysis (EA) revealed that the average weight percentage of sulfur is 0.94 wt% and 0.12 wt% for citrate-stabilized and polyacrylate-stabilized AgNPs, respectively. The sulfur content difference was attributed to the size of the existing surfactant influencing the ligand exchange by steric hindrance and subsequently the amount of sulfur content of the particles. These experimental results suggest that the size of initial surfactant should be taken into account when synthesizing a metal particle for enhancing SERS signal. PMID:23882845

  5. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering.

    Science.gov (United States)

    Roelli, Philippe; Galland, Christophe; Piro, Nicolas; Kippenberg, Tobias J

    2016-02-01

    The exceptional enhancement of Raman scattering by localized plasmonic resonances in the near field of metallic nanoparticles, surfaces or tips (SERS, TERS) has enabled spectroscopic fingerprinting down to the single molecule level. The conventional explanation attributes the enhancement to the subwavelength confinement of the electromagnetic field near nanoantennas. Here, we introduce a new model that also accounts for the dynamical nature of the plasmon-molecule interaction. We thereby reveal an enhancement mechanism not considered before: dynamical backaction amplification of molecular vibrations. We first map the system onto the canonical Hamiltonian of cavity optomechanics, in which the molecular vibration and the plasmon are parametrically coupled. We express the vacuum optomechanical coupling rate for individual molecules in plasmonic 'hot-spots' in terms of the vibrational mode's Raman activity and find it to be orders of magnitude larger than for microfabricated optomechanical systems. Remarkably, the frequency of commonly studied molecular vibrations can be comparable to or larger than the plasmon's decay rate. Together, these considerations predict that an excitation laser blue-detuned from the plasmon resonance can parametrically amplify the molecular vibration, leading to a nonlinear enhancement of Raman emission that is not predicted by the conventional theory. Our optomechanical approach recovers known results, provides a quantitative framework for the calculation of cross-sections, and enables the design of novel systems that leverage dynamical backaction to achieve additional, mode-selective enhancements. It also provides a quantum mechanical framework to analyse plasmon-vibrational interactions in terms of molecular quantum optomechanics. PMID:26595330

  6. Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application.

    Science.gov (United States)

    Huang, Zhulin; Lei, Xing; Liu, Ye; Wang, Zhiwei; Wang, Xiujuan; Wang, Zhaoming; Mao, Qinghe; Meng, Guowen

    2015-08-12

    Optical fiber-Raman devices integrated with plasmonic nanostructures have promising potentials for in situ probing remote liquid samples and biological samples. In this system, the fiber probe is required to simultaneously demonstrate stable surface enhanced Raman scattering (SERS) signals and high sensitivity toward the target species. Here we demonstrate a generic approach to integrate presynthesized plasmonic nanostructures with tapered fiber probes that are prepared by a dipping-etching method, through reversed electrostatic attraction between the silane couple agent modified silica fiber probe and the nanostructures. Using this approach, both negatively and positively charged plasmonic nanostructures with various morphologies (such as Au nanosphere, Ag nanocube, Au nanorod, Au@Ag core-shell nanorod) can be stably assembled on the tapered silica fiber probes. Attributed to the electrostatic force between the plasmonic units and the fiber surface, the nanostructures do not disperse in liquid samples easily, making the relative standard deviation of SERS signals as low as 2% in analyte solution. Importantly, the detection sensitivity of the system can be optimized by adjusting the cone angle (from 3.6° to 22°) and the morphology of nanostructures assembled on the fiber. Thus, the nanostructures-sensitized optical fiber-Raman probes show great potentials in the applications of SERS-based environmental detection of liquid samples.

  7. UV and visible Raman scattering of ultraheavily Ti implanted Si layers for intermediate band formation

    Science.gov (United States)

    Pastor, D.; Olea, J.; del Prado, A.; García-Hemme, E.; Mártil, I.; González-Díaz, G.; Ibáñez, J.; Cuscó, R.; Artús, L.

    2011-11-01

    We assess the degree of crystallinity by means of UV and visible Raman scattering measurements of Ti implanted Si layers with very high doses (1015-5 × 1016 cm-2) subsequently annealed by nanosecond pulsed laser melting (PLM). We obtain ultraheavily impurified Si layers with Ti concentrations six orders of magnitude above the solid solubility limit in a layer several tens of nanometers thick. The PLM annealing processes are needed to recover the crystal quality and to keep the high Ti concentration required to form an intermediate band (IB). The UV Raman analysis permits us to evaluate the lattice crystallinity of the different implanted doses probing only the implanted region and points out Ti interstitial location in the host lattice in agreement with theoretical predictions for IB formation. By contrast, visible Raman spectra are only sensitive to the presence of a fully amorphized implanted layer as in the rest of the crystalline layers the probing depth far exceeds the implanted layer thickness and the signal is dominated by the undamaged Si.

  8. Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application.

    Science.gov (United States)

    Huang, Zhulin; Lei, Xing; Liu, Ye; Wang, Zhiwei; Wang, Xiujuan; Wang, Zhaoming; Mao, Qinghe; Meng, Guowen

    2015-08-12

    Optical fiber-Raman devices integrated with plasmonic nanostructures have promising potentials for in situ probing remote liquid samples and biological samples. In this system, the fiber probe is required to simultaneously demonstrate stable surface enhanced Raman scattering (SERS) signals and high sensitivity toward the target species. Here we demonstrate a generic approach to integrate presynthesized plasmonic nanostructures with tapered fiber probes that are prepared by a dipping-etching method, through reversed electrostatic attraction between the silane couple agent modified silica fiber probe and the nanostructures. Using this approach, both negatively and positively charged plasmonic nanostructures with various morphologies (such as Au nanosphere, Ag nanocube, Au nanorod, Au@Ag core-shell nanorod) can be stably assembled on the tapered silica fiber probes. Attributed to the electrostatic force between the plasmonic units and the fiber surface, the nanostructures do not disperse in liquid samples easily, making the relative standard deviation of SERS signals as low as 2% in analyte solution. Importantly, the detection sensitivity of the system can be optimized by adjusting the cone angle (from 3.6° to 22°) and the morphology of nanostructures assembled on the fiber. Thus, the nanostructures-sensitized optical fiber-Raman probes show great potentials in the applications of SERS-based environmental detection of liquid samples. PMID:26186260

  9. Enhancement of Raman light scattering in dye-labeled cell membrane on metal-containing conducting polymer film

    Science.gov (United States)

    Grushevskaya, H. V.; Krylova, N. G.; Lipnevich, I. V.; Orekhovskaja, T. I.; Egorova, V. P.; Shulitski, B. G.

    2016-03-01

    An enhanced Raman spectroscopy method based on a plasmon resonance in ultrathin metal-containing LB-film deposited on nanoporous anodic alumina supports has been proposed. This material has been utilized to enhance Raman scattering of light in fluorescent-labeled subcellular membrane structures. It has been shown that the plasmon resonance between vibrational modes of the organometallic complexes monolayers and dye-labeled subcellular structures happens. It makes possible to detect interactions between living cell monolayers and an extracellular matrix.

  10. Efficient femtosecond pulse generation using a parabolic amplifier combined with a pulse compressor. I. Stimulated Raman scattering effects

    OpenAIRE

    Soh, D.B.S.; Nilsson, J.; Grudinin, A.B.

    2006-01-01

    The effects of stimulated Raman scattering on femtosecond pulse generation using a parabolic amplifier and a grating pair compressor are presented. We derive an explicit analytical form for the Stokes pulse evolution. We find that the evolution of the Stokes pulse can be divided into four regimes; small Gaussian Stokes pulse, small asymmetric Stokes pulse, signal depletion, and parabolic Raman pulse. In order to achieve efficient pulse compression, the parabolic amplifier should be operated i...

  11. Study of cluster formation and its effects on Rayleigh and Raman scattering measurements in a Mach 6 wind tunnel

    Science.gov (United States)

    Shirinzadeh, B.; Hillard, M. E.; Blair, A. B.; Exton, R. J.

    1991-01-01

    Using a frequency-doubled Nd-YAG pulsed laser and a single-intensified CCD camera, Rayleigh scattering measurements have been performed to study the cluster formation in a Mach 6 wind tunnel at NASA Langley Research Center. These studies were conducted both in the free stream and in a model flow field for various flow conditions to gain an understanding of the dependence of the Rayleigh scattering (by clusters) on the local pressures and temperatures in the facility. Using the same laser system, simultaneous measurements of the local temperature have also been performed using the rotational Raman scattering of molecular nitrogen and determined the densities of molecular oxygen and nitrogen by using the vibrational Raman scattering from these species. Quantitative results are presented in detail with emphasis on the applicability of the Rayleigh scattering for obtaining quantitative measurements of molecular densities both in the free stream and in the model flow field.

  12. Laser Cooling Using Anti-Stokes Fluorescencein Yb3+-Doped Fluorozirconate Glasses

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The fluorozirconate glasses ZBLANP( ZrF4-BaF2-LaF3-AlF3-NaF-PbF2) doped with different Yb3+ concentration were prepared. The Raman spectra and absorption spectra are measured to substantiate the existence of phonon-assisted emission. After analyzing the normalized absorption spectra of samples with different Yb3+-doped concentration, we calculated the maximum cooling effect in the 3 wt% Yb3+-doped sample pumped at 1 012.5 nm. The corresponding cooling capability is about -4.09 ℃/W and the cooling efficiency reaches 1.76%.

  13. Kinetically driven Raman scattering in short, bi-speckle laser-plasma interaction experiments

    Science.gov (United States)

    Glize, Kevin; Rousseaux, Christophe; Baton, Sophie; Dervieux, Vincent; Lancia, Livia

    2015-11-01

    In order to investigate collective speckles behavior in laser-plasma interaction, bi-speckle experiments have been performed using the ELFIE facility (LULI). Two independent laser pulses (1.06 nm, 1.5 ps FWHM) interact with preformed He plasma (0.06 nc, 300 eV). The first beam drives stimulated Raman scattering, while the second, which its intensity is set near SRS threshold, is focused near the first one (typically 90 μm). The interaction, with crossed and parallel polarization, was studied for both variation of the time delay and the lateral distance between the two pulses, featuring a highly resolved Thomson-scattering diagnostic and backward Raman imaging. It is shown that the kinetic perturbations are of primary importance on triggering SRS in the weak speckle, which exhibits SRS instability up to an expectedly long time delay after the interaction of the strong one. The experimental results will be discussed with the help of 2D PIC simulations (CALDER code).

  14. Experimental Observation of Near-Field Deterioration Induced by Stimulated Rotational Raman Scattering in Long Air Paths

    Institute of Scientific and Technical Information of China (English)

    WANG Jing; ZHANG Xiao-Min; HAN Wei; LI Fu-Quan; ZHOU Li-Dan; FENG Bin; XIANG Yong

    2011-01-01

    @@ We report the experimental investigation of a stimulated rotational Raman scattering effect in long air paths on SG-IQ TIL, with a 1053nm, 20-cm-diameter, linearly polarized, ins flat-topped laser pulse.An intense speckle pattern of near field with thickly dotted hot spots is observed at the end of propagation with an intensity-length product above 17TW/cm.The Stokes developing from the scattering of the laser beam by quantum fluctuations is characterized by a combination of high spatial frequency components.The observed speckle pattern with smalldiameter hot spots results from the combination of the nonlinear Raman amplification and the linear diffraction propagation effect of the Stokes with a noise pattern arising from the spontaneous Raman scattering.A new promising suppression concept based on the special characteristic of the Stokes, called active and selective filtering of Stokes, is proposed.

  15. The impact of vibrational Raman scattering of air on DOAS measurements of atmospheric trace gases

    Science.gov (United States)

    Lampel, J.; Frieß, U.; Platt, U.

    2015-09-01

    In remote sensing applications, such as differential optical absorption spectroscopy (DOAS), atmospheric scattering processes need to be considered. After inelastic scattering on N2 and O2 molecules, the scattered photons occur as additional intensity at a different wavelength, effectively leading to "filling-in" of both solar Fraunhofer lines and absorptions of atmospheric constituents, if the inelastic scattering happens after the absorption. Measured spectra in passive DOAS applications are typically corrected for rotational Raman scattering (RRS), also called Ring effect, which represents the main contribution to inelastic scattering. Inelastic scattering can also occur in liquid water, and its influence on DOAS measurements has been observed over clear ocean water. In contrast to that, vibrational Raman scattering (VRS) of N2 and O2 has often been thought to be negligible, but it also contributes. Consequences of VRS are red-shifted Fraunhofer structures in scattered light spectra and filling-in of Fraunhofer lines, additional to RRS. At 393 nm, the spectral shift is 25 and 40 nm for VRS of O2 and N2, respectively. We describe how to calculate VRS correction spectra according to the Ring spectrum. We use the VRS correction spectra in the spectral range of 420-440 nm to determine the relative magnitude of the cross-sections of VRS of O2 and N2 and RRS of air. The effect of VRS is shown for the first time in spectral evaluations of Multi-Axis DOAS data from the SOPRAN M91 campaign and the MAD-CAT MAX-DOAS intercomparison campaign. The measurements yield in agreement with calculated scattering cross-sections that the observed VRS(N2) cross-section at 393 nm amounts to 2.3 ± 0.4 % of the cross-section of RRS at 433 nm under tropospheric conditions. The contribution of VRS(O2) is also found to be in agreement with calculated scattering cross-sections. It is concluded, that this phenomenon has to be included in the spectral evaluation of weak absorbers as it

  16. Temperature performance of Raman scattering in data fiber and its application in distributed temperature fiber-optic sensor

    Institute of Scientific and Technical Information of China (English)

    Deming LIU; Shuang LIU; Hairong LIU

    2009-01-01

    A wavelength division multiplexer (WDM) was used to extract the Raman scattering signal from a data fiber. The temperature performance of Raman scattering spectrum was studied theoretically and experimentally. On the base of this study, a distributed fiber-optic temperature sensor (DFTS) system was developed. The sensing distance was 4 km. The temperature accuracy and the distance resolution reached to ±1℃ and ±1 m, respec-tively. The system is stable and adequate for commercial usage, such as the power industry, the underground tunnel, the subway, and the pipe laying, and also for the mission applications, such as the warship and the airplane.

  17. Periodic multichannel Thomson scattering in ASDEX

    International Nuclear Information System (INIS)

    The optical and electronic design of the Thomson scattering experiment in the ASDEX-Tokamak is described. This Thomson scattering system is employed as a standard diagnostic for the evaluation of electron temperature and density simultaneously at 16 spatial points in ASDEX. The light source is a Nd-YAG laser emitting at 1.06 μm wavelength, which is capable of delivering 60 pulses per second for a period of about 7 sec. This period includes the whole ASDEX plasma discharge. The scattered light is detected by Si-avalanche diodes. Density calibration is carried out by rotational anti-Stokes Raman scattering from molecular hydrogen. The system is capable of measuring densities as low as 5x1012 cm-3 and electron temperatures in the range from 150 eV to 5 keV. The data-processing system and the calculations which lead to the final output of Te/Ne-profiles are discussed. Examples of profile measurements are given showing the possibilities of the system under various plasma conditions. Technical details of the system are described in tables listed in the appendix. (orig.)

  18. Arsenic speciation by X-ray spectroscopy using resonant Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, H.J.; Leani, J.J. [Universidad Nacional de Cordoba, Cba (Argentina); Perez, C.A. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)

    2012-07-01

    Full text: The toxicity of arsenic species is widely known. A realistic evaluation of the risk posed by As depends on accurate determination of As speciation, because its toxicity and mobility varies with oxidation state and chemical environment. The most toxic species are inorganic As (III) and As (V) called respectively arsenite or trivalent arsenic, and arsenate or pentavalent arsenic. Recently, x-ray Resonant Raman Scattering spectroscopy has been successfully employed to determine the oxidation state of metals. In this work we use RRS spectroscopy to perform arsenic speciation. The measurements were carried out in XRF station of the D09B-XRF beamline at the Brazilian synchrotron facility (LNLS, Campinas). Mineral samples of As in different oxidation states (As(III) and AS(V)), and two biological forms of arsenic (monomethylarsonic acid (MMA(V) and dimethylarsinic acid DMA(V)) were analysed. The samples were diluted, deposited on silicon wafers and allowed to dry. The amount of liquid deposited on the reflector before evaporation was 20 microliters for all the specimens. These samples were irradiated with monochromatic photons of 11816 eV, i.e., below the K-edge of arsenic in order to inspect the Raman emissions. The measuring lifetime was 3600 sec for each sample. Spectra were analysed with specific programs for spectrum analysis using non-conventional functions for data fitting, i.e., modified Voight functions (for Compton peaks), Gaussian functions for fluorescent and for low intensity peaks (such as escape peaks and other contributions), and polynomial functions for the background. Raman peaks were fitted using specific functions. In this work we have shown that resonant Raman scattering spectroscopy can be used to analyse arsenic species. The method is very simple and reliable. The most important feature of this method relies in the possibility of using the same spectrometer of XRF analysis or TXRF analysis. In this way, practically in the same experiment

  19. Raman Scattering Study of Sr 14-xCaxCu 24O 41

    Science.gov (United States)

    Ogita, Norio; Fujita, Yoshinori; Sakaguchi, Yoshifumi; Fujino, Yuichi; Nagata, Takashi; Akimitsu, Jun; Udagawa, Masayuki

    2000-08-01

    Polarized Raman scattering spectra of Sr14-xCaxCu24O41 have been measured for x=0 and 11.5 at ambient pressure. In the spectra, the intra-molecular vibrations due to the unit structure of (Sr/Ca)2Cu2O3 and CuO2 have been clearly observed below 700 cm-1. A comparison of the number of the observed peaks with the results of a factor group analysis indicates that the crystallographic symmetry of the ladder is F222 for x=0 and 11.5, instead of centro-symmetric Fmmm, while that of the chain is Amma for both compositions. However the symmetry of the chain for x=11.5 is close to F222 or Fmmm. That is, the structure of the chains changes from an incomplete staggered structure to almost complete staggered one with increasing x. In the (c,c) and (a,a) spectra, the broad two-magnon peaks have been observed at around 3000 cm-1. From the analysis of the recent theory of the magnetic scattering in the 2-leg spin ladder system done by Natsume et al., the following magnetic parameters for x=0 are obtained: J leg=151 meV, J rung=91 meV, and Δ ladder=44 meV. The values agree with those reported by neutron scattering.

  20. Polarized Raman scattering in single crystals of Nd0.7Sr0.3MnO3

    Indian Academy of Sciences (India)

    M Pattabiraman; G Rangarajan; Kwang-Yong Choi; P Lemmens; G Guentherodt; G Balakrishnan; D McK Paul; M R Less

    2002-05-01

    We report polarized Raman scattering in single crystals of Nd0.7Sr0.3MnO3. The temperature dependence of the MnO6 octahedral bending and stretching modes observed in the XX spectra points to the existence of local lattice distortions, possibly polarons. The XY spectra have been analyzed using a collision-dominated model, which allows the extraction of the carrier scattering rate.

  1. Structural characterization of wavelength-dependent Raman scattering and laser-induced crystallization of silicon thin films

    International Nuclear Information System (INIS)

    In this report, we present a detailed structural characterization of hydrogenated amorphous silicon (a-Si:H) and microcrystalline silicon (μc-Si:H) thin films grown using high working pressure plasma-enhanced chemical vapor deposition. It is shown that the volumetric crystalline fraction of deposited μc-Si:H thin films measured by Raman scattering differs significantly for three different excitation laser wavelengths (514.5, 632.8, and 785.0 nm) owing to differences in penetration depth due to absorption, and optical confocal depth. The results demonstrate that selection of the correct excitation wavelength for Raman experiments is a highly important factor for gaining an accurate understanding of the relationship between internal microstructures and solar cell performance. In addition, the use of a high power laser was found to induce the crystallization of a-Si:H thin films due to local sample heating during the Raman measurements, which was characterized by the appearance of a sharp peak around 500 cm−1. It was found that both photon energy (laser wavelength) and photon flux (laser power) were important factors in inducing crystallization of the films. - Highlights: • We present wavelength-dependent Raman scattering of silicon thin films. • Thin films were grown by using high working pressure PECVD. • The crystallinity of deposited thin films was measured by Raman scattering. • The crystallinity differs significantly for three different excitation wavelengths. • Photon energy is an important factor in inducing crystallization of the films

  2. Many particle approach to resonance Raman scattering in crystals: Strong electron-phonon interaction and multi-phonon processes

    International Nuclear Information System (INIS)

    Graphical abstract: Raman scattering (RS) of light by crystals was studied theoretically taking into account the electron-electron and electron-phonon interactions. The partial diagonalization of the Hamiltonian using unitary transformation was fulfilled. It allowed the structure of the many phonon repetition of bands to be described as a function of the electron-phonon interaction constant. It is shown that the spectral relations obtained for the scattering intensity can describe both the RS and the resonance RS (RRS) processes. Numerical modelling calculations for different parameters were carried out and comparisons with the experimental data for CdS and ZnO crystals were made. Highlights: → Raman scattering of light by crystals studied theoretically. → Electron-electron and electron-phonon interactions taken into account. → Structure of many phonon repetition of bands described. → Both Raman and resonance Raman scattering covered. → Comparisons with experimental data for CdS and ZnO crystals. - Abstract: Raman scattering (RS) of light by crystals was studied theoretically taking into account the electron-electron and electron-phonon interactions. The partial diagonalization of the Hamiltonian using unitary transformation was fulfilled. It allowed the structure of the many phonon repetition of bands to be described as a function of the electron-phonon interaction constant. It is shown that the spectral relations obtained for the scattering intensity can describe both the RS and the resonance RS (RRS) processes. Numerical modelling calculations for different parameters were carried out and comparisons with the experimental data for CdS and ZnO crystals were made.

  3. Nonlinear optical imaging and Raman microspectrometry of the cell nucleus throughout the cell cycle.

    Science.gov (United States)

    Pliss, Artem; Kuzmin, Andrey N; Kachynski, Aliaksandr V; Prasad, Paras N

    2010-11-17

    Fundamental understanding of cellular processes at molecular level is of considerable importance in cell biology as well as in biomedical disciplines for early diagnosis of infection and cancer diseases, and for developing new molecular medicine-based therapies. Modern biophotonics offers exclusive capabilities to obtain information on molecular composition, organization, and dynamics in a cell by utilizing a combination of optical spectroscopy and optical imaging. We introduce here a combination of Raman microspectrometry, together with coherent anti-Stokes Raman scattering (CARS) and two-photon excited fluorescence (TPEF) nonlinear optical microscopy, to study macromolecular organization of the nucleus throughout the cell cycle. Site-specific concentrations of proteins, DNA, RNA, and lipids were determined in nucleoli, nucleoplasmic transcription sites, nuclear speckles, constitutive heterochromatin domains, mitotic chromosomes, and extrachromosomal regions of mitotic cells by quantitative confocal Raman microspectrometry. A surprising finding, obtained in our study, is that the local concentration of proteins does not increase during DNA compaction. We also demonstrate that postmitotic DNA decondensation is a gradual process, continuing for several hours. The quantitative Raman spectroscopic analysis was corroborated with CARS/TPEF multimodal imaging to visualize the distribution of protein, DNA, RNA, and lipid macromolecules throughout the cell cycle.

  4. Implantation effects on resonant Raman scattering in CdTe and Cd 0.23Hg 0.77Te

    Science.gov (United States)

    Ramsteiner, M.; Lusson, A.; Wagner, J.; Koidl, P.; Bruder, M.

    1990-04-01

    We have studied In + implanted CdTe and Cd 0.23Hg 0.77Te by resonant Raman scattering. The laser excitation was in resonance with the EO + Δ O band gap in CdTe or the E1 gap in Cd 0.23Hg 0.77Te. Under these conditions dipole forbidden but defect ind scattering by one longitudinal optical (LO) phonon as well as Fröhlich-induced two-LO phonon scattering is observed. In both cases scattering is found to be strongly affected by ion implantation. In + was implanted at an ion energy of 350 keV with doses ranging from 10 11 to 5×10 14 ions/cm 2. The intensity ratio of the one-LO phonon lines is found to be a quantitative measure of the implantation damage in CdTe and Cd 0.23Hg 0.77Te even for doses as low as 10 11 ions/cm 2. It is shown that the observed effects of implantation damage on resonant Raman scattering by LO phonons are due to a broadening and an energy shift of the corresponding resonances in the Raman scattering efficiency.

  5. Detection of Perchlorate Anion on Functionalized Silver Colloids Using Surface-Enhanced Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tio, J.; Wang, W.; Gu, B.

    2005-01-01

    Perchlorate anion interferes with the uptake of iodide by the human thyroid gland and consequently disrupts the regulation of metabolism. Chronic exposure to high levels of perchlorate may lead to the formation of thyroid gland tumors. Although the Environmental Protection Agency (EPA) has not set a maximum contaminant level (MCL) for perchlorate, a draft drinking water range of 4-18 ppb based on 2 liter daily consumption of water has been established. The current EPA approved method for detecting perchlorate uses ion chromatography which has a detection limit of ~1ppb and involves lengthy analytical time in the laboratory. A unique combination of the surface-enhanced Raman scattering (SERS) effect and the bifunctional anion exchange resin’s high selectivity may provide an alternative way to detect perchlorate at such low concentrations and with high specificity. SERS, which uses laser excitation of adsorbed perchlorate anions on silver nanoparticles, has been shown to detect perchlorate anions at concentrations as low as 50 ppb. Normal micro-Raman analysis of perchlorate sorbed onto the resin beads has detected an even lower concentration of 10 ppb. In an effort to integrate these two effects, silver nanoparticles were coated with N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride, a functional group similar to that found on the resin bead, and subsequently inserted into different perchlorate concentration environments. This method has resulted in perchlorate detection down to ~10 ppb and a more consistent detection of perchlorate anion at ~50 ppb than that of earlier methods. As suggested by the direct insertion of functionalized silver colloids into perchlorate samples, this technique may potentially allow for the development of a probe using on-site Raman spectrometry to detect significantly low concentrations of perchlorate in situ rather than in the laboratory.

  6. Live-Cell Bioorthogonal Chemical Imaging: Stimulated Raman Scattering Microscopy of Vibrational Probes.

    Science.gov (United States)

    Wei, Lu; Hu, Fanghao; Chen, Zhixing; Shen, Yihui; Zhang, Luyuan; Min, Wei

    2016-08-16

    Innovations in light microscopy have tremendously revolutionized the way researchers study biological systems with subcellular resolution. In particular, fluorescence microscopy with the expanding choices of fluorescent probes has provided a comprehensive toolkit to tag and visualize various molecules of interest with exquisite specificity and high sensitivity. Although fluorescence microscopy is currently the method of choice for cellular imaging, it faces fundamental limitations for studying the vast number of small biomolecules. This is because common fluorescent labels, which are relatively bulky, could introduce considerable perturbation to or even completely alter the native functions of vital small biomolecules. Hence, despite their immense functional importance, these small biomolecules remain largely undetectable by fluorescence microscopy. To address this challenge, a bioorthogonal chemical imaging platform has recently been introduced. By coupling stimulated Raman scattering (SRS) microscopy, an emerging nonlinear Raman microscopy technique, with tiny and Raman-active vibrational probes (e.g., alkynes and stable isotopes), bioorthogonal chemical imaging exhibits superb sensitivity, specificity, and biocompatibility for imaging small biomolecules in live systems. In this Account, we review recent technical achievements for visualizing a broad spectrum of small biomolecules, including ribonucleosides and deoxyribonucleosides, amino acids, fatty acids, choline, glucose, cholesterol, and small-molecule drugs in live biological systems ranging from individual cells to animal tissues and model organisms. Importantly, this platform is compatible with live-cell biology, thus allowing real-time imaging of small-molecule dynamics. Moreover, we discuss further chemical and spectroscopic strategies for multicolor bioorthogonal chemical imaging, a valuable technique in the era of "omics". As a unique tool for biological discovery, this platform has been applied to

  7. Stimulated Raman scattering holography for time-resolved imaging of methane gas.

    Science.gov (United States)

    Amer, Eynas; Gren, Per; Edenharder, Stefan; Sjödahl, Mikael

    2016-05-01

    In this paper, pulsed digital holographic detection is coupled to the stimulated Raman scattering (SRS) process for imaging gases. A Q-switched Nd-YAG laser (532 nm) has been used to pump methane gas (CH4) at pressures up to 12 bars. The frequency-tripled (355 nm) beam from the same laser was used to pump an optical parametric oscillator (OPO). The Stokes beam (from the OPO) has been tuned to 629.93 nm so that the frequency difference between the pump (532 nm) and the Stokes beams fits a Raman active vibrational mode of the methane molecule (2922  cm-1). The pump beam has been spatially modulated with fringes produced in a Michelson interferometer. The pump and the Stokes beams were overlapped in time, space, and polarization on the gas molecules, resulting in a stimulated Raman gain of the Stokes beam and a corresponding loss of the pump beam through the SRS process. The resulting gain of the Stokes beam has been detected using pulsed digital holography by blending it with a reference beam on the detector. Two holograms of the Stokes beam, without and with the pump beam fringes present, were recorded. Intensity maps calculated from the recorded digital holograms showed amplification of the Stokes beam at the position of overlap with the pump beam fringes and the gas molecules. The gain of the Stokes beam has been separated from the background in the Fourier domain. A gain of about 4.5% at a pump beam average intensity of 4  MW/cm2 and a Stokes beam intensity of 0.16  MW/cm2 have been recorded at a gas pressure of 12 bars. The gain decreased linearly with decreasing gas pressure. The results show that SRS holography is a promising technique to pinpoint a specific species and record its spatial and temporal distribution. PMID:27140351

  8. Influence of Temperature on Stimulated Raman Scattering in Single-Mode Silica Fibre

    Institute of Scientific and Technical Information of China (English)

    MEN Zhi-Wei; FANG Wen-Hui; SUN Xiu-Ping; LI Zuo-Wei; YI Han-Wei; WANG Zhao-Min; GAO Shu-Qin; LU Guo-Hui

    2008-01-01

    One piece of single-mode silica fibre is used to study of temperature characteristics of stimulated Raman scattering(SRS), additional peaks (double-humped) are observed at both sides of pump light and 1st-order Stokes light in the experiment. The frequency shift of the double-humped is calculated by stimulated Four-Photon mixing (SFPM)phase matching theory, the result is consistent with the frequency shift of this experiment. Simultaneously, the experimental conditions accord with the theoretical calculation of effective coherence length. We indicate that the double-humped phenomenon is caused by SFPM. The intensity of double-humped is first increased, then decreased and finally disappeared as the temperature increases. This phenomenon has been explained theoretically.

  9. Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes

    KAUST Repository

    Yue, Weisheng

    2012-10-04

    Arrays of gold quasi-3D nanoholes were proposed and fabricated as substrates for surface-enhanced Raman scattering (SERS). By detecting rhodamine 6G (R6G) molecules, the gold quasi-3D nanoholes demonstrated an SERS intensity that was 25-62 times higher than that of two-dimensional nanoholes with the same geometrical shapes and periodicities. The larger SERS enhancement of the quasi-3D nanoholes is attributed to the enhanced electromagnetic field on the top-layer nanohole, the bottom nanodiscs and the field coupling between the two layers. In addition, the investigation of the shape dependence of the SERS on the quasi-3D nanoholes demonstrated that the quadratic, circular, triangular and rhombic holes exhibited different SERS properties. Numerical simulations of the electromagnetic properties on the nanostructures were performed with CST Microwave Studio, and the results agree with the experimental observations. © 2012 IOP Publishing Ltd.

  10. Stimulated Raman scattering detection for chemically specific time-resolved imaging of gases.

    Science.gov (United States)

    Amer, Eynas; Gren, Per; Edenharder, Stefan; Sjödahl, Mikael

    2016-05-01

    A stimulated Raman scattering (SRS) imaging technique based on spatial modulation of the pump beam has been used to study gases. The SRS gain signal was separated from the Stokes beam background in the spatial frequency domain. The SRS signal shows linear behaviour with the gas pressure at a range from 1.0 to 8.0 bars. The signal is linearly proportional to the pump beam intensity while it is enhanced with increasing the Stokes beam intensity to a certain limit than it saturates. Further, the chemical specificity of the technique has been investigated. Two sharp peaks with line width at half maximum of about 0.30 nm have been obtained at Stokes beam wavelengths of 629.93 nm and 634.05 nm corresponding to the methane and ethylene gases, respectively. The results show that SRS imaging is a promising technique to provide chemical specificity as well as spatial and temporal information of gaseous species. PMID:27137608

  11. Surface enhanced Raman scattering detection of single R6G molecules on nanoporous gold films

    Science.gov (United States)

    Liu, Hongwen; Zhang, L.; Yamaguchi, Y.; Iwasaki, H.; Inouye, Y.; Xue, Q. K.; Chen, M. W.

    2011-03-01

    Detecting single molecules with high sensitivity and molecular specificity is of great practical interest in many fields such as chemistry, biology, medicine, and pharmacology. For this purpose, cheap and highly active substrates are of crucial importance. Recently, nanoporous metals (NPMs), with a three-dimensional continuous network structure and pore channels usually much smaller than the wavelength of visible light, revealed outstanding optical properties in surface enhanced Raman scattering (SERS). In this work, we further modify the nanoporous gold films by growing a high density of gold nano-tips on the surface. Extremely focused electromagnetic fields can be produced at the apex of the nano-tips, resulting in so-called hot spots. With this NPM-based and affordable substrate, single molecule-detection is achievable with ultrahigh enhancement in SERS.

  12. 3D Ag/ZnO hybrids for sensitive surface-enhanced Raman scattering detection

    Science.gov (United States)

    Huang, Chenyue; Xu, Chunxiang; Lu, Junfeng; Li, Zhaohui; Tian, Zhengshan

    2016-03-01

    To combine the surface plasma resonance of metal and local field enhancement in metal/semiconductor interface, Ag nanoparticles (NPs) were assembled on a ZnO nanorod array which was grown by hydrothermally on carbon fibers. The construction of dimensional (3D) Surface-Enhanced Raman Scattering (SERS) substrate is used for the sensitive detection of organic pollutants with the advantages such as facile synthesis, short detection time and low cost. The hybrid substrate was manifested a high sensitivity to phenol red at a lower concentration of 1 × 10-9 M and a higher enhancement factor of 3.18 × 109. Moreover, the ZnO nanostructures decorated with Ag NPs were demonstrated self-cleaning function under UV irradiation via photocatalytic degradation of the analytic molecules. The fabrication process of the materials and sensors, optimization of the SERS behaviors for different sized Ag NPs, the mechanism of SERS and recovery were presented with a detailed discussion.

  13. Characterization of gas-aerosol interaction kinetics using morphology dependent stimulated Raman scattering. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Aker, P.M.

    1992-12-31

    A research program on the influence of aerosol surface structure on the kinetics of gas-aerosol interactions is proposed. The experiments involve measuring changes in gas phase chemical reaction rates as a function of exposure to a specific aerosol. Aerosols with differing surface properties will be generated by changing the composition and/or temperature of the material making up the aerosol. Kinetic data generated can be used directly in atmospheric modelling calculations. The surface structure of the aerosol will be measured, both before and after reaction, using morphology-dependent enhancement of simulated Raman scattering (MDSRS). Information about the detailed dynamics of gas-aerosol interactions can be obtained by correlating the change in the reaction rate with change in surface structure and by monitoring the change in aerosol surface structure during the course of the reaction. Studies will focus on the condensation and oxidation of sulfur species (sulfur dioxide and dimethyl sulfide) on water aerosols.

  14. Characterization of gas-aerosol interaction kinetics using morphology dependent stimulated Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Aker, P.M.

    1992-01-01

    A research program on the influence of aerosol surface structure on the kinetics of gas-aerosol interactions is proposed. The experiments involve measuring changes in gas phase chemical reaction rates as a function of exposure to a specific aerosol. Aerosols with differing surface properties will be generated by changing the composition and/or temperature of the material making up the aerosol. Kinetic data generated can be used directly in atmospheric modelling calculations. The surface structure of the aerosol will be measured, both before and after reaction, using morphology-dependent enhancement of simulated Raman scattering (MDSRS). Information about the detailed dynamics of gas-aerosol interactions can be obtained by correlating the change in the reaction rate with change in surface structure and by monitoring the change in aerosol surface structure during the course of the reaction. Studies will focus on the condensation and oxidation of sulfur species (sulfur dioxide and dimethyl sulfide) on water aerosols.

  15. Stimulated low-frequency Raman scattering in a suspension of tobacco mosaic virus

    Science.gov (United States)

    Karpova, O. V.; Kudryavtseva, A. D.; Lednev, V. N.; Mironova, T. V.; Oshurko, V. B.; Pershin, S. M.; Petrova, E. K.; Tcherniega, N. V.; Zemskov, K. I.

    2016-08-01

    The interaction of laser pulses with tobacco mosaic virus (TMV) in Tris-HCl pH7.5 buffer and in water has been investigated. Ruby laser pulses of 20 ns duration have been used for excitation. The spectrum of the light passing through the sample was registered with the help of a Fabry-Perot interferometer. In the case of TMV in water we observed in the spectrum only one line of the exciting laser light, but for TMV in Tris-HCl pH7.5 buffer a second line appeared, corresponding to stimulated low-frequency Raman scattering (SLFRS) on the breathing radial mode of TMV. The frequency shift of the SLFRS by 2 cm-1 (60 GHz), the conversion efficiency and the threshold are measured for the first time to the best of our knowledge.

  16. Stimulated low-frequency Raman scattering in tobacco mosaic virus suspension

    CERN Document Server

    Karpova, O V; Lednev, V N; Mironova, T V; Oshurko, V B; Pershin, S M; Petrova, E K; Tcherniega, N V; Zemskov, K I

    2016-01-01

    Laser pulses interaction with tobacco mosaic virus (TMV) in Tris-HCl pH7.5 buffer and in water has been investigated. 20 ns ruby laser pulses have been used for excitation. Spectrum of the light passing through the sample was registered with the help of Fabri-Perot interferometer. In the case of TMV in water we observed in the spectrum only one line of the exciting laser light, for TMV in Tris-HCl pH7.5 buffer second line appeared, corresponding to the stimulated low-frequency Raman scattering (SLFRS) on the breathing radial mode of TMV. SLFRS frequency shift by 2 cm-1, (60 GHz), conversion efficiency and threshold are measured for the first time to the best of our knowledge.

  17. Resonant surface enhancement of Raman scattering of Ag nanoparticles on silicon substrates fabricated by dc sputtering

    International Nuclear Information System (INIS)

    Ag nanoparticles (AgNPs) were deposited onto silicon substrates by direct current (dc) magnetron sputtering. The influences of sputtering power and sputtering time on the AgNP film morphology were studied using atomic force microscopy. The particle size was successfully tuned from 19 nm to 53 nm by varying the sputtering time at a dc power of 10 W. When Rhodamine 6 G (R6G) was used as the probe molecule, the AgNP films showed significant surface enhanced Raman scattering effect. In particular, it is found that larger particles show stronger enhancement for lower concentrations of R6G while smaller particles display stronger enhancement for higher concentrations of R6G.

  18. Longitudinal acoustic waves in layered media: Comparative study of Raman scattering and reflection delay time

    Energy Technology Data Exchange (ETDEWEB)

    El Boudouti, E H; Zelmat, R; Bailich, R [LDOM, Departement de Physique, Faculte des Sciences, Universite Mohamed I, 60000 Oujda (Morocco); Hassouani, Y El [Universite de Bordeaux, Laboratoire de Mecanique Physique, Talence F-33405 (France); Djafari-Rouhani, B, E-mail: elboudouti@yahoo.f [Institut d' Electronique, de Microelectronique et de Nanotechnologie, UMR CNRS 8520, UFR de Physique, Universite de Lille 1, 59655 Villeneuve d' Ascq (France)

    2010-03-01

    Using a Green's function method, we present a theoretical analysis of the propagation of acoustic waves in multilayer structures. The structure studied consists of a finite superlattice (SL) made of a periodic repetition of N unit cells deposited on a substrate. Such a structure exhibits extended modes constituting the allowed bands separated by forbidden bands where localized modes associated to free surfaces, defect layers, ... may exist. These modes can be observed either by Raman scattering when an incident light is launched from vacuum towards the multilayer, or by the reflection delay time when an incident acoustic wave is launched from the substrate. Specific applications of our results are given for some available experiments in the literature (e.g., Si/Ge{sub x}Si{sub 1-x}, GaSb-AlSb) and a good agreement has been obtained between our theoretical results and the experimental data.

  19. Stimulated Raman scattering in the relativistic regime in near-critical plasmas

    CERN Document Server

    Moreau, J G; Nuter, R; Tikhonchuk, V T

    2016-01-01

    Interaction of a high intensity short laser pulse with near-critical plasmas allows to achieve extremely high coupling efficiency and transfer laser energy to energetic ions. One dimensional Particle-In-Cell (PIC) simulations are considered to detail the processes involved in the energy transfer. A confrontation of the numerical results with the theory highlights a key role played by the process of stimulated Raman scattering in the relativistic regime. The interaction of a 1 ps laser pulse (I $\\sim$ 6.10$^{18}$ W.cm$^2$) with an under-critical (0.5 $n_c$) homogeneous plasma leads to a very high plasma absorption reaching 68 % of the laser pulse energy. This permits a homogeneous electron heating all along the plasma and an efficient ion acceleration at the plasma edges and in cavities.

  20. Darkfield microspectroscopy of nanostructures on silver tip-enhanced Raman scattering probes

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Tamitake, E-mail: tamitake-itou@aist.go.jp [Nano-Bioanalysis Team, Health Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395 (Japan); Yamamoto, Yuko S., E-mail: yamayulab@gmail.com [Research Fellow of the Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-8472 (Japan); Department of Chemistry, School of Science and Technology, Kagawa University, Takamatsu, Kagawa 761-0396 (Japan); Suzuki, Toshiaki [UNISOKU Co. Ltd., 2-4-3 Kasugano, Hirakata, Osaka 573-0131 (Japan); Kitahama, Yasutaka; Ozaki, Yukihiro [Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337 (Japan)

    2016-01-11

    We report an evaluation method employing darkfield microspectroscopy for silver probes used in tip-enhanced Raman scattering (TERS). By adjusting the darkfield illumination, the diffracted light from the probe outlines disappears and the diffracted light from the surface nanostructures and tips of the probes appears as colorful spots. Scanning electron microscopy reveals that the spectral variations in these spots reflect the shapes of the surface nanostructures. The tip curvatures correlate to the spectral maxima of their spots. Temporal color changes in the spots indicate the deterioration due to the oxidation of the silver surfaces. These results show that the proposed method is useful for in situ evaluation of plasmonic properties of TERS probes.

  1. Selective resonance enhancement of Raman scattering intensity in photoinduced nonradiative charge transfer

    Science.gov (United States)

    Bairamov, B. Kh.

    2016-04-01

    This paper reports on the formation of complexes consisting of isolated free-standing crystalline semiconductor quantum dots, for example, nc-Si/SiO2, functionalized by short oligonucleotides, for example, the single-stranded system d(20G, 20T). Here, d are deoxyribonucleotides, G and T are guanine and thymine nucleotides, respectively. It has been found that these complexes are unique objects for the elucidation of the specific features in the manifestation of new quantum-size effects in biomacromolecules. It has been demonstrated that the possibility exists of detecting and recording, in such complexes of biomacromolecules, spectrally selective resonance enhancement of Raman scattering intensity in fluctuations of nucleotide molecules due to coherent nonradiative transfer of a photoexcited electron and a hole at the interface of the complex. This dynamic optical imaging of spectral responses can be of applied interest for the development of nanobiophotonic technologies.

  2. Facile Synthesis of Uniform Raspberry-Like Gold Nanoparticles for High Performance Surface Enhanced Raman Scattering.

    Science.gov (United States)

    Rong, Yun; Zhang, Lei; Liu, Zhenzhong; Dai, Liwei; Huang, Youju; Chen, Tao

    2016-06-01

    Hierarchical Au nanostructures have attracted considerable attention owing to their rich hot-spots in inherent structures that have found various applications in surface-enhanced Raman scattering (SERS) based sensing and imaging. Herein we facilely synthesized uniform hierarchical raspberry-like Au nanostructures with tunable size via a seed-mediated growth approach employing a binary mixture of quaternized chitosan (QCS) and 5-bromosalicylic acid (5-BrSA). 5-BrSA plays an important role in tuning shapes and improving uniformity of resultant gold nanoparticles (AuNPs). The obtained raspberry-like Au nanostructures have a spherical profile and randomly arranged protrusions on the outsides, and their size can be finely tuned in a range from 50 to 120 nm. The rough surfaces of the special raspberry-like Au nanostructures endow them higher SERS performance than spherical Au spheres with smooth surfaces, which is promising for the application of SERS based sensors and optical imaging. PMID:27427615

  3. Silicon nanowire arrays coated with electroless Ag for increased surface-enhanced Raman scattering

    Science.gov (United States)

    Bai, Fan; Li, Meicheng; Fu, Pengfei; Li, Ruike; Gu, Tiansheng; Huang, Rui; Chen, Zhao; Jiang, Bing; Li, Yingfeng

    2015-05-01

    The ordered Ag nanorod (AgNR) arrays are fabricated through a simple electroless deposition technique using the isolated Si nanowire (SiNW) arrays as the Ag-grown scaffold. The AgNR arrays have the single-crystallized structure and the plasmonic crystal feature. It is found that the formation of the AgNR arrays is strongly dependent on the filling ratio of SiNWs. A mechanism is proposed based on the selective nucleation and the synergistic growth of Ag nanoparticles on the top of the SiNWs. Moreover, the special AgNR arrays grown on the substrate of SiNWs exhibit a detection sensitivity of 10-15M for rhodamine 6G molecules, which have the potential application to the highly sensitive surface-enhanced Raman scattering sensors.

  4. Surface-enhanced Raman scattering on gold nanorod pairs with interconnection bars of different widths

    KAUST Repository

    Yue, Weisheng

    2012-08-01

    We demonstrate that surface-enhanced Raman scattering (SERS) enhancement could be tuned by adjusting the width of a connection bar at the bottom of a gold nanorod pair. Arrays of gold nanorod pairs with interconnection bars of different widths at the bottom of the interspace were fabricated by electron-beam lithography and used for the SERS study. Rhodamine 6G (R6G) was used as the probe molecule for the SERS. In addition to the large SERS enhancement observed in the nanostructured substrates, the SERS enhancement increases as the width of the connection bar increases. This result provides an important method for tuning SERS enhancement. Numerical simulations of electromagnetic properties on the nanostructures were performed with CST Microwave Studio, and the results correspond well with the experimental observations. © 2012 Elsevier B.V. All rights reserved.

  5. Surface enhanced Raman scattering, antibacterial and antifungal active triangular gold nanoparticles

    Science.gov (United States)

    Smitha, S. L.; Gopchandran, K. G.

    2013-02-01

    Shape controlled syntheses of gold nanoparticles have attracted a great deal of attention as their optical, electronic, magnetic and biological properties are strongly dependent on the size and shape of the particles. Here is a report on the surface enhanced Raman scattering (SERS) activity of Cinnamomum zeylanicum leaf broth reduced gold nanoparticles consisting of triangular and spherical like particles, using 2-aminothiophenol (2-ATP) and crystal violet (CV) as probe molecules. Nanoparticles prepared with a minimum leaf broth concentration, having a greater number of triangular like particles exhibit a SERS activity of the order of 107. The synthesized nanoparticles exhibit efficient antibacterial activity against the tested gram negative bacterium Escherichia coli and gram positive bacterium Staphylococcus aureus. Investigations on the antifungal activity of the synthesized nanoparticles against Aspergillus niger and Fusarium oxysporum positive is also discussed.

  6. Rational Design of a Bisphenol A Aptamer Selective Surface-Enhanced Raman Scattering Nanoprobe

    Science.gov (United States)

    2015-01-01

    Surface-enhanced Raman scattering (SERS) optical nanoprobes offer a number of advantages for ultrasensitive analyte detection. These functionalized colloidal nanoparticles are a multifunctional assay component. providing a platform for conjugation to spectral tags, stabilizing polymers, and biorecognition elements such as aptamers or antibodies. We demonstrate the design and characterization of a SERS-active nanoprobe and investigate the nanoparticles’ biorecognition capabilities for use in a competitive binding assay. Specifically, the nanoprobe is designed for the quantification of bisphenol A (BPA) levels in the blood after human exposure to the toxin in food and beverage plastic packaging. The nanoprobes demonstrated specific affinity to a BPA aptamer with a dissociation constant Kd of 54 nM, and provided a dose-dependent SERS spectra with a limit of detection of 3 nM. Our conjugation approach shows the versatility of colloidal nanoparticles in assay development, acting as detectable spectral tagging elements and biologically active ligands concurrently. PMID:25329684

  7. Surface-enhanced Raman scattering of coumarin 343 on silver colloidal nanoparticles

    Science.gov (United States)

    Hussain, Shafqat; Pang, Yoonsoo

    2016-09-01

    Surface-enhanced Raman scattering (SERS) of coumarin 343 (C343) adsorbed on silver colloidal nanoparticles reduced by sodium citrate was investigated and the surface adsorption geometry of C343 on Ag was sought by optimizing C343-Ag complexes for neutral and deprotonated C343 molecules in the DFT simulations. The SERS of C343 showed a number of spectral changes upon solution pH change. We found that deprotonated C343 adsorbs on the Ag nanoparticles through the carboxylate group keeping a perpendicular geometry to the surface. When protonated, the adsorption geometry of C343 is changed into more or less flat to the surface as the cyclic ester group becomes a preferred surface adsorption site.

  8. A CMOS image sensor using high-speed lock-in pixels for stimulated Raman scattering

    Science.gov (United States)

    Lioe, DeXing; Mars, Kamel; Takasawa, Taishi; Yasutomi, Keita; Kagawa, Keiichiro; Hashimoto, Mamoru; Kawahito, Shoji

    2016-03-01

    A CMOS image sensor using high-speed lock-in pixels for stimulated Raman scattering (SRS) spectroscopy is presented in this paper. The effective SRS signal from the stimulated emission of SRS mechanism is very small in contrast to the offset of a probing laser source, which is in the ratio of 10-4 to 10-5. In order to extract this signal, the common offset component is removed, and the small difference component is sampled using switched-capacitor integrator with a fully differential amplifier. The sampling is performed over many integration cycles to achieve appropriate amplification. The lock-in pixels utilizes high-speed lateral electric field charge modulator (LEFM) to demodulate the SRS signal which is modulated at high-frequency of 20MHz. A prototype chip is implemented using 0.11μm CMOS image sensor technology.

  9. Perforated nanocap array: Facile fabrication process and efficient surface enhanced Raman scattering with fluorescence suppression

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Huang Li-Qing; Tong Hui-Min; Zhai Li-Peng; Yuan Lin; Zhao Li-Hua; Zhang Wei-Wei

    2013-01-01

    Recently,individual reduced-symmetry metal nanostructures and their plasmonic properties have been studied extensively.However,little attention has been paid to the approach to fabricating ordered reduced-symmetry metal nanostructure arrays.In this paper,a novel perforated silver nanocap array with high surface-enhanced Raman scattering (SERS) activity and fluorescence suppression is reported.The array is fabricated by electron beam evaporating Ag onto the perforated barrier layer side of a hard anodization (HA) anodic aluminum oxide (AAO) template.The morphology and optical property of the perforated silver nanocap array are characterized by an atomic force microscope (AFM),a scanning electron microscope (SEM),and absorption spectra.The results of SERS measurements reveal that the perforated silver nanocap array offers high SERS activity and fluorescence suppression compared with an imperforated silver nanocap array.

  10. Highly stable gelatin layer-protected gold nanoparticles as surface-enhanced Raman scattering substrates.

    Science.gov (United States)

    Lee, Changwon; Zhang, Peng

    2014-06-01

    Amine and carboxylic groups rich gelatin was used as reducing and stabilizing agent to form highly stable gold nanoparticles for surface-enhanced Raman scattering (SERS) applications. The size of the particle was determined to be 13 nm by TEM with mono-dispersity. The size of the gold nanoparticles was little affected by the initial gelatin concentration. The gelatin-gold nanoparticles show strong SERS activity with Rhodamine 6G and Ruthenium bipyridine as reporter molecules. Both carboxylic acid groups and amine groups were identified by FT-IR to be present on the gelatin-gold nanoparticle surface, providing the possibility of further conjugation with other molecules. The gelatin-protected gold nanoparticles prepared by this simple, green, method displayed very good solubility and stability in many solvents, and good monodispersity, all desirable features as good SERS substrates. PMID:24738391

  11. Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering

    KAUST Repository

    Yue, Weisheng

    2012-10-26

    The fabrication of nanostructured substrates with precisely controlled geometries and arrangements plays an important role in studies of surface-enhanced Raman scattering (SERS). Here, we present two processes based on electron-beam lithography to fabricate gold nanostructures for SERS. One process involves making use of metal lift-off and the other involves the use of the plasma etching. These two processes allow the successful fabrication of gold nanostructures with various kinds of geometrical shapes and different periodic arrangements. 4-mercaptopyridine (4-MPy) and Rhodamine 6G (R6G) molecules are used to probe SERS signals on the nanostructures. The SERS investigations on the nanostructured substrates demonstrate that the gold nanostructured substrates have resulted in large SERS enhancement, which is highly dependent on the geometrical shapes and arrangements of the gold nanostructures. © 2012 IOP Publishing Ltd.

  12. Synthesis of gold nanoflowers using deep eutectic solvent with high surface enhanced Raman scattering properties

    Science.gov (United States)

    Aghakhani Mahyari, Farzaneh; Tohidi, Maryam; Safavi, Afsaneh

    2016-09-01

    A facile, seed-less and one-pot method was developed for synthesis of gold nanoflowers with multiple tips through reduction of HAuCl4 with deep eutectic solvent at room temperature. This solvent is eco-friendly, low-cost, non-toxic and biodegradable and can act as both reducing and shape-controlling agent. In this protocol, highly branched and stable gold nanoflowers were obtained without using any capping agent. The obtained products were characterized by different techniques including, field emission scanning electron microscopy, transmission electron microscopy, x-ray diffraction and UV–vis spectroscopy. The as-prepared gold nanoflowers exhibit efficient surface-enhanced Raman scattering (SERS) properties which can be used as excellent substrates for SERS.

  13. Longitudinal acoustic waves in layered media: Comparative study of Raman scattering and reflection delay time

    International Nuclear Information System (INIS)

    Using a Green's function method, we present a theoretical analysis of the propagation of acoustic waves in multilayer structures. The structure studied consists of a finite superlattice (SL) made of a periodic repetition of N unit cells deposited on a substrate. Such a structure exhibits extended modes constituting the allowed bands separated by forbidden bands where localized modes associated to free surfaces, defect layers, ... may exist. These modes can be observed either by Raman scattering when an incident light is launched from vacuum towards the multilayer, or by the reflection delay time when an incident acoustic wave is launched from the substrate. Specific applications of our results are given for some available experiments in the literature (e.g., Si/GexSi1-x, GaSb-AlSb) and a good agreement has been obtained between our theoretical results and the experimental data.

  14. Surface-enhanced Raman scattering of patterned copper nanostructure electrolessly plated on arrayed nanoporous silicon pillars

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Weifen; Shan Wenwen; Ling Hong; Wang Yusheng [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Cao Yanxia [College of Materials Engineering, Zhengzhou University, Zhengzhou 450052, People' s Republic of China (China); Li Xinjian, E-mail: gingerwfj@yahoo.com.c [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2010-10-20

    A new synthesized composite structure, a patterned copper/silicon nanoporous pillar array (Cu/Si-NPA) made by depositing Cu on Si-NPA using an immersion plating method, can be used as a surface-enhanced Raman scattering (SERS) substrate. Its surface component and morphology were analyzed by x-ray diffraction and field-emission scanning electron microscopy, respectively. It was found that the surface was Cu with two kinds of crystal structures: a continuous film composed of Cu nanocrystallites covering the Si-NPA, and a quasi-regular, interconnected network composed of loop-chains of Cu crystallites, with the size in the range of several tens of nanometer to 300 nm, surrounding the porous Si pillars. The composite structure is strongly SERS active using rhodamine 6G as probe molecules, which is mainly due to the patterned hierarchical Cu structure.

  15. Polarization Dependence of Surface Enhanced Raman Scattering on a Single Dielectric Nanowire

    Directory of Open Access Journals (Sweden)

    Hua Qi

    2012-01-01

    Full Text Available Our measurements of surface enhanced Raman scattering (SERS on Ga2O3 dielectric nanowires (NWs core/silver composites indicate that the SERS enhancement is highly dependent on the polarization direction of the incident laser light. The polarization dependence of the SERS signal with respect to the direction of a single NW was studied by changing the incident light angle. Further investigations demonstrate that the SERS intensity is not only dependent on the direction and wavelength of the incident light, but also on the species of the SERS active molecule. The largest signals were observed on an NW when the incident 514.5 nm light was polarized perpendicular to the length of the NW, while the opposite phenomenon was observed at the wavelength of 785 nm. Our theoretical simulations of the polarization dependence at 514.5 nm and 785 nm are in good agreement with the experimental results.

  16. Raman scattering in transition metal compounds: Titanium and compounds of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.; Ederer, D.L.; Shu, T. [Tulane Univ., New Orleans, LA (United States)] [and others

    1997-04-01

    The transition metal compounds form a very interesting and important set of materials. The diversity arises from the many states of ionization the transition elements may take when forming compounds. This variety provides ample opportunity for a large class of materials to have a vast range of electronic and magnetic properties. The x-ray spectroscopy of the transition elements is especially interesting because they have unfilled d bands that are at the bottom of the conduction band with atomic like structure. This group embarked on the systematic study of transition metal sulfides and oxides. As an example of the type of spectra observed in some of these compounds they have chosen to showcase the L{sub II, III} emission and Raman scattering in some titanium compounds obtained by photon excitation.

  17. Modeling of the Competition of Stimulated Raman and Brillouin Scattering in LULI Multiple Beam Experiments

    Science.gov (United States)

    Cohen, B. I.; Baldis, H. A.; Berger, R. L.; Williams, E. A.; Labaune, C.

    1999-11-01

    Multiple laser beam experiments with CH target foils at the LULI facility demonstrate anti-correlation of stimulated Brillouin and Raman backscatter (SBS and SRS).(C. Labaune, et al.), Phys. Plasmas 6, 2048 (1999). Detailed Thomson scattering diagnostics show that SBS precedes SRS, that secondary electron plasma waves can accompany SRS appropriate to the Langmuir Decay Instability (LDI), and that with multiple interaction beams the SBS signal in the primary laser beam is reduced while the SRS signal is enhanced and onsets earlier. Analysis and numerical calculations are presented that evaluate the influence of mode coupling (B. Cohen, et al.), Phys. Plasmas 5, 3402 (1998). of SBS and LDI ion waves and local pump depletion in laser hot spots. The modeling suggests that ponderomotive and thermal self-focusing should modify the probability distribution of intense speckles and enhance the local pump depletion and ion wave mode coupling.

  18. Comparison of Surface-enhanced Raman Scattering Spectra of Two Kinds of Silver Nanoplate Films

    Institute of Scientific and Technical Information of China (English)

    TAO Jin-long; TANG Bin; XU Shu-ping; PAN Ling-yun; XU Wei-qing

    2012-01-01

    Surface-enhanced Raman scattering(SERS) spectra of different silver nanoplate self-assembled films at different excitation wavelengths were fairly compared.Shape conversion from silver nanoprisms to nanodisks on slides was in situ carried out.The SERS spectra of 4-mercaptopyridine(4-MPY) on these anisotropic silver nanoparticle self-assembled films present that strong enhancement appeared when the excitation line and the surface plasmon resonance(SPR) band of silver substrate overlapped.In this model,the influence of the crystal planes of silver nanoplates on SERS enhancement could be ignored because the basal planes were nearly unchanged in two kinds of silver nanoplate self-assembled films.

  19. Analysis of drugs illegally added into Chinese traditional patent medicine using surface-enhanced Raman scattering.

    Science.gov (United States)

    Zhang, Yan; Huang, Xiaoyan; Liu, Wenfang; Cheng, Zeneng; Chen, Chuanpin; Yin, Lihui

    2013-01-01

    Illegal chemicals, which could cause unpredictable side effects, may be added into traditional Chinese medicine (TCM) for a rapid healing effect. In this report, a surface-enhanced Raman scattering (SERS) analysis method for five kinds of illegally added drugs (rosiglitazone maleate, phenformin hydrochloride, metformin hydrochloride, pioglitazone hydrochloride and sibutramine hydrochloride) in Chinese traditional patent medicine (CTPM) has been demonstrated, including simultaneous detections of drug mixtures with CTPM. Silver colloidal, prepared by a sodium citrate reaction, was used as a SERS substrate. The optimum pH condition for each drug has also been explored because of its combined effect on protonation, surface charge, repulsion of an analyte and nanoparticles. Furthermore, the simultaneous detection of two or three kinds of these chemicals has been carried out. Characteristic peaks are employed for qualitative analysis. This is the first research using SERS for the analysis of drug mixtures in CTPM without any separation process. PMID:24107564

  20. Efficient frequency conversion by stimulated Raman scattering in a sodium nitrate aqueous solution

    International Nuclear Information System (INIS)

    Frequency conversion of laser beams, based on stimulated Raman scattering (SRS) is an appealing technique for generating radiation at new wavelengths. Here, we investigated experimentally the SRS due to a single pass of a collimated frequency-doubled Nd:YAG laser beam (532 nm) through a saturated aqueous solution of sodium nitrate (NaNO3), filling a 50 cm long cell. These experiments resulted in simultaneous generation of 1st (564 nm) and 2nd (599 nm) Stokes beams, corresponding to the symmetric stretching mode of the nitrate ion, ν1(NO3−), with 40 and 12 mJ/pulse maximal converted energies, equivalent to 12% and 4% efficiencies, respectively, for a 340 mJ/pulse pump energy. The results indicate that the pump and SRS beams were thermally defocused and that four-wave mixing was responsible for the second order Stokes process onset

  1. Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets

    Science.gov (United States)

    Lee, Seunghyun; Ongko, Andry; Kim, Ho Young; Yim, Sang-Gu; Jeon, Geumhye; Jeong, Hee Jin; Lee, Seungwoo; Kwak, Minseok; Yang, Seung Yun

    2016-08-01

    Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive vibrational spectroscopy technique enabling detection of multiple analytes at the molecular level in a nondestructive and rapid manner. In this work, we introduce a new approach to fabricate deep subwavelength-scaled (sub-100 nm) metallic nanohole arrays (quasi-3D metallic nanoholes) on flexible and highly efficient SERS substrates. Target structures have been fabricated using a two-step process consisting of (i) direct pattern transfer of spin-coated polymer films onto polydimethylsiloxane (PDMS) substrates by plasma etching with transferred anodic aluminum oxide masks, and (ii) producing SERS-active substrates by functionalization of the etched polymeric films followed by Au deposition. Such an all-dry, top-down lithographic approach enables on-demand patterning of SERS-active metallic nanoholes with high structural fidelity even onto flexible and stretchable substrates, thus making possible multiple sensing modes in a versatile fashion. For example, metallic nanoholes on flexible PDMS substrates are highly amenable to their integration with curved glass sticks, which can be used in optical fiber-integrated SERS systems. Au surfaces immobilized by probe DNA molecules show a selective enhancement of Raman scattering with Cy5-labeled complementary DNA (as compared to flat Au surfaces), demonstrating the potential of using the quasi-3D Au nanohole arrays for bio-sensing applications.

  2. Boron phosphide under pressure: In situ study by Raman scattering and X-ray diffraction

    Science.gov (United States)

    Solozhenko, Vladimir L.; Kurakevych, Oleksandr O.; Le Godec, Yann; Kurnosov, Aleksandr V.; Oganov, Artem R.

    2014-07-01

    Cubic boron phosphide, BP, has been studied in situ by X-ray diffraction and Raman scattering up to 55 GPa at 300 K in a diamond anvil cell. The bulk modulus of B0 = 174(2) GPa has been established, which is in excellent agreement with our ab initio calculations. The data on Raman shift as a function of pressure, combined with equation-of-state (EOS) data, allowed us to estimate the Grüneisen parameters of the TO and LO modes of zinc-blende structure, γGTO= 1.26 and γGLO= 1.13, just like in the case of other AIIIBV diamond-like phases, for which γGTO> γGLO≅ 1. We also established that the pressure dependence of the effective electro-optical constant α is responsible for a strong change in relative intensities of the TO and LO modes from ITO/ILO ˜ 0.25 at 0.1 MPa to ITO/ILO ˜ 2.5 at 45 GPa, for which we also find excellent agreement between experiment and theory.

  3. Surface enhanced Raman scattering for detection of Pseudomonas aeruginosa quorum sensing compounds

    Science.gov (United States)

    Thrift, Will; Bhattacharjee, Arunima; Darvishzadeh-Varcheie, Mahsa; Lu, Ying; Hochbaum, Allon; Capolino, Filippo; Whiteson, Katrine; Ragan, Regina

    2015-08-01

    Pseudomonas aeruginosa (PA), a biofilm forming bacterium, commonly affects cystic fibrosis, burn victims, and immunocompromised patients. PA produces pyocyanin, an aromatic, redox active, secondary metabolite as part of its quorum sensing signaling system activated during biofilm formation. Surface enhanced Raman scattering (SERS) sensors composed of Au nanospheres chemically assembled into clusters on diblock copolymer templates were fabricated and the ability to detect pyocyanin to monitor biofilm formation was investigated. Electromagnetic full wave simulations of clusters observed in scanning electron microcopy images show that the localized surface plasmon resonance wavelength is 696 nm for a dimer with a gap spacing of 1 nm in an average dielectric environment of the polymer and analyte; the local electric field enhancement is on the order of 400 at resonance, relative to free space. SERS data acquired at 785 nm excitation from a monolayer of benzenethiol on fabricated samples was compared with Raman data of pure benzenethiol and enhancement factors as large as 8×109 were calculated that are consistent with simulated field enhancements. Using this system, the limit of detection of pyocyanin in pure gradients was determined to be 10 parts per billion. In SERS data of the supernatant from the time dependent growth of PA shaking cultures, pyocyanin vibrational modes were clearly observable during the logarithmic growth phase corresponding to activation of genes related to biofilm formation. These results pave the way for the use of SERS sensors for the early detection of biofilm formation, leading to reduced healthcare costs and better patient outcomes.

  4. Highly sensitive detection of clenbuterol using competitive surface-enhanced Raman scattering immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Guichi [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); Hu Yongjun, E-mail: yjhu@scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); Gao Jiao; Zhong Liang [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China)

    2011-07-04

    Graphical abstract: Schemes of SERS nanoprobes preparation (a) and competitive SERS immunoassay for clenbuterol (b). Highlights: > A new method for clenbuterol detection by the use of a competitive SERS immunoassay has been developed. > 4,4'-Dipyridyl is chosen as the Raman reporter due to its fast-labeled, nontoxic and bifunctional properties. > The present method could detect clenbuterol over a wide dynamic concentration range and exhibit significant specificity in real samples. > The technique is more sensitive and simpler than the conventional method ELISA. - Abstract: In this report, we present a novel approach to detect clenbuterol based on competitive surface-enhanced Raman scattering (SERS) immunoassay. Herein, a SERS nanoprobe that relies on gold nanoparticle (GNP) is labeled by 4,4'-dipyridyl (DP) and clenbuterol antibody, respectively. The detection of clenbuterol is carried out by competitive binding between free clenbuterol and clenbuterol-BSA fastened on the substrate with their antibody labeled on SERS nanoprobes. The present method allows us to detect clenbuterol over a much wider concentration range (0.1-100 pg mL{sup -1}) with a lower limit of detection (ca. 0.1 pg mL{sup -1}) than the conventional methods. Furthermore, by the use of this new competitive SERS immunoassay, the clenbuterol-BSA (antigen) is chosen to fasten on the substrate instead of the clenbuterol antibody, which could reduce the cost of the assay. Results demonstrate that the proposed method has the wide potential applications in food safety and agonist control.

  5. Raman and fluorescence characteristics of resonant inelastic X-ray scattering from doped superconducting cuprates.

    Science.gov (United States)

    Huang, H Y; Jia, C J; Chen, Z Y; Wohlfeld, K; Moritz, B; Devereaux, T P; Wu, W B; Okamoto, J; Lee, W S; Hashimoto, M; He, Y; Shen, Z X; Yoshida, Y; Eisaki, H; Mou, C Y; Chen, C T; Huang, D J

    2016-01-01

    Measurements of spin excitations are essential for an understanding of spin-mediated pairing for superconductivity; and resonant inelastic X-ray scattering (RIXS) provides a considerable opportunity to probe high-energy spin excitations. However, whether RIXS correctly measures the collective spin excitations of doped superconducting cuprates remains under debate. Here we demonstrate distinct Raman- and fluorescence-like RIXS excitations of Bi1.5Pb0.6Sr1.54CaCu2O(8+δ). Combining photon-energy and momentum dependent RIXS measurements with theoretical calculations using exact diagonalization provides conclusive evidence that the Raman-like RIXS excitations correspond to collective spin excitations, which are magnons in the undoped Mott insulators and evolve into paramagnons in doped superconducting compounds. In contrast, the fluorescence-like shifts are due primarily to the continuum of particle-hole excitations in the charge channel. Our results show that under the proper experimental conditions RIXS indeed can be used to probe paramagnons in doped high-Tc cuprate superconductors. PMID:26794437

  6. High surface enhanced Raman scattering activity of BN nanosheets–Ag nanoparticles hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shanshan; Zhang, Zhaochun, E-mail: zhangzhaochun@shu.edu.cn; Zhao, Jun; Zheng, Houli

    2014-01-15

    Highlights: • Boron nitride–silver nanohybrid was acquired through a liquid-phase reducing route. • The composite shown a high-quality SERS activity. • 2-Mercaptobenzimidazole was chemisorbed on silver surface in vertical orientation. -- Abstract: A facile liquid-phase reducing route was developed to modify boron nitride (BN) nanosheets with silver nanoparticles (AgNPs) in order to fabricate BN–AgNPs hybrids with high surface enhanced Raman scattering (SERS) activity. The layered structure and morphology of BN–AgNPs nanohybrids were characterized by transmission electron microscopy and atomic force microscopy, meanwhile, Fourier transform infrared spectroscopy and ultraviolet–visible were used for studying optical properties and surface plasmon resonance applied to the optical sensor. The SERS of adsorbed 2-mercaptobenzimidazole (MBI) molecule was investigated which shown that the BN–AgNPs substrate exhibited a very strong SERS activity, offering a great potential application in molecular probe sensor. On the basis of the analysis of SERS and the Raman surface selection rules, we could draw a conclusion that the MBI molecule was adsorbed upright on the AgNPs surface through the sulphur and nitrogen atoms. What is more, the cyclic voltammetry experiment indicated the electrochemically irreversible behavior of BN–AgNPs nanohybrids in KCl solution.

  7. Surface-enhanced Raman scattering active gold nanostructure fabricated by photochemical reaction of synchrotron radiation

    International Nuclear Information System (INIS)

    The deposition of gold nanoparticles in an electroplating solution containing gold (I) trisodium disulphite under synchrotron X-ray radiation was investigated. The nanoparticles grew and aggregated into clusters with increasing radiation time. This behavior is explained by evaluating the effect of Derjaguin-Landau-Verweyand-Overbeek (DLVO) interactions combining repulsive electrostatic and attractive van der Waals forces on the particle deposition process. The surface-enhanced Raman scattering (SERS) of 4,4′ -bipyridine (4bpy) in aqueous solution was measured using gold nanoparticles immobilized on silicon substrates under systematically-varied X-ray exposure. The substrates provided an in situ SERS spectrum for 1 nM 4bpy. This demonstration creates new opportunities for chemical and environmental analyses through simple SERS measurements. - Highlights: • Gold nanoparticles were produced by photochemical reaction of synchrotron radiation. • The gold nanoparticles grew and aggregated into the higher-order nanostructure. • The behavior is qualitatively explained by analytical estimation. • The surface-enhanced Raman spectroscopy of 4,4′-bipyridine (4bpy) was demonstrated. • The substrate fabricated in a suitable condition provides in situ SERS for 1 nM 4bpy

  8. Development of an optical biosensor based on surface-enhanced Raman scattering for DNA analysis

    Science.gov (United States)

    Yigit, Tugce; Akdogan, Ebru; Karagoz, Isık. Didem; Kahraman, Mehmet

    2016-03-01

    Rapid, accurate and sensitive DNA analysis is critically important for the diagnostic of genetic diseases. The most common method preferred in practice is fluorescence based microarrays to analyze the DNA. However, there exist some disadvantages related to the above-mentioned method such as the overlapping of the fluorescence emission wavelengths that can diminish in the performance of multiplexing, needed to obtain fluorescence spectra from each dye and photo degradation. In this study, a novel SERS based DNA analysis approach, which is Raman active dye-free and independent of SERS substrate properties, is developed. First, the single strand DNA probe is attached to the SERS substrate and half of the complimentary DNA is attached to gold nanoparticles, as well. We hypothesize that in the presence of target DNA, the complimentary DNA coupled colloids will bind to the SERS substrate surface via hybridization of single strand target DNA. To test this hypothesis, we used UV/Vis spectroscopy, atomic for microscopy (AFM) and dynamic light scattering (DLS). DNA analysis is demonstrated by a peak shift of the certain peak of the small molecules attached to the SERS substrate surface instead of SERS spectrum obtained in the presence of target DNA from the Raman reporter molecules. The degree of peak shifting will be used for the quantification of the target DNA in the sample. Plasmonic properties of SERS substrates and reproducibility issues will not be considerable due to the use of peak shifting instead of peak intensity for the qualitative analysis.

  9. Preparation of silver material used for detection of biocomplexes by surface-enhanced Raman scattering

    Science.gov (United States)

    Nowak, M.; Binczyk, M.; Skrobanska, M.; Marciniak, L.; Runka, T.; Jastrzab, R.

    2016-08-01

    Silver dendrites were obtained on Cu plate by a classic galvanic displacement process. The process of preparing Ag particles was performed at different immersion times in AgNO3 solution, and the best process parameters were selected according to the enhancement effect of the Raman spectra of Rhodamine 6G. Ag-Cu substrates were chosen for a Surface-enhanced Raman scattering (SERS) study of biocomplexes because their preparation is cost effective and simple, and the relative homogeneous signal enhancement on the prepared silver SERS-active substrate was obtained. The rapid process of surface preparation was applied to identify the mode of coordination. Biocomplexes of Co and Ni ions with adenosine triphosphate form in neutral pH were immersed on the Ag dendrites, and SERS spectra of these compounds were collected. This research work was carried out in order to determine different types of coordination in the same pH conditions and relatively low concentration using SERS which is an emerging and promising technique for the determination of coordination types in biocomplexes.

  10. Surface-enhanced Raman scattering active gold nanostructure fabricated by photochemical reaction of synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Akinobu, E-mail: yamaguti@lasti.u-hyogo.ac.jp [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Matsumoto, Takeshi [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Okada, Ikuo; Sakurai, Ikuya [Synchrotoron Radiation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Utsumi, Yuichi [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan)

    2015-06-15

    The deposition of gold nanoparticles in an electroplating solution containing gold (I) trisodium disulphite under synchrotron X-ray radiation was investigated. The nanoparticles grew and aggregated into clusters with increasing radiation time. This behavior is explained by evaluating the effect of Derjaguin-Landau-Verweyand-Overbeek (DLVO) interactions combining repulsive electrostatic and attractive van der Waals forces on the particle deposition process. The surface-enhanced Raman scattering (SERS) of 4,4′ -bipyridine (4bpy) in aqueous solution was measured using gold nanoparticles immobilized on silicon substrates under systematically-varied X-ray exposure. The substrates provided an in situ SERS spectrum for 1 nM 4bpy. This demonstration creates new opportunities for chemical and environmental analyses through simple SERS measurements. - Highlights: • Gold nanoparticles were produced by photochemical reaction of synchrotron radiation. • The gold nanoparticles grew and aggregated into the higher-order nanostructure. • The behavior is qualitatively explained by analytical estimation. • The surface-enhanced Raman spectroscopy of 4,4′-bipyridine (4bpy) was demonstrated. • The substrate fabricated in a suitable condition provides in situ SERS for 1 nM 4bpy.

  11. Analysis of temporal evolution of quantum dot surface chemistry by surface-enhanced Raman scattering

    Science.gov (United States)

    Doğan, İlker; Gresback, Ryan; Nozaki, Tomohiro; van de Sanden, Mauritius C. M.

    2016-01-01

    Temporal evolution of surface chemistry during oxidation of silicon quantum dot (Si-QD) surfaces were probed using surface-enhanced Raman scattering (SERS). A monolayer of hydrogen and chlorine terminated plasma-synthesized Si-QDs were spin-coated on silver oxide thin films. A clearly enhanced signal of surface modes, including Si-Clx and Si-Hx modes were observed from as-synthesized Si-QDs as a result of the plasmonic enhancement of the Raman signal at Si-QD/silver oxide interface. Upon oxidation, a gradual decrease of Si-Clx and Si-Hx modes, and an emergence of Si-Ox and Si-O-Hx modes have been observed. In addition, first, second and third transverse optical modes of Si-QDs were also observed in the SERS spectra, revealing information on the crystalline morphology of Si-QDs. An absence of any of the abovementioned spectral features, but only the first transverse optical mode of Si-QDs from thick Si-QD films validated that the spectral features observed from Si-QDs on silver oxide thin films are originated from the SERS effect. These results indicate that real-time SERS is a powerful diagnostic tool and a novel approach to probe the dynamic surface/interface chemistry of quantum dots, especially when they involve in oxidative, catalytic, and electrochemical surface/interface reactions. PMID:27389331

  12. Hyperspectral stimulated Raman scattering and multiphoton imaging for digital pathology of colonic disease

    Science.gov (United States)

    Wang, Zi; Zheng, Wei; Lin, Jian; Huang, Zhiwei

    2016-03-01

    Histopathology examinations of H&E stained biopsied tissues is the golden standard for colonic diseases (e.g., polyps, adenoma, and adenocarcinoma) diagnosis. However, staining effect of sample and doctor's expertise degree may greatly influence the diagnosis results. The information provided by the H&E stained sample is also limited to the morphological and PH information and no quantative information is available. In this paper, we report the development of a unique multimodal nonlinear optical microscopy (i.e., hyperspectral stimulated Raman scattering (hsSRS), second-harmonic generation (SHG), third-harmonic generation (THG), two-photon excitation fluorescence (TPEF)) platform for the diagnosis and characterization of colonic diseases. HsSRS in both fingerprint (800-1800 cm-1) and high-wavenumber (2800-3600 cm-1) regions allows us to discriminate different constituents with tiny difference in the Raman spectra. The increase of proteins and reduction of lipids could be observed with the progress of colonic cancer. SHG shows the distribution of collagen, which is found to aggregate for adenocarcinoma. TPEF provides the cell morphological and can reflect the damage inside glands caused by the diseases. THG shows the increase of optical heterogeneity related to cancer process. This work shows that the integrated hsSRS and TPEF/SHG/THG imaging technique can be an effective method for digital pathology of colonic diseases at the molecular and sub-cellular levels.

  13. Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets.

    Science.gov (United States)

    Lee, Seunghyun; Ongko, Andry; Kim, Ho Young; Yim, Sang-Gu; Jeon, Geumhye; Jeong, Hee Jin; Lee, Seungwoo; Kwak, Minseok; Yang, Seung Yun

    2016-08-01

    Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive vibrational spectroscopy technique enabling detection of multiple analytes at the molecular level in a nondestructive and rapid manner. In this work, we introduce a new approach to fabricate deep subwavelength-scaled (sub-100 nm) metallic nanohole arrays (quasi-3D metallic nanoholes) on flexible and highly efficient SERS substrates. Target structures have been fabricated using a two-step process consisting of (i) direct pattern transfer of spin-coated polymer films onto polydimethylsiloxane (PDMS) substrates by plasma etching with transferred anodic aluminum oxide masks, and (ii) producing SERS-active substrates by functionalization of the etched polymeric films followed by Au deposition. Such an all-dry, top-down lithographic approach enables on-demand patterning of SERS-active metallic nanoholes with high structural fidelity even onto flexible and stretchable substrates, thus making possible multiple sensing modes in a versatile fashion. For example, metallic nanoholes on flexible PDMS substrates are highly amenable to their integration with curved glass sticks, which can be used in optical fiber-integrated SERS systems. Au surfaces immobilized by probe DNA molecules show a selective enhancement of Raman scattering with Cy5-labeled complementary DNA (as compared to flat Au surfaces), demonstrating the potential of using the quasi-3D Au nanohole arrays for bio-sensing applications. PMID:27334794

  14. Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber

    Science.gov (United States)

    Tiwari, Vidhu S.; Khetani, Altaf; Monfared, Ali Momenpour T.; Smith, Brett; Anis, Hanan; Trudeau, Vance L.

    2012-03-01

    The present work explores the feasibility of using surface enhanced Raman scattering (SERS) for detecting the neurotransmitters such as glutamate (GLU) and gamma-amino butyric acid (GABA). These amino acid neurotransmitters that respectively mediate fast excitatory and inhibitory neurotransmission in the brain, are important for neuroendocrine control, and upsets in their synthesis are also linked to epilepsy. Our SERS-based detection scheme enabled the detection of low amounts of GLU (10-7 M) and GABA (10-4 M). It may complement existing techniques for characterizing such kinds of neurotransmitters that include high-performance liquid chromatography (HPLC) or mass spectrography (MS). This is mainly because SERS has other advantages such as ease of sample preparation, molecular specificity and sensitivity, thus making it potentially applicable to characterization of experimental brain extracts or clinical diagnostic samples of cerebrospinal fluid and saliva. Using hollow core photonic crystal fiber (HC-PCF) further enhanced the Raman signal relative to that in a standard cuvette providing sensitive detection of GLU and GABA in micro-litre volume of aqueous solutions.

  15. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy

    Science.gov (United States)

    Ji, Minbiao; Orringer, Daniel A.; Freudiger, Christian W.; Ramkissoon, Shakti; Liu, Xiaohui; Lau, Darryl; Golby, Alexandra J.; Norton, Isaiah; Hayashi, Marika; Agar, Nathalie Y.R.; Young, Geoffrey S.; Spino, Cathie; Santagata, Sandro; Camelo-Piragua, Sandra; Ligon, Keith L.; Sagher, Oren; Xie, X. Sunney

    2013-01-01

    Surgery is an essential component in the treatment of brain tumors. However, delineating tumor from normal brain remains a major challenge. Here we describe the use of stimulated Raman scattering (SRS) microscopy for differentiating healthy human and mouse brain tissue from tumor-infiltrated brain based on histoarchitectural and biochemical differences. Unlike traditional histopathology, SRS is a label-free technique that can be rapidly performed in situ. SRS microscopy was able to differentiate tumor from non-neoplastic tissue in an infiltrative human glioblastoma xenograft mouse model based on their different Raman spectra. We further demonstrated a correlation between SRS and H&E microscopy for detection of glioma infiltration (κ=0.98). Finally, we applied SRS microscopy in vivo in mice during surgery to reveal tumor margins that were undetectable under standard operative conditions. By providing rapid intraoperative assessment of brain tissue, SRS microscopy may ultimately improve the safety and accuracy of surgeries where tumor boundaries are visually indistinct. PMID:24005159

  16. Stimulated Raman scattering in hydrogen by ultrashort laser pulse in the keV regime

    Science.gov (United States)

    Bachau, H.; Dondera, M.

    2016-04-01

    This letter addresses the problem of stimulated Raman excitation of a hydrogen atom submitted to an ultrashort and intense laser pulse in the keV regime. The pulse central frequency ω of 55 a.u. (about 1.5 keV) is in the weakly relativistic regime, ω ≤ c/a0 (c is the speed of light in vacuum and a 0 the Bohr radius) and the pulse duration is τ ≈ 18.85 a.u. (about 456 attoseconds). We solve the corresponding time-dependent Schrödinger equation (TDSE) using a spectral approach, retardation (or nondipole) effects are included up to O(1/c) , breaking the conservation of the magnetic quantum number m and forcing the resolution of the TDSE in a three-dimensional space. Due to the laser bandwidth, which is of the order of the ionization potential of hydrogen, stimulated Raman scattering populates nlm excited states (n and l are the principal and azimuthal quantum numbers, respectively). The populations of these excited states are calculated and analyzed in terms of l and m quantum numbers, this showing the contributions of the retardation effects and their relative importance.

  17. Monitoring the recrystallisation of amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering.

    Science.gov (United States)

    Palomäki, Emmi; Ahvenainen, Patrik; Ehlers, Henrik; Svedström, Kirsi; Huotari, Simo; Yliruusi, Jouko

    2016-07-11

    In this paper we present a fast model system for monitoring the recrystallization of quench-cooled amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering. The use of these two methods enables comparison between surface and bulk crystallization. Non-ordered mesoporous silica micro-particles were added to the system in order to alter the rate of crystallization of the amorphous xylitol. Raman measurements showed that adding silica to the system increased the rate of surface crystallization, while X-ray measurements showed that the rate of bulk crystallization decreased. Using this model system it is possible to measure fast changes, which occur in minutes or within a few hours. Raman-spectroscopy and wide-angle X-ray scattering were found to be complementary techniques when assessing surface and bulk crystallization of amorphous xylitol. PMID:27163527

  18. In situ resonant Raman scattering and reversible photoinduced structural change in YBa2Cu3O6+x

    DEFF Research Database (Denmark)

    Osada, M.; Käll, M.; Bäckström, J.;

    2005-01-01

    or absence of a specific Raman scattering resonance. A comparison of the spectral efficiencies for this photoswitching with analogous data for the persistent photoconductivity and photoconductivity quenching effects suggests that the two phenomena have the same microscopic origin. We argue that the effects...

  19. Surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection using plasmonic bimetallic nanogap substrate

    DEFF Research Database (Denmark)

    Wong, Chi Lok; Dinish, U. S.; Buddharaju, Kavitha Devi;

    2014-01-01

    In this paper, we present surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection with bimetallic nanogap structure substrate. Deep UV photolithography at the wavelength of 250 nm is used to pattern circular shape nanostructures. The nanogap between adjacent cir...

  20. Adsorption and Vibrational Study of Folic Acid on Gold Nanopillar Structures Using Surface-enhanced Raman Scattering Spectroscopy

    DEFF Research Database (Denmark)

    Castillo, John J.; Rindzevicius, Tomas; Rozo, Ciro E.;

    2015-01-01

    This paper presents a study of adsorption and vibrational features of folic acid, using surface-enhanced Raman scattering (SERS). A gold-capped silicon nanopillar (Au NP) with a height of 600 nm and a width of 120 nm was utilized to study the vibrational features of FA molecules adsorbed on the n...