WorldWideScience

Sample records for anti-relaxation coating material

  1. Investigation of microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells

    CERN Document Server

    Budker, D; Kimball, D F; Kitching, J; Pustelny, S; Yashchuk, V V

    2004-01-01

    Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between ground-state hyperfine components of $^{85}$Rb and $^{87}$Rb atoms contained in vapor cells with alkane anti-relaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation (NMOR) experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a forty-year period we demonstrate the long-term stability of coated cells, an important property for atomic clocks and magnetometers.

  2. Magnetometry with millimeter-scale anti-relaxation-coated alkali-metal vapor cells

    CERN Document Server

    Balabas, M V; Kitching, J; Schwindt, P D D; Stalnaker, J E

    2005-01-01

    Dynamic nonlinear magneto-optical-rotation signals with frequency- and amplitude-modulated laser light have been observed and investigated with a spherical glass cell of 3-mm diameter containing Cs metal with inner walls coated with paraffin. Intrinsic Zeeman relaxation rates of $\\gamma/(2\\pi)\\approx 20 $Hz and lower have been observed. Favorable prospects of using millimeter-scale coated cells in portable magnetometers and secondary frequency references are discussed.

  3. Thermal barrier coating materials

    OpenAIRE

    Clarke, David R.; Simon R. Phillpot

    2005-01-01

    Improved thermal barrier coatings (TBCs) will enable future gas turbines to operate at higher gas temperatures. Considerable effort is being invested, therefore, in identifying new materials with even better performance than the current industry standard, yttria-stabilized zirconia (YSZ). We review recent progress and suggest that an integrated strategy of experiment, intuitive arguments based on crystallography, and simulation may lead most rapidly to the development of new TBC materials.

  4. Methods for Coating Particulate Material

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2013-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  5. Rheology of Coating Materials and Their Coating Characteristics

    Science.gov (United States)

    Grabsch, C.; Grüner, S.; Otto, F.; Sommer, K.

    2008-07-01

    Lots of particles used in the pharmaceutical and the food industry are coated to protect the core material. But almost no investigations about the coating material behavior do exist. In this study the focus was on the rheological material properties of fat based coating materials. Rotational shear experiments to determine the viscosity of a material were compared to oscillatory shear tests to get information about the vicoelastic behavior of the coating materials. At the liquid state the viscosity and the viscoelastic properties showed a good analogy. The viscoelastic properties of the solid coating materials yielded differences between materials that have the same properties at the liquid state.

  6. Coating material composition

    International Nuclear Information System (INIS)

    A polyester composition is provided for forming a hard and weather-proof coating easily hardened by irradiation with active energy, particularly electron beams, using a mixture of a polyester component containing a dimer of methacrylate as an acid group with an oligomer having at least two vinyl radicals in one molecule. The composition consists of 10%-90% by weight of at least one (a) methacrylic dimer or unsaturated polyester containing its methyl ester as an acid group, (b) telomerized diacrylpolyester or (c) telomerized fiberous polyester having at its distal end a dimer of methacrylate residue, and 90%-10% of a low molecular weight compound having at least two polymerizable unsaturated radicals. The low molecular weight compound is produced by reacting at first saturated cyclic carboxylic anhydride and/or alpha-, beta-ethylenic unsaturated carboxylic anhydride and secondarily a vinyl monomer containing epoxy-radicals with hydroxyl radical-containing vinyl monomer and/or polyhydric alcohol. The aforesaid methacrylic acid dimer dimethyl ester is a byproduct of methyl methacrylate synthesis. This produces monoester monocarboxylic acid or dicarboxylic acid by hydrolysis. In one example, a polyester (a-1) was produced by reacting 0.5 moles of methacrylic acid dimer, 0.5 mol of adipic acid, 1,25 mole of ethylene glycol and 0.005 mol of hydroquinone monomethyl ether. On the other hand, an orgomer (d) is obtained from 1 mol of 2-hydroxyl ethyl methacrylate, 1 mol of maleic anhydride, 0.005 mol of hydroquinon monomethyl ether and 1 mol of glycidyl methacrylate. Next, 80 parts of (a-1) and 20 parts of (d) were mixed. (Iwakiri, K.)

  7. Methods and apparatus for coating particulate material

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2012-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  8. Evaluation of irradiated coating material specimens

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Jin; Nam, Seok Woo; Cho, Lee Moon [RCS Korea Co., Ltd., Seoul (Korea, Republic of)

    2007-12-15

    Evaluation result of irradiated coating material specimens - Coating material specimens radiated Gamma Energy(Co 60) in air condition. - Evaluation conditions was above 1 X 10{sup 4} Gy/hr, and radiated TID 2.0 X 10{sup 6} Gy. - The radiated coating material specimens, No Checking, Cracking, Flaking, Delamination, Peeling and Blistering. - Coating system at the Kori no. 1 and APR 1400 Nuclear power plant, evaluation of irradiated coating materials is in accordance with owner's requirement(2.0 X 10{sup 6} Gy)

  9. Levitation, coating, and transport of particulate materials

    International Nuclear Information System (INIS)

    Several processes in various fields require uniformly thick coatings and layers on small particles. The particles may be used as carriers of catalytic materials (platinum or other coatings), as laser fusion targets (various polymer or metallic coatings), or for biological or other tracer or interactive processes. We have devised both molecular beam and electro-dynamic techniques for levitation of the particles during coating and electrodynamic methods of controlling and transporting the particles between coating steps and to final use locations. Both molecular beam and electrodynamic techniques are described and several advantages and limitations of each will be discussed. A short movie of an operating electrodynamic levitation and transport apparatus will be shown

  10. Levitation, coating, and transport of particulate materials

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, C.D.

    1981-10-12

    Several processes in various fields require uniformly thick coatings and layers on small particles. The particles may be used as carriers of catalytic materials (platinum or other coatings), as laser fusion targets (various polymer or metallic coatings), or for biological or other tracer or interactive processes. We have devised both molecular beam and electro-dynamic techniques for levitation of the particles during coating and electrodynamic methods of controlling and transporting the particles between coating steps and to final use locations. Both molecular beam and electrodynamic techniques are described and several advantages and limitations of each will be discussed. A short movie of an operating electrodynamic levitation and transport apparatus will be shown.

  11. HIGH-PERFORMANCE COATING MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

  12. Biocatalytic material comprising multilayer enzyme coated fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  13. Methods of Antimicrobial Coating of Diverse Materials

    Science.gov (United States)

    Akse, James R.; Holtsnider, John T.; Kliestik, Helen

    2011-01-01

    Methods of coating diverse substrate materials with antimicrobial agents have been developed. Originally intended to reduce health risks to astronauts posed by pathogenic microorganisms that can grow on surfaces in spacecraft, these methods could also be used on Earth for example, to ensure sterility of surgical inserts and other medical equipment. The methods involve, generally, chemical preparation of substrate surfaces to enable attachment of antimicrobial molecules to the substrate surfaces via covalent bonds. Substrate materials that have been treated successfully include aluminum, glass, a corrosion-resistant nickel alloy, stainless steel, titanium, and poly(tetrafluoroethylene). Antimicrobial agents that have been successfully immobilized include antibiotics, enzymes, bacteriocins, bactericides, and fungicides. A variety of linkage chem istries were employed. Activity of antimicrobial coatings against gram-positive bacteria, gram-negative bacteria, and fungi was demonstrated. Results of investigations indicate that the most suitable combination of antimicrobial agent, substrate, and coating method depends upon the intended application.

  14. Analytical Modeling of Hard-Coating Cantilever Composite Plate considering the Material Nonlinearity of Hard Coating

    OpenAIRE

    Wei Sun; Ying Liu; Guangyu Du

    2015-01-01

    Due to the material nonlinearity of hard coating, the coated structure produces the nonlinear dynamical behaviors of variable stiffness and damping, which make the modeling of hard-coating composite structure become a challenging task. In this study, the polynomial was adopted to characterize this material nonlinearity and an analytical modeling method was developed for the hard-coating composite plate. Firstly, to relate the hard-coating material parameters obtained by test and the analytica...

  15. 21 CFR 872.3310 - Coating material for resin fillings.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Coating material for resin fillings. 872.3310... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3310 Coating material for resin fillings. (a) Identification. A coating material for resin fillings is a device intended to be applied to...

  16. Optical thin films and coatings from materials to applications

    CERN Document Server

    Flory, Francois

    2013-01-01

    Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. This book provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas.$bOptical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas. Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films and coatings...

  17. Conductive Carbon Coatings for Electrode Materials

    International Nuclear Information System (INIS)

    A simple method for optimizing the carbon coatings on non-conductive battery cathode material powders has been developed at Lawrence Berkeley National Laboratory. The enhancement of the electronic conductivity of carbon coating enables minimization of the amount of carbon in the composites, allowing improvements in battery rate capability without compromising energy density. The invention is applicable to LiFePO4 and other cathode materials used in lithium ion or lithium metal batteries for high power applications such as power tools and hybrid or plug-in hybrid electric vehicles. The market for lithium ion batteries in consumer applications is currently $5 billion/year. Additionally, lithium ion battery sales for vehicular applications are projected to capture 5% of the hybrid and electric vehicle market by 2010, and 36% by 2015 (http://www.greencarcongress.com). LiFePO4 suffers from low intrinsic rate capability, which has been ascribed to the low electronic conductivity (10-9 S cm-1). One of the most promising approaches to overcome this problem is the addition of conductive carbon. Co-synthesis methods are generally the most practical route for carbon coating particles. At the relatively low temperatures (4, however, only poorly conductive disordered carbons are produced from organic precursors. Thus, the carbon content has to be high to produce the desired enhancement in rate capability, which decreases the cathode energy density

  18. Tribological evaluation and analysis of coating materials

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1992-01-01

    A physical characterization of coating materials by analytical techniques such as XPS, AES, ellipsometry, and nuclear reaction analysis can contribute to the understanding of adhesion and friction of the coatings and can partially predict the tribological properties of the coatings. This two-part paper describes the tribological properties and physical characteristics of (1) diamondlike carbon (DLC) films and (2) silicon nitride (SiN(x)) films. Emphasis is to relate plasma deposition conditions to the film chemistry and composition and to the adhesion and friction of the films. With the DLC films, the higher the plasma deposition power, the less the hydrogen concentration and the greater the film density and the hardness. The friction behavior of DLC films deposited at higher deposition powers (200 to 300 W) is similar to that of bulk diamond. Even in a vacuum, the DLC films effectively lubricate ceramic surfaces (Si3N4) at temperatures to 500 C. With SiN(x) films, the silicon to nitrogen ratios and the amount of amorphous silicon depend on deposition frequency. The presence of rich amorphous silicon in the high-frequency plasma-deposited SiN(x) films increases their adhesion and friction above 500 C in vacuum.

  19. Multi-Material Coatings with Reduced Thermal Noise

    CERN Document Server

    Yam, William; Evans, Matthew

    2014-01-01

    The most sensitive measurements of time and space are made with resonant optical cavities, and these measurements are limited by coating thermal noise. The mechanical and optical performance requirements placed on coating materials, especially for interferometric gravitational wave detectors, have proven extremely difficult to meet despite a lengthy search. In this paper we propose a new approach to high performance coatings; the use of multiple materials at different depths in the coating. To support this we generalize previous work on thermal noise in two-material coatings to an arbitrary multi-material stack, and develop a means of estimating absorption in these multi- material coatings. This new approach will allow for a broadening of the search for high performance coating materials.

  20. ETV Program Report: Coatings for Wastewater Collection Systems - Standard Cement Materials, Epoxy Coating 4553

    Science.gov (United States)

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Ma...

  1. Nano-coating protects biofunctional materials

    Directory of Open Access Journals (Sweden)

    Rupert Tscheliessnig

    2012-09-01

    Full Text Available The demand to develop convergent technology platforms, such as bio-functionalized medical devices, is rapidly increasing. However, the loss of biological function of the effector molecules during sterilization represents a significant and general problem. Therefore, we have developed and characterized a nano-coating (NC formulation capable of maintaining the functionality of proteins on biological-device combination products. As a proof of concept, the NC preserved the structural and functional integrity of an otherwise highly fragile antibody immobilized on polyurethane during deleterious sterilizing irradiation (≥ 25 kGy. The NC procedure enables straight-forward terminal sterilization of bio-functionalized materials while preserving optimal conditioning of the bioactive surface.

  2. Materials characteristics of uncoated/ceramic-coated implant materials.

    Science.gov (United States)

    Lacefield, W R

    1999-06-01

    In this paper, the biocompatibility of dental implant materials is discussed in the context of both the mechanical characteristics of the materials and the type of surface presented to the surrounding tissues. The proper functioning of the implant depends on whether it possesses the strength necessary to withstand loading within the expected range, with other properties such as elongation being of importance in some instances. A suitable modulus of elasticity may be of major importance in situations when optimum load transmission from the implant into the surrounding bone is key to the successful functioning of the device. Dental implants present a wide range of surfaces to the surrounding tissues based on surface composition, texture, charge energy, and cleanliness (sterility). Metallic implants are characterized by protective oxide layers, but ion release is still common with these materials, and is a function of passivation state, composition, and corrosion potential. An effective surface treatment for titanium appears to be passivation or anodization in a suitable solution prior to implantation. Inert ceramic surfaces exhibit minimal ion release, but are similar to metals in that they do not form a high energy bond to the surrounding bone. Some of the newly developed dental implant alloys such as titanium alloys, which contain zirconium and niobium, and high-strength ceramics such as zirconia may offer some advantages (such as lower modulus of elasticity) over the conventional materials. Calcium phosphate ceramic coatings are commonly used to convert metallic surfaces into a more bioactive state and typically cause faster bone apposition. There is a wide range of ceramic coatings containing calcium and phosphorus, with the primary difference in many of these materials being in the rate of ion release. Although their long-term success rate is unknown, the calcium phosphate surfaces seem to have a higher potential for attachment of osteoinductive agents than do

  3. Coating of calcium phosphate on biometallic materials by electrophoretic deposition

    Institute of Scientific and Technical Information of China (English)

    ZHANG Er-lin; YANG Ke

    2005-01-01

    Although biometallic materials have been used as bone implant materials for a long time, they are still detected as foreign bodies by human immune system. Calcium phosphate coating, especially hydroxyapatite(HA)coating attracts special attention due to its good biocompatibility. Being one of the effective methods used to deposit HA coating onto the metallic implant, the electrophoretic deposition(EPD) was reviewed in detail, including the process of EPD, the advantages and disadvantages, the important processing factors and the microstructure and mechanical properties of the coating. Research results on the processing and the coating show potential application of EPD process to the biomedical materials surface modification. In addition, the nanoparticulate HA coating as a new trend in HA coating was also introduced.

  4. Novel hybrid polymeric materials for barrier coatings

    Science.gov (United States)

    Pavlacky, Erin Christine

    Polymer-clay nanocomposites, described as the inclusion of nanometer-sized layered silicates into polymeric materials, have been widely researched due to significant enhancements in material properties with the incorporation of small levels of filler (1--5 wt.%) compared to conventional micro- and macro-composites (20--30 wt.%). One of the most promising applications for polymer-clay nanocomposites is in the field of barrier coatings. The development of UV-curable polymer-clay nanocomposite barrier coatings was explored by employing a novel in situ preparation technique. Unsaturated polyesters were synthesized in the presence of organomodified clays by in situ intercalative polymerization to create highly dispersed clays in a precursor resin. The resulting clay-containing polyesters were crosslinked via UV-irradiation using donor-acceptor chemistry to create polymer-clay nanocomposites which exhibited significantly enhanced barrier properties compared to alternative clay dispersion techniques. The impact of the quaternary alkylammonium organic modifiers, used to increase compatibility between the inorganic clay and organic polymer, was studied to explore influence of the organic modifier structure on the nanocomposite material properties. By incorporating just the organic modifiers, no layered silicates, into the polyester resins, reductions in film mechanical and thermal properties were observed, a strong indicator of film plasticization. An alternative in situ preparation method was explored to further increase the dispersion of organomodified clay within the precursor polyester resins. In stark contrast to traditional in situ polymerization methods, a novel "reverse" in situ preparation method was developed, where unmodified montmorillonite clay was added during polyesterification to a reaction mixture containing the alkylammonium organic modifier. The resulting nanocomposite films exhibited reduced water vapor permeability and increased mechanical properties

  5. Structure and mechanical properties of PVD coatings for tool materials

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2010-09-01

    Full Text Available Purpose: The goal of this work is to investigate and compare the properties of (Ti,AlN, Ti(C,N and (Ti,Al,SiN coatings, deposited on cemented carbide and cermet substrates.Design/methodology/approach: Coatings deposition were carried out using the PVD method by the cathodic arc evaporation (CAE process. Investigations of surfaces and structures of the deposited coatings were carried out with use of SEM and TEM methods. Roughness parameter measurements, adhesion evaluation of the coatings on the investigated inserts, the Vickers microhardness measurements and detailed cutting tests were carried out to compare the properties of the investigated materials.Findings: The results of the investigations carried out confirm the advantages of PVD coatings deposited onto both: cemented carbides and cermets, especially in case of (Ti,AlN and (Ti,Al,SiN coatings. Coatings deposited onto the investigated substrates are characterised by good adhesion, high microhardness, taking effect in very high increasing of wear resistance.Practical implications: Deposition of hard, thin, multicomponent coatings on materials surface by PVD method features one of the most intensely developed directions of improvement of the working properties of materials. Employment of introduced combinations of substrates and coatings make it possible to transit of machining of semi-products from roughing to semi-finishing or finishing in one setting.Originality/value: Coatings based on (Ti,AlN, (Ti,Al,SiN as well as Ti(C,N were developed to provide better performance over titanium nitride since the incorporation of aluminum or carbon in TiN increased hardness, decreased coefficient of friction of the coatings. Tools with such coatings reveal a significant life extension in service compared to the uncoated tools or coated with simple coatings based on monolayers of nitrides or carbonitrides, improvement of the tribological contact conditions in the tool-chip-machined material contact zone

  6. Gas-thermal coating of powdered materials. Communication 2

    International Nuclear Information System (INIS)

    This paper investigates the microstructure, microhardness, chemical composition of the transition zone, and also the strength characteristics of gas-thermal coatings including their adhesive power to the substrate (iron brand NC 100.24) and the residual stresses in the coatings. The microstructure of the transition zone was investigated; it was established that on the side of the substrate its density is greater than the mean density of both types of coating. It is shown that the porosity of the substrate has a competing effect on the thermal interaction of materials. Discovered regularities lead to the conclusion that the process of gas-thermal coating of powdered materials is more effective than when compact materials are coated; most effective is the combination of gas-thermal coating with processes of heat treatment of powder-metallurgy products

  7. Protection and Reinforcement of Tooth Structures by Dental Coating Materials

    Directory of Open Access Journals (Sweden)

    Toru Nikaido

    2012-10-01

    Full Text Available It has been proposed that a resin coating can serve as a means to protect dental structure after preparation of the tooth for indirect restorations, sealing the exposed dentin. The resin coating is applied on the cut surfaces immediately after tooth preparation and before making an impression by assembling a dentin bonding system and a flowable composite. Resin coatings minimize pulp irritation and improve the bond strength between a resin cement and tooth when bonding the restoration to tooth. Recently, thin-film coating dental materials based on all-in-one adhesive technology were introduced for resin coating of indirect restorations. The thin coating materials are applied in a single clinical step and create a barrier-like film layer on the prepared dentin. The thin coatings play an important role in protecting the dentin from physical, chemical, and biological irritation. In addition, these thin-film coating materials reportedly prevent marginal leakage beneath inlays or crown restorations. In light of the many benefits provided by such a protective layer, these all-in-one adhesive materials may therefore also have the potential to cover exposed root dentin surfaces and prevent caries formation. In this paper, recent progress of the dental coating materials and their clinical applications are reviewed.

  8. Coatings.

    Science.gov (United States)

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  9. Production process for boron carbide coated carbon material and boron carbide coated carbon material obtained by the production process

    International Nuclear Information System (INIS)

    A boron carbide coated carbon material is used for a plasma facing material of a thermonuclear reactor. The surface of a carbon material is chemically reacted with boron oxide to convert it into boron carbide. Then, it is subjected to heat treatment at a temperature of not lower than 1600degC in highly evacuated or inactive atmosphere to attain a boron carbide coated carbon material. The carbon material used is an artificial graphite or a carbon fiber reinforced carbon composite material. In the heat treatment, when the atmosphere is in vacuum, it is highly evacuated to less than 10Pa. Alternatively, in a case of inactive atmosphere, argon or helium gas each having oxygen and nitrogen content of not more than 20ppm is used. With such procedures, there can be obtained a boron carbide-coated carbon material with low content of oxygen and nitrogen impurities contained in the boron carbide coating membrane thereby hardly releasing gases. (I.N.)

  10. Fabrication and characterization of modified-hydroxyapatite/polyetheretherketone coating materials

    International Nuclear Information System (INIS)

    Highlights: • 45 wt%-Hydroxyaptite/polyetheretherketone (HA/PEEK) coating materials modified by silane coupling agent (KH560) on PEEK substrate is successfully fabricated by solution casting method. • Strong bonding between the composite coating and the PEEK substrate is achieved. • HA/PEEK coating materials exhibit better bioactivity. - Abstract: 45 wt%-Hydroxyaptite/polyetheretherketone (HA/PEEK) coating materials modified by silane coupling agent (KH560) on PEEK substrate were successfully fabricated by solution casting method and characterized by Fourier transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), scanning electron microscopy (SEM), and tensile testing. The modified HA fillers were obtained to be uniformly distributed in the HA/PEEK coating, which has better properties of tensile strength and fracture toughness than those of the unmodified specimen. A good bonding between the composite coating and the PEEK substrate was achieved by solution casting method, resulting in integral-fracture without falling apart or delaminating during tensile loading. The modified specimens dipped into simulated body fluid (SBF) were characterized by SEM, XRD and FTIR, indicating that the bioactivity of the dipped materials was demonstrated more apparent with extending the dipping time. Therefore, the coating materials may become the substitutes for the hard tissues of the human body in the future, which could realize the balance between the mechanical properties and the bioactivity by modifying the structural design of the coating

  11. Fabrication and characterization of modified-hydroxyapatite/polyetheretherketone coating materials

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Rui [College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060 (China); Fang, Lin, E-mail: fanglinhit@163.com [College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060 (China); Luo, Zhongkuan [College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060 (China); Zheng, Ruisheng [College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Song, Shenhua; Weng, Luqian; Lei, JinPing [Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China)

    2014-09-30

    Highlights: • 45 wt%-Hydroxyaptite/polyetheretherketone (HA/PEEK) coating materials modified by silane coupling agent (KH560) on PEEK substrate is successfully fabricated by solution casting method. • Strong bonding between the composite coating and the PEEK substrate is achieved. • HA/PEEK coating materials exhibit better bioactivity. - Abstract: 45 wt%-Hydroxyaptite/polyetheretherketone (HA/PEEK) coating materials modified by silane coupling agent (KH560) on PEEK substrate were successfully fabricated by solution casting method and characterized by Fourier transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), scanning electron microscopy (SEM), and tensile testing. The modified HA fillers were obtained to be uniformly distributed in the HA/PEEK coating, which has better properties of tensile strength and fracture toughness than those of the unmodified specimen. A good bonding between the composite coating and the PEEK substrate was achieved by solution casting method, resulting in integral-fracture without falling apart or delaminating during tensile loading. The modified specimens dipped into simulated body fluid (SBF) were characterized by SEM, XRD and FTIR, indicating that the bioactivity of the dipped materials was demonstrated more apparent with extending the dipping time. Therefore, the coating materials may become the substitutes for the hard tissues of the human body in the future, which could realize the balance between the mechanical properties and the bioactivity by modifying the structural design of the coating.

  12. Atomic layer deposited aluminum oxide barrier coatings for packaging materials

    Energy Technology Data Exchange (ETDEWEB)

    Hirvikorpi, Terhi, E-mail: terhi.hirvikorpi@vtt.f [Oy Keskuslaboratorio - Centrallaboratorium Ab (KCL), P.O. Box 70, FI-02151 Espoo (Finland); Vaehae-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.f [Oy Keskuslaboratorio - Centrallaboratorium Ab (KCL), P.O. Box 70, FI-02151 Espoo (Finland); Mustonen, Tuomas, E-mail: tuomas.mustonen@vtt.f [Oy Keskuslaboratorio - Centrallaboratorium Ab (KCL), P.O. Box 70, FI-02151 Espoo (Finland); Iiskola, Eero, E-mail: eero.iiskola@kcl.f [Oy Keskuslaboratorio - Centrallaboratorium Ab (KCL), P.O. Box 70, FI-02151 Espoo (Finland); Karppinen, Maarit, E-mail: maarit.karppinen@tkk.f [Laboratory of Inorganic Chemistry, Department of Chemistry, Helsinki University of Technology, P.O. Box 6100, FI-02015 TKK (Finland)

    2010-03-01

    Thin aluminum oxide coatings have been deposited at a low temperature of 80 {sup o}C on various uncoated papers, polymer-coated papers and boards and plain polymer films using the atomic layer deposition (ALD) technique. The work demonstrates that such ALD-grown Al{sub 2}O{sub 3} coatings efficiently enhance the gas-diffusion barrier performance of the studied porous and non-porous materials towards oxygen, water vapor and aromas.

  13. Coated conductors for power applications: materials challenges

    International Nuclear Information System (INIS)

    This manuscript reports on the recent progress and the remaining materials challenges in the development of coated conductors (CCs) for power applications and magnets, with a particular emphasis on the different initiatives being active at present in Europe. We first summarize the scientific and technological scope where CCs have been raised as a complex technology product and then we show that there exists still much room for performance improvement. The objectives and CC architectures being explored in the scope of the European project EUROTAPES are widely described and their potential in generating novel breakthroughs emphasized. The overall goal of this project is to create synergy among academic and industrial partners to go well beyond the state of the art in several scientific issues related to CCs’ enhanced performances and to develop nanoengineered CCs with reduced costs, using high throughput manufacturing processes which incorporate quality control tools and so lead to higher yields. Three general application targets are considered which will require different conductor architectures and performances and so the strategy is to combine vacuum and chemical solution deposition approaches to achieve the targeted goals. A few examples of such approaches are described related to defining new conductor architectures and shapes, as well as vortex pinning enhancement through novel paths towards nanostructure generation. Particular emphasis is made on solution chemistry approaches. We also describe the efforts being made in transforming the CCs into assembled conductors and cables which achieve appealing mechanical and electromagnetic performances for power systems. Finally, we briefly mention some outstanding superconducting power application projects being active at present, in Europe and worldwide, to exemplify the strong advances in reaching the demands to integrate them in a new electrical engineering paradigm. (paper)

  14. Coated conductors for power applications: materials challenges

    Science.gov (United States)

    Obradors, Xavier; Puig, Teresa

    2014-04-01

    This manuscript reports on the recent progress and the remaining materials challenges in the development of coated conductors (CCs) for power applications and magnets, with a particular emphasis on the different initiatives being active at present in Europe. We first summarize the scientific and technological scope where CCs have been raised as a complex technology product and then we show that there exists still much room for performance improvement. The objectives and CC architectures being explored in the scope of the European project EUROTAPES are widely described and their potential in generating novel breakthroughs emphasized. The overall goal of this project is to create synergy among academic and industrial partners to go well beyond the state of the art in several scientific issues related to CCs’ enhanced performances and to develop nanoengineered CCs with reduced costs, using high throughput manufacturing processes which incorporate quality control tools and so lead to higher yields. Three general application targets are considered which will require different conductor architectures and performances and so the strategy is to combine vacuum and chemical solution deposition approaches to achieve the targeted goals. A few examples of such approaches are described related to defining new conductor architectures and shapes, as well as vortex pinning enhancement through novel paths towards nanostructure generation. Particular emphasis is made on solution chemistry approaches. We also describe the efforts being made in transforming the CCs into assembled conductors and cables which achieve appealing mechanical and electromagnetic performances for power systems. Finally, we briefly mention some outstanding superconducting power application projects being active at present, in Europe and worldwide, to exemplify the strong advances in reaching the demands to integrate them in a new electrical engineering paradigm.

  15. Superhydrophobic materials and coatings: a review

    Science.gov (United States)

    Simpson, John T.; Hunter, Scott R.; Aytug, Tolga

    2015-07-01

    Over the past few years, the scientific community, as well as the world’s coatings industry has seen the introduction of oxide/polymer-based superhydrophobic surfaces and coatings with exceptional water repellency. Online videos have caught the public’s imagination by showing people walking through mud puddles without getting their tennis shoes wet or muddy, and water literally flying off coated surfaces. This article attempts to explain the basics of this behavior and to discuss and explain the latest superhydrophobic technological breakthroughs. Since superhydrophobic surfaces and coatings can fundamentally change how water interacts with surfaces, and the fact that earth is a water world, it can legitimately be said that this technology has the potential to literally change the world.

  16. Topology optimization of coated structures and material interface problems

    DEFF Research Database (Denmark)

    Clausen, Anders; Aage, Niels; Sigmund, Ole

    2015-01-01

    -step filtering/projection approach. The modeled coating thickness is derived analytically, and the coating is shown to be accurately controlled and applied in a highly uniform manner over the structure. An alternative interpretation of the model is to perform single-material design for additive manufacturing...

  17. Coated silicon comprising material for protection against environmental corrosion

    Science.gov (United States)

    Hazel, Brian Thomas (Inventor)

    2009-01-01

    In accordance with an embodiment of the invention, an article is disclosed. The article comprises a gas turbine engine component substrate comprising a silicon material; and an environmental barrier coating overlying the substrate, wherein the environmental barrier coating comprises cerium oxide, and the cerium oxide reduces formation of silicate glass on the substrate upon exposure to corrodant sulfates.

  18. Novel surface coating materials for endodontic dental implant

    International Nuclear Information System (INIS)

    The aim of this study was to design and produce novel coating materials in order to obtain two goals including; improvement of the corrosion behavior of metallic dental endodontic implant and the bone osteointegration simultaneously. Stainless steel 316L (SS) was used as a metallic substrate and a novel Hydroxyapatite/Titanium (HA/Ti) composite coating was prepared on it. Structural characterization techniques including XRD, SEM and EDX were utilized to investigate the microstructure and morphology of the coating. Electrochemical tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens as an indication of biocompatibility. Two types of endodontic implants including; SS with and without (HA/Ti) composite coating were prepared and subsequently implanted in the mandibular canine of 20 cats after completion of root canal treatment and osseous preparation. After a healing period of 4 months, osteointegration evaluation and histopathological interpretation was carried out using SEM and optical microscopy. Results indicate that the novel HA/Ti composite coating improves the corrosion behavior and biocompatibility of SS endodontic dental implant. The clinical evaluation (in vivo test) results showed that there was significant difference in osteointegration between coated and uncoated endodontic dental implants and average bone osteointegration of coated implants were more than uncoated implants. The histopathological results and bone tissue response to the coated implants was acceptable and it was concluded that HA/Ti composite coated SS could be used as well as an endodontic dental implant. (author)

  19. ITO-coated RF transparent materials for antenna sunshields

    International Nuclear Information System (INIS)

    Conventional sunshield membranes on communications satellite antennas can be a source of large on-orbit discharges. Indium tin oxide (ITO) coated conventional materials were tested for their electrostatic discharge (ESD), radio frequency (rf) and thermo-optical properties before and after their exposure to the space environment (ultraviolet, thermal cycling, electron radiation and combined effects of both electrons and protons). The results to date indicate that the coated materials are acceptable as rf transparent antenna sunshields

  20. Sulfur coated colemanite as shielding material

    International Nuclear Information System (INIS)

    Sulfur coated colemanite particles were used as coarse aggregate in concrete. It was found that the boron content of concrete could be increased to a value about four times larger than those reached in the past. As the amount of sulfur coated colemanite increases in the concrete, the density and the compressive strength decrease, but the total water content increases. The fast neutron flux slowly decreases with the increased colemanite, while the thermal flux is lowered in great extent. The total radiation dose is not considerably increased even though the colemanite content is increased twice that of the ones used in the past. (author)

  1. Advanced materials and protective coatings in aero-engines application

    Directory of Open Access Journals (Sweden)

    M. Hetmańczyk

    2007-09-01

    Full Text Available Purpose: The following article demonstrates the characteristics of the materials applied as parts of aircraft engine turbines and the stationary gas turbines. The principal technologies for manufacturing the heat resistant coatings and the erosion and corrosion resistant coatings were characterized. Sample applications for the aforementioned coatings are presented: on turbine blades, compressor blades and on parts of combustion chambers of aircraft engines.Design/methodology/approach: The nickel-based alloys were characterized. The following methods of depositing diffusion aluminide coatings were described: pack cementation, out of pack and CVD (chemical vapour deposition. The properties of thermal barrier coatings obtained by thermal spraying and physical vapour deposition (PVD were presented.Findings: : The structures of aluminide and platinum modified aluminide coatings, which displayed higher heat resistance during the cyclic oxidation test, were presented. The structure of TBC coatings was described as well. During aircraft engine tests, the compressor blades with multilayer type Cr/CrN coatings exhibited higher wear resistance than the coatings covered with Ti/TiN.Research limitations/implications: The aluminide coatings were deposited on nickel-based superalloys, which are typically used to manufacture turbine blades for aircraft engines. The multilayer nitride coatings were produced by Arc-PVD method.Practical implications: All the described technologies and coatings find applications on parts of aircraft engines.Originality/value: The presented advanced technologies of manufacturing protective coatings on the parts of aircraft engines were developed by the authors of the following study as parts of their planned scientific research, research projects, and purpose projects.

  2. Electro-spark deposited coatings for protection of materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.N. [Battelle Pacific Northwest Lab., Richland, WA (United States)

    1995-08-01

    Electro-Spark Deposition (ESD) is a micro-welding process that uses short duration, high-current electrical pulses to deposit or alloy a consumable electrode material onto a metallic substrate. The coating is fused (metallurgically bonded) to the substrate with such a low total heat input that the bulk substrate material remains at or near ambient temperature. Rapid solidification of the deposit typically results in an extremely fine-grained deposit that may be amorphous for some materials. Nearly any electrically conductive metal, alloy or cermet can be applied to metallic substrates. The ESD process allows multi-layer coatings to be built-up using different materials to create graded structures or surface compositions that would be difficult to achieve by other means. A series of iron-aluminide coatings based on Fe{sub 3}Al and FeAl in combination with refractory metal diffusion-barrier coatings and supplementary additions of other elements are in corrosion testing at ANL. The most recent FeAl coatings are showing a factor of three better corrosion performance than the best previous coatings. Technology transfer activities are a significant portion of the ESD program effort. Notable successes now include the start-up of a new business to commercialize the ESD technology, major new applications in gas turbine engines and steam turbine blade coatings, and in military, medical, metal-working, and recreational equipment applications.

  3. Biosolvents for Coatings, Resins and Biobased Materials

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Rathin [Vertec BioSolvents, Inc.

    2009-08-31

    With close collaboration with several industrial coatings manufacturers several solvent blends were developed tested and optimized. These were then piloted in the commercial company’s reactors and systems. Three were successfully tested in commercial applications and two of these - Methotate replacement and a specialty ketone replacement were sold in commercial quantities in 2009. Further sales are anticipated in 2010 and the following years.

  4. Titanium Nitride and Nitrogen Ion Implanted Coated Dental Materials

    Directory of Open Access Journals (Sweden)

    David W. Berzins

    2012-07-01

    Full Text Available Titanium nitride and/or nitrogen ion implanted coated dental materials have been investigated since the mid-1980s and considered in various applications in dentistry such as implants, abutments, orthodontic wires, endodontic files, periodontal/oral hygiene instruments, and casting alloys for fixed restorations. Multiple methodologies have been employed to create the coatings, but detailed structural analysis of the coatings is generally lacking in the dental literature. Depending on application, the purpose of the coating is to provide increased surface hardness, abrasion/wear resistance, esthetics, and corrosion resistance, lower friction, as well as greater beneficial interaction with adjacent biological and material substrates. While many studies have reported on the achievement of these properties, a consensus is not always clear. Additionally, few studies have been conducted to assess the efficacy of the coatings in a clinical setting. Overall, titanium nitride and/or nitrogen ion implanted coated dental materials potentially offer advantages over uncoated counterparts, but more investigation is needed to document the structure of the coatings and their clinical effectiveness.

  5. Material concepts for coatings in highly corrosive atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wilden, J. [Technische Universitaet Berlin (Germany). Fachgebiet Fuege- und Beschichtungstechnik; Schuetze, M.; Durham, R. [Karl-Winnacker-Institut, DECHEMA e. V., Frankfurt a. M (Germany); Drescher, V.E.

    2010-07-15

    Although well known, corrosion processes are still a problem for technical constructions. Although different coating technologies and materials have been developed and approved to prevent base metals from being destroyed, industrial applications dealing with aggressive atmospheres, require new material concepts to protect them. Using the example of two different applications, on the one hand heat exchangers in waste incineration plants and on the other hand permanent-molds used for casting non-ferrous metals, innovative material concepts for corrosion protection are given. Heat exchangers in waste incineration plants are exposed to highly corrosive atmospheres especially due to high temperatures in combination with chlorine containing atmospheres. Wire arc sprayed coatings made of iron-based alloys containing chromium, silicon and boron provide a new approach for these applications and, compared to standard nickel-based alloys, they are cheaper and potentially more resistant coatings. In the case of permanent-molds corrosion, mainly occurs due to direct dissolution of the base material by the liquid metal. Tungsten-based pseudoalloys are known to be extremely resistant against liquid metals and therefore sintered inlays of these materials are sometimes used in extremely stressed regions. These materials have not previously been applied as a coating. Therefore different coating technologies have to be considered and the metallurgical behaviour of the material due to the associated higher cooling rates must be investigated. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  6. Nano-coating protects biofunctional materials

    OpenAIRE

    Rupert Tscheliessnig; Martin Zörnig; Herzig, Eva M.; Katharina Lückerath; Jens Altrichter; Kristina Kemter; Adnana Paunel-Görgülü; Tim Lögters; Joachim Windolf; Silvia Pabisch; Jindrich Cinatl; Rabenau, Holger F; Alois Jungbauer; Peter Müller-Buschbaum; Martin Scholz

    2012-01-01

    The demand to develop convergent technology platforms, such as bio-functionalized medical devices, is rapidly increasing. However, the loss of biological function of the effector molecules during sterilization represents a significant and general problem. Therefore, we have developed and characterized a nano-coating (NC) formulation capable of maintaining the functionality of proteins on biological-device combination products. As a proof of concept, the NC preserved the structural and functio...

  7. Multilayer and gradient PVD coatings on the sintered tool materials

    Directory of Open Access Journals (Sweden)

    D. Pakuła

    2008-12-01

    Full Text Available Purpose: The paper presents investigation results of structure and properties of the multilayer and gradientTiN+(Ti,Al,SiN+TiN nanocrystalline coatings deposited with the PVD method (CAE -Cathodic Arc Evaporationprocess and in the combination of Al2O3 and TiN coatings in the CVD process on the substrate of cemented carbides,cermets, Al2O3+ZrO2, Al2O3+TiC, Al2O3+SiC(w oxide ceramics and Si3N4 nitride ceramics.Design/methodology/approach: The structural investigation includes the metallographic analysis on thetransmission and scanning electron microscope, confocal microscope. Examinations of the chemicalcompositions of the deposited coatings were carried out using the X-ray energy dispersive spectrograph EDS,glow-discharge optical emission spectroscope GDOS, and using the X-ray diffractometer. The investigationincludes also analysis of the mechanical and functional properties of the material: substrate hardness testsand microhardness tests of the deposited coatings, surface roughness tests, evaluation of the adhesion of thedeposited coatings, cutting properties of the investigated materials.Findings: Deposition of the multicomponent gradient coatings with the PVD method, based on the Al and Si solidsecondary solution in the TiN titanium nitride, isomorphous with the alternating pure titanium nitride TiN, on toolsmade from oxide, nitride ceramics and tool cermets, results in the increase of mechanical properties in comparisonwith uncoated tool materials, deciding thus the improvement of their working properties.Practical implications: Deposition of (Ti,Al,SiN nanocrystalline coatings by the use of PVD method causesthe increase of cutting properties of tools made of cermets for ca. 300% and of Al2O3+ZrO2 for ca. 100%comparing to adequately uncoated tools.Originality/value: Comparison of the wide range of modern sintered tool materials with wide unique set ofPVD coatings.

  8. Effect of Bond Coat Materials on Thermal Fatigue Failure of EB-PVD Thermal Barrier Coatings

    Science.gov (United States)

    Yamagishi, Satoshi; Okazaki, Masakazu; Sakaguchi, Motoki; Matsubara, Hideaki

    Effect of MCrAlY bond coat alloy systems on thermal fatigue failure of thermal barrier coatings (TBCs) was investigated, where the TBC specimen consisted of Ni-based superalloy IN738LC substrate, bond coat, and 8 wt.% Y2O3-stabilized ZrO2 (YSZ) top coat. The top coat was fabricated by EB-PVD method with 250 μm in thickness. Three kinds of MCrAlY alloys were studied as the bond coat material. Employing the originally developed test equipment, thermal fatigue tests were carried out, by applying thermal cycles between 400 and 950°C in air. Special attention was paid not only to the failure life of the TBC specimen, but also the underlying failure mechanisms. The experimental results clearly demonstrated that the effect of MCrAlY bond coat alloys on the thermal fatigue life was very significant. Some discussions were made on the experimental results based on the measurements of mechanical and metallurgical properties of the bond coat alloys: i.e., elastic stiffness, thermal expansion coefficient and high temperature oxidation resistance.

  9. Deformation of rectangular thin glass plate coated with magnetostrictive material

    Science.gov (United States)

    Wang, Xiaoli; Yao, Youwei; Liu, Tianchen; Liu, Chian; Ulmer, M. P.; Cao, Jian

    2016-08-01

    As magnetic smart materials (MSMs), magnetostrictive materials have great potential to be selected as coating materials for lightweight x-ray telescope mirrors due to their capability to tune the mirror profile to the desired shape under a magnetic field. To realize this potential, it is necessary to study the deformation of the mirror substrate with the MSM coating subjected to a localized magnetic field. In this paper, an analytical model is developed to calculate the deformation of rectangular coated samples locally affected by magnetostrictive strains driven by an external magnetic field. As a specific case to validate the model, a square glass sample coated with MSMs is prepared, and its deformation is measured in a designed experimental setup by applying a magnetic field. The measured deformation of the sample is compared with the results calculated from the analytical model. The comparison results demonstrate that the analytical model is effective in calculating the deformation of a coated sample with the localized mismatch strains between the film and the substrate. In the experiments, different shape patterns of surface profile changes are achieved by varying the direction of the magnetic field. The analytical model and the experimental method proposed in this paper can be utilized to further guide the application of magnetostrictive coating to deformable lightweight x-ray mirrors in the future.

  10. Materials science aspects of nanocrystalline PVD hard coatings

    International Nuclear Information System (INIS)

    -B-C coatings was characterized by means of differential scanning calorimetry (DSC). Grain growth occurred for the individual phases in TiB-1.2N-0.5 and Ti-1.2C-0.6 coatings during heating up to 1400oC from approximately 4 to 15 nm and 4 to 5 nm, respectively. To interpret the interrelationships between processing, microstructure and mechanical and thermal properties, the well-known fundamentals of materials science are used. (author)

  11. Gelatin methacrylamide as coating material in cell culture.

    Science.gov (United States)

    Egger, Michael; Tovar, Günter E M; Hoch, Eva; Southan, Alexander

    2016-01-01

    Unmodified gelatin (uG) is widely used as a coating material in cell culture for improving surface properties. In this study, the authors investigated if gelatin methacrylamide (GM) with a medium degree of methacrylamide modification (GM1.5) and a high degree of methacrylamide modification (GM4) are equally suitable for this purpose. Therefore, gold surfaces were coated with uG, GM1.5, and GM4 by adsorption of the polymers on the surfaces. Coating success was confirmed by spectroscopic ellipsometry, contact angle measurements, surface plasmon resonance spectroscopy (SPRS), and atomic force microscopy (AFM). The authors found that upon adsorption of uG, GM1.5, a nd GM4 on gold, thin films with thicknesses of 2.95 nm, 2.50 nm, and 2.26 nm were formed. The coated surfaces showed advancing contact angles of 46° (uG and GM1.5) and 52° (GM4) without alteration of the surface roughness determined by AFM. Protein adsorption taking place on the coated surfaces was measured during contact of the surfaces with fetal calf serum by SPRS. Protein adsorption on the coated surfaces was reduced by the factor of 6.4 (uG), 5.4 (GM1.5), and 4.6 (GM4) compared to gold surfaces. Human fibroblasts cultured on the surfaces showed excellent viability shown by water soluble tetrazolium salt assay as well as live/dead staining with propidium iodide and fluorescein diacetate. No cytotoxic effects of the GM coated surfaces were observed, giving rise to the conclusion that GMs are suitable materials as coatings in cell culture. PMID:27177620

  12. Fabrication and characterization of modified-hydroxyapatite/polyetheretherketone coating materials

    Science.gov (United States)

    Ma, Rui; Fang, Lin; Luo, Zhongkuan; Zheng, Ruisheng; Song, Shenhua; Weng, Luqian; Lei, JinPing

    2014-09-01

    45 wt%-Hydroxyaptite/polyetheretherketone (HA/PEEK) coating materials modified by silane coupling agent (KH560) on PEEK substrate were successfully fabricated by solution casting method and characterized by Fourier transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), scanning electron microscopy (SEM), and tensile testing. The modified HA fillers were obtained to be uniformly distributed in the HA/PEEK coating, which has better properties of tensile strength and fracture toughness than those of the unmodified specimen. A good bonding between the composite coating and the PEEK substrate was achieved by solution casting method, resulting in integral-fracture without falling apart or delaminating during tensile loading. The modified specimens dipped into simulated body fluid (SBF) were characterized by SEM, XRD and FTIR, indicating that the bioactivity of the dipped materials was demonstrated more apparent with extending the dipping time. Therefore, the coating materials may become the substitutes for the hard tissues of the human body in the future, which could realize the balance between the mechanical properties and the bioactivity by modifying the structural design of the coating.

  13. Analysis of material coating for damping in beam structures

    International Nuclear Information System (INIS)

    Vibratory stresses are the main cause of material failure in aerospace/mechanical structures and machine components. Failure also occurs due to these vibratory stresses in gas turbine engines and rotating machinery components while operating at resonant frequency. A magnetomechanical coating material is used as a very effective method for damping of these stresses. Vibratory stress damping in components like turbine blades through magnetomechanical coating material is well known in literature. However, the geometric correlations for the varying coated beam are not well established. We have utilized a cantilever beam as the basic geometry for this investigation to establish a correlation for varying coating. Beam theory is applied as a mathematical model for obtaining the mode shapes for the beam. A finite element procedure is performed to acquire the data and this data is then correlated with beam theory model for initial verification. This data is further evaluated to form the required model for calculating thickness of coating for a beam. The resulting parametric correlation is verified through comparison with the already published experimental data available in literature. This correlation can be used as a design tool for suppression of vibratory stresses in industrial applications. (author)

  14. Reactivity of ceramic coating materials with uranium and uranium trichlorid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Cho, Choon Ho; Lee, Yoon Sang; Lee, Han Soo; Kim, Jeong Guk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Uranium and uranium alloys are typically induction melted in graphite crucibles under a vacuum. The graphite crucible is used for the manufacturing of uranium ingots in the casting equipment. But, due to the chemical reactivity of uranium and most alloying elements with carbon, a protective ceramic coating is generally applied to the crucibles. In this study, to investigate the most suitable ceramic coating material applied to graphite melting crucibles and ingot moldsused in the melting and casting of uranium in the casting equipment, firstly, the thermodynamic analysis was performed by using HSC software to investigate the reactivity between uranium and several ceramic materials and the experiments on the reaction of ceramic coated crucibles in molten uranium were carried out at 1300 .deg. C

  15. Reactivity of ceramic coating materials with uranium and uranium trichlorid

    International Nuclear Information System (INIS)

    Uranium and uranium alloys are typically induction melted in graphite crucibles under a vacuum. The graphite crucible is used for the manufacturing of uranium ingots in the casting equipment. But, due to the chemical reactivity of uranium and most alloying elements with carbon, a protective ceramic coating is generally applied to the crucibles. In this study, to investigate the most suitable ceramic coating material applied to graphite melting crucibles and ingot moldsused in the melting and casting of uranium in the casting equipment, firstly, the thermodynamic analysis was performed by using HSC software to investigate the reactivity between uranium and several ceramic materials and the experiments on the reaction of ceramic coated crucibles in molten uranium were carried out at 1300 .deg. C

  16. Coating material innovation in conjunction with optimized deposition technologies

    International Nuclear Information System (INIS)

    Concentrating on physical vapour deposition methods several examples of recently developed coating materials for optical applications were studied for film deposition with optimized coating technologies: mixed evaporation materials for ion assisted deposition with modern plasma ion sources, planar metal and oxide sputter targets for Direct Current (DC) and Mid-Frequency (MF) pulsed sputter deposition and planar and rotatable sputter targets of transparent conductive oxides (TCO) for large-area sputter deposition. Films from specially designed titania based mixed evaporation materials deposited with new plasma ion sources and possible operation with pure oxygen showed extended ranges of the ratio between refractive index and structural film stress, hence there is an increased potential for the reduction of the total coating stress in High-Low alternating stacks and for coating plastics. DC and MF-pulsed sputtering of niobium metal and suboxide targets for optical coatings yielded essential benefits of the suboxide targets in a range of practical coating conditions (for absent in-situ post-oxidation ability): higher refractive index and deposition rate, better reproducibility and easier process control, and the potential for co-deposition of several targets. Technological progress in the manufacture of rotatable indium tin oxide (ITO) targets with regard to higher wall-thickness and density was shown to be reflected in higher material stock and coater up-time, economical deposition rates and stable process behaviour. Both for the rotatable ITO targets and higher-dense aluminum-doped zinc oxide (AZO) planar targets values of film transmittance and resistivity were in the range of the best values industrially achieved for films from the respective planar targets. The results for the rotatable ITO and planar AZO targets point to equally optimized process and film properties for the optimized rotatable AZO targets currently in testing

  17. Amylose Rich Starch as an Aqueous Based Pharmaceutical Coating Material - Review

    OpenAIRE

    Dureja, H; Khatak, S.; KHATAK M; Kalra, M.

    2011-01-01

    Until about 1950, sugar was the first choice as coating agent for pharmaceutical preparations. As the tablets coating technique was changed from sugar coating to film coating, a number of polymers like Methyl Cellulose (MC), Hydroxy Propyl Methyl Cellulose (HPMC) and Ethyl Cellulose (EC) become the main coating materials in place of sugar. As for as aqueous coating materials are concerned, Sodium Carboxy Methyl Cellulose (Sod. CMC), Polyvinyl Acetate (PA), Polyvinyl Pyrrolidone (PVP), Sodium ...

  18. PH and Electrochemical Responsive Materials for Corrosion Smart Coating Applications

    Science.gov (United States)

    Li, Wenyan; Calle, Luz M.

    2008-01-01

    Corrosion is a costly issue for military operations and civil industries. While most corrosion initiates from localized corrosion form, such as pitting, failure directly caused by localized corrosion is the most dangerous kind, because it is difficult to anticipate and prevent, occurs very suddenly and can be catastrophic. One way of preventing these failures is with a coating that can detect and heal localized corrosion. pH and other electrochemical changes are often associated with localized corrosion, so it is expected that materials that are pH or otherwise electrochemical responsive can be used to detect and control corrosion. This paper will review various pH and electrochemical responsive materials and their potential applications in corrosion smart coatings. Current research results in this field will also be reported.

  19. Coating and Surface Treatments on Orthodontic Metallic Materials

    Directory of Open Access Journals (Sweden)

    Claudia García

    2012-12-01

    Full Text Available Metallic biomaterials have been extensively used in orthodontics throughout history. Gold, stainless steel, cobalt-chromium alloys, titanium and its alloys, among other metallic biomaterials, have been part of the orthodontic armamentarium since the twentieth century. Metals and alloys possess outstanding properties and offer numerous possibilities for the fabrication of orthodontic devices such as brackets, wires, bands, ligatures, among others. However, these materials have drawbacks that can present problems for the orthodontist. Poor friction control, allergic reactions, and metal ionic release are some of the most common disadvantages found when using metallic alloys for manufacturing orthodontic appliances. In order to overcome such weaknesses, research has been conducted aiming at different approaches, such as coatings and surface treatments, which have been developed to render these materials more suitable for orthodontic applications. The purpose of this paper is to provide an overview of the coating and surface treatment methods performed on metallic biomaterials used in orthodontics.

  20. Electrospun Nanofiber Coating of Fiber Materials: A Composite Toughening Approach

    Science.gov (United States)

    Kohlman, Lee W.; Roberts, Gary D.

    2012-01-01

    Textile-based composites could significantly benefit from local toughening using nanofiber coatings. Nanofibers, thermoplastic or otherwise, can be applied to the surface of the fiber tow bundle, achieving toughening of the fiber tow contact surfaces, resulting in tougher and more damage-resistant/tolerant composite structures. The same technique could also be applied to other technologies such as tape laying, fiber placement, or filament winding operations. Other modifications to the composite properties such as thermal and electrical conductivity could be made through selection of appropriate nanofiber material. Control of the needle electric potential, precursor solution, ambient temperature, ambient humidity, airflow, etc., are used to vary the diameter and nanofiber coating morphology as needed. This method produces a product with a toughening agent applied to the fiber tow or other continuous composite precursor material where it is needed (at interfaces and boundaries) without interfering with other composite processing characteristics.

  1. Refractive index of some oxide and fluoride coating materials

    International Nuclear Information System (INIS)

    Spectroreflectometry was used to measure the refractive index of the following optical coating materials: Ta2O5, HfO2, Y2O3, La2O3, ZrO2, CeO2, CeF3, LaF3, LaF3, NdF3, MgF2 in the 250--2000-nm spectral range

  2. On metallic gratings coated conformally with isotropic negative-phase-velocity materials

    Energy Technology Data Exchange (ETDEWEB)

    Inchaussandague, Marina E. [GEA-Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, Buenos Aires (Argentina)], E-mail: mei@df.uba.ar; Lakhtakia, Akhlesh [CATMAS-Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States)], E-mail: akhlesh@psu.edu; Depine, Ricardo A. [GEA-Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, Buenos Aires (Argentina)], E-mail: rdep@df.uba.ar

    2008-03-31

    Application of the differential method (also called the C method) to plane-wave diffraction by a perfectly conducting, sinusoidally corrugated metallic grating coated with a linear, homogeneous, isotropic, lossless dielectric-magnetic material shows that coating materials with negative index of refraction may deliver enhanced maximum nonspecular reflection efficiencies in comparison to coating materials with positive index of refraction.

  3. 49 CFR 195.559 - What coating material may I use for external corrosion control?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false What coating material may I use for external...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control...

  4. Overview of Materials and Power Applications of Coated Conductors Project

    Science.gov (United States)

    Shiohara, Yuh; Taneda, Takahiro; Yoshizumi, Masateru

    2012-01-01

    There are high expectations for coated conductors in electric power applications such as superconducting magnetic energy storage (SMES) systems, power cables, and transformers owing to their ability to contribute to stabilizing and increasing the capacity of the electric power supply grid as well as to reducing CO2 emission as a result of their high critical-current characteristics. Research and development has been performed on wires/tapes and electric power devices worldwide. The Materials and Power Applications of Coated Conductors (M-PACC) Project is a five-year national project in Japan started in 2008, supported by the Ministry of Economy, Trade and Industry (METI) and the New Energy and Industrial Technology Development Organization (NEDO), to develop both coated conductors that meet market requirements and basic technologies for the above-mentioned power applications using coated conductors. In this article, research and development results are reviewed and compared with the interim/final targets of the project, and future prospects are discussed.

  5. Inductive thermal plasma generation applied for the materials coating

    International Nuclear Information System (INIS)

    The coatings by thermal plasma are carried out introducing particles into a plasma system where they are accelerated and melted (total or partially) before striking the substrate to which they adhere and are suddenly cooled down. The nature of consolidation and solidification of the particles allows to have control upon the microstructure of the deposit. This technique is able to deposit any kind of material that is suitable to be merged (metal, alloy, ceramic, glass) upon any type of substrate (metal, graphite, ceramic, wood) with an adjustable thickness ranging from a few microns up to several millimeters. The applications are particularly focused to the coating of materials in order to improve their properties of resistance to corrosion, thermal and mechanical efforts as well as to preserve the properties of the so formed compound. In this work the electromagnetic induction phenomenon in an ionized medium by means of electric conductivity, is described. Emphasis is made on the devices and control systems employed in order to generate the thermal plasma and in carrying out the coatings of surfaces by the projection of particles based on plasma

  6. Coronary Stent Materials and Coatings: A Technology and Performance Update.

    Science.gov (United States)

    O'Brien, Barry; Zafar, Haroon; Ibrahim, Ahmad; Zafar, Junaid; Sharif, Faisal

    2016-02-01

    This paper reviews the current state of the art for coronary stent materials and surface coatings, with an emphasis on new technologies that followed on from first-generation bare metal and drug-eluting stents. These developments have been driven mainly by the need to improve long term outcomes, including late stent thrombosis. Biodegradable drug-eluting coatings aim to address the long term effects of residual durable polymer after drug elution; the SYNERGY, BioMatrix, and Nobori stents are all promising devices in this category, with minimal polymer through the use of abluminal coatings. Textured stent surfaces have been used to attached drug directly, without polymer; the Yukon Choice and BioFreedom stents have some promising data in this category, while a hydroxyapatite textured surface has had less success. The use of drug-filled reservoirs looked promising initially but the NEVO device has experienced both technical and commercial set-backs. However this approach may eventually make it to market if trials with the Drug-Filled Stent prove to be successful. Non-pharmacological coatings such as silicon carbide, carbon, and titanium-nitride-oxide are also proving to have potential to provide better performance than BMS, without some of the longer term issues associated with DES. In terms of biological coatings, the Genous stent which promotes attachment of endothelial progenitor cells has made good progress while gene-eluting stents still have some practical challenges to overcome. Perhaps the most advancement has been in the field of biodegradable stents. The BVS PLLA device is now seeing increasing clinical use in many complex indications while magnesium stents continue to make steady advancements. PMID:26139297

  7. Applicability of certain materials and protective coatings in fused chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Migai, L.L.; Verizhnikova, G.N.

    1976-09-01

    The corrosion resistance of a number of metals, alloys, ceramic materials, and enamel coatings was investigated in mixtures of fused freshly prepared chlorides at 500 to 550/sup 0/C in air. The chlorides NaCl, KCl, and CaCl/sub 2/ of cp and ar grade were dried in air at 200 to 250/sup 0/C for 6 h, remelted at 800/sup 0/C, and fused in given ratios for 3 h; anhydrous commercial MgCl/sub 2/, AlCl/sub 3/, and FeCl/sub 3/, until a homogeneous melt was obtained. The corrosion resistances of the metals and ceramic materials were assessed from the change in weight. The chemical resistance of the enamel coating were determined from the loss of continuity of the coating by means of an IDS flaw detector. The corrosion rate of W, Mo, Ni, Ta, Cr, Zr, NMZhMts (28-1.5-2), KhN4510, N50Kh40Yu10, N60KH40, OKh15N65M16G3, OKh15N65M16V, N65M20V15, N65M19V16, N70M27F, and stainless steels Kh28Yu5, Kh28S2, Kh18N10T, Kh20N18Yu3, Kh25N20S2, and OKh23N28M3D3T in melts of these compositions exceeded 100g/m/sup 2/h. Ceramic of pure oxides, silicon carbide with a nitride binder, and silicified graphite are strongly impregnated by the melt, and may therefore crack with a sudden change in temperature. Cermet coating M1 disintegrated in places. Of the cermic materials tested the most stable are basalt ceramic and fluorphlogopite. Enamel coating 6S-12 has a low resistance, the surface became rough; enamel coating 15, Kh19-6, N-14-15, and N14-10 became porous.Enamels 8/2-72, 81A/sub 8/, and 81 are quite unstable in these melts at 500 to 550/sup 0/C. Enamel coatings 143/54-15, 143/54-50, 54, and 122 are the most stable in fused chlorides. These studies showed that none of the metallic materials tested can be used as a structural material in the chloride melts (%) KCl 39, NaCl 7 CaCl/sub 2/ 3.5, MgCl/sub 2/ 2.5, AlCl/sub 3/ 20, and FeCl/sub 3/ 28 and KCL 58-FeCl/sub 3/ 42 at 500 to 550/sup 0/C. Fluorphlogopite, basalt ceramic, and enamels 143/54-15, 143/54-50, 54, and 122 are recommended for pilot

  8. Development of formulations of coating materials for wood products

    International Nuclear Information System (INIS)

    A number of formulations for coating wood products as top coat and base coat was developed. Gel content, Buchholz resistance, hardness and adhesion of the coated films were determined. Their grafting properties of base and top coats on cellulose were studied

  9. New Materials for Structural Composites and Protective Coatings

    Science.gov (United States)

    2008-01-01

    The objective of this Phase I project was to create novel conductive materials that are lightweight and strong enough for multiple ground support equipment and Exploration applications. The long-term goal is to combine these materials within specially designed devices to create composites or coatings with diagnostic capabilities, increased strength, and tunable properties such as transparency, electroluminescence, and fire resistance. One such technology application is a smart windows system. In such a system, the transmission of light through a window is controlled by electrical power. In the future, these materials may also be able to absorb sunlight and convert it into electrical energy to produce light, thereby creating a self-sufficient lighting system. This experiment, conducted in collaboration with the Georgia Institute of Technology, demonstrated enhancements in fabricating fiber materials from carbon nanotubes (CNT). These nanotubes were grown as forests in an ultra-high-purity chemical vapor deposition (CVD) furnace and then drawn, using novel processing techniques, into fibers and yarns that would be turned into filaments. This work was submitted to the Journal of Advanced Functional Materials. The CNT fibers were initially tested as filament materials at atmospheric pressure; however, even under high current loads, the filaments produced only random sparking. The CNT fibers were also converted into transparent, hydrophobic, and conductive sheets. Filament testing at low vacuum pressures is in progress, and the technology will be enhanced in 2008. As initial proof of the smart-windows application concept, the use of CNT sheets as composites/ protective coatings was demonstrated in collaboration with Nanocomp Technologies of Concord, New Hampshire.

  10. Nanocomposite Apatite-biopolymer Materials and Coatings for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    L.F. Sukhodub

    2014-04-01

    Full Text Available The microoverview paper describes synthesis and characterization of novel third generation composite biomaterials and coatings which correspond to the second structural level of human bone tissue (HBT organization obtained at Sumy state university “Bionanocomposite” laboratory. To obtain such composites an animal collagen is usually used, which is not potentially safe for medical applications. That is why investigations were started using some other biopolymers to obtain composites close to the second level in the structural hierarchy of HBT. Proposed natural polymers (Na alginate, chitosan are the most perspective because they have bacteriostatic properties for a vast number of aerobic and anaerobic bacteria, high biocompatibility towards the connective tissue, low toxicity, an ability to improve regenerative processes during wounds healing, degradation ability with the creation of chemotaxic activity towards fibroblasts and osteoblasts. The formation of nanosized (25-75 nm calcium deficient hydroxyapatite (cdHA particles in the polymer scaffold approaches the derived material to the biogenic bone tissue, which can provide its more effective implantation. The influence of the imposition of static magnetic field on brushite (CaHPO4·2H2O crystallization was also investigated. It was shown that changing the magnetic field configuration could greatly affect crystallinity and texture of the derived particles. To increase the biocompatibility of existing medical implants (Ti–6Al 4V, Ti Ni, Mg the technology for obtaining bioactive coatings with corresponding mechanical, structural and morphology characteristics is developed in our laboratory. In this direction coatings based on cdHA in combination with biopolymer matrices (Na alginate, chitosan, are obtained in “soft” conditions using a thermal substrate technology. This technology was proposed by Japan scientists [1] and was sufficiently improved by us [2] in order to obtain coatings in

  11. UV-hardening of coating materials on the basis of unsaturated polyesters

    International Nuclear Information System (INIS)

    The UV-hardening of coated materials based on unsaturated polyester resins is successful in practice. Resins, modified by acrylic acid, are gaining importance for thin coating from paper coatings up to printing colours. A report is given on the binding classes which come into question as photo initiators and whose ways of reaction with UV-irradiation are so far known. The photopolymerizeable coating systems can be used from undercoats to coating varnishes and from thick layers (polishing varnishes) to thinnest layers (printing colours). The economical significance of the UV-process today is illustrated by statistics on the use of binding agents and coating materials. (orig./AK)

  12. Improvement of tool materials by deposition of gradient and multilayers coatings

    OpenAIRE

    L.A. Dobrzański; K. Gołombek; J. Mikuła; D. Pakuła

    2006-01-01

    Purpose: Investigation of the functional properties of cermets, Si3N4 and Al2O3 based ceramics, coated with the PVD andCVD multilayer and gradient coatings and comparison them with the commercial uncoated and coated tool materials.Design/methodology/approach: TEM, SEM, confocal microscopy, scratch test, microhardness tests, roughnesstests, cutting tests.Findings: Employment of the hard wear resistant coatings deposited onto the sintered ceramic tool materials withthe physical deposition from ...

  13. COATING LAYER AND CORROSION PROTECTION CHARACTERISTICS IN SEA WATER WITH VARIOUS THERMAL SPRAY COATING MATERIALS FOR STS304

    OpenAIRE

    SEONG-JONG KIM; YONG-BIN WOO

    2010-01-01

    We investigated the optimal method of application and the anticorrosive abilities of Zn, Al, and Zn + 15%Al spray coatings in protecting stainless steel 304 (STS304) in sea water. If a defect such as porosity or an oxide layer, causes STS304 to be exposed to sea water, and the thermal spray coating material will act as the cathode and anode, respectively. The Tafel experiments revealed that Al-coated specimens among applied coating methods had the lowest corrosion current densities. As the co...

  14. Studies on mechanical high-temperature properties of materials with sprayed coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pisarenko, G.S.; Ljasenko, B.A.; Zygylev, O.V.

    1983-03-01

    The results of studies on the tensile strength, creep behaviour and durability in the temperature range from 1 700 to 2 400 K of surface-coated molybdenum samples for experimental times <=10h. are reported here. Monolayer coatings based on molybdenum disilicide and bilayer coatings consisting of a ground coating of molybdenum disilicide and a cover layer of glass and high-melting oxides are used as protective coatings. The ground coating is formed by a thermodiffusion process and the cover coating formed with the aid of a plasma spaying technique. A suggestion is made for optimizing the properties of the combination basic material/coating by taking as criterium the heat resistance and standard parameters for the properties of the basic material and the coating, together with their adhesion resistance.

  15. Graphene/Epoxy Coating as Multifunctional Material for Aircraft Structures

    Directory of Open Access Journals (Sweden)

    Tullio Monetta

    2015-06-01

    Full Text Available Recently, the use of graphene as a conductive nanofiller in the preparation of inorganic/polymer nanocomposites has attracted increasing interest in the aerospace field. The reason for this is the possibility of overcoming problems strictly connected to the aircraft structures, such as electrical conductivity and thus lightning strike protection. In addition, graphene is an ideal candidate to enhance the anti-corrosion properties of the resin, since it absorbs most of the light and provides hydrophobicity for repelling water. An important aspect of these multifunctional materials is that all these improvements can be realized even at very low filler loadings in the polymer matrix. In this work, graphene nanoflakes were incorporated into a water-based epoxy resin, and then the hybrid coating was applied to Al 2024-T3 samples. The addition of graphene considerably improved some physical properties of the hybrid coating as demonstrated by Electrochemical Impedance Spectroscopy (EIS analysis, ameliorating anti-corrosion performances of raw material. DSC measurements and Cross-cut Test showed that graphene did not affect the curing process or the adhesion properties. Moreover, an increment of water contact angle was displayed.

  16. Manufacturing technologies for nanocomposite ceramic structural materials and coatings

    International Nuclear Information System (INIS)

    The new material class of ceramic nanocomposites, containing at least one phase in nanometric dimension, has achieved special interest in previous years. While earlier research was focused on materials science and microstructural details in laboratory scale the subject of developing suitable manufacturing technologies in technical scale is the challenge for the manufacturing engineer. The same high-performance features which make the nanocomposite materials so interesting in their properties are absolutely detrimental if it comes to production of these materials. Extreme hardness, toughness and abrasion resistance make the state of the art cutting-and-machining operations extremely cost intensive so that, from a manufacturing point of view, true near-net-shape manufacturing is mandatory to accomplish reasonable cost targets. Ceramic feedstocks with both, high solid content to reduce shrinkage and warping and stable processing conditions are required to accomplish this aim of near-net-shape processing. Stable and reproducible processing conditions, e.g. favourable rheological properties for injection moulding are essentials for the manufacturing engineer. These prerequisites of ceramic production technologies cannot be reached with pure nanopowders in the 10-20 nm range but materials with a micro-nano architecture can fulfill these requirements, using a mixture of a submicron-sized matrix in the 100-200 nm range and smaller nanosized additives in <20% content which contribute the desired functionality. By using these micro-nanocomposites near-net-shape ceramic forming technologies such as injection moulding, gel casting and slip casting have been developed which lead to high-performance materials at affordable production cost. Advanced surface technologies include nanoceramic coatings made by thermokinetic deposition processes. Modern ceramic processing, i.e. spray drying leads to fine granulated nanopowders with appropriate flowability for subsequent APS plasma or

  17. Comparison of Release-Controlling Efficiency of Polymeric Coating Materials Using Matrix-type Casted Films and Diffusion-Controlled Coated Tablet

    OpenAIRE

    Piao, Zong-Zhu; Lee, Kyoung-Ho; Kim, Dong-Jin; Lee, Hong-gu; Lee, Jaehwi; Oh, Kyung Taek; Lee, Beom-Jin

    2010-01-01

    Polymeric coating materials have been widely used to modify release rate of drug. We compared physical properties and release-controlling efficiency of polymeric coating materials using matrix-type casted film and diffusion-controlled coated tablet. Hydroxypropylmethyl cellulose (HPMC) with low or high viscosity grade, ethylcellulose (EC) and Eudragit® RS100 as pH-independent polymers and Eudragit S100 for enteric coatings were chosen to prepare the casted film and coated tablet. Tensile stre...

  18. High-strength materials using the coat-mix method

    International Nuclear Information System (INIS)

    The Coat-mix method to produce artifical graphite has been developed recently at the Institute for Reactor Materials in the Nuclear Research Plant, Juelich. According to this method, the binder resin is dissolved in an organic solvent and the graphite filler powder is introduced into the solution under stirring and vibration to form a slurry. The slurry is then passed through a nozzle into a liquid precipitation medium in which the binder is not soluble but the solvent is miscible with it. The insoluble binder in uniformely deposited on the surface the graphite powder grains upon injection into the precipitation medium, whereas the solvent is removed by mixing with precipitation medium. Meanwhile in a modified form for the coat-mix process, the binder resin is dissolved in caustic soda (saves burnable organic solvent) and the slurrly is passed to a nozzle with water-diluted acid. Drying takes place by a energy-saving new development (vacuum condensation drying). The mixing method leads to an uniform distribution of filler and binder and the hence-formed-mould exhibit uniformly distributed pores throughout and high copying precision. The manufacture of moulds and industrial applications are shown. (orig./IHOE)

  19. Diamond-like coating-orientant as a promising tribological material

    International Nuclear Information System (INIS)

    Efficacy of carbon diamond-like coating (DLC) using for rubbing surfaces of lubricated friction units is analyzed. The problems connected with the effect of DLC structure on tribological behavior under lubricated conditions, as well as specific character of interaction between carbon coating and active components of tube oils are considered. A separate type of carbon coatings - coatings-orientants what provides formation of stronger boundary lube layers resulting in widening of temperature ranges of lube materials operation is also considered

  20. Studies on Self-Luminous Material and Coating with Long Persistent Yellow-Green Afterglow

    Institute of Scientific and Technical Information of China (English)

    邱关明; 孙彦彬; 陈永杰; 张明

    2003-01-01

    The preparation, properties, expression and luminescent mechanism of self-luminous material (SrAl2O4∶Eu2+, Dy3+) were discussed. The long afterglow luminescent coating was prepared by adding proper luminescent powders SrAl2O4∶Eu2+, Dy3+ and other aids into styrene/acrylic emulsion. The best prescription of the coating was defined. The properties of luminescent coating were determined. The primary factors which affect the coating properties were discussed.

  1. Core Material Preparation of TRISO Coated Particle in HTGR Fuel

    International Nuclear Information System (INIS)

    A VHTR(Very High Temperature Reactor) is being conducted by many countries mainly promoted for electricity production and high temperature process heat. The proposed nuclear fuel for the preliminary reactor concept on these purposes is a TRISO(Tri-Isotropic or multi-layered structure) coated particle prepared by pyro-carbon and silicone coatings on a spherical UO2 kernel surface as a fissile material. Generally, UO2 kernels are prepared by using the modified sol-gel process, wet process, known as the GSP(gel supported precipitation) method. This chemical route was well-known to the potential kernel fabrication process. HTGR nuclear fuel production processes have been classified in five categories of research and development : - Spherical UO2 kernel preparation step - Pyro-carbon(PyC) and silicon carbide(SiC) coatings - Pebble or Prismatic block preparation by using graphite matrix powder - Fuel performance including a fission products release - Advanced and improved fuel development The well-known GSP process is one of the modified processes for an external gelation method developed NUKEM of Germany. As shown in Figure 1, a spherical UO2 kernel particle was prepared by using a modified external gelation process. UO2 kernels are highly dense sintered microsphere of stoichiometric UO2 with a nominal diameter of about 500 μm. The raw material for UO2 kernel preparation is nuclear grade U3O8 powder which will be dissolved with nitric acid to obtain the UN solution. The procedures are formed by mixing the UN solution with organic additives and transferring the aqueous solution to spherical droplets, which are on the surface of liquid droplets slightly hardened by a chemical reaction with ammonia. The necessary viscosity and shape of liquid droplets are achieved by the addition of PVA. THFA solution is added to achieve a controlled shrinkage of the ADU gel particles during gelation, ageing, and washing processes. After ageing in ammonia water and washing with demi

  2. Methodology of mechanical characterization of coated spherical materials

    OpenAIRE

    Ould-Chikh, Samy; Celse, Benoit; Hemati, Mehrdji; Rouleau, Loïc

    2008-01-01

    The aim of this work was to develop a methodology for the mechanical characterization of catalyst beads with a core-shell structure and more especially for coated spherical granules. Supports composed of an alpha alumina core coated by gamma alumina shell were shaped by pan coating to this purpose. The proposed methodology started with the characterization of the microstructure of the coating and the highlight of potential macro defects within. Thereafter three tests simulating mechanical ...

  3. [Variations of IR-spectra of three coating materials before and after spraying on urea fertilizer].

    Science.gov (United States)

    Liu, Xing-bin; Chen, Li-jun; Wu, Zhi-jie; Zhang, Guang-na

    2009-09-01

    Coated fertilizer is a hot spot in the domain of fertilizer research. Related researches mainly focused on the action mechanisms of coating materials in controlling the nutrient release from coated fertilizers, but less information is available on the structural variation of the coating materials before and after spraying on fertilizers, which is the key to whether we can directly use coating materials to extrapolate its mechanisms in controlling coated fertilizers' nutrient release. With polylactic acid (PLA), poly (butynelenes succinate) (PBS), and polycarbonate (PC) as test materials, the variations of their IR spectra before and after spraying on urea fertilizer were determined, which was aimed to supply theoretical basis for further studying the action mechanisms of coating materials in controlling coated fertilizers nutrient release. The results showed that PLA and PC had less variation in their IR spectra before and after spraying on urea fertilizer, while PBS acted in reverse, suggesting that the former two coating materials could be directly used for studying the patterns of nutrient release from coated fertilizers. PMID:19950629

  4. The Use of Maltodextrin from Tapioca Starch as a Film Coating Tablet Material

    Directory of Open Access Journals (Sweden)

    Effionora Anwar

    2002-04-01

    Full Text Available Maltodexrin is a modifi ed starch product which can be use as a material fi lm coating tablet. The aim of the research was to study the capability of maltodextrin as a material fi lm coating exipient. Maltodextrin DE 5-10 was made by hidrolysis of tapioca starch with α-amylase enzyme from NOVO (Termamyl L120®, at 80° C, for 65 minute. Maltodextrin was used as a fi lm coating material at concentration 10%,15%,20% dan 25%. As a comparative fi lm coating material was used HPMC. The evaluation of the coating tablet was done accordance to Farmacope Indonesia third and fourth edition. The result show that maltodextrin DE 5-10 from tapioca starch can be used as fi lm coating at concentration 10-25% with concentration 10% gave better result a HPMC.

  5. A Study on the Exploration of Electrostatic Powder Coating Materials Suitable for 3D Scanning

    Directory of Open Access Journals (Sweden)

    Maeng Hee-young

    2016-01-01

    Full Text Available There are many difficulty in collecting data from a diffused reflection surface using an optical 3D scanning device. A spray-type developer and silicon molds are used for solving this problem. However, using developer can cause chemical reactions between objects and developer particles and uneven surfaces of the object. To overcome these problems, it is suggested an electrostatic powder coating method for even coating of particles onto surfaces for collecting 3D shape data. We have developed an automatic, electrostatic powder coating machine. The present study is aimed to explore powder materials suitable for electrostatic powder coating in terms of the easiness of coating work considering the characteristics of object surface. It was also conducted to verify materials that are smoothly coated well under various coating conditions and are advantageous in collecting 3D shape data.

  6. Amylose Rich Starch as an Aqueous Based Pharmaceutical Coating Material - Review

    Directory of Open Access Journals (Sweden)

    H. Dureja

    2011-01-01

    Full Text Available Until about 1950, sugar was the first choice as coating agent for pharmaceutical preparations. As the tablets coating technique was changed from sugar coating to film coating, a number of polymers like Methyl Cellulose (MC, Hydroxy Propyl Methyl Cellulose (HPMC and Ethyl Cellulose (EC become the main coating materials in place of sugar. As for as aqueous coating materials are concerned, Sodium Carboxy Methyl Cellulose (Sod. CMC, Polyvinyl Acetate (PA, Polyvinyl Pyrrolidone (PVP, Sodium Alginate, Poly Ethyl Glycol and HPMC etc. are used either alone or in combination. Starch, especially amylose rich starch is known to have good film forming property. Therefore amylose rich starch is now-a-days used as aqueous based coating materials for pharmaceutical coating. It is successfully used for coating in combination with sorbitol and glycerol as plasticizer. A nine months study on prepared films justifies the stability of amylose rich starch. Both the dispersion and solution of amylose rich starch are used for coating purpose. The amylose rich starch composition for this is 70% amylose and 30% amylopectin. Aging problems are overcome by proper type and proper concentration of plasticizer. The coating with amylose rich starch provides safety, economic and ecological benefits.

  7. Protection and Reinforcement of Tooth Structures by Dental Coating Materials

    OpenAIRE

    Toru Nikaido; Rena Takahashi; Meu Ariyoshi; Junji Tagami; Alireza Sadr

    2012-01-01

    It has been proposed that a resin coating can serve as a means to protect dental structure after preparation of the tooth for indirect restorations, sealing the exposed dentin. The resin coating is applied on the cut surfaces immediately after tooth preparation and before making an impression by assembling a dentin bonding system and a flowable composite. Resin coatings minimize pulp irritation and improve the bond strength between a resin cement and tooth when bonding the restoration to toot...

  8. A Study of Deposition Coatings Formed by Electroformed Metallic Materials.

    Science.gov (United States)

    Hayashi, Shoji; Sugiyama, Shuta; Shimura, Kojiro; Tobayama, Go; Togashi, Toshio

    2016-01-01

    Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface treatment is clinically evaluated by peeling and flex tests. However, these testing methods are not ideal for deposition coating strength measurement of electroformed metals. There have been no studies on the deposition coating strength and methods to test electroformed metals. We developed a new deposition coating strength test for electroformed metals. The influence of the negative electrolytic method, which is one of the electrochemical surface treatments, on the strength of the deposition coating of electroformed metals was investigated, and the following conclusions were drawn: 1. This process makes it possible to remove residual deposits on the electrodeposited metal surface layer. 2. Cathode electrolysis is a simple and safe method that is capable of improving the surface treatment by adjustments to the current supply method and current intensity. 3. Electrochemical treatment can improve the deposition coating strength compared to the physical or chemical treatment methods. 4. Electro-deposition coating is an innovative technique for the deposition coating of electroformed metal. PMID:27326757

  9. A Study of Deposition Coatings Formed by Electroformed Metallic Materials.

    Directory of Open Access Journals (Sweden)

    Shoji Hayashi

    Full Text Available Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface treatment is clinically evaluated by peeling and flex tests. However, these testing methods are not ideal for deposition coating strength measurement of electroformed metals. There have been no studies on the deposition coating strength and methods to test electroformed metals. We developed a new deposition coating strength test for electroformed metals. The influence of the negative electrolytic method, which is one of the electrochemical surface treatments, on the strength of the deposition coating of electroformed metals was investigated, and the following conclusions were drawn: 1. This process makes it possible to remove residual deposits on the electrodeposited metal surface layer. 2. Cathode electrolysis is a simple and safe method that is capable of improving the surface treatment by adjustments to the current supply method and current intensity. 3. Electrochemical treatment can improve the deposition coating strength compared to the physical or chemical treatment methods. 4. Electro-deposition coating is an innovative technique for the deposition coating of electroformed metal.

  10. Non-destructive method of determination of elastic properties and adhesion coefficient of different coating materials

    Directory of Open Access Journals (Sweden)

    M. Kubisztal

    2010-12-01

    Full Text Available Purpose: The paper presents a non-destructive method of determination of Young’s modulus and adhesion coefficient of different coating materials (metallic coatings, polymer, composite etc.. Some of the results obtained by applying this method are discussed in detail.Design/methodology/approach: The presented method consists in measuring the dynamic response of the examined material in the form of a flat rectangular bar subjected to external periodic mechanical stress i.e. the so called vibrating reed technique. General equations describing elastic properties of the sample consisting of a substrate and a deposited coating are derived and discussed in detail.Findings: It was shown that the application of the proposed approach to the metallic, polymeric and composite coatings allowed to obtain a quantitative data concerning the change of both the elastic properties and the adhesion coefficient with a change of: coating thickness, measurement temperature, chemical composition of coating, surface preparation or in the case of epoxy resin coatings with a change of curing time or curing temperature.Research limitations/implications: The proposed method can be applied in many scientific problems in the field of coating materials (e.g. elastic properties of porous coating, crystallization of amorphous coating, adhesion of different polymeric coatings.Practical implications: It was shown that the described method can be successfully used in optimisation of some technological processes of deposition of different coatings on metallic substrate.Originality/value: The paper presents methodology of a non-destructive approach to determination of elastic properties and adhesion coefficient of coating materials with an overview of some applications already publish and also the new ones. Especially interesting are the results concerning the influence of surface preparation on adhesion coefficient which are published for the first time.

  11. On the influence of internal interfaces and properties of multiphase hard material coatings

    International Nuclear Information System (INIS)

    In the system TiC-TiB2-B4C-SiC coatings with different amounts of phase boundaries were prepared by magnetron sputtering: multilayer coatings with 10, 100 and 1000 individual layers and a total thickness of 5 μm as well as single layer multiphase coatings deposited from multiphase targets on heated and unheated substrates. To know the influence of internal interfaces in those coatings, structure and properties of the corresponding single phase coatings were studied also. TEM examinations of cross-section samples showed that B4C and SiC coatings are amorphous whereas TiC and TiB2 coatings are crystalline with a texture which depends on deposition parameters and is developed with growing thickness of the coating. Therefore the texture of TiC and TiB2 layers in multilayer coatings depends on the thickness of the individual layer. While the texture of single layers in multilayer SiC-TiC, SiC-TiB2, B4C-TiB2, and B4C-SiC coatings corresponds to the structure of single phase coatings of the same thickness, in TiC-TiB2 coatings the texture of the individual layers is also influenced by the texture of the previous layer. The occurence of mixing zones between the layers depends on the materials, but also on the crystallinity of the previous layer. (orig.(MM)

  12. Carbon coating of simulated nuclear-waste material

    International Nuclear Information System (INIS)

    The development of low-temperature pyrolytic carbon (LT-PyC) coatings as described in this report was initiated to reduce the release of volatile waste form components and to permit the coating of larger glass marbles that have low temperature softening points (550 to 6000C). Fluidized bed coaters for smaller particles (2mm) were used. Coating temperatures were reduced from >10000C for conventional CVD high temperature PyC to approx. 5000C by using a catalyst. The coating gas combination that produced the highest quality coatings was found to be Ni(CO)4 as the catalyst, C2H2 as the carbon source gas, and H2 as a diluent. Carbon deposition was found to be temperature dependent with a maximum rate observed at 5300C. Coating rates were typically 6 to 7 μm/hour. The screw-agitated coater approach to coating large-diameter particles was demonstrated to be feasible. Clearances are important between the auger walls and coater to eliminate binding and attrition. Coatings prepared in fluidized bed coaters using similar parameters are better in quality and are deposited at two to three times the rate as in screw-agitated coaters

  13. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    Science.gov (United States)

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  14. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    Science.gov (United States)

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  15. Hard gradient (Ti,Al,SiN coating deposited on composite tool materials

    Directory of Open Access Journals (Sweden)

    T. Gawarecki

    2009-04-01

    Full Text Available Purpose: This paper presents investigation of gradient coating of (Ti,Al,SiN deposited on the Al2O3+SiC(w oxide ceramics substrate deposited with the PVD process.Design/methodology/approach: Structure of substrate and coating was investigated with use of scanning electron microscopy (SEM; The X-Ray Photoelectron Spectrometry (XPS and Auger Electron Spectrometry (AES examinations was carried out for proving the gradient character of the (Ti,Al,SiN coating. The investigation includes also microhardness and roughness tests of the deposited coating and used substrate. Scratch test results was analysed to introduce adherence of the investigated coating.Findings: Gradient structure and main properties of the investigated materials were introduced. It has been stated, that properties of the coated with gradient (Ti,Al,SiN coating oxide tool ceramic increase in comparison with uncoated material.Practical implications: Depositing the wear resistant gradient coating onto the Al2O3+SiC(w oxide tool ceramic results in a significant increase of the surface layer microhardness, contributing most probably in this way in machining to the decrease of the wear intensity of cutting tools’ flanks made from the Al2O3+SiC(w oxide tool ceramic.Originality/value: Gradient coatings are an innovative idea. The composition, microstructure and properties of gradient materials change continuously from the surface to the interior of the material.

  16. Ultrasonic Detection of Delamination and Material Characterization of Thermal Barrier Coatings

    Science.gov (United States)

    Chen, Hung-Liang Roger; Zhang, Binwei; Alvin, Mary Anne; Lin, Yun

    2012-12-01

    This article describes ultrasonic nondestructive evaluation (NDE) to detect the changes of material properties and provide early warning of delamination in thermal barrier coating (TBC) systems. NDE tests were performed on single-crystal René N5 superalloy coupons that were coated with a commercially available MCrAlY bond coat and an air plasma sprayed 7% yttria-stabilized zirconia (YSZ) top coat deposited by Air Plasma Spray method, as well as Haynes 230 superalloy coupons coated with MCrA1Y bond coat, and an electron beam physical vapor deposit of 7% YSZ top coat. The TBC coupons were subjected to either cyclic or isothermal exposure for various lengths of time at temperatures ranging from 900 to 1100 °C. The ultrasonic measurements performed on the coupons had provided an early warning of delamination along the top coat/TGO interface before exposure time, when delamination occurred. The material's property (Young's modulus) of the top coat was estimated using the measured wave speeds. Finite element analysis (FEA) of the ultrasonic wave propagation was conducted on a simplified TBC system to verify experimental observations. The technique developed was also demonstrated on an as-manufactured turbine blade to estimate normalized top coat thickness measurements.

  17. Active coated nanoparticles: impact of plasmonic material choice

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, R.W.

    2011-01-01

    The near- and far-field properties of a number of active coated spherical nanoparticles excited by an electric Hertzian dipole at optical frequencies are investigated. Their enhanced, as well as reduced, radiation effects are demonstrated and compared.......The near- and far-field properties of a number of active coated spherical nanoparticles excited by an electric Hertzian dipole at optical frequencies are investigated. Their enhanced, as well as reduced, radiation effects are demonstrated and compared....

  18. A Study of Deposition Coatings Formed by Electroformed Metallic Materials

    OpenAIRE

    Hayashi, Shoji; Sugiyama, Shuta; Shimura, Kojiro; Tobayama, Go; Togashi, Toshio

    2016-01-01

    Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface ...

  19. Paint coating characterization for thermoelastic stress analysis of metallic materials

    International Nuclear Information System (INIS)

    In thermoelastic stress analysis (TSA) it is normal practice to coat metallic specimens with black paint to enhance and standardize the surface emissivity. It is assumed that the paint coating has no effect on the thermal emission from the specimen, but it is well known that the response is sensitive to paint coating thickness, particularly at higher frequencies. In this paper the effects of loading frequency and paint coating thickness on the thermoelastic response are investigated. The thermoelastic response is compared to theory, and optimum test conditions and coating characteristics are suggested. The motivation for the work is to develop a TSA-based means of residual stress assessment, where the measurement of much smaller temperature changes than those that are resolved in standard TSA is required; therefore the analysis is much more sensitive to the effects of the paint coating. However, the work presented in this paper is relevant to a wide range of TSA investigations and presents data that will be of interest to all practitioners of TSA

  20. Evaluation of materials and coatings to control incrustation by Limnoperna fortunei

    Directory of Open Access Journals (Sweden)

    Carlos Perez Bergmann

    2010-06-01

    Full Text Available Experiments aimed at selection of materials and coatings with antifouling properties for Limnoperna fortunei were conducted in southern Brazil, in two localities: next to the main stream of the Jacuí River, municipality of Porto Alegre, RS, and the reservoir of the UHE Ibitinga power plant, on the middle Tietê River, SP. The tested materials were galvanized steel, carbon steel, coppered steel, and ceramic. The coatings used consisted of several paintings without oxides or with oxides in 5% concentrations such as nanometric ZnO, conventional ZnO particles, nanometric Cu2O, conventional Cu2O particles, and the paints commercial R and commercial bacteriostatic. The samples (six replicas each were submerged in the water column at both places selected for the experiments, from October 2006 to February 2007. The metallic materials, steel coated with copper, galvanized steel, and carbon steel coated with R paint and with bacteriostatic paint, were considered promising in the control of Limnoperna fortunei encrustation. For the ceramic material, the coating with ZnO conventional paint was the one that presented the best results. On materials with and without coatings showing higher densities of encrusted golden mussels, a high incidence of biofilms, corrosion of the metallic material and coating deterioration were observed and considered to be related.

  1. Modification of material properties and coating deposition using plasma jet

    International Nuclear Information System (INIS)

    Full text: Using X-ray structure analysis (XRD), scanning electron microscopy (SEM) with micro-analysis, measurements of friction wear and micro-hardness, we studied surface melting effects of powder coatings AN-35, which appeared as a result of action of concentrated energy flows (pulsed plasma flows). Plasma detonation deposition of a powder on a stainless steel substrate were accompanied by formation of an alloyed surface structure, which basic element was α(hcp) and β(fcc) cobalt. A temperature diapason chosen for coating formation (according to the XRD analysis) provided the formation of intermetallic compounds of cobalt and chromium of CoxCry type. Pulsed-plasma surface melting of powder coatings also induced doping of the near surface layer by molybdenum atoms. We found that chosen methods of analysis and surface treatment regimes provided essentially decreased wear, as well as increased microhardness and nano hardness of the irradiated surfaces. It was demonstrated that a resulting increase in servicing characteristics was related to the processes of phase transformations occurring in the powder when it had been in a high temperature plasma-detonation flow as a result of pulsed plasma surface doping by molybdenum atoms, redistribution of the coating elements, appearance of micro- and nano-grain structure, as well as decreased coating porosity induced by thermal annealing by concentrated energy flows. New experimental results on the structure and the elemental and phase composition of hybrid coatings, which were deposited on a substrate of AISI 321 stainless steel using a combination of plasma detonation, vacuum arc and subsequent High-Current Electron Beam (HCEB) treatment, are presented. We found that an increase in energy density intensified mass-transfer processes and resulted in changes in aluminum oxide phase composition (γ→α and β→α). Also we observed the formation of a nano-crystalline structure in Al2O3 coatings. Electron beam treatment of

  2. Oxidation resistant zirconium diboride–silicon carbide coatings for silicon carbide coated graphite materials

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wang; Wenbo, Han, E-mail: wbhan@hit.edu.cn; Xinxin, Jin; Xinghong, Zhang; Jiaxing, Gao; Shanbao, Zhou

    2015-04-25

    Highlights: • ZrB{sub 2}–SiC/SiC coated graphite specimens were prepared by pack cementation. • Weight loss of ZS50 sample was 2.9% after oxidation and 6.5% after 15 thermal shocks. • Residual silicon is beneficial to oxidation resistance and thermal shock resistance. - Abstract: Four ZrB{sub 2}–SiC/SiC dual-layer coatings were prepared on the surface of graphite matrix by pack cementation to improve the oxidation and thermal shock resistance of graphite. The crystalline structure and morphology as well as the resistance to oxidation and thermal shock of these coatings were investigated. The results indicated that the weight loss of the ZS50 coating sample, whose pack powders contained 52.4 wt.% ZrB{sub 2}, 39.2 wt.% Si and 8.4 wt.% graphite, was only 2.9% after oxidation in air at 1500 °C for 19 h and 6.5% after thermal shocks between 1500 °C and room temperature for 15 cycles. With the increasing silicon in pack powders, some residual silicon appeared in ZS50 coating, which was considered to be beneficial to oxidation resistance and thermal shock resistance because it can improve the density of coating and the SiO{sub 2} formed by oxidation of residual Si can heal the microcracks at high temperature.

  3. Oxidation resistant zirconium diboride–silicon carbide coatings for silicon carbide coated graphite materials

    International Nuclear Information System (INIS)

    Highlights: • ZrB2–SiC/SiC coated graphite specimens were prepared by pack cementation. • Weight loss of ZS50 sample was 2.9% after oxidation and 6.5% after 15 thermal shocks. • Residual silicon is beneficial to oxidation resistance and thermal shock resistance. - Abstract: Four ZrB2–SiC/SiC dual-layer coatings were prepared on the surface of graphite matrix by pack cementation to improve the oxidation and thermal shock resistance of graphite. The crystalline structure and morphology as well as the resistance to oxidation and thermal shock of these coatings were investigated. The results indicated that the weight loss of the ZS50 coating sample, whose pack powders contained 52.4 wt.% ZrB2, 39.2 wt.% Si and 8.4 wt.% graphite, was only 2.9% after oxidation in air at 1500 °C for 19 h and 6.5% after thermal shocks between 1500 °C and room temperature for 15 cycles. With the increasing silicon in pack powders, some residual silicon appeared in ZS50 coating, which was considered to be beneficial to oxidation resistance and thermal shock resistance because it can improve the density of coating and the SiO2 formed by oxidation of residual Si can heal the microcracks at high temperature

  4. Structural ceramic coatings in composite microtruss cellular materials

    Energy Technology Data Exchange (ETDEWEB)

    Bele, E.; Bouwhuis, B.A.; Codd, C. [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada); Hibbard, G.D., E-mail: glenn.hibbard@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada)

    2011-09-15

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al{sub 2}O{sub 3} sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al{sub 2}O{sub 3} coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: {yields} A new type of metal/ceramic microtruss cellular composite has been created. {yields} Reinforcing sleeves of Al{sub 2}O{sub 3} were deposited on low density Al microtruss cores. {yields} Significant compressive strength increases were seen at virtually no weight penalty. {yields} Failure mechanisms were studied by electron microscopy and finite element analysis. {yields} Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al{sub 2}O{sub 3} coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 {mu}m thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  5. Structural ceramic coatings in composite microtruss cellular materials

    International Nuclear Information System (INIS)

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al2O3 sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al2O3 coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: → A new type of metal/ceramic microtruss cellular composite has been created. → Reinforcing sleeves of Al2O3 were deposited on low density Al microtruss cores. → Significant compressive strength increases were seen at virtually no weight penalty. → Failure mechanisms were studied by electron microscopy and finite element analysis. → Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al2O3 coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 μm thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  6. Materials for Advanced Turbine Engines (MATE). Project 4: Erosion resistant compressor airfoil coating

    Science.gov (United States)

    Rashid, J. M.; Freling, M.; Friedrich, L. A.

    1987-01-01

    The ability of coatings to provide at least a 2X improvement in particulate erosion resistance for steel, nickel and titanium compressor airfoils was identified and demonstrated. Coating materials evaluated included plasma sprayed cobalt tungsten carbide, nickel carbide and diffusion applied chromium plus boron. Several processing parameters for plasma spray processing and diffusion coating were evaluated to identify coating systems having the most potential for providing airfoil erosion resistance. Based on laboratory results and analytical evaluations, selected coating systems were applied to gas turbine blades and evaluated for surface finish, burner rig erosion resistance and effect on high cycle fatigue strength. Based on these tests, the following coatings were recommended for engine testing: Gator-Gard plasma spray 88WC-12Co on titanium alloy airfoils, plasma spray 83WC-17Co on steel and nickel alloy airfoils, and Cr+B on nickel alloy airfoils.

  7. Biomimetic coating of calcium phosphate on biometallic materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Er-lin; YANG Ke

    2005-01-01

    The biomimetic coating process in comparison with other processes is reviewed. This processing shows advantages in the surface bio-modification, such as low cost and flexible processing, wide range of apatite composition and thickness, non-line-of-sight characteristic and possibility to coat polymers and porous implants. The bio-mimetic apatite coating is made up of larger number of globules with size of 1-5μm. Each globule is a group of numerous flakes with a size range of 100-200nm to 30μm in length and 0.1-1μm in thickness. In-vitro and in-vivo studies show that the biomimetic apatite coating can promote an early and strong bonding to bone or promote the bone in-growth into the porous structure, which will be beneficial to the cementless stable fixation of orthopaedic implants. Recently developed co-precipitation of a kind of protein molecules into the HA coating shows much promising.

  8. Sustainable polysaccharide-based biomaterial recovered from waste aerobic granular sludge as a surface coating material

    NARCIS (Netherlands)

    Lin, Y.M.; Nierop, K.G.J.; Girbal-Neuhauser, E.; Adriaanse, M.; Van Loosdrecht, M.C.M.

    2015-01-01

    To evaluate the possibility of utilizing polysaccharide-based biomaterial recovered from aerobic granular sludge as a coating material, the morphology, molecular weight distribution and chemical composition of the recovered biomaterial were investigated by atomic force microscopy, size exclusion chr

  9. UV-Curable Hybrid Nanocomposite Coating to Protect Tether Polymer Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA need for coatings to protect and strengthen tether materials for Momentum-exchange Electrodynamic Reboost (MXER) technology, Luminit, LLC,...

  10. Broad Bandwidth Meta-Material Antireflection Coatings for Measurement of the Cosmic Microwave Background Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The effort's objective is to realize broadband low-reflectance coatings. The two key technical challenges are the design of the precision engineered materials...

  11. A simple circular-polarized antenna: Circular waveguide horn coated with lossy magnetic material

    Science.gov (United States)

    Lee, Choon S.; Justice, D. W.; Lee, Shung-Wu

    1988-02-01

    It is shown that a circular waveguide horn coated with a lossy material in its interior wall can be used as an alternative to a corrugated waveguide for radiating a circularly polarized (CP) field. To achieve good CP radiation, the diameter of the structure must be larger than the free-space wavelength, and the coating material must be sufficiently lossy and magnetic. The device is cheaper and lighter in weight than the corrugated one.

  12. ITO-coated RF transparent materials for antenna sunshields; Space environment effects

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, C.; Bogard, A.; Brucker, G.; Seehra, S. (General Electric Co., Princeton, NJ (USA). Astro-Space Div.)

    1990-12-01

    Conventional sunshield membranes on communications satellite antennas can be a source of large on-orbit discharges. Indium tin oxide (ITO) coated conventional materials were tested for their electrostatic discharge (ESD), radio frequency (rf) and thermo-optical properties before and after their exposure to the space environment (ultraviolet, thermal cycling, electron radiation and combined effects of both electrons and protons). The results to date indicate that the coated materials are acceptable as rf transparent antenna sunshields.

  13. Multilayer and gradient PVD coatings on the sintered tool materials

    OpenAIRE

    D. Pakuła; J. Mikuła; K. Gołombek; L.A. Dobrzański

    2008-01-01

    Purpose: The paper presents investigation results of structure and properties of the multilayer and gradientTiN+(Ti,Al,Si)N+TiN nanocrystalline coatings deposited with the PVD method (CAE -Cathodic Arc Evaporationprocess) and in the combination of Al2O3 and TiN coatings in the CVD process on the substrate of cemented carbides,cermets, Al2O3+ZrO2, Al2O3+TiC, Al2O3+SiC(w) oxide ceramics and Si3N4 nitride ceramics.Design/methodology/approach: The structural investigation includes the metallograp...

  14. Water-thinnable polymers for durable coatings for different materials

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, Piotr, E-mail: piotr.jankowski@ichp.pl; Kijowska, Dorota, E-mail: piotr.jankowski@ichp.pl [Industrial Chemistry Research Institute, Department of Polyesters, Epoxides and Polyurethanes, 8 Rydygiera Str., 01-793 Warszawa (Poland)

    2014-05-15

    The methods of obtaining water-thinnable polymers - water-thinnable unsaturated polyester resins (WTUPR) - by polycondensation were elaborate and optimized. As hydrophilic monomers different types of sulfonate monomers were used. The monomers, with sulfonate groups and other reactive groups, were obtained by sulfonation of organic compounds with satisfactory yield. All products were analyzed by {sup 1}H NMR and {sup 13}C NMR spectra. WTUPR were used as polymeric binders for coatings applications. Coatings with relatively high pendulum hardness, good properties and durability, useful for practical applications, were obtained. Typical existing equipment for the production of unsaturated polyester resins can be applied for the industrial preparation of WTUPR.

  15. Coating for the fixation of superficial contamination of materials

    International Nuclear Information System (INIS)

    Low cost, commercially available and easy to apply coatings are examined to prevent metal corrosion and to limit cement dust formation during power reactor dismantling. Epoxy compounds are selected because of anticorrosive properties, ease of application on any support, even without preparation and they are efficient for 1 to 5 years. Containment and radiation resistance up to 600 Mrads are studied on samples coated with one or two layers. For application the airless system is the more appropriate. An equipment is concerned and for highly radioactive environment automation and remote operation with a modified commercial robot is studied

  16. Water-thinnable polymers for durable coatings for different materials

    Science.gov (United States)

    Jankowski, Piotr; Kijowska, Dorota

    2014-05-01

    The methods of obtaining water-thinnable polymers - water-thinnable unsaturated polyester resins (WTUPR) - by polycondensation were elaborate and optimized. As hydrophilic monomers different types of sulfonate monomers were used. The monomers, with sulfonate groups and other reactive groups, were obtained by sulfonation of organic compounds with satisfactory yield. All products were analyzed by 1H NMR and 13C NMR spectra. WTUPR were used as polymeric binders for coatings applications. Coatings with relatively high pendulum hardness, good properties and durability, useful for practical applications, were obtained. Typical existing equipment for the production of unsaturated polyester resins can be applied for the industrial preparation of WTUPR.

  17. Paint and coating material as film-forming solution hardenable by ionizing radiation

    International Nuclear Information System (INIS)

    The invention deals with a paint and coating material hardenable by ionizing radiation which is present as a film-forming solution of an acrylic acid urethane acryl addition product (with common additions where necessary) in a solvent and/or one or several vinyl monomers. According to the method invented, hardening takes place at normal temperatures in a very short time. The acrylic acid addition product contains di-isocyanate compounds which are given in detail, its molecular weight is below 900, better under 600. 12 examples illustrate the invention. The paint and coating materials are intended for articles having wood and metal surfaces requiring decorative and wear-fast coats. (UWI)

  18. Study of high temperature oxidation of duplex and functionally graded materials of thermal barrier coating (FGM TBC)

    International Nuclear Information System (INIS)

    Although the number and the severity of thermal barrier coatings applications on hot section components have dramatically increased in the past decade, premature spallation failure of thermal barrier coatings , due to mismatch of thermal expansion at the metal/ceramic interface of the two coating layers, during service is still an overriding concern. Therefore, functionally graded materials with a gradual compositional variation have been introduced. In this study, comparison of properties of two different types of thermal barrier coatings was made to improve the surface characteristics on high temperature components. These thermal barrier coatings consisted of a duplex thermal barrier coatings and a five layered functionally graded thermal barrier coatings . In both coatings, Yttria partially stabilized Zirconia topcoat was deposited by air plasma spraying and Ni Cr Al Y bond coat was deposited by high velocity oxy fuel spraying. In functionally graded materials coating, functionally graded layer was sprayed by air plasma process by varying the feeding ratio of YSZ/Ni Cr Al Y powders using two separate powder feeders. Then, isothermal oxidation was carried out at 950degC in atmosphere to obtain the plot of mass change vs. time to study oxidation kinetic. Microstructural and compositional changes of coating, oxides formed during service were examined by optical microscope and scanning electron microscopy with EDS. functionally graded materials coating failed after 2100 h and duplex coating failed after 1700 h. Finally, it was found that functionally graded materials coating is more qualified than duplex thermal barrier coatings and stands for a longer time

  19. 49 CFR 195.581 - Which pipelines must I protect against atmospheric corrosion and what coating material may I use?

    Science.gov (United States)

    2010-10-01

    ... corrosion and what coating material may I use? 195.581 Section 195.581 Transportation Other Regulations... Corrosion Control § 195.581 Which pipelines must I protect against atmospheric corrosion and what coating... atmosphere, except pipelines under paragraph (c) of this section. (b) Coating material must be suitable...

  20. Absolute Thickness Measurements on Coatings Without Prior Knowledge of Material Properties Using Terahertz Energy

    Science.gov (United States)

    Roth, Don J.; Cosgriff, Laura M.; Harder, Bryan; Zhu, Dongming; Martin, Richard E.

    2013-01-01

    This study investigates the applicability of a novel noncontact single-sided terahertz electromagnetic measurement method for measuring thickness in dielectric coating systems having either dielectric or conductive substrate materials. The method does not require knowledge of the velocity of terahertz waves in the coating material. The dielectric coatings ranged from approximately 300 to 1400 m in thickness. First, the terahertz method was validated on a bulk dielectric sample to determine its ability to precisely measure thickness and density variation. Then, the method was studied on simulated coating systems. One simulated coating consisted of layered thin paper samples of varying thicknesses on a ceramic substrate. Another simulated coating system consisted of adhesive-backed Teflon adhered to conducting and dielectric substrates. Alumina samples that were coated with a ceramic adhesive layer were also investigated. Finally, the method was studied for thickness measurement of actual thermal barrier coatings (TBC) on ceramic substrates. The unique aspects and limitations of this method for thickness measurements are discussed.

  1. Compression-Coated Tablet for Colon Targeting: Impact of Coating and Core Materials on Drug Release.

    Science.gov (United States)

    Maity, Siddhartha; Sa, Biswanath

    2016-04-01

    This work was envisaged to develop compression-coated tablets using a blend of Ca(+2) ion cross-linked carboxymethyl xanthan gum (CMXG) and sodium alginate (SAL) for delayed release of immediate pulse release tablets of prednisolone (PDL) in the colon without the need of colonic bacterial intervention for degradation of the polysaccharide coat. The core tablets containing PDL and other compatible excipients were prepared by direct compression method and subsequently compression coated with different ratios of CMXG and SAL. Long T lag, the time required to restrict the drug release below 10%, and short T rap, the time required for immediate release following the T lag, were considered as suitable release parameters for evaluation of colon targeting of PDL tablets. Among the various compression coats, a blend of CMXG and SAL in a ratio of 1.5:3.5 provided T lag of 5.12 ± 0.09 h and T rap of 6.50 ± 0.05 h. The increase in microcrystalline cellulose (MCC) and crospovidone (CP) in the core tablets did not change T lag significantly although decreased the T rap marginally. Inclusion of an osmogen in the core tablets decreased the T lag to 4.05 ± 0.08 h and T rap to 3.56 ± 0.06 h. The increase in coat weight to 225 mg provided a reasonably long T lag (6.06 ± 0.09 h) and short T rap (4.36 ± 0.20 h). Drug release from most of the formulations followed the Hixson-Crowell equation and sigmoidal pattern as confirmed by the Weibull equation. In conclusion, tablets, compression coated with CMXG and SAL in a ratio of 1.5:3.5 and having 225-mg coat weight, were apparently found suitable for colon targeting. PMID:26271189

  2. Polymer-coated fibrous materials as the stationary phase in packed capillary gas chromatography.

    Science.gov (United States)

    Saito, Yoshihiro; Tahara, Ai; Imaizumi, Motohiro; Takeichi, Tsutomu; Wada, Hiroo; Jinno, Kiyokatsu

    2003-10-15

    Synthetic polymer filaments have been introduced as the support material in packed capillary gas chromatography (GC). The filaments of the heat-resistant polymers, Zylon, Kevlar, Nomex, and Technora, were longitudinally packed into a short fused-silica capillary, followed by the conventional coating process for open-tubular GC columns. The separation of several test mixtures such as n-alkylbenzenes and n-alkanes was carried out with these polymer-coated fiber-packed capillary columns. With the coating by various polymeric materials on the surface of these filaments, the retentivity was significantly improved over the parent fiber-packed column (without polymer coating) as well as a conventional open-tubular capillary of the same length. The results demonstrated a good combination of Zylon as the support and poly(dimethylsiloxane)-based materials as the coating liquid-phase for the successful GC separation of n-alkanes and polycyclic aromatic hydrocarbons (PAHs), while successful applications for other separations such as poly(ethylene glycol) coating for the separation of alcohols were also obtained. From the results it has been suggested that the selectivity of the fiber-packed column could be tuned by selecting different coating materials, indicating the promising possibility for a novel usage of fine fibrous polymers as the support material that can be combined with newly synthesized coating materials specially designed for particular separations. Taking advantage of good thermal stability of the fibers, the column temperature could be elevated to higher than 350 degrees C with the combination of a short metallic capillary. PMID:14710834

  3. Thermal Noise Reduction and Absorption Optimisation via Multi-Material Coatings

    CERN Document Server

    Steinlechner, Jessica; Hough, Jim; Krueger, Christoph; Rowan, Sheila; Schnabel, Roman

    2014-01-01

    Future gravitational wave detectors (GWDs) such as Advanced LIGO upgrades and the Einstein Telescope are planned to operate at cryogenic temperatures using crystalline silicon (cSi) test-mass mirrors at an operation wavelength of 1550 nm. The reduction in temperature in principle provides a direct reduction in coating thermal noise, but the presently used coating stacks which are composed of silica (SiO2) and tantala (Ta2O5) show cryogenic loss peaks which results in less thermal noise improvement than might be expected. Due to low mechanical loss at low temperature amorphous silicon (aSi) is a very promising candidate material for dielectric mirror coatings and could replace Ta2O5. Unfortunately, such a aSi/SiO2 coating is not suitable for use in GWDs due to high optical absorption in aSi coatings. We explore the use of a three material based coating stack. In this multi-material design the low absorbing Ta2O5 in the outermost coating layers significantly reduces the incident light power, while aSi is used o...

  4. Thermal and mechanical testings of TiC and TiN coating materials with Mo substrates

    International Nuclear Information System (INIS)

    Thermal and Mechanical characteristics of TiC and TiN coating materials with Mo substrates are reported. The coating method applied is chemical vapor deposition. In the case of TiC coating, thin TiN layers were coated before TiC coating to avoid formation of molybdenum carbide during TiC coating. thermal testing by electron beam showed that both the TiC-TiN and TiN coating layers survived without observable erosion till the substrates were melted

  5. Air plasma sprayed coatings of self-fluxing powder materials

    International Nuclear Information System (INIS)

    The article discusses the structural features of self-fluxing coatings obtained by plasma spraying air from entering the hub ring and the gas-dynamic focusing powder. It was shown that, unlike the unilateral spot powder inlet into the plasma jet, the use of the annular input node allows to increase heating efficiency and to accelerate the particles in the plasma stream. By optical and scanning electron microscopy that most of the particles forming the coating, in the plasma jet is in a molten or plasticized condition. Transmission electron microscopy revealed that high cooling rates of such particles contribute to the formation of γ-SMC supersaturated solid solution Ni-based average grain size of 80 nm

  6. Edible films and coatings : from novel materials to nanotechnological applications

    OpenAIRE

    Vicente, A.A.

    2009-01-01

    The food industry constantly seeks new strategies to increase the storability of foods and to improve the existent technology. In the last years, edible coatings/films have been considered as one of the potential technologies that can achieve those objectives, ensuring the microbial safety and the preservation of food from the influence of external factors. Significant innovations constantly appear in food packaging, always with the objective of creating a more efficient qualit...

  7. Phase Transformation on Interface between NiCoCrAlY Bond Coat and Substrate and Study of Thermal Barrier Coating as High Temperature Material

    OpenAIRE

    H Purwaningsih; L. Noerochim; R. Fajarain; J.A. Hakim; Sulistijono Sulistijono

    2010-01-01

    Thermal Barrier Coating material consists of Yttria stabilized zirconia (YSZ) as a top coat and bond coat NiCoCrAlY. It is used to protect NiCoCrAlY super alloys for high temperature applications due to its corrosion resistant properties and resistance to thermal fatigue. In the present study, top coat and bond coat were deposited on the substrate using plasma spraying process, followed by thermal fatigue treatment, by heating up to 900 oC for 5 hours and cooling down to 25 oC for 15 minutes,...

  8. Transmission of ultra-cold neutrons through guides coated with materials of high optical potential

    Energy Technology Data Exchange (ETDEWEB)

    Daum, M., E-mail: manfred.daum@psi.ch [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland); Department of Physics, University of Virginia, Charlottesville, VA 22904-4714 (United States); Franke, B. [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland); IPP, Institute for Particle Physics, ETH Zürich, 8093 Zürich (Switzerland); Geltenbort, P. [ILL, Institut Laue-Langevin, 38042 Grenoble Cedex 9 (France); Gutsmiedl, E. [Physik-Department, Technische Universität München, 85748 Garching (Germany); Ivanov, S. [ILL, Institut Laue-Langevin, 38042 Grenoble Cedex 9 (France); Karch, J. [Institut für Physik, Johannes-Gutenberg-Universität, 55128 Mainz (Germany); Kasprzak, M. [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland); Kirch, K. [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland); IPP, Institute for Particle Physics, ETH Zürich, 8093 Zürich (Switzerland); Kraft, A.; Lauer, T. [Institut für Physik, Johannes-Gutenberg-Universität, 55128 Mainz (Germany); Lauss, B. [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland); Müller, A.R.; Paul, S. [Physik-Department, Technische Universität München, 85748 Garching (Germany); Schmidt-Wellenburg, P. [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland); Zechlau, T. [Institut für Physik, Johannes-Gutenberg-Universität, 55128 Mainz (Germany); Zsigmond, G. [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland)

    2014-03-21

    We have measured the transmission of ultra-cold neutrons (UCN) through tubes coated on the inside with materials of high optical potentials. The best transmission value, T, normalised to 1 m long UCN guides was obtained with a beryllium coated quartz guide, T=(99.0±1.0)%. Furthermore, excellent transmission coefficients were found for (i) a glass tube coated with NiMo(88/12), T=(97.3 ±0.6)%, (ii) a NiMo(85/15) guide made by the replication technique, T=(97.1 ±0.8)% and (iii) a glass guide coated with NiMo(82/18), T=(96.3 ±2.1)%. The results demonstrate that UCN guides made from coated glass tubes have the same excellent transmission properties as those produced with the replication technique. They are, however, significantly cheaper.

  9. Glass and glass–ceramic coatings, versatile materials for industrial and engineering applications

    Indian Academy of Sciences (India)

    Amitava Majumdar; Sunirmal Jana

    2001-02-01

    Among various coating systems for industrial and engineering applications, glass and glass–ceramic coatings have advantages of chemical inertness, high temperature stability and superior mechanical properties such as abrasion, impact etc as compared to other coating materials applied by thermal spraying in its different forms viz. PVD, CVD, plasma, etc. Besides imparting required functional properties such as heat, abrasion and corrosion resistance to suit particular end use requirements, the glass and glass–ceramic coatings in general also provide good adherence, defect free surface and refractoriness. Systematic studies covering the basic science of glass and glass–ceramic coatings, the functional properties required for a particular end-use along with the various fields of application have been reviewed in this paper.

  10. Electrolytic deposition of Sn-coated mesocarbon microbeads as anode material for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Min-Jen [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Jen-Teh Junior College of Medicine, Nursing and Management, Taiwan (China); Tsai, Du-Cheng [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Ho, Wen-Hsien [Taiwan Textile Research Institute, Taipei 23674, Taiwan (China); Li, Ching-Fei, E-mail: chingfei.li@gmail.com [Phoenix Silicon International Corporation, Hsinchu 30094, Taiwan (China); Shieu, Fuh-Sheng, E-mail: fsshieu@dragon.nchu.edu.tw [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2013-11-15

    Deposited of crystalline tin (Sn) coatings on mesocarbon microbead (MCMB) powder as anodes of lithium ion (Li-ion) battery was conducted in the SnSO{sub 4} solution by a cathodic electrochemical synthesis. The Sn-coated MCMB specimens were characterized by X-ray diffraction, scanning electron microscopy, and charge/discharge tests. The synthesis condition of Sn-coated MCMB was optimized by considering the agglomeration, size, and adhesion of the samples to the current collectors in the battery. The Sn-coated MCMB electrodes exhibit increased reversible capacity without sacrificing its cycling behavior, compared with bare MCMB electrodes. It is concluded that electrolysis-deposited Sn-coated MCMB electrodes may emerge as a practical and promising anode material for secondary Li-ion batteries.

  11. Electrolytic deposition of Sn-coated mesocarbon microbeads as anode material for lithium ion battery

    International Nuclear Information System (INIS)

    Deposited of crystalline tin (Sn) coatings on mesocarbon microbead (MCMB) powder as anodes of lithium ion (Li-ion) battery was conducted in the SnSO4 solution by a cathodic electrochemical synthesis. The Sn-coated MCMB specimens were characterized by X-ray diffraction, scanning electron microscopy, and charge/discharge tests. The synthesis condition of Sn-coated MCMB was optimized by considering the agglomeration, size, and adhesion of the samples to the current collectors in the battery. The Sn-coated MCMB electrodes exhibit increased reversible capacity without sacrificing its cycling behavior, compared with bare MCMB electrodes. It is concluded that electrolysis-deposited Sn-coated MCMB electrodes may emerge as a practical and promising anode material for secondary Li-ion batteries.

  12. Multifunctional coating MAI D5 intended for the protection of refractory materials

    Science.gov (United States)

    Zhestkov, B. E.; Terent'eva, V. S.

    2010-01-01

    A thin-layer heterophase MAI D5 coating intended for the protection of carbon-containing composite materials (C-C-, C-SiC-, SiC-SiC-composite material) and refractory metal-based alloys against high-temperature gas corrosion and erosion is tested. The coating is formed from a specially developed Si-Ti-Mo-B-Y microcomposition powder material. A new approach to creating self-healing heterophase coatings is used. At operating temperatures, the structure and phase composition of the MAI D5 coating provides rapid self-healing of random defects on the coating surface and in the base material owing to the presence of a silicon-containing eutectic, which favors rapid recovery of a protective amorphous silica layer consumed during operation. Under operating conditions, the coating undergoes self-organization to form a multilayer system with a number of functional oxide micro-, submicro-, and nanolayers. Samples with the MAI D5 coating are subjected to combined tests on bench plants located at MAI and TsAGI under conditions emulating the re-entry of a hypersonic aircraft, when its surface temperature reaches 2400 K. Certification tests are performed in wind tunnels located at TsAGI during a simultaneous action of a hypersonic dissociated-air flow and mechanical loads. The protection of heat-loaded structural elements in space vehicles made of ultrahigh-temperature materials against high-temperature gas corrosion and erosion by the MAI D5 coating in hypersonic dissociated-air flows is shown to be efficient.

  13. Unidirectional coating technology for organic field-effect transistors: materials and methods

    International Nuclear Information System (INIS)

    Solution-processed organic field-effect transistors (OFETs) are essential for developing organic electronics. The encouraging development in solution-processed OFETs has attracted research interest because of their potential in low-cost devices with performance comparable to polycrystalline-silicon-based transistors. In recent years, unidirectional coating technology, featuring thin-film coating along only one direction and involving specific materials as well as solution-assisted fabrication methods, has attracted intensive interest. Transistors with organic semiconductor layers, which are deposited via unidirectional coating methods, have achieved high performance. In particular, carrier mobility has been greatly enhanced to values much higher than 10 cm2 V−1 s−1. Such significant improvement is mainly attributed to better control in morphology and molecular packing arrangement of organic thin film. In this review, typical materials that are being used in OFETs are discussed, and demonstrations of unidirectional coating methods are surveyed. (invited review)

  14. Deposition and Characterization of HVOF Thermal Sprayed Functionally Graded Coatings Deposited onto a Lightweight Material

    Science.gov (United States)

    Hasan, M.; Stokes, J.; Looney, L.; Hashmi, M. S. J.

    2009-02-01

    There is a significant interest in lightweight materials (like aluminum, magnesium, titanium, and so on) containing a wear resistance coating, in such industries as the automotive industry, to replace heavy components with lighter parts in order to decrease vehicle weight and increase fuel efficiency. Functionally graded coatings, in which the composition, microstructure, and/or properties vary gradually from the bond coat to the top coat, may be applied to lightweight materials, not only to decrease weight, but also to enhance components mechanical properties by ensuring gradual microstructural (changes) together with lower residual stress. In the current work, aluminum/tool-steel functionally graded coatings were deposited onto lightweight aluminum substrates. The graded coatings were then characterized in terms of residual stress and hardness. Results show that residual stress increased with an increase in deposition thickness and a decrease in number of layers. However, the hardness also increased with an increase in deposition thickness and decrease in number of layers. Therefore, an engineer must compromise between the hardness and stress values while designing a functionally graded coating-substrate system.

  15. Coated nanoparticles: starting material for improved nanocomposites; Beschichtete Nanoteilchen: Ausgangsmaterial fuer neuartige Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Vollath, D.; Szabo, D.V.; Fuchs, J. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Materialforschung 3 - Werkstoffprozesstechnik

    1998-12-31

    The very special properties of nanomaterials are often properties of isolated particles. Macroscopic parts, exhibiting the properties of the isolated particles can be achieved by coating each particle with a second material, e.g. a ceramic or a polymer. This type of materials can be synthesised using the microwave plasma process developed at the Forschungszentrum Karlsruhe. Additionally, by proper selection of the coating material it is possible to avoid grain growth during densification of the powder by sintering or hot pressing. As an example the properties of macroscopic superparamagnetic parts are explained. (orig.) 11 refs.

  16. Qualification of tribological materials and coatings for use in sodium

    International Nuclear Information System (INIS)

    This paper describes some of the essential performance measures used to qualify materials for tribological applications in liquid sodium environments and summarizes relative properties of some of the newer tribological materials now qualified for use in sodium systems

  17. Application of polymer-powder slurry for fabrication of abrasion resistant coatings on tool materials

    Directory of Open Access Journals (Sweden)

    G. Matula

    2011-03-01

    Full Text Available Purpose: Development of a new generation tool materials on the basis of M2 high speed-steel or 41Cr4 steel covered with the carbides. Application of pressureless forming of powder as a manufacturing method of anti-wear coatings gives the possibility to produce this materials with relative low cost of production.Design/methodology/approach: Powder metallurgy, pressureless forming of powder, sintering, microstructure examination, X-ray dispersive energy examination, hardness examination.Findings: Putting down coatings with this method does not call for using the costly equipment for the physical or chemical deposition of coatings from the gaseous phase. Coating thickness may be easily regulated by applying the powder-binder slurry layer once or several times on the prepared substrate surface. Hardness of coatings in the sintered state is higher compared to the HS6-5-2 and 41Cr4 steels by about 400 and 700 HV respectively. It is expected that hardness of the coatings and substrate will grow after their heat treatment.Practical implications: Application of powder metallurgy and especially pressureless forming of powder to manufacturing of steel covered with anti-wear coatings gives the possibility to obtain tool materials with the relative high ductility characteristic of steel and high hardness and wear resistance typical for cemented carbides.Originality/value: One can state, based on the investigations carried out, that the pressureless forming of the powder may be used for depositing the anti-wear coatings onto the tool materials and other elements in the abrasion wear service conditions.

  18. Long-term development directions of PVD/CVD coatings deposited onto sintered tool materials

    Directory of Open Access Journals (Sweden)

    A.D. Dobrzańska-Danikiewicz

    2011-06-01

    Full Text Available Purpose: The purpose of this article is to evaluate strategic development perspectives of physical/ chemical vapour deposition of monolayer, multilayer and gradient coatings onto sintered tool materials with cemented carbides, cermets and tool ceramics substrates. The coating type was adopted as the criterion for technology division, thus obtaining eight technology groups for carried out research.Design/methodology/approach: In the framework of foresight-materials science research: a group of matrices characterising technology strategic position was created, materials science experiments using high-class specialised equipment were conducted and technology roadmaps were prepared.Findings: High potential and attractiveness were shown of the analysed technologies against the environment, as well as a promising improvement of mechanical and functional properties as a result of covering with the PVD/CVD coatings.Research limitations/implications: Research pertaining to covering sintered tool materials with the PVD/CVD coatings is part of a bigger research project aimed at selecting, researching and characterizing priority innovative material surface engineering technologies.Practical implications: The presented results of experimental materials science research prove the significant positive impact of covering with the PVD/CVD coatings on the structure and mechanical properties of sintered tool materials, which leads to the justification of their including into the set of priority innovative technologies recommended for application in industrial practice.Originality/value: The advantage of the article are results of comparative analysis of sintered tools materials with different types of coatings deposited in the PVD/CVD processes together with the recommended strategies of conduct, strategic development tracks and roadmaps of these technologies.

  19. Investigations of the structure and properties of PVD coatings deposited onto sintered tool materials

    Directory of Open Access Journals (Sweden)

    D. Pakuła

    2012-12-01

    Full Text Available Purpose: The paper presents investigation results of the structure and properties of the coatings deposited by cathodic arc evaporation - physical vapour deposition (CAE-PVD techniques on the sialon tool ceramics. The Ti(B,N, Ti(C,N, (Ti,ZrN, (Ti,AlN and multilayer (Al,CrN+(Ti,AlN, (Ti,AlN+(Al,CrN coatings were investigated.Design/methodology/approach: The structural investigation includes the metallographic analysis on the scanning electron microscope. Examinations of the chemical compositions of the deposited coatings were carried out using the X-ray energy dispersive spectrograph EDS. The investigation includes also analysis of the mechanical and functional properties of the material: microhardness tests of the deposited coatings, surface roughness tests, evaluation of the adhesion of the deposited coatings and tribological test made with the „pin-on-disk”.Findings: Deposition of the multicomponent coatings with the PVD method, on tools made from sialon’s ceramics, results in the increase of mechanical properties in comparison with uncoated tool materials, deciding thus the improvement of their working properties.Practical implications: The multicomponent coating carried out on multi point inserts (made on sintered sialon’s ceramics can be used in the pro-ecological dry cutting processes without using cutting fluids. However, application of this coating to cover sialon ceramics demands still both elaborating and improvement adhesion to substrates in order to introduce these to industrial applications.Originality/value: The paper presents some researches of multicomponent coatings deposited by PVD method on sialon tool ceramics.

  20. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. PMID:27524006

  1. Li4Ti5O12-coated graphite anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Nano-sized Li4Ti5O12 (LTO)-coated graphite core–shell prepared by sol–gel process. • LTO-coated graphite is used in Li-ion battery to improve the cycle life under 55 °C. • Graphite coated with LTO shows smaller resistance than graphite after cell cycling. • The LTO coating suppress the disorder of SP2 structure in graphite during cycling. • Resistance and structure stabilization results in good cycle life of the Li-ion cell. - Abstract: In this study, we synthesized and characterized Li4Ti5O12 (LTO)-coated graphite as an anode material for Li-batteries. The surface of graphite powders was uniformly coated by the LTO nanoparticles to form a core–shelled structure via a sol–gel process, followed by calcination. The average size of graphite core was 20 μm while the thickness of LTO shell was 60 nm to 100 nm. We found that LTO-coated graphite has better rate-capability and cycle life at RT and 55 °C, compared with the pristine graphite. The electrochemical impedance spectroscopy (EIS) results of the cell with LTO-coated graphite anode showed a significant suppression of the impedance rise after 60 cycles. In addition, the Raman spectrum showed that after 60 charge–discharge cycles at 55 °C, the ID/IG ratio of the LTO-coated graphite electrode increased slightly, while that of the pristine graphite electrode increased significantly. The batteries with LTO-coated graphite anode exhibited excellent cyclic ability and high temperature performance

  2. The effect of specifi c relationship between material and coating on tribological and protective features of the product

    Directory of Open Access Journals (Sweden)

    B. Sovilj

    2012-01-01

    Full Text Available Today, parts and tools are increasingly made of composite materials. Realization of specifi c connection between basic material and coating is very important. The quality of coating on products, in terms of wear and resistance to destruction, has a large impact on productivity and reliability of production processes, in particular their life. In this paper, based on experimental investigations, the effect of specific relationship between the base material and coating on tribological and protective features of the product is analyzed.

  3. Oxydation behaviour of coat-mix-materials in air at temperatures of about 800 K

    International Nuclear Information System (INIS)

    Coat-Mix materials were oxidized in a flowing gas mixture of nitrogen and oxygen (N2/O2 = 4/1) at about 800 K and under a pressure of 50 kPa. The reaction rate was measured by means of thermal gravimetry and was compared to the changes of specific surface area, porosity, density and compressive strength in dependence on carbon burn-off. The suitability of Coat-Mix materials as a model substance for studying the oxidation behaviour of binder coke and filler separately was proved. The oxidation behaviour of the binder coke was understood only assuming two different components to exist in binder coke. This assumption could be proved by means of a hypothesis on the interaction between the binder and the filler grains during the coking process of the Coat-Mix materials. (orig.)

  4. A novel radial anode layer ion source for inner wall pipe coating and materials modification--hydrogenated diamond-like carbon coatings from butane gas.

    Science.gov (United States)

    Murmu, Peter P; Markwitz, Andreas; Suschke, Konrad; Futter, John

    2014-08-01

    We report a new ion source development for inner wall pipe coating and materials modification. The ion source deposits coatings simultaneously in a 360° radial geometry and can be used to coat inner walls of pipelines by simply moving the ion source in the pipe. Rotating parts are not required, making the source ideal for rough environments and minimizing maintenance and replacements of parts. First results are reported for diamond-like carbon (DLC) coatings on Si and stainless steel substrates deposited using a novel 360° ion source design. The ion source operates with permanent magnets and uses a single power supply for the anode voltage and ion acceleration up to 10 kV. Butane (C4H10) gas is used to coat the inner wall of pipes with smooth and homogeneous DLC coatings with thicknesses up to 5 μm in a short time using a deposition rate of 70 ± 10 nm min(-1). Rutherford backscattering spectrometry results showed that DLC coatings contain hydrogen up to 30 ± 3% indicating deposition of hydrogenated DLC (a-C:H) coatings. Coatings with good adhesion are achieved when using a multiple energy implantation regime. Raman spectroscopy results suggest slightly larger disordered DLC layers when using low ion energy, indicating higher sp(3) bonds in DLC coatings. The results show that commercially interesting coatings can be achieved in short time. PMID:25173323

  5. The evaluation of hydroxyapatite (HA) coated and uncoated porous tantalum for biomedical material applications

    International Nuclear Information System (INIS)

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  6. The Evaluation of Hydroxyapatite (HA) Coated and Uncoated Porous Tantalum for Biomedical Material Applications

    Science.gov (United States)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-04-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  7. Laboratory scale development of coating for improving characteristics of candidate materials for fusion reactor

    International Nuclear Information System (INIS)

    Application of coatings of refractory low atomic number materials on to different components of Tokamak type controlled thermonuclear reactor are expected to provide a degree of design flexibility. The project envisages to deal with the challenging problem on laboratory scale. Coatings investigated include carbon, beryllium, boron, titanium carbide and alumina and substrates chosen have been 304, 316 stainless steels, monel-400, molybdenum, copper, graphite, etc. For their deposition, different techniques (e.g. evaporation, sputtering and their different variants) have been tried, appropriate ones chosen and their parameters optimized. The coating composition has been analyzed using X-ray diffraction (XRD), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Rutherford backscattering analysis (RBS) and secondary ions mass spectroscopy (SIMS). Surface morphology has been studied using scanning electron microscopy (SEM). Sebastian coating adherence tester has been used for adhesion measurement and Wilson's Tukon microhardness tester for their microhardness measurement. The coatings have been subjected to pulses from YAG laser to evaluate their thermal cycling behaviour. Deuterium ion bombardment (Energy: 20-120 keV; doses: 1019-9.3x1020 ions/cm2) behaviour has also been studied. In general, adherent and hard coatings capable of withstanding thermal cycling could be deposited. Out of the coatings studied, titanium carbide shows best results. The following pages are reprints and not mircrofiched: p. 25-32, 39-41, 57-81. Bibliographic description is on page 13

  8. Machining of high performance workpiece materials with CBN coated cutting tools

    International Nuclear Information System (INIS)

    The machining of high performance workpiece materials requires significantly harder cutting materials. In hard machining, the early tool wear occurs due to high process forces and temperatures. The hardest known material is the diamond, but steel materials cannot be machined with diamond tools because of the reactivity of iron with carbon. Cubic boron nitride (cBN) is the second hardest of all known materials. The supply of such PcBN indexable inserts, which are only geometrically simple and available, requires several work procedures and is cost-intensive. The development of a cBN coating for cutting tools, combine the advantages of a thin film system and of cBN. Flexible cemented carbide tools, in respect to the geometry can be coated. The cBN films with a thickness of up to 2 μm on cemented carbide substrates show excellent mechanical and physical properties. This paper describes the results of the machining of various workpiece materials in turning and milling operations regarding the tool life, resultant cutting force components and workpiece surface roughness. In turning tests of Inconel 718 and milling tests of chrome steel the high potential of cBN coatings for dry machining was proven. The results of the experiments were compared with common used tool coatings for the hard machining. Additionally, the wear mechanisms adhesion, abrasion, surface fatigue and tribo-oxidation were researched in model wear experiments.

  9. Synthesis and Application of Jatropha Oil based Polyurethane as Paint Coating Material

    OpenAIRE

    Zainal Alim Mas’ud; Purwantiningsih Sugita; Harjono

    2012-01-01

    Recently, the use of renewable sources in the preparation of various industrial materials has been revitalized in response to environmental concerns. Natural oils are considered to be the most important genre of renewable sources. Jatropha curcas oil (JPO) based polyol is an alternative material that may possibly replace petrochemical-based polyol for polyurethane coating material. Polyurethane was synthesized by reacting JPO-based polyol with isocyanate. To produce JPO-based polyol, JPO was ...

  10. Two-dimensional mesoporous materials: From fragile coatings to flexible membranes

    Institute of Scientific and Technical Information of China (English)

    Zheng-Long Yang; Jiao-Li Li; Cheng-Liang Zhang; Yun-Feng Lu; Zhen-Zhong Yang

    2013-01-01

    This paper reviews the progress of two-dimensional mesoporous materials including their synthesis strategy,mesostructure,composition,surface property,flexibility,and potential applications.During the past two decades,research on two-dimensional mesoporous materials has experienced an evolution from fragile coatings to flexible membranes.Aiming at practical applications,it is significant to support mesoporous materials with proper matrices for example porous membranes especially flexible ones to form mesoporous composite membranes with designed pore size and chemistry.

  11. Development of a Process Analytical Technology (PAT) for in-line monitoring of film thickness and mass of coating materials during a pan coating operation.

    Science.gov (United States)

    Gendre, Claire; Genty, Muriel; Boiret, Mathieu; Julien, Marc; Meunier, Loïc; Lecoq, Olivier; Baron, Michel; Chaminade, Pierre; Péan, Jean Manuel

    2011-07-17

    The aim of this study was to perform in-line Near Infrared (NIR) measurements inside a pan coater to monitor a coating operation in real-time, by predicting the increases in mass of coating materials and coating thickness. A polymer combination of ethylcellulose/poly(vinyl-alcohol)-poly(ethylene-glycol) graft copolymer was used as functional aqueous coating. Coated tablets were sampled at regular intervals during the coating operation, then subjected to either simple and fast weighing (n=50) or accurate and non-destructive Terahertz Pulsed Imaging (TPI) measurements (n=3). Off-line NIR spectra analysis revealed that the coating operation could efficiently be controlled by focusing on two distinct NIR regions, related to absorption bands of ethylcellulose. Principal component analysis of in-line NIR spectra gave a clear classification of the collected coated tablets. Real-time quantitative monitoring of the coating operation was successfully performed from partial least square calibration models built using either TPI or weighing as reference method. Coating thicknesses as well as mass of coating materials used as primary values provided accurate NIR predictions. A comparison study demonstrated that both reference methods led to reliable and accurate real-time monitoring of the coating operation. This work demonstrated that in-line NIR measurements associated with multivariate analyses can be implemented to monitor in real-time a pan coating operation in order to fulfil the expectations of ICH Q8 guideline on pharmaceutical development, especially in terms of PAT control strategy and reduced end-product testing. PMID:21569842

  12. Multilayer coatings containing diamond and other hard materials on hardmetal substrates

    International Nuclear Information System (INIS)

    In order to improve the wear resistance of hardmetal cutting tools, coatings of hard materials were established. Especially the production of multilayer coatings, which combine useful properties of different materials was a topic of industrial and academic research. The present work examined the possibilities of combining diamond as basic layer with protective CVD layers of TiC, TiN, Ti(C,N) and Al2O3. All these combinations could be realized and some showed quite good adherence under strain, which offers possibilities for technical applications. (author)

  13. Biodegradation rate of shellac coated bovine hydroxyapatite for bone filler material

    Science.gov (United States)

    Triyono, Joko; Triyono, Susilowati, Endang; Murdiyantara, Suci Anindya

    2016-03-01

    This work reports on the effect of shellac coated hydroxyapatite (HA) on the biodegradation rate. The HA was processed from bovine bone. Shellac was derived from the resinous secretion of the lac insect. The aims of the addition of shellac solution is to know how the biodegradation rate material in the Phosphate Buffered Saline (PBS) solution. The four different of shellac solutions (2,5%; 5%; 7,5%; and 10% weight) coated HA scaffoldand one ratio as a control. It was concluded that the ability of biodegradation rate a materialwas not influenced by the ratio of shellac. All materials were biodegradedwhen they were soaked in PBS solution.

  14. PO Solution for Scattering by the Complex Object Coated with Anisotropic Materials

    Institute of Scientific and Technical Information of China (English)

    殷红成; 黄培康; 刘学观; 郭辉萍

    2003-01-01

    The physical optics solution is presented for the calculation of scattering by the complex conducting bodies coated with anisotropic materials, which is based on the tangential plane approximation and the equivalent currents on an anisotropic material backed by an infinite metal surface illuminated by the plane wave given in our previous work. The analytical scheme is proposed to realize fast computation of the solution. Numerical results for several coated bodies such as dihedral corner reflector and cone-cylinder geometry are given and discussed.

  15. Emissivity Results on High Temperature Coatings for Refractory Composite Materials

    Science.gov (United States)

    Ohlhorst, Craig W.; Vaughn, Wallace L.; Daryabeigi, Kamran; Lewis, Ronald K.; Rodriguez, Alvaro C.; Milhoan, James D.; Koenig, John R.

    2007-01-01

    The directional emissivity of various refractory composite materials considered for application for reentry and hypersonic vehicles was investigated. The directional emissivity was measured at elevated temperatures of up to 3400 F using a directional spectral radiometric technique during arc-jet test runs. A laboratory-based relative total radiance method was also used to measure total normal emissivity of some of the refractory composite materials. The data from the two techniques are compared. The paper will also compare the historical database of Reinforced Carbon-Carbon emissivity measurements with emissivity values generated recently on the material using the two techniques described in the paper.

  16. One Component Encapsulating Material Matrix as High Barrier Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA need for new flexible food packaging materials with effective high barrier against oxygen and moisture to protect food, minimize weight and...

  17. CVD COATING OF CERAMIC LAYERS ON CERAMIC CUTTING TOOL MATERIALS

    OpenAIRE

    Porat, R.

    1991-01-01

    When forming cutting tool materials based on ceramic components, one must take into considration the combination of wear resistance and mechanical properties which can withstand unfavorable cutting conditions at the same time maintaining high strength and fracture toughness. Ceramic cutting tools which are designed for machining at high cutting speeds and which have high strength and fracture toughness can be formed by applying a thin layer of ceramic materials on the substrate in order to in...

  18. Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Materials

    Science.gov (United States)

    Richards, Bradley; Zhu, Dongming; Ghosn, Louis; Wadley, Haydn

    2015-01-01

    Development work in Environmental Barrier Coatings (EBCs) for Ceramic Matrix Composites (CMCs) has focused considerably on the identification of materials systems and coating architectures to meet application needs. The evolution of these systems has occurred so quickly that modeling efforts and requisite data for modeling lag considerably behind development. Materials property data exists for many systems in the bulk form, but the effects of deposition on the critical properties of strength and fracture behavior are not well studied. We have plasma sprayed bulk samples of baseline EBC materials (silicon, ytterbium disilicate) and tested the mechanical properties of these materials to elicit differences in strength and toughness. We have also endeavored to assess the mixed-mode fracture resistance, Gc, of silicon in a baseline EBC applied to SiCSiC CMC via four point bend test. These results are compared to previously determined properties of the comparable bulk material.

  19. The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior

    International Nuclear Information System (INIS)

    To investigate the potential application of graphene oxide (GO) in bone repair, this study is focused on the preparation, characterization and cell behavior of graphene oxide coatings on quartz substrata. GO coatings were prepared on the substrata using a modified dip-coating procedure. Atomic force microscopy (AFM), scanning electron microscopy (SEM) and Raman spectroscopy results demonstrated that the as-prepared coatings in this study were homogeneous and had an average thickness of ∼67 nm. The rapid formation of a hydroxyapatite (HA) layer in the simulated body fluid (SBF) on GO coated substrata at day 14, as proved by SEM and x-ray diffraction (XRD), strongly indicated the bioactivity of coated substrata. In addition, MC3T3-E1 cells were cultured on the coated substrata to evaluate cellular activities. Compared with the non-coated substrata and tissue culture plates, no significant difference was observed on the coated substrata in terms of cytotoxicity, viability, proliferation and apoptosis. However, interestingly, higher levels of alkaline phosphatase (ALP) activity and osteocalcin (OC) secretion were observed on the coated substrata, indicating that GO coatings enhanced cell differentiation compared with non-coated substrata and tissue culture plates. This study suggests that GO coatings had excellent biocompatibility and more importantly promoted MC3T3-E1 cell differentiation and might be a good candidate as a coating material for orthopedic implants. (paper)

  20. AFM characterization of nonwoven material functionalized by ZnO sputter coating

    International Nuclear Information System (INIS)

    Sputter coatings provide new approaches to the surface functionalization of textile materials. In this study, polyethylene terephthalate (PET) nonwoven material was used as a substrate for creating functional nanostructures on the fiber surfaces. A magnetron sputter coating was used to deposit functional zinc oxide (ZnO) nanostructures onto the nonwoven substrate. The evolution of the surface morphology of the fibers in the nonwoven web was examined using atomic force microscopy (AFM). The AFM observations revealed a significant difference in the morphology of the fibers before and after the sputter coating. The AFM images also indicated the effect of the sputtering conditions on the surface morphology of the fibers. The increase in the sputtering time led to the growth of the ZnO grains on the fiber surfaces. The higher pressure in the sputtering chamber could cause the formation of larger grains on the fiber surfaces. The higher power used also generated larger grains on the fiber surfaces

  1. Composite materials obtained by the ion-plasma sputtering of metal compound coatings on polymer films

    Science.gov (United States)

    Khlebnikov, Nikolai; Polyakov, Evgenii; Borisov, Sergei; Barashev, Nikolai; Biramov, Emir; Maltceva, Anastasia; Vereshchagin, Artem; Khartov, Stas; Voronin, Anton

    2016-01-01

    In this article, the principle and examples composite materials obtained by deposition of metal compound coatings on polymer film substrates by the ion-plasma sputtering method are presented. A synergistic effect is to obtain the materials with structural properties of the polymer substrate and the surface properties of the metal deposited coatings. The technology of sputtering of TiN coatings of various thicknesses on polyethylene terephthalate films is discussed. The obtained composites are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and scanning tunneling microscopy (STM) is shown. The examples of application of this method, such as receiving nanocomposite track membranes and flexible transparent electrodes, are considered.

  2. Crystallization Behavior of Phosphate Glasses with Hydrophobic Coating Materials

    Directory of Open Access Journals (Sweden)

    Jaeyeop Chung

    2015-01-01

    Full Text Available We analyzed the effect of the addition of Li2O3, TiO2, and Fe2O3 on the crystallization behavior of P2O5–CaO–SiO2–K2O glasses and the effect of the crystallization behavior on the roughness and hydrophobicity of the coated surface. Exothermic behavior, including a strong exothermic peak in the 833–972 K temperature range when Fe2O3, TiO2, or Li2O3 was added, was confirmed by differential thermal analysis. The modified glass samples (PFTL1–3 showed diffraction peaks when heated at 1073 and 1123 K for 5 min; the crystallized phase corresponds to Fe3(PO42, that is, graftonite. We confirmed that the intensity of the diffraction peaks increases at high temperatures and with increasing Li2O3 content. In the case of the PFTL3 glass, a Li3Fe2(PO42 phase, that is, trilithium diiron(III tris[phosphate(V], was observed. Through scanning electron microscopy and the contact angles of the surfaces with water, we confirmed that the increase in surface roughness, correlated to the crystallization of the glass frit, increases hydrophobicity of the surface. The calculated values of the local activation energies for the growth of Fe3(PO42 on the PTFL1, PTFL2, and PFTL3 glass were 237–292 kJ mol−1, 182–258 kJ mol−1, and 180–235 kJ mol−1.

  3. Investigation on slot-die coating of hybrid material structure for OLED lightings

    Science.gov (United States)

    Choi, Kwang-Jun; Lee, Jin-Young; Shin, Dong-Kyun; Park, Jongwoon

    2016-08-01

    With an attempt to fabricate large-area OLED lighting panels, we investigate slot-die coating of a small molecule (SM) hole transport layer (HTL). It is observed that SM HTL films formed by spin coating exhibit pinhole-like surface, whereas the films by slot-die coating show micro-sized hillocks due to agglomeration. As the plate temperature of the slot coater is increased, smaller hillocks appear more densely. To tackle it, a small amount of a polymer HTL is added into the SM HTL (Hybrid HTL). By the aid of entangled polymer chains, small molecules are prohibited from migrating and thus agglomerations disappear. The peak-to-peak roughness of the slot-coated hybrid HTL films is measured to be about 11.5 nm, which is slightly higher than that (~7 nm) of the polymer HTL film, but much lower than that (~1071 nm) of the SM HTL film. Similar results are also observed in spin-coated films. It is also addressed that OLED with the hybrid HTL shows higher luminous efficacy, compared to OLED with the SM HTL or the polymer HTL. We have further demonstrated that the dissolution problem occurring between two stacked layers with different solvents during slot-die coating can be suppressed to a great extent using such a combination of materials in hybrid structure.

  4. Thermal Conductivity and Water Vapor Stability of HfO2-based Ceramic Coating Materials

    Science.gov (United States)

    Zhu, Dongming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    HfO2-Y2O3 and La2Zr2O7 are candidate thermal/environmental barrier coating materials for gas turbine ceramic matrix composite (CMC) combustor liner applications because of their relatively low thermal conductivity and high temperature capability. In this paper, thermal conductivity and high temperature phase stability of plasma-sprayed coatings and/or hot-pressed HfO2-5mol%Y2O3, HfO2- 15mol%Y2O3 and La2Zr2O7 were evaluated at temperatures up to 1700 C using a steady-state laser heat-flux technique. Sintering behavior of the plasma-sprayed coatings was determined by monitoring the thermal conductivity increases during a 20-hour test period at various temperatures. Durability and failure mechanisms of the HfO2-Y2O3 and La2Zr2O7 coatings on mullite/SiC Hexoloy or CMC substrates were investigated at 1650 C under thermal gradient cyclic conditions. Coating design and testing issues for the 1650 C thermaVenvironmenta1 barrier coating applications will also be discussed.

  5. Thermal Conductivity and Water Vapor Stability of Ceramic HfO2-Based Coating Materials

    Science.gov (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    HfO2-Y2O3 and La2Zr2O7 are candidate thermal/environmental barrier coating materials for gas turbine ceramic matrix composite (CMC) combustor liner applications because of their relatively low thermal conductivity and high temperature capability. In this paper, thermal conductivity and high temperature phase stability of plasma-sprayed coatings and/or hot-pressed HfO2-5mol%Y2O3, HfO2-15mol%Y2O3 and La2Zr2O7 were evaluated at temperatures up to 1700 C using a steady-state laser heat-flux technique. Sintering behavior of the plasma-sprayed coatings was determined by monitoring the thermal conductivity increases during a 20-hour test period at various temperatures. Durability and failure mechanisms of the HfO2-Y2O3 and La2Zr2O7 coatings on mullite/SiC Hexoloy or CMC substrates were investigated at 1650 C under thermal gradient cyclic conditions. Coating design and testing issues for the 1650 C thermal/environmental barrier coating applications will also be discussed.

  6. Structure and service properties of parts with coatings obtained with the help of electrospark alloying by powder materials

    International Nuclear Information System (INIS)

    Results of metallographic, X-ray phase and X-ray spectral microanalysis of electrospark coatings, made of powder materials on St45, 35KhGSL and 14Kh17N2A steels, VTL-1 nickel alloy and VT9, VT20 titanium alloys,, are presented. A principle possibility to make coatings of oxides (Al2O3, ZrO2) is shown. Comparative wear tests show the prospects of electrospark formation of coatings of powder materials

  7. Ion Beam Analysis of Metallic Materials, Coatings and Composites,

    Czech Academy of Sciences Publication Activity Database

    Macková, Anna; Munnik, F.; Malinský, Petr; Bočan, Jiří

    Praha : Matematicko-fyzikální fakulta, Karlova Univerzita, 2008. s. 82-82. [11th International Symposium on Physics of Materials . 24.08.2008-28.08.2008, Praha] R&D Projects: GA AV ČR(CZ) KJB100480601; GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : Ion Bem Analysis * Ni ion implantation * Zr alloy study Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  8. A Novel Method for Preparation of TaC Coating on C/C Composite Material

    Institute of Scientific and Technical Information of China (English)

    Hanwei HE; Kechao ZHOU; Xiang XIONG

    2005-01-01

    A new method for preparation of TaC coating on C/C composite material is reported. The amorphous ethylate tantalum jellied as the precursor is prepared and spread densely on the surface of the C/C composite material so as to form a multilayer film. In a graphitization furnace the multilayer film is transformed into TaC coating at various temperatures. Ethylate tantalum film is characterized by FT-IR (Fourier transform infrared) spectra, XRD (X-ray diffraction) and SEM (scanning electron microscopy) and TaC coating is characterized by XRD and SEM. At 1200℃the coating contained TaC and Ta2O5, and at above 1400℃ only TaC is formed. The coating formed at 1600℃ is a continuous stratum structure, and that formed at 1600℃ is a porous net structure. Analysis on thermodynamics and formation mechanism of TaC indicates that, after ethylate tantalum is decomposed, Ta2O5 is first produced and then transformed into Ta2C, and newly formed Ta2C is transformed into TaC by the sufficient C at last.

  9. Sensitivity alteration of fiber Bragg grating sensors with additive micro-scale bi-material coatings

    Science.gov (United States)

    Zhang, Xixi; Alemohammad, Hamidreza; Toyserkani, Ehsan

    2013-02-01

    This paper describes a combined fabrication method for creating a bi-material micro-scale coating on fiber Bragg grating (FBG) optical sensors using laser-assisted maskless microdeposition (LAMM) and electroless nickel plating. This bi-material coating alters the sensitivity of the sensor where it also acts as a protective layer. LAMM is used to coat bare FBGs with a 1-2 µm thick conductive silver layer followed by the electroless nickel plating process to increase layer thickness to a desired level ranging from 1 to 80 µm. To identify an optimum coating thickness and predict its effect on the sensor's sensitivity to force and temperature, an optomechanical model is developed in this study. According to the model if the thickness of the Ni layer is 30-50 µm, maximum temperature sensitivity is achieved. Our analytical and experimental results suggest that the temperature sensitivity of the coated FBG with 1 µm Ag and 33 µm Ni is almost doubled compared to a bare FBG with sensitivity of 0.011 ± 0.001 nm °C-1. In contrast, the force sensitivity is decreased; however, this sensitivity reduction is less than the values reported in the literature.

  10. Sensitivity alteration of fiber Bragg grating sensors with additive micro-scale bi-material coatings

    International Nuclear Information System (INIS)

    This paper describes a combined fabrication method for creating a bi-material micro-scale coating on fiber Bragg grating (FBG) optical sensors using laser-assisted maskless microdeposition (LAMM) and electroless nickel plating. This bi-material coating alters the sensitivity of the sensor where it also acts as a protective layer. LAMM is used to coat bare FBGs with a 1–2 µm thick conductive silver layer followed by the electroless nickel plating process to increase layer thickness to a desired level ranging from 1 to 80 µm. To identify an optimum coating thickness and predict its effect on the sensor's sensitivity to force and temperature, an optomechanical model is developed in this study. According to the model if the thickness of the Ni layer is 30–50 µm, maximum temperature sensitivity is achieved. Our analytical and experimental results suggest that the temperature sensitivity of the coated FBG with 1 µm Ag and 33 µm Ni is almost doubled compared to a bare FBG with sensitivity of 0.011 ± 0.001 nm °C−1. In contrast, the force sensitivity is decreased; however, this sensitivity reduction is less than the values reported in the literature. (paper)

  11. Structure, properties and wear behaviour of multilayer coatings consisting of metallic and covalent hard materials, prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Novel multilayer coatings with metallic and covalent layer materials were prepared by magnetron sputtering and characterised concerning structure, properties and application behaviour. At first single layer coatings were deposited for the determination of the material properties. To evaluate relations between structure and properties of the multilayer coatings, different multilayer concepts were realised: - coatings consisting of at most 7 layers of metallic hard materials, - 100-layer coatings consisting of metallic and covalent hard materials, - TiN-TiC multilayer coatings with different numbers of layers (between 10 and 1000), - 150-layer coatings, based on TiN-TiC multilayers, with thin (4C, AlN, SiC, a:C, Si3N4, SiAlON). X-rays and electron microscopic analysis indicate in spite of nonstoichiometric compositions single phase crystalline structures for nonreactively and reactively sputtered metastable single layer Ti(B,C)-, Ti(B,N)- and Ti(B,C,N)-coatings. These single layer coatings show excellent mechanical properties (e.g. hardness values up to 6000 HV0,05), caused by lattice stresses as well as by atomic bonding conditions similar to those in c:BN and B4C. The good tribological properties shown in pin-on-disk-tests can be attributed to the very high hardness of the coatings. The coatings consisting of at most 7 layers of metallic hard materials show good results mainly for the cutting of steel Ck45, due to the improved mechanical properties (e.g. hardness, toughness) of the multilayers compared to the single layer coatings. This improvement is caused by inserting the hard layer materials and the coherent reinforcement of the coatings. (orig.)

  12. Application of polymer-powder slurry for fabrication of abrasion resistant coatings on tool materials

    OpenAIRE

    G. Matula

    2011-01-01

    Purpose: Development of a new generation tool materials on the basis of M2 high speed-steel or 41Cr4 steel covered with the carbides. Application of pressureless forming of powder as a manufacturing method of anti-wear coatings gives the possibility to produce this materials with relative low cost of production.Design/methodology/approach: Powder metallurgy, pressureless forming of powder, sintering, microstructure examination, X-ray dispersive energy examination, hardness examination.Finding...

  13. Microsystem reliability: Polymer adhesive and coating materials for packaging

    DEFF Research Database (Denmark)

    Janting, Jakob

    design approach to development of reliable microsystem packaging mandatory. Diffusion of water is identified as the most important parameter or physical mechanism lowering microsystem reliability due to corrosion, delamination etc. This topic is therefore treated thoroughly by mathematical modeling......Polymer microsystem packaging materials have been characterized and failure analysis methods have been developed with the aim of gaining higher microsystem reliability. The importance of this work stems from the fact that microsystem sensors due to small size are very sensitive to the often very...

  14. Substrates coated with silver nanoparticles as a neuronal regenerative material

    OpenAIRE

    Alon N; Miroshnikov Y; Perkas N; Nissan I; Gedanken A; Shefi O

    2014-01-01

    Noa Alon,1,3,* Yana Miroshnikov,2,3,* Nina Perkas,2,3 Ifat Nissan,2,3 Aharon Gedanken,2,3 Orit Shefi1,31Faculty of Engineering, 2Department of Chemistry, 3Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel*These authors contributed equally to this workAbstract: Much effort has been devoted to the design of effective biomaterials for nerve regeneration. Here, we report the novel use of silver nanoparticles (AgNPs) as regenerative agents to promo...

  15. Solar collectors. Technical progress report No. 1, September 5, 1978-March 5, 1979. [Listing of glazings, housing materials, acrylic coatings, etching processes and AR coatings

    Energy Technology Data Exchange (ETDEWEB)

    Baum, B.; Gage, M.

    1979-04-27

    A broad information search was carried out in four areas: glazings, housing materials, acrylic coatings, etching processes and AR coatings. An extensive list of all (known) US transparent polymers was developed as well as tables of plastic, ceramic and metallic materials that could conceivably function as a housing. In addition, a compilation was made of commercially available solvent and water-base acrylic coatings for use as a uv protective coating for the glazing. Eighteen transparent polymers were chosen as possible glazings and twelve materials (plastic and wood) as possible housings and exposed in the Weather-Ometer as tensile bars and for the glazings as disks for optical transmission. These same materials were also exposed on our roof to monitor soiling. A variety of solvent and water-base acrylics were selected as protective coatings and ordered. Two commercial films - Tedlar 20 and Halar 500 - with strong absorption in the uv and two commercial films containing uv absorbers - Tedlar UT and Korad 201R - were laminated by several different processes to four promising glazing materials: polyvinyl fluoride (Tedlar), polymethyl methacrylate (Plexiglass), crosslinked ethylene/vinyl acetate and thermoplastic polyester (Llumar). A variety of etching processes were briefly explored and AR coating studies started on the above four glazing films.

  16. Functional properties of the sintered tool materials with (Ti,AlN coating

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2009-10-01

    Full Text Available Purpose: The paper presents investigation results of functional properties of the sintered tool materials: high-speed steel matrix composites (HSSMC, cemented carbides, cermets and Al2O3 type oxide tool ceramics with (Ti,AlN coating deposited in the cathodic arc evaporation CAE-PVD method and comparing them with the uncoated tool materials.Design/methodology/approach: Analysis of the mechanical and functional properties: surface roughness, microhardness tests, scratch tests, cutting tests. X-ray qualitative microanalysis of elements.Findings: Deposition of (Ti,AlN coating onto high-speed steel matrix composites (HSSMC, cemented carbides, cermet and Al2O3 type oxide tool ceramics substrate causes increase of wear resistance as well as reduces the exceeding of steady stresses critical levels. It causes multiple (up to 800% increase of tool life. As a result of metallographic observations it was stated that linear and uniform character of wear was achieved in case of all deposited samples.Practical implications: Employment of the hard coatings deposited onto sintered tool materials is reckoned as one of the most important achievements last year in the area of improvement of functional properties of cutting tools.Originality/value: Combination of substrates (especially coatings deposited on high-speed steel matrix composite is unique and very interesting in respect of achieved functional properties.

  17. CSR-coated PMMA panel and packing materials for glove box

    International Nuclear Information System (INIS)

    The panel and packing materials for glove box have been studied. The surface of the PMMA panel and the packing fitted to a glove box damages by the chemicals during long use. Both the PMMA panel and the packing are attacked chemically by chemical reagents such as strong acids, and swollen or resolved by some organic solvents used in a glove box, lowering the transparency of the panel and airtightness of the packing. The PMMA panel also suffers damages on the surface by scratching and striking with equipments or tools in the glove box. It is hard to renew the damaged panel and packing of glove box because of contamination by the poisonous species such as plutonium. Therefore, the selection of the materials of the panel and packing is very important. In this study, the recommendable materials for the panel and packing which have high resistance to chemicals have been searched by experimental test. The CSR (Coating for Scratching Resistance) coated PMMA plate, whose surface is strengthened by organopolysiloxane coating has been examined as the panel material of a glove box and compared with the present uncoated PMMA plate. Eight types of synthetic rubber, urethane rubber, acrylonitrile-butadiene rubber (NBR), epichlorohydrin rubber, fluoro rubber, chlorosulfonated polyethylene (CSM), halogenyzed isobutylene-isoprene rubber, silicone rubber and polysulfide rubber have been examined and compared with the presently used chloroprene rubber (CR). The CSR coated PMMA plate showed high resistance to chemical reagents and solvents, especially to strong inorganic acids. No chemical hazing or crazing appeared on the surface by the short contact with those chemicals. Also the hardness of the plate surface was strengthened up to the level of glass by the CSR coating. Gechron 2000, a kind of epichlorohydrin rubber, showed the most high resistance to chemical degradation and swelling of the tested samples. (author)

  18. Materials selection of surface coatings in an advanced size reduction facility

    International Nuclear Information System (INIS)

    A materials selection test program was conducted to characterize optimum interior surface coatings for an advanced size reduction facility. The equipment to be processed by this facility consists of stainless steel apparatus (e.g., glove boxes, piping, and tanks) used for the chemical recovery of plutonium. Test results showed that a primary requirement for a satisfactory coating is ease of decontamination. A closely related concern is the resistance of paint films to nitric acid - plutonium environments. A vinyl copolymer base paint was the only coating, of eight paints tested, with properties that permitted satisfactory decontamination of plutonium and also performed equal to or better than the other paints in the chemical resistance, radiation stability, and impact tests

  19. Study on β-TCP Coated Porous Mg as a Bone Tissue Engineering Scaffold Material

    Institute of Scientific and Technical Information of China (English)

    Fang Geng; Lili Tan; Bingchun Zhang; Chunfu Wu; Yonglian He; Jingyu Yang; Ke Yang

    2009-01-01

    Three-dimensional honeycomb-structured magnesium (Mg) scaffolds with interconnected pores of accurately controlled pore size and porosity were fabricated by laser perforation technique. Biodegradable and bioactive β-tricalcium phosphate (β-TCP) coatings were prepared on the porous Mg to further improve its biocompatibility, and the biodegradation mechanism was simply evaluated in vitro. It was found that the mechanical properties of this type of porous Mg significantly depended on its porosity. Elastic modulus and compressive strength similar to human bones could be obtained for the porous Mg with porosity of 42.6%-51%. It was observed that the human osteosarcoma cells (UMR106) were well adhered and proliferated on the surface of the β-TCP coated porous Mg, which indicates that the β-TCP coated porous Mg is promising to be a bone tissue engineering scaffold material.

  20. Substrate-anchored and degradation-sensitive anti-inflammatory coatings for implant materials

    Science.gov (United States)

    Wu, Duo; Chen, Xingyu; Chen, Tianchan; Ding, Chunmei; Wu, Wei; Li, Jianshu

    2015-06-01

    Implant materials need to be highly biocompatible to avoid inflammation in clinical practice. Although biodegradable polymeric implants can eliminate the need for a second surgical intervention to remove the implant materials, they may produce acidic degradation products in vivo and cause non-bacterial inflammation. Here we show the strategy of “substrate-anchored and degradation-sensitive coatings” for biodegradable implants. Using poly(lactic acid)/hydroxyapatite as an implant material model, we constructed a layer-by-layer coating using pH-sensitive star polymers and dendrimers loaded with an anti-inflammatory drug, which was immobilised through a hydroxyapatite-anchored layer. The multifunctional coating can effectively suppress the local inflammation caused by the degradation of implant materials for at least 8 weeks in vivo. Moreover, the substrate-anchored coating is able to modulate the degradation of the substrate in a more homogeneous manner. The “substrate-anchored and degradation-sensitive coating” strategy therefore exhibits potential for the design of various self-anti-inflammatory biodegradable implant materials.

  1. Effect of substrate materials on rutile crystalline orientation in plasma-sprayed TiO2 coatings

    Institute of Scientific and Technical Information of China (English)

    YANG Guan-jun; LI Chang-jiu; WANG Yu-yue

    2004-01-01

    TiO2 coatings are of technical importance owing to their promising applications to photocatalytical, electrical, optical and tribological coatings. Thermal spraying process has been widely used to deposit both metallic and nonmetallic coatings. During thermal spraying, spray particle at fully or partially melted condition is projected to a substrate and subsequently flattens, rapidly cools and solidifies. Therefore, a coating in lamellar structure is usually formed as a quenched microstructure. TiO2 coatings were deposited on different substrates through plasma spraying with fused-crushed powder in rutile phase as feedstock to reveal the crystalline orientation in the coatings. XRD results show that the coatings consist of rutile phase with a fraction of anatase phase, and the rutile phase presents a preferable crystalline orientation along [101] direction. It is found that the orientation factors of rutile phase in the thin coatings are significantly influenced by substrate materials. The thick coatings yield the same orientation factors of 0.22 to 0.23 on all substrates in spite of substrate materials. It is considered that the thermal properties of substrate materials are the dominant factors for the preferable crystalline orientation in rutile phase within plasmasprayed TiO2 coating.

  2. Measurement of tritium penetration through concrete material covered by various paints coating

    International Nuclear Information System (INIS)

    The present study aims at obtaining fundamental data on tritium migration in porous materials, which include soaking effect, interaction between tritium and cement paste coated with paints and transient tritium sorption in porous cement. The amounts of tritium penetrated into or released from cement paste with epoxy and urethane paint coatings were measured. The tritium penetration amounts were increased with the HTO (tritiated water) exposure time. Time to achieve a saturated value of tritium sorption was more than 60 days for cement paste coated with epoxy paint and with urethane paint, while that for cement paste without any paint coating took 2 days to achieve it. The effect of tritium permeation reduction by the epoxy paint was higher than that of the urethane. Although their paint coatings were effective for reduction of tritium penetration through the cement paste which was exposed to HTO for a short period, it was found that the amount of tritium trapped in the paints became large for a long period. Tritium penetration rates were estimated by an analysis of one-dimensional diffusion in the axial direction of a thickness of a sample. Obtained data were helpful for evaluation of tritium contamination and decontamination. (authors)

  3. Evaluation of nanoparticle emission for TiO2 nanopowder coating materials

    International Nuclear Information System (INIS)

    In this study, nanoparticle emission of TiO2 nanopowder coated on different substrates including wood, polymer, and tile, was evaluated in a simulation box and measured with a Scanning Mobility Particle Sizer (SMPS) for the first time. The coating process for the substrate followed the instructions given by the supply company. In the simulation box, UV light, a fan, and a rubber knife were used to simulate the sun light, wind, and human contacting conditions. Among the three selected substrates, tile coated with TiO2 nanopowder was found to have the highest particle emission (22 cm3 at 55 nm) due to nanopowder separation during the simulation process. The UV light was shown to increase the release of particle below 200 nm from TiO2 nanopowder coating materials. The results show that, under the conditions of UV lamps, a fan and scraping motion, particle number concentration or average emission rate decreases significantly after 60 and 90 min for TiO2/polymer and TiO2/wood, respectively. However, the emission rate continued to increase after 2 h of testing for TiO2/tile. It is suggested that nanoparticle emission evaluation is necessary for products with nanopowder coating

  4. Max Phase Materials And Coatings For High Temperature Heat Transfer Applications

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Rodriguez, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Olson, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fuentes, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sindelar, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-19

    Molten salts have been used as heat transfer fluids in a variety of applications within proposed Gen IV nuclear designs and in advanced power system such as Concentrating Solar Power (CSP). However, operating at elevated temperatures can cause corrosion in many materials. This work developed coating technologies for MAX phase materials on Haynes-230 and characterized the corrosion of the coatings in the presence of commercial MgCl2-KCl molten salt. Cold spraying of Ti2AlC and physical vapor deposition (PVD) of Ti2AlC or Zr2AlC were tested to determine the most effective form of coating MAX phases on structural substrates. Corrosion testing at 850°C for 100 hrs showed that 3.9 μm Ti2AlC by PVD was slightly protective while 117 μm Ti2AlC by cold spray and 3.6 μm Zr2AlC by PVD were completely protective. None of the tests showed decomposition of the coating (Ti or Zr) into the salt

  5. Characterization of optical materials and coatings for high-power NIR/VIS laser application

    Science.gov (United States)

    Mühlig, Ch.; Bublitz, S.; Paa, W.

    2011-12-01

    We report on the characterization of AR coatings on fused silica as well as AR coated LBO crystals used in high power NIR/VIS laser applications, mainly by means of LID (laser induced deflection) absorption measurements. The comparison of different LBO crystals shows that there are significant differences in both, the AR coating and the LBO bulk absorption. These differences are much larger at 515 nm than at 1030 nm. Results from first absorption spectroscopy measurements combining LID technique with a high power OPO laser system indicate that the coating process affects the LBO bulk absorption properties. Additionally, an emphasis is placed on the importance of the independent calibration procedure. Here, the electrical calibration is compared to two other approaches that use either doped samples or highly absorptive reference samples in combination with numerical simulations. As example, LBO crystals and fused silica are taken to show the complexity and the existing diversity of the material's photo-thermal response and its influence on choosing the appropriate measurement concept. Finally, a new concept is introduced to significantly increase the LID sensitivity for optical materials featuring a low photo-thermal response. In the case of CaF2, a sensitivity enhancement of larger than factor 6 is obtained.

  6. Direct and absolute absorption measurements in optical materials and coatings by laser induced deflection (LID) technique

    Science.gov (United States)

    Mühlig, Ch.

    2012-01-01

    Different strategies of the laser induced deflection (LID) technique for direct and absolute absorption measurements are presented. Besides selected strategies for bulk and coating absorption measurements, respectively, a new strategy is introduced allowing the transfer of the LID technique to very small samples and to significantly increase the sensitivity for materials with a very weak photo-thermal response. Additionally, an emphasis is placed on the importance of the calibration procedure. The electrical calibration of the LID setup is compared to two other approaches that use either doped samples or highly absorptive reference samples in combination with numerical simulations. Applying the LID technique, we report on the characterization of AR coated LBO crystals used in high power NIR/VIS laser applications. The comparison of different LBO crystals shows that there are significant differences in both, the AR coating and the LBO bulk absorption. These differences are much larger at 515 nm than at 1030 nm. Absorption spectroscopy measurements combining LID technique with a high power OPO laser system indicate that the coating process affects the LBO bulk absorption properties. Furthermore, the change of the absorption upon 1030 nm laser irradiation of a Nd:YVO4 laser crystal is investigated and compared to recent results. Finally, Ytterbium doped silica raw materials for high power fiber lasers are characterized with respect to the absorption induced attenuation at 1550 nm in order to compare these data with the total attenuation obtained for the subsequently manufactured laser active fibers.

  7. A mesomechanical analysis of the deformation and fracture in polycrystalline materials with ceramic porous coatings

    Science.gov (United States)

    Balokhonov, R. R.; Zinoviev, A. V.; Romanova, V. A.; Batukhtina, E. E.

    2015-10-01

    The special features inherent in the mesoscale mechanical behavior of a porous ceramic coating-steel substrate composite are investigated. Microstructure of the coated material is accounted for explicitly as initial conditions of a plane strain dynamic boundary-value problem solved by the finite difference method. Using a mechanical analogy method, a procedure for generating a uniform curvilinear finite difference computational mesh is developed to provide a more accurate description of the complex grain boundary geometry. A modified algorithm for generation of polycrystalline microstructure of the substrate is designed on the basis of the cellular automata method. The constitutive equations for a steel matrix incorporate an elastic-plastic model for a material subjected to isotropic hardening. The Hall-Petch relation is used to account for the effect of the grain size on the yield stress and strain hardening history. A brittle fracture model for a ceramic coating relying on the Huber criterion is employed. The model allows for crack nucleation in the regions of triaxial tension. The complex inhomogeneous stress and plastic strain patterns are shown to be due to the presence of interfaces of three types: coating-substrate interface, grain boundaries, and pore surfaces.

  8. Study on Plastic Coated Overburnt Brick Aggregate as an Alternative Material for Bituminous Road Construction

    Directory of Open Access Journals (Sweden)

    Dipankar Sarkar

    2016-01-01

    Full Text Available There are different places in India where natural stone aggregates are not available for constructional work. Plastic coated OBBA can solve the problem of shortage of stone aggregate to some extent. The engineers are always encouraged to use locally available materials. The present investigation is carried out to evaluate the plastic coated OBBA as an alternative material for bituminous road construction. Shredded waste plastics are mixed with OBBA in different percentages as 0.38, 0.42, 0.46, 0.50, 0.54, and 0.60 of the weight of brick aggregates. Marshall Method of mix design is carried out to find the optimum bitumen content of such bituminous concrete mix prepared by plastic coated OBBA. Bulk density, Marshall Stability, flow, Marshall Quotient, ITS, TSR, stripping, fatigue life, and deformations have been determined accordingly. Marshall Stability value of 0.54 percent of plastic mix is comparatively higher than the other mixes except 0.60 percent of plastic mix. Test results are within the prescribed limit for 0.54 percent of plastic mix. There is a significant reduction in rutting characteristics of the same plastic mix. The fatigue life of the mix is also significantly higher. Thus plastic coated OBBA is found suitable in construction of bituminous concrete road.

  9. Comparing graphene, carbon nanotubes, and superfine powdered activated carbon as adsorptive coating materials for microfiltration membranes.

    Science.gov (United States)

    Ellerie, Jaclyn R; Apul, Onur G; Karanfil, Tanju; Ladner, David A

    2013-10-15

    Multi-walled carbon nanotubes (MWCNTs), nano-graphene platelets (NGPs), and superfine powdered activated carbon (S-PAC) were comparatively evaluated for their applicability as adsorptive coatings on microfiltration membranes. The objective was to determine which materials were capable of contaminant removal while causing minimal flux reduction. Methylene blue and atrazine were the model contaminants. When applied as membrane coatings, MWCNTs had minimal retention capabilities for the model contaminants, and S-PAC had the fastest removal. The membrane coating approach was also compared with a stirred vessel configuration, in which the adsorbent was added to a stirred flask preceding the membrane cell. Direct application of the adsorbent to the membrane constituted a greater initial reduction in permeate concentrations of the model contaminants than with the stirred flask setup. All adsorbents except S-PAC showed flux reductions less than 5% after application as thin-layer membrane coatings, and flux recovery after membrane backwashing was greater than 90% for all materials and masses tested. PMID:23911830

  10. Review on materials & methods to produce controlled release coated urea fertilizer.

    Science.gov (United States)

    Azeem, Babar; KuShaari, KuZilati; Man, Zakaria B; Basit, Abdul; Thanh, Trinh H

    2014-05-10

    With the exponential growth of the global population, the agricultural sector is bound to use ever larger quantities of fertilizers to augment the food supply, which consequently increases food production costs. Urea, when applied to crops is vulnerable to losses from volatilization and leaching. Current methods also reduce nitrogen use efficiency (NUE) by plants which limits crop yields and, moreover, contributes towards environmental pollution in terms of hazardous gaseous emissions and water eutrophication. An approach that offsets this pollution while also enhancing NUE is the use of controlled release urea (CRU) for which several methods and materials have been reported. The physical intromission of urea granules in an appropriate coating material is one such technique that produces controlled release coated urea (CRCU). The development of CRCU is a green technology that not only reduces nitrogen loss caused by volatilization and leaching, but also alters the kinetics of nitrogen release, which, in turn, provides nutrients to plants at a pace that is more compatible with their metabolic needs. This review covers the research quantum regarding the physical coating of original urea granules. Special emphasis is placed on the latest coating methods as well as release experiments and mechanisms with an integrated critical analyses followed by suggestions for future research. PMID:24593892

  11. Improvement of tool materials by deposition of gradient and multilayers coatings

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2006-10-01

    Full Text Available Purpose: Investigation of the functional properties of cermets, Si3N4 and Al2O3 based ceramics, coated with the PVD andCVD multilayer and gradient coatings and comparison them with the commercial uncoated and coated tool materials.Design/methodology/approach: TEM, SEM, confocal microscopy, scratch test, microhardness tests, roughnesstests, cutting tests.Findings: Employment of the hard wear resistant coatings deposited onto the sintered ceramic tool materials withthe physical deposition from the gaseous phase (PVD is reckoned as one of the most important achievements inthe last years in the area of improvement of the service properties of ceramic cutting tools. Depositing the antiwearcoatings of the gradient and multi TiN+(Ti,Al,SiN+TiN types onto the investigated ceramic tool materialsmakes it possible to achieve the clear improvement of their tool life and also of the quality of the machinedsurfaces, reduction of machining costs and elimination of cutting fluids used in machining.Practical implications: The widespread use in machining of oxide and nitride ceramics, as well as of cermetswith the complex nanocrystaline coatings deposited in the PVD processes contributes to the increased interestin the contemporary „Near-Net-Shape” technology, i.e., manufacturing semi-products with the shape anddimensions as close as possible to those of the finished products.Originality/value: In the paper the research of multilayer and gradient TiN+(Ti,Al,SiN+TiN nanocrystalline coatingsdeposited in the PVD method on sintered tool materials carried out in order to improve the tool cutting properties.

  12. Effect of Doping on beta-Tricalcium Phosphate Bioresorbable Bulk Material and Thin Film Coatings

    Science.gov (United States)

    Abdalla, Suhaila

    Magnesium has emerged as a revolutionary biodegradable metal for use as an orthopedic material, it has several advantages over the current metallic materials in use, including eliminating the effects of stress shielding, improving biocompatibility and inhibiting degradation rates, thus removing the requirement of a second surgery for implant removal. Due to the rapid degradation of magnesium, it is necessary to control the corrosion rates of the materials to match the rates of bone healing. This dissertation reports on the effect of doping on the properties of beta-tricalcium phosphate (beta-TCP). It also reports on its application as a thin film coating on magnesium alloys for implant applications. Adding various dopants to beta-TCP significantly influences critical properties. In this study, discs were fabricated in two compositions: (i) undoped beta-TCP, (ii) beta-TCP doped with 1.0 wt % MgO, 0.5 wt % ZnO, and 1.0 wt % TiO2. Films were fabricated from these compositions using the pulsed laser deposition (PLD) technique. These coatings were then characterized for corrosive, hardness, and cytocompatibility. The XRD patterns of the coating confirm the amorphous nature of the films. The presence of the metal oxides in beta-TCP improved ceramic densification. The application of these doped coatings was also found to increase the hardness by 88 %, the modulus of elasticity by 66 %, and improve corrosion resistance of the magnesium alloy substrate; with a 2.4 % improvement in Ecorr and 95 % decrease in icorr. Cell viability was studied using an osteoblast precursor cell line MC3T3-E1 to assure that the biocompatibility of these ceramics was not altered due to the dopants. Long-term biodegradation studies were conducted by measuring weight change and surface microstructure as a function of time in simulated body fluid. The results suggest that these coatings could be used for bioresorbable implants with improved corrosion resistance and increased hardness.

  13. EVALUATION OF SORPTIVE PROPERTIES OF VARIOUS CARRIERS AND COATING MATERIALS FOR LIQUISOLID SYSTEMS.

    Science.gov (United States)

    Vraníková, Barbora; Gajdziok, Jan

    2015-01-01

    The basic principle of liquisolid systems formulation lies in the conversion of the drug in a liquid state into an apparently dry, free-flowing and readily compressible powder by its blending (or spraying) with specific carriers and coating materials. The selection of the most suitable carrier and coating material depends especially on their values of flowable liquid retention potential (Φ), which is defined as the maximum mass of liquid that can be retained per unit mass of powder material, while maintaining an acceptable flowability. The presented work focused on the determination of the maximum amount of propylene glycol (PG), which can be retained by several selected carriers and coating materials while maintaining acceptable flow properties of the liquisolid powder blend. Granulated forms of magnesium aluminometasilicates (Neusilin® US2 and Neusilin® NS2N), dibasic calcium phosphate (Fujicalin®) and microcrystalline cellulose (Avicel® PH 101) were tested due to their frequent use. Powdered forms of magnesium aluminometasilicate (Neusilin® UFL2) and colloidal silica (Aerosil® 200) were used as common coating materials. From the evaluation of liquisolid mixtures with different amounts of liquid, it could be observed that 1 g of Neusilin® US2, Neusilin® UFL2, Neusilin® NS2N, Aerosil® 200, Fujicalin® and Avicel® PH 101 can retain 1.00, 0.97, 0.54, 0.04, 0.25 and 0.12 g of propylene glycol, respectively, while maintaining acceptable flowing properties for further processing. PMID:26642662

  14. Development of anti-corrosion coating on low activation materials against fluoridation and oxidation in Flibe blanket environment

    International Nuclear Information System (INIS)

    W coating by vacuum plasma spray process and Cr coating by chromizing process were performed on fusion low activation materials, JLF-1 ferritic steel and NIFS-HEAT-2 vanadium alloy. The present study discusses feasibility of the coatings as anti-corrosion coating against fluoridation in Flibe for fusion low activation materials. Coatings were characterized by microstructural analysis and examination on chemical stability by corrosion tests. The corrosion tests were conducted with H2O-47% HF solution at RT and He-1% HF-0.06 H2O gas mixture at 823 K to simulate fluoridation and oxidation in Flibe. The coatings presented suppression of fluoride formation compared with JLF-1 or NIFS-HEAT-2, however weight loss due to WF6 formation was induced, and much Cr2O3 was formed.

  15. Preparation of nano-sized hydrophilic aluminum fins coating materials for air conditioner

    Institute of Scientific and Technical Information of China (English)

    陈志明; 韩峰; 邵利

    2002-01-01

    Semicontinuous seeded emulsion copolymerization of acrylic acid, acrylamide and divinylbenzene was carried out at 80℃ with ammonium persulphate as the initiator and the polyether with comb configuration as the emulsifier to prepare approximately mono-dispersed nano-sized polymer particles with average diameter 90nm. The particles were used to combine with special polyether and de-ionized water was added to obtain nano-sized hydrophilic aluminum fins coating materials with solid content of 10%. The aluminum fins were coated with the materials to get the film showing self-assembly properties in some degree. The obtained hydrophilic fins have contact angles <5° with de-ionized water, minimum value 0°, after 4 cycles of wet and dry, contact angles <10° with de-ionized water.

  16. Zwitterionic Cellulose Carbamate with Regioselective Substitution Pattern: A Coating Material Possessing Antimicrobial Activity.

    Science.gov (United States)

    Elschner, Thomas; Lüdecke, Claudia; Kalden, Diana; Roth, Martin; Löffler, Bettina; Jandt, Klaus D; Heinze, Thomas

    2016-04-01

    A polyzwitterion is synthesized by regioselective functionalization of cellulose possessing a uniform charge distribution. The positively charged ammonium group is present at position 6, while the negative charge of carboxylate is located at positions 2 and 3 of the repeating unit. The molecular structure of the biopolymer derivative is proved by NMR spectroscopy. This cellulose-based zwitterion is applied to several support materials by spin-coating and characterized by means of atomic force microscope, contact angle measurements, ellipsometry, and X-ray photoelectron spectroscopy. The coatings possess antimicrobial activity depending on the support materials (glass, titanium, tissue culture poly(styrene)) as revealed by confocal laser scanning microscopy and live/dead staining. PMID:26632022

  17. Bibliography of information on mechanics of structural failure (hydrogen embrittlement, protective coatings, composite materials, NDE)

    Science.gov (United States)

    Carpenter, J. L., Jr.

    1976-01-01

    This bibliography is comprised of approximately 1,600 reference citations related to four problem areas in the mechanics of failure in aerospace structures. The bibliography represents a search of the literature published in the period 1962-1976, the effort being largely limited to documents published in the United States. Listings are subdivided into the four problem areas: Hydrogen Embrittlement; Protective Coatings; Composite Materials; and Nondestructive Evaluation. An author index is included.

  18. Silicon Carbide Coating for Carbon Materials Produced by a Pack-Cementation Process

    OpenAIRE

    Paccaud, O.; Derré, A.

    1995-01-01

    A pack-cementation process has been developed in order to produce SiC coating on carbon materials. At high temperature gaseous silicon monoxide generated from a SiC-SiO2 powders mixture reacts with carbon substrate by converting the outer surfaces into silicon carbide. The correlation between density measurements and thermochemical calculations allows to determine the reaction path mechanism for the SiC layer formation. Iridium marker experiments are proposed to localize the substrate initial...

  19. Tribology of polymeric nanocomposites friction and wear of bulk materials and coatings

    CERN Document Server

    Friedrich, Klaus

    2013-01-01

    Tribology of Polymeric Nanocomposites provides a comprehensive description of polymeric nanocomposites, both as bulk materials and as thin surface coatings, and provides rare, focused coverage of their tribological behavior and potential use in tribological applications. Providing engineers and designers with the preparation techniques, friction and wear mechanisms, property information and evaluation methodology needed to select the right polymeric nanocomposites for the job, this unique book also includes valuable real-world examples of polymeric nanocomposites in a

  20. Analysis of Counterfeit Coated Tablets and Multi-Layer Packaging Materials Using Infrared Microspectroscopic Imaging.

    Science.gov (United States)

    Winner, Taryn L; Lanzarotta, Adam; Sommer, André J

    2016-06-01

    An effective method for detecting and characterizing counterfeit finished dosage forms and packaging materials is described in this study. Using attenuated total internal reflection Fourier transform infrared spectroscopic imaging, suspect tablet coating and core formulations as well as multi-layered foil safety seals, bottle labels, and cigarette tear tapes were analyzed and compared directly with those of a stored authentic product. The approach was effective for obtaining molecular information from structures as small as 6 μm. PMID:27068491

  1. Residual stresses assessment in coated materials: complementarity between Neutron and X-ray techniques

    Czech Academy of Sciences Publication Activity Database

    Rogante, M.; Mikula, Pavol; Vrána, Miroslav

    Zürich : Trans Tech Publications, 2011 - (Šandera, P.), Roč. 465, 259-262 ISBN 978-3-03785-006-0. ISSN 1013-9826. [6th International Conference on Materials Structure and Micromechanics of Fracture. Brno (CZ), 28.06.2010-30.06.2010] R&D Projects: GA ČR GAP204/10/0654 Institutional support: RVO:61389005 Keywords : Coatings * Residual stresses * Neutron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism

  2. Towards Washable Wearable Antennas: A Comparison of Coating Materials for Screen-Printed Textile-Based UHF RFID Tags

    Directory of Open Access Journals (Sweden)

    Tiiti Kellomäki

    2012-01-01

    Full Text Available (Radio frequency identification RFID tags integrated into clothing enable monitoring of people without their conscious effort. This requires tags to be an unnoticeable part of clothing and comfortable to wear. In this study, RFID antennas were screen printed on two different fabrics, six different coating materials for the (integrated circuits ICs were applied, and the reliability of these RFID tags was tested with moisture and laundry tests. Generally, glue-type coating materials were easier to handle and could be spread precisely. All the tags were operational immediately after the coatings were applied, and five of the coating materials were seen to protect the IC from detaching in the laundry. It was found that the uneven fabric surface caused discontinuities and breaks in narrow conductors, and thus hard coatings may also be needed to keep the tag from breaking in laundry.

  3. Application of design of experiment on electrophoretic deposition of glass-ceramic coating materials from an aqueous bath

    Indian Academy of Sciences (India)

    Someswar Datta

    2000-04-01

    A process for application of abrasion- or corrosion-resistant glass-ceramic coating materials on metal substrate by electrophoretic deposition technique in an aqueous medium has been described. The effects of various process parameters, e.g. coating material concentration, time of deposition, applied current, pH of the suspension and concentration of the polymeric dispersant on the deposition efficiency have been studied. The process has been studied using a 23-factorial design technique of three independent variables; i.e. coating material concentration, applied current, and the time taken to achieve the best combination. The regression equation obtained explains the experimental results satisfactorily.

  4. Improving material-specific dispense processes for low-defect coatings

    Science.gov (United States)

    Brakensiek, Nick; Braggin, Jennifer; Berron, John; Ramirez, Raul; Anderson, Karl; Smith, Brian

    2011-04-01

    The drive to smaller, less expensive, and faster devices requires radical changes in material development. The increased material requirements drive complex processes that in turn drive equipment requirements. For the photolithography area this demand for improved materials is seen in growing requests for device level-specific tuning of organic bottom antireflective coatings (BARCs) or photoresists for certain imaging requirements, such as numerical aperture, immersion conditions, and optical parameters. To test and utilize the myriad of BARC materials, there is a need to install them on a coater-track quickly and efficiently. Installation typically requires a new filter installation, dispense line cleaning, and usually a minimum of 8-10 L of material to clear out bubbles and other nuisance defects before coating test wafers. As the number of materials increases, the ability to quickly prime a new filter becomes increasingly important. In this study, the Entegris IntelliGen® Mini dispense system was utilized to test various pump priming processes to ultimately minimize the volume purged to reach a defect baseline. In addition, the impacts of the filter media and filter retention on priming efficiency were studied. Results show that priming processes that were not matched to the filter in use could actually cause the defects to increase during the process, thus requiring additional purging to reach baseline, and thereby negating any time or volume savings. Properly programmed priming recipes reduced the purging time and the purging volume by 50-70%.

  5. Carbon fiber CVD coating by carbon nanostructured for space materials protection against atomic oxygen

    Science.gov (United States)

    Pastore, Roberto; Bueno Morles, Ramon; Micheli, Davide

    2016-07-01

    In recent years, the emphasis in space research has been shifting from space exploration to commercialization of space. In order to utilize space for commercial purposes it is necessary to understand the low earth orbit (LEO) space environment where most of the activities will be carried out. The studies on the LEO environment are mainly focused towards understanding the effect of atomic oxygen (AO) on spacecraft materials. In the first few shuttle flights, materials looked frosty because they were actually being eroded and textured: AO reacts with organic materials on spacecraft exteriors, gradually damaging them. When a spacecraft travel in LEO (where crewed vehicles and the International Space Station fly), the AO formed from the residual atmosphere can react with the spacecraft surfaces, causing damage to the vehicle. Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The major degradation effects in polymers are due to their exposure to atomic oxygen, vacuum ultraviolet and synergistic effects, which result in different damaging effects by modification of the polymer's chemical properties. In hydrocarbon containing polymers the main AO effect is the surface erosion via chemical reactions and the release of volatile reaction products associated with the mass loss. The application of a thin protective coating to the base materials is one of the most commonly used methods of preventing AO degradation. The purpose is to provide a barrier between base material and AO environment or, in some cases, to alter AO reactions to inhibit its diffusion. The effectiveness of a coating depends on its continuity, porosity, degree of

  6. Exploring new W–B coating materials for the aqueous corrosion–wear protection of austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mallia, B., E-mail: bertram.mallia@um.edu.mt [Department of Metallurgy and Materials Engineering, University of Malta, Msida MSD 2080 (Malta); Dearnley, P.A. [nCATS National Centre for Advanced Tribology Southampton, Engineering Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2013-12-31

    The material loss of metallic surfaces through corrosion–wear is a serious concern in many application sectors, ranging from bio-medical implants to marine, oil and gas field components to transport vehicle and nuclear reactor devices. In principle, self-passivating alloys, like stainless steels, can be protected from surface degradation caused by corrosion–wear through the application of protective thin, hard surface coatings. In this work the suitability of using W matrix coating materials supersaturated with varying levels of boron were applied to austenitic stainless steel substrates (Ortron 90) and assessed for this purpose. These materials were compared to a highly corrosion–wear resistant “datum” surface engineered material (CrN coated Ti–6Al–4V) in sliding contact tests against a chemically inert aluminium oxide ball, whilst immersed in 0.9% NaCl solution at 37 °C. The work demonstrated that all the coated materials to be very much more resistant to material loss through corrosion–wear (by nearly an order of magnitude) compared to uncoated stainless steel, and two coatings, W–13%B and W–23%B coated Ortron 90 were similarly resistant as CrN coated Ti–6Al–4V. Three fundamental types of corrosion–wear were discovered that represented differing levels of passive film durability. The total material loss rate (TMLR) during corrosion–wear testing showed linear proportionality with the change in open circuit potential δ{sub OCP} which obeyed the governing equation: TMLR = m δ{sub OCP} + C. - Highlights: • Magnetron sputtered W–(B) coatings displayed a crystalline to amorphous transition. • W–(B) coatings displayed excellent corrosion–wear resistance under OCP conditions. • Three kinds of corrosion–wear behaviour were determined in this study. • A linear correlation between total material loss and change in OCP was discovered. • Static CV tests were not useful for predicting dynamic corrosion–wear behaviour.

  7. 16 CFR 1145.2 - Paint (and other similar surface-coating materials) containing lead; toys, children's articles...

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Paint (and other similar surface-coating... similar surface-coating materials); risk of lead poisoning. 1145.2 Section 1145.2 Commercial Practices... TO OTHER ACTS UNDER THE CONSUMER PRODUCT SAFETY ACT § 1145.2 Paint (and other similar...

  8. Preparation and characterization of porous carbon material-coated solid-phase microextraction metal fibers.

    Science.gov (United States)

    Zhu, Fang; Guo, Jiaming; Zeng, Feng; Fu, Ruowen; Wu, Dingcai; Luan, Tiangang; Tong, Yexiang; Lu, Tongbu; Ouyang, Gangfeng

    2010-12-10

    Two kinds of porous carbon materials, including carbon aerogels (CAs), wormhole-like mesoporous carbons (WMCs), were synthesized and used as the coatings of solid-phase microextraction (SPME) fibers. By using stainless steel wire as the supporting core, six types of fibers were prepared with sol-gel method, direct coating method and direct coating plus sol-gel method. Headspace SPME experiments indicated that the extraction efficiencies of the CA fibers are better than those of the WMC fibers, although the surface area of WMCs is much higher than that of CAs. The sol-gel-CA fiber (CA-A) exhibited excellent extraction properties for non-polar compounds (BTEX, benzene, toluene, ethylbenzene, o-xylene), while direct-coated CA fiber (CA-B) presented the best performance in extracting polar compounds (phenols). The two CA fibers showed wide linear ranges, low detection limits (0.008-0.047μgL(-1) for BTEX, 0.15-5.7μgL(-1) for phenols) and good repeatabilities (RSDs less than 4.6% for BTEX, and less than 9.5% for phenols) and satisfying reproducibilities between fibers (RSDs less than 5.2% for BTEX, and less than 9.9% for phenols). These fibers were successfully used for the analysis of water samples from the Pearl River, which demonstrated the applicability of the home-made CA fibers. PMID:21074162

  9. Study on the first wall TiC coated materials for fusion reactor

    International Nuclear Information System (INIS)

    The chemical vapor deposition (CVD) process of TiC coating, electron beam thermal shock and thermal fatigue testing of TiC coated materials are described. The dense and fine coating is deposited at 1100 degree, CH4 flux of 0.36 L/min and H2 flux of 1.16 L/min, and the deposition rate reaches 0.7 μm/min. The correlation between coating thickness and process parameters is given. Pulsed by electron beams with high power density up to 226 MW/m2 for 0.6 s, the TiC layers of TiC/graphite, TiC/molybdenum and TiC/316L SS spall from substrates, and 316L SS is molten. A lot of TiC layer spall from 316L SS after 2 hear cycles between 900 degree C and -246 degree C, net-cracks are formed on the surface of TiC/graphite during the fatigue testing, but no exfoliation of TiC layer is observed up to the maximum heat cycles 200. Neither cracks nor exfoliation of TiC layer on molybdenum are found after 200 heat cycles

  10. RRR of copper coating and low temperature electrical resistivity of material for TTF couplers

    International Nuclear Information System (INIS)

    In the framework of the R and D program on the TTF III main RF coupler, IPN Orsay developed in close collaboration with LAL institute, a dedicated facility for the electrical characterization of different materials at low temperature. This apparatus was used for measuring the electrical resistivity versus temperature (4.2 K-300 K) of various samples produced in the industry. These tests were performed in order to compare the RRR of the samples, qualify and find the optimum parameters for the coating process. Seven flat samples were tested in a saturated liquid helium bath under ∼1013 mbar pressure: measurements were performed on bare 316L samples, nickel coated 316L samples, and copper coated 316L samples with a nickel under layer. We investigated, in particular, the effect of vacuum annealing at 400 deg, C on the RRR of the copper coating. Our experimental data are compared to previous measurements reported by other groups, and theoretical results (e.g., Gruneisen-Bloch equation) and a good agreement was found. Finally, the tested samples fulfil the TTF III coupler design parameters requirements in terms of heat loads to the refrigerator at 2 K, 4 K and 70 K

  11. Coating of Silicon Carbide Surface with Polymers and Investigation of its Material Properties

    OpenAIRE

    Güngör, Öykü; Uyanık, Nurseli

    2014-01-01

    Polystyrene is one of commercial polymers with versatile usage. In order to improve some properties of PS, some additives can be used and production of blends and composites are common as well. These methods, due to the shorter time needed than developing a new material, are preferred. Silicon carbide (SiC) is a semiconductor material with high oxidation resistance and with high thermal conductivity.  In this study, SiC nanoparticles, which are not compatible with PS, are coated with PS to re...

  12. Polymerization of cardanol using soybean peroxidase and its potential application as anti-biofilm coating material.

    Science.gov (United States)

    Kim, Yong Hwan; An, Eun Suk; Song, Bong Keun; Kim, Dong Shik; Chelikani, Rahul

    2003-09-01

    Soybean peroxidase (20 mg) catalyzed the oxidative polymerization of cardanol in 2-propanol/phospate buffer solution (25 ml, 1:1 v/v) and yielded 62% polycardanol over 6 h. Cobalt naphthenate (0.5% w/w) catalyzed the crosslinking of polycardanol and the final hardness of crosslinked polycardanol film exceeded 9 H scale as pencil scratch hardness, which shows a high potential as a commercial coating material. In addition, it showed an excellent anti-biofouling activity to Pseudomonas fluorescens compared to other polymeric materials such as polypropylene. PMID:14571976

  13. The biomedical application and corrosion properties of implanted materials with protective coatings

    International Nuclear Information System (INIS)

    For purposes of orthopedic and trauma surgery operations various stems, spokes, screws, pins made of pure metal and alloys are widely applied. As a result of metal materials using the problems of the patient organism protection from deleterious effects of metallogenic and electrochemical reactions, metal toxicosis - complications, connected with metal ion effect on organism, arise. The present study is devoted to realization of the comparative analysis of corrosion properties of modern implanted materials and coatings in simulated body fluid and their long-term behaviour in animate organism

  14. MICRO-MATERIAL HANDLING, EMPLOYING E-BEAM COATINGS OF COPPER AND SILVER

    OpenAIRE

    S. Matope; A.F. van der Merwe; Y.I. Rabinovich

    2012-01-01

    ENGLISH ABSTRACT: Van der Waals forces and other adhesive forces impose great challenges on micro-material handling. Mechanical grippers fail to release micro-parts reliably because of them. This paper explores how the problematic Van der Waals forces may be used for micro-material handling purposes using surface roughnesses generated by e-beam coatings of copper and silver on silicon. An atomic force microscope, model Asylum MFP 3 D-Bio with version 6.22A software, was used to measu...

  15. Current technology for development of low solar absorptance/high emittance coatings. [spacecraft thermal control surface materials

    Science.gov (United States)

    Gilligan, J. E.; Harada, Y.; Gates, D. W.

    1974-01-01

    A comprehensive program to develop low solar absorptance/high emittance coatings, to be successful, must coordinate basic materials preparation, coatings technology, environmental simulation, production, and flight-test evaluation. The prime criteria for 'white' thermal-control coatings are low solar absorptance and, most importantly, solar-absorptance stability. Many variables affect the solar absorptance and its stability. These effects must be discerned and evaluated. The factors involved, however, are not entirely independent; accordingly, the present paper emphasizes the major variables, the relationships among them, and how important they are in improving the properties and performance of the coatings.

  16. Phase Transformation on Interface between NiCoCrAlY Bond Coat and Substrate and Study of Thermal Barrier Coating as High Temperature Material

    Directory of Open Access Journals (Sweden)

    H Purwaningsih

    2010-11-01

    Full Text Available Thermal Barrier Coating material consists of Yttria stabilized zirconia (YSZ as a top coat and bond coat NiCoCrAlY. It is used to protect NiCoCrAlY super alloys for high temperature applications due to its corrosion resistant properties and resistance to thermal fatigue. In the present study, top coat and bond coat were deposited on the substrate using plasma spraying process, followed by thermal fatigue treatment, by heating up to 900 oC for 5 hours and cooling down to 25 oC for 15 minutes, this process called one cycle. Thermal fatigue was conducted until the material failure. Electron microscope was used to analysis microstructure of the sample after thermal fatigue and x-ray diffraction to analysis phase changed on the interface between bond coat and substrate. The result showed that the specimens failed at 42 cycles (210 hours. A new phase identified as Ni3Al was formed.

  17. Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications

    Science.gov (United States)

    Seals, Roland D.

    2015-08-18

    The present disclosure relates generally to hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications. More specifically, the present disclosure relates to hardface coatings that include a network of titanium monoboride (TiB) needles or whiskers in a matrix, which are formed from titanium (Ti) and titanium diboride (TiB.sub.2) precursors by reactions enabled by the inherent energy provided by the process heat associated with coating deposition and, optionally, coating post-heat treatment. These hardface coatings are pyrophoric, thereby generating further reaction energy internally, and may be applied in a functionally graded manner. The hardface coatings may be deposited in the presence of a number of fluxing agents, beta stabilizers, densification aids, diffusional aids, and multimode particle size distributions to further enhance their performance characteristics.

  18. Plasma technology for creation of protective and decorative coatings for building materials

    Science.gov (United States)

    Volokitin, Oleg; Volokitin, Gennady; Skripnikova, Nelli; Shekhovtsov, Valentin

    2016-01-01

    An experimental setup is developed to create a protective and decorative coating on the surface of building materials. Experimental study is conducted to create a protective coating using low-temperature plasma. The properties of the surface before and after the plasma treatment are investigated. At the increase of the plasma generator power (56-75 kW) the rate of the vitreous coating formation is significantly reduced, and the destruction of hydrous calcium silicates occurs at a lower depth (0.5-2.0 mm). In this case, the adhesive strength increases up to 2.34 MPa. At the increase of the exposure time at 56 kW (0.045 m/s melting rate) plasma generation power, the melt formation is observed not only at the surface but at depth of 0.7 mm and deeper. Also, a deep degradation of the material occurs and the adhesive strength decreases. The optimal heat flux density of plasma generator was established at 1.8-2.6 . 106 W/m2, which allows the achievement of the uniform layer formation on the wood surface that preserves its natural pattern visible.

  19. Materials Analysis of CED Nb Films Being Coated on Bulk Nb Single Cell SRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin; Reece, Charles; Palczewski, Ari; Ciovati, Gianluigi; Krishnan, Mahadevan; James, Colt; Irfan, Irfan

    2013-09-01

    This study is an on-going research on depositing a Nb film on the internal wall of bulk Nb single cell SRF cavities, via a cathodic arc Nb plasma ions source, an coaxial energetic condensation (CED) facility at AASC company. The motivation is to firstly create a homoepitaxy-like Nb/Nb film in a scale of a ~1.5GHz RF single cell cavity. Next, through SRF measurement and materials analysis, it might reveal the baseline properties of the CED-type homoepitaxy Nb films. Literally, a top-surface layer of Nb films which sustains SRF function, always grows up in homo-epitaxy mode, on top of a Nb nucleation layer. Homo-epitaxy growth of Nb must be the final stage (a crystal thickening process) of any coatings of Nb film on alternative cavity structure materials. Such knowledge of Nb-Nb homo-epitaxy is useful to create future realistic SRF cavity film coatings, such as hetero-epitaxy Nb/Cu Films, or template-layer-mitigated Nb films. One large-grain, and three fine grain bulk Nb cavities were coated. They went through cryogenic RF measurement. Preliminary results show that the Q0 of a Nb film could be as same as the pre-coated bulk Nb surface (which received a chemically-buffered polishing plus a light electro-polishing); but quality factor of two tested cavities dropped quickly. We are investigating if the severe Q-slope is caused by hydrogen incorporation before deposition, or is determined by some structural defects during Nb film growth.

  20. Structure of multicomponent and gradient PVD coatings deposited on sintered tool materials

    Directory of Open Access Journals (Sweden)

    J. Mikuła

    2007-01-01

    Full Text Available Purpose: Investigation of the Al2O3+TiC type oxide tool ceramics and cemented carbides with themulticomponent (Ti,AlN and gradient Ti(C,N coatings deposited with use of the cathodic arc evaporationCAE-PVD method.Design/methodology/approach: SEM, confocal microscopy, X-ray qualitative microanalysis of elements,X-ray qualitative phase analysis.Findings: It was stated that investigated materials have a dense, compact structure and their fracture surfacetopography attests their high brittleness, characteristic especially for the oxide ceramic materials. The coatingswere put down uniformly onto the investigated substrate materials. They have a columnar, fine-graded structure.Practical implications: Pro-ecological dry cutting processes without the use of the cutting fluids and in the„Near-Net-Shape” technology.Originality/value: Application of multicomponent (Ti,AlN and gradient Ti(C,N types of coatings ontosintered tool materials in order to improve cutting properties of the tools.

  1. Method of Forming a Composite Coating with Particle Materials that are Readily Dispersed in a Sprayable Polyimide Solution

    Science.gov (United States)

    Tran, Sang Q. (Inventor)

    1998-01-01

    A method for creating a composite form of coating from a sprayable solution of soluble polyimides and particle materials that are uniformly dispersed within the solution is described. The coating is formed by adding a soluble polyimide to a solvent, then stirring particle materials into the solution. The composite solution is sprayed onto a substrate and heated in an oven for a period of time in order to partially remove the solvent. The process may be repeated until the desired thickness or characteristic of the coating is obtained. The polyimide is then heated to at least 495 F, so that it is no longer soluble.

  2. Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces

    Science.gov (United States)

    Lamont-Friedrich, Stephanie J.; Michl, Thomas D.; Giles, Carla; Griesser, Hans J.; Coad, Bryan R.

    2016-07-01

    The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata. Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others.

  3. MICRO-MATERIAL HANDLING, EMPLOYING E-BEAM COATINGS OF COPPER AND SILVER

    Directory of Open Access Journals (Sweden)

    S. Matope

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Van der Waals forces and other adhesive forces impose great challenges on micro-material handling. Mechanical grippers fail to release micro-parts reliably because of them. This paper explores how the problematic Van der Waals forces may be used for micro-material handling purposes using surface roughnesses generated by e-beam coatings of copper and silver on silicon. An atomic force microscope, model Asylum MFP 3 D-Bio with version 6.22A software, was used to measure the forces exerted by the surfaces. A silver coating of 1.41 nm rms surface roughness value is found to exert the highest Van der Waals force, followed by a copper coating of 2.72 nm rms; a copper coating of 217 nm rms exerts the least force. This implies that, in a reliable micro-material handling system, these coatings are suitable for the interactive surfaces of the placement position, micro-gripper, and the pick-up position respectively.

    AFRIKAANSE OPSOMMING: Van der Waalskragte en ander bindingskragte hou steeds groot uitdagings in vir mikromateriaalhantering. As gevolg van hierdie bindingskragte stel meganiese gryptoerusting nie die mikro-partikels vry nie. Hierdie artikel ondersoek hoe die Van der Waalskragte gebruik kan word vir die mikro-materiaalhanteringsproses deur die gebruik van oppervlakgrofheid gegenereer deur ’n e-straal-laagbedekking van koper en silwer op silikon. ’n Atoomkrag mikroskoop, model Asylum MFP 3 D-Bio met weergawe 6.22A programmatuur, is gebruik om die kragte deur die oppervlakke uitgeoefen te meet. Daar is gevind dat ’n silwer laagbedekking met ’n oppervlakgrofheid van 1.41nm wortel-gemiddelde-kwadraat (wgk die hoogste Van der Waalskrag uitoefen, gevolg deur ’n koper laagbedekking met ’n oppervlakgrofheid van 2.72nm wgk; ’n koper laagbedekking met ’n grofheid van 217nm wgk het die kleinste krag uitgeoefen. Dit impliseer dat, vir ’n betroubare mikro-materiaalhanteringsisteem, hierdie laagbedekkings geskik

  4. CHARACTERISTICS ANALYSIS OF THE STUDY MATERIALS REQUIRED FOR MEN COAT PRODUCT

    Directory of Open Access Journals (Sweden)

    OANA Ioan Pavel

    2014-05-01

    Full Text Available Garments is a means of artistic creation with not only the function of defense of the body and regulating physiological functions, but also by its beautifying. In order to achieve men coat product, we have the possibility to choose the material from a group of three materials that are completely different of yarn contents. After comparing measurements made for three types o f materials were found in the composition of the material has a higher percentage of wool meets most conditions necessary for wearer comfort so is the material most commonly used to make the clothing for winter season. After comparing measurements made for three types of materials were found in the composition of the material has a higher percentage of wool meets most conditions necessary for wearer comfort so is the material most commonly used to make the clothing for winter season. The difference between the material properties and material transformation phases in the product have been presented in order to emphasize the need for close co-working between professionals involved in making a fashion product from yarn, yarn, fabric and garment finishing product. The types of materials used for making winter outer wear products greatly influences the design and technological design processes in their turn textiles are directly dependent on the characteristics by their structure. The difference between the material properties and material transformation phases in the product have been presented in order to emphasize the need for close co-working between professionals involved in making a fashion product from yarn, yarn, fabric and garment finishing product.

  5. Light shift averaging in paraffin-coated alkali vapor cells

    CERN Document Server

    Zhivun, Elena; Sudyka, Julia; Pustelny, Szymon; Patton, Brian; Budker, Dmitry

    2015-01-01

    Light shifts are an important source of noise and systematics in optically pumped magnetometers. We demonstrate that the long spin coherence time in paraffin-coated cells leads to spatial averaging of the light shifts over the entire cell volume. This renders the averaged light shift independent, under certain approximations, of the light-intensity distribution within the sensor cell. These results and the underlying mechanism can be extended to other spatially varying phenomena in anti-relaxation-coated cells with long coherence times.

  6. Thermal testing of TiC and TiN coating materials for tokamak limiters and walls

    International Nuclear Information System (INIS)

    Thermal testing of coating materials for tokamak limiters and walls was carried out by means of an electron beam equipment. The materials tested are TiC coated onto POCO graphite and TiC and TiN onto Mo by chemical vapor deposition. All the coating layers survived without exfoliation under 80% of the beam power which eroded the substrate material. This shows good thermal and mechanical contact between coatings and substrates. Allowable heat loads for upset conditions such as plasma disruption were estimated to be about 3.5 kW/cm2 in uniform heating during 1 s for the three coating materials. The heat load limits in usual tokamak operation were also estimated in view of plasma contamination by limiter material evaporation. The limits in uniform heating for 1 s are about 3 kW/cm2 for TiC on Mo, 2.5 kW/cm2 for TiN on Mo, and 2 kW/cm2 for TiC on POCO graphite. The TiC coating on Mo thus appears to be the most interesting choice within the framework of this study. (author)

  7. Effects of depositing temperature and film thickness on residual stress of TiN coated materials

    International Nuclear Information System (INIS)

    Large residual stress is formed in the coating of ceramic material deposited on a metal substrate because of difference in thermal expansion coefficient between the film and the substrate and of some other reasons. The residual stress greatly influences the mechanical properties of the film and the coated material. Therefore, the residual stress is one of the most important factors on evaluating the strength of coated materials. In the present investigation, we studied the residual stress in TiN film deposited on a substrate of spring steel by a multi-arc method as a function of depositing temperature and film thickness. The residual stress in the substrate layer near the interface was also investigated. The TiN film exhibited highly {111}-orientation, i.e., [111] of TiN crystals orients parallel to the surface normal of the substrate within ± 10 degrees. The residual stress in the TiN film could be evaluated by the two-exposure method with getting the lattice strains for 222 diffraction at ψ=0deg and 70.5deg determined by the relation of crystallographic orientation. The results revealed the compressive residual stress of (-5.5)-(-3.5) GPa which is very large compared with the thermal residual stress due to the thermal strain mismatch between the film and the substrate. The residual stress value was greatly depended on the depositing temperature ; it decreased with increasing temperature, and thickness of TiN film and increased with increasing film thickness. The residual stress in the substrate was compressive and below -30 MPa probably due to the implantation of Ti ions into a shallow layer of the substrate. (author)

  8. Characterization and antimicrobial performance of nano silver coatings on leather materials

    Directory of Open Access Journals (Sweden)

    N. Lkhagvajav

    2015-03-01

    Full Text Available In this study, the characterization and the antimicrobial properties of nano silver (nAg coating on leather were investigated. For this purpose, turbidity, viscosity and pH of nAg solutions prepared by the sol-gel method were measured. The formation of films from these solutions was characterized according to temperature by Differential Thermal Analysis-Thermogravimetry (DTA-TG equipment. The surface morphology of treated leathers was observed using Scanning Electron Microscopy (SEM. The antimicrobial performance of nAg coatings on leather materials to the test microorganisms as Escherichia coli, Staphylococcus aureus, Candida albicans and Aspergillius niger was evaluated by the application of qualitative (Agar overlay method and quantitative (percentage of microbial reduction tests. According to qualitative test results it was found that 20 μg/cm2 and higher concentrations of nAg on the leather samples were effective against all microorganisms tested. Moreover, quantitative test results showed that leather samples treated with 20 μg/cm2 of nAg demonstrated the highest antibacterial activity against E. coli with 99.25% bacterium removal, whereas a 10 μg/cm2 concentration of nAg on leather was enough to exhibit the excellent percentage reduction against S. aureus of 99.91%. The results are promising for the use of colloidal nano silver solution on lining leather as antimicrobial coating.

  9. Zeolite and Hucalcia as Coating Material for Improving Quality of NPK Fertilizer in Costal Sandy Soil

    Directory of Open Access Journals (Sweden)

    Sulakhudin

    2011-05-01

    Full Text Available he growth and yield of plants are mainly a function of the quantity of fertilizer and water. In coastal sandy soil, nutrient losses and dry soils are seriously problems. The objective of the research was to study effect of zeolite and hucalci concentrations as NPK coating materials on NPK qualities i.e. water adsorption and release of N, P and K. The research used a coastal sandy soil as media. It was conducted in a laboratory of Soil Science Department, Gadjah Mada University from July to August 2009. Experimental design used was a factorial in a completely randomized design. The first factor was hucalci concentration, consisted of 10% (H1, 20% (H2, and 30% (H3. The second factor was zeolite concentration, consisted of 25% (Z1, 50% (Z2, 75% (Z3, and 100% (Z4. NPK fertilizer (without coating used as a control. The results showed that hucalci and zeolite had a capability to increase water adsorption and to retard the release of N, P, K. The coated NPK with hucalci 30% and zeolite 100% had the highest quality in water absorption, water retention and release of nutrients.

  10. Selection of the implant and coating materials for optimized performance by means of nanoindentation.

    Science.gov (United States)

    Saber-Samandari, Saeed; Berndt, Christopher C; Gross, Karlis A

    2011-02-01

    Mechanical compatibility between a coating and a substrate is important for the longevity of implant materials. While previous studies have utilized the entire coating for analysis of mechanical compatibility of the surface, this study focuses on the nanoindentation of a uniformly thermally sprayed splat. Hydroxyapatite was thermally sprayed to create a homogeneous deposit density, as confirmed by microRaman spectroscopy, of amorphous calcium phosphate. Substrates were commercially pure Ti, Ti-6Al-4V, Co-Cr alloy and stainless steel. Nanoindentation revealed that splats deposited on the different metals have similar hardness and elastic modulus values of 4.2 ± 0.2 GPa and 80 ± 3 GPa, respectively. The mechanical properties were affected by the substrate type more than residual stresses, which were found to be low. It is recommended that amorphous calcium phosphate is annealed to relieve the quenching stress or that appropriate temperature histories are chosen to relax the stress created in cooling the coating assembly. PMID:20883836

  11. Polysaccharide-coated thermosets for orthopedic applications: from material characterization to in vivo tests.

    Science.gov (United States)

    Travan, Andrea; Marsich, Eleonora; Donati, Ivan; Foulc, Marie-Pierre; Moritz, Niko; Aro, Hannu T; Paoletti, Sergio

    2012-05-14

    The long-term stability and success of orthopedic implants depend on the osseointegration process, which is strongly influenced by the biomaterial surface. A promising approach to enhance implant integration involves the modification of the surface of the implant by means of polymers that mimic the natural components of the extracellular matrix, for example, polysaccharides. In this study, methacrylate thermosets (bisphenol A glycidylmethacrylate/triethyleneglycol dimethacrylate), a widely used composition for orthopedic and dental applications, have been coated by electrostatic deposition of a bioactive chitosan-derivative. This polysaccharide was shown to induce osteoblasts aggregation in vitro, to stimulate cell proliferation and to enhance alkaline phosphatase activity. The coating deposition was studied by analyzing the effect of pH and ionic strength on the grafting of the polysaccharide. Contact angle studies show that the functionalized material displays a higher hydrophilic character owing to the increase of surface polar groups. The mechanical properties of the coating were evaluated by nanoindentation studies which point to higher values of indentation hardness and modulus (E) of the polysaccharide surface layer, while the influence of cyclic stress on the construct was assessed by fatigue tests. Finally, in vivo tests in minipigs showed that the polysaccharide-based implant showed a good biocompatibility and an ability for osseointegration at least similar to that of the titanium Ti6Al4V alloy with roughened surface. PMID:22509800

  12. Liquid impact erosion mechanism and theoretical impact stress analysis in TiN-coated steam turbine blade materials

    International Nuclear Information System (INIS)

    Coating of TiN film was done by reactive magnetron sputter ion plating to improve the liquid impact erosion resistance of steam turbine blade materials, 12Cr steel and Stellite 6B, for nuclear power plant application. TiN-coated blade materials were initially deformed with depressions due to plastic deformation of the ductile substrate. The increase in the curvature in the depressions induced stress concentration with increasing number of impacts, followed by circumferential fracture of the TiN coating due to the circular propagation of cracks. The liquid impact erosion resistance of the blade materials was greatly improved by TiN coating done with the optimum ion plating condition. Damage decreased with increasing TiN coating thickness. According to the theoretical analysis of stresses generated by liquid impact, TiN coating alleviated the impact stress of 12Cr steel and Stellite 6B due to stress attenuation and stress wave reactions such as reflection and transmission at the coating-substrate interface

  13. INVESTIGATION INTO THE MIGRATION POTENTIAL OF COATING MATERIALS FROM COOKWARE PRODUCTS

    OpenAIRE

    Bradley, Emma

    2007-01-01

    Abstract Twenty-six non-stick coated cookware samples were purchased covering a variety of products, coating/metal types and food contact applications. The polymer coatings were identified to be polyethersulphone, polytetrafluroethylene (PTFE), bisphenol A / epichlorohydrin and one coating for which no good match was obtained with infra-red library spectra. All of the products intended for stove-top use had a polymer coating containing PTFE. The coatings were analysed as purc...

  14. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    Directory of Open Access Journals (Sweden)

    Richard W. Ziolkowski

    2011-09-01

    Full Text Available Electromagnetic properties of cylindrical active coated nano-particles comprised of a silica nano-cylinder core layered with a plasmonic concentric nano-shell are investigated for potential nano-sensor applications. Particular attention is devoted to the near-field properties of these particles, as well as to their far-field radiation characteristics, in the presence of an electric or a magnetic line source. A constant frequency canonical gain model is used to account for the gain introduced in the dielectric part of the nano-particle, whereas three different plasmonic materials (silver, gold, and copper are employed and compared for the nano-shell layers.

  15. Zeolite and Hucalcia as Coating Material for Improving Quality of NPK Fertilizer in Costal Sandy Soil

    OpenAIRE

    Sulakhudin; Abdul Syukur; Bambang Hendro Sunarminto

    2011-01-01

    he growth and yield of plants are mainly a function of the quantity of fertilizer and water. In coastal sandy soil, nutrient losses and dry soils are seriously problems. The objective of the research was to study effect of zeolite and hucalci concentrations as NPK coating materials on NPK qualities i.e. water adsorption and release of N, P and K. The research used a coastal sandy soil as media. It was conducted in a laboratory of Soil Science Department, Gadjah Mada University from July to A...

  16. Carbon-coated mesoporous SnO2 nanospheres as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    In this paper mesoporous SnO2 nanospheres with an average diameter of about 83 nm, composed of many tiny primary particles (∼10 nm) and holes, are synthesized on a large scale by a simple hydrothermal route. The as-prepared mesoporous SnO2 nanospheres were uniformly coated with carbon by a further hydrothermal treatment in glucose aqueous solution. As anode materials for lithium-ion batteries, the core–shell SnO2/C nanocomposites exhibit a markedly improved cycling performance.

  17. Effect of hydrophobic paints coating for tritium reduction in concrete materials

    International Nuclear Information System (INIS)

    Highlights: ► Effects of hydrophobic paint coating in tritium transport are investigated. ► Two kinds of paints, acrylic-silicon resin and epoxy resin are used. ► The hydrophobic paints are effective to reduce tritium permeation. ► The effect of tritium reduction of epoxy paint is higher than that of silicon. - Abstract: The effects of hydrophobic paint coating on a concrete material of cement paste on the tritium transport are investigated. The cement paste is coated with two kinds of paints, acrylic-silicon resin paint and epoxy resin paint. We investigated the amount of tritium trapped in the samples exposed to tritiated water vapor by means of sorption and release. It was found that both the hydrophobic paints could reduce effectively tritium permeation during 50 days exposure of tritiated water vapor. The effect of tritium reduction of the epoxy paint was higher than that of silicon while the amount of tritium trapped in the epoxy paint was larger than that of silicon due to difference of the structure. Based on an analysis of a diffusion model, the rate-determining step of tritium migration through cement paste coated with the paints is diffusion through the paints respectively. It was found that tritium was easy to penetrate through silicon because there were many pores or voids in the silicon comparatively. In the case of tritium released from the epoxy paint, it is considered that tritium diffusion in epoxy is slow due to retardation by isotope exchange reaction to water included in epoxy paint.

  18. Comparison of Different Materials and Proximal Coatings Used for Femoral Components in One-Stage Bilateral Total Hip Arthroplasty.

    Science.gov (United States)

    Miyatake, Kazumasa; Jinno, Tetsuya; Koga, Daisuke; Yamauchi, Yuki; Muneta, Takeshi; Okawa, Atsushi

    2015-12-01

    To evaluate the mid-term effects of different materials and coatings used for femoral components, we prospectively performed 21 one-stage bilateral total hip arthroplasties using 2 anatomical stems which have identical geometries, randomized to side. One stem was made of Ti6Al4V alloy and had a hydroxyapatite coating on grit-blasted surface proximally, and the other was made of TMZF™ alloy and had a proximal coating of hydroxyapatite in addition to an arc-deposited titanium surface coating. Although we found extensions of radiopaque lines to the surface of coatings of seven grit-blasted stems whereas we found none in the case of the arc-deposited titanium stems, all hips showed excellent clinical and radiological outcomes as shown by radiographs and bone mineral density at the final follow-up, average 5.5 years postoperatively. PMID:26190568

  19. Self-healing Action of Permeable Crystalline Coating on Pores and Cracks in Cement-based Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Guiming; YU Jianying

    2005-01-01

    The self-healing action of a permeable crystalline coating on the porous mortar was investigated by two times impermeability test. Moreover, the self-healing mechanism of cement-based materials with the permeable crystalline coating was studied by SEM. The results indicate that the permeable crystalline coating not only seals the pores and cracks in mortar during its curing process, but also heals the permeable pathway caused by first impermeability test or cracks produced by freeze-thaw cycles. Therefore, cement-based materials can be improved by the permeable crystalline coating for the self-healing function. SEM images prove that the self-healing function is realized by generating a great quantity of non-soluble dendritic crystalline within the pores and cracks, which prevents the penetration of water and other liquids.

  20. Improvement of Ti-plasma coating on Ni-Ti shape memory alloy applying to implant materials and its evaluation

    International Nuclear Information System (INIS)

    Utilizing of Ni-Ti shape memory alloy for implant materials has been world-widely studied. it is, however, known that Ni-Ti alloy is easily attacked by chloride ion contained in body liquid. To prevent Ni dissolution, the authors tried to coat the alloy surface with titanium metal by means of plasma-spray coating method. The plasma coating films resulted in rather accelerating pitting corrosion because of their high porosity. Therefore, sealing of the porous films was required. In order to solve this problem and satisfy prolonged lifetime in the body, the authors tried to use the vacuum evaporation technique of titanium metal. Two types of Ti vacuum evaporation procedures were employed. The one was to cover a thin film on Ni-Ti alloy surface prior to massive Ti plasma spray coating. The other was to first coat plasma spray films on Ni-Ti alloy and then to cover them with vacuum evaporation films of Ti. Protective ability against pitting corrosion was examined by electrochemical polarization measurement in physiological solution and the coating films were characterized by microscopic and SEM observation and EPMA analysis. Vacuum evaporation thin films could not protect Ni-Ti alloy from pitting corrosion. In the case of plasma spray coating over the Ti vacuum evaporation thin film, the substrate Ni-Ti alloy could not be better protected. On the contrary, vacuum evaporation of Ti over the porous plasma spray coating layer remarkably improved corrosion protective performance

  1. Electrochemical performance of SiO2-coated LiFePO4 cathode materials for lithium ion battery

    International Nuclear Information System (INIS)

    Research highlights: → The surface of LiFePO4/C particles was coated with SiO2 via a sol-gel method. → The existence of SiO2 coating effectively enhanced the discharge capacity, reduced capacity fading at high temperature and alleviated the cell impedance. → The SiO2 coating played a regulatory role for Li-ion inserting the lattice, by increasing the order of lithium ion intercalating the outer lattice of the particle. - Abstract: The surface of LiFePO4/C particles was coated with SiO2 via a sol-gel method, and the electrochemical performance of SiO2-coated LiFePO4 cathode materials at room temperature and 55 deg. C was investigated. Compared with pristine LiFePO4, the structure of LiFePO4 with SiO2 coating had no change, the existence of SiO2 coating effectively enhanced the cycling capacity, reduced capacity fading at high temperature and alleviated the cell impedance. The SiO2 coating played a regulatory role for Li-ion inserting the lattice, by increasing the order of lithium ion intercalating the outer lattice of the particle. As a consequence, capacity retention improves significantly.

  2. Polyethylene Maleate Copolyesters as Coating Materials for Piezoelectric Quartz Crystal-based Chemical Sensors

    Directory of Open Access Journals (Sweden)

    D. C. Gupta

    2005-10-01

    Full Text Available Polyethylene maleate (PEM was synthesised by direct polycondensation of maleic anhydride and ethylene glycol in toluene under reflux usingp-toluene sulphonic acid as a catalyst. Structure of PEM was further modified by varying nature of diols and acid components, chain length of glycols, incorporation of aromatic and fluorine groups in the chain. Formation of PEM was monitored by gas chromatography. The parameters like degree of polymerisation, number average molecular weight (Mn, and weight average molecular weight (Mw were calculated from the extent of reaction and stoichiometric ratio of the reactants. The number average molecular weight was also determined using Knauer vapour pressure osmometer. Cohesive energy, volume, and solubility parameters of PEM-based copolyesters were calculated by group contribution method. These PEM-based copolyesters’ have been evaluated as sorbent-coating materials for the detection of organ0 phosphorus(OPcompo using dimethylmethylphosphonate (DMMP as model compound and piezoelectric crystal detector. PEMbisphenol A is found to be the most sensitive and potential coating material for the detection of OP compounds using piezoelectric crystal detector. Potential PEM-based copolyesters have been characterised by viscosity, infrared spectroscopy, NMR spectroscopy, Mn and thermal stability.

  3. Enhancing stabilities of lipase by enzyme aggregate coating immobilized onto ionic liquid modified mesoporous materials

    Science.gov (United States)

    Zou, Bin; Song, Chunyan; Xu, Xiaping; Xia, Jiaojiao; Huo, Shuhao; Cui, Fengjie

    2014-08-01

    Mesoporous material SBA-15 as the matrix and hydrophilic methyl imidazolium ionic liquids [MSiIM]+BF4- as modifier were involved in preparing ionic liquid modified materials as enzyme carriers through after-grafting silane coupling reaction. The method of enzyme aggregates coating was firstly used to immobilize porcine pancreatic lipase (PPL) onto ionic liquid modified SBA-15. Characterization before and after modification and immobilization were conducted using infrared spectroscopy (FT-IR), differential thermal-thermal analysis (DTA-TG) and N2 adsorption-desorption method (BET). The results indicated that the ordering degree of SBA-15 declined after ionic liquid modification, but mesoporous structure remained. After enzyme immobilization, pore size and specific surface area of carrier became smaller. The cross-linking agent amount, reaction temperature and pH were optimized in this paper. The result demonstrated that the initial activity of enzyme was raised from 35% to 53% after five times recycle by enzyme aggregate coating. 74% of the original activity remained after 25 days storage.

  4. Study on the Tribological Behaviors of Different PEEK Composite Coatings for Use as Artificial Cervical Disk Materials

    Science.gov (United States)

    Song, Jian; Liao, Zhenhua; Wang, Song; Liu, Yuhong; Liu, Weiqiang; Tyagi, Rajnesh

    2016-01-01

    Poly(ether-ether-ketone) (PEEK) is a type of biomaterial which may be used for modifying the surface of materials used in implants. Hence, in the present investigation, the potentiality of PEEK and its composites coatings has been explored for improving the friction and wear behavior of the Ti6Al4V to be used for cervical disks. The structural characteristics, micro-hardness, friction, and wear characteristics of PEEK/Al2O3 and PEEK/SiO2 composite coatings have been investigated and compared with pure PEEK coating and bare titanium alloy sample. According to the XRD analysis results, these coated samples were mainly orthorhombic crystalline form. The contact angle values of PEEK and its composite coatings were higher, while micro-hardness values of these samples decreased significantly. The thickness values of the three coated samples were all above 70 μm on average. The average friction coefficients with a counterface of ZrO2 ball decreased significantly, especially under NCS (newborn calf serum) lubricated condition. After comprehensive evaluation, the PEEK/Al2O3 coating demonstrated optimum tribological properties and could be applied as bearing materials for artificial cervical disk.

  5. Preparation and Characterization of Carbon Coated Silicon Nanoparticle as Anode Material for Li-ion Batteries

    Institute of Scientific and Technical Information of China (English)

    T. Zhancg; L.J. Fu; J. Gao; Y. P. Wu; H.Q. Wu

    2005-01-01

    @@ 1Introduction Silicon has been regarded as one of the most promising anode materials for Li-ion batteries. Its theoretical capacity (4 000 mAh/g) is much higher than that of the commercialized graphite (372 mAh/g)[1]. However,the cycle performance of silicon is poor due to the severe volume expansion and shrinkage during Li+ insertion/extraction which results in pulverization of Si particles, eventually losing its Li+ storage ability[2]. To solve this problem, nanosized Si particles were utilized and achieved a partial improvement by reducing the absolute volume change. Nevertheless, a new problem was encountered with nanosized material that small Si particles were aggregated to be larger one during Li+ insertion/extraction, and then pulverized again[3]. In this work, we have succeeded to improve the cycle performance of nanosized Si particles by synthesis of carbon coated silicon nanoparticle.

  6. Material Analysis of Coated Siliconized Silicon Carbide (SiSiC) Honeycomb Structures for Thermochemical Hydrogen Production

    OpenAIRE

    Neises-von Puttkamer, Martina; Simon, Heike; Schmücker, Martin; Roeb, Martin; Sattler, Christian; Pitz-Paal, Robert

    2013-01-01

    In the present work, thermochemical water splitting with siliconized silicon carbide (SiSiC) honeycombs coated with a zinc ferrite redox material was investigated. The small scale coated monoliths were tested in a laboratory test-rig and characterized by X-ray diffractometry (XRD) and Scanning Electron Microscopy (SEM) with corresponding micro analysis after testing in order to characterize the changes in morphology and composition. Comparison of several treated monoliths revealed the formati...

  7. High temperature corrosion in chloridizing atmospheres: development of material quasi-stability diagrams and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Doublet, S.; Schuetze, M. [Karl-Winnacker-Institut der DECHEMA e.V., Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany)

    2004-07-01

    Chlorine gas is widely encountered in chemical industries, e. g. in waste incinerators and plastic/polymer decomposition mills. The presence of chlorine may significantly reduce the life-time of the components. Although metallic materials have been widely used under such conditions there is still a need for data on the role of the different alloying elements in commercial alloys. The purpose of this work is to produce a clear picture of which alloying elements play a detrimental role and which elements are beneficial. These results can be used as a tool for general assessment of metallic alloys with regard to their performance in chloridizing high temperature environments. A previous study has already been performed in oxidizing-chloridizing atmospheres and led to the elaboration of material quasi-stability diagrams. As a follow-up the present work has been performed in reducing-chloridizing atmospheres in order to validate these diagrams at low partial pressures of oxygen. The behaviour of 9 commercial materials where the content of the major alloying elements was varied in a systematic manner was investigated in reducing-chloridizing atmospheres (in Ar containing up to 2 vol.% Cl{sub 2} and down to 1 ppm O{sub 2}) at 800 deg. C. As the thermodynamical approach to corrosion in such atmospheres could not explain all the phenomena which occur, kinetics calculations i.e. diffusion calculations were carried out. Pack cementation and High Velocity Oxy-Fuel (HVOF) coatings were also developed from the best alloying elements previously found by the calculations and the corrosion experiments. Corrosion tests on the coated materials were then performed in the same conditions as the commercial alloys. (authors)

  8. Mechanical properties of chemically bonded sand core materials dipped in sol-gel coating impregnated with filter

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat

    2012-01-01

    A novel sol-gel coating impregnated with filter dust was applied on chemically bonded sand core materials by dipping. After curing, the strengths of the core materials were measured under uniaxial loading using a new strength testing machine (STM). The STM presents the loading history as a force...

  9. Carbon fiber CVD coating by carbon nanostructured for space materials protection against atomic oxygen

    Science.gov (United States)

    Pastore, Roberto; Bueno Morles, Ramon; Micheli, Davide

    2016-07-01

    In recent years, the emphasis in space research has been shifting from space exploration to commercialization of space. In order to utilize space for commercial purposes it is necessary to understand the low earth orbit (LEO) space environment where most of the activities will be carried out. The studies on the LEO environment are mainly focused towards understanding the effect of atomic oxygen (AO) on spacecraft materials. In the first few shuttle flights, materials looked frosty because they were actually being eroded and textured: AO reacts with organic materials on spacecraft exteriors, gradually damaging them. When a spacecraft travel in LEO (where crewed vehicles and the International Space Station fly), the AO formed from the residual atmosphere can react with the spacecraft surfaces, causing damage to the vehicle. Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The major degradation effects in polymers are due to their exposure to atomic oxygen, vacuum ultraviolet and synergistic effects, which result in different damaging effects by modification of the polymer's chemical properties. In hydrocarbon containing polymers the main AO effect is the surface erosion via chemical reactions and the release of volatile reaction products associated with the mass loss. The application of a thin protective coating to the base materials is one of the most commonly used methods of preventing AO degradation. The purpose is to provide a barrier between base material and AO environment or, in some cases, to alter AO reactions to inhibit its diffusion. The effectiveness of a coating depends on its continuity, porosity, degree of

  10. Application of High Temperature Corrosion-Resistant Materials and Coatings Under Severe Corrosive Environment in Waste-to-Energy Boilers

    Science.gov (United States)

    Kawahara, Yuuzou

    2007-06-01

    Corrosion-resistant materials (CRMs) and coatings are key technologies to increase power generation efficiency and reduce maintenance in waste-to-energy (WTE) plants. Corrosion environment became severe as steam temperatures have increased. The steam condition of more than 400 °C/3.9 MPa became possible in WTE boilers by using highly durable corrosion-resistant coatings, such as thermal spray of Al/80Ni20Cr alloy, HVOF-sprayed NiCrSiB alloy, Alloy 625 weld overlay for waterwall tubes and also superheater tubes. Also, the use of 310S type stainless steels and high Cr-high Mo-Ni base and high Si-Cr-Ni-Fe alloys have progressed because of a better understanding of corrosion mechanisms. Furthermore, high durability coatings using cermet and ceramic materials were applied to high temperature superheaters. This paper describes the major developments and the application of CRMs and coating technologies in the last 30 years in WTE plants, the corrosion mechanisms of alloys, the deterioration mechanisms of spray coating layers, and future subjects for the development of corrosion-resistant materials and coatings.

  11. Measurement of background gas in paraffin-coated alkali vapor cells

    CERN Document Server

    Sekiguchi, Naota

    2015-01-01

    We measured the rate of velocity-changing collisions (VCCs) between alkali atoms and background gas in buffer-gas-free anti-spin-relaxation-coated cells. The average VCC rate in paraffin-coated rubidium vapor cells prepared in this work was $1 \\times 10^{6}$ s$^{-1}$, which corresponds to $\\sim$1 mm in the mean free path of rubidium atoms. This short mean free path indicates that alkali atoms do not travel freely between the cell walls. In addition, we found that a heating process known as "ripening" increases the VCC rate, and also confirmed that ripening improves the anti-relaxation performance of the coatings.

  12. Synthesis and analysis of Mo-Si-B based coatings for high temperature oxidation protection of ceramic materials

    Science.gov (United States)

    Ritt, Patrick J.

    The use of Ni-based superalloys in turbine engines has all but been exhausted, with operating temperatures nearing the melting point of these materials. The use of ceramics in turbine engines, particularly ceramic matrix composites such as SiC/C and SiC/SiC, is of interest due to their low density and attractive mechanical properties at elevated temperatures. The same materials are also in consideration for leading edges on hypersonic vehicles. However, SiC-based composites degrade in high temperature environments with low partial pressures of oxygen due to active oxidation, as well as high temperature environments containing water or sand. The need for a protective external coating for SiC-based composites in service is obvious. To date, no coating investigated for SiC/C or SiC/SiC has been proven to be resistant to oxidation and corrosion at intermediate and high temperatures, as well as in environments deficient in oxygen. The Mo-Si-B coating shows great promise in this area, having been proven resistant to attack from oxidation at extreme temperatures, from water vapor and from calcia-magnesia-aluminosilicate (CMAS). The adaptation of the Mo-Si-B coating for ceramic materials is presented in detail here. Evaluation of the coating under a range of oxidation conditions as well as simulated re-entry conditions confirms the efficacy of the Mo-Si-B based coating as protection from catastrophic failure. The key to the oxidation and corrosion resistance is a robust external aluminoborosilica glass layer that forms and flows quickly to cover the substrate, even under the extreme simulated re-entry conditions. Suppression of active oxidation of SiC, which may occur during atmospheric re-entry and hypersonic flight trajectories, has also been examined. In order to adapt the Mo-Si-B based coating to low partial pressures of oxygen and elevated temperatures, controlled amounts of Al were added to the Mo-Si-B based coating. The resulting coating decreased the inward

  13. Silver nanoparticle toxicity is related to coating materials and disruption of sodium concentration regulation.

    Science.gov (United States)

    Kwok, Kevin W H; Dong, Wu; Marinakos, Stella M; Liu, Jie; Chilkoti, Ashutosh; Wiesner, Mark R; Chernick, Melissa; Hinton, David E

    2016-11-01

    Silver nanoparticles (AgNPs) have been increasingly commercialized and their release into the environment is imminent. Toxicity of AgNP has been studied with a wide spectrum of organisms, yet the mechanism of toxicity remains largely unknown. This study systematically compared toxicity of 10 AgNPs of different particle diameters and coatings to Japanese medaka (Oryzias latipes) larvae to understand how characteristics of AgNP relate to toxicity. Dissolution of AgNPs was largely dependent on particle size, but their aggregation behavior and toxicity were more dependent on coating materials. 96 h lethal concentration 50% (LC50) values correlated with AgNP aggregate size rather than size of individual nanoparticles. Of the AgNPs studied, the dissolved Ag concentration in the test suspensions did not account for all of the observed toxicity, indicating the role of NP-specific characteristics in resultant toxicity. Exposure to AgNP led to decrease of sodium concentration in the tissue and increased expression of Na(+)/K(+ )ATPase. Gene expression patterns also suggested that toxicity was related to disruption of sodium regulation and not to oxidative stress. PMID:27345576

  14. Fluorinated Epoxy Resins-based Sorbent Coating Materials for Quartz Piezoelectric Crystal Detector

    Directory of Open Access Journals (Sweden)

    D. C Gupta

    2004-04-01

    Full Text Available Fluorinated epoxy resins were synthesised and evaluated as sorbent coating materials for the detection of organophosphorus compounds using quartz piezoelectric crystal detector. These resins were prepared by reacting excess of epichlorohydrin with each of or in combination of fluorinated diols, ie, a, a, a', a' tetrakis (trifluoromethyl 1,3 benzene dimethanol (TTFMBD, 4,4'bis-2-hydroxy hexafluoro isopropyl biphenyl (BHHFIBP, 4,4'dihydroxyocta fluorodiphenyl (DHOFDP and 2,2,3,3,4,4 hexafluoro 1,5 pentanediol (HFPD in the presence of sodium hydroxide at reflux temperature. These polymers were extracted in organic solvents and dried. Each of these fluoroepoxy resins were coated over quartz piezoelectric crystal by solution-casting method and tested using dimethylmethyl phosphonate (DMMP as model compound. Change in the  frequency (AF of quartz piezoelectric crystal oscillator was recorded. Sensitive and potential fluorinated epoxy resins, ie, diglycidylethers (DGE of HFPD-TTFMBD (in the molar ratio 6:4 and DGE (HFPD-BHHFIBP in the molar ratio 4:6 were characterised by viscosity, number average molecular weight (Mn, epoxy equivalent, infrared spectroscopy, and thermal stability.

  15. Radiation effects on polymers for coatings on copper canisters used for the containment of radioactive materials

    International Nuclear Information System (INIS)

    The present work proposes applying polyurethane coatings as an additional barrier in the design of Canadian nuclear waste disposal containers. The goal of the present research is to investigate the physico-mechanical integrity of a natural castor oil-based polyurethane (COPU) to be used as a coating material in pH-radiation-temperature environments. As the first part to these inquiries, the present paper investigates the effect of a mixed radiation field supplied by a SLOWPOKE-2 nuclear research reactor on COPUs that differ only by their isocyanate structure. FTIR, DSC, DMA, WAXS, and MALDI are used to characterize the changes that occur as a result of radiation and to relate these changes to polymer structure and composition. The COPUs used in the present work have demonstrated sustained physico-mechanical properties up to accumulated doses of 2.0 MGy and are therefore suitable for end-uses in radiation environments such as those expected in the deep geological repository

  16. Radiation effects on polymers for coatings on copper canisters used for the containment of radioactive materials

    Science.gov (United States)

    Mortley, Aba; Bonin, H. W.; Bui, V. T.

    2008-05-01

    The present work proposes applying polyurethane coatings as an additional barrier in the design of Canadian nuclear waste disposal containers. The goal of the present research is to investigate the physico-mechanical integrity of a natural castor oil-based polyurethane (COPU) to be used as a coating material in pH-radiation-temperature environments. As the first part to these inquiries, the present paper investigates the effect of a mixed radiation field supplied by a SLOWPOKE-2 nuclear research reactor on COPUs that differ only by their isocyanate structure. FTIR, DSC, DMA, WAXS, and MALDI are used to characterize the changes that occur as a result of radiation and to relate these changes to polymer structure and composition. The COPUs used in the present work have demonstrated sustained physico-mechanical properties up to accumulated doses of 2.0 MGy and are therefore suitable for end-uses in radiation environments such as those expected in the deep geological repository.

  17. Analytical study on the suitability of using bentonite coated gravel as a landfill liner material

    International Nuclear Information System (INIS)

    This study investigates the feasibility of using bentonite coated gravel (BCG) as a liner material for waste landfills. BCG has proven to be a very effective capping material/method for the remediation of contaminated sediments in aquatic environments. The concept of BCG is similar to that of peanuts/almonds covered with chocolate; each aggregate particle has been covered with the clayey material. Laboratory tests were aimed at evaluating regulated and non-regulated factors for liner materials, i.e., permeability and strength. Tests included X-ray diffraction, methylene blue absorption, compaction, free swelling, permeability, 1D consolidation, triaxial compression and cone penetration. The compactive efforts used for this study were the reduced Proctor, standard Proctor, intermediate Proctor, modified Proctor and super modified Proctor. The compactive energy corresponding to each effort, respectively, is as follows: 355.5, 592.3, 1196.3, 2693.3, and 5386.4 kJ/m3. Results revealed that even though aggregate content represents 70% of the weight of the material, hydraulic conductivities as low as 6 x 10-10 cm/s can be achieved when proper compactive efforts are used. Compressibility is very low for this material even at low (or no) compactive efforts. Results also demonstrated how higher compactive efforts can lower the permeability of BCG; however, over-compaction creates fractures in the aggregate core of BCG that could increase permeability. Moreover, higher compactive efforts create higher swelling pressures that could compromise the performance of a barrier constructed using BCG. As a result of this study, moderate compactive efforts, i.e., intermediate Proctor or modified Proctor, are recommended for constructing a BCG barrier. Using moderate compactive efforts, very low hydraulic conductivities, good workability and good trafficability are easily attainable

  18. Bacterial polysaccharide levan as stabilizing, non-toxic and functional coating material for microelement-nanoparticles.

    Science.gov (United States)

    Bondarenko, Olesja M; Ivask, Angela; Kahru, Anne; Vija, Heiki; Titma, Tiina; Visnapuu, Meeri; Joost, Urmas; Pudova, Ksenia; Adamberg, Signe; Visnapuu, Triinu; Alamäe, Tiina

    2016-01-20

    Levan, fructose-composed biopolymer of bacterial origin, has potential in biotechnology due to its prebiotic and immunostimulatory properties. In this study levan synthesized by levansucrase from Pseudomonas syringae was thoroughly characterized and used as multifunctional biocompatible coating material for microelement-nanoparticles (NPs) of selenium, iron and cobalt. Transmission electron microscopy (TEM), hydrodynamic size measurements (DLS) and X-ray photoelectron spectroscopy (XPS) showed the interaction of levan with NPs. Levan stabilized the dispersions of NPs, decreased their toxicity and had protective effect on human intestinal cells Caco-2. In addition, levan attached to cobalt NPs remained accessible as a substrate for the colon bacteria Bacteroides thetaiotaomicron. We suggest that the combination of levan and nutritionally important microelements in the form of NPs serves as a first step towards a novel "2 in 1" approach for food supplements to provide safe and efficient delivery of microelements for humans and support beneficial gut microbiota with nutritional oligosaccharides. PMID:26572404

  19. Calcium-magnesium Aluminosilicate (CMAS) Interactions with Advanced Environmental Barrier Coating Material

    Science.gov (United States)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    Particulates, like sand and volcanic ash, threaten the development of robust environmental barrier coatings (EBCs) that protect next-generation silicon-based ceramic matrix composite (CMC) turbine engine components from harsh combustion environments during service. The siliceous particulates transform into molten glassy deposits of calcium-magnesium aluminosilicate (CMAS) when ingested by an aircraft engine operating at temperatures above 1200C. In this study, a sample of desert sand was melted into CMAS glass to evaluate high-temperature interactions between the sand glass and an advanced EBC material. Desert sand glass was added to the surface of hot-pressed EBC substrates, which were then heated in air at temperatures ranging from 1200C to 1500C. Scanning electron microscopy and X-ray energy-dispersive spectroscopy were used to evaluate microstructure and phase compositions of specimens and the CMASEBC interface after heat treatments.

  20. Core–shell-typed Ag-SiO2 nanoparticles as solar selective coating materials

    International Nuclear Information System (INIS)

    Silver (Ag) nanoparticles with typical diameter of about 50 nm have been prepared via a polyol process. The as-prepared Ag nanoparticles are well crystallized and exhibit a characteristic surface plasmon resonance (SPR) band centered at ∼423 nm. The SPR band shows a strong dependence on the sizes of Ag nanoparticles and the types of the dielectric medium. Core–shell-typed Ag-SiO2 nanoparticles have also been prepared by depositing a thin layer (∼25 nm) of silica on Ag nanoparticles. The core–shell-typed Ag-SiO2 nanoparticles show similar optical behaviors (absorption, transmission, and reflection) but enhanced stability compared to those of the Ag nanoparticles, indicating that the core–shell-typed Ag-SiO2 nanoparticles may be used as solar selective coating materials for architectural window applications.

  1. Refractory Materials for Flame Deflector Protection System Corrosion Control: Coatings Systems Literature Survey

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Sampson, Jeffrey W.; Coffman, Brekke E.; Coffman, Brekke E.; Curran, Jerome P.; Kolody, Mark R.; Whitten, Mary; Perisich, Steven; Trejo, David

    2009-01-01

    When space vehicles are launched, extreme heat, exhaust, and chemicals are produced and these form a very aggressive exposure environment at the launch complex. The facilities in the launch complex are exposed to this aggressive environment. The vehicle exhaust directly impacts the flame deflectors, making these systems very susceptible to high wear and potential failure. A project was formulated to develop or identify new materials or systems such that the wear and/or damage to the flame deflector system, as a result of the severe environmental exposure conditions during launches, can be mitigated. This report provides a survey of potential protective coatings for the refractory concrete lining on the steel base structure on the flame deflectors at Kennedy Space Center (KSC).

  2. Degradation and in vitro cell–material interaction studies on hydroxyapatite-coated biodegradable porous iron for hard tissue scaffolds

    OpenAIRE

    Nurizzati Mohd Daud; Ng Boon Sing; Abdul Hakim Yusop; Fadzilah Adibah Abdul Majid; Hendra Hermawan

    2014-01-01

    This paper describes degradation and cell–material interaction studies on hydroxyapatite (HA)-coated biodegradable porous iron proposed for hard tissue scaffolds. Porous iron scaffolds are expected to serve as an ideal platform for bone regeneration. To couple their inherent mechanical strength, pure HA and HA/poly(ε-caprolactone) (HA/PCL) were coated onto porous iron using dip coating technique. The HA/PCL mixture was prepared to provide a more stable and flexible coating than HA alone. Degr...

  3. Morphology of hydroxyapatite coated nanotube surface of Ti-35Nb-xHf alloys for implant materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Un [Functional Coatings Group, Materials Processing Division, Korea Institute of Materials Science (KIMS), Changwon, Kyungnam (Korea, Republic of); Jeong, Yong-Hoon [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials and Research Center for Oral Disease Regulation of the Aged, Chosun University, Gwangju (Korea, Republic of); Division of Restorative and Prosthetic Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave. Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials and Research Center for Oral Disease Regulation of the Aged, Chosun University, Gwangju (Korea, Republic of)

    2011-11-01

    The purpose of this research is to study the morphology of hydroxyapatite coated nanotube surface of Ti-35Nb-xHf for implant materials using various experiments. For this study, Ti-35Nb-xHf (x = 0, 3, 7 and 15 wt.%) alloys were prepared by arc melting and heat treated for 12 h at 1000 Degree-Sign C in an argon atmosphere and then water quenching. Nanotube formation on the Ti-35Nb-xHf alloys was achieved by anodizing in H{sub 3}PO{sub 4} electrolytes containing 0.8 wt.% NaF at room temperature. Anodization was carried out using an electrochemical method and all experiments were conducted at room temperature. Hydroxyapatite (HA) was deposited on the nanotubular Ti-35Nb-xHf alloys surface for the biomaterials by radio-frequency (RF) magnetron sputtering method. The morphologies of nanotubular and HA coated surface were characterized by X-ray diffractometer (XRD), optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM). The wettability of HA coated surface was measured by contact angle goniometer. The microstructure of Ti-35Nb-xHf alloys was transformed needle-like to equiaxed structure with Hf content and {alpha} Double-Prime phase decreased, whereas {beta} phase increased as Hf content increased. HA coating surface was affected by microstructure of bulk and morphology of nanotube formation. In case of low Hf content, tip of nanotube formed at {beta} phase was coated with HA film, whereas {alpha} Double-Prime phase was not coated with HA film. In case of high Hf content, nanotube surface was coated uniformly with HA film. The wettability of HA coated nanotubular surface was higher than that of non coated samples.

  4. Research on Using Natural Coating Materials on the Storage Life of Mango Fruit cv. Nam Dok Mai and Technology Dissemination

    Directory of Open Access Journals (Sweden)

    Apiradee MUANGDECH

    2016-03-01

    Full Text Available This study was designed to assess the suitable type and concentration of 3 natural coating materials, namely, Aloe vera gel, chitosan and carnaubar wax, on postharvest storage life of mango (Mangifera indica L. cv. Nam Dok Mai. The experiment was divided into 3 treatments to compare the 3 types of coating materials and each appropriate concentration, to find the appropriate combination treatment, and to evaluate the benefit of this technology. The objectives of this research were to compare different concentrations and study the type of natural coating materials. At 20 % Aloe vera jelly, 1 % chitosan and 4 % carnaubar wax gave the longest storage life with good quality at 12 days at a storage temperature of 25 °C and 75±5 % relative humidity (p ≤ 0.05. Further investigation was done by using these optimal concentrations alone or in combination under 2 different conditions, 25 °C with 75±5 % relative humidity and 13 °C with 90±5 % relative humidity. It was found that coating with combination of 20 % Aloe vera jelly and 1 % chitosan gave the best result in alleviating the formation of brown spot and extended the storage life up to 12 days as well as slowing down the weight loss, changes in peel and pulp color, firmness, texture, quality such as concentrate by titratable acidity, total soluble solids and respiratory rate significantly compared to control and other treatment (p ≤ 0.05. The use of the coating materials did not alter the quality of the fruit when ripe. Technology dissemination to farmers and exporters was performed by using the training manuals created by the author. The results of the pre-test and after training post-test showed that farmers and exporters increased their knowledge, attitudes, awareness and skills in the use of the natural coating materials for prolonging storage life of mangos.

  5. Porous TiO2 Conformal Coating on Carbon Nanotubes as Energy Storage Materials

    International Nuclear Information System (INIS)

    The controllable synthesis of strongly coupled inorganic materials/carbon nanotubes (CNTs) hybrids represents a long-standing challenge for developing advanced catalysts and energy-storage materials. Here we report a simple sol-gel method for facile synthesis of TiO2/CNTs hybrid. The porous anatase TiO2 nanoparticles are uniformly coated on the CNTs conducting network, which leads to remarkably improved electrochemical performances such as exceptional cycling stability, good high rate durability, and reduced resistance. This hybrid exhibits a reversible capacity as high as 200 mA·h g−1 at a current density of 0.1 A g−1 as an anode in lithium-ion battery (LIB). As a supercapacitor (SC), it shows a specific supercapacitance of 145 F g−1 in 0.5 M H2SO4 electrolyte, higher than that of the previously reported TiO2 based supercapacitors. Moreover, this hybrid also exhibits excellent durability after 1000 cycles for both LIBs and SCs. Such superior performance and cycling durability demonstrate the reinforced synergistic effects between the porous TiO2 and interweaved CNTs network, indicating a great application potential for such hybrid materials in high power LIBs and SCs

  6. Conductive Polymer-Coated VS4 Submicrospheres As Advanced Electrode Materials in Lithium-Ion Batteries.

    Science.gov (United States)

    Zhou, Yanli; Li, Yanlu; Yang, Jing; Tian, Jian; Xu, Huayun; Yang, Jian; Fan, Weiliu

    2016-07-27

    VS4 as an electrode material in lithium-ion batteries holds intriguing features like high content of sulfur and one-dimensional structure, inspiring the exploration in this field. Herein, VS4 submicrospheres have been synthesized via a simple solvothermal reaction. However, they quickly degrade upon cycling as an anode material in lithium-ion batteries. So, three conductive polymers, polythiophene (PEDOT), polypyrrole (PPY), and polyaniline (PANI), are coated on the surface to improve the electron conductivity, suppress the diffusion of polysulfides, and modify the interface between electrode/electrolyte. PANI is the best in the polymers. It improves the Coulombic efficiency to 86% for the first cycle and keeps the specific capacity at 755 mAh g(-1) after 50 cycles, higher than the cases of naked VS4 (100 mAh g(-1)), VS4@PEDOT (318 mAh g(-1)), and VS4@PPY (448 mAh g(-1)). The good performances could be attributed to the improved charge-transfer kinetics and the strong interaction between PANI and VS4 supported by theoretical simulation. The discharge voltage ∼2.0 V makes them promising cathode materials. PMID:27377263

  7. Apparatus and method for determining the gas permeability and flux of helium through the materials and coatings

    Science.gov (United States)

    Barchenko, V. T.; Lisenkov, A. A.; Vinogradov, M. L.

    2014-11-01

    Apparatus and method for measuring flow of helium through the materials and coatings, obtained by ion-plasma technologies, are developed and tested. The apparatus for the measurement is designed on the basis of a helium leak detector TI1-14, produced by JSC "Zavod Izmeriter, that provides a minimum detectable flow of helium 7.10-13 Pa.m3/s. The purpose of the study is the creating apparatus and method to determine gas permeability and helium flux through new materials and coatings to create the hermetic devices with special properties. This devices are made from polymer coated with metals, and they should replace full metals device analogues in the field of aerospace engineering.

  8. Chitosan acetate as an active coating material and its effects on the storing of Prunus avium L.

    Science.gov (United States)

    Dang, Qi Feng; Yan, Jing Quan; Li, Yan; Cheng, Xiao Jie; Liu, Cheng Sheng; Chen, Xi Guang

    2010-03-01

    In this article, chitosan acetate (CA) was prepared by the method of solid-liquid reaction. CA was a stable faint yellow powder with water solubility. CA kept the same backbone in the chemical structure as the raw material of chitosan, and it also had the similar antibacterial properties with chitosan. CA could form a coating film on the outside surface of the sweet cherries, could effectively retard the loss of the water, titratable acidity, and ascorbic acid of sweet cherries, and could induce a significant increase in the peroxidase and catalase activities in the fruit. The CA coating could also increase the ratio of the total soluble solids and titratable acidity in the fruit. The application of CA effectively maintained quality attributes and extended postharvest life of the sweet cherries. The results revealed that the CA salts had potential application in active edible coating materials in the storage of fresh fruit. PMID:20492258

  9. Apparatus and method for determining the gas permeability and flux of helium through the materials and coatings

    International Nuclear Information System (INIS)

    Apparatus and method for measuring flow of helium through the materials and coatings, obtained by ion-plasma technologies, are developed and tested. The apparatus for the measurement is designed on the basis of a helium leak detector TI1-14, produced by JSC Zavod Izmeriter, that provides a minimum detectable flow of helium 7.10-13 Pa.m3/s. The purpose of the study is the creating apparatus and method to determine gas permeability and helium flux through new materials and coatings to create the hermetic devices with special properties. This devices are made from polymer coated with metals, and they should replace full metals device analogues in the field of aerospace engineering

  10. Graphene coated with controllable N-doped carbon layer by molecular layer deposition as electrode materials for supercapacitors

    Science.gov (United States)

    Chen, Yao; Gao, Zhe; Zhang, Bin; Zhao, Shichao; Qin, Yong

    2016-05-01

    In this work, graphene is coated with nitrogen-doped carbon layer, which is produced by a carbonization process of aromatic polyimide (PI) films deposited on the surfaces of graphene by molecular layer deposition (MLD). The utilization of MLD not only allows uniform coating of PI layers on the surfaces of pristine graphene without any surface treatment, but also enables homogenous dispersion of doped nitrogen atoms in the carbonized products. The as-prepared N-doped carbon layer coated graphene (NC-G) exhibited remarkable capacitance performance as electrode materials for supercapacitor, showing a high specific capacitance of 290.2 F g-1 at current density of 1 A g-1 in 6 M KOH aqueous electrolyte, meanwhile maintaining good rate performance and stable cycle capability. The NC-G synthesized by this way represents an alternative promising candidate as electrode material for supercapacitors.

  11. Preparation and Characterization of Muscovite Mica/UV Coating Materials for Steel

    International Nuclear Information System (INIS)

    This paper describes the exfoliation and surface modification of muscovite mica for UV coating formulation. For the exfoliation of the mica, hydrothermal process was used in the presence of lithium nitrate (LiNO3). After the cation exchange with Li+ ions, the surface of the mica was modified with several amphiphilic substances to increase compatibility and storage stability in UV coating formulation. Such a hydrophobic surface modification affected colloidal stability as well as dispersibility of the exfoliated mica in UV coating solution. Anticorrosive property of mica/UV coated steel plates was tested by salt spray test (SST) and compared with sodium montmorillonite (Na+ - MMT)/UV coated steel plates

  12. Application of magnetron sputtering for producing bioactive ceramic coatings on implant materials

    Indian Academy of Sciences (India)

    J Z Shi; C Z Chen; H J Yu; S J Zhang

    2008-11-01

    Radio frequency (RF) magnetron sputtering is a versatile deposition technique that can produce thin, uniform, dense calcium phosphate coatings. In this paper, principle and character of magnetron sputtering is introduced, and development of the hydroxyapatite and its composite coatings application is reviewed. In addition, influence of heat treatment on magnetron sputtered coatings is discussed. The heat treated coatings have been shown to exhibit bioactive behaviour both in vivo and in vitro. At last, the future application of the bioactive ceramic coating deposited by magnetron sputtering is mentioned.

  13. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications

    Directory of Open Access Journals (Sweden)

    Maria Oksa

    2011-09-01

    Full Text Available In this work High Velocity Oxy-fuel (HVOF thermal spray techniques, spraying process optimization, and characterization of coatings are reviewed. Different variants of the technology are described and the main differences in spray conditions in terms of particle kinetics and thermal energy are rationalized. Methods and tools for controlling the spray process are presented as well as their use in optimizing the coating process. It will be shown how the differences from the starting powder to the final coating formation affect the coating microstructure and performance. Typical properties of HVOF sprayed coatings and coating performance is described. Also development of testing methods used for the evaluation of coating properties and current status of standardization is presented. Short discussion of typical applications is done.

  14. A Study on Medium Temperature Chemical Vapor Deposition (MT-CVD) Technology and Super Coating Materials

    Institute of Scientific and Technical Information of China (English)

    GAO Jian; LI Jian-ping; ZENG Xiang-cai; MA Wen-cun

    2004-01-01

    In this paper, the dense and columnar crystalline TiCN coating layers with very good bonding strength between a layer and another layer was deposited using Medium Temperature Chemical Vapor Deposition (MT-CVD) where CH3CN organic composite with C/N atomic clusters etc. was utilized at 700 ~ 900 ℃. Effect of coating processing parameters, such as coating temperature, pressure and different gas flow quantity on structures and properties of TiCN coating layers were investigated. The super coating mechanis mand structures were analyzed. The new coating processing parameters and properties of carbide inserts with super coating layers were gained by using the improved high temperature chemical vapor deposition (HTCVD) equipment and HT-CVD, in combination with MT-CVD technology.

  15. Progress in development of coated indexable cemented carbide inserts for machining of iron based work piece materials

    Science.gov (United States)

    Czettl, C.; Pohler, M.

    2016-03-01

    Increasing demands on material properties of iron based work piece materials, e.g. for the turbine industry, complicate the machining process and reduce the lifetime of the cutting tools. Therefore, improved tool solutions, adapted to the requirements of the desired application have to be developed. Especially, the interplay of macro- and micro geometry, substrate material, coating and post treatment processes is crucial for the durability of modern high performance tool solutions. Improved and novel analytical methods allow a detailed understanding of material properties responsible for the wear behaviour of the tools. Those support the knowledge based development of tailored cutting materials for selected applications. One important factor for such a solution is the proper choice of coating material, which can be synthesized by physical or chemical vapor deposition techniques. Within this work an overview of state-of-the-art coated carbide grades is presented and application examples are shown to demonstrate their high efficiency. Machining processes for a material range from cast iron, low carbon steels to high alloyed steels are covered.

  16. Nano-coatings Used in Building Materials%建筑纳米涂料崭露头角

    Institute of Scientific and Technical Information of China (English)

    杨忠敏

    2012-01-01

    To introduce the definition,application,status quo,properties,and market prospect of nano-coatings used in building materials.%介绍建筑纳米涂料定义,应用现状,性能优势和市场前景。

  17. An experimental estimation of the resistance against a high-temperature gas corrosion of C/C composite materials with protective plasma coating

    International Nuclear Information System (INIS)

    Materials with well-defined structure has been proposed as corrosion- and erosion-resistant coating from the carbon-carbon composite. Experiments on heat and erosion resistance of plasma coatings at carbon-carbon composite materials demonstrate availability of multilayer with upper erosion resistant layer on the basis of aluminium oxide, intermediate layer on the basis of boron-containing components with aluminium additions and damping layer of silicon carbide. Multilayer protective coats offer demand service characteristics of details

  18. The cutting properties and wear of the knives with DLC and W-DLC coatings, deposited by PVD methods, applied for wood and wood-based materials machining

    Directory of Open Access Journals (Sweden)

    M. Pancielejko

    2012-12-01

    Full Text Available Purpose: Performance of DLC and W-DLC coated woodworking knives was investigated. The results of testing DLC and W-DLC coating properties as well as the results of life-time tests in the form of wear of HSS and HM knives with these coatings is presents.Design/methodology/approach: DLC coating was deposited by MCVA method, and W-DLC coating was deposited by pulsed RMS. Tests of knives coated with DLC and W-DLC as uncoated ones was made by machining: MDF board, pinewood slats and floorboard - using a typical industrial milling machine.Findings: DLC coating is significantly harder (33-40 GPa than W-DLC coating (19 GPa. From Rockwell test it can be concluded that both coatings display high adhesion (HF1, whereas in the scratch methods, significantly lower adhesion of DLC coating can be observed (LC2 = 17-21 N in comparison to W-DLC coating (LC2 = 54 N. Influence of the hardness and adhesion of coatings on wear resistance of coated tools is discussed.Practical implications: Wear resistance of planer knives coated with DLC is by approx. 20%, and W-DLC by approx. 30% higher in comparison with uncoated knives during MDF milling. Wear of planer knives with W-DLC coating is approx. by 10%, and DLC by approx. 25% lower in comparison to uncoated HSS knives during pinewood milling. Lifetime of HM shape tools coated DLC and W-DLC is considerably higher (200-300 % during floorboard milling.Originality/value: The industrial tests of cutting wood and wood-based materials indicate that the carbon coatings deposited on the tool generally improve its performance and all wear indexes for the tools are lower than for uncoated. The DLC and W-DLC coatings show good antiwear properties required in industry application.

  19. Engineering analysis of diamond-like carbon coated polymeric materials for biomedical applications.

    Science.gov (United States)

    Alanazi, A; Nojiri, C; Kido, T; Noguchi, T; Ohgoe, Y; Matsuda, T; Hirakuri, K; Funakubo, A; Sakai, K; Fukui, Y

    2000-08-01

    Diamond-like carbon (DLC) films have received much attention recently owing to their properties, which are similar to diamond: hardness, thermal conductivity, corrosion resistance against chemicals, abrasion resistance, good biocompatibility, and uniform flat surface. Furthermore, DLC films can be deposited easily on many substrates for wide area coat at room temperature. DLC films were developed for applications as biomedical materials in blood contacting-devices (e.g., rotary blood pump) and showed good biocompatibility for these applications. In this study, we investigated the surface roughness by Atomic Force Microscopy (AFM) and Hi-vision camera, SEM for surface imaging. The DLC films were produced by radio frequency glow discharge plasma decomposed of hydrocarbon gas at room temperature and low pressure (53 Pa) on several kinds of polycarbonate substrates. For the evaluation of the relation between deposition rate and platelet adhesion that we investigated in a previous study, DLC films were deposited at the same methane pressure for several deposition times, and film thickness was investigated. In addition, the deposition rate of DLC films on polymeric substrates is similar to the deposition rate of those deposited on Si substrates. There were no significant differences in substrates' surface roughness that were coated by DLC films in different deposition rates (16-40 nm). The surface energy and the contact angle of the DLC films were investigated. The chemical bond of DLC films also was evaluated. The evaluation of surface properties by many methods and measurements and the relationship between the platelet adhesion and film thickness is discussed. Finally, the presented DLC films appear to be promising candidates for biomedical applications and merit investigation. PMID:10971249

  20. Wear resistance of thick diamond like carbon coatings against polymeric materials used in single screw plasticizing technology

    Science.gov (United States)

    Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.

    2015-05-01

    Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.

  1. Carbon nanotube-coated silicone as a flexible and electrically conductive biomedical material

    International Nuclear Information System (INIS)

    Artificial cell scaffolds that support cell adhesion, growth, and organization need to be fabricated for various purposes. Recently, there have been increasing reports of cell patterning using electrical fields. We fabricated scaffolds consisting of silicone sheets coated with single-walled (SW) or multi-walled (MW) carbon nanotubes (CNTs) and evaluated their electrical properties and biocompatibility. We also performed cell alignment with dielectrophoresis using CNT-coated sheets as electrodes. Silicone coated with 10 μg/cm2 SWCNTs exhibited the least sheet resistance (0.8 kΩ/sq); its conductivity was maintained even after 100 stretching cycles. CNT coating also improved cell adhesion and proliferation. When an electric field was applied to the cell suspension introduced on the CNT-coated scaffold, the cells became aligned in a pearl-chain pattern. These results indicate that CNT coating not only provides electro-conductivity but also promotes cell adhesion to the silicone scaffold; cells seeded on the scaffold can be organized using electricity. These findings demonstrate that CNT-coated silicone can be useful as a biocompatible scaffold. - Highlights: ► We fabricated a CNT-coated silicone which has conductivity and biocompatibility. ► The conductivity was maintained after 100 cycles of stretching. ► CNT coatings enabled C2C12 cells adhere to the silicone surface. ► Cells were aligned with dielectrophoresis between CNT-coated silicone surfaces.

  2. Carbon nanotube-coated silicone as a flexible and electrically conductive biomedical material

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Makoto, E-mail: matsuoka@den.hokudai.ac.jp [Department of Oral and Maxillofacial Surgery, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586 (Japan); Japan Society for the Promotion of Science (Japan); Akasaka, Tsukasa [Department of Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586 (Japan); Totsuka, Yasunori [Department of Oral and Maxillofacial Surgery, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586 (Japan); Watari, Fumio [Department of Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586 (Japan)

    2012-04-01

    Artificial cell scaffolds that support cell adhesion, growth, and organization need to be fabricated for various purposes. Recently, there have been increasing reports of cell patterning using electrical fields. We fabricated scaffolds consisting of silicone sheets coated with single-walled (SW) or multi-walled (MW) carbon nanotubes (CNTs) and evaluated their electrical properties and biocompatibility. We also performed cell alignment with dielectrophoresis using CNT-coated sheets as electrodes. Silicone coated with 10 {mu}g/cm{sup 2} SWCNTs exhibited the least sheet resistance (0.8 k{Omega}/sq); its conductivity was maintained even after 100 stretching cycles. CNT coating also improved cell adhesion and proliferation. When an electric field was applied to the cell suspension introduced on the CNT-coated scaffold, the cells became aligned in a pearl-chain pattern. These results indicate that CNT coating not only provides electro-conductivity but also promotes cell adhesion to the silicone scaffold; cells seeded on the scaffold can be organized using electricity. These findings demonstrate that CNT-coated silicone can be useful as a biocompatible scaffold. - Highlights: Black-Right-Pointing-Pointer We fabricated a CNT-coated silicone which has conductivity and biocompatibility. Black-Right-Pointing-Pointer The conductivity was maintained after 100 cycles of stretching. Black-Right-Pointing-Pointer CNT coatings enabled C2C12 cells adhere to the silicone surface. Black-Right-Pointing-Pointer Cells were aligned with dielectrophoresis between CNT-coated silicone surfaces.

  3. A study of performance of black chromium coating materials for solar thermal energy application

    International Nuclear Information System (INIS)

    Black chromium coating has becomes an important process for metal finishes especially in solar energy utilisation. It has own applications in various fields; such as for non-reflecting coatings, decorative coatings and solar selective coatings [1). This work is focused at solar selective coatings where it is used for thermal energy application. The coating surface that absorbs solar energy should have an ideal solar selective surface such as high absorption (a) in solar spectrum near infrared region (IR) [2). Electroplating is used as a technique to produce a black coating finishes. It is a simple room temperature test, which is cost effective for modification of surfaces. The black chromium coating finishes is determined by using hull cell test where the current range from 1-10 Amp, with 10 minutes plating time is estimated to simulate the actual plating process. Through the hull cell test process, results has shown that the black chromium coating can be obtained at temperature 24-33 degree C, with current densities range from 5-30 A/dm2. Two different current density (25 and 30 A/dm2) is used to produce optimum black colour as determined from hull cell test. With plating time 4 to 10 minutes act as measured parameters, the absorption rate of O.86-0.97 are obtained. The present black coating produced, showed a powdery deep black colour, with adherent film upon a conductive base, has a great potential for solar thermal energy applications. (Author)

  4. SEBS基尼龙包覆料的研究%Study on SEBS-based coating material for nylon

    Institute of Scientific and Technical Information of China (English)

    张阳阳; 周涛; 李林; 周维燕; 陈正广; 惠江涛; 张爱民

    2011-01-01

    With SEBS(hydrogenated styrene-butadiene-styrene block copolymer) and SEBS-g-MAH (SEBS grafted by maleic anhydride) as matrix resin, white oil as plasticizer, talc as filler and epoxy resin (EP) as modifier, a coating material was prepared by coextrusion of twin-screw extruder. Then with nylon 6 reinforced by glass fiber as coated material ,a nylon board coated by the coating material was prepared by secondary injection method. The better process conditions of preparing coating materials were preferred by single factor experiment. The results showed that the coating material has the following characteristics such as strong bonding power, moderate hardness, better fluidity and seemly price, and the bonding mechanism of coating material was changed after adding EP when the mass fractions of SEBS, SEBS-g-MA H, white oil and talc were 100%, 30%, 100% and 100% respectively.%以SEBS(氢化苯乙烯-丁二烯-苯乙烯嵌段共聚物)和SEBS-g-MAH(马来酸酐接枝SEBS)为基体树脂、白油为增塑剂、滑石粉为填料和环氧树脂(EP)为改性剂,利用双螺杆挤出机共混挤出包覆料;然后以玻璃纤维增强尼龙6为被包覆料,采用二次注塑法将包覆料包覆在尼龙板上.通过单因素试验法优选出制备包覆料的较佳工艺条件.结果表明:当w(SEBS)=100%、w(SEBS-g-MAH)=30%、w(白油)=100%和w(滑石粉)=100%时,包覆料具有粘接力强、硬度适中、流动性较好和价格适宜等特点,并且EP的引入使包覆料的粘接机制发生了变化.

  5. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    Science.gov (United States)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  6. Radiation-induced degradation of polymeric spacecraft materials under protective oxide coatings

    International Nuclear Information System (INIS)

    We report the results of experiments, in which two SiO2-coated polymers (Kapton(reg] polyimide, and Mylar[reg] polyester), and ITO-coated Kapton[reg] are exposed to high-energy radiation. Possible modification or damage of the coating-polymer interface is assessed by adhesive testing, using a CSEM MicroScratch tester, with which we measure the 'critical load' (Lc) for coating delamination from the polymer surface, and by microscopy, compared with untreated witness samples. We deposit thin (sub-μm) coatings of SiO2 by plasma-enhanced chemical vapor deposition (PECVD), in order to obtain strong (chemical) bonding at the substrate/coating interface. 100 keV protons and a hydrogen microwave plasma 'lamp' with an MgF2 window at a power density of 125 μW cm-2 are used to irradiate the sample surfaces

  7. 超硬涂层材料性能及其应用研究%Research on Properties and Application of Superhard Coating Material

    Institute of Scientific and Technical Information of China (English)

    王瑾; 赵亮

    2013-01-01

    结合超硬涂层材料的主要特点,论述了金刚石涂层、类金刚石涂层、立方氮化硼涂层、氮化碳涂层和纳米多层结构涂层材料的性能及其在现代工程中的应用.%Combined with the main features of superhard coating material,the properties of diamond coating,diamond-like coating,cubic boron nitride coating and manometer multiple layer structure coating and their application in modem engineering were discussed.

  8. MULTILAYER COATINGS Ti/TiN, Cr/CrN AND W/WN DEPOSITED BY MAGNETRON SPUTTERING FOR IMPROVEMENT OF ADHESION TO BASE MATERIALS

    Directory of Open Access Journals (Sweden)

    Jakub Horník

    2015-12-01

    Full Text Available The paper deals with evaluation of single and multilayer layer PVD coatings based on Cr and Ti widely used in tool application. Additionally, W and WN based coating which are not so widespread were designed and deposited as functionally graded material. The coatings properties were evaluated from the point of view of hardness and adhesion. The hardness measuring was carried out using nanoindentation method. The scratch test was performed to test adhesion. Moreover, the presence of metallic interlayer in functionally graded materials further increases the coating adhesion by gradually approaching its composition to the substrate. Coatings consisting of W and WN have showed very good adhesion. With regard to the results of the scratch test, the multilayer coatings of CrN, TiN and WN have increased adhesion and can be assumed to have their protective function improved. Results will be appliedin development of functionally graded layers for functionally graded materials.

  9. Tracing locations of new coating material during spark anodizing of titanium

    OpenAIRE

    Matykina, Endzhe; Monfort, Frederic Louis; Berkani, Ahmed; Skeldon, Peter; Thompson, George; Chapon, Patrick

    2005-01-01

    Abstract The growth of anodic coatings on titanium, under sparking conditions, is investigated in tracer experiments, using alkaline silicate and phosphate electrolytes. Coatings are formed sequentially in each electrolyte, with phosphorus and silicon located by energy-dispersive X-ray analysis and glow discharge optical emission spectroscopy. The coatings, containing anatase, rutile and amorphous oxide, with incorporated phosphorus and silicon species, are shown to grow by discret...

  10. Ceria and copper/ceria functional coatings for electrochemical applications: Materials preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Melnik, J.; Fu, X.Z.; Luo, J.L.; Sanger, A.R.; Chuang, K.T. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6 (Canada); Yang, Q.M. [Vale-Inco Technical Services Ltd., Mississauga, Ontario L5K 1Z9 (Canada)

    2010-04-15

    Following preliminary investigations, two electrodeposition techniques (electrophoretic and electrolytic) were selected and adapted for deposition of doped ceria ceramic and copper/doped ceria composite coatings on Ni substrates (foil and foam). The copper/doped ceria composites have potential value as protective functional coatings for current collectors in electrochemical cells including solid oxide fuel sells (SOFC). The doped ceria ceramic coating has potential application as a porous matrix for anodes of SOFCs operating on syngas, sour gas, or hydrocarbons. (author)

  11. Effects of different material coatings on the wearing of plowshares in soil tillage

    OpenAIRE

    Nalbant, Muammer; PALALI, A. Tufan

    2011-01-01

    The wearing behavior of coated layers on plowshares used in soil tillage was investigated. Plowshares produced from DIN EN 10 083 (30 MnB5) steel, widely used in plows, were coated with 20 mm hard chromium by electrolysis method, 20 mm electro-less nickel by chemical treatments, and 4 mm titaniumnitride (TiN) by physical vapor deposition to increase wearing resistance. The coated plowshare specimens, together with uncoated plowshare specimens, were mounted on test equipment to analyze their w...

  12. In-situ Measurement of Low-Z Material Coating Thickness on High Z Substrate for Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, D [PPPL; Roquemore, A L [PPPL; Jaworski, M [PPPL; Skinner, C H [PPPL; Miller, J [PPPL; Creely, A [PPPL; Raman, P [2University of Illinois, Champaign, IL, USA; Ruzic, D [2University of Illinois, Champaign, IL, USA

    2014-07-01

    Rutherford backscattering (RBS) of energetic particles can be used to determine the thickness of a coating of a low-Z material over a heavier substrate. Simulations indicate that 5 MeV alpha particles from an Am source can be used to measure the thickness of a Li coating on Mo tiles between 0.5 and 15 μm thick. Using a 0.1 mCi source, a thickness measurement can be accomplished in 2 hours of counting. This technique could be used to measure any thin, low-Z material coating (up to 1 mg/cm^2 thick) on a high-Z substrate, such as Be on W, B on Mo, or Li on Mo. By inserting a source and detector on a moveable probe, this technique could be used to provide an in situ measurement of the thickness of Li coating on NSTX-U Mo tiles. A test stand with an alpha source and an annular solid-state detector was used to investigate the measurable range of low-Z material thicknesses on Mo tiles.

  13. Vector light shift averaging in paraffin-coated alkali vapor cells

    Science.gov (United States)

    Zhivun, Elena; Wickenbrock, Arne; Sudyka, Julia; Patton, Brian; Pustelny, Szymon; Budker, Dmitry

    2016-05-01

    Light shifts are an important source of noise and systematics in optically pumped magnetometers. We demonstrate that the long spin coherence time in paraffin-coated cells leads to spatial averaging of the light shifts over the entire cell volume. This renders the averaged light shift independent, under certain approximations, of the light-intensity distribution within the sensor cell. These results and the underlying mechanism can be extended to other spatially varying phenomena in anti-relaxation-coated cells with long coherence times.

  14. Alloy Films Deposited by Electroplating as Precursors for Protective Oxide Coatings on Solid Oxide Fuel Cells Metallic Interconnect Materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christopher; Gemmen, R.S.; Cross, Caleb

    2006-10-01

    The successful development of stainless steel interconnects for intermediate temperature solid oxide fuel cells (SOFC) may be the materials breakthrough that makes SOFC technology truly commercial. Many of the ferritic stainless steels, however, suffer from a relatively high area specific resistance (ASR) after long exposure times at temperature and the Cr in the native oxide can evaporate and contaminate other cell components. Conductive coatings that resist oxide scale growth and chromium evaporation may prevent both of these problems. In the present study electrochemical deposition of binary alloys followed by oxidation of the alloy to form protective and conductive oxide layers is examined. Results are presented for the deposition of Mn/Co and Fe/Ni alloys via electroplating to form a precursor for spinel oxide coating formation. Analysis of the alloy coatings is done by SEM, EDS and XRD.

  15. Revisiting Surface Modification of Graphite: Dual-Layer Coating for High-Performance Lithium Battery Anode Materials.

    Science.gov (United States)

    Song, Gyujin; Ryu, Jaegeon; Ko, Seunghee; Bang, Byoung Man; Choi, Sinho; Shin, Myoungsoo; Lee, Sang-Young; Park, Soojin

    2016-06-01

    Surface modification of electrode active materials has garnered considerable attention as a facile way to meet stringent requirements of advanced lithium-ion batteries. Here, we demonstrated a new coating strategy based on dual layers comprising antimony-doped tin oxide (ATO) nanoparticles and carbon. The ATO nanoparticles are synthesized via a hydrothermal method and act as electronically conductive/electrochemically active materials. The as-synthesized ATO nanoparticles are introduced on natural graphite along with citric acid used as a carbon precursor. After carbonization, the carbon/ATO-decorated natural graphite (c/ATO-NG) is produced. In the (carbon/ATO) dual-layer coating, the ATO nanoparticles coupled with the carbon layer exhibit unprecedented synergistic effects. The resultant c/ATO-NG anode materials display significant improvements in capacity (530 mA h g(-1) ), cycling retention (capacity retention of 98.1 % after 50 cycles at a rate of C/5), and low electrode swelling (volume expansion of 38 % after 100 cycles) which outperform that of typical graphite materials. Furthermore, a full-cell consisting of a c/ATO-NG anode and an LiNi0.5 Mn1.5 O4 cathode presents excellent cycle retention (capacity retention of >80 % after 100 cycles). We envision that the dual-layer coating concept proposed herein opens a new route toward high-performance anode materials for lithium-ion batteries. PMID:27027583

  16. Synthesis of Nanocobalt Powders for an Anode Material of Lithium-Ion Batteries by Chemical Reduction and Carbon Coating

    Directory of Open Access Journals (Sweden)

    Seong-Hyeon Hong

    2014-01-01

    Full Text Available Nanosized Co powders were prepared by a chemical reduction method with and without CTAB (cetyltrimethylammonium bromide, C19H42BrN and carbon-coating heat treatment at 700°C for 1 h, and the electrochemical properties of the prepared nanosized Co powders were examined to evaluate their suitability as an anode material of Li-ion batteries. Nanosized amorphous Co-based powders could be synthesized by a chemical reduction method in which a reducing agent is added to a Co ion-dissolved aqueous solution. When the prepared nanosized Co-based powders were subjected to carbon-coating heat treatment at 700°C for 1 h, the amorphous phase was crystallized, and a Co single phase could be obtained. The Co-based powder prepared by chemical reduction with CTAB and carbon-coating heat treatment had a smaller first discharge capacity (about 557 mAh/g than the Co-based powder prepared by chemical reduction without CTAB and carbon-coating heat treatment (about 628 mAh/g. However, the former had a better cycling performance than the latter from the third cycle. The carbon-coated layers are believed to have led to quite good cycling performances of the prepared Co-based powders from the third cycle.

  17. Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials.

    Science.gov (United States)

    Furko, M; Jiang, Y; Wilkins, T A; Balázsi, C

    2016-05-01

    In our research nanostructured silver and zinc doped calcium-phosphate (CaP) bioceramic coatings were prepared on commonly used orthopaedic implant materials (Ti6Al4V). The deposition process was carried out by the pulse current technique at 70°C from electrolyte containing the appropriate amount of Ca(NO3)2 and NH4H2PO4 components. During the electrochemical deposition Ag(+) and Zn(2+) ions were introduced into the solution. The electrochemical behaviour and corrosion rate of the bioceramic coatings were investigated by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements in conventional Ringer's solution in a three electrode open cell. The coating came into contact with the electrolyte and corrosion occurred during immersion. In order to achieve antimicrobial properties, it is important to maintain a continuous release of silver ions into physiological media, while the bioactive CaP layer enhances the biocompatibility properties of the layer by fostering the bone cell growth. The role of Zn(2+) is to shorten wound healing time. Morphology and composition of coatings were studied by Scanning Electron Microscopy, Transmission Electron Microscopy and Energy-dispersive X-ray spectroscopy. Differential thermal analyses (DTA) were performed to determine the thermal stability of the pure and modified CaP bioceramic coatings while the structure and phases of the layers were characterized by X-ray diffraction (XRD) measurements. PMID:26952421

  18. Functionally gradient materials for thermal barrier coatings in advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; Barmak, K.; Chan, H.M. [Lehigh Univ., Bethlehem, PA (United States)] [and others

    1995-10-01

    New designs for advanced gas turbine engines for power production are required to have higher operating temperatures in order to increase efficiency. However, elevated temperatures will increase the magnitude and severity of environmental degradation of critical turbine components (e.g. combustor parts, turbine blades, etc{hor_ellipsis}). To offset this problem, the usage of thermal barrier coatings (TBCs) has become popular by allowing an increase in maximum inlet temperatures for an operating engine. Although thermal barrier technology is over thirty years old, the principle failure mechanism is the spallation of the ceramic coating at or near the ceramic/bond coat interface. Therefore, it is desirable to develop a coating that combines the thermal barrier qualities of the ceramic layer and the corrosion protection by the metallic bond coat without the detrimental effects associated with the localization of the ceramic/metal interface to a single plane.

  19. Influence of Coating with Some Natural Based Materials on the Erosion Wear Behavior of Glass Fiber Reinforced Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Aseel Basim Abdul Hussein

    2015-06-01

    Full Text Available In the present study, composites were prepared by Hand lay-up molding. The composites constituents were epoxy resin as a matrix, 6% volume fractions of glass fibers (G.F as reinforcement and 3%, 6% volume fractions of preparation natural material (Rice Husk Ash, Carrot Powder, and Sawdust as filler. Studied the erosion wear behavior and coating by natural wastes (Rice Husk Ash with epoxy resin after erosion. The results showed the non – reinforced epoxy have lower resistance erosion than natural based material composites and the specimen (Epoxy+6%glass fiber+6%RHA has higher resistance erosion than composites reinforced with carrot powder and sawdust at 30cm , angle 60°, grin size of sand 425µm , temperature 30Ċ , 300 gm salt content in 2liter of water and 15 hour. Coating specimen with mixed epoxy resin -RHA with particles size in the range (1.4-4.2 µm improves erosion wear resistance characteristics of the coated specimen, coating thickness was (16 ± 1 μm and after erosion at (15 hour the thickness was (10 μm .

  20. Properties of Whey-Protein-Coated Films and Laminates as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2012-01-01

    Full Text Available In case of food packaging applications, high oxygen and water vapour barriers are the prerequisite conditions for preserving the quality of the products throughout their whole lifecycle. Currently available polymers and/or biopolymer films are mostly used in combination with barrier materials derived from oil based plastics or aluminium to enhance their low barrier properties. In order to replace these non-renewable materials, current research efforts are focused on the development of sustainable coatings, while maintaining the functional properties of the resulting packaging materials. This article provides an introduction to food packaging requirements, highlights prior art on the use of whey-based coatings for their barriers properties, and describes the key properties of an innovative packaging multilayer material that includes a whey-based layer. The developed whey protein formulations had excellent barrier properties almost comparable to the ethylene vinyl alcohol copolymers (EVOH barrier layer conventionally used in food packaging composites, with an oxygen barrier (OTR of <2 [cm³(STP/(m²d bar] when normalized to a thickness of 100 μm. Further requirements of the barrier layer are good adhesion to the substrate and sufficient flexibility to withstand mechanical load while preventing delamination and/or brittle fracture. Whey-protein-based coatings have successfully met these functional and mechanical requirements.

  1. Effect of the quality of powder materials on the properties of the wear-resistant coatings on the rotor blades in an aviation gas-turbine engine compressor

    Science.gov (United States)

    Abraimov, N. V.; Ryabenko, B. V.; Kryukov, M. A.

    2015-06-01

    The physicomechanical properties, the structures of a wear-resistant WC-Co coating on a VT3-1 titanium alloy and the powder materials used for their deposition by gas-detonation method are studied. The VK-25M coatings are found to inherit the chemical and phase compositions of the powders. The properties of the coating are substantially dependent on the shape, the sizes, and the ratio of carbide WC granules in commercial powder materials. A high content of coarse lamellar WC fractions is accompanied by an increase in the hardness and a decrease in the ductility and the fracture toughness of the coatings. The tensile stresses in the VK-25M coating on the VT3-1 titanium alloy and the fracture toughness decrease as the coating thickness increases or annealing is applied.

  2. Hydrophobic coating of solid materials by plasma-polymerized thin film using tetrafluoroethylene

    Science.gov (United States)

    Hozumi, K.; Kitamura, K.; Kitade, T.

    1980-01-01

    Glass slides were coated with plasma-polymerized tetrafluoroethylene films of different thickness using the glow discharge technique in a tube-shaped chamber, and the plasma conditions, film growth rates, light permeability of the polymer films, and particle bond strength in the polymer films were studied. Ashed sections of mouse organs and ashed bacillus spores were also coated to give them hydrophobic treatment without damaging their shapes or appearance. The hydrophobic coating of the specimens was successful, and the fine ash patterns were strongly fixed onto the glass slides, making permanent preparations.

  3. Contamination control in hybrid microelectronic modules. Part 3: Specifications for coating material and process controls

    Science.gov (United States)

    Himmel, R. P.

    1975-01-01

    Resin systems for coating hybrids prior to hermetic sealing are described. The resin systems are a flexible silicone junction resin system and a flexible cycloaliphatic epoxy resin system. The coatings are intended for application to the hybrid after all the chips have been assembled and wire bonded, but prior to hermetic sealing of the package. The purpose of the coating is to control particulate contamination by immobilizing particles and by passivating the hybrid. Recommended process controls for the purpose of minimizing contamination in hybrid microcircuit packages are given. Emphasis is placed on those critical hybrid processing steps in which contamination is most likely to occur.

  4. Coating stent materials with polyhedral oligomeric silsesquioxane-poly(carbonateurea)urethane nanocomposites

    OpenAIRE

    Bakhshi, R.

    2009-01-01

    The long-term efficacy of coronary or peripheral stenting is limited by in-stent restenosis (ISR), which occurs in 15 to 30% of patients and is attributed primarily to neointimal hyperplasia. By adding a drug-eluting coating, this rate has been reduced to about 5% or less. However, recently longer-term follow-up data has highlighted problems with drug-coated stents, including late stage thrombosis. A bio-stable poly(carbonate-urea)urethane has been used for stent coating and th...

  5. Factors Affecting the Morphology of Pb-Based Glass Frit Coated with Ag Material Prepared by Electroless Silver Plating

    Science.gov (United States)

    Huang, Bei; Gan, Weiping; Zhou, Jian; Li, Yingfen; Lin, Tao; Liu, Xiaogang

    2014-05-01

    Pb-based glass frit coated with nanosilver material for Si solar cell applications has been directly prepared by electroless silver plating. Activation of the glass frit was accomplished by using glycol, with the aim of reducing the silver ions to elemental silver on the surface of the glass frit. Electroless silver plating onto the glass frit was successfully realized using two kinds of electroless plating bath. However, the morphology of the composite powder greatly affected the modality, sheet resistance, series resistance, and photoelectric conversion efficiency of the conducting silver films. We found that the activation temperature affected the number and distribution of silver nanoparticles. Meanwhile, the average grain size of the silver particles and the silver content in the Pb-based glass frit coated with Ag material could be controlled by adjusting the pH value and loading capacity, respectively, during plating.

  6. Graphene-coated materials using silica particles as a framework for highly efficient removal of aromatic pollutants in water

    OpenAIRE

    Yang, Kaijie; Chen, Baoliang; Zhu, Lizhong

    2015-01-01

    The substantial aggregation of pristine graphene nanosheets decreases its powerful adsorption capacity and diminishes its practical applications. To overcome this shortcoming, graphene-coated materials (GCMs) were prepared by loading graphene onto silica nanoparticles (SiO2). With the support of SiO2, the stacked interlamination of graphene was held open to expose the powerful adsorption sites in the interlayers. The adsorption of phenanthrene, a model aromatic pollutant, onto the loaded grap...

  7. STUDY ON THE OXIDIZED GRAPHITE MATERIAL COATED WITH N-DOPED PHENOLIC RESIN FOR LITHIUM ION BATTERIES

    Institute of Scientific and Technical Information of China (English)

    Yu-quan Zou; Chun-yang Wang; Qin-min Pan; Tong Zhao; Ling-zhi Wang; Shi-bi Fang

    2002-01-01

    Carbon-coated oxidized graphite has been prepared by a liquid-state deposition method. Oxidized graphite was prepared by wet chemical oxidation. Oxidation increases the reversible capacity of graphite, but its initial charge and discharge efficiency was reduced. Phenolic resin was applied to form the disordered carbon layer on the oxidized graphite. The efficiency and reversible charge capacity were obviously increased. The morphology of carbon materials was investigated by SEM.

  8. Sol-gel niobium pentoxide : a promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis

    OpenAIRE

    Michel A. Aegerter

    2001-01-01

    In the last decade the sol-gel process became a promising method to synthesize materials in form of coatings, nanoscale powders and porous systems. The technique has been mainly used at laboratory scale and has brought interesting contributions for the development of new nanomaterials. Nevertheless, several products or devices made with such a process already exist and new ones should be available in the market in the near future. This paper briefly reviews the state of the art in the develop...

  9. Development and characterization of silicone/phosphorus modified epoxy materials and their application as anticorrosion and antifouling coatings

    OpenAIRE

    T. Balakrishnan; Alagar, M.; Denchev, Z.; Kumar, S. Ananda

    2006-01-01

    Epoxy resin is chosen for our present study owing to its exceptional combination of properties such as easy processing, high safety, excellent solvent and chemical resistance, toughness, low shrinkage on cure, good electrical, mechanical and corrosion resistance with excellent adhesion to many substrates. This versatility in formulation made epoxy resins widely applied for surface coatings, adhesives, laminates, composites, potting, painting materials, encapsulant for semiconductor and insula...

  10. Designing disordered materials using DNA-coated colloids of bacteriophage fd and gold.

    Science.gov (United States)

    Ruff, Z; Nathan, S H; Unwin, R R; Zupkauskas, M; Joshi, D; Salmond, G P C; Grey, C P; Eiser, E

    2016-04-12

    DNA has emerged as an exciting binding agent for programmable colloidal self-assembly. Its popularity derives from its unique properties: it provides highly specific short-ranged interactions and at the same time it acts as a steric stabilizer against non-specific van der Waals and Coulomb interactions. Because complementary DNA strands are linked only via hydrogen bonds, DNA-mediated binding is thermally reversible: it provides an effective attraction that can be switched off by raising the temperature only by a few degrees. In this article we introduce a new binary system made of DNA-functionalized filamentous fd viruses of ∼880 nm length with an aspect ratio of ∼100, and 50 nm gold nanoparticles (gold NPs) coated with the complementary DNA strands. When quenching mixtures below the melt temperature Tm, at which the attraction is switched on, we observe aggregation. Conversely, above Tm the system melts into a homogenous particulate 'gas'. We present the aggregation behavior of three different gold NP to virus ratios and compare them to a gel made solely of gold NPs. In particular, we have investigated the aggregate structures as a function of cooling rate and determine how they evolve as function of time for given quench depths, employing fluorescence microscopy. Structural information was extracted in the form of an effective structure factor and chord length distributions. Rapid cooling rates lead to open aggregates, while slower controlled cooling rates closer to equilibrium DNA hybridization lead to more fine-stranded gels. Despite the different structures we find that for both cooling rates the quench into the two-phase region leads to initial spinodal decomposition, which becomes arrested. Surprisingly, although the fine-stranded gel is disordered, the overall structure and the corresponding length scale distributions in the system are remarkably reproducible. Such highly porous systems can be developed into new functional materials. PMID:26864018

  11. Thermal response and material degradation of tungsten-coated carbon divertor mock-ups by high heat flux

    International Nuclear Information System (INIS)

    Carbon/carbon composite (CX-2002U) and isotropic grain graphite (IG-430U) coated by VSP-W (Vacuum Plasma Splay-tungsten) were developed as a lightweight high-Z plasma-facing material. After brazing them on OFHC (Oxygen Free High Conductivity) blocks using a titanium foil and silver based materials, their thermal response and thermal fatigue properties were examined. The targets were actively cooled under steady state high heat flux. Heat load resistance of the VPS-W coated CX-2002U/OFHC was much better than that of the VSP-W coated IG-430U/OFHC due to the high thermal conductivity of CX-2002U (350 W/mK). Neither cracks nor exfoliation were observed on the W surface and the braze interface even after 160 cycles of heat load for 20 s at 10 MW/m2 in the case of Ti brazing. This result indicates that the Ti-brazing is a promising alternative to Ag-brazing for joining carbon to Cu and it is a potential candidate for a high heat resistance armor material on plasma facing components. (author)

  12. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications

    OpenAIRE

    Maria Oksa; Erja Turunen; Tomi Suhonen; Tommi Varis; Simo-Pekka Hannula

    2011-01-01

    In this work High Velocity Oxy-fuel (HVOF) thermal spray techniques, spraying process optimization, and characterization of coatings are reviewed. Different variants of the technology are described and the main differences in spray conditions in terms of particle kinetics and thermal energy are rationalized. Methods and tools for controlling the spray process are presented as well as their use in optimizing the coating process. It will be shown how the differences from the starting powder to ...

  13. PROTECTIVE EFFECT OF COATING ON MECHANICAL PROPERTIES OF WOOD MATERIALS EXPOSED TO NATURAL WEATHERING

    OpenAIRE

    Özlem ÖZGENÇ; YILDIZ, Ümit C.; YILDIZ, Sibel

    2015-01-01

    The objective of this study was to investigate the protection effect of acrylic coating systems on mechanical properties of some wood species exposed to natural weathering. Beech (Fagus orientalis L.), scots pine (Pinus sylvestris L.) and oriental spruce (Picea orientalis L.) wood samples were coated with a new generation of acrylic resin including two different UV absorbers (organic and inorganic) and subjected to natural weathering tests for 15 months in Uzungöl and Hıdırnebi pl...

  14. Diamond-like carbon and ceramic materials as protective coatings grown by pulsed laser deposition

    OpenAIRE

    Perera Mercado, Yibran Argenis

    2004-01-01

    A rather large number of nitride, carbide, and oxide thin films are used as hard and wear-resistant coatings, for optical, corrosive, and refractory applications that are of crucial importance. Additional requirements place even more stringent conditions on the deposition processes. The properties of coatings deposited by pulsed laser deposition are determined by the deposition parameters, the composition of the PLD plasma and its ionization states, the substrate conditions, etc.. In this way...

  15. Coating of high Z material on silicon carbide by infrared transient-liquid-phase processing

    International Nuclear Information System (INIS)

    Tungsten (W) and molybdenum (Mo) were coated on silicon carbide (SiC) as refractory armor using high power plasma arc lamp at powers up to 23.5 MW/m2. Both W powder and Mo powder were melted and formed coating layers on SiC. The effect of pretreatment (vapor deposition of titanium (Ti), W and Mo and annealing) and sample heating conditions on microstructure of the coating and coating/substrate interface were investigated. The microstructure was observed by scanning electron microscopy (SEM) and optical microscopy (OM). A strong W coating was successfully formed. Tungsten vapor deposition and pre-heating at 5.2 MW/m2 made for a refractory layer containing no cracks which propagated into the SiC substrate. This layer was formed without the thick reaction layers (WC and W5Si3) reported in previous studies. Moreover the thinner interface transition layer and armor avoid coefficient of thermal expansion (CTE) mismatch driven failure previously reported. For this study, small WC grains were observed adjacent to interface. Silicon carbide grains and W5Si3 grains were observed within W coating. By contrast, Mo was not formed as well as W due to larger CTE mismatch than that for W and SiC. (author)

  16. The low cycle fatigue behavior of a plasma-sprayed coating material

    Science.gov (United States)

    Gayda, J.; Gabb, T. P.; Miner, R. V., Jr.

    1986-01-01

    Single crystal nickel-base superalloys employed in turbine blade applications are often used with a plasma spray coating for oxidation and hot corrosion resistance. These coatings may also affect fatigue life of the superalloy substrate. As part of a large program to understand the fatigue behavior of coated single crystals, fully reversed, total strain controlled fatigue tests were run on a free standing NiCoCrAlY coating alloy, PWA 276, at 0.1 Hz. Fatigue tests were conducted at 650 C, where the NiCoCrAlY alloy has modest ductility, and at 1050 C, where it is extremely ductile, showing tensile elongation in excess of 100 percent. At the lower test temperature, deformation induced disordering softened the NiCoCrAlY alloy, while at the higher test temperature cyclic hardening was observed which was linked to gradual coarsening of the two phase microstructure. Fatigue life of the NiCoCrAlY alloy was significantly longer at the higher temperature. Further, the life of the NiCoCrAlY alloy exceeds that of coated, /001/-oriented PWA 1480 single crystals at 1050 C, but at 650 C the life of the coated crystal is greater than that of the NiCoCrAlY alloy on a total strain basis.

  17. Low cycle fatigue behaviour of a plasma-sprayed coating material

    Science.gov (United States)

    Gayda, J.; Gabb, T. P.; Miner, R. V.

    1986-01-01

    Single crystal nickel-base superalloys employed in turbine blade applications are often used with a plasma spray coating for oxidation and hot corrosion resistance. These coatings may also affect fatigue life of the superalloy substrate. As part of a large program to understand the fatigue behavior of coated single crystals, fully reversed, total strain controlled fatigue tests were run on a free standing NiCoCrAlY coating alloy, PWA 276, at 0.1 Hz. Fatigue tests were conducted at 650 C, where the NiCoCrAlY alloy has modest ductility, and at 1050 C, where it is extremely ductile, showing tensile elongation in excess of 100 percent. At the lower test temperature, deformation induced disordering softened the NiCoCrAlY alloy, while at the higher test temperature cyclic hardening was observed which was linked to gradual coarsening of the two phase microstructure. Fatigue life of the NiCoCrAlY alloy was significantly longer at the higher temperature. Further, the life of the NiCoCrAlY alloy exceeds that of coated, /001/-oriented PWA 1480 single crystals at 1050 C but at 650 C the life of the coated crystal is greater than that of the NiCoCrAlY alloy on a total strain basis.

  18. Enhanced field emission from cerium hexaboride coated multiwalled carbon nanotube composite films: A potential material for next generation electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Rajkumar; Ghosh, S., E-mail: santanu1@physics.iitd.ac.in [Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi-16 (India); Sheremet, E.; Rodriguez, R. D.; Lehmann, D.; Gordan, O. D.; Zahn, D. R. T. [Semiconductor Physics, Technische Universität Chemnitz, 09126 Chemnitz (Germany); Jha, M.; Ganguli, A. K. [Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-16 (India); Schmidt, H. [Material Systems for Nanoelectronics, Technische Universität Chemnitz, 09126 Chemnitz (Germany); Schulze, S. [Solid Surfaces Analysis, Technische Universität Chemnitz, 09126 Chemnitz (Germany); Schmidt, O. G. [Material Systems for Nanoelectronics, Technische Universität Chemnitz, 09126 Chemnitz (Germany); Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2014-03-07

    Intensified field emission (FE) current from temporally stable cerium hexaboride (CeB{sub 6}) coated carbon nanotubes (CNTs) on Si substrate is reported aiming to propose the new composite material as a potential candidate for future generation electron sources. The film was synthesized by a combination of chemical and physical deposition processes. A remarkable increase in maximum current density, field enhancement factor, and a reduction in turn-on field and threshold field with comparable temporal current stability are observed in CeB{sub 6}-coated CNT film when compared to pristine CeB{sub 6} film. The elemental composition and surface morphology of the films, as examined by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray measurements, show decoration of CeB{sub 6} nanoparticles on top and walls of CNTs. Chemical functionalization of CNTs by the incorporation of CeB{sub 6} nanoparticles is evident by a remarkable increase in intensity of the 2D band in Raman spectrum of coated films as compared to pristine CeB{sub 6} films. The enhanced FE properties of the CeB{sub 6} coated CNT films are correlated to the microstructure of the films.

  19. Enhanced field emission from cerium hexaboride coated multiwalled carbon nanotube composite films: A potential material for next generation electron sources

    International Nuclear Information System (INIS)

    Intensified field emission (FE) current from temporally stable cerium hexaboride (CeB6) coated carbon nanotubes (CNTs) on Si substrate is reported aiming to propose the new composite material as a potential candidate for future generation electron sources. The film was synthesized by a combination of chemical and physical deposition processes. A remarkable increase in maximum current density, field enhancement factor, and a reduction in turn-on field and threshold field with comparable temporal current stability are observed in CeB6-coated CNT film when compared to pristine CeB6 film. The elemental composition and surface morphology of the films, as examined by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray measurements, show decoration of CeB6 nanoparticles on top and walls of CNTs. Chemical functionalization of CNTs by the incorporation of CeB6 nanoparticles is evident by a remarkable increase in intensity of the 2D band in Raman spectrum of coated films as compared to pristine CeB6 films. The enhanced FE properties of the CeB6 coated CNT films are correlated to the microstructure of the films

  20. The synergistic effect of inert oxide and metal fluoride dual coatings on advanced cathode materials for lithium ion battery applications.

    Science.gov (United States)

    Park, Kwangjin; Lee, Byoung-Sun; Park, Jun-Ho; Hong, Suk-Gi

    2016-06-21

    The effect of Al2O3/LiF dual coatings on the electrochemical performance of over-lithiated layered oxide (OLO) has been investigated. A uniform coating of Al2O3 and LiF is obtained on the surface of the layered pristine material. The OLO with a dual Al2O3/LiF coating with a ratio of 1 : 1.5 exhibits excellent electrochemical performance. An initial discharge capacity of 265.66 mA h g(-1) is obtained at a C-rate of 0.1C. This capacity is approximately 15 mA h g(-1) higher than that of pristine OLO. The capacity retention (92.8% at the 50th cycle) is also comparable to that of pristine OLO (91.4% at the 50th cycle). Coating the cathode with a dual layer comprising Al2O3 and LiF leads to improved charging and discharging kinetics, and prevents direct contact between the cathode and the electrolyte. PMID:27233109

  1. Residual stress in the first wall coating materials of TiC and TiN for fusion reactor

    International Nuclear Information System (INIS)

    Residual stresses measurement in the first wall coating of a fusion reactor of TiC and TiN films by X-ray diffraction 'sin2ψ methods' were described. The authors have studied on the effect of conditions of specimen preparation (such as coating method, substrate materials, film thickness and deposition temperature) on the residual stress of TiC and TiN films coated onto Mo, 316LSS and Pocographite by chemical vapor deposition (CVD) and physical vapor deposition (PVD) method. All films prepared in this study were found to have a compressive stresses and the CVD method gave lower residual stress than PVD method. TiC film coated on Mo substrate at 1100 degree C by CVD method showed that residual stress as the film thickness was raised from 14 μm to 60 μm, on the other hand, residual stress by PVD method exhibited a high compressive stresses, this kind of stress was principally the intrinsic stress, and a marked decrease in the residual with raising the deposition temperature (200 degree C∼650 degree C) was demonstrated. Origins of the residual stress were discussed by correlation with differences between thermal expansion coefficients, and also with fabrication methods

  2. Material Analysis of Coated Siliconized Silicon Carbide (SiSiC Honeycomb Structures for Thermochemical Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Robert Pitz-Paal

    2013-01-01

    Full Text Available In the present work, thermochemical water splitting with siliconized silicon carbide (SiSiC honeycombs coated with a zinc ferrite redox material was investigated. The small scale coated monoliths were tested in a laboratory test-rig and characterized by X-ray diffractometry (XRD and Scanning Electron Microscopy (SEM with corresponding micro analysis after testing in order to characterize the changes in morphology and composition. Comparison of several treated monoliths revealed the formation of various reaction products such as SiO2, zircon (ZrSiO4, iron silicide (FeSi and hercynite (FeAl2O4 indicating the occurrence of various side reactions between the different phases of the coating as well as between the coating and the SiSiC substrate. The investigations showed that the ferrite is mainly reduced through reaction with silicon (Si, which is present in the SiSiC matrix, and silicon carbide (SiC. These results led to the formulation of a new redox mechanism for this system in which Zn-ferrite is reduced through Si forming silicon dioxide (SiO2 and through SiC forming SiO2 and carbon monoxide. A decline of hydrogen production within the first 20 cycles is suggested to be due to the growth of a silicon dioxide and zircon layer which acts as a diffusion barrier for the reacting specie.

  3. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations.

    Science.gov (United States)

    Moreno-Gordaliza, Estefanía; Stigter, Edwin C A; Lindenburg, Petrus W; Hankemeier, Thomas

    2016-06-01

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10(-9) m(2) V(-1) s(-1)) when compared with unmodified fused silica (5.9 ± 0.1 10(-8) m(2) V(-1) s(-1)). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1-1.8% coefficient-of-variation (CV) within a day) and 2-3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. PMID:27155306

  4. Preparation of W–Cu functionally graded material coated with CVD–W for plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jiupeng, E-mail: jiupeng.song@hotmail.com [Xiamen Honglu Tungsten Molybdenum Industry Co. Ltd., 361021 Xiamen (China); Yu, Yang [Xiamen Honglu Tungsten Molybdenum Industry Co. Ltd., 361021 Xiamen (China); Zhuang, Zhigang [China National R and D Center for Tungsten Technology, Xiamen Tungsten Co. Ltd., 361026 Xiamen (China); Lian, Youyun; Liu, Xiang [Fusion Reactor Design and Material Division, Southwestern Institute of Physics, P.O. Box 432, 610041 Chengdu (China); Qi, Yang [College of Science, Northeastern University, 110819 Shenyang (China)

    2013-11-15

    W–Cu functionally graded materials (FGMs) are designed to be a transition layer between CuCrZr bulk material and a W surface layer in plasma-facing components. In this study, a type of in-house developed ultrafine W–Cu composite powder has been used to fabricate a W–Cu FGM, which consists of three layers of W–10Cu, W–32Cu, and W–60Cu respectively. The sintered FGM has a homogeneous microstructure and a residual porosity of less than 3.3%. The W–10Cu side of the FGM has been coated with pure W using an optimized chemical vapor deposition (CVD) process with an increased deposition rate of 0.8 mm/h. The thickness of the coating is around 2 mm and the density is as high as 19.23 g/cm{sup 3}. The columnar grain size of CVD–W at the end of deposition is approximately 20–50 μm in the direction parallel to the substrate and 1–1.5 mm in the direction perpendicular to the substrate. Compared with plasma-sprayed W–Cu FGM and W coating, the FGM and CVD–W developed in this study have a better microstructure, which is important for the thermal and physical properties of the components.

  5. Preparation of W–Cu functionally graded material coated with CVD–W for plasma-facing components

    International Nuclear Information System (INIS)

    W–Cu functionally graded materials (FGMs) are designed to be a transition layer between CuCrZr bulk material and a W surface layer in plasma-facing components. In this study, a type of in-house developed ultrafine W–Cu composite powder has been used to fabricate a W–Cu FGM, which consists of three layers of W–10Cu, W–32Cu, and W–60Cu respectively. The sintered FGM has a homogeneous microstructure and a residual porosity of less than 3.3%. The W–10Cu side of the FGM has been coated with pure W using an optimized chemical vapor deposition (CVD) process with an increased deposition rate of 0.8 mm/h. The thickness of the coating is around 2 mm and the density is as high as 19.23 g/cm3. The columnar grain size of CVD–W at the end of deposition is approximately 20–50 μm in the direction parallel to the substrate and 1–1.5 mm in the direction perpendicular to the substrate. Compared with plasma-sprayed W–Cu FGM and W coating, the FGM and CVD–W developed in this study have a better microstructure, which is important for the thermal and physical properties of the components

  6. Recombinant mussel adhesive protein fp-5 (MAP fp-5) as a bulk bioadhesive and surface coating material.

    Science.gov (United States)

    Choi, Yoo Seong; Kang, Dong Gyun; Lim, Seonghye; Yang, Yun Jung; Kim, Chang Sup; Cha, Hyung Joon

    2011-08-01

    Mussel adhesive proteins (MAPs) attach to all types of inorganic and organic surfaces, even in wet environments. MAP of type 5 (fp-5), in particular, has been considered as a key adhesive material. However, the low availability of fp-5 has hampered its biochemical characterization and practical applications. Here, soluble recombinant fp-5 is mass-produced in Escherichia coli. Tyrosinase-modified recombinant fp-5 showed ∼1.11 MPa adhesive shear strength, which is the first report of a bulk-scale adhesive force measurement for purified recombinant of natural MAP type. Surface coatings were also performed through simple dip-coating of various objects. In addition, complex coacervate using recombinant fp-5 and hyaluronic acid was prepared as an efficient adhesive formulation, which greatly improved the bulk adhesive strength. Collectively, it is expected that this work will enhance basic understanding of mussel adhesion and that recombinant fp-5 can be successfully used as a realistic bulk-scale bioadhesive and an efficient surface coating material. PMID:21770718

  7. The Development of HfO2-Rare Earth Based Oxide Materials and Barrier Coatings for Thermal Protection Systems

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan James

    2014-01-01

    Advanced hafnia-rare earth oxides, rare earth aluminates and silicates have been developed for thermal environmental barrier systems for aerospace propulsion engine and thermal protection applications. The high temperature stability, low thermal conductivity, excellent oxidation resistance and mechanical properties of these oxide material systems make them attractive and potentially viable for thermal protection systems. This paper will focus on the development of the high performance and high temperature capable ZrO2HfO2-rare earth based alloy and compound oxide materials, processed as protective coating systems using state-or-the-art processing techniques. The emphasis has been in particular placed on assessing their temperature capability, stability and suitability for advanced space vehicle entry thermal protection systems. Fundamental thermophysical and thermomechanical properties of the material systems have been investigated at high temperatures. Laser high-heat-flux testing has also been developed to validate the material systems, and demonstrating durability under space entry high heat flux conditions.

  8. Mechanical response under contact loads of AlCrN-coated tool materials

    International Nuclear Information System (INIS)

    The mechanical behavior under contact loading of systems consisting of PVD AlCrN film deposited onto two distinct hard substrates - cemented carbides and tool steel is studied by means of indentation testing techniques, under monotonic and cyclic condition. Experimental work includes assessment of critical applied loads for emergence of circular cracks at the coating surface, as well as evaluation of both surface and subsurface damage evolution. Results indicate that both coated systems are susceptible to mechanical degradation associated with repetitive contact load. Furthermore, significant differences on contact fatigue behavior between the two studied coated systems are evidenced under consideration of cracking evolution at top surface and penetration towards the substrate. In this regard, the intrinsic mechanical properties of the substrate are pointed out as key feature for rationalizing the experimental findings

  9. Composition profiling of solar coating materials. Final report, April 16, 1976-April 15, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, G.K.

    1979-09-01

    Auger electron composition vs. depth and optical analysis revealed that a very inexpensive-to-produce (15 min. 900/sup 0/C heat treatment in air) Cr/sub 2/O/sub 3/ layer on stainless steels provides an excellent diffusion barrier for preventing stainless steel constituents from entering into an IR reflective Mo coating. It was shown that with sputter deposition of Mo at high rate in a clean noble gas plasma, one can obtain Mo coatings of excellent IR reflectance (> 96% between 2.5 and 25 ..mu..m wavelength). The optical properties (..cap alpha.. and epsilon) of various other absorber surfaces such as stacked razor blades, cone or whisker-covered metal surfaces, plasma-sprayed chromic oxide coatings etc. were measured and explored. (MOW)

  10. Transfer of molybdenum sulphide coating material onto corundum balls in fretting wear tests

    International Nuclear Information System (INIS)

    Transfer films on corundum balls from sulfur deficient molybdenum disulfide (MoSx) coatings with different crystallographic orientations were investigated after fretting tests performed in ambient air of different humidity levels. The morphology of wear tracks on MoSx coatings and of transfer films on corundum balls were investigated by light optical microscopy with Normarski contrast. The thickness of transfer films was measured by scanning white light and optical phase-shifting interferometry, and their composition was analyzed by X-ray photoelectron spectroscopy. The effect of relative humidity in fretting tests on the composition of the transfer films as well as the effect of the transfer film on the tribological performance of MoSx coatings in fretting wear tests is discussed

  11. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    Science.gov (United States)

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction. PMID:23827538

  12. Investigations of the structure and properties of PVD coatings deposited onto sintered tool materials

    OpenAIRE

    D. Pakuła; M. Staszuk; L.A. Dobrzański

    2012-01-01

    Purpose: The paper presents investigation results of the structure and properties of the coatings deposited by cathodic arc evaporation - physical vapour deposition (CAE-PVD) techniques on the sialon tool ceramics. The Ti(B,N), Ti(C,N), (Ti,Zr)N, (Ti,Al)N and multilayer (Al,Cr)N+(Ti,Al)N, (Ti,Al)N+(Al,Cr)N coatings were investigated.Design/methodology/approach: The structural investigation includes the metallographic analysis on the scanning electron microscope. Examinations of the chemical c...

  13. Evaluation of Albizia procera gum as compression coating material for colonic delivery of budesonide.

    Science.gov (United States)

    Pachuau, Lalduhsanga; Mazumder, Bhaskar

    2013-10-01

    The purpose of this research was to develop and evaluate Albizia procera gum as compression-coating polymer for colonic delivery of budesonide. Tablets were prepared by direct compression method using spray-dried lactose and microcrystalline cellulose as filler binders. The compatibility between the drug and the polymer was studied through TGA and FTIR spectroscopy. In vitro drug release were studied in dissolution media with or without 2% rat cecal contents while in vivo X-ray study was conducted on rabbits. The results indicate that procera gum and the drug were compatible with each other and tablet coated with procera gum was suitable for colonic delivery of drugs. PMID:23916644

  14. Carbon coated Fe3O4 hybrid material prepared by chemical vapor deposition for high performance lithium-ion batteries

    International Nuclear Information System (INIS)

    A hybrid material of carbon coated Fe3O4 (Fe3O4@C) is synthesized by chemical vapor deposition method using Fe2O3 as starting material and acetylene as carbon source. The obtained material is Fe3O4 spheres of ∼400 nm coated by thin carbon layer with a thickness of ∼10 nm. As an anode material for lithium ion batteries, Fe3O4@C shows an improved electrochemical performance in the reversible capacity and cycling stability, together with excellent rate capability. The performance is much better than the results obtained from bare Fe2O3 and commercial Fe3O4 of the same size. In addition to the comparison of electrochemical impedance spectra of the Fe2O3, Fe3O4 and Fe3O4@C electrodes before and after 50 charge/discharge cycles, a surface contrast of the three electrodes before and after cycling is systematically investigated to explore the influence of carbon layer on the electrochemical performance of the Fe3O4 spheres

  15. Electrochemical characterization of carbon coated bundle-type silicon nanorod for anode material in lithium ion secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Martin [Center for Energy Convergence, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Energy and Environmental Engineering, Korea University of Science and Technology, Gwahangno, Yuseong-gu, Daejeon, 305-333 (Korea, Republic of); Kim, Jung Sub [Center for Energy Convergence, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Material Science & Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Choi, Jeong-Gil [Department of Chemical Engineering, Hannam University, 461-1 Junmin-dong, Yusung-gu, Taejon 305-811 (Korea, Republic of); Lee, Joong Kee, E-mail: leejk@kist.re.kr [Center for Energy Convergence, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Energy and Environmental Engineering, Korea University of Science and Technology, Gwahangno, Yuseong-gu, Daejeon, 305-333 (Korea, Republic of)

    2015-04-15

    Highlights: • Bundle-type silicon nanorods (BSNR) were synthesized by metal assisted chemical etching. • Novel bundle-type nanorods electrode showed self-relaxant characteristics. • The self-relaxant property was enhanced by increasing the silver concentration. • PAA binder enhanced the self-relaxant property of the silicon material. • Carbon coated BSNR (BSNR@C) has evidently provided better cycle performance. - Abstract: Nanostructured silicon synthesis by surface modification of commercial micro-powder silicon was investigated in order to reduce the maximum volume change over cycle. The surface of micro-powder silicon was modified using an Ag metal-assisted chemical etching technique to produce nanostructured material in the form of bundle-type silicon nanorods. The volume change of the electrode using the nanostructured silicon during cycle was investigated using an in-situ dilatometer. Our result shows that nanostructured silicon synthesized using this method showed a self-relaxant characteristic as an anode material for lithium ion battery application. Moreover, binder selection plays a role in enhancing self-relaxant properties during delithiation via strong hydrogen interaction on the surface of the silicon material. The nanostructured silicon was then coated with carbon from propylene gas and showed higher capacity retention with the use of polyacrylic acid (PAA) binder. While the nano-size of the pore diameter control may significantly affect the capacity fading of nanostructured silicon, it can be mitigated via carbon coating, probably due to the prevention of Li ion penetration into 10 nano-meter sized pores.

  16. Electrochemical characterization of carbon coated bundle-type silicon nanorod for anode material in lithium ion secondary batteries

    International Nuclear Information System (INIS)

    Highlights: • Bundle-type silicon nanorods (BSNR) were synthesized by metal assisted chemical etching. • Novel bundle-type nanorods electrode showed self-relaxant characteristics. • The self-relaxant property was enhanced by increasing the silver concentration. • PAA binder enhanced the self-relaxant property of the silicon material. • Carbon coated BSNR (BSNR@C) has evidently provided better cycle performance. - Abstract: Nanostructured silicon synthesis by surface modification of commercial micro-powder silicon was investigated in order to reduce the maximum volume change over cycle. The surface of micro-powder silicon was modified using an Ag metal-assisted chemical etching technique to produce nanostructured material in the form of bundle-type silicon nanorods. The volume change of the electrode using the nanostructured silicon during cycle was investigated using an in-situ dilatometer. Our result shows that nanostructured silicon synthesized using this method showed a self-relaxant characteristic as an anode material for lithium ion battery application. Moreover, binder selection plays a role in enhancing self-relaxant properties during delithiation via strong hydrogen interaction on the surface of the silicon material. The nanostructured silicon was then coated with carbon from propylene gas and showed higher capacity retention with the use of polyacrylic acid (PAA) binder. While the nano-size of the pore diameter control may significantly affect the capacity fading of nanostructured silicon, it can be mitigated via carbon coating, probably due to the prevention of Li ion penetration into 10 nano-meter sized pores

  17. Stresses in the material with multilayered coating under impulse thermal loading

    Science.gov (United States)

    Shanin, S. A.

    2016-04-01

    The two-dimensional model of mechanical behavior of the specimen with multi layered coating is formulated. The parametric analysis was carried out for various types of boundary conditions. Stress intensity depending on time was studied. The influence of impulse parameters on the temperature and stresses was investigated. It was revealed that radiation heat losses reduces the action of external loading.

  18. Effect of Coating and Packaging Materials on Photocatalytic and Antimicrobial Activities of Titanium Dioxide Nanoparticles

    Science.gov (United States)

    Food safety or foodborne pathogen contamination is a major concern in food industry. Titanium dioxide (TiO2) is a photocatalyst and can inactivate a wide spectrum of microorganisms under UV illumination. There is significant interest in the development of TiO2-coated or –incorporated food packaging ...

  19. PROTECTIVE EFFECT OF COATING ON MECHANICAL PROPERTIES OF WOOD MATERIALS EXPOSED TO NATURAL WEATHERING

    Directory of Open Access Journals (Sweden)

    Özlem ÖZGENÇ

    2015-03-01

    Full Text Available The objective of this study was to investigate the protection effect of acrylic coating systems on mechanical properties of some wood species exposed to natural weathering. Beech (Fagus orientalis L., scots pine (Pinus sylvestris L. and oriental spruce (Picea orientalis L. wood samples were coated with a new generation of acrylic resin including two different UV absorbers (organic and inorganic and subjected to natural weathering tests for 15 months in Uzungöl and Hıdırnebi plateau located in the north of Turkey. Changes in mechanical (compression strength parallel to fibers, static bending strength and modulus of elasticity properties were investigated and compared with non-coated wood samples. The result of this research demonstrated that the mechanical strength losses of specimens coated with acrylic resin decreased after the 15-month natural weathering test. Under outdoor conditions, the best protection is provided by the organic UV absorber for oriental spruce and by the inorganic UV absorber for oriental beech. The influence of acrylic resin including UV absorbers (organic and inorganic types were similar to each other for scots pine. The wood samples had higher rates of mechanical strength loss in Uzungöl plateau when compared to the ones from Hıdırnebi plateau.

  20. Advanced Anticorrosion Coating Materials Derived from Sunflower Oil with Bifunctional Properties.

    Science.gov (United States)

    Balakrishnan, Thiruparasakthi; Sathiyanarayanan, Sadagopan; Mayavan, Sundar

    2015-09-01

    High-performance barrier films preventing permeation of moisture, aggressive chloride ions, and corrosive acids are important for many industries ranging from food to aviation. In the current study, pristine sunflower oil was used to form uniform adherent films on iron (Fe) via a simple single-step thermal treatment (without involving any initiator/mediator/catalyst). Oxidation of oil on heating results in a highly conjugated (oxidized) crystalline lamellar network with interlayer separation of 0.445 nm on Fe. The electrochemical corrosion tests proved that the coating exhibits superior anticorrosion performance with high coating resistance (>10(9) ohm cm2) and low capacitance values (oil coatings developed in this study provided a two-fold protection of passivation from the oxide layer and barrier from polymeric films. It is clearly observed that there is no change in structure, morphology, or electrochemical properties even after a prolonged exposure time of 80 days. This work indicates the prospect of developing highly inert, environmentally green, nontoxic, and micrometer level passivating barrier coatings from more sustainable and renewable sources, which can be of interest for numerous applications. PMID:26292971

  1. Energy efficient graphite polyurethane electrically conductive coatings for thermally actuated smart materials

    Science.gov (United States)

    Bhattacharyya, A.; Dervishi, E.; Berry, B.; Viswanathan, T.; Bourdo, S.; Kim, H.; Sproles, R.; Hudson, M. K.

    2007-02-01

    The concept of graphite-polyurethane coatings as efficient, electrical resistors is the focus of this paper. A 60-40 graphite-polyurethane mix (weight %) demonstrated an electrical resistivity of 40.71 Ω mm. The graphite-polyurethane mix was coated on electrically insulating Kapton tape, which was then wrapped on a nichrome wire (nominal dimensions: 100 mm length and 1.5 mm diameter). This three-phase assembly was heated by Joule heating of the graphite-polyurethane layer. Steady state temperatures as high as 180 °C were attained under free convection conditions, at a very low power requirement of about 2.5 W as opposed to about 18 W for uncoated wires. Interestingly, the effect on transients (heating and cooling times) was not as dramatic. Experiments were also performed under vacuum conditions, following which an analysis is offered regarding the different modes of heat transfer. These coatings can potentially be used as efficient resistors for highly conductive, moderately high temperature shape memory alloys (e.g. the copper-aluminium-nickel system) or electrically insulating shape memory polymers. Any other thermally activated shape memory alloy (e.g. the popular nickel-titanium system) may also use the coatings as resistors due to the potentially dramatic energy savings that may be realized without a dramatic adverse impact on the frequency response.

  2. Magnetic materials based on manganese–zinc ferrite with surface organized polyaniline coating

    Czech Academy of Sciences Publication Activity Database

    Kazantseva, N. E.; Bespyatykh, Y.; Sapurina, I.; Stejskal, Jaroslav; Vilčáková, J.; Sáha, P.

    2006-01-01

    Roč. 301, č. 1 (2006), s. 155-165. ISSN 0304-8853 R&D Projects: GA AV ČR IAA4050313 Keywords : ferrite * coated particles * conducting polymer Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.212, year: 2006

  3. Optical Properties of Window Coatings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Window coating used for the building in recent years is described. Important design principles, practical coating materials, and attainable optical properties for research-type coatings are introduced. Discussion is carried out on the spectrally selective coatings, the electrochromic coatings, and the thermochromic coatings.

  4. Bio-based Interpenetrating Network Polymer Composites from Locust Sawdust as Coating Material for Environmentally Friendly Controlled-Release Urea Fertilizers.

    Science.gov (United States)

    Zhang, Shugang; Yang, Yuechao; Gao, Bin; Wan, Yongshan; Li, Yuncong C; Zhao, Chenhao

    2016-07-20

    A novel polymer-coated nitrogen (N) fertilizer was developed using bio-based polyurethane (PU) derived from liquefied locust sawdust as the coating material. The bio-based PU was successfully coated on the surface of the urea fertilizer prills to form polymer-coated urea (PCU) fertilizer for controlled N release. Epoxy resin (EP) was also used to further modify the bio-based PU to synthesize the interpenetrating network (IPN), enhancing the slow-release properties of the PCU. The N release characteristics of the EP-modified PCU (EMPCU) in water were determine at 25 °C and compared to that of PCU and EP-coated urea (ECU). The results showed that the EP modification reduced the N release rate and increased the longevity of the fertilizer coated with bio-based PU. A corn growth study was conducted to further evaluate the filed application of the EMPCU. In comparison to commercial PCU and conventional urea fertilizer, EMPCU was more effective and increased the yield and total dry matter accumulation of the corn. Findings from this work indicated that bio-based PU derived from sawdust can be used as coating materials for PCU, particularly after EP modification. The resulting EMPCU was more environmentally friendly and cost-effective than conventional urea fertilizers coated by EP. PMID:27352017

  5. Sol-gel composite coatings as anti-corrosion barrier for structural materials of lead-bismuth eutectic cooled fast reactor

    Science.gov (United States)

    Kasada, Ryuta; Dou, Peng

    2013-09-01

    In order to protect the structural components of lead-bismuth eutectic (LBE) cooled fast breeder reactors (FBRs) from liquid metal corrosion, advanced aluminum-yttrium nano- and micro-composite coatings were developed using an improved sol-gel process, which includes dipping specimens in a Y-added sol-gel solution dispersed with ultrafine α-Al2O3 powders prepared by mechanical milling. Scanning electron microscopy (SEM) and field emission electron probe microprobe analyzer (FE-EPMA) analyses revealed that the coatings are composed of alumina with high density. Accelerated corrosion tests were conducted on coated specimens in liquid LBE at 650 °C under dynamic conditions. After the corrosion tests, no cracking, spallation, erosion and liquid metal (e.g., lead) penetration occurred to the coatings, indicating that the coatings possess an enhanced dynamic LBE corrosion resistance. The superior LBE corrosion resistance is due to the presence of the nano-structured composite particles integrated into the coatings and the addition of trace amount of yttrium. Severe erosion and penetration of liquid Pb occurred to the Al2O3 nano- and micro-composite coatings. After the corrosion tests, no cracking, spallation, erosion and liquid metal (e.g., lead) penetration occurred to the newly-developed aluminum-yttrium nano- and micro-composite coatings, indicating that the coatings possess an enhanced dynamic LBE corrosion resistance. Therefore we can conclude that the coatings possess an enhanced dynamic LBE corrosion resistance under the experimental conditions chosen here. It is a way to protect the structural materials of LBE cooled FBRs from liquid metal corrosion. The much improved corrosion resistance of aluminum-yttrium nano- and micro-composite coatings, relative to Al2O3 nano- and micro-composite coatings, is due to the much higher density and the significantly superior high temperature strength resulting from using of finer Al2O3 seeding particles and adding trace

  6. High-density gold and silver colloids developed for coating material; Toryoyo ni kaihatsusareta konodo kin, gin koroido

    Energy Technology Data Exchange (ETDEWEB)

    Asada, M. [Dai Nippon Ink and Chemical, Inc., Tokyo (Japan)

    2000-08-05

    Gold and silver with the beautiful precious metal luster show red and yellow by the plasmon absorption, which differ from the original color, when the particle size becomes less than several decade nm, and they have been used for colorants of stained glass since the ancient times. Recently, the method for adjusting comparatively conveniently high-density gold and silver colloids was announced. Though this method was the general method for preparing gold colloids or silver colloids in which chloroauric acid or silver nitrate aqueous solution is reduced respectively, that the reduction was done by using a water insoluble high molecular weight dispersing agent as a protective colloid in the mixed solvent system of water soluble organic solvent such as the acetone and water was the feature. Using solid sol obtained by this method, the alkyd-melamine coating material was made, and it was baked at 140 degrees C, the coating film was obtained. The coating film of gold colloid was vivid red, and the absorption peak was observed near 530nm, whereas on the other hand the silver colloid was yellow, and the absorption peak was observed near 420nm. These values almost agreed with the values of the plasmon absorption of each metal. (NEDO)

  7. Damage threshold of coating materials on x-ray mirror for x-ray free electron laser.

    Science.gov (United States)

    Koyama, Takahisa; Yumoto, Hirokatsu; Miura, Takanori; Tono, Kensuke; Togashi, Tadashi; Inubushi, Yuichi; Katayama, Tetsuo; Kim, Jangwoo; Matsuyama, Satoshi; Yabashi, Makina; Yamauchi, Kazuto; Ohashi, Haruhiko

    2016-05-01

    We evaluated the damage threshold of coating materials such as Mo, Ru, Rh, W, and Pt on Si substrates, and that of uncoated Si substrate, for mirror optics of X-ray free electron lasers (XFELs). Focused 1 μm (full width at half maximum) XFEL pulses with the energies of 5.5 and 10 keV, generated by the SPring-8 angstrom compact free electron laser (SACLA), were irradiated under the grazing incidence condition. The damage thresholds were evaluated by in situ measurements of X-ray reflectivity degradation during irradiation by multiple pulses. The measured damage fluences below the critical angles were sufficiently high compared with the unfocused SACLA beam fluence. Rh coating was adopted for two mirror systems of SACLA. One system was a beamline transport mirror system that was partially coated with Rh for optional utilization of a pink beam in the photon energy range of more than 20 keV. The other was an improved version of the 1 μm focusing mirror system, and no damage was observed after one year of operation. PMID:27250368

  8. Magnesium-containing layered double hydroxides as orthopaedic implant coating materials--An in vitro and in vivo study.

    Science.gov (United States)

    Weizbauer, Andreas; Kieke, Marc; Rahim, Muhammad Imran; Angrisani, Gian Luigi; Willbold, Elmar; Diekmann, Julia; Flörkemeier, Thilo; Windhagen, Henning; Müller, Peter Paul; Behrens, Peter; Budde, Stefan

    2016-04-01

    The total hip arthroplasty is one of the most common artificial joint replacement procedures. Several different surface coatings have been shown to improve implant fixation by facilitating bone ingrowth and consequently enhancing the longevity of uncemented orthopaedic hip prostheses. In the present study, two different layered double hydroxides (LDHs), Mg-Fe- and Mg-Al-LDH, were investigated as potential magnesium (Mg)-containing coating materials for orthopaedic applications in comparison to Mg hydroxide (Mg(OH)2). In vitro direct cell compatibility tests were carried out using the murine fibroblast cell line NIH 3T3 and the mouse osteosarcoma cell line MG 63. The host response of bone tissue was evaluated in in vivo experiments with nine rabbits. Two cylindrical pellets (3 × 3 mm) were implanted into each femoral condyle of the left hind leg. The samples were analyzed histologically and with μ-computed tomography (μ-CT) 6 weeks after surgery. An in vitro cytotoxicity test determined that more cells grew on the LDH pellets than on the Mg(OH)2-pellets. The pH value and the Mg(2+) content of the cell culture media were increased after incubation of the cells on the degradable samples. The in vivo tests demonstrated the formation of fibrous capsules around Mg(OH)2 and Mg-Fe-LDH. In contrast, the host response of the Mg-Al-LDH samples indicated that this Mg-containing biomaterial is a potential candidate for implant coating. PMID:25939995

  9. A new approach for preventing charging up of soft material samples by coating with conducting polymers in SIMS analysis

    International Nuclear Information System (INIS)

    Dynamic secondary ion mass spectroscopy (SIMS) analysis of soft materials such as polymer or biomaterial is one of challenging subjects due to the charge up effect brought from the irradiation of a primary ion beam, hampering the collection of secondary ions. Conventional methods against the charging up are the electron beam irradiation for charge compensation and surface coating with metal, normally gold. Those methods require a compromise analytical condition, reducing the primary ion beam current to suppress the range of the charging, which degrading the performances of the SIMS analyses. We have proposed that a thicker conductive layer, capable of delocalizing the charge onto the surface, should be put on a soft insulator sample to avoid charging up. The depth profile of the hair sample coated wholly with a polythiophen-based conducting polymer was successfully measured in longer time without any charging up even in the maximum current of the oxygen primary ion beam (O2+: 7.5 keV, 400 nA) or using an electron beam compensation system. Thus, the proposed method coating with a conductive organic polymer against the charging issue would be expected as a breakthrough on SIMS analysis.

  10. Vegetable-Oil-Based Hyperbranched Polyester-Styrene Copolymer Containing Silver Nanoparticle as Antimicrobial and Corrosion-Resistant Coating Materials

    Directory of Open Access Journals (Sweden)

    Manawwer Alam

    2013-01-01

    Full Text Available Pongamia oil (PO was converted to Pongamia oil hydroxyl (POH via epoxidation process. The esterification of POH with linolenic acid was carried out to form hyperbranched polyester (HBPE, and further styrenation was performed at the conjugated double bond in the chain of linolenic acid. After styrenation, silver nanoparticle was added in different weight percentages (0.1–0.4 wt%. The structural elucidation of POH, HBPE, and HBPE-St was carried out by FT-IR, 1H-NMR, and 13C-NMR spectroscopic techniques. Physicochemical and physicomechanical analyses were performed by standard method. Thermal behavior of the HBPE-St was analyzed by using thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The coatings of HBPE-St were prepared on mild steel strips. The anticorrosive behavior of HBPE-St resin-based coatings in acid, saline, and tap water was evaluated, and the molecular weight of HBPE-St was determined by gel permeation chromatography (GPC. The antibacterial activities of the HBPE-St copolymers were tested in vitro against bacteria and fungi by disc diffusion method. The HBPE-St copolymers exhibited good antibacterial activities and can be used as antimicrobial and corrosion-resistant coating materials.

  11. Silver-coated silica beads applicable as core materials of dual-tagging sensors operating via SERS and MEF.

    Science.gov (United States)

    Kim, Kwan; Lee, Yoon Mi; Lee, Hyang Bong; Shin, Kuan Soo

    2009-10-01

    We have developed dual-tagging sensors, operating via both surface-enhanced Raman scattering (SERS) and metal-enhanced fluorescence (MEF), composed of silver-coated silica beads onto which were deposited SERS markers and dye-grafted polyelectrolytes, for multiplex immunoassays. Initially, a very simple electroless-plating method was applied to prepare Ag-coated silica beads. The Raman markers were then assembled onto the Ag-coated silica beads, after which they were brought to stabilization by the layer-by-layer deposition of anionic and cationic polyelectrolytes including a dye-grafted polyelectrolyte. In the final stage, the dual-tagging sensors were assembled onto them with specific antibodies (antihuman-IgG or antirabbit-IgG) to detect target antigens (human-IgG or rabbit-IgG). The MEF signal was used as an immediate indicator of molecular recognition, while the SERS signals were subsequently used as the signature of specific molecular interactions. For this reason, these materials should find wide application, especially in the areas of biological sensing and recognition that rely heavily on optical and spectroscopic properties. PMID:20355851

  12. Deposition and characterization of diamond-like nanocomposite coatings grown by plasma enhanced chemical vapour deposition over different substrate materials

    Indian Academy of Sciences (India)

    Awadesh Kr Mallik; Nanadadulal Dandapat; Prajit Ghosh; Utpal Ganguly; Sukhendu Jana; Sayan Das; Kaustav Guha; Garfield Rebello; Samir Kumar Lahiri; Someswar Datta

    2013-04-01

    Diamond-like nanocomposite (DLN) coatings have been deposited over different substrates used for biomedical applications by plasma-enhanced chemical vapour deposition (PECVD). DLN has an interconnecting network of amorphous hydrogenated carbon and quartz-like oxygenated silicon. Raman spectroscopy, Fourier transform–infra red (FT–IR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used for structural characterization. Typical DLN growth rate is about 1 m/h, measured by stylus profilometer. Due to the presence of quartz-like Si:O in the structure, it is found to have very good adhesive property with all the substrates. The adhesion strength found to be as high as 0.6 N on SS 316 L steel substrates by scratch testing method. The Young’s modulus and hardness have found to be 132 GPa and 14.4 GPa, respectively. DLN coatings have wear factor in the order of 1 × 10-7 mm3/N-m. This coating has found to be compatible with all important biomedical substrate materials and has successfully been deposited over Co–Cr alloy based knee implant of complex shape.

  13. Antifouling and Antibacterial Multifunctional Polyzwitterion/Enzyme Coating on Silicone Catheter Material Prepared by Electrostatic Layer-by-Layer Assembly.

    Science.gov (United States)

    Vaterrodt, Anne; Thallinger, Barbara; Daumann, Kevin; Koch, Dereck; Guebitz, Georg M; Ulbricht, Mathias

    2016-02-01

    The formation of bacterial biofilms on indwelling medical devices generally causes high risks for adverse complications such as catheter-associated urinary tract infections. In this work, a strategy for synthesizing innovative coatings of poly(dimethylsiloxane) (PDMS) catheter material, using layer-by-layer assembly with three novel functional polymeric building blocks, is reported, i.e., an antifouling copolymer with zwitterionic and quaternary ammonium side groups, a contact biocidal derivative of that polymer with octyl groups, and the antibacterial hydrogen peroxide (H2O2) producing enzyme cellobiose dehydrogenase (CDH). CDH oxidizes oligosaccharides by transferring electrons to oxygen, resulting in the production of H2O2. The design and synthesis of random copolymers which combine segments that have antifouling properties by zwitterionic groups and can be used for electrostatically driven layer-by-layer (LbL) assembly at the same time were based on the atom-transfer radical polymerization of dimethylaminoethyl methacrylate and subsequent partial sulfobetainization with 1,3-propane sultone followed by quaternization with methyl iodide only or octyl bromide and thereafter methyl iodide. The alternating multilayer systems were formed by consecutive adsorption of the novel polycations with up to 50% zwitterionic groups and of poly(styrenesulfonate) as the polyanion. Due to its negative charge, enzyme CDH was also firmly embedded as a polyanionic layer in the multilayer system. This LbL coating procedure was first performed on prefunctionalized silicon wafers and studied in detail with ellipsometry as well as contact angle (CA) and zetapotential (ZP) measurements before it was transferred to prefunctionalized PDMS and analyzed by CA and ZP measurements as well as atomic force microscopy. The coatings comprising six layers were stable and yielded a more neutral and hydrophilic surface than did PDMS, the polycation with 50% zwitterionic groups having the largest

  14. Development of a hydrothermal deposition process for applying zirconia coatings on BWR materials for IGSCC mitigation

    International Nuclear Information System (INIS)

    An in situ hydrothermal deposition process is being developed to apply a film of zirconia (ZrO2) onto interior surface of 304 stainless steel and Alloy 600 as a potential method for mitigating intergranular stress corrosion cracking (IGSCC) in boiling water reactors (BWRs). The coating process is discussed. The obtained zirconia coatings are adherent. Monoclinic ZrO2 is the dominant phase when ZrO(ClO4)2 was the oxidant; tetragonal ZrO2 became the dominant phase when ZrO(NO3)2 was the oxidant. A preliminary experiment did not measure significantly lower values of the electrochemical potential (ECP), relative to the uncoated specimen over a wide range of dissolved oxygen in 265 deg. C water

  15. Characterization and antimicrobial performance of nano silver coatings on leather materials

    OpenAIRE

    Lkhagvajav, N.; Koizhaiganova, M.; Yasa, I.; Çelik, E.; Ö. Sari

    2015-01-01

    In this study, the characterization and the antimicrobial properties of nano silver (nAg) coating on leather were investigated. For this purpose, turbidity, viscosity and pH of nAg solutions prepared by the sol-gel method were measured. The formation of films from these solutions was characterized according to temperature by Differential Thermal Analysis-Thermogravimetry (DTA-TG) equipment. The surface morphology of treated leathers was observed using Scanning Electron Microscopy (SEM). The a...

  16. Novel POSS-PCU Nanocomposite Material as a Biocompatible Coating for Quantum Dots.

    Science.gov (United States)

    Rizvi, Sarwat B; Yang, Shi Yu; Green, Mark; Keshtgar, Mo; Seifalian, Alexander M

    2015-12-16

    Quantum dots (QDs) are fluorescent nanoparticles with unique photophysical properties that enable them to potentially replace traditional organic dyes and fluorescent proteins in various bioimaging applications. However, the inherent toxicity of their cores based on cadmium salts limits their widespread biomedical use. We have developed a novel nanocomposite polymer emulsion based on polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) that can be used to coat quantum dots to nullify their toxicity and enhance photostability. Here we report the synthesis and characterization of a novel POSS-PCU nanocomposite polymer emulsion and describe its application for coating QDs for biological application. The polymer was synthesized by a process of emulsion polymerization and formed stable micelles of ∼33 nm in diameter. CdTe/CdS/ZnS QDs were efficiently stabilized by the polymer emulsion through encapsulation within the polymer micelles. Characterization studies showed no significant change in the unique photophysical properties of QDs after coating. The polymer was biocompatible to HepG2, HUVECs, and mouse skeletal muscle cells at 2.5% after 24 h exposure on in vitro testing. Polymer encapsulated QDs showed enhanced photostability on exposure to high degrees of UV irradiation and air as well as significantly reduced cytotoxicity on exposure to HepG2 cells at 30 μg/mL for 24 h. We have therefore concluded that the POSS-PCU polymer emulsion has the potential to make a biocompatible and photostable coating for QDs enabling a host of biomedical applications to take this technology to the next level. PMID:26439600

  17. Influence of substrate material on the life of atmospheric plasmas prayed thermal barrier coatings

    OpenAIRE

    Eriksson, Robert; Johansson, Sten; Brodin, Håkan; Broitman, Esteban; Östergren, Lars; Li, Xin-Hai

    2013-01-01

    Thermal barrier coatings (TBCs) are used in gas turbines to prolong the life of the underlying substrates and to increase the efficiency of the turbines by enabling higher combustion temperatures. TBCs may fail during service due to thermal fatigue or through the formation of non-protective thermally grown oxides (TGOs). This study compares two atmospheric plasma sprayed (APS) TBC systems comprising of two identical TBCs deposited on two different substrates (Haynes 230 and Hastelloy X). The ...

  18. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    OpenAIRE

    Ziolkowski, Richard W.; Radu Malureanu; Samel Arslanagic; Yan Liu

    2011-01-01

    Electromagnetic properties of cylindrical active coated nano-particles comprised of a silica nano-cylinder core layered with a plasmonic concentric nano-shell are investigated for potential nano-sensor applications. Particular attention is devoted to the near-field properties of these particles, as well as to their far-field radiation characteristics, in the presence of an electric or a magnetic line source. A constant frequency canonical gain model is used to account for the gain introduced ...

  19. Effect of silica coating and silane surface treatment on the bond strength of soft denture liner to denture base material

    Directory of Open Access Journals (Sweden)

    Saadet Atsu

    2013-07-01

    Full Text Available OBJECTIVE: This study investigated the effects of different surface treatments on the tensile bond strength of an autopolymerizing silicone denture liner to a denture base material after thermocycling. MATERIAL AND METHODS: Fifty rectangular heat-polymerized acrylic resin (QC-20 specimens consisting of a set of 2 acrylic blocks were used in the tensile test. Specimens were divided into 5 test groups (n=10 according to the bonding surface treatment as follows: Group A, adhesive treatment (Ufi Gel P adhesive (control; Group S, sandblasting using 50-µm Al2O3; Group SCSIL, silica coating using 30-µm Al2O3 modified by silica and silanized with silane agent (CoJet System; Group SCA, silica coating and adhesive application; Group SCSILA, silica coating, silane and adhesive treatment. The 2 PMMA blocks were placed into molds and the soft lining materials (Ufi Gel P were packed into the space and polymerized. All specimens were thermocycled (5,000 cycles before the tensile test. Bond strength data were analyzed using 1-way ANOVA and Duncan tests. Fracture surfaces were observed by scanning electron microscopy. X-ray photoelectron spectrometer (XPS and Fourier Transform Infrared spectrometer (FTIR analysis were used for the chemical analysis and a profilometer was used for the roughness of the sample surfaces. RESULTS: The highest bond strength test value was observed for Group A (1.35±0.13; the lowest value was for Group S (0.28±0.07 and Group SCSIL (0.34±0.03. Mixed and cohesive type failures were seen in Group A, SCA and SCSILA. Group S and SCSIL showed the least silicone integrations and the roughest surfaces. CONCLUSION: Sandblasting, silica coating and silane surface treatments of the denture base resin did not increase the bond strength of the silicone based soft liner. However, in this study, the chemical analysis and surface profilometer provided interesting insights about the bonding mechanism between the denture base resin and silicone

  20. Coated Aerogel Beads

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  1. Electrochemical Properties of Chemically Processed SiOx as Coating Material in Lithium-Ion Batteries with Si Anode

    Directory of Open Access Journals (Sweden)

    Hee-June Jeong

    2014-01-01

    Full Text Available A SiOx coating material for Si anode in lithium-ion battery was processed by using SiCl4 and ethylene glycol. The produced SiOx particles after heat treatment at 725°C for 1 h were porous and irregularly shaped with amorphous structure. Pitch carbon added to SiOx was found to strongly affect solid electrolyte interphase stabilization and cyclic stability. When mixed with an optimal amount of 30 wt% pitch carbon, the SiOx showed a high charge/discharge cyclic stability of about 97% for the 2nd to the 50th cycle. The initial specific capacity of the SiOx was measured to be 1401 mAh/g. On the basis of the evaluation of the SiOx coating material, the process utilized in this study is considered an efficient method to produce SiOx with high performance in an economical way.

  2. Enhanced electrochemical capacitance of polyimidazole coated covellite CuS dispersed CNT composite materials for application in supercapacitors.

    Science.gov (United States)

    Ravi, Seenu; Gopi, Chandu V V M; Kim, Hee Je

    2016-08-01

    Great attention has been paid to the design and synthesis of distinct core/shell heterostructures for high-performance supercapacitors. We have prepared unique heterostructures consisting of polyimidazole-coated copper sulphide over a carbon nanotube network (CuS@CNT) on nickel foam, which was accomplished through a facile and cost-effective solvothermal method combined with a dip coating process. Hexagonal covellite CuS nanoparticles were dispersed on CNTs using a solvothermal method where dimethylformamide and distilled water were used as solvents. The synthesized CuS and CuS@CNT supercapacitor electrode materials were thoroughly characterized. The polymer supported electrode (PIM/CuS@CNT) shows a high areal capacitance of 1.51 F cm(-2) at a current density of 1.2 A g(-1), which is higher than the CuS@CNT electrode and many other previously reported CuS electrode materials. After 1000 cycles at a high current density of 1.2 A g(-1), the retention rate is 92%, indicating good long-term cycling stability. These results indicate that the PIM/CuS@CNT electrode is promising for high-performance supercapacitor applications. PMID:27418015

  3. Ruthenium-oxide-coated sodium vanadium fluorophosphate nanowires as high-power cathode materials for sodium-ion batteries.

    Science.gov (United States)

    Peng, Manhua; Li, Biao; Yan, Huijun; Zhang, Dongtang; Wang, Xiayan; Xia, Dingguo; Guo, Guangsheng

    2015-05-26

    Sodium-ion batteries are a very promising alternative to lithium-ion batteries because of their reliance on an abundant supply of sodium salts, environmental benignity, and low cost. However, the low rate capability and poor long-term stability still hinder their practical application. A cathode material, formed of RuO2 -coated Na3 V2 O2 (PO4 )2 F nanowires, has a 50 nm diameter with the space group of I4/mmm. When used as a cathode material for Na-ion batteries, a reversible capacity of 120 mAh g(-1) at 1 C and 95 mAh g(-1) at 20 C can be achieved after 1000 charge-discharge cycles. The ultrahigh rate capability and enhanced cycling stability are comparable with high performance lithium cathodes. Combining first principles computational investigation with experimental observations, the excellent performance can be attributed to the uniform and highly conductive RuO2 coating and the preferred growth of the (002) plane in the Na3 V2 O2 (PO4 )2 F nanowires. PMID:25864686

  4. Purification and carbon-film-coating of natural graphite as anode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    A process of modification of natural graphite materials as anode for lithium ion batteries was attempted. The process started with the treatment of natural graphite with concentrated hydrochloric acid and concentrated sulfuric acid in a thermal autoclave, followed by the in situ polymerization of resorcinol-formaldehyde resin to coat the graphite, then heat-treatment. SEM, XRD, Raman and electrochemical charge-discharge analysis showed that the surface defects and impurities on natural graphite were eliminated by purification of the concentrated acids, and carbon-film encapsulation modified the surface structure of the graphite and reduced its BET surface area. The as-obtained natural graphite sample presented an initial charge-discharge coulombic efficiency of 88.4% and a reversible capacity of 355.8 mAh g-1. The proposed process paves a way to prepare a promising anode material with excellent performance with low cost of natural graphite for rechargeable lithium ion batteries

  5. Efficient Natural Dye-Sensitized Solar Cells Based on Spin-Coated TiO2 Anode Materials

    Science.gov (United States)

    Yu, Xiao-Hong; Sun, Zhao-Zong; Lian, Jie; Li, Yi-Tan; Chen, Yan-Xue; Gao, Shang; Wang, Xiao; Wang, Ying-Shun; Zhao, Ming-Lin

    2013-11-01

    TiO2 anode materials are prepared on ITO glass by spin-coated method. Dye-sensitized solar cells are assembled with these anodes and natural dyes extracted from radix ophiopogonis by different solvents. The formation and characterization of anode materials are confirmed by field-emission scanning electron microscopy, x-ray diffraction, UV-visible absorption spectroscopy. Photovoltaic testing results show that energy conversion efficiency could reach 1.67% with fill factor of 0.51, open-circuit voltage of 457 mV, and short-circuit photocurrent density of 7.2 mA/cm2. The short-circuit photocurrent density can reach 7.6 mA/cm2 with efficiency of 1.33.

  6. Preparation and Study of Electromagnetic Interference Shielding Materials Comprised of Ni-Co Coated on Web-Like Biocarbon Nanofibers via Electroless Deposition

    OpenAIRE

    Xiaohu Huang; Bo Dai; Yong Ren; Jing Xu; Pei Zhu

    2015-01-01

    Electromagnetic interference (EMI) shielding materials made of Ni-Co coated on web-like biocarbon nanofibers were successfully prepared by electroless plating. Biocarbon nanofibers (CF) with a novel web-like structure comprised of entangled and interconnected carbon nanoribbons were obtained using bacterial cellulose pyrolyzed at 1200°C. Paraffin wax matrix composites filled with different loadings (10, 20, and 30 wt%, resp.) of CF and Ni-Co coated CF (NCCF) were prepared. The electrical cond...

  7. Bioinspired Omniphobic Coatings with a Thermal Self-Repair Function on Industrial Materials.

    Science.gov (United States)

    Wang, Jing; Kato, Keiko; Blois, Alexandre P; Wong, Tak-Sing

    2016-03-30

    Inspired by the wax regeneration ability of plant leaves and the slippery surfaces of the Nepenthes pitcher plants, we have developed a new form of cross-species bioinspired slippery liquid-infused porous surfaces (X-SLIPS) that can self-repair under thermal stimulation even under large-area physical and chemical damage. The performance and underlying mechanism of the thermal-healing property has been studied and characterized in detail. These thermally self-healing omniphobic coatings can be applied to a broad range of metals, plastics, glass, and ceramics of various shapes and show excellent repellency toward aqueous and organic liquids. PMID:26938018

  8. Soy bean seed-coat, potential renewable raw-material for alcohol production

    OpenAIRE

    Kailash Chandra Srivastava

    1984-01-01

    The seed coat was shaken for different periods of time, from 12 hr to 96 hr in sterile distilled water pre-adjusted to pH 8. The contents of the flask filtered and pH adjusted to 4.6. Next the solution was heated for 20 min at 90° C in a water bath, filtered and media prepared from the filtrate. These media were inoculated with 10% volume of a strain of Saccharomyces Cerevisiae. The suspension shaken on a rotary shaker at 250 rpm and 30°C ± 1°C for 48 hr after which the culture filtrate was d...

  9. Determination of emission properties of high-temperature materials with coatings

    International Nuclear Information System (INIS)

    Blackness degree of silicide-type coatings of the system Si-Ti-Mo-Me (Me - B, Cr, Zr, V, Nb) on niobium and its alloys, which have not been studied before, is measured, the results are presented. The measurements are made by radiation and calorimetric methods in the process of determination of integral semispheric degree of blackness and by the method of pyrometry or luminescence during determination of spectral degree of surface blackness. Temperature and time dependences εt and ελ are obtained in the process of their service life tests using helium and projector installations

  10. Systems and strippable coatings for decontaminating structures that include porous material

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Robert V. (Idaho Falls, ID); Avci, Recep (Bozeman, MT); Groenewold, Gary S. (Idaho Falls, ID)

    2011-12-06

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  11. Improving rate performance of LiFePO4 cathode materials by hybrid coating of nano-Li3PO4 and carbon

    International Nuclear Information System (INIS)

    Highlights: •This paper reports an improved solid-state method which leads to a uniform coating. The influence of Li3PO4 and carbon coating on the electrochemical performance of LiFePO4 was studied. •LiFePO4 coating with Li3PO4 and carbon shows a higher capacity than pure carbon coating sample. •Results indicate that the surface structure has an important influence on the electrochemical performance of LiFePO4. The addition of Li3PO4 can decrease the interfacial resistance of Li FePO4. -- Abstract: Li3PO4 coating on the surface of LiFePO4 particles was prepared by direct dispersing LiFePO4 precursor in starch slurry with nano-Li3PO4. The existence of nano-Li3PO4 was confirmed with X-ray powder diffraction (XRD). And the particle size and morphology were observed by scanning electron microscope (SEM) and transmission electron microscope analysis (TEM). The effects of the mixture coating on rate performance of LiFePO4 cathode vs Li anode at 25 °C was investigated. Li3PO4 and carbon mixing coated LiFePO4 cathode materials exhibited markedly improved rate capability relative to bare carbon-coated LiFePO4. Analyses on cell impedance showed that the Li3PO4 coating decreased the interfacial impedance. Transmission electron microscope analysis, electrochemical impedance spectroscopy (EIS) and cyclic voltammograms (CV) were carried out to explain the reason of better rate performance by Li3PO4 coating

  12. Improving rate performance of LiFePO{sub 4} cathode materials by hybrid coating of nano-Li{sub 3}PO{sub 4} and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shi-Xi, E-mail: zhaosx@sz.tsinghua.edu.cn [Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Ding, Hao; Wang, Yan-Chao [Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Li, Bao-Hua [Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Nan, Ce-Wen [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2013-07-25

    Highlights: •This paper reports an improved solid-state method which leads to a uniform coating. The influence of Li{sub 3}PO{sub 4} and carbon coating on the electrochemical performance of LiFePO{sub 4} was studied. •LiFePO{sub 4} coating with Li{sub 3}PO{sub 4} and carbon shows a higher capacity than pure carbon coating sample. •Results indicate that the surface structure has an important influence on the electrochemical performance of LiFePO{sub 4}. The addition of Li{sub 3}PO{sub 4} can decrease the interfacial resistance of Li FePO{sub 4}. -- Abstract: Li{sub 3}PO{sub 4} coating on the surface of LiFePO{sub 4} particles was prepared by direct dispersing LiFePO{sub 4} precursor in starch slurry with nano-Li{sub 3}PO{sub 4}. The existence of nano-Li{sub 3}PO{sub 4} was confirmed with X-ray powder diffraction (XRD). And the particle size and morphology were observed by scanning electron microscope (SEM) and transmission electron microscope analysis (TEM). The effects of the mixture coating on rate performance of LiFePO{sub 4} cathode vs Li anode at 25 °C was investigated. Li{sub 3}PO{sub 4} and carbon mixing coated LiFePO{sub 4} cathode materials exhibited markedly improved rate capability relative to bare carbon-coated LiFePO{sub 4}. Analyses on cell impedance showed that the Li{sub 3}PO{sub 4} coating decreased the interfacial impedance. Transmission electron microscope analysis, electrochemical impedance spectroscopy (EIS) and cyclic voltammograms (CV) were carried out to explain the reason of better rate performance by Li{sub 3}PO{sub 4} coating.

  13. Substrate-anchored and degradation-sensitive anti-inflammatory coatings for implant materials

    OpenAIRE

    Duo Wu; Xingyu Chen; Tianchan Chen; Chunmei Ding; Wei Wu; Jianshu Li

    2015-01-01

    Implant materials need to be highly biocompatible to avoid inflammation in clinical practice. Although biodegradable polymeric implants can eliminate the need for a second surgical intervention to remove the implant materials, they may produce acidic degradation products in vivo and cause non-bacterial inflammation. Here we show the strategy of “substrate-anchored and degradation-sensitive coatings” for biodegradable implants. Using poly(lactic acid)/hydroxyapatite as an implant material mode...

  14. Carbon-Coated Gold Nanorods: A Facile Route to Biocompatible Materials for Photothermal Applications.

    Science.gov (United States)

    Kaneti, Yusuf Valentino; Chen, Chuyang; Liu, Minsu; Wang, Xiaochun; Yang, Jia Lin; Taylor, Robert Allen; Jiang, Xuchuan; Yu, Aibing

    2015-11-25

    Gold nanorods and their core-shell nanocomposites have been widely studied because of their well-defined anisotropy and unique optical properties and applications. This study demonstrates a facile hydrothermal synthesis strategy for generating carbon coating on gold nanorods (AuNRs@C) under mild conditions (glucose). The structure and composition of the produced core-shell nanocomposites were characterized using advanced microscopic and spectroscopic techniques. The functional properties, particularly the photothermal and biocompatibility properties of the produced AuNRs@C, were quantified to assess their potential in photothermal hyperthermia. These AuNRs@C were tested in vitro (under representative treatment conditions) using near-infrared (NIR) light irradiation. It was found that the AuNRs produced here exhibit exemplary heat generation capability. Temperature changes of 10.5, 9, and 8 °C for AuNRs@C were observed with carbon shell thicknesses of 10, 17, and 25 nm, respectively, at a concentration of 50 μM, after 600 s of irradiation with a laser power of 0.17 W/cm(2). In addition, the synthesized AuNRs@C also exhibit good biocompatibility toward two soft tissue sarcoma cell lines (HT1080, a fibrosarcoma; and GCT, a fibrous histiocytoma). The cell viability study shows that AuNRs@C (at a concentration of <0.1 mg/mL) core-shell particles induce significantly lower cytotoxicity on both HT1080 and GCT cell lines, as compared with cetyltrimethylammonium bromide (CTAB)-capped AuNRs. Furthermore, similar to PEG-modified AuNRs, they are also safe to both HT1080 and GCT cell lines. This biocompatibility results from a surface full of -OH or -COH groups, which are suitable for linking and are nontoxic Therefore, the AuNRs@C represent a viable alternative to PEG-coated AuNRs for facile synthesis and improved photothermal conversion. Overall, these findings open up a new class of carbon-coated nanostructures that are biocompatible and could potentially be employed in a

  15. Polyester moulding - and coating materials to be hardened by UV-irradiation

    International Nuclear Information System (INIS)

    The invention deals with the use of a new type of photoinitiator (sensitizers) in known mixtures of unsaturated polyesters and polymerizing monomeric compounds to form moulding and coating masses which harden under UV irradiation. The photoinitiators chosen are compounds of the following formula: R1-CO-CR3R4-S-R2. R1 and R2 may be aromatic residues, R3 and R4 an aliphatic or araliphatic residue or a hydrogen atom. Another variant: R1 and R3 are aromatic residues, R2 and R4 aliphatic, araliphatic or aromatic residues. R4 may also be a hydrogen atom. The patent gives a large number of possible compounds. (UWI)

  16. Comparative study on different carbon nanotube materials in terms of transparent conductive coatings.

    Science.gov (United States)

    Li, Zhongrui; Kandel, Hom R; Dervishi, Enkeleda; Saini, Viney; Xu, Yang; Biris, Alexandru R; Lupu, Dan; Salamo, Gregory J; Biris, Alexandru S

    2008-03-18

    We compared conductive transparent carbon nanotube coatings on glass substrates made of differently produced single-wall (SWNT), double-wall, and multiwall carbon nanotubes. The airbrushing approach and the vacuum filtration method were utilized for the fabrication of carbon nanotube films. The optoelectronic performance of the carbon nanotube film was found to strongly depend on many effects including the ratio of metallic-to-semiconducting tubes, dispersion, length, diameter, chirality, wall number, structural defects, and the properties of substrates. The electronic transportability and optical properties of the SWNT network can be significantly altered by chemical doping with thionyl chloride. Hall effect measurements revealed that all of these thin carbon nanotube films are of p-type probably due to the acid reflux-based purification and atmospheric impurities. The competition between variable-range hoping and fluctuation-assisted tunneling in the functionized carbon nanotube system could lead to a crossover behavior in the temperature dependence of the network resistance. PMID:18251555

  17. Magnetic materials based on manganese-zinc ferrite with surface-organized polyaniline coating

    International Nuclear Information System (INIS)

    Core-shell composites of manganese-zinc (MnZn) ferrite and polyaniline (PANI) have been prepared by the oxidation of aniline with ammonium peroxydisulfate in the presence of ferrite. The various reaction conditions allowed controlling the thickness of PANI coating, 50-250 nm. Complex magnetic permeability spectra of MnZn ferrite of various particles sizes, 25-250 μm, and of their composites with PANI, have been studied in the frequency range 1 MHz-10 GHz. The formation of a polymer p-semiconducting nanolayer on the surface of a MnZn ferrite particle changes the character of the frequency dispersion of the permeability. The interfacial effects between MnZn ferrite and PANI nanofilm are responsible for the shifts of resonance frequency from MHz closer to GHz. This effect strongly depends on the specific area of the ferrite-PANI interface and, moreover, on the properties of the PANI overlayer

  18. Graphene oxide-SiO2 hybrid nanostructure as coating material for capillary electrochromatography.

    Science.gov (United States)

    Qu, Qishu; Xuan, Han; Zhang, Kehua; Ding, Yi; Xu, Qin

    2016-05-01

    Graphene oxide (GO) has been considered as a promising stationary phase for chromatographic separation. However, the very strong adsorption of the analytes on the GO surface lead to the severe peak tailing, which in turn resulting in decreased separation performance. In this work, GO and silica nanoparticles hybrid nanostructures (GO/SiO2 NPs@column) were coated onto the capillary inner wall by passing the mixture of GO and silica sol through the capillary column. The successful of coating of GO/SiO2 NPs onto the capillary wall was confirmed by SEM and electroosmotic flow mobilities test. By partially covering the GO surface with silica nanoparticles, the peak tailing was decreased greatly while the unique high shape selectivity arises from the surface of remained GO was kept. Consequently, compared with the column modified with GO (GO@column), the column modified with GO and silica nanoparticles through layer-by-layer method (GO-SiO2 NPs@column), or the column modified with silica nanoparticles (SiO2 NPs@column), GO/SiO2 NPs@column possessed highest resolutions. The GO/SiO2 NPs@column was applied to separate egg white and both acidic and basic proteins as well as three glycoisoforms of ovalbumin were separated in a single run within 36 min. The intra-day, inter-day, and column-to-column reproducibilities were evaluated by calculating the RSDs of the retention of naphthalene and biphenyl in open-tubular capillary electrochromatography. The RSD values were found to be less than 7.1%. PMID:26829671

  19. Fabrication of ZrO2/Mo-Si/Ni Functionally Graded Material by Dip-Coating

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A slurry dip-coating technique was developed for fabrication of ZrO2/Mo-Si/Ni functionally graded material (FGM)on the stainless steel substrate. The rheological behavior of ZrO2-Ni-ethanol slurry was characterized by viscositytest. The amount of polyvinyl butyral (PVB) additives, which served as the dispersant and binder in ZrO2-Ni-ethanolslurry, was optimized. The results showed that the characters of mixed slurries with added 9 vol. pct (relativelyto total powders) MoSi2 powders prepared by mechanical alloying changed little. The stainless steel substrate wascoated several times by dipping in the slurries, and followed by drying in air every dipping. After debinding in Arin graphite die, the coated FGM plate was finally hot pressed at 1300℃ for 1 h under the pressure of 5 MPa in Arin the same die. Microstructural observations of the sintered FGM specimens revealed that the graded layers wereformed on the stainless steel substrate, in which no cracks were observed.

  20. Facile synthesis and performance of polypyrrole-coated sulfur nanocomposite as cathode materials for lithium/sulfur batteries

    Institute of Scientific and Technical Information of China (English)

    Guanghui Yuan; Haodong Wang

    2014-01-01

    In situ chemical oxidation polymerization of pyrrole on the surface of sulfur particles was carried out to synthesize a sulfur/polypyrrole (S/PPy) nanocomposite with core-shell structure. The composite was characterized by elemental analysis, X-ray diffraction, scanning/transmission electron microscopy, and electrochemical measurements. XRD and FTIR results showed that sulfur well dispersed in the core-shell structure and PPy structure was successfully obtained via in situ oxidative polymerization of pyrrole on the surface of sulfur particles. TEM observation revealed that PPy was formed and fixed to the surface of sulfur nanoparticle after polymerization, developing a well-defined core-shell structure and the thickness of PPy coating layer was in the range of 20-30 nm. In the composite, PPy worked as a conducting matrix as well as a coating agent, which confined the active materials within the electrode. Consequently, the as prepared S/PPy composite cathode exhibited good cycling and rate performances for rechargeable lithium/sulfur batteries. The resulting cell containing S/PPy composite cathode yields a discharge capacity of 1039 mAh·g-1 at the initial cycle and retains 59%of this value over 50 cycles at 0.1 C rate. At 1 C rate, the S/PPy composite showed good cycle stability, and the discharge capacity was 475 mAh·g-1 after 50 cycles.

  1. Degradation and in vitro cell–material interaction studies on hydroxyapatite-coated biodegradable porous iron for hard tissue scaffolds

    Directory of Open Access Journals (Sweden)

    Nurizzati Mohd Daud

    2014-10-01

    Full Text Available This paper describes degradation and cell–material interaction studies on hydroxyapatite (HA-coated biodegradable porous iron proposed for hard tissue scaffolds. Porous iron scaffolds are expected to serve as an ideal platform for bone regeneration. To couple their inherent mechanical strength, pure HA and HA/poly(ε-caprolactone (HA/PCL were coated onto porous iron using dip coating technique. The HA/PCL mixture was prepared to provide a more stable and flexible coating than HA alone. Degradation of the samples was evaluated by weight loss and potentiodynamic polarisation. Human skin fibroblast (HSF and human mesenchymal stem cells (hMSC were put in contact with the samples and their interaction was observed. Results showed that coated samples degraded ∼10 times slower (0.002 mm/year for HA/PCL-Fe, 0.003 mm/year for HA-Fe than the uncoated ones (0.031 mm/year, indicating an inhibition effect of the coating on degradation. Both HSF and hMSC maintained high viability when in contact with the coated samples (100–110% control for hMSC during 2–5 days of incubation, indicating the effect of HA in enhancing cytocompatibility of the surface. This study provided early evidence of the potential translation of biodegradable porous iron scaffolds for clinical use in orthopedic surgery. However, further studies including in vitro and in vivo tests are necessary.

  2. Enhancing the Thermal and Upper Voltage Performance of Ni-Rich Cathode Material by a Homogeneous and Facile Coating Method: Spray-Drying Coating with Nano-Al2O3.

    Science.gov (United States)

    Du, Ke; Xie, Hongbin; Hu, Guorong; Peng, Zhongdong; Cao, Yanbing; Yu, Fan

    2016-07-13

    The electrochemical performance of Ni-rich cathode material at high temperature (>50 °C) and upper voltage operation (>4.3 V) is a challenge for next-generation lithium-ion batteries (LIBs) because of the rapid capacity degradation over cycling. Here we report improved performance of LiNi0.8Co0.15Al0.05O2 materials via a LiAlO2 coating, which was prepared from a Ni0.80Co0.15Al0.05(OH)2 precursor by spray-drying coating with nano-Al2O3. Investigations by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy revealed that an Al2O3 layer is uniformly distributed on the precursor and a LiAlO2 layer on the as-prepared cathode material. Such a coating shell acts as a scavenger to protect the cathode material from attack by HF and serious side reactions, which remarkably enhances the cycle performance at 55 °C and upper operating voltage (4.4 and 4.5 V). In particular, the sample with a 2% Al2O3 coating shows capacity retentions of 90.40%, 85.14%, 87.85%, and 81.1% after 150 cycles at a rate of 1.0C at room temperature, 55 °C, 4.4 V, and 4.5 V, respectively, which are significantly higher than those of the pristine one. This is mainly due to the significant improvement of the structural stability led by the effective coating technique, which could be extended to other cathode materials to obtain LIBs with enhanced safety and excellent cycling stability. PMID:27328728

  3. Control of proliferation and differentiation of osteoblasts on apatite-coated poly(vinyl alcohol) hydrogel as an artificial articular cartilage material.

    Science.gov (United States)

    Matsumura, Kazuaki; Hayami, Takashi; Hyon, Suong-Hyu; Tsutsumi, Sadami

    2010-03-15

    One of the key challenges in employing biomaterials is determining how to fix them into the surrounding tissue. To enhance the interaction with surrounding bone, amorphous hydroxyapatite (HA) was coated onto the surface of the bio-inert poly(vinyl alcohol) hydrogel (PVA-H), as an artificial cartilage material, by a pulsed laser deposition technique. Next we examined the binding effects of the HA thin film (300 nm thick) to the underlying bone using osteoblast proliferation and differentiation. A mouse osteoblast cell line, MC3T3E1, was cultured on the HA-coated and noncoated PVA-H with a water content of 33% or 53% for 3 weeks. Cell proliferation, alkaline phosphatase (ALP) activity, and levels of osteocalcin were evaluated for biocompatibility and differentiation. HA coating enhanced the cell proliferation, the ALP activity, and the levels of osteocalcin on both low and high water-content PVA-Hs. The cell growth rates on the PVA-H were lower than on tissue culture dishes even after the HA coating was added; however, osteoblastic differentiation was highly promoted by the HA coating on low water content PVA-H. These results suggested that the HA coating on the PVA-H enhanced the affinity between the bone and the PVA-H as an artificial cartilage material in surface replacement arthroplasty. PMID:19322880

  4. Multi-layer coatings

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sina; Brophy, Brenor L.; Abrams, Ze' ev R.; Gonsalves, Peter R.

    2016-06-28

    Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.

  5. Screening on coating materials of the forage seeds%牧草种子包衣材料的筛选

    Institute of Scientific and Technical Information of China (English)

    李成云; 张帆; 刘彩红; 于福生; 李雨晨

    2013-01-01

    The experiment was conducted to evaluate the effect of different coating materials, adhesives and pharmacopoeia ratio on the germination characteristic of red clover and tall fescue seed. The results showed that red clover and tall fescue showed excellent germination property with vermi-culite, vermiculite+talc coating, respectively, while they showed poor germination property with peat-moss, plaster, calcium hydroxide coating. By using 8% polyvinyl alcohol as adhesive, the cumulative germination percentage and the days to reach 50%of final germination had been improved respectively in red clover. The germination property of tall fescue were all good with 8% polyvinyl alcohol, 1.5%sodium carboxy methyl cellulose, CF-clear coating. It concluded that, in the case of seed emergence it was high with vermiculite+talc coating and all the coating treatments showed higher value of final emergence percent than that of the control. For adhesives, 8% polyvinyl alcohol and CF-clear show good emergence. The treatments of 3,5,7 times of seed weight all showed better germination effect than the control group.%  以豆科牧草红三叶和禾本科牧草高羊茅种子为对象,研究不同包衣材料、粘合剂以及不同药种比对两种牧草种子发芽特性的影响,为包衣材料的科学筛选提供理论依据。结果表明,当红三叶种子使用蛭石作为包衣、高羊茅种子使用蛭石+滑石粉作为包衣材料时均表现出较好的发芽特性,而使用泥炭、石膏、氢氧化钙作涂层材料则表现出较差发芽特性。使用8%聚乙烯醇作为粘合剂改善了红三叶种子的累计发芽率和50%发芽率所需天数。使用8%聚乙烯醇、1.5%羧甲基纤维素钠、CF-clear均能改善高羊茅种子的发芽特征。由此可知,以蛭石+滑石粉为包衣材料时,两种种子均表现最佳的发芽特征。8%聚乙烯醇、进口CF-clear是发芽效果最好的粘合剂。包衣倍数为3、5、7倍时两种种

  6. Titanium coated with functionalized carbon nanotubes — A promising novel material for biomedical application as an implantable orthopaedic electronic device

    Energy Technology Data Exchange (ETDEWEB)

    Przekora, Agata, E-mail: agata.przekora@umlub.pl [Department of Biochemistry and Biotechnology, Medical University of Lublin, Faculty of Pharmacy with Medical Analytics Division, Chodzki 1, 20-093 Lublin (Poland); Benko, Aleksandra; Nocun, Marek; Wyrwa, Jan; Blazewicz, Marta [Faculty of Materials Science and Ceramics, AGH-Univ. of Science and Technology, A. Mickiewicz 30 Ave., 30-059 Cracow (Poland); Ginalska, Grazyna [Department of Biochemistry and Biotechnology, Medical University of Lublin, Faculty of Pharmacy with Medical Analytics Division, Chodzki 1, 20-093 Lublin (Poland)

    2014-12-01

    The aim of the study was to fabricate titanium (Ti) material coated with functionalized carbon nanotubes (f-CNTs) that would have potential medical application in orthopaedics as an implantable electronic device. The novel biomedical material (Ti-CNTs-H{sub 2}O) would possess specific set of properties, such as: electrical conductivity, non-toxicity, and ability to inhibit connective tissue cell growth and proliferation protecting the Ti-CNTs-H{sub 2}O surface against covering by cells. The novel material was obtained via an electrophoretic deposition of CNTs-H{sub 2}O on the Ti surface. Then, physicochemical, electrical, and biological properties were evaluated. Electrical property evaluation revealed that a Ti-CNTs-H{sub 2}O material is highly conductive and X-ray photoelectron spectroscopy analysis demonstrated that there are mainly COOH groups on the Ti-CNTs-H{sub 2}O surface that are found to inhibit cell growth. Biological properties were assessed using normal human foetal osteoblast cell line (hFOB 1.19). Conducted cytotoxicity tests and live/dead fluorescent staining demonstrated that Ti-CNTs-H{sub 2}O does not exert toxic effect on hFOB cells. Moreover, fluorescence laser scanning microscope observation demonstrated that Ti-CNTs-H{sub 2}O surface retards to a great extent cell proliferation. The study resulted in successful fabrication of highly conductive, non-toxic Ti-CNTs-H{sub 2}O material that possesses ability to inhibit osteoblast proliferation and thus has a great potential as an orthopaedic implantable electronic device. - Highlights: • Functionalized carbon nanotubes were electrophoretically deposited on Ti surface. • Physicochemical, electrical, and biological properties were evaluated. • Ti-CNTs-H{sub 2}O is highly conductive and there are mainly COOH groups on its surface. • Novel material is non-toxic and retards to a great extent osteoblast proliferation. • Ti-CNTs-H{sub 2}O has a promising potential as implantable orthopaedic

  7. Lunar building materials: Some considerations on the use of inorganic polymers. [adhesives, coatings, and binders

    Science.gov (United States)

    Lee, S. M.

    1979-01-01

    The use of inorganic polymer systems synthesized from the available lunar chemical elements, viz., silicon, aluminum, and oxygen to make adhesives, binders, and sealants needed in the fabrication of lunar building materials and the assembly of structures is considered. Inorganic polymer systems, their background, status, and shortcomings, and the use of network polymers as a possible approach to synthesis are examined as well as glassy metals for unusual structural strength, and the use of cold-mold materials as well as foam-sintered lunar silicates for lightweight shielding and structural building materials.

  8. The thermal insulating materials and its coatings for underground piping; Los aislamientos termicos y sus recubrimientos para tuberias subterraneos

    Energy Technology Data Exchange (ETDEWEB)

    Salcido Lopez, Salvador [Aislantes Minerales, S. A. de C. V. Mexico, D. F. (Mexico)

    1994-12-31

    Energy Saving through the adequate selection and application of the thermal insulating materials, as well as its coatings for underground piping conducting fluids, both at high and at low temperature. The benefits are outlined at economical level for the investor as well as at ecological level (of vital importance today) and are observed as practical examples in industrial and commercial processes. [Espanol] Ahorro de energeticos mediante la adecuada seleccion y aplicacion de los aislamientos termicos, asi como de sus recubrimientos para tuberias subterraneas que conducen fluidos tanto en alta como en baja temperatura. Los beneficios son destacados tanto a nivel economico para el inversionista, como a nivel ecologico (de vital importancia en la actualidad), y son observados con ejemplos practicos en procesos industriales y comerciales.

  9. Push-out bond strength and dentinal tubule penetration of different root canal sealers used with coated core materials

    Science.gov (United States)

    Purali, Nuhan; Coşgun, Erdal; Calt, Semra

    2016-01-01

    Objectives The aim of this study was to compare the push-out bond strength and dentinal tubule penetration of root canal sealers used with coated core materials and conventional gutta-percha. Materials and Methods A total of 72 single-rooted human mandibular incisors were instrumented with NiTi rotary files with irrigation of 2.5% NaOCl. The smear layer was removed with 17% ethylenediaminetetraacetic acid (EDTA). Specimens were assigned into four groups according to the obturation system: Group 1, EndoRez (Ultradent Product Inc.); Group 2, Activ GP (Brasseler); Group 3, SmartSeal (DFRP Ltd. Villa Farm); Group 4, AH 26 (Dentsply de Trey)/gutta-percha (GP). For push-out bond strength measurement, two horizontal slices were obtained from each specimen (n = 20). To compare dentinal tubule penetration, remaining 32 roots assigned to 4 groups as above were obturated with 0.1% Rhodamine B labeled sealers. One horizontal slice was obtained from the middle third of each specimen (n = 8) and scanned under confocal laser scanning electron microscope. Tubule penetration area, depth, and percentage were measured. Kruskall-Wallis test was used for statistical analysis. Results EndoRez showed significantly lower push-out bond strength than the others (p < 0.05). No significant difference was found amongst the groups in terms of percentage of sealer penetration. SmartSeal showed the least penetration than the others (p < 0.05). Conclusions The bond strength and sealer penetration of resin-and glass ionomer-based sealers used with coated core was not superior to resin-based sealer used with conventional GP. Dentinal tubule penetration has limited effect on bond strength. The use of conventional GP with sealer seems to be sufficient in terms of push-out bond strength. PMID:27200279

  10. A new anionic exchange stir bar sorptive extraction coating based on monolithic material for the extraction of inorganic anion.

    Science.gov (United States)

    Huang, Xiaojia; Lin, Jianbing; Yuan, Dongxing

    2010-07-23

    A novel anionic exchange stir bar sorptive extraction (SBSE) coating based on poly(2-(methacryloyloxy)ethyltrimethylammonium chloride-co-divinylbenzene) monolithic material for the extraction of inorganic anion was prepared. The effect of preparation conditions such as ratio of functional monomer to cross-linker, content of porogenic solvent on the extraction efficiencies were investigated in detailed. The monolithic material was characterized by elemental analysis, scanning electron microscopy and infrared spectroscopy. In order to investigate the extraction capacity of the new coating for inorganic anion, the new SBSE was combined with ionic chromatography with conductivity detection, Br-, NO3-, PO4(3-) and SO4(2-) were selected as detected solutes. Several extractive parameters, including pH value and ionic strength in sample matrix, desorption solvent, extraction and desorption time were optimized. The results showed that strongly ionic strength did not favor the extraction of anlaytes. Under the optimum experimental conditions, low detection limits (S/N=3) and quantification limits (S/N=10) of the proposed method for the target anions were achieved within the range of 0.92-2.62 and 3.03-9.25 microg/L, respectively. The method also showed good linearity, simplicity, practicality and low cost for the extraction inorganic anions. Finally, the proposed method was successfully used to detect the two different trademarks of commercial purified water with satisfactory recovery in the range of 70.0-92.6%. To the best of our knowledge, this is the first to use SBSE to enrich inorganic anions. PMID:20576270

  11. MODELS OF OIL WOOD COATING MATERIALS SELECTION ACCORDING TO TECHNOLOGICAL, OPERATIONAL, ECOLOGICAL AND ECONOMIC CRITERIA

    OpenAIRE

    Larysa YAREMCHUK; Tetyana OLYANYSHYN; Volodymyr MAKSYMIV; Liliya HOGABOAM

    2014-01-01

    This article presents the use of system analysis methodology and Graph Theory for validation of the relationships among descriptive factors, which impact the selection of oil materials for wood finishing. Matrix analysis was used to determine the results of the pair wise comparisons of factor weights and optimization of the factor values. Modelling theories have been developed, which allow for construction of models of primary impacts of the factors on oil materials selection in protective an...

  12. Residual Stresses Assessment in Coated Materials: Complementarity between Neutron and X-Ray Techniques

    Czech Academy of Sciences Publication Activity Database

    Rogante, M.; Mikula, Pavol; Vrána, Miroslav

    Brno : VUTIUM Brno, 2010 - (Šandera, P.), s. 1-158 ISBN 978-80-214-4112-5. [Proceedings of the International conference on materials structure and micromechanics of fracture (MSMF6). Brno (CZ), 28.06.2010-30.06.2010] R&D Projects: GA ČR GAP204/10/0654 Institutional research plan: CEZ:AV0Z10480505 Keywords : Polysrystalline materials * Residual stress * Neutron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism

  13. Caramel popcorn shaped silicon particle with carbon coating as a high performance anode material for Li-ion batteries.

    Science.gov (United States)

    He, Meinan; Sa, Qina; Liu, Gao; Wang, Yan

    2013-11-13

    Silicon is a very promising anode material for lithium ion batteries. It has a 4200 mAh/g theoretical capacity, which is ten times higher than that of commercial graphite anodes. However, when lithium ions diffuse to Si anodes, the volume of Si will expand to almost 400% of its initial size and lead to the crack of Si. Such a huge volume change and crack cause significant capacity loss. Meanwhile, with the crack of Si particles, the conductivity between the electrode and the current collector drops. Moreover, the solid electrolyte interphase (SEI), which is generated during the cycling, reduces the discharge capacity. These issues must be addressed for widespread application of this material. In this work, caramel popcorn shaped porous silicon particles with carbon coating are fabricated by a set of simple chemical methods as active anode material. Si particles are etched to form a porous structure. The pores in Si provide space for the volume expansion and liquid electrolyte diffusion. A layer of amorphous carbon is formed inside the pores, which gives an excellent isolation between the Si particle and electrolyte, so that the formation of the SEI layer is stabilized. Meanwhile, this novel structure enhances the mechanical properties of the Si particles, and the crack phenomenon caused by the volume change is significantly restrained. Therefore, an excellent cycle life under a high rate for the novel Si electrode is achieved. PMID:24111737

  14. The Effect of Counterpart Material on the Sliding Wear of TiAlN Coatings Deposited by Reactive Cathodic Pulverization

    Directory of Open Access Journals (Sweden)

    Michell Felipe Cano Ordoñez

    2015-11-01

    Full Text Available This work aims to study the effect of the counterpart materials (100Cr6, Al2O3 and WC-Co on the tribological properties of TiAlN thin films deposited on AISI H13 steel substrate by reactive magnetron co-sputtering. The structural characterization of the TiAlN films, performed by X-ray diffraction, showed (220 textured fcc crystalline structure. The values of hardness and elastic modulus obtained by nanoindentation were 27 GPa and 420 GPa, respectively, which resulted in films with a relatively high resistance to plastic deformation. Ball-on-disk sliding tests were performed using normal loads of 1 N and 3 N, and 0.10 m/s of tangential velocity. The wear coefficient of the films was determined by measuring the worn area using profilometry every 1000 cycles. The mechanical properties and the chemical stability of the counterpart material, debris formation and the contact stress influences the friction and the wear behavior of the studied tribosystems. Increasing the hardness of the counterpart decreases the coefficient of friction (COF due to lower counterpart material transference and tribofilm formation, which is able to support the contact pressure. High shear stress concentration at the coating/substrate interface was reported for higher load promoting failure of the film-substrate system for all tribopairs

  15. Differential Effects of Coating Materials on Viability and Migration of Schwann Cells

    Directory of Open Access Journals (Sweden)

    Silvan Klein

    2016-03-01

    Full Text Available Synthetic nerve conduits have emerged as an alternative to guide axonal regeneration in peripheral nerve gap injuries. Migration of Schwann cells (SC from nerve stumps has been demonstrated as one essential factor for nerve regeneration in nerve defects. In this experiment, SC viability and migration were investigated for various materials to determine the optimal conditions for nerve regeneration. Cell viability and SC migration assays were conducted for collagen I, laminin, fibronectin, lysine and ornithine. The highest values for cell viability were detected for collagen I, whereas fibronectin was most stimulatory for SC migration. At this time, clinically approved conduits are based on single-material structures. In contrast, the results of this experiment suggest that material compounds such as collagen I in conjunction with fibronectin should be considered for optimal nerve healing.

  16. Chitosan coatings onto polyethylene terephthalate for the development of potential active packaging material

    International Nuclear Information System (INIS)

    Highlights: ► The adsorption/desorption of chitosan onto PET plastic film was studied. ► Chitosan was reversible attached onto PET plastic films. ► Antimicrobial functionalized PET may provide potential active packaging material. - Abstract: In this paper advanced surface treatment of PET plastic film is presented for introduction of antimicrobial properties as a potential application for food (as for example meat) packaging material. Adsorption/desorption of chitosan onto PET plastic film surface was studied using several analytical techniques such as: X-Ray Photoelectron Spectroscopy (XPS), ATR-FTIR spectroscopy and titrations. Kinetic desorption of chitosan from PET surface was analysed by polyelectrolyte titration and spectrophotometric Ninhydrine reaction. Standard antimicrobial test ASTM E2149-01 was performed for functionalised PET materials in order to determine their antimicrobial properties; i. e. to measure the reductions of some of the meat pathogens; such as bacteria Salmonella enterica, Campylobacter spp., Escherichia coli, Listeria monocytogenes and fungi Candida albicans.

  17. Photometric stereo sensor for robot-assisted industrial quality inspection of coated composite material surfaces

    Science.gov (United States)

    Weigl, Eva; Zambal, Sebastian; Stöger, Matthias; Eitzinger, Christian

    2015-04-01

    While composite materials are increasingly used in modern industry, the quality control in terms of vision-based surface inspection remains a challenging task. Due to the often complex and three-dimensional structures, a manual inspection of these components is nearly impossible. We present a photometric stereo sensor system including an industrial robotic arm for positioning the sensor relative to the inspected part. Two approaches are discussed: stop-and-go positioning and continuous positioning. Results are presented on typical defects that appear on various composite material surfaces in the production process.

  18. An introduction to coating materials and its application methods on graphite crucibles, and compilation of experiences on uranium melting and casting

    International Nuclear Information System (INIS)

    In order to melt and cast uranium ingots, it is necessary to use a graphite crucible or ceramic crucible. A graphite crucible is generally used for a uranium melting due to an economical purpose, but the graphite crucible is so reactive with uranium that it could not be used without coating with ceramic to protect the reaction. In this report, the various coating materials and coating methods are introduced for this purpose. In the second chapter, the authors' experiences for the uranium melting and casting at KAERI since 1998 are introduced, which were for the development of research reactor fuels, DU shields of radioactive isotopes transfer casks, alloying of U and Zr, reaction test of uranium and graphitic crucible, or various ceramic materials

  19. Soy bean seed-coat, potential renewable raw-material for alcohol production

    Directory of Open Access Journals (Sweden)

    Kailash Chandra Srivastava

    1984-11-01

    Full Text Available The seed coat was shaken for different periods of time, from 12 hr to 96 hr in sterile distilled water pre-adjusted to pH 8. The contents of the flask filtered and pH adjusted to 4.6. Next the solution was heated for 20 min at 90° C in a water bath, filtered and media prepared from the filtrate. These media were inoculated with 10% volume of a strain of Saccharomyces Cerevisiae. The suspension shaken on a rotary shaker at 250 rpm and 30°C ± 1°C for 48 hr after which the culture filtrate was distilled and the amount of alcohol measured according to the alcoholometry tables of the U.S. Pharmacopeias. Thus up to 1.3% of alcohol could be obtained.Neste trabalho são apresentados os resultados sobre obtenção de álcool a partir de casca de soja. A casca foi agitada por diferentes períodos de tempo de 12h a 96h em água destilada esterilizada, pré-ajustada para pH 8. Os conteúdos do frasco foram filtrados, o pH ajustado para 4,6; os conteúdos cozidos, esfriados e filtrados. Os filtrados com ou sem suplementação com extrato de levedura, peptona e glicose em conjunto ou separadamente foram usados como mosto para fermentação por S. cerevisiae. As suspensões foram agitadas a 250 rpm e 30° C ± l°C48h, e após este período, a quantidade de álcool calcula­da de acordo com a tabela alcoolométrica da Farmacopia dos Estados Unidos, foi de até 1.3%.

  20. Latent heat storage by silica-coated polymer beads containing organic phase change materials

    Czech Academy of Sciences Publication Activity Database

    Feczkó, T.; Trif, L.; Horák, Daniel

    2016-01-01

    Roč. 132, July (2016), s. 405-414. ISSN 0038-092X R&D Projects: GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : latent heat storage * phase change materials * porous beads by suspension polymerization Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.469, year: 2014

  1. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Liu, Yan; Malureanu, Radu; Ziolkowski, Richard W.

    2011-01-01

    well as to their far-field radiation characteristics, in the presence of an electric or a magnetic line source. A constant frequency canonical gain model is used to account for the gain introduced in the dielectric part of the nano-particle, whereas three different plasmonic materials (silver, gold......, and copper) are employed and compared for the nano-shell layers....

  2. Polyaniline-coated carbon nanotubes decorated with metal nanoparticles as materials for fuel-cell electrodes

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Sapurina, I.

    Gargnano : Associazione Italiana di Scienza e Tecnologia delle Macromolecole, 2008. s. 121. [Advanced Polymeric Materials for Energy Resources Exploitation: Synthesis, Properties and Applications. 01.06.2008-05.06.2008, Gargnano] R&D Projects: GA ČR GA203/08/0686 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * conducting polymer * noble metals Subject RIV: CD - Macromolecular Chemistry

  3. EFFECT OF pH ON ELECTROLESS Ni-P COATING OF CONDUCTIVE AND NON-CONDUCTIVE MATERIALS

    Directory of Open Access Journals (Sweden)

    Subrata Roy

    2011-12-01

    Full Text Available Electroless nickel-phosphorus (Ni-P coating of carbon steel as well as a polypropylene substrate was conducted using sodium hypophosphite as a reducing agent in alkaline media. The influence of pH on coating appearances and the properties of the coatings for both steel and the polypropylene substrate were studied. A nickel-phosphorus coating of good appearance was obtained in the pH range between 5.5 and 12.5 on the carbon steel substrate and between 8.5 and 12 on the polypropylene substrate. The percentage of Ni content in the coating increased with increasing pH of the bath solution. A smooth, uniform microstructure was found in the coating deposited in relatively lower pH solutions compared to higher pH baths. The microhardness of the Ni-P coating decreased with an increasing percentage Ni content in the deposit.

  4. Beneficial effect of CH foam coating on x-ray emission from laser-irradiated high-Z material

    International Nuclear Information System (INIS)

    Laser-irradiated Au layer with CH foam coating is investigated numerically. It is found that when coated with under-critical density CH foam more thermal radiation is produced, while less radiation is produced when coated with over-critical density CH foam. The under-critical density CH foam coating, which is heated supersonically and volumetrically by lasers, hampers the expansion of high-Z plasma and helps increase the density and temperature of Au plasma in the radiation zone. It is a practical and simple way to increase the laser x-ray conversion efficiency of hohlraum by coated with low-Z foam of under-critical density. This idea is tested with an experiment in an analogous geometry. The line emission from laser-irradiated Ti layer coated with CH foam was measured, and the increment of x-ray when coated with under-critical density CH foam was found.

  5. A proposal for an unusually stiff and moderately ductile hard coating material: Mo{sub 2}BC

    Energy Technology Data Exchange (ETDEWEB)

    Emmerlich, J; Music, D; Braun, M; Fayek, P; Schneider, J M [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 16, D-52074 Aachen (Germany); Munnik, F [Forschungszentrum Dresden Rossendorf, Bautzner Landstrasse 400, D-01328 Dresden (Germany)

    2009-09-21

    The elastic properties of Mo{sub 2}BC were studied using ab initio calculations. The calculated bulk modulus of 324 GPa is 45% larger than that of Ti{sub 0.25}Al{sub 0.75}N and 14% smaller than that of c-BN, indicating a highly stiff material. The bulk modulus (B) to shear modulus (G) ratio is 1.72 at the transition from brittle to ductile behaviour. This, in combination with a positive Cauchy pressure (c{sub 12} - c{sub 44}), suggests moderate ductility. When compared with a typical hard protective coating such as Ti{sub 0.25}Al{sub 0.75}N (B = 178 GPa; B/G = 1.44; negative Cauchy pressure), Mo{sub 2}BC displays considerable potential as protective coating for metal cutting applications. In order to test this proposal, Mo{sub 2}BC thin films were synthesized using dc magnetron sputtering from three plasma sources on Al{sub 2}O{sub 3}(0 0 0 1) at a substrate temperature of {approx}900 {sup 0}C. The calculated lattice parameters are in good agreement with values determined from x-ray diffraction. The measured Young's modulus values of {approx}460 {+-} 21 GPa are in excellent agreement with the 470 GPa value obtained by calculations. Scanning probe microscopy imaging of the residual indent revealed no evidence for crack formation as well as significant pile-up, which is consistent with the moderate plasticity predicted. The apparent contradiction between moderate ductility on the one hand and indentation hardness values of 29 GPa can be understood by considering the electronic structure particularly the extreme anisotropy. The presence of stiff Mo-C and Mo-B layers with metallic interlayer bonding enables this intriguing and unexpected property combination.

  6. Novel silver containing antimicrobial coatings for implant materials. new applications of Ag(I) coordination networks

    OpenAIRE

    Vig Slenters, Tünde

    2009-01-01

    Modern medicine continuously develops new artificial short-term or permanent devices to assist in the performance of physiological functions. Implantation of medical devices represents one of the most important risk factors of all nosocomial infections, when implant materials become infected due to bacterial adhesion and subsequent formation of bio films. The latter are impossible to treat with antibiotics and represent a dramatic complication for the patient, leading to implant replacement, ...

  7. Material characterization of the epoxy-coated cold-field-emission cathodes

    Czech Academy of Sciences Publication Activity Database

    Sergeev, E.; Knápek, A.; Mikmeková, Šárka; Grmela, L.; Klampár, M.

    Košice : Technical University of Košice, 2012 - (Tóthová, J.; Lisý, V.), s. 109-112 ISBN 978-80-553-1175-3. [Physics of Materials 2012. Košice (SK), 17.10.2012-19.10.2012] Institutional support: RVO:68081731 Keywords : composite cold field-emission cathode * scanning low- energy electron microscopy (SLEEM) * dielectric relaxation spectroscopy (DRS) Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  8. Chitosan coatings onto polyethylene terephthalate for the development of potential active packaging material

    Energy Technology Data Exchange (ETDEWEB)

    Zemljic, Lidija Fras, E-mail: lidija.fras@uni-mb.si [Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor (Slovenia); Tkavc, Tina [Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor (Slovenia); Vesel, Alenka [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Sauperl, Olivera [Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor (Slovenia)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer The adsorption/desorption of chitosan onto PET plastic film was studied. Black-Right-Pointing-Pointer Chitosan was reversible attached onto PET plastic films. Black-Right-Pointing-Pointer Antimicrobial functionalized PET may provide potential active packaging material. - Abstract: In this paper advanced surface treatment of PET plastic film is presented for introduction of antimicrobial properties as a potential application for food (as for example meat) packaging material. Adsorption/desorption of chitosan onto PET plastic film surface was studied using several analytical techniques such as: X-Ray Photoelectron Spectroscopy (XPS), ATR-FTIR spectroscopy and titrations. Kinetic desorption of chitosan from PET surface was analysed by polyelectrolyte titration and spectrophotometric Ninhydrine reaction. Standard antimicrobial test ASTM E2149-01 was performed for functionalised PET materials in order to determine their antimicrobial properties; i. e. to measure the reductions of some of the meat pathogens; such as bacteria Salmonella enterica, Campylobacter spp., Escherichia coli, Listeria monocytogenes and fungi Candida albicans.

  9. Onion-like carbon coated CuO nanocapsules: A highly reversible anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Onion-like carbon–coated CuO nanocapsules have been synthesized. • Onion-like carbon leads to the improved stability and electric conductivity. • CuO/C nanocapsules maintain a reversible capacity of 628.7 mA h g−1 after 50 cycles. -- Abstract: The synthesis and characterization of CuO/C nanocapsules for application as anode material in lithium ion batteries are reported. Introduction of onion-like carbon shell on the CuO nanoparticles leads to the improved stability, electric conductivity and electrochemical performance. When evaluated as potential anode materials for lithium-ion batteries, the novel CuO/C nanocapsules deliver an initial discharge capacity of 1043.9 mA h g−1 at 100 mA g−1 and maintain a high reversible capacity of 628.7 mA h g−1 after 50 charge–discharge cycles, much higher than those of the CuO nanoparticles. A postmortem analysis of the CuO and CuO/C anodes subjected to prolonged cycling reveals the existence of a lower degree of surface cracking and particle breakage in the CuO/C anode than the CuO anode

  10. Onion-like carbon coated CuO nanocapsules: A highly reversible anode material for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianguo, E-mail: liuxianguohugh@gmail.com [Anhui Key Laboratory of Metal Materials and Processing, School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Bi, Nannan; Feng, Chao [Anhui Key Laboratory of Metal Materials and Processing, School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Or, Siu Wing [Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Sun, Yuping [Center for Engineering practice and Innovation Education, Anhui University of Technology, Maanshan 243002 (China); Jin, Chuangui; Li, Weihuo; Xiao, Feng [Anhui Key Laboratory of Metal Materials and Processing, School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China)

    2014-02-25

    Highlights: • Onion-like carbon–coated CuO nanocapsules have been synthesized. • Onion-like carbon leads to the improved stability and electric conductivity. • CuO/C nanocapsules maintain a reversible capacity of 628.7 mA h g{sup −1} after 50 cycles. -- Abstract: The synthesis and characterization of CuO/C nanocapsules for application as anode material in lithium ion batteries are reported. Introduction of onion-like carbon shell on the CuO nanoparticles leads to the improved stability, electric conductivity and electrochemical performance. When evaluated as potential anode materials for lithium-ion batteries, the novel CuO/C nanocapsules deliver an initial discharge capacity of 1043.9 mA h g{sup −1} at 100 mA g{sup −1} and maintain a high reversible capacity of 628.7 mA h g{sup −1} after 50 charge–discharge cycles, much higher than those of the CuO nanoparticles. A postmortem analysis of the CuO and CuO/C anodes subjected to prolonged cycling reveals the existence of a lower degree of surface cracking and particle breakage in the CuO/C anode than the CuO anode.

  11. Research on vibration and near-field sound radiation of ring-ribbed cylindrical shell coated deadening and decoupling materials

    Institute of Scientific and Technical Information of China (English)

    YAO Xiong-liang; LIU Qing-jie; YU Xiu-bo

    2007-01-01

    The research on structural vibration and sound radiation of underwater ring-ribbed cylindrical shell, which is coated with a kind of deadening and decoupling materials, becomes a focus in recent years. This paper analyzes the problem on two aspects: model experiment and numerical calculation. The model experiment is carried out including three cases firstly, in which the structural vibration response and radiating acoustic field are measured respectively, and the results gained in these three cases are analyzed to discuss the effect of reducing structural vibration and radiating noise of the deadening and decoupling materials. The coupling FEM/BEM and the SEA methods are both used in numerical calculation, i.e. the arithmetic of the coupling FEM/BEM method is adopted to calculate the low frequency characteristics and the SEA method is adopted to calculate the medium-high frequencies characteristics of the model. By comparing experimental results with numerical calculation results, it is proved that the algorithm adopted in this paper is reasonable.

  12. Sol-gel composite coatings as anti-corrosion barrier for structural materials of lead-bismuth eutectic cooled fast reactor

    International Nuclear Information System (INIS)

    The lead-bismuth eutectic (LBE) cooled fast reactor as one of the next generation fission nuclear power systems requires the development of new high-temperature corrosion-resistant materials and systems against LBE. The sol-gel coating methodology has several advantages between other coating methodologies; low-temperature processing, complex oxide coating, and commercially-feasible cost. The present paper demonstrates superior corrosion resistance of modified sol-gel alumina coatings on structural materials against the LBE environments. Sol-gel solution was fabricated from Al(NO3)3·9H2O water solution with and without small amount of Y(NO3)3·6H2O. The ph value of solution was controlled by the addition of NH4OH. The nano-sized α-Al203 powders as a seeding were added into the solution. The resulting solution was then dip-deposited onto substrates, and calcined at 400 C in air. This process was repeated for several times to obtain thick (∼10 μm) coating. The substrate used was Inconel 600 because the Ni based alloys are highly susceptible for LBE corrosion. The coatings obtained were examined in LBE at temperatures of 500 to 650 C up to 100 hr s. The coated specimens were rotated up to 500 rpm in the melted LBE located in an Ar environment glove box. After the corrosion tests, the specimens were investigated by scanning electron microscopy with X-ray spectroscopy. LBE corrosion experiment at 500 C up to 100 hr s showed no change in the substrate and coatings. However increasing the LBE temperature up to 650 C resulted in the severe corrosion of substrates and coating made of Al(NO3)3·9H2O solution. On the other hand, the coating made of Al(NO3)3·9H2O and Y(NO3)3·6H2O solution showed excellent resistance and prevented the corrosion of substrate. (Author)

  13. COATING THE CONDUCTIVITY MATERIALS TO IMPROVING THE ELECTROCHEMICAL PROPERTIES OF LiFePO4

    OpenAIRE

    WAN LIN WANG; EN MEI JIN; HAL-BON GU

    2013-01-01

    LiFePO4 cathode materials were prepared by a solid-state method followed by one-step heat treatment. To improve the electrochemical properties of the LiFePO4, acetylene black (AB), citric acid (CA), and pyrene are added as carbon source, respectively. The cyclic voltammetry (CV), AC impedance and galvanostatic charge/discharge testing results showed that using the LiFePO4-C composite such as the AB carbon source exhibits higher discharge capacity and stability than the other composite. Synthe...

  14. Improved corrosion resistance of plasma carbon coated NiTi orthopedic materials

    OpenAIRE

    Poon, RWY; Liu, XY; Chung, CY; Chu, PK; Yeung, KWK; Lu, WW; Cheung, KMC

    2004-01-01

    Nickel titanium (NiTi) alloys are useful in orthopedic applications because of their super-elastic properties and shape memory effects. However, when NiTi is used for a prolonged period of time, harmful Ni ions can leach out into the surrounding body fluid inside a human body, and so it is important to design a method to impede the out-diffusion of nickel from the materials into the biological medium. We aim at producing a barrier to mitigate the release of Ni ions during normal use. Carbon c...

  15. Sensitive absorption measurements in bulk material and coatings using a photothermal and a photoacoustic spectrometer

    Science.gov (United States)

    Fieberg, S.; Waasem, N.; Kühnemann, F.; Buse, K.

    2014-02-01

    Bulk and surface absorption in lithium triborate (LBO) and lithium niobate (LiNbO3) are measured using two sensitive measurement techniques, a photoacoustic spectrometer (PAS) and a photothermal common-path interferometer (PCI). As pump light sources, optical parametric oscillators are employed, covering the wavelength ranges 212 - 2500 nm (PAS) and 1460 - 1900 nm and 2460 - 3900 nm (PCI). The spectrometers are used to measure absorption spectra of optical materials across this wide spectral range and to compare the methods in the shared wavelength regime.

  16. Biodegradable and Elastomeric Poly(glycerol sebacate) as a Coating Material for Nitinol Bare Stent

    OpenAIRE

    2014-01-01

    We synthesized and evaluated biodegradable and elastomeric polyesters (poly(glycerol sebacate) (PGS)) using polycondensation between glycerol and sebacic acid to form a cross-linked network structure without using exogenous catalysts. Synthesized materials possess good mechanical properties, elasticity, and surface erosion biodegradation behavior. The tensile strength of the PGS was as high as 0.28 ± 0.004 MPa, and Young's modulus was 0.122 ± 0.0003 MPa. Elongation was as high as 237.8 ± 0.64...

  17. Flow coating apparatus and method of coating

    Science.gov (United States)

    Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

    2014-03-11

    Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

  18. Revisiting the Challenges in Fabricating Uniform Coatings with Polyfunctional Molecules on High Surface Energy Materials

    Directory of Open Access Journals (Sweden)

    Stephanie Oyola-Reynoso

    2015-12-01

    Full Text Available Modifying the chemistry of a surface has been widely used to influence interfacial properties of a material or nature of interaction between two materials. This article provides an overview on the role of polyfunctional molecules, specifically silanes, in surface modification of polar surfaces (bearing soft nucleophiles. An emphasis on the mechanism of the reaction in the presence of adsorbed water, where the modifying reagents are hydrolysable, is discussed. To highlight the complexity of the reaction, modification of paper with trichlorosilanes is highlighted. Preparation of hydrophobic cellulosic paper, and structure–property relations under different treatment conditions is used to highlight that a monolayer is not always formed during the surface modification. Gel-formation via step-growth polymerization suggests that at the right monomer:adsorbed water ratio, a monolayer will not form but rather self-assembly driven particle formation will occur leading to a textured surface. The review highlights recent work indicating that the focus on monolayer formation, is at the very least, not always the case but gel formation, with concomitant self-assembly, might be the culprit in understanding challenges associated with the use of polyfunctional molecules in surface modification.

  19. Practical aspects of material data bases and expert systems for high-temperature corrosion and coatings in gas turbines

    OpenAIRE

    Bernstein, Henry

    1993-01-01

    High-temperature environmental attack often limits the useful service life of the hot section components in gas turbines, for aircraft, marine and industrial applications. High-temperature coatings are mandatory to obtain acceptable service life, but the life of these coatings often determines the refurbishment intervals. This paper addresses the use of computerized data bases and expert systems for high-temperature corrosion and high-temperature coatings, which have not always been useful fo...

  20. Microstructure and Oxidation Behavior of CNT/PyC/SiC Coating on C/C Composite Material

    OpenAIRE

    Mizuki, Hironori; Sano, Hideaki; Zheng, Guo-Bin; Uchiyama, Yasuo

    2008-01-01

    CNT/PyC/SiC coating were prepared by direct growth of CNTs on C/C followed by deposition of PyC (pyrolytic carbon) and SiC. It is found that the coating consisted of two layers; the CNT/PyC/SiC layer and SiC layer. The oxidation resistance of C/C was improved by the coating, which had much fewer cracks and better thermal-shock resistance.

  1. Mechanically Invisible Polymer Coatings

    DEFF Research Database (Denmark)

    2014-01-01

    phase comprises particles, said particles comprising a filler material and an encapsulating coating of a second polymeric material, wherein the backbones of the first and second polymeric materials are the same. The composition may be used in electroactive polymers (EAPs) in order to obtain mechanically...... invisible polymer coatings....

  2. High-temperature resistant, thermally sprayed diffusion barrier coatings on CFC lightweight materials; Hochtemperaturbestaendige, thermisch gespritzte Diffusionsbarriereschichten auf CFC-Leichtbauchargiergestellen

    Energy Technology Data Exchange (ETDEWEB)

    Drehmann, Rico; Rupprecht, Christian; Wielage, Bernhard; Lampke, Thomas [Technische Univ. Chemnitz (Germany). Inst. fuer Werkstoffwissenschaft und Werkstofftechnik (IWW); Gilbert, Maria; Uhlig, Volker; Trimis, Dimosthenis [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Waermetechnik und Thermodynamik (IWTT); Heuer, Volker [ALD Vacuum Technologies GmbH, Hanau (Germany)

    2013-03-15

    In heat treating processes as well as in high temperature brazing processes, charge carriers enable the positioning and transport of work pieces. Recently, charge carriers consisting of graphite or carbon fibre reinforced carbon (CFC) are used. The main disadvantage of charge carriers based on CFC is the undesirable carburization of the overlying components due to diffusion processes. Under this aspect, thermally sprayed coatings are applied on CFC and tested with respect to their suitability as a high-temperature diffusion barrier. The ceramic powders aluminium oxide, aluminium oxide/chromium oxide, aluminium oxide/titanium oxide and zirconium oxide/yttrium oxide are used as a coating material which is processed by means of the powder flame spraying as well as atmospheric plasma spraying. Molybdenum and silicon carbide are used as an adhesive layer. The coating materials aluminium oxide and aluminium oxide/chromium oxide on siliconized CFC presented excellent results. This supplies a large potential of application for thermally sprayed ceramic coatings on carbon-based lightweight materials.

  3. Thermal Contact Conductance Analysis of Nitride and Carbonitride Thin Film Coatings for Thermal Interface Material Application

    Science.gov (United States)

    Subramani, Shanmugan; Thing, Lee Yuan; Devarajan, Mutharasu

    2015-12-01

    In order to reduce and maintain the bond line thickness between substrate and LED package, solid thin film with good thermal conductivity is suggested as thermal interface material and the proposed film thickness is about less than 1 µ. The surface parameter such as roughness and hardness is a key factor which alters the contact conductance between the two matt surfaces. Consequently, filtered vacuum cathodic arc deposited nitride thin films (CrN, TiN, AlTiN, and TiCN) on copper substrate were tested for thermal interface material applications in electronic packaging. The thermal contact conductance of the prepared thin films was evaluated using surface properties such as microhardness and surface roughness. The results were verified with the theoretical model. The measured microhardness and surface roughness of CrN thin film are 17 GPa (low) and 0.768 µm (high), respectively. The measured thermal contact conductance of all thin films showed linear properties for applied pressure and very close to the values of theoretical model. High value in thermal contact conductance of about 256 W/m2 K was noticed with CrN thin film at 1100 kPa. The percentage of deviation for our measured contact conductance value from the theoretical model value was decreasing for the increased contact pressure and observed low value (7 pct) for CrN thin film at 1100 kPa. The thermal conductivity of all thin films was also calculated from the conductance model and observed high value (19.34 W/mK) with CrN thin film.

  4. EFFECT OF pH ON ELECTROLESS Ni-P COATING OF CONDUCTIVE AND NON-CONDUCTIVE MATERIALS

    OpenAIRE

    Subrata Roy; Moniruzzaman, M.

    2011-01-01

    Electroless nickel-phosphorus (Ni-P) coating of carbon steel as well as a polypropylene substrate was conducted using sodium hypophosphite as a reducing agent in alkaline media. The influence of pH on coating appearances and the properties of the coatings for both steel and the polypropylene substrate were studied. A nickel-phosphorus coating of good appearance was obtained in the pH range between 5.5 and 12.5 on the carbon steel substrate and between 8.5 and 12 on the polypropylene substrate...

  5. Japanese efforts on coated conductor processing and its power applications: New 5 year project for materials and power applications of coated conductors (M-PACC)

    Science.gov (United States)

    Shiohara, Y.; Fujiwara, N.; Hayashi, H.; Nagaya, S.; Izumi, T.; Yoshizumi, M.

    2009-10-01

    Five years of Japanese national project (FY2003-FY2007) was ended last spring with remarkable success. The national project was originally aimed for development of coated conductors which have high superconductivity performance and long length enough to fabricate high temperature superconducting (HTS) electric power devices. Preliminary research and development of HTS electric power devices were carried out as well. A series of R&D results will be summarized and reviewed in this paper. The new 5 years Japanese national project has started last June (FY2008-FY2012) to develop HTS electric power applications including SMES, cables and transformers and to develop/produce coated conductors satisfying the requirements from the respective power devices. Collaborative R&D efforts by national laboratories, universities and private companies have been started with the supports of NEDO and METI. The accomplishment of the previous project will be summarized and the plans and goals of the new project will be presented in this paper.

  6. Coatings: Pt. 4

    International Nuclear Information System (INIS)

    The demands imposed on the coating industry to reduce environmental pollution and energy consumption and to produce high quality coatings in an era where the cost of raw materials increases continuously, have stimulated interest and research in radiation curing methods for coatings. Radiation such as ionising radiation, visible light, infra red and micro waves can be applied. In this article attention is given to electron beam curing and special reference is made to modern wood coating equipment

  7. Investigation on a-C:H:Me coated substrates as an alternative bipolar plate material in all-vanadium redox-flow batteries

    International Nuclear Information System (INIS)

    A crucial aspect of advancing in renewable energies is the development of affordable decentralized storage systems for the local or regional distribution grid. A technology with great potential is the all-vanadium redox-flow battery (VRFB) with the distinct feature of individual scalable power and capacity. The present work focusses on one of the essential parts in the redox-flow cell; the bipolar plates. By the application of metallic substrates instead of state-of-the-arte graphite composite plates, the design of the cell isn't limited anymore to the mechanical properties or fabrication process of the material. Although metals possess high ductility, which eases the production of such plates, they are prone to corrosion in the high acidic environment of the battery electrolyte. Therefore in this study amorphous carbon coatings (a-C:H) are investigated for corrosion protection. To attain the need of high electrical conductivity the carbon matrices is doped with a metallic element. Preferably refractory metals such as titanium, vanadium, chromium and tungsten were investigated as possible dopants. The electrochemical tests of the samples revealed less degradation the higher the coating thickness was. This can be found on all metallic substrates (material number: 1.4301, 3.7165 and 3.3535). Regarding the hydrogen overpotential, which is an essential value for the suppression of side reactions on the anode, the dominating factor was found to be the sort of doping material as well as the composition of the metallic adhesive layer between coating and substrate. Pores in the coating originate from defects in the substrates as well as from contaminations during the coating process. To understand the degradation mechanism an in-situ-corrosion cell was developed. By the means of these results, delamination could be found to be the predominant factor concerning degradation mechanisms at cathodic potentials. The degradation is initialized at the defects or at the edges

  8. Comparison of the Influence of Phospholipid-Coated Porous Ti-6Al-4V Material on the Osteosarcoma Cell Line Saos-2 and Primary Human Bone Derived Cells

    Directory of Open Access Journals (Sweden)

    Axel Deing

    2016-03-01

    Full Text Available Biomaterial surface functionalization remains of great interest in the promotion of cell osteogenic induction. Previous studies highlighted the positive effects of porous Ti-6Al-4V and phospholipid coating on osteoblast differentiation and bone remodeling. Therefore, the first objective of this study was to evaluate the potential synergistic effects of material porosity and phospholipid coating. Primary human osteoblasts and Saos-2 cells were cultured on different Ti-6Al-4V specimens (mirror-like polished or porous specimens and were coated or not with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE for three weeks or five weeks. Selected gene expressions (e.g., classical bone markers: alkaline phosphatase, osteocalcin, osteoprotegerin (OPG, receptor activator of nuclear factor kappa-β ligand (RANKL and runt-related transcription factor 2 were estimated in vitro. Furthermore, the expressions of osteocalcin and osteopontin were examined via fluorescent microscopy at five weeks (immunocytochemistry. Consequently, it was observed that phospholipid coating potentiates preferences for low and high porosities in Saos-2 and primary cells, respectively, at the gene and protein levels. Additionally, RANKL and OPG exhibited different gene expression patterns; primary cells showed dramatically increased RANKL expression, whereas OPG expression was decreased in the presence of POPE. A synergistic effect of increased porosity and phospholipid coating was observed in primary osteoblasts in bone remodeling. This study showed the advantage of primary cells over the standard bone cell model.

  9. Solvent-free synthesis, coating and morphogenesis of conductive polymer materials through spontaneous generation of activated monomers.

    Science.gov (United States)

    Muramatsu, Ryo; Oaki, Yuya; Kuwabara, Kento; Hayashi, Kosei; Imai, Hiroaki

    2014-10-14

    Synthesis, coating, and morphogenesis of conductive polymers were achieved on a variety of substrates through spontaneous generation of activated monomer vapors under ambient pressure and low temperature conditions. The present approach facilitates the generation of complex hierarchical morphologies and the conductive coating for improvement of electrochemical properties. PMID:25145680

  10. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program: Topical report I, selection of candidate alloys. Volume 3. Selection of surface coating/substrate systems for screening creep and structural stability studies

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-20

    Considering the high temperature, low O/sub 2/, high C environment of operation in the Very High Temperature Reactor (VHTR) Systems, the utilization of coatings is envisaged to hold potential for extending component lifetimes through the formation of stable and continuous oxide films with enhanced resistance to C diffusion. A survey of the current state of technology for high temperature coatings has been performed. The usefulness of these coatings on the Mo, Ni, and Fe base alloys is discussed. Specifically, no coating substitute was identified for TZM other than the well known W-3 (pack silicide) and Al/sub 2/O/sub 3/ forming coatings were recommended for the Fe and Ni base structural materials. Recommendations as to coating types and processng have been made based on the predicted VHTR component size, shape, base metal and operational environment. Four tests designed to evaluate the effects of selected combinations of coatings and substrate matrices are recommended for consideration.

  11. Coatings of titanium substrates with xCaO · (1 - x)SiO2 sol-gel materials: characterization, bioactivity and biocompatibility evaluation.

    Science.gov (United States)

    Catauro, M; Papale, F; Bollino, F

    2016-01-01

    The objective of this study has been to develop low temperature sol-gel coatings to modify the surface of commercially pure titanium grade 4 (a material generally used in dental application) and to evaluate their bioactivity and biocompatibility on the substrate. Glasses of composition expressed by the following general formula xCaO · (1 - x)SiO2 (0.0characterized and a microstructural analysis of the coatings obtained was performed using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated titanium was immersed in simulated body fluid (SBF) for 21 days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM-EDXS analysis, as an index of bone-bonding capability. To investigate cell-material interactions, mouse embryonic fibroblast cells (3T3) were seeded onto the specimens and the cell viability was evaluated by a WST-8 assay. PMID:26478379

  12. Processing and Validation of Whey-Protein-Coated Films and Laminates at Semi-Industrial Scale as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties

    Directory of Open Access Journals (Sweden)

    E. Bugnicourt

    2013-01-01

    Full Text Available A biopolymer coating for plastic films was formulated based on whey protein, and its potential to replace current synthetic oxygen barrier layers used in food packaging such as ethylene vinyl alcohol copolymers (EVOH was tested. The whey-coating application was performed at semi-industrial scale. High barrier to oxygen with transmission rate down to ranges of 1 cm3 (STP m−2 d−1 bar−1 at and 50% relative humidity (r.h. but interesting humidity barrier down to ranges of 3 g m−2 d−1 (both normalized to 100 μm thickness were reached, outperforming most existing biopolymers. Coated films were validated for storing various food products showing that the shelf life and sensory attributes were maintained similar to reference packaging films while complying with food safety regulations. The developed whey coating could be enzymatically removed within 2 hours and is therefore compatible with plastic recycling operations to allow multilayer films to become recyclable by separating the other combined layers. A life cycle assessment was performed showing a significant reduction in the environmental impact of the packaging thanks in particular to the possibility of recycling materials as opposed to incinerating those containing EVOH or polyamide (PA, but due to the use of biosourced raw materials.

  13. Biobased polymer composites derived from corn stover and feather meals as double-coating materials for controlled-release and water-retention urea fertilizers.

    Science.gov (United States)

    Yang, Yuechao; Tong, Zhaohui; Geng, Yuqing; Li, Yuncong; Zhang, Min

    2013-08-28

    In this paper, we synthesized a biobased polyurethane using liquefied corn stover, isocyanate, and diethylenetriamine. The synthesized polyurethane was used as a coating material to control nitrogen (N) release from polymer-coated urea. A novel superabsorbent composite was also formulated from chicken feather protein (CFP), acrylic acid, and N,N'-methylenebisacrylamide and used as an outer coating material for water retention. We studied the N release characteristics and water-retention capability of the double-layer polymer-coated urea (DPCU) applied in both water and soils. The ear yields, dry matter accumulation, total N use efficiency and N leaching from a sweet corn soil-plant system under two different irrigation regimes were also investigated. Comparison of DPCU treatments with conventional urea fertilizer revealed that DPCU treatments reduced the N release rate and improved water retention capability. Evaluation of soil and plant characteristics within the soil-plant system revealed that DPCU application effectively reduced N leaching loss, improved total N use efficiency, and increased soil water retention capability. PMID:23923819

  14. INFLUENCE ОF MODIFIER THERMAL TREATMENT ОN CHARACTERISTICS ОF COMPOSITE MATERIALS FOR PROTECTIVE COATINGS

    Directory of Open Access Journals (Sweden)

    V. Ivashko

    2012-01-01

    Full Text Available This paper presents results that reveal influence of modifiers characterized by different nature and composition and subjected to heat treatment on operational characteristics of single and binary compositions. Interaction between dispersed clay particles and dependence of  coating properties on  their mass content in oligomeric and polymeric matrices have been justified in the paper. The paper contains data that prove an increase of coating hardness by 15–20 %. The coating composition includes thermally-treated dispersed clay particles.

  15. Temperature control of a heat exchanger for the photosensitive materials coating and drying process; Kanko zairyo tofu kanso purosesu ni okeru kucho system no ondo seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Kido, K.; Sato, N.; Shimoji, M. [Konica Co. Ltd., Tokyo (Japan). Production Engineering Center; Nakanishi, E. [Kansai Univ., Suita, Osaka (Japan). Faculty of Engineering

    1997-11-01

    A feedforward/feedback control system was developed to maintain the temperature profile of air in an air conditioning system for photosensitive material coating and drying. The feedforward control was attained based on a heat exchanger dynamic model using the flow rate of hot water as the manipulated variable and the air temperature as the controlled variable, while feedback control was performed by means of optimum control theory based on a linearized heat exchanger dynamic model. To evaluate the performance of the control system developed in this study, simulation and experimental studies were carried out where a stepwise change of set values is performed in order to maintain uniform production quality for each product grade. It is shown that the control system under consideration successfully controls air temperature in an air conditioning system for photosensitive material coating and drying. 4 refs., 7 figs.

  16. Chronic TiO2 nanoparticle exposure to a benthic organism, Hyalella azteca: impact of solar UV radiation and material surface coatings on toxicity

    International Nuclear Information System (INIS)

    There is limited information on the chronic effects of nanomaterials to benthic organisms, as well as environmental mitigating factors that might influence this toxicity. The present study aimed to fill these data gaps by examining various growth endpoints (weight gain, instantaneous growth rate, and total protein content) for up to a 21 d sediment exposure of TiO2 nanoparticles (nano-TiO2) to a representative benthic species, Hyalella azteca. An uncoated standard, P25, and an Al(OH)3 coated nano-TiO2 used in commercial products were added to sediment at 20 mg/L or 100 mg/L Under test conditions, UV exposure alone was shown to be a greater cause of toxicity than even these high levels of nano-TiO2 exposure, indicating that different hazards need to be addressed in toxicity testing scenarios. In addition, this study showed the effectiveness of a surface coating on the decreased photoactivity of the material, as the addition of an Al(OH)3 coating showed a dramatic decrease in reactive oxygen species (ROS) production. However, this reduced photoactivity was found to be partially restored when the coating had been degraded, leading to the need for future toxicity tests which examine the implications of weathering events on particle surface coatings. - Highlights: • Chronic toxicity of nano-TiO2 to a benthic organism (Hyalella azteca) was examined. • Phototoxicity was investigated through exposure of solar simulated radiation (SSR). • The degradation of a surface coating resulted in an increase in photoactivity. • In this testing scenario, UV had a larger impact than chemical exposure in toxicity

  17. Chronic TiO{sub 2} nanoparticle exposure to a benthic organism, Hyalella azteca: impact of solar UV radiation and material surface coatings on toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Wallis, Lindsay K. [Office of Research and Development, Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Duluth, MN, 55804 (United States); Diamond, Stephen A. [Nanosafe Inc., Blacksburg, VA, 24060 (United States); Ma, Hongbo [University of Wisconsin-Milwaukee, Zilber School of Public Health, Milwaukee, WI, 53211 (United States); Hoff, Dale J. [Office of Research and Development, Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Duluth, MN, 55804 (United States); Al-Abed, Souhail R. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH 45268 (United States); Li, Shibin, E-mail: lishibinepa@gmail.com [Office of Research and Development, Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Duluth, MN, 55804 (United States)

    2014-11-15

    There is limited information on the chronic effects of nanomaterials to benthic organisms, as well as environmental mitigating factors that might influence this toxicity. The present study aimed to fill these data gaps by examining various growth endpoints (weight gain, instantaneous growth rate, and total protein content) for up to a 21 d sediment exposure of TiO{sub 2} nanoparticles (nano-TiO{sub 2}) to a representative benthic species, Hyalella azteca. An uncoated standard, P25, and an Al(OH){sub 3} coated nano-TiO{sub 2} used in commercial products were added to sediment at 20 mg/L or 100 mg/L Under test conditions, UV exposure alone was shown to be a greater cause of toxicity than even these high levels of nano-TiO{sub 2} exposure, indicating that different hazards need to be addressed in toxicity testing scenarios. In addition, this study showed the effectiveness of a surface coating on the decreased photoactivity of the material, as the addition of an Al(OH){sub 3} coating showed a dramatic decrease in reactive oxygen species (ROS) production. However, this reduced photoactivity was found to be partially restored when the coating had been degraded, leading to the need for future toxicity tests which examine the implications of weathering events on particle surface coatings. - Highlights: • Chronic toxicity of nano-TiO{sub 2} to a benthic organism (Hyalella azteca) was examined. • Phototoxicity was investigated through exposure of solar simulated radiation (SSR). • The degradation of a surface coating resulted in an increase in photoactivity. • In this testing scenario, UV had a larger impact than chemical exposure in toxicity.

  18. The correlation between materials, processes and final properties in the pipeline coating system with polyethylene in triple layer; A correlacao entre materiais, processos e propriedades finais no sistema de revestimento de tubos com polietileno em tripla camada

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luiz C.; Campos, Paulo H. [Confab Industrial S.A., Pindamonhangaba, SP (Brazil); Silva, Christian E.; Santos, Paulo T. [Soco-Ril do Brasil S.A., Pindamonhangaba, SP (Brazil)

    2003-07-01

    The use of anticorrosion coating is a common practice in industrial pipeline applications. Among the several coatings types to buried and submerged pipelines, over all, the Fusion Bonded Epoxy and Three Layer Polyethylene coating systems have been large employed. They have showed an excellent performance protecting the pipe metal from external corrosive environment, considerably decreasing the designed cathodic protection requirements, basically in the first years of pipeline operation. Coating system success depends on not only of a suitable design or of the materials technology, but also depends on the process parameters and the raw material characteristics exhibited during the application. In this paper will be presented in a theoretical approach how the process parameters and the raw materials characteristics may affect the three layer polyethylene anticorrosion coating final properties. (author)

  19. Properties of SiC and problems of the material for use as the coating layer of fuel particles

    International Nuclear Information System (INIS)

    The properties of silicon carbide (SiC) reported in the literatures and obtained in the authors' experiments, are reviewed with a view to improving the SiC coating layer of fuel particles for HTGR. Described are the deposition, physical and chemical properties, mechanical strength, diffusion and irradiation behaviors. The experimental results obtained in the authors' laboratory in in-pile irradiation and out-of-pile annealing of the SiC-coated particles are also presented. (auth.)

  20. Surface modification of superparamagnetic iron nanoparticles with calcium salt of poly(γ-glutamic acid) as coating material

    International Nuclear Information System (INIS)

    Surface-modified magnetite nanoparticles (MNPs) were synthesized by co-precipitation of aqueous solution of ferrous and ferric salts (molar ratio 1:2) upon adding a base followed by calcium salt of poly(γ-glutamic acid) (Ca-γ-PGA) for uniform coating on the surface of MNPs. Both uncoated and Ca-γ-PGA-coated MNPs were characterized using various techniques including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and vibrating sample magnetometric (VSM) studies. Compared with bare MNPs, the IR spectra of coated MNPs showed characteristic peaks of γ-PGA, implying the γ-PGA coating on MNPs did occur. The TEM images depicted an average size of 8-10 nm for bare MNPs and 14 nm for coated MNPs, with their shape being spherical in nature. In the presence of applied magnetic field, a superparamagnetic behavior was observed at room temperature for both bare and Ca-γ-PGA-coated MNPs, with no magnetism left upon magnetic-field removal.

  1. TABLET COATING TECHNIQUES: CONCEPTS AND RECENT TRENDS

    Directory of Open Access Journals (Sweden)

    Gupta Ankit

    2012-09-01

    Full Text Available Tablet coating is a common pharmaceutical technique of applying a thin polymer-based film to a tablet or a granule containing active pharmaceutical ingredients (APIs. Solid dosage forms are coated for a number of reasons, the most important of which is controlling the release profiles. The amount of coating on the surface of a tablet is critical to the effectiveness of the oral dosage form. Tablets are usually coated in horizontal rotating pans with the coating solution sprayed onto the free surface of the tablet bed. The advantages of tablet coating are taste masking, odour masking, physical and chemical protection, protects the drug from the gastric environment etc. There are various techniques for tablet coating such as sugar coating, film coating, and enteric coating. Recent trends in pharmaceutical technologies are the development of coating methods which overcomes the various disadvantages associated with solvent based coatings. In these latest technologies coating materials are directly coated onto the surface of solid dosage forms without using any solvent. Various solventless coatings are available such as electrostatic dry coating, magnetically assisted impaction coating, compression coating, hot melt coating, powder coating, and supercritical fluid coating. Supercell Coating Technology is a revolutionary tablet coating that accurately deposits controlled amounts of coating materials on tablets even if they are extremely hygroscopic or friable. Magnetically assisted impaction coating, electrostatic dry coating in solventless coatings, aqueous film coating and Supercell coating technology are also available recent technique of coating. An ideal tablet should be free from any visual defect or functional defect. The advancements and innovations in tablet manufacture have not decreased the problems, often encountered in the production, instead have increased the problems, mainly because of the complexities of tablet presses; and/or the

  2. Self-Cleaning Coatings and Materials for Decontaminating Field-Deployable Land and Water-Based Optical Systems

    Science.gov (United States)

    Ryan, Robert; Underwood, Lauren; Holekamp, Kara; May, George; Spiering, Bruce; Davis, Bruce

    2011-01-01

    This technology exploits the organic decomposition capability and hydrophilic properties of the photocatalytic material titanium dioxide (TiO2), a nontoxic and non-hazardous substance, to address contamination and biofouling issues in field-deployed optical sensor systems. Specifically, this technology incorporates TiO2 coatings and materials applied to, or integrated as a part of, the optical surfaces of sensors and calibration sources, including lenses, windows, and mirrors that are used in remote, unattended, ground-based (land or maritime) optical sensor systems. Current methods used to address contamination or biofouling of these optical surfaces in deployed systems are costly, toxic, labor intensive, and non-preventative. By implementing this novel technology, many of these negative aspects can be reduced. The functionality of this innovative self-cleaning solution to address the problem of contamination or biofouling depends on the availability of a sufficient light source with the appropriate spectral properties, which can be attained naturally via sunlight or supplemented using artificial illumination such as UV LEDs (light emitting diodes). In land-based or above-water systems, the TiO2 optical surface is exposed to sunlight, which catalyzes the photocatalytic reaction, facilitating both the decomposition of inorganic and organic compounds, and the activation of superhydrophilic properties. Since underwater optical surfaces are submerged and have limited sunlight exposure, supplementary UV light sources would be required to activate the TiO2 on these optical surfaces. Nighttime operation of land-based or above-water systems would require this addition as well. For most superhydrophilic self-cleaning purposes, a rainwater wash will suffice; however, for some applications an attached rainwater collector/ dispenser or other fresh water dispensing system may be required to wash the optical surface and initiate the removal of contaminates. Deployment of this

  3. ATHENA optimized coating design

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Jakobsen, Anders Clemen;

    2012-01-01

    The optimization of coating design for the ATHENA mission si described and the possibility of increasing the telescope effective area in the range between 0.1 and 10 keV is investigated. An independent computation of the on-axis effective area based on the mirror design of ATHENA is performed in...... order to review the current coating baseline. The performance of several material combinations, considering a simple bi-layer, simple multilayer and linear graded multilayer coatings are tested and simulation of the mirror performance considering both the optimized coating design and the coating...

  4. Catalytic thermal barrier coatings

    Science.gov (United States)

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  5. An investigation on corrosion protection of chromium nitride coated Fe-Cr alloy as a bipolar plate material for proton exchange membrane fuel cells

    Science.gov (United States)

    Pan, T. J.; Zhang, B.; Li, J.; He, Y. X.; Lin, F.

    2014-12-01

    The corrosion properties of chromium nitride (CrN) coating are investigated to assess the potential use of this material as a bipolar plate for proton exchange membrane fuel cells (PEMFCs). Conductive metallic ceramic CrN layers are firstly deposited onto Fe-Cr alloy using a multi-arc ion plating technique to increase the corrosion resistance of the base alloy. Electrochemical measurements indicate that the corrosion resistance of the substrate alloy is greatly enhanced by the CrN coating. The free corrosion potential of the substrate is increased by more than 50 mV. Furthermore, a decrease in three orders of magnitude of corrosive current density for the CrN-coated alloy is observed compared to the as-received Fe-Cr alloy. Long-term immersion tests show that the CrN layer is highly stable and effectively acts as a barrier to inhibit permeation of corrosive species. On the contrary, corrosion of the Fe-Cr alloy is rather severe without the protection of CrN coating due to the active dissolution. Finally, the corresponding electrochemical impedance models are proposed to elucidate the corrosion process of the CrN/Fe-Cr alloy submerged in a simulated PEMFCs environment.

  6. Preparation and electrochemical properties of core-shell carbon coated Mn–Sn complex metal oxide as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    In this study, we synthesized a carbon coated Mn–Sn metal oxide composite with core-shell structure (MTO@C) via a simple glucose hydrothermal reaction and subsequent carbonization approach. When the MTO@C composite was applied as an anode material for lithium-ion batteries, it maintained a reversible capacity of 409 mA h g−1 after 200 cycles at a current density of 100 mA g−1. The uniformed and continuous carbon layer formed on the MTO nanoparticles, effectively buffered the volumetric change of the active material and increased electronic conductivity, which thus prolonged the cycling performance of the MTO@C electrode.

  7. Evaluation of Alternate Materials for Coated Particle Fuels for the Gas-Cooled Fast Reactor. Laboratory Directed Research and Development Program FY 2006 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Paul A. Demkowicz; Karen Wright; Jian Gan; David Petti; Todd Allen; Jake Blanchard

    2006-09-01

    Candidate ceramic materials were studied to determine their suitability as Gas-Cooled Fast Reactor particle fuel coatings. The ceramics examined in this work were: TiC, TiN, ZrC, ZrN, AlN, and SiC. The studies focused on (i) chemical reactivity of the ceramics with fission products palladium and rhodium, (ii) the thermomechanical stresses that develop in the fuel coatings from a variety of causes during burnup, and (iii) the radiation resiliency of the materials. The chemical reactivity of TiC, TiN, ZrC, and ZrN with Pd and Rh were all found to be much lower than that of SiC. A number of important chemical behaviors were observed at the ceramic-metal interfaces, including the formation of specific intermetallic phases and a variation in reaction rates for the different ceramics investigated. Based on the data collected in this work, the nitride ceramics (TiN and ZrN) exhibit chemical behavior that is characterized by lower reaction rates with Pd and Rh than the carbides TiC and ZrC. The thermomechanical stresses in spherical fuel particle ceramic coatings were modeled using finite element analysis, and included contributions from differential thermal expansion, fission gas pressure, fuel kernel swelling, and thermal creep. In general the tangential stresses in the coatings during full reactor operation are tensile, with ZrC showing the lowest values among TiC, ZrC, and SiC (TiN and ZrN were excluded from the comprehensive calculations due to a lack of available materials data). The work has highlighted the fact that thermal creep plays a critical role in the development of the stress state of the coatings by relaxing many of the stresses at high temperatures. To perform ion irradiations of sample materials, an irradiation beamline and high-temperature sample irradiation stage was constructed at the University of Wisconsin’s 1.7MV Tandem Accelerator Facility. This facility is now capable of irradiating of materials to high dose while controlling sample temperature

  8. Large charge-storage-capacity iridium/ruthenium oxide coatings as promising material for neural stimulating electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Nehar, E-mail: nehar.ullah@mail.mcgill.ca; Omanovic, Sasha

    2015-06-01

    Electrochemical and topographical/structural/morphological properties of thermally prepared Ir/Ru-oxide coatings of various compositions formed on a Ti substrate were investigated. An apparent electrochemically active surface area (AEASA) and charge storage capacity (CSC) were determined. The freshly-prepared Ir{sub 0.6}Ru{sub 0.4}-oxide coating was found to offer the largest AEASA and CSC; however, after exposing all the coatings to prolonged extreme electrochemical cycling in phosphate buffered saline pH 7.4, within a 5 V potential window (“torturing”), the Ir{sub 0.8}Ru{sub 0.2}-oxide coating yielded both the largest AEASA (1540 cm{sup 2}) and CSC (27 mC cm{sup −2}). Under the same experimental condition, the Ir{sub 0.8}Ru{sub 0.2}-oxide coating was found to yield by a 56% higher CSC than the current state-of-the-art neural stimulating electrode, Ir-oxide, making it a good candidate for further optimization and possible application as a neural stimulating electrode. - Highlights: • Ir/Ru-oxide coatings were formed thermally on a Ti substrate. • Electrochemical properties of Ir/Ru-oxide coatings were investigated. • Ir{sub 0.8}–Ru{sub 0.2}-oxide yielded highest apparent electrochemically-active surface area. • Ir{sub 0.8}–Ru{sub 0.2}-oxide yielded highest charge storage capacity. • Charge storage capacity is by 56% higher than current state-of-the-art, Ir-oxide.

  9. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO{sub 2} hybrid materials synthesized by sol–gel route: in vitro evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Mozetic, P.; Rainer, A.; Trombetta, M. [Tissue Engineering Lab, Center for Integrated Research, “Università Campus Bio-Medico di Roma”, via Alvaro del Portillo, 00128 Rome (Italy)

    2014-12-01

    The surface modification of implantable materials in order to improve their biological proprieties, including tissue tolerance and osseointegration ability, by means of functional coating deposition is a promising strategy to provide a firm fixation of the implants. In this study, organic/inorganic hybrid materials consisting of an inorganic zirconia-based matrix, in which a biocompatible polymer, poly(ε-caprolactone) (PCL), has been incorporated at different percentages, have been synthesized via sol–gel route. Developed materials have been used to coat titanium grade 4 substrates by means of dip coating technique. Scanning electron microscopy (SEM) analysis of the obtained coatings has shown that films crack-free can be obtained for high levels of PCL. Chemical composition and interactions between organic and inorganic moieties have been studied by Attenuated Total Reflectance Fourier Transform InfraRed spectroscopy. The bone-bonding capability of the nanocomposite films has been evaluated in vitro by examining the appearance of an apatite layer on their surface when soaked in a simulated body fluid by means of SEM equipped with EDS microanalysis. In vitro biocompatibility assessment was performed in combination with human mesenchymal stromal cells (hMSCs). Materials were found to be non-toxic and supporting cell proliferation. Additionally, the coating material was not hampering the differentiation of hMSCs in an osteogenic medium. - Highlights: • ZrO{sub 2}/PCL hybrid coatings on Ti grade 4 were obtained by sol–gel dip coating process. • The PCL acts as a plasticizer and allows us to prepare crack-free coatings. • Independent of PCL amount, the films improve the titanium substrates' bioactivity. • The coatings are non-toxic and supportive of cell proliferation at all compositions. • The coatings don't hamper hMSC differentiation in an osteogenic medium.

  10. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO2 hybrid materials synthesized by sol–gel route: in vitro evaluation

    International Nuclear Information System (INIS)

    The surface modification of implantable materials in order to improve their biological proprieties, including tissue tolerance and osseointegration ability, by means of functional coating deposition is a promising strategy to provide a firm fixation of the implants. In this study, organic/inorganic hybrid materials consisting of an inorganic zirconia-based matrix, in which a biocompatible polymer, poly(ε-caprolactone) (PCL), has been incorporated at different percentages, have been synthesized via sol–gel route. Developed materials have been used to coat titanium grade 4 substrates by means of dip coating technique. Scanning electron microscopy (SEM) analysis of the obtained coatings has shown that films crack-free can be obtained for high levels of PCL. Chemical composition and interactions between organic and inorganic moieties have been studied by Attenuated Total Reflectance Fourier Transform InfraRed spectroscopy. The bone-bonding capability of the nanocomposite films has been evaluated in vitro by examining the appearance of an apatite layer on their surface when soaked in a simulated body fluid by means of SEM equipped with EDS microanalysis. In vitro biocompatibility assessment was performed in combination with human mesenchymal stromal cells (hMSCs). Materials were found to be non-toxic and supporting cell proliferation. Additionally, the coating material was not hampering the differentiation of hMSCs in an osteogenic medium. - Highlights: • ZrO2/PCL hybrid coatings on Ti grade 4 were obtained by sol–gel dip coating process. • The PCL acts as a plasticizer and allows us to prepare crack-free coatings. • Independent of PCL amount, the films improve the titanium substrates' bioactivity. • The coatings are non-toxic and supportive of cell proliferation at all compositions. • The coatings don't hamper hMSC differentiation in an osteogenic medium

  11. Oxide coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.

    1995-06-01

    Monolithic SiC heat exchangers and fiber-reinforced SiC-matrix composite heat exchangers and filters are susceptible to corrosion by alkali metals at elevated temperatures. Protective coatings are currently being developed to isolate the SiC materials from the corrodants. Unfortunately, these coatings typically crack and spall when applied to SiC substrates. The purpose of this task is to determine the feasibility of using a compliant material between the protective coating and the substrate. The low-modulus compliant layer could absorb stresses and eliminate cracking and spalling of the protective coatings.

  12. Influence of Material Composition on Structural and Optical Properties of HfO2-TiO2 Mixed Oxide Coatings

    Directory of Open Access Journals (Sweden)

    Michal Mazur

    2016-03-01

    Full Text Available In this paper the influence of material composition on the structural, surface and optical properties of HfO2-TiO2 mixed oxide coatings was investigated and discussed. Five sets of thin films were deposited using reactive magnetron sputtering: HfO2, TiO2 and three sets of mixed HfO2-TiO2 coatings with various titanium content. The change in the material composition had a significant influence on the structural, surface and optical properties. All of the deposited coatings, except for (Hf0.55Ti0.45Ox, were nanocrystalline with crystallites ranging from 6.7 nm to 10.8 nm in size. Scanning electron microscopy measurements revealed that surface of nanocrystalline thin films consisted of grains with different shapes and sizes. Based on optical transmission measurements, it was shown that thin films with higher titanium content were characterized by a higher cut-off wavelength, refractive index and lower optical band gap energy. The porosity and packing density were also determined.

  13. Synthesis and electrochemical properties of CaF2-coated for long-cycling Li[Mn1/3Co1/3Ni1/3]O2 cathode materials

    International Nuclear Information System (INIS)

    Li[Mn1/3Co1/3Ni1/3]O2 cathode material for lithium ion batteries was coated by CaF2 via wet coating strategy. The CaF2-coated Li[Mn1/3Co1/3Ni1/3]O2 were analyzed by X-ray diffraction spectra (XRD), the scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDAX) to confirm the structure and morphology of cathode material. Cyclic voltammetry and cycling charge–discharge measurements were carried out to study the electrochemical performance of bare and coated samples, as well as the optimal coating dosage. Comparison tests have found that the capacity retention is 67.9% for bare sample and 93.5% for 1.0 wt.% CaF2-coated sample. In summary, the CaF2 coating strategy benefits the cycling performance of Li[Mn1/3Co1/3Ni1/3]O2 cathode material, and the optimal dosage of coating agent is 1.0 wt.%.

  14. High-sensitivity green resist material with organic solvent-free spin-coating and tetramethylammonium hydroxide-free water-developable processes for EB and EUV lithography

    Science.gov (United States)

    Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2015-03-01

    We investigated the eco-friendly electron beam (EB) and extreme-ultraviolet (EUV) lithography using a high-sensitive negative type of green resist material derived from biomass to take advantage of organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques. A water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB lithography was developed for environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of TMAH. The material design concept to use the water-soluble resist material with acceptable properties such as pillar patterns with less than 100 nm in high EB sensitivity of 10 μC/cm2 and etch selectivity with a silicon-based middle layer in CF4 plasma treatment was demonstrated for EB and EUV lithography.

  15. Cellulose triacetate films obtained from sugarcane bagasse: Evaluation as coating and mucoadhesive material for drug delivery systems.

    Science.gov (United States)

    Ribeiro, Sabrina Dias; Guimes, Rodrigues Filho; Meneguin, Andréia Bagliotti; Prezotti, Fabíola Garavello; Boni, Fernanda Isadora; Cury, Beatriz Stringhetti Ferreira; Gremião, Maria Palmira Daflon

    2016-11-01

    Cellulose triacetate (CTA) films were produced from cellulose extracted from sugarcane bagasse. The films were characterized using scanning electron microscopy (SEM), water vapor permeability (WVP), mechanical properties (MP), enzymatic digestion (ED), and mucoadhesive properties evaluation (MPE). WVP showed that more concentrated films have higher values; asymmetric films had higher values than symmetric films. MP showed that symmetric membranes are more resistant than asymmetric ones. All films presented high mucoadhesiveness. From the WVP and MP results, a symmetric membrane with 6.5% CTA was selected for the coating of gellan gum (GG) particles incorporating ketoprofen (KET). Thermogravimetric analysis (TGA) showed that the CTA coating does not influence the thermal stability of the particles. Coated particles released 100% of the KET in 24h, while uncoated particles released the same amount in 4h. The results highlight the CTA potential in the development of new controlled oral delivery systems. PMID:27516328

  16. Electrochemical performance of polyaniline coated LiMn2O4 cathode active material for lithium ion batteries

    International Nuclear Information System (INIS)

    LiMn2O4 compound are synthesized by combustion method using glycine as a fuel at temperature (T), 800°C which was coated by a polyaniline. The goal of this procedure is to promote better electronic conductivity of the LiMn2O4 particles in order to improve their electrochemical performance for their application as cathodes in secondary lithium ion batteries. The structures of prepared products have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). To investigate the effect of polyaniline coating galvanostatic charge-discharge cycling (148 mA g−1) studies are made in the voltage range of 3.5-4.5 V vs. Li at room temperature. Electrochemical performance of the LiMn2O4 was significantly improved by the polaniline coating

  17. Assesment of (Mn,Co)33O4 powders for possible coating material for SOFC/SOEC interconnects

    Science.gov (United States)

    Szymczewska, D.; Molin, S.; Venkatachalam, V.; Chen, M.; Jasinski, P.; Hendriksen, P. V.

    2016-01-01

    In this work (Mn,Co)3O4 spinel powders with different Mn:Co ratio (1:1 and 1:2) and from different commercial suppliers are evaluated for possible powder for production of interconnect coatings. Sinterability of the powders is evaluated on pressed pellets sintered in oxidizing and in reducing/oxidizing atmospheres. For selected powder, coatings are then prepared by the electrophoretic deposition method on Crofer 22 APU stainless steel coupons. Effects of dispersant/iodine content and deposition voltage and times are evaluated. Thickness as a function of deposition parameters is described. Results show that with appropriate powder it is possible to produce adherent protective coating with a well-controlled thickness.

  18. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO and DOE OCRWM Co-Sponsored Advanced Materials Program

    International Nuclear Information System (INIS)

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  19. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-09-19

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

  20. Micro- and nanomorphology coexisting in titanium dioxide coating for application as anode material in secondary lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Wen-Chi, E-mail: wenchilo694@gmail.com; Chu, Hou-Jen; He, Ju-Liang

    2015-03-31

    Titanium dioxide has recently attracted attention as an anode material for use in lithium-ion batteries, owing to its high reversible capacity and durable charge/discharge characteristics. The aim of the study is to combine micro-arc oxidation (MAO) and post-alkali treatment to realize an anatase titanium dioxide (TiO{sub 2}) scaffold layer on titanium plates. Using this combination, coexisting micro- and nanomorphology can be realized in the TiO{sub 2} layer. This increases the specific surface area of the TiO{sub 2} layer and thereby improves the charge capacity and charge/discharge rate of the anode. The effectiveness of MAO to fabricate a micrometer-scale porous TiO{sub 2} structure on titanium plate, and the formation of nano-flakes by alkali treatment on porous anatase TiO{sub 2} layer was demonstrated. Further, numerous 40–80 nm alkali-treatment-induced nano-flakes grew all over the oxide surface, substantially increasing its specific surface area. The measured electrochemical properties demonstrate that at potentials of − 1.98 V and − 0.56 V vs. Ag/AgCl, lithium ions were respectively inserted into and extracted from the TiO{sub 2} layer with nano-flakes. The nano-flakes promote faster lithium-ion insertion and extraction and higher associated number of charge than the MAO TiO{sub 2}. The detailed charging/discharging kinetic processes of the MAO, annealed MAO, alkali-treated MAO, and annealed and alkali-treated MAO specimens were determined using electrochemical impedance spectroscopy, thus providing further insight into the performance of the TiO{sub 2} coating. - Highlights: • A micrometer-scale porous crystalline TiO{sub 2} layer was fabricated by MAO. • After alkali treatment, the oxide surface exhibits numerous pores. • The layer was composed of predominantly anatase and minor rutile. • Optimum solution temperature and NaOH concentration yielded nano-flaky morphology. • Such morphology leads to the increase performance of the treated

  1. Micro- and nanomorphology coexisting in titanium dioxide coating for application as anode material in secondary lithium-ion batteries

    International Nuclear Information System (INIS)

    Titanium dioxide has recently attracted attention as an anode material for use in lithium-ion batteries, owing to its high reversible capacity and durable charge/discharge characteristics. The aim of the study is to combine micro-arc oxidation (MAO) and post-alkali treatment to realize an anatase titanium dioxide (TiO2) scaffold layer on titanium plates. Using this combination, coexisting micro- and nanomorphology can be realized in the TiO2 layer. This increases the specific surface area of the TiO2 layer and thereby improves the charge capacity and charge/discharge rate of the anode. The effectiveness of MAO to fabricate a micrometer-scale porous TiO2 structure on titanium plate, and the formation of nano-flakes by alkali treatment on porous anatase TiO2 layer was demonstrated. Further, numerous 40–80 nm alkali-treatment-induced nano-flakes grew all over the oxide surface, substantially increasing its specific surface area. The measured electrochemical properties demonstrate that at potentials of − 1.98 V and − 0.56 V vs. Ag/AgCl, lithium ions were respectively inserted into and extracted from the TiO2 layer with nano-flakes. The nano-flakes promote faster lithium-ion insertion and extraction and higher associated number of charge than the MAO TiO2. The detailed charging/discharging kinetic processes of the MAO, annealed MAO, alkali-treated MAO, and annealed and alkali-treated MAO specimens were determined using electrochemical impedance spectroscopy, thus providing further insight into the performance of the TiO2 coating. - Highlights: • A micrometer-scale porous crystalline TiO2 layer was fabricated by MAO. • After alkali treatment, the oxide surface exhibits numerous pores. • The layer was composed of predominantly anatase and minor rutile. • Optimum solution temperature and NaOH concentration yielded nano-flaky morphology. • Such morphology leads to the increase performance of the treated Ti plate

  2. Persistent cyclestability of carbon coated Zn–Sn metal oxide/carbon microspheres as highly reversible anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Development of high-capacity anode materials equipped with strong cyclestability is a great challenge for use as practical electrode for high-performance lithium-ion rechargeable battery. In this study, we synthesized a carbon coated Zn–Sn metal nanocomposite oxide and carbon spheres (ZTO@C/CSs) via a simple glucose hydrothermal reaction and subsequent carbonization approach. The carbon coated ZTO/carbon microspheres composite maintained a reversible capacity of 680 mAh g−1 after 345 cycles at a current density of 100 mA g−1, and furthermore the cell based on the composite exhibited an excellent rate capability of 470 mAh g−1 even when the cell was cycled at 2000 mA g–1. The thick carbon layer formed on the ZTO nanoparticles and carbon spheres effectively buffered the volumetric change of the particles, which thus prolonged the cycling performance of the electrodes

  3. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There were 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation

  4. Daylighting with Fluorescent Concentrators and Highly Reflective Silver-Coated Plastic Films: A New Application for New Materials

    Science.gov (United States)

    Zastrow, Armin; Wittwer, Volker

    1986-09-01

    The interest in efficient daylighting systems has grown recently, due to their potential for saving a considerable amount of electrical energy used for lighting purposes. In this paper we discuss the properties of daylighting systems based on either fluorescent planar concentrators and transparent light guiding plates or light pipes coated with highly reflective silver coated plastic films. Finally we give first results from a demonstration project, daylighting systems in the students' living quarters in Stuttgart-Hohenheim, which is supported by the Commission of the European Communities.

  5. Improved electrochemical properties of LiFe0.5Mn0.5PO4/C composite materials via a surface coating process

    Science.gov (United States)

    Yang, Chun-Chen; Hung, Yen-Wei; Lue, Shingjiang Jessie

    2016-09-01

    In this work, a LiFe0.5Mn0.5PO4/C (LFMP/C) material was prepared by a simple solid-state ball-mill method by using LiH2PO4, γ-MnO2, and hollow α-Fe2O3 nano-sized materials. Both γ-MnO2 and hollow α-Fe2O3 were synthesized by a hydrothermal process. LFMP/C composites coated with different amounts (1-3wt%) of Li4Ti5O12 (LTO) were synthesized by a sol-gel method. Their typical properties are studied using X-ray diffraction, micro-Raman spectroscopy, scanning electron microscopy/energy-dispersive X-ray spectroscopy, transmission electron microscopy, the AC impedance method, and the galvanostatic charge-discharge method. The results revealed that a 1 wt%-LTO-coated LFMP/C composite shows the highest performance among all LFMP/C composite samples. The long-term cycling performance of the LFMP/C composite improves considerably when the LTO ionic conductor is applied on it. Moreover, the 1 wt%-LTO-coated LFMP/C composite, which has the lowest fading rate, maintains high cycling stability at 1 C (141 mAh g-1) and 10 C (133 mAh g-1) at 55 °C after 100 cycles; by contrast, a bare LFMP/C sample, which demonstrates the highest fading rate, exhibits an unfavorable life cycle, and its discharge capacity decreases rapidly. The ionic conductor coating thus improves the high-temperature performance of LFMP/C composites. A LFMP/C-KS6/SiO2 full cell is assembled and tested.

  6. Magnetite nanoparticles coated with β-cyclodextrin functionalized-ionic liquid: Synthesis and its preliminary investigation as a new sensing material

    Science.gov (United States)

    Sinniah, Subathra; Mohamad, Sharifah; Manan, Ninie S. A.

    2015-12-01

    In this study, a novel surface of modified magnetite nanoparticles Fe3O4 was coated with β-cyclodextrin-funclionalized ionic liquid (Fe3O4-β-CD-IL) via the co-precipitation method in alkaline salt medium. β-Cyclodextrin-functionalized-ionic liquid has been effectively coated onto the surface of Fe3O4 magnetite nanoparticles. The instruments used to investigate the architecture are: Fourier Transform Infrared Spectroscopy, X-ray Powder Diffraction, Electron Microscope-Energy Dispersive X-Ray Spectrometry, Transmission Electron Microscope, Field Emission Scanning Electron Microscope, Vibrating Sample Magnetometer and Brunauer-Emmett-Teller isotherm. A Vibration Sample Magnetometer analysis verified that the Fe3O4-β-CD-IL attained excellent magnetic properties. The analysis of High Resolution Transmission Electron Microscope shows that the Fe3O4-β-CD-IL produced monodisperse particles with minimal aggregation. Moreover, electrochemical studies have revealed that this new material showed outstanding ability to recognize Bisphenol A with lower electrochemical potential at 0.5 V than other comparative materials, as well as a higher detection current. Thus, this material has promising potential as a new electrode material in sensor applications.

  7. Materials Laboratory at the Institute of Nuclear Fusion: growth and characterization of coatings with nuclear applications; Laboratorio de Materiales en el Instituto de Fusion Nuclear: crecimiento y caracterizacion de recubrimientos con aplicaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Arrabal, R.; Gordillo, N.; Panizo-Laiz, M.; Fernandez-Martinez, I.; Wennberg, A.; Rivera, A.; Pena, O.; Briones, F.; Perlado, J. M.

    2013-07-01

    We report on the capabilities of the new materials lab located at the Instituto de Fusion Nuclear to develop coating for nuclear applications. The main objectives of the lab are described: (a) design of coatings which fulfil industrial requirements and (b) development of the need instrumentation to coat non-planar surfaces, i.e. inner and outer surface of pipes. Some examples of radiation resistance materials (self-healing) will be shown. Moreover, we present some new solution with improved corrosion resistance when facing liquid metals to conform the cooling system of future fission and fusion nuclear reactors. (Author)

  8. 汽车内饰涂料涂层的散发性测试方法研究%Study on the Determination of Emission of Coating Layer for Automobile Interior Materials Coatings

    Institute of Scientific and Technical Information of China (English)

    李维义; 陈金爱

    2011-01-01

    介绍了一种简易可行的汽车内饰涂料涂层挥发性有机化合物散发量的测定方法,即试验箱-热解吸-气相色谱法,该方法选择合适的环境试验条件(如温度、湿度)进行材料的挥发试验,然后用TenaxTA吸附管定量采集挥发的挥发性有机化合物,经气相色谱分析,以甲苯为等当物、总碳量来表征挥发性有机化合物散发量,能有效评价材料在实际使用状态下的散发性.方法的精密度良好,重复性能控制在15%以内.另外,应用该方法测试了5种内饰涂料的挥发性.%A brief and available test method , chamber - TD - GC method was described for the determination of emission of automobile interior materials coatings layer in this article. Suitable temperature and humidity were confirmed for the release experiment of materials. By Tenax TA sorbent sampling and TD - GC analysis, the total carbon content of VOC of materials is computed as toluene equivalent. By this means, we can reasonably valuate the emission character for materials in practice use. The precision of this method is receptive, reproducibility is below 15 percent. In addition, five coating layer samples were tested by this method.

  9. Double Carbon Nano Coating of LiFePO4 Cathode Material for High Performance of Lithium Ion Batteries.

    Science.gov (United States)

    Ding, Yan-Hong; Huang, Guo-Long; Li, Huan-Huan; Xie, Hai-Ming; Sun, Hai-Zhu; Zhang, Jing-Ping

    2015-12-01

    Double carbon-coated LiFePO4 (D-LiFePO4/C) composite with sphere-like structure was synthesized through combination of co-precipitation and solid-state methods. Cetyl-trimethyl-ammonium bromide (CTAB) and citric acid served as two kinds of carbon sources in sequence. SEM images demonstrated that double carbon coating had certain influence on the morphology. The thickness of carbon coating on D-LiFePO4/C was about 1.7 nm and the content of carbon was 2.48 wt%, according to HRTEM and TG analysis. The electrochemical impedance spectroscopy analysis indicated that the D-LiFePO4/C composite presented the charge-transfer resistance of 68 Ω and Li ion diffusion coefficient of 2.68 x 10(-13) cm2 S(-1), while the single carbon-coated LiFePO4 (S-LiFePO4/C) exhibited 135.5Ω and 4.03 x 10(-14) cm2 S(-1). Especially, the prepared D-LiFePO4/C electrode showed discharge capacities of 102.9 (10C) and 87.1 (20C) mA h g(-1), respectively, with almost no capacity lost after 400 cycles at 10C, which were much better than those of S-LiFePO4/C composite. PMID:26682389

  10. Decreased material-activation of the complement system using low-energy plasma polymerized poly(vinyl pyrrolidone) coatings

    DEFF Research Database (Denmark)

    Andersen, Thomas E; Palarasah, Yaseelan; Skjødt, Mikkel-Ole;

    2011-01-01

    In the current study we investigate the activation of blood complement on medical device silicone rubber and present a plasma polymerized vinyl pyrrolidone (ppVP) coating which strongly decreases surface-activation of the blood complement system. We show that uncoated silicone and polystyrene are...

  11. Al2O3 Coated Concentration-Gradient Li[Ni0.73Co0.12Mn0.15]O2 Cathode Material by Freeze Drying for Long-Life Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Highlights: • Al2O3-coated concentration-gradient oxide is synthesized by a freeze drying method. • The effect of Al2O3-coating on concentration-gradient cathode is firstly studied. • Al2O3-coated sample exhibits high capacity and significantly enhanced cyclability. • Improved cyclability is ascribed to the effective protection of uniform Al2O3 layer. - Abstract: In order to enhance the electrochemical performance of the high capacity layered oxide cathode with a Ni-rich core and a concentration-gradient shell (NRC-CGS), we use a freeze drying method to coat Al2O3 layer onto the surface of NRC-CGS Li[Ni0.73Co0.12Mn0.15]O2 material. The samples are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, charge-discharge measurements and electrochemical impedance spectroscopy. It is revealed that an amorphous Al2O3 layer of about 5 nm in thickness is uniformly formed on the surface of NRC-CGS Li[Ni0.73Co0.12Mn0.15]O2 material by the freeze drying procedure. The freeze drying Al2O3-coated (FD-Al2O3-coated) sample demonstrates similar discharge capacity and significantly enhanced cycling performances, in comparison to the pristine and conventional heating drying Al2O3-coated (HD-Al2O3-coated) samples. The capacity decay rate of FD-Al2O3-coated Li[Ni0.73Co0.12Mn0.15]O2 material is 1.7% after 150 cycles at 55 °C, which is 9 and 12 times lower than that of the pristine and HD-Al2O3-coated samples. The superior electrochemical stability of the FD-Al2O3-coated sample is attributed to the synergistic protection of CGS and high-quality Al2O3 coating that effectively protect the active material from electrolyte attack. The freeze drying process provides an effective method to prepare the high performance surface-coated electrode materials

  12. Thin CVD Coating Protects Titanium Aluminide Alloys

    Science.gov (United States)

    Clark, Ronald; Wallace, Terryl; Cunnington, George; Robinson, John

    1994-01-01

    Feasibility of using very thin CVD coatings to provide both protection against oxidation and surfaces of low catalytic activity for thin metallic heat-shield materials demonstrated. Use of aluminum in compositions increases emittances of coatings and reduces transport of oxygen through coatings to substrates. Coatings light in weight and applied to foil-gauge materials with minimum weight penalties.

  13. Evaluation of the Luting Cement Space for Provisional Restoration by using Various Coats of Die Spacer Materials-An Invitro Study

    Science.gov (United States)

    Siddineni, Krishna Chaitanya; Jyothula, Ravi Rakesh Dev; Gade, Phani Krishna; Bhupathi, Deepthi; Kondaka, Sudheer; Hussain, Zakir; Paluri, Geetha Bhavani

    2014-01-01

    Aim: The present study was to evaluate the space provided for the temporary luting cement, after the application of various coats of die spacers, during the fabrication of provisional crowns and bridges. Materials and Methods: A total of 50 specimens of dental stone with provisional crowns on all these samples were prepared and were divided into five groups based on the application of various coats of different die spacers. Later these specimens were sectioned buccolingually and were observed using a stereomicroscope under 100X magnification. The images thus obtained were evaluated and noted for the amount of space between the inner surface of the provisional crown and the specimens at five different locations using Image Pro 6.0 Express software and the values were subjected to one-way ANOVA test, and unpaired t-test. Results: There was a significant increase of luting space thickness with various die spacer applications than the specimens of control group. Conclusion: Specimens of double coat applications of silver and gold die spacers showed higher luting cement space than the separating media application specimens. PMID:25386515

  14. Advanced zirconia-coated carbonyl-iron particles for acidic magnetorheological finishing of chemical-vapor-deposited ZnS and other IR materials

    Science.gov (United States)

    Salzman, S.; Giannechini, L. J.; Romanofsky, H. J.; Golini, N.; Taylor, B.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-10-01

    We present a modified version of zirconia-coated carbonyl-iron (CI) particles that were invented at the University of Rochester in 2008. The amount of zirconia on the coating is increased to further protect the iron particles from corrosion when introduced to an acidic environment. Five low-pH, magnetorheological (MR) fluids were made with five acids: acetic, hydrochloric, nitric, phosphoric, and hydrofluoric. All fluids were based on the modified zirconia-coated CI particles. Off-line viscosity and pH stability were measured for all acidic MR fluids to determine the ideal fluid composition for acidic MR finishing of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and other infrared (IR) optical materials, such as hot-isostatic-pressed (HIP) ZnS, CVD zinc selenide (ZnSe), and magnesium fluoride (MgF2). Results show significant reduction in surface artifacts (millimeter-size, pebble-like structures on the finished surface) for several standard-grade CVD ZnS substrates and good surface roughness for the non-CVD MgF2 substrate when MR finished with our advanced acidic MR fluid.

  15. Ceramic thermal spray technology and explore the dense coating material%陶瓷热喷涂技术与涂层材料探密

    Institute of Scientific and Technical Information of China (English)

    肖军

    2012-01-01

    采用热喷涂技术,在金属基体上制备陶瓷涂层,能把金属材料的特点和陶瓷材料的特点有机地结合起来,获得复合材料结构。由于这种复合材料结构具有异常优越的综合性能,使得热喷涂技术迅速从高尖领域扩展应用到能源、交通、冶金、轻纺、石化、机械等民用工业领域。首先综述了热喷涂高性能陶瓷涂层的应用前景,接着分析了陶瓷涂层及热喷涂技术的特点,然后介绍了热喷涂陶瓷涂层技术的应用领域,以及热喷涂高性能陶瓷涂层的典型应用,最后讨论了热喷涂高性能陶瓷涂层的发展潜力。%using thermal spray techniques, preparation of the metal ceramic coating on the substrate, can the characteristics of metal and ceramic materials, the characteristics of organically combined to obtain composite structures. Because of this unusual composite structures with superior over- all performance, making the thermal spray technology rapidly expanding field of applications from high point to the energy, transportation, metallurgy, textile, petrochemical, machinery and other ci- vilian industries. First, an overview of high--performance ceramic thermal spray coating application prospects, and then analyzed the ceramic coating and thermal spray technology features, and then introduced the ceramic thermal spray coating technology applications, and thermal spray coating of a typical high--performance ceramic application, and finally discuss the high--performance ceramic thermal spray coatings development potential

  16. Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Livi, Francesco; Hagemann, Ole;

    2015-01-01

    The results presented demonstrate how the screening of 104 light-absorbing low band gap polymers for suitability in roll coated polymer solar cells can be accomplished through rational synthesis according to a matrix where 8 donor and 13 acceptor units are organized in rows and columns. Synthesis...... silver comb back electrode structure. The matrix organization enables fast identification of active layer materials according to a weighted merit factor that includes more than simply the power conversion efficiency and is used as a method to identify the lead candidates. Based on several characteristics...

  17. XPS on corrosion products of ZnCr coated steel: on the reliability of Ar+ ion depth profiling for multi component material analysis

    CERN Document Server

    Steinberger, Roland; Arndt, Martin; Stifter, David

    2013-01-01

    X-ray photoelectron spectroscopy combined with Ar+ ion etching is a powerful concept to identify different chemical states of compounds in depth profiles, important for obtaining information underneath surfaces or at layer interfaces. The possibility of occurring sputter damage is known but insufficiently investigated for corrosion products of Zn-based steel coatings like ZnCr. Hence, in this work reference materials are studied according to stability against ion sputtering. Indeed some investigated compounds reveal a very unstable chemical nature. On the basis of these findings the reliability of depth profiles of real samples can be rated to avoid misinterpretations of observed chemical species.

  18. A new infiltration method for coating highly permeable matrices with compound materials for high-power isotope-separator-on-line production target applications

    International Nuclear Information System (INIS)

    A new infiltration coating method has been conceived for uniform and controlled thickness deposition of target materials onto highly permeable, complex-structure matrices to form short-diffusion-length isotope-separator-on-line (ISOL) production targets for radioactive ion beam research applications. In this report, the infiltration technique is described in detail and the universal character of the technique illustrated in the form of SEMs of several metal-carbide, metal-oxide and metal-sulfide targets for potential use at present or future radioactive ion beam research facilities

  19. Ceramic electrolyte coating and methods

    Science.gov (United States)

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2007-08-28

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  20. Carbon coated Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} cathode material prepared by a PVA assisted sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Tao; Pan Wencheng; Wang Jian [College of Materials Science and Engineering, Jilin University, Changchun 130012 (China); Bie Xiaofei; Du Fei [College of Physics and State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Wei Yingjin, E-mail: yjwei@jlu.edu.c [College of Physics and State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Wang Chunzhong; Chen Gang [College of Physics and State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China)

    2010-04-30

    Carbon coated Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} cathode material was prepared by a poly(vinyl alcohol) (PVA) assisted sol-gel method. PVA was used both as the gelating agent and the carbon source. XRD analysis showed that the material was well crystallized. The particle size of the material was ranged between 200 and 500 nm. HRTEM revealed that the material was covered by a uniform surface carbon layer with a thickness of 80 A. The existence of surface carbon layer was further confirmed by Raman scattering. The electrochemical properties of the material were investigated by charge-discharge cycling, CV and EIS techniques. The material showed good cycling performance, which had a reversible discharge capacity of 100 mAh g{sup -1} when cycled at 1 C rate. The apparent Li{sup +} diffusion coefficients of the material ranged between 9.5 x 10{sup -10} and 0.9 x 10{sup -10} cm{sup 2} s{sup -1}, which were larger than those of olivine LiFePO{sub 4}. The large lithium diffusion coefficient of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} has been attributed to its special NASICON-type structure.

  1. Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol-gel method

    International Nuclear Information System (INIS)

    Carbon coated Li3V2(PO4)3 cathode material was prepared by a poly(vinyl alcohol) (PVA) assisted sol-gel method. PVA was used both as the gelating agent and the carbon source. XRD analysis showed that the material was well crystallized. The particle size of the material was ranged between 200 and 500 nm. HRTEM revealed that the material was covered by a uniform surface carbon layer with a thickness of 80 A. The existence of surface carbon layer was further confirmed by Raman scattering. The electrochemical properties of the material were investigated by charge-discharge cycling, CV and EIS techniques. The material showed good cycling performance, which had a reversible discharge capacity of 100 mAh g-1 when cycled at 1 C rate. The apparent Li+ diffusion coefficients of the material ranged between 9.5 x 10-10 and 0.9 x 10-10 cm2 s-1, which were larger than those of olivine LiFePO4. The large lithium diffusion coefficient of Li3V2(PO4)3 has been attributed to its special NASICON-type structure.

  2. Synthesis of Carbon-coated Nanoplate α-Na2MoO4 and its Electrochemical Lithiation Process as Anode Material for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Highlights: • Na2MoO4 is firstly valuated as an anode material for lithium-ion batteries. • Carbon-coated nanoplate α-Na2MoO4 sample is synthesized firstly via a facile sol–gel method. • Residual carbon and reducing atmosphere would not change the valence of Mo (+6). • Carbon-coated nanoplate α-Na2MoO4 presents outstanding rate abilities and cycle capabilities compared to the carbon-free sample. • The Li storage mechanism of α-Na2MoO4 is conversion reaction confirmed by the ex-situ XRD and HRTEM results. - Abstract: The carbon-coated α-Na2MoO4 nanoplate sample was fabricated via a facile sol–gel method involving the subsequent annealing under a reducing atmosphere to decompose the organic carbon source. X-ray diffraction with Rietveld refinement, high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) results show that single-phase α-Na2MoO4 can be obtained even under the presence of carbon and reducing atmosphere. When evaluated as an anode material for lithium-ion batteries, the carbon-coated α-Na2MoO4 nanoplate electrode displays a discharge and recharge capacity of 806 mAh g−1 and 409 mAh g−1 respectively in the first cycle, while a reversible discharge–charge capacity of 350 mAh g−1 can be retained after 30 cycles at 30 mAh g−1. A capacity of ∼320 mAh g−1 at 30 mAh g−1 can still recover after 50 cycles even following the discharge/charge process with the high current density of 480 mAh g−1. Meanwhile, carbon-free and carbon-coated α-Na2MoO4 powders fabricated via a solid state reaction were also prepared for comparison. Furthermore, the structure change of α-Na2MoO4 and its Li storage mechanism upon lithiation and delithiation process are studied by ex-situ XRD and TEM in below

  3. Effect of MgO nanolayer coated on Li3V2(PO4)3/C cathode material for lithium-ion battery

    International Nuclear Information System (INIS)

    MgO nanolayer coated on Li3V2(PO4)3/C particles was successfully prepared by a sol-gel method. The X-ray diffraction (XRD) shows that the crystal structure of the Li3V2(PO4)3/C cores does not been affected by the coating. Nanolayer-structured MgO on the surface of Li3V2(PO4)3/C particles is demonstrated by high resolution transmission electron microscopy (HRTEM). Galvanostatic charge/discharge, EIS and cyclic voltammetry measurements clearly show that MgO nanocoating stabilizes the structure of the cathode material, decreases the interface charge transfer resistance and enhances the reversibility of electrode reaction. Electrochemical properties of the coated samples were investigated, showing enhancements of the initial discharge capacity, the cyclability and the rate performance. For MgO of 4.5 mol% coated sample, the initial discharge capacity is 194.4 mAh g-1 at 40 mA g-1 current density, which is close to the theoretical discharge capacity of 197 mAh g-1, and the discharge capacity remains 137.5 mAh g-1 after 100 cycles, and its capacity retention of 70.73% is higher than that of pristine Li3V2(PO4)3/C, 43.7%. The initial discharge capacity still reaches 157.81 mAh g-1, 157.29 mAh g-1 and 144.64 mAh g-1 at 1C, 1.5C, 2C rates, respectively.

  4. Compliance work for food contact materials: feasibility of the legally required safety assessment of an epoxy/amine-based coating for domestic water pipe restoration.

    Science.gov (United States)

    Tillner, Jocelyn; Grob, Koni

    2014-01-01

    Options were explored for fulfilling the legally required safety assessment for a widely applied epoxy/amine coating used for restoring corroded domestic drinking water supply systems. The coating was made up of two components mixed shortly before application, the first mainly consisting of bisphenol A diglycidyl ether (BADGE), the second of various amines. The analytically identified starting substances were all authorised, but only constituted a small proportion of the low molecular mass material left after curing and potentially migrating into water. Reaction products synthesised from constituents of the starting components (expected oligomers) could not be eluted from GC even after derivatisation, indicating that standard GC-MS screening would miss most potential migrants. They were detectable by size exclusion chromatography (SEC) after acetylation. HPLC with MS or fluorescence detection was possible for constituents including a BADGE moiety, but phenalkamines could not be detected with adequate sensitivity. Possibilities for determining long-term migration relevant for chronic toxicity are discussed. Analysis in water shortly after application of the coating overestimates migration if migration decreases over time and requires detection limits far out of reach. Analysis of a solvent extract of the coating is easier and provides an upper estimate of what could migrate into the drinking water over the years. However, to satisfy the regulatory requirements, components of the complex mixture need to be identified at lower proportions than those accessible. In vitro testing of the whole mixture for genotoxicity is expected to fail because of the required sensitivity and the glycidyl functions probably wrongly resulting in positive tests. The difficulties in dealing with this situation are discussed. PMID:24761990

  5. Measurements of the reduced force coefficients for H2, N2, CO, and CO2 incident upon a solar panel array material, SiO2-coated Kapton, Kapton, and Z-93-coated Al

    International Nuclear Information System (INIS)

    The reduced force coefficients were measured for H2, N2, CO, and CO2 incident upon a solar panel array material, SiO2-coated Kapton, Kapton, and Z-93-coated Al. The coefficients were determined by measuring both the magnitude and direction of the force exerted on the surfaces by molecular beams of the gases. Measurements were made at angles of incidence of 0 degree, 25 degree, 50 degree, 75 degree, and 85 degree. The forces were measured using a torsion balance with the surfaces mounted on the end of the lever arm. The absolute flux densities of the molecular beams were measured using a second torsion balance with a beam stop mounted on the lever arm that nullified the force of the scattered molecules. Flux measurements were also made using the effusive method. Standard time-of-flight techniques were used to determine the flux-weighted average velocities of the molecular beams. These velocities ranged from 1670 to 4620 m/s. The overall uncertainty in the reduced force coefficient measurements was estimated to be less than ±10%. These measurements were used to obtain the magnitude and direction of the flux-weighted average velocity of the scattered molecules, and also the flux-weighted translational kinetic energy of the scattered molecules. Analysis of this information provided insight into the microscopic details of the gas-surface interaction potential energy surface. copyright 1998 The American Physical Society

  6. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has sign

  7. Coating Processes Group (Electrochemical Processes Lab and Vacuum Processes Lab) Materials Fabrication Division. Progress report, November 1982-January 1983

    International Nuclear Information System (INIS)

    Some technical highlights are given for the following programs: Weapons Program - we are continuing to support the aluminum ion plating effort for the W-84 both at Y-12 and in-house; Weapons Program - a number of electroformed parts have been supplied for Crowdie; Nuclear Test Program - heavy support from VPL in vacuum engineering activities for Diamond Ace, Tomme and Cabra; Nuclear Design Program - heavy effort was supplied by VPL in the coating of various foils with lithium fluoride; Laser Program - we are gradually optimizing procedures for producing boron foils for Argus/Dante experiments; MFE Program - a pyrophosphate copper deposit shows potentially interesting properties for RTNS-II applications; Soft X-ray Multilayer Coatings - preliminary results with alternate layers of carbon and tungsten look promising; PERL - chemical milling is being used to mill channels in hydrostatic bearings; and Alpha Claddings - we are actively involved in generating data and providing consultation on this program in conjunction with LODTM

  8. Use of Sodium Silicate from Rice Husk Ash Basic Materials for Coating Electrolytes in the Synthesis of Magnetite Nanoparticles22

    OpenAIRE

    Syahrul, Muh

    2013-01-01

    Magnetite nanoparticles had a measurement about 6,76 nm was synthesized through electrochemical technique in the synthetic sodium silicate solution which was gained through the extraction process of silica which content in the rice husk ash by using NaOH 1,5 M. Sodium silicate functions as electrolyte and simultaneously as a coated to maintain the size of the magnetite particle which was formed through electrolysis process. The synthesis of magnetite nanoparticles was implemented in the varia...

  9. Influence of bioactive material coating of Ti dental implant surfaces on early healing and osseointegration of bone

    International Nuclear Information System (INIS)

    The dental implant surface type is one of many factors that determine the long-term clinical success of implant restoration. The implant surface consists of bioinert titanium oxide, but recently coatings with bioactive calcium phosphate ceramics have often been used on Ti implant surfaces. Bio-active surfaces are known to significantly improve the healing time of the human bone around the inserted dental implant. In this study, we characterized two types of coated implant surfaces by scanning electron microscopy, energy dispersive spectrometry, and surface roughness testing. The effect of surface modification on early bone healing was then tested by using the rabbit tibia model to measure bone-to-implant contact ratios and removal torque values. These modified surfaces showed different characteristics in terms of surface topography, chemical composition, and surface roughness. However, no significant differences were found in the bone-to-implant contact and the resistance to removal torque between these surfaces. Both the coated implants may induce similar favorable early bone responses in terms of the early functioning and healing of dental implants even though they differed in their surface characteristics.

  10. Development of a novel pressure sensing material based on polypyrrole-coated electrospun poly(vinylidene fluoride) fibers

    International Nuclear Information System (INIS)

    Highlights: • Polypyrrole-coated electrospun poly(vinylidene fluoride) fibers were obtained. • The composites were prepared by in situ oxidative polymerization on electrospun PVDF. • The electrical conductivity was enhanced by increasing the pyrrole content. • The composites exhibited variation in the electrical conductivity under pressure. -- Abstract: Conductive polypyrrole-coated poly(vinylidene fluoride) (PVDF/PPy) fibers with diameters ranging from 500 nm to 1 μm were prepared through pyrrole (Py) oxidative polymerization on electrospun PVDF membrane. The influence of polymerization conditions on structures and properties of PVDF/PPy composites were investigated. The electrical conductivity and PPy content enhanced significantly with increasing Py concentration due to the conducting polymer layer formation that completely coated the PVDF fiber surfaces. The effect of dynamic load on electrical conductivity of PVDF/PPy composites has been registered. The maximum electrical sensitivity was observed for the composites containing 50 wt.% of PPy content, for which the relative conductivity increases around 40-fold with applied compressive stress. This behavior can be explained by the fact that during compressive stress, the contact between PVDF/PPy fibers increases to form new conducting pathways and, hence, the relative conductivity of the polymer composites enhances significantly. It was also observed that the electrical conductivity is almost the same as its previous value after the loading being released. The PVDF/PPy composite properties produced by the method described in this study have showed interesting possibilities for pressure sensor developments

  11. Influence of bioactive material coating of Ti dental implant surfaces on early healing and osseointegration of bone

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, In-Sung [Seoul National University, Seoul (Korea, Republic of); Min, Seung-Ki [Seoul National University Dental Hospital, Seoul (Korea, Republic of); An, Young-Bai [Osstem Implant Co., Ltd., Busan (Korea, Republic of)

    2010-12-15

    The dental implant surface type is one of many factors that determine the long-term clinical success of implant restoration. The implant surface consists of bioinert titanium oxide, but recently coatings with bioactive calcium phosphate ceramics have often been used on Ti implant surfaces. Bio-active surfaces are known to significantly improve the healing time of the human bone around the inserted dental implant. In this study, we characterized two types of coated implant surfaces by scanning electron microscopy, energy dispersive spectrometry, and surface roughness testing. The effect of surface modification on early bone healing was then tested by using the rabbit tibia model to measure bone-to-implant contact ratios and removal torque values. These modified surfaces showed different characteristics in terms of surface topography, chemical composition, and surface roughness. However, no significant differences were found in the bone-to-implant contact and the resistance to removal torque between these surfaces. Both the coated implants may induce similar favorable early bone responses in terms of the early functioning and healing of dental implants even though they differed in their surface characteristics.

  12. Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate lithium ion batteries

    International Nuclear Information System (INIS)

    Highlights: •A novel approach has been developed to fabricate 1D Li4Ti5O12/C nanorods by a wet-chemical route. •Carbon coating layer effectively restrict the particle growth and enhance electronic conductivity. •The Li4Ti5O12/C nanorods exhibit remarkable rate capability and long cycle life. -- Abstract: We describe a novel approach for the synthesis of carbon coated Li4Ti5O12 (Li4Ti5O12/C) nanorods for high rate lithium ion batteries. The carbon coated TiO2 nanotubes using the glucose as carbon source are first synthesized by hydrothermal treatment. The commercial anatase TiO2 powder is immersed in KOH sulotion and subsequently transforms into Li4Ti5O12/C in LiOH solution under hydrothermal condition. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen adsorption/desorption and Raman spectra are performed to characterize their morphologies and structures. Compared with the pristine Li4Ti5O12, one-dimensional (1D) Li4Ti5O12/C nanostructures show much better rate capability and cycling stability. The 1D Li4Ti5O12/C architectures effectively restrict the particle growth and enhance their electronic conductivity, enabling fast ion and electron transport

  13. Superhard Nanocomposite Coatings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The recent development in the field of nanocomposite coatings with good mechanical properties is critically reviewed in this paper. The design principle and materials selection for the nanocomposite coatings are introduced. Different methods for the preparation of superhard nanocomposite coatings are described with emphasis on the magnetron sputtering. Based on recent theoretical and experimental results regarding the appearance of superhardness in nanocomposite coating, lattice parameter changes, crystallite size, microstructure and morphology are reviewed in detail. Also emphasized are the mechanical properties (especially on hardness) and the ways by which the properties are derived.

  14. Enhanced electrochemical properties of Al2O3-coated LiV3O8 cathode materials for high-power lithium-ion batteries

    Science.gov (United States)

    Huang, S.; Tu, J. P.; Jian, X. M.; Lu, Y.; Shi, S. J.; Zhao, X. Y.; Wang, T. Q.; Wang, X. L.; Gu, C. D.

    2014-01-01

    Surface modified-LiV3O8 cathode materials with Al2O3 are successfully synthesized via a facile thermolysis process. The 0.5 wt.% Al2O3-coated LiV3O8 exhibits an enhanced cyclic stability at various charge-discharge current densities. At a current density of 100 mA g-1, it delivers an initial specific discharge capacity of 283.1 mAh g-1 between 2.0 and 4.0 V. Moreover, high capacities of 139.4 and 118.5 mAh g-1 are obtained at the 100th cycle at current densities of 2000 and 3000 mA g-1, respectively. The improved electrochemical performance is attributed to the Al2O3 coating, which can hinder the irreversible phase transformation and act as a protective layer to prevent the active material from direct contact with electrolyte. Furthermore, the formation of a Li-V-Al-O solid solution at the LiV3O8/Al2O3 interface provides a fast Li+ diffusion path which is of benefit to the electrochemical behaviors.

  15. A portable x-ray source with a nanostructured Pt-coated silicon field emission cathode for absorption imaging of low-Z materials

    International Nuclear Information System (INIS)

    We report the design, fabrication, and characterization of a portable x-ray generator for imaging of low-atomic number materials such as biological soft tissue. The system uses a self-aligned, gated, Pt-coated silicon field emitter cathode with two arrays of 62 500 nano-sharp tips arranged in a square grid with 10 μm emitter pitch, and a natural convection-cooled reflection anode composed of a Cu bar coated with a thin Mo film. Characterization of the field emitter array demonstrated continuous emission of 1 mA electron current (16 mA cm  −  2) with  >95% current transmission at a 150 V gate-emitter bias voltage for over 20 h with no degradation. The emission of the x-ray source was characterized across a range of anode bias voltages to maximize the fraction of photons from the characteristic K-shell peaks of the Mo film to produce a quasi-monochromatic photon beam, which enables capturing high-contrast images of low-atomic number materials. The x-ray source operating at the optimum anode bias voltage, i.e. 35 kV, was used to image ex vivo and nonorganic samples in x-ray fluoroscopic mode while varying the tube current; the images resolve feature sizes as small as ∼160 µm. (paper)

  16. A portable x-ray source with a nanostructured Pt-coated silicon field emission cathode for absorption imaging of low-Z materials

    Science.gov (United States)

    Basu, Anirban; Swanwick, Michael E.; Fomani, Arash A.; Velásquez-García, Luis Fernando

    2015-06-01

    We report the design, fabrication, and characterization of a portable x-ray generator for imaging of low-atomic number materials such as biological soft tissue. The system uses a self-aligned, gated, Pt-coated silicon field emitter cathode with two arrays of 62 500 nano-sharp tips arranged in a square grid with 10 μm emitter pitch, and a natural convection-cooled reflection anode composed of a Cu bar coated with a thin Mo film. Characterization of the field emitter array demonstrated continuous emission of 1 mA electron current (16 mA cm  -  2) with  >95% current transmission at a 150 V gate-emitter bias voltage for over 20 h with no degradation. The emission of the x-ray source was characterized across a range of anode bias voltages to maximize the fraction of photons from the characteristic K-shell peaks of the Mo film to produce a quasi-monochromatic photon beam, which enables capturing high-contrast images of low-atomic number materials. The x-ray source operating at the optimum anode bias voltage, i.e. 35 kV, was used to image ex vivo and nonorganic samples in x-ray fluoroscopic mode while varying the tube current; the images resolve feature sizes as small as ~160 µm.

  17. Preparation and Study of Electromagnetic Interference Shielding Materials Comprised of Ni-Co Coated on Web-Like Biocarbon Nanofibers via Electroless Deposition

    Directory of Open Access Journals (Sweden)

    Xiaohu Huang

    2015-01-01

    Full Text Available Electromagnetic interference (EMI shielding materials made of Ni-Co coated on web-like biocarbon nanofibers were successfully prepared by electroless plating. Biocarbon nanofibers (CF with a novel web-like structure comprised of entangled and interconnected carbon nanoribbons were obtained using bacterial cellulose pyrolyzed at 1200°C. Paraffin wax matrix composites filled with different loadings (10, 20, and 30 wt%, resp. of CF and Ni-Co coated CF (NCCF were prepared. The electrical conductivities and electromagnetic parameters of the composites were investigated by the four-probe method and vector network analysis. From these results, the EMI shielding efficiencies (SE of NCCF composites were shown to be significantly higher than that of CF at the same mass fraction. The paraffin wax composites containing 30 wt% NCCF showed the highest EMI SE of 41.2 dB (99.99% attenuation, which are attributed to the higher electrical conductivity and permittivity of the NCCF composites than the CF composites. Additionally, EMI SE increased with an increase in CF and NCCF loading and the absorption was determined to be the primary factor governing EMI shielding. This study conclusively reveals that NCCF composites have potential applications as EMI shielding materials.

  18. Investigation of corrosion and wear mechanisms in hard material-reinforced duplex steel coatings; Untersuchungen zum Korrosions- und Verschleissverhalten von hartstoffverstaerkten `Duplex`-Schutzschichten. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bouaifi, B. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Schweisstechnik und Trennende Fertigungsverfahren; Goellner, J. [Technische Univ. Magdeburg (Germany). Inst. fuer Werkstofftechnik und Werkstoffpruefung

    1998-09-30

    The hard-material reinforced duplex steel coatings were deposited by plasma arc two-powder surfacing. By varying the angle of the hard materials feeding process, the deposition of the carbides was optimized so that they are deposited into the matrix in the trailing zone of the welding torch under conditions of very low thermal effects near the freezing point of the weld pool. Microstructural studies revealed that the deposition of the hard materials prevents devlopment of the typical, ferritic-austenitic microstructure of duplex steels. Due to a dissolution and diffusion process, the microstructure of the matrix takes up carbon and chromium or tungsten, depending on the carbide, thus enhancing the austenitic material in the microstructure. The wear behaviour of the surface deposits was found to be very good, wear being reduced by a factor of 6, irrespective of the type of carbide. The friction-affected surfaces showed no dissolving effects or cracking. The corrosion behaviour in sulfuric acid is also good. The welded deposits exhibited the typical behaviour of a passive material. Wear mechanisms slightly reduce the resistance. The behaviour of various specimens in artificial seawater could be distinctly assessed. Small grain fractions and pre-heating temperatures of 100 C have a beneficial effect on the corrosion resistance. The technique recommends itself for applications such as coatings for baffle plates used in flue gas desulfurisation, pipes, pump components, flanges or nozzles, or for recurrent coating of system components affected by abrasive corrosion. (orig./CB) [Deutsch] Zur Herstellung hartstoffverstaerkter Duplex-Beschichtungen wurde das Plasma-Zwei-Pulver-Auftragschweissverfahren verwendet. Hierbei wurde durch Variation des Zufuhrwinkels der Hartstoffe der Einbringungsort der Karbide optimiert, so dass diese im Nachlauf des Schweissbrenners mit sehr geringer thermischer Beeinflussung im erstarrungsnahen Schmelzbadbereich in die Matrix eingelagert

  19. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  20. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.