WorldWideScience

Sample records for anti-oxidant enzymatic activities

  1. Anti-oxidative activities of sorghum, foxtail millet and proso millet ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-03

    May 3, 2010 ... The sorghum extract contained high amount of phenolic compounds as well as a high level of anti- oxidant activity ..... Low absorbance values in the FTC method indicate a high level of anti- oxidant activity. Figure 3 shows the changes in absorbance for each sample during 30 h of incubation at. 70°C. The ...

  2. Anti-oxidation activity of different types of natural Cordyceps sinensis and cultured Cordyceps mycelia.

    Science.gov (United States)

    Li, S P; Li, P; Dong, T T; Tsim, K W

    2001-05-01

    Cordyceps, one of the well-known traditional Chinese medicines, consists of the dried fungus Cordyceps sinensis growing on the larva of the caterpillar. It is commonly used for the replenishment of body health. One of the known pharmacological effects is its anti-oxidation activity. However, there is a great variation of the quality in different sources of Cordyceps. Here, the water extracts of various sources of natural C. sinensis and cultured Cordyceps mycelia were analyzed for their anti-oxidation activity by using three different assay methods such as the xanthine oxidase assay, the induction of hemolysis assay and the lipid peroxidation assay. The results showed that Cordyceps, in general, possesses a strong anti-oxidation activity in all assays tested. However, both natural and cultured Cordyceps showed the lowest inhibition in the lipid peroxidation when compared with the other two assay methods. The cultured Cordyceps mycelia had equally strong anti-oxidation activity as compared to the natural Cordyceps. Besides, the anti-oxidation activities were increased to 10-30 folds in the partially purified polysaccharide fractions from the cultured Cordyceps mycelia, which suggested that the activity could be derived partly from Cordyceps polysaccharides.

  3. Anti-oxidative activities of sorghum, foxtail millet and proso millet ...

    African Journals Online (AJOL)

    In addition, among the sorghum cultivar, me-susu (Sorghum dochna var. technicum, Snowden) extracts exhibited high levels of free radical scavenging activity, anti-oxidant capacity and anti-lipid peroxidative activity compared with - tocopherol. Taken together, these findings suggest that me-susu extracts can be considered ...

  4. Biological activities (anti-inflammatory and anti-oxidant) of fractions ...

    African Journals Online (AJOL)

    Background: Bryophytes like other lower plants (non-vascular plants) are not traditionally employed for therapeutic purposes. Hence this study evaluated the in vitro anti-oxidant potentials and anti-inflammatory activities of the fractions and methanolic extract of Moss (Philonotis hastata, Duby) with a view to studying its ...

  5. Novel anti-oxidative peptides from enzymatic digestion of human milk

    DEFF Research Database (Denmark)

    Tsopmo, Apollinaire; Romanowski, Andrea; Banda, Lyness

    2011-01-01

    Humanmilk pepsin and pancreatin digests were separated using molecular membrane and reverse phase chromatography. Chemical screening of the resulting fractions using the ORAC antioxidant assay yielded a peptide fraction (PF-23) with high antioxidant activity (5207 μM Trolox Equivalents (TE...

  6. Evaluation of Anti-Oxidant Activity of Lavandula angustifolia using DPPH Method

    Directory of Open Access Journals (Sweden)

    Masoud Soheili

    2017-03-01

    Full Text Available Abstract Background: Stress oxidative factors are known to causes diseases resulting from metabolic disorders. Therefore, preventing, or at least decreasing the amount of these factors may have a positive impact on prevention or improvement of the metabolic problems. Recently, the herbal medicines are more considered due to more effectiveness. We designed the present study to evaluate anti-oxidant effect of aqueous extract of lavender (Lavandula angustifolia. Materials and Methods: For extract preparation, the dry aerial part of lavender mixed with boiling water for 4 hours and then the container was filtered and condensed in a bain marie. Finally, the extract was powdered by freeze dryer. The anti-oxidant activities of the herbal medicine samples in 5, 10, 20 and 40 ppm concentrations were determined via DPPH method. This method is based on free radical scavenging of 2, 2- dipheny L-1-picrylhydrazyl(DPPH reflected in the color and absorbance changes in spectrophotometery method in 520 nm. Finally the IC50 was calculated and compared with that of for vitamin C as a standard. Results: All doses of the aqueous extract of the lavender showed dose- dependent potent anti-oxidant activity, So that, their differences were significant compared to control sample. The IC50 of the herbal medicine was 24.66 ppm that was less than the vitamin C of 2.3 ppm. Conclusion: As a potent anti-oxidant, the lavender aqueous extract can be effective in treatment of metabolic diseases.

  7. Antipyretic, analgesic and anti-oxidative activities of Aquilaria crassna leaves extract in rodents

    Directory of Open Access Journals (Sweden)

    Jintana Sattayasai

    2012-01-01

    Full Text Available In Thailand, the leaves of Aquilaria crassna have been used traditionally for the treatments of various disorders, but without any scientific analysis. In this study, the antipyretic, analgesic, anti-inflammatory and anti-oxidative properties of A. crassna leaves extract were investigated at a wide dose range in rodents. Experimental animals were treated orally with an aqueous extract of Aquilaria crassna leaves (ACE. They were tested for antipyretic (Baker′s yeast-induced fever in rats, analgesic (hot plate test in mice and anti-inflammatory (carrageenan-induced paw edema in rats activities. An anti-oxidative effect of ACE was evaluated by using the DPPH anti-oxidant assay. The results showed that, after 5 hours of yeast injection, 400 and 800 mg/kg ACE significantly reduced the rectal temperature of rats. Mice were found significantly less sensitive to heat at an oral dose of 800 mg/kg ACE, after 60 and 90 min. No anti-inflammatory activity of ACE at an 800 mg/kg dose could be observed in the rat paw assay. An anti-oxidative activity of ACE was observed with an IC 50 value of 47.18 μg/ ml. No behavioral or movement change could be observed in mice after oral administration of ACE (800 or 8,000 mg/kg for seven consecutive days. Interestingly, from the second day of treatment, animals had a significant lower body weight at the 8,000 mg/kg dose of ACE compared to the control. No toxicity was identified and the results of this study state clearly that Aquilaria crassna leaves extracts possess antipyretic, analgesic and anti-oxidative properties without anti-inflammatory activity.

  8. Electronic spin resonance quantitative analysis of Mn(II) complexes anti oxidative activity using phosphate or organic buffer

    Energy Technology Data Exchange (ETDEWEB)

    Souchard, J.P.; Massol, M.; Nepveu, F. [Toulouse-3 Univ., 31 (France)

    1996-01-01

    Superoxide anion is implicated in the pathogenesis of several human diseases including ischaemia, atherosclerosis and inflammation when molecular or enzymatic antioxidant systems cannot regulate its formation. In order to investigate superoxide dismutase (SOD) mimics, a method using Electron Spin Resonance (ESR) has been developed to quantify anti-oxidative activities of Mn(II) compounds. The acetaldehyde / xanthine oxidase system produced superoxide anion and the 5,5-dimethyl-I-pyroline-N-oxide (DMPO) was used as spin trap. The complexing properties of the usual phosphate buffer towards Mn{sup 2+} being not negligible comparatively to those of the studied ligands, activities of free ligands and Mn(II) complexes have been compared according to the buffer, phosphate or organic. (Authors). 7 refs., 1 tab., 2 figs.,.

  9. Mineral components and anti-oxidant activities of tropical seaweeds

    Science.gov (United States)

    Takeshi, Suzuki; Yumiko, Yoshie-Stark; Joko, Santoso

    2005-07-01

    Seaweeds are known to hold substances of high nutritional value; they are the richest resources of minerals important to the biochemical reactions in the human body. Seaweeds also hold non-nutrient compounds like dietary fiber and polyphenols. However, there is not enough information on the mineral compounds of tropical seaweeds. Also we are interested in the antioxidant activities of seaweeds, especially those in the tropical area. In this study, Indonesian green, brown and red algae were used as experimental materials with their mineral components analyzed by using an atomic absorption spectrophotometer. The catechins and flavonoids of these seaweeds were extracted with methanol and analyzed by high performance liquid chromatography (HPLC); the antioxidant activities of these seaweeds were evaluated in a fish oil emulsion system. The mineral components of tropical seaweeds are dominated by calcium, potassium and sodium, as well as small amounts of copper, iron and zinc. A green alga usually contains epigallocatechin, gallocatechin, epigallocatechin gallate and catechin. However, catechin and its isomers are not found in some green and red algae. In the presence of a ferrous ion catalyst, all the methanol extracts from the seaweeds show significantly lower peroxide values of the emulsion than the control, and that of a green alga shows the strongest antioxidant activity. The highest chelation on ferrous ions is also found in the extract of this alga, which is significantly different from the other methanol extracts in both 3 and 24 h incubations.

  10. Anti-oxidant and anti-inflammatory activity of leaf extracts and fractions of Mangifera indica.

    Science.gov (United States)

    Mohan, C G; Deepak, M; Viswanatha, G L; Savinay, G; Hanumantharaju, V; Rajendra, C E; Halemani, Praveen D

    2013-04-13

    To evaluate the anti-oxidant and anti-inflammatory activity of leaf extracts and fractions of Mangifera indica in in vitro conditions. In vitro DPPH radical scavenging activity and lipoxygenase (LOX) inhibition assays were used to evaluate the anti-oxidant and anti-inflammatory activities respectively. Methanolic extract (MEMI), successive water extract (SWMI) and ethyl acetate fraction (EMEMI), n-butanol fraction (BMEMI) and water soluble fraction (WMEMI) of methanolic extract were evaluated along with respective reference standards. In in vitro DPPH radical scavenging activity, the MEMI, EMEMI and BMEMI have offered significant antioxidant activity with IC(50) values of 13.37, 3.55 and 14.19 μg/mL respectively. Gallic acid, a reference standard showed significant antioxidant activity with IC(50) value of 1.88 and found to be more potent compared to all the extracts and fractions. In in vitro LOX inhibition assay, the MEMI, EMEMI and BMEMI have showed significant inhibition of LOX enzyme activity with IC(50) values of 96.71, 63.21 and 107.44 μg/mL respectively. While, reference drug Indomethacin also offered significant inhibition against LOX enzyme activity with IC(50) of 57.75. Furthermore, MEMI was found to more potent than SWMI and among the fractions EMEMI was found to possess more potent antioxidant and anti-inflammatory activity. These findings suggest that the MEMI and EMEMI possess potent anti-oxidant and anti-inflammatory activities in in vitro conditions. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  11. Angiotensin-I Converting Enzyme (ACE Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga lecanora Hydrolysates

    Directory of Open Access Journals (Sweden)

    Raheleh Ghanbari

    2015-12-01

    Full Text Available In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8% after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH (56.00% and ferrous ion-chelating (FIC (59.00% methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions.

  12. Biological screening of 100 plant extracts for cosmetic use (II): anti-oxidative activity and free radical scavenging activity.

    Science.gov (United States)

    Kim, B J; Kim, J H; Kim, H P; Heo, M Y

    1997-12-01

    Methanol aqueous extracts of 100 plants were screened for anti-oxidative activity using Fenton's reagent/ethyl linoleate system and for free radical scavenging activity using the 1,1-diphenyl-2-picryl hydrazyl free radical generating system. The results suggest that 14 plants - Alpinia officinarum, Areca catechu, Brassica alba, Cannabis sativa, Curcuma longa, Curcuma aromatica, Eugenia caryophyllata, Evodia officinalis, Paeonia suffruticosa, Rhaphanus sativus, Rheum palmatum, Rhus verniciflua, Trapa bispinosa, Zanthoxylum piperitum - may be potential sources of anti-oxidants. Eight plants - Citrus aurantium, Cornus officinalis, Gleditsia japonica, Lindera strychnifolia, Phragmites communis, Prunus mume, Schizandra chinensis, Terminalia chebula - may be the potential source of free radical scavengers from natural plant.

  13. Anti-oxidative and anti-ulcerogenic activity of Ipomoea imperati

    Directory of Open Access Journals (Sweden)

    Maria Regina M. Miyahara

    2011-12-01

    Full Text Available Ipomoea imperati (Vahl Griseb., Convolvulaceae, is used in traditional medicine for the treatment of inflammation, swelling and wounds, as well as to treat pains and stomach problems. This work evaluates the anti-oxidative activity by ESR (Electron Spin Resonance spectroscopy and the preventive and curative actions of I. imperati in gastric ulcer animal model. Ipomoea imperati (200 mg/kg, p.o. prevented the formation of gastric lesions in 78% (p<0.05 when compared with the negative control tween 80. Lanzoprazole, prevented in 85% the gastric lesions formation induced by ethanol (p<0.05. Therefore, the oral administration of I. imperati one hour before the ulcerogenic agent prevented the ulcer formation, conserving the citoprotection characteristics of the gastric mucosa and assuring the integrity of gastric glands and gastric fossets. The healing activity of I. imperati (200 mg/kg, p.o. evaluated in chronic ulcer experiments induced by the acetic acid, was 72% (p<0.05. The positive control, ranitidine, healed 78% of the gastric lesions (p<0.05. The histological analysis confirmed the recovery of the mucosal layer and the muscle mucosal layer harmed by the acetic acid. Experiments in vitro with DPPH (2.2-diphenyl-1-picrylhydrazyl of anti-oxidative activity demonstrated that I. imperati presents an IC50 of 0.73±0.01 mg/mL.

  14. Anti-oxidant activity and attenuation of bladder hyperactivity by the flavonoid compound kaempferol.

    Science.gov (United States)

    Huang, Yaw-Bin; Lin, Ming-Wei; Chao, Yun; Huang, Chi-Te; Tsai, Yi-Hung; Wu, Pao-Chu

    2014-01-01

    To evaluate the anti-oxidant activity of the flavonoid compound, kaempferol, and to examine its role in the suppression of oxidative stress and attenuation of bladder hyperactivity in a rat model of bladder injury. The anti-oxidative activity of kaempferol was examined in lipopolysaccharide-treated RAW264.7 macrophages by using flow cytometry. For in vivo studies, rats were pretreated with kaempferol or vehicle for 24 h. The rat urothelium was injured by the administration of protamine sulfate for 1.5 h and irritated by the subsequent infusion of potassium chloride for 4 h. Oxidative stress in the bladder tissue was assessed using chemiluminescence assay, and the bladder pressure was determination by cystomertrogram. Kaempferol significantly suppressed lipopolysaccharide-induced reactive oxygen species production in RAW264.7 rat macrophages. Exposure of the rat bladder to sequential infusion of protamine sulfate and potassium chloride induced bladder hyperactivity. Pretreatment with kaempferol, prevented the formation of reactive oxygen species and prolonged the intercontraction interval. Kaempferol suppresses oxidative stress and attenuates bladder hyperactivity caused by potassium chloride after protamine sulfate-induced bladder injury. © 2013 The Japanese Urological Association.

  15. Analgesic, anti-inflammatory, and anti-oxidant activities of Phlogacanthus thyrsiflorus leaves.

    Science.gov (United States)

    Das, Biplab Kumar; Al-Amin, Md Mamun; Chowdhury, Nusrat Nabila; Majumder, Md Fakhar Uddin; Uddin, Mohammad Nasir; Pavel, Md Adit Muktadir

    2015-03-01

    Our present study was carried out to explore the potential role of the methanol extract from the leavesof Phlogocanthus thyrsiflorus (PT) Nees. in central and peripheral analgesic activities using hot plate and acetic acid-induced writhing methods. We also tested the antiinflammatory effects and anti-oxidant activity using carrageenan-induced paw edema and the DPPH method, respectively. Methanol extracts of PT leaves were prepared using 500 g powder in 1.8 L methanol by percolation method, followed by evaporation in a rotary evaporator under controlled temperature and pressure. The crude methanol extract was dried by freeze drier and preserved at 4 °C. Oral administration of PT significantly (p methanol extract which could be correlated with its observed biological activities.

  16. Anti-oxidative and anti-inflammatory effects of Tagetes minuta essential oil in activated macrophages

    Science.gov (United States)

    Karimian, Parastoo; Kavoosi, Gholamreza; Amirghofran, Zahra

    2014-01-01

    Objective To investigate antioxidant and anti-inflammatory effects of Tagetes minuta (T. minuta) essential oil. Methods In the present study T. minuta essential oil was obtained from leaves of T. minuta via hydro-distillation and then was analyzed by gas chromatography-mass spectrometry. The anti-oxidant capacity of T. minuta essential oil was examined by measuring reactive oxygen, reactive nitrogen species and hydrogen peroxide scavenging. The anti-inflammatory activity of T. minuta essential oil was determined through measuring NADH oxidase, inducible nitric oxide synthase and TNF-α mRNA expression in lipopolysacharide-stimulated murine macrophages using real-time PCR. Results Gas chromatography-mass spectrometry analysis indicated that the main components in the T. minuta essential oil were dihydrotagetone (33.86%), E-ocimene (19.92%), tagetone (16.15%), cis-β-ocimene (7.94%), Z-ocimene (5.27%), limonene (3.1%) and epoxyocimene (2.03%). The T. minuta essential oil had the ability to scavenge all reactive oxygen/reactive nitrogen species radicals with IC50 12-15 µg/mL, which indicated a potent radical scavenging activity. In addition, T. minuta essential oil significantly reduced NADH oxidase, inducible nitric oxide synthaseand TNF-α mRNA expression in the cells at concentrations of 50 µg/mL, indicating a capacity of this product to potentially modulate/diminish immune responses. Conclusions T. minuta essential oil has radical scavenging and anti-inflammatory activities and could potentially be used as a safe effective source of natural anti-oxidants in therapy against oxidative damage and stress associated with some inflammatory conditions. PMID:25182441

  17. Anti-oxidative and Anti-microbial Activities of Purified MPN-1-1 from Persicaria nepalensis (Meisn.) Miyabe.

    Science.gov (United States)

    Yang, Woong-Suk; Yang, Seung-Hoon; Lee, Jae-Yong; Jang, Seong-Ho; Kim, Cheorl-Ho; Hwnag, Cher-Won

    2017-01-01

    Persicaria is a genus of flowering plants generally used for traditional medicine and nutritional supplements in tropical and subtropical East Asian countries. Previous studies have shown that Persicaria extracts alleviate lipid peroxidation, hypertension, and inflammation. We investigated the anti-oxidative and anti-microbial effects of ethanol extracts of Persicaria nepalensis (Meisn.) Miyabe, and isolated and identified an active compound, MPN-1-1 from the ethanol extracts. Anti-oxidative values, as indicated by the Oxygen Radical Absorbance Capacity (ORAC) assay, were enhanced by treatment with Persicaria nepalensis (Meisn.) Miyabe ethanol extracts, and bacterial growth was inhibited. The active compound (MPN-1-1), which was further isolated and purified from a Persicaria nepalensis (Meisn.) Miyabe ethanol extract by medium pressure liquid chromatography (MPLC), also had strong anti-oxidative and anti-microbial activity. 1H-NMR spectroscopy identified MPN-1-1 as a 1-ethenyl-4,8-dimethoxy-9H-pyrido(3,4-β) indole compound, which is an alkaloid. Our results provide evidence that Persicaria nepalensis (Meisn.) Miyabe extract has strong physiological activity without any toxic effects, and furthermore, MPN-1-1 can be potentially utilized as a natural dietary supplement as well as an anti-oxidant. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. GC-MS analysis, evaluation of phytochemicals, anti-oxidant, thrombolytic and anti-inflammatory activities of Exacum bicolor

    Directory of Open Access Journals (Sweden)

    Appaji Mahesh Ashwini

    2015-12-01

    Full Text Available The aim of the present study was to investigate the GC-MS analysis, phytochemical screening, anti-oxidant, thrombolytic and anti-inflammatory activities of methanol extract of leaves of Exacum bicolor. FTIR analysis confirmed the presence of alcohol, phenols, alkanes, aromatic compounds, aldehyde and ethers. GC-MS analysis revealed the presence of eight phyto-constituents. The total phenol, flavonoid and alkaloid contents were 18.0 ± 0.2 mg/GAE/g, 13.1 ± 0.4 mg QE/g and 108.0 ± 1.2 mg AE/g respectively. The DPPH assay exhibited potent anti-oxidant abilities with IC50 8.8 µg/mL. Significant thrombolytic activity was demonstrated by clot lysis method (45.1 ± 0.8%. The methanol extract showed significant membrane stabilization on human red blood cell with IC50 value of 37.4 µg/mL. There was a significant correlation (R2>0.98 with total phenolic content versus anti-oxidant and anti-inflammatory activity. The above results confirmed that E. bicolor could be a promising anti-oxidant, thrombolytic and anti-inflammatory agent.

  19. Reduced anti-oxidative stress activities of DJ-1 mutants found in Parkinson's disease patients

    International Nuclear Information System (INIS)

    Takahashi-Niki, Kazuko; Niki, Takeshi; Taira, Takahiro; Iguchi-Ariga, Sanae M.M.; Ariga, Hiroyoshi

    2004-01-01

    DJ-1 is a multi-functional protein that plays roles in transcriptional regulation and anti-oxidative stress, and loss of its function is thought to result in onset of Parkinson's disease. We have previously reported that L166P, a mutant DJ-1 found in Parkinson's disease patients, had no activity to prevent hydrogen peroxide (H 2 O 2 )-induced cell death. In this study, we analyzed other mutants of DJ-1 found in Parkinson's disease patients, including M26I, R98Q, and D149A, as well as L166P. We first found that all of the mutants made heterodimers with wild-type DJ-1, while all of the mutants except for L166P made homodimers. We then found that M26I and L166P, both of which are derived from homozygous mutations of the DJ-1 gene, were unstable and that their stabilities were recovered, in part, in the presence of proteasome inhibitor, MG132. NIH3T3 cell lines stably expressing these mutants of DJ-1 showed that cell lines of L166P and C106S, a mutant for protease activity (-) of DJ-1, had no activity to scavenge even endogenously producing reactive oxygen species. These cell lines also showed that all of the mutants had reduced activities to eliminate exogenously added H 2 O 2 and that these activities, except for that of D149A, were parallel to those preventing H 2 O 2 -induced cell death

  20. Anti-oxidative and antimicrobial activities of Hieracium pilosella L. extracts

    Directory of Open Access Journals (Sweden)

    LJILJANA P. STANOJEVIC

    2008-05-01

    Full Text Available The anti-oxidative and antimicrobial activities of different extracts from Hieracium pilosella L. (Asteraceae whole plant were investigated. The total dry extracts were determined for all the investigated solvents: methanol, dichloromethane, ethyl acetate and dichloromethane:methanol (9:1. It was found that the highest yield was obtained by extraction with methanol (12.9 g/100 g of dry plant material. Qualitative and quantitative analysis were performed by the HPLC method, using external standards. Chlorogenic acid, apigenin-7-O-glucoside and umbelliferone were detected in the highest quantity in the extracts. The qualitative and quantitative composition of the extracts depends on the solvent used. The 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging effect of the extracts was determined spectrophotometrically. The highest radical scavenging effect was observed in the methanolic extract, both with and without incubation, EC50 = 0.012 and EC50 = 0.015 mg ml-1, respectively. The antimicrobial activities of the extracts towards the bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, Salmonella enteritidis and Klebsiella pneumoniae and the fungi (Aspergillus niger and Candida albicans were determined by the disc diffusion method. The minimal inhibitory concentrations were determined for all the investigated extracts against all the mentioned microorganisms.

  1. Antioxidant activity for spice oils (1) anti oxidative stability of thyme and caraway oil extracts under UV-irradiation

    International Nuclear Information System (INIS)

    Atef Ghazy, M.; Shaker, E.S.

    2002-01-01

    The anti oxidative activity for some spice essential oils have been investigated using thiocyanate method and compared with common natural antioxidant. The antioxidant activity for nine spice oils has been measured at 500 ppm after 13 days. The most potent one was the lemon grass (99.8), followed by orange peel, thyme, and caraway. The activities for these four oils were higher than that for Alpha-tocopherol (87.7%). Petitgrain, and geranium oils have marched activity but less than that for Alpha-tocopherol. No obvious has been found for citronella. fennel, and cardamon oils. The aqueous, butanoic, methanolic and hexanoic extracts for thyme and caraway oil exhibit effective anti oxidative activities under UV irradiation (254 nm) for 6 and 10 hr compared with that for alpha-tocopherol. The anti oxidative effect of thyme and caraway oil extracts were found to be strong and stable towards UV-irradiation, and equal to that for Alpha-tocopherol. Thyme's aqueous and caraway's hexanal extracts were the most potent extracts under the same conditions

  2. Anti-oxidant activity of 6-gingerol as a hydroxyl radical scavenger by ...

    Indian Academy of Sciences (India)

    a situation, human diet needs to be supplemented with exogenous anti-oxidants most of which come from ... cancer, anti-diabetic and other valuable pharmaceutical properties.21 33. Due to the numerous useful ... keto group and a hydroxyl group bonded to its C9 and. C11 positions, respectively, is attached to the C6 posi-.

  3. In vitro thrombolytic, anthelmintic, anti-oxidant and cytotoxic activity with phytochemical screening of methanolic extract of Xanthium indicum leaves

    Directory of Open Access Journals (Sweden)

    Antara Ghosh

    2015-12-01

    Full Text Available Xanthium indicum is an important medicinal plant traditionally used in Bangladesh as a folkloric treatment. The current study was undertaken to evaluate thrombolytic, anthelmintic, anti-oxidant, cytotoxic properties with phytochemical screening of methanolic extract of X. indicum leaves. The analysis of phytochemical screening confirmed the existence of phytosetrols and diterpenes. In thrombolytic assay, a significant clot lysis was observed at four concentrations of plant extract compare to the positive control streptokinase (30,000 IU, 15,000 IU and negative control normal saline. The extract revealed potent anthelmintic activity at different concentrations. In anti-oxidant activity evaluation by two potential experiments namely total phenolic content determination and free radical scavenging assay by 2, 2-diphenylpicrylhydrazyl (DPPH, the leaves extract possess good anti-oxidant property. In the brine shrimp lethality bioassay, the crude extract showed potent (LC50 1.3 μg/mL cytotoxic activity compare to the vincristine sulfate as a positive control (LC50 0.8 μg/mL.

  4. Ferulic acid modification enhances the anti-oxidation activity of natural Hb in vitro.

    Science.gov (United States)

    Qi, Donglai; Li, Qian; Chen, Chen; Wang, Xiang

    2018-03-13

    During the development of artificial red blood cell (RBC) substitutes, oxidation side reaction is one of the major factors that hinder the application of haemoglobin (Hb)-based oxygen carriers (HBOCs). In order to avoid oxidation toxicity, we designed and prepared natural Hb conjugated with ferulic acid (FA) via simple chemical modification. In addition, the thiol groups on Hb surface were increased via the reaction of Hb with 2-iminothiolane (2-IT) and then modified with FA for the study of anti-oxidant ability. It was showed that Hb modified with FA (FA-Hb) had similar oxygen-binding capacity to natural Hb. Moreover, the anti-oxidant ability of FA-Hb in vitro in different systems was superior to natural Hb and in proportion to the degree of modification of FA. The results indicate that FA-Hb might have the potential to serve as a novel oxygen carrier with the capacity to reduce oxidative side reaction.

  5. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weixin [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wu, Mingchai [Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzou, Zhejiang (China); Tang, Longguang; Pan, Yong; Liu, Zhiguo [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zeng, Chunlai [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Wang, Jingying [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wei, Tiemin, E-mail: lswtm@sina.com [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Liang, Guang, E-mail: wzmcliangguang@163.com [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2015-01-15

    Background: Alleviating the oxidant stress associated with myocardial ischemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischemia reperfusion (I/R)-induced cardiac damage. Curcumin, a natural compound with anti-oxidative activity, exerts beneficial effect against cardiac I/R injury, but poor chemical and metabolic stability. Previously, we have designed and synthesized a series of mono-carbonyl analogues of curcumin (MACs) with high stability. This study aims to find new anti-oxidant MACs and to demonstrate their effects and mechanisms against I/R-induced heart injury. Methods: H9c2 cells challenged with H{sub 2}O{sub 2} or TBHP were used for in vitro bio-screening and mechanistic studies. The MDA, H{sub 2}O{sub 2} and SOD levels in H9C2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse models administrated with or without the compound were used for in vivo studies. Results: The in vitro cell-based screening showed that curcumin analogues 8d and 14p exhibited strong anti-oxidative effects. Pre-treatment of H9c2 cells with 14p activated Nrf2 signaling pathway, attenuated H{sub 2}O{sub 2}-increased MDA and SOD level, followed by the inhibition of TBHP-induced cell death and Bax/Bcl-2–caspase-3 pathway activation. Silencing Nrf2 significantly reversed the protective effects of 14p. In in vivo animal model of myocardial I/R, administration of low dose 14p (10 mg/kg) reduced infarct size and myocardial apoptosis to the same extent as the high dose curcumin (100 mg/kg). Conclusion: These data support the novel curcumin analogue 14p as a promising antioxidant to decrease oxidative stress and limit myocardial ischemia reperfusion injury via activating Nrf2. - Highlights: • Mono-carbonyl analogue of curcumin, 14p, exhibited better chemical stability. • Compound 14p inhibited TBHP-induced apoptosis through activating Nrf2 in vitro. • Compound 14p limited myocardial ischemia

  6. Comparative screening of the anti-oxidant and antimicrobial activities of Sempervivum marmoreum L. extracts obtained by various extraction techniques

    Directory of Open Access Journals (Sweden)

    SASA S. STOJICEVIC

    2008-06-01

    Full Text Available This paper presents a comparative study of the anti-oxidant and anti-microbial activities, total phenolic compounds and total flavonoids in extracts obtained from houseleek (Sempervivum marmoreum L. leaves by the classical (maceration, ultrasonic and Soxhlet extraction (CE, UE and SE, respectively. The extract obtained by the CE contained higher amounts of phenolic and flavonoid compounds and showed a better antioxidant activity than those obtained using other two techniques. All the extracts, independent of the extraction technique applied, showed antimicrobial activities against Aspergillus niger and Candida albicans only but not against the tested bacteria.

  7. GC-MS analysis, evaluation of phytochemicals, anti-oxidant, thrombolytic and anti-inflammatory activities of Exacum bicolor

    OpenAIRE

    Appaji Mahesh Ashwini; Latha Puttarudrappa; Belagumba Vijaykumar Ravi; Mala Majumdar

    2015-01-01

    The aim of the present study was to investigate the GC-MS analysis, phytochemical screening, anti-oxidant, thrombolytic and anti-inflammatory activities of methanol extract of leaves of Exacum bicolor. FTIR analysis confirmed the presence of alcohol, phenols, alkanes, aromatic compounds, aldehyde and ethers. GC-MS analysis revealed the presence of eight phyto-constituents. The total phenol, flavonoid and alkaloid contents were 18.0 ± 0.2 mg/GAE/g, 13.1 ± 0.4 mg QE/g and 108.0 ± 1.2 mg AE/g re...

  8. Extraction of Lepidium apetalum Seed Oil Using Supercritical Carbon Dioxide and Anti-Oxidant Activity of the Extracted Oil

    Directory of Open Access Journals (Sweden)

    Xuchong Tang

    2011-12-01

    Full Text Available The supercritical fluid extraction (SFE of Lepidium apetalum seed oil and its anti-oxidant activity were studied. The SFE process was optimized using response surface methodology (RSM with a central composite design (CCD. Independent variables, namely operating pressure, temperature, time and flow rate were evaluated. The maximum extraction of Lepidium apetalum seed oil by SFE-CO2 (about 36.3% was obtained when SFE-CO2 extraction was carried out under the optimal conditions of 30.0 MPa of pressure, 70 °C of temperature, 120 min of extraction time and 25.95 L/h of flow rate. GC-MS analysis showed the presence of four fatty acids in Lepidium apetalum seed oil, with a high content (91.0% of unsaturated fatty acid. The anti-oxidant activity of the oil was assessed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH radical-scavenging assay and 2,2′-azino- bis(3-ethylbenzthiazoline-6-sulphonic acid diammonium salt (ABTS test. Lepidium apetalum seed oil possessed a notable concentration-dependent antioxidant activity, with IC50 values of 1.00 and 3.75 mg/mL, respectively.

  9. Chemical composition, anti-oxidative activity and in vitro dry matter degradability of Kinnow mandarin fruit waste

    Directory of Open Access Journals (Sweden)

    Ravleen Kour

    2014-10-01

    Full Text Available Aim: Fruit processing and consumption yield a significant amount of by-products as waste, which can be used as potential nutrient suppliers for livestock. “Kinnow” (Citrus nobilis Lour x Citrus deliciosa Tenora is one of the most important citrus fruit crops of North Indian States. Its residues are rich in carbohydrates but poor in protein and account for approximately 55-60% of the raw weight of the fruit. Present study assessed the chemical composition and anti-oxidative activity of Kinnow mandarin fruit waste (KMW and scrutinized the impact of dietary incorporation of variable levels of KMW on in vitro dry matter digestibility (IVDMD. Materials and Methods: Sun dried and ground KMW was analyzed for proximate composition, fibre fractions and calcium and phosphorus content. Antioxidant potential of KMW as total phenolic count and 1-diphenyl-2-picrylhydrazyl (DPPH scavenging activity was assayed in an alcoholic extract of KMW. The effect of inclusion of KMW at variable levels (0-40% in the isonitrogenous concentrate mixtures on in vitro degradability of composite feed (concentrate mixture:Wheat straw; 40:60 was also carried out. Results: KMW after sun-drying contained 92.05% dry matter. The crude protein content of 7.60% indicates it being marginal in protein content, whereas nitrogen free extract content of 73.69% suggests that it is primarily a carbonaceous feedstuff. This observation was also supported by low neutral detergent fiber and acid detergent fiber content of 26.35% and 19.50%, respectively. High calcium content (0.92% vis-à-vis low phosphorus content (0.08%, resulted in wide Ca:P ratio (11.5 in KMW. High anti-oxidative potential of KMW is indicated by total phenolic content values of 17.1±1.04 mg gallic acid equivalents/g and DPPH free radicle scavenging activity 96.2 μg/ml (effective concentration 50. Mean IVDMD% of all the composite rations was found to be comparable (p>0.05 irrespective of the level of KMW inclusion

  10. In vitro evaluation of cytotoxic, anti-proliferative, anti-oxidant, apoptotic, and anti-microbial activities of Cladonia pocillum.

    Science.gov (United States)

    Ersoz, M; Coskun, Z M; Acikgoz, B; Karalti, I; Cobanoglu, G; Cesal, C

    2017-08-15

    The aim of this study was to investigate the anti-proliferative, apoptotic, cytotoxic, and anti-oxidant effects of extracts from the lichen Cladonia pocillumon human breast cancer cells (MCF-7), and to characterize the anti-microbial features.  MCF-7 cells were treated with methanolic C. pocillum extract for 24h. The cytotoxicity of the extract was tested with MTT. Moreover, its anti-proliferative effects were examined with immunocytochemical method. Apoptosis and biochemical parameters were detected in MCF-7. The methanol and chloroform extracts of the lichen were tested for anti-microbial activity against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans using the disc diffusion method and calculation of minimal inhibitory concentrations. Although BrdU incorporation was not observed in MCF-7 cells treated with methanol extract at a concentration above 0.2 mg/mL, a significant decrease was observed int he percentage of PCNA immunoreactive cells in groups treated with 0.2, 0.4, 06, and 0.8 mg/mL methanol extracts of C.pocillum (49±6.3, 44±5.2, 23±2.5, 0, respectively) compared to that of control (85±4.5). The percentage of apoptotic cells significantly increased in groups treated with 0.2, 0.4, 0.6, and 0.8 mg/mL extracts of the C.pocillum (54±3.5, 76±2.6, 77±1.8, 82±4.2, respectively) compared with that of control group (3.9±1.5).The half-maximal inhibitory concentration of the methanol extract against MCF-7 cells was 0.802 mg/mL .Although the chloroform extract showed more effective anti-microbial activity overall, the methanol extract showed higher anti-fungal activity. Collectively, the results of our study indicate that C.pocillum extracts have strong anti-microbial and apoptotic effects. This lichen therefore shows potential for development as a natural anti-microbial, anti-oxidant, and apoptotic agent.

  11. Anti-Oxidative and Anti-Proliferative Activity on Human Prostate Cancer Cells Lines of the Phenolic Compounds from Corylopsis coreana Uyeki

    Directory of Open Access Journals (Sweden)

    So Ra Kim

    2013-04-01

    Full Text Available Fifteen phenolic compounds, including three caffeoyl derivatives, four gallotannins, three ellagitannins and five flavonoids, were isolated from an 80% MeOH extract of the leaves of Corylopsis coreana Uyeki (Korean winter hazel; CL. The anti-oxidative activities [1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging activity and xanthine oxidase superoxide scavenging activities (NBT] and the anti-proliferative activity on human prostate cancer cell lines (DU145 and LNCaP were also evaluated.

  12. The AMPAR Antagonist Perampanel Attenuates Traumatic Brain Injury Through Anti-Oxidative and Anti-Inflammatory Activity.

    Science.gov (United States)

    Chen, Tao; Dai, Shu-Hui; Jiang, Zhi-Quan; Luo, Peng; Jiang, Xiao-Fan; Fei, Zhou; Gui, Song-Bai; Qi, Yi-Long

    2017-01-01

    Perampanel is a novel α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) antagonist, approved in over 35 countries as an adjunctive therapy for the treatment of seizures. Recently, it was found to exert protective effects against ischemic neuronal injury in vitro. In the present study, we investigated the potential protective effects of perampanel in a traumatic brain injury (TBI) model in rats. Oral administration with perampanel at a dose of 5 mg/kg exerted no major organ-related toxicities. We found that perampanel significantly attenuated TBI-induced brain edema, brain contusion volume, and gross motor dysfunction. The results of Morris water maze test demonstrated that perampanel treatment also improved cognitive function after TBI. These neuroprotective effects were accompanied by reduced neuronal apoptosis, as evidenced by decreased TUNEL-positive cells in brain sections. Moreover, perampanel markedly inhibited lipid peroxidation and obviously preserved the endogenous antioxidant system after TBI. In addition, enzyme-linked immunosorbent assay (ELISA) was performed at 4 and 24 h after TBI to evaluate the expression of inflammatory cytokines. The results showed that perampanel suppressed the expression of pro-inflammatory cytokines TNF-α and IL-1β, whereas increased the levels of anti-inflammatory cytokines IL-10 and TGF-β1. These data show that the orally active AMPAR antagonist perampanel affords protection against TBI-induced neuronal damage and neurological dysfunction through anti-oxidative and anti-inflammatory activity.

  13. Free radicals impair the anti-oxidative stress activity of DJ-1 through the formation of SDS-resistant dimer.

    Science.gov (United States)

    Yasuda, Tatsuki; Niki, Takeshi; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M M

    2017-04-01

    DJ-1 is a causative gene for familial Parkinson's disease (PD). Loss-of-function of DJ-1 protein is suggested to contribute to the onset of PD, but the causes of DJ-1 dysfunction remain insufficiently elucidated. In this study, we found that the SDS-resistant irreversible dimer of DJ-1 protein was formed in human dopaminergic neuroblastoma SH-SY5Y cells when the cells were exposed to massive superoxide inducers such as paraquat and diquat. The dimer was also formed in vitro by superoxide in PQ redox cycling system and hydroxyl radical produced in Fenton reaction. We, thus, found a novel phenomenon that free radicals directly affect DJ-1 to form SDS-resistant dimers. Moreover, the formation of the SDS-resistant dimer impaired anti-oxidative stress activity of DJ-1 both in cell viability assay and H 2 O 2 -elimination assay in vitro. Similar SDS-resistant dimers were steadily formed with several mutants of DJ-1 found in familial PD patients. These findings suggest that DJ-1 is impaired due to the formation of SDS-resistant dimer when the protein is directly attacked by free radicals yielded by external and internal stresses and that the DJ-1 impairment is one of the causes of sporadic PD.

  14. In vitro anti-oxidative activities of the various parts of Parkia ...

    African Journals Online (AJOL)

    Apart from the aqueous extracts of the stem bark and leaves, all other extracts exhibited hydroxyl radical scavenging (HRS) activity but the ethyl acetate (EtOAc) extract of the stem bark and EtOH extracts of the root and leaves possessed more powerful HRS activity than other corresponding extracts in the parts. Further, nitric ...

  15. Phytochemical screening, antibacterial and anti-oxidant activities of Asparagus laricinus leaf and stem extracts

    Directory of Open Access Journals (Sweden)

    Polo-Ma-Abiele Hildah Ntsoelinyane

    2014-03-01

    Full Text Available The aim of this study was to investigate antioxidant activities, antibacterial activities and a phytochemical constituent of Asparagus laricinus stem and leaf extracts. Determination of antibacterial activity of extracts was assessed by agar dilution method and antioxidant properties by 2,2-diphenyl-1-picryl-hydrazyl (DPPH assay. The minimum inhibitory concentration (MIC of the leaf was at a concentration of 0.125 mg/mL against S. saprophyticus and E. cloacae, and at a concentration of 1 mg/mL against S. aureus and B. subtilis. There was no MIC of the stem extract at any concentration. The leaf extract showed effective free radical scavenging activity (72.1%, while stem extract had low activity. Qualitative phytochemical analysis of these plant extracts revealed the presence of tannins, saponins, flavonoids and phlobatannins. The leaf extract further confirmed the presence of glycosides, steroids, ternoids and carbohydrates. Our results indicate that, A. laricinus leaf extracts have potential antimicrobial and antioxidant activities.

  16. Comparative Analysis of Phenolic Content and Anti oxidative Activities of Eight Malaysian Traditional Vegetables

    International Nuclear Information System (INIS)

    Nur Huda-Faujan; Zulaikha Abdul Rahim; Maryam Mohamed Rehan; Faujan Ahmad

    2015-01-01

    Vegetables have been believed to exhibit antioxidant activities due to its phenolic content. Thus, this study was carried out to determine the total phenolic content of water and ethanolic extracts of Malaysian traditional vegetables and assess their antioxidant activities. Eight samples of Malaysian traditional vegetables were dried and extracted its phenolic compounds using water and ethanolic solvent. Total phenolic content of the extracts were compared and evaluated using Folin-Ciocalteu and Prussian Blue reagent. The antioxidant activity were assessed using ferric thiocyanate assay and DPPH free radical scavenging assays. Results found that total phenolic content of water extracts ranged from 7.08 to 14.76 mg GAE (Folin-Ciocalteu assay) and 3.50 to 7.82 mg GAE (Prussian Blue assay). However, the content of phenolic of ethanolic extracts ranged from 5.21 to 15.86 mg GAE (Folin-Ciocalteu assay), and 1.84 to 11.54 mg GAE (Prussian Blue assay). The highest antioxidant activity was observed in water extracts of Etlingera elatior (75.6 %) and ethanolic extracts of Sauropus androgynus (78.1 %). Results also found that the best half maximal inhibitory concentration or IC 50 were demonstrated by water and ethanolic extracts of Sauropus androgynus which demonstrated 0.077 mg/mL and 0.078 mg/ mL, respectively. Hence, this study obtained that most of the Malaysian traditional vegetables have a potential source of natural antioxidant. (author)

  17. Phyto-Constituents And Anti-Oxidant Activity Of The Pulp Of Snake ...

    African Journals Online (AJOL)

    The phyto-constituents and antioxidant activity of the fruit pulp of Trichosanthes cucumerina L. have not been reported in literature and were therefore studied. Two identified morphotypes of this plant (Morphotype I [V1] having long fruit with deep green background and white stripes; and Morphotype II [V2] having light green ...

  18. Enhanced HDL-cholesterol-associated anti-oxidant PON-1 activity in prostate cancer patients

    Directory of Open Access Journals (Sweden)

    Muzaffer Eroglu

    2013-07-01

    Full Text Available Increases in the generation of reactive oxygen species and decreases in antioxidant enzyme activities with aging have been reported in the prostate, and are also observed in age-related disorders such as atherosclerosis, Alzheimer's disease, and cataracts. Several studies have demonstrated that proteins are targets for reactive oxidants in cells, and that oxidized proteins accumulate during aging, oxidative stress and in some pathological conditions. However, only a limited number of studies have actually evaluated oxidative damage in relation to HDL-cholesterol-associated antioxidant enzyme activities or have assessed its relationship with prostate cancer. In this study, we examined the effect of HDL-cholesterol-associated antioxidant enzyme activities, paraoxonase1, arylesterase and new oxidative stress parameters (total oxidant status, total antioxidant status [and oxidative stress index] in newly-diagnosed prostate cancer patients and healthy controls. There were no significant differences in oxidative stress parameters and lipid parameters between prostate cancer patients and controls, however, paraoxonase1 enzyme activity, and non-HDL-cholesterol levels were higher in prostate cancer patients than controls. The results of this study were derived from a small number of subjects, but might represent an important working hypothesis for further research in a larger number of cases to clarify the role of paraoxonase1 overproduction on the prostate and its clinical relevance.

  19. Anti-Oxidant and Anti-Inflammatory Activities of Inonotus obliquus and Germinated Brown Rice Extracts

    Directory of Open Access Journals (Sweden)

    Beong Ou Lim

    2013-08-01

    Full Text Available Inonotus obliquus (IO is parasitic mushroom that grows on birch and other trees in Russia, Korea, Europe and United States. However, IO is not readily available for consumption due to its high cost and difficult growth. In this regard, IO was inoculated on germinated brown rice (GBR in the present study and the antioxidant and anti-inflammatory activities of the IO grown on germinated brown rice (IOGBR extracts were evaluated extensively and compared with those for IO and GBR. IOGBR showed highest antioxidant activities with scavenging total intracellular ROS and MDA levels as well as increasing the antioxidant enzymes activity in the H2O2-stimulated mice liver. It also exhibited best inflammatory activities by suppressing the proinflammatory mediators such as NO, PGE2, iNOS, COX-2, TNF-α, IL-1β, and IL-6 in an LPS-stimulated RAW 264.7 cell line. This study provides a comparative approach to find out an excellent natural source of antioxidants and anti-inflammatory agent as a dietary supplement.

  20. Anti-inflammatory and anti-oxidant activities of Secamone afzelii ...

    African Journals Online (AJOL)

    . This study re-ports the anti-inflammatory and antioxidant properties of S. afzelii. The anti-inflammatory activity was determined by the carrageenan-induced paw oedema method in 7 day old chicks and antioxi-dant property by the 2 ...

  1. Anti-oxidant and anti-inflammatory activities of Inonotus obliquus and germinated brown rice extracts.

    Science.gov (United States)

    Debnath, Trishna; Park, Sa Ra; Kim, Da Hye; Jo, Jeong Eun; Lim, Beong Ou

    2013-08-02

    Inonotus obliquus (IO) is parasitic mushroom that grows on birch and other trees in Russia, Korea, Europe and United States. However, IO is not readily available for consumption due to its high cost and difficult growth. In this regard, IO was inoculated on germinated brown rice (GBR) in the present study and the antioxidant and anti-inflammatory activities of the IO grown on germinated brown rice (IOGBR) extracts were evaluated extensively and compared with those for IO and GBR. IOGBR showed highest antioxidant activities with scavenging total intracellular ROS and MDA levels as well as increasing the antioxidant enzymes activity in the H₂O₂-stimulated mice liver. It also exhibited best inflammatory activities by suppressing the proinflammatory mediators such as NO, PGE₂, iNOS, COX-2, TNF-α, IL-1β, and IL-6 in an LPS-stimulated RAW 264.7 cell line. This study provides a comparative approach to find out an excellent natural source of antioxidants and anti-inflammatory agent as a dietary supplement.

  2. Comparative study on anti-oxidant and anti-inflammatory activities of Caesalpinia crista and Centella asiatica leaf extracts.

    Science.gov (United States)

    Ramesh, B N; Girish, T K; Raghavendra, R H; Naidu, K Akhilender; Rao, U J S Prasada; Rao, K S

    2014-04-01

    Amyloidosis, oxidative stress and inflammation have been strongly implicated in neurodegenerative disorders like Alzheimer's disease. Traditionally, Caesalpinia crista and Centella asiatica leaf extracts are used to treat brain related diseases in India. C. crista is used as a mental relaxant drink as well as to treat inflammatory diseases, whereas C. asiatica is reported to be used to enhance memory and to treat dementia. The present study is aimed to understand the anti-oxidant and anti-inflammatory potential of C. asiatica and C. crista leaf extracts. Phenolic acid composition of the aqueous extracts of C. crista and C. asiatica were separated on a reverse phase C18 column (4.6 x 250 mm) using HPLC system. Antioxidant properties of the leaf extracts were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and the reducing potential assay. The anti-inflammatory activities of aqueous extracts of C. crista and C. asiatica were studied using 5-lipoxygenase assay. Polymorphonuclear leukocytes (PMNLs) were isolated from blood by Ficoll-Histopaque density gradient followed by hypotonic lysis of erythrocytes. Gallic, protocatechuic, gentisic, chlorogenic, caffeic, p-coumaric and ferulic acids were the phenolic acids identified in C. crista and C. asiatica leaf aqueous extracts. However, gallic acid and ferulic acid contents were much higher in C. crista compared to C. asiatica. Leaf extracts of C. asiatica and C. crista exhibited antioxidant properties and inhibited 5-lipoxygenase (anti-inflammatory) in a dose dependent manner. However, leaf extracts of C. crista had better antioxidant and anti-inflammatory activity compared to that of C. asiatica. The better activity of C. crista is attributed to high gallic acid and ferulic acid compared to C. asiatica. Thus, the leaf extract of C. crista can be a potential therapeutic role for Alzheimer's disease.

  3. Comparative study on anti-oxidant and anti-inflammatory activities of Caesalpinia crista and Centella asiatica leaf extracts

    Directory of Open Access Journals (Sweden)

    B N Ramesh

    2014-01-01

    Full Text Available Background: Amyloidosis, oxidative stress and inflammation have been strongly implicated in neurodegenerative disorders like Alzheimer′s disease. Traditionally, Caesalpinia crista and Centella asiatica leaf extracts are used to treat brain related diseases in India. C. crista is used as a mental relaxant drink as well as to treat inflammatory diseases, whereas C. asiatica is reported to be used to enhance memory and to treat dementia. Objective: The present study is aimed to understand the anti-oxidant and anti-inflammatory potential of C. asiatica and C. crista leaf extracts. Materials and Methods: Phenolic acid composition of the aqueous extracts of C. crista and C. asiatica were separated on a reverse phase C18 column (4.6 x 250 mm using HPLC system. Antioxidant properties of the leaf extracts were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging assay and the reducing potential assay. The anti-inflammatory activities of aqueous extracts of C. crista and C. asiatica were studied using 5-lipoxygenase assay. Polymorphonuclear leukocytes (PMNLs were isolated from blood by Ficoll-Histopaque density gradient followed by hypotonic lysis of erythrocytes. Results: Gallic, protocatechuic, gentisic, chlorogenic, caffeic, p-coumaric and ferulic acids were the phenolic acids identified in C. crista and C. asiatica leaf aqueous extracts. However, gallic acid and ferulic acid contents were much higher in C. crista compared to C. asiatica. Leaf extracts of C. asiatica and C. crista exhibited antioxidant properties and inhibited 5-lipoxygenase (anti-inflammatory in a dose dependent manner. However, leaf extracts of C. crista had better antioxidant and anti-inflammatory activity compared to that of C. asiatica. The better activity of C. crista is attributed to high gallic acid and ferulic acid compared to C. asiatica. Conclusions: Thus, the leaf extract of C. crista can be a potential therapeutic role for Alzheimer′s disease.

  4. Silver nanoparticles: green synthesis using Phoenix dactylifera fruit extract, characterization, and anti-oxidant and anti-microbial activities

    Science.gov (United States)

    Shaikh, Anas Ejaz; Satardekar, Kshitij Vasant; Khan, Rummana Rehman; Tarte, Nanda Amit; Barve, Siddhivinayak Satyasandha

    2018-03-01

    Hydro-alcoholic (2:8 v/v) extract of the pulp of Phoenix dactylifera fruit pulp obtained using Soxhlet extraction (70 °C, 6 h) was found to contain alkaloids, sterols, tannins, flavonoids, cardiac glycosides, proteins, and carbohydrates. An aqueous solution (20% v/v) of the extract led to the synthesis of silver nanoparticles (AgNPs) from 0.01 M AgNO3 solution as confirmed by the surface plasmon resonance at 445 nm determined using UV-visible spectroscopy after 24 h. The synthesized AgNPs were found to be mostly spherical and complexed with phytochemicals from the extract. The size of AgNPs ranged from 12.2-140.2 nm with mean diameter of 47.0 nm as characterized by scanning electron microscopy (SEM). The elemental composition of the AgNPs complexed with the phytochemicals was found to be 80.49% silver (Ag), 15.21% carbon (C), and 4.30% oxygen (O) on a weight basis by energy-dispersive spectroscopy (EDS). Using the α,α-diphenyl-β-picrylhydrazyl (DPPH) assay, an anti-oxidant activity of 89.15% for 1 µg L-1 ultrasonically homogenized ethanolic solution of complexed AgNPs was obtained (equivalent to 0.20 mg mL-1 gallic acid solution), while methanolic solution of plant extract possessed an EC50 value of 3.45% (v/v) (equivalent to 0.11 mg mL-1 gallic acid solution). The plant-nanosilver broth was also found to possess effective anti-microbial activity against Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 6538, and Candida albicans ATCC 10231 as assessed by the disc diffusion assay. However, the plant extract showed negligible anti-microbial activity.

  5. ROS-mediated inhibition of S-nitrosoglutathione reductase contributes to the activation of anti-oxidative mechanisms

    Directory of Open Access Journals (Sweden)

    Izabella Kovacs

    2016-11-01

    Full Text Available Nitric oxide (NO has emerged as a signaling molecule in plants being involved in diverse physiological processes like germination, root growth, stomata closing and response to biotic and abiotic stress. S-nitrosoglutathione (GSNO as a biological NO donor has a very important function in NO signaling since it can transfer its NO moiety to other proteins (trans-nitrosylation. Such trans-nitrosylation reactions are equilibrium reactions and depend on GSNO level. The breakdown of GSNO and thus the level of S-nitrosylated proteins are regulated by GSNO-reductase (GSNOR. In this way, this enzyme controls S-nitrosothiol levels and regulates NO signaling. Here we report that Arabidopsis thaliana GSNOR activity is reversibly inhibited by H2O2 in-vitro and by paraquat-induced oxidative stress in-vivo. Light scattering analyses of reduced and oxidized recombinant GSNOR demonstrated that GSNOR proteins form dimers under both reducing and oxidizing conditions. Moreover, mass spectrometric analyses revealed that H2O2-treatment increased the amount of oxidative modifications on Zn2+-coordinating Cys47 and Cys177. Inhibition of GSNOR results in enhanced levels of S-nitrosothiols followed by accumulation of glutathione. Moreover, transcript levels of redox-regulated genes and activities of glutathione-dependent enzymes are increased in gsnor-ko plants, which may contribute to the enhanced resistance against oxidative stress. In sum, our results demonstrate that ROS-dependent inhibition of GSNOR is playing an important role in activation of anti-oxidative mechanisms to damping oxidative damage and imply a direct crosstalk between ROS- and NO-signaling.

  6. ROS-Mediated Inhibition of S-nitrosoglutathione Reductase Contributes to the Activation of Anti-oxidative Mechanisms

    Science.gov (United States)

    Kovacs, Izabella; Holzmeister, Christian; Wirtz, Markus; Geerlof, Arie; Fröhlich, Thomas; Römling, Gaby; Kuruthukulangarakoola, Gitto T.; Linster, Eric; Hell, Rüdiger; Arnold, Georg J.; Durner, Jörg; Lindermayr, Christian

    2016-01-01

    Nitric oxide (NO) has emerged as a signaling molecule in plants being involved in diverse physiological processes like germination, root growth, stomata closing and response to biotic and abiotic stress. S-nitrosoglutathione (GSNO) as a biological NO donor has a very important function in NO signaling since it can transfer its NO moiety to other proteins (trans-nitrosylation). Such trans-nitrosylation reactions are equilibrium reactions and depend on GSNO level. The breakdown of GSNO and thus the level of S-nitrosylated proteins are regulated by GSNO-reductase (GSNOR). In this way, this enzyme controls S-nitrosothiol levels and regulates NO signaling. Here we report that Arabidopsis thaliana GSNOR activity is reversibly inhibited by H2O2 in vitro and by paraquat-induced oxidative stress in vivo. Light scattering analyses of reduced and oxidized recombinant GSNOR demonstrated that GSNOR proteins form dimers under both reducing and oxidizing conditions. Moreover, mass spectrometric analyses revealed that H2O2-treatment increased the amount of oxidative modifications on Zn2+-coordinating Cys47 and Cys177. Inhibition of GSNOR results in enhanced levels of S-nitrosothiols followed by accumulation of glutathione. Moreover, transcript levels of redox-regulated genes and activities of glutathione-dependent enzymes are increased in gsnor-ko plants, which may contribute to the enhanced resistance against oxidative stress. In sum, our results demonstrate that reactive oxygen species (ROS)-dependent inhibition of GSNOR is playing an important role in activation of anti-oxidative mechanisms to damping oxidative damage and imply a direct crosstalk between ROS- and NO-signaling. PMID:27891135

  7. Anti-Oxidant and Hepatoprotective Activities of Ziziphus mucronata Fruit Extract Against Dimethoate-Induced Toxicity

    Directory of Open Access Journals (Sweden)

    Kwape Tebogo Elvis

    2013-03-01

    Full Text Available Objective: The study was carried out to evaluate the hepatoprotective and antioxidant potential of Ziziphus mucronata (ZM fruit extract. Methods: The different types of fruit extract were prepared by soaking the dry powdered fruit in different solvents followed by rotary evaporation. Each extract was tested for its phenol content and antioxidant activities. An in vivo study was performed in Sprague- Dawley (SD rats. Thirty adult male SD rats (aged 21 weeks were divided into six groups of five rats each and treated as follows: The normal control (NC received distilled water while the dimethoate control (DC received 6 mg/kg.bw.day-1 dimethoate dissolved in distilled water. The experimental groups E1, E2, E3, and E0 received dimethoate (6 mg/kg.bw + ZMFM (100 mg/kg.bw-1, dimethoate (6 mg/kg.bw + ZMFM (200 mg/kg.bw-1, dimethoate (6 mg/kg.bw + ZMFM (300 mg/kg.bw-1, and ZMFM (300 mg/kg.bw-1 only. Both the normal control and the dimethoate control groups were used to compare the results. After 90 days, rats were sacrificed, blood was collected for biochemical assays, and livers were harvested for histological study. Results: High phenol content was estimated, and 2, 2- diphenyl-1-picryl hydrazyl radical (DPPH spectrophotometric, thin layer chromatography (TLC and 2, 2-Azobis-3-ethyl benzothiazoline-6-sulphonic acid (ABTS assays showed a high antioxidant activity among the extracts. The preventive effects observed in the E1, E2 and E3 groups proved that the extract could prevent dimethoate toxicity by maintaining normal reduced glutathione (GSH, vitamin C and E, superoxide dismutase, catalase, cholineasterase and lipid profiles. The preventive effect was observed to be dose dependent. The EO group showed no extractinduced toxicity. Histological observations agreed with the results obtained in the biochemical studies. Conclusion: The study demonstrated that ZM methanol fruit extract is capable of attenuating dimethoate-induced toxicity because of its

  8. Anti-inflammatory and anti-oxidant activities of olmesartan medoxomil ameliorate experimental colitis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Nagib, Marwa M. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo (Egypt); Tadros, Mariane G., E-mail: mirogeogo@yahoo.com [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt); ELSayed, Moushira I. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo (Egypt); Khalifa, Amani E. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt)

    2013-08-15

    Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) driven through altered immune responses with production of proinflammatory cytokines. Many therapies are used, but side effects and loss of response limit long-term effectiveness. New therapeutic strategies are thus needed for patients who don't respond to current treatments. Recently, there is suggested involvement of the proinflammatory hormone angiotensin II in inflammatory bowel disease. The aim of this study was to investigate the possible role of olmesartan medoxomil (OLM-M), an angiotensin II receptor blocker in ameliorating ulcerative colitis. Colitis was induced in male Wistar rats by administration of 5% dextran sodium sulphate (DSS) in drinking water for 5 days. OLM-M (1, 3 and 10 mg/kg) was administered orally during 21 days prior to the induction of colitis, and for 5 days after. Sulfasalazine (500 mg/kg) was used as reference drug. All animals were tested for changes in colon length, disease activity index (DAI) and microscopic damage. Colon tissue concentration/activity of tumor necrosis alpha (TNF-α), myeloperoxidase (MPO), prostaglandin E2 (PGE2), reduced glutathione (GSH) and malondialdehyde (MDA) were assessed. Results showed that the OLM-M dose-dependently ameliorated the colonic histopathological and biochemical injuries, an effect that is comparable or even better than that of the standard sulfasalazine. These results suggest that olmesartan medoxomil may be effective in the treatment of UC through its anti-inflammatory and antioxidant effects. - Highlights: • Olmesartan medoximil reduced dextran sodium sulphate- induced colitis. • Mechanism involved anti-inflammatory and antioxidant effects dose- dependently. • It suppressed malondialdehyde and restored reduced glutathione levels. • It reduced inflammatory markers levels and histological changes.

  9. Antimicrobial, anti-oxidant and calcium channel blocking activities of Amberboa divaricata

    Directory of Open Access Journals (Sweden)

    Shahid Muhammad Iqbal

    2014-03-01

    Full Text Available Traditional healers in Pakistan use the herb Amberboa divaricata as tonic, aperiant, deobstruent, febrifuge, anti-diarrheal, antiperiodic, antipyretic, anti-cough and in skin disorders. In vitro tissue experiments were carried out on rabbit jejunum to elucidate the possible mechanism of its prescribed effects on gastrointestinal tract, while antibacterial and antioxidant experiments were performed to provide pharmacological evidence of its traditional use in skin disorders. The 70%methanolic crude extract of A. divaricata produced dose dependent relaxation in isolated rabbit jejunum tissue in a concentration range of 0.1–3.0 mg/mL (n=5. Calcium response curves were constructed at concen-tration of 0.03 and 0.1 mg/mL (n=5, which produced rightward shift in a pattern similar to that of verapamil, confirming the calcium channel blocking activity. Agar disc diffusion assay at a concentration of 10 mg crude extract/disc showed clear zones of inhibition.

  10. The active natural anti-oxidant properties of chamomile, milk thistle, and halophilic bacterial components in human skin in vitro.

    Science.gov (United States)

    Mamalis, Andrew; Nguyen, Duc-Huy; Brody, Neil; Jagdeo, Jared

    2013-07-01

    The number of skin cancers continues to rise, accounting for approximately 40% of all cancers reported in the United States and approximately 9,500 deaths per year. Studies have shown reactive oxygen species (ROS) type free radicals are linked to skin cancer and aging. Therefore, it is important for us to identify agents that have anti-oxidant properties to protect skin against free radical damage. The purpose of this research is to investigate the anti-oxidant properties of bisabolol, silymarin, and ectoin that are components from chamomile, milk thistle, and halophilic bacteria, respectively. We measured the ability of bisabolol, silymarin, and ectoin to modulate the hydrogen peroxide (H2O2)-induced upregulation of ROS free radicals in normal human skin fibroblasts in vitro. Using a flow cytometry-based assay, we demonstrated that varying concentrations of these natural components were able to inhibit upregulation of H2O2-generated free radicals in human skin fibroblasts in vitro. Our results indicate components of chamomile, milk thistle, and halophilic bacteria exhibit anti-oxidant capabilities and warrant further study in clinical trials to characterize their anti-cancer and anti-aging capabilities.

  11. HPLC analysis, anti-oxidant activity of Genista ferox and its anti-proliferative effect in HeLa cell line

    Directory of Open Access Journals (Sweden)

    Ilhem Bencherchar

    2017-07-01

    Full Text Available The prevention and treatment of the cancer using plants have attracted increasing interest. The present study was aimed to determine the phenolic compounds of Genista ferox using HPLC-TOF/MS and the anti-oxidant acti-vity associated with anti-cancer activity against human cervical adenocarcinoma (HeLa cell line. Total anti-oxidant capacities of different extracts of G. ferox were assessed by DPPH assay, and their total phenolic and flavonoids contents measured by Folin–Ciocalteu and aluminum trichloride assays. The amounts of total phenolic (105.2 ± 0.6 – 308.5 ± 5.7 mg/g of extract measured as gallic acid equivalent and flavonoids (8.1 ± 0.1 – 124.0 ± 0.7 mg/g of extract measured as quercetin equivalent varied from chloroform to n-butanol extract of the two parts of the plant (leaf and stem. The ethyl acetate extract of G. ferox exhibited the most powerful effect on the DPPH scavenging activity with 94% from the leaf and 93% from the stem, while the chloroform extract from the leaf exhibited the most effective anti-proliferative activity against HeLa cell lines.

  12. Detection of extracellular enzymatic activity in microorganisms ...

    African Journals Online (AJOL)

    Detection of extracellular enzymatic activity in microorganisms isolated from waste vegetable oil contaminated soil using plate methodologies. Eugenia G. Ortiz Lechuga, Isela Quintero Zapata, Katiushka Arévalo Niño ...

  13. Synthesis and evaluation of anti-oxidant and cytotoxic activities of novel 10-undecenoic acid methyl ester based lipoconjugates of phenolic acids

    Directory of Open Access Journals (Sweden)

    Naganna Narra

    2017-01-01

    Full Text Available The synthesis of five novel methyl 10-undecenoate-based lipoconjugates of phenolic acids from undecenoic acid was carried out. Undecenoic acid was methylated to methyl 10-undecenoate which was subjected to a thiol–ene reaction with cysteamine hydrochloride. Further amidation of the amine was carried out with different phenolic acids such as caffeic, ferulic, sinapic, coumaric and cinnamic acid. All synthesized compounds were fully characterized and their structures were confirmed by spectral data. The anti-oxidant activity of the synthesized lipoconjugates of phenolic acids was studied by the 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging assay and also by the inhibition of linoleic acid oxidation in micellar medium by differential scanning calorimetry (DSC. The prepared compounds were also screened for their cytotoxic activity against five cell lines. It was observed that the lipoconjugates of caffeic acid, sinapic acid, ferulic acid, and coumaric acid displayed anticancer and anti-oxidant properties. The anticancer properties of these derivatives have been assessed by their IC50 inhibitory values in the proliferation of MDA-MB231, SKOV3, MCF7, DU 145 and HepG2 cancer cell lines.

  14. New Alcamide and Anti-oxidant Activity of Pilosocereus gounellei A. Weber ex K. Schum. Bly. ex Rowl. (Cactaceae

    Directory of Open Access Journals (Sweden)

    Jéssica K. S. Maciel

    2015-12-01

    Full Text Available The Cactaceae family is composed by 124 genera and about 1438 species. Pilosocereus gounellei, popularly known in Brazil as xique-xique, is used in folk medicine to treat prostate inflammation, gastrointestinal and urinary diseases. The pioneering phytochemical study of P. gounellei was performed using column chromatography and HPLC, resulting in the isolation of 10 substances: pinostrobin (1, β-sitosterol (2, a mixture of sitosterol 3-O-β-d-glucopyranoside/stigmasterol 3-O-β-d-glucopyranoside (3a/3b, 132-hydroxyphaeophytin a (4, phaeophytin a (5, a mixture of β-sitosterol and stigmasterol (6a/6b, kaempferol (7, quercetin (8, 7′-ethoxy-trans-feruloyltyramine (mariannein, 9 and trans-feruloyl tyramine (10. Compound 9 is reported for the first time in the literature. The structural characterization of the compounds was performed by analyses of 1-D and 2-D NMR data. In addition, a phenolic and flavonol total content assay was carried out, and the anti-oxidant potential of P. gounellei was demonstrated.

  15. Therapeutic implications of curcumin in the prevention of diabetic retinopathy via modulation of anti-oxidant activity and genetic pathways

    Science.gov (United States)

    Aldebasi, Yousef H; Aly, Salah M; Rahmani, Arshad H

    2013-01-01

    Diabetic Retinopathy (DR) is one of the most common complications of diabetes mellitus that affects the blood vessels of the retina, leading to blindness. The current approach of treatment based on anti-inflammatory, anti-angiogenesis drugs and laser photocoagulation are effective but also shows adverse affect in retinal tissues and that can even worsen the visual abilities. Thus, a safe and effective mode of treatment is needed to control or delaying the DR. Based on the earlier evidence of the potentiality of natural products as anti-oxidants, anti-diabetic and antitumor, medicinal plants may constitute a good therapeutic approach in the prevention of DR. Curcumin, constituents of dietary spice turmeric, has been observed to have therapeutic potential in the inhibition or slow down progression of DR. In this review, we summarize the therapeutic potentiality of curcumin in the delaying the DR through antioxidant, anti-inflammatory, inhibition of Vascular Endothelial Growth and nuclear transcription factors. The strength of involvement of curcumin in the modulation of genes action creates a strong optimism towards novel therapeutic strategy of diabetic retinopathy and important mainstay in the management of diabetes and its complications DR. PMID:24379904

  16. Comparison of anti-oxidant enzymes activity and levels of zinc and selenium in sperm and seminal plasma between fertile and idiopathic infertile men

    Directory of Open Access Journals (Sweden)

    Hadi Kharazi

    2010-12-01

    Full Text Available Background: Reactive oxygen species (ROS-induced lipidperoxidation can lead to dysfunction of sperm and thereby, infertility may be occurred. So, always there is a balance between amount of ROS and anti-oxidant molecules in semen. Anti-oxidant enzymes of sperm; superoxide dismutase (SOD, glutathione peroxidase (GPX, catalse and zinc and selenium can protect it from destructive effects of ROS. Hence, the present study was designed to compare the activities of these enzymes and trace elements between fertile and idiopathic infertile men.Methods: Semen specimens were collected from 30 infertile men with proven infertility by an urologist, and 30 fertile men as control donors, with age range between 20-40 years old. Semen analysis was conducted by CASA method. Atomic absorption method was used for measuring of zinc and selenium concentration. Activity assays of SOD and GPX were performed by Randox Kits. Aebi method also was applied for evaluation of catalase activity.Results: There was no difference between the activities of enzymes in fertile men and infertile ones. Also, it wasn't seen any difference in the selenium and zinc levels of seminal plasma. There was no relationship between evaluated items with sperm parameters. Only, in asthenoteratospermic individuals negative correlations were found between GPX and sperm motility, selenium and sperm morphology. Also, in these individuals ,there was a positive correlation between SOD and catalse activity.Conclusion: Measuring activities of SOD, GPx, and catalase and the contents of zinc and selenium of seminal plasma do not appear to be suitable tools for determining the fertility potential of sperm.

  17. Synthesis and Evaluation of the Anti-Oxidant Capacity of Curcumin Glucuronides, the Major Curcumin Metabolites

    Directory of Open Access Journals (Sweden)

    Ambar K. Choudhury

    2015-12-01

    Full Text Available Curcumin metabolites namely curcumin monoglucuronide and curcumin diglucuronide were synthesized using an alternative synthetic approach. The anti-oxidant potential of these curcumin glucuronides was compared with that of curcumin using DPPH scavenging method and Oxygen Radical Absorbance Capacity (ORAC assay. The results show that curcumin monoglucuronide exhibits 10 fold less anti-oxidant activity (DPPH method and the anti-oxidant capacity of curcumin diglucuronide is highly attenuated compared to the anti-oxidant activity of curcumin.

  18. Antibacterial and Anti-oxidant activity of three species of green, brown and red algae from Northern coast of Persian Gulf

    Directory of Open Access Journals (Sweden)

    Mohseen Heidari

    2015-05-01

    Full Text Available Background: Marine algae are shown to contain a wide range of bioactive compounds, which have commercial application in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. The biological activity of the natural bio-active compounds in algae has wide effects on bacteria, tumors and antioxidant activities. The purpose of this study was to determine antioxidant and antibacterial activity of the marine algae. Materials and Methods: The ethanol extracts of three species of green, brown and red algae were done by soaking method from northern coast of the Persian Gulf in Busheher province. Antibacterial activity of L. monocytogenes and E. Coli were performed using disk diffusion and well method, and also antioxidant activities of ethanol extracts of added three species accomplished using DPPH, FRAP and PMB tests. Results: The highest antioxidant activity was belonged to brown algae C. trinodis. Meanwhile Algae extraction was not revealed antibacterial activity against E. coli, but showed antibacterial activity against L. monocytogenes. Conclusion: In this study algae species was exhibited excellent antioxidant activity when compared with their antibacterial effects. The highest anti-oxidant activitie was found in brown algae C. trinodis.

  19. Anti-ulcerogenic activity of the root bark extract of the African laburnum “Cassia sieberiana” and its effect on the anti-oxidant defence system in rats

    Directory of Open Access Journals (Sweden)

    Nartey Edmund T

    2012-12-01

    Full Text Available Abstract Background Despite the widespread use of roots of Cassia sieberiana in managing several health conditions including gastric ulcer disease, there is little scientific data to support the rational phytotherapeutics as an anti-ulcer agent. This paper reports an evaluation of the in vivo anti-oxidant properties of an aqueous root bark extract of C. sieberiana in experimental gastric ulcer rats in a bid to elucidate its mechanism of action. Methods Fisher 344 (F344 rats received pretreatment of C. sieberiana root bark extract (500, 750, and 1000 mg/kg body wt. for 7 days after which there was induction of gastric injury with absolute ethanol. The mean ulcer index (MUI was calculated and serum total anti-oxidant level determined. Gastric mucosal tissues were prepared and the activity level of the enzymes superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx and myeloperoxidase (MPO were measured together with the level of lipid hydroperoxides (LPO. Statistical difference between treatment groups was analysed using one-way analysis of variance (ANOVA followed by Dunnett’s post hoc t test. Statistical significance was calculated at P Results The administration of ethanol triggered severe acute gastric ulcer and pretreatment with C. sieberiana root bark extract significantly and dose dependently protected against this effect. The root bark extract also dose dependently and significantly inhibited the ethanol induced decrease in activity levels of the enzymes SOD, CAT and GPx. The extract also inhibited the ethanol-induced decrease in level of serum total anti-oxidant capacity. The increase in ethanol-induced LPO level and MPO activity were also significantly and dose-dependently inhibited by the root bark extract. Conclusions The gastro-cytoprotective effect, inhibition of decrease in activity of gastric anti-oxidant enzymes and MPO as well as the inhibition of gastric LPO level suggests that one of the anti-ulcer mechanisms of

  20. Evaluation of general toxicity, anti-oxidant activity and effects of ficus carica leaves extract on ischemia/reperfusion injuries in isolated heart of rat.

    Science.gov (United States)

    Allahyari, Saeideh; Delazar, Abbas; Najafi, Moslem

    2014-12-01

    This study was aimed to evaluate general toxicity, anti-oxidant activity and effects of Ficus carica leaves extract on ischemia/reperfusion injuries. Antioxidant activity, total phenolic and flavonoid compounds of 70% methanolic extract of Ficus carica leaves were measured. The general toxicity test was carried out by brine shrimp lethality assay. Isolated hearts of male rats were mounted on a Langendorff apparatus and perfused with modified Krebs-Henseleit solution. In control group, the hearts were perfused with normal Krebs solution, however, treatment groups received enriched solution with the extract (0.04, 0.2 and 1 mg/ml) during stabilization and reperfusion (after 30 min global ischemia), respectively. Cardiac arrhythmias were analyzed and TTC method was used for infarct size determination. The extract displayed antioxidant activity in the DPPH assay (RC50=0.06666 mg/ml). Total phenolic content was 12.29 mg GAE/100 g dry sample and the amount of flavonoids was calculated 40.729 mg/g. LD50 value by brine shrimp test was 0.158 mg/ml. The extract decreased number of VEBs, incidence and duration of Rev VF with clear reduction in infarct size and infarct volume (PFicus carica decreased ischemia/reperfusion-induced injuries. These protections are probably due to antioxidant capacity and the existence of flavonoid and phenolic compounds in the extract.

  1. Phytochemically evaluation and net anti-oxidant activity of Tunisian Melia azedarach leaves extract from their ProAntidex parameter

    Directory of Open Access Journals (Sweden)

    Maroua Akacha

    2016-06-01

    Full Text Available Phytotherapy is a discipline which is interested in the design, the preparation and the interpretation of structure activity relationship of the natural bioactive molecules. In this context, ethanolic leaves extract of Melia azedarach L. was phytochemically analysed on the bases of HPLC and by GC–MS. Extract wase tested for his in vitro antioxidant activities by 1,1-diphenyl-2-picrylhydrazyl (DPPH, H2O2, hydroxyl radical scavenging activity, Ferric Reducing Power (FRP and Ferrous ion chelating abilities methods. The antioxidant activity of the extract was analyzed simultaneously with their pro-oxidant capacity. The ratio of pro-oxidant to the antioxidant activity (ProAntidex represents a useful index of the net free radical scavenging potential of the synthesized compounds. Tested extract showed significant antioxidant activity with a moderate ProAntidex.

  2. Changes of Germination Properties, Photosynthetic Pigments and Anti Oxidant Enzymes Activity of Safflower as Affected by Drought and Salinity Stresses

    Directory of Open Access Journals (Sweden)

    A Sirousmehr

    2015-01-01

    Full Text Available To evaluate the effects of drought and salinity stresses on some germination characteristics, contents of photosynthetic pigments and antioxidant enzymes (CAT, APX and GPX in the leaves of safflower, a factorial experiment based on CRD was conducted during 2012 at both laboratory and greenhouse of Zabol University with four replications. To expose the plants to drought (0, -6 and -8 bars and salinity stresses (5, 10 and 15 ds.m-1 PEG 6000 and NaCl were used respectively. The results indicated that the effects of factors on germination percentage and rate, chlorophyll a and b contents and antioxidants enzymes activities were significant. The result of laboratory study revealed a reduction in percentage and speed of germination when plants exposed to negative osmotic potential. Photosynthetic pigments of plant leaves grown in greenhouse significantly decreased by increasing drought and salinity stresses. Increasing drought stress along with soluble salts changed the activity of some antioxidant enzymes. Enzymes’ activity of both CAT and GPX were increased when the plants expose to PEG drought stress, but decreased against the levels of salt stress. APX activity also increased due to drought stress. Interactive effects of drought×salinity stresses indicated that under lower stress GPX enzymes increased salinity, and under severe stress APX was highly increased. It means the production and activity of plant defensive system like these enzymes in recent tensions and leads to protect or make plants tolerate against oxidative stress induced by drought and salinity.

  3. Phytochemical screening and anti-oxidant activity of the two plants Ziziphus oxyphylla Edgew and Cedrela serrata Royle.

    Science.gov (United States)

    Ahmad, Rizwan; Ahmad, Mansoor; Mehjabeen; Jahan, Noor

    2014-09-01

    Phytochemical studies of medicinal plants are a basic and helping tool for the isolation of active secondary metabolites. The isolation of active compounds is made easy by the help of preliminary phytochemical studies, which shows the presence of a specific class or group of compounds present in these medicinal plants. Ziziphus oxyphylla and Cedrela serrata are medicinal plants with valuable local uses. The present study is for the first Phytochemical investigation of these two medicinal plants which consists of, Quantitative tests showing very good results except Ziziphus oxyphylla plants which does not showed the results for Ester value and Peroxide value. Color reactions are studied for all the crude extracts showing the presence of a number of chemical groups belonging to the class of Alkaloids, Phenol compounds, Phenothiazines, Aromatic compounds, Amino acids, Sulfur compounds etc. Brine shrimp activity was performed which showed a LD50 value of 45.74 and 53.36 in the case of Ziziphus oxyphylla roots and Cedrela serrata bark respectively, which is comparable to the standard drug Cyclophosphamide results of 16.09. Insecticidal activity did not show any promising result indicating the absence of any insect killing potency. Antioxidant activity was very positive for all the extract particularly, the Ziziphus oxyphylla roots, which showed even better results than the standard drug Ascorbic acid used in various dilutions.

  4. Larvicidal, insecticidal, brine shrimp cytotoxicity and anti-oxidant activities of Diospyros kaki (L.) reported from Pakistan.

    Science.gov (United States)

    Nisar, Mohammad; Shah, Syed Muhammad Mukarram; Khan, Imran; Sheema; Sadiq, Abdul; Khan, Shahzeb; Shah, Syed Muhammad Hassan

    2015-07-01

    Diospyros kaki is cultivated in different agro-ecological zones of Pakistan, especially in Malakand division. The current study was designed to investigate the hide potential of the vulnerable species of the plant. Aqueous extracts of Diospyros kaki leaves were screened for larvicidal, insecticidal cytotoxic and antioxidant activities. The extract exhibited moderate to outstanding larvicidal activity (100 to 28%) at 100, 80, 70, 50, 40, 30, 20 and 10% concentrations respectively after 24 hours, showing 42% LC₅₀. Permitrin displayed 100% lethality at 0.3%. The extract demonstrated outstanding cytotoxic action against brain shrimps nauplii (Artemia salina), showing 10 ppm LC50 which is closed to the LC50 (9.8μg/ml) of standard drug Etoposide. Similarly profound insecticidal potential (100%) was recorded after 15 min against Cimex lectularius. In DPPH scavenging activity the extract demonstrated moderate 30.22%, while Quercetin, Gallic acid and Acetic acid showed 98, 96 and 97% activity respectively at 100 ppm. Thus on the basis of our finding it could be concluded that the decoction of the leaves of D. kaki is a good natural alternative for the control of insects and neoplasia.

  5. Analysis of anti-bacterial and anti oxidative activity of Azadirachta indica bark using various solvents extracts

    Directory of Open Access Journals (Sweden)

    Raid Al Akeel

    2017-01-01

    Full Text Available Herbal medications have been used for relief of symptoms of disease. Regardless of the great advances observed in current medicine in recent decades, plants still make a significant contribution to health care. An alarming increase in bacterial strains resistant to a number of antimicrobial agents demands that a renewed effort be made to seek antibacterial agents effective against pathogenic bacteria resistant to or less sensitive to current antibiotics. Anti-bacterial activity of Azadirachta indica stem bark was tested against pathogenic Salmonella paratyphi and Salmonella typhi using various solvent extracts. The in vitro anti-bacterial activity was performed by agar well diffusion method and the results were expressed as the average diameter of zone of inhibition of bacterial growth around the well. The ethanol and methanol extracts showed better anti-bacterial activity with zone of inhibition (20–25 mm when compared with other tested extracts and standard antibiotic Erythromycin (15 mcg with zone of inhibition (13–14 mm. Using Fisher’s exact test of significance difference was found between two Salmonella strains sensitivity patterns against tested extracts (P ⩽ 0.035. Extracts of A. indica stem bark also exhibited significant antioxidant activity, thus establishing the extracts as an antioxidant. The results obtained in this study give some scientific support to the A. indica stem bark for further investigation of compounds and in future could be used as drug.

  6. Phyto-assisted synthesis of bio-functionalised silver nanoparticles and their potential anti-oxidant, anti-microbial and wound healing activities.

    Science.gov (United States)

    Mohanta, Yugal Kishore; Biswas, Kunal; Panda, Sujogya Kumar; Bandyopadhyay, Jaya; De, Debashis; Jayabalan, Rasu; Bastia, Akshaya Kumar; Mohanta, Tapan Kumar

    2017-12-01

    Bio- synthesis of silver nanoparticles (AgNPs) was made by using the aqueous leaf extract of Ardisia solanacea. Rapid formation of AgNPs was observed from silver nitrate upon treatment with the aqueous extract of A. solanacea leaf. The formation and stability of the AgNPs in the colloidal solution were monitored by UV-visible spectrophotometer. The mean particle diameter of AgNPs was calculated from the DLS with an average size ∼4 nm and ∼65 nm. ATR-FTIR spectroscopy confirmed the presence of alcohols, aldehydes, flavonoids, phenols and nitro compounds in the leaf which act as the stabilizing agent. Antimicrobial activity of the synthesized AgNPs was performed using agar well diffusion and broth dilution method against the Gram-positive and Gram-negative bacteria. Further, robust anti-oxidative potential was evaluated by DPPH assay. The highest antimicrobial activity of synthesized AgNPs was found against Pseudomonas aeruginosa (28.2 ± 0.52 mm) whereas moderate activity was found against Bacillus subtilis (16.1 ± 0.76), Candida kruseii (13.0 ± 1.0), and Trichophyton mentagrophytes (12.6 ± 1.52). Moreover, the potential wound healing activity was observed against the BJ-5Ta normal fibroblast cell line. Current research revealed that A. solanacea was found to be a suitable source for the green synthesis of silver nanoparticles.

  7. Localized cranial hyperostosis of meningiomas: a result of neoplastic enzymatic activity?

    DEFF Research Database (Denmark)

    Heick, A.; Mosdal, C.; Klinken, Leif

    1993-01-01

    Neuropathology, alkaline phosphatase, cranial hyperostosis, meningioma, ossifying enzymatic activity......Neuropathology, alkaline phosphatase, cranial hyperostosis, meningioma, ossifying enzymatic activity...

  8. Sodium chloride enhances cadmium tolerance through reducing cadmium accumulation and increasing anti-oxidative enzyme activity in tobacco.

    Science.gov (United States)

    Zhang, Bing-Lin; Shang, Sheng-Hua; Zhang, Hai-Tao; Jabeen, Zahra; Zhang, Guo-Ping

    2013-06-01

    The effect of sodium chloride (NaCl) on cadmium (Cd) uptake, translocation, and oxidative stress was investigated using 2 tobacco cultivars differing in Cd tolerance. The growth inhibition of the tobacco plants exposed to Cd toxicity was in part alleviated by moderate addition of NaCl in the culture solution. Cadmium concentration of shoots and roots in the 2 cultivars increased with increasing Cd levels in the solution and decreased with the addition of NaCl. The addition of NaCl could alleviate the oxidative stress caused by Cd toxicity, as reflected by reduced production of malondialdehyde and recovered or enhanced activities of antioxidative enzymes catalase and glutathione peroxidase. The results also showed that the enhancement of antioxidative enzyme activity by NaCl for the tobacco plants exposed to Cd stress is related to induced Ca signaling. Copyright © 2013 SETAC.

  9. Tocopherol activity correlates with its location in a membrane: A new perspective on the anti-oxidant Vitamin E

    Science.gov (United States)

    Marquardt, Drew; Williams, Justin; Kucerka, Norbert; Atkinson, Jeffrey; Katsaras, John; Wassall, Stephen; Harroun, Thad

    2013-03-01

    There are no proven health benefits to supplementing with Vitamin E, so why do we require it for healthy living? The whole notion that vitamin E is an in-vivo antioxidant is now being seriously questioned. Using neutron diffraction and supporting techniques, we have correlated vitamin E's location in model membranes with its antioxidant activity. experiments were conducted using phosphatidylcholine (PC) bilayers whose fatty acid chains varied in their degree of unsaturation. We observe vitamin E up-right in all lipids examined, with its overall height in the bilayer lipid dependant. Interestingly we observe vitamin E's hydroxyl in the headgroup region of the bilayer for both the fully saturated and poly unsaturated lipids. Vitamin E was most effective at intercepting water borne oxidants than radical initiated within the bilayer core. However for lipids where vitamin E resides slightly lower (glycerol backbone) we observe comparable antioxidant activity against both water borne and hydrocarbon borne oxidants. Thus showing lipid species can modulate the location of vitamin E's activity.

  10. Anti-oxidant activity and major chemical component analyses of twenty-six commercially available essential oils.

    Science.gov (United States)

    Wang, Hsiao-Fen; Yih, Kuang-Hway; Yang, Chao-Hsun; Huang, Keh-Feng

    2017-10-01

    This study analyzed 26 commercially available essential oils and their major chemical components to determine their antioxidant activity levels by measuring their total phenolic content (TPC), reducing power (RP), β-carotene bleaching (BCB) activity, trolox equivalent antioxidant capacity (TEAC), and 1,1-diphenyl-2-picrylhydrazyl free radical scavenging (DFRS) ability. The clove bud and thyme borneol essential oils had the highest RP, BCB activity levels, and TPC values among the 26 commercial essential oils. Furthermore, of the 26 essential oils, the clove bud and ylang ylang complete essential oils had the highest TEAC values, and the clove bud and jasmine absolute essential oils had the highest DFRS ability. At a concentration of 2.5 mg/mL, the clove bud and thyme borneol essential oils had RP and BCB activity levels of 94.56% ± 0.06% and 24.64% ± 0.03% and 94.58% ± 0.01% and 89.33% ± 0.09%, respectively. At a concentration of 1 mg/mL, the clove bud and thyme borneol essential oils showed TPC values of 220.00 ± 0.01 and 69.05 ± 0.01 mg/g relative to gallic acid equivalents, respectively, and the clove bud and ylang ylang complete essential oils had TEAC values of 809.00 ± 0.01 and 432.33 ± 0.01 μM, respectively. The clove bud and jasmine absolute essential oils showed DFRS abilities of 94.13% ± 0.01% and 78.62% ± 0.01%, respectively. Phenolic compounds of the clove bud, thyme borneol and jasmine absolute essential oils were eugenol (76.08%), thymol (14.36%) and carvacrol (12.33%), and eugenol (0.87%), respectively. The phenolic compounds in essential oils were positively correlated with the RP, BCB activity, TPC, TEAC, and DFRS ability. Copyright © 2017. Published by Elsevier B.V.

  11. Anti-oxidant activity and major chemical component analyses of twenty-six commercially available essential oils

    Directory of Open Access Journals (Sweden)

    Hsiao-Fen Wang

    2017-10-01

    Full Text Available This study analyzed 26 commercially available essential oils and their major chemical components to determine their antioxidant activity levels by measuring their total phenolic content (TPC, reducing power (RP, β-carotene bleaching (BCB activity, trolox equivalent antioxidant capacity (TEAC, and 1,1-diphenyl-2-picrylhydrazyl free radical scavenging (DFRS ability. The clove bud and thyme borneol essential oils had the highest RP, BCB activity levels, and TPC values among the 26 commercial essential oils. Furthermore, of the 26 essential oils, the clove bud and ylang ylang complete essential oils had the highest TEAC values, and the clove bud and jasmine absolute essential oils had the highest DFRS ability. At a concentration of 2.5 mg/mL, the clove bud and thyme borneol essential oils had RP and BCB activity levels of 94.56% ± 0.06% and 24.64% ± 0.03% and 94.58% ± 0.01% and 89.33% ± 0.09%, respectively. At a concentration of 1 mg/mL, the clove bud and thyme borneol essential oils showed TPC values of 220.00 ± 0.01 and 69.05 ± 0.01 mg/g relative to gallic acid equivalents, respectively, and the clove bud and ylang ylang complete essential oils had TEAC values of 809.00 ± 0.01 and 432.33 ± 0.01 μM, respectively. The clove bud and jasmine absolute essential oils showed DFRS abilities of 94.13% ± 0.01% and 78.62% ± 0.01%, respectively. Phenolic compounds of the clove bud, thyme borneol and jasmine absolute essential oils were eugenol (76.08%, thymol (14.36% and carvacrol (12.33%, and eugenol (0.87%, respectively. The phenolic compounds in essential oils were positively correlated with the RP, BCB activity, TPC, TEAC, and DFRS ability.

  12. Bioaccumulation of Cry1Ab protein from an herbivore reduces anti-oxidant enzyme activities in two spider species.

    Directory of Open Access Journals (Sweden)

    Ji Zhou

    Full Text Available Cry proteins are expressed in rice lines for lepidopteran pest control. These proteins can be transferred from transgenic rice plants to non-target arthropods, including planthoppers and then to a predatory spider. Movement of Cry proteins through food webs may reduce fitness of non-target arthropods, although recent publications indicated no serious changes in non-target populations. Nonetheless, Cry protein intoxication influences gene expression in Cry-sensitive insects. We posed the hypothesis that Cry protein intoxication influences enzyme activities in spiders acting in tri-trophic food webs. Here we report on the outcomes of experiments designed to test our hypothesis with two spider species. We demonstrated that the movement of CryAb protein from Drosophila culture medium into fruit flies maintained on the CryAb containing medium and from the flies to the spiders Ummeliata insecticeps and Pardosa pseudoannulata. We also show that the activities of three key metabolic enzymes, acetylcholine esterase (AchE, glutathione peroxidase (GSH-Px, and superoxide dismutase (SOD were significantly influenced in the spiders after feeding on Cry1Ab-containing fruit flies. We infer from these data that Cry proteins originating in transgenic crops impacts non-target arthropods at the physiological and biochemical levels, which may be one mechanism of Cry protein-related reductions in fitness of non-target beneficial predators.

  13. Evaluation of anti-oxidant and anti-microbial activity of various essential oils in fresh chicken sausages.

    Science.gov (United States)

    Sharma, Heena; Mendiratta, S K; Agarwal, Ravi Kant; Kumar, Sudheer; Soni, Arvind

    2017-02-01

    The present study was undertaken to evaluate antimicrobial and antioxidant effect of essential oils on the quality of fresh (raw, ready to cook) chicken sausages. Several preliminary trials were carried out to optimize the level of four essential oils viz., clove oil, holybasil oil, thyme oil and cassia oil and these essential oils were incorporated at 0.25, 0.125, 0.25 and 0.125%, respectively in fresh chicken sausages. Quality evaluation and detailed storage stability studies were carried out for fresh chicken sausages for 20 days at refrigeration temperature (4 ± 1 °C). Refrigerated storage studies revealed that TBARS of control was significantly higher than treatment products whereas, total phenolics and DPPH activity was significantly lower in control. Among treatments, clove oil products had significantly lower TBARS but higher total phenolic content and DPPH activity followed by cassia oil, thyme oil and holybasil oil products. Microbial count of essential oil incorporated products were significantly lower than control and remained well below the permissible limit of fresh meat products (log 10 7 cfu/g). Cassia oil products were observed with better anti-microbial characteristics than clove oil products at 0.25% level of incorporation, whereas, thyme oil products were better than holy basil oil products at 0.125% level. Storage studies revealed that clove oil (0.25%), holy basil oil (0.125%), cassia oil (0.25%) and thyme oil (0.125%) incorporated aerobically packaged and refrigerated fresh chicken sausages had approx. 4-5, 2-3, 5-6 and 2-3 days longer shelf life than control, respectively.

  14. Study of Phytochemical, Anti-Microbial, Anti-Oxidant, Phytotoxic, and Immunomodulatory Activity Properties of Bauhinia variegata

    Directory of Open Access Journals (Sweden)

    Jaya Bhandari

    2017-04-01

    In the phytochemical screening, we observed the presence of different phytochemicals like steroids, terpenoids, flavonoids, reducing sugars and glycosides. In case of Antimicrobial assay, the plant was found to be most effective against B.cereus with the highest zone of inhibition (ZOI of 12mm and against Rhizopus with ZOI of 11mm. During the antioxidant assay in comparison to Ascorbic acid; at highest concentration, the scavenging activity shown by the plant Bauhinia variegata are 43.38% as compared to ascorbic acid 89.25%. In the Immunomodulatory assay at the highest concentration i.e. 250 µg/ml, the plant showed 75.1% effect, which showed that the plant has potential anti-inflammatory potential. In phytotoxicity assay, Bauhinia variegata showed 20% phytotoxicity. Bauhinia variegata has thus been proven to be an important candidate to be used as an antimicrobial, antioxidant, anti-inflammatory, phytotoxic and anticancer agent. Separation of pure compounds with bioassay guided extraction, spectrometric analysis and subsequent cytotoxicity assay of the pure bioactive compounds from Bauhinia variegate is highly recommended as crude extract itself showed promising phytotoxicity and other pharmaceutical potential.

  15. FLAVONOIDS AND ANTI-OXIDANT ACTIVITY MEDIATED GASTROPROTECTIVE ACTION OF LEATHERY MURDAH, TERMINALIA CORIACEA (ROXB. WIGHT & ARN. LEAF METHANOLIC EXTRACT IN RATS

    Directory of Open Access Journals (Sweden)

    Mohammed Safwan ALI KHAN

    2017-05-01

    Full Text Available ABSTRACT BACKGROUND Leathery Murdah, Terminalia coriacea (Roxb. Wight & Arn. from family Combretaceae is used in Ayurveda and Siddha traditional systems of medicine to heal ulcers. OBJECTIVE The present study was conducted to assess the gastroprotective effect and understand the fundamental mechanism of action of Leathery Murdah, Terminalia coriacea (Roxb. Wight & Arn. Leaf Methanolic Extract. METHODS The test extract was screened for anti-ulcer activity by Aspirin induced ulcerogenesis in pyloric ligation and ethanol induced gastric ulcers at three doses - 125, 250, and 500 mg/kg, p.o. using Ranitidine 50 mg/kg and Misoprostol 100 μg/kg as standard drug in respective models. Seven parameters were carefully examined, that is, ulcer index, total protein, mucin, catalase, malondialdehyde, and superoxide dismutase levels and histopathology. High Performance Liquid Chromatographic - Ultra Violet profiling and Liquid Chromatography - Mass Spectral analysis of crude Terminalia coriacea leaves methanolic extract were carried out as a part of chemical characterization to identify bioactive compounds. RESULTS All the test doses exhibited significant gastroprotective function, particularly the higher doses demonstrated improved action. The results revealed a significant increase in the levels of catalase, superoxide dismutase, and Mucin with reduction in ulcer index, the levels of total protein, and malondialdehyde. Histopathological observations also illustrated the gastroprotective effect of Terminalia coriacea leaves methanolic extract. CONCLUSION Terminalia coriacea leaves methanolic extract exhibited strong anti-oxidant and anti-secretory activities mediated gastroprotection besides inducing the gastric mucosal production. The observed pharmacological response can be attributed to the flavonoidal compounds namely - Quercetin-3-O-rutinoside, Luteolin-7-O-glucoside, Myricetin hexoside, Quercetin-3-O-glucoside, Isorhamnetin-3-O-rhamnosylglucoside and

  16. Enzymatic activity of the cellulolytic complex produced by trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Alfonsel Jaen, M.; Negro, M.J.; Saez, R.; Martin Moreno, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reese QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass from Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars productions, have been selected. Previous studies on enzymatic hydrolysis of O. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (author). 10 figs.; 10 refs

  17. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Alfonsel J, M.; Negro A, M. J.; Saez A, R.; Martin M, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs

  18. Synthesis and Evaluation of the Anti-Oxidant Capacity of Curcumin Glucuronides, the Major Curcumin Metabolites

    OpenAIRE

    Choudhury, Ambar K.; Raja, Suganya; Mahapatra, Sanjata; Nagabhushanam, Kalyanam; Majeed, Muhammed

    2015-01-01

    Curcumin metabolites namely curcumin monoglucuronide and curcumin diglucuronide were synthesized using an alternative synthetic approach. The anti-oxidant potential of these curcumin glucuronides was compared with that of curcumin using DPPH scavenging method and Oxygen Radical Absorbance Capacity (ORAC) assay. The results show that curcumin monoglucuronide exhibits 10 fold less anti-oxidant activity (DPPH method) and the anti-oxidant capacity of curcumin diglucuronide is highly attenuated co...

  19. Aloperine attenuated neuropathic pain induced by chronic constriction injury via anti-oxidation activity and suppression of the nuclear factor kappa B pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ya-Qiong [Department of Pharmacology, Ningxia Medical university, Yinchuan 750000 (China); Jin, Shao-Ju [Department of Pharmacology, Ningxia Medical university, Yinchuan 750000 (China); Luohe Medical College, Luohe 462002, Henan Province (China); Liu, Ning [Department of Pharmacology, Ningxia Medical university, Yinchuan 750000 (China); Li, Yu-Xiang [College of Nursing, Ningxia Medical University, Yinchuan 750004 (China); Zheng, Jie [Department of Pharmacology, Ningxia Medical university, Yinchuan 750000 (China); Ma, Lin [Ningxia Key Lab of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004 (China); Du, Juan; Zhou, Ru [Department of Pharmacology, Ningxia Medical university, Yinchuan 750000 (China); Zhao, Cheng-Jun [Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750000 (China); Niu, Yang [Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004 (China); Sun, Tao [Ningxia Key Lab of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004 (China); Yu, Jian-Qiang, E-mail: Yujq910315@163.com [Department of Pharmacology, Ningxia Medical university, Yinchuan 750000 (China); Luohe Medical College, Luohe 462002, Henan Province (China)

    2014-09-05

    Highlights: • Aloperine has anti-nociceptive effects on neuropathic pain induced CCI. • Aloperine reduces ROS in neuropathic pain mice. • Aloperine down-regulates the expression of NF-κB and its downstream pro-inflammatory cytokines in neuropathic pain mice. - Abstract: Objective: To investigate whether aloperine (ALO) has antinociceptive effects on neuropathic pain induced by chronic constriction injury, whether ALO reduces ROS against neuropathic pain, and what are the mechanisms involved in ALO attenuated neuropathic pain. Methods: Mechanical and cold allodynia, thermal and mechanical hyperalgesia and spinal thermal hyperalgesia were estimated by behavior methods such as Von Frey filaments, cold-plate, radiant heat, paw pressure and tail immersion on one day before surgery and days 7, 8, 10, 12 and 14 after surgery, respectively. In addition, T-AOC, GSH-PX, T-AOC and MDA in the spinal cord (L4/5) were measured to evaluate anti-oxidation activity of ALO on neuropathic pain. Expressions of NF-κB and pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in the spinal cord (L4/5) were analyzed by using Western blot. Results: Administration of ALO (80 mg/kg and 40 mg/kg, i.p.) significantly increased paw withdrawal threshold, paw pressure, paw withdrawal latencies, tail-curling latencies, T-AOC, GSH-PX and T-SOD concentration, reduced the numbers of paw lifts and MDA concentration compared to CCI group. ALO attenuated CCI induced up-regulation of expressions of NF-κB, TNF-α, IL-6, IL-1β at the dose of 80 mg/kg (i.p.). Pregabalin produced similar effects serving as positive control at the dose of 10 mg/kg (i.p.). Conclusion: ALO has antinociceptive effects on neuropathic pain induced by CCI. The antinociceptive effects of ALO against neuropathic pain is related to reduction of ROS, via suppression of NF-κB pathway.

  20. Aloperine attenuated neuropathic pain induced by chronic constriction injury via anti-oxidation activity and suppression of the nuclear factor kappa B pathway

    International Nuclear Information System (INIS)

    Xu, Ya-Qiong; Jin, Shao-Ju; Liu, Ning; Li, Yu-Xiang; Zheng, Jie; Ma, Lin; Du, Juan; Zhou, Ru; Zhao, Cheng-Jun; Niu, Yang; Sun, Tao; Yu, Jian-Qiang

    2014-01-01

    Highlights: • Aloperine has anti-nociceptive effects on neuropathic pain induced CCI. • Aloperine reduces ROS in neuropathic pain mice. • Aloperine down-regulates the expression of NF-κB and its downstream pro-inflammatory cytokines in neuropathic pain mice. - Abstract: Objective: To investigate whether aloperine (ALO) has antinociceptive effects on neuropathic pain induced by chronic constriction injury, whether ALO reduces ROS against neuropathic pain, and what are the mechanisms involved in ALO attenuated neuropathic pain. Methods: Mechanical and cold allodynia, thermal and mechanical hyperalgesia and spinal thermal hyperalgesia were estimated by behavior methods such as Von Frey filaments, cold-plate, radiant heat, paw pressure and tail immersion on one day before surgery and days 7, 8, 10, 12 and 14 after surgery, respectively. In addition, T-AOC, GSH-PX, T-AOC and MDA in the spinal cord (L4/5) were measured to evaluate anti-oxidation activity of ALO on neuropathic pain. Expressions of NF-κB and pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in the spinal cord (L4/5) were analyzed by using Western blot. Results: Administration of ALO (80 mg/kg and 40 mg/kg, i.p.) significantly increased paw withdrawal threshold, paw pressure, paw withdrawal latencies, tail-curling latencies, T-AOC, GSH-PX and T-SOD concentration, reduced the numbers of paw lifts and MDA concentration compared to CCI group. ALO attenuated CCI induced up-regulation of expressions of NF-κB, TNF-α, IL-6, IL-1β at the dose of 80 mg/kg (i.p.). Pregabalin produced similar effects serving as positive control at the dose of 10 mg/kg (i.p.). Conclusion: ALO has antinociceptive effects on neuropathic pain induced by CCI. The antinociceptive effects of ALO against neuropathic pain is related to reduction of ROS, via suppression of NF-κB pathway

  1. The effects of insulin pre-administration in mice exposed to ethanol: alleviating hepatic oxidative injury through anti-oxidative, anti-apoptotic activities and deteriorating hepatic steatosis through SRBEP-1c activation.

    Science.gov (United States)

    Liu, Jiangzheng; Wang, Xin; Peng, Zhengwu; Zhang, Tao; Wu, Hao; Yu, Weihua; Kong, Deqing; Liu, Ying; Bai, Hua; Liu, Rui; Zhang, Xiaodi; Hai, Chunxu

    2015-01-01

    Alcoholic liver disease (ALD) has become an important liver disease hazard to public and personal health. Oxidative stress is believed to be responsible for the pathological changes in ALD. Previous studies have showed that insulin, a classic regulator of glucose metabolism, has significant anti-oxidative function and plays an important role in maintaining the redox balance. For addressing the effects and mechanisms of insulin pre-administration on ethanol-induced liver oxidative injury, we investigated histopathology, inflammatory factors, apoptosis, mitochondrial dysfunction, oxidative stress, antioxidant defense system, ethanol metabolic enzymes and lipid disorder in liver of ethanol-exposed mice pretreatment with insulin or not. There are several novel findings in our study. First, we found insulin pre-administration alleviated acute ethanol exposure-induced liver injury and inflammation reflected by the decrease of serum AST and ALT activities, the improvement of pathological alteration and the inhibition of TNF-α and IL-6 expressions. Second, insulin pre-administration could significantly reduce apoptosis and ameliorate mitochondrial dysfunction in liver of mice exposed to ethanol, supporting by decreasing caspases-3 activities and the ratio of Bax/Bcl-2, increasing mitochondrial viability and mitochondrial oxygen consumption, inhibition of the decline of ATP levels and mitochondrial ROS accumulation. Third, insulin pre-administration prevented ethanol-mediated oxidative stress and enhance antioxidant defense system, which is evaluated by the decline of MDA levels and the rise of GSH/GSSG, the up-regulations of antioxidant enzymes CAT, SOD, GR through Nrf-2 dependent pathway. Forth, the modification of ethanol metabolism pathway such as the inhibition of CYP2E1, the activation of ALDH might be involved in the anti-oxidative and protective effects exerted by insulin pre-administration against acute ethanol exposure in mice. Finally, insulin pre

  2. Therapeutic effects of date fruits (Phoenix dactylifera) in the prevention of diseases via modulation of anti-inflammatory, anti-oxidant and anti-tumour activity

    Science.gov (United States)

    Rahmani, Arshad H; Aly, Salah M; Ali, Habeeb; Babiker, Ali Y; Srikar, Sauda; khan, Amjad A

    2014-01-01

    The current mode of treatment of various diseases based on synthetic drugs is expensive, alters genetic and metabolic pathways and also shows adverse side effects. Thus, safe and effective approach is needed to prevent the diseases development and progression. In this vista, Natural products are good remedy in the treatment/management of diseases and they are affordable and effective without any adverse effects. Dates are main fruit in the Arabian Peninsula and are considered to be one of the most significant commercial crops and also have been documented in Holy Quran and modern scientific literatures. Earlier studies have shown that constituents of dates act as potent antioxidant, anti-tumour as well as anti-inflammatory, provide a suitable alternative therapy in various diseases cure. In this review, dates fruits has medicinal value are summarized in terms of therapeutic implications in the diseases control through anti-oxidant, anti-inflammatory, anti-tumour and ant-diabetic effect. PMID:24753740

  3. Anti-inflammatory activities of enzymatic (alcalase) hydrolysate of a ...

    African Journals Online (AJOL)

    Anti-inflammatory activities of enzymatic (alcalase) hydrolysate of a whey protein concentrate. LB de Carvalho-Silva, MTB Pacheco, R Bertoldo, C de Carvalho Veloso, LC Teodoro, A Giusti-Paiva, PCB Lollo, R Soncini ...

  4. Soil bacterial flora and enzymatic activities in zinc and lead ...

    African Journals Online (AJOL)

    JTEkanem

    Abstract. Soil bacterial flora and enzymatic activities in lead and zinc contaminated soil of Ishiagu, ... the quality of the soil. The type of activities prevalent in any given environment determines the type of contamination in that area1-3. Soil and water bodies have been sinks for many ..... lead, Cadmium and Mercury in cattle.

  5. Enzymatic Profiles of Activated Sludge from a Wastewater Treatment ...

    African Journals Online (AJOL)

    Activated sludge samples collected from a treatment plant, with foaming experience in the month of July, was characterized enzymatically. Hexokinase, Glyceraldehyde-3-phosphate dehydrogenase and Adenylate kinase activity assays were conducted before, during and after the foaming episode. The spectrum of enzyme ...

  6. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B; Wanscher, B

    2004-01-01

    and endothelial nitric oxide synthase (NOS)], and enzymatic NO synthase activity. MRI guided biopsies documented more active plaques than macroscopic examination, and histological examination revealed further lesions. Inducible NOS (iNOS) was the dominant IR isoform, while reactive astrocytes were the dominant i...

  7. Immunomodulatory and cellular anti-oxidant activities of caffeic, ferulic, and p-coumaric phenolic acids: a structure-activity relationship study.

    Science.gov (United States)

    Kilani-Jaziri, Soumaya; Mokdad-Bzeouich, Imen; Krifa, Mounira; Nasr, Nouha; Ghedira, Kamel; Chekir-Ghedira, Leila

    2017-10-01

    Many studies have been performed to assess the potential utility of natural products as immunomodulatory agents to enhance host responses and to reduce damage to the human body. To determine whether phenolic compounds (caffeic, ferulic, and p-coumaric acids) have immunomodulatory effects and clarify which types of immune effector cells are stimulated in vitro, we evaluated their effect on splenocyte proliferation and lysosomal enzyme activity. We also investigated the activity of natural killer (NK) cells and cytotoxic T lymphocytes (CTL). In addition, induction of the cellular antioxidant activity in splenocytes, macrophages, and red blood cells was determined by measuring the fluorescence of the DCF product. The study first results indicated that caffeic, ferulic, and p-coumaric acids significantly promote LPS-stimulated splenocyte proliferation, suggesting a potential activation of B cells, and enhanced humoral immune response in hosts treated by the tested natural products. Phenolic acids significantly enhanced the killing activity of isolated NK and CTL cells but had negligible effects on mitogen-induced proliferation of splenic T cells. We showed that caffeic acid enhances lysosomal enzyme activity in murine peritoneal macrophages, suggesting a potential role in activating such cells. Immunomodulatory activity was concomitant with the cellular antioxidant effect in macrophages and splenocytes of caffeic and ferulic acids. We conclude from this study that caffeic, ferulic, and p-coumaric acids exhibited an immunomodulatory effect which could be ascribed, in part, to their cytoprotective effect via their antioxidant capacity. Furthermore, these results suggest that these natural products could be potentially used to modulate immune cell functions in physiological and pathological conditions.

  8. PDGF ENZYMATIC ACTIVITY IN PATIENTS WITH DELAYED FRACTURE CONSOLIDATION

    Directory of Open Access Journals (Sweden)

    D. V. Kuzmenko

    2017-01-01

    Full Text Available Introduction. Techniques that use growth factors to improve bone fragment consolidation and to treat the inflammatory and degenerative diseases of the musculoskeletal system have become very popular. Many researchers are actively searching for personification of this therapy and the reasons for delayed consolidation. The purpose of the study – to identify the biomarker for delayed bone consolidation.Materials and Methods. The study groups consisted of patients with high-energy tibia open fractures with normal (group 1 and with delayed (2nd group consolidation of bone fragments. The enzymatic activity of platelet-derived growth factor (PDGF in blood serum was studied after 7 days and in 1, 3 and 6 months after bone fragments reduction. Spectrophotometric technique (Specord-200 was used.Results. In patients with normal consolidation of bone fragments, the enzymatic activity of PDGF was statistically significantly higher in comparison with the group with delayed healing. At the same time, the highest activity was reported on day 7, and by third month it was becoming lower.Conclusion. Bone healing depends on PDGF enzymatic activity, besides significant differences on various stages of healing were observed. Further study the reasons for the PDGF enzymatic deficiency and its correction are of a great interest for reducing the timing of consolidation.

  9. Enzymatic activities of Dermatophilus congolensis measured by API ZYM.

    Science.gov (United States)

    Hermoso de Mendoza, J; Arenas, A; Alonso, J M; Rey, J M; Gil, M C; Anton, J M; Hermoso de Mendoza, M

    1993-10-01

    API ZYM kit was used to test enzymatic activities on eighteen strains of Dermatophilus congolensis. All strains produced lipase and acid phosphatase, which act on lipids, and leucine arylamidase which act on proteins. Another 10 exoenzymes were present in at least one of the strains.

  10. Validation of Orchestia gammarellus enzymatic activities in several ...

    African Journals Online (AJOL)

    The aim of this research was to validate the enzymatic activities (catalase, esterase, á-amylase and acetylcholinesterase) of Orchestia gammarellus in several sites of Tangier's bay to improve predictive performance of responses to coastal environmental pollutants. Our results showed a significant increase of catalase (e.g. ...

  11. Malondialdehyde level and some enzymatic activities in subclinical ...

    African Journals Online (AJOL)

    The purpose of this study was to evaluate the changes occurring in milk malondialdehyde (MDA) level and some enzymatic activities as a result of subclinical mastitis (SCM) in dairy cows. A total of 124 milk samples were collected from 124 lactating cows from the same herd in the period between the 2nd week after calving ...

  12. Lipid protrusions membrane softness, and enzymatic activity

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Høyrup, P.; Callisen, T.H.

    2004-01-01

    The activity of phospholipase A(2) on lipid bilayers displays a characteristic lag burst behavior that has previously been shown to reflect the physical properties of the substrate. It has remained unclear which underlying molecular mechanism is responsible for this phenomenon. We propose here...... protrusion modes and mechanical softness of phospholipid bilayers and on the other side the activity of enzymes acting on lipid bilayers composed of different unsaturated lipids. Specifically, our experiments show a correlation between the bilayer bending rigidity and the apparent Arrhenius activation energy...

  13. Biological activity of camel milk casein following enzymatic digestion.

    Science.gov (United States)

    Salami, Maryam; Moosavi-Movahedi, Ali Akbar; Moosavi-Movahedi, Faezeh; Ehsani, Mohammad Reza; Yousefi, Reza; Farhadi, Mohammad; Niasari-Naslaji, Amir; Saboury, Ali Akbar; Chobert, Jean-Marc; Haertlé, Thomas

    2011-11-01

    The aim of this study was to investigate the effects of enzymatic hydrolysis with digestive enzymes of camel whole casein and beta-casein (β-CN) on their antioxidant and Angiotensin Converting Enzyme (ACE)-inhibitory properties. Peptides in each hydrolysate were fractionated with ultra-filtration membranes. The antioxidant activity was determined using a Trolox equivalent antioxidant capacity (TEAC) scale. After enzymatic hydrolysis, both antioxidant and ACE-inhibitory activities of camel whole casein and camel β-CN were enhanced. Camel whole casein and β-CN showed significant ACE-inhibitory activities after hydrolysis with pepsin alone and after pepsinolysis followed by trypsinolysis and chymotrypsinolysis. Camel β-CN showed high antioxidant activity after hydrolysis with chymotrypsin. The results of this study suggest that when camel milk is consumed and digested, the produced peptides start to act as natural antioxidants and ACE-inhibitors.

  14. Molecular mechanisms of plant response to ionising radiation. Exploration of the glucosinolate role in the anti-oxidative response

    International Nuclear Information System (INIS)

    Gicquel, M.

    2012-01-01

    Terrestrial organisms are exposed to low doses of ionising radiation from natural or anthropogenic sources. The major effects of the radiations are due to DNA deterioration and water radiolysis which generates an oxidative stress by free radical production. Plants constitute good models to study the effects of ionising radiations and the search of antioxidant molecules because of their important secondary metabolism. Thus this thesis, funded by the Brittany region, characterized the physiological and molecular response of the model plant Arabidopsis thaliana to low (10 Gy) and moderate (40 Gy) doses of ionising radiation, and was therefore interested in glucosinolates, characteristic compounds of the Brassicaceae family. The global proteomic and transcriptomic studies carried out on this model revealed (1) a common response for both doses dealing with the activation of DNA repair mechanisms, cell cycle regulation and protection of cellular structures; (2) an adjustment of the energetic metabolism and an activation of secondary compounds biosynthesis (i.e. glucosinolates and flavonoids) after the 10 Gy dose; (3) an induction of enzymatic control of ROS, the regulation of cellular components recycling and of programmed cell death after the 40 Gy dose. The potential anti-oxidative role of glucosinolates was then explored. The in vitro anti-oxidative power of some glucosinolates and their derivative products were demonstrated. Their modulating effects against irradiation-induced damages were then tested in vivo by simple experimental approaches. The importance of the glucosinolate level to give a positive or negative effect was demonstrated. (author)

  15. ASPECTS CONCERNING THE ENZYMATIC ACTIVITY IN SEVERAL THERMOACTINOMYCETE STRAINS

    Directory of Open Access Journals (Sweden)

    Simona Dunca

    2003-08-01

    Full Text Available In the thermoactinomycete strains subjected to examination the values of their recorded enzymatic activities (i.e. α-amy lase, protease, exo-β-1,4 – glucanase, endo -β-1,4 – glucanase and β-glucosidase were lower in the stationary cultures as compared to the stirred ones. The strain Thermomonospora fusca BB255 was found to be highly cellulase- producing and at the same time able to synthesize α-amy lases and proteases.

  16. Anti-oxidant modulation in response to gamma radiation induced oxidative stress in developing seedlings of Psoralea corylifolia L

    International Nuclear Information System (INIS)

    Jan, Sumira; Parween, Talat; Siddiqi, T.O.; Mahmooduzzafar

    2012-01-01

    The seeds of Psoralea corylifolia L., an important medicinal herb in Indian and Chinese Pharmacopeia were exposed to gamma rays (2.5, 5, 10, 15 and 20 kGy) from Co 60 source at dose rate of 1.65 kGy h −1 . Enzymatic and non-enzymatic anti-oxidant responses were verified according to the developmental stages and gamma dose applied. Plants grown from seeds exposed to higher gamma doses exhibit higher activity of the antioxidants such as [Ascorbate peroxidase (APX, 1.11.1.1), superoxide dismutase (SOD, 1.15.1.1), glutathione reductase (GR, 1.6.4.2) and MDA content till flowering and declined thereafter. In contrast, CAT (1.11.1.6) activity declined in dose and age dependent manner. The correlation of gamma dose applied and oxidative stress was inferred from the increased enzymes activities and depression in total glutathione pool in seedlings developed from irradiated seeds. Nevertheless, the maintenance of high anti-oxidant capacity, psoralen accumulation seems to be an important strategy during acclimation of P. corylifolia to gamma radiation stress. Pronounced accumulation of psoralen following 15 and 20 kGy at post-flowering stage where oxidative stress is triggered modulates lipid peroxidation and proline accumulation. Further, in psoralen producing plants an increase in psoralen content can be used as a biomarker which specifies plant is under stress. - Highlights: ► This manuscript points for the first time over expression of antioxidant enzymes to variable doses of gamma rays with corresponding increase in psoralen content in Psoralea corylifolia L. ► Decline in lipid peroxidation and proline accumulation was concomitant with psoralen increment describing the potential of Psoralen as antioxidant. ► Survival of plants following higher dosage of gamma-radiation (15 and 20 kGy) describes the radio resistivity of Psorelea seeds.

  17. Antibacterial and Anti-oxidant activity of three species of green, brown and red algae from Northern coast of Persian Gulf

    OpenAIRE

    Mohseen Heidari; Hossen Zolgharnine; Nasrin Sakhaei; Ali Mirzaei; Abdolali movahedinia

    2015-01-01

    Background: Marine algae are shown to contain a wide range of bioactive compounds, which have commercial application in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. The biological activity of the natural bio-active compounds in algae has wide effects on bacteria, tumors and antioxidant activities. The purpose of this study was to determine antioxidant and antibacterial activity of the marine algae. Materials and Methods: The ethanol extracts of three spe...

  18. Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola).

    Science.gov (United States)

    Gavamukulya, Yahaya; Abou-Elella, Faten; Wamunyokoli, Fred; AEl-Shemy, Hany

    2014-09-01

    To determine the phytochemical composition, antioxidant and anticancer activities of ethanolic and water leaves extracts of Annona muricata (A. muricata) from the Eastern Uganda. Phytochemical screening was conducted using standard qualitative methods and a Chi-square goodness of fit test was used to assign the relative abundance of the different phytochemicals. The antioxidant activity was determined using the 2, 2-diphenyl-2-picrylhydrazyl and reducing power methods whereas the in vitro anticancer activity was determined using three different cell lines. Phytochemical screening of the extracts revealed that they were rich in secondary class metabolite compounds such as alkaloids, saponins, terpenoids, flavonoids, coumarins and lactones, anthraquinones, tannins, cardiac glycosides, phenols and phytosterols. Total phenolics in the water extract were (683.69±0.09) μg/mL gallic acid equivalents (GAE) while it was (372.92±0.15) μg/mL GAE in the ethanolic extract. The reducing power was 216.41 μg/mL in the water extract and 470.51 μg/mL GAE in the ethanolic extract. In vitro antioxidant activity IC50 was 2.0456 mg/mL and 0.9077 mg/mL for ethanolic and water leaves extracts of A. muricata respectively. The ethanolic leaves extract was found to be selectively cytotoxic in vitro to tumor cell lines (EACC, MDA and SKBR3) with IC50 values of 335.85 μg/mL, 248.77 μg/mL, 202.33 μg/mL respectively, while it had no cytotoxic effect on normal spleen cells. The data also showed that water leaves extract of A. muricata had no anticancer effect at all tested concentrations. The results showed that A. muricata was a promising new antioxidant and anticancer agent. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  19. Anti-microbial and anti-oxidant activities of Illicium verum, Crataegus oxyacantha ssp monogyna and Allium cepa red and white varieties.

    Science.gov (United States)

    Benmalek, Yamina; Yahia, Ouahiba Ait; Belkebir, Aicha; Fardeau, Marie-Laure

    2013-01-01

    Illicium verum (badiane or star anise), Crataegus oxyacantha ssp monogyna (hawthorn) and Allium cepa (onion), have traditionnally been used as medicinal plants in Algeria. This study showed that the outer layer of onion is rich in flavonols with contents of 103 ± 7.90 µg/g DW (red variety) and 17.3 ± 0.69 µg/gDW (white variety). We also determined flavonols contents of 14.3 ± 0.21 µg/g 1.65 ± 0.61 µg/g for Crataegus oxyacantha ssp monogyna leaves and berries and 2.37 ± 0.10 µg/g for Illicium verum. Quantitative analysis of anthocyanins showed highest content in Crataegus oxyacantha ssp monogyna berries (5.11 ± 0.266 mg/g), while, inner and outer layers of white onion had the lowest contents with 0.045 ± 0.003mg/g and 0.077 ± 0.001 mg/g respectively.   Flavonols extracts presented high antioxidant activity as compared with anthocyanins and standards antioxidants (ascorbic acid and quercetin). Allium cepa and Crataegus oxyacantha ssp monogyna exhibited the most effective antimicrobial activity.

  20. Chemical analysis, antimicrobial and anti-oxidative properties of Daucus gracilis essential oil and its mechanism of action

    Directory of Open Access Journals (Sweden)

    Meriem El Kolli

    2016-01-01

    Conclusions: D. gracilis EO showed potent antimicrobial and anti-oxidative activities and had acted on the cytoplasm membrane. These activities could be exploited in the food industry for food preservation.

  1. In Vitro DNA-Binding, Anti-Oxidant and Anticancer Activity of Indole-2-Carboxylic Acid Dinuclear Copper(II Complexes

    Directory of Open Access Journals (Sweden)

    Xiangcong Wang

    2017-01-01

    Full Text Available Indole-2-carboxylic acid copper complex (ICA-Cu was successfully prepared and characterized through elemental analysis, IR, UV-Vis, 1H-NMR, TG analysis, and molar conductance, and its molecular formula was [Cu2(C9H6O2N4(H2O2]·2H2O. The binding ability of ICA-Cu to calf thymus DNA (CT-DNA was examined by fluorescence spectrometry and the viscosity method. The results indicated that, upon the addition of increasing amounts of CT-DNA, the excitation and emission intensity of ICA-Cu decreased obviously and the excitation spectra shifted towards a long wavelength. ICA-Cu could displace ethidium bromide (EB from the EB-DNA system, making the fluorescence intensity of the EB-DNA system decrease sharply; the quenching constant KSV value was 3.99 × 104 M−1. The emission intensity of the ICA-Cu-DNA system was nearly constant, along with the addition of Na+ in a series of concentrations. The fluorescence of the complex could be protected after the complex interacted with DNA. A viscosity measurement further supported the result that the ICA-Cu complex may interact with DNA in an intercalative binding mode. The antioxidant activities of ICA-Cu were evaluated by a 2,2-diphenyl-1-picrylhydrazyl (DPPH assay, a hydroxyl radical (OH scavenging assay, and a 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS assay. The ICA-Cu exhibited the highest inhibitory effects on the ABTS radical (94% inhibition at 60 µM, followed by OH and DPPH radicals (the degrees of inhibition being 71% and 56%, respectively. The in vitro cytotoxicity activity of ICA-Cu against two human breast cancer cell lines, MDA-MB-231 and MCF-7, was investigated by 3-[4,5-dimethyltiazol2-yl]-2.5-diphenyl-tetrazolium bromide (MTT assay and cellular morphological analysis. The results showed that, upon increasing the concentration of ICA-Cu, an increase was observed in growth-inhibitory activity and the inhibition percentage were greater than 90% at 20 µM in both cell lines. Also

  2. In Vitro DNA-Binding, Anti-Oxidant and Anticancer Activity of Indole-2-Carboxylic Acid Dinuclear Copper(II) Complexes.

    Science.gov (United States)

    Wang, Xiangcong; Yan, Maocai; Wang, Qibao; Wang, Huannan; Wang, Zhengyang; Zhao, Jiayi; Li, Jing; Zhang, Zhen

    2017-01-20

    Indole-2-carboxylic acid copper complex (ICA-Cu) was successfully prepared and characterized through elemental analysis, IR, UV-Vis, ¹H-NMR, TG analysis, and molar conductance, and its molecular formula was [Cu₂(C₉H₆O₂N)₄(H₂O)₂]·2H₂O. The binding ability of ICA-Cu to calf thymus DNA (CT-DNA) was examined by fluorescence spectrometry and the viscosity method. The results indicated that, upon the addition of increasing amounts of CT-DNA, the excitation and emission intensity of ICA-Cu decreased obviously and the excitation spectra shifted towards a long wavelength. ICA-Cu could displace ethidium bromide (EB) from the EB-DNA system, making the fluorescence intensity of the EB-DNA system decrease sharply; the quenching constant K SV value was 3.99 × 10⁴ M -1 . The emission intensity of the ICA-Cu-DNA system was nearly constant, along with the addition of Na⁺ in a series of concentrations. The fluorescence of the complex could be protected after the complex interacted with DNA. A viscosity measurement further supported the result that the ICA-Cu complex may interact with DNA in an intercalative binding mode. The antioxidant activities of ICA-Cu were evaluated by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, a hydroxyl radical (OH) scavenging assay, and a 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay. The ICA-Cu exhibited the highest inhibitory effects on the ABTS radical (94% inhibition at 60 µM), followed by OH and DPPH radicals (the degrees of inhibition being 71% and 56%, respectively). The in vitro cytotoxicity activity of ICA-Cu against two human breast cancer cell lines, MDA-MB-231 and MCF-7, was investigated by 3-[4,5-dimethyltiazol2-yl]-2.5-diphenyl-tetrazolium bromide (MTT) assay and cellular morphological analysis. The results showed that, upon increasing the concentration of ICA-Cu, an increase was observed in growth-inhibitory activity and the inhibition percentage were greater than 90% at 20 µM in both cell

  3. Atividade antioxidante de macrófagos alveolares em ratos endotoxêmicos Anti-oxidative activity of alveolar macrophages in endotoxemic rats

    Directory of Open Access Journals (Sweden)

    Juliana Félix de Melo

    2010-04-01

    Full Text Available Avaliou-se o efeito da endotoxemia sobre a atividade antioxidante de macrófagos alveolares em ratos da linhagem Wistar. Foram utilizados 24 ratos machos, com idade entre 90 e 120 dias, os quais foram divididos em dois grupos: controle e endotoxêmico. O grupo endotoxêmico foi submetido à injeção intraperitonial de lipopolissacarídio na dose de 1mg/kg de peso corporal. Após 24 h, coletou-se sangue para contagem total e diferencial de leucócitos; lavado broncoalveolar para contagem total e diferencial dos leucócitos e, a partir de macrófagos isolados deste lavado, foram realizadas as dosagens de superóxido e superóxido dismutase. A endotoxemia aumentou a contagem total de leucócitos e o número de neutrófilos no sangue periférico, no lavado broncoalveolar, e aumentou a produção de superóxido sem modificar a produção da superóxido dismutase. Esses resultados sugerem que a endotoxemia induz a uma resposta inflamatória no pulmão. Contudo, não altera a atividade antioxidante em ratos adultos. Tal fato potencializa a resposta contra agentes infecciosos pelo hospedeiro, mas também pode contribuir na patogênese de injúria pulmonar.The effects of endotoxemia on the antioxidant activity in alveolar macrophages of Wistar rats were evaluated. Twenty-four male rats, 90-120 days of age, were separated into 2 groups: control and endotoxemic. To the endotoxemic animals was administered, intraperitoneally, a lipopolyssaccaride at dosage of 1mg/kg body weight. Twenty-four hours after this procedure, blood was collected for total and differential leukocytes counts. In addition, bronchoalveolar lavage was collected for total and differential leukocyte counting. From this lavage macrophages were isolated for the dosage of superoxide and superoxide dismutase. The endotoxemia increased the total leukocyte counts and the number of neutrophils in the peripheral blood and bronchoalveolar lavage of the rats. There was an increased superoxide

  4. Remote ischemic postconditioning protects against renal ischemia/reperfusion injury by activation of T-LAK-cell-originated protein kinase (TOPK)/PTEN/Akt signaling pathway mediated anti-oxidation and anti-inflammation.

    Science.gov (United States)

    Gao, Sumin; Zhu, Yi; Li, Haobo; Xia, Zhengyuan; Wu, Qingping; Yao, Shanglong; Wang, Tingting; Yuan, Shiying

    2016-09-01

    Recent clinical and animal studies suggested that remote limb ischemic postconditioning (RIPostC) can invoke potent cardioprotection or neuroprotection. However, the effect and mechanism of RIPostC against renal ischemia/reperfusion injury (IRI) are poorly understood. T-LAK-cell-originated protein kinase (TOPK) is crucial for the proliferation and migration of tumor cells. However, the function of TOPK and the molecular mechanism underlying renal protection remain unknown. Therefore, this study aimed to evaluate the role of TOPK in renoprotection induced by RIPostC. The renal IRI model was induced by left renal pedicle clamping for 45min followed by 24h reperfusion and right nephrectomy. All mice were intraperitoneally injected with vehicle, TOPK inhibitor HI-TOPK-032 or Akt inhibitor LY294002. After 24h reperfusion, renal histology, function, and inflammatory cytokines and oxidative stress were assessed. The proteins were measured by Western blotting. The results showed that RIPostC significantly protected the kidneys against IRI. The protective effects were accompanied by the attenuation of renal dysfunction, tubular damage, inflammation and oxidative stress. In addition, RIPostC increased the phosphorylation of TOPK, PTEN, Akt, GSK3β and the nuclear translocation of Nrf2 and decreased the nuclear translocation of NF-κB. However, all of the above renoprotective effects of RIPostC were eliminated either by the inhibition of TOPK or Akt with HI-TOPK-032 or LY294002. The current data reveal that RIPostC protects against renal IRI via activation of TOPK/PTEN/Akt signaling pathway mediated anti-oxidation and anti-inflammation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Rapid tryptic mapping using enzymatically active mass spectrometer probe tips

    Energy Technology Data Exchange (ETDEWEB)

    Dogruel, D.; Williams, P.; Nelson, R.W. [Arizona State Univ., Tempe, AZ (United States)

    1995-12-01

    A method has been developed for rapid, sensitive, and accurate tryptic mapping of polypeptides using matrix-assisted laser desorption/ionization time-of-flight mass analysis. The technique utilizes mass spectrometer probe tips which have been activated through the covalent immobilization of trypsin. The enzymatically active probe tips were used for the tryptic mapping of chicken egg lysozyme and the results compared with those obtained using either free trypsin or agarose-immobilized trypsin. A significant increase in the overall sensitivity of the process was observed using the active probe tips, as well as the production of more characteristic proteolytic fragments and the elimination of background signals due to the autolysis of the trypsin. Further, probe tip digestions were found to be rapid and convenient. 19 refs., 6 figs., 2 tabs.

  6. The anti-oxidant effects of melatonin derivatives on human gingival fibroblasts.

    Science.gov (United States)

    Phiphatwatcharaded, Chawapon; Puthongking, Ploenthip; Chaiyarit, Ponlatham; Johns, Nutjaree Pratheepawanit; Sakolchai, Sumon; Mahakunakorn, Pramote

    2017-07-01

    Aim of this in vitro study was to evaluate the anti-oxidant activity of indole ring modified melatonin derivatives as compared with melatonin in primary human gingival fibroblast (HGF) cells. Anti-oxidant activity of melatonin (MLT), acetyl-melatonin (AMLT) and benzoyl-melatonin (BMLT) was evaluated by5 standard methods as follows: 2, 2-diphenyl-1-picrylhydrazyl (DPPH); ferric ion reducing antioxidant power (FRAP); superoxide anion scavenging; nitric oxide (NO) scavenging; and thiobarbituric acid reactive substances (TBARs).Evaluation of cellular antioxidant activity (CAA) and protectivity against H 2 O 2 induced cellular damage was performed via MTT assay in HGF cells. According to the standard anti-oxidant assays, the antioxidant power of AMLT and BMLT were slightly less than MLT in FRAP and superoxide scavenging assays. In the NO scavenging and TBARs assays, BMLT and AMLT were more potent than MLT, whereas DPPH assays demonstrated that MLT was more potent than others. BMLT and AMLT had more potent anti-oxidant and protective activities against H 2 O 2 in HGF cells as compared with MLT. MLT derivatives demonstrated different anti-oxidant activities as compared with MLT, depending upon assays. These findings imply that N-indole substitution of MLT may help to improve hydrogen atom transfer to free radicals but electron transfer property is slightly decreased. Anti-oxidant and protective effects of melatonin derivatives (AMLT and BMLT) on human gingival fibroblasts imply the potential use of these molecules as alternative therapeutics for chronic inflammatory oral diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Development of new methods for determining the heparanase enzymatic activity.

    Science.gov (United States)

    Melo, Carina Mucciolo; Tersariol, Ivarne Luis Santos; Nader, Helena Bonciani; Pinhal, Maria Aparecida Silva; Lima, Marcelo Andrade

    2015-08-14

    Heparanase is a mammalian endo-β-glucuronidase. Notwithstanding its importance in various pathological and non-pathological events few straightforward methods for heparanase enzymatic activity has been stated. The aim of this study was to develop two heparanase activity assays to cover a whole range of applications. First, a fast and easy method based on commercial homogenous substrate, fondaparinux, was described. The other method is a quantitative assay based on biotinylated heparan sulfate that uses an easier technique to immobilize the substrate in a 96-well plate. 1): The heparanase recombinant enzyme and fondaparinux were incubated overnight. After incubation, a fluorescent redox marker, resazurin, was added. The reduction of resazurin depends on the amount of glucuronic acid released by heparanase digestion. Fluorescence measurements were done using excitation and emission wavelengths of 560 nm and 590 nm, respectively. 2): The 96-well plate was incubated with protamine sulfate. Subsequently, biotinylated heparan sulfate was immobilized. The enzymatic assay was performed using chimeric recombinant heparanase at different concentrations. In sequence, the immobilized biotinylated heparan sulfate that was not digested by recombinant heparanase was bound to streptavidin conjugated with europium. Fluorescence was measured using a time-resolved fluorometer. Both methods have high sensitivity and can be used to detect heparanase activity. Fondaparinux assay is a quick and easy method for screening of heparanase inhibitors using recombinant enzyme or bacterial crude extract. Biotinylated heparan sulfate assay can be used for quantitative analysis in biological samples and protamine sulfate showed been capable to immobilized heparan sulfate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Controlling enzymatic activity by immobilization on graphene oxide

    Science.gov (United States)

    Bolibok, Paulina; Wiśniewski, Marek; Roszek, Katarzyna; Terzyk, Artur P.

    2017-04-01

    In this study, graphene oxide (GO) has been applied as a matrix for enzyme immobilization. The protein adsorption capacity of GO is much higher than of other large surface area carbonaceous materials. Its structure and physicochemical properties are reported beneficial also for enzymatic activity modifications. The experimental proof was done here that GO-based biocatalytic systems with immobilized catalase are modifiable in terms of catalyzed reaction kinetic constants. It was found that activity and stability of catalase, considered here as model enzyme, closely depend on enzyme/GO ratio. The changes in kinetic parameters can be related to secondary structure alterations. The correlation between enzyme/GO ratio and kinetic and structure parameters is reported for the first time and enables the conscious control of biocatalytic processes and their extended applications. The biological activity of obtained biocatalytic systems was confirmed in vitro by the use of functional test. The addition of immobilized catalase improved the cells' viability after they were exposed to hydrogen peroxide and tert-butyl-hydroperoxide used as source of reactive oxygen species.

  9. Effects of bonny light crude oil on anti-oxidative enzymes and total ...

    African Journals Online (AJOL)

    CHINEDU

    The ingestion of crude oil either orally or through polluted marine species represents a pathway for the delivery of potential toxicants to the human system. The study, therefore, analysed the effects of bonny light crude oil on the activities of anti-oxidative enzymes [superoxide dismutase (SOD), catalase (CAT), glutathione S-.

  10. Plasmin enzymatic activity in the presence of actin

    Directory of Open Access Journals (Sweden)

    Yusova E. I.

    2015-10-01

    Full Text Available Aim. To study the changes in the plasmin activity towards substrates with high and low molecular mass in the presence of actin. Methods. The proteins used for this investigation were obtained by affinity chromatography and gel-filtration. The plasmin enzymatic activity was determined by a turbidimetric assay and a chromogenic substrate-based assay. The enzyme linked immunosorbent assay and biotin-avidin-phosphatase system were used to study the interaction of plasminogen and its fragments with actin. Results. It was shown that G-actin causes 1.5-fold decrease in the rate of polymeric fibrin hydrolysis by plasmin and Glu-plasminogen activated by the tissue plasminogen activator. However, actin did not impede plasmin autolysis and had no influence on its amidase activity. We have studied an interaction of biotinylated Glu-plasminogen and its fragments (kringle 1-3, kringle 4 and mini-plasminogen with immobilized G-actin. Glu-plasminogen and kringle 4 had a high affinity towards actin (C50 is 113 and 117 nM correspondingly. Mini-plasminogen and kringe 4 did not bind to actin. A similar affinity of Glu-plasminogen and kringle 1-3 towards actin proves the involvement of the kringle 1-3 lysine-binding sites of the native plasminogen form in the actin interaction. Conclusions. Actin can modulate plasmin specificity towards high molecular mass substrates through its interaction with lysine-binding sites of the enzyme kringle domains. Actin inhibition of the fibrinolytic activity of plasmin is due to its competition with fibrin for thelysine binding sites of plasminogen/plasmin.

  11. Glucuronic Acid Derivatives in Enzymatic Biomass Degradation: Synthesis and Evaluation of Enzymatic Activity

    DEFF Research Database (Denmark)

    d'Errico, Clotilde

    -carbohydrate complexes found in lignocellulosic biomass, as model substrates for glucuronoyl esterases (GEs). These esters have been used to characterize a novel GE from Cerrena unicolor (CuGE), produced by Novozymes, to obtain insights into the substrate specificity of the enzymes. HPLC analysis of the enzymatic......An essential tool for biotechnology companies in enzyme development for biomass delignification is the access to well-defined model substrates. A deeper understanding of the enzymes substrate specificity can be used to address and optimize enzyme mixtures towards natural, complex substrates. Hence...

  12. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    Science.gov (United States)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  13. Garlic Consumption Alters Testicular Histology and Anti-Oxidant ...

    African Journals Online (AJOL)

    dependent fashion. These histological observations and the depletion in endogenous anti-oxidant status associated with the administration of garlic could result in significant affectation of male reproductive functions. Keywords: garlic, superoxide ...

  14. The Effects of Drought Stress on Yield, Yield Components and Anti-oxidant of Two Garlic (Allium sativum L. Ecotypes with Different Planting Densities

    Directory of Open Access Journals (Sweden)

    shiva akbari

    2016-07-01

    Drought stress decreased bulb yield and dry matter percentage significantly. Planting density had significant effects on bulb yield and the yield of planting density of 50 plants m-2 were significantly higher than two other densities. The interaction of drought stress and ecotype factors affected the dry matter percentage. Drought stress decreased fresh and dry weight, length of bulbs and the bulb diameter significantly. Drought stress decreased fresh and dry weight, diameter, length and number of cloves significantly as well. Drought stress is an important limiting factor at the initial phase of plant growth and establishment. It affects both elongation and expansion growth (Shao et al., 2008. Fresh and dry weight and length of cloves were significantly higher in Toroud ecotype. In contrast, the number of cloves in the bulb was significantly higher in Tabas. Studying the correlation coefficients showed that the bulb yield per unit area was significantly and positively correlated with diameter, weight and length of cloves and bulbs and also the dry matter percentage at P≤0.001. The maximum correlation belonged to yield at the unit area and weight of the bulb (r=0.72. In other words, any bulb-weight-increasing factor did have the highest effect on increasing the yield per unit area as well. Drought stress, increased leaf non-enzymatic anti-oxidant significantly. Anti-oxidants plays significant roles in ROS scavenging and influences cellular ROS balance. Activation of antioxidant system helps the plants to tolerate stress form induced damage. The effect of ecotype was significant on anti-oxidant content and the value were significantly higher in Toroud ecotype. Toroud ecotype showed resisting reactions against higher levels of drought stress by increasing the non-enzymatic anti-oxidant content and created tolerating mechanisms versus stress. Conclusion Drought stress reduced yield and yield parameters and increased non-enzymatic anti-oxidant content of garlic. The

  15. The effects of xylitol and sorbitol on lysozyme- and peroxidase-related enzymatic and candidacidal activities.

    Science.gov (United States)

    Kim, Bum-Soo; Chang, Ji-Youn; Kim, Yoon-Young; Kho, Hong-Seop

    2015-07-01

    To investigate whether xylitol and sorbitol affect enzymatic and candidacidal activities of lysozyme, the peroxidase system, and the glucose oxidase-mediated peroxidase system. Xylitol and sorbitol were added to hen egg-white lysozyme, bovine lactoperoxidase, glucose oxidase-mediated peroxidase, and whole saliva in solution and on hydroxyapatite surfaces. The enzymatic activities of lysozyme, peroxidase, and glucose oxidase-mediated peroxidase were determined by the turbidimetric method, the NbsSCN assay, and production of oxidized o-dianisidine, respectively. Candidacidal activities were determined by comparing colony forming units using Candida albicans ATCC strains 10231, 11006, and 18804. While xylitol and sorbitol did not affect the enzymatic activity of hen egg-white lysozyme both in solution and on hydroxyapatite surfaces, they did inhibit the enzymatic activity of salivary lysozyme significantly in solution, but not on the surfaces. Xylitol and sorbitol enhanced the enzymatic activities of both bovine lactoperoxidase and salivary peroxidase significantly in a dose-dependent manner in solution, but not on the surfaces. Sorbitol, but not xylitol, inhibited the enzymatic activity of glucose oxidase-mediated peroxidase significantly. Both xylitol and sorbitol did not affect candidacidal activities of hen egg-white lysozyme, the bovine lactoperoxidase system, or the glucose oxidase-mediated bovine lactoperoxidase system. Xylitol and sorbitol inhibited salivary lysozyme activity, but enhanced both bovine lactoperoxidase and salivary peroxidase activities significantly in solution. Xylitol and sorbitol did not augment lysozyme- and peroxidase-related candidacidal activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Enzymatic browning control in cut apples (Red delicious through a system of active packaging

    Directory of Open Access Journals (Sweden)

    Felipe Jadán Piedra

    2017-03-01

    Full Text Available Enzymatic browning is one of the most relevant mechanisms of deterioration that take place in fresh-cut fruit and vegetables, as a consequence of the activity of the polyphenol oxidase enzyme on the phenolic compounds release after cellular lysis . This work is focused on the reduction of these enzymatic activity by an active packaging technology, which make use of a material that incorporates antioxidant active agents. Thus, films of ethylene-vynil alcohol copolymer (EVOH containing a typical food antioxidant, such as ascorbic acid and a polyphenol oxidase-inhibiting agent, the 4-hexylresorcinol have been developed and used to wrap apple slices. The evolution of color, the enzymatic activity and the kinetic of agents release to food simulants were monitored. The results showed an improvement of apple slice color stability and a reduction of the enzymatic activity. The film with 10 % of agents in 3/1 ratio (4-hexylresorcinol/ascorbic acid provided the best results.

  17. Antioxidant activity of camel milk casein before and after in vitro simulated enzymatic digestion

    Directory of Open Access Journals (Sweden)

    Zeineb Jrad

    2014-11-01

    Full Text Available The effect of a successive in vitro hydrolysis by pepsin and pancreatin on the free radical scavenging activity of camel milk casein was investigated in order to assess the effect of gastro-intestinal digestion. Hydrolysis of camel casein was controlled by reversed-phase high performance liquid chromatography. Anti-oxidant activity was measured by the 2,2’-azino-bis-(3-ethylbensothiazoline-6- sulfonic acid (ABTS method. The Trolox equivalent antioxidant capacity (TEAC values of camel casein and its hydrolysate were 1.6±0.12 μmol TE/mg protein and 0.25 μmol TE/μmol eq. NH2, respectively. After digestion, the scavenging activity of the casein peptides was more efficient than those reported in the literature regarding digestive hydrolysates of camel milk, colostrum and whey proteins.

  18. Anti-Oxidative Abilities of Essential Oils from Atractylodes ovata Rhizome

    Directory of Open Access Journals (Sweden)

    Kun-Teng Wang

    2011-01-01

    Full Text Available The rhizome of Atractylodes ovata De Candolle is rich in essential oils, which are usually removed by processing. In this study, anti-oxidative abilities of essential oils and aqueous extracts of A. ovata rhizome were explored, and the influence of processing on the anti-oxidative abilities was examined. Essential oils and aqueous extracts of A. ovata were extracted by boiling water and steam distillation, respectively. Quality of these two A. ovata samples was controlled by HPLC and GC-MS system, and anti-oxidative abilities were then evaluated. Results showed that surface color of A. ovata turned to brown and chemical components were changed by processing. Contents of both atractylon and atractylenolide II decreased in the essential oils, but only the contents of atractylon decreased by processing. Atractylenolide III increased in both A. ovata samples. However, A. ovata essential oils displayed stronger anti-oxidative abilities than aqueous extracts in DPPH-scavenging, TBH-induced lipid peroxidation and catalase activity assays. Moreover, the bioactivity of essential oils from raw A. ovata was stronger than oils from processed A. ovata. On the other hand, cytotoxicity of A. ovata essential oils was stronger than that of aqueous extracts, and was more sensitive on H9C2 cell than NIH-3T3 and WI-38 cells. In contrast, stir-frying processing method increased cytotoxicity of essential oils, but the cytotoxicity was ameliorated when processed with assistant substances. The results suggested that phytochemical components and bioactivity of A. ovata were changed after processing and the essential oils from raw A. ovata showed better anti-oxidative and fewer cytotoxicity effects.

  19. Anti-oxidant and anti-microbial properties of some ethno-therapeutically important medicinal plants of Indian Himalayan Region.

    Science.gov (United States)

    Rawat, Sandeep; Jugran, Arun K; Bahukhandi, Amit; Bahuguna, Asutosh; Bhatt, Indra D; Rawal, Ranbeer S; Dhar, Uppeandra

    2016-12-01

    Therapeutic potential of medicinal plants as a source of noble natural anti-oxidants and anti-microbial agents has been well recognised all across the globe. In this study, phenolic compounds, in vitro anti-oxidant activity and anti-microbial properties have been investigated in five Himalayan medicinal plants, (e.g., Acorus calamus, Habenaria intermedia, Hedychium spicatum, Roscoea procera and Valeriana jatamansi) in different solvent systems. R. procera exhibited significantly (p anti-oxidant activity. Also, R. procera and H. spicatum were found rich in gallic acid; V. jatamansi in catechin, hydroxylbenzoic acid and caffeic acid and H. intermedia in hydroxyl benzoic acid. Solvent systems showed species specific response for extraction of total flavonoids and anti-oxidant activity. All the extracts were found effective against different bacterial and fungal strains in a dose dependent manner and maximum antimicrobial activity was found in R. procera as compared to other species. All the plant extracts showed greater activity against bacterial strains as compared to fungal strains. The results of this study suggest that extract of these species can be used as natural anti-oxidant to reduce free radical mediated disorders and as natural alternative for food preservation.

  20. First results on enzymatic activities in two salt marsh soils under different hydromorphic level and vegetation

    Directory of Open Access Journals (Sweden)

    Carmen Trasar-Cepeda

    2015-12-01

    Full Text Available Salt-marsh soils are soils characterized by non-permanent hydric saturation that, depending on factors like duration of submersion periods, are dominated by different salt-tolerant plant species. The composition of microbial communities is an essential component in trophic dynamics and biogeochemical processes in salt marshes, and determines the level of enzymatic activities, which catalyze the conversion of complex molecules into simpler ones. Despite of this, the enzymatic activities in marsh-soils has not yet been investigated. The aim of this study was to analyze the enzymatic activities in two soil profiles of marsh-soils under different water saturation level and dominated by different plant species [Juncus maritimus Lam and Spartina maritima (Curtis Fernald (Sp]. In both soils, the enzymatic activities were much lower than the levels typically found in terrestrial ecosystems. The enzymatic activities were measured both in air-dried and in re-moistened and incubated soil samples. In air-dried samples, the enzymatic activities were higher in Juncus than in Spartina soil and tended to decrease with depth, being sharper the decrease in Juncus than in Spartina soil. Re-moistened and pre-incubated soils showed a general increase in all the enzymatic activities and throughout the whole soil profile, especially in Spartina soils. Hydrolase activities showed a strong and positive relationship with organic matter content both in air-dried and in re-moistened soil samples, higher in these latter. In general, oxidoreductase activities only showed this relationship in re-moistened soil samples. More studies, preferably using freshly collected soil samples, are needed to understand the relationship between enzymatic activities and these environmental conditions.

  1. Anti-cancer and anti-oxidant efficacies of wild ginseng and cultivated wild ginseng of Korea and China

    Directory of Open Access Journals (Sweden)

    Young-Min,Ahn

    2007-02-01

    Full Text Available Objectives : The aim of this study was to verify anti-cancer and anti-oxidant efficacies of Korean wild ginseng and cultivated wild ginseng of Korea and China. Methods : For the measurement of anti-oxidation, SOD-like activity was evaluated using xanthine oxidase reduction method under in vitro environment. Subcutaneous and abdominal cancer were induced using CT-26 human colon cancer cells for the measurement of growth inhibition of cancer cells and differences in survival rate. Results : 1. Measurement of anti-oxidant activity of ginseng, Chinese and Korean cultivated wild ginseng, and natural wild ginseng samples showed concentration dependent anti-oxidant activity in HX/XOD system. Anti-oxidant activity showed drastic increase at 1mg/ml in all samples. 2. For the evaluation of growth inhibition of cancer cells after hypodermic implantation of CT-26 cancer cells in the peritoneal cavity of mice, Chinese and Korean cultivated wild ginseng and natural wild ginseng groups showed significant inhibition of tumor growth from the 12th day compared to the control group. Similar inhibitory effects were also shown on the 15th and 18th days. But there was no significant difference between the experiment groups. 3. For the observation of increase in survival rate of the natural wild ginseng group, CT-26 cancer cells were implanted in the peritoneal cavity of mice.

  2. Enzymatic activity of micro-organisms isolated from cork wine stoppers.

    Science.gov (United States)

    Centeno, S; Calvo, M A

    2001-01-01

    The production of enzymes by micro-organisms which are found on vegetal substrates is important due to their ability to decompose cellulose, lignin and other components, which guarantee the integrity of the vegetal cell. The objective of this study was to determine the enzymatic activity of filamentous fungi, yeasts and bacteria, isolated from natural cork stoppers for bottles of still and sparkling wines. Suspensions of fungal conidia, yeasts and bacterial cells of micro-organisms were established in concentrations of 10(6) CFU/ml. The enzymatic activity of these micro-organisms was evaluated by means of the API ZYM system, with which it was possible to determine and semi-quantify nineteen enzymatic activities simultaneously. The enzymes produced by all of the species were esterase (C1), esterase lipase and naphthol-AS-BI-phosphohydrolase. The micro-organisms with the greatest enzymatic activity were Monilia sitophila, Alternaria alternata, Aspergillus niger and Aeromonas sp.

  3. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose; Actividad enzimatica del complejo celulolitico producido por Trichoderma reesei. Hidrolisis enzimatica de la celulosa

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsel, M.; Negro, M. J.; Saez, R.; Martin, C.

    1986-07-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs.

  4. Resveratrol-Inspired Benzo[b]selenophenes Act as Anti-Oxidants in Yeast

    Directory of Open Access Journals (Sweden)

    Dominika Mániková

    2018-02-01

    Full Text Available Resveratrol is a natural (polyphenol primarily found in plants protecting them against pathogens, as well as harmful effects of physical and chemical agents. In higher eukaryotic cells and organisms, this compound displays a remarkable range of biological activities, such as anti-oxidant, anti-inflammatory, anti-cancer, anti-aging, cardio- and neuro-protective properties. Here, biological activities of synthetic selenium-containing derivatives of resveratrol—benzo[b]selenophenes—have been studied in lower eukaryotes Saccharomyces cerevisiae. Their toxicity, as well as DNA damaging and reactive oxygen species (ROS inducing potencies, manifested through their ability to act as redox active anti-microbial agents, have been examined. We show that some benzo[b]selenophenes can kill yeast cells and that the killing effects are not mediated by DNA damage types that can be detected as DNA double-strand breaks. These benzo[b]selenophenes could potentially be used as anti-fungal agents, although their concentrations relevant to application in humans need to be further evaluated. In addition, most of the studied benzo[b]selenophenes display redox-modulating/anti-oxidant activity (comparable or even higher than that of resveratrol or Trolox causing a decrease in the intracellular ROS levels in yeast cells. Therefore, after careful re-evaluation in other biological systems these observations might be transferred to humans, where resveratrol-inspired benzo[b]selenophenes could be used as supra-anti-oxidant supplements.

  5. Anti-glycation and anti-oxidation properties of Capsicum frutescens and Curcuma longa fruits: possible role in prevention of diabetic complication.

    Science.gov (United States)

    Khan, Ibrar; Ahmad, Haroon; Ahmad, Bashir

    2014-09-01

    The accumulation of advanced glycationend products (AGE's) in the body, due to the non-enzymatic glycation of proteins is associated with several pathological conditions like aging and diabetes mellitus. Hence a plant having anti-glycation and anti-oxidation potentials may serve as therapeutic agent for diabetic complications and aging. In this study the anti-glycation and anti-oxidation properties of crude methanolic extracts of fruits of Capsicum frutescens and Curcuma longa were investigated. Among the two C. frutescens had more anti-glycation ability with a minimum inhibitory concentration (MIC50) of 90βg/mLas compared to 324βg/mL MIC50 of C. longa. Curcuma longa had the more anti-oxidation potential i.e. 35.01, 30.83 and 28.08% at 0.5mg, 0.25mg and 0.125mg respectively.

  6. Discovery of a proteolytic flagellin family in diverse bacterial phyla that assembles enzymatically active flagella

    OpenAIRE

    Eckhard, Ulrich; Bandukwala, Hina; Mansfield, Michael J.; Marino, Giada; Cheng, Jiujun; Wallace, Iain; Holyoak, Todd; Charles, Trevor C.; Austin, John; Overall, Christopher M.; Doxey, Andrew C.

    2017-01-01

    Bacterial flagella are cell locomotion and occasional adhesion organelles composed primarily of the polymeric protein flagellin, but to date have not been associated with any enzymatic function. Here, we report the bioinformatics-driven discovery of a class of enzymatic flagellins that assemble to form proteolytically active flagella. Originating by a metallopeptidase insertion into the central flagellin hypervariable region, this flagellin family has expanded to at least 74 bacterial species...

  7. Tyrosinase Inhibitory and Anti-oxidative Effects of Lactic Acid Bacteria Isolated from Dairy Cow Feces.

    Science.gov (United States)

    Ji, Keunho; Cho, Youn Su; Kim, Young Tae

    2018-03-01

    Overproduction and accumulation of melanin cause a number of skin diseases. The inhibitors of tyrosinase are important for the treatment of skin diseases associated with hyper-pigmentation after UV exposure and application in cosmetics for whitening and depigmentation. Reactive oxygen species (ROS) including hydrogen peroxide are generated by chemical substances and metabolic intermediates and cause various diseases including cancer and heart diseases. We have isolated four different lactic acid bacteria (LAB) strains from dairy cow feces and investigated the tyrosinase inhibition and anti-oxidative effects of culture filtrates prepared from the isolated bacteria, which are designated as EA3, EB2, PC2, and PD3. To investigate optimal culture conditions isolated LAB strains, the measurements of tyrosinase inhibitory and anti-oxidative activities were performed. The results of tyrosinase inhibitory activities revealed that Enterococcus sp. EA3 showed about 65% at culture conditions (14 h, 30 °C, pH 8, and 0% NaCl), Enterococcus sp. EB2 about 65% at culture conditions (12 h, 30 °C, pH 9, and 0% NaCl), Pediococcus sp. PC2 about 80% at culture conditions (20 h, 30 °C, pH 6, and 0% NaCl), and Pediococcus sp. PD3 about 80% at culture conditions (20 h, 30 °C, pH 8, and 0% NaCl), respectively. In addition, anti-oxidative activities against four different LAB strains showed approximately more than 30% at optimal conditions for the measurements of tyrosinase inhibitory activities. From the results, we have suggested that the isolated four LAB strains could be useful for a potential agent for developing anti-oxidants and tyrosinase inhibitors.

  8. More Insight into BDNF against Neurodegeneration: Anti-Apoptosis, Anti-Oxidation, and Suppression of Autophagy

    Directory of Open Access Journals (Sweden)

    Shang-Der Chen

    2017-03-01

    Full Text Available In addition to its well-established neurotrophic action, brain-derived neurotrophic factor (BDNF also possesses other neuroprotective effects including anti-apoptosis, anti-oxidation, and suppression of autophagy. We have shown before that BDNF triggers multiple mechanisms to confer neuronal resistance against 3-nitropropionic acid (3-NP-induced mitochondrial dysfunction in primary rat cortical cultures. The beneficial effects of BDNF involve the induction of anti-oxidative thioredoxin with the resultant expression of anti-apoptotic B-cell lymphoma 2 (Bcl-2 as well as erythropoietin (EPO-dependent stimulation of sonic hedgehog (SHH. We further revealed that BDNF may bring the expression of sulfiredoxin, an ATP-dependent antioxidant enzyme, to offset mitochondrial inhibition in cortical neurons. Recently, we provided insights into another novel anti-oxidative mechanism of BDNF, which involves the augmentation of sestrin2 expression to endow neuronal resistance against oxidative stress induced by 3-NP; BDNF induction of sestrin2 entails the activation of a pathway involving nitric oxide (NO, cyclic guanosine monophosphate (cGMP-dependent protein kinase (PKG, and nuclear factor-κB (NF-κB. Apart from anti-apoptosis and anti-oxidation, we demonstrated in our most recent study that BDNF may activate the mammalian target of rapamycin (mTOR with resultant activation of transcription factor c-Jun, thereby stimulating the expression of p62/sequestosome-1 to suppress heightened autophagy as a result of 3-NP exposure. Together, our results provide in-depth insight into multi-faceted protective mechanisms of BDNF against mitochondrial dysfunction commonly associated with the pathogenesis of many chronic neurodegenerative disorders. Delineation of the protective signaling pathways elicited by BDNF would endow a rationale to develop novel therapeutic regimens to halt or prevent the progression of neurodegeneration.

  9. Enzymatic Synthesis and Anti-Allergic Activities of Curcumin Oligosaccharides

    Directory of Open Access Journals (Sweden)

    Kei Shimoda

    2010-01-01

    Full Text Available Curcumin 4‘- O -glucooligosaccharides were synthesized by a two step-enzymatic method using almond β-glucosidase and cyclodextrin glucanotransferase (CGTase. Curcumin was glucosylated to curcumin 4‘- O -β-D-glucopyranoside by almond β-glucosidase in 19% yield. Curcumin 4‘- O -β-D-glucopyranoside was converted into curcumin 4‘- O -β-glucooligosaccharides, i.e. 4‘- O -β-maltoside (51% and 4‘- O -β-maltotrioside (25%, by further CGTase-catalyzed glycosylation. Curcumin 4‘- O -β-glycosides showed suppressive action on IgE antibody formation and inhibitory effects on histamine release from rat peritoneal mast cells.

  10. Enzymatic activity of free-prostate-specific antigen (f-PSA) is not required for some of its physiological activities.

    Science.gov (United States)

    Chadha, Kailash C; Nair, Bindukumar B; Chakravarthi, Srikant; Zhou, Rita; Godoy, Alejandro; Mohler, James L; Aalinkeel, Ravikumar; Schwartz, Stanley A; Smith, Gary J

    2011-11-01

    Prostate specific antigen (PSA) is a well known biomarker for early diagnosis and management of prostate cancer. Furthermore, PSA has been documented to have anti-angiogenic and anti-tumorigenic activities in both in vitro and in vivo studies. However, little is known about the molecular mechanism(s) involved in regulation of these processes, in particular the role of the serine-protease enzymatic activity of PSA. Enzymatic activity of PSA isolated directly from seminal plasma was inhibited specifically (>95%) by incubation with zinc2+ . Human umbilical vein endothelial cells (HUVEC) were utilized to compare/contrast the physiological effects of enzymatically active versus inactive PSA. Equimolar concentrations of enzymatically active PSA and PSA enzymatically inactivated by incubation with Zn2+ had similar physiological effects on HUVEC, including inhibiting the gene expression of pro-angiogenic growth factors, like VEGF and bFGF, and up-regulation of expression of the anti-angiogenic growth factor IFN-γ; suppression of mRNA expression for markers of blood vessel development, like FAK, FLT, KDR, TWIST-1; P-38; inhibition of endothelial tube formation in the in vitro Matrigel Tube Formation Assay; and inhibition of endothelial cell invasion and migration properties. Our data provides compelling evidence that the transcriptional regulatory and the anti-angiogenic activities of human PSA are independent of the innate enzymatic activity. Copyright © 2011 Wiley-Liss, Inc.

  11. Enzymatic Activity of Free-Prostate-Specific Antigen (f-PSA) Is Not Required for Some of its Physiological Activities

    Science.gov (United States)

    Chadha, Kailash C.; Nair, Bindukumar B.; Chakravarthi, Srikant; Zhou, Rita; Godoy, Alejandro; Mohler, James L.; Aalinkeel, Ravikumar; Schwartz, Stanley A.; Smith, Gary J.

    2015-01-01

    BACKGROUND Prostate specific antigen (PSA) is a well known biomarker for early diagnosis and management of prostate cancer. Furthermore, PSA has been documented to have anti-angiogenic and anti-tumorigenic activities in both in vitro and in vivo studies. However, little is known about the molecular mechanism(s) involved in regulation of these processes, in particular the role of the serine-protease enzymatic activity of PSA. METHODS Enzymatic activity of PSA isolated directly from seminal plasma was inhibited specifically (>95%) by incubation with zinc2+. Human umbilical vein endothelial cells (HUVEC) were utilized to compare/contrast the physiological effects of enzymatically active versus inactive PSA. RESULTS Equimolar concentrations of enzymatically active PSA and PSA enzymatically inactivated by incubation with Zn2+ had similar physiological effects on HUVEC, including inhibiting the gene expression of pro-angiogenic growth factors, like VEGF and bFGF, and up-regulation of expression of the anti-angiogenic growth factor IFN-γ; suppression of mRNA expression for markers of blood vessel development, like FAK, FLT, KDR, TWIST-1; P-38; inhibition of endothelial tube formation in the in vitro Matrigel Tube Formation Assay; and inhibition of endothelial cell invasion and migration properties. DISCUSSION Our data provides compelling evidence that the transcriptional regulatory and the anti-angiogenic activities of human PSA are independent of the innate enzymatic activity PMID:21446007

  12. Digestive enzymatic activity on tropical gar (Atractosteus tropicus) larvae fed different diets.

    Science.gov (United States)

    Aguilera, Carlos; Mendoza, Roberto; Iracheta, Israel; Marquez, Gabriel

    2012-06-01

    Digestive enzymatic activity and growth performance on tropical gar (Atractosteus tropicus) larvae fed Artemia nauplii (LF), frozen adult Artemia (AB), an artificial diet (AF) with 46% protein and 16% lipids and a starvation group (SG) from first feeding (5 days after hatching-5 DAH) to 34 DAH were studied. All larvae under starvation (SG) died at 15 DAH. By the end of the experimental period, morphological variables (total length, wet weight and specific growth rate) were significant in larvae fed AF compared to LF and AB. All enzymes studied in the experiment were present since the start of exogenous feeding (including pepsin) and the enzymatic activity varied with the diets. Low levels of enzymatic activity were observed until the 29 DAH; however, after this moment, there was a significant increase (eightfold), particularly for the AF treatment. In vitro protein digestibility tests performed with enzymatic extracts showed that artificial diets with 52% protein and 14% lipids were better digested by larvae before 30 DAH, while diets with 45% protein and 11% lipids were better digested after this age. Taking into account the better growth performance, higher enzymatic activity and better protein digestibility obtained, artificial diets can be used since the start of exogenous feeding on tropical gar larvae, as in other lepisosteids.

  13. Haematological and anti-oxidant changes associated with ...

    African Journals Online (AJOL)

    Anti-oxidant and heamatological indices in mice passaged with quinine resistant Plasmodium berghei treated with chloroquine co-administered with flavonoid rich anti-plasmodial fraction of Moringa oleifera leaves were determined in this study. Using Rane's test, 60 male albino mice were randomized into 10 groups of six ...

  14. The anti-oxidant effects of ginger and cinnamon on ...

    African Journals Online (AJOL)

    function of diabetes rats. ... At the end of the experiment (56th day), blood samples were taken for determination of testosterone, LH,FSH, total anti-oxidant capacity, and levels of malondialdehyde, SOD, Catalase and GPX. All rats were euthanized, ...

  15. Anti-Oxidant potentials of Yaji spices | Okpalaugo | International ...

    African Journals Online (AJOL)

    ... anti-parasitic, anti-helmintic and anti-oxidant potentials. Common amongst these spices are ginger, clove, red pepper and black pepper, which in combination, constitutes the main spices in Yaji –a complex Nigerian Suya-meat sauce that also contain groundnut cake flour, Ajinomoto (monosodium glutamate) and salt.

  16. Evaluation of free radical scavenging and anti-oxidative capacity of polydatin-nanostructured lipid carriers

    Science.gov (United States)

    Meng, Xiang-Ping; Shi, Fan; Li, Hai-Jie; Yin, Li-De; Wang, Yi-Fei; Wang, Zhi-ping; Chen, Tong-sheng

    2016-10-01

    Cellular damage induced by free-radicals like reactive oxygen species has been implicated in several diseases. 2, 2-azobis(2-amidino-propane) dihydrochloride(AAPH) generates two potent ROS capable of inducing lipid peroxidation: alkoxy radical(RO-) and peroxy radical (ROO-). These radicals are similar to those that are physiologically active and thus might initiate a cascade of intracellular toxic events leading to oxidation, lipid peroxidation, DNA damage and subsequent cell death. Hence naturally anti-oxidant play a vital role in combating these conditions. In this study, polydatin loaded nanostructured lipid carriers (Pol-NLC) was prepared by hot melting and then high pressure homogenization technique. The effects of Pol-NLC on free radical scavenging and anti-oxidative capacity is investigated. The particle size and zeta potential of Pol-NLC were 113.9 +/- 1.1 nm and -16.3 1 +/- 0.27 mV, respectively. By free radical scavenging assays, the IC50 value of Pol-NLC were 28.71, 9.83 μg/mL with DPPH, ABTS assay respectively, and 0.143 mg ferrous sulfate/1 mg Pol-NLC with FRAP assay. These results indicated that the antioxidant properties of Pol-NLC hold great potential used as an alternative to more toxic synthetic anti-oxidants as an additive in food, cosmetic and pharmaceutical preparations for the oxidative diseases treatment.

  17. Modelling the Effects of Ageing Time of Starch on the Enzymatic Activity of Three Amylolytic Enzymes

    Science.gov (United States)

    Guerra, Nelson P.; Pastrana Castro, Lorenzo

    2012-01-01

    The effect of increasing ageing time (t) of starch on the activity of three amylolytic enzymes (Termamyl, San Super, and BAN) was investigated. Although all the enzymatic reactions follow michaelian kinetics, v max decreased significantly (P enzymes and the release of the reaction products to the medium. A similar effect was observed when the enzymatic reactions were carried out with unaged starches supplemented with different concentrations of gelatine [G]. The inhibition in the amylolytic activities was best mathematically described by using three modified forms of the Michaelis-Menten model, which included a term to consider, respectively, the linear, exponential, and hyperbolic inhibitory effects of t and [G]. PMID:22666116

  18. Ferulic Acid Orchestrates Anti-Oxidative Properties of Danggui Buxue Tang, an Ancient Herbal Decoction: Elucidation by Chemical Knock-Out Approach.

    Directory of Open Access Journals (Sweden)

    Amy G W Gong

    Full Text Available Ferulic acid, a phenolic acid derived mainly from a Chinese herb Angelica Sinensis Radix (ASR, was reported to reduce the formation of free radicals. Danggui Buxue Tang (DBT, a herbal decoction composing of Astragali Radix (AR and ASR, has been utilized for more than 800 years in China having known anti-oxidative property. Ferulic acid is a major active ingredient in DBT; however, the role of ferulic acid within the herbal mixture has not been resolved. In order to elucidate the function of ferulic acid within this herbal decoction, a ferulic acid-depleted herbal decoction was created and named as DBTΔfa. The anti-oxidative properties of chemically modified DBT decoction were systemically compared in cultured H9C2 rat cardiomyoblast cell line. The application of DBT and DBTΔfa into the cultures showed functions in (i decreasing the reactive oxygen species (ROS formation, detected by laser confocal; (ii increasing of the activation of Akt; (iii increasing the transcriptional activity of anti-oxidant response element (ARE; and (iv increasing the expressions of anti-oxidant enzymes, i.e. NQO1 and GCLM. In all scenario, the aforementioned anti-oxidative properties of DBTΔfa in H9C2 cells were significantly reduced, as compared to authentic DBT. Thus, ferulic acid could be an indispensable chemical in DBT to orchestrate multi-components of DBT as to achieve maximal anti-oxidative functions.

  19. Ferulic Acid Orchestrates Anti-Oxidative Properties of Danggui Buxue Tang, an Ancient Herbal Decoction: Elucidation by Chemical Knock-Out Approach.

    Science.gov (United States)

    Gong, Amy G W; Huang, Vincent Y; Wang, Huai Y; Lin, Huang Q; Dong, Tina T X; Tsim, Karl W K

    2016-01-01

    Ferulic acid, a phenolic acid derived mainly from a Chinese herb Angelica Sinensis Radix (ASR), was reported to reduce the formation of free radicals. Danggui Buxue Tang (DBT), a herbal decoction composing of Astragali Radix (AR) and ASR, has been utilized for more than 800 years in China having known anti-oxidative property. Ferulic acid is a major active ingredient in DBT; however, the role of ferulic acid within the herbal mixture has not been resolved. In order to elucidate the function of ferulic acid within this herbal decoction, a ferulic acid-depleted herbal decoction was created and named as DBTΔfa. The anti-oxidative properties of chemically modified DBT decoction were systemically compared in cultured H9C2 rat cardiomyoblast cell line. The application of DBT and DBTΔfa into the cultures showed functions in (i) decreasing the reactive oxygen species (ROS) formation, detected by laser confocal; (ii) increasing of the activation of Akt; (iii) increasing the transcriptional activity of anti-oxidant response element (ARE); and (iv) increasing the expressions of anti-oxidant enzymes, i.e. NQO1 and GCLM. In all scenario, the aforementioned anti-oxidative properties of DBTΔfa in H9C2 cells were significantly reduced, as compared to authentic DBT. Thus, ferulic acid could be an indispensable chemical in DBT to orchestrate multi-components of DBT as to achieve maximal anti-oxidative functions.

  20. PARTIAL CHARACTERIZATION OF ENZYMATIC ACTIVITIES PRODUCED BY A WILD STRAIN OF A. NIGER

    Directory of Open Access Journals (Sweden)

    María Martos

    2012-12-01

    Full Text Available Aspergillus niger, isolated from decay citrus peels in the province of Misiones, was able to produce pectinases by submerged fermentation. The enzymatic extract exhibited polygalacturonase, pectinesterase and lyase activities. Others enzymes capable of degrading cell wall polymers were also detected in the enzymatic extract such as cellulases and xylanases. Polygalacturonase was an endo-polygalacturonase. The enzyme exhibited a maximal activity at pH range between 4.5 to 5.0, was stable in the pH range from 2.5 to 5.5 and remained unchanged when was incubated at temperatures lower than 50 ºC. The fungi produced three PG isoenzymes. The enzymatic extract was able to clarify apple juice. The results observed make the pectinolytic enzymes produced by A. niger appropriate for future application in fruit juice processing industries.

  1. The Synthesis and Evaluation of Novel Hydroxyl Substituted Chalcone Analogs with in Vitro Anti-Free Radicals Pharmacological Activity and in Vivo Anti-Oxidation Activity in a Free Radical-Injury Alzheimer’s Model

    Directory of Open Access Journals (Sweden)

    Ying Pan

    2013-01-01

    Full Text Available Alzheimer’s disease (AD pathogenesis involves an imbalance between free radical formation and destruction. In order to obtain a novel preclinical anti-AD drug candidate, we synthesized a series of novel hydroxyl chalcone analogs which possessed anti-free radical activity, and screened their effects on scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH and OH free radicals in vitro. Compound C7, 4,2'-dihydroxy-3,5-dimethoxychalcone was found to have potent activity in these anti-free radical activity tests. Further research revealed that C7 could elevate glutathione peroxidase (GSH-PX and super oxide dismutase (SOD levels and lower malonaldehyde (MDA level in vivo in the Alzheimer’s model. The indication of C7’s effect on AD needs further study.

  2. Quantitative combination of natural anti-oxidants prevents metabolic syndrome by reducing oxidative stress.

    Science.gov (United States)

    Gao, Mingjing; Zhao, Zhen; Lv, Pengyu; Li, YuFang; Gao, Juntao; Zhang, Michael; Zhao, Baolu

    2015-12-01

    Insulin resistance and abdominal obesity are present in the majority of people with the metabolic syndrome. Antioxidant therapy might be a useful strategy for type 2 diabetes and other insulin-resistant states. The combination of vitamin C (Vc) and vitamin E has synthetic scavenging effect on free radicals and inhibition effect on lipid peroxidation. However, there are few studies about how to define the best combination of more than three anti-oxidants as it is difficult or impossible to test the anti-oxidant effect of the combination of every concentration of each ingredient experimentally. Here we present a math model, which is based on the classical Hill equation to determine the best combination, called Fixed Dose Combination (FDC), of several natural anti-oxidants, including Vc, green tea polyphenols (GTP) and grape seed extract proanthocyanidin (GSEP). Then we investigated the effects of FDC on oxidative stress, blood glucose and serum lipid levels in cultured 3T3-L1 adipocytes, high fat diet (HFD)-fed rats which serve as obesity model, and KK-ay mice as diabetic model. The level of serum malondialdehyde (MDA) in the treated rats was studied and Hematoxylin-Eosin (HE) staining or Oil red slices of liver and adipose tissue in the rats were examined as well. FDC shows excellent antioxidant and anti-glycation activity by attenuating lipid peroxidation. FDC determined in this investigation can become a potential solution to reduce obesity, to improve insulin sensitivity and be beneficial for the treatment of fat and diabetic patients. It is the first time to use the math model to determine the best ratio of three anti-oxidants, which can save much more time and chemical materials than traditional experimental method. This quantitative method represents a potentially new and useful strategy to screen all possible combinations of many natural anti-oxidants, therefore may help develop novel therapeutics with the potential to ameliorate the worldwide metabolic

  3. The Effect of Mentha Spicata L. Dry Powder and its Different Types Extracts on Certain Biochemical Parameters and Total Anti-oxidant Capacity

    OpenAIRE

    ÖZDEMİR, Ayşe; SÖZBİLİR, Nalan Bayşu

    2016-01-01

    The plant Mentha spicata, or peppermint, is member of the Labiatae family, commonly used in the treatment of loss of appetite, common cold, bronchitis, sinusitis, fever, nausea and vomiting, and indigestion as a herbal agent.Although anti-oxidant effects of flavonoid containing plants have been investigated largely, studies in their interactions with enzymatic and nonenzymatic antioxidants and vitamins together with dead mentha powder are rare.The present thesis was carried out to investigate...

  4. Muscilage characterization, biochemical and enzymatic activities of laser irradiated Lagenaria siceraria seedlings.

    Science.gov (United States)

    Abbas, Mazhar; Arshad, Muhammad; Nisar, Numrah; Nisar, Jan; Ghaffar, Abdul; Nazir, Arif; Asif Tahir, M; Iqbal, Munawar

    2017-08-01

    Laser stimulation effect on L. siceraria seed mucilage, biochemicals and enzymatic activities during early growth stages were investigated. The laser density power of 1mW/cm 2 for 3 and 5min treatments were performed and various responses i.e., seedlings mucilage, biochemical and enzymatic activities were studied. Laser treatment of L. siceraria seeds enhanced the biochemical as well as the enzymatic activities. TPC (total phenolic contents),TFC (total flavonoids contents), TSS (total soluble sugar), reducing sugar, proline contents, total soluble protein and nitrogen contents were recorded higher in laser treated groups versus control. Mucilage from L. siceraria seed coat was also characterized. The pre-sowing seeds were treated with laser radiation for 3 and 5min. TPC, TFC, proline contents, total soluble protein and nitrogenous compounds contents, ascorbic acid contents were recorded higher at 3min. The laser irradiation effect on TSS, hydrogen peroxide (H 2 O 2 ), malondialdehyde (MDA) was insignificant versus control. The SOD (superoxide dismutase) and POD (peroxidase), AMY (amylase), CAT (catalase) activities were recorded higher for 5min laser treatment. Results revealed that He-Ne continuous wave-laser pre-sowing seed irradiation affected the seed coat mucilage, biochemical and enzymatic activities positively and this treatment could possibly be used to enhance the L. siceraria productivity. Future study will be focused on growth at later stages and yield characteristics of L. siceraria. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Discovery of a proteolytic flagellin family in diverse bacterial phyla that assembles enzymatically active flagella.

    Science.gov (United States)

    Eckhard, Ulrich; Bandukwala, Hina; Mansfield, Michael J; Marino, Giada; Cheng, Jiujun; Wallace, Iain; Holyoak, Todd; Charles, Trevor C; Austin, John; Overall, Christopher M; Doxey, Andrew C

    2017-09-12

    Bacterial flagella are cell locomotion and occasional adhesion organelles composed primarily of the polymeric protein flagellin, but to date have not been associated with any enzymatic function. Here, we report the bioinformatics-driven discovery of a class of enzymatic flagellins that assemble to form proteolytically active flagella. Originating by a metallopeptidase insertion into the central flagellin hypervariable region, this flagellin family has expanded to at least 74 bacterial species. In the pathogen, Clostridium haemolyticum, metallopeptidase-containing flagellin (which we termed flagellinolysin) is the second most abundant protein in the flagella and is localized to the extracellular flagellar surface. Purified flagellar filaments and recombinant flagellin exhibit proteolytic activity, cleaving nearly 1000 different peptides. With ~ 20,000 flagellin copies per  ~ 10-μm flagella this assembles the largest proteolytic complex known. Flagellum-mediated extracellular proteolysis expands our understanding of the functional plasticity of bacterial flagella, revealing this family as enzymatic biopolymers that mediate interactions with diverse peptide substrates.So far no enzymatic activity has been attributed to flagellin, the major component of bacterial flagella. Here the authors use bioinformatic analysis and identify a metallopeptidase insertion in flagellins from 74 bacterial species and show that recombinant flagellin and flagellar filaments have proteolytic activity.

  6. A comparison of protein kinases inhibitor screening methods using both enzymatic activity and binding affinity determination

    DEFF Research Database (Denmark)

    Rudolf, Amalie Frederikke; Skovgaard, Tine; Knapp, Stefan

    2014-01-01

    Binding assays are increasingly used as a screening method for protein kinase inhibitors; however, as yet only a weak correlation with enzymatic activity-based assays has been demonstrated. We show that the correlation between the two types of assays can be improved using more precise screening...

  7. The variations of enzymatic activity of pepsin preparation by γ-irradiation

    International Nuclear Information System (INIS)

    Kimura, Syojiro; Taimatsu, Meiko; Kanbashi, Toshitaka; Okamoto, Shinichi; Ohnishi, Tokuhiro.

    1993-01-01

    Effect of γ-irradiation on the enzymatic activity of raw pepsin and some saccharated pepsin preparations were studied in the dose range from 0 to 300 kGy. As a result, the apparent reduction rate of saccharated pepsin preparations is less than of raw pepsin. K values of raw and saccharated pepsins were 0.014 and 0.0040-0.0061, and G values of raw and saccharated pepsins were 3.98 and 1.13-1.73, respectively. The lower K and G values of saccharated pepsin than those of raw pepsin seem to be due to radiolytic products of lactose in the preparations as an excipient. Retention rates of enzymatic activity of irradiated preparations at the dose of 25 kGy, which is a complete sterilization dose of pharmaceutical materials, were estimated to be 83% for raw pepsin, and 86% and 93% for saccharated pepsin preparations. At the dose of 10 kGy suggested for food irradiation the retention rates were more than 93% for all pepsins. Therefore, this method is applicable considering the stability of the enzymatic activity after irradiation in the proper range of dose. However, it is necessary to consider the fact that radiolytic products of lactose affect the measurement of enzymatic activity. (author)

  8. Enzymatic Hydrolysis of Oleuropein from Olea europea (Olive Leaf Extract and Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Jiao-Jiao Yuan

    2015-02-01

    Full Text Available Oleuropein (OE, the main polyphenol in olive leaf extract, is likely to decompose into hydroxytyrosol (HT and elenolic acid under the action of light, acid, base, high temperature. In the enzymatic process, the content of OE in olive leaf extract and enzyme are key factors that affect the yield of HT. A selective enzyme was screened from among 10 enzymes with a high OE degradation rate. A single factor (pH, temperature, time, enzyme quantity optimization process and a Box-Behnken design were studied for the enzymatic hydrolysis of 81.04% OE olive leaf extract. Additionally, enzymatic hydrolysis results with different substrates (38.6% and 81.04% OE were compared and the DPPH antioxidant properties were also evaluated. The result showed that the performance of hydrolysis treatments was best using hemicellulase as a bio-catalyst, and the high purity of OE in olive extract was beneficial to biotransform OE into HT. The optimal enzymatic conditions for achieving a maximal yield of HT content obtained by the regression were as follows: pH 5, temperature 55 °C and enzyme quantity 55 mg. The experimental result was 11.31% ± 0.15%, and the degradation rate of OE was 98.54%. From the present investigation of the antioxidant activity determined by the DPPH method, the phenol content and radical scavenging effect were both decreased after enzymatic hydrolysis by hemicellulase. However, a high antioxidant activity of the ethyl acetate extract enzymatic hydrolysate (IC50 = 41.82 μg/mL was demonstated. The results presented in this work suggested that hemicellulase has promising and attractive properties for industrial production of HT, and indicated that HT might be a valuable biological component for use in pharmaceutical products and functional foods.

  9. Enzymatic hydrolysis of oleuropein from Olea europea (olive) leaf extract and antioxidant activities.

    Science.gov (United States)

    Yuan, Jiao-Jiao; Wang, Cheng-Zhang; Ye, Jian-Zhong; Tao, Ran; Zhang, Yu-Si

    2015-02-11

    Oleuropein (OE), the main polyphenol in olive leaf extract, is likely to decompose into hydroxytyrosol (HT) and elenolic acid under the action of light, acid, base, high temperature. In the enzymatic process, the content of OE in olive leaf extract and enzyme are key factors that affect the yield of HT. A selective enzyme was screened from among 10 enzymes with a high OE degradation rate. A single factor (pH, temperature, time, enzyme quantity) optimization process and a Box-Behnken design were studied for the enzymatic hydrolysis of 81.04% OE olive leaf extract. Additionally, enzymatic hydrolysis results with different substrates (38.6% and 81.04% OE) were compared and the DPPH antioxidant properties were also evaluated. The result showed that the performance of hydrolysis treatments was best using hemicellulase as a bio-catalyst, and the high purity of OE in olive extract was beneficial to biotransform OE into HT. The optimal enzymatic conditions for achieving a maximal yield of HT content obtained by the regression were as follows: pH 5, temperature 55 °C and enzyme quantity 55 mg. The experimental result was 11.31% ± 0.15%, and the degradation rate of OE was 98.54%. From the present investigation of the antioxidant activity determined by the DPPH method, the phenol content and radical scavenging effect were both decreased after enzymatic hydrolysis by hemicellulase. However, a high antioxidant activity of the ethyl acetate extract enzymatic hydrolysate (IC50 = 41.82 μg/mL) was demonstated. The results presented in this work suggested that hemicellulase has promising and attractive properties for industrial production of HT, and indicated that HT might be a valuable biological component for use in pharmaceutical products and functional foods.

  10. Chemical Characterization, Antioxidant and Enzymatic Activity of Brines from Scandinavian Marinated Herring Products

    DEFF Research Database (Denmark)

    Gringer, Nina; Osman, Ali; Nielsen, Henrik Hauch

    2014-01-01

    Brines generated during the last marination step in the production of marinated herring (Clupea harengus) were chemically characterized and analyzed for antioxidant and enzyme activities. The end-products were vinegar cured, spice cured and traditional barrel-salted herring with either salt...... or spices. The chemical characterization encompassed pH, dry matter, ash, salt, fatty acids, protein, polypeptide pattern, iron and nitrogen. The antioxidant activity was tested with three assays measuring: iron chelation, reducing power and radical scavenging activity. The enzymatic activity for peroxidase...... and protease were also tested. Results revealed that the brine can contain up to 56.7 mg protein/ mL, up to 20.1 mg fatty acid/mL, good antioxidant activity, high amounts of the antioxidative amino acids lysine, alanine, and glycine, and high enzymatic activity. The potential of using the protein-rich fraction...

  11. Effect of the addition of sand on the enzymatic activity of carbetidine soils contaminated with metals

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Vera, R.; Martin Calvarro, L.; Rodriguez Fernandez, T.; Ortiz Rosales, M. A.; Lopez Lafuente, A.

    2009-07-01

    Heavy metals can alter the composition, structure and metabolic activity of soil microbian communities. These alterations can be used as quick and sensible bio indicators of changes in the soil quality; therefore the study of enzymatic activity in the soil represents one of the prior objectives to determine its status. The activity of deshidrogenase, {beta}-galactosidase, alkaline phosphatase and urease, enzymes which are involved in the biogeochemical cycles of the main macro nutrients, has been analyzed. (Author)

  12. Determination of the enzymatic activity of pectinases from different microorganisms.

    Science.gov (United States)

    Maiorano, A E; Schmidell, W; Ogaki, Y

    1995-05-01

    The decrease in viscosity is widely used to estimate the activity of pectinolytic enzymes. This method is shown to be influenced by the production strain and this prevents an accurate comparison between the activities of different microorganisms, especially under different conditions.

  13. Quantitation of Na+, K+-atpase Enzymatic Activity in Tissues of the Mammalian Vestibular System

    Science.gov (United States)

    Kerr, T. P.

    1985-01-01

    In order to quantify vestibular Na(+), K(+)-ATPase, a microassay technique was developed which is sufficiently sensitive to measure the enzymatic activity in tissue from a single animal. The assay was used to characterize ATPase in he vestibular apparatus of the Mongolian gerbil. The quantitative procedure employs NPP (5 mM) as synthetic enzyme substrate. The assay relies upon spectrophotometric measurement (410 nm) of nitrophenol (NP) released by enzymatic hydrolysis of the substrate. Product formation in the absence of ouabain reflects both specific (Na(+), K(+)-ATPase) and non-specific (Mg(++)-ATPase) enzymatic activity. By measuring the accumulation of reaction product (NP) at three-minute intervals during the course of incubation, it is found that the overall enzymatic reaction proceeds linearly for at least 45 minutes. It is therefore possible to determine two separate reaction rates from a single set of tissues. Initial results indicate that total activity amounts to 53.3 + or - 11.2 (S.E.M.) nmol/hr/mg dry tissue, of which approximately 20% is ouabain-sensitive.

  14. Antioxidant activity and angiotensin I-converting enzyme inhibition by enzymatic hydrolysates from bee bread.

    Science.gov (United States)

    Nagai, Takeshi; Nagashima, Toshio; Suzuki, Nobutaka; Inoue, Reiji

    2005-01-01

    Enzymatic hydrolysates were prepared from bee bread using three proteases. The antioxidant properties of these hydrolysates were measured using four different methods. These had remarkable antioxidant activity similar or superior to that of 1 mM alpha-tocopherol. They also had high scavenging activities against active oxygen species as the superoxide anion radical and hydroxyl radicals. Moreover, they showed angiotensin I-converting enzyme inhibitory activities and the activities were similar to those from various fermented foods such as fish sauce, sake, vinegar, cheese, miso, and natto. The present studies reveal that enzymatic hydrolysates from bee bread are of benefit not only for the materials of health food diets, but also for in patients undergoing various diseases such as cancer, cardiovascular diseases, diabetes, and hypertension.

  15. Directed enzymatic activation of 1-D DNA tiles.

    Science.gov (United States)

    Garg, Sudhanshu; Chandran, Harish; Gopalkrishnan, Nikhil; LaBean, Thomas H; Reif, John

    2015-02-24

    The tile assembly model is a Turing universal model of self-assembly where a set of square shaped tiles with programmable sticky sides undergo coordinated self-assembly to form arbitrary shapes, thereby computing arbitrary functions. Activatable tiles are a theoretical extension to the Tile assembly model that enhances its robustness by protecting the sticky sides of tiles until a tile is partially incorporated into a growing assembly. In this article, we experimentally demonstrate a simplified version of the Activatable tile assembly model. In particular, we demonstrate the simultaneous assembly of protected DNA tiles where a set of inert tiles are activated via a DNA polymerase to undergo linear assembly. We then demonstrate stepwise activated assembly where a set of inert tiles are activated sequentially one after another as a result of attachment to a growing 1-D assembly. We hope that these results will pave the way for more sophisticated demonstrations of activated assemblies.

  16. WATER STRESS RESPONSE ON THE ENZYMATIC ACTIVITY IN COWPEA NODULES

    Directory of Open Access Journals (Sweden)

    Figueiredo Márcia do Vale B.

    2001-01-01

    Full Text Available A greenhouse experiment was carried out aiming to study the effect of water stress on metabolic activity of cowpea nodules at different plant development stages. Cowpea plants were grown in pots with yellow latosol soil under three different matric potentials treatments: -7.0 (control-S1, -70.0 (S2 and <-85.0 KPa (S3. The experimental design was randomized blocks with sub-divided plots, each plot containing a different degree of water stress, divided in sub-plots for the four different developmental stages: E1 (0-15, E2 (15-30, E3 (20-35 and E4 (30-45 days after emmergence. Water stress treatments were applied by monitoring soil water potential using a set of porous cups. The effect of water stress was most harmful to cowpea when it was applied at E2 than at other symbiotic process stages. Shoot/root ratio decreased from 2.61 to 2.14 when matric potential treatment was <-85.0 and -70.0 KPa respectively. There was a reduction in the glutamine synthetase activity and phosphoenolpyruvate carboxilase activity with increased stress, while glutamine synthase activity was the enzyme most sensitive to water stress. Glutamate dehydrogenase activity increased in more negative matric potential, indicating that this enzyme is sufficiently activitye under water stress.

  17. Enzymatic assay for calmodulins based on plant NAD kinase activity

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, A.C.; Jarrett, H.W.; Cormier, M.J.

    1984-01-01

    NAD kinase with increased sensitivity to calmodulin was purified from pea seedlings (Pisum sativum L., Willet Wonder). Assays for calmodulin based on the activities of NAD kinase, bovine brain cyclic nucleotide phosphodiesterase, and human erythrocyte Ca/sup 2 -/-ATPase were compared for their sensitivities to calmodulin and for their abilities to discriminate between calmodulins from different sources. The activities of the three enzymes were determined in the presence of various concentrations of calmodulins from human erythrocyte, bovine brain, sea pansy (Renilla reniformis), mung bean seed (Vigna radiata L. Wilczek), mushroom (Agaricus bisporus), and Tetrahymena pyriformis. The concentrations of calmodulin required for 50% activation of the NAD kinase (K/sub 0.5/) ranged from 0.520 ng/ml for Tetrahymena to 2.20 ng/ml for bovine brain. The A/sub 0.5/ s ranged from 19.6 ng/ml for bovine brain calmodulin to 73.5 ng/ml for mushroom calmodulin for phosphodiesterase activation. The K/sub 0.5/'s for the activation of Ca/sup 2 +/-ATPase ranged from 36.3 ng/mol for erythrocyte calmodulin to 61.7 ng/ml for mushroom calmodulin. NAD kinase was not stimulated by phosphatidylcholine, phosphatidylserine, cardiolipin, or palmitoleic acid in the absence or presence of Ca/sup 2 +/. Palmitic acid had a slightly stimulatory effect in the presence of Ca/sup 2 +/ (10% of maximum), but no effect in the absence of Ca/sup 2 +/. Palmitoleic acid inhibited the calmodulin-stimulated activity by 50%. Both the NAD kinase assay and radioimmunoassay were able to detect calmodulin in extracts containing low concentrations of calmodulin. Estimates of calmodulin contents of crude homogenates determined by the NAD kinase assay were consistent with amounts obtained by various purification procedures. 30 references, 1 figure, 4 tables.

  18. Assessment of protective and anti-oxidant properties of Tribulus terrestris fruits against testicular toxicity in rats

    Science.gov (United States)

    Shalaby, Mostafa Abbas; Hammouda, Ashraf Abd El-Khalik

    2014-01-01

    Aims: This study was carried out to assess the protective and anti-oxidant activities of the methanolic extract of Tribulus terrestris fruits (METT) against sodium valproate (SVP)-induced testicular toxicity in rats. Materials and Methods: Fifty mature male rats were randomly divided into five equal groups (n = 10). Group 1 was used normal (negative) control, and the other four groups were intoxicated with SVP (500 mg/kg–1, orally) during the last week of the experiment. Group 2 was kept intoxicated (positive) control, and Groups 3, 4 and 5 were orally pre-treated with METT in daily doses 2.5, 5.0, and 10.0 mg/kg–1 for 60 days, respectively. Weights of sexual organs, serum testosterone, follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels, semen picture, testicular anti-oxidant capacity and histopathology of testes were the parameters used in this study. Results: Oral pre-treatment with METT significantly increased weights of testes and seminal vesicles; serum testosterone, FSH and LH levels and sperm motility, count and viability in SVP-intoxicated rats. METT enhanced the activity of testicular anti-oxidant enzymes and partially alleviated degenerative changes induced by SVP in testes. Conclusion: The pre-treatment with METT has protective and anti-oxidant effects in SVP-intoxicated rats. Mechanisms of this protective effect against testicular toxicity may be due to the increased release of testosterone, FSH and LH and the enhanced tissue anti-oxidant capacity. These results affirm the traditional use of T. terrestris fruits as an aphrodisiac for treating male sexual impotency and erectile dysfunction in patients. The study recommends that T. terrestris fruits may be beneficial for male patients suffering from infertility. PMID:26401358

  19. Assessment of protective and anti-oxidant properties of Tribulus terrestris fruits against testicular toxicity in rats.

    Science.gov (United States)

    Shalaby, Mostafa Abbas; Hammouda, Ashraf Abd El-Khalik

    2014-01-01

    This study was carried out to assess the protective and anti-oxidant activities of the methanolic extract of Tribulus terrestris fruits (METT) against sodium valproate (SVP)-induced testicular toxicity in rats. Fifty mature male rats were randomly divided into five equal groups (n = 10). Group 1 was used normal (negative) control, and the other four groups were intoxicated with SVP (500 mg/kg(-1), orally) during the last week of the experiment. Group 2 was kept intoxicated (positive) control, and Groups 3, 4 and 5 were orally pre-treated with METT in daily doses 2.5, 5.0, and 10.0 mg/kg(-1) for 60 days, respectively. Weights of sexual organs, serum testosterone, follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels, semen picture, testicular anti-oxidant capacity and histopathology of testes were the parameters used in this study. Oral pre-treatment with METT significantly increased weights of testes and seminal vesicles; serum testosterone, FSH and LH levels and sperm motility, count and viability in SVP-intoxicated rats. METT enhanced the activity of testicular anti-oxidant enzymes and partially alleviated degenerative changes induced by SVP in testes. The pre-treatment with METT has protective and anti-oxidant effects in SVP-intoxicated rats. Mechanisms of this protective effect against testicular toxicity may be due to the increased release of testosterone, FSH and LH and the enhanced tissue anti-oxidant capacity. These results affirm the traditional use of T. terrestris fruits as an aphrodisiac for treating male sexual impotency and erectile dysfunction in patients. The study recommends that T. terrestris fruits may be beneficial for male patients suffering from infertility.

  20. Activation of Hsp90 Enzymatic Activity and Conformational Dynamics through Rationally Designed Allosteric Ligands.

    Science.gov (United States)

    Sattin, Sara; Tao, Jiahui; Vettoretti, Gerolamo; Moroni, Elisabetta; Pennati, Marzia; Lopergolo, Alessia; Morelli, Laura; Bugatti, Antonella; Zuehlke, Abbey; Moses, Mike; Prince, Thomas; Kijima, Toshiki; Beebe, Kristin; Rusnati, Marco; Neckers, Len; Zaffaroni, Nadia; Agard, David A; Bernardi, Anna; Colombo, Giorgio

    2015-09-21

    Hsp90 is a molecular chaperone of pivotal importance for multiple cell pathways. ATP-regulated internal dynamics are critical for its function and current pharmacological approaches block the chaperone with ATP-competitive inhibitors. Herein, a general approach to perturb Hsp90 through design of new allosteric ligands aimed at modulating its functional dynamics is proposed. Based on the characterization of a first set of 2-phenylbenzofurans showing stimulatory effects on Hsp90 ATPase and conformational dynamics, new ligands were developed that activate Hsp90 by targeting an allosteric site, located 65 Å from the active site. Specifically, analysis of protein responses to first-generation activators was exploited to guide the design of novel derivatives with improved ability to stimulate ATP hydrolysis. The molecules' effects on Hsp90 enzymatic, conformational, co-chaperone and client-binding properties were characterized through biochemical, biophysical and cellular approaches. These designed probes act as allosteric activators of the chaperone and affect the viability of cancer cell lines for which proper functioning of Hsp90 is necessary. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. [Globule size and the activation energy of an enzymatic process].

    Science.gov (United States)

    Krishtalik, L I

    1979-01-01

    The charge transfer reactions demand the polar medium reorganization the main part in the process energy being contributed by solvent reorganization. Protein globule excludes a part of the solvent from the interaction with the charge being transfered. Thus a strong decrease of the reorganization energy and hence of the activation energy is achieved (the gain of some kcal/mole). The effect rises at first rapidly with the globule radius but it becomes practically constant after some optimal radius is reached. The estimation of the optimal radius gives values of the order of magnitude of the enzymes molecule sizes.

  2. Binding of Nickel to Testicular Glutamate–Ammonia Ligase Inhibits Its Enzymatic Activity

    Science.gov (United States)

    SUN, YINGBIAO; OU, YOUNG; CHENG, MIN; RUAN, YIBING; VAN DER HOORN, FRANS A.

    2016-01-01

    SUMMARY Exposure to nickel has been shown to cause damage to the testis in several animal models. It is not known if the testis expresses protein(s) that can bind nickel. To test this, we used a nickel-binding assay to isolate testicular nickel-binding proteins. We identified glutamate–ammonia ligase (GLUL) as a prominent nickel-binding protein by mass spectrometry. Protein analysis and reverse transcriptase polymerase chain reaction showed that GLUL is expressed in the testis, predominantly in interstitial cells. We determined that GLUL has a higher affinity for nickel than for its regular co-factor manganese. We produced an enzymatically active, recombinant GLUL protein. Upon binding, nickel interferes with the manganese-catalyzed enzymatic activity of recombinant GLUL protein. We also determined that GLUL activity in testes of animals exposed to nickel sulfate is reduced. Our results identify testicular GLUL as the first testicular protein shown to be affected by nickel exposure. PMID:21254280

  3. Cetyltrimethylammonium bromide discontinuous gel electrophoresis: Mr-based separation of proteins with retention of enzymatic activity.

    Science.gov (United States)

    Akins, R E; Levin, P M; Tuan, R S

    1992-04-01

    A discontinuous polyacrylamide and agarose gel electrophoresis system is presented here which allows the fine separation of proteins based on molecular weight with the concomitant retention of native enzymatic activity. This system, referred to as the CAT gel, uses the cationic detergent cetyltrimethylammonium bromide (CTAB) and includes a stacking gel based on the zwitterion arginine and the buffer N-tris(hydroxymethyl)-methylglycine. The CAT gel system allows specific enzyme histochemical detection and localization of proteins after gel electrophoresis. We present evidence that the CAT system stacked and separated a broad range of proteins into discrete bands which migrate as a linear function of log Mr. We have also assessed the effect of CTAB solubilization on the activity of several proteins and showed that some proteins separated by CAT electrophoresis maintain high levels of native enzymatic activity and may be detected histochemically in situ.

  4. Immobilization of inorganic pyrophosphatase on nanodiamond particles retaining its high enzymatic activity.

    Science.gov (United States)

    Rodina, Elena V; Valueva, Anastasiya V; Yakovlev, Ruslan Yu; Vorobyeva, Nataliya N; Kulakova, Inna I; Lisichkin, Georgy V; Leonidov, Nikolay B

    2015-12-21

    Nanodiamond (ND) particles are popular platforms for the immobilization of molecular species. In the present research, enzyme Escherichia coli inorganic pyrophosphatase (PPase) was immobilized on detonation ND through covalent or noncovalent bonding and its enzymatic activity was characterized. Factors affecting adsorption of PPase such as ND size and surface chemistry were studied. The obtained material is a submicron size association of ND particles and protein molecules in approximately equal amounts. Both covalently and noncovalently immobilized PPase retains a significant enzymatic activity (up to 95% of its soluble form) as well as thermostability. The obtained hybrid material has a very high enzyme loading capacity (∼1 mg mg(-1)) and may be considered as a promising delivery system of biologically active proteinaceous substances, particularly in the treatment of diseases such as calcium pyrophosphate crystal deposition disease and related pathologies. They can also be used as recoverable heterogeneous catalysts in the traditional uses of PPase.

  5. Protein Conformational Gating of Enzymatic Activity in Xanthine Oxidoreductase

    Energy Technology Data Exchange (ETDEWEB)

    Ishikita, Hiroshi; Eger, Bryan T.; Okamoto, Ken; Nishino, Takeshi; Pai, Emil F. (Toronto); (Kyoto)

    2012-05-24

    In mammals, xanthine oxidoreductase can exist as xanthine dehydrogenase (XDH) and xanthine oxidase (XO). The two enzymes possess common redox active cofactors, which form an electron transfer (ET) pathway terminated by a flavin cofactor. In spite of identical protein primary structures, the redox potential difference between XDH and XO for the flavin semiquinone/hydroquinone pair (E{sub sq/hq}) is {approx}170 mV, a striking difference. The former greatly prefers NAD{sup +} as ultimate substrate for ET from the iron-sulfur cluster FeS-II via flavin while the latter only accepts dioxygen. In XDH (without NAD{sup +}), however, the redox potential of the electron donor FeS-II is 180 mV higher than that for the acceptor flavin, yielding an energetically uphill ET. On the basis of new 1.65, 2.3, 1.9, and 2.2 {angstrom} resolution crystal structures for XDH, XO, the NAD{sup +}- and NADH-complexed XDH, E{sub sq/hq} were calculated to better understand how the enzyme activates an ET from FeS-II to flavin. The majority of the E{sub sq/hq} difference between XDH and XO originates from a conformational change in the loop at positions 423-433 near the flavin binding site, causing the differences in stability of the semiquinone state. There was no large conformational change observed in response to NAD{sup +} binding at XDH. Instead, the positive charge of the NAD{sup +} ring, deprotonation of Asp429, and capping of the bulk surface of the flavin by the NAD{sup +} molecule all contribute to altering E{sub sq/hq} upon NAD{sup +} binding to XDH.

  6. Two step procedure for purification of enzymatically active prostate-specific antigen from seminal plasma.

    Science.gov (United States)

    Bindukumar, B; Kawinski, Elzbieta; Cherrin, Craig; Gambino, Leah M; Nair, Madhavan P N; Schwartz, Stanley A; Chadha, Kailash C

    2004-12-25

    The role of prostate-specific antigen (PSA) during the onset of prostate cancer and subsequent tumor growth and metastasis is not well understood. We have developed a simple two step procedure, based on principles of hydrophobic charge-induction chromatography and molecular size chromatography to provide pure free-PSA (f-PSA) preparation that is free from all other known PSA complexes as well as human kallikrein 2 (hK2). The overall recovery of f-PSA is 72%. The isolated f-PSA consists of three known isoforms that corresponds to pI of 6.2, 6.4 and 7.2. f-PSA is enzymatically active and its enzymatic activity can be effectively neutralized by a serine protease inhibitor.

  7. Enzymatic activities in traps of four aquatic species of the carnivorous genus Utricularia

    Czech Academy of Sciences Publication Activity Database

    Sirová, D.; Adamec, Lubomír; Vrba, Jaroslav

    2003-01-01

    Roč. 159, - (2003), s. 669-675 ISSN 0028-646X R&D Projects: GA AV ČR IAA6017202; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6017912; CEZ:AV0Z6005908 Keywords : aquatic carnivorous plants * extracellular enzymatic activity * trap fluid pH Subject RIV: EF - Botanics Impact factor: 3.118, year: 2003

  8. Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning.

    Science.gov (United States)

    Chakraborty, Somsubhra; Das, Bhabani S; Ali, Md Nasim; Li, Bin; Sarathjith, M C; Majumdar, K; Ray, D P

    2014-03-01

    The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r(2)=0.91 and RMSE=13.38 μg g(-1) h(-1)) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky-Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Phytochemical screening and study of anti-oxidant, anti-microbial, anti-diabetic, anti-inflammatory and analgesic activities of extracts from stem wood of Pterocarpus marsupium Roxburgh

    Directory of Open Access Journals (Sweden)

    Dipak Raj Pant

    2017-06-01

    Results: The results of study revealed that P. marsupium is a source of various phytoconstituents such as alkaloids, glycosides, saponins, tannins, proteins, carbohydrates, cardiac glycosides, flavonoids and terpinoids. Both the acetone & IPA extract and ethanol extract of stem wood of Pterocarpus marsupium, exhibited the dose dependent antioxidant activity. Acetone & IPA extract showed antibacterial activity against gram positive bacteria, while the ethanolic extract was found to possess anti-diabetic activity. The anti-diabetic activity of the extract was found to be time and dose dependent. Similarly, the acetone & IPA extract was found to have anti-inflammatory activity, which was also time and dose dependent. Further, the ethanolic extract showed analgesic activity, which was dose dependent. The ethanolic extract was found to be non-toxic. Conclusions: Thus this study laid sufficient background for the further research on extracts from stem wood of Pterocarpus marsupium for identification, subsequent purification and isolation of compounds having anti-bacterial, anti-diabetic, anti-inflammatory and analgesic activities. [J Complement Med Res 2017; 6(2.000: 170-176

  10. Blood parameters and enzymatic and oxidative activity in the liver of chickens fed with calcium anacardate

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Braga Cruz

    Full Text Available ABSTRACT The aim of this research was to evaluate the inclusion of calcium anacardate (CAC as a source of anacardic acid in the diet of broiler chickens on blood parameters, and enzymatic and oxidative activity in the liver. A total of 840 male chicks, one day old, were kept in a completely randomised experimental design, with six treatments and seven replications of 20 birds, totalling 140 birds per treatment. The treatments consisted of feed without the addition of growth promoter (GP, feed with GP, and feed with no GP and the addition of CAC at levels of 0.25, 0.50, 0.75 and 1%. The biochemical blood variables to be analysed were uric acid, total cholesterol, HDL, LDL, creatinine, AST, ALT, triglycerides, total erythrocytes, haemoglobin, haematocrit, mean corpuscular volume, corpuscular haemoglobin concentration, total plasma protein, total leukocytes, heterophils, lymphocytes, platelets and heterophil/lymphocyte ratio. The concentrations of superoxide dismutase, glutathione peroxidase and malondialdehyde were analysed for the enzymatic and oxidative parameters in the liver. There were no significant differences between treatments in the blood parameters or the enzymatic and oxidative activity in the liver of the chickens, demonstrating that the use of calcium anacardate as a source of anacardic acid is non-toxic, and does not affect these parameters.

  11. The dual effects of Maillard reaction and enzymatic hydrolysis on the antioxidant activity of milk proteins.

    Science.gov (United States)

    Oh, N S; Lee, H A; Lee, J Y; Joung, J Y; Lee, K B; Kim, Y; Lee, K W; Kim, S H

    2013-08-01

    The objective of this study was to determine the enhanced effects on the biological characteristics and antioxidant activity of milk proteins by the combination of the Maillard reaction and enzymatic hydrolysis. Maillard reaction products were obtained from milk protein preparations, such as whey protein concentrates and sodium caseinate with lactose, by heating at 55°C for 7 d in sodium phosphate buffer (pH 7.4). The Maillard reaction products, along with untreated milk proteins as controls, were hydrolyzed for 0 to 3h with commercial proteases Alcalase, Neutrase, Protamex, and Flavorzyme (Novozymes, Bagsværd, Denmark). The antioxidant activity of hydrolyzed Maillard reaction products was determined by reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, their 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and the ability to reduce ferric ions. Further characteristics were evaluated by the o-phthaldialdehyde method and sodium dodecyl sulfate-PAGE. The degree of hydrolysis gradually increased in a time-dependent manner, with the Alcalase-treated Maillard reaction products being the most highly hydrolyzed. Radical scavenging activities and reducing ability of hydrolyzed Maillard reaction products increased with increasing hydrolysis time. The combined products of enzymatic hydrolysis and Maillard reaction showed significantly greater antioxidant activity than did hydrolysates or Maillard reaction products alone. The hydrolyzed Maillard reaction products generated by Alcalase showed significantly higher antioxidant activity when compared with the other protease products and the antioxidant activity was higher for the whey protein concentrate groups than for the sodium caseinate groups. These findings indicate that Maillard reaction products, coupled with enzymatic hydrolysis, could act as potential antioxidants in the pharmaceutical, food, and dairy industries. Copyright © 2013 American Dairy Science Association

  12. Comparative study of the anti-oxidant activity of the total polyphenols extracted from Hibiscus Sabdariffa L., Glycine max L. Merr., yellow tea and red wine through reaction with DPPH free radicals

    Directory of Open Access Journals (Sweden)

    T. Andzi Barhé

    2016-01-01

    Full Text Available The present study is part of the evaluation of extracts of Glycine max L. Merr and Hibiscus L. Sabdariffa as antioxidants. A comparative study was performed with extracts of yellow tea and commercial red wine, two foods known for their antioxidant activity. The method applied is free radical scavenging using the 1,1-diphenyl-2-picrylhydrazyl (DPPH°. The antioxidant properties were identified and measured by the determining the anti-radical activity reducing index, expressed in percentage % RSA (Radical Scavenger Activity, and by the determination of the colouring intensity (IC50. All results are compared to those of ascorbic acid as reference antioxidant. The results indicate the following order for the antioxidant power of the extracts tested. % RSA (tea > % RSA (Glycine max % > RSA (red wine % > RSA (Sabdariffa Hibiscus, and colouring intensities (IC50 ranging from 4.62 μM (ascorbic acid to 1.10 μM (Hibiscus sabdariffa correlated with their chemical structure and the content of phenolic compounds.

  13. Evolution of enzymatic activities and carbon fractions throughout composting of plant waste.

    Science.gov (United States)

    Jurado, M M; Suárez-Estrella, F; Vargas-García, M C; López, M J; López-González, J A; Moreno, J

    2014-01-15

    Many alternatives for the proper disposal of horticultural plant wastes have been studied, and composting is one of the most attractive due to its insignificant environmental impact and low cost. The quality of compost for agronomical use is related to the degree of organic matter maturation and stabilization. Traditional parameters as well as temperature, ratio C/N, cationic exchange capacity, extractable carbon, or evolution of humificated substances have been successfully used to assess compost maturity and stability. However, microorganisms frequently isolated during composting release a wide range of hydrolytic enzymes, whose activity could apparently give interesting information on the rate of decomposition of organic matter and, therefore, on the product stability. The aim of this work was to study the evolution of some important enzymatic activities during composting of agricultural wastes and their comparison with other chemical parameters commonly employed as quality and maturity indexes, to establish a relationship between the degradation intensity of specific organic carbon fractions throughout the process. In this work, the chemical and biochemical parameters of plant wastes were studied along a composting process of 189 days to evaluate their importance as tools for compost characterization. Results showed an intense enzymatic activity during the first 2-3 weeks of composting (bio-oxidative phase), because of the availability of easily decomposable organic compounds. From a biological point of view, a less intense phase was observed between second and third month of composting (mesophilic or cooling phase). Finally, chemical humification parameters were more closely associated with the period between 119 and 189 days (maturation phase). Significant correlations between the enzymatic activities as well as between enzyme activities and other more traditional parameters were also highlighted, indicating that both kind of indexes can be a reliable tool to

  14. The enzymatic activity of the VEGFR2 receptor for the biosynthesis of dinucleoside polyphosphates.

    Science.gov (United States)

    Jankowski, Vera; Schulz, Anna; Kretschmer, Axel; Mischak, Harald; Boehringer, Falko; van der Giet, Markus; Janke, Doreen; Schuchardt, Mirjam; Herwig, Ralf; Zidek, Walter; Jankowski, Joachim

    2013-09-01

    The group of dinucleoside polyphosphates encompasses a large number of molecules consisting of two nucleosides which are connected by a phosphate chain of variable length. While the receptors activated by dinucleoside polyphosphates as well as their degradation have been studied in detail, its biosynthesis has not been elucidated so far. Since endothelial cells released the dinucleoside polyphosphate uridine adenosine tetraphosphate (Up4A), we tested cytosolic proteins of human endothelial cells obtained from dermal vessels elicited for enzymatic activity. When incubated with ADP and UDP, these cells showed increasing concentrations of Up4A. The underlying enzyme was isolated by chromatography and the mass spectrometric analysis revealed that the enzymatic activity was caused by the vascular endothelial growth factor receptor 2 (VEGFR2). Since VEGFR2 but neither VEGFR1 nor VEGFR3 were capable to synthesise dinucleoside polyphosphates, Tyr-1175 of VEGFR2 is most likely essential for the enzymatic activity of interest. Further, VEGFR2-containing cells like HepG2, THP-1 and RAW264.7 were capable of synthesising dinucleoside polyphosphates. VEGFR2-transfected HEK 293T/17 but not native HEK 293T/17 cells synthesised dinucleoside polyphosphates in vivo too. The simultaneous biosynthesis of dinucleoside polyphosphates could amplify the response to VEGF, since dinucleoside polyphosphates induce cellular growth via P2Y purinergic receptors. Thus the biosynthesis of dinucleoside polyphosphates by VEGFR2 may enhance the proliferative response to VEGF. Given that VEGFR2 is primarily expressed in endothelial cells, the biosynthesis of dinucleoside polyphosphates is mainly located in the vascular system. Since the vasculature is also the main site of action of dinucleoside polyphosphates, activating vascular purinoceptors, blood vessels appear as an autocrine system with respect to dinucleoside polyphosphates. We conclude that VEGFR2 receptor is capable of synthesising

  15. Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting.

    Science.gov (United States)

    Nikaeen, Mahnaz; Nafez, Amir Hossein; Bina, Bijan; Nabavi, BiBi Fatemeh; Hassanzadeh, Akbar

    2015-05-01

    The objective of this work was to study the evolution of physico-chemical and microbial parameters in the composting process of sewage sludge (SS) with pruning wastes (PW) in order to compare these parameters with respect to their applicability in the evaluation of organic matter (OM) stabilization. To evaluate the composting process and organic matter stability, different microbial activities were compared during composting of anaerobically digested SS with two volumetric ratios, 1:1 and 3:1 of PW:SS and two aeration techniques including aerated static piles (ASP) and turned windrows (TW). Dehydrogenase activity, fluorescein diacetate hydrolysis, and specific oxygen uptake rate (SOUR) were used as microbial activity indices. These indices were compared with traditional parameters, including temperature, pH, moisture content, organic matter, and C/N ratio. The results showed that the TW method and 3:1 (PW:SS) proportion was superior to the ASP method and 1:1 proportion, since the former accelerate the composting process by catalyzing the OM stabilization. Enzymatic activities and SOUR, which reflect microbial activity, correlated well with temperature fluctuations. Based on these results it appears that SOUR and the enzymatic activities are useful parameters to monitor the stabilization of SS compost. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Stimulation of the Fibrillar Collagen and Heat Shock Proteins by Nicotinamide or Its Derivatives in Non-Irradiated or UVA Radiated Fibroblasts, and Direct Anti-Oxidant Activity of Nicotinamide Derivatives

    Directory of Open Access Journals (Sweden)

    Neena Philips

    2015-05-01

    Full Text Available In skin aging, from intrinsic factors or exposure to ultraviolet (UV radiation, there is loss of structural fibrillar collagen and regulatory heat shock proteins. Phenolic compounds, with hydroxyl groups attached to an aromatic ring, have antioxidative and anti-inflammatory properties. Nicotinamide is an amide derivative of niacin or vitamin B3, with an amide linked to an aromatic ring, with UV absorptive, antioxidant, anti-inflammatory and anti-cell death/apoptosis properties. The goal of this research was to investigate the anti-skin aging mechanism of nicotinamide and its derivatives, 2,6-dihydroxynicotinamide, 2,4,5,6-tetrahydroxynicotinamide, and 3-hydroxypicolinamide (collectively niacin derivatives, through the stimulation of fibrillar collagens (type I, III and V, at protein and/or promoter levels and the expression of heat shock proteins (HSP-27, 47, 70, and 90 in non-irradiated or UVA radiated dermal fibroblasts; and from its direct antioxidant activity. UVA radiation inhibited the expression of types I and III collagen, and HSP-47 in dermal fibroblasts. The niacin derivatives significantly and similarly stimulated the expression of types I (transcriptionally, III and V collagens in non-irradiated, and UVA radiated fibroblasts indicating predominant effects. The 2,6-dihydroxynicotinamide had greater stimulatory effect on types I and III collagen in the non-irradiated, and UVA radiated fibroblasts, as well as greater direct antioxidant activity than the other niacin derivatives. The niacin derivatives, with a few exceptions, stimulated the expression of HSP-27, 47, 70 and 90 in non-irradiated, and UVA radiated fibroblasts. However, they had varied effects on the expression of the different HSPs in non-irradiated, and UVA radiated fibroblasts indicating non-predominant, albeit stimulatory, effect. Overall, nicotinamide and its derivatives have anti skin aging potential through the stimulation of fibrillar collagen and HSPs.

  17. Curcuminoids and ω-3 fatty acids with anti-oxidants potentiate cytotoxicity of natural killer cells against pancreatic ductal adenocarcinoma cells and inhibit interferon γ production

    Directory of Open Access Journals (Sweden)

    Milan eFiala

    2015-05-01

    Full Text Available Pancreatic cancer has a poor prognosis attributed in part to immune suppression and deactivation of natural killer (NK cells. Curcuminoids have a potential for improving the therapy of pancreatic cancer given promising results in cancer models and a clinical trial, but their oral absorption is limited. Our objective in this study is to show curcuminoid anti-oncogenic effects alone and together with human NK cells. We tested curcuminoids in an emulsion of ω-3 fatty acids and anti-oxidants (Smartfish regarding their direct cytocidal effect and enhancement of the cytocidal activity of NK cells in pancreatic ductal adenocarcinoma (PDAC cells (Mia Paca 2 and L3.6. Curcuminoids (at > 10 microM with ω-3 fatty acids and anti-oxidants or with the lipidic mediator resolvin D1 (RvD1 (26 nM induced high caspase-3 activity in PDAC cells. Importantly, curcuminoids with ω-3 fatty acids and anti-oxidants or with RvD1 significantly potentiated NK cell cytocidal function and protected them against degradation. In a co-culture of cancer cells with NK cells, interferon-γ ( IFN-γ production by NK cells was not altered by ω-3 fatty acids with anti-oxidants or by RvD1 but was inhibited by curcuminoids. The inhibition was not eliminated by ω-3 fatty acids or RvD1 but was relieved by removing curcuminoids after adding NK cells. In conclusion, curcuminoids with ω-3 fatty acids and anti-oxidants or with RvD1 have increased cytotoxic activity on PDAC cells alone and with NK cells. The effects of curcuminoids with ω-3 fatty acids and anti-oxidants on pancreatic cancer will be investigated in a mouse model with humanized immune system.

  18. Oculocutaneous albinism type 1: link between mutations, tyrosinase conformational stability, and enzymatic activity.

    Science.gov (United States)

    Dolinska, Monika B; Kus, Nicole J; Farney, S Katie; Wingfield, Paul T; Brooks, Brian P; Sergeev, Yuri V

    2017-01-01

    Oculocutaneous albinism type 1 (OCA1) is an autosomal recessive disorder caused by mutations in the tyrosinase gene. Two subtypes of OCA1 have been described: severe OCA1A with complete absence of tyrosinase activity and less severe OCA1B with residual tyrosinase activity. Here, we characterize the recombinant human tyrosinase intramelanosomal domain and mutant variants, which mimic genetic changes in both subtypes of OCA1 patients. Proteins were prepared using site-directed mutagenesis, expressed in insect larvae, purified by chromatography, and characterized by enzymatic activities, tryptophan fluorescence, and Gibbs free energy changes. The OCA1A mutants showed very low protein expression and protein yield and are enzymatically inactive. Mutants mimicking OCA1B were biochemically similar to the wild type, but exhibited lower specific activities and protein stabilities. The results are consistent with clinical data, which indicates that OCA1A mutations inactivate tyrosinase and result in severe phenotype, while OCA1B mutations partially inactivate tyrosinase and result in OCA1B albinism. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  19. Gamma radiation effect on biological activity and enzymatic properties of snake venoms

    International Nuclear Information System (INIS)

    Herrera, E.; Yarleque, A.; Campos, S.; Zavaleta, A.

    1986-01-01

    The effect of gamma radiation, from Co-60, on the biological activity and on some enzymatic activities, present in the venoms of Lachesis muta and Bothrops atrox, using samples of dried venom that had been irradiated at a dose of 0.1, 0.5 and 1.0 Mrad have been studied. Variations in the degree of hemorrhage and local necrosis were observed in albino mice injected subcutaneously with venoms of both types. The reduction of the biological activity was greater for the local hemorrhagic effect and was dependent on the doses of irradiation. The specific activity of various enzymes, present in both venoms, is affected by the gamma radiation, at a dose of 0.1 Mrad the order of increasing inactivation being: exonuclease (4%), phospholipase (24%), caseinolytic enzyme (20%), tamesterase (33%), a thrombine-like enzyme (40%), fibrinolytic enzyme (41%), 5'-nucleotidase (50%) and endonuclease (55%). The enzymatic inactivation was augmented by 0.5 and 1.0 Mrad, without maintaining an arithmetic relation. The enzyme of major resistance to the radiation was exonuclease, whereas 5'-nucleotidase and endonuclease were the most sensitive. No significant changes were observed in the spectrum of UV absorbtion (range 260 to 290 nm) nor in the contents of L-tyrosine in the irradiated venoms

  20. Increased tissue and circulating levels of dipeptidyl peptidase-IV enzymatic activity in patients with pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Busek, Petr; Vanickova, Zdislava; Hrabal, Petr; Brabec, Marek; Fric, Premysl; Zavoral, Miroslav; Skrha, Jan; Kmochova, Klara; Laclav, Martin; Bunganic, Bohus; Augustyns, Koen; Van Der Veken, Pieter; Sedo, Aleksi

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is frequently heralded by an impairment of glucose homeostasis. Dipeptidyl peptidase-IV (DPP-IV) and fibroblast activation protein alpha (FAP) are aminopeptidases that regulate several bioactive peptides involved in glucoregulation, and are frequently dysregulated in cancer. The present study analyzes blood plasma levels and the quantity and localization of DPP-IV and FAP in PDAC tissues. DPP-IV and FAP concentration and enzymatic activity were evaluated in the plasma from 93 PDAC, 39 type 2 diabetes mellitus (T2DM) and 29 control subjects, and in matched paired non-tumorous and tumor tissues from 48 PDAC patients. The localization of DPP-IV and FAP was determined using immunohistochemistry and catalytic histochemistry. The enzymatic activity and concentration of DPP-IV was higher in PDAC tumor tissues compared to non-tumorous pancreas. DPP-IV was expressed in cancer cells and in the fibrotic stroma by activated (myo)fibroblasts including DPP-IV(+)FAP(+) cells. FAP was expressed in stromal cells and in some cancer cells and its expression was increased in the tumors. Plasmatic DPP-IV enzymatic activity, and in particular the ratio between DPP-IV enzymatic activity and concentration in PDAC with recent onset DM was higher compared to T2DM. In contrast, the plasmatic FAP enzymatic activity was lower in PDAC compared to T2DM and controls and rose after tumor removal. DPP-IV-like enzymatic activity is upregulated in PDAC tissues. PDAC patients with recent onset diabetes or prediabetes have increased plasmatic DPP-IV enzymatic activity. These changes may contribute to the frequently observed association of PDAC and recent onset impairment of glucoregulation. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  1. Anti-Oxidant, Anti-Aging, and Anti-Melanogenic Properties of the Essential Oils from Two Varieties of Alpinia zerumbet

    Directory of Open Access Journals (Sweden)

    Pham Thi Be Tu

    2015-09-01

    Full Text Available Here, we investigated the anti-oxidant and anti-aging effects of essential oils (EOs from the leaves of Alpinia zerumbet (tairin and shima in vitro and anti-melanogenic effects in B16F10 melanoma cells. The anti-oxidant activities were performed with 2,2-diphenyl-1-picrylhydrazyl (DPPH; 2,2ʹ-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS; nitric oxide; singlet oxygen; hydroxyl radical scavenging; and xanthine oxidase. The inhibitory activities against collagenase, elastase, hyaluronidase, and tyrosinase were employed for anti-aging. The anti-melanogenic was assessed in B16F10 melanoma cells by melanin synthesis and intracellular tyrosinase inhibitory activity. The volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS. The EO was a complex mixture mainly consisting of monoterpenes and sesquiterpenes. The results revealed that tairin and shima EOs showed strong anti-oxidant activities against DPPH and nitric oxide, hydroxyl radical scavenging activity, and xanthine oxidase inhibition. Compared to shima EO; tairin EO exhibited strong anti-aging activity by inhibiting collagenase, tyrosinase, hyaluronidase, and elastase (IC50 = 11 ± 0.1; 25 ± 1.2; 83 ± 1.6; and 213 ± 2 μg/mL, respectively. Both EOs inhibited intracellular tyrosinase activity; thus, reducing melanin synthesis. These results suggest that tairin EO has better anti-oxidant/anti-aging activity than shima EO, but both are equally anti-melanogenic.

  2. Oxidants and anti-oxidants in turbot seminal plasma and their effects on sperm quality

    Science.gov (United States)

    Han, Mingming; Ding, Fuhong; Meng, Zhen; Lei, Jilin

    2015-08-01

    In this research, the concentration and activity of oxidants and anti-oxidants in turbot semen, and their effects on sperm quality were studied. The results showed that superoxide dismutase (SOD), catalase, glutathione reductase (GR), uric acid, vitamin E (VE) and vitamin C (VC) were more abundant in seminal plasma than in spermatozoa. The variation for each of them was specific. In seminal plasma, the activity of SOD and GR increased from November 15, November 30 to December 15, and then decreased on December 30. The concentrations of both VC and uric acid decreased during the first 3 sampling times and increased on December 30. The oxidants in seminal plasma accumulated to the highest on December 30. Lactic acid (LA) and ATP levels decreased to the lowest on December 30. The correlation analysis showed that GR had the significant positive relevance to sperm motility and VSL/VCL, while ·OH had negative relevance to them.

  3. EPSPS variability, gene expression, and enzymatic activity in glyphosate-resistant biotypes of Digitaria insularis.

    Science.gov (United States)

    Galeano, E; Barroso, A A M; Vasconcelos, T S; López-Rubio, A; Albrecht, A J P; Victoria Filho, R; Carrer, H

    2016-08-12

    Weed resistance to herbicides is a natural phenomenon that exerts selection on individuals in a population. In Brazil, glyphosate resistance was recently detected in Digitaria insularis. The objective of this study was to elucidate mechanisms of weed resistance in this plant, including genetic variability, allelism, amino acid substitutions, gene expression, and enzymatic activity levels. Most of these have not previously been studied in this species. D. insularis DNA sequences were used to analyze genetic variability. cDNA from resistant and susceptible plants was used to identify mutations, alleles, and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) expression, using real-time quantitative reverse transcription-polymerase chain reaction. In addition, EPSPS activity was measured. We found a decrease in genetic variability between populations related to glyphosate application. Substitutions from proline to threonine and tyrosine to cysteine led to a decrease in EPSPS affinity for the glyphosate. In addition, the EPSPS enzymatic activity was slightly higher in resistant plants, whereas EPSPS gene expression was almost identical in both biotypes, suggesting feedback regulation at different levels. To conclude, our results suggest new molecular mechanisms used by D. insularis to increase glyphosate resistance.

  4. Structural insights into the enzymatic activity and potential substrate promiscuity of human 3-phosphoglycerate dehydrogenase (PHGDH).

    Science.gov (United States)

    Unterlass, Judith E; Wood, Robert J; Baslé, Arnaud; Tucker, Julie; Cano, Céline; Noble, Martin M E; Curtin, Nicola J

    2017-11-28

    Cancer cells reprogram their metabolism and energy production to sustain increased growth, enable metastasis and overcome resistance to cancer treatments. Although primary roles for many metabolic proteins have been identified, some are promiscuous in regards to the reaction they catalyze. To efficiently target these enzymes, a good understanding of their enzymatic function and structure, as well as knowledge regarding any substrate or catalytic promiscuity is required. Here we focus on the characterization of human 3-phosphoglycerate dehydrogenase (PHGDH). PHGDH catalyzes the NAD + -dependent conversion of 3-phosphoglycerate to phosphohydroxypyruvate, which is the first step in the de novo synthesis pathway of serine, a critical amino acid for protein and nucleic acid biosynthesis. We have investigated substrate analogues to assess whether PHGDH might possess other enzymatic roles that could explain its occasional over-expression in cancer, as well as to help with the design of specific inhibitors. We also report the crystal structure of the catalytic subunit of human PHGDH, a dimer, solved with bound cofactor in one monomer and both cofactor and L -tartrate in the second monomer. In vitro enzyme activity measurements show that the catalytic subunit of PHGDH is still active and that PHGDH activity could be significantly inhibited with adenosine 5'-diphosphoribose.

  5. The effects of different uranium concentrations on soil microbial populations and enzymatic activities

    International Nuclear Information System (INIS)

    Bagherifam, S.; Lakziyan, A.; Ahmadi, S. J.; Fotovvat, A.; Rahimi, M. F.

    2010-01-01

    Uranium is an ubiquitous constituent of natural environment with an average concentration of 4 mg/kg in earth crust. However, in local areas it may exceed the normal concentration due to human activities resulting in radionuclide contamination in groundwater and surface soil. The effect of six levels of uranium concentration (0, 50, 100,250. 500 and 1000 mg kg -1 ) on soil phosphatase activities and microbial populations were studied in a completely randomized design as a factorial experiment with three replications. The results showed a significant decrease in phosphatase activity. The result of the experiment suggests that soil microbial populations (bacteria, funji and actinomycetes) decrease by increasing the uranium levels in the soil. Therefore, assessment of soil enzymatic activities and microbial populations can be helpful as a useful index for a better management of uranium and radioactive contaminated soils.

  6. Analysis of Enzymatic Activity of Matrix Metalloproteinase (MMP) by Collagen Zymography in Melanoma.

    Science.gov (United States)

    Walia, Vijay; Samuels, Yardena

    2018-01-01

    Protein zymography is the most commonly used technique to study the enzymatic activity of matrix metalloproteinases (MMPs) and their inhibitors. MMPs are proteolytic enzymes that promote extracellular matrix degradation. MMPs are frequently mutated in malignant melanomas as well as other cancers and are linked to increasing incidence of tumor metastasis. Substrate zymography characterizes MMP activity by their ability to degrade preferred substrates. Here we describe the collagen zymography technique to measure the active or latent form of MMPs using MMP-8 as an example, which is a frequently mutated MMP family member in malignant melanomas. The same technique can be used with the modification of substrate to detect metalloproteinase activity of other MMPs. Both wild-type and mutated forms of MMPs can be analyzed using a single gel using this method.

  7. Effect of Processing Variables and Enzymatic Activity on Wheat Flour Dough Extruded Under Different Operating Conditions

    Directory of Open Access Journals (Sweden)

    Roma Giuliani

    2009-01-01

    Full Text Available Low processing temperatures are required to improve the texture of products when enzymes are directly added to the extruder. Interaction among processing variables and enzymatic activity can occur during extrusion. In this research, the influence of some extrusion parameters (barrel temperature, dough moisture and screw speed on the activity of two commercial enzymes (Grindamyl Amylase 1000 and Grindamyl Protease 41 has been studied. Wheat flour was used as a model system, and macromolecular degradation was determined by water solubility index (WSI. Moreover, gelatinization degree and die pressure were evaluated. Results showed that barrel temperature affected enzyme activity. High values of WSI were obtained at high barrel temperature using Grindamyl Protease 41. When Grindamyl Amylase 1000 was used, low values of starch gelatinization were obtained. The activity of both enzymes was negatively affected by high values of dough moisture.

  8. [A study of the growth and enzymatic activity of Microsporum gypseum and Trichophyton ajelloi isolates from sewage sludge].

    Science.gov (United States)

    Janda-Ulfig, Katarzyna; Ulfig, Krzysztof; Płaza, Grazyna

    2007-01-01

    The study was to compare growth and enzymatic activity of Microsporum gypseum and Trichophyton ajelloi isolates from sewage sludge. Agar media and the API-ZYM test were used. The isolates showed weak gelatinase, catalase and urease activities and did not produce cellulase, pectate lyase and polygalacturonase. In some strains poor amylase and DNA-se activities were observed. No strain was able to hydrolyze casein. The strains were found to hydrolyze tributyrin, rapeseed oil and Biodiesel oil and to grow on Diesel oil medium. On the medium containing tributyrin and on the media with rapeseed oil and Biodiesel oil additions, inhibition and stimulation of fungal growth was observed, respectively. Diesel oil did not affect the growth of these fungi. The growth and enzymatic activity of M. gypseum was found to be better than the growth and activity of T. ajelloi. Higher enzymatic activity can be associated with the pathogenicity of M. gypseum.

  9. Activation of insect anti-oxidative mechanism by mammalian glucagon

    Czech Academy of Sciences Publication Activity Database

    Alquicer, Glenda; Kodrík, Dalibor; Krishnan, N.; Večeřa, Josef; Socha, Radomír

    2009-01-01

    Roč. 152, č. 3 (2009), s. 226-233 ISSN 1096-4959 R&D Projects: GA ČR GA522/07/0788 Institutional research plan: CEZ:AV0Z50070508 Keywords : adipokinetic hormone * antioxidant capacity * glucagon Subject RIV: ED - Physiology Impact factor: 1.607, year: 2009

  10. Anti-oxidant and anti-inflammatory effects of rice bran and green tea ...

    African Journals Online (AJOL)

    Purpose: To investigate the anti-inflammatory and anti-oxidant properties of an enzyme bath of Oryza sativa (rice bran) and Camellia sinensis O. Kuntz (green tea) fermented with Bacillus subtilis (OCB). Methods: The anti-oxidant effects of OCB were assessed by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay and flow ...

  11. Efficient enzymatic degradation used as pre-stage treatment for norfloxacin removal by activated sludge.

    Science.gov (United States)

    Zhao, Ruinan; Li, Xiaohong; Hu, Mancheng; Li, Shuni; Zhai, Quanguo; Jiang, Yucheng

    2017-08-01

    Norfloxacin is often found in wastewater treatment plants, groundwater, and even drinking water causing environmental concerns because of its potential undesirable effects on human health or aquatic ecosystems. However, conventional treatments cannot deal with norfloxacin efficiently. This work proposes an efficiently enzymatic degradation of norfloxacin by chloroperoxidase (CPO). 82.18% degradation efficiency of norfloxacin was achieved after 25 min reaction time at pH 5.0 with an enzyme concentration of 1.5 × 10 -9  mol L -1 . HPLC-MS was used to determine the intermediates or final products. The product analysis and determination of the chemical oxygen demand indicated if the enzymatic degradation by CPO was carried out before the usually existing bioremediation techniques (usually activated sludge) in sewage treatment plant, the effluent containing norfloxacin can be decontaminated more efficiently and thoroughly than that only by activated sludge treatment. The eco-toxicity tests using a green algae, Chlorella pyrenoidosa, indicated that the toxicity of degraded products of norfloxacin was lower than the parent norfloxacin molecule. CPO-catalyzed degradation of norfloxacin is a promising alternative for treating effluent containing norfloxacin.

  12. Protein assembly onto patterned microfabricated devices through enzymatic activation of fusion pro-tag.

    Science.gov (United States)

    Lewandowski, Angela T; Yi, Hyunmin; Luo, Xiaolong; Payne, Gregory F; Ghodssi, Reza; Rubloff, Gary W; Bentley, William E

    2008-02-15

    We report a versatile approach for covalent surface-assembly of proteins onto selected electrode patterns of pre-fabricated devices. Our approach is based on electro-assembly of the aminopolysaccharide chitosan scaffold as a stable thin film onto patterned conductive surfaces of the device, which is followed by covalent assembly of the target protein onto the scaffold surface upon enzymatic activation of the protein's "pro-tag." For our demonstration, the model target protein is green fluorescent protein (GFP) genetically fused with a pentatyrosine pro-tag at its C-terminus, which assembles onto both two-dimensional chips and within fully packaged microfluidic devices in situ and under flow. Our surface-assembly approach enables spatial selectivity and orientational control under mild experimental conditions. We believe that our integrated approach harnessing genetic manipulation, in situ enzymatic activation, and electro-assembly makes it advantageous for a wide variety of bioMEMS and biosensing applications that require facile "biofunctionalization" of microfabricated devices. (c) 2007 Wiley Periodicals, Inc.

  13. Improvement of antioxidant and moisture-preserving activities of Sargassum horneri polysaccharide enzymatic hydrolyzates.

    Science.gov (United States)

    Shao, Ping; Chen, Xiaoxiao; Sun, Peilong

    2015-03-01

    In the previous study, we have found that polysaccharides isolated from Sargassum horneri exhibited bioactivities. The aim of this study was to investigate the antioxidant and moisture-preserving activities of molecular weight alteration of Sargassum horneri polysaccharide in vitro. For this purpose, the homogeneous active polysaccharide SHP was isolated from Sargassum horneri, and response surface methodology was employed to optimize the enzymatic degradation conditions to get SHP-derived fragments with different molecular weight. Results proved that the polysaccharide is capable of scavenging both ABTS and DPPH radicals in vitro. The study revealed that the polysaccharides had strong moisture-absorption and -retention capacities as compared to propanediol and glycerin. Furthermore, these data demonstrated that molecular weight had a certain effect on antioxidant activities and strong moisture-retention capacities of the polysaccharide from Sargassum horneri. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Relationship between Porcine Sperm Motility and Sperm Enzymatic Activity using Paper-based Devices

    Science.gov (United States)

    Matsuura, Koji; Huang, Han-Wei; Chen, Ming-Cheng; Chen, Yu; Cheng, Chao-Min

    2017-04-01

    Mammalian sperm motility has traditionally been analyzed to determine fertility using computer-assisted semen analysis (CASA) systems. To develop low-cost and robust male fertility diagnostics, we created a paper-based MTT assay and used it to estimate motile sperm concentration. When porcine sperm motility was inhibited using sperm enzyme inhibitors for sperm enzymes related to mitochondrial activity and glycolysis, we simultaneously recorded sperm motility and enzymatic reactivity using a portable motility analysis system (iSperm) and a paper-based MTT assay, respectively. When using our paper-based MTT-assay, we calculated the area mean value signal intensity (AMV) to evaluate enzymatic reactivity. Both sperm motility and AMV decreased following treatment with iodoacetamide (IODO) and 3-bromopyruvic acid (3BP), both of which are inhibitors of glycolytic enzymes including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We found a correlation between recorded motility using iSperm and AMV from our paper-based assay (P coupled with catalysis of GAPDH and was promoted by electron transfer from NADH. Based on this inhibitor study, sperm motility can be estimated using our paper-based MTT-assay.

  15. Enzymatic activity of the CaM-PDE1 system upon addition of actinyl ions.

    Science.gov (United States)

    Brulfert, Florian; Safi, Samir; Jeanson, Aurélie; Foerstendorf, Harald; Weiss, Stephan; Berthomieu, Catherine; Sauge-Merle, Sandrine; Simoni, Éric

    2017-07-01

    The threat of a dirty bomb which could cause internal contamination has been of major concern for the past decades. Because of their high chemical toxicity and their presence in the nuclear fuel cycle, uranium and neptunium are two actinides of high interest. Calmodulin (CaM) which is a ubiquitous protein present in all eukaryotic cells and is involved in calcium-dependent signaling pathways has a known affinity for uranyl and neptunyl ions. The impact of the complexation of these actinides on the physiological response of the protein remains, however, largely unknown. An isothermal titration calorimetry (ITC) was developed to monitor in vitro the enzymatic activity of the phosphodiesterase enzyme which is known to be activated by CaM and calcium. This approach showed that addition of actinyl ions (AnO 2 n+ ), uranyl (UO 2 2+ ) and neptunyl (NpO 2 + ), resulted in a decrease of the enzymatic activity, due to the formation of CaM-actinide complexes, which inhibit the enzyme and alter its interaction with the substrate by direct interaction. Results from dynamic light scattering rationalized this result by showing that the CaM-actinyl complexes adopted a specific conformation different from that of the CaM-Ca 2+ complex. The effect of actinides could be reversed using a hydroxypyridonate actinide decorporation agent (5-LIO(Me-3,2-HOPO)) in the experimental medium demonstrating its capacity to efficiently bind the actinides and restore the calcium-dependent enzyme activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Vertical and horizontal distributions of microbial abundances and enzymatic activities in propylene-glycol-affected soils.

    Science.gov (United States)

    Biró, Borbála; Toscano, Giuseppe; Horváth, Nikoletta; Matics, Heléna; Domonkos, Mónika; Scotti, Riccardo; Rao, Maria A; Wejden, Bente; French, Helen K

    2014-01-01

    The natural microbial activity in the unsaturated soil is vital for protecting groundwater in areas where high loads of biodegradable contaminants are supplied to the surface, which usually is the case for airports using aircraft de-icing fluids (ADF) in the cold season. Horizontal and vertical distributions of microbial abundance were assessed along the western runway of Oslo Airport (Gardermoen, Norway) to monitor the effect of ADF dispersion with special reference to the component with the highest chemical oxygen demand (COD), propylene glycol (PG). Microbial abundance was evaluated by several biondicators: colony-forming units (CFU) of some physiological groups (aerobic and anaerobic heterotrophs and microscopic fungi), most probable numbers (MPN) of PG degraders, selected catabolic enzymatic activities (fluorescein diacetate (FDA) hydrolase, dehydrogenase, and β-glucosidase). High correlations were found between the enzymatic activities and microbial counts in vertical soil profiles. All microbial abundance indicators showed a steep drop in the first meter of soil depth. The vertical distribution of microbial abundance can be correlated by a decreasing exponential function of depth. The horizontal trend of microbial abundance (evaluated as total aerobic CFU, MPN of PG-degraders, and FDA hydrolase activity) assessed in the surface soil at an increasing distance from the runway is correlated negatively with the PG and COD loads, suggesting the relevance of other chemicals in the modulation of microbial growth. The possible role of potassium formate, component of runway de-icers, has been tested in the laboratory by using mixed cultures of Pseudomonas spp., obtained by enrichment with a selective PG medium from soil samples taken at the most contaminated area near the runway. The inhibitory effect of formate on the growth of PG degraders is proven by the reduction of biomass yield on PG in the presence of formate.

  17. Electrophoretic characterization of D. melanogaster strains deficient in endogenous anti-oxidants in combination with gamma radiation

    International Nuclear Information System (INIS)

    Gomar A, S.

    2012-01-01

    The free radicals derived of the oxygen and other reactive species are generated by endogenous processes as sub-products of the aerobic metabolism or by exogenous factors as the environmental pollution, the biological half life of these free radicals is of microseconds, but they have the capacity of reacting with any atom or molecule to its around causing oxidant stress and damage to molecules, cellular membranes and tissues. To counteract them, there is endogenous and exogenous anti-oxidants, the first ones are synthesized by the organism for maintaining the cellular homeostasis as the superoxide dismutase and catalase. There are recent evidences that indicate that the sodium cooper chlorophyllin (SCC) presents a dual effect reducing and/or increasing the induced genetic damage by different mutagenic agents. One hypothesis for this effect is that the SCC can act as oxidant per se or through some of their metabolites. Results more recent indicated that a similar of the SCC, the protoporphyrin-Ix, can produce genetic damage. In this work exogenous anti-oxidants were used, as the SCC, protoporphyrin-Ix or the bilirubin in the induction of endogenous anti-oxidants enzymes to evaluate the supposed oxidant activity of the SCC and/or their metabolites. Drosophila melanogaster strains deficient in superoxide dismutase, catalase and withered were used and a rustic strain Canton-S as control. In the three experiments were treated 60 males of 1 day of age, with SCC, protoporphyrin-Ix or bilirubin to one concentration of 69 m M during 12 days. Every 4 days 10 males were isolated to measure them the induction of superoxide dismutase and catalase. The results showed that the SCC, protoporphyrin-Ix and bilirubin considered like anti-oxidants, were able to increase the induction of the superoxide dismutase and catalase enzymes. This result maybe is because they are able to generate reactive species of oxygen, as the anion superoxide and the hydrogen peroxide. Among the three

  18. Enzymatic and metabolic activities of four anaerobic sludges and their impact on methane production from ensiled sorghum forage.

    Science.gov (United States)

    Sambusiti, C; Rollini, M; Ficara, E; Musatti, A; Manzoni, M; Malpei, F

    2014-03-01

    Biochemical methane potential (BMP) tests were run on ensiled sorghum forage using four inocula (urban, agricultural, mixture of agricultural and urban, granular) and differences on their metabolic and enzymatic activities were also discussed. Results indicate that no significant differences were observed in terms of BMP values (258±14NmLCH4g(-1)VS) with a slightly higher value when agricultural sludge was used as inoculum. Significant differences can be observed among different inocula, in terms of methane production rate. In particular the fastest biomethanization occurred when using the urban sludge (hydrolytic kinetic constant kh=0.146d(-1)) while the slowest one was obtained from the agricultural sludge (kh=0.049d(-1)). Interestingly, positive correlations between the overall enzymatic activities and methane production rates were observed for all sludges, showing that a high enzymatic activity may favour the hydrolysis of complex substrate and accelerate the methanization process of sorghum. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica

    Directory of Open Access Journals (Sweden)

    Aline B. M Vaz

    2011-09-01

    Full Text Available The diversity of yeasts collected from different sites in Antarctica (Admiralty Bay, King George Island and Port Foster Bay and Deception Island and their ability to produce extracellular enzymes and mycosporines were studied. Samples were collected during the austral summer season, between November 2006 and January 2007, from the rhizosphere of Deschampsia antarctica, ornithogenic (penguin guano soil, soil, marine and lake sediments, marine water and freshwater from lakes. A total of 89 isolates belonging to the following genera were recovered: Bensingtonia, Candida, Cryptococcus, Debaryomyces, Dioszegia, Exophiala, Filobasidium, Issatchenkia (Pichia, Kodamaea, Leucosporidium, Leucosporidiella, Metschnikowia, Nadsonia, Pichia, Rhodotorula, and Sporidiobolus, and the yeast-like fungi Aureobasidium, Leuconeurospora and Microglossum. Cryptococcus victoriae was the most frequently identified species. Several species isolated in our study have been previously reported to be Antarctic psychophilic yeasts, including Cr. antarcticus, Cr. victoriae, Dioszegia hungarica and Leucosporidium scottii. The cosmopolitan yeast species A. pullulans, C. zeylanoides, D. hansenii, I. orientalis, K. ohmeri, P. guilliermondii, Rh. mucilaginosa, and S. salmonicolor were also isolated. Five possible new species were identified. Sixty percent of the yeasts had at least one detectable extracellular enzymatic activity. Cryptococcus antarcticus, D. aurantiaca, D. crocea, D. hungarica, Dioszegia sp., E. xenobiotica, Rh. glaciales, Rh. laryngis, Microglossum sp. 1 and Microglossum sp. 2 produced mycosporines. Of the yeast isolates, 41.7% produced pigments and/or mycosporines and could be considered adapted to survive in Antarctica. Most of the yeasts had extracellular enzymatic activities at 4ºC and 20ºC, indicating that they could be metabolically active in the sampled substrates.

  20. The enzymatic activity of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC) is enhanced by NPM-ALK

    DEFF Research Database (Denmark)

    Boccalatte, Francesco E; Voena, Claudia; Riganti, Chiara

    2009-01-01

    documented in cell lines and primary tumors carrying ALK proteins and other tyrosine kinases, including TPR-Met and wild type c-Met. Functional analyses revealed that ALK-mediated ATIC phosphorylation enhanced its enzymatic activity, dampering the methotrexate-mediated transformylase activity inhibition...

  1. Immune activity of sweet potato (Ipomoea batatas L.) glycoprotein after enzymatic and chemical modifications.

    Science.gov (United States)

    Xia, Xuejuan; Li, Guannan; Zheng, Jiong; Wu, Jinsong; Kan, Jianquan

    2015-06-01

    This study aimed to investigate the immune activity of sweet potato (Ipomoea batatas L.) glycoprotein (SPG-1) before and after enzymatic and chemical modifications. The protein portion of SPG-1 was modified by pepsin, trypsin, and acetylation treatments. The carbohydrate portion was modified by glucoamylase, NaIO4, and sulfation treatments. The carbohydrate chain of SPG-1 (SPG-1-C) was obtained. Immune activity was analyzed by measuring the serum lysozyme activity and T cell immune response. SPG-1 increased immune activity with a dose-response effect. Immune activity was slightly decreased after pepsin and trypsin hydrolysis, whereas it increased after a moderate degree (DS = 0.68) of acetylation. Immune activity was partly decreased after glucoamylase hydrolysis, remarkably decreased after NaIO4 oxidation, or was lost after a high modification by sulfation. Compared with SPG-1 groups, the SPG-1-C groups increased immune activities had insignificant (P > 0.05) differences. Hence, appropriate modifications of the protein portion could be conducted and it was found that high modifications of the carbohydrate portion should be avoided to improve or maintain the immune function of SPG-1.

  2. Antioxidative activities of hydrolysates from edible birds nest using enzymatic hydrolysis

    Science.gov (United States)

    Muhammad, Nurul Nadia; Babji, Abdul Salam; Ayub, Mohd Khan

    2015-09-01

    Edible bird's nest protein hydrolysates (EBN) were prepared via enzymatic hydrolysis to investigate its antioxidant activity. Two types of enzyme (alcalase and papain) were used in this study and EBN had been hydrolysed with different hydrolysis time (30, 60, 90 and 120 min). Antioxidant activities in EBN protein hydrolysate were measured using DPPH, ABTS+ and Reducing Power Assay. From this study, increased hydrolysis time from 30 min to 120 min contributed to higher DH, as shown by alcalase (40.59%) and papain (24.94%). For antioxidant assay, EBN hydrolysed with papain showed higher scavenging activity and reducing power ability compared to alcalase. The highest antioxidant activity for papain was at 120 min hydrolysis time with ABTS (54.245%), DPPH (49.78%) and Reducing Power (0.0680). Meanwhile for alcalase, the highest antioxidant activity was at 30 min hydrolysis time. Even though scavenging activity for EBN protein hydrolysates were high, the reducing power ability was quite low as compared to BHT and ascorbic Acid. This study showed that EBN protein hydrolysate with alcalase and papain treatments potentially exhibit high antioxidant activity which have not been reported before.

  3. Enzymatic crosslinking and degradation of gelatin as a switch for bone morphogenetic protein-2 activity.

    Science.gov (United States)

    Kuwahara, Kenrick; Fang, Josephine Y; Yang, Zhi; Han, Bo

    2011-12-01

    Current therapies for tissue regeneration rely on the presence or direct delivery of growth factors to sites of repair. Bone morphogenetic protein-2 (BMP-2), combined with a carrier (usually collagen), is clinically proven to induce new bone formation during spinal fusion and nonunion repair. However, due to BMP-2's short half-life and its diffusive properties, orders of magnitude above physiological levels are required to ensure effectiveness. In addition, a high dose of this multifunctional growth factor is known to induce adverse effects in patients. To circumvent these challenges, we proposed and tested a new approach for BMP-2 delivery, by controlling BMP activity via carrier binding and localized proteolysis. BMP-2 was covalently bound to gelatin through site-specific enzymatic crosslinking using a microbial transglutaminase. Binding of BMP-2 to gelatin can completely switch off BMP-2 activity, as evidenced by loss of its transdifferentiating ability toward C2C12 promyoblasts. When gelatin sequestered BMP-2 is incubated with either microbial collagenase or tissue-derived matrix metalloproteinases, BMP-2 activity is fully restored. The activity of released BMP-2 correlates with the protease activity in a dose- and time-dependent manner. This observation suggests a novel way of delivering BMP-2 and controlling its activity. This improved delivery method, which relies on a physiological feedback, should enhance the known potential of this and other growth factors for tissue repair and regeneration.

  4. Effect of Low Doses of Guaiacol and Ethanol on Enzymatic Activity of Fungal Cultures

    Science.gov (United States)

    Malarczyk, Elżbieta; Jarosz-Wilkołazka, Anna; Kochmanska-Rdest, Janina

    2003-01-01

    The influence of low doses of guaiacol and ethanol, the natural effectors of lignin and phenolics transformations, on laccase and peroxidase activities produced by two strains of Basidiomycetes, Pleurotus sajor-caju and Trametes versicolor, was evaluated. Fungal mycelia were grown for 2 weeks on liquid media containing serial dilutions of guaiacol or ethanol ranging from 100−1 to 100−20 mol/L. Laccase and peroxidase activities in the medium were measured at the end of 2 weeks. The effect of low doses of guaiacol and ethanol on enzyme activities was manifested in an oscillating manner. Similar response patterns were observed when pure enzymes were exposed to the same serial dilutions of guaiacol and ethanol. T. versicolor cultures enriched with 40 mmol guaiacol (simulating natural environmental conditions) also displayed oscillating enzyme activity patterns in response to serial dilutions of guaiacol, but the maximum enzyme activity values were increased compared to those observed in cultures not receiving 40 mmol guaiacol. The differences between maxima and minima varied among the experimental groups and depended on the species of fungus, type of effector, and kind of enzyme. The results suggest the possibility of subtle regulation of enzymatic activity on the molecular level. PMID:19330120

  5. Specific inflammatory response of Anemonia sulcata (Cnidaria) after bacterial injection causes tissue reaction and enzymatic activity alteration.

    Science.gov (United States)

    Trapani, M R; Parisi, M G; Parrinello, D; Sanfratello, M A; Benenati, G; Palla, F; Cammarata, M

    2016-03-01

    The evolution of multicellular organisms was marked by adaptations to protect against pathogens. The mechanisms for discriminating the ''self'' from ''non-self" have evolved into a long history of cellular and molecular strategies, from damage repair to the co-evolution of host-pathogen interactions. We investigated the inflammatory response in Anemonia sulcata (Cnidaria: Anthozoa) following injection of substances that varied in type and dimension, and observed clear, strong and specific reactions, especially after injection of Escherichia coli and Vibrio alginolyticus. Moreover, we analyzed enzymatic activity of protease, phosphatase and esterase, showing how the injection of different bacterial strains alters the expression of these enzymes and suggesting a correlation between the appearance of the inflammatory reaction and the modification of enzymatic activities. Our study shows for the first time, a specific reaction and enzymatic responses following injection of bacteria in a cnidarian. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Linking Microbial Enzymatic Activities and Functional Diversity of Soil around Earthworm Burrows and Casts.

    Science.gov (United States)

    Lipiec, Jerzy; Frąc, Magdalena; Brzezińska, Małgorzata; Turski, Marcin; Oszust, Karolina

    2016-01-01

    The aim of this work was to evaluate the effect of earthworms (Lumbricidae) on the enzymatic activity and microbial functional diversity in the burrow system [burrow wall (BW) 0-3 mm, transitional zone (TZ) 3-7 mm, bulk soil (BS) > 20 mm from the BW] and cast aggregates of a loess soil under a pear orchard. The dehydrogenase, β-glucosidase, protease, alkaline phosphomonoesterase, and acid phosphomonoesterase enzymes were assessed using standard methods. The functional diversity (catabolic potential) was assessed using the Average Well Color Development and Richness Index following the community level physiological profiling from Biolog Eco Plates. All measurements were done using soil from each compartment immediately after in situ sampling in spring. The enzymatic activites including dehydrogenase, protease, β-glucosidase and alkaline phosphomonoesterase were appreciably greater in the BW or casts than in BS and TZ. Conversely, acid phosphomonoesterase had the largest value in the BS. Average Well Color Development in both the TZ and the BS (0.98-0.94 A590 nm) were more than eight times higher than in the BWs and casts. The lowest richness index in the BS (15 utilized substrates) increased by 86-113% in all the other compartments. The PC1 in principal component analysis mainly differentiated the BWs and the TZ. Utilization of all substrate categories was the lowest in the BS. The PC2 differentiated the casts from the other compartments. The enhanced activity of a majority of the enzymes and increased microbial functional diversity in most earthworm-influenced compartments make the soils less vulnerable to degradation and thus increases the stability of ecologically relevant processes in the orchard ecosystem.

  7. Linking microbial enzymatic activities and functional diversity of soil around earthworm burrows and casts

    Directory of Open Access Journals (Sweden)

    Jerzy Lipiec

    2016-08-01

    Full Text Available The aim of this work was to evaluate the effect of earthworms (Lumbricidae on the enzymatic activity and microbial functional diversity in the burrow system (burrow wall 0–3 mm, transitional zone 3–7 mm, bulk soil >20 mm from the burrow wall and cast aggregates of a loess soil under a pear orchard. The dehydrogenase, β-glucosidase, protease, alkaline phosphomonoesterase, and acid phosphomonoesterase enzymes were assessed using standard methods. The functional diversity (catabolic potential was assessed using the Average Well Color Development and Richness Index following the community level physiological profiling from Biolog Eco Plates. All measurements were done using soil from each compartment immediately after in situ sampling in spring. The enzymatic activites including dehydrogenase, protease, β-glucosidase and alkaline phosphomonoesterase were appreciably greater in the burrow wall or casts than in bulk soil and transitional zone. Conversely, acid phosphomonoesterase had the largest value in the bulk soil. Average Well Color Development in both the transitional zone and the bulk soil (0.98-0.94 A590nm were more than eight times higher than in the burrow walls and casts. The lowest richness index in the bulk soil (15 utilized substrates increased by 86-113% in all the other compartments. The PC1 in principal component analysis (PCA mainly differentiated the burrow walls and the transitional zone. Utilization of all substrate categories was the lowest in the bulk soil. The PC2 differentiated the casts from the other compartments. The enhanced activity of a majority of the enzymes and increased microbial functional diversity in most earthworm-influenced compartments make the soils less vulnerable to degradation and thus increases the stability of ecologically relevant processes in the orchard ecosystem.

  8. The effect of chlorsulfurone and MCPB-Na on the enzymatic activity of microorganisms

    Directory of Open Access Journals (Sweden)

    Filimon Marioara Nicoleta

    2014-01-01

    Full Text Available herbicides, have a broad spectrum effect on weeds, in relatively low doses and with a much reduced toxicity on livestock. In this study were used two herbicides: dacsulfuron with the active substance chlorsulfuron (0.005 - 0.035 μg/g soil and butoxone with the active substance MCPB-Na (0.005 - 0.035 mg/L/g soil. The samples were collected from a depth of 0-20 cm from chernozem soil. The effect of herbicide was estimated by measuring the activity of catalase, actual and potential dehydrogenase, urease and cellulase activities. All samples being incubated for 10 days at 27°C using Sapp medium for isolation and study of cellulosolytic bacteria. The inhibitory effect of the tested herbicides was the most intense for the urease and dehydrogenase enzymatic activities. The most resistant cellulosolytic bacteria to the effects of dacsulfuron were Cellfalcicula fusca, Cellfalcicula viridis, Cellvibrio fulvus and Fuseaux veris and for butoxone Cellfalcicula mucosa, C. viridis and C. fulvus.

  9. IL4-induced gene 1 is secreted at the immune synapse and modulates TCR activation independently of its enzymatic activity.

    Science.gov (United States)

    Aubatin, Aude; Sako, Nouhoum; Decrouy, Xavier; Donnadieu, Emmanuel; Molinier-Frenkel, Valérie; Castellano, Flavia

    2018-01-01

    Amino-acid catabolizing enzymes produced by mononuclear phagocytes play a central role in regulating the immune response. The mammalian phenylalanine-catabolizing enzyme IL4-induced gene 1 (IL4I1) inhibits effector T lymphocyte proliferation and facilitates regulatory T-cell development. IL4I1 expression by macrophages of various human tumors may affect patient prognosis as it facilitates tumor escape from the T-cell response in murine models. Its enzymatic activity appears to participate in its effects, but some actions of IL4I1 remain unclear. Here, we show that the presence of IL4I1 during T-cell activation decreases early signaling events downstream of TCR stimulation, resulting in global T-cell inhibition which is more pronounced when there is CD28 costimulation. Surprisingly, the enzymatic activity of IL4I1 is not involved. Focal secretion of IL4I1 into the immune synaptic cleft and its binding to CD3 + lymphocytes could be important in IL4I1 immunosuppressive mechanism of action. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effect of enzymatic mash treatment and storage on phenolic composition, antioxidant activity, and turbidity of cloudy apple juice.

    Science.gov (United States)

    Oszmiański, Jan; Wojdylo, Aneta; Kolniak, Joanna

    2009-08-12

    The effects of different commercial enzymatic mash treatments on yield, turbidity, color, and polyphenolic and sediment of procyanidins content of cloudy apple juice were studied. Addition of pectolytic enzymes to mash treatment had positive effect on the production of cloud apple juices by improving polyphenolic contents, especially procyanidins and juice yields (68.3% in control samples to 77% after Pectinex Yield Mash). As summary of the effect of enzymatic mash treatment, polyphenol contents in cloudy apple juices significantly increased after Pectinex Yield Mash, Pectinex Smash XXL, and Pectinex XXL maceration were applied but no effect was observed after Pectinex Ultra-SPL I Panzym XXL use, compared to the control samples. The content of polymeric procyanidins represented 50-70% of total polyphenols, but in the present study, polymeric procyanidins were significantly lower in juices than in fruits and also affected by enzymatic treatment (Pectinex AFP L-4 and Panzym Yield Mash) compared to the control samples. The enzymatic treatment decreased procyanidin content in most sediment with the exception of Pectinex Smash XXL and Pectinex AFP L-4. Generally in samples that were treated by pectinase, radical scavenging activity of cloudy apple juices was increased compared to the untreated reference samples. The highest radical scavenging activity was associated with Pectinex Yield Mash, Pectinex Smash XXL, and Pectinex XXL enzyme and the lowest activity with Pectinex Ultra SP-L and Pectinex APFL-4. However, in the case of enzymatic mash treatment cloudy apple juices showed instability of turbidity and low viscosity. These results must be ascribed to the much higher hydrolysis of pectin by enzymatic preparation which is responsible for viscosity. During 6 months of storage at 4 degrees C small changes in analyzed parameters of apple juices were observed.

  11. Theranostic carbon dots derived from garlic with efficient anti-oxidative effects towards macrophages

    DEFF Research Database (Denmark)

    Yang, Chuanxu; Ogaki, Ryosuke; Hansen, Line

    2015-01-01

    Luminescent garlic carbon dots with superior photostability are synthesized via microwave assisted heating. The garlic dots are biocompatible, have low toxicity and can be used as benign theranostic nanoparticles for bioimaging with efficient anti-oxidative effects towards macrophages....

  12. Effects of bonny light crude oil on anti-oxidative enzymes and total ...

    African Journals Online (AJOL)

    Effects of bonny light crude oil on anti-oxidative enzymes and total proteins in Wistar rats. Christian E Odo, Okwesili FC Nwodo, Parker E Joshua, Chibuike S Ubani, Okon E Etim, Okechukwu PC Ugwu ...

  13. Study of phytochemical, anti-microbial, anti-oxidant, and anti-cancer properties of Allium wallichii.

    Science.gov (United States)

    Bhandari, Jaya; Muhammad, BushraTaj; Thapa, Pratiksha; Shrestha, Bhupal Govinda

    2017-02-08

    There is growing interest in the use of plants for the treatment and prevention of cancer. Medicinal plants are currently being evaluated as source of promising anticancer agents. In this paper, we have investigated the anticancer potential of plant Allium wallichii, a plant native to Nepal and growing at elevations of 2300-4800 m. This is the first study of its kind for the plant mentioned. The dried plant was extracted in aqueous ethanol. Phytochemical screening, anti-microbial assay, anti-oxidant assay, cytotoxicity assay and the flow-cytometric analysis were done for analyzing different phytochemicals present, anti-microbial activity, anti-oxidant activity and anti-cancer properties of Allium wallichii. We observed the presence of steroids, terpenoids, flavonoids, reducing sugars and glycosides in the plant extract and the plant showed moderate anti-microbial and anti-oxidant activity. The IC 50 values of Allium wallichii in different cancer cell lines are 69.69 μg/ml for Prostate cancer (PC3) cell line, 55.29 μg/ml for Breast Cancer (MCF-7) cell line and 46.51 μg/ml for cervical cancer (HeLa) cell line as compared to Doxorubicin (0.85 μg/ml). The cell viability assay using FACS showed that the IC 50 value of Allium wallichii for Burkitt's lymphoma (B-Lymphoma) cell line was 3.817 ± 1.99 mg/ml. Allium wallichii can be an important candidate to be used as an anticancer agent. Separation of pure compounds with bioassay guided extraction, spectrometric analysis and subsequent cytotoxicity assay of the pure bioactive compounds from Allium wallichii is highly recommended as the crude extract itself showed promising cytotoxicity.

  14. Herbivore species identity and composition affect soil enzymatic activity through altered plant composition in a coastal tallgrass prairie

    Science.gov (United States)

    Although single species of herbivores are known to affect soil microbial communities, the effects of herbivore species identity and functional composition on soil microbes is unknown. We tested the effects of single species of orthopterans and multiple species combinations on soil enzymatic activity...

  15. Membrane phospholipid augments cytochrome P4501a enzymatic activity by modulating structural conformation during detoxification of xenobiotics.

    Directory of Open Access Journals (Sweden)

    Manik C Ghosh

    Full Text Available Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment.

  16. Brief report on development of indigofera pseudotinctoria mats high flavonoid mutant and anti-oxidation of its exacts

    International Nuclear Information System (INIS)

    Shen Xiaoxia; Mei Shufang; Shu Xiaoli; Wu Dianxing

    2010-01-01

    Mutant high in flavonoid was successfully developed after the dry seeds of Indigofera pseudotinctoria Mats were irradiated by 300 Gy 60 Co gamma rays. The contents of flavonoid in different tissues of mutant line MJ-HF1 were all higher than that of the wild type, especially in the seeds and leaves, which was 5.89 and 1.46 times of the wild type. Anti-oxidation testing showed that the flavonoid exacts from MJ-HF1 could decrease the contents of malondialdehyde(MDA) and increase the activities of superoxide dismutase (SOD) in the aged white mice in a 30-day feeding test. (authors)

  17. The potential role of combined anti-oxidants against cadmium toxicity on liver of rats.

    Science.gov (United States)

    Koyuturk, Meral; Yanardag, Refiye; Bolkent, Sehnaz; Tunali, Sevim

    2007-08-01

    Cadmium (Cd), a widely distributed toxic trace metal, has been shown to accumulate in liver after long- and short-term exposure. Cd (2 mg/kg/day CdCl2) was intraperitoneally given to rats for eight days. Vitamin C (250 mg/kg/day) + vitamin E (250 mg/kg/day) + sodium selenate (0.25 mg/kg/day) were given to rats by oral means. The animals were treated by anti-oxidants one hour prior to treatment with Cd every day. The degenerative changes were observed in the groups given only Cd and anti-oxidants + Cd. Metallothionein (MT) immunoreactivity increased in cytoplasm of hepatocytes of the rats given Cd when compared with controls. In a number of cells with Cd and anti-oxidants treatment, immunoreactivity increase was more than in the group given Cd only and nuclear MT expression was also detected. Cell proliferation was assessed with proliferating cell nuclear antigen (PCNA) immunohistochemistry. PCNA expressions increased in all groups more than in the controls. Anti-oxidants treatment increased cell proliferation. In the animals administered with Cd, an increase in serum aspartate (AST) and alanine (ALT) aminotransferases, liver glutathione (GSH) and lipid peroxidation (LPO) levels were observed. On the other hand, in the rats treated with anti-oxidants and Cd, serum AST and ALT, liver glutathione and LPO levels decreased. As a result, these results suggest that combined anti-oxidants treatment might be useful in protection of liver against Cd toxicity.

  18. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity.

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H; Miller, Katherine H; Marqusee, Susan; Keck, James L

    2015-06-05

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity*

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L.

    2015-01-01

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. PMID:25903123

  20. Study on the morphology, histology and enzymatic activity of the digestive tract of Gymnocypris eckloni Herzenstein.

    Science.gov (United States)

    Yang, Lizhu; Fang, Jing; Peng, Xi; Cui, Hengmin; He, Min; Zuo, Zhicai; Zhou, Yi; Yang, Zhuangzhi

    2017-08-01

    The present research was conducted to study the morphology, histology and enzymatic activities of the digestive tract of Gymnocypris eckloni by light and transmission electron microscopes as well as by enzyme assays. The digestive tract of G. eckloni consisted of the oropharyngeal cavity, oesophagus and intestine. The wall of the digestive tract was composed of mucosa, submucosa, muscularis and serosa but lacked muscularis mucosa and glands. The stratified epithelium of the oropharyngeal cavity and oesophagus contained numerous mucous cells. Taste buds were found in the epithelium of the oropharyngeal cavity. A large number of isolated longitudinal striated muscular bundles were present in the submucosa of the oesophagus. The mucosal epithelium of the intestine was composed of simple columnar cells containing absorptive, goblet and endocrine cells. Numerous mitochondria and endoplasmic reticulum were observed in the absorptive cells, especially in the anterior intestine. From the anterior to the posterior intestine, the number and length of mucosal folds and microvilli decreased, but the number of goblet cells increased. The intestinal coefficient was 2.38. Maximum trypsin activity was measured in the anterior intestine, while the lowest lipase and amylase activities were tested in the middle and posterior intestines, respectively. The results provided experimental evidence for evaluating physiological condition of G. eckloni digestive tract, which will be useful for improving current rearing practices and diagnoses of digestive tract diseases.

  1. Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from pumpkin (Cucurbita moschata).

    Science.gov (United States)

    Wu, Hao; Zhu, Junxiang; Diao, Wenchao; Wang, Chengrong

    2014-11-26

    An efficient ultrasound-assisted enzymatic extraction (UAEE) of Cucurbita moschata polysaccharides (CMCP) was established and the CMCP antioxidant activities were studied. The UAEE operating parameters (extraction temperature, ultrasonic power, pH, and liquid-to-material ratio) were optimized using the central composite design (CCD) and the mass transfer kinetic study in UAEE procedure was used to select the optimal extraction time. Enzymolysis and ultrasonication that were simultaneously conducted was selected as the UAEE synergistic model and the optimum extraction conditions with a maximum polysaccharide yield of 4.33 ± 0.15% were as follows: extraction temperature, 51.5 °C; ultrasonic power, 440 W; pH, 5.0; liquid-to-material ratio, 5.70:1 mL/g; and extraction time, 20 min. Evaluation of the antioxidant activity in vitro suggested that CMCP has good potential as a natural antioxidant used in the food or medicine industry because of their high reducing power and positive radical scavenging activity for DPPH radical. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. STUDY ON QUALITY PARAMETERS AND ENZYMATIC ACTIVITY OF GRAIN MILL PRODUCTS REGION IN TRANSYLVANIA

    Directory of Open Access Journals (Sweden)

    Glevitzky Mirel

    2011-07-01

    Full Text Available This paper aims at determining the main quality parameters of grain mill products in the Transylvania region, also studying and emphasizing the enzymatic activity of flour. Determination of quality characteristics of grain mill products entails establishing physical, chemical and sensory parameters and assessing them against the limits imposed by law. Analysis was performed on samples formed by mixing basic medium extracted from different batches. Incremental size, sampling tools, how to extract them, the training sample and laboratory environments, packaging and labeling of samples were performed according to STAS 1068 69. Determination of the fall (Falling Number, an empirical test that relies on the ability of endogenous ?-amylase to reduce viscosity of the treated warm flour suspension is used, large scale milling and bakery industry to predict and assess the Baking quality of flour. In sprouted wheat, characterised by a low Falling number, dextrin produced by the action of ?-amylase leads to a sticky bread core. Experiments suggest that the values fall turnover (FN does not shrink in direct proportion to the percentage of germinating seeds. Amylolytic activity depends on the stage of sprouting of grains. Lack of ?-amylase activity can be corrected by adding malt grain ?-amylase or fungal ?-amylase.

  3. Oligosaccharide biosensor for direct monitoring of enzymatic activities using QCM-D.

    Science.gov (United States)

    Bouchet-Spinelli, Aurélie; Reuillard, Bertrand; Coche-Guérente, Liliane; Armand, Sylvie; Labbé, Pierre; Fort, Sébastien

    2013-11-15

    Enzymatic modification of saccharidic biomass is a subject of intensive research with potential applications in plant or human health, design of biomaterials and biofuel production. Bioengineering and metagenomics provide access to libraries of glycoside hydrolases but the biochemical characterization of these enzymes remains challenging, requiring fastidious colorimetric tests in discontinuous assays. Here, we describe a highly sensitive carbohydrate biosensor for the detection and characterization of glycoside hydrolases. Immobilization of oligosaccharides was achieved using copper-catalyzed azide-alkyne cycloaddition of maltoheptaose-modified probes onto self-assembled monolayers bearing azide reactive groups. This biosensor allowed detection of glycoside hydrolase activities at the picomolar level using quartz-crystal microbalance with dissipation monitoring (QCM-D). To our knowledge, this protocol provides the best performance to date for the detection of glycoside hydrolase activities. For each enzyme tested, we could determine the kinetic constant from the QCM-D data, and derive conclusions that correlated well with those of standard colorimetric tests. This opens the way to a new generation of rapid and direct tests characterizing functionally carbohydrate-active enzymes. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. New Biocatalyst with Multiple Enzymatic Activities for Treatment of Complex Food Wastewaters

    Directory of Open Access Journals (Sweden)

    Olga Senko

    2008-01-01

    Full Text Available The cells of filamentous fungus R. oryzae entrapped in the polyvinyl alcohol cryogelare capable of producing various extracellular hydrolytic enzymes (proteases, amylases, lipases and are used for the treatment of complex wastewaters of food industry. Five types of media simulating the wastewater of various food enterprises were treated under batch conditions for 600 h. Fats containing mostly residues of unsaturated fatty acids, as well as casein, glucose, sucrose, starch, soybean flour and various salts were the main components of the treated wastewaters. The immobilized cells concurrently possessed lipolytic, amylolytic and proteolytic activities. The level of each enzymatic activity depended on the wastewater content. The physiological state of immobilized cells was monitored by bioluminescent method. The intracellular adenosine triphosphate (ATP concentration determined in the granules with immobilized cells was high enough and almost constant for all the period of biocatalyst application confirming thereby the active metabolic state of the cells. The study of mechanical strength of biocatalyst granules allowed revealing the differences in the values of modulus of biocatalyst elasticity at the beginning and at the end of its use for the wastewater treatment. The decrease in chemical oxygen demand of the tested media after their processing by immobilized biocatalyst was 68–79 % for one working cycle.

  5. Anti-oxidative defences are modulated differentially in three freshwater teleosts in response to ammonia-induced oxidative stress.

    Directory of Open Access Journals (Sweden)

    Amit Kumar Sinha

    Full Text Available Oxidative stress and the antioxidant response induced by high environmental ammonia (HEA were investigated in the liver and gills of three freshwater teleosts differing in their sensitivities to ammonia. The highly ammonia-sensitive salmonid Oncorhynchus mykiss (rainbow trout, the less ammonia sensitive cyprinid Cyprinus carpio (common carp and the highly ammonia-resistant cyprinid Carassius auratus (goldfish were exposed to 1 mM ammonia (as NH4HCO3 for 0 h (control, 3 h, 12 h, 24 h, 48 h, 84 h and 180 h. Results show that HEA exposure increased ammonia accumulation significantly in the liver of all the three fish species from 24 h-48 h onwards which was associated with an increment in oxidative stress, evidenced by elevation of xanthine oxidase activity and levels of hydrogen peroxide (H2O2 and malondialdehyde (MDA. Unlike in trout, H2O2 and MDA accumulation in carp and goldfish liver was restored to control levels (84 h-180 h; which was accompanied by a concomitant increase in superoxide dismutase (SOD, catalase (CAT, ascorbate peroxidase activity and reduced ascorbate content. Many of these defence parameters remained unaffected in trout liver, while components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and glutathione reductase enhanced to a greater extent. The present findings suggest that trout rely mainly on glutathione dependent defensive mechanism while carp utilize SOD, CAT and ascorbate as anti-oxidative sentinels. Hepatic cells of goldfish appear to utilize each of these protective systems, and showed more effective anti-oxidative compensatory responses towards HEA than carp, while trout were least effective. The present work also indicates that HEA exposure resulted in a relatively mild oxidative stress in the gills of all three species. This probably explains the almost complete lack of anti-oxidative responses in branchial tissue. This research suggests that oxidative stress, as well as the

  6. Anti-oxidative defences are modulated differentially in three freshwater teleosts in response to ammonia-induced oxidative stress.

    Science.gov (United States)

    Sinha, Amit Kumar; AbdElgawad, Hamada; Giblen, Terri; Zinta, Gaurav; De Rop, Michelle; Asard, Han; Blust, Ronny; De Boeck, Gudrun

    2014-01-01

    Oxidative stress and the antioxidant response induced by high environmental ammonia (HEA) were investigated in the liver and gills of three freshwater teleosts differing in their sensitivities to ammonia. The highly ammonia-sensitive salmonid Oncorhynchus mykiss (rainbow trout), the less ammonia sensitive cyprinid Cyprinus carpio (common carp) and the highly ammonia-resistant cyprinid Carassius auratus (goldfish) were exposed to 1 mM ammonia (as NH4HCO3) for 0 h (control), 3 h, 12 h, 24 h, 48 h, 84 h and 180 h. Results show that HEA exposure increased ammonia accumulation significantly in the liver of all the three fish species from 24 h-48 h onwards which was associated with an increment in oxidative stress, evidenced by elevation of xanthine oxidase activity and levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Unlike in trout, H2O2 and MDA accumulation in carp and goldfish liver was restored to control levels (84 h-180 h); which was accompanied by a concomitant increase in superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase activity and reduced ascorbate content. Many of these defence parameters remained unaffected in trout liver, while components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and glutathione reductase) enhanced to a greater extent. The present findings suggest that trout rely mainly on glutathione dependent defensive mechanism while carp utilize SOD, CAT and ascorbate as anti-oxidative sentinels. Hepatic cells of goldfish appear to utilize each of these protective systems, and showed more effective anti-oxidative compensatory responses towards HEA than carp, while trout were least effective. The present work also indicates that HEA exposure resulted in a relatively mild oxidative stress in the gills of all three species. This probably explains the almost complete lack of anti-oxidative responses in branchial tissue. This research suggests that oxidative stress, as well as the antioxidant

  7. Metabolic activation of pyrrolizidine alkaloids: insights into the structural and enzymatic basis.

    Science.gov (United States)

    Ruan, Jianqing; Yang, Mengbi; Fu, Peter; Ye, Yang; Lin, Ge

    2014-06-16

    Pyrrolizidine alkaloids (PAs) are natural toxins widely distributed in plants. The toxic potencies of different PAs vary significantly. PAs are mono- or diesters of necine acids with a necine base. On the basis of the necine bases, PAs are classified into three types: retronecine-type, otonecine-type, and platynecine-type. Hepatotoxic PAs contain an unsaturated necine base. PAs exert hepatotoxicity through metabolic activation by hepatic cytochromes P450s (CYPs) to generate reactive intermediates which form pyrrole-protein adducts. These adducts provide a mechanism-based biomarker to assess PA toxicity. In the present study, metabolic activation of 12 PAs from three structural types was investigated first in mice to demonstrate significant variations in hepatic metabolic activation of different PAs. Subsequently, the structural and enzymatic factors affecting metabolic activation of these PAs were further investigated by using human liver microsomes and recombinant human CYPs. Pyrrole-protein adducts were detected in the liver and blood of mice and the in vitro systems treated with toxic retronecine-type and otonecine-type PAs having unsaturated necine bases but not with a platynecine-type PA containing a saturated necine base. Retronecine-type PAs produced more pyrrole-protein adducts than otonecine-type PAs with similar necine acids, demonstrating that the structure of necine base affected PA toxic potency. Among retronecine-type PAs, open-ring diesters generated the highest amount of pyrrole-protein adducts, followed by macrocyclic diesters, while monoesters produced the least. Only CYP3A4 and CYP3A5 activated otonecine-type PAs, while all 10 CYPs studied showed the ability to activate retronecine-type PAs. Moreover, the contribution of major CYPs involved also varied significantly among retronecine-type PAs. In conclusion, our findings provide a scientific basis for predicting the toxicities of individual PAs in biological systems based on PA structural

  8. Proteomic analysis of tylosin-resistant Mycoplasma gallisepticum reveals enzymatic activities associated with resistance.

    Science.gov (United States)

    Xia, Xi; Wu, Congming; Cui, Yaowen; Kang, Mengjiao; Li, Xiaowei; Ding, Shuangyang; Shen, Jianzhong

    2015-11-20

    Mycoplasma gallisepticum is a significant pathogenic bacterium that infects poultry, causing chronic respiratory disease and sinusitis in chickens and turkeys, respectively. M. gallisepticum infection poses a substantial economic threat to the poultry industry, and this threat is made worse by the emergence of antibiotic-resistant strains. The mechanisms of resistance are often difficult to determine; for example, little is known about antibiotic resistance of M. gallisepticum at the proteome level. In this study, we performed comparative proteomic analyses of an antibiotic (tylosin)-resistant M. gallisepticum mutant and a susceptible parent strain using a combination of two-dimensional differential gel electrophoresis and nano-liquid chromatography-quadrupole-time of flight mass spectrometry. Thirteen proteins were identified as differentially expressed in the resistant strain compared to the susceptible strain. Most of these proteins were related to catalytic activity, including catalysis that promotes the formylation of initiator tRNA and energy production. Elongation factors Tu and G were over-expressed in the resistant strains, and this could promote the binding of tRNA to ribosomes and catalyze ribosomal translocation, the coordinated movement of tRNA, and conformational changes in the ribosome. Taken together, our results indicate that M. gallisepticum develops resistance to tylosin by regulating associated enzymatic activities.

  9. Haematology, genotoxicity, enzymatic activity and histopathology as biomarkers of metal pollution in the shrew Crocidura russula

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Chardi, A. [Departament Biologia Animal, Facultat de Biologia, Universitat Barcelona, Av. Diagonal 645, 08028 Barcelona (Spain); Servei de Microscopia, Facultat de Ciencies, Ed. C, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)], E-mail: Alejandro.Sanchez.Chardi@uab.es; Marques, C.C.; Gabriel, S.I. [Centro de Biologia Ambiental, Departamento de Biologia Animal, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Capela-Silva, F. [Centro de Investigacao em Ciencias e Tecnologias da Saude, Departamento de Biologia, Universidade de Evora, 7002-552 Evora (Portugal); Cabrita, A.S. [Centro de Histofisiologia, Instituto de Patologia Experimental, Faculdade de Medicina, Universidade de Coimbra, 3004-504 Coimbra (Portugal); Lopez-Fuster, M.J.; Nadal, J. [Departament Biologia Animal, Facultat de Biologia, Universitat Barcelona, Av. Diagonal 645, 08028 Barcelona (Spain); Mathias, M.L. [Centro de Biologia Ambiental, Departamento de Biologia Animal, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal)

    2008-12-15

    Haematological (WBC, RBC, Hgb and Hct) and genotoxicity (MNT) parameters, hepatic enzymatic activities (GST, GPx and GR), and a histopathological evaluation of liver, kidneys and gonads were assessed as general biomarkers of metal pollution in the shrew Crocidura russula inhabiting a pyrite mining area. Specimens exposed to metals presented a few significant alterations when compared with reference animals: GST activity decreased; micronuclei increased; and evident liver alterations related to metal exposure were observed. On the basis of all the parameters studied, age was an important factor that partly explained the observed variation, whereas sex was the least important factor. Significant correlations were also found between heavy metal concentrations and biomarkers evaluated, demonstrating the great influence of these metals in the metabolic alterations. To the best of our knowledge, these data constitute the first measurements of a battery of biomarkers in shrews from a mine site and are among the few available for insectivorous mammals. - Metals from an abandoned pyrite mine produce alterations in haematological parameters, GST, MNT, and histopathology in shrews.

  10. Haematology, genotoxicity, enzymatic activity and histopathology as biomarkers of metal pollution in the shrew Crocidura russula

    International Nuclear Information System (INIS)

    Sanchez-Chardi, A.; Marques, C.C.; Gabriel, S.I.; Capela-Silva, F.; Cabrita, A.S.; Lopez-Fuster, M.J.; Nadal, J.; Mathias, M.L.

    2008-01-01

    Haematological (WBC, RBC, Hgb and Hct) and genotoxicity (MNT) parameters, hepatic enzymatic activities (GST, GPx and GR), and a histopathological evaluation of liver, kidneys and gonads were assessed as general biomarkers of metal pollution in the shrew Crocidura russula inhabiting a pyrite mining area. Specimens exposed to metals presented a few significant alterations when compared with reference animals: GST activity decreased; micronuclei increased; and evident liver alterations related to metal exposure were observed. On the basis of all the parameters studied, age was an important factor that partly explained the observed variation, whereas sex was the least important factor. Significant correlations were also found between heavy metal concentrations and biomarkers evaluated, demonstrating the great influence of these metals in the metabolic alterations. To the best of our knowledge, these data constitute the first measurements of a battery of biomarkers in shrews from a mine site and are among the few available for insectivorous mammals. - Metals from an abandoned pyrite mine produce alterations in haematological parameters, GST, MNT, and histopathology in shrews

  11. Phenylpropanoid glycoside analogues: enzymatic synthesis, antioxidant activity and theoretical study of their free radical scavenger mechanism.

    Directory of Open Access Journals (Sweden)

    Agustín López-Munguía

    Full Text Available Phenylpropanoid glycosides (PPGs are natural compounds present in several medicinal plants that have high antioxidant power and diverse biological activities. Because of their low content in plants (less than 5% w/w, several chemical synthetic routes to produce PPGs have been developed, but their synthesis is a time consuming process and the achieved yields are often low. In this study, an alternative and efficient two-step biosynthetic route to obtain natural PPG analogues is reported for the first time. Two galactosides were initially synthesized from vanillyl alcohol and homovanillyl alcohol by a transgalactosylation reaction catalyzed by Kluyveromyces lactis β-galactosidase in saturated lactose solutions with a 30%-35% yield. To synthesize PPGs, the galactoconjugates were esterified with saturated and unsaturated hydroxycinnamic acid derivatives using Candida antarctica Lipase B (CaL-B as a biocatalyst with 40%-60% yields. The scavenging ability of the phenolic raw materials, intermediates and PPGs was evaluated by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH• method. It was found that the biosynthesized PPGs had higher scavenging abilities when compared to ascorbic acid, the reference compound, while their antioxidant activities were found similar to that of natural PPGs. Moreover, density functional theory (DFT calculations were used to determine that the PPGs antioxidant mechanism proceeds through a sequential proton loss single electron transfer (SPLET. The enzymatic process reported in this study is an efficient and versatile route to obtain PPGs from different phenylpropanoid acids, sugars and phenolic alcohols.

  12. Determination of myoglobin based on its enzymatic activity by stopped-flow spectrophotometry

    Science.gov (United States)

    Zheng, Qi; Liu, Zhihong; Cai, Ruxiu

    2005-04-01

    A new method has been developed for the determination of myoglobin (Mb) based on its enzymatic activity for the oxidation of o-phenylenediamine (OPDA) with hydrogen peroxide. Stopped-flow spectrophotometry was used to study the kinetic behavior of the oxidation reaction. The catalytic activity of Mb was compared to other three kinds of catalyst. The time dependent absorbance of the reaction product, 2,3-diamimophenazine (DAPN), at a wavelength of 426 nm was recorded. The initial reaction rate obtained at 40 °C was found to be proportional to the concentration of Mb in the range of 1.0 × 10 -6 to 4.0 × 10 -9 mol L -1. The detection limit of Mb was found to be 9.93 × 10 -10 mol L -1. The relative standard deviations were within 5% for the determination of different concentrations of Mb. Excess of bovine serum albumin (BSA), Ca(II), Mg(II), Cu(II), glucose, caffeine, lactose and uric acid did not interfere.

  13. A spectrophotometric assay for the enzymatic demethoxylation of pectins and the determination of pectinesterase activity.

    Science.gov (United States)

    Mangos, T J; Haas, M J

    1997-01-15

    A rapid spectrophotometric method for the determination of pectinesterase activity is presented. In this assay, methanol released from pectin by pectinesterase is oxidized with alcohol oxidase to form hydrogen peroxide and formaldehyde. Hydrogen peroxide is then quantitated with peroxidase and the chromogen 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid). Since both reactions exhibit the same pH optimum it was possible to couple the methanol assay directly to the action of pectinesterase for the real-time determination of this enzyme. The assay is reliable and sensitive, being capable of quantitating a minimum pectinesterase activity of 0.0625 unit (1 unit = 1 microM methanol released per minute). It is also capable of detecting the enzymatic demethoxylation of galactopyranosyl uronic acid methyl esters of pectin down to a minimum concentration of 1.56 nM of methanol per milliliter using a pectin substrate with a methoxy content of 10% (w/w) at a concentration of 0.5 microgram/ml.

  14. Phenylpropanoid Glycoside Analogues: Enzymatic Synthesis, Antioxidant Activity and Theoretical Study of Their Free Radical Scavenger Mechanism

    Science.gov (United States)

    López-Munguía, Agustín; Hernández-Romero, Yanet; Pedraza-Chaverri, José; Miranda-Molina, Alfonso; Regla, Ignacio; Martínez, Ana; Castillo, Edmundo

    2011-01-01

    Phenylpropanoid glycosides (PPGs) are natural compounds present in several medicinal plants that have high antioxidant power and diverse biological activities. Because of their low content in plants (less than 5% w/w), several chemical synthetic routes to produce PPGs have been developed, but their synthesis is a time consuming process and the achieved yields are often low. In this study, an alternative and efficient two-step biosynthetic route to obtain natural PPG analogues is reported for the first time. Two galactosides were initially synthesized from vanillyl alcohol and homovanillyl alcohol by a transgalactosylation reaction catalyzed by Kluyveromyces lactis β-galactosidase in saturated lactose solutions with a 30%–35% yield. To synthesize PPGs, the galactoconjugates were esterified with saturated and unsaturated hydroxycinnamic acid derivatives using Candida antarctica Lipase B (CaL-B) as a biocatalyst with 40%–60% yields. The scavenging ability of the phenolic raw materials, intermediates and PPGs was evaluated by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) method. It was found that the biosynthesized PPGs had higher scavenging abilities when compared to ascorbic acid, the reference compound, while their antioxidant activities were found similar to that of natural PPGs. Moreover, density functional theory (DFT) calculations were used to determine that the PPGs antioxidant mechanism proceeds through a sequential proton loss single electron transfer (SPLET). The enzymatic process reported in this study is an efficient and versatile route to obtain PPGs from different phenylpropanoid acids, sugars and phenolic alcohols. PMID:21674039

  15. Mild thyroid peroxidase deficiency caused by TPO mutations with residual activity: Correlation between clinical phenotypes and enzymatic activity.

    Science.gov (United States)

    Narumi, Satoshi; Fox, Larry A; Fukudome, Keisuke; Sakaguchi, Zenichi; Sugisawa, Chiho; Abe, Kiyomi; Kameyama, Kaori; Hasegawa, Tomonobu

    2017-11-29

    Thyroid peroxidase (TPO) deficiency, caused by biallelic TPO mutations, is a well-established genetic form of congenital hypothyroidism (CH). More than 100 patients have been published, and the patients have been diagnosed mostly in the frame of newborn screening (NBS) programs. Correlation between clinical phenotypes and TPO activity remains unclear. Here, we report clinical and molecular findings of two unrelated TPO mutation-carrying mildly hypothyroid patients. The two patients were born at term after an uneventful pregnancy and delivery, and were NBS negative. They sought medical attention due to goiter at age 8 years. Evaluation of the thyroid showed mild elevation of serum TSH levels, normal or slightly low serum T 4 levels, high serum T 3 to T 4 molar ratio, high serum thyroglobulin levels, and high thyroidal 123 I uptake. We performed next-generation sequencing-based genetic screening, and found that one patient was compound heterozygous for two novel TPO mutations (p.Asp224del; c.820-2A>G), and the other was homozygous for a previously known mutation (p.Trp527Cys). In vitro functional analyses using HEK293 cells showed that the two amino acid-altering mutations (p.Asp224del and p.Trp527Cys) caused partial loss of the enzymatic activity. In conclusion, we report that TPO mutations with residual activity are associated with mild TPO deficiency, which is clinically characterized by marked goiter, mild TSH elevation, high serum T 3 to T 4 molar ratio, and high serum thyroglobulin levels. Our findings illuminate the hitherto under-recognized correlation between clinical phenotypes and residual enzymatic activity among patients with TPO deficiency.

  16. Enzymatic activity of anthropogenic proto-organic soils in soilless farming

    Science.gov (United States)

    Bireescu, Geanina; Dazzi, Carmelo; Laudicina, Vito Armando; Lo Papa, Giuseppe

    2017-04-01

    In soilless agriculture and horticulture coir is the more used substratum to grow plants because it is widely available and more environmentally friendly than sphagnum or peat. In Italy, soilless agriculture concerns an area of about 1,000 hectares, particularly concentrated in Sicily. The southern coastal belt of this region is the area interested by the most significant experiences in the application of techniques of soilless cultivation that, recently, has been used also for growing table grapes. Starting from the above consideration we suppose that the features of the coconut fiber underlay an evident transformation and that even after few years of table grape cultivation, such organic material undergone to a transformation that allows for the formation of a proto-organic soil (a proto-Histosol, we supposed). If this is true, we believe that, in this case, to speak about soilless cultivation is for sure misleading for the common people, as we should define this cultivation "on anthropogenic soils" instead. To fit the aims of this survey we used a big greenhouse devoted to soilless cultivation of table grape in a farm in the Southern Sicily We have considered the enzymatic activity that characterized the coconut fiber after 3 cycles of cultivation of table grapes. We used as a control the coconut fiber that the farmer used to prepare pots for soilless cultivation and coconut fiber of: 6 pots at the end of the first productive cycle 6 pots at the end of the second cycle and 3 pots at the end of the third cycle. On these organic samples we investigated three enzymes, belonging to oxydoreductase (catalase and dehydrogenase) and hydrolase (urease) classes. Statistical analysis of the investigated enzymes was developed using IBM Statistic SPSS v20 by ANOVA, Tukey test HSD for p ≤ 0.01 and Multivariate Statistical Analysis. Results have shown significant differences in enzymes content and quality among coir tests. The use of the coco fiber, as nutritive substratum

  17. Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xingxu [Key Laboratory of Grassland Agro-Ecosystems, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730000, Gansu (China); Li Chunjie, E-mail: chunjie@lzu.edu.cn [Key Laboratory of Grassland Agro-Ecosystems, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730000, Gansu (China); Nan Zhibiao [Key Laboratory of Grassland Agro-Ecosystems, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730000, Gansu (China)

    2010-03-15

    The effects of cadmium on biomass production and growth parameters of drunken horse grass (Achnatherum inebrians) over an 8-week period were determined in a controlled-environment experiment. Changes were determined for relative water content, anti-oxidative enzymes (i.e., catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX)) and for H{sub 2}O{sub 2} content, as well as levels of proline, malondialdehyde (MDA), and chlorophylls 'a' and 'b' present within leaves infected with Neotyphodium gansuense vs. non-infected controls. Observations began 4 weeks after addition of CdCl{sub 2} (0, 50, 100 and 200 {mu}M) to the nutrient solution. Under high concentrations (100 and 200 {mu}M) of CdCl{sub 2}, endophyte-infected plants produced more biomass and had higher values for plant height and tiller number compared to non-infected controls, but there was no significant difference (P > 0.05) under 0 and 50 {mu}M CdCl{sub 2}. Anti-oxidative enzyme activities, H{sub 2}O{sub 2} concentration, and chlorophylls 'a' and 'b' levels increased, but proline and malondialdehyde content declined in the infected plants vs. non-infected plants under high (100 and 200 {mu}M) concentrations of CdCl{sub 2}. There was no significant difference (P > 0.05) under 0 and 50 {mu}M CdCl{sub 2}. Endophyte infection was concluded to be of benefit to the growth and anti-oxidative mechanisms within A. inebrians under high concentrations exposures to CdCl{sub 2}.

  18. Anti-oxidative and anti-apoptotic roles of spermatogonial stem cells in reversing cisplatin-induced testicular toxicity.

    Science.gov (United States)

    Hussein, Yousri M; Mohamed, Randa H; Shalaby, Sally M; Abd El-Haleem, Manal R; Abd El Motteleb, Dalia M

    2015-11-01

    Because of reproductive toxic effects of chemotherapy, researchers have taken some techniques to preserve fertility potential. The present study was designed to point out the potential role of spermatogonial stem cell (SSC) therapy in reversing cisplatin (CP)-induced testicular toxicity and restore the spermatogenesis. Sixty rats were randomly divided into three groups: group 1, control group; group 2, rats received CP in a dose of 7 mg/kg/day for 5 consecutive days; group 3, CP was injected at 7 mg/kg per day for 5 consecutive days, and, on the 6th day of the experiment, rats were treated with SSC. Forty days after receiving the last dose of CP, rats were euthanized under anesthesia; testes were collected, and gene expression using real-time polymerase chain reaction for P53, Bax, caspase 9 and cytochrome c, testicular histological findings and oxidative status were determined. Administration of cisplatin caused significant increases in malondialdehyde levels, Bax and caspase 9 genes expression levels concomitant with significant decreases in anti-oxidant enzyme activities, p53 and cytochrome c gene expression levels, along with some histopathological lesions in testicular tissue. SCC attenuated the disturbance in oxidant/anti-oxidant status and testicular apoptosis; this is associated with improvements in the histopathological view of the testicular tissue. The current study highlights evidence that the SCC has anti-oxidative and anti-apoptotic properties that could reverse CP-induced testicular toxicity, in addition to their role in spermatogenesis. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  19. Anti-apoptotic and anti-oxidant effects of grape seed proanthocyanidin extract in preventing cyclosporine A-induced nephropathy.

    Science.gov (United States)

    Ulusoy, Sukru; Ozkan, Gulsum; Yucesan, Fulya Balaban; Ersöz, Şafak; Orem, Asim; Alkanat, Mehmet; Yuluğ, Esin; Kaynar, Kubra; Al, Sait

    2012-05-01

    Although the pathogenesis of cyclosporine (CsA) nephropathy is not completely understood, it is attributed to oxidative damage and apoptosis. Grape seed proanthocyanidin extract (GSPE) is a molecule with anti-oxidant and anti-apoptotic properties. Our aim was to demonstrate the effects of GSPE in preventing CsA nephropathy. Twenty-four Sprague-Dawley rats were divided into four groups. The control, GSPE, CsA and CsA+GSPE groups were given 1 mL olive oil, 100 mg/kg GSPE, 25 mg/kg CsA and 100 mg/kg GSPE+25 mg/kg CsA, respectively. On day 21, blood samples were taken for blood urea nitrogen (BUN), creatinine and CsA levels, and renal tissue was used for total oxidant system (TOS), total anti-oxidant system (TAS), oxidative stress index (OSI) and malondialdehyde (MDA) measurements. In addition to renal histopathology, apoptosis staining was performed on renal tissue. The BUN, creatinine, TOS, OSI, MDA, histopathological score, and apoptotic index exhibited increases in the CsA group. In the CsA+GSPE group, however, BUN, creatinine, OSI, MDA, renal histopathological score and apoptotic index (AI) decreased and TAS levels increased. In addition, there was no difference between the CsA and CsA+GSPE groups with regard to CsA levels. We demonstrated that GSPE prevents CsA nephropathy and that this effect is achieved by anti-apoptotic and anti-oxidant activity. We also achieved a significant recovery in kidney functions without affecting CsA plasma levels. © 2012 The Authors. Nephrology © 2012 Asian Pacific Society of Nephrology.

  20. Active packaging use to inhibit enzymatic browning of apples/ Uso de embalagem ativa na inibição do escurecimento enzimático de maçãs

    Directory of Open Access Journals (Sweden)

    Giulliano Amaral Viana

    2008-08-01

    Full Text Available The enzymatic browning is the most limiting factor of fruits and vegetables shelf-life. The objective of this study was to evaluate the effect of an active packaging incorporated with anti-oxidant agents to inhibit apple’s enzymatic browning. Cellulosic films were incorporated with cysteine and sulphite and used to cover apples divided in halves. Browning inhibition was measured by polyphenoloxidase activity and colour analysis (CIE Lab colour system. Low concentration of sulphite (1% showed efficient browning inhibition and higher concentration of cysteine (15% was necessary to reach the same results. Treatments containing cysteine and sulphite resulted in brighter apples and less browning compared with control. The quantity of sulphite released to apples was lower than the limit allowed by legislation, decreasing, in this way, the levels of additives ingested by the consumer. In this study, the effectiveness of active packaging in providing product conservation was confirmed by the inhibition of browning in apples.O escurecimento enzimático é um dos fatores mais limitantes da vida de prateleira de frutas e vegetais. O objetivo desse estudo foi avaliar o efeito do uso de embalagem ativa incorporada com agentes antioxidantes na inibição do escurecimento enzimático de maçãs. Os filmes foram produzidos a base de polímero celulósico e incorporados com sulfito e cisteína para recobrimento de maçãs divididas ao meio. Foi avaliada a inibição do escurecimento através da atividade da polifenoloxidase e pela análise de cor (sistema CIE Lab. Baixas concentrações de sulfito (1% mostraram-se eficientes na inibição do escurecimento das maçãs e altas concentrações de cisteína (15% foram necessárias para a obtenção do mesmo resultado. Os tratamentos tanto com sulfito quanto com cisteína, comparados com os tratamentos controle, proporcionaram maior brilho às maçãs e menor escurecimento. O teor de sulfito liberado para a ma

  1. Electrically induced changes in amaranth seed enzymatic activity and their effect on bioactive compounds content after germination.

    Science.gov (United States)

    Ozuna, César; Cerón-García, Abel; Elena Sosa-Morales, Ma; Salazar, Julián Andrés Gómez; Fabiola León-Galván, Ma; Del Rosario Abraham-Juárez, Ma

    2018-02-01

    Electric treatment applied to seeds and sprouts can change their phytochemical composition. However, only a handful of studies have investigated the effects of treating seeds with electric current prior to their germination on the enzymatic antioxidant system of their sprouts. The aim of this study was to determine the changes in bioactive compounds and the enzymatic antioxidant activities in seeds and amaranth sprouts under direct electric current (DC) treatments. Amaranth seeds were treated with DC at 500 mA for different periods of time (0, 2, 5, 10 and 30 min) and let sprout (85% RH, 25 ± 2 °C) for 6 days. Significant changes were found in the antioxidant enzymatic activities and in the total content of flavonoids (15.44 ± 0.56 mg RE/gDW) and phenolic compounds (35.87 ± 0.17 mg GAE/gDW) in 6-day-old sprouts from DC-treated seeds in comparison to sprouts form non-treated seeds. The results suggested that DC treatment for short period (5 min) can induce quantitative changes to the enzymatic antioxidant system of amaranth sprouts, thus representing a relatively cost-effective method for enhancing health-improving properties of sprouts.

  2. Enzymatic Activity of the Mycelium Compared with Oospore Development During Infection of Pea Roots by Aphanomyces euteiches

    DEFF Research Database (Denmark)

    Kjøller, Rasmus; Rosendahl, Søren

    1998-01-01

    To describe the disease cycle of the root pathogen Aphanomyces euteiches, enzymatic activity in the mycelium was compared with the development of oospores in pea roots. Plants were inoculated with two zoospore concentrations to achieve different disease levels. Hyphae were stained for fungal...... concentration, the enzymatic activity of the pathogen mycelium peaked 10 to 14 days after inoculation, when oospore formation was initiated. Oospore formation was associated with a gradual increase in disease symptoms. At the last harvest, plants inoculated with the higher zoospore concentration had died...... alkaline phosphatase activity in the roots. Additionally, enzyme activity was measured after electrophoresis of an A. euteiches-specific glucose-6-phosphate isozyme. Development of oospores in the roots was measured after staining the oospores with trypan blue. In plants inoculated with the higher zoospore...

  3. Imbalanced nutrient recycling in a warmer ocean driven by differential response of extracellular enzymatic activities

    KAUST Repository

    Ayo, Begoña

    2017-06-08

    Ocean oligotrophication concurrent with warming weakens the capacity of marine primary producers to support marine food webs and act as a CO2 sink, and is believed to result from reduced nutrient inputs associated to the stabilization of the thermocline. However, nutrient supply in the oligotrophic ocean is largely dependent on the recycling of organic matter. This involves hydrolytic processes catalyzed by extracellular enzymes released by bacteria, which temperature-dependence has not yet been evaluated. Here we report a global assessment of the temperature-sensitivity, as represented by the activation energies (Ea ), of extracellular β-glucosidase (βG), leucine aminopeptidase (LAP) and alkaline phosphatase (AP) enzymatic activities, which enable the uptake by bacteria of substrates rich in carbon, nitrogen and phosphorus, respectively. These Ea were calculated from two different approaches, temperature experimental manipulations and a space-for-time substitution approach, which generated congruent results. The three activities showed contrasting Ea in the subtropical and tropical ocean, with βG increasing the fastest with warming, followed by LAP, while AP showed the smallest increase. The estimated activation energies predict that the hydrolysis products under projected warming scenarios will have higher C:N, C:P and N:P molar ratios than those currently generated, and suggest that the warming of oceanic surface waters leads to a decline in the nutrient supply to the microbial heterotrophic community relative to that of carbon, particularly so for phosphorus, slowing down nutrient recycling and contributing to further ocean oligotrophication. This article is protected by copyright. All rights reserved.

  4. Decomposition rate and enzymatic activity of composted municipal waste and poultry manure in the soil in a biofuel crops field.

    Science.gov (United States)

    Cordovil, Cláudia Marques-Dos-Santos; de Varennes, Amarilis; Pinto, Renata Machado Dos Santos; Alves, Tiago Filipe; Mendes, Pedro; Sampaio, Sílvio César

    2017-05-01

    Biofuel crops are gaining importance because of the need to replace non-renewable sources. Also, due to the increasing amounts of wastes generated, there is the need to recycle them to the soil, both to fertilize crops and to improve soil physical properties through organic matter increase and microbiological changes in the rhizosphere. We therefore studied the influence of six biofuel crops (elephant grass, giant cane, sugarcane, blue gum, black cottonwood, willow) on the decomposition rate and enzymatic activity of composted municipal solid waste and poultry manure. Organic amendments were incubated in the field (litterbag method), buried near each plant or bare soil. Biomass decrease and dehydrogenase, urease and acid phosphatase level in amendments was monitored over a 180-day period. Soil under the litterbags was analysed for the same enzymatic activity and organic matter fractions (last sampling). After 365 days, a fractionation of organic matter was carried out in both amendments and soil under the litterbags. For compost, willow and sugarcane generally led to the greatest enzymatic activity, at the end of the experiment. For manure, dehydrogenase activity decreased sharply with time, the smallest value near sugarcane, while phosphatase and urease generally presented the highest values, at the beginning or after 90 days' incubation. Clustering showed that plant species could be grouped based on biomass and enzymes measured over time. Plant species influenced the decomposition rate and enzymatic activities of the organic amendments. Overall, mineralization of both amendments was associated with a greater urease activity in soils. Dehydrogenase activity in manure was closely associated with urease activity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. A substrate sensor chip to assay the enzymatic activity of Botulinum neurotoxin A.

    Science.gov (United States)

    Lévêque, Christian; Ferracci, Géraldine; Maulet, Yves; Grand-Masson, Chloé; Blanchard, Marie-Pierre; Seagar, Michael; El Far, Oussama

    2013-11-15

    Botulinum neurotoxin A (BoNT/A) induces muscle paralysis by enzymatically cleaving the presynaptic SNARE protein SNAP-25, which results in lasting inhibition of acetylcholine release at the neuromuscular junction. A rapid and sensitive in vitro assay for BoNT/A is required to replace the mouse lethality assay (LD50) in current use. We have developed a fully automated sensor to assay the endoprotease activity of BoNT/A. We produced monoclonal antibodies (mAbs) that recognize SNAP-25 neo-epitopes specifically generated by BoNT/A action. Recombinant SNAP-25 was coupled to the sensor surface of a surface plasmon resonance (SPR) system and samples containing BoNT/A were injected over the substrate sensor. Online substrate cleavage was monitored by measuring binding of mAb10F12 to a SNAP-25 neo-epitope. The SNAP-25-chip assay was toxin serotype-specific and detected 55 fM BoNT/A (1 LD50/ml) in 5 min and 0.4 fM (0.01 LD50/ml) in 5h. Time-course and dose-response curves were linear, yielding a limit of quantification of 0.03 LD50/ml. This label-free method is 100 times more sensitive than the mouse assay, potentially providing rapid read-out of small amounts of toxin for environmental surveillance and the quality control of pharmaceutical preparations. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Enzymatic Detoxication, Conformational Selection, and the Role of Molten Globule Active Sites*

    Science.gov (United States)

    Honaker, Matthew T.; Acchione, Mauro; Zhang, Wei; Mannervik, Bengt; Atkins, William M.

    2013-01-01

    The role of conformational ensembles in enzymatic reactions remains unclear. Discussion concerning “induced fit” versus “conformational selection” has, however, ignored detoxication enzymes, which exhibit catalytic promiscuity. These enzymes dominate drug metabolism and determine drug-drug interactions. The detoxication enzyme glutathione transferase A1–1 (GSTA1–1), exploits a molten globule-like active site to achieve remarkable catalytic promiscuity wherein the substrate-free conformational ensemble is broad with barrierless transitions between states. A quantitative index of catalytic promiscuity is used to compare engineered variants of GSTA1–1 and the catalytic promiscuity correlates strongly with characteristics of the thermodynamic partition function, for the substrate-free enzymes. Access to chemically disparate transition states is encoded by the substrate-free conformational ensemble. Pre-steady state catalytic data confirm an extension of the conformational selection model, wherein different substrates select different starting conformations. The kinetic liability of the conformational breadth is minimized by a smooth landscape. We propose that “local” molten globule behavior optimizes detoxication enzymes. PMID:23649628

  7. Ultrasound-propelled nanowire motors enhance asparaginase enzymatic activity against cancer cells.

    Science.gov (United States)

    Uygun, Murat; Jurado-Sánchez, Beatriz; Uygun, Deniz Aktas; Singh, Virendra Vikram; Zhang, Liangfang; Wang, Joseph

    2017-11-30

    Ultrasound-(US) propelled nanowires consisting of Au/Ni/Au/PEDOT-PPy-COOH segments are modified with asparaginase enzyme and applied as an effective anti-cancer agent. After immobilization of asparaginase onto the surface of the nanowire motors, the enzyme displays enhanced thermal and pH stabilities, improved resistance towards protease, and higher affinity for the substrate. The fast motion of the motor-carrying asparaginase leads to greatly accelerated biocatalytic depletion of asparagine and hence to a significantly enhanced inhibition efficacy against El4 lymphoma cancer cells (92%) as compared to free enzyme counterpart (17%) and other control groups. Such enhanced enzymatic activity against cancer cells is attributed to the fast motion of the motors which facilitates the interaction between the enzyme and the cancer cells. While asparaginase and EL4 tumor cells are used as a model system in the present study for cancer cell inhibition, the same mechanism can be expanded to other types of enzymes and biomolecules for the corresponding biofunctions.

  8. Mutation of Asn28 Disrupts the Dimerization and Enzymatic Activity of SARS 3CL

    Energy Technology Data Exchange (ETDEWEB)

    Barrila, J.; Gabelli, S; Bacha, U; Amzel, M; Freire, E

    2010-01-01

    Coronaviruses are responsible for a significant proportion of annual respiratory and enteric infections in humans and other mammals. The most prominent of these viruses is the severe acute respiratory syndrome coronavirus (SARS-CoV) which causes acute respiratory and gastrointestinal infection in humans. The coronavirus main protease, 3CL{sup pro}, is a key target for broad-spectrum antiviral development because of its critical role in viral maturation and high degree of structural conservation among coronaviruses. Dimerization is an indispensable requirement for the function of SARS 3CL{sup pro} and is regulated through mechanisms involving both direct and long-range interactions in the enzyme. While many of the binding interactions at the dimerization interface have been extensively studied, those that are important for long-range control are not well-understood. Characterization of these dimerization mechanisms is important for the structure-based design of new treatments targeting coronavirus-based infections. Here we report that Asn28, a residue 11 {angstrom} from the closest residue in the opposing monomer, is essential for the enzymatic activity and dimerization of SARS 3CLpro. Mutation of this residue to alanine almost completely inactivates the enzyme and results in a 19.2-fold decrease in the dimerization K{sub d}. The crystallographic structure of the N28A mutant determined at 2.35 {angstrom} resolution reveals the critical role of Asn28 in maintaining the structural integrity of the active site and in orienting key residues involved in binding at the dimer interface and substrate catalysis. These findings provide deeper insight into complex mechanisms regulating the activity and dimerization of SARS 3CL{sup pro}.

  9. Changes in the level and antioxidant activity of polyphenols during storage of enzymatically treated raspberry juices and syrups.

    Science.gov (United States)

    Szymanowska, Urszula; Baraniak, Barbara; Gawlik-Dziki, Urszula

    2017-01-01

    Berry juices are a rich source of phenolic compounds exhibiting antioxidant activity. Unfortu- nately, polyphenols and especially anthocyanins are degraded during storage. The levels of total phenolic compounds, phenolic acids, flavonoids, and antho- cyanins as well as antioxidant activity (radical scavenging ability against DPPH and ABTS+• and chelating power Fe2+) were determined in raspberry juices (obtained after enzymatic treatment with three commercial pectinolytic enzyme preparations) and syrups (obtained by the addition of sucrose at concentrations of 30% and 70%) during storage. During the five-month storage of juices and syrups at room temperature, there was significant re- duction in the level of phenolic compounds, in particular anthocyanins (up to 95% in relation to the initial content). Storage of raspberry juices and syrups also resulted in a reduction in antioxidant activity. The enzymatic treatment of the raspberry mash generally increased the losses of anthocyanins. The addition of sugar to fruit juices only slightly reduced these losses.

  10. Novel vanillin derivatives: Synthesis, anti-oxidant, DNA and cellular protection properties.

    Science.gov (United States)

    Scipioni, Matteo; Kay, Graeme; Megson, Ian; Kong Thoo Lin, Paul

    2018-01-01

    Antioxidants have been the subject of intense research interest mainly due to their beneficial properties associated with human health and wellbeing. Phenolic molecules, such as naturally occurring Resveratrol and Vanillin, are well known for their anti-oxidant properties, providing a starting point for the development of new antioxidants. Here we report, for the first time, the synthesis of a number of new vanillin through the reductive amination reaction between vanillin and a selection of amines. All the compounds synthesised, exhibited strong antioxidant properties in DPPH, FRAP and ORAC assays, with compounds 1b and 2c being the most active. The latter also demonstrated the ability to protect plasmid DNA from oxidative damage in the presence of the radical initiator AAPH. At cellular level, neuroblastoma SH-SY5Y cells were protected from oxidative damage (H 2 O 2 , 400 μM) with both 1b and 2c. The presence of a tertiary amino group, along with the number of vanillin moieties in the molecule contribute for the antioxidant activity. Furthermore, the delocalization of the electron pair of the nitrogen and the presence of an electron donating substituent to enhance the antioxidant properties of this new class of compounds. In our opinion, vanillin derivatives 1b and 2c described in this work can provide a viable platform for the development of antioxidant based therapeutics. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Effect of the exposure to suspended solids on the enzymatic activity in the bivalve Sinonovacula constricta

    Directory of Open Access Journals (Sweden)

    Guojun Yang

    2017-01-01

    Full Text Available Aquatic animals are susceptible to sudden changes of their living environment but they adopt strategies to cope with adverse environmental challenges. Contamination by suspended solids, often associated with a dramatic change in the concentrations of important water-quality variables is a frequent occurrence in China's coastal waters and estuaries. Here we studied the impact of suspended solids on the activities of the antioxidant enzymes superoxide dismutase (SOD and catalase (CAT, as well as adenosine triphosphates (including Na+ K+-ATPase, Mg+ +-ATPase, Ca+ +-ATPase and H+ K+-ATPase in the gills and visceral mass tissues of the molluscan bivalve Sinonovacula constricta exposed (4, 8, 12, 16, 20, and 24 days to various concentrations of suspended solids. Our results showed that the antioxidant enzymes cooperated closely to effectively scavenge superoxide anion free radicals and H2O2 (which can ultimately inhibit gill activity through the modification of SOD and/or CAT enzymatic activities. ATPases activity (considered to be a sensitive indicator of toxicity could play an effective role in the maintenance of functional integrity of the plasma membranes as well as some other intracellular functions. After the exposure, a decrease in the Na+ K+-ATPase, Mg+ +-ATPase, and Ca+ +-ATPase activity of the gills was observed suggesting that they were inhibited by the treatments. These results also indicated that, from day 4 to day 16, exposure to high concentrations of suspended solids had an inhibitory effect on the activity of H+-K+-ATPase in the visceral mass of S. constricta. However, after a period of adaptation the H+-K+-ATPase activity was restored to original levels. Our results suggest that long-term exposure to high levels of suspended solids disturb osmoregulation, gastric acid secretion and digestion, cause oxidative damage, as a consequence of antioxidant enzymes inactivation which eventually damages the gills, affect the food intake

  12. Dissipation of S-metolachlor in plant and soil and effect on enzymatic activities.

    Science.gov (United States)

    Wołejko, Elżbieta; Kaczyński, Piotr; Łozowicka, Bożena; Wydro, Urszula; Borusiewicz, Andrzej; Hrynko, Izabela; Konecki, Rafał; Snarska, Krystyna; Dec, Dorota; Malinowski, Paweł

    2017-07-01

    The present study aimed at evaluating the dissipation of S-metolachlor (S-MET) at three doses in maize growing on diverse physico-chemical properties of soil. The effect of herbicide on dehydrogenase (DHA) and acid phosphatase (ACP) activity was estimated. A modified QuEChERS method using LC-MS/MS has been developed. The limit of quantification (0.001 mg kg -1 ) and detection (0.0005 mg kg -1 ) were very low for soil and maize samples. The mean recoveries and RSDs for the six spiked levels (0.001-0.5 mg kg -1 ) were 91.3 and 5.8%. The biggest differences in concentration of S-MET in maize were observed between the 28th and 63rd days. The dissipation of S-MET in the alkaline soil was the slowest between the 2nd and 7th days, and in the acidic soil between the 5th and 11th days. DT 50 of S-MET calculated according to the first-order kinetics model was 11.1-14.7 days (soil) and 9.6-13.9 days (maize). The enzymatic activity of soil was higher in the acidic environment. One observed the significant positive correlation of ACP with pH of soil and contents of potassium and magnesium and negative with contents of phosphorus and organic carbon. The results indicated that at harvest time, the residues of S-MET in maize were well below the safety limit for maize. The findings of this study will foster the research on main parameters influencing the dissipation in maize ecosystems.

  13. Characterization of Amino Acid Profile and Enzymatic Activity in Adult Rat Astrocyte Cultures.

    Science.gov (United States)

    Souza, Débora Guerini; Bellaver, Bruna; Hansel, Gisele; Arús, Bernardo Assein; Bellaver, Gabriela; Longoni, Aline; Kolling, Janaina; Wyse, Angela T S; Souza, Diogo Onofre; Quincozes-Santos, André

    2016-07-01

    Astrocytes are multitasking players in brain complexity, possessing several receptors and mechanisms to detect, participate and modulate neuronal communication. The functionality of astrocytes has been mainly unraveled through the study of primary astrocyte cultures, and recently our research group characterized a model of astrocyte cultures derived from adult Wistar rats. We, herein, aim to characterize other basal functions of these cells to explore the potential of this model for studying the adult brain. To characterize the astrocytic phenotype, we determined the presence of GFAP, GLAST and GLT 1 proteins in cells by immunofluorescence. Next, we determined the concentrations of thirteen amino acids, ATP, ADP, adenosine and calcium in astrocyte cultures, as well as the activities of Na(+)/K(+)-ATPase and acetylcholine esterase. Furthermore, we assessed the presence of the GABA transporter 1 (GAT 1) and cannabinoid receptor 1 (CB 1) in the astrocytes. Cells demonstrated the presence of glutamine, consistent with their role in the glutamate-glutamine cycle, as well as glutamate and D-serine, amino acids classically known to act as gliotransmitters. ATP was produced and released by the cells and ADP was consumed. Calcium levels were in agreement with those reported in the literature, as were the enzymatic activities measured. The presence of GAT 1 was detected, but the presence of CB 1 was not, suggesting a decreased neuroprotective capacity in adult astrocytes under in vitro conditions. Taken together, our results show cellular functionality regarding the astrocytic role in gliotransmission and neurotransmitter management since they are able to produce and release gliotransmitters and to modulate the cholinergic and GABAergic systems.

  14. Activation and stabilization of the hydroperoxide lyase enzymatic extract from mint leaves (Mentha spicata) using selected chemical additives.

    Science.gov (United States)

    Akacha, Najla B; Karboune, Salwa; Gargouri, Mohamed; Kermasha, Selim

    2010-03-01

    The effects of selected lyoprotecting excipients and chemical additives on the specific activity and the thermal stability of the hydroperoxide lyase (HPL) enzymatic extract from mint leaves were investigated. The addition of KCl (5%, w/w) and dextran (2.5%, w/w) to the enzymatic extract, prior to lyophilization, increased the HPL specific activity by 2.0- and 1.2-fold, respectively, compared to the control lyophilized extract. From half-life time (t (1/2)), it can be seen that KCl has enhanced the HPL stability by 1.3- to 2.3-fold, during long-period storage at -20 degrees Celsius and 4 degrees Celsius. Among the selected additives used throughout this study, glycine appeared to be the most effective one. In addition to the activation effect conferred by glycine, it also enhanced the HPL thermal stability. In contrast, polyhydroxyl-containing additives were not effective for stabilizing the HPL enzymatic extract. On the other hand, there was no signification increase in HPL activity and its thermal stability with the presence of Triton X-100. The results also showed that in the presence of glycine (10%), the catalytic efficiency of HPL was increased by 2.45-fold than that without additive.

  15. Anti-oxidant studies and anti-microbial effect of Origanum vulgare Linn in combination with standard antibiotics.

    Science.gov (United States)

    Bharti, Veni; Vasudeva, Neeru; Kumar, Suresh

    2014-01-01

    Origanum is one of the over 200 genera in the Lamiaceae (mint family), and this genus includes culinary, fragrant, and medicinal properties. The plant is reported to contain anti-microbial properties, but it lacks combination studies with that of synthetic antibiotics. To investigate the anti-oxidant and anti-microbial interaction studies of Origanum vulgare with standard drugs against Bacillus species of bacteria and Aspergillus niger. The anti-oxidant properties of phenolic, non-phenolic fractions of chloroform extract and volatile oil were evaluated by free radical-scavenging, hydrogen peroxide radical-scavenging assay, reducing power, and metal chelating assays. The minimum inhibitory concentration and fractional inhibitory concentration index were determined which demonstrates the behavior of volatile oil, phenolic, and non-phenolic fractions of volatile oil with that of ciprofloxacin and fluconazole. The IC50 value for volatile oil was found to be 15, 30, and 30 μg/ml and that of phenolic fraction was 60, 120, and 120 μg/ml for free radical-scavenging, hydrogen peroxide-scavenging, and metal chelating assays respectively. Non-phenolic fraction was found to act antagonistically along with ciprofloxacin against B. cereus and B. subtilis, while the phenolic fraction exhibited indifferent activity along with ciprofloxacin against both the bacterial strains. This combination of drug therapy will not only prove effective in antibiotic resistance, but these natural constituents will also help in preventing body from harmful radicals which lead to fatal diseases.

  16. Enzymatic Activities of Bovine Peripheral Blood Leukocytes and Milk Polymorphonuclear Neutrophils during Intramammary Inflammation Caused by Lipopolysaccharide

    Science.gov (United States)

    Prin-Mathieu, C.; Le Roux, Y.; Faure, G. C.; Laurent, F.; Béné, M. C.; Moussaoui, F.

    2002-01-01

    Leukocytes are recruited from peripheral blood into milk as part of the inflammatory response to mastitis. However, excessive accumulation of inflammatory cells alters the quality of milk and the proteases produced by polymorphonuclear neutrophils (PMNs) and macrophages may lead to mammary tissue damage. To investigate PMN recruitment and the kinetics of their intracytoplasmic enzymes in inflammation, we generated mastitis in six cows by intramammary infusion of lipopolysaccharide (LPS). Clinical signs of acute mastitis were observed in all of the cows, and normal status was resumed by 316 h. Intracytoplasmic elastase, collagenase, and cathepsin activities were measured within live cells by flow cytometry in peripheral blood leukocytes and milk PMNs before and during the inflammatory process (at 10 time points between 4 and 316 h). The proportion of immature PMNs was appreciated by CD33 surface labeling measured in flow cytometry. Leukopenia was observed in the peripheral blood 4 h postinfusion, concomitant to an increase in somatic cell counts in milk. CD33+ PMNs were preferentially recruited from the peripheral blood to milk. Enzymatic activities were detected in PMNs, lymphocytes, and monocytes at levels depending on the cell type, sample nature, and time of collection. Milk PMNs had lower enzymatic activities than peripheral blood PMNs. This study showed that milk PMNs recruited during LPS-induced experimental mastitis have an immature phenotype and significantly lower enzymatic activities than peripheral blood PMNs. This suggests that CD33, an adhesion molecule, may be involved in the egress from blood to milk and that the enzymatic contents of PMNs are partly used during this process. PMID:12093678

  17. Three enzymatically active neurotoxins of Clostridium botulinum strain Af84: BoNT/A2, /F4, and /F5.

    Science.gov (United States)

    Kalb, Suzanne R; Baudys, Jakub; Smith, Theresa J; Smith, Leonard A; Barr, John R

    2014-04-01

    Botulinum neurotoxins (BoNTs) are produced by various species of clostridia and are potent neurotoxins which cause the disease botulism, by cleaving proteins needed for successful nerve transmission. There are currently seven confirmed serotypes of BoNTs, labeled A-G, and toxin-producing clostridia typically only produce one serotype of BoNT. There are a few strains (bivalent strains) which are known to produce more than one serotype of BoNT, producing either both BoNT/A and /B, BoNT/A and /F, or BoNT/B and /F, designated as Ab, Ba, Af, or Bf. Recently, it was reported that Clostridium botulinum strain Af84 has three neurotoxin gene clusters: bont/A2, bont/F4, and bont/F5. This was the first report of a clostridial organism containing more than two neurotoxin gene clusters. Using a mass spectrometry based proteomics approach, we report here that all three neurotoxins, BoNT/A2, /F4, and /F5, are produced by C. botulinum Af84. Label free MS(E) quantification of the three toxins indicated that toxin composition is 88% BoNT/A2, 1% BoNT/F4, and 11% BoNT/F5. The enzymatic activity of all three neurotoxins was assessed by examining the enzymatic activity of the neurotoxins upon peptide substrates, which mimic the toxins' natural targets, and monitoring cleavage of the substrates by mass spectrometry. We determined that all three neurotoxins are enzymatically active. This is the first report of three enzymatically active neurotoxins produced in a single strain of Clostridium botulinum.

  18. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    Science.gov (United States)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P pulmonary hypertension.

  19. Neurotoxicity and other pharmacological activities of the snake venom phospholipase A2 OS2: The N-terminal region is more important than enzymatic activity

    Science.gov (United States)

    Rouault, Morgane; Rash, Lachlan D.; Escoubas, Pierre; Boilard, Eric; Bollinger, James; Lomonte, Bruno; Maurin, Thomas; Guillaume, Carole; Canaan, Stéphane; Deregnaucourt, Christiane; Schrével, Joseph; Doglio, Alain; Gutiérrez, José María; Lazdunski, Michel; Gelb, Michael H.; Lambeau, Gérard

    2009-01-01

    Several snake venom secreted phospholipases A2 (sPLA2s) including OS2 exert a variety of pharmacological effects ranging from central neurotoxicity to anti-HIV activity by mechanisms that are not yet fully understood. To conclusively address the role of enzymatic activity and map the key structural elements of OS2 responsible for its pharmacological properties, we have prepared single point OS2 mutants at the catalytic site and large chimeras between OS2 and OS1, an homologous but non toxic sPLA2. Most importantly, we found that the enzymatic activity of the active site mutant H48Q is 500-fold lower than that of the wild-type protein, while central neurotoxicity is only 16-fold lower, providing convincing evidence that catalytic activity is at most a minor factor that determines central neurotoxicity. The chimera approach has identified the N-terminal region (residues 1–22) of OS2, but not the central one (residues 58–89), as crucial for both enzymatic activity and pharmacological effects. The C-terminal region of OS2 (residues 102–119) was found to be critical for enzymatic activity, but not for central neurotoxicity and anti-HIV activity, allowing us to further dissociate enzymatic activity and pharmacological effects. Finally, direct binding studies with the C-terminal chimera which poorly binds to phospholipids while it is still neurotoxic, led to the identification of a subset of brain N-type receptors which may be directly involved in central neurotoxicity. PMID:16669624

  20. Anti-oxidative aspect of inhaled anesthetic gases against acute brain injury

    Directory of Open Access Journals (Sweden)

    Tuo Yang

    2016-01-01

    Full Text Available Acute brain injury is a critical and emergent condition in clinical settings, which needs to be addressed urgently. Commonly acute brain injuries include traumatic brain injury, ischemic and hemorrhagic strokes. Oxidative stress is a key contributor to the subsequent injuries and impedes the reparative process after acute brain injury; therefore, facilitating an anti-oxidative approach is important in the care of those diseases. Readiness to deliver and permeability to blood brain barrier are essential for the use of this purpose. Inhaled anesthetic gases are a group of such agents. In this article, we discuss the anti-oxidative roles of anesthetic gases against acute brain injury.

  1. New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel†

    Science.gov (United States)

    Zhao, Hua; Baker, Gary A.; Holmes, Shaletha

    2012-01-01

    The enzymatic preparation of biodiesel has been hampered by the lack of suitable solvents with desirable properties such as high lipase compatibility, low cost, low viscosity, high biodegradability, and ease of product separation. Recent interest in using ionic liquids (ILs) as advanced reaction media has led to fast reaction rates and high yields in the enzymatic synthesis of biodiesel. However, conventional (i.e., cation–anion paired) ILs based on imidazolium and other quaternary ammonium salts remain too expensive for wide application at industrial scales. In this study, we report on newly-synthesized eutectic ILs derived from choline acetate or choline chloride coupled with biocompatible hydrogen-bond donors, such as glycerol. These eutectic solvents have favorable properties including low viscosity, high biodegradability, and excellent compatibility with Novozym® 435, a commercial immobilized Candida antarctica lipase B. Furthermore, in a model biodiesel synthesis system, we demonstrate high reaction rates for the enzymatic transesterification of Miglyol® oil 812 with methanol, catalyzed by Novozym® 435 in choline acetate/glycerol (1 : 1.5 molar ratio). The high conversion (97%) of the triglyceride obtained within 3 h, under optimal conditions, suggests that these novel eutectic solvents warrant further exploration as potential media in the enzymatic production of biodiesel. PMID:21283901

  2. New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel.

    Science.gov (United States)

    Zhao, Hua; Baker, Gary A; Holmes, Shaletha

    2011-03-21

    The enzymatic preparation of biodiesel has been hampered by the lack of suitable solvents with desirable properties such as high lipase compatibility, low cost, low viscosity, high biodegradability, and ease of product separation. Recent interest in using ionic liquids (ILs) as advanced reaction media has led to fast reaction rates and high yields in the enzymatic synthesis of biodiesel. However, conventional (i.e., cation-anion paired) ILs based on imidazolium and other quaternary ammonium salts remain too expensive for wide application at industrial scales. In this study, we report on newly-synthesized eutectic ILs derived from choline acetate or choline chloride coupled with biocompatible hydrogen-bond donors, such as glycerol. These eutectic solvents have favorable properties including low viscosity, high biodegradability, and excellent compatibility with Novozym(®) 435, a commercial immobilized Candida antarctica lipase B. Furthermore, in a model biodiesel synthesis system, we demonstrate high reaction rates for the enzymatic transesterification of Miglyol(®) oil 812 with methanol, catalyzed by Novozym(®) 435 in choline acetate/glycerol (1:1.5 molar ratio). The high conversion (97%) of the triglyceride obtained within 3 h, under optimal conditions, suggests that these novel eutectic solvents warrant further exploration as potential media in the enzymatic production of biodiesel.

  3. Antioxidant Activity of Purified Active Peptide Derived from Spirulina platensis Enzymatic Hydrolysates

    Directory of Open Access Journals (Sweden)

    Nur Maulida Safitri

    2017-08-01

    Full Text Available The aim of this study is to isolate the antioxidative peptide from Spirulina platensis. Peptide was obtained by proteolytic digestion, ultrafiltration, fractionation by RP-HPLC, identified by LC-MS/MS—MASCOT Distiller and measured its antioxidant activity by DPPH (2.2-Diphenyl-1-picrylhydrazyl assay. Results showed that thermolysin was the most effective enzyme to digest this algae. The active peptide Phe-Ser-Glu-Ser-Ser-Ala-Pro-Glu-Gln-His-Tyr (m/z 1281.51 was identified and synthetized, which exhibited 45.98 ± 1.7% at concentration 128.15 µg/mL. Therefore, S. platensis is indicated as a potential therapeutic source for combating oxidative stress.

  4. Improving enzymatic activities and thermostability of a tri-functional enzyme with SOD, catalase and cell-permeable activities.

    Science.gov (United States)

    Luangwattananun, Piriya; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Isarankura Na Ayudhya, Chartchalerm; Prachayasittikul, Virapong; Yainoy, Sakda

    2017-04-10

    Synergistic action of major antioxidant enzymes, e.g., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) is known to be more effective than the action of any single enzyme. Recently, we have engineered a tri-functional enzyme, 6His-MnSOD-TAT/CAT-MnSOD (M-TAT/CM), with SOD, CAT and cell-permeable activities. The protein actively internalized into the cells and showed superior protection against oxidative stress-induced cell death over native enzymes fused with TAT. To improve its molecular size, enzymatic activity and stability, in this study, MnSOD portions of the engineered protein were replaced by CuZnSOD, which is the smallest and the most heat resistant SOD isoform. The newly engineered protein, CAT-CuZnSOD/6His-CuZnSOD-TAT (CS/S-TAT), had a 42% reduction in molecular size and an increase in SOD and CAT activities by 22% and 99%, respectively. After incubation at 70°C for 10min, the CS/S-TAT retained residual SOD activity up to 54% while SOD activity of the M-TAT/CM was completely abolished. Moreover, the protein exhibited a 5-fold improvement in half-life at 70°C. Thus, this work provides insights into the design and synthesis of a smaller but much more stable multifunctional antioxidant enzyme with ability to enter mammalian cells for further application as protective/therapeutic agent against oxidative stress-related conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

    Directory of Open Access Journals (Sweden)

    Claudia Koch

    2016-04-01

    , e.g., for monitoring blood sugar concentrations, might profit particularly from the presence of TMV rods: Their surfaces were recently shown to stabilize enzymatic activities upon repeated consecutive uses and over several weeks. This review gives the reader a ride through strikingly diverse achievements obtained with TMV-based particles, compares them to the progress with related viruses, and focuses on latest results revealing special advantages for enzyme-based biosensing formats, which might be of high interest for diagnostics employing 'systems-on-a-chip'.

  6. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Kusunoki, Chisato; Yang, Liu; Yoshizaki, Takeshi; Nakagawa, Fumiyuki; Ishikado, Atsushi; Kondo, Motoyuki; Morino, Katsutaro; Sekine, Osamu; Ugi, Satoshi; Nishio, Yoshihiko; Kashiwagi, Atsunori; Maegawa, Hiroshi

    2013-01-01

    Highlights: ► Omega-3 PUFA has a direct anti-oxidant effect in adipocytes. ► EPA and DHA induce HO-1 expression in 3T3-L1 adipocytes. ► Omega-3 PUFA and its end-product, 4-HHE, activates the Nrf-2/HO-1 pathway. ► Omega-3 PUFA protects against oxidative stress-induced cytotoxicity. -- Abstract: Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid (ω3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of ω3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with ω3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). ω3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with ω3-PUFA prevented H 2 O 2 -induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.

  7. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kusunoki, Chisato, E-mail: yosizaki@belle.shiga-med.ac.jp [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan); Yang, Liu; Yoshizaki, Takeshi; Nakagawa, Fumiyuki; Ishikado, Atsushi; Kondo, Motoyuki; Morino, Katsutaro; Sekine, Osamu; Ugi, Satoshi [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan); Nishio, Yoshihiko [Division of Diabetes, Metabolism and Endocrinology, Department of Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Kashiwagi, Atsunori; Maegawa, Hiroshi [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Omega-3 PUFA has a direct anti-oxidant effect in adipocytes. Black-Right-Pointing-Pointer EPA and DHA induce HO-1 expression in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer Omega-3 PUFA and its end-product, 4-HHE, activates the Nrf-2/HO-1 pathway. Black-Right-Pointing-Pointer Omega-3 PUFA protects against oxidative stress-induced cytotoxicity. -- Abstract: Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid ({omega}3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of {omega}3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with {omega}3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). {omega}3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with {omega}3-PUFA prevented H{sub 2}O{sub 2}-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.

  8. Influence of the growth phenophases on the phenolic composition and anti-oxidant properties of Roscoea procera Wall. in western Himalaya.

    Science.gov (United States)

    Rawat, Sandeep; Jugran, Arun K; Bhatt, Indra D; Rawal, Ranbeer S

    2018-02-01

    Roscoea procera Wall. is one of the important Himalayan medicinal plant used in traditional as well as in modern health care system. The present study aimed to find out the influence of different phenophases on the phenolic compounds and anti-oxidant properties by analysing after every week for over 4 months from shoot bud initiation to the preparation of senescence. Concentration of total phenolic content were found to be about 1.5 times higher in preparation of senescence phase (6.10 mg GAE/g dry weight or dw) as compared to vegetative growth phase. Similarly, total flavonoid concentration ranged from 4.36 to 5.65 mg querectin equivalents/g dw. The concentration of selected phenolic compounds, i.e., gallic acid, catechin and p -coumaric acid was quantified by reverse phase-high performance liquid chromatography and varied significantly among the different phenophases. While, anti-oxidant activity was found 2-3 times higher in preparation of senescence phase as compared to vegetative phase. Thus, these results concluded that in R. procera , November month (preparation of senescence phase) could be recommended for extracting optimum level of total phenolics, flavonoids and anti-oxidant activity. These results will be further helpful for obtaining maximum benefits from the species and to reduce pressure on reproductive phase while ensuring its conservation.

  9. Simultaneous fingerprint, quantitative analysis and anti-oxidative based screening of components in Rhizoma Smilacis Glabrae using liquid chromatography coupled with Charged Aerosol and Coulometric array Detection.

    Science.gov (United States)

    Yang, Guang; Zhao, Xin; Wen, Jun; Zhou, Tingting; Fan, Guorong

    2017-04-01

    An analytical approach including fingerprint, quantitative analysis and rapid screening of anti-oxidative components was established and successfully applied for the comprehensive quality control of Rhizoma Smilacis Glabrae (RSG), a well-known Traditional Chinese Medicine with the homology of medicine and food. Thirteen components were tentatively identified based on their retention behavior, UV absorption and MS fragmentation patterns. Chemometric analysis based on coulmetric array data was performed to evaluate the similarity and variation between fifteen batches. Eight discriminating components were quantified using single-compound calibration. The unit responses of those components in coulmetric array detection were calculated and compared with those of several compounds reported to possess antioxidant activity, and four of them were tentatively identified as main contributors to the total anti-oxidative activity. The main advantage of the proposed approach was that it realized simultaneous fingerprint, quantitative analysis and screening of anti-oxidative components, providing comprehensive information for quality assessment of RSG. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Comprehensive analysis to explain reduced or increased SOD1 enzymatic activity in ALS patients and their relatives.

    Science.gov (United States)

    Keskin, Isil; Birve, Anna; Berdynski, Mariusz; Hjertkvist, Karin; Rofougaran, Reza; Nilsson, Torbjörn K; Glass, Jonathan D; Marklund, Stefan L; Andersen, Peter M

    2017-08-01

    To characterise stabilities in erythrocytes of mutant SOD1 proteins, compare SOD1 enzymatic activities between patients with different genetic causes of ALS and search for underlying causes of deviant SOD1 activities in individuals lacking SOD1 mutations. Blood samples from 4072 individuals, ALS patients with or without a SOD1 mutation, family members and controls were studied. Erythrocyte SOD1 enzymatic activities normalised to haemoglobin content were determined, and effects of haemoglobin disorders on dismutation assessed. Coding SOD1 sequences were analysed by Sanger sequencing, exon copy number variations by fragment length analysis and by TaqMan Assay. Of the 44 SOD1 mutations found, 75% caused severe destabilisation of the mutant protein but in 25% it was physically stable. Mutations producing structural changes caused halved erythrocyte SOD1 activities. There were no differences in SOD1 activities between patients without a SOD1 mutation and control individuals or carriers of TBK1 mutations and C9orf72 HRE . In the low and high SOD1 activity groups no deviations were found in exon copy numbers and intron gross structures. Thalassemias and iron deficiency were associated with increased SOD1 activity/haemoglobin ratios. Adjunct erythrocyte SOD1 activity analysis reliably signals destabilising SOD1 mutations including intronic mutations that are missed by exon sequencing.

  11. Effects of molecular weight of hyaluronic acid on its viscosity and enzymatic activities of lysozyme and peroxidase.

    Science.gov (United States)

    Kim, Jihoon; Chang, Ji-Youn; Kim, Yoon-Young; Kim, Moon-Jong; Kho, Hong-Seop

    2018-02-14

    To investigate the effects of the molecular weight of hyaluronic acid on its viscosity and enzymatic activities of lysozyme and peroxidase in solution and on the hydroxyapatite surface. Hyaluronic acids of four different molecular weights (10 kDa, 100 kDa, 1 MDa, and 2 MDa), hen egg-white lysozyme, bovine lactoperoxidase, and human whole saliva were used. Viscosity values of hyaluronic acids were measured using a cone-and-plate viscometer at six different concentrations (0.1-5.0 mg/mL). Enzymatic activities of lysozyme and peroxidase were examined by hydrolysis of fluorescein-labeled Micrococcus lysodeikticus and oxidation of fluorogenic 2',7'-dichlorofluorescein to fluorescing 2',7'-dichlorofluorescein, respectively. In solution assays, only 2 MDa-hyaluronic acid significantly inhibited lysozyme activities in saliva. In surface assays, hyaluronic acids inhibited lysozyme and peroxidase activities; the inhibitory activities were more apparent with high-molecular-weight ones in saliva than in purified enzymes. The 100 kDa-hyaluronic acid at 5.0 mg/mL, 1 MDa-one at 0.5 mg/mL, and 2 MDa-one at 0.2 mg/mL showed viscosity values similar to those of human whole saliva at a shear rate range required for normal oral functions. The differences among the influences of the three conditions on the enzymatic activities were not statistically significant. High-molecular-weight hyaluronic acids at low concentration and low-molecular-weight ones at high concentration showed viscosity values similar to those of human whole saliva. Inhibitory effects of hyaluronic acids on lysozyme and peroxidase activities were more significant with high-molecular-weight ones on the surface and in saliva compared with in solution and on purified enzymes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  13. Enzymatic Hydrolysis of Polyester Thin Films at the Nanoscale: Effects of Polyester Structure and Enzyme Active-Site Accessibility.

    Science.gov (United States)

    Zumstein, Michael Thomas; Rechsteiner, Daniela; Roduner, Nicolas; Perz, Veronika; Ribitsch, Doris; Guebitz, Georg M; Kohler, Hans-Peter E; McNeill, Kristopher; Sander, Michael

    2017-07-05

    Biodegradable polyesters have a large potential to replace persistent polymers in numerous applications and to thereby reduce the accumulation of plastics in the environment. Ester hydrolysis by extracellular carboxylesterases is considered the rate-limiting step in polyester biodegradation. In this work, we systematically investigated the effects of polyester and carboxylesterase structure on the hydrolysis of nanometer-thin polyester films using a quartz-crystal microbalance with dissipation monitoring. Hydrolyzability increased with increasing polyester-chain flexibility as evidenced from differences in the hydrolysis rates and extents of aliphatic polyesters varying in the length of their dicarboxylic acid unit and of poly(butylene adipate-co-terephthalate) (PBAT) polyesters varying in their terephthalate-to-adipate ratio by Rhizopus oryzae lipase and Fusarium solani cutinase. Nanoscale nonuniformities in the PBAT films affected enzymatic hydrolysis and were likely caused by domains with elevated terephthalate contents that impaired enzymatic hydrolysis. Yet, the cutinase completely hydrolyzed all PBAT films, including films with a terephthalate-to-adipate molar ratio of one, under environmentally relevant conditions (pH 6, 20 °C). A comparative analysis of the hydrolysis of two model polyesters by eight different carboxylesterases revealed increasing hydrolysis with increasing accessibility of the enzyme active site. Therefore, this work highlights the importance of both polyester and carboxylesterase structure to enzymatic polyester hydrolysis.

  14. D316 is critical for the enzymatic activity and HIV-1 restriction potential of human and rhesus APOBEC3B

    OpenAIRE

    McDougle, Rebecca M.; Hultquist, Judd F.; Stabell, Alex C.; Sawyer, Sara L.; Harris, Reuben S.

    2013-01-01

    APOBEC3B is one of seven human APOBEC3 DNA cytosine deaminases that function to inhibit the replication and persistence of retroelements and retroviruses. Human APOBEC3B restricts the replication of HIV-1 in HEK293 cells, while our laboratory clone of rhesus macaque APOBEC3B did not. We mapped the restriction determinant to a single amino acid difference that alters enzymatic activity. Human APOBEC3B D316 is catalytically active and capable of restricting HIV-1 while rhesus APOBEC3B N316 is n...

  15. The protective effect of thymoquinone, an anti-oxidant and anti--inflammatory agent, against renal injury: A review

    Directory of Open Access Journals (Sweden)

    Ragheb Ahmed

    2009-01-01

    Full Text Available Thymoquinone (TQ, 2-Isopropyl-5-methyl-1, 4-benzoquinone, is one of the most active ingredients of Nigella Sativa seeds. TQ has a variety of beneficial properties including anti-oxidative and anti-inflammatory activities. Studies have provided original observations on the role of oxidative stress and inflammation in the development of renal diseases such as glomerulo-nephritis and drug-induced nephrotoxicity. The renoprotective effects of TQ have been demons-trated in animal models. Also, TQ has been used successfully in treating allergic diseases in humans. The aim of this review is to highlight the importance of reactive oxygen species in renal pathophysiology and the intriguing possibility for a role of TQ in the prevention of and/or protection from renal injury in humans.

  16. anti-inflammatory and anti-oxidant effects of sterculia tragacantha ...

    African Journals Online (AJOL)

    Rita

    2013-02-06

    Feb 6, 2013 ... Key words: Fractions, edema, granuloma, anti-oxidant, S. tragacantha. INTRODUCTION. Inflammation is a biologic process initiated by noxious stimuli such as chemical injury, trauma or surgery. (O'Byrne and Dalgleish, 2001). This biologic response protects the host and heals damaged tissues after an.

  17. CuZnSOD gene expression and its relationship with anti-oxidative ...

    African Journals Online (AJOL)

    ... and the minimum in the LY. The proportion of gene expression was positively correlated with the anti-oxidative capacity in muscle. The expression of the CuZnSOD gene was positively correlated with meat colour and tenderness; and negatively correlated with marbling score, drip loss, cooking loss and intramuscular fat.

  18. Total anti-oxidant status and C-reactive protein values in Nigerians ...

    African Journals Online (AJOL)

    Total anti-oxidant status and C-reactive protein values in Nigerians with symptomatic primary osteoarthritis of the knee joint – an initial report. ... Informed consent, biodata and body mass indices were obtained after which venous blood samples were obtained from each subject. Total plasma antioxidant status (TAS) was ...

  19. Anti-diabetic and anti-oxidant effects of Zingiber Officinale on ...

    African Journals Online (AJOL)

    This study was designed to investigate the hypoglycaemic and anti-oxidant effects of Zingiber officinale on experimentally induced diabetes mellitus using alloxan and insulin resistance. Aqueous extracts of raw ginger was administered orally at a chosen dose of 500mg/ml for a period of 4 weeks to alloxan-induced diabetic ...

  20. Anti-oxidant, hypoglycemic and anti-hyperglycemic properties of Syzygium calophyllifolium

    Directory of Open Access Journals (Sweden)

    Rahul Chandran

    2015-08-01

    Full Text Available The article discusses anti-oxidant oral glucose tolerance and anti-hyperglycemic potentials of Syzygium calophyllifolium. Extracts from successive solvent extraction were tested for the total phenolic, tannin, flavonoid content and free radical scavenging property using DPPH, ABTS+, phosphomolyb-denum, FRAP, superoxide and metal chelating assays. Ethyl acetate extract of bark responded well against DPPH (IC50 4.13, ABTS+ (36832.29 µM TE/ g extract,phosphomolybdenum (100.4 g AAE/100g extract, superoxide and metal ion radicals. The methanol extract of bark was also found as an effective radical scavenger. The leaf methanol extract also showed significant anti-oxidant ability. The bark methanol extract could potentially reduce the blood glucose level in glucose loaded and diabetic rats. The immense anti-oxidant potential of S. calophyllifolium leaf and bark extracts could be taken as a good source of natural anti-oxidant supplement in food to defend oxidative stress related disorders like diabetes.

  1. Metabolic regulation analysis of an ethanologenic Escherichia coli strain based on RT-PCR and enzymatic activities

    Directory of Open Access Journals (Sweden)

    Martinez Alfredo

    2008-05-01

    Full Text Available Abstract Background A metabolic regulation study was performed, based upon measurements of enzymatic activities, fermentation performance, and RT-PCR analysis of pathways related to central carbon metabolism, in an ethanologenic Escherichia coli strain (CCE14 derived from lineage C. In comparison with previous engineered strains, this E coli derivative has a higher ethanol production rate in mineral medium, as a result of the elevated heterologous expression of the chromosomally integrated genes encoding PDCZm and ADHZm (pyruvate decarboxylase and alcohol dehydrogenase from Zymomonas mobilis. It is suggested that this behavior might be due to lineage differences between E. coli W and C. Results This study demonstrated that the glycolytic flux is controlled, in this case, by reactions outside glycolysis, i.e., the fermentative pathways. Changes in ethanol production rate in this ethanologenic strain result in low organic acid production rates, and high glycolytic and ethanologenic fluxes, that correlate with enhanced transcription and enzymatic activity levels of PDCZm and ADHZm. Furthermore, a higher ethanol yield (90% of the theoretical in glucose-mineral media was obtained with CCE14 in comparison with previous engineered E. coli strains, such as KO11, that produces a 70% yield under the same conditions. Conclusion Results suggest that a higher ethanol formation rate, caused by ahigher PDCZm and ADHZm activities induces a metabolic state that cells compensate through enhanced glucose transport, ATP synthesis, and NAD-NADH+H turnover rates. These results show that glycolytic enzymatic activities, present in E. coli W and C under fermentative conditions, are sufficient to contend with increases in glucose consumption and product formation rates.

  2. Ship-borne measurements of microbial enzymatic activity: A rapid biochemical indicator for microbial water quality monitoring

    Science.gov (United States)

    Stadler, Philipp; Loken, Luke; Crawford, John; Schramm, Paul; Sorsa, Kirsti; Kuhn, Catherine; Savio, Domenico; Striegl, Rob; Butman, David; Stanley, Emily; Farnleitner, Andreas H.; Zessner, Matthias

    2017-04-01

    Contamination of aquatic ecosystems by human and animal wastes is a global concern for water quality. Disclosing fate and transport processes of fecal indicator organism (FIO) in large water bodies is a big challenge due to material intensive and time consuming methods used in microbiological water quality monitoring. In respect of utilization of large surface water resources there is a dearth of rapid microbiological methods that allow a near-real time health related water quality monitoring to be implemented into early warning systems. The detection of enzymatic activities has been proposed as a rapid surrogate for microbiological pollution monitoring of water and water resources (Cabral, 2010; Farnleitner et al., 2001, 2002). Methods such as the beta-D-Glucuronidase assay (GLUC), targeting FIO such as E. coli, were established. New automated enzymatic assays have been implemented during the last years into on-site monitoring stations, ranging from ground- to surface waters (Ryzinska-Paier et al., 2014; Stadler et al., 2017, 2016). While these automated enzymatic methods cannot completely replace assays for culture-based FIO enumeration, they yielded significant information on pollution events and temporal dynamics on a catchment specific basis, but were restricted to stationary measurements. For the first time we conducted ship-borne and automated measurements of enzymatic GLUC activity on large fresh water bodies, including the Columbia River, the Mississippi River and Lake Mendota. Not only are automated enzymatic assays technically feasible from a mobile vessel, but also can be used to localize point sources of potential microbial fecal contamination, such as tributaries or storm drainages. Spatial and temporal patterns of enzymatic activity were disclosed and the habitat specific correlation with microbiological standard assays for FIO determined due to reference samples. The integration of rapid and automated enzymatic assays into well-established systems

  3. Design, Synthesis and Evaluation of Novel Phthalimide Derivatives as in Vitro Anti-Microbial, Anti-Oxidant and Anti-Inflammatory Agents

    OpenAIRE

    Lamie, P.F.; Philoppes, J.N.; El-Gendy, A.O.; Rárová, L. (Lucie); Grúz, J. (Jiří)

    2015-01-01

    Sixteen new phthalimide derivatives were synthesized and evaluated for their in vitro anti-microbial, anti-oxidant and anti-inflammatory activities. The cytotoxicity for all synthesized compounds was also determined in cancer cell lines and in normal human cells. None of the target derivatives had any cytotoxic activity. (ZE)-2-[4-(1-Hydrazono-ethyl) phenyl]isoindoline-1,3-dione (12) showed remarkable anti-microbial activity. Its activity against Bacillus subtilis was 133%, 106% and 88.8% wh...

  4. Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants: Kinetics of enzymatic reaction and re-flocculation morphology.

    Science.gov (United States)

    Chen, Zhan; Zhang, Weijun; Wang, Dongsheng; Ma, Teng; Bai, Runying

    2015-10-15

    The feasibility of combined process of composite enzymatic treatment and chemical flocculation with inorganic salt coagulants was investigated in this study. The evolution of extracellular polymeric substances (EPS) distribution, composition and morphological properties were analyzed to unravel the sludge conditioning mechanism. It was found that sludge filtration performance was deteriorated due to release of a large amount of biopolymers after enzymatic treatment. The change in EPS followed the pseudo-first-order kinetic equation well under enzymatic treatment. The feeding modes of enzymes had a significant influence on sludge lysis efficiency under compound enzymes treatment. Alpha amylase + protease was more effective in solubilization than other two addition modes (protease + α-amylase or simultaneous addition). The sludge floc re-formed and macromolecule biopolymers were effectively removed through coagulation process. At the same time, both of filtration rate and cake solid content of sludge treated with enzymes were improved with increasing dosage of coagulants, and ferric iron (FeCl3) had better performance in sludge dewaterability enhancement than polyaluminium chloride (PACl). In addition, sludge filtration property was slightly deteriorated, while the cake moisture reduction was favored at the optimal dosage of inorganic coagulants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils

    Directory of Open Access Journals (Sweden)

    Mohsenzadeh Fariba

    2012-12-01

    Full Text Available Abstract Background Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation. Methods In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran and their growth ability was checked in potato dextrose agar (PDA media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w. Results Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected as the most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed the highest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp., Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively. Conclusions Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities.

  6. Evaluation of Oil Removal Efficiency and Enzymatic Activity in Some fungal Strains for Bioremediation of Petroleum-Polluted Soils

    Directory of Open Access Journals (Sweden)

    Fariba Mohsenzadeh

    2012-12-01

    Full Text Available Background: Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation.Methods: In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran and their growth ability was checked in potato dextrose agar (PDA media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w.Results: Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected asthe most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed thehighest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp.,Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively.Conclusions: Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities.

  7. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils.

    Science.gov (United States)

    Mohsenzadeh, Fariba; Chehregani Rad, Abdolkarim; Akbari, Mehrangiz

    2012-12-15

    Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation. In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran) and their growth ability was checked in potato dextrose agar (PDA) media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase) was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w). Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected as the most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed the highest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp., Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively. Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities.

  8. Contrasting effects of untreated textile wastewater onto the soil available nitrogen-phosphorus and enzymatic activities in aridisol.

    Science.gov (United States)

    Arif, Muhammad Saleem; Riaz, Muhammad; Shahzad, Sher Muhammad; Yasmeen, Tahira; Buttler, Alexandre; Garcıa-Gil, Juan Carlos; Roohi, Mahnaz; Rasool, Akhtar

    2016-02-01

    Water shortage and soil qualitative degradation are significant environmental problems in arid and semi-arid regions of the world. The increasing demand for water in agriculture and industry has resulted in the emergence of wastewater use as an alternative in these areas. Textile wastewater is produced in surplus amounts which poses threat to the environment as well as associated flora and fauna. A 60-day incubation study was performed to assess the effects of untreated textile wastewater at 0, 25, 50, 75, and 100% dilution levels on the physico-chemical and some microbial and enzymatic properties of an aridisol soil. The addition of textile wastewater provoked a significant change in soil pH and electrical conductivity and soil dehydrogenase and urease activities compared to the distilled-water treated control soil. Moreover, compared to the control treatment, soil phosphomonoesterase activity was significantly increased from 25 to 75% application rates, but decreased at 100% textile wastewater application rate. Total and available soil N contents increased significantly in response to application of textile wastewater. Despite significant increases in the soil total P contents after the addition of textile wastewater, soil available P content decreased with increasing concentration of wastewater. Changes in soil nutrient contents and related enzymatic activities suggested a dynamic match between substrate availability and soil N and P contents. Aridisols have high fixation and low P availability, application of textile wastewater to such soils should be considered only after careful assessment.

  9. Ferredoxin:NADP+ oxidoreductase in junction with CdSe/ZnS quantum dots: characteristics of an enzymatically active nanohybrid

    Science.gov (United States)

    Szczepaniak, Krzysztof; Worch, Remigiusz; Grzyb, Joanna

    2013-05-01

    Ferredoxin:NADP+ oxidoreductase (FNR) is a plant and cyanobacterial photosynthetic enzyme, also found in non-photosynthetic tissues, where it is involved in redox reactions of biosynthetic pathways. In vivo it transfers electrons to nicotinamide adenine dinucleotide phosphate (NADP+), forming its reduced version, NADPH, while in vitro it can also use NADPH to reduce several substrates, such as ferricyanide, various quinones and nitriles. As an oxidoreductase catalyzing reaction of a broad range of substrates, FNR may be used in biotechnological processes. Quantum dots are semiconductor nanocrystals of a few to several nanometers diameter, having very useful luminescent properties. We present the spectroscopic and functional characteristics of a covalent conjugation of FNR and CdSe/ZnS quantum dots. Two types of quantum dots, of different diameter and emission maximum (550 and 650 nm), were used for comparison. Steady-state fluorescence and gel electrophoresis confirmed efficient conjugation, while fluorescence correlation spectroscopy (FCS) allowed for determination of the conjugates’ radii. The nanohybrids sustained enzymatic activity; however, changes in maximal reaction rates and Michaelis constant were found. Detailed analysis of the kinetic parameters showed that the changes in the enzyme activity depend on the substrate used for activity measurement but also on the size of the quantum dots. The presented nanohybrids, as the first example using plant and photosynthetic enzyme as a protein partner, may became a tool to study photosynthesis as well as other biosynthetic and biotechnological processes, involving enzymatically catalyzed electron transfer.

  10. Cathepsin D protects renal tubular cells from damage induced by high glucose independent of its enzymatic activity.

    Science.gov (United States)

    Du, Feng; Wang, Tian; Li, Si; Meng, Xin; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin

    2017-01-01

    Although glomerular and vascular damage have been considered the main characteristics of diabetic kidney disease (DKD), accumulating data now indicate that tubular atrophy also plays a major role. Cathepsin D (CatD) is the major aspartate protease within lysosomes. The current study demonstrated that CatD expression was altered in the renal tubular epithelium in patients with diabetes mellitus (DM). In contrast to its low and uniform distribution in the tubular epithelium in normal kidney tissues, CatD demonstrated flecked and increased expression in tubules with relatively integral structures, and disappeared in disordered tubules in DM kidney tissues. In vitro studies demonstrated that CatD protected HK2 cells from the damage induced by high glucose and advanced glycation end-products (AGEs), independent of its enzymatic activity. In addition, the current study demonstrated that AGEs induced lysosome membrane permeabilization (LMP) and loss of mitochondrial membrane potential (MMP). Overexpression of CatD prevented LMP and maintained the MMP in HK2 cells exposed to AGEs. In addition, the catalytic activity of CatD was not required for its role in LMP prevention and MMP maintenance. These results indicate, for the first time that CatD may improve the viability of renal tubular cells in the presence of diabetic mediators independent of its enzymatic activity by preventing LMP and stabilizing the MMP.

  11. Anti-Oxidative, Metal Chelating and Radical Scavenging Effects of ...

    African Journals Online (AJOL)

    Purpose: To evaluate protein hydrolysates and membrane ultrafiltration fractions of blue-spotted stingray for metal chelating and radical scavenging activities, as well as protection against oxidative protein damage. Methods: Stingray protein isolates were hydrolysed with alcalase, papain and trypsin for 3 h. Alcalase.

  12. Garlic Consumption Alters Testicular Histology and Anti-Oxidant ...

    African Journals Online (AJOL)

    Garlic is known for its cell and tissue-protective functions. This study examined the effects of aqueous garlic extract on the histology of the testes of Wistar rats and erythrocyte superoxide dismutase (SOD) activity. Twenty-four (24) rats with an average weight of 116 g were used. They were randomly grouped into three: Group ...

  13. Influence of season, environment and feeding habits on the enzymatic activity of peptidase and β-glucosidase in the gastrointestinal tract of two Siluriformes fishes (Teleostei

    Directory of Open Access Journals (Sweden)

    Silvana Duarte

    2013-06-01

    Full Text Available The enzymatic activities involved in the digestion of proteins and carbohydrates were compared among three organs of the digestive track of two Siluriformes fish species, and between two areas: a reservoir, and an area downriver of it. Our aim was to test the hypothesis that the digestive organs of species with varied feeding habits have different enzymatic activities, and that the enzymatic activity differs among seasons and environmental conditions. The iliophagous/herbivorous species Hypostomus auroguttatus Kner, 1854 had higher trypsin-like, chymotrypsin-like peptidase and β-glucosidase activity in the intestine when compared with the omnivorous species Pimelodus maculatus Lacepède, 1803, whereas the latter had more hepatic trypsin-like activity than the former. The peak of activity of the three enzymes in H. auroguttatus was recorded in the winter and spring. On the other hand, P. maculatus tended to have the more prominent peptidase and β-glucosidase activity in the summer, and the smallest in the winter. The intestine of H. auroguttatus had higher enzymatic (trypsin, chymotrypsin and β-glucosidase activity than the stomach and the liver. For P. maculatus, the highest β-glucosidase activity was found in the liver. The enzymatic activity of H. aurogutattus did not differ between lotic and lentic systems, whereas P. maculatus had comparatively higher stomach and hepatic trypsin levels and hepatic chymotrypsin-like activities in the reservoir than down in the river. These findings indicate that, in H. auroguttatus, most digestive activity occurs in the intestine, which is long and adapted for the digestion of bottom-river vegetable matter and detritus. The seasons and the type of the system (lentic vs. lotic seem to affect the enzymatic activity for these two species differently, a likely consequence of their different lifestyles.

  14. The effect of copper deficiency on fetal growth and liver anti-oxidant capacity in the Cohen diabetic rat model

    International Nuclear Information System (INIS)

    Ergaz, Zivanit; Shoshani-Dror, Dana; Guillemin, Claire; Neeman-azulay, Meytal; Fudim, Liza; Weksler-Zangen, Sarah; Stodgell, Christopher J.; Miller, Richard K.; Ornoy, Asher

    2012-01-01

    High sucrose low copper diet induces fetal growth restriction in the three strains of the Cohen diabetic rats: an inbred copper deficient resistant (CDr), an inbred copper deficient sensitive (CDs that become diabetic on high sucrose low copper diet -HSD) and an outbred Wistar derived Sabra rats. Although those growth restricted fetuses also exhibit increased oxidative stress, antioxidants do not restore normal growth. In the present study, we evaluated the role of copper deficiency in the HSD induced fetal growth restriction by adding to the drinking water of the rats 1 ppm or 2 ppm of copper throughout their pregnancy. Fetal and placental growth in correlation with fetal liver copper content and anti-oxidant capacity was evaluated on day 21 of pregnancy. HSD compared to regular chow induced fetal growth restriction, which was most significant in the Cohen diabetic sensitive animals. The addition of 1 ppm and 2 ppm copper to the drinking water normalized fetal growth in a dose dependent manner and reduced the degree of hyperglycemia in the diabetes sensitive rats. The CDs fetuses responded to the HSD with lower catalase like activity, and less reduced superoxide dismutase levels compared to the Sabra strain, and had high malondialdehyde levels even when fed regular chow. Immunostaining was higher for nitrotyrosine among the CDr and higher for hypoxia factor 1 α among the CDs. We conclude that in our model of dietary-induced fetal growth restriction, copper deficiency plays a major etiologic role in the decrease of fetal growth and anti-oxidant capacity. -- Highlights: ► High sucrose low copper diet restricted fetal growth in the Cohen diabetic rat model ► Maternal copper blood levels directly correlated with fetal liver copper content ► Copper supplementation decreased embryonic resorption in the inbred strains ► Copper supplementation reduced hyperglycemia in the sucrose sensitive inbred strain ► Copper supplementation alleviated growth restriction and

  15. The effect of copper deficiency on fetal growth and liver anti-oxidant capacity in the Cohen diabetic rat model

    Energy Technology Data Exchange (ETDEWEB)

    Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il [Hebrew University Hadassah Medical School, Jerusalem (Israel); Shoshani-Dror, Dana [Hebrew University Hadassah Medical School, Jerusalem (Israel); Guillemin, Claire [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Neeman-azulay, Meytal; Fudim, Liza [Hebrew University Hadassah Medical School, Jerusalem (Israel); Weksler-Zangen, Sarah [Diabetes Research Unit, Hebrew University Hadassah Medical School and Hospital, Jerusalem (Israel); Stodgell, Christopher J.; Miller, Richard K. [Department of Obstetrics and Gynecology, University of Rochester, Rochester, MN (United States); Ornoy, Asher [Hebrew University Hadassah Medical School, Jerusalem (Israel)

    2012-12-01

    High sucrose low copper diet induces fetal growth restriction in the three strains of the Cohen diabetic rats: an inbred copper deficient resistant (CDr), an inbred copper deficient sensitive (CDs that become diabetic on high sucrose low copper diet -HSD) and an outbred Wistar derived Sabra rats. Although those growth restricted fetuses also exhibit increased oxidative stress, antioxidants do not restore normal growth. In the present study, we evaluated the role of copper deficiency in the HSD induced fetal growth restriction by adding to the drinking water of the rats 1 ppm or 2 ppm of copper throughout their pregnancy. Fetal and placental growth in correlation with fetal liver copper content and anti-oxidant capacity was evaluated on day 21 of pregnancy. HSD compared to regular chow induced fetal growth restriction, which was most significant in the Cohen diabetic sensitive animals. The addition of 1 ppm and 2 ppm copper to the drinking water normalized fetal growth in a dose dependent manner and reduced the degree of hyperglycemia in the diabetes sensitive rats. The CDs fetuses responded to the HSD with lower catalase like activity, and less reduced superoxide dismutase levels compared to the Sabra strain, and had high malondialdehyde levels even when fed regular chow. Immunostaining was higher for nitrotyrosine among the CDr and higher for hypoxia factor 1 α among the CDs. We conclude that in our model of dietary-induced fetal growth restriction, copper deficiency plays a major etiologic role in the decrease of fetal growth and anti-oxidant capacity. -- Highlights: ► High sucrose low copper diet restricted fetal growth in the Cohen diabetic rat model ► Maternal copper blood levels directly correlated with fetal liver copper content ► Copper supplementation decreased embryonic resorption in the inbred strains ► Copper supplementation reduced hyperglycemia in the sucrose sensitive inbred strain ► Copper supplementation alleviated growth restriction and

  16. Enzymatic activity of Lactobacillus reuteri grown in a sweet potato based medium with the addition of metal ions.

    Science.gov (United States)

    Hayek, Saeed A; Shahbazi, Aboghasem; Worku, Mulumebet; Ibrahim, Salam A

    2013-01-01

    The effect of metal ions on the enzymatic activity of Lactobacillus reuteri was studied. The enzymatic activity was determined spectrophotometrically using the corresponding substrate. In the control group, L. reuteri MF14-C, MM2-3, SD2112, and DSM20016 produced the highest α-glucosidase (40.06 ± 2.80 Glu U/mL), β-glucosidase (17.82 ± 1.45 Glu U/mL), acid phosphatase (20.55 ± 0.74 Ph U/mL), and phytase (0.90 ± 0.05 Ph U/mL) respectively. The addition of Mg(2+) and Mn(2+) led to enhance α-glucosidase produced by L. reuteri MM2-3 by 113.6% and 100.6% respectively. α-Glucosidase produced by MF14-C and CF2-7F was decrease in the presence of K(+) by 65.8 and 69.4% respectively. β-Glucosidase activity of MM7 and SD2112 increased in the presence of Ca(2+) (by 121.8 and 129.8%) and Fe(2+) (by 143.9 and 126.7%) respectively. Acid phosphatase produced by L. reuteri CF2-7F and MM2-3 was enhanced in the presence of Mg(2+), Ca(2+) or Mn(2+) by (94.7, 43.2, and 70.1%) and (63.1, 67.8, and 45.6%) respectively. On the other hand, Fe(2+), K(+), and Na(+) caused only slight increase or decrease in acid phosphatase activity. Phytase produced by L. reuteri MM2-3 was increase in the presence of Mg(2+) and Mn(2+) by 51.0 and 74.5% respectively. Ca(2+) enhanced phytase activity of MM2-3 and DSM20016 by 27.5 and 28.9% respectively. The addition of Na(+) or Fe(2+) decreased phytase activity of L. reuteri. On average, Mg(2+) and Mn(2+) followed by Ca(2+) led to the highest enhancement of the tested enzymes. However, the effect of each metal ion on the enzymatic activity of L. reuteri was found to be a strain dependent. Therefore, a maximized level of a target enzyme could be achieved by selecting a combination of specific strain and specific metal ion.

  17. A cell-free enzymatic activity assay for the evaluation of HIV-1 drug resistance to protease inhibitors

    Directory of Open Access Journals (Sweden)

    Satoko eMatsunaga

    2015-10-01

    Full Text Available Due to their high frequency of genomic mutations, human retroviruses often develop resistance to antiretroviral drugs. The emergence of drug-resistant human immunodeficiency virus type 1 (HIV-1 is a significant obstacle to the effective long-term treatment of HIV infection. The development of a rapid and versatile drug-susceptibility assay would enable acquisition of phenotypic information and facilitate determination of the appropriate choice of antiretroviral agents. In this study, we developed a novel in vitro method, termed the Cell-Free Drug Susceptibility Assay (CFDSA, for monitoring phenotypic information regarding the drug resistance of HIV-1 protease (PR. The CFDSA utilizes a wheat germ cell-free protein production system to synthesize enzymatically active HIV-1 PRs directly from PCR products amplified from HIV-1 molecular clones or clinical isolates in a rapid one-step procedure. Enzymatic activity of PRs can be readily measured by AlphaScreen (Amplified Luminescent Proximity Homogeneous Assay Screen in the presence or absence of clinically used protease inhibitors (PIs. CFDSA measurement of drug resistance was based on the fold resistance to the half-maximal inhibitory concentration (IC50 of various protease inhibitors (PIs. The CFDSA could serve as a non-infectious, rapid, accessible, and reliable alternative to infectious cell-based phenotypic assays for evaluation of PI-resistant HIV-1.

  18. Mitochondrial intermediate peptidase: Expression in Escherichia coli and improvement of its enzymatic activity detection with FRET substrates

    International Nuclear Information System (INIS)

    Marcondes, Marcelo F.; Torquato, Ricardo J.S.; Assis, Diego M.; Juliano, Maria A.; Hayashi, Mirian A.F.; Oliveira, Vitor

    2010-01-01

    In the present study, soluble, functionally-active, recombinant human mitochondrial intermediate peptidase (hMIP), a mitochondrial metalloendoprotease, was expressed in a prokaryotic system. The hMIP fusion protein, with a poly-His-tag (6x His), was obtained by cloning the coding region of hMIP cDNA into the pET-28a expression vector, which was then used to transform Escherichia coli BL21 (DE3) pLysS. After isolation and purification of the fusion protein by affinity chromatography using Ni-Sepharose resin, the protein was purified further using ion exchange chromatography with a Hi-trap resource Q column. The recombinant hMIP was characterized by Western blotting using three distinct antibodies, circular dichroism, and enzymatic assays that used the first FRET substrates developed for MIP and a series of protease inhibitors. The successful expression of enzymatically-active hMIP in addition to the FRET substrates will contribute greatly to the determination of substrate specificity of this protease and to the development of specific inhibitors that are essential for a better understanding of the role of this protease in mitochondrial functioning.

  19. Chromophoric dissolved organic matter and microbial enzymatic activity. A biophysical approach to understand the marine carbon cycle.

    Science.gov (United States)

    Gonnelli, Margherita; Vestri, Stefano; Santinelli, Chiara

    2013-12-01

    This study reports the first information on extracellular enzymatic activity (EEA) combined with a study of DOM dynamics at the Arno River mouth. DOM dynamics was investigated from both a quantitative (dissolved organic carbon, DOC) and a qualitative (absorption and fluorescence of chromophoric DOM, CDOM) perspective. The data here reported highlight that the Arno River was an important source of both DOC and CDOM for this coastal area. CDOM optical properties suggested that terrestrial DOM did not undergo simple dilution at the river mouth but, other physical-chemical and biological processes were probably at work to change its molecular characteristics. This observation was further supported by the "potential" enzymatic activity of β-glucosidase (BG) and leucine aminopeptidase (LAP). Their Vmax values were markedly higher in the river water than in the seawater and their ratio suggested that most of the DOM used by microbes in the Arno River was polysaccharide-like, while in the seawater it was mainly protein-like. © 2013. Published by Elsevier B.V. All rights reserved.

  20. Changes on lipid peroxidation,enzymatic activities and gene expression in planarian (Dugesia japonica) following exposure to perfluorooctanoic acid.

    Science.gov (United States)

    Yuan, Zuoqing; Miao, Zili; Gong, Xiaoning; Zhao, Baoying; Zhang, Yuanyuan; Ma, Hongdou; Zhang, Jianyong; Zhao, Bosheng

    2017-11-01

    We investigated perfluorooctanoic acid (PFOA)-induced stress response in planarians. We administered different concentrations of PFOA to planarians for up to 10 d. PFOA exposure resulted in significant concentration-dependent elevations in lipid peroxidation, glutathione S-transferase and caspase-3 protease activities, and a significant decline in glutathione peroxidase activities compared with control groups. Exposure to PFOA significantly up-regulated the heat shock proteins hsp70 and hsp90, and p53, and down-regulated hsp40 compared with controls. PFOA exposure also increased HSP70 protein levels, as demonstrated by western blot analysis. These alterations indicated that PFOA exposure induced a stress response and affected the regulation of oxidative stress, enzymatic activities and gene expression. These results suggest that these sensitive parameters, together with other biomarkers, could be used for evaluating toxicity, for ecological risk assessment of PFOA in freshwaters. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Changes in the secondary structure of proteins labeled with 125I. CD spectroscopy and enzymatic activity studies

    International Nuclear Information System (INIS)

    Efimova, Y.M.; Wierczinski, B.; Haemers, S.; Well, A.A. van

    2005-01-01

    Bovine serum albumin (BSA) and lysozyme (LSZ) were radiolabeled with 125 I. Three different methods for protein iodination with 125 I were optimized. Parameters like incubation time and ratio of oxidizing agent and amount of protein were established. During protein iodination with 125 I, structural damages caused by the introduction of iodine into the protein may occur. These damages depend on the oxidizing agent used and may lead to considerable changes in the protein structure and, hence, their biological activity. Changes in secondary structure of LSZ and BSA were examined by circular dichroism (CD). Enzymatic activity tests were performed with lysozyme to check its biological activity. The Iodo Bead was found the best oxidizing agent for protein iodination. (author)

  2. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice

    Directory of Open Access Journals (Sweden)

    Eom SooHyun

    2010-07-01

    Full Text Available Abstract Background Oxidative stress is imperative for its morbidity towards diabetic complications, where abnormal metabolic milieu as a result of hyperglycemia, leads to the onset of several complications. A biological antioxidant capable of inhibiting oxidative stress mediated diabetic progressions; during hyperglycemia is still the need of the era. The current study was performed to study the effect of biologically synthesized gold nanoparticles (AuNPs to control the hyperglycemic conditions in streptozotocin induced diabetic mice. Results The profound control of AuNPs over the anti oxidant enzymes such as GSH, SOD, Catalase and GPx in diabetic mice to normal, by inhibition of lipid peroxidation and ROS generation during hyperglycemia evidence their anti-oxidant effect during hyperglycemia. The AuNPs exhibited an insistent control over the blood glucose level, lipids and serum biochemical profiles in diabetic mice near to the control mice provokes their effective role in controlling and increasing the organ functions for better utilization of blood glucose. Histopathological and hematological studies revealed the non-toxic and protective effect of the gold nanoparticles over the vital organs when administered at dosage of 2.5 mg/kilogram.body.weight/day. ICP-MS analysis revealed the biodistribution of gold nanoparticles in the vital organs showing accumulation of AuNPs in the spleen comparatively greater than other organs. Conclusion The results obtained disclose the effectual role of AuNPs as an anti-oxidative agent, by inhibiting the formation of ROS, scavenging free radicals; thus increasing the anti-oxidant defense enzymes and creating a sustained control over hyperglycemic conditions which consequently evoke the potential of AuNPs as an economic therapeutic remedy in diabetic treatments and its complications.

  3. A flexible loop controlling the enzymatic activity and specificity in a glycosyl hydrolase family 19 endochitinase from barley seeds

    DEFF Research Database (Denmark)

    Fukamizo, Tamo; Miyake, Ryoh; Tamura, Atsushi

    2009-01-01

    To examine the role of the loop structure consisting of residues 70-82 (70-82 loop) localized to + 3/4 subsite of the substrate binding cleft of a family GH-19 endochitinase from barley seeds, Trp72 and Trp82 were mutated, and the mutated enzymes (W72A, W82A, and W72A/W82A) were characterized....... Thermal stability and specific activities toward glycol chitin and chitin hexasaccharide were significantly affected by the individual mutations. When N-acetylglucosamine hexamer was hydrolyzed by the wild type, the ß-anomer of the substrate was preferentially hydrolyzed, producing the trimer...... predominantly and the dimer and tetramer in lesser amounts. When the mutated enzymes were used instead of the wild type, the enzyme cleavage sites in the hexamer substrate were clearly shifted, and the ß-anomer selectivity was eliminated. The mutation effects on the enzymatic activity and stability were much...

  4. Hormetic response triggers multifaceted anti-oxidant strategies in immature king penguins (Aptenodytes patagonicus).

    Science.gov (United States)

    Rey, Benjamin; Dégletagne, Cyril; Bodennec, Jacques; Monternier, Pierre-Axel; Mortz, Mathieu; Roussel, Damien; Romestaing, Caroline; Rouanet, Jean-Louis; Tornos, Jeremy; Duchamp, Claude

    2016-08-01

    Repeated deep dives are highly pro-oxidative events for air-breathing aquatic foragers such as penguins. At fledging, the transition from a strictly terrestrial to a marine lifestyle may therefore trigger a complex set of anti-oxidant responses to prevent chronic oxidative stress in immature penguins but these processes are still undefined. By combining in vivo and in vitro approaches with transcriptome analysis, we investigated the adaptive responses of sea-acclimatized (SA) immature king penguins (Aptenodytes patagonicus) compared with pre-fledging never-immersed (NI) birds. In vivo, experimental immersion into cold water stimulated a higher thermogenic response in SA penguins than in NI birds, but both groups exhibited hypothermia, a condition favouring oxidative stress. In vitro, the pectoralis muscles of SA birds displayed increased oxidative capacity and mitochondrial protein abundance but unchanged reactive oxygen species (ROS) generation per g tissue because ROS production per mitochondria was reduced. The genes encoding oxidant-generating proteins were down-regulated in SA birds while mRNA abundance and activity of the main antioxidant enzymes were up-regulated. Genes encoding proteins involved in repair mechanisms of oxidized DNA or proteins and in degradation processes were also up-regulated in SA birds. Sea life also increased the degree of fatty acid unsaturation in muscle mitochondrial membranes resulting in higher intrinsic susceptibility to ROS. Oxidative damages to protein or DNA were reduced in SA birds. Repeated experimental immersions of NI penguins in cold-water partially mimicked the effects of acclimatization to marine life, modified the expression of fewer genes related to oxidative stress but in a similar way as in SA birds and increased oxidative damages to DNA. It is concluded that the multifaceted plasticity observed after marine life may be crucial to maintain redox homeostasis in active tissues subjected to high pro-oxidative pressure

  5. Effect of simvastatin on anti-oxidation and anti-inflammation properties of HDL in apoE-/-mice

    Directory of Open Access Journals (Sweden)

    Di TIAN

    2013-03-01

    Full Text Available Objectives  To investigate the effect of simvastatin on anti-oxidation and anti-inflammation properties of high density lipoprotein (HDL in apoE-/-mice fed with high-fat diet. Methods  Eighteen 8-week old male C57BL/6J mice as blank control group were fed with normal diet, and thirty 8-week old male apoE-/-mice were fed with high-fat diet. Four weeks later, 6 mice in each group were sacrificed. The remaining 24 apoE-/-mice were randomly divided into two groups (12 each: atherosclerosis group (AS group and simvastatin group, while the remaining 12 C57BL/6J mice served as control group. The mice in both control and AS group were fed with the original diet, and the mice in simvastatin group were fed with the same high-fat diet plus simvastatin 5mg/ (kg.d. At the end of the 8th and 16th week, 6 mice were sacrificed in each group. Serum lipid levels, paraoxonase 1 (PON1 activity (arylesterase activity, serum myeloperoxidase (MPO activity, high-density lipoprotein inflammation index (HII and serum hs-CRP levels were determined. The atherosclerotic lesion formation in the aorta was manifested by oil red O staining. Results  At the end of the 8th week, no difference was found in the levels of serum low density lipoprotein cholesterol (LDL-C and high density lipoprotein cholesterol (HDL-C between simvastatin and AS group. At the end of 16th week, the levels of serum LDL-C decreased significantly (P<0.01 and HDL-C increased significantly (P<0.05 in simvastatin group compared with AS group. At the end of the 8th and 16th week, a significant enhancement of the serum PON1 activity but marked decrease in MPO activity, HII, and serum hs-CRP levels were found in simvastatin group compared with that in AS group. The percentage of plaque area (surface area of plaque/ surface area of whole intima in the aorta was significantly smaller in simvastatin group than that in AS group (P<0.05 or P<0.01. Conclusions In addition to lowering LDL-C and elevating HDL

  6. Effects of waterborne Cu and Cd on anti-oxidative response, lipid peroxidation and heavy metals accumulation in abalone Haliotis discus hannai ino

    Science.gov (United States)

    Lei, Yanju; Zhang, Wenbing; Xu, Wei; Zhang, Yanjiao; Zhou, Huihui; Mai, Kangsen

    2015-06-01

    The aim of this study was to compare the effects of waterborne copper (Cu) and cadmium (Cd) on survival, anti-oxidative response, lipid peroxidation and metal accumulation in abalone Haliotis discus hannai. Experimental animals (initial weight: 7.49 g ± 0.01 g) were exposed to graded concentrations of waterborne Cu (0.02, 0.04, 0.06, 0.08 mg L-1) or Cd (0.025, 0.05, 0.25, 0.5 mg L-1) for 28 days, respectively. Activities of the anti-oxidative enzymes (catalase, CAT; superoxide dismutase, SOD; glutathione peroxidases, GPx; glutathione S-transferase, GST), contents of the reduced glutathione (GSH) and malondiadehyde (MDA) in the hepatopancreas, and metal accumulation in hepatopancreas and muscles were analyzed after 0, 1, 3, 6, 10, 15, 21, 28 days of metal exposure, respectively. Results showed that 0.04 mg L-1, 0.06 mg L--1 and 0.08 mg L-1 Cu caused 100% death of abalone on the 21st, 10th and 6th day, respectively. However, no dead abalone was found during the 28-day waterborne Cd exposure at all experimental concentrations. Generally, activities of SOD and GST in hepatopancreas under all Cu concentrations followed a decrease trend as the exposure time prolonged. However, these activities were firstly increased and then decreased to the control level and increased again during Cd exposure. Activities of CAT in all Cu exposure treatments were higher than those in the control. These activities were firstly increased and then decreased to the control level and increased again during Cd exposure. Contents of MDA in hepatopancreas in all Cu treatments significantly increased first and then decreased to the control level. However, the MDA contents in hepatopancreas were not significantly changed during the 28-day Cd exposure. The metals accumulation in both hepatopancreas and muscles of abalone significantly increased with the increase of waterborne metals concentration and exposure time. These results indicated that H. discus hannai has a positive anti-oxidative defense

  7. Anti-oxidative effect of turmeric on frying characteristics of soybean oil.

    Science.gov (United States)

    Banerjee, Anindita; Ghosh, Santinath; Ghosh, Mahua

    2015-03-01

    Curcumin, the active principle of turmeric, is known to act as an anti-oxidant, anti-mutagen and anti-carcinogen. This study aimed to find out the thermal and oxidative stability of soybean oil when potatoes marinated with turmeric were deep fried in the oil. Two sets of experiment were carried out. In one set, 1 L of oil was heated for 24 h (8 h daily for 3 consecutive days) and 200 g of potato chips without any marination were fried each time twice daily. Foods were fried in batches to replicate the commercial practice of the food industries. The temperature maintained during the whole experiment was at 180-190 °C i.e. at the frying temperature. About 50 ml of the oil sample was collected after every 4 h. In the second set, another 1 L of soybean oil was heated for 24 h in the similar manner and potato chips marinated with turmeric was fried twice daily. Oil samples were collected as before and comparative studies were done. The chemical parameters like acid value, peroxide value, content of 4-hydroxy-2-trans-nonenal (HNE) and fatty acid composition for all the oil samples of each set were determined. The comparative studies on peroxide value and content of HNE revealed that the antioxidant property of curcumin in turmeric helped in reducing the oxidation of the oil initially, but with increase in duration of time, the antioxidant potency got gradually reduced. The loss of unsaturated fatty acids were calculated from the fatty acid composition and it was found that loss of unsaturation in soybean oil where turmeric marinated potatoes were fried was 6.37 % while the controlled one showed 7.76 % loss after 24 h of heating. These results indicated higher thermal and oxidative stability of the soybean oil in presence of turmeric. However, the antioxidant effect gradually decreased with increase in duration of heating.

  8. Evaluation of anti-bacterial and anti-oxidant potential of andrographolide and echiodinin isolated from callus culture of Andrographis paniculata Nees

    Science.gov (United States)

    Arifullah, Mohmmed; Namsa, Nima Dandu; Mandal, Manabendra; Chiruvella, Kishore Kumar; Vikrama, Paritala; Gopal, Ghanta Rama

    2013-01-01

    Objective To evaluate the anti-bacterial and anti-oxidant activity of andrographolide (AND) and echiodinin (ECH) of Andrographis paniculata. Methods In this study, an attempt has been made to demonstrate the anti-microbial and anti-oxidant activity of isolated AND and ECH by broth micro-dilution method and 2,2-diphenyl-2-picryl-hydrazyl (DPPH) assay, respectively. Structure elucidation was determined by electro-spray ionization-MSD, NMR (1H and 13C) and IR spectra. Results AND was effective against most of the strains tested including Mycobacterium smegmatis, showing broad spectrum of growth inhibition activity with Minimum inhibitory concentration values against Staphylococcus aureus (100 µg/mL), Streptococcus thermophilus (350 µg/mL) Bacillus subtilis (100 µg/mL), Escherichia coli (50 µg/mL), Mycobacterium smegmatis (200 µg/mL), Klebsiella pneumonia (100 µg/mL), and Pseudomonas aeruginosa (200 µg/mL). ECH showed specific anti-bacterial activity against Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa at a concentration higher than 225 µg/mL. Both AND and ECH were not effective against the two yeast strains, Candida albicans and Saccharomyces cerevisiae tested in this study. Conclusion This preliminary study showed promising anti-bacterial activity and moderate free radical scavenging activity of AND and ECH, and it may provide the scientific rationale for its popular folklore medicines. PMID:23905016

  9. Enzymatic decontamination

    Directory of Open Access Journals (Sweden)

    Edyta Prusińska-Kurstak

    2014-12-01

    Full Text Available [b]Abstract[/b]. This paper is devoted to the methods of decontamination of weapons of mass destruction (biological and chemical, based on the use of protein catalysts of chemical reactions — enzymes. This paper presents the possibility of using enzymes to neutralize the harmful and destructive to the environment and human chemicals used in weapons of mass destruction. The mechanism of the enzymatic reaction is showed. These are the possibilities of using lysozyme as destructor dangerous bacteria (E. coli, anthrax Bacillus anthracis and their spores. The advantages and disadvantages of chemical and enzymatic methods of decontamination have been compared. It was found that under certain conditions the enzymes can be an alternative to chemical methods of decontamination of weapons of mass destruction.[b]Keywords[/b]: decontamination, weapons of mass destruction, enzymes

  10. A two-step, one-pot enzymatic method for preparation of duck egg white protein hydrolysates with high antioxidant activity.

    Science.gov (United States)

    Ren, Yao; Wu, Hui; Li, Xiaofeng; Lai, Furao; Zhao, Guanglei; Xiao, Xinglong

    2014-02-01

    Biocatalytic hydrolysis reactions were designed for preparation of bioactive hydrolysate of duck egg white protein (DEWP) employing two enzymes in one pot. Firstly, the fresh DEWP was thermal treated at 95 °C, for 40 min at pH 10, to effectively deactivate enzyme inhibitors thus facilitating the following two-step enzymatic hydrolysis. Compared with single-enzyme processes, the two-step enzymatic procedures showed much higher reaction efficiency. The first enzymatic step (in the presence of Alcalase or hydrolase SEEP) allowed to hydrolyze DEWP with degree of hydrolysis (DH) of 8.8-10% and soluble peptide yield (SEP) of 60.5-70.2% in a short period (4 h). The second enzymatic step (in the presence of Trypsin or Alcalase) gave a further degradation of DEWP with DH and SEP being more than 26.2% and 90.4%, respectively. The final hydrolysates exhibited high antioxidant activity in an evident DH dependent manner. The hydrolysates achieved by sequential addition of the proteinase SEEP and Alcalase at DH value 21% gave the highest antioxidant activity, which was mainly ascribed to the changes in the amino acid compositions that the contents of some key amino acids and total hydrophobic amino acids were significantly improved by the enzymatic hydrolysis.

  11. Cryptococcus gattii urease as a virulence factor and the relevance of enzymatic activity in cryptococcosis pathogenesis.

    Science.gov (United States)

    Feder, Vanessa; Kmetzsch, Lívia; Staats, Charley Christian; Vidal-Figueiredo, Natalia; Ligabue-Braun, Rodrigo; Carlini, Célia Regina; Vainstein, Marilene Henning

    2015-04-01

    Ureases (EC 3.5.1.5) are Ni(2+) -dependent metalloenzymes produced by plants, fungi and bacteria that hydrolyze urea to produce ammonia and CO2 . The insertion of nickel atoms into the apo-urease is better characterized in bacteria, and requires at least three accessory proteins: UreD, UreF, and UreG. Our group has demonstrated that ureases possess ureolytic activity-independent biological properties that could contribute to the pathogenicity of urease-producing microorganisms. The presence of urease in pathogenic bacteria strongly correlates with pathogenesis in some human diseases. Some medically important fungi also produce urease, including Cryptococcus neoformans and Cryptococcus gattii. C. gattii is an etiological agent of cryptococcosis, most often affecting immunocompetent individuals. The cryptococcal urease might play an important role in pathogenesis. It has been proposed that ammonia produced via urease action might damage the host endothelium, which would enable yeast transmigration towards the central nervous system. To analyze the role of urease as a virulence factor in C. gattii, we constructed knockout mutants for the structural urease-coding gene URE1 and for genes that code the accessory proteins Ure4 and Ure6. All knockout mutants showed reduced multiplication within macrophages. In intranasally infected mice, the ure1Δ (lacking urease protein) and ure4Δ (enzymatically inactive apo-urease) mutants caused reduced blood burdens and a delayed time of death, whereas the ure6Δ (enzymatically inactive apo-urease) mutant showed time and dose dependency with regard to fungal burden. Our results suggest that C. gattii urease plays an important role in virulence, in part possibly through enzyme activity-independent mechanism(s). © 2015 FEBS.

  12. In Vivo Effects of Free Form Astaxanthin Powder on Anti-Oxidation and Lipid Metabolism with High-Cholesterol Diet.

    Directory of Open Access Journals (Sweden)

    Yung-Yi Chen

    Full Text Available Astaxanthin extracted from Pomacea canaliculata eggs was made into free-form astaxanthin powder (FFAP and its effects on lipid metabolism, liver function, antioxidants activities and astaxanthin absorption rate were investigated. 45 hamsters were split into 5 groups and fed with normal diet, high-cholesterol control (0.2% cholesterol, 1.6FFAP (control+1.6% FFAP, 3.2FFAP (control+3.2% FFAP and 8.0FFAP (control+8.0% FFAP, respectively, for 6 weeks. FFAP diets significantly decreased the liver total cholesterol, triglyceride levels and increased liver fatty acids (C20:5n3; C22:6n3 compositions. It decreased plasma alanine aminotransferase and aspartate aminotransferase. In terms of anti-oxidative activities, we found 8.0 FFAP diet significantly decreased plasma and liver malonaldehyde (4.96±1.96 μg TEP eq./mL and 1.56±0.38 μg TEP eq./g liver and liver 8-isoprostane levels (41.48±13.69 μg 8-ISOP/g liver. On the other hand, it significantly increased liver catalase activity (149.10±10.76 μmol/min/g liver, Vitamin C (2082.97±142.23 μg/g liver, Vitamin E (411.32±81.67 μg/g liver contents, and glutathione levels (2.13±0.42 mg GSH eq./g liver. Furthermore, 80% of astaxanthin absorption rates in all FFAP diet groups suggest FFAP is an effective form in astaxanthin absorption. Finally, astaxanthin was found to re-distribute to the liver and eyes in a dose dependent manner. Taken together, our results suggested that the appropriate addition of FFAP into high cholesterol diets increases liver anti-oxidative activity and reduces the concentration of lipid peroxidase and therefore, it may be beneficial as a material in developing healthy food.

  13. Lactogenic Activity of an Enzymatic Hydrolysate from Octopus vulgaris and Carica papaya in SD Rats.

    Science.gov (United States)

    Cai, Bingna; Chen, Hua; Sun, Han; Sun, Huili; Wan, Peng; Chen, Deke; Pan, Jianyu

    2015-11-01

    The traditional Chinese medicine theory believes that octopus papaya soup can stimulate milk production in lactating women. The objective of this study was to determine whether dietary supplementation with an enzymatic hydrolysate of Octopus vulgaris and Carica papaya (EHOC) could increase milk production and nutritional indexes in Sprague Dawley (SD) rats. Female SD rats (n = 24) were fed a control diet (n = 8), EHOC-supplemented diet, or a positive control diet (Shengruzhi) from day 10 of pregnancy to day 10 of lactation. Maternal serum, mammary gland (day 10 of lactation), milk, and pup weight (daily) were collected for analysis. Results showed that the EHOC diet obviously elevated daily milk yield and pup weight compared to the control group (P < .05). The EHOC diet was found to increase the concentration of prolactin (PRL), progesterone (P), estradiol (E2), and growth hormone (GH) significantly in the circulation and mammary gland. Mammary glands of EHOC-treated dams showed clear lobuloalveolar development and proliferation of myoepithelial cells, but no striking variations were observed among the groups. Furthermore, the nutrition content and immune globulin concentration in the milk of EHOC-supplemented dams were higher than those of the control group, especially the cholesterol, glucose, and IgG were higher by 44.98% (P < .001), 42.76% (P < .01), and 42.23% (P < .01), respectively. In conclusion, this article demonstrates that EHOC administration has beneficial effects on milk production in the dams and on performance of the dam and pup. These results indicate that EHOC could be explored as a potentially lactogenic nutriment for lactating women.

  14. Assessment of cathepsin mRNA expression and enzymatic activity during early embryonic development in the yellowtail kingfish Seriola lalandi.

    Science.gov (United States)

    Palomino, Jaime; Herrera, Giannina; Torres-Fuentes, Jorge; Dettleff, Phillip; Patel, Alok; Martínez, Víctor

    2017-05-01

    In pelagic species such as Seriola lalandi, survival of both the eggs and embryos depends on yolk processing during oocyte maturation and embryo development. The main enzymes involved in these processes are the cathepsins, which are essential for the hydration process, acquiring buoyancy and nutrition of the embryo before hatching. This study aimed to investigate the mRNA expression profiles of cathepsins B, D and L (catb, catd and catl) and the activity of these enzymes during early development in S. lalandi. We included previtellogenic oocytes (PO). All three enzymes were highly expressed in PO, but the expression was reduced throughout development. Between PO and recently spawned eggs (E1) the transcript to catb and catd decreased, unlike catl. Cathepsin B activity, showed stable levels between PO until blastula stage (E4). High activities levels of cathepsins D and L were observed in E1 in comparison with later developmental stages. Cathepsin L activity remained constant until E1, consistent with observations in other pelagic spawners, where its participation in a second protolithic cleavage of the yolk proteins, has been proposed for this enzyme. Their profiles of both mRNA expression and enzymatic activity indicate the importance of these enzymes during early development and suggest different roles in egg yolk processing for the hydration process and nutrition in early embryos in this species. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Protein-Rich Fraction of Cnidoscolus urens (L. Arthur Leaves: Enzymatic Characterization and Procoagulant and Fibrinogenolytic Activities

    Directory of Open Access Journals (Sweden)

    Yamara A. S. de Menezes

    2014-03-01

    Full Text Available Proteolytic enzymes are important macromolecules in the regulation of biochemical processes in living organisms. Additionally, these versatile biomolecules have numerous applications in the industrial segment. In this study we have characterized a protein-rich fraction of Cnidoscolus urens (L. Arthur leaves, rich in proteolytic enzymes, and evaluated its effects on the coagulation cascade. Three protein-rich fractions were obtained from the crude extract of C. urens leaves by precipitation with acetone. Fraction F1.0 showed higher proteolytic activity upon azocasein, and thus, was chosen for subsequent tests. The proteolytic activity of F1.0 on fibrinogen was dose-dependent and time-dependent. The extract demonstrated procoagulant activity on citrated plasma and reduced the APTT, not exerting effects on PT. Despite the fibrin(ogenolytic activity, F1.0 showed no defibrinogenating activity in vivo. The fraction F1.0 did not express hemorrhagic nor hemolytic activities. The proteolytic activity was inhibited by E-64, EDTA and in the presence of metal ions, and increased when pretreated with reducing agents, suggesting that the observed activity was mostly due to cysteine proteases. Several bands with proteolytic activity were detected by zymography with gelatin, albumin and fibrinogen. The optimal enzymatic activity was observed in temperature of 60 °C and pH 5.0, demonstrating the presence of acidic proteases. In conclusion, these results could provide basis for the pharmacological application of C. urens proteases as a new source of bioactive molecules to treat bleeding and thrombotic disorders.

  16. Impact of the components of metabolic syndrome on oxidative stress and enzymatic antioxidant activity in essential hypertension.

    Science.gov (United States)

    Abdilla, N; Tormo, M C; Fabia, M J; Chaves, F J; Saez, G; Redon, J

    2007-01-01

    The objective of the present study was to analyze the impact of metabolic syndrome (MS) and its individual components on oxidative stress (OX) and on the activity of antioxidant enzymes of patients with essential hypertension. One hundred and eighty-seven hypertensives, 127 (61.9%) of them having criteria for MS according to the International Diabetes Federation criteria and 30 healthy normotensive subjects were included. OX status was assessed by measuring glutathione oxidized/glutathione reduced and reactive oxygen species-induced byproducts of lipid peroxidation, malondialdehyde, and DNA damage, 8-oxo-dG genomic and mitochondrial. Antioxidant enzymatic activity of Cu/Zn extracellular-superoxide dismutase (SOD) and catalase (CAT) was measured in plasma and glutathione peroxidase 1 in hemolysed erythrocytes. In mononuclear cells, total-SOD activity, CAT and glutathione peroxidase 1, were assessed as well. The OX state in both blood and peripheral mononuclear cells observed in hypertensives were not enhanced by the addition of components of the so-called MS. Likewise, the reduction in the activity of antioxidant enzymes, both extracellular and cytoplasmic, was not affected by the presence of additional components of the MS. Neither the number of components nor the individual addition of each of them, low high-density lipoprotein, triglycerides, abdominal obesity or fasting glucose, further impact in the OX abnormalities observed in those with only hypertension in absence of other components. In conclusion, the present data indicates that contribution of MS components to the OX burden generated by high blood pressure is minimal.

  17. Dynamics of microbiological parameters, enzymatic activities and worm biomass production during vermicomposting of effluent treatment plant sludge of bakery industry.

    Science.gov (United States)

    Yadav, Anoop; Suthar, S; Garg, V K

    2015-10-01

    This paper reports the changes in microbial parameters and enzymatic activities during vermicomposting of effluent treatment plant sludge (ETPS) of bakery industry spiked with cow dung (CD) by Eisenia fetida. Six vermibins containing different ratios of ETPS and CD were maintained under controlled laboratory conditions for 15 weeks. Total bacterial and total fungal count increased upto 7th week and declined afterward in all the bins. Maximum bacterial and fungal count was 31.6 CFU × 10(6) g(-1) and 31 CFU × 10(4) g(-1) in 7th week. Maximum dehydrogenase activity was 1921 μg TPF g(-1) h(-1) in 9th week in 100 % CD containing vermibin, whereas maximum urease activity was 1208 μg NH4 (-)N g(-1) h(-1) in 3rd week in 100 % CD containing vermibin. The enzyme activity and microbial counts were lesser in ETPS containing vermibins than control (100 % CD). The growth and fecundity of the worms in different vermibins were also investigated. The results showed that initially biomass and fecundity of the worms increased but decreased at the later stages due to non-availability of the palatable feed. This showed that quality and palatability of food directly affect biological parameters of the system.

  18. Warming and organic matter sources impact the proportion of dissolved to total activities in marine extracellular enzymatic rates

    KAUST Repository

    Baltar, Federico

    2017-04-19

    Extracellular enzymatic activities (EEAs) are the rate-limiting step in the degradation of organic matter. Extracellular enzymes can be found associated to cells or dissolved in the surrounding water. The proportion of cell-free EEA constitutes in many marine environments more than half of the total activity. This high proportion causes an uncoupling between hydrolysis rates and the actual bacterial activity. However, we do not know what factors control the proportion of dissolved relative to total EEA, nor how this may change in the future ocean. To resolve this, we performed laboratory experiments with water from the Great Barrier Reef (Australia) to study the effects of temperature and dissolved organic matter sources on EEA and the proportion of dissolved EEA. We found that warming increases the rates of organic matter hydrolysis and reduces the proportion of dissolved relative to total EEA. This suggests a potential increase of the coupling between organic matter hydrolysis and heterotrophic activities with increasing ocean temperatures, although strongly dependent on the organic matter substrates available. Our study suggests that local differences in the organic matter composition in tropical coastal ecosystems will strongly affect the proportion of dissolved EEA in response to ocean warming.

  19. D316 is critical for the enzymatic activity and HIV-1 restriction potential of human and rhesus APOBEC3B.

    Science.gov (United States)

    McDougle, Rebecca M; Hultquist, Judd F; Stabell, Alex C; Sawyer, Sara L; Harris, Reuben S

    2013-06-20

    APOBEC3B is one of seven human APOBEC3 DNA cytosine deaminases that function to inhibit the replication and persistence of retroelements and retroviruses. Human APOBEC3B restricts the replication of HIV-1 in HEK293 cells, while our laboratory clone of rhesus macaque APOBEC3B did not. We mapped the restriction determinant to a single amino acid difference that alters enzymatic activity. Human APOBEC3B D316 is catalytically active and capable of restricting HIV-1 while rhesus APOBEC3B N316 is not; swapping these residues alters the activity and restriction phenotypes respectively. Genotyping of primate center rhesus macaques revealed uniform homozygosity for aspartate at position 316. Considering the C-to-T nature of the underlying mutation, we suspect that our rhesus APOBEC3B cDNA was inactivated by its own gene product during subcloning in Escherichia coli. This region has been previously characterized for its role in substrate specificity, but these data indicate it also has a fundamental role in deaminase activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Enzymatic activity and immunoreactivity of Aca s 4, an alpha-amylase allergen from the storage mite Acarus siro

    Directory of Open Access Journals (Sweden)

    Pytelková Jana

    2012-01-01

    Full Text Available Abstract Background Enzymatic allergens of storage mites that contaminate stored food products are poorly characterized. We describe biochemical and immunological properties of the native alpha-amylase allergen Aca s 4 from Acarus siro, a medically important storage mite. Results A. siro produced a high level of alpha-amylase activity attributed to Aca s 4. This enzyme was purified and identified by protein sequencing and LC-MS/MS analysis. Aca s 4 showed a distinct inhibition pattern and an unusual alpha-amylolytic activity with low sensitivity to activation by chloride ions. Homology modeling of Aca s 4 revealed a structural change in the chloride-binding site that may account for this activation pattern. Aca s 4 was recognized by IgE from house dust mite-sensitive patients, and potential epitopes for cross-reactivity with house dust mite group 4 allergens were found. Conclusions We present the first protein-level characterization of a group 4 allergen from storage mites. Due to its high production and IgE reactivity, Aca s 4 is potentially relevant to allergic hypersensitivity.

  1. [Inula Britannica flower total flavonoids reduces the apoptosis of aging bone marrow mesenchymal stem cells by anti-oxidation].

    Science.gov (United States)

    Long, Yuanyuan; Chen, Hui; Liu, Lu; Guo, Lei

    2017-05-01

    Objective To investigate the beneficial effect of Inula Britannica flower total flavonoids (IBFTF) on aging bone mesenchymal stem cell (BMSC) and its potential mechanism. Methods The aging BMSCs were induced by D-galactose, and then treated with 12.5, 25, 50 μg/mL IBFTF. The cell viability was detected by CCK-8 assay. The activity of catalase (CAT) and superoxide dismutase (SOD), the content of malondialdehyde (MDA) and reactive oxygen species (ROS) were measured by a commercial kit. The apoptosis was assessed by flow cytometry. The protein expressions of BAX, Bcl-2 and cleaved-caspase-3 (c-caspase-3) were determined by Western blotting. Results The cell viability and the activity of SOD and CAT in the aging group decreased significantly compared with the normal group, whereas different concentrations of IBFTF promoted the cell viability, and simultaneously increased the activity of SOD and CAT. The apoptosis, the ROS production, the content of MDA, BAX/Bcl-2 ratio and the protein expression of c-caspase-3 in the aging group increased obviously compared with the normal group. However, the treatment of different concentrations of IBFTF reduced the apoptosis, the ROS production, the content of MDA, BAX/Bcl-2 ratio and the protein expression of c-caspase-3. Conclusion IBFTF can attenuate the apoptosis of aging BMSCs by anti-oxidation.

  2. Study on The Potency of Methanol Extracts From Xanthosoma nigrum Stellfeld As Natural Anti Oxidant by Thiobarbituric Acid Method

    Directory of Open Access Journals (Sweden)

    Devi Ratnawati

    2013-12-01

    Full Text Available In this research Xanthosoma nigrum Stellfeld (the Purple yam was selected as experimental material. This plant was collected from Rejang Lebong region, Bengkulu Province. Methanol extract 96% from stem of purple yam was studied its anti-oxidant activity in various concentrations with α-tocopherol (200 ppm as standard of antioxidant. Antioxidant activity was determined using Thiobarbituric Acid (TBA method. Linoleic acid was oxidized at 40 ºC for seven days with or without extract and the final product malondialdehyde (MDA was reacted with thiostembituric acid to be of red colored complex (MDA-TBA and was then measured by UV-VIS spectrophotometer at λ 532 nm. Stem extract of purple yam with concentration of 100 ppm, 150 ppm, 200 ppm and 300 ppm respectively had the inhibition of 19.32%, 21.85%, 29.47%, and 31.05%. α-Tocopherol as positive control which showed inhibition ability of 85.14% at 200 ppm. Based on the result obtained in this study, the stem’s extract of Purpel yam plant showed that antioxidant activity was lower than α-tocopherol.

  3. Anti-inflammatory and anti-oxidant properties of Curcuma longa (turmeric) versus Zingiber officinale (ginger) rhizomes in rat adjuvant-induced arthritis.

    Science.gov (United States)

    Ramadan, Gamal; Al-Kahtani, Mohammed Ali; El-Sayed, Wael Mohamed

    2011-08-01

    Turmeric (rich in curcuminoids) and ginger (rich in gingerols and shogaols) rhizomes have been widely used as dietary spices and to treat different diseases in Ayurveda/Chinese medicine since antiquity. Here, we compared the anti-inflammatory/anti-oxidant activity of these two plants in rat adjuvant-induced arthritis (AIA). Both plants (at dose 200 mg/kg body weight) significantly suppressed (but with different degrees) the incidence and severity of arthritis by increasing/decreasing the production of anti-inflammatory/pro-inflammatory cytokines, respectively, and activating the anti-oxidant defence system. The anti-arthritic activity of turmeric exceeded that of ginger and indomethacin (a non-steroidal anti-inflammatory drug), especially when the treatment started from the day of arthritis induction. The percentage of disease recovery was 4.6-8.3% and 10.2% more in turmeric compared with ginger and indomethacin (P turmeric over ginger and indomethacin, which may have beneficial effects against rheumatoid arthritis onset/progression as shown in AIA rat model.

  4. Advances in methods for characterization of hepatic urea cycle enzymatic activity in HepaRG cells using UPLC-MS/MS

    NARCIS (Netherlands)

    Moedas, M. F.; Adam, A. A. A.; Farelo, M. A.; IJlst, L.; Chamuleau, R. A. F. M.; Hoekstra, R.; Wanders, R. J. A.; Silva, M. F. B.

    2017-01-01

    Current methodologies for the assessment of urea cycle (UC) enzymatic activity are insufficient to accurately evaluate this pathway in biological specimens where lower UC is expected. Liver cell lines, including HepaRG, have been described to have limited nitrogen fixation through the UC, limiting

  5. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil-lead-rice (Oryza sativa L.) system.

    Science.gov (United States)

    Zeng, Lu S; Liao, Min; Chen, Cheng L; Huang, Chang Y

    2007-05-01

    The effect of lead (Pb) treatment on the soil enzymatic activities, soil microbial biomass, rice physiological indices and rice biomass were studied in a greenhouse pot experiment. Six levels of Pb viz. 0(CK), 100, 300, 500, 700, 900 mg/kg soil were applied in two types of paddy soils. The results showed that Pb treatment had a stimulating effect on soil enzymatic activities and microbial biomass carbon (Cmic) at low concentration and an inhibitory influence at higher concentration. The degree of influence on enzymatic activities and Cmic by Pb was related to the clay and organic matter contents of the soils. When the Pb treatment was raised to the level of 500 mg/kg, ecological risk appeared both to soil microorganisms and plants. The results also revealed a consistent trend of increased chlorophyll contents and rice biomass initially, maximum at a certain Pb treatment, and then decreased gradually with the increase in Pb concentration. Pb was effective in inducing proline accumulation and its toxicity causes oxidative stress in rice plants. Therefore, it was concluded that soil enzymatic activities, Cmic and rice physiological indices, could be sensitive indicators to reflect environmental stress in soil-lead-rice system.

  6. Saponins from Panax japonicus attenuate D-galactose-induced cognitive impairment through its anti-oxidative and anti-apoptotic effects in rats.

    Science.gov (United States)

    Wang, Ting; Di, Guojie; Yang, Li; Dun, Yaoyan; Sun, Zhiwei; Wan, Jingzhi; Peng, Ben; Liu, Chaoqi; Xiong, Guangrun; Zhang, Changcheng; Yuan, Ding

    2015-09-01

    To investigate the neuroprotective effects of saponins from Panax japonicus (SPJ) on D-galactose (D-gal)-induced brain ageing, and further explore the underlying mechanisms. SPJ were analysed using high-pressure liquid chromatography. Male Wistar rats weighing 200 ± 20 g were randomly divided into four groups: control group (saline), D-gal-treated group (400 mg/kg, subcutaneously), D-gal + SPJ groups (50, 100 and 200 mg/kg, orally) and vitamin E group (100 mg/kg). Rats were injected corresponding drugs once daily for 8 weeks. Neuroprotective effects of SPJ were evaluated by Morris water maze, histopathological observations, biochemical assays, western blot analysis and quantitative real-time polymerase chain reaction (PCR) analysis in vivo as well as reactive oxygen species (ROS) measurement and apoptosis assay in vitro. Our present study showed that D-gal had a neurotoxic effect in rats and in SH-SY5Y cells due to oxidative stress induction, including decreased total anti-oxidant capacity, superoxide dismutase (SOD) and glutathione peroxidase activity, ultimately leading to spatial learning and memory impairment in rats and ROS accumulation in SH-SY5Y cells. SPJ improved spatial learning and memory deficits, attenuated hippocampus histopathological injury and restored impaired anti-oxidative as well as anti-apoptotic capacities in D-gal-induced ageing rats. In addition, SPJ remarkably decreased lipofuscin levels, increased hippocampus nuclear factor erythroid 2-related factor 2 (Nrf2) and silent mating type information regulation 2 homologue (SIRT1) protein levels and anti-oxidant genes expression such as manganese superoxide dismutase (Mn-SOD), heme oxygenase (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1) and cysteine ligase catalytic (GCLC) in D-gal-induced brain ageing. Our data suggested that D-gal induced multiple molecular and functional changes in brain similar to natural ageing process. SPJ protected brain from D-gal-induced neuronal

  7. Antioxidant activities of red tilapia (Oreochromis niloticus) protein hydrolysates as influenced by thermolysin and alcalase

    Science.gov (United States)

    Daud, Nur'Aliah; Babji, Abdul Salam; Yusop, Salma Mohamad

    2013-11-01

    The hydrolysis process was performed on fish meat from Red Tilapia (Oreochromis niloticus) by enzymes thermolysin and alcalase under optimum conditions. The hydrolysis was performed from 0 - 4 hours at 37°C. Hydrolysates after 2 hours incubation with thermolysin and alcalase had degree of hydrolysis of 76.29 % and 63.49 %, respectively. The freeze dried protein hydrolysate was tested for peptide content and characterized with respect to amino acid composition. The result of increased peptide content in Red Tilapia (O. Niloticus) hydrolysates obtained was directly proportional to the increase activities of different proteolytic enzymes. The result of amino acid composition showed that the sample used contained abundant Gly, Ala, Asp, Glu, Lys and Leu in residues or peptide sequences. Both enzymatic hydrolysates were tested for anti-oxidant activity with DPPH and ABTS assay. Alcalase yielded higher anti-oxidative activity than Thermolysin hydrolysates after 1 hour incubation, but both enzymes hydrolysates showed a significant decrease of anti-oxidant activity after 2 hours of incubation. Hydrolysates from Red Tilapia may contribute as a health promoting ingredient in functional foods to reduce oxidation stress caused by accumulated free radicals.

  8. [Extraction and analysis of the essential oil in Pogostemon cablin by enzymatic hydrolysis and inhibitory activity against Hela cell proliferation].

    Science.gov (United States)

    Yu, Jing; Qi, Yue; Luo, Gang; Duan, Hong-quan; Zhou, Jing

    2012-05-01

    To optimize the extraction method of essential oil in Pogostemon cablin and analyze its inhibitory activity against Hela cell proliferation. The Pogostemon cablin was treated by hemicellulase before steam distillation. The enzyme dosage, treatment time, treatment temperature, pH were optimized through orthogonal experimental design. The components of essential oil were identified by gas chromatography-mass spectrometry (GC-MS). Inhibitory activity of patchouli oil against Hela cell proliferation was determined by MTP method. The optimum extraction process was as follows: pH 4.5, temperature 45 degrees C, the ratio of hemicellulase to Pogostemon cablin was 1% and enzymatic hydrolysis for 1.0 hour. Extraction ratio of the patchouli oil in steam distillation and hemicellulase extraction method was 2.2220 mg/g, 3.1360 mg/g respectively. Patchouli oil could inhibit Hela cell proliferation. IC50 of the patchouli oil in steam distillation and hemicellulase extraction method was 12.2 +/- 0.46 microg/mL and 0.36 +/- 0.03 microg/mL respectively. In comparison with steam distillation method, extraction ratios of essential oil and the inhibitory activity against Hela cell proliferation can be increased by the hemicellulase extraction method.

  9. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L. (UW-MED); (UCB)

    2015-04-22

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.

  10. Experimental primers containing synthetic and natural compounds reduce enzymatic activity at the dentin–adhesive interface under cyclic loading

    Science.gov (United States)

    Sousa, Ana Beatriz Silva; de Mattos Pimenta Vidal, Cristina; Leme-Kraus, Ariene Arcas; de Carvalho Panzeri Pires-de-Souza, Fernanda; Bedran-Russo, Ana K.

    2016-01-01

    Objective To evaluate the effect of experimental primers (chlorhexidine, enriched mixture of proanthocyanidins and doxycycline) on the adhesive properties and gelatinolytic activity at dentin-resin interfaces of occlusal Class I restorations. Methods The inactivation of enzymes by the experimental primers was assessed by fluorescence assay and gelatin zymography. To assess the adhesive properties, occlusal Class I cavities were prepared in sound human molars, etched with phosphoric acid and restored with one of the primers and an etch-and-rinse adhesive system (Adper Single Bond Plus - 3M ESPE). After the restorative procedures, the specimens were divided into two subgroups (n = 6) consisting of storage in incubation buffer or axial cyclic loading at 50 N and 1,000,000 cycles. Then, the sectioned and sliced specimens were assigned to in situ zymography assay and microtensile bond strength (TBS) test. Results Fluorescence assay and gelatin zymography revealed that the experimental primers inactivated rMMPs. In situ zymography (2-way ANOVA, Tukey, p 0.05). Significance The use of experimental primers impaired the enzymatic activity at the dentin-adhesive interface after cyclic loading and the activity of rMMPs. Cyclic loading did not have a significant effect on the bond strength. PMID:27524231

  11. The enzymatic degradation of excess activated sludge: A tale of worms

    OpenAIRE

    De Valk, S.L.

    2013-01-01

    The activated sludge process is the most used process to remove organic carbon, nutrients and other pollutants from sewage and also from many industrial waste waters. The organic fraction of waste water is aerobically respired and partly converted into biomass. The surplus biomass is a by-product of this process and is called excess activated sludge. The main constituents of activated sludge are biomass, organic matter and water. In general, this sludge stream is partly converted in biogas up...

  12. Seasonal Dynamics of Enzymatic Activities and Functional Diversity in Soils under Different Organic Management

    Science.gov (United States)

    Soil microbial activity and diversity fluctuate seasonally under annual organic amendment for improving soil quality. We investigated the effects of municipal compost (MC), poultry litter (PL), and cover crops of spring oats and red clover (RC) on soil enzyme activities, and soil bacterial community...

  13. Fluoranthene induced changes in photosynthetic pigments, biochemical compounds and enzymatic activities in two microalgal species: Chlorella vulgaris Beijerinck and Desmodesmus subspicatus Chodat

    Directory of Open Access Journals (Sweden)

    Miral Patel

    2014-02-01

    Full Text Available The photosynthetic pigments, biochemical and enzymatic activities in two freshwater microalgal species, Chlorella vulgaris and Desmodesmus subspicatus at different fluoranthene concentrations were compared with the control conditions. During 16-days of incubation period when treated with fluoranthene, both microalgal species exhibited variable amount of photosynthetic pigment, biochemical compounds and enzymatic activities. The addition of fluoranthene at concentrations ranged from 1.5 mg l-1; to 10 mg l-1; to microalgal cultures led to changes in all different metabolites but the patterns varied from species to species. Among the two species tested, pigment, biochemical and enzymatic contents were remarkably declined from 7 % to 95% in C. vulgaris. Moreover, all metabolites in D. subspicatus also diminishing significantly by 3% to 88% of fluoranthene doses (10ppm. These results suggest that fluoranthene-induced changes of pigments, biochemical and enzymatic variations in test microalgae, D. subspicatus and C. vulgaris, might reveal its resistance and ability to metabolize PAHs. At the same time, the PAH impact changes on different metabolic activities were higher at 12 and 16 days than at 4 and 8 days in treated microalgae. DOI: http://dx.doi.org/10.3126/ije.v3i1.9941 International Journal of Environment Vol.3(1 2014: 41-55

  14. Aldehyde PEGylation of laccase from Trametes versicolor in route to increase its stability: effect on enzymatic activity.

    Science.gov (United States)

    Mayolo-Deloisa, Karla; González-González, Mirna; Simental-Martínez, Jesús; Rito-Palomares, Marco

    2015-03-01

    Laccase is a multicopper oxidase that catalyzes the oxidation of phenolic compounds. Laccase can be used in bioremediation, beverage (wine, fruit juice, and beer) processing, ascorbic acid determination, sugar beet pectin gelation baking, and as a biosensor. Recently, the antiproliferative activity of laccase toward tumor cells has been reported. Because of the potential applications of this enzyme, the efforts for enhancing and stabilizing its activity have increased. Thus, the PEGylation of laccase can be an alternative. PEGylation is the covalent attachment of one or more molecules of methoxy poly(ethylene glycol) (mPEG) to a protein. Normally, during the PEGylation reaction, the activity is reduced but the stability increases; thus, it is important to minimize the loss of activity. In this work, the effects of molar ratio (1:4, 1:8, and 1:12), concentration of laccase (6 and 12 mg/ml), reaction time (4 and 17 h), molecular weight, and type of mPEG (20, 30, 40 kDa and 40 kDa-branched) were analyzed. The activity was measured using three substrates: ABTS, 2,6-dimethoxyphenol, and syringaldazine. The best conditions for laccase PEGylation were 12 mg/ml of laccase, molar ratio 1:4, and 4 h reaction time. Under these conditions, the enzyme was able to maintain nearly 100% of its enzymatic activity with ABTS. The PEGylation of laccase has not been extensively explored, so it is important to analyze the effects of this bioconjugation in route to produce a robust modified enzyme. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Enzymatic activity of granulations tissues under low doses of radiation. Biochemical analysis in rats

    International Nuclear Information System (INIS)

    Tosoni, Guilherme Monteiro; Boscolo, Frab Norberto; Cury, Jaime Aparecido; Watanabe, Plauto Christopher Aranha

    1994-01-01

    This paper was designed to investigate in the rat subcutaneous sponge-induced granulation tissue under low doses of X-ray, the activity of alkaline phosphatase, 5'nucleotide phosphodiesterase and adenosine triphosphatase (ATPase) enzymes. One hundred and fourteen Wistar rats were divided into three groups, as follows: Group I as control, Group II that received single 7,14 R in split-dosis immediately after sponge-implantation at the third and fifth days postoperatively. Biopsies were taken after 7, 11, 14, 21 and 28 days and the activity of the three enzymes was determined. The results have shown that in Group II alkaline phosphatase had higher activity in the 14th day of tissue evolution when compared to Groups I and III . The 5'nucleotide phosphodiesterase activity in Group I was similar in all days checked, although in Group II the enzyme showed higher activity in 7th day and lower in 21st. In Group III the activity was higher after 14 and 7 days and lower after 28 and 21 days. There was no observation of changing in adenosine triphosphatase (ATPase) activity when the three groups were compared. (author)

  16. Methods, microfluidic devices, and systems for detection of an active enzymatic agent

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Gregory J; Hatch, Anson V; Singh, Anup K; Wang, Ying-Chih

    2014-10-28

    Embodiments of the present invention provide methods, microfluidic devices, and systems for the detection of an active target agent in a fluid sample. A substrate molecule is used that contains a sequence which may cleave in the presence of an active target agent. A SNAP25 sequence is described, for example, that may be cleaved in the presence of Botulinum Neurotoxin. The substrate molecule includes a reporter moiety. The substrate molecule is exposed to the sample, and resulting reaction products separated using electrophoretic separation. The elution time of the reporter moiety may be utilized to identify the presence or absence of the active target agent.

  17. Punicalagin Prevents Hypoxic Pulmonary Hypertension via Anti-Oxidant Effects in Rats.

    Science.gov (United States)

    Shao, Jingyun; Wang, Peng; Liu, An; Du, Xusheng; Bai, Jie; Chen, Mingwei

    2016-01-01

    Punicalagin (PG), a major bioactive ingredient in pomegranate juice, has been proven to have anti-oxidative stress properties and to exert protective effects on acute lung injuries induced by lipopolysaccharides. This study aimed to investigate the effects of PG treatment on hypoxic pulmonary hypertension (HPH) and the underlying mechanisms responsible for the effects. Rats were exposed to 10% oxygen for 2 wk (8 h/day) to induce the HPH model. PG (5, 15, 45[Formula: see text]mg/kg) was orally administered 10[Formula: see text]min before hypoxia each day. PG treatments at the doses of 15 and 45[Formula: see text]mg/kg/d decreased the mean pulmonary arterial pressure (mPAP) and alleviated right ventricular hypertrophy and vascular remodeling in HPH rats. Meanwhile, PG treatment attenuated the hypoxia-induced endothelial dysfunction of pulmonary artery rings. The beneficial effects of PG treatment were associated with improved nitric oxide (NO)-cGMP signaling and reduced oxidative stress, as evidenced by decreased superoxide generation, gp91[Formula: see text] expression and nitrotyrosine content in the pulmonary arteries. Furthermore, tempol's scavenging of oxidative stress also increased NO production and attenuated endothelial dysfunction and pulmonary hypertension in HPH rats. Combining tempol and PG did not exert additional beneficial effects compared to tempol alone. Our study indicated for the first time that PG treatment can protect against hypoxia-induced endothelial dysfunction and pulmonary hypertension in rats, which may be induced via its anti-oxidant actions.

  18. Autotaxin (ATX): a multi-functional and multi-modular protein possessing enzymatic lysoPLD activity and matricellular properties.

    Science.gov (United States)

    Yuelling, Larra M; Fuss, Babette

    2008-09-01

    Recent studies have established that autotaxin (ATX), also known as phosphodiesterase Ialpha/autotaxin (PD-Ialpha/ATX) or (ecto)nucleotide pyrophosphatase/phosphodiesterase 2 [(E)NPP2], represents a multi-functional and multi-modular protein. ATX was initially thought to function exclusively as a phosphodiesterase/pyrophosphatase. However, it has become apparent that this enzymatically active site, which is ultimately responsible for ATX's originally discovered property of tumor cell motility stimulation, mediates the conversion of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA). In addition, a separate functionally active domain, here referred to as the Modulator of Oligodendrocyte Remodeling and Focal adhesion Organization (MORFO) domain, was discovered in studies analyzing the role of ATX during the differentiation of myelinating cells of the central nervous system (CNS), namely oligodendrocytes. This novel domain was found to mediate anti-adhesive, i.e. matricellular, properties and to promote morphological maturation of oligodendrocytes. In this review, we summarize our current understanding of ATX's structure-function domains and discuss their contribution to the presently known main functional roles of ATX.

  19. Label-free electrochemical detection of botulinum neurotoxin type E based on its enzymatic activity using interdigitated electrodes

    Science.gov (United States)

    Hyun, Sang Hwa; Park, Dae Keun; Kang, Aeyeon; Kim, Soohyun; Kim, Daehee; Shin, Yu Mi; Song, Ji-Joon; Yun, Wan Soo

    2016-02-01

    We report a simple label-free electrochemical method of detecting low concentrations of botulinum neurotoxin type E light chain (BoNT/E LC) based on its peptide cleavage activity. Dual-mode cyclic voltammetry was employed to observe changes in the redox signal of ferri-/ferro-cyanide on interdigitated microelectrodes, whose surfaces were covered by peptides designed from synaptosomal-associated protein 25 to be cleaved by BoNT/E LC. With the introduction of BoNT/E LC, the redox signal showed a time-dependent increase due to cleavage of the immobilized peptide molecules. In addition to the increased redox signal intensity, its time-dependence can be considered as a strong evidence of BoNT/E sensing, since the time-dependent increase can only result from the enzymatic activity of BoNT/E LC. Using this method, BoNT/E LC, at concentrations as low as 5 pg/ml, was readily measurable with only an hour of incubation.

  20. Quantifying protein adsorption and function at nanostructured materials: enzymatic activity of glucose oxidase at GLAD structured electrodes.

    Science.gov (United States)

    Jensen, Uffe B; Ferapontova, Elena E; Sutherland, Duncan S

    2012-07-31

    Nanostructured materials strongly modulate the behavior of adsorbed proteins; however, the characterization of such interactions is challenging. Here we present a novel method combining protein adsorption studies at nanostructured quartz crystal microbalance sensor surfaces (QCM-D) with optical (surface plasmon resonance SPR) and electrochemical methods (cyclic voltammetry CV) allowing quantification of both bound protein amount and activity. The redox enzyme glucose oxidase is studied as a model system to explore alterations in protein functional behavior caused by adsorption onto flat and nanostructured surfaces. This enzyme and such materials interactions are relevant for biosensor applications. Novel nanostructured gold electrode surfaces with controlled curvature were fabricated using colloidal lithography and glancing angle deposition (GLAD). The adsorption of enzyme to nanostructured interfaces was found to be significantly larger compared to flat interfaces even after normalization for the increased surface area, and no substantial desorption was observed within 24 h. A decreased enzymatic activity was observed over the same period of time, which indicates a slow conformational change of the adsorbed enzyme induced by the materials interface. Additionally, we make use of inherent localized surface plasmon resonances in these nanostructured materials to directly quantify the protein binding. We hereby demonstrate a QCM-D-based methodology to quantify protein binding at complex nanostructured materials. Our approach allows label free quantification of protein binding at nanostructured interfaces.

  1. Genome-Scale Architecture of Small Molecule Regulatory Networks and the Fundamental Trade-Off between Regulation and Enzymatic Activity.

    Science.gov (United States)

    Reznik, Ed; Christodoulou, Dimitris; Goldford, Joshua E; Briars, Emma; Sauer, Uwe; Segrè, Daniel; Noor, Elad

    2017-09-12

    Metabolic flux is in part regulated by endogenous small molecules that modulate the catalytic activity of an enzyme, e.g., allosteric inhibition. In contrast to transcriptional regulation of enzymes, technical limitations have hindered the production of a genome-scale atlas of small molecule-enzyme regulatory interactions. Here, we develop a framework leveraging the vast, but fragmented, biochemical literature to reconstruct and analyze the small molecule regulatory network (SMRN) of the model organism Escherichia coli, including the primary metabolite regulators and enzyme targets. Using metabolic control analysis, we prove a fundamental trade-off between regulation and enzymatic activity, and we combine it with metabolomic measurements and the SMRN to make inferences on the sensitivity of enzymes to their regulators. Generalizing the analysis to other organisms, we identify highly conserved regulatory interactions across evolutionarily divergent species, further emphasizing a critical role for small molecule interactions in the maintenance of metabolic homeostasis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Influence of the isolation procedure on coriander leaf volatiles with some correlation to the enzymatic activity.

    Science.gov (United States)

    To Quynh, Cung Thi; Iijima, Yoko; Kubota, Kikue

    2010-01-27

    Coriander leaves (Coriandrum sativum L.) have become popular worldwide because of their pleasant and delicate aroma. By a hot water extraction method, in which coriander leaves were cut before suspending in boiling water for 2 min, the contents of the main volatile compounds such as alkanals and 2-alkenals from C10 to C14 decreased, while the levels of corresponding alcohols increased in comparison to those obtained by solvent extraction. To investigate the reasons for this variation, an enzyme activity was assayed. By using aliphatic aldehyde as a substrate and NADPH as a coenzyme, strong activity of an aliphatic aldehyde reductase was found for the first time in this herb in the relatively wide pH range of 5.0-9.0, with the maximum activity at pH 8.5. Additionally, the aliphatic aldehyde dehydrogenase, responsible for acid formation, was also found to have a relatively weak activity compared to that of reductase.

  3. Sublethal Effects of Chromium on Enzymatic Activities of the African Catfish: Clarias Gariepinus (Burchell, 1822

    Directory of Open Access Journals (Sweden)

    Ovie KORI-SIAKPERE

    2012-02-01

    Full Text Available The effect of sublethal concentration (0.00, 2.00, 4.00 and 8.00 mg/l of chromium was determined on the activities of some enzymes (creatine-kinase, lactate dehydrogenase, cholinesterase, gamma glutamyltransferase in the plasma, liver and kidney of the exposed juvenile African Catfish Clarias gariepinus (length 23.000.86 cm and weight 96.975.31 g respectively after the 7 days exposure period. The activity of lactate dehydrogenase was significantly (p0.05 in plasma and liver and a significant decrease (p0.05 in plasma, liver and kidney expect liver creatine-kinase that was significantly decreased. Generally, the activities of the determined enzymes were most significant in the liver than in plasma and kidney. Therefore, sublethal concentrations of chromium have some deleterious effect on the basic activities of enzymes of the plasma, liver and kidney of Clarias gariepinus as revealed in this investigation.

  4. Extracellular endoglucanase activity from Paenibacillus polymyxa BEb-40: production, optimization and enzymatic characterization.

    Science.gov (United States)

    Gastelum-Arellanez, Argel; Paredes-López, Octavio; Olalde-Portugal, Víctor

    2014-11-01

    Endoglucanase activity produced by Paenibacillus polymyxa BEb-40 was studied. In submerged culture with minimal medium supplemented with carboxymethylcellulose (CMC), this microorganism produced up to 0.37 U/mL endoglucanase activity with high specific activity (14.3 U/mgtotal protein). Detection of endoglucanase activity through zymography revealed at least 14 isoenzymes with molecular weights between 38 and 220 kDa. This high variety of secreted endoglucanases has not been described previously in Paenibacillus genus. The optimum conditions, determined by response surface methodology, were 48 °C and pH 3.4, which allowed an increase of 33.7 % in the relative endoglucanase activity obtained with respect to the standard conditions. Nevertheless, high levels of hydrolysis of at least 70 % of the maximum activity could be obtained at wide ranges of pH (2-9) and temperature (40-60 °C). Under optimal conditions, high levels of CMC hydrolysis were reached, of about 40 %, after only 12 h of reaction with substrate/total protein ratios between 19 and 76. Kinetic analysis revealed that endoglucanase activity followed a mixed inhibition model (K m = 8.4 mM, K ic = 0.03 mM, K iu = 0.35 mM, V max = 33.3 U/mgtotal protein). These results allow to consider P. polymyxa BEb-40 as a promising microorganism for the production of endoglucanases, with possibilities of application in the breakdown of lignocellulosic biomass. The high specific activity at wide ranges of pH and temperature can allow its use in a wide variety of processes, under both acidic and alkaline conditions, as well as in mesophilic and thermophilic temperatures, further reducing the amount of enzymes used.

  5. Enzymatic activity of a novel halotolerant lipase from Haloarcula hispanica 2TK2

    Directory of Open Access Journals (Sweden)

    Ozgen Melis

    2016-06-01

    Full Text Available A strain of Haloarcula hispanica isolated from Tuzkoy salt mine, Turkey exhibited extracellular lipolytic activity. Important parameters such as carbon sources and salt concentration for lipase production were investigated. Optimal conditions for the enzyme production from Haloarcula hispanica 2TK2 were determined. It was observed that the lipolytic activity of Haloarcula hispanica was stimulated by some of the carbon sources. The high lipase acitivity values were obtained in the presence of 2% (v/v walnut oil (6.16 U/ml, 1% (v/v fish oil (5.07 U/ml, 1% (v/v olive oil (4.52 U/ml and 1% (w/v stearic acid (4.88 U/ml at 4M NaCl concentration. Lipase was partially purified by ammonium sulfate precipitation and ultrafiltration. Optimal temperature and pH values were determined as 45°C and 8.0, respectively. Lipase activity decreased with the increasing salt concentration, but 85% activity of the enzyme was maintained at 5M NaCl concentration. The enzyme preserved 41% of its relative activity at 90°C. The partially purified lipase maintained its activity in the presence of surfactants such as Triton X-100 and SDS. Therefore, the lipase which is an extremozyme may have potential applications especially in detergent industry.

  6. Absorption of enzymatically active sup 125 I-labeled bovine milk xanthine oxidase fed to rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Rzucidlo, S.J. (ICI Americas Inc., Wilmington, DE (USA)); Zikakis, J.P. (Univ. of Delaware, Newark (USA))

    1990-05-01

    Rabbits fed a regular laboratory diet supplemented with a high-fat milk containing xanthine oxidase (XO) were studied to determine the presence of active XO in the blood. A pilot feeding study, where rabbits consumed a high-fat diet containing xanthine oxidase, showed a correlation between dairy food consumption and XO activity in the blood. Antibody to dietary XO was also found. In a second study, rabbits were fed ad libitum the high-fat milk and blood serum samples were tested weekly for XO activity. No elevation in serum XO activity was found. A third study showed that serum XO activity was increased when rabbits were force fed the high-fat milk. The final study consisted of force feeding {sup 125}I-labeled XO to one rabbit to ascertain whether the observed increase in serum XO was due to dietary or endogenous XO. Isoelectric focusing of sera collected from the test rabbit strongly suggested that at least a portion of the serum XO contained the radioactive label. This is the first direct evidence showing the uptake of dietary active XO from the gut.

  7. Thermodependence of growth and enzymatic activities implicated in pathogenicity of two Erwinia carotovora subspecies (Pectobacterium spp.).

    Science.gov (United States)

    Smadja, Bruno; Latour, Xavier; Trigui, Sameh; Burini, Jean François; Chevalier, Sylvie; Orange, Nicole

    2004-01-01

    Erwinia carotovora subsp. atroseptica and Erwinia carotovora subsp. carotovora can cause substantial damage to economically important plant crops and stored products. The occurrence of the disease and the scale of the damage are temperature dependent. Disease development consists first of active multiplication of the bacteria in the infection area and then production of numerous extracellular enzymes. We investigated the effects of various temperatures on these two steps. We assayed the specific growth rate and the pectate lyase and protease activities for eight strains belonging to E. carotovora subsp. atroseptica and E. carotovora subsp. carotovora in vitro. The temperature effect on growth rate and on pectate lyase activity is different for the two subspecies, but protease activity appears to be similarly thermoregulated. Our results are in agreement with ecological data implicating E. carotovora subsp. atroseptica in disease when the temperature is below 20 degrees C. The optimal temperature for pathogenicity appears to be different from the optimal growth temperature but seems to be a compromise between this temperature and temperatures at which lytic activities are maximal.

  8. [Study on the effect of enzymatic activity and acute toxicity of three PAEs on Eisenia foetida].

    Science.gov (United States)

    Wang, Yan; Ma, Ze-Min; Wu, Shi-Jin

    2014-02-01

    The acute toxic effects of DMP, DEP and DBP to earthworms (Eisenia foetida) were examined in this study. The two pollutants are tested by filter paper contact method and natural soil method, results indicated that they were both poisonous to earthworms. Earthworms were exposed to DMP and DEP for 48 h by filter paper contact method, LC50 (DMP) is 129.603 microg x cm(-2) and LC50 (DEP) is 145.336 microg x cm(-2). Earthworms were exposed to DMP and DEP for 14 d by natural soil method, LC50 (DMP) is 1 560. 120 mg x kg(-1) and LC50 (DEP) is 1516. 186 mg x kg(-1). While non-calculatable for the LC50 of DBP due to its low water solubility, penetrating into the skin and cells of earthworm is not easy. The natural soil test method was used to study the effects of DMP, DEP and DBP on enzyme activities of earthworms, activities of superoxide dismutase (SOD), catalase (CAT) and acetylcholinesterase (AChE) were measured. SOD activity was induced by DMP and DEP, CAT is the most sensitive and the activity was induced by DEP and DBP at the low concentration and inhibited at the high concentration. AChE activity was inhibited by DEP and DBP at the low concentration and induced at the high concentration, finally exhibited a tendency to recover to the control level at 28 d.

  9. Study of the effect of radiotreatment on the enzymatic activity alcohol dehydrogenase of yeast

    International Nuclear Information System (INIS)

    Zehlila, Amel

    2006-01-01

    Gamma irradiation, applied to alcohol dehydrogenase at low doses, increases the catalytic activity and the stability of the enzyme. on the other hand, higher dose level of irradiation, that exceed 40 Gy for the commercial enzyme and 200 Gy for yeast cell, causes activity inhibition and some perturbation (imbalance) in the conformational structure of the YADH. Moreover, immobilization in alginic beads ameliorates the effect of ionising radiations since the enhancement in the thermo-resistance of the enzyme and the higher stability according to use number of entrapped ADH. Kinetics parameters, investigated in reveal a significant effect on the increase of the commercial enzyme affinity. Enhanced activity and stability of the enzyme prove the efficacy of gamma rays application in order to ameliorate the rate of some reactions. (author)

  10. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity.

    Directory of Open Access Journals (Sweden)

    Monika B Dolinska

    Full Text Available Tyrosinase (TYR catalyzes the rate-limiting, first step in melanin production and its gene (TYR is mutated in many cases of oculocutaneous albinism (OCA1, an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes.The intra-melanosomal domain of human tyrosinase (residues 19-469 and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure.The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure - function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.

  11. Albinism-Causing Mutations in Recombinant Human Tyrosinase Alter Intrinsic Enzymatic Activity

    Science.gov (United States)

    Dolinska, Monika B.; Kovaleva, Elena; Backlund, Peter; Wingfield, Paul T.; Brooks, Brian P.; Sergeev, Yuri V.

    2014-01-01

    Background Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes. Methodology/Principal Findings The intra-melanosomal domain of human tyrosinase (residues 19–469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure. Conclusions/Significance The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure – function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1. PMID:24392141

  12. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity.

    Science.gov (United States)

    Dolinska, Monika B; Kovaleva, Elena; Backlund, Peter; Wingfield, Paul T; Brooks, Brian P; Sergeev, Yuri V

    2014-01-01

    Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes. The intra-melanosomal domain of human tyrosinase (residues 19-469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure. The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure - function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.

  13. Skin diseases and enzymatic antioxidant activity among workers exposed to pesticides.

    Science.gov (United States)

    Amer, M; Metwalli, M; Abu el-Magd, Y

    2002-01-01

    In this study, 150 workers exposed to pesticides and 50 healthy control subjects were given clinical and dermatological examinations, patch tests, tests of liver and renal function, complete blood count, blood sugar and urinalysis. Activity of the antioxidant enzymes superoxide dismutase, glutathione peroxidase and glutathione reductase was also evaluated. Dermatological findings were positive in 78%, 76% and 54% of workers exposed to organophosphates, pyrethroids and carbamate pesticides respectively. The patch test was positive in 70% of workers exposed to pyrethroids and 64% exposed to carbamate pesticides. Liver enzyme levels were generally increased in workers while antioxidant enzyme activity was significantly decreased in all workers compared with the controls.

  14. Anti-Oxidative and Antibacterial Self-Healing Edible Polyelectrolyte Multilayer Film in Fresh-Cut Fruits.

    Science.gov (United States)

    Liu, Xuefan; Han, Wei; Zhu, Yanxi; Xuan, Hongyun; Ren, Jiaoyu; Zhang, Jianhao; Ge, Liqin

    2018-04-01

    The consumption of fresh-cut fruits is limited because of the oxidation browning and pathogenic bacteria's growth on the fruit surface. Besides, crack of the fresh-keeping film may shorten the preservation time of fruit. In this work, polyelectrolyte multilayer (PEM) film was fabricated by layer-by-layer (LBL) electrostatic deposition method. The film was made by carboxy methylcellulose sodium (CMC) and chitosan (CS). The as-prepared PEM film had good anti-oxidative and antibacterial capability. It inhibited the growth of Gram-negative bacteria and the antibacterial rate was more than 95%. The stratified structure and linear increase of the absorbance in the film verified a linear increase of film thickness. The slight scratched film could self-heal rapidly after the stimulation of water whatever the layer number was. Moreover, the film could heal cracks whose width was far bigger than the thickness. The application of PEM film on fresh-cut apples showed that PEM film had good browning, weight loss and metabolic activity inhibition ability. These results showed that the PEM film is a good candidate as edible film in fresh-cut fruits applications.

  15. Anti-oxidative and anti-inflammatory effects of spirulina on rat model of non-alcoholic steatohepatitis

    Science.gov (United States)

    Pak, Wing; Takayama, Fusako; Mine, Manaka; Nakamoto, Kazuo; Kodo, Yasumasa; Mankura, Mitsumasa; Egashira, Toru; Kawasaki, Hiromu; Mori, Akitane

    2012-01-01

    The pathogenesis of nonalcoholic steatohepatitis (NASH) remains unclear, but accumulating data suggest oxidative stress and the relationship between inflammation and immunity plays a crucial role. The aim of this study is to investigate the spirulina, which is a blue-green algae rich in proteins and other nutritional elements, and its component-phycocyanin effect on a rat model of NASH. NASH model rats were established by feeding male Wistar rats with choline-deficient high-fat diet (CDHF) and intermittent hypoxemia by sodium nitrite challenge after 5 weeks of CDHF. After experimental period of 10 weeks, blood and liver were collected to determine oxidative stress injuries and efficacies of spirulina or phycocyanin on NASH model rats. In the NASH model rats, increase in plasma liver enzymes and liver fibrosis, increases in productions of reactive oxygen species from liver mitochondria and from leukocytes, the activation of nuclear factor-kappa B, and the change in the lymphocyte surface antigen ratio (CD4+/CD8+) were observed. The spirulina and phycocyanin administration significantly abated these changes. The spirulina or phycocyanin administration to model rats of NASH might lessen the inflammatory response through anti-oxidative and anti-inflammatory mechanisms, breaking the crosstalk between oxidative stress and inflammation, and effectively inhibit NASH progression. PMID:23170052

  16. In Vitro Anti-Oxidant and Anti-Microbial Potentiality Investigation of Different Fractions of Caryota urens Leaves.

    Science.gov (United States)

    Azam, Shofiul; Mahmud, Md Kayes; Naquib, Md Hamza; Hossain, Saad Mosharraf; Alam, Mohammad Nazmul; Uddin, Md Josim; Sajid, Irfan; Hossain, Muhammad Sazzad; Karim, Md Salimul; Hasan, Md Ali

    2016-07-27

    Caryota urens is a member of the Arecaceae family and a common plant in the Southeast Asian region. This plant has been reported as an anti-microbial agent in recent years. Thus, we aimed to find out the MIC (minimum inhibitory concentration) against different pathogenic microorganism. The leaves of C. urens were extracted and fractioned using different reagents (chloroform, n -hexane and carbon tetrachloride). Disc diffusion method was implemented for the assessment of in vitro anti-microbial potency (500 and 250 µg/disc). The entire fraction showed good effect (with the zone of inhibition 19-25 mm) against both gram positive ( Bacillus subtilis , Bacillus megaterium , Bacillus cereus , Sarina lutea ) and gram negative ( Vibrio mimicus , Shigella boydii , Escherichia coli , Pseudomonas aeruginosa ) bacterial pathogens and fungal strains ( Aspergillus niger , Saccharomyces cerevisiae ). The plants also possess effective free radical scavenging potency with an IC 50 of 130.32 µg/mL. This finding reflects a link between the presence of anti-oxidative material and a substantial anti-microbial activity, and substantiates all previous claims against C. urens .

  17. Antioxidant and angiotensin I-converting enzyme inhibitory activities of northern shrimp (Pandalus borealis by-products hydrolysate by enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Sang-Bo Kim

    2016-09-01

    Full Text Available Abstract In the present study, we investigated to the antioxidant and angiotensin I-converting enzyme (ACE inhibitory activities of the northern shrimp (Pandalus borealis by-products (PBB hydrolysates prepared by enzymatic hydrolysis. The antioxidant and ACE inhibitory activities of five enzymatic hydrolysates (alcalase, protamex, flavourzyme, papain, and trypsin of PBB were evaluated by the 2, 2′-azino-bis [3-ethylbenzothiazoline-6-sulfonic acid] (ABTS+ radical scavenging and superoxide dismutase (SOD-like activities, reducing power and Li’s method for ACE inhibitory activity. Of these PBB hydrolysates, the protamex hydrolysate exhibited the most potent ACE inhibitory activity with IC50 value of 0.08 ± 0.00 mg/mL. The PBB protamex hydrolysate was fractionated by two ultrafiltration membranes with 3 and 10 kDa (below 3 kDa, between 3 and 10 kDa, and above 10 kDa. These three fractions were evaluated for the total amino acids composition, antioxidant, and ACE inhibitory activities. Among these fractions, the  10 kDa fraction, while the > 10 kDa fraction exhibited the significant reducing power than others. In addition, 3–10 kDa and > 10 kDa fractions showed the significant ACE inhibitory activity. These results suggested that the high molecular weight enzymatic hydrolysate derived from PBB could be used for control oxidative stress and prevent hypertension.

  18. Expression of catalase in Lactobacillus fermentum and evaluation of its anti-oxidative properties in a dextran sodium sulfate induced mouse colitis model.

    Science.gov (United States)

    Zhang, Jiang; Liu, Hong; Wang, Qingwei; Hou, Chengli; Thacker, Philip; Qiao, Shiyan

    2013-12-01

    Lactic acid bacteria are generally sensitive to hydrogen peroxide (H₂O₂). Lactobacillus plantarum ATCC14431 is one of the few lactic acid bacteria able to degrade H₂O₂ through the action of a manganese-dependent catalase (containing the katA gene). However, it is not a natural inhabitant of the intestinal tract and its bio-efficacy and survival in the gastrointestinal tract have never been tested. In this study, we successfully expressed the katA gene from L. plantarum ATCC14431 in L. fermentum I5007 and the recombinant L. fermentum exhibited almost 20-fold higher catalase activity than the empty vector control. The anti-oxidative properties of this catalase-producing L. fermentum were evaluated using a dextran sodium sulphate (DSS) induced colitis mice model. Compared with the control, mice receiving DSS alone had increased diarrhea and mucosa histological scores (P catalase in L. fermentum increased its ability to survive when exposed to aerated environment in vitro and conferred the anti-oxidative and anti-inflammatory effects in the DSS induced colitis model.

  19. Influence of gallic and tannic acids on enzymatic activity and growth ...

    African Journals Online (AJOL)

    SERVER

    2008-02-19

    Feb 19, 2008 ... The effect of phenolic acids (gallic and tannic acids) on growth of Pectobacterium chrysanhemi, and its protease and pectate lyase activities was tested. The results obtained showed a significant inhibiting effect of the tannic and gallic acids on the growth of this strain. The growth rate decreases in the.

  20. Enzymatic activity of methionine adenosyltransferase variants identified in patients with persistent hypermethioninemia.

    Science.gov (United States)

    Fernández-Irigoyen, Joaquín; Santamaría, Enrique; Chien, Yin-Hsiu; Hwu, Wuh-Liang; Korman, Stanley H; Faghfoury, Hanna; Schulze, Andreas; Hoganson, George E; Stabler, Sally P; Allen, Robert H; Wagner, Conrad; Mudd, S Harvey; Corrales, Fernando J

    2010-01-01

    Methionine adenosyltransferases (MAT's) are central enzymes in living organisms that have been conserved with a high degree of homology among species. In the liver, MAT I and III, tetrameric and dimeric isoforms of the same catalytic subunit encoded by the gene MAT1A, account for the predominant portion of total body synthesis of S-adenosylmethionine (SAM), a versatile sulfonium ion-containing molecule involved in a variety of vital metabolic reactions and in the control of hepatocyte proliferation and differentiation. During the past 15years 28 MAT1A mutations have been described in patients with elevated plasma methionines, total homocysteines at most only moderately elevated, and normal levels of tyrosine and other aminoacids. In this study we describe functional analyses that determine the MAT and tripolyphosphatase (PPPase) activities of 18 MAT1A variants, six of them novel, and none of them previously assayed for activity. With the exception of G69S and Y92H, all recombinant proteins showed impairment (usually severe) of MAT activity. Tripolyphosphate (PPPi) hydrolysis was decreased only in some mutant proteins but, when it was decreased MAT activity was always also impaired. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Iron(II) Supramolecular Helicates Condense Plasmid DNA and Inhibit Vital DNA-Related Enzymatic Activities

    Czech Academy of Sciences Publication Activity Database

    Malina, Jaroslav; Hannon, M.J.; Brabec, Viktor

    2015-01-01

    Roč. 21, č. 31 (2015), s. 11189-11195 ISSN 0947-6539 R&D Projects: GA ČR(CZ) GA13-08273S Institutional support: RVO:68081707 Keywords : TOPOISOMERASE-I * METALLOSUPRAMOLECULAR CYLINDERS * TRANSCRIPTIONAL ACTIVITY Subject RIV: BO - Biophysics Impact factor: 5.771, year: 2015

  2. Insecticidal effects of Moroccan plant extracts on development, energy reserves and enzymatic activities of Plodia interpunctella

    Directory of Open Access Journals (Sweden)

    N. Bouayad

    2012-10-01

    Full Text Available The aim of this work was to study the effects of methanol extracts of ten plant species used in traditional medicine in Morocco (Peganum harmala, Ajuga iva, Rosmarinus officinalis, Lavandula stoechas, Lavandula dentata, Cistus ladanifer, Cistus salviaefolius, Cistus monspeliensis, Centaurium erythraea and Launaea arborescens on Plodia interpunctella Hübner (Lepidoptera: Pyralidae larvae. Firstly, we studied the effects of the ingestion of these extracts at 500 ppm on post-embryonic development parameters. Most plant extracts provoked a notable decrease of larval weight 8 days after treatment (up to 33% weight loss with C. erythraea and caused significant alterations on pupation (ranging from 5% to 85% and adult emergence (below 2.5% with R. officinalis, C. erythraea and A. iva. The plant extracts that showed strongest effects on post-embryonic development were selected to test their effects on the following physiological parameters: larval reserve substances (at 500 ppm; and midgut activities of hydrolytic and detoxification enzymes (at 500, 750 and 1000 ppm. All treatments provoked a significant reduction of protein and carbon hydrate larval contents, the inhibition of proteases and α-amylase activities in a dose depended manner, and the induction of glutathione S-transferase and esterase (using MtB as substrate activities, whereas the activity of cytochrome P450 monooxygenases and esterases (using 1-NA as substrate increase or decrease depending on the extract concentration and the plant analyzed.

  3. Soil nitrogen mineralization and enzymatic activities in fire and fire surrogate treatments in California

    Science.gov (United States)

    J. R. Miesel; R. E. J. Boerner; C. N. Skinner

    2011-01-01

    Forest thinning and prescribed fire are management strategies used to reduce hazardous fuel loads and catastrophic wildfires in western mixed-conifer forests. We evaluated effects of thinning (Thin) and prescribed fire (Burn), alone and in combination (Thin+Burn), on N transformations and microbial enzyme activities relative to an untreated control (Control) at 1 and 3...

  4. On-slide detection of enzymatic activities in selected single cells

    DEFF Research Database (Denmark)

    Keller, Josephine Geertsen; Tesauro, Cinzia; Coletta, Andrea

    2017-01-01

    With increasing recognition of the importance in addressing cell-to-cell heterogeneity for the understanding of complex biological systems, there is a growing need for assays capable of single cell analyses. In the current study, we describe the measurement of human topoisomerase I activity in si...

  5. Microbial functional diversity and enzymatic activity of soil degraded by sulphur mining reclaimed with various waste

    Science.gov (United States)

    Joniec, Jolanta; Frąc, Magdalena

    2017-10-01

    The aim of the study was to evaluate microbial functional diversity based on community level physiological profiling and β-glucosidase activity changes in soil degraded by sulphur mining and subjected to reclamation with various waste. The experiment was set up in the area of the former `Jeziórko' Sulphur Mine (Poland), on a soilless substrate with a particle size distribution of slightly loamy sand. The experimental variants included the application of post-flotation lime, sewage sludge and mineral wool. The analyses of soil samples included the assessment of the following microbiological indices: β-glucosidase activity and functional diversity average well color development and richness). The results indicate that sewage sludge did not exert a significant impact on the functional diversity of microorganisms present in the reclaimed soil. In turn, the application of other types of waste contributed to a significant increase in the parameters of total metabolic activity and functional diversity of the reclaimed soil. However, the temporal analysis of the metabolic profile of soil microorganisms demonstrated that a single application of waste did not yield a durable, stable metabolic profile in the reclaimed soil. Still, there was an increase in β-glucosidase activity, especially in objects treated with sewage sludge.

  6. Insecticidal effects of Moroccan plant extracts on development, energy reserves and enzymatic activities of Plodia interpunctella

    Energy Technology Data Exchange (ETDEWEB)

    Bouayard, N.; Rharrabe, K.; Ghailani, N. N.; Jbilou, R.; Castanera, P.; Ortego, F.

    2013-05-01

    The aim of this work was to study the effects of methanol extracts of ten plant species used in traditional medicine in Morocco (Peganum harmala, Ajuga iva, Rosmarinus officinalis, Lavandula stoechas, Lavandula dentata, Cistus ladanifer, Cistus salviaefolius, Cistus monspeliensis, Centaurium erythraea and Launaea arborescens) on Plodia interpunctella Hubner (Lepidoptera: Pyralidae) larvae. Firstly, we studied the effects of the ingestion of these extracts at 500 ppm on post-embryonic development parameters. Most plant extracts provoked a notable decrease of larval weight 8 days after treatment (up to 33% weight loss with C. erythraea) and caused significant alterations on pupation (ranging from 5% to 85%) and adult emergence (below 2.5% with R. officinalis, C. erythraea and A. iva). The plant extracts that showed strongest effects on post-embryonic development were selected to test their effects on the following physiological parameters: larval reserve substances (at 500 ppm); and midgut activities of hydrolytic and detoxification enzymes (at 500, 750 and 1000 ppm). All treatments provoked a significant reduction of protein and carbon hydrate larval contents, the inhibition of proteases and {alpha}-amylase activities in a dose depended manner, and the induction of glutathione S-transferase and esterase (using MtB as substrate) activities, whereas the activity of cytochrome P450 monooxygenases and esterases (using 1-NA as substrate) increase or decrease depending on the extract concentration and the plant analyzed. (Author) 65 refs.

  7. The enzymatic degradation of excess activated sludge : A tale of worms

    NARCIS (Netherlands)

    De Valk, S.L.

    2013-01-01

    The activated sludge process is the most used process to remove organic carbon, nutrients and other pollutants from sewage and also from many industrial waste waters. The organic fraction of waste water is aerobically respired and partly converted into biomass. The surplus biomass is a by-product of

  8. Sublethal Effects of Chromium on Enzymatic Activities of the African Catfish: Clarias Gariepinus (Burchell, 1822

    Directory of Open Access Journals (Sweden)

    Ovie KORI-SIAKPERE

    2012-02-01

    Full Text Available The effect of sublethal concentration (0.00, 2.00, 4.00 and 8.00 mg/l of chromium was determined on the activities of some enzymes (creatine-kinase, lactate dehydrogenase, cholinesterase, gamma glutamyltransferase in the plasma, liver and kidney of the exposed juvenile African Catfish Clarias gariepinus (length 23.00�0.86 cm and weight 96.97�5.31 g respectively after the 7 days exposure period. The activity of lactate dehydrogenase was significantly (p0.05 in plasma and liver and a significant decrease (p0.05 in plasma, liver and kidney expect liver creatine-kinase that was significantly decreased. Generally, the activities of the determined enzymes were most significant in the liver than in plasma and kidney. Therefore, sublethal concentrations of chromium have some deleterious effect on the basic activities of enzymes of the plasma, liver and kidney of Clarias gariepinus as revealed in this investigation.

  9. Influence of Different Food Commodities on Life History, Feeding Efficiency, and Digestive Enzymatic Activity of Tribolium castaneum (Coleoptera: Tenebrionidae).

    Science.gov (United States)

    Naseri, Bahram; Borzoui, Ehsan; Majd, Shadi; Mozaffar Mansouri, Seyed

    2017-10-01

    The life history, feeding indices, and digestive enzymatic activity of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) were studied on flours of 10 commodities (artificial diet, barley, cowpea, maize, millet, rice, sorghum, soybean, triticale, and wheat) at 30 ± 1°C, relative humidity 75 ± 5% (12 h photophase). The maximum survival rate of immature stages was on artificial diet (75%), and the minimum rate was on soybean flour (30%). The duration of immature stages was significantly longer on soybean flour (33.3 ± 0.6 days) than on other tested flours of commodities. Record for the highest fecundity of this insect was on artificial diet (418.9 ± 9.1 eggs/female) and the lowest was on soybean flour (121.5 ± 7.0 eggs/female). The results showed that fourth instar of T. castaneum reared on soybean flour had the lowest relative growth rate (RGR; 0.141 ± 0.011 mg/mg/d) and efficiency of conversion of ingested food (34.59 ± 0.009%). The amylolytic activity of fourth instar was the highest when larvae were fed on barley flour (8.97 ± 0.25 mU/min/larva) and the lowest when they were fed on wheat flour (1.64 ± 0.23 mU/min/larva). Larvae exhibited a single strong band of amylolytic activity among different flours of commodities; the lowest and highest intensity was for larvae fed on wheat and barley flours, respectively. The zymogram of the general protease activity showed four main bands, which the first band was unique for triticale- and artificial diet-fed larvae. The results of this study indicated that soybean flour was the most unsuitable food for feeding and development of T. castaneum. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Enzymatic activities in a semiarid soil amended with different soil treatment: Soil quality improvement

    Science.gov (United States)

    Hueso González, Paloma; Elbl, Jakub; Dvořáčková, Helena; Francisco Martinez Murillo, Juan; Damian Ruiz Sinoga, Jose

    2017-04-01

    The use of soil quality indicators may be an effective approach to assess the positive effect of the organic amendment as good restoration methods. Relying on the natural fertility of the soil, the most commonly chemical and physical parameters used to evaluate soil quality are depend to the soil biological parameters. The measurement of soil basal respiration and the mineralization of organic matter are commonly accepted as a key indicator for measuring changes to soil quality. Thus, the simultaneous measurement of various enzymes seems to be useful to evaluate soil biochemical activity and related processes. In this line, Dehydrogenase activity is widely used in evaluating the metabolic activity of soil microorganisms and to evaluate the effects caused by the addition of organic amendments. Variations in phosphatase activity, apart from indicating changes in the quantity and quality of soil phosphorated substrates, are also good indicators of soil biological status. This study assesses the effect of five soil amendments as restoration techniques for semiarid Mediterrenean ecosystems. The goal is to interpret the status of biological and chemical parameters in each treatment as soil quality indicators in degraded forests. The main objectives were to: i) analyze the effect of various organic amendments on the enzimatic activity of soil; ii) analyze the effect of the amendments on soil respiration; iii) assess the effect of these parameters on the soil chemical properties which are indicative of soil healthy; and iv) evaluated form the land management point of view which amendment could result a effective method to restore Mediterranean degraded areas. An experimental paired-plot layout was established in southern of Spain (homogeneous slope gradient: 7.5%; aspect: N170). Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis Mill.); TerraCotten hydroabsobent polymers; sewage

  11. beta-carotene does not change markers of enzymatic and nonenzymatic antioxidant activity in human blood

    DEFF Research Database (Denmark)

    Castenmiller, J.J.M.; Lauridsen, Søren T.; Dragsted, Lars O.

    1999-01-01

    = 12) or with a spinach product (n = 12 per group), i.e., whole-leaf, minced, liquefied or liquefied spinach plus added dietary fiber. After 3 wk of dietary intervention, changes in serum or plasma concentrations of ascorbic acid, alpha-tocopherol, FRAP (ferric reducing ability of plasma) and uric acid...... and erythrocyte enzyme activities were assessed, and differences among experimental groups were tested. Consumption of spinach resulted in greater (P alpha-tocopherol concentration compared...... with the control group. Consumption of the carotenoid supplement led to lower alpha-tocopherol responses (P = 0.02) compared with the basic diet only. Our data suggest that the short-term changes in erythrocyte glutathione reductase activity and serum alpha-tocopherol concentration can be attributed...

  12. Plant Sterols: Chemical and Enzymatic Structural Modifications and Effects on Their Cholesterol-Lowering Activity.

    Science.gov (United States)

    He, Wen-Sen; Zhu, Hanyue; Chen, Zhen-Yu

    2018-03-28

    Plant sterols have attracted increasing attention due to their excellent cholesterol-lowering activity. However, free plant sterols have some characteristics of low oil solubility, water insolubility, high melting point, and low bioavailability, which greatly limit their application in foods. Numerous studies have been undertaken to modify their chemical structures to improve their chemical and physical properties in meeting the needs of various applications. The present review is to summarize the literature and update the progress on structural modifications of plant sterols in the following aspects: (i) synthesis of plant sterol esters by esterification and transesterification with hydrophobic fatty acids and triacylglycerols to improve their oil solubility, (ii) synthesis of plant sterol derivatives by coupling with various hydrophilic moieties to enhance their water solubility, and (iii) mechanisms by which plant sterols reduce plasma cholesterol and the effect of structural modifications on plasma cholesterol-lowering activity of plant sterols.

  13. RESEARCH REGARDING THE INFLUENCE OF BETA IRRADIATION ON THE ENZYMATIC ACTIVITY OF BAKER’S YEAST

    Directory of Open Access Journals (Sweden)

    ENIKŐ GAŞPAR

    2009-05-01

    Full Text Available The biotechnological properties and the maltase activity of baker’s yeast wereinvestigated by irradiation with beta radiations in doses of 9.76 Gy, 12.20 Gy,17.08 Gy and 22.96 Gy. We observed that the maltase activity is greater in yeastirradiated with lower doses (9.76 Gy, 12.20 Gy and 17.08 Gy indicating that thebeta radiation have a stimulating effect on the fermenting capacity of baker’s yeast.This fact is valid also after 90 days. A higher dose induces a regress of this process.The baker’s yeast exposed at beta radiations produced cultures more vigorous,resistant and with higher biotechnological properties.

  14. RESEARCH REGARDING THE INFLUENCE OF BETA IRRADIATION ON THE ENZYMATIC ACTIVITY OF BAKER’S YEAST

    Directory of Open Access Journals (Sweden)

    ENIKŐ GAŞPAR

    2009-05-01

    Full Text Available The biotechnological properties and the maltase activity of baker’s yeast were investigated by irradiation with beta radiations in doses of 9.76 Gy, 12.20 Gy, 17.08 Gy and 22.96 Gy. We observed that the maltase activity is greater in yeast irradiated with lower doses (9.76 Gy, 12.20 Gy and 17.08 Gy indicating that the beta radiation have a stimulating effect on the fermenting capacity of baker’s yeast. This fact is valid also after 90 days. A higher dose induces a regress of this process. The baker’s yeast exposed at beta radiations produced cultures more vigorous, resistant and with higher biotechnological properties.

  15. Characterisation of enzymatic activities of H5N1 influenza virus

    Directory of Open Access Journals (Sweden)

    Simson Tarigan

    2008-06-01

    Full Text Available One of the two glycoproteins projected from the surface of the influenza virus is identified as neuraminidase. This enzyme enables the virus to spread in the host, and therefore it plays vital roles in the viral pathogenicity. From the viewpoint of disease control, neuraminidase is used as the target for the development of anti-flu drugs, and for the development of diagnostic test to differentiate infected from vaccinated animals (DIVA. Since the roles of the enzyme are very important, information regarding the characteristics and the procedure to measure its activity, which is the purpose of this study, is essential. The optimum incubation time of the neuraminidase-substrate (fetuin reaction and the optimum pH of the buffer were determined. The stability of the enzyme against heating, supplementation or chelating of calcium ion, and b-propiolactone treatment were analysed. This study showed that neuraminidase from H5N1-influenza virus was, in regards to the characteristics investigated in this study, was comparable to that from Clostridium perfringens. The optimum incubation time for the viral and Clostridial neuraminidases were 60 and 30 minutes, respectively; whereas, the optimum pH for both neuraminidase was 6-7. At pH 8, both neuraminidase were inactive. Supplementation of calcium ion tended to increase activity but chelating of the cation did not have any observable effects. Treatment with 0.2% b-propiolactone for 6 hours reduced the activity, whereas heating at 60°C for 60 minutes abolished all activity. Since inactivation by b-propiolactone is partially only, neuraminidase assay could be performed safely in ordinary laboratories using b-propiolactone-treated-influenza virus, rather than the life virus. The thermolabile nature of the enzyme will complicate any attempt to purify the enzyme.

  16. Enzymatic activities and DNA substrate specificity of Mycobacterium tuberculosis DNA helicase XPB.

    Science.gov (United States)

    Balasingham, Seetha V; Zegeye, Ephrem Debebe; Homberset, Håvard; Rossi, Marie L; Laerdahl, Jon K; Bohr, Vilhelm A; Tønjum, Tone

    2012-01-01

    XPB, also known as ERCC3 and RAD25, is a 3' → 5' DNA repair helicase belonging to the superfamily 2 of helicases. XPB is an essential core subunit of the eukaryotic basal transcription factor complex TFIIH. It has two well-established functions: in the context of damaged DNA, XPB facilitates nucleotide excision repair by unwinding double stranded DNA (dsDNA) surrounding a DNA lesion; while in the context of actively transcribing genes, XPB facilitates initiation of RNA polymerase II transcription at gene promoters. Human and other eukaryotic XPB homologs are relatively well characterized compared to conserved homologs found in mycobacteria and archaea. However, more insight into the function of bacterial helicases is central to understanding the mechanism of DNA metabolism and pathogenesis in general. Here, we characterized Mycobacterium tuberculosis XPB (Mtb XPB), a 3'→5' DNA helicase with DNA-dependent ATPase activity. Mtb XPB efficiently catalyzed DNA unwinding in the presence of significant excess of enzyme. The unwinding activity was fueled by ATP or dATP in the presence of Mg(2+)/Mn(2+). Consistent with the 3'→5' polarity of this bacterial XPB helicase, the enzyme required a DNA substrate with a 3' overhang of 15 nucleotides or more. Although Mtb XPB efficiently unwound DNA model substrates with a 3' DNA tail, it was not active on substrates containing a 3' RNA tail. We also found that Mtb XPB efficiently catalyzed ATP-independent annealing of complementary DNA strands. These observations significantly enhance our understanding of the biological roles of Mtb XPB.

  17. Enzymatic activities and DNA substrate specificity of Mycobacterium tuberculosis DNA helicase XPB.

    Directory of Open Access Journals (Sweden)

    Seetha V Balasingham

    Full Text Available XPB, also known as ERCC3 and RAD25, is a 3' → 5' DNA repair helicase belonging to the superfamily 2 of helicases. XPB is an essential core subunit of the eukaryotic basal transcription factor complex TFIIH. It has two well-established functions: in the context of damaged DNA, XPB facilitates nucleotide excision repair by unwinding double stranded DNA (dsDNA surrounding a DNA lesion; while in the context of actively transcribing genes, XPB facilitates initiation of RNA polymerase II transcription at gene promoters. Human and other eukaryotic XPB homologs are relatively well characterized compared to conserved homologs found in mycobacteria and archaea. However, more insight into the function of bacterial helicases is central to understanding the mechanism of DNA metabolism and pathogenesis in general. Here, we characterized Mycobacterium tuberculosis XPB (Mtb XPB, a 3'→5' DNA helicase with DNA-dependent ATPase activity. Mtb XPB efficiently catalyzed DNA unwinding in the presence of significant excess of enzyme. The unwinding activity was fueled by ATP or dATP in the presence of Mg(2+/Mn(2+. Consistent with the 3'→5' polarity of this bacterial XPB helicase, the enzyme required a DNA substrate with a 3' overhang of 15 nucleotides or more. Although Mtb XPB efficiently unwound DNA model substrates with a 3' DNA tail, it was not active on substrates containing a 3' RNA tail. We also found that Mtb XPB efficiently catalyzed ATP-independent annealing of complementary DNA strands. These observations significantly enhance our understanding of the biological roles of Mtb XPB.

  18. A Redundant Role of Human Thyroid Peroxidase Propeptide for Cellular, Enzymatic, and Immunological Activity

    OpenAIRE

    Godlewska, Marlena; Góra, Monika; Buckle, Ashley M.; Porebski, Benjamin T.; Kemp, E. Helen; Sutton, Brian J.; Czarnocka, Barbara; Banga, J. Paul

    2014-01-01

    Background: Thyroid peroxidase (TPO) is a dimeric membrane-bound enzyme of thyroid follicular cells, responsible for thyroid hormone biosynthesis. TPO is also a common target antigen in autoimmune thyroid disease (AITD). With two active sites, TPO is an unusual enzyme, and thus there is much interest in understanding its structure and role in AITD. Homology modeling has shown TPO to be composed of different structural modules, as well as a propeptide sequence. During the course of studies to ...

  19. Effects of cerium oxide nanoparticles on soil enzymatic activities and wheat grass nutrients uptake

    Science.gov (United States)

    Li, Biting; Chen, Yirui; Bai, Lingyun; Jacobson, Astrid; Darnault, Christophe

    2015-04-01

    The US National Science Foundation estimated that the use of nanomaterials and nanotechnology would reach a global market value of 1 million this year. Concomitant with the wide applications of nanoparticles is an increasing risk of adverse effects to the environment and human health. As a common nanomaterial used as a fuel catalyst and polish material, cerium (IV) oxide nanoparticles (CeO2 NP) were tested for their potential impact on soil health and plant growth. Through exposure by air, water, and solid deposition, nanoparticles may accumulate in soils and impact agricultural systems. The objectives of this research were to determine whether CeO2 NPs affect the growth of wheat grass and selected soil enzyme activities chose as indicators of soil health. Wheat grass was grown in plant boxes containing CeO2 NPs mixed with agricultural soil at different concentrations. Two control groups were included: one consisting of soil with plants but no CeO2 NPs, and one containing only soil, i.e., no NP or wheat plants added. The plants were grown for 10 weeks and harvested every two weeks in a laboratory under sodium growth lights. At the end of the each growing period, two weeks, soils were assayed for phosphatase, β-glucosidase, and urease activities, and NPK values. Spectrophotometer analyses were used to assess enzyme activities, and NPK values were tested by Clemson Agricultural Center. Wheat yields were estimated by shoot and root lengths and weights.

  20. Enzymatic activities associated with arm regeneration and calcification in the starfish Asterias forbesi

    International Nuclear Information System (INIS)

    Donachy, J.E.

    1988-01-01

    The enzymes studied include Ka + , K + -ATPase, Ca 2+ -ATPase, Mg 2+ -ATPase, alkaline phosphatase and carbonic anhydrase. Each enzyme was examined for change in specific activity during salinity acclimation and arm regeneration. The effect of enzyme inhibition on 45 Ca deposition onto the calcified ossicles was examined and the enzymes were localized at the electron microscopic level. A. forbesi lacks a ouabain sensitive, Mg 2+ -dependent Ka + , K + -ATPase but possesses Mg 2+ -ATPase. Mg 2+ -ATPase was not affected by salinity and did not change during arm regeneration. A high affinity Ca 2+ -ATPase is also lacking in this starfish, but a low affinity form is present. Ca 2+ -ATPase is not involved in salinity acclimation of calcification, but may be involved in the would healing phase of arm regeneration. Alkaline phosphatase activity is not affected by salinity. Inhibition of this enzyme results in a significant increase in 45 Ca deposition onto the ossicles. During the early phase of arm regeneration, alkaline phosphatase activity increased significantly but gradually returned to control levels by 60 days post-autotomy

  1. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities

    Energy Technology Data Exchange (ETDEWEB)

    Liu Feng [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Ying Guangguo, E-mail: guangguo.ying@gmail.co [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Tao Ran; Zhao Jianliang; Yang Jifeng [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Zhao Lanfeng [College of Resource and Environmental Science, South China Agricultural University, Guangzhou 510642 (China)

    2009-05-15

    The potential impact of six antibiotics (chlortetracycline, tetracycline and tylosin; sulfamethoxazole, sulfamethazine and trimethoprim) on plant growth and soil quality was studied by using seed germination test on filter paper and plant growth test in soil, soil respiration and phosphatase activity tests. The phytotoxic effects varied between the antibiotics and between plant species (sweet oat, rice and cucumber). Rice was most sensitive to sulfamethoxazole with the EC10 value of 0.1 mg/L. The antibiotics tested inhibited soil phosphatase activity during the 22 days' incubation. Significant effects on soil respiration were found for the two sulfonamides (sulfamethoxazole and sulfamethazine) and trimethoprim, whereas little effects were observed for the two tetracyclines and tylosin. The effective concentrations (EC10 values) for soil respiration in the first 2 days were 7 mg/kg for sulfamethoxazole, 13 mg/kg for sulfamethazine and 20 mg/kg for trimethoprim. Antibiotic residues in manure and soils may affect soil microbial and enzyme activities. - Terrestrial ecotoxicological effects of antibiotics are related to their sorption and degradation behavior in soil.

  2. Effect of high pressures on the enzymatic activity of commercial milk protein coagulants

    Science.gov (United States)

    Wiśniewska, Krystyna; Reps, Arnold; Jankowska, Agnieszka

    2014-04-01

    This study was aimed at determining the effect of high pressures in the range of 100-1000 MPa/15 min, applied in 100 MPa increments, on the coagulating and proteolytic activity of commercial coagulants produced with genetic engineering methods: Maxiren, Chymogen, Chymax and of a natural rennin preparation, Hala. The coagulating activity of Hala preparation differed compared with the other preparations, due to greater resistance to high pressures, especially in the range of 500-600 MPa. The preparations produced with genetic engineering methods lost their capability for milk protein coagulation by 500 MPa. Pressurization at 200 MPa contributed to their reduced capability for casein macroproteolysis. In contrast, an increase in Chymax, Chymogen, Maxiren and Hala preparations' hydrolytic capability for the macroproteolysis of isoelectric casein was observed upon pressure treatment at 100 and 400 MPa and for microproteolysis after pressure treatment at 200 MPa. Storage (48 h/5°C) of the pressurized preparations had an insignificant effect on their coagulating and proteolytic activities.

  3. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities

    International Nuclear Information System (INIS)

    Liu Feng; Ying Guangguo; Tao Ran; Zhao Jianliang; Yang Jifeng; Zhao Lanfeng

    2009-01-01

    The potential impact of six antibiotics (chlortetracycline, tetracycline and tylosin; sulfamethoxazole, sulfamethazine and trimethoprim) on plant growth and soil quality was studied by using seed germination test on filter paper and plant growth test in soil, soil respiration and phosphatase activity tests. The phytotoxic effects varied between the antibiotics and between plant species (sweet oat, rice and cucumber). Rice was most sensitive to sulfamethoxazole with the EC10 value of 0.1 mg/L. The antibiotics tested inhibited soil phosphatase activity during the 22 days' incubation. Significant effects on soil respiration were found for the two sulfonamides (sulfamethoxazole and sulfamethazine) and trimethoprim, whereas little effects were observed for the two tetracyclines and tylosin. The effective concentrations (EC10 values) for soil respiration in the first 2 days were 7 mg/kg for sulfamethoxazole, 13 mg/kg for sulfamethazine and 20 mg/kg for trimethoprim. Antibiotic residues in manure and soils may affect soil microbial and enzyme activities. - Terrestrial ecotoxicological effects of antibiotics are related to their sorption and degradation behavior in soil.

  4. Divergence in the enzymatic activities of a tomato and Solanum pennellii alcohol acyltransferase impacts fruit volatile ester composition.

    Science.gov (United States)

    Goulet, Charles; Kamiyoshihara, Yusuke; Lam, Nghi B; Richard, Théo; Taylor, Mark G; Tieman, Denise M; Klee, Harry J

    2015-01-01

    Tomato fruits accumulate a diverse set of volatiles including multiple esters. The content of ester volatiles is relatively low in tomato fruits (Solanum lycopersicum) and far more abundant in the closely related species Solanum pennellii. There are also qualitative variations in ester content between the two species. We have previously shown that high expression of a non-specific esterase is critical for the low overall ester content of S. lycopersicum fruit relative to S. pennellii fruit. Here, we show that qualitative differences in ester composition are the consequence of divergence in enzymatic activity of a ripening-related alcohol acyltransferase (AAT1). The S. pennellii AAT1 is more efficient than the tomato AAT1 for all the alcohols tested. The two enzymes have differences in their substrate preferences that explain the variations observed in the volatiles. The results illustrate how two related species have evolved to precisely adjust their volatile content by modulating the balance of the synthesis and degradation of esters. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  5. pCO2 and enzymatic activity in a river floodplain system of the Danube under different hydrological settings.

    Science.gov (United States)

    Sieczko, Anna; Demeter, Katalin; Mayr, Magdalena; Meisterl, Karin; Peduzzi, Peter

    2014-05-01

    Surface waters may serve as either sinks or sources of CO2. In contrast to rivers, which are typically sources of CO2 to the atmosphere, the role of fringing floodplains in CO2 flux is largely understudied. This study was conducted in a river-floodplain system near Vienna (Austria). The sampling focused on changing hydrological situations, particularly on two distinct flood events: a typical 1-year flood in 2012 and an extraordinary 100-year flood in 2013. One objective was to determine partial pressure of CO2 (pCO2) in floodplain lakes with different degree of connectivity to the main channel, and compare the impact of these two types of floods. Another aim was to decipher which fraction of the dissolved organic matter (DOM) pool contributed to pCO2 by linking pCO2 with optical properties of DOM and extracellular enzymatic activity (EEA) of microbes. The EEA is a valuable tool, especially for assessing the non-chromophoric but rapidly utilized DOM-fraction during floods. In 2012 and 2013, the floodplain lakes were dominated by supersaturated pCO2 conditions, which indicates that they served as CO2 sources. Surprisingly, there were no significant differences in pCO2 between the two types of flood. Our findings imply that the extent of the flood had minor impact on pCO2, but the general occurrence of a flood appears to be important. During the flood in 2013 significantly more dissolved organic carbon (DOC) (pcarbohydrates.

  6. Enzymatic single-step preparation and antioxidant activity of hetero-chitooligosaccharides using non-pretreated housefly larvae powder.

    Science.gov (United States)

    Zhang, Yang; Zhou, Xiuling; Ji, Lusha; Du, Xiuju; Sang, Qing; Chen, Fang

    2017-09-15

    A novel chitinolytic enzyme-producing bacterium Chitiniphilus sp. LZ32 was isolated. Non-pretreated Housefly larvae powder (HLP) was used as an adsorbent to purify chitinolytic enzymes. The optimal conditions for hydrolysis of HLP by purifying enzymes chitinolytic enzymes were investigated. HPLC and MALDI-TOF analyses indicated that HLP enzymatic hydrolyzates mainly contain N-acetylglucosamine (GlcNAc) and hetero-chitooligosaccharides (COS) composed of GlcN and GlcNAc. The hetero-chitooligosaccharides (COS) had a degree of polymerization (DP) in the 2-6 range. The maximum production of COS was 158.3μg/mL after 72h of incubation. Maximum pentamer (51.2μg/mL) and hexamer concentrations (36.1μg/mL) were achieved at hydrolysis times of 72 and 84h, respectively. Antioxidant activities of purified COS products (PCOS) from different hydrolysis times were investigated in vitro. PCOS produced by hydrolysis times of 72h (PCOS-72) exhibited the strongest hydroxyl-scavenging ability and reducing power. These results indicate the potential of Chitiniphilus sp. LZ32 for COS production using HLP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Immobilization of CALB on activated chitosan: Application to enzymatic synthesis in supercritical and near-critical carbon dioxide

    Directory of Open Access Journals (Sweden)

    José C.S. dos Santos

    2017-03-01

    Full Text Available The objective of this new paper was to evaluate the enzymatic esterification reaction conducted in supercritical or near-critical CO2, catalyzed by immobilized lipase B from Candida antarctica (CALB. The biocatalyst was prepared through the immobilization of CALB by covalent attachment using chitosan sequentially activated with Glycidol, ethylenediamine (EDA and glutaraldehyde as support. In order to determine the best operational conditions of the esterification reaction (1: 1 (alcohol–acid; biocatalyst content, 10% (by substrate mass; 45 °C, an experimental design (23 was conducted to evaluate the effects of the following parameters: alcohol to oil molar ratios, reaction time and temperature. The maximum loading of chitosan was 20 mg protein/g support, and the thermal and solvent stability of the new biocatalyst was higher than that of the CALB-GX (by a 26-fold factor, CALB-OC (by a 53-fold factor and Novozym 435 (by a 3-fold factor. The maximum conversion was 46.9% at a temperature of 29.9 °C, ethanol to oleic acid molar ratio equal to 4.50:1, and a reaction time of 6.5 h. Additionally, the removal of water from the medium, by using molecular sieves, promoted a 16.0% increase in the conversion of oleic acid into ethyl esters.

  8. Design, Synthesis and Evaluation of Novel Phthalimide Derivatives as in Vitro Anti-Microbial, Anti-Oxidant and Anti-Inflammatory Agents.

    Science.gov (United States)

    Lamie, Phoebe F; Phillopes, John N; El-Gendy, Ahmed O; Rarova, Lucie; Gruz, Jiri

    2015-09-14

    Sixteen new phthalimide derivatives were synthesized and evaluated for their in vitro anti-microbial, anti-oxidant and anti-inflammatory activities. The cytotoxicity for all synthesized compounds was also determined in cancer cell lines and in normal human cells. None of the target derivatives had any cytotoxic activity. (ZE)-2-[4-(1-Hydrazono-ethyl) phenyl]isoindoline-1,3-dione (12) showed remarkable anti-microbial activity. Its activity against Bacillus subtilis was 133%, 106% and 88.8% when compared with the standard antibiotics ampicillin, cefotaxime and gentamicin, respectively. Compound 12 also showed its highest activities in Gram negative bacteria against Pseudomonas aeruginosa where the percentage activities were 75% and 57.6% when compared sequentially with the standard antibiotics cefotaxime and gentamicin. It was also found that the compounds 2-[4-(4-ethyl-3-methyl-5-thioxo-1,2,4-triazolidin-3-yl)phenyl]isoindoline-1,3-dione (13b) and 2-[4-(3-methyl-5-thioxo-4-phenyl-1,2,4-triazolidin-3-yl)phenyl]isoindoline-1,3-dione (13c) had anti-oxidant activity. 4-(N'-{1-[4-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-phenyl]-ethylidene}-hydrazino)-benzenesulfonamide (17c) showed the highest in vitro anti-inflammatory activity of the tested compounds (a decrease of 32%). To determine the mechanism of the anti-inflammatory activity of 17c, a docking study was carried out on the COX-2 enzyme. The results confirmed that 17c had a higher binding energy score (-17.89 kcal/mol) than that of the ligand celecoxib (-17.27 kcal/mol).

  9. beta-carotene does not change markers of enzymatic and nonenzymatic antioxidant activity in human blood

    DEFF Research Database (Denmark)

    Castenmiller, J.J.M.; Lauridsen, Søren T.; Dragsted, Lars O.

    1999-01-01

    = 12) or with a spinach product (n = 12 per group), i.e., whole-leaf, minced, liquefied or liquefied spinach plus added dietary fiber. After 3 wk of dietary intervention, changes in serum or plasma concentrations of ascorbic acid, alpha-tocopherol, FRAP (ferric reducing ability of plasma) and uric acid...... of carotenoid supplementation and spinach intake on erythrocyte enzyme antioxidant activities, serum or plasma nonenzymatic antioxidant concentrations, and concentrations of oxidatively damaged amino acids in plasma; Subjects received for 3 wk a basic diet (n = 10), a basic diet with a carotenoid supplement (n...

  10. Variation in chicken populations may affect the enzymatic activity of lysozyme.

    Science.gov (United States)

    Downing, T; O'Farrelly, C; Bhuiyan, A K; Silva, P; Naqvi, A N; Sanfo, R; Sow, R-S; Podisi, B; Hanotte, O; Bradley, D G

    2010-04-01

    The chicken lysozyme gene encodes a hydrolase that has a key role in defence, especially in ovo. This gene was resequenced in global chicken populations [red, grey, Ceylon and green jungle fowl (JF)] and related bird species. Networks, summary statistics and tests of neutrality indicate that although there is extensive variation at the gene, little is present at coding sites, with the exception of one non-synonymous site. This segregating site and a further fixed non-synonymous change between red JF and domestic chicken populations are spatially close to the catalytic sites of the enzyme and so might affect its activity.

  11. Enzymatic activity and gene expression changes in zebrafish embryos and larvae exposed to pesticides diazinon and diuron.

    Science.gov (United States)

    Velki, Mirna; Meyer-Alert, Henriette; Seiler, Thomas-Benjamin; Hollert, Henner

    2017-12-01

    The zebrafish as a test organism enables the investigation of effects on a wide range of biological levels from molecular level to the whole-organism level. The use of fish embryos represents an attractive model for studies aimed at understanding toxic mechanisms and the environmental risk assessment of chemicals. In the present study, a zebrafish (Danio rerio) in vivo model was employed in order to assess the effects of two commonly used pesticides, the insecticide diazinon and the herbicide diuron, on zebrafish early life stages. Since it was previously established that diazinon and diuron cause effects at the whole-organism level, this study assessed the suborganismic responses to exposure to these pesticides and the enzymatic responses (biochemical level) and the gene expression changes (molecular level) were analyzed. Different exposure scenarios were employed and the following endpoints measured: acetylcholinesterase (AChE), carboxylesterase (CES), ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST), catalase (CAT) and glutathione peroxidase (GPx) activities; and gene expressions of the corresponding genes: acetylcholinesterase (ache), carboxylesterase (ces2), cytochrome P450 (cyp1a), glutathione-S-transferase (gstp1), catalase (cat), glutathione peroxidase (gpx1a) and additionally glutathione reductase (gsr). Significant changes at both the biochemical and the molecular level were detected. In addition, different sensitivities of different developmental stages of zebrafish were determined and partial recovery of the enzyme activity 48h after the end of the exposure was observed. The observed disparity between gene expression changes and alterations in enzyme activities points to the necessity of monitoring changes at different levels of biological organization. Different exposure scenarios, together with a comparison of the responses at the biochemical and molecular level, provide valuable data on the effects of diazinon and diuron on low

  12. Comparison of mitochondrial and nucleolar RNase MRP reveals identical RNA components with distinct enzymatic activities and protein components.

    Science.gov (United States)

    Lu, Qiaosheng; Wierzbicki, Sara; Krasilnikov, Andrey S; Schmitt, Mark E

    2010-03-01

    RNase MRP is a ribonucleoprotein endoribonuclease found in three cellular locations where distinct substrates are processed: the mitochondria, the nucleolus, and the cytoplasm. Cytoplasmic RNase MRP is the nucleolar enzyme that is transiently relocalized during mitosis. Nucleolar RNase MRP (NuMRP) was purified to homogeneity, and we extensively purified the mitochondrial RNase MRP (MtMRP) to a single RNA component identical to the NuMRP RNA. Although the protein components of the NuMRP were identified by mass spectrometry successfully, none of the known NuMRP proteins were found in the MtMRP preparation. Only trace amounts of the core NuMRP protein, Pop4, were detected in MtMRP by Western blot. In vitro activity of the two enzymes was compared. MtMRP cleaved only mitochondrial ORI5 substrate, while NuMRP cleaved all three substrates. However, the NuMRP enzyme cleaved the ORI5 substrate at sites different than the MtMRP enzyme. In addition, enzymatic differences in preferred ionic strength confirm these enzymes as distinct entities. Magnesium was found to be essential to both enzymes. We tested a number of reported inhibitors including puromycin, pentamidine, lithium, and pAp. Puromycin inhibition suggested that it binds directly to the MRP RNA, reaffirming the role of the RNA component in catalysis. In conclusion, our study confirms that the NuMRP and MtMRP enzymes are distinct entities with differing activities and protein components but a common RNA subunit, suggesting that the RNA must be playing a crucial role in catalytic activity.

  13. Screening for Genes Coding for Putative Antitumor Compounds, Antimicrobial and Enzymatic Activities from Haloalkalitolerant and Haloalkaliphilic Bacteria Strains of Algerian Sahara Soils

    Directory of Open Access Journals (Sweden)

    Okba Selama

    2014-01-01

    Full Text Available Extreme environments may often contain unusual bacterial groups whose physiology is distinct from those of normal environments. To satisfy the need for new bioactive pharmaceuticals compounds and enzymes, we report here the isolation of novel bacteria from an extreme environment. Thirteen selected haloalkalitolerant and haloalkaliphilic bacteria were isolated from Algerian Sahara Desert soils. These isolates were screened for the presence of genes coding for putative antitumor compounds using PCR based methods. Enzymatic, antibacterial, and antifungal activities were determined by using cultural dependant methods. Several of these isolates are typical of desert and alkaline saline soils, but, in addition, we report for the first time the presence of a potential new member of the genus Nocardia with particular activity against the yeast Saccharomyces cerevisiae. In addition to their haloalkali character, the presence of genes coding for putative antitumor compounds, combined with the antimicrobial activity against a broad range of indicator strains and their enzymatic potential, makes them suitable for biotechnology applications.

  14. On-slide detection of enzymatic activities in selected single cells.

    Science.gov (United States)

    Keller, Josephine Geertsen; Tesauro, Cinzia; Coletta, Andrea; Graversen, Astrid Damgaard; Ho, Yi-Ping; Kristensen, Peter; Stougaard, Magnus; Knudsen, Birgitta Ruth

    2017-09-21

    With increasing recognition of the importance in addressing cell-to-cell heterogeneity for the understanding of complex biological systems, there is a growing need for assays capable of single cell analyses. In the current study, we describe the measurement of human topoisomerase I activity in single CD44 positive Caco2 cells specifically captured from a mixed population on glass slides, which were dual functionalized with anti-CD44-antibodies and specific DNA primers. On-slide lysis of captured CD44 positive cells, resulted in the release of human topoisomerase I, allowing the enzyme to circularize a specific linear DNA substrate added to the slides. The generated circles hybridized to the anchored DNA primers and acted as templates for a solid support rolling circle amplification reaction leading to the generation of long tandem repeat products that were detected at the single molecule level in a fluorescent microscope upon hybridization of fluorescent labelled probes. The on-slide detection system was demonstrated to be directly quantitative and specific towards CD44 positive cells. Moreover, it allowed reproducible detection of human topoisomerase I activity in single cells.

  15. Comparison of degradative ability, enzymatic activity, and palatability of aquatic hyphomycetes grown on leaf litter.

    Science.gov (United States)

    Suberkropp, K; Arsuffi, T L; Anderson, J P

    1983-07-01

    Stream fungi have the capacity to degrade leaf litter and, through their activities, to transform it into a more palatable food source for invertebrate detritivores. The objectives of the present study were to characterize various aspects of fungal modification of the leaf substrate and to examine the effects these changes have on leaf palatability to detritivores. Fungal species were grown on aspen leaves for two incubation times. Leaves were analyzed to determine the weight loss, the degree of softening of the leaf matrix, and the concentrations of ATP and nitrogen associated with leaves. The activities of a protease and 10 polysaccharide-degrading enzymes produced by each fungus were also determined. Most fungi caused similar changes in physicochemical characteristics of the leaves. All fungi exhibited the capability to depolymerize pectin, xylan, and cellulose. Differences among fungi were found in their capabilities to produce protease and certain glycosidases. Leaf palatability was assessed by offering leaves of all treatments to larvae of two caddisfly shredders (Trichoptera). Feeding preferences exhibited by the shredders were similar and indicated that they perceived distinct differences among fungi. Two fungal species were highly consumed, some moderately and others only slightly. No relationships were found between any of the fungal characteristics measured and detritivore feeding preferences. Apparently, interspecific differences among fungi other than parameters associated with biomass or degradation of structural polysaccharides influence fungal palatability to caddisfly detritivores.

  16. Centella asiatica Fraction-3 Suppresses the Nuclear Factor Erythroid 2-Related Factor 2 Anti-Oxidant Pathway and Enhances Reactive Oxygen Species-Mediated Cell Death in Cancerous Lung A549 Cells.

    Science.gov (United States)

    Naidoo, Dhaneshree Bestinee; Phulukdaree, Alisa; Anand, Krishnan; Sewram, Vikash; Chuturgoon, Anil Amichund

    2017-10-01

    Centella asiatica is a tropical medicinal plant that is commonly used in traditional medicine. Medicinal properties of C. asiatica include anti-oxidant, anti-inflammatory, and anti-cancer activity. We investigated the anti-oxidant and anti-proliferative/cytotoxic effects of a semi-purified fraction of C. asiatica ethanolic leaf extract (C3) in cancerous lung A549 cells. C3 was obtained by silica column fractionation and identified by using thin-layer chromatography and gas chromatography mass spectrometry. Cytotoxicity of C3 in A549 cells was evaluated (cell viability assay-WST-1; 24 h; [0.2-3 mg/mL]) to determine an inhibitory concentration (IC 50 ). Intracellular reactive oxygen species (IROS), mitochondrial membrane potential (flow cytometry), malondialdehyde (MDA), lactate dehydrogenase (LDH) (spectrophotometry), glutathione (GSH), oxidised glutathione (GSSG), adenosine triphosphate levels, caspase activity (luminometry), and DNA damage (comet assay) were evaluated. Protein expression (Nrf-2, p53, Bax, Bcl-2, and HSP-70) and gene expression (Nrf-2, GPx, SOD, CAT, c-myc, and OGG-1) were quantified by western blotting and quantitative polymerase chain reaction (qPCR), respectively. C3 dose dependently decreased A549 cell viability. The IC 50 of C3 increased MDA, IROS, mitochondrial depolarization, LDH, caspase (-8, -9, -3/7) activity, DNA damage, GSH levels, Nrf-2 protein expression, HSP-70 protein expression, and OGG-1 gene expression (P < .05). GSSG levels, anti-oxidant (Nrf-2, GPx, SOD) gene expression, p53, Bax, and Bcl-2 protein expression were decreased by C3 (P < .02). C3 diminished the anti-oxidant gene expression and induced anti-proliferative/cytotoxic effects in A549 cells.

  17. Evolution of Enzymatic Activities in the Enolase Superfamily: L-Fuconate Dehydratase from Xanthomonas campestris

    Energy Technology Data Exchange (ETDEWEB)

    Yew,W.; Fedorov, A.; Fedorov, E.; Rakus, J.; Pierce, R.; Almo, S.; Gerlt, J.

    2006-01-01

    Many members of the mechanistically diverse enolase superfamily have unknown functions. In this report the authors use both genome (operon) context and screening of a library of acid sugars to assign the L-fuconate dehydratase (FucD) function to a member of the mandelate racemase (MR) subgroup of the superfamily encoded by the Xanthomonas campestris pv. campestris str. ATCC 33913 genome (GI: 21233491). Orthologues of FucD are found in both bacteria and eukaryotes, the latter including the rTS beta protein in Homo sapiens that has been implicated in regulating thymidylate synthase activity. As suggested by sequence alignments and confirmed by high-resolution structures in the presence of active site ligands, FucD and MR share the same active site motif of functional groups: three carboxylate ligands for the essential Mg2+ located at the ends of th third, fourth, and fifth-strands in the (/)7-barrel domain (Asp 248, Glu 274, and Glu 301, respectively), a Lys-x-Lys motif at the end of the second-strand (Lys 218 and Lys 220), a His-Asp dyad at the end of the seventh and sixth-strands (His 351 and Asp 324, respectively), and a Glue at the end of the eighth-strand (Glu 382). The mechanism of the FucD reaction involves initial abstraction of the 2-proton by Lys 220, acid catalysis of the vinylogous-elimination of the 3-OH group by His 351, and stereospecific ketonization of the resulting 2-keto-3-deoxy-L-fuconate product. Screening of the library of acid sugars revealed substrate and functional promiscuity: In addition to L-fuconate, FucD also catalyzes the dehydration of L-galactonate, D-arabinonate, D-altronate, L-talonate, and D-ribonate. The dehydrations of L-fuconate, L-galactonate, and D-arabinonate are initiated by abstraction of the 2-protons by Lys 220. The dehydrations of L-talonate and D-ribonate are initiated by abstraction of the 2-protons by His 351; however, protonation of the enediolate intermediates by the conjugate acid of Lys 220 yields L

  18. Enzymatic Activity Enhancement of Non-Covalent Modified Superoxide Dismutase and Molecular Docking Analysis

    Directory of Open Access Journals (Sweden)

    Fa-Jun Song

    2012-03-01

    Full Text Available The enzyme activity of superoxide dismutase was improved in the pyrogallol autoxidation system by about 27%, after interaction between hydroxypropyl-β-cyclo- dextrin and superoxide dismutase. Fluorescence spectrometry was used to study the interaction between hydroxypropyl-β-cyclodextrin and superoxide dismutase at different temperatures. By doing this, it can be found that these interactions increase fluorescence sensitivity. In the meantime, the synchronous fluorescence intensity revealed the interaction sites to be close to the tryptophan (Trp and tyrosine (Tyr residues of superoxide dismutase. Furthermore, molecular docking was applied to explore the binding mode between the ligands and the receptor. This suggested that HP-β-CD interacted with the B ring, G ring and the O ring and revealed that the lysine (Lys residues enter the nanocavity. It was concluded that the HP-β-CD caused specific conformational changes in SOD by non-covalent modification.

  19. Efficient production of infectious viruses requires enzymatic activity of Epstein-Barr virus protein kinase.

    Science.gov (United States)

    Murata, Takayuki; Isomura, Hiroki; Yamashita, Yoriko; Toyama, Shigenori; Sato, Yoshitaka; Nakayama, Sanae; Kudoh, Ayumi; Iwahori, Satoko; Kanda, Teru; Tsurumi, Tatsuya

    2009-06-20

    The Epstein-Barr virus (EBV) BGLF4 gene product is the only protein kinase encoded by the virus genome. In order to elucidate its physiological roles in viral productive replication, we here established a BGLF4-knockout mutant and a revertant virus. While the levels of viral DNA replication of the deficient mutant were equivalent to those of the wild-type and the revertant, virus production was significantly impaired. Expression of the BGLF4 protein in trans fully complemented the low yield of the mutant virus, while expression of a kinase-dead (K102I) form of the protein failed to restore the virus titer. These results demonstrate that BGLF4 plays a significant role in production of infectious viruses and that the kinase activity is crucial.

  20. Benzoic Acid Derivatives with Trypanocidal Activity: Enzymatic Analysis and Molecular Docking Studies toward Trans-Sialidase

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif

    2017-10-01

    Full Text Available Chagas, or American trypanosomiasis, remains an important public health problem in developing countries. In the last decade, trans-sialidase has become a pharmacological target for new anti-Chagas drugs. In this work, the aims were to design and find a new series of benzoic acid derivatives as trans-sialidase (TS inhibitors and anti-trypanosomal agents. Three compounds (14, 18, and 19 sharing a para-aminobenzoic acid moiety showed more potent trypanocidal activity than the commercially available drugs nifurtimox and benznidazole in both strains: the lysis concentration of 50% of the population (LC50 was <0.15 µM on the NINOA strain, and LC50 < 0.22 µM on the INC-5 strain. Additionally, compound 18 showed a moderate inhibition (47% on the trans-sialidase enzyme and a binding model similar to DANA (pattern A.

  1. Long-term effects of cupric oxide nanoparticles (CuO NPs) on the performance, microbial community and enzymatic activity of activated sludge in a sequencing batch reactor.

    Science.gov (United States)

    Wang, Sen; Li, Zhiwei; Gao, Mengchun; She, Zonglian; Ma, Bingrui; Guo, Liang; Zheng, Dong; Zhao, Yangguo; Jin, Chunji; Wang, Xuejiao; Gao, Feng

    2017-02-01

    The long-term effects of cupric oxide nanoparticles (CuO NPs) on the performance, microbial activity and microbial community of activated sludge were investigated in a sequencing batch reactor (SBR). The SBR performance had no evident change at 0-10 mg/L CuO NPs, whereas the CuO NPs concentration at 30-60 mg/L affected the COD, NH 4 + -N and soluble orthophosphate (SOP) removal, nitrogen and phosphorus removal rate and microbial enzymatic activity of activated sludge. Some CuO NPs might be absorbed on the surface of activated sludge or penetrate the microbial cytomembrane into the microbial cell interior of activated sludge. Compared to 0 mg/L CuO NPs, the reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) release increased by 43.6% and 56.4% at 60 mg/L CuO NPs, respectively. The variations of ROS production and LDH release demonstrated that CuO NPs could induce the toxicity towards the microorganisms and destroy the integrity of microbial cytomembrane in the activated sludge. High throughput sequencing of 16S rDNA indicated that CuO NPs could evidently impact on the microbial richness, diversity and composition of activated sludge in the SBR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. E. coli-Derived L-Asparaginase Retains Enzymatic and Cytotoxic Activity In Vitro for Canine and Feline Lymphoma after Cold Storage

    Directory of Open Access Journals (Sweden)

    Jackie M. Wypij

    2013-01-01

    Full Text Available Background. L-asparaginase is effective in treating canine and feline lymphoma, however chemotherapy poses a significant financial cost to veterinary clients, limiting therapy for many pets. Single dose vials result in significant drug wastage, and drug shortages limit consistent availability for pets. Hypothesis. E. coli-derived asparaginase retains enzymatic and antineoplastic activity in canine and feline lymphoma cells after cold storage. Methods. E. coli-derived asparaginase was cold-stored: refrigeration (7–14 days and freezing (14 days–six months, one to three freeze/thaw cycles. Enzymatic activity of asparaginase was measured via a modified asparagine assay. Effects of cold-stored asparaginase on cell proliferation and cytotoxicity were measured in feline (MYA-1, F1B and canine (17–71, OSW lymphoma cells. Results. Cold-stored E. coli-derived asparaginase retains antineoplastic activity in all four cell lines tested. Cold-stored E. coli-derived L-asparaginase depletes asparagine and retains enzymatic activity. Duration of refrigeration, duration of freezing, and number of freeze-thaw cycles have minimal effect on asparaginase enzyme activity. Conclusions and Clinical Importance. This study establishes a scientific basis for long-term cold storage of reconstituted E. coli-derived asparaginase that may result in better utilization of limited drug resources and improve financial feasibility of E. coli-derived asparaginase as a therapeutic option for pets with lymphoma.

  3. Enhancing phytochemical levels, enzymatic and antioxidant activity of spinach leaves by chitosan treatment and an insight into the metabolic pathway using DART-MS technique.

    Science.gov (United States)

    Singh, Shachi

    2016-05-15

    Phytochemicals are health promoting compounds, synthesized by the plants to protect them against biotic or abiotic stress. The metabolic pathways leading to the synthesis of these phytochemicals are highly inducible; therefore methods could be developed to enhance their production by the exogenous application of chemical inducers/elicitors. In the present experiment, chitosan was used as an elicitor molecule to improve the phytochemical content of spinach plant. When applied at a concentration of 0.01 mg/ml as a foliar spray, chitosan was able to cause an increase in the enzymatic (peroxidase, catalase and phenylalanine ammonium lyase (PAL)) and non enzymatic (total phenolics, flavonoids and proteins) defensive metabolites, as well as, in the total antioxidant activity of the spinach leaves. A 1.7-fold increase in the total phenolics, a 2-fold increase in total flavonoid and a 1.6-fold increase in total protein were achieved with the treatment. A higher level of enzymatic activity was observed with a 4-fold increase in peroxidase and approximately 3-fold increases in catalase and phenylalanine ammonium lyase activity. Antioxidant activity showed a positive correlation between phenolic compounds and the enzymatic activity. Direct analysis in real time mass spectrometry (DART-MS) was applied to generate the metabolite profile of control and treated leaves. DART analysis revealed the activation of phenylpropanoid pathway by chitosan molecule, targeting the synthesis of diverse classes of flavonoids and their glycosides. Important metabolites of stress response were also visible in the DART spectra, including proline and free sugars. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Rotation of nucleotide sites is not required for the enzymatic activity of chloroplast coupling factor

    Energy Technology Data Exchange (ETDEWEB)

    Musier, K.M.; Hammes, G.G.

    1987-09-22

    New heterobifunctional photoaffinity cross-linking reagents, 6-maleimido-N-(4-benzoylphenyl)hexanamide, 12-maleimido-N-(4-benzoylphenyl)dodecanamide, and 12-(/sup 14/C)maleimido-N-(4-benzoylphenyo)dodecanamide, were synthesized to investigate the mechanism of ATP hydrolysis by chloroplast coupling factor 1. These reagents react with sulfhydryl groups on the ..gamma..-polypeptide. Subsequent photolysis cross-links the ..gamma..-polypeptide covalently to ..cap alpha..- and ..beta..-polypeptides. The cross-linkers prevent major movements of the ..gamma..-polypeptide with respect to the ..cap alpha..- and ..beta..-polypeptides but are sufficiently long to permit some flexibility in the enzyme structure. When approx. 50% of the ..gamma..-polypeptide was cross-linked to a ..cap alpha..- and ..beta..-polypeptides, a 7% loss in ATPase activity was observed for the longer cross-linker and a 12% loss for the shorter. These results indicate that large movements of ..cap alpha..- and ..beta..-polypeptides with respect to the ..gamma..-polypeptide are not essential for catalysis. In particular, rotation of the polypeptide chains to crease structurally equivalent sites during catalysis is not a required feature of the enzyme mechanism.

  5. Inhibitory effects of triterpenes and flavonoids on the enzymatic activity of hyaluronic acid-splitting enzymes.

    Science.gov (United States)

    Hertel, Waltraud; Peschel, Gundela; Ozegowski, Jörg-Hermann; Müller, Peter-Jürgen

    2006-06-01

    The effect of triterpenes and flavonoids on the activity of several hyaluronic acid-splitting enzymes was investigated. Studies showed that the inhibitory effect of the triterpenes glycyrrhizin and glycyrrhetinic acid is dependent on the source of hyaluronate lyase. Hyaluronate lyase from Streptococcus agalactiae (Hyal B) and recombinant hyaluronate lyase from Streptococcus agalactiae (rHyal B) demonstrated strongest inhibition. In contrast, hyaluronate lyases from Streptomyces hyalurolyticus (Hyal S), Streptococcus equisimilis (Hyal C) and hyaluronidase from bovine testis (Dase) showed only reduced inhibition action. A non-competitive dead end inhibition with Ki=3.1+/-1.8x10(-6) mol/mL and Kii=6.7+/-2.4x10(-6) mol/mL was found for glycyrrhizin on recombinant hyaluronate lyase from Streptococcus agalactiae. The inhibitory effect of flavonoids on Hyal B, rHyal B and Dase was determined depending on the number of hydroxyl groups and side chain substituents in the molecule. Flavonoids with many hydroxyl groups inhibited hyaluronate lyase stronger than those with only a few. Native hyaluronate lyase (Hyal B) showed a more extensive inhibition than the recombinant protein (rHyal B). Accordingly, the inhibition by triterpenes and flavonoids is presumably specific for each hyaluronic acid (HA)-splitting enzyme.

  6. Rotation of nucleotide sites is not required for the enzymatic activity of chloroplast coupling factor

    International Nuclear Information System (INIS)

    Musier, K.M.; Hammes, G.G.

    1987-01-01

    New heterobifunctional photoaffinity cross-linking reagents, 6-maleimido-N-(4-benzoylphenyl)hexanamide, 12-maleimido-N-(4-benzoylphenyl)dodecanamide, and 12-[ 14 C]maleimido-N-(4-benzoylphenyo)dodecanamide, were synthesized to investigate the mechanism of ATP hydrolysis by chloroplast coupling factor 1. These reagents react with sulfhydryl groups on the γ-polypeptide. Subsequent photolysis cross-links the γ-polypeptide covalently to α- and β-polypeptides. The cross-linkers prevent major movements of the γ-polypeptide with respect to the α- and β-polypeptides but are sufficiently long to permit some flexibility in the enzyme structure. When ∼ 50% of the γ-polypeptide was cross-linked to a α- and β-polypeptides, a 7% loss in ATPase activity was observed for the longer cross-linker and a 12% loss for the shorter. These results indicate that large movements of α- and β-polypeptides with respect to the γ-polypeptide are not essential for catalysis. In particular, rotation of the polypeptide chains to crease structurally equivalent sites during catalysis is not a required feature of the enzyme mechanism

  7. Anti-cancer and anti-oxidant properties of ethanolic leaf extract ofThymus vulgarisand its bio-functionalized silver nanoparticles.

    Science.gov (United States)

    Heidari, Zahra; Salehzadeh, Ali; Sadat Shandiz, Seyed Ataollah; Tajdoost, Sara

    2018-03-01

    This study highlights the anti-oxidant and anti-cancer activities of bio-functionalized Thymus vulgaris silver nanoparticles (TVAgNPs) and bioactive compounds were compared using the human breast cancer T47D cell line. The aqueous ethanolic extract of T. vulgaris evaluated for chemical composition using the gas chromatography-mass spectrometer (GC-MS) analysis. The prepared TVAgNPs were determined by means of UV-Vis spectroscopy, FTIR spectroscopy, zeta potential, scanning electron microscopy, transmission electron microscopy, and energy-dispersed spectroscopy analysis. The T. vulgaris extract and TVAgNPs were studied for their in vitro anti-oxidant property by 2, 2-diphenyl, 1-picryl hydrazyl (DPPH) assay. Microscopic observations indicated spherical shaped and monodispersed nanoparticles and the average size of the nanoparticles was about 30 nm. Regarding the elemental composition profile of the TVAgNPs, the highest signal of silver (89.30%) was detected followed by other elements. An absorption peak was registered at 440 nm according to surface plasmon resonance (SPR) of the TVAgNPs in solution. A zeta potential of fabricated nanoparticles was approximately - 12.6 mV, indicating higher stability of the bio-functionalized TVAgNPs. The T. vulgaris extract and synthesized TVAgNPs were evaluated for their anti-cancer activity using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and Annexin V double staining with propidium iodide (PI) flow cytometric analysis toward T47D cells. The cytotoxicity properties of the bio-functionalized T. vulgaris AgNPs revealed that the sensitivity of T47D human breast cancer cells is high compared with T. vulgaris extract. The Annexin V/PI staining indicated that the fabricated TVAgNPs shows increased apoptosis in T47D cells as compared to untreated cells. Besides, the anti-oxidant activity of the TVAgNPs clarified a higher anti-radical-scavenging activity compared to Thymus vulgaris extract. Our data show

  8. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity

    Directory of Open Access Journals (Sweden)

    Yandeau-Nelson Marna D

    2011-08-01

    Full Text Available Abstract Background Acyl-acyl carrier protein thioesterases (acyl-ACP TEs catalyze the hydrolysis of the thioester bond that links the acyl chain to the sulfhydryl group of the phosphopantetheine prosthetic group of ACP. This reaction terminates acyl chain elongation of fatty acid biosynthesis, and in plant seeds it is the biochemical determinant of the fatty acid compositions of storage lipids. Results To explore acyl-ACP TE diversity and to identify novel acyl ACP-TEs, 31 acyl-ACP TEs from wide-ranging phylogenetic sources were characterized to ascertain their in vivo activities and substrate specificities. These acyl-ACP TEs were chosen by two different approaches: 1 24 TEs were selected from public databases on the basis of phylogenetic analysis and fatty acid profile knowledge of their source organisms; and 2 seven TEs were molecularly cloned from oil palm (Elaeis guineensis, coconut (Cocos nucifera and Cuphea viscosissima, organisms that produce medium-chain and short-chain fatty acids in their seeds. The in vivo substrate specificities of the acyl-ACP TEs were determined in E. coli. Based on their specificities, these enzymes were clustered into three classes: 1 Class I acyl-ACP TEs act primarily on 14- and 16-carbon acyl-ACP substrates; 2 Class II acyl-ACP TEs have broad substrate specificities, with major activities toward 8- and 14-carbon acyl-ACP substrates; and 3 Class III acyl-ACP TEs act predominantly on 8-carbon acyl-ACPs. Several novel acyl-ACP TEs act on short-chain and unsaturated acyl-ACP or 3-ketoacyl-ACP substrates, indicating the diversity of enzymatic specificity in this enzyme family. Conclusion These acyl-ACP TEs can potentially be used to diversify the fatty acid biosynthesis pathway to produce novel fatty acids.

  9. Dimerization and enzymatic activity of fungal 17β-hydroxysteroid dehydrogenase from the short-chain dehydrogenase/reductase superfamily

    Directory of Open Access Journals (Sweden)

    Kristan Katja

    2005-12-01

    Full Text Available Abstract Background 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17β-HSDcl is a member of the short-chain dehydrogenase/reductase (SDR superfamily. SDR proteins usually function as dimers or tetramers and 17β-HSDcl is also a homodimer under native conditions. Results We have investigated here which secondary structure elements are involved in the dimerization of 17β-HSDcl and examined the importance of dimerization for the enzyme activity. Sequence similarity with trihydroxynaphthalene reductase from Magnaporthe grisea indicated that Arg129 and His111 from the αE-helices interact with the Asp121, Glu117 and Asp187 residues from the αE and αF-helices of the neighbouring subunit. The Arg129Asp and His111Leu mutations both rendered 17β-HSDcl monomeric, while the mutant 17β-HSDcl-His111Ala was dimeric. Circular dichroism spectroscopy analysis confirmed the conservation of the secondary structure in both monomers. The three mutant proteins all bound coenzyme, as shown by fluorescence quenching in the presence of NADP+, but both monomers showed no enzymatic activity. Conclusion We have shown by site-directed mutagenesis and structure/function analysis that 17β-HSDcl dimerization involves the αE and αF helices of both subunits. Neighbouring subunits are connected through hydrophobic interactions, H-bonds and salt bridges involving amino acid residues His111 and Arg129. Since the substitutions of these two amino acid residues lead to inactive monomers with conserved secondary structure, we suggest dimerization is a prerequisite for catalysis. A detailed understanding of this dimerization could lead to the development of compounds that will specifically prevent dimerization, thereby serving as a new type of inhibitor.

  10. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties.

    Science.gov (United States)

    Lee, Jin-Ching; Hou, Ming-Feng; Huang, Hurng-Wern; Chang, Fang-Rong; Yeh, Chi-Chen; Tang, Jen-Yang; Chang, Hsueh-Wei

    2013-06-03

    For their various bioactivities, biomaterials derived from marine algae are important ingredients in many products, such as cosmetics and drugs for treating cancer and other diseases. This mini-review comprehensively compares the bioactivities and biological functions of biomaterials from red, green, brown, and blue-green algae. The anti-oxidative effects and bioactivities of several different crude extracts of algae have been evaluated both in vitro and in vivo. Natural products derived from marine algae protect cells by modulating the effects of oxidative stress. Because oxidative stress plays important roles in inflammatory reactions and in carcinogenesis, marine algal natural products have potential for use in anti-cancer and anti-inflammatory drugs.

  11. Postprandial incretin and islet hormone responses and dipeptidyl-peptidase 4 enzymatic activity in patients with maturity onset diabetes of the young

    DEFF Research Database (Denmark)

    Østoft, Signe Harring; Bagger, Jonatan Ising; Hansen, Torben

    2015-01-01

    )), and dipeptidyl-peptidase 4 (DPP-4) enzymatic activity in patients with glucokinase (GCK)-diabetes (MODY2), hepatocyte nuclear factor 1α (HNF1A)-diabetes (MODY3), and in matched healthy individuals (CTRLs). Subjects and methods: Ten patients with GCK-diabetes (age: 43±5 years; BMI: 24±2 kg/m2; FPG: 7.1±0.3 mmol...

  12. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: Characterization and application for enzymatic inhibition assays

    International Nuclear Information System (INIS)

    Zhu, Yuan-Ting; Ren, Xiao-Yun; Liu, Yi-Ming; Wei, Ying; Qing, Lin-Sen; Liao, Xun

    2014-01-01

    Using carboxyl functionalized silica-coated magnetic nanoparticles (MNPs) as carrier, a novel immobilized porcine pancreatic lipase (PPL) was prepared through the 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. Transmission electron microscopic images showed that the synthesized nanoparticles (Fe 3 O 4 –SiO 2 ) possessed three dimensional core–shell structures with an average diameter of ∼ 20 nm. The effective enzyme immobilization onto the nanocomposite was confirmed by atomic force microscopic (AFM) analysis. Results from Fourier-transform infrared spectroscopy (FT-IR), Bradford protein assay, and thermo-gravimetric analysis (TGA) indicated that PPL was covalently attached to the surface of magnetic nanoparticles with a PPL immobilization yield of 50 mg enzyme/g MNPs. Vibrating sample magnetometer (VSM) analysis revealed that the MNPs-PPL nanocomposite had a high saturation magnetization of 42.25 emu·g −1 . The properties of the immobilized PPL were investigated in comparison with the free enzyme counterpart. Enzymatic activity, reusability, thermo-stability, and storage stability of the immobilized PPL were found significantly superior to those of the free one. The K m and the V max values (0.02 mM, 6.40 U·mg −1 enzyme) indicated the enhanced activity of the immobilized PPL compared to those of the free enzyme (0.29 mM, 3.16 U·mg −1 enzyme). Furthermore, at an elevated temperature of 70 °C, immobilized PPL retained 60% of its initial activity. The PPL-MNPs nanocomposite was applied in the enzyme inhibition assays using orlistat, and two natural products isolated from oolong tea (i.e., EGCG and EGC) as the test compounds. - Highlights: • Porcine pancreatic lipase was firstly covalently immobilized onto carboxylated MNPs. • Immobilized porcine pancreatic lipase (PPL) was characterized by various techniques. • MNPs-PPL showed higher activity, reusability, and thermo-stability than

  13. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: Characterization and application for enzymatic inhibition assays

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuan-Ting [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ren, Xiao-Yun [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Liu, Yi-Ming [Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St., Jackson, MS 39217 (United States); Wei, Ying [Changzhi Medical College, Changzhi 046000 (China); Qing, Lin-Sen [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Liao, Xun, E-mail: liaoxun@cib.ac.cn [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China)

    2014-05-01

    Using carboxyl functionalized silica-coated magnetic nanoparticles (MNPs) as carrier, a novel immobilized porcine pancreatic lipase (PPL) was prepared through the 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. Transmission electron microscopic images showed that the synthesized nanoparticles (Fe{sub 3}O{sub 4}–SiO{sub 2}) possessed three dimensional core–shell structures with an average diameter of ∼ 20 nm. The effective enzyme immobilization onto the nanocomposite was confirmed by atomic force microscopic (AFM) analysis. Results from Fourier-transform infrared spectroscopy (FT-IR), Bradford protein assay, and thermo-gravimetric analysis (TGA) indicated that PPL was covalently attached to the surface of magnetic nanoparticles with a PPL immobilization yield of 50 mg enzyme/g MNPs. Vibrating sample magnetometer (VSM) analysis revealed that the MNPs-PPL nanocomposite had a high saturation magnetization of 42.25 emu·g{sup −1}. The properties of the immobilized PPL were investigated in comparison with the free enzyme counterpart. Enzymatic activity, reusability, thermo-stability, and storage stability of the immobilized PPL were found significantly superior to those of the free one. The K{sub m} and the V{sub max} values (0.02 mM, 6.40 U·mg{sup −1} enzyme) indicated the enhanced activity of the immobilized PPL compared to those of the free enzyme (0.29 mM, 3.16 U·mg{sup −1} enzyme). Furthermore, at an elevated temperature of 70 °C, immobilized PPL retained 60% of its initial activity. The PPL-MNPs nanocomposite was applied in the enzyme inhibition assays using orlistat, and two natural products isolated from oolong tea (i.e., EGCG and EGC) as the test compounds. - Highlights: • Porcine pancreatic lipase was firstly covalently immobilized onto carboxylated MNPs. • Immobilized porcine pancreatic lipase (PPL) was characterized by various techniques. • MNPs-PPL showed higher activity

  14. Joint toxicity of sediment-associated permethrin and cadmium to Chironomus dilutus: The role of bioavailability and enzymatic activities

    International Nuclear Information System (INIS)

    Chen, Xin; Li, Huizhen; You, Jing

    2015-01-01

    Pyrethroid insecticides and metals commonly co-occurred in sediment and caused toxicity to benthic organisms jointly. To improve accuracy in assessing risk of the sediments contaminated by insecticides and metals, it is of great importance to understand interaction between the contaminants and reasons for the interaction. In the current study, permethrin and cadmium were chosen as representative contaminants to study joint toxicity of pyrethroids and metals to a benthic invertebrate Chironomus dilutus. A median effect/combination index-isobologram was applied to evaluate the interaction between sediment-bound permethrin and cadmium at three dose ratios. Antagonistic interaction was observed in the midges for all treatments. Comparatively, cadmium-dominated group (the ratio of toxicity contribution from permethrin and cadmium was 1:3) showed stronger antagonism than equitoxicity (1:1) and permethrin-dominated groups (3:1). The reasons for the observed antagonism were elucidated from two aspects, including bioavailability and enzymatic activity. The bioavailability of permethrin, expressed as the freely dissolved concentrations in sediment porewater and measured by solid phase microextraction, was not altered by the addition of cadmium, suggesting the change in permethrin bioavailability was not the reason for the antagonism. On the other hand, the activities of metabolic enzymes, glutathione S-transferase and carboxylesterase in the midges which were exposed to mixtures of permethrin and cadmium were significantly higher than those in the midges exposed to permethrin solely. Cadmium considerably enhanced the detoxifying processes of permethrin in the midges, which largely explained the observed antagonistic interaction between permethrin and cadmium. - Highlights: • Sediment-bound permethrin and cadmium acted antagonistically to Chironomus dilutus. • Antagonism of permethrin and cadmium to the midges was noted at various dose ratios. • Addition of cadmium did

  15. Effect of the concentration of suspended solids on the enzymatic activities and biodiversity of a submerged membrane bioreactor for aerobic treatment of domestic wastewater.

    Science.gov (United States)

    Molina-Muñoz, M; Poyatos, J M; Vílchez, R; Hontoria, E; Rodelas, B; González-López, J

    2007-01-01

    A pilot-scale submerged membrane bioreactor was used for the treatment of domestic wastewater in order to study the influence of the variations in the concentration of volatile suspended solids (VSS) on the enzymatic activities (acid and alkaline phosphatases, glucosidase, protease, esterase, and dehydrogenase) and biodiversity of the bacterial community in the sludge. The influence of VSS concentration was evaluated in two separated experiments, which were carried out in two different seasons of the year (experiment 1 through spring-summer and experiment 2 through autumn-winter). Cluster analysis of the temperature gradient gel electrophoresis (TGGE) profiles demonstrated that the community composition was significantly different in both experiments. Within the same experiment, the bacterial community experienced sequential shifts as the biomass accumulated, as shown by the evolution of the population profiles through time as VSS concentration increased. All enzymatic activities studied were significantly lower during experiment 2, except for glucosidase. Concentrations of VSS over 8 g/l induced a strong descent of all enzymatic activities, which overlapped with a significant modification of the community composition. Sequences of the major TGGE bands were identified as representatives of the Alpha-proteobacteria, filamentous bacteria (Thiotrix), and nitrite oxidizers (Nitrospira). Some sequences which were poorly related to any validated bacterial taxon were obtained.

  16. Enzymatic activity profile of a Brazilian culture collection of Candida albicans isolated from diabetics and non-diabetics with oral candidiasis.

    Science.gov (United States)

    Sanitá, Paula Volpato; Zago, Chaiene Evelin; Pavarina, Ana Cláudia; Jorge, Janaina Habib; Machado, Ana Lúcia; Vergani, Carlos Eduardo

    2014-06-01

    The secretion of hydrolytic enzymes is a fundamental virulence factor of Candida albicans to develop disease. The objective of this study was to characterise the virulence of 148 clinical isolates of C. albicans from oral candidiasis by assessing the expression of phospholipase (PL) and secreted aspartyl proteinase (SAP). Isolates were obtained from healthy subjects (HS) and diabetics (DOC) and non-diabetics with oral candidiasis (NDOC). An aliquot (5 μl) of each cell suspension was inoculated on PL and SAP agar plates and incubated. Enzymes secretion was detected by the formation of an opaque halo around the colonies and enzymatic activity (PZ) was determined by the ratio between colony diameter and colony diameter plus the halo zone. Statistical comparisons were made by a one-way anova followed by Tukey's post hoc test (α = 0.05). The clinical sources of C. albicans had significant effect (P < 0.001) on the PZ values of both enzymes. For PL, clinical isolates from NDOC and DOC had highest enzymatic activity than those from HS (P < 0.05), with no significant differences between them (P = 0.506). For SAP, C. albicans from NDOC showed the lower enzymatic activity (P < 0.001). There were no significant differences between isolates from HS and DOC (P = 0.7051). C. albicans isolates from NDOC and DOC patients showed an increased production of PL. © 2013 Blackwell Verlag GmbH.

  17. A mutant of phosphomannomutase1 retains full enzymatic activity, but is not activated by IMP: Possible implications for the disease PMM2-CDG.

    Directory of Open Access Journals (Sweden)

    Valentina Citro

    Full Text Available The most frequent disorder of glycosylation, PMM2-CDG, is caused by a deficiency of phosphomannomutase activity. In humans two paralogous enzymes exist, both of them require mannose 1,6-bis-phosphate or glucose 1,6-bis-phosphate as activators, but only phospho-mannomutase1 hydrolyzes bis-phosphate hexoses. Mutations in the gene encoding phosphomannomutase2 are responsible for PMM2-CDG. Although not directly causative of the disease, the role of the paralogous enzyme in the disease should be clarified. Phosphomannomutase1 could have a beneficial effect, contributing to mannose 6-phosphate isomerization, or a detrimental effect, hydrolyzing the bis-phosphate hexose activator. A pivotal role in regulating mannose-1phosphate production and ultimately protein glycosylation might be played by inosine monophosphate that enhances the phosphatase activity of phosphomannomutase1. In this paper we analyzed human phosphomannomutases by conventional enzymatic assays as well as by novel techniques such as 31P-NMR and thermal shift assay. We characterized a triple mutant of phospomannomutase1 that retains mutase and phosphatase activity, but is unable to bind inosine monophosphate.

  18. Characterization of the organoleptic properties, vitamin C levels and anti-oxidant contents of Californian grown persimmons (abstract)

    Science.gov (United States)

    California is the largest U.S. producer of persimmons (Diospyros kaki). Consumer demand for persimmons is driven by their organoleptic and nutritional properties (vitamin C and anti-oxidant contents). Most commercial production is divided between a small number of astringent “Hachiya” and non-astri...

  19. Attenuation of Diabetic Nephropathy by Carvacrol through Anti-oxidative Effects in Alloxan-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Hamid Reza Jamshidi

    2018-03-01

    Full Text Available Background and Objectives: Diabetes, a common metabolic disorder, is prevalent in many countries. Nephropathy is a main debate’s side effect. Role of oxidative stress is well known in induction of diabetic nephropathy while carvacrol is a potent anti-oxidant that might attenuate oxidative stress. The aim of this study was to explore the effect of carvacrol in decreasing nephropathy-induced oxidative damage in diabetic rats. Methods: Thirty five Wistar rats (200-250 g were divided to 7 groups. The rats received alloxan (i.p., 200 mg/kg for induction of diabetes. After one week, fasting blood sugar (FBS was assessed and the rats with FBS>250 mg/dL were considered as diabetic. Three weeks after alloxan injection, the blood urea (BUN and creatinine (Cr were determined for confirmation of inducing nephropathy. Then, the animals were treated with carvacrol for one week. Finally, they were anesthetized and blood was collected from animal’s heart for calculation of BUN and Cr. Furthermore, the kidneys were for oxidative stress markers such as glutathione capacity, protein carbonyl, lipid peroxidation and catalase activity. Results: Our results showed that glutathione level and catalase activity significantly increased after treatment with carvacrol. Same results were found in rats that received vitamin E. Also, lipid peroxidation, protein carbonyl content, BUN and Cr levels significantly decreased after treatment with carvacrol in comparison with diabetic rats. Conclusion: Our results showed that carvacrol improved nephropathy-induced oxidative damage similar to vitamin E. Therefore, it may be suggested that carvacrol can be suggested as a useful supplement in decreasing diabetic complaints along with anti-diabetic drugs.

  20. Responses of metabolic and antioxidant enzymatic activities in gill, liver and plasma of Catla catla during methyl parathion exposure

    Directory of Open Access Journals (Sweden)

    B.D. Abhijith

    2016-10-01

    Conclusion: The results of the present investigation suggest that gill is the most sensitive organ to MP toxicity. The alterations of the enzymatic parameters can be effectively used as potential biomarkers for monitoring of the organophosphorus pesticides in aquatic environment. Further, MP should be used with caution in order to protect natural waters and aquatic organisms.

  1. Ultrasonic-assisted enzymatic extraction of phenolics from broccoli (Brassica oleracea L. var. italica) inflorescences and evaluation of antioxidant activity in vitro.

    Science.gov (United States)

    Wu, Hao; Zhu, Junxiang; Yang, Long; Wang, Ran; Wang, Chengrong

    2015-06-01

    An efficient ultrasonic-assisted enzymatic extraction technique was applied to extracting phenolics from broccoli inflorescences without organic solvents. The synergistic model of enzymolysis and ultrasonication simultaneously was selected, and the enzyme combination was optimized by orthogonal test: cellulase 7.5 mg/g FW (fresh weight), pectinase 10 mg/g FW, and papain 1.0 mg/g FW. The operating parameters in ultrasonic-assisted enzymatic extraction were optimized with response surface methodology using Box-Behnken design. The optimal extraction conditions were as follows: ultrasonic power, 440 W; liquid to material ratio, 7.0:1 mL/g; pH value of 6.0 at 54.5 ℃ for 10 min. Under these conditions, the extraction yield of phenolics achieved 1.816 ± 0.0187 mg gallic acid equivalents/gram FW. The free radical scavenging activity of ultrasonic-assisted enzymatic extraction extracts was determined by 1,1-diphenyl-2-picrylhydrazyl·assay with EC50 values of 0.25, and total antioxidant activity was determined by ferric reducing antioxidant power assay with ferric reducing antioxidant power value of 0.998 mmol FeSO4/g compared with the referential ascorbic acid of 1.184 mmol FeSO4/g. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. Gastroprotective Effect of Ginger Rhizome (Zingiber officinale Extract: Role of Gallic Acid and Cinnamic Acid in H+, K+-ATPase/H. pylori Inhibition and Anti-Oxidative Mechanism

    Directory of Open Access Journals (Sweden)

    Siddaraju M. Nanjundaiah

    2011-01-01

    Full Text Available Zinger officinale has been used as a traditional source against gastric disturbances from time immemorial. The ulcer-preventive properties of aqueous extract of ginger rhizome (GRAE belonging to the family Zingiberaceae is reported in the present study. GRAE at 200 mg kg−1 b.w. protected up to 86% and 77% for the swim stress-/ethanol stress-induced ulcers with an ulcer index (UI of 50 ± 4.0/46 ± 4.0, respectively, similar to that of lansoprazole (80% at 30 mg kg−1 b.w. Increased H+, K+-ATPase activity and thiobarbituric acid reactive substances (TBARS were observed in ulcer-induced rats, while GRAE fed rats showed normalized levels and GRAE also normalized depleted/amplified anti-oxidant enzymes in swim stress and ethanol stress-induced animals. Gastric mucin damage was recovered up to 77% and 74% in swim stress and ethanol stress, respectively after GRAE treatment. GRAE also inhibited the growth of H. pylori with MIC of 300 ± 38 μg and also possessed reducing power, free radical scavenging ability with an IC50 of 6.8 ± 0.4 μg mL−1 gallic acid equivalent (GAE. DNA protection up to 90% at 0.4 μg was also observed. Toxicity studies indicated no lethal effects in rats fed up to 5 g kg−1 b.w. Compositional analysis favored by determination of the efficacy of individual phenolic acids towards their potential ulcer-preventive ability revealed that between cinnamic (50% and gallic (46% phenolic acids, cinnamic acid appear to contribute to better H+, K+-ATPase and Helicobacter pylori inhibitory activity, while gallic acid contributes significantly to anti-oxidant activity.

  3. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation.

    Science.gov (United States)

    Ramsden, Christopher A; Riley, Patrick A

    2014-04-15

    Tyrosinase is an enzyme widely distributed in the biosphere. It is one of a group of proteins with a strongly conserved bicopper active centre able to bind molecular oxygen. Tyrosinase manifests two catalytic properties; monooxygenase and oxidase activity. These actions reflect the oxidation states of the active centre. Tyrosinase has four possible oxidation states and the details of their interaction are shown to give rise to the unusual kinetic behaviour of the enzyme. The resting state of the enzyme is met-tyrosinase [Cu(II)2] and activation, associated with a 'lag period', involves reduction to deoxy-tyrosinase [Cu(I)2] which is capable of binding dioxygen to form oxy-tyrosinase [Cu(II)2·O2]. Initially the conversion of met- to deoxy-tyrosinase is brought about by a catechol that is indirectly formed from an ortho-quinone product of tyrosinase action. The primary function of the enzyme is monooxygenation of phenols to ortho-quinones by oxy-tyrosinase. Inactivation of the enzyme results from monooxygenase processing of catechols which can lead to reductive elimination of one of the active-site copper ions and conversion of oxy-tyrosinase to the inactive deact-tyrosinase [Cu(II)Cu(0)]. This review describes the tyrosinase pathways and the role of each oxidation state in the enzyme's oxidative transformations of phenols and catechols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effect of Supplementing Organic Forms of Zinc, Selenium and Chromium on Performance, Anti-Oxidant and Immune Responses in Broiler Chicken Reared in Tropical Summer.

    Science.gov (United States)

    Rao, S V Rama; Prakash, B; Raju, M V L N; Panda, A K; Kumari, R K; Reddy, E Pradeep Kumar

    2016-08-01

    Two experiments were conducted to study the effect of supplementing organic forms of zinc (Zn), selenium (Se) and chromium (Cr) on performance, anti-oxidant activities and immune responses in broiler chickens from 1 to 21 days of age, which were reared in cyclic heat-stressed condition under tropical summer in open-sided poultry house. A total of 200 (experiment I) and 450-day-old (experiment II) broiler male chicks (Cobb 400) were randomly distributed in stainless steel battery brooders (610 mm × 762 mm × 475 mm) at the rate of five birds per pen. A maize-soybean meal-based control diet (CD) containing recommended (Vencobb 400, Broiler Management Guide) concentrations of inorganic trace minerals and other nutrients was prepared. The CD was supplemented individually with organic form of selenium (Se, 0.30 mg/kg), chromium (Cr, 2 mg/kg) and zinc (Zn, 40 mg/kg) in experiment I. In experiment II, two concentrations of each Zn (20 and 40 mg/kg), Se (0.15 and 0.30 mg/kg) and Cr (1 and 2 mg/kg) were supplemented to the basal diet in 2 × 2 × 2 factorial design. A group without supplementing inorganic trace minerals was maintained as control group in both experiments. Each diet was allotted randomly to ten replicates in both experiments and fed ad libitum from 1 to 21 days of age. At 19th day of age, blood samples were collected for estimation of anti-oxidant and immune responses. Supplementation of Se, Cr and Zn increased (P  0.05) by the interaction between levels of Zn, Se and Cr in broiler diet. The FE improved (P  0.05) the immune responses (Newcastle disease titre and cell-mediated immune response to phytohaemagglutinin-P) in both the experiments. Based on the results, it is concluded that supplementation of organic form of Se, Cr and Zn (0.30, 2 and 40 mg/kg, respectively) either alone or in combination significantly improved performance and anti-oxidant responses (reduced LP and increased superoxide dismutase) in commercial

  5. Antibacterial activity of hen egg white lysozyme modified by heat and enzymatic treatments against oenological lactic acid bacteria and acetic acid bacteria.

    Science.gov (United States)

    Carrillo, W; García-Ruiz, A; Recio, I; Moreno-Arribas, M V

    2014-10-01

    The antimicrobial activity of heat-denatured and hydrolyzed hen egg white lysozyme against oenological lactic acid and acetic acid bacteria was investigated. The lysozyme was denatured by heating, and native and heat-denatured lysozymes were hydrolyzed by pepsin. The lytic activity against Micrococcus lysodeikticus of heat-denatured lysozyme decreased with the temperature of the heat treatment, whereas the hydrolyzed lysozyme had no enzymatic activity. Heat-denatured and hydrolyzed lysozyme preparations showed antimicrobial activity against acetic acid bacteria. Lysozyme heated at 90°C exerted potent activity against Acetobacter aceti CIAL-106 and Gluconobacter oxydans CIAL-107 with concentrations required to obtain 50% inhibition of growth (IC50) of 0.089 and 0.013 mg/ml, respectively. This preparation also demonstrated activity against Lactobacillus casei CIAL-52 and Oenococcus oeni CIAL-91 (IC50, 1.37 and 0.45 mg/ml, respectively). The two hydrolysates from native and heat-denatured lysozyme were active against O. oeni CIAL-96 (IC50, 2.77 and 0.3 mg/ml, respectively). The results obtained suggest that thermal and enzymatic treatments increase the antibacterial spectrum of hen egg white lysozyme in relation to oenological microorganisms.

  6. Resveratrol alleviate hypoxic pulmonary hypertension via anti-inflammation and anti-oxidant pathways in rats.

    Science.gov (United States)

    Xu, Dunquan; Li, Yan; Zhang, Bo; Wang, Yanxia; Liu, Yi; Luo, Ying; Niu, Wen; Dong, Mingqing; Liu, Manling; Dong, Haiying; Zhao, Pengtao; Li, Zhichao

    2016-01-01

    Resveratrol, a plant-derived polyphenolic compound and a phytoestrogen, was shown to possess multiple protective effects including anti-inflammatory response and anti-oxidative stress. Hypoxic pulmonary hypertension (HPH) is a progressive disease characterized by sustained vascular resistance and marked pulmonary vascular remodeling. The exact mechanisms of HPH are still unclear, but inflammatory response and oxidative stress was demonstrated to participate in the progression of HPH. The present study was designed to investigate the effects of resveratrol on HPH development. Sprague-Dawley rats were challenged by hypoxia exposure for 28 days to mimic hypoxic pulmonary hypertension along with treating resveratrol (40 mg/kg/day). Hemodynamic and pulmonary pathomorphology data were then obtained, and the anti-proliferation effect of resveratrol was determined by in vitro assays. The anti-inflammation and anti-oxidative effects of resveratrol were investigated in vivo and in vitro . The present study showed that resveratrol treatment alleviated right ventricular systolic pressure and pulmonary arterial remodeling induced by hypoxia. In vitro experiments showed that resveratrol notably inhibited proliferation of pulmonary arterial smooth muscle cells in an ER-independent manner. Data showed that resveratrol administration inhibited HIF-1 α expression in vivo and in vitro , suppressed inflammatory cells infiltration around the pulmonary arteries, and decreased ROS production induced by hypoxia in PAMSCs. The inflammatory cytokines' mRNA levels of tumor necrosis factor α, interleukin 6, and interleukin 1β were all suppressed by resveratrol treatment. The in vitro assays showed that resveratrol inhibited the expression of HIF-1 α via suppressing the MAPK/ERK1 and PI3K/AKT pathways. The antioxidant axis of Nuclear factor erythroid-2 related factor 2/ Thioredoxin 1 (Nrf-2/Trx-1) was up-regulated both in lung tissues and in cultured PASMCs. In general, the current study

  7. Incident type 2 diabetes is associated with HDL, but not with its anti-oxidant constituent - paraoxonase-1: The prospective cohort PREVEND study.

    Science.gov (United States)

    Kunutsor, Setor K; Kieneker, Lyanne M; Bakker, Stephan J L; James, Richard W; Dullaart, Robin P F

    2017-08-01

    High-density lipoprotein cholesterol (HDL-C) is an established risk marker for cardiovascular disease and consistently associated with type 2 diabetes risk. Serum paraoxonase-1 (PON-1) - an anti-oxidant constituent of HDL - is inversely associated with cardiovascular disease risk, but its relationship with incident type 2 diabetes is uncertain. We aimed to investigate the prospective association between PON-1 and type 2 diabetes risk. PON-1 was measured as its arylesterase activity at baseline in the Prevention of Renal and Vascular End-stage Disease (PREVEND) prospective study of 5947 predominantly Caucasian participants aged 28-75years with no pre-existing diabetes, that recorded 500 type 2 diabetes cases during a median follow-up of 11.2years. Serum PON-1 was positively correlated with HDL-C (r=0.17; P<0.001). In analyses adjusted for conventional diabetes risk factors, the hazard ratio (95% CI) for type 2 diabetes per 1 standard deviation increase in PON-1 was 1.07 (0.98 to 1.18; P=0.13), which remained non-significant (1.02 (0.93 to 1.12) P=0.65) after additional adjustment for potential confounders. The association was unchanged on further adjustment for HDL-C (1.05 (0.96 to 1.15; P=0.29). However, in subsidiary analyses in the same set of participants, serum HDL-C concentration was inversely and independently associated with risk of type 2 diabetes. Incident type 2 diabetes is associated with HDL cholesterol but not with its anti-oxidant constituent - PON-1 - in a large cohort of apparently healthy men and women. The current data question the importance of PON-1 activity for the development of diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Ethyl acetate extract from Asparagus cochinchinensis exerts anti-inflammatory effects in LPS-stimulated RAW264.7 macrophage cells by regulating COX-2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity

    Science.gov (United States)

    Lee, Hyun Ah; Koh, Eun Kyoung; Sung, Ji Eun; Kim, Ji Eun; Song, Sung Hwa; Kim, Dong Seob; Son, Hong Joo; Lee, Chung Yeoul; Lee, Hee Seob; Bae, Chang Joon; Hwang, Dae Youn

    2017-01-01

    Asparagus cochinchinesis (A. cochinchinesis) is a medicine traditionally used to treat fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease in northeast Asian countries. Although numerous studies of the anti-inflammatory effects of A. cochinchinesis have been conducted, the underlying mechanisms of such effects in macrophages remain to be demonstrated. To investigate the mechanism of suppressive effects on the inflammatory response in macrophages, alterations of the nitric oxide (NO) level, the cell viability, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels, inflammatory cytokine expression, the mitogen-activated protein kinase (MAPK) signaling pathway, cell cycle arrest and reactive oxygen species (ROS) levels were measured in lipopolysaccharide (LPS)-activated RAW264.7 cells following treatment with ethyl acetate extract from A. cochinchinesis root (EaEAC). RAW264.7 cells pretreated two different concentrations of EaEAC prior to LPS treatment exhibited no significant toxicity. The concentration of NO was significantly decreased in the EaEAC + LPS treated group compared with the vehicle + LPS treated group. A similar decrease in mRNA transcript level of COX-2, iNOS, pro-inflammatory cytokines [tumor necrosis factor-α and interleukin (IL)-1β] and anti-inflammatory cytokines (IL-6 and IL-10) was detected in the EaEAC + LPS treated group compared with the vehicle + LPS treated group, although the decrease rate varied. Enhancement of the phosphorylation of MAPK family members following LPS treatment was partially rescued in the EaEAC pretreated group, and the cell cycle was arrested at the G2/M phase. Furthermore, the EaEAC pretreated group exhibited a reduced level of ROS generation compared with the vehicle + LPS treated group. Taken together, these results suggest that EaEAC suppresses inflammatory responses through inhibition of NO production, COX-2 expression and ROS production, as well as

  9. Ethyl acetate extract from Asparagus cochinchinensis exerts anti‑inflammatory effects in LPS‑stimulated RAW264.7 macrophage cells by regulating COX‑2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity.

    Science.gov (United States)

    Lee, Hyun Ah; Koh, Eun Kyoung; Sung, Ji Eun; Kim, Ji Eun; Song, Sung Hwa; Kim, Dong Seob; Son, Hong Joo; Lee, Chung Yeoul; Lee, Hee Seob; Bae, Chang Joon; Hwang, Dae Youn

    2017-04-01

    Asparagus cochinchinesis (A. cochinchinesis) is a medicine traditionally used to treat fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease in northeast Asian countries. Although numerous studies of the anti‑inflammatory effects of A. cochinchinesis have been conducted, the underlying mechanisms of such effects in macrophages remain to be demonstrated. To investigate the mechanism of suppressive effects on the inflammatory response in macrophages, alterations of the nitric oxide (NO) level, the cell viability, inducible nitric oxide synthase (iNOS) and cyclooxygenase‑2 (COX‑2) expression levels, inflammatory cytokine expression, the mitogen-activated protein kinase (MAPK) signaling pathway, cell cycle arrest and reactive oxygen species (ROS) levels were measured in lipopolysaccharide (LPS)-activated RAW264.7 cells following treatment with ethyl acetate extract from A. cochinchinesis root (EaEAC). RAW264.7 cells pretreated two different concentrations of EaEAC prior to LPS treatment exhibited no significant toxicity. The concentration of NO was significantly decreased in the EaEAC + LPS treated group compared with the vehicle + LPS treated group. A similar decrease in mRNA transcript level of COX‑2, iNOS, pro-inflammatory cytokines [tumor necrosis factor‑α and interleukin (IL)‑1β] and anti‑inflammatory cytokines (IL‑6 and IL‑10) was detected in the EaEAC + LPS treated group compared with the vehicle + LPS treated group, although the decrease rate varied. Enhancement of the phosphorylation of MAPK family members following LPS treatment was partially rescued in the EaEAC pretreated group, and the cell cycle was arrested at the G2/M phase. Furthermore, the EaEAC pretreated group exhibited a reduced level of ROS generation compared with the vehicle + LPS treated group. Taken together, these results suggest that EaEAC suppresses inflammatory responses through inhibition of NO production, COX‑2 expression

  10. Enhancing the Antioxidant Ability of Trametes versicolor Polysaccharopeptides by an Enzymatic Hydrolysis Process.

    Science.gov (United States)

    Jhan, Mei-Hsin; Yeh, Ching-Hua; Tsai, Chia-Chun; Kao, Ching-Tian; Chang, Chao-Kai; Hsieh, Chang-Wei

    2016-09-10

    Polysaccharopeptides (PSPs) are among the main bioactive constituents of Trametes versicolor (T. versicolor). The purpose of this research was to investigate the antioxidant activities of enzymatic hydrolysates obtained from T. versicolor polysaccharopeptides by 80 U/mL β-1,3-glucanase (PSPs-EH80). The half-inhibitory concentration (IC50) of PSPs-EH80 in metal chelating assay, ABTS and DPPH radical scavenging test results were 0.83 mg/mL, 0.14 mg/mL and 0.52 mg/mL, respectively, which were lower than that of PSPs-EH 20 U/mL. The molecular weights of the PSPs-EH80 hydrolysates were 300, 190, 140 and 50 kDa, respectively, and the hydrolysis of polysaccharides by β-1,3-glucanase did not change the original functional group. PSPs-EH80 reduced the reactive oxygen species (ROS) content at least twice that of treatment without PSPs-EH80. In addition, an oxidative damage test showed that PSPs-EH80 can improve HaCaT cell survival. According to our results, PSP demonstrates the potential of anti-oxidative damage; besides, enzyme hydrolysis can improve the ability of the PSP.

  11. Modulation of the pharmacological effects of enzymatically-active PLA2 by BTL-2, an isolectin isolated from the Bryothamnion triquetrum red alga

    Directory of Open Access Journals (Sweden)

    Nagano Celso S

    2008-06-01

    Full Text Available Abstract Background An interaction between lectins from marine algae and PLA2 from rattlesnake was suggested some years ago. We, herein, studied the effects elicited by a small isolectin (BTL-2, isolated from Bryothamnion triquetrum, on the pharmacological and biological activities of a PLA2 isolated from rattlesnake venom (Crotalus durissus cascavella, to better understand the enzymatic and pharmacological mechanisms of the PLA2 and its complex. Results This PLA2 consisted of 122 amino acids (approximate molecular mass of 14 kDa, its pI was estimated to be 8.3, and its amino acid sequence shared a high degree of similarity with that of other neurotoxic and enzymatically-active PLA2s. BTL-2 had a molecular mass estimated in approximately 9 kDa and was characterized as a basic protein. In addition, BTL-2 did not exhibit any enzymatic activity. The PLA2 and BTL-2 formed a stable heterodimer with a molecular mass of approximately 24–26 kDa, estimated by molecular exclusion HPLC. In the presence of BTL-2, we observed a significant increase in PLA2 activity, 23% higher than that of PLA2 alone. BTL-2 demonstrated an inhibition of 98% in the growth of the Gram-positive bacterial strain, Clavibacter michiganensis michiganensis (Cmm, but only 9.8% inhibition of the Gram-negative bacterial strain, Xanthomonas axonopodis pv passiflorae (Xap. PLA2 decreased bacterial growth by 27.3% and 98.5% for Xap and Cmm, respectively, while incubating these two proteins with PLA2-BTL-2 inhibited their growths by 36.2% for Xap and 98.5% for Cmm. PLA2 significantly induced platelet aggregation in washed platelets, whereas BTL-2 did not induce significant platelet aggregation in any assay. However, BTL-2 significantly inhibited platelet aggregation induced by PLA2. In addition, PLA2 exhibited strong oedematogenic activity, which was decreased in the presence of BTL-2. BTL-2 alone did not induce oedema and did not decrease or abolish the oedema induced by the 48

  12. Electrophoretic characterization of D. melanogaster strains deficient in endogenous anti-oxidants in combination with gamma radiation; Caracterizacion electroforetica de cepas de D. melanogaster deficientes en antioxidantes endogenos en combinacion con radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Gomar A, S.

    2012-07-01

    The free radicals derived of the oxygen and other reactive species are generated by endogenous processes as sub-products of the aerobic metabolism or by exogenous factors as the environmental pollution, the biological half life of these free radicals is of microseconds, but they have the capacity of reacting with any atom or molecule to its around causing oxidant stress and damage to molecules, cellular membranes and tissues. To counteract them, there is endogenous and exogenous anti-oxidants, the first ones are synthesized by the organism for maintaining the cellular homeostasis as the superoxide dismutase and catalase. There are recent evidences that indicate that the sodium cooper chlorophyllin (SCC) presents a dual effect reducing and/or increasing the induced genetic damage by different mutagenic agents. One hypothesis for this effect is that the SCC can act as oxidant per se or through some of their metabolites. Results more recent indicated that a similar of the SCC, the protoporphyrin-Ix, can produce genetic damage. In this work exogenous anti-oxidants were used, as the SCC, protoporphyrin-Ix or the bilirubin in the induction of endogenous anti-oxidants enzymes to evaluate the supposed oxidant activity of the SCC and/or their metabolites. Drosophila melanogaster strains deficient in superoxide dismutase, catalase and withered were used and a rustic strain Canton-S as control. In the three experiments were treated 60 males of 1 day of age, with SCC, protoporphyrin-Ix or bilirubin to one concentration of 69 m M during 12 days. Every 4 days 10 males were isolated to measure them the induction of superoxide dismutase and catalase. The results showed that the SCC, protoporphyrin-Ix and bilirubin considered like anti-oxidants, were able to increase the induction of the superoxide dismutase and catalase enzymes. This result maybe is because they are able to generate reactive species of oxygen, as the anion superoxide and the hydrogen peroxide. Among the three

  13. Improving Asphalt Mixtures Performance by Mitigating Oxidation Using Anti-Oxidants Additives

    Science.gov (United States)

    Dessouky, Samer; Diaz, Manuel

    Polymer modified additives are typically used to improve rheological properties of asphalt binder as well as mechanical properties of asphalt concrete mix. In this study, polymer-modified binder PG70-22 is mixing with two co-polymers enhanced with anti-oxidant agents namely; Solution Styrene-Butadiene Rubber (SSBR) and Solution Ethylene-Butylene/Styrene (SEBS). The objective of this study is to characterize the effect of those additives into the rheological properties of the asphalt binder using temperature sweep test and mechanical properties of asphalt mixes. The aging index is determined to evaluate the role of additives to reduce brittleness after aging of the binder. The performance of asphalt mixes were characterized by Hamburg Wheel Tracking Test for moisture damage, Beam Fatigue Test for fatigue properties and Flow Number Test for rutting performance. It is found that the asphalt mixes with enhanced binders are improving its rutting and moisture resistance but decreased its fatigue life compared to the control mix.

  14. Anti-Oxidant Response Genes sequence variants and BPD susceptibility in VLBW infants

    Science.gov (United States)

    Sampath, Venkatesh; Garland, Jeffery S.; Helbling, Daniel; Dimmock, David; Mulrooney, Neil P.; Simpson, Pippa M.; Murray, Jeffrey C.; Dagle, John M.

    2015-01-01

    Background Lung injury resulting from oxidative stress contributes to bronchopulmonary dysplasia (BPD) pathogenesis. Nuclear factor erythroid-2 related factor-2 (NFE2L2) regulates cytoprotective responses to oxidative stress by inducing enzymes containing anti-oxidant response elements (ARE). We hypothesized that ARE genetic variants will modulate susceptibility or severity of BPD in very low birth weight (VLBW) infants. Methods Blood samples obtained from VLBW infants were used for genotyping variants in the SOD2, NFE2L2, GCLC, GSTP1, HMOX1 and NQO1 genes. SNPs were genotyped utilizing TaqMan probes (Applied Biosystems (ABI), Grand Island, NY), and data was analyzed using the ABI HT7900. Genetic dominance and recessive models were tested to determine associations between SNPs and BPD. Results In our cohort (n=659), 284 infants had BPD; 135 of whom developed severe BPD. Presence of the hypomorphic NQO1 SNP (rs1800566) in a homozygous state was associated with increased BPD while presence of the NFE2L2 SNP (rs6721961) was associated with decreased severe BPD in the entire cohort and in Caucasian infants. In regression models that adjusted for epidemiological confounders, the NQO1 and the NFE2L2 SNPs were associated with BPD and severe BPD, respectively. Conclusions Genetic variants in NFE2L2-ARE axis may contribute to the variance in liability to BPD observed in preterm infants. These results require confirmation in independent cohorts. PMID:25518008

  15. The Effect of Methylation and Anti-Oxidant on Discoloration of Weathered Wood Plastic Composites

    Directory of Open Access Journals (Sweden)

    Peivand Darabi

    2011-01-01

    Full Text Available As the outdoor application of Wood Plastic Composites (WPCs become more widespread, the resistance of these products against weathering, particularly ultraviolet (UV light becomes more important. When WPCs are exposed to outdoor ultraviolet light, rain, snow and atmosphere pollution, they will be degraded which can be indicated by color fade. To investigate the effects of methylation and Anti-Oxidant separately and together on discoloration of weathered wood plastic composites, composites of poplar wood flour and high density polyethylene.Were made according to the ASTMD 2565, samples were placed in Atlas Xenon apparatus for 250 and 2000 hours. Discoloration and FT-IR spectra of the samples were measured and compared. The results have shown that methylation in short term and long term can relatively reduce the discoloration of weathered samples and also in short term can hinder the photodegradation. FT-IR spectra showed that, in long term, neither of the treatments could protect lignin from irradiation within wood flour. But methylation limited the depth of penetration of weathering. The Antioxidant did not have an influence on color change in a long period of time, but was able to relatively decrease it in short term.

  16. Catabolite regulation of enzymatic activities in a white pox pathogen and commensal bacteria during growth on mucus polymers from the coral Acropora palmata.

    Science.gov (United States)

    Krediet, Cory J; Ritchie, Kim B; Teplitski, Max

    2009-11-16

    Colonization of host mucus surfaces is one of the first steps in the establishment of coral-associated microbial communities. Coral mucus contains a sulfated glycoprotein (in which oligosaccharide decorations are connected to the polypeptide backbone by a mannose residue) and molecules that result from its degradation. Mucus is utilized as a growth substrate by commensal and pathogenic organisms. Two representative coral commensals, Photobacterium mandapamensis and Halomonas meridiana, differed from a white pox pathogen Serratia marcescens PDL100 in the pattern with which they utilized mucus polymers of Acropora palmata. Incubation with the mucus polymer increased mannopyranosidase activity in S. marcescens, suggestive of its ability to cleave off oligosaccharide side chains. With the exception of glucosidase and N-acetyl galactosaminidase, glycosidases in S. marcescens were subject to catabolite regulation by galactose, glucose, arabinose, mannose and N-acetyl-glucosamine. In commensal P. mandapamensis, at least 10 glycosidases were modestly induced during incubation on coral mucus. Galactose, arabinose, mannose, but not glucose or N-acetyl-glucosamine had a repressive effect on glycosidases in P. mandapamensis. Incubation with the mucus polymers upregulated 3 enzymatic activities in H. meridiana; glucose and galactose appear to be the preferred carbon source in this bacterium. Although all these bacteria were capable of producing the same glycosidases, the differences in the preferred carbon sources and patterns of enzymatic activities induced during growth on the mucus polymer in the presence of these carbon sources suggest that to establish themselves within the coral mucus surface layer commensals and pathogens rely on different enzymatic activities.

  17. Impact of the redox-cycling herbicide diquat on transcript expression and antioxidant enzymatic activities of the freshwater snail Lymnaea stagnalis

    Energy Technology Data Exchange (ETDEWEB)

    Bouetard, Anthony, E-mail: anthony.bouetard@rennes.inra.fr [INRA, UMR INRA-Agrocampus Ouest ESE 0985, Equipe Ecotoxicologie et Qualite des Milieux Aquatiques, 65 rue de Saint-Brieuc, 35042 Rennes cedex (France); Besnard, Anne-Laure; Vassaux, Daniele; Lagadic, Laurent; Coutellec, Marie-Agnes [INRA, UMR INRA-Agrocampus Ouest ESE 0985, Equipe Ecotoxicologie et Qualite des Milieux Aquatiques, 65 rue de Saint-Brieuc, 35042 Rennes cedex (France)

    2013-01-15

    The presence of pesticides in the environment results in potential unwanted effects on non-target species. Freshwater organisms inhabiting water bodies adjacent to agricultural areas, such as ditches, ponds and marshes, are good models to test such effects as various pesticides may reach these habitats through several ways, including aerial drift, run-off, and drainage. Diquat is a non-selective herbicide used for crop protection or for weed control in such water bodies. In this study, we investigated the effects of diquat on a widely spread aquatic invertebrate, the holarctic freshwater snail Lymnaea stagnalis. Due to the known redox-cycling properties of diquat, we studied transcript expression and enzymatic activities relative to oxidative and general stress in the haemolymph and gonado-digestive complex (GDC). As diquat is not persistent, snails were exposed for short times (5, 24, and 48 h) to ecologically relevant concentrations (22.2, 44.4, and 222.2 {mu}g l{sup -1}) of diquat dibromide. RT-qPCR was used to quantify the transcription of genes encoding catalase (cat), a cytosolic superoxide dismutase (Cu/Zn-sod), a selenium-dependent glutathione peroxidase (gpx), a glutathione reductase (gred), the retinoid X receptor (rxr), two heat shock proteins (hsp40 and hsp70), cortactin (cor) and the two ribosomal genes r18S and r28s. Enzymatic activities of SOD, Gpx, Gred and glutathione S-transferase (GST) were investigated in the GDC using spectrophoto/fluorometric methods. Opposite trends were obtained in the haemolymph depending on the herbicide concentration. At the lowest concentration, effects were mainly observed after 24 h of exposure, with over-transcription of cor, hsp40, rxr, and sod, whereas higher concentrations down-regulated the expression of most of the studied transcripts, especially after 48 h of exposure. In the GDC, earlier responses were observed and the fold-change magnitude was generally much higher: transcription of all target genes increased

  18. Clinical manifestations and enzymatic activities of mitochondrial respiratory chain complexes in Pearson marrow-pancreas syndrome with 3-methylglutaconic aciduria: a case report and literature review.

    Science.gov (United States)

    Sato, Takeshi; Muroya, Koji; Hanakawa, Junko; Iwano, Reiko; Asakura, Yumi; Tanaka, Yukichi; Murayama, Kei; Ohtake, Akira; Hasegawa, Tomonobu; Adachi, Masanori

    2015-12-01

    Pearson marrow-pancreas syndrome (PS) is a rare mitochondrial disorder. Impaired mitochondrial respiratory chain complexes (MRCC) differ among individuals and organs, which accounts for variable clinical pictures. A subset of PS patients develop 3-methylglutaconic aciduria (3-MGA-uria), but the characteristic symptoms and impaired MRCC remain unknown. Our patient, a girl, developed pancytopenia, hyperlactatemia, steatorrhea, insulin-dependent diabetes mellitus, liver dysfunction, Fanconi syndrome, and 3-MGA-uria. She died from cerebral hemorrhage at 3 years of age. We identified a novel 5.4-kbp deletion of mitochondrial DNA. The enzymatic activities of MRCC I and IV were markedly reduced in the liver and muscle and mildly reduced in skin fibroblasts and the heart. To date, urine organic acid analysis has been performed on 29 PS patients, including our case. Eight patients had 3-MGA-uria, while only one patient did not. The remaining 20 patients were not reported to have 3-MGA-uria. In this paper, we included these 20 patients as PS patients without 3-MGA-uria. PS patients with and without 3-MGA-uria have similar manifestations. Only a few studies have examined the enzymatic activities of MRCC. No clinical characteristics distinguish between PS patients with and without 3-MGA-uria. The correlation between 3-MGA-uria and the enzymatic activities of MRCC remains to be elucidated. • The clinical characteristics of patients with Pearson marrow-pancreas syndrome and 3-methylglutaconic aciduria remain unknown. • No clinical characteristics distinguish between Pearson marrow-pancreas syndrome patients with and without 3-methylglutaconic aciduria.

  19. Antidiabetic, anti-oxidant and antimicrobial activities of Fadogia ancylantha extracts from Malawi

    CSIR Research Space (South Africa)

    Nyirenda, KK

    2012-08-01

    Full Text Available Ethnopharmacological relevance: Communities in Chilumba, Malawi use herbal tea prepared from Fadogia ancylantha Schweinf (Rubiaceae) leaves for the management of diabetes, hypertension and alleviation of symptoms of gastrointestinal disorders...

  20. Wound healing and anti-oxidant activities of the fruit pulp of limonia ...

    African Journals Online (AJOL)

    In dead-space wound model, granulation tissue dry weight, hydroxyproline levels in dry granulation tissue, as well as superoxide dismutase (SOD) and catalase levels in wet granulation tissue were estimated. Granulation tissue was subjected to histopathological examination in order to determine whether there was ...

  1. Anti-oxidant activity of 6-gingerol as a hydroxyl radical scavenger by ...

    Indian Academy of Sciences (India)

    gies would mainly depend on reorganization of electron density due to the reactions which would depend on valencies of the reacting centers and local reaction envi- ronments. Smaller barrier energies would reveal that the reactions under consideration would occur more easily while larger released energies would imply ...

  2. PSA-alpha-2-macroglobulin complex is enzymatically active in the serum of patients with advanced prostate cancer and can degrade circulating peptide hormones.

    Science.gov (United States)

    Kostova, Maya B; Brennen, William Nathaniel; Lopez, David; Anthony, Lizamma; Wang, Hao; Platz, Elizabeth; Denmeade, Samuel R

    2018-04-16

    Prostate cancer cells produce high levels of the serine protease Prostate-Specific Antigen (PSA). PSA is enzymatically active in the tumor microenvironment but is presumed to be enzymatically inactive in the blood due to complex formation with serum protease inhibitors α-1-antichymotrypsin and α-2-macroglobulin (A2M). PSA-A2M complexes cannot be measured by standard ELISA assays and are also rapidly cleared from the circulation. Thus the exact magnitude of PSA production by prostate cancer cells is not easily measured. The PSA complexed to A2M is unable to cleave proteins but maintains the ability to cleave small peptide substrates. Thus, in advanced prostate cancer, sufficient PSA-A2M may be in circulation to effect total A2M levels, levels of cytokines bound to A2M and hydrolyze small circulating peptide hormones. Total A2M levels in men with advanced prostate cancer and PSA levels above 1000 ng/mL were measured by ELISA and compared to controls. Additional ELISA assays were used to measure levels of IL-6 and TGF-beta which can bind to A2M. The ability of PSA-A2M complexes to hydrolyze protein and peptide substrates was analyzed ± PSA inhibitor. Enzymatic activity of PSA-A2M in serum of men with high PSA levels was also assayed. Serum A2M levels are inversely correlated with PSA levels in men with advanced prostate cancer. Il-6 Levels are significantly elevated in men with PSA >1000 ng/mL compared to controls with PSA PSA-A2M complex in serum of men with PSA levels >1000 ng/mL can hydrolyze small fluorescently labeled peptide substrates but not large proteins that are PSA substrates. PSA can hydrolyze small peptide hormones like PTHrP and osteocalcin. PSA complexed to A2M retains the ability to degrade PTHrP. In advanced prostate cancer with PSA levels >1000 ng/mL, sufficient PSA-A2M is present in circulation to produce enzymatic activity against circulating small peptide hormones. Sufficient PSA is produced in advanced prostate cancer to alter

  3. Enzymatic Browning: a practical class

    Directory of Open Access Journals (Sweden)

    Maria Teresa Pedrosa Silva Clerici

    2014-10-01

    Full Text Available This paper presents a practical class about the enzymes polyphenol oxidases, which have been shown to be responsible for the enzymatic browning of fruits and vegetables. Vegetables samples were submitted to enzymatic inactivation process with chemical reagents, as well as by bleaching methods of applying heat by conventional oven and microwave oven. Process efficiency was assessed qualitatively by both observing the guaiacol peroxidase activity and after the storage period under refrigeration or freezing. The practical results obtained in this class allow exploring multidisciplinary knowledge in food science, with practical applications in everyday life.

  4. Modification of chemical properties, Cu fractionation and enzymatic activities in an acid vineyard soil amended with winery wastes: A field study.

    Science.gov (United States)

    Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Gómez-Armesto, Antía; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Calviño, David

    2017-11-01

    The effects of adding two winery wastes, perlite waste (PW) and bentonite waste (BW), to an acid vineyard soil were assessed using some chemical and biological soil properties in a field study that lasted 18 months. The addition of PW (up to 81 Mg ha -1 ) had neither significant nor permanent effects on soil characteristics such as the pH, organic matter content or nutrient concentrations, the amounts of copper or zinc, or the electrical conductivity. Moreover, no persistent negative effects were found on the enzymatic activities after PW application. In contrast, soil that was amended with up to 71 Mg BW ha -1 showed increases in its soil pH values, exchangeable potassium and water soluble potassium and phosphorus contents. In addition, it caused significant increases in the electrical conductivity and water-soluble Cu. In addition, the phosphomonoesterase enzymatic activity decreased significantly (up to 28%) in response to the amendment with 71 Mg BW ha -1 . These results showed that adding BW and PW to the soil may be a good agronomic practice for recycling these types of wastes. However, in the case of PW, its use as a soil amendment must be performed with caution to control its possible harmful effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Evaluation of Biological and Enzymatic Activity of Soil in a Tropical Dry Forest: Desierto de la Tatacoa (Colombia) with Potential in Mars Terraforming and Other Similar Planets

    Science.gov (United States)

    Moreno Moreno, A. N.

    2009-12-01

    Desierto de la Tatacoa has been determined to be a tropical dry forest bioma, which is located at 3° 13" N 75° 13" W. It has a hot thermal floor with 440 msnm of altitude; it has a daily average of 28° C, and a maximum of 40° C, Its annual rainfall total can be upwards of 1250 mm. Its solar sheen has a daily average of 5.8 hours and its relative humidity is between 60% and 65%. Therefore, the life forms presents are very scant, and in certain places, almost void. It was realized a completely random sampling of soil from its surface down to 6 inches deep, of zones without vegetation and with soils highly loaded by oxides of iron in order to determine the number of microorganisms per gram and its subsequent identification. It was measured the soil basal respiration. Besides, it was determined enzymatic activity (catalase, dehydrogenase, phosphatase and urease). Starting with the obtained results, it is developes an alternative towards the study of soil genesis in Mars in particular, and recommendations for same process in other planets. Although the information found in the experiments already realized in Martian soil they demonstrate that doesnt exist any enzymatic activity, the knowledge of the same topic in the soil is proposed as an alternative to problems like carbonic fixing of the dense Martian atmosphere of CO2, the degradation of inorganic compounds amongst other in order to prepare the substratum for later colonization by some life form.

  6. Feeding indices and enzymatic activities of carob moth Ectomyelois ceratoniae (Zeller (Lepidoptera: pyrallidae on two commercial pistachio cultivars and an artificial diet

    Directory of Open Access Journals (Sweden)

    Naeimeh Teimouri

    2015-01-01

    Full Text Available Feeding indices and enzymatic activities of Ectomyelois ceratoniae (Zeller were studied in a growth chamber under controlled conditions (29 ± 2 °C, relative humidity of 70 ± 5% and a photoperiod of 16:8 (L:D hours on two commercial Pistachio cultivars (Akbari and Kalequchi and an artificial diet. Feeding indices of E. ceratoniae larvae differed significantly on three hosts (P < 0.05. The relative consumption rate was calculated to be 5.36 ± 0.009, 11.10 ± 1.49 and 10.631 ± 0.599 (mg/mg/day on artificial diet, Akbari and Kalequchi cultivars, respectively. Carob moth larvae reared on Akbari cultivar showed the highest efficiency of conversion of digested food (ECD (5.64 ± 0.43. The highest amount of efficiency of conversion of ingested food (ECI was obtained on artificial diet but approximate digestibility (AD was the lowest on this diet. The highest enzymatic activities of alpha-amylase, general proteases and lipase were observed in the midgut of larvae reared on artificial diet. Total protein and lipid value were highest in larvae that were reared on artificial diet.

  7. Crystal structure of β1→6-galactosidase from Bifidobacterium bifidum S17: trimeric architecture, molecular determinants of the enzymatic activity and its inhibition by α-galactose.

    Science.gov (United States)

    Godoy, Andre Schutzer; Camilo, Cesar Moises; Kadowaki, Marco Antonio; Muniz, Heloisa Dos S; Espirito Santo, Melissa; Murakami, Mario Tyago; Nascimento, Alessandro S; Polikarpov, Igor

    2016-11-01

    In a search for better comprehension of β-galactosidase function and specificity, we solved the crystal structures of the GH42 β-galactosidase BbgII from Bifidobacterium bifidum S17, a well-adapted probiotic microorganism from the human digestive tract, and its complex with d-α-galactose. BbgII is a three-domain molecule that forms barrel-shaped trimers in solution. BbgII interactions with d-α-galactose, a competitive inhibitor, showed a number of residues that are involved in the coordination of ligands. A combination of site-directed mutagenesis of these amino acid residues with enzymatic activity measurements confirmed that Glu161 and Glu320 are fundamental for catalysis and their substitution by alanines led to catalytically inactive mutants. Mutation Asn160Ala resulted in a two orders of magnitude decrease of the enzyme k cat without significant modification in its K m , whereas mutations Tyr289Phe and His371Phe simultaneously decreased k cat and increased K m values. Enzymatic activity of Glu368Ala mutant was too low to be detected. Our docking and molecular dynamics simulations showed that the enzyme recognizes and tightly binds substrates with β1→6 and β1→3 bonds, while binding of the substrates with β1→4 linkages is less favorable. Structural data are available in the PDB under the accession numbers 4UZS and 4UCF. © 2016 Federation of European Biochemical Societies.

  8. Nrf2-inducing anti-oxidation stress response in the rat liver--new beneficial effect of lansoprazole.

    Science.gov (United States)

    Yamashita, Yasunobu; Ueyama, Takashi; Nishi, Toshio; Yamamoto, Yuta; Kawakoshi, Akatsuki; Sunami, Shogo; Iguchi, Mikitaka; Tamai, Hideyuki; Ueda, Kazuki; Ito, Takao; Tsuruo, Yoshihiro; Ichinose, Masao

    2014-01-01

    Lansoprazole is a potent anti-gastric ulcer drug that inhibits gastric proton pump activity. We identified a novel function for lansoprazole, as an inducer of anti-oxidative stress responses in the liver. Gastric administration of lansoprazole (10-100 mg/kg) to male Wistar rats produced a dose-dependent increase in hepatic mRNA levels of nuclear factor, erythroid-derived 2, -like 2 (Nrf2), a redox-sensitive transcription factor, at 3 h and Nrf2 immunoreactivity (IR) in whole hepatic lysates at 6 h. Conversely, the levels of Kelch-like ECH-associated protein (Keap1), which sequesters Nrf2 in the cytoplasm under un-stimulated conditions, were unchanged. Translocation of Nrf2 into the nuclei of hepatocytes was observed using western blotting and immunohistochemistry. Expression of mRNAs for Nrf2-dependent antioxidant and phase II enzymes, such as heme oxygenase 1 (HO-1), NAD (P) H dehydrogenase, quinone 1 (Nqo1), glutathione S-transferase A2 (Gsta2), UDP glucuronosyltransferase 1 family polypeptide A6 (Ugt1a6), were dose-dependently up-regulated at 3 h. Furthermore, the levels of HO-1 IR were dose-dependently increased in hepatocytes at 6 h. Subcutaneous administration of lansoprazole (30 mg/kg/day) for 7 successive days resulted in up-regulation and nuclear translocation of Nrf2 IR in hepatocytes and up-regulation of HO-1 IR in the liver. Pretreatment with lansoprazole attenuated thioacetamide (500 mg/kg)-induced acute hepatic damage via both HO-1-dependent and -independent pathways. Up-stream networks related to Nrf2 expression were investigated using microarray analysis, followed by data mining with Ingenuity Pathway Analysis. Up-regulation of the aryl hydrocarbon receptor (AhR)-cytochrome P450, family 1, subfamily a, polypeptide 1 (Cyp1a1) pathway was associated with up-regulation of Nrf2 mRNA. In conclusion, lansoprazole might have an alternative indication in the prevention and treatment of oxidative hepatic damage through the induction of both phase I and phase

  9. Nrf2-Inducing Anti-Oxidation Stress Response in the Rat Liver - New Beneficial Effect of Lansoprazole

    Science.gov (United States)

    Yamashita, Yasunobu; Ueyama, Takashi; Nishi, Toshio; Yamamoto, Yuta; Kawakoshi, Akatsuki; Sunami, Shogo; Iguchi, Mikitaka; Tamai, Hideyuki; Ueda, Kazuki; Ito, Takao; Tsuruo, Yoshihiro; Ichinose, Masao

    2014-01-01

    Lansoprazole is a potent anti-gastric ulcer drug that inhibits gastric proton pump activity. We identified a novel function for lansoprazole, as an inducer of anti-oxidative stress responses in the liver. Gastric administration of lansoprazole (10–100 mg/kg) to male Wistar rats produced a dose-dependent increase in hepatic mRNA levels of nuclear factor, erythroid-derived 2, -like 2 (Nrf2), a redox-sensitive transcription factor, at 3 h and Nrf2 immunoreactivity (IR) in whole hepatic lysates at 6 h. Conversely, the levels of Kelch-like ECH-associated protein (Keap1), which sequesters Nrf2 in the cytoplasm under un-stimulated conditions, were unchanged. Translocation of Nrf2 into the nuclei of hepatocytes was observed using western blotting and immunohistochemistry. Expression of mRNAs for Nrf2-dependent antioxidant and phase II enzymes, such as heme oxygenase 1 (HO-1), NAD (P) H dehydrogenase, quinone 1 (Nqo1), glutathione S-transferase A2 (Gsta2), UDP glucuronosyltransferase 1 family polypeptide A6 (Ugt1a6), were dose-dependently up-regulated at 3 h. Furthermore, the levels of HO-1 IR were dose-dependently increased in hepatocytes at 6 h. Subcutaneous administration of lansoprazole (30 mg/kg/day) for 7 successive days resulted in up-regulation and nuclear translocation of Nrf2 IR in hepatocytes and up-regulation of HO-1 IR in the liver. Pretreatment with lansoprazole attenuated thioacetamide (500 mg/kg)-induced acute hepatic damage via both HO-1-dependent and -independent pathways. Up-stream networks related to Nrf2 expression were investigated using microarray analysis, followed by data mining with Ingenuity Pathway Analysis. Up-regulation of the aryl hydrocarbon receptor (AhR)-cytochrome P450, family 1, subfamily a, polypeptide 1 (Cyp1a1) pathway was associated with up-regulation of Nrf2 mRNA. In conclusion, lansoprazole might have an alternative indication in the prevention and treatment of oxidative hepatic damage through the induction of both phase I and

  10. [Study on inhibitory effect of water extract of Polygonum multiflorum on CYP1A2 and CYP2E1 enzymatic activities and mRNA expressions in rat liver].

    Science.gov (United States)

    Li, Hao; Yang, Hong-li; Li, Deng-ke; Feng, Guang-yuan; Wei, Bao-hong; Zhang, Yuan-yuan; Zhang, Yu-jie; Sun, Zhen-xiao

    2015-04-01

    Rats were continuously given different doses of water extract of Polygonum multiflorum (1, 10 g x kg(-1)) for 7 days to prepare liver microsomes. Cocktail in vitro incubation approach and Real-time quantitative PCR technology were used to observe the effect of water extract of P. multiflorum on CYP450 enzymatic activities and mRNA expressions in rat liver. Compared with the blank control group, both 1, 10 g x kg(-1) water extract of P. multiflorum treated groups showed significant inhibitions in CYP2E1 enzymatic activities and mRNA expressions (enzymatic activities of CYP2E1, P < 0.01; mRNA expression of CYP2E1, P < 0.05 in 1 g x kg(-1) group, P < 0.01 in 10 g x kg(-1) group). They revealed a significant increase in the enzymatic activity of CYP3A1 (P < 0.01), but without significant change in mRNA expressions. The 10 g x kg(-1) group showed a significant inhibition in CYP1A2 enzymatic activities and mRNA expressions in rat livers (P < 0.01).

  11. Ink-native electrophoresis: an alternative to blue-native electrophoresis more suitable for in-gel detection of enzymatic activity.

    Science.gov (United States)

    Kaneko, Keisuke; Sueyoshi, Noriyuki; Kameshita, Isamu; Ishida, Atsuhiko

    2013-09-15

    Blue-native electrophoresis (BNE) is a useful technique for analyzing protein complexes, but the Coomassie brilliant blue (CBB) dye used in BNE often hampers in-gel detection of enzymatic activity. Here we report an improved method, termed ink-native electrophoresis (INE), in which Pelikan 4001 fountain pen ink is used as a charge-shifting agent instead of CBB. INE is more suitable than BNE for in-gel detection of protein kinase activity after polyacrylamide gel electrophoresis (PAGE), and its performance in protein complex separation is comparable to that of conventional BNE. INE may provide a powerful tool to isolate and analyze various protein complexes. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Seaweed Polysaccharides (Laminarin and Fucoidan) as Functional Ingredients in Pork Meat: An Evaluation of Anti-Oxidative Potential, Thermal Stability and Bioaccessibility

    Science.gov (United States)

    Moroney, Natasha C.; O’Grady, Michael N.; Lordan, Sinéad; Stanton, Catherine; Kerry, Joseph P.

    2015-01-01

    The anti-oxidative potential of laminarin (L), fucoidan (F) and an L/F seaweed extract was measured using the DPPH free radical scavenging assay, in 25% pork (longissimus thoracis et lumborum (LTL)) homogenates (TBARS) (3 and 6 mg/mL) and in horse heart oxymyoglobin (OxyMb) (0.1 and 1 mg/mL). The DPPH activity of fresh and cooked minced LTL containing L (100 mg/g; L100), F100 and L/F100,300, and bioaccessibility post in vitro digestion (L/F300), was assessed. Theoretical cellular uptake of antioxidant compounds was measured in a transwell Caco-2 cell model. Laminarin displayed no activity and fucoidan reduced lipid oxidation but catalysed OxyMb oxidation. Fucoidan activity was lowered by cooking while the L/F extract displayed moderate thermal stability. A decrease in DPPH antioxidant activity of 44.15% and 36.63%, after 4 and 20 h respectively, indicated theoretical uptake of L/F antioxidant compounds. Results highlight the potential use of seaweed extracts as functional ingredients in pork. PMID:25903283

  13. Enzymatic modification of starch

    DEFF Research Database (Denmark)

    Jensen, Susanne Langgård

    In the food industry approaches for using bioengineering are investigated as alternatives to conventional chemical and physical starch modification techniques in development of starches with specific properties. Enzyme-assisted post-harvest modification is an interesting approach to this, since...... it is considered a clean and energy saving technology. This thesis aimed to investigate the effect of using reaction conditions, simulating an industrial process, for enzymatic treatment of starch with branching enzyme (BE) from Rhodothermus obamensis. Thus treatements were conducted at 70°C using very high...... substrate concentration (30-40% dry matter (DM)) and high enzyme activity (750-2250 BE units (BEU)/g sample). Starches from various botanical sources, representing a broad range of properties, were used as substrates. The effects of the used conditions on the BE-reaction were evaluated by characterization...

  14. Enzymatic Modification of Sphingomyelin

    DEFF Research Database (Denmark)

    Due to its major role in maintaining the water-retaining properties of the epidermis, ceramide is of great commercial potential in cosmetic and pharmaceuticals such as hair and skin care products. Currently, chemical synthesis of ceramide is a costly process, and developments of alternative cost......-efficient, high yield production methods are of great interest. In the present study, the potential of producing ceramide through the enzymatic hydrolysis of sphingomyelin have been studied. sphingomyelin is a ubiquitous membrane-lipid and rich in dairy products or by-products. It has been verified...... that sphingomyelin modification gives a feasible approach to the potential production of ceramide. The reaction system has been improved through system evaluation and the optimization of several important factors, and phospholipase C from Clostridium perfringens shows higher activity towards the hydrolysis reaction...

  15. A δ38 deletion variant of human transketolase as a model of transketolase-like protein 1 exhibits no enzymatic activity.

    Directory of Open Access Journals (Sweden)

    Stefan Schneider

    Full Text Available Besides transketolase (TKT, a thiamin-dependent enzyme of the pentose phosphate pathway, the human genome encodes for two closely related transketolase-like proteins, which share a high sequence identity with TKT. Transketolase-like protein 1 (TKTL1 has been implicated in cancerogenesis as its cellular expression levels were reported to directly correlate with invasion efficiency of cancer cells and patient mortality. It has been proposed that TKTL1 exerts its function by catalyzing an unusual enzymatic reaction, a hypothesis that has been the subject of recent controversy. The most striking difference between TKTL1 and TKT is a deletion of 38 consecutive amino acids in the N-terminal domain of the former, which constitute part of the active site in authentic TKT. Our structural and sequence analysis suggested that TKTL1 might not possess transketolase activity. In order to test this hypothesis in the absence of a recombinant expression system for TKTL1 and resilient data on its biochemical properties, we have engineered and biochemically characterized a "pseudo-TKTL1" Δ38 deletion variant of human TKT (TKTΔ38 as a viable model of TKTL1. Although the isolated protein is properly folded under in vitro conditions, both thermal stability as well as stability of the TKT-specific homodimeric assembly are markedly reduced. Circular dichroism and NMR spectroscopic analysis further indicates that TKTΔ38 is unable to bind the thiamin cofactor in a specific manner, even at superphysiological concentrations. No transketolase activity of TKTΔ38 can be detected for conversion of physiological sugar substrates thus arguing against an intrinsically encoded enzymatic function of TKTL1 in tumor cell metabolism.

  16. Advances in methods for characterization of hepatic urea cycle enzymatic activity in HepaRG cells using UPLC-MS/MS.

    Science.gov (United States)

    Moedas, M F; Adam, A A A; Farelo, M A; IJlst, L; Chamuleau, R A F M; Hoekstra, R; Wanders, R J A; Silva, M F B

    2017-10-15

    Current methodologies for the assessment of urea cycle (UC) enzymatic activity are insufficient to accurately evaluate this pathway in biological specimens where lower UC is expected. Liver cell lines, including HepaRG, have been described to have limited nitrogen fixation through the UC, limiting their applicability as biocomponents for Bioartificial Livers (BAL). This work aims to develop novel and sensitive analytical solutions using Mass Spectrometry-based methodology to measure the activity of four UC enzymes in human liver and HepaRG cells. Activity of carbamoyl-phosphate synthetase I (CPS I), ornithine transcarbamylase (OTC), argininosuccinate lyase (ASL) and arginase (ARG I and II) was determined on homogenates from normal human liver and HepaRG cells cultured in monolayer or in the AMC-BAL. Enzyme products were determined by stable-isotope dilution UPLC-MS/MS. Activity of CPS I, OTC and ARG I/II enzymes in HepaRG monolayer cultures was considerably lower than in human control livers albeit an increase was achieved in HepaRG-BAL cultures. Improved analytical assays developed for the study of UC enzyme activity, contributed to gain understanding of UC function in the HepaRG cell line. The decreased activity of CPS I suggests that it may be a potential rate-limiting factor underlying the low UC activity in this cell line. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The enzymatic activities of brain catechol-O-methyltransferase (COMT) and methionine sulphoxide reductase are correlated in a COMT Val/Met allele-dependent fashion.

    Science.gov (United States)

    Moskovitz, Jackob; Walss-Bass, Consuelo; Cruz, Dianne A; Thompson, Peter M; Hairston, Jenaqua; Bortolato, Marco

    2015-12-01

    The enzyme catechol-O-methyltransferase (COMT) plays a primary role in the metabolism of catecholamine neurotransmitters and is implicated in the modulation of cognitive and emotional responses. The best characterized single nucleotide polymorphism (SNP) of the COMT gene consists of a valine (Val)-to-methionine (Met) substitution at codon 108/158. The Met-containing variant confers a marked reduction in COMT catalytic activity. We recently showed that the activity of recombinant COMT is positively regulated by the enzyme Met sulphoxide reductase (MSR), which counters the oxidation of Met residues of proteins. The current study was designed to assess whether brain COMT activity may be correlated to MSR in an allele-dependent fashion. COMT and MSR activities were measured from post-mortem samples of prefrontal cortices, striata and cerebella of 32 subjects by using catechol and dabsyl-Met sulphoxide as substrates, respectively. Allelic discrimination of COMT Val(108/185) Met SNP was performed using the Taqman 5'nuclease assay. Our studies revealed that, in homozygous carriers of Met, but not Val alleles, the activity of COMT and MSR was significantly correlated throughout all tested brain regions. These results suggest that the reduced enzymatic activity of Met-containing COMT may be secondary to Met sulphoxidation and point to MSR as a key molecular determinant for the modulation of COMT activity. © 2015 British Neuropathological Society.

  18. Enzymatic activity of proteases and its isoenzymes in fermentation process in cultivars of cocoa (Theobroma cacao L. produced in southern Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Luciane Santos SOUSA

    Full Text Available Abstract The fermentation of cocoa seeds envolves microbial processes and the action of enzymes. To identify the possible differences in the cocoa fermentation process, with regards to proteolysis, this study has the objective of determining protease activity (under predetermined conditions and its isoenzymes in two cocoa cultivars (PH-16 and HRT-1188 in different cocoa fermentation times, in addition to establishing the microbial load (molds and yeasts and aerobic mesophilic. Protease and its isoenzymes were extracted and partially purified and the enzymatic activities determined by spectrophotometry. The results showed that the proteases activity was higher at 66h of fermentation for both cultivars. When the isoenzymes activity was evaluated, the results demonstrated similar activity behavior for both cultivars, with regards to the isoenzymes aminopeptidase and carboxypeptidase, although the behavior of the endoprotease isoenzyme activity proved to be a little different for TSH-1188 cultivar. Concerning microbiological analyses, the results indicate that the period after molds and yeast counting reduction is consistent with the period of protease activity increase.

  19. Use of [1,2-3 h] testosterone in 5 α- reductase enzymatic activity dosing in dermal fibroblast cultures from polycystic ovarian patients

    International Nuclear Information System (INIS)

    Matei, Lidia; Postolache, Cristian; Condac, Eduard

    2003-01-01

    Polycystic ovarian syndrome is an endocrine malady very frequent in women characterized by the presence of ovarian cysts, visible or not by ultrasonography, menstrual cycle deregulation and sometimes by high plasmatic concentrations of androgen hormones. Many cases of polycystic syndrome could not be easily diagnosed or had an erroneous diagnostic. Therefore, is useful to know the plasmatic androgen hormone profile. This profile could indicate the cause for observed clinical manifestations; this cause may be observed in ovarian, suprarenal glands or hypothalamo-hypophysis level. In vitro studies on dermal fibroblasts permit the detail determination of steroid hormones metabolism in target organs and offer important information regarding action mechanism. This study follows the identification of testosterone metabolites in fibroblasts and enzymatic activities of 5α-reductase using testosterone radioactively labeled with tritium. (authors)

  20. Hibiscus sabdariffa L. and Its Bioactive Constituents Exhibit Antiviral Activity against HSV-2 and Anti-enzymatic Properties against Urease by an ESI-MS Based Assay.

    Science.gov (United States)

    Hassan, Sherif T S; Švajdlenka, Emil; Berchová-Bímová, Kateřina

    2017-04-30

    For decades, Hibiscus sabdariffa L. and its phytochemicals have been shown to possess a wide range of pharmacologic properties. In this study, aqueous extract of Hibiscus sabdariffa (AEHS) and its bioactive constituent protocatechuic acid (PCA), have been evaluated in vitro for their antiviral activity against HSV-2 clinical isolates and anti-enzymatic activity against urease. Antiherpetic activity was evaluated by the titer reduction assay in infected Vero cells, and cytotoxicity was evaluated by the neutral red dye-uptake method. Anti-urease activity was determined by a developed Electrospray Ionization-Mass Spectrometry (ESI-MS)-based assay. PCA showed potent anti-HSV-2 activity compared with that of acyclovir, with EC 50 values of 0.92 and 1.43 µg∙mL -1 , respectively, and selectivity indices > 217 and > 140, respectively. For the first time, AEHS was shown to exert anti-urease inhibition activity, with an IC 50 value of 82.4 µg∙mL -1 . This, combined with its safety, could facilitate its use in practical applications as a natural urease inhibitor. Our results present Hibiscus sabdariffa L. and its bioactive compound PCA as potential therapeutic agents in the treatment of HSV-2 infection and the treatment of diseases caused by urease-producing bacteria.

  1. Hibiscus sabdariffa L. and Its Bioactive Constituents Exhibit Antiviral Activity against HSV-2 and Anti-enzymatic Properties against Urease by an ESI-MS Based Assay

    Directory of Open Access Journals (Sweden)

    Sherif T. S. Hassan

    2017-04-01

    Full Text Available For decades, Hibiscus sabdariffa L. and its phytochemicals have been shown to possess a wide range of pharmacologic properties. In this study, aqueous extract of Hibiscus sabdariffa (AEHS and its bioactive constituent protocatechuic acid (PCA, have been evaluated in vitro for their antiviral activity against HSV-2 clinical isolates and anti-enzymatic activity against urease. Antiherpetic activity was evaluated by the titer reduction assay in infected Vero cells, and cytotoxicity was evaluated by the neutral red dye-uptake method. Anti-urease activity was determined by a developed Electrospray Ionization-Mass Spectrometry (ESI-MS-based assay. PCA showed potent anti-HSV-2 activity compared with that of acyclovir, with EC50 values of 0.92 and 1.43 µg∙mL−1, respectively, and selectivity indices > 217 and > 140, respectively. For the first time, AEHS was shown to exert anti-urease inhibition activity, with an IC50 value of 82.4 µg∙mL−1. This, combined with its safety, could facilitate its use in practical applications as a natural urease inhibitor. Our results present Hibiscus sabdariffa L. and its bioactive compound PCA as potential therapeutic agents in the treatment of HSV-2 infection and the treatment of diseases caused by urease-producing bacteria.

  2. Enzymatic sulfation of gastric mucous glycoprotein in rat--changes in glycoprotein sulfotransferase activity with stress and anti-ulcer agent, sofalcone

    International Nuclear Information System (INIS)

    Murakami, S.; Muramatsu, M.; Aihara, H.; Honda, A.; Mori, Y.

    1987-01-01

    Enzymatic sulfation of mucous glycoprotein (GP) was studied in gastric mucosa of rat. After rat stomach was incubated with [ 35 S]-sulfate, incorporation of radioactivity into gastric mucosal APS (adenosine 5'-phosphosulfate), PAPS (3'-phosphoadenosine 5'-phosphosulfate) and endogenous GPs could be detected. The degree of sulfation of endogenous GPs was highest in the macromolecular GP (peak I) and lowest in the low molecular GP (peak III). By using a crude preparation of GP sulfotransferase from rat gastric mucosa, the transfer of [ 35 S]-sulfate from [ 35 S]-PAPS into macromolecular mucous GP was determined as being the activity of sulfotransferase. The activity of GP sulfotransferase was mainly distributed in the microsomal fraction, and was proportional to the incubation time, substrate (mucous GP) concentration and [ 35 S]-PAPS concentration. The enzyme activity was significantly higher in the corpus than that in the antral mucosa. The activity of GP sulfotransferase was significantly decreased at 6 h and was significantly increased at 12 h after the stress load, compared with that of the non-stressed condition. Anti-ulcer agent, sofalcone, increased the GP sulfotransferase activity under the stressed condition. On the other hand, cimetidine showed a significant inhibitory effect under the same condition. Changes in the GP sulfotransferase activity with stress and anti-ulcer agents were consistent with those in the incorporation of [ 35 S]-sulfate into macromolecular mucous GP. These results suggest the importance of GP sulfotransferase as a key enzyme regulating the sulfation of mucous GP

  3. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity.

    Science.gov (United States)

    Graeff, R M; Walseth, T F; Fryxell, K; Branton, W D; Lee, H C

    1994-12-02

    Cyclic nucleotides such as cAMP and cGMP are second messengers subserving various signaling pathways. Cyclic ADP-ribose (cADPR), a recently discovered member of the family, is derived from NAD+ and is a mediator of Ca2+ mobilization in various cellular systems. The synthesis and degradation of cADPR are, respectively, catalyzed by ADP-ribosyl cyclase and cADPR hydrolase. CD38, a differentiation antigen of B lymphocytes, has recently been shown to be a bifunctional enzyme catalyzing both the formation and hydrolysis of cADPR. The overall reaction catalyzed by CD38 is the formation of ADP-ribose and nicotinamide from NAD+, identical to that catalyzed by NADase. The difficulties in detecting the formation of cADPR have led to frequent identification of CD38 as a classical NADase. In this study, we show that both ADP-ribosyl cyclase and CD38, but not NADase, can cyclize nicotinamide guanine dinucleotide (NGD+) producing a new nucleotide. Analyses by high performance liquid chromatography and mass spectroscopy indicate the product is cyclic GDP-ribose (cGDPR) with a structure similar to cADPR except with guanine replacing adenine. Compared to cADPR, cGDPR is a more stable compound showing 2.8 times more resistance to heat-induced hydrolysis. These results are consistent with a catalytic scheme for CD38 where the cyclization of the substrate precedes the hydrolytic reaction. Spectroscopic analyses show that cGDPR is fluorescent and has an absorption spectrum different from both NGD+ and GDPR, providing a very convenient way for monitoring its enzymatic formation. The use of NGD+ as substrate for assaying the cyclization reaction was found to be applicable to pure enzymes as well as crude tissue extracts making it a useful diagnostic tool for distinguishing CD38-like enzymes from degradative NADases.

  4. In Vitro Antioxidant Activities of Enzymatic Hydrolysate from Schizochytrium sp. and Its Hepatoprotective Effects on Acute Alcohol-Induced Liver Injury In Vivo

    Directory of Open Access Journals (Sweden)

    Xixi Cai

    2017-04-01

    Full Text Available Schizochytrium protein hydrolysate (SPH was prepared through stepwise enzymatic hydrolysis by alcalase and flavourzyme sequentially. The proportion of hydrophobic amino acids of SPH was 34.71%. The molecular weight (MW of SPH was principally concentrated at 180–3000 Da (52.29%. SPH was divided into two fractions by ultrafiltration: SPH-I (MW < 3 kDa and SPH-II (MW > 3 kDa. Besides showing lipid peroxidation inhibitory activity in vitro, SPH-I exhibited high DPPH and ABTS radicals scavenging activities with IC50 of 350 μg/mL and 17.5 μg/mL, respectively. In addition, the antioxidant activity of SPH-I was estimated in vivo using the model of acute alcohol-induced liver injury in mice. For the hepatoprotective effects, oral administration of SPH-I at different concentrations (100, 300 mg/kg BW to the mice subjected to alcohol significantly decreased serum alanine aminotransferase (ALT and aspartate aminotransferase (AST activities and hepatic malondialdehyde (MDA level compared to the untreated mice. Besides, SPH-I could effectively restore the hepatic superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px activities and glutathione (GSH level. Results suggested that SPH was rich in biopeptides that could be exploited as antioxidant molecules against oxidative stress in human body.

  5. Surface functionalization of carbonyl iron with aluminum phosphate coating toward enhanced anti-oxidative ability and microwave absorption properties

    Science.gov (United States)

    Duan, Wenju; Li, Xuandong; Wang, Ying; Qiang, Rong; Tian, Chunhua; Wang, Na; Han, Xijiang; Du, Yunchen

    2018-01-01

    Fe@AlPO4 core-shell composites with tunable AlPO4 content have been successfully prepared through in situ deposition of AlPO4 on the surface of carbonyl iron. The presence of the AlPO4 layer improves the anti-oxidative ability of the internal carbonyl iron, so that surface oxidation and magnetic degradation in these composites are significantly suppressed when compared with naked carbonyl iron. It is worth noting that the AlPO4 layer can affect the electromagnetic parameters of carbonyl iron, resulting in well-matched characteristic impedance. By optimizing the AlPO4 layer content, the Fe@AlPO4 composite can display excellent reflection loss characteristics, and qualified absorption in a very broad frequency range (2.4-18.0 GHz over -10 dB) can be achieved. The microwave absorption performance of the Fe@AlPO4 composite is indeed superior to pure carbonyl iron as well as many previously reported carbonyl iron-based composites. More importantly, the Fe@AlPO4 composite can maintain good microwave absorption properties after treatment at high temperature for long time periods. These results provide new insight into the fabrication of carbonyl iron-based composites with good microwave absorption and anti-oxidative properties that meet the requirements in practical applications.

  6. A novel strategy involved in [corrected] anti-oxidative defense: the conversion of NADH into NADPH by a metabolic network.

    Directory of Open Access Journals (Sweden)

    Ranji Singh

    Full Text Available The reduced nicotinamide adenine dinucleotide phosphate (NADPH is pivotal to the cellular anti-oxidative defence strategies in most organisms. Although its production mediated by different enzyme systems has been relatively well-studied, metabolic networks dedicated to the biogenesis of NADPH have not been fully characterized. In this report, a metabolic pathway that promotes the conversion of reduced nicotinamide adenine dinucleotide (NADH, a pro-oxidant into NADPH has been uncovered in Pseudomonas fluorescens exposed to oxidative stress. Enzymes such as pyruvate carboxylase (PC, malic enzyme (ME, malate dehydrogenase (MDH, malate synthase (MS, and isocitrate lyase (ICL that are involved in disparate metabolic modules, converged to create a metabolic network aimed at the transformation of NADH into NADPH. The downregulation of phosphoenol carboxykinase (PEPCK and the upregulation of pyruvate kinase (PK ensured that this metabolic cycle fixed NADH into NADPH to combat the oxidative stress triggered by the menadione insult. This is the first demonstration of a metabolic network invoked to generate NADPH from NADH, a process that may be very effective in combating oxidative stress as the increase of an anti-oxidant is coupled to the decrease of a pro-oxidant.

  7. Human Papillomavirus 16 (HPV-16), HPV-18, and HPV-31 E6 Override the Normal Phosphoregulation of E6AP Enzymatic Activity.

    Science.gov (United States)

    Thatte, Jayashree; Banks, Lawrence

    2017-11-15

    The human papillomavirus (HPV) E6 oncoproteins recruit the cellular ubiquitin ligase E6AP/UBE3A to target cellular substrates for proteasome-mediated degradation, and one consequence of this activity is the E6 stimulation of E6AP autoubiquitination and degradation. Recent studies identified an autism-linked mutation within E6AP at T485, which was identified as a protein kinase A phosphoacceptor site and which could directly regulate E6AP ubiquitin ligase activity. In this study, we have analyzed how T485-mediated regulation of E6AP might affect E6 targeting of some of its known substrates. We show that modulation of T485 has no effect on the ability of E6 to direct either p53 or Dlg for degradation. Furthermore, T485 regulation has no effect on HPV-16 or HPV-31 E6-induced autodegradation of E6AP but does affect HPV-18 E6-induced autodegradation of E6AP. In cells derived from cervical cancers, we find low levels of both phosphorylated and nonphosphorylated E6AP in the nucleus. However, ablation of E6 results in a dramatic accumulation of phospho-E6AP in the cytoplasm, whereas nonphosphorylated E6AP accumulates primarily in the nucleus. Interestingly, E6AP phosphorylation at T485 confers association with 14-3-3 proteins, and this interaction seems to be important, in part, for the ability of E6 to recruit phospho-E6AP into the nucleus. These results demonstrate that HPV E6 overrides the normal phosphoregulation of E6AP, both in terms of its enzymatic activity and its subcellular distribution. IMPORTANCE Recent reports demonstrate the importance of phosphoregulation of E6AP for its normal enzymatic activity. Here, we show that HPV E6 is capable of overriding this regulation and can promote degradation of p53 and Dlg regardless of the phosphorylation status of E6AP. Furthermore, E6 interaction with E6AP also significantly alters how E6AP is subject to autodegradation and suggests that this is not a simple stimulation of an already-existing activity but rather a

  8. Susceptibility to antifungal agents and enzymatic activity of Candida haemulonii and Cutaneotrichosporon dermatis isolated from soft corals on the Brazilian reefs.

    Science.gov (United States)

    Pagani, Danielle M; Heidrich, Daiane; Paulino, Gustavo V B; de Oliveira Alves, Karine; Dalbem, Paula T; de Oliveira, Caroline F; Andrade, Zélia M M; Silva, Carolini; Correia, Monica D; Scroferneker, Maria Lúcia; Valente, Patricia; Landell, Melissa Fontes

    2016-12-01

    Candida is a common fungus with the capacity to cause infections in humans. However, most studies have concentrated on clinical isolates and little is known about the identity, ecology and drug resistance of free living species/strains. Here, we isolate eight strains of Candida haemulonii and four strains of Cutaneotrichosporon dermatis from three marine cnidarian zoanthids species (Palythoa caribaeorum, Palythoa variabilis and Zoanthus sociatus) collected from Brazilian coral reefs. Strains were identified by sequencing of the D1/D2 domain LSU rDNA and ITS region. We tested these environmental isolates for their capacity to grow in media with increasing concentration of NaCl, capacity to grow in different temperatures, enzymatic activity and antifungal susceptibility. For C. haemulonii, all strains strongly produced gelatinase, esterase and albuminase and were either able to express lipase, phospholipase and keratinase, but not express urease and DNase. The strains were able to grow at 37 °C, but not at 39 °C, and except for LMS 40, all of them could grow in a 10 % NaCl medium. All isolates were resistant to all antifungals tested, with exception for ketoconazole and tioconazole (MIC = 2 µg/mL). For C. dermatis, all strains could grow at 39 °C and could not express phospholipase, keratinase or gelatinase. However, all were capable of expressing urease, lipase and esterase. Three out of four strains could grow in a 10 % NaCl medium, but none grew in a 30 % NaCl medium. The strains showed high values of minimal inhibitory concentration. LMPV 90 was resistant to tioconazole, terbinafine, fluconazole and posaconazole, and LMS 38 was resistant to all antifungal agents tested. We discuss the characterization of C. haemulonii and C. dermatis as a possible emerging pathogen due to its animal-related enzymatic arsenal and antifungal resistance.

  9. Influence of a Virgin Olive Oil versus Butter Plus Cholesterol-Enriched Diet on Testicular Enzymatic Activities in Adult Male Rats.

    Science.gov (United States)

    Domínguez-Vías, Germán; Segarra, Ana Belén; Martínez-Cañamero, Magdalena; Ramírez-Sánchez, Manuel; Prieto, Isabel

    2017-08-04

    The aim of the present work was to improve our knowledge on the mechanisms underlying the beneficial or deleterious effects on testicular function of the so-called Mediterranean and Western diet by analyzing glutamyl aminopeptidase (GluAP), gamma glutamyl transpeptidase (GGT) and dipeptidyl peptidase IV (DPP IV) activities in testis, as enzymes involved in testicular function. Male Wistar rats (6 months old) were fed for 24 weeks with three different diets: standard (S), an S diet supplemented with virgin-olive-oil (20%) (VOO), or a S diet enriched with butter (20%) plus cholesterol (0.1%) (Bch). At the end of the experimental period, plasma lipid profiled (total triglycerides, total cholesterol and cholesterol fractions (HDL, LDL and VDL)) were measured. Enzymatic activities were determined by fluorimetric methods in soluble (sol) and membrane-bound (mb) fractions of testicular tissue using arylamide derivatives as substrates. Results indicated an increase in plasmatic triglycerides, total cholesterol, LDL and VLDL in Bch. A significant increase of mb GluAP and GGT activities was also found in this diet in comparison with the other two diets. Furthermore, significant and positive correlations were established between these activities and plasma triglycerides and/or total cholesterol. These results support a role for testicular GluAP and GGT activities in the effects of saturated fat (Western diet) on testicular functions. In contrast, VOO increased sol DPP IV activity in comparison with the other two diets, which support a role for this activity in the effects of monounsaturated fat (Mediterranean diet) on testicular function. The present results strongly support the influence of fatty acids and cholesterol on testicular GluAP and GGT activities and also provide support that the reported beneficial influence of the Mediterranean diet in male fertility may be mediated in part by an increase of testicular sol DPP IV activity.

  10. Relationship of angiotensin ase and vasopressin ase enzymatic activities between hypothalamus and plasma in an obese rat model by high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Domínguez-Vías, G.; Segarra Robles, A.B.; Ramirez-Sánchez, M.; Jiménez Serrano, S.

    2016-07-01

    High-fat diets are associated with the development of hypertension. However, a high intake of monounsaturated fat has been proposed to be a dietary factor that can decrease the incidence of hypertension. The renin-angiotensin system (RAS) and vasopressin interact to regulate blood pressure at central and peripheral level. In this study, we investigated the effect of different degrees of dietary fatty acid saturation in the control of RAS and vasopressin on brain-blood. To improve our understanding of their interaction and their relationship, we analyzed angiotensin- and vasopressin-metabolizing activities in hypothalamus and plasma, collected from Wistar rats fed during 24 weeks with diets enriched with extra virgin olive oil (monounsaturated fat) or butter plus cholesterol (saturated fat) compared with a standard diet. As results no angiotensinase and vasopressinase activities were found in hypothalamus and plasma, however significant correlations between enzymatic activities in both regions were noticed. They indicated that our results do not support the beneficial influence of extra virgin olive oil on central and systemic level to regulate blood pressure. Therefore, the substrates hydrolyzed by these activities as well as their functions may be similarly affected and suggest that these studies should be continued because of beneficial of Mediterranean diet, found previously in different works, which may also be an effective tool in the treatment of hypertension.

  11. Relationship of angiotensinase and vasopressinase enzymatic activities between hypothalamus and plasma in an obese rat model by high-fat diet

    Directory of Open Access Journals (Sweden)

    Germán Domínguez-Vías

    2016-07-01

    Full Text Available High-fat diets are associated with the development of hypertension. However, a high intake of monounsaturated fat has been proposed to be a dietary factor that can decrease the incidence of hypertension. The renin-angiotensin system (RAS and vasopressin interact to regulate blood pressure at central and peripheral level. In this study, we investigated the effect of different degrees of dietary fatty acid saturation in the control of RAS and vasopressin on brain-blood. To improve our understanding of their interaction and their relationship, we analyzed angiotensin- and vasopressin-metabolizing activities in hypothalamus and plasma, collected from Wistar rats fed during 24 weeks with diets enriched with extra virgin olive oil (monounsaturated fat or butter plus cholesterol (saturated fat compared with a standard diet. As results no angiotensinase and vasopressinase activities were found in hypothalamus and plasma, however significant correlations between enzymatic activities in both regions were noticed. They indicated that our results do not support the beneficial influence of extra virgin olive oil on central and systemic level to regulate blood pressure. Therefore, the substrates hydrolyzed by these activities as well as their functions may be similarly affected and suggest that these studies should be continued because of beneficial of Mediterranean diet, found previously in different works, which may also be an effective tool in the treatment of hypertension.

  12. Inhibition of Neurotoxic Secretory Phospholipases A2 Enzymatic, Edematogenic, and Myotoxic Activities by Harpalycin 2, an Isoflavone Isolated from Harpalyce brasiliana Benth

    Directory of Open Access Journals (Sweden)

    Rafael M. Ximenes

    2012-01-01

    Full Text Available Secretory phospholipases A2 (sPLA2 exert proinflammatory actions through lipid mediators. These enzymes have been found to be elevated in many inflammatory disorders such as rheumatoid arthritis, sepsis, and atherosclerosis. The aim of this study was to evaluate the effect of harpalycin 2 (Har2, an isoflavone isolated from Harpalyce brasiliana Benth., in the enzymatic, edematogenic, and myotoxic activities of sPLA2 from Bothrops pirajai, Crotalus durissus terrificus, Apis mellifera, and Naja naja venoms. Har2 inhibits all sPLA2 tested. PrTX-III (B. pirajai venom was inhibited at about 58.7%, Cdt F15 (C. d. terrificus venom at 78.8%, Apis (from bee venom at 87.7%, and Naja (N. naja venom at 88.1%. Edema induced by exogenous sPLA2 administration performed in mice paws showed significant inhibition by Har2 at the initial step. In addition, Har2 also inhibited the myotoxic activity of these sPLA2s. In order to understand how Har2 interacts with these enzymes, docking calculations were made, indicating that the residues His48 and Asp49 in the active site of these enzymes interacted powerfully with Har2 through hydrogen bonds. These data pointed to a possible anti-inflammatory activity of Har2 through sPLA2 inhibition.

  13. Inhibition of Neurotoxic Secretory Phospholipases A(2) Enzymatic, Edematogenic, and Myotoxic Activities by Harpalycin 2, an Isoflavone Isolated from Harpalyce brasiliana Benth.

    Science.gov (United States)

    Ximenes, Rafael M; Rabello, Marcelo M; Araújo, Renata M; Silveira, Edilberto R; Fagundes, Fábio H R; Diz-Filho, Eduardo B S; Buzzo, Simone C; Soares, Veronica C G; Toyama, Daniela de O; Gaeta, Henrique H; Hernandes, Marcelo Z; Monteiro, Helena S A; Toyama, Marcos H

    2012-01-01

    Secretory phospholipases A(2) (sPLA(2)) exert proinflammatory actions through lipid mediators. These enzymes have been found to be elevated in many inflammatory disorders such as rheumatoid arthritis, sepsis, and atherosclerosis. The aim of this study was to evaluate the effect of harpalycin 2 (Har2), an isoflavone isolated from Harpalyce brasiliana Benth., in the enzymatic, edematogenic, and myotoxic activities of sPLA(2) from Bothrops pirajai, Crotalus durissus terrificus, Apis mellifera, and Naja naja venoms. Har2 inhibits all sPLA(2) tested. PrTX-III (B. pirajai venom) was inhibited at about 58.7%, Cdt F15 (C. d. terrificus venom) at 78.8%, Apis (from bee venom) at 87.7%, and Naja (N. naja venom) at 88.1%. Edema induced by exogenous sPLA(2) administration performed in mice paws showed significant inhibition by Har2 at the initial step. In addition, Har2 also inhibited the myotoxic activity of these sPLA(2)s. In order to understand how Har2 interacts with these enzymes, docking calculations were made, indicating that the residues His48 and Asp49 in the active site of these enzymes interacted powerfully with Har2 through hydrogen bonds. These data pointed to a possible anti-inflammatory activity of Har2 through sPLA(2) inhibition.

  14. Inhibition of Neurotoxic Secretory Phospholipases A2 Enzymatic, Edematogenic, and Myotoxic Activities by Harpalycin 2, an Isoflavone Isolated from Harpalyce brasiliana Benth

    Science.gov (United States)

    Ximenes, Rafael M.; Rabello, Marcelo M.; Araújo, Renata M.; Silveira, Edilberto R.; Fagundes, Fábio H. R.; Diz-Filho, Eduardo B. S.; Buzzo, Simone C.; Soares, Veronica C. G.; Toyama, Daniela de O.; Gaeta, Henrique H.; Hernandes, Marcelo Z.; Monteiro, Helena S. A.; Toyama, Marcos H.

    2012-01-01

    Secretory phospholipases A2 (sPLA2) exert proinflammatory actions through lipid mediators. These enzymes have been found to be elevated in many inflammatory disorders such as rheumatoid arthritis, sepsis, and atherosclerosis. The aim of this study was to evaluate the effect of harpalycin 2 (Har2), an isoflavone isolated from Harpalyce brasiliana Benth., in the enzymatic, edematogenic, and myotoxic activities of sPLA2 from Bothrops pirajai, Crotalus durissus terrificus, Apis mellifera, and Naja naja venoms. Har2 inhibits all sPLA2 tested. PrTX-III (B. pirajai venom) was inhibited at about 58.7%, Cd