WorldWideScience

Sample records for anti-hiv vaccine strategy

  1. Plant-based anti-HIV-1 strategies: vaccine molecules and antiviral approaches.

    Science.gov (United States)

    Scotti, Nunzia; Buonaguro, Luigi; Tornesello, Maria Lina; Cardi, Teodoro; Buonaguro, Franco Maria

    2010-08-01

    The introduction of highly active antiretroviral therapy has drastically changed HIV infection from an acute, very deadly, to a chronic, long-lasting, mild disease. However, this requires continuous care management, which is difficult to implement worldwide, especially in developing countries. Sky-rocketing costs of HIV-positive subjects and the limited success of preventive recommendations mean that a vaccine is urgently needed, which could be the only effective strategy for the real control of the AIDS pandemic. To be effective, vaccination will need to be accessible, affordable and directed against multiple antigens. Plant-based vaccines, which are easy to produce and administer, and require no cold chain for their heat stability are, in principle, suited to such a strategy. More recently, it has been shown that even highly immunogenic, enveloped plant-based vaccines can be produced at a competitive and more efficient rate than conventional strategies. The high variability of HIV epitopes and the need to stimulate both humoral neutralizing antibodies and cellular immunity suggest the importance of using the plant system: it offers a wide range of possible strategies, from single-epitope to multicomponent vaccines, modulators of the immune response (adjuvants) and preventive molecules (microbicides), either alone or in association with plant-derived monoclonal antibodies, besides the potential use of the latter as therapeutic agents. Furthermore, plant-based anti-HIV strategies can be administered not only parenterally but also by the more convenient and safer oral route, which is a more suitable approach for possible mass vaccination.

  2. Development of an anti-HIV vaccine eliciting broadly neutralizing antibodies.

    Science.gov (United States)

    Ahmed, Yousuf; Tian, Meijuan; Gao, Yong

    2017-09-12

    The extreme HIV diversity posts a great challenge on development of an effective anti-HIV vaccine. To solve this problem, it is crucial to discover an appropriate immunogens and strategies that are able to prevent the transmission of the diverse viruses that are circulating in the world. Even though there have been a number of broadly neutralizing anti-HIV antibodies (bNAbs) been discovered in recent years, induction of such antibodies to date has only been observed in HIV-1 infection. Here, in this mini review, we review the progress in development of HIV vaccine in eliciting broad immune response, especially production of bNAbs, discuss possible strategies, such as polyvalent sequential vaccination, that facilitates B cell maturation leading to bNAb response.

  3. Priming B cell-mediated anti-HIV envelope responses by vaccination allows for the long-term control of infection in macaques exposed to a R5-tropic SHIV

    International Nuclear Information System (INIS)

    Buckner, Clarisa; Gines, Leoned G.; Saunders, Cheryl J.; Vojtech, Lucia; Srivastava, Indresh; Gettie, Agegnehu; Bohm, Rudolph; Blanchard, James; Barnett, Susan W.; Safrit, Jeffrey T.; Stamatatos, Leonidas

    2004-01-01

    The potential of vaccine-elicited anti-HIV envelope antibodies to control HIV-infection was evaluated by immunizing macaques with the HIV envelope protein and transiently depleting them of their CD8+ cells before intravenous challenge with the pathogenic CCR5-tropic SIV/HIV chimeric virus, SHIV SF162P4 . Although sterilizing immunity was not achieved, all vaccinated animals effectively controlled infection and remained free of disease for the duration of observation (over 3 years). In contrast, during the same period, the control animals progressed to disease. Both the vaccinees and the controls developed robust cell-mediated antiviral and neutralizing antibody responses following infection. A comparative analysis of these responses suggests that the more effective long-term control of infection by the vaccinated animals is due to the more rapid development of anti-HIV envelope antibodies. These studies suggest that priming by vaccination of B cell anti-HIV envelope responses maybe crucial for the long-term control of HIV infection

  4. Typhoid fever vaccination strategies.

    Science.gov (United States)

    Date, Kashmira A; Bentsi-Enchill, Adwoa; Marks, Florian; Fox, Kimberley

    2015-06-19

    Typhoid vaccination is an important component of typhoid fever prevention and control, and is recommended for public health programmatic use in both endemic and outbreak settings. We reviewed experiences with various vaccination strategies using the currently available typhoid vaccines (injectable Vi polysaccharide vaccine [ViPS], oral Ty21a vaccine, and injectable typhoid conjugate vaccine [TCV]). We assessed the rationale, acceptability, effectiveness, impact and implementation lessons of these strategies to inform effective typhoid vaccination strategies for the future. Vaccination strategies were categorized by vaccine disease control strategy (preemptive use for endemic disease or to prevent an outbreak, and reactive use for outbreak control) and vaccine delivery strategy (community-based routine, community-based campaign and school-based). Almost all public health typhoid vaccination programs used ViPS vaccine and have been in countries of Asia, with one example in the Pacific and one experience using the Ty21a vaccine in South America. All vaccination strategies were found to be acceptable, feasible and effective in the settings evaluated; evidence of impact, where available, was strongest in endemic settings and in the short- to medium-term. Vaccination was cost-effective in high-incidence but not low-incidence settings. Experience in disaster and outbreak settings remains limited. TCVs have recently become available and none are WHO-prequalified yet; no program experience with TCVs was found in published literature. Despite the demonstrated success of several typhoid vaccination strategies, typhoid vaccines remain underused. Implementation lessons should be applied to design optimal vaccination strategies using TCVs which have several anticipated advantages, such as potential for use in infant immunization programs and longer duration of protection, over the ViPS and Ty21a vaccines for typhoid prevention and control. Copyright © 2015. Published by

  5. Quarter Century of Anti-HIV CAR T Cells.

    Science.gov (United States)

    Wagner, Thor A

    2018-04-01

    A therapy that might cure HIV is a very important goal for the 30-40 million people living with HIV. Chimeric antigen receptor T cells have recently had remarkable success against certain leukemias, and there are reasons to believe they could be successful for HIV. This manuscript summarizes the published research on HIV CAR T cells and reviews the current anti-HIV chimeric antigen receptor strategies. Research on anti-HIV chimeric antigen receptor T cells has been going on for at least the last 25 years. First- and second-generation anti-HIV chimeric antigen receptors have been developed. First-generation anti-HIV chimeric antigen receptors were studied in clinical trials more than 15 years ago, but did not have meaningful clinical efficacy. There are some reasons to be optimistic about second-generation anti-HIV chimeric antigen receptor T cells, but they have not yet been tested in vivo.

  6. Vaccine strategies: Optimising outcomes.

    Science.gov (United States)

    Hardt, Karin; Bonanni, Paolo; King, Susan; Santos, Jose Ignacio; El-Hodhod, Mostafa; Zimet, Gregory D; Preiss, Scott

    2016-12-20

    Successful immunisation programmes generally result from high vaccine effectiveness and adequate uptake of vaccines. In the development of new vaccination strategies, the structure and strength of the local healthcare system is a key consideration. In high income countries, existing infrastructures are usually used, while in less developed countries, the capacity for introducing new vaccines may need to be strengthened, particularly for vaccines administered beyond early childhood, such as the measles or human papillomavirus (HPV) vaccine. Reliable immunisation service funding is another important factor and low income countries often need external supplementary sources of finance. Many regions also obtain support in generating an evidence base for vaccination via initiatives created by organisations including World Health Organization (WHO), the Pan American Health Organization (PAHO), the Agence de Médecine Préventive and the Sabin Vaccine Institute. Strong monitoring and surveillance mechanisms are also required. An example is the efficient and low-cost approaches for measuring the impact of the hepatitis B control initiative and evaluating achievement of goals that have been established in the WHO Western Pacific region. A review of implementation strategies reveals differing degrees of success. For example, in the Americas, PAHO advanced a measles-mumps-rubella vaccine strategy, targeting different population groups in mass, catch-up and follow-up vaccination campaigns. This has had much success but coverage data from some parts of the region suggest that children are still not receiving all appropriate vaccines, highlighting problems with local service infrastructures. Stark differences in coverage levels are also observed among high income countries, as is the case with HPV vaccine implementation in the USA versus the UK and Australia, reflecting differences in delivery settings. Experience and research have shown which vaccine strategies work well and the

  7. Therapeutic genes for anti-HIV/AIDS gene therapy.

    Science.gov (United States)

    Bovolenta, Chiara; Porcellini, Simona; Alberici, Luca

    2013-01-01

    The multiple therapeutic approaches developed so far to cope HIV-1 infection, such as anti-retroviral drugs, germicides and several attempts of therapeutic vaccination have provided significant amelioration in terms of life-quality and survival rate of AIDS patients. Nevertheless, no approach has demonstrated efficacy in eradicating this lethal, if untreated, infection. The curative power of gene therapy has been proven for the treatment of monogenic immunodeficiensies, where permanent gene modification of host cells is sufficient to correct the defect for life-time. No doubt, a similar concept is not applicable for gene therapy of infectious immunodeficiensies as AIDS, where there is not a single gene to be corrected; rather engineered cells must gain immunotherapeutic or antiviral features to grant either short- or long-term efficacy mostly by acquisition of antiviral genes or payloads. Anti-HIV/AIDS gene therapy is one of the most promising strategy, although challenging, to eradicate HIV-1 infection. In fact, genetic modification of hematopoietic stem cells with one or multiple therapeutic genes is expected to originate blood cell progenies resistant to viral infection and thereby able to prevail on infected unprotected cells. Ultimately, protected cells will re-establish a functional immune system able to control HIV-1 replication. More than hundred gene therapy clinical trials against AIDS employing different viral vectors and transgenes have been approved or are currently ongoing worldwide. This review will overview anti-HIV-1 infection gene therapy field evaluating strength and weakness of the transgenes and payloads used in the past and of those potentially exploitable in the future.

  8. Vaccine strategies against schistosomiasis

    Directory of Open Access Journals (Sweden)

    A. Capron

    1992-01-01

    Full Text Available Schistosomiasis, the second major parasitic disease in the world after malaria affects at least 200 million people, 500 million being exposed to the risk of infection. It is widely agreed that a vaccine strategy wich could lead to the induction of effector mechanisms reducing the level of reinfection and ideally parasite fecundity would deeply affect the incidence of pathological manifestations as well as the parasite transmission potentialities. Extensive studies performed in the rat model have allowed the identification of novel effector mechanisms involving IgE antibodies and various inflammatory cell populations (eosinophils, macrophages and platelets whereas regulation of immune response by blocking antibodies has been evidencial. Recent epidemiological studies have now entirely confirmed in human populations the the role of IgE antibodies in the acquisition of resistance and the association of IgG4 blocking antibodies with increased susceptibility. On the basis of these concepts, several schistosome glutathion S-transferase (Sm 28 GST appears as a pronising vaccine candidate. Immunization experiments have shown that two complementary goals can be achieved: (a a partial but significant reduction of the worm population (up to 60//in rats; (b a significant reduction of parasite fecundity (up in the mice and 85//in cattle and egg viability (up to 80//. At least two distinct immunological mechanisms account for these two effects. IgE antibodies appear as a major humoral component of acquired resistance whereas IgA antibodies appear as a major humoral factor affecting parasite fecundity. These studies seem to represent a parasite diseases through the identification of potentially protective antigens and of the components of the immune response which vaccination should aim at inducing.

  9. Contribution of the anti HIV/AIDS community conversation programs ...

    African Journals Online (AJOL)

    Background: HIV/AIDS has now been around for about three and half decades since first diagnosed in 1981. If we wish to curb the spread of HIV/AIDS effectively and sustainably, we need to design strategies that help mobilizing communities at large. Anti-HIV/AIDS Community Conversation (CC) Programs are part of ...

  10. Strategies for Cancer Vaccine Development

    Directory of Open Access Journals (Sweden)

    Matteo Vergati

    2010-01-01

    Full Text Available Treating cancer with vaccines has been a challenging field of investigation since the 1950s. Over the years, the lack of effective active immunotherapies has led to the development of numerous novel strategies. However, the use of therapeutic cancer vaccines may be on the verge of becoming an effective modality. Recent phase II/III clinical trials have achieved hopeful results in terms of overall survival. Yet despite these encouraging successes, in general, very little is known about the basic immunological mechanisms involved in vaccine immunotherapy. Gaining a better understanding of the mechanisms that govern the specific immune responses (i.e., cytotoxic T lymphocytes, CD4 T helper cells, T regulatory cells, cells of innate immunity, tumor escape mechanisms elicited by each of the various vaccine platforms should be a concern of cancer vaccine clinical trials, along with clinical benefits. This review focuses on current strategies employed by recent clinical trials of therapeutic cancer vaccines and analyzes them both clinically and immunologically.

  11. Lectins with Anti-HIV Activity: A Review

    Directory of Open Access Journals (Sweden)

    Ouafae Akkouh

    2015-01-01

    Full Text Available Lectins including flowering plant lectins, algal lectins, cyanobacterial lectins, actinomycete lectin, worm lectins, and the nonpeptidic lectin mimics pradimicins and benanomicins, exhibit anti-HIV activity. The anti-HIV plant lectins include Artocarpus heterophyllus (jacalin lectin, concanavalin A, Galanthus nivalis (snowdrop agglutinin-related lectins, Musa acuminata (banana lectin, Myrianthus holstii lectin, Narcissus pseudonarcissus lectin, and Urtica diocia agglutinin. The anti-HIV algal lectins comprise Boodlea coacta lectin, Griffithsin, Oscillatoria agardhii agglutinin. The anti-HIV cyanobacterial lectins are cyanovirin-N, scytovirin, Microcystis viridis lectin, and microvirin. Actinohivin is an anti-HIV actinomycete lectin. The anti-HIV worm lectins include Chaetopterus variopedatus polychaete marine worm lectin, Serpula vermicularis sea worm lectin, and C-type lectin Mermaid from nematode (Laxus oneistus. The anti-HIV nonpeptidic lectin mimics comprise pradimicins and benanomicins. Their anti-HIV mechanisms are discussed.

  12. Neonatal Vaccination: Challenges and Intervention Strategies.

    Science.gov (United States)

    Morris, Matthew C; Surendran, Naveen

    2016-01-01

    While vaccines have been tremendously successful in reducing the incidence of serious infectious diseases, newborns remain particularly vulnerable in the first few months of their life to life-threatening infections. A number of challenges exist to neonatal vaccination. However, recent advances in the understanding of neonatal immunology offer insights to overcome many of those challenges. This review will present an overview of the features of neonatal immunity which make vaccination difficult, survey the mechanisms of action of available vaccine adjuvants with respect to the unique features of neonatal immunity, and propose a possible mechanism contributing to the inability of neonates to generate protective immune responses to vaccines. We surveyed recent published findings on the challenges to neonatal vaccination and possible intervention strategies including the use of novel vaccine adjuvants to develop efficacious neonatal vaccines. Challenges in the vaccination of neonates include interference from maternal antibody and excessive skewing towards Th2 immunity, which can be counteracted by the use of proper adjuvants. Synergistic stimulation of multiple Toll-like receptors by incorporating well-defined agonist-adjuvant combinations to vaccines is a promising strategy to ensure a protective vaccine response in neonates. © 2016 S. Karger AG, Basel.

  13. Nanomedicine in the development of anti-HIV microbicides.

    Science.gov (United States)

    das Neves, José; Nunes, Rute; Rodrigues, Francisca; Sarmento, Bruno

    2016-08-01

    Prevention plays an invaluable role in the fight against HIV/AIDS. The use of microbicides is considered an interesting potential approach for topical pre-exposure prophylaxis of HIV sexual transmission. The prospects of having an effective product available are expected to be fulfilled in the near future as driven by recent and forthcoming results of clinical trials. Different dosage forms and delivery strategies have been proposed and tested for multiple microbicide drug candidates presently at different stages of the development pipeline. One particularly interesting approach comprises the application of nanomedicine principles to the development of novel anti-HIV microbicides, but its implications to efficacy and safety are not yet fully understood. Nanotechnology-based systems, either presenting inherent anti-HIV activity or acting as drug nanocarriers, may significantly influence features such as drug solubility, stability of active payloads, drug release, interactions between active moieties and virus/cells, intracellular drug delivery, drug targeting, safety, antiviral activity, mucoadhesive behavior, drug distribution and tissue penetration, and pharmacokinetics. The present manuscript provides a comprehensive and holistic overview of these topics as relevant to the development of vaginal and rectal microbicides. In particular, recent advances pertaining inherently active microbicide nanosystems and microbicide drug nanocarriers are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Recombinant vaccines and the development of new vaccine strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, I.P.; Leite, L.C.C. [Centro de Biotecnologia, Instituto Butantan, São Paulo, SP (Brazil)

    2012-09-07

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  15. Recombinant vaccines and the development of new vaccine strategies

    Directory of Open Access Journals (Sweden)

    I.P. Nascimento

    2012-12-01

    Full Text Available Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  16. Recombinant vaccines and the development of new vaccine strategies

    International Nuclear Information System (INIS)

    Nascimento, I.P.; Leite, L.C.C.

    2012-01-01

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks

  17. Prospects for Foamy Viral Vector Anti-HIV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Arun K. Nalla

    2016-03-01

    Full Text Available Stem cell gene therapy approaches for Human Immunodeficiency Virus (HIV infection have been explored in clinical trials and several anti-HIV genes delivered by retroviral vectors were shown to block HIV replication. However, gammaretroviral and lentiviral based retroviral vectors have limitations for delivery of anti-HIV genes into hematopoietic stem cells (HSC. Foamy virus vectors have several advantages including efficient delivery of transgenes into HSC in large animal models, and a potentially safer integration profile. This review focuses on novel anti-HIV transgenes and the potential of foamy virus vectors for HSC gene therapy of HIV.

  18. Dengue Fever: Causes, Complications, and Vaccine Strategies

    Directory of Open Access Journals (Sweden)

    Niyati Khetarpal

    2016-01-01

    Full Text Available Dengue is a highly endemic infectious disease of the tropical countries and is rapidly becoming a global burden. It is caused by any of the 4 serotypes of dengue virus and is transmitted within humans through female Aedes mosquitoes. Dengue disease varies from mild fever to severe conditions of dengue hemorrhagic fever and shock syndrome. Globalization, increased air travel, and unplanned urbanization have led to increase in the rate of infection and helped dengue to expand its geographic and demographic distribution. Dengue vaccine development has been a challenging task due to the existence of four antigenically distinct dengue virus serotypes, each capable of eliciting cross-reactive and disease-enhancing antibody response against the remaining three serotypes. Recently, Sanofi Pasteur’s chimeric live-attenuated dengue vaccine candidate has been approved in Mexico, Brazil, and Philippines for usage in adults between 9 and 45 years of age. The impact of its limited application to the public health system needs to be evaluated. Simultaneously, the restricted application of this vaccine candidate warrants continued efforts in developing a dengue vaccine candidate which is additionally efficacious for infants and naïve individuals. In this context, alternative strategies of developing a designed vaccine candidate which does not allow production of enhancing antibodies should be explored, as it may expand the umbrella of efficacy to include infants and naïve individuals.

  19. Economic analysis of pandemic influenza vaccination strategies in Singapore.

    Directory of Open Access Journals (Sweden)

    Vernon J Lee

    Full Text Available BACKGROUND: All influenza pandemic plans advocate pandemic vaccination. However, few studies have evaluated the cost-effectiveness of different vaccination strategies. This paper compares the economic outcomes of vaccination compared with treatment with antiviral agents alone, in Singapore. METHODOLOGY: We analyzed the economic outcomes of pandemic vaccination (immediate vaccination and vaccine stockpiling compared with treatment-only in Singapore using a decision-based model to perform cost-benefit and cost-effectiveness analyses. We also explored the annual insurance premium (willingness to pay depending on the perceived risk of the next pandemic occurring. PRINCIPAL FINDINGS: The treatment-only strategy resulted in 690 deaths, 13,950 hospitalization days, and economic cost of USD$497 million. For immediate vaccination, at vaccine effectiveness of >55%, vaccination was cost-beneficial over treatment-only. Vaccine stockpiling is not cost-effective in most scenarios even with 100% vaccine effectiveness. The annual insurance premium was highest with immediate vaccination, and was lower with increased duration to the next pandemic. The premium was also higher with higher vaccine effectiveness, attack rates, and case-fatality rates. Stockpiling with case-fatality rates of 0.4-0.6% would be cost-beneficial if vaccine effectiveness was >80%; while at case-fatality of >5% stockpiling would be cost-beneficial even if vaccine effectiveness was 20%. High-risk sub-groups warrant higher premiums than low-risk sub-groups. CONCLUSIONS: The actual pandemic vaccine effectiveness and lead time is unknown. Vaccine strategy should be based on perception of severity. Immediate vaccination is most cost-effective, but requires vaccines to be available when required. Vaccine stockpiling as insurance against worst-case scenarios is also cost-effective. Research and development is therefore critical to develop and stockpile cheap, readily available effective vaccines.

  20. Seropositivity of HBsAg, anti-HCV and anti-HIV in preoperative patients

    Directory of Open Access Journals (Sweden)

    Berrin Karaayak Uzun

    2014-12-01

    Full Text Available Objective: The infections caused by human immunodeficiency virus (HIV, hepatitis B (HBV and C (HCV viruses pose a serious occupational risk for the healthcare workers especially those in emergency services, laboratories and surgery wards. Vaccination and establishment of the strict biosafety procedures are the main principles to prevent blood-borne infections in healthcare workers. Additionally, serological screening of the preoperative patients could decrease the risk for exposure. In this study, we aimed to determine the seroprevalence of HBsAg, anti-HCV, anti-HIV 1/2 in preoperative patients. Methods: Hospital automation records were evaluated retrospectively for 4.367 patients who were scheduled for surgery and scanned for anti-HIV 1/2, HBsAg and anti-HCV as preoperative procedures in the preparation period of operation between January 2012 and December 2012. Results: HBsAg positivity rate was found in 7.7% (n=336, anti-HCV positivity rate was found in 2.3% (n=101. A two (0.05% of five patients were positive for anti-HIV 1/2 was found positive verification test and the other three samples were accepted as false positive test results. Conclusion: All healthcare workers must be trained about occupational diseases and vaccinated against Hepatitis B. Universal precautions must be strictly followed particularly in the operating room. In addition, all patients should be considered as potential carriers regarded as a carrier of the potential for infection. J Clin Exp Invest 2013; 4 (4: 449-452

  1. Effect of vaccination strategies on the dynamic behavior of epidemic spreading and vaccine coverage

    International Nuclear Information System (INIS)

    Cai, Chao-Ran; Wu, Zhi-Xi; Guan, Jian-Yue

    2014-01-01

    The transmission of infectious, yet vaccine-preventable, diseases is a typical complex social phenomenon, where the increasing level of vaccine update in the population helps to inhibit the epidemic spreading, which in turn, however, discourages more people to participate in vaccination campaigns, due to the “externality effect” raised by vaccination. We herein study the impact of vaccination strategies, pure, continuous (rather than adopt vaccination definitely, the individuals choose to taking vaccine with some probabilities), or continuous with randomly mutation, on the vaccination dynamics with a spatial susceptible-vaccinated-infected-recovered (SVIR) epidemiological model. By means of extensive Monte-Carlo simulations, we show that there is a crossover behavior of the final vaccine coverage between the pure-strategy case and the continuous-strategy case, and remarkably, both the final vaccination level and epidemic size in the continuous-strategy case are less than them in the pure-strategy case when vaccination is cheap. We explain this phenomenon by analyzing the organization process of the individuals in the continuous-strategy case in the equilibrium. Our results are robust to the SVIR dynamics defined on other spatial networks, like the Erdős–Rényi and Barabási–Albert networks

  2. Optimal vaccination strategies against vector-borne diseases

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Enøe, Claes; Bødker, Rene

    2014-01-01

    Using a process oriented semi-agent based model, we simulated the spread of Bluetongue virus by Culicoides, biting midges, between cattle in Denmark. We evaluated the minimum vaccination cover and minimum cost for eight different preventive vaccination strategies in Denmark. The simulation model ...... results when index cases were in the vaccinated areas. However, given that the long-range spread of midge borne disease is still poorly quantified, more robust national vaccination schemes seem preferable....

  3. Influenza Vaccination Strategies: Comparing Inactivated and Live Attenuated Influenza Vaccines

    Directory of Open Access Journals (Sweden)

    Saranya Sridhar

    2015-04-01

    Full Text Available Influenza is a major respiratory pathogen causing annual outbreaks and occasional pandemics. Influenza vaccination is the major method of prophylaxis. Currently annual influenza vaccination is recommended for groups at high risk of complications from influenza infection such as pregnant women, young children, people with underlying disease and the elderly, along with occupational groups such a healthcare workers and farm workers. There are two main types of vaccines available: the parenteral inactivated influenza vaccine and the intranasal live attenuated influenza vaccine. The inactivated vaccines are licensed from 6 months of age and have been used for more than 50 years with a good safety profile. Inactivated vaccines are standardized according to the presence of the viral major surface glycoprotein hemagglutinin and protection is mediated by the induction of vaccine strain specific antibody responses. In contrast, the live attenuated vaccines are licensed in Europe for children from 2–17 years of age and provide a multifaceted immune response with local and systemic antibody and T cell responses but with no clear correlate of protection. Here we discuss the immunological immune responses elicited by the two vaccines and discuss future work to better define correlates of protection.

  4. Anti-HIV-1 activity of flavonoid myricetin on HIV-1 infection in a dual-chamber in vitro model.

    Directory of Open Access Journals (Sweden)

    Silvana Pasetto

    Full Text Available HIV infection by sexual transmission remains an enormous global health concern. More than 1 million new infections among women occur annually. Microbicides represent a promising prevention strategy that women can easily control. Among emerging therapies, natural small molecules such as flavonoids are an important source of new active substances. In this study we report the in vitro cytotoxicity and anti-HIV-1 and microbicide activity of the following flavonoids: Myricetin, Quercetin and Pinocembrin. Cytotoxicity tests were conducted on TZM-bl, HeLa, PBMC, and H9 cell cultures using 0.01-100 µM concentrations. Myricetin presented the lowest toxic effect, with Quercetin and Pinocembrin relatively more toxic. The anti-HIV-1 activity was tested with TZM-bl cell plus HIV-1 BaL (R5 tropic, H9 and PBMC cells plus HIV-1 MN (X4 tropic, and the dual tropic (X4R5 HIV-1 89.6. All flavonoids showed anti-HIV activity, although Myricetin was more effective than Quercetin or Pinocembrin. In TZM-bl cells, Myricetin inhibited ≥90% of HIV-1 BaL infection. The results were confirmed by quantification of HIV-1 p24 antigen in supernatant from H9 and PBMC cells following flavonoid treatment. In H9 and PBMC cells infected by HIV-1 MN and HIV-1 89.6, Myricetin showed more than 80% anti-HIV activity. Quercetin and Pinocembrin presented modest anti-HIV activity in all experiments. Myricetin activity was tested against HIV-RT and inhibited the enzyme by 49%. Microbicide activities were evaluated using a dual-chamber female genital tract model. In the in vitro microbicide activity model, Myricetin showed promising results against different strains of HIV-1 while also showing insignificant cytotoxic effects. Further studies of Myricetin should be performed to identify its molecular targets in order to provide a solid biological foundation for translational research.

  5. Policy resistance undermines superspreader vaccination strategies for influenza.

    Directory of Open Access Journals (Sweden)

    Chad R Wells

    Full Text Available Theoretical models of infection spread on networks predict that targeting vaccination at individuals with a very large number of contacts (superspreaders can reduce infection incidence by a significant margin. These models generally assume that superspreaders will always agree to be vaccinated. Hence, they cannot capture unintended consequences such as policy resistance, where the behavioral response induced by a new vaccine policy tends to reduce the expected benefits of the policy. Here, we couple a model of influenza transmission on an empirically-based contact network with a psychologically structured model of influenza vaccinating behavior, where individual vaccinating decisions depend on social learning and past experiences of perceived infections, vaccine complications and vaccine failures. We find that policy resistance almost completely undermines the effectiveness of superspreader strategies: the most commonly explored approaches that target a randomly chosen neighbor of an individual, or that preferentially choose neighbors with many contacts, provide at best a 2% relative improvement over their non-targeted counterpart as compared to 12% when behavioral feedbacks are ignored. Increased vaccine coverage in super spreaders is offset by decreased coverage in non-superspreaders, and superspreaders also have a higher rate of perceived vaccine failures on account of being infected more often. Including incentives for vaccination provides modest improvements in outcomes. We conclude that the design of influenza vaccine strategies involving widespread incentive use and/or targeting of superspreaders should account for policy resistance, and mitigate it whenever possible.

  6. AIDS: Anti-HIV Agents, Therapies, and Vaccines

    Science.gov (United States)

    1990-12-26

    Rabson, T. F. Smith & F. Wong-Staal, Eds. Theoretical Biology and Biophysics Group T-10. Los Alamos, New Mexico . 146 ANNALS NEW YORK ACADEMY OV SCIENCES...delayed-type hypersensitivity (DTH) responses to a 10 tg intradermal injection of purified protein derivative (PPD) of My"cobacterium tuberculosis ...8217t, & G. M SIt-ARt R. 1989. J. Clin. Invest. 84" 1892- 1899, I. M\\i R\\ K., Q. N. 1982 AdN . Exp. Med. iliol. 155:649 57. 17. MOORi. V L, Q N. MNRVIK

  7. DENGUE VACCINE, CHALLENGES, DEVELOPMENT AND STRATEGIES

    Directory of Open Access Journals (Sweden)

    Dewi Marbawati

    2014-08-01

    Full Text Available ABSTRAKPenyakit demam Dengue endemik di lebih dari 100 negara di dunia. Obat anti virus Dengue efektif belum ditemukan danpengendalian vektor dinilai kurang efektif, sehingga diperlukan upaya pencegahan dengan vaksinasi. Vaksin Dengue yangideal adalah murah, mencakup 4 serotipe, efektif dalam memberikan kekebalan, cukup diberikan sekali seumur hidup, aman,memberi kekebalan jangka panjang, stabil dalam penyimpanan dan stabil secara genetis (tidak bermutasi. Beberapakandidat vaksin yang telah dan sedang dikembangkan oleh para peneliti di seluruh dunia adalah tetravalent live attenuatedvaccine, vaksin Chimera (ChimeriVax, vaksin subunit dan vaksin DNA. Vaksin Dengue dipandang sebagai pendekatan yangefektif dan berkesinambungan dalam mengendalikan penyakit Dengue. Tahun 2003 telah terbentuk Pediatric DengueVaccine Initiative (PDVI, yaitu sebuah konsorsium internasional yang bergerak dalam advokasi untuk meyakinkanmasyarakat internasional akan penting dan mendesaknya vaksin Dengue. Konsorsium vaksin Dengue Indonesia saat iniberupaya mengembangkan vaksin Dengue dengan menggunakan strain virus lokal.Kata kunci: Dengue, virus, vaksinABSTRACTDengue fever is endemic in more than 100 countries in the world. The effective dengue antiviral drug has not been found yet,and vector control is considered less effective. Prevention program by vaccination is needed. An ideal dengue vaccine shouldbe inexpensive, covering four serotypes (tetravalent, effective in providing immunity, given once a lifetime, safe, stable instorage and genetically. Several vaccine candidates have been and are being developed included attenuated tetravalentvaccine, ChimeriVax, sub- unit vaccines and DNA vaccines. Dengue vaccine is seen as an effective and sustainable approachto controll Dengue infection. In 2003, Pediatric Dengue Vaccine Initiative (PDVI has been formed as an internationalconsortium involved in advocacy to convince the international community about the essence and urgency

  8. Fragment-based approaches to anti-HIV drug discovery: state of the art and future opportunities.

    Science.gov (United States)

    Huang, Boshi; Kang, Dongwei; Zhan, Peng; Liu, Xinyong

    2015-12-01

    The search for additional drugs to treat HIV infection is a continuing effort due to the emergence and spread of HIV strains resistant to nearly all current drugs. The recent literature reveals that fragment-based drug design/discovery (FBDD) has become an effective alternative to conventional high-throughput screening strategies for drug discovery. In this critical review, the authors describe the state of the art in FBDD strategies for the discovery of anti-HIV drug-like compounds. The article focuses on fragment screening techniques, direct fragment-based design and early hit-to-lead progress. Rapid progress in biophysical detection and in silico techniques has greatly aided the application of FBDD to discover candidate agents directed at a variety of anti-HIV targets. Growing evidence suggests that structural insights on key proteins in the HIV life cycle can be applied in the early phase of drug discovery campaigns, providing valuable information on the binding modes and efficiently prompting fragment hit-to-lead progression. The combination of structural insights with improved methodologies for FBDD, including the privileged fragment-based reconstruction approach, fragment hybridization based on crystallographic overlays, fragment growth exploiting dynamic combinatorial chemistry, and high-speed fragment assembly via diversity-oriented synthesis followed by in situ screening, offers the possibility of more efficient and rapid discovery of novel drugs for HIV-1 prevention or treatment. Though the use of FBDD in anti-HIV drug discovery is still in its infancy, it is anticipated that anti-HIV agents developed via fragment-based strategies will be introduced into the clinic in the future.

  9. Testing of viscous anti-HIV microbicides using Lactobacillus

    OpenAIRE

    Moncla, B.J.; Pryke, K.; Rohan, L. C.; Yang, H.

    2011-01-01

    The development of topical microbicides for intravaginal use to prevent HIV infection requires that the drugs and formulated products be nontoxic to the endogenous vaginal Lactobacillus. In 30 min exposure tests we found dapivirine, tenofovir and UC781 (reverse transcriptase inhibitor anti-HIV drugs) as pure drugs or formulated as film or gel products were not deleterious to Lactobacillus species; however, PSC-RANTES (a synthetic CCR5 antagonist) killed 2 strains of Lactobacillus jensenii. To...

  10. Vaccination strategies for SIR vector-transmitted diseases.

    Science.gov (United States)

    Cruz-Pacheco, Gustavo; Esteva, Lourdes; Vargas, Cristobal

    2014-08-01

    Vector-borne diseases are one of the major public health problems in the world with the fastest spreading rate. Control measures have been focused on vector control, with poor results in most cases. Vaccines should help to reduce the diseases incidence, but vaccination strategies should also be defined. In this work, we propose a vector-transmitted SIR disease model with age-structured population subject to a vaccination program. We find an expression for the age-dependent basic reproductive number R(0), and we show that the disease-free equilibrium is locally stable for R(0) ≤ 1, and a unique endemic equilibrium exists for R(0) > 1. We apply the theoretical results to public data to evaluate vaccination strategies, immunization levels, and optimal age of vaccination for dengue disease.

  11. [Strategies to improve influenza vaccination coverage in Primary Health Care].

    Science.gov (United States)

    Antón, F; Richart, M J; Serrano, S; Martínez, A M; Pruteanu, D F

    2016-04-01

    Vaccination coverage reached in adults is insufficient, and there is a real need for new strategies. To compare strategies for improving influenza vaccination coverage in persons older than 64 years. New strategies were introduced in our health care centre during 2013-2014 influenza vaccination campaign, which included vaccinating patients in homes for the aged as well as in the health care centre. A comparison was made on vaccination coverage over the last 4 years in 3 practices of our health care centre: P1, the general physician vaccinated patients older than 64 that came to the practice; P2, the general physician systematically insisted in vaccination in elderly patients, strongly advising to book appointments, and P3, the general physician did not insist. These practices looked after P1: 278; P2: 320; P3: 294 patients older than 64 years. Overall/P1/P2/P3 coverages in 2010: 51.2/51.4/55/46.9% (P=NS), in 2011: 52.4/52.9/53.8/50.3% (P=NS), in 2012: 51.9/52.5/55.3/47.6% (P=NS), and in 2013: 63.5/79.1/59.7/52.7 (P=.000, P1 versus P2 and P3; P=NS between P2 and P3). Comparing the coverages in 2012-2013 within each practice P1 (P=.000); P2 (P=.045); P3 (P=.018). In P2 and P3 all vaccinations were given by the nurses as previously scheduled. In P3, 55% of the vaccinations were given by the nurses, 24.1% by the GP, 9.7% rejected vaccination, and the remainder did not come to the practice during the vaccination period (October 2013-February 2014). The strategy of vaccinating in the homes for the aged improved the vaccination coverage by 5% in each practice. The strategy of "I've got you here, I jab you here" in P1 improved the vaccination coverage by 22%. Copyright © 2014 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  12. On the robust optimization to the uncertain vaccination strategy problem

    International Nuclear Information System (INIS)

    Chaerani, D.; Anggriani, N.; Firdaniza

    2014-01-01

    In order to prevent an epidemic of infectious diseases, the vaccination coverage needs to be minimized and also the basic reproduction number needs to be maintained below 1. This means that as we get the vaccination coverage as minimum as possible, thus we need to prevent the epidemic to a small number of people who already get infected. In this paper, we discuss the case of vaccination strategy in term of minimizing vaccination coverage, when the basic reproduction number is assumed as an uncertain parameter that lies between 0 and 1. We refer to the linear optimization model for vaccination strategy that propose by Becker and Starrzak (see [2]). Assuming that there is parameter uncertainty involved, we can see Tanner et al (see [9]) who propose the optimal solution of the problem using stochastic programming. In this paper we discuss an alternative way of optimizing the uncertain vaccination strategy using Robust Optimization (see [3]). In this approach we assume that the parameter uncertainty lies within an ellipsoidal uncertainty set such that we can claim that the obtained result will be achieved in a polynomial time algorithm (as it is guaranteed by the RO methodology). The robust counterpart model is presented

  13. On the robust optimization to the uncertain vaccination strategy problem

    Energy Technology Data Exchange (ETDEWEB)

    Chaerani, D., E-mail: d.chaerani@unpad.ac.id; Anggriani, N., E-mail: d.chaerani@unpad.ac.id; Firdaniza, E-mail: d.chaerani@unpad.ac.id [Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Padjadjaran Indonesia, Jalan Raya Bandung Sumedang KM 21 Jatinangor Sumedang 45363 (Indonesia)

    2014-02-21

    In order to prevent an epidemic of infectious diseases, the vaccination coverage needs to be minimized and also the basic reproduction number needs to be maintained below 1. This means that as we get the vaccination coverage as minimum as possible, thus we need to prevent the epidemic to a small number of people who already get infected. In this paper, we discuss the case of vaccination strategy in term of minimizing vaccination coverage, when the basic reproduction number is assumed as an uncertain parameter that lies between 0 and 1. We refer to the linear optimization model for vaccination strategy that propose by Becker and Starrzak (see [2]). Assuming that there is parameter uncertainty involved, we can see Tanner et al (see [9]) who propose the optimal solution of the problem using stochastic programming. In this paper we discuss an alternative way of optimizing the uncertain vaccination strategy using Robust Optimization (see [3]). In this approach we assume that the parameter uncertainty lies within an ellipsoidal uncertainty set such that we can claim that the obtained result will be achieved in a polynomial time algorithm (as it is guaranteed by the RO methodology). The robust counterpart model is presented.

  14. Anti-HIV Antibody Responses and the HIV Reservoir Size during Antiretroviral Therapy.

    Directory of Open Access Journals (Sweden)

    Sulggi A Lee

    Full Text Available A major challenge to HIV eradication strategies is the lack of an accurate measurement of the total burden of replication-competent HIV (the "reservoir". We assessed the association of anti-HIV antibody responses and the estimated size of the reservoir during antiretroviral therapy (ART.We evaluated anti-HIV antibody profiles using luciferase immunoprecipitation systems (LIPS assay in relation to several blood-based HIV reservoir measures: total and 2-LTR DNA (rtPCR or droplet digital PCR; integrated DNA (Alu PCR; unspliced RNA (rtPCR, multiply-spliced RNA (TILDA, residual plasma HIV RNA (single copy PCR, and replication-competent virus (outgrowth assay. We also assessed total HIV DNA and RNA in gut-associated lymphoid tissue (rtPCR. Spearman correlations and linear regressions were performed using log-transformed blood- or tissue-based reservoir measurements as predictors and log-transformed antibody levels as outcome variables.Among 51 chronically HIV-infected ART-suppressed participants (median age = 57, nadir CD4+ count = 196 cells/mm3, ART duration = 9 years, the most statistically significant associations were between antibody responses to integrase and HIV RNA in gut-associated lymphoid tissue (1.17 fold-increase per two-fold RNA increase, P = 0.004 and between antibody responses to matrix and integrated HIV DNA in resting CD4+ T cells (0.35 fold-decrease per two-fold DNA increase, P = 0.003. However, these associations were not statistically significant after a stringent Bonferroni-adjustment of P<0.00045. Multivariate models including age and duration of ART did not markedly alter results.Our findings suggest that anti-HIV antibody responses may reflect the size of the HIV reservoir during chronic treated HIV disease, possibly via antigen recognition in reservoir sites. Larger, prospective studies are needed to validate the utility of antibody levels as a measure of the total body burden of HIV during treatment.

  15. HIV-1 tat promotes integrin-mediated HIV transmission to dendritic cells by binding Env spikes and competes neutralization by anti-HIV antibodies.

    Directory of Open Access Journals (Sweden)

    Paolo Monini

    Full Text Available Use of Env in HIV vaccine development has been disappointing. Here we show that, in the presence of a biologically active Tat subunit vaccine, a trimeric Env protein prevents in monkeys virus spread from the portal of entry to regional lymph nodes. This appears to be due to specific interactions between Tat and Env spikes that form a novel virus entry complex favoring R5 or X4 virus entry and productive infection of dendritic cells (DCs via an integrin-mediated pathway. These Tat effects do not require Tat-transactivation activity and are blocked by anti-integrin antibodies (Abs. Productive DC infection promoted by Tat is associated with a highly efficient virus transmission to T cells. In the Tat/Env complex the cysteine-rich region of Tat engages the Env V3 loop, whereas the Tat RGD sequence remains free and directs the virus to integrins present on DCs. V2 loop deletion, which unshields the CCR5 binding region of Env, increases Tat/Env complex stability. Of note, binding of Tat to Env abolishes neutralization of Env entry or infection of DCs by anti-HIV sera lacking anti-Tat Abs, which are seldom present in natural infection. This is reversed, and neutralization further enhanced, by HIV sera containing anti-Tat Abs such as those from asymptomatic or Tat-vaccinated patients, or by sera from the Tat/Env vaccinated monkeys. Thus, both anti-Tat and anti-Env Abs are required for efficient HIV neutralization. These data suggest that the Tat/Env interaction increases HIV acquisition and spreading, as a mechanism evolved by the virus to escape anti-Env neutralizing Abs. This may explain the low effectiveness of Env-based vaccines, which are also unlikely to elicit Abs against new Env epitopes exposed by the Tat/Env interaction. As Tat also binds Envs from different clades, new vaccine strategies should exploit the Tat/Env interaction for both preventative and therapeutic interventions.

  16. Evaluation of targeted influenza vaccination strategies via population modeling.

    Directory of Open Access Journals (Sweden)

    John Glasser

    Full Text Available BACKGROUND: Because they can generate comparable predictions, mathematical models are ideal tools for evaluating alternative drug or vaccine allocation strategies. To remain credible, however, results must be consistent. Authors of a recent assessment of possible influenza vaccination strategies conclude that older children, adolescents, and young adults are the optimal targets, no matter the objective, and argue for vaccinating them. Authors of two earlier studies concluded, respectively, that optimal targets depend on objectives and cautioned against changing policy. Which should we believe? METHODS AND FINDINGS: In matrices whose elements are contacts between persons by age, the main diagonal always predominates, reflecting contacts between contemporaries. Indirect effects (e.g., impacts of vaccinating one group on morbidity or mortality in others result from off-diagonal elements. Mixing matrices based on periods in proximity with others have greater sub- and super-diagonals, reflecting contacts between parents and children, and other off-diagonal elements (reflecting, e.g., age-independent contacts among co-workers, than those based on face-to-face conversations. To assess the impact of targeted vaccination, we used a time-usage study's mixing matrix and allowed vaccine efficacy to vary with age. And we derived mortality rates either by dividing observed deaths attributed to pneumonia and influenza by average annual cases from a demographically-realistic SEIRS model or by multiplying those rates by ratios of (versus adding to them differences between pandemic and pre-pandemic mortalities. CONCLUSIONS: In our simulations, vaccinating older children, adolescents, and young adults averts the most cases, but vaccinating either younger children and older adults or young adults averts the most deaths, depending on the age distribution of mortality. These results are consistent with those of the earlier studies.

  17. Identification Of Protein Vaccine Candidates Using Comprehensive Proteomic Analysis Strategies

    Science.gov (United States)

    2007-12-01

    that fascinating fungus known as Coccidioides. I also want to thank the UA Mass Spectrometry Facility and the UA Proteomics Consortium, especially...W. & N. N. Kav. 2006. The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Proteomics 6: 5995-6007. 127. de Godoy, L. M., J. V...IDENTIFICATION OF PROTEIN VACCINE CANDIDATES USING COMPREHENSIVE PROTEOMIC ANALYSIS STRATEGIES by James G. Rohrbough

  18. Identifying optimal vaccination strategies for serogroup A Neisseria meningitidis conjugate vaccine in the African meningitis belt.

    Directory of Open Access Journals (Sweden)

    Sara Tartof

    Full Text Available The optimal long-term vaccination strategies to provide population-level protection against serogroup A Neisseria meningitidis (MenA are unknown. We developed an age-structured mathematical model of MenA transmission, colonization, and disease in the African meningitis belt, and used this model to explore the impact of various vaccination strategies.The model stratifies the simulated population into groups based on age, infection status, and MenA antibody levels. We defined the model parameters (such as birth and death rates, age-specific incidence rates, and age-specific duration of protection using published data and maximum likelihood estimation. We assessed the validity of the model by comparing simulated incidence of invasive MenA and prevalence of MenA carriage to observed incidence and carriage data.The model fit well to observed age- and season-specific prevalence of carriage (mean pseudo-R2 0.84 and incidence of invasive disease (mean R2 0.89. The model is able to reproduce the observed dynamics of MenA epidemics in the African meningitis belt, including seasonal increases in incidence, with large epidemics occurring every eight to twelve years. Following a mass vaccination campaign of all persons 1-29 years of age, the most effective modeled vaccination strategy is to conduct mass vaccination campaigns every 5 years for children 1-5 years of age. Less frequent campaigns covering broader age groups would also be effective, although somewhat less so. Introducing conjugate MenA vaccine into the EPI vaccination schedule at 9 months of age results in higher predicted incidence than periodic mass campaigns.We have developed the first mathematical model of MenA in Africa to incorporate age structures and progressively waning protection over time. Our model accurately reproduces key features of MenA epidemiology in the African meningitis belt. This model can help policy makers consider vaccine program effectiveness when determining the

  19. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Munang'andu, Hetron Mweemba; Paul, Joydeb; Evensen, Øystein

    2016-12-13

    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia ( Niloticus oreochromis ) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy.

  20. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus)

    Science.gov (United States)

    Munang’andu, Hetron Mweemba; Paul, Joydeb; Evensen, Øystein

    2016-01-01

    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia (Niloticus oreochromis) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy. PMID:27983591

  1. HIV testing among pregnant women in Brazil: rates and predictors Prueba anti-HIV en mujeres embarazadas en Brasil: tasas y predictivos Testagem anti-HIV em mulheres grávidas no Brasil: taxas e preditores

    Directory of Open Access Journals (Sweden)

    Valdiléa G Veloso

    2008-10-01

    Full Text Available OBJECTIVE: To assess rates of offering and uptake of HIV testing and their predictors among women who attended prenatal care. METHODS: A population-based cross-sectional study was conducted among postpartum women (N=2,234 who attended at least one prenatal care visit in 12 cities. Independent and probabilistic samples were selected in the cities studied. Sociodemographic data, information about prenatal care and access to HIV prevention interventions during the current pregnancy were collected. Bivariate and multivariate analyses were carried out to assess independent effects of the covariates on offering and uptake of HIV testing. Data collection took place between November 1999 and April 2000. RESULTS: Overall, 77.5% of the women reported undergoing HIV testing during the current pregnancy. Offering of HIV testing was positively associated with: previous knowledge about prevention of mother-to-child transmission of HIV; higher number of prenatal care visits; higher level of education and being white. HIV testing acceptance rate was 92.5%. CONCLUSIONS: The study results indicate that dissemination of information about prevention of mother-to-child transmission among women may contribute to increasing HIV testing coverage during pregnancy. Non-white women with lower level of education should be prioritized. Strategies to increase attendance of vulnerable women to prenatal care and to raise awareness among health care workers are of utmost importance.OBJETIVO: Estimar las tasas de oferta y realización de la prueba anti-HIV y sus predictivos entre mujeres que recibieron atención prenatal. MÉTODOS: Se realizó un estudio transversal, de base poblacional, con 2.234 puérperas en 12 ciudades de Brasil. Las muestras probabilísticas fueron seleccionadas independientemente por ciudad, entre puérperas que asistieron a por lo menos una visita prenatal. Se colectaron datos sociodemográficos, informaciones sobre cuidado prenatal y acceso a

  2. Measles in Morocco: epidemiological profile and impact of vaccination strategy.

    Science.gov (United States)

    Cheikh, Amine; Ziani, Mouncif; Cheikh, Zakia; Barakat, Amina; El Menzhi, Omar; Braikat, Mohammed; Benomar, Ali; Cherrah, Yahya; El Hassani, Amine

    2015-02-01

    Measles continues to persist as one of the leading causes of infant mortality due to preventable diseases through vaccination. This study aims to highlight measles in Morocco, and to present the vaccination strategy implemented to control and eliminate the disease in this country. Throughout this study, and based on data from the Directorate of Epidemiology and Control of Diseases and those of the Directorate of Population, we present an overview on the epidemiological trends of measles from 1997 to 2012, while evoking the plans established by the Ministry of Health (MoH) for the control and elimination of this disease. The number of measles cases has decreased in Morocco between 1997 and 2012 (2574-720 reported cases per year) as a result of four important steps: first, increasing the routine vaccination coverage (73-94%); second, the introduction of the second dose of the combined vaccine against measles and rubella in schools (children aged 6 years) since 2003; third, the first catch-up campaign of vaccination in Morocco in 2008, for which coverage was highly satisfactory (96% and 100% for age groups 5-59 months and 5-14 years, respectively); and fourth, the organization of a mass vaccination campaign in 2013 that targeted children from aged 9 months to 19 years. The vaccination plan and the surveillance system executed in Morocco within the framework of the regional project implemented by the World Health Organization (WHO) to eliminate measles has given remarkable results regarding the reduction of measles cases and mortality due to this disease. According to the data from MoH and WHO, the number of reported and confirmed measles cases decreased drastically during 2014. However, these efforts are still unsatisfactory compared to the prospective of eliminating the disease by 2015.

  3. A Survey of Plants with Anti-HIV Active Compounds and their Modes ...

    African Journals Online (AJOL)

    Administrator

    proteins, alkaloids, and biflavonoids inhibit various ... several plant families and species contain anti-HIV .... articles reviewed, only about a third were included .... membranes against free .... Pedersen, B.K. Low plasma level of adiponectin.

  4. New findings on the d(TGGGAG) sequence: Surprising anti-HIV-1 activity.

    Science.gov (United States)

    Romanucci, Valeria; Zarrelli, Armando; Liekens, Sandra; Noppen, Sam; Pannecouque, Christophe; Di Fabio, Giovanni

    2018-02-10

    The biological relevance of tetramolecular G-quadruplexes especially as anti-HIV agents has been extensively reported in the literature over the last years. In the light of our recent results regarding the slow G-quadruplex folding kinetics of ODNs based on d(TGGGAG) sequence, here we report a systematic anti-HIV screening to investigate the impact of the G-quadruplex folding on their anti-HIV activity. In particular, varying the single stranded concentrations of ODNs, it has been tested a pool of ODN sample solutions with different G-quadruplex concentrations. The anti-HIV assays have been designed favouring the limited kinetics involved in the tetramolecular G4-association based on the d(TGGGAG) sequence. Aiming to determine the stoichiometry of G-quadruplex structures in the same experimental conditions of the anti-HIV assays, a native gel electrophoresis was performed. The gel confirmed the G-quadruplex formation for almost all sample solutions while showing the formation of high order G4 structures for the more concentrated ODNs solutions. The most significant result is the discovery of a potent anti-HIV activity of the G-quadruplex formed by the natural d(TGGGAG) sequence (IC 50  = 14 nM) that, until now, has been reported to be completely inactive against HIV infection. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Rational design of diagnostic and vaccination strategies for tuberculosis

    Directory of Open Access Journals (Sweden)

    Sibele Borsuk

    Full Text Available The development of diagnostic tests which can readily differentiate between vaccinated and tuberculosis-infected individuals is crucial for the wider utilization of bacillus Calmette-Guérin (BCG as vaccine in humans and animals. BCG_0092 is an antigen that elicits specific delayed type hypersensitivity reactions similar in size and morphological aspects to that elicited by purified protein derivative, in both animals and humans infected with the tubercle bacilli. We carried out bioinformatics analyses of the BCG_0092 and designed a diagnostic test by using the predicted MHC class I epitopes. In addition, we performed a knockout of this gene by homologous recombination in the BCG vaccine strain to allow differentiation of vaccinated from infected individuals. For that, the flanking sequences of the target gene (BCG_0092were cloned into a suicide vector. Spontaneous double crossovers, which result in wild type revertants or knockouts were selected using SacB. BCG_0092 is present only in members of the Mycobacterium tuberculosis complex. Eight predicted MHC class I epitopes with potential for immunological diagnosis were defined, allowing the design of a specific diagnostic test. The strategy used to delete the (BCG_0092 gene from BCG was successful. The knockout genotype was confirmed by PCR and by Southern blot. The mutant BCG strain has the potential of inducing protection against tuberculosis without interfering with the diagnostic test based on the use of selected epitopes from BCG_0092.

  6. Barriers, facilitators, and potential strategies for increasing HPV vaccination: A statewide assessment to inform action

    Directory of Open Access Journals (Sweden)

    Kathleen B. Cartmell

    2018-06-01

    Full Text Available Objective: The objective was to investigate how state level strategies in South Carolina could maximize HPV vaccine uptake. Design: An environmental scan identified barriers, facilitators, and strategies for improving HPV vaccination in South Carolina. Interviews were conducted with state leaders from relevant organizations such as public health agencies, medical associations, K-12 schools, universities, insurers, and cancer advocacy organizations. A thematic content analysis design was used. Digital interview files were transcribed, a data dictionary was created and data were coded using the data dictionary. Results: Thirty four interviews were conducted with state leaders. Barriers to HPV vaccination included lack of HPV awareness, lack of provider recommendation, HPV vaccine concerns, lack of access and practice-level barriers. Facilitators included momentum for improving HPV vaccination, school-entry Tdap requirement, pharmacy-based HPV vaccination, state immunization registry, HEDIS measures and HPV vaccine funding. Strategies for improving HPV vaccination fell into three categories: 1 addressing lack of awareness about the importance of HPV vaccination among the public and providers; 2 advocating for policy changes around HPV vaccine coverage, vaccine education, and pharmacy-based vaccination; and 3 coordination of efforts. Discussion: A statewide environmental scan generated a blueprint for action to be used to improve HPV vaccination in the state. Keywords: HPV, HPV vaccines, Cervical cancer, Prevention, Health systems, Barriers, Facilitators, Strategies, South Carolina

  7. G-Quadruplex Forming Oligonucleotides as Anti-HIV Agents.

    Science.gov (United States)

    Musumeci, Domenica; Riccardi, Claudia; Montesarchio, Daniela

    2015-09-22

    Though a variety of different non-canonical nucleic acids conformations have been recognized, G-quadruplex structures are probably the structural motifs most commonly found within known oligonucleotide-based aptamers. This could be ascribed to several factors, as their large conformational diversity, marked responsiveness of their folding/unfolding processes to external stimuli, high structural compactness and chemo-enzymatic and thermodynamic stability. A number of G-quadruplex-forming oligonucleotides having relevant in vitro anti-HIV activity have been discovered in the last two decades through either SELEX or rational design approaches. Improved aptamers have been obtained by chemical modifications of natural oligonucleotides, as terminal conjugations with large hydrophobic groups, replacement of phosphodiester linkages with phosphorothioate bonds or other surrogates, insertion of base-modified monomers, etc. In turn, detailed structural studies have elucidated the peculiar architectures adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. An overview of the state-of-the-art knowledge of the relevance of putative G-quadruplex forming sequences within the viral genome and of the most studied G-quadruplex-forming aptamers, selectively targeting HIV proteins, is here presented.

  8. Testing of viscous anti-HIV microbicides using Lactobacillus.

    Science.gov (United States)

    Moncla, B J; Pryke, K; Rohan, L C; Yang, H

    2012-02-01

    The development of topical microbicides for intravaginal use to prevent HIV infection requires that the drugs and formulated products be nontoxic to the endogenous vaginal Lactobacillus. In 30min exposure tests we found dapivirine, tenofovir and UC781 (reverse transcriptase inhibitor anti-HIV drugs) as pure drugs or formulated as film or gel products were not deleterious to Lactobacillus species; however, PSC-RANTES (a synthetic CCR5 antagonist) killed 2 strains of Lactobacillus jensenii. To demonstrate the toxicity of formulated products a new assay was developed for use with viscous and non-viscous samples that we have termed the Lactobacillus toxicity test. We found that the vortex mixing of vaginal Lactobacillus species can lead to reductions in bacterial viability. Lactobacillus can survive briefly, about 2s, but viability declines with increased vortex mixing. The addition of heat inactivated serum or bovine serum albumin, but not glycerol, prevented the decrease in bacterial viability. Bacillus atrophaeus spores also demonstrated loss of viability upon extended mixing. We observed that many of the excipients used in film formulation and the films themselves also afford protection from the killing during vortex mixing. This method is of relevance for toxicity for cidal activities of viscous products. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Is vaccination good value for money? A review of cost-utility analyses of vaccination strategies in eight European countries

    OpenAIRE

    Barbieri, Marco; Capri, Stefano

    2016-01-01

    Objective: The objective of this study is to review published cost-utility analyses of vaccination strategies in eight European countries and to assess whether there are differences in cost-effectiveness terms among countries and vaccinations. Methods: A systematic search of the literature was conducted using the National Health Service Economic Evaluation Database and the PubMed database. Cost-utility analyses of any type of vaccination that used quality-adjusted life years (QALYs) as me...

  10. Safety and anti-HIV assessments of natural vaginal cleansing products in an established topical microbicides in vitro testing algorithm

    Directory of Open Access Journals (Sweden)

    Jones Maureen

    2010-07-01

    Full Text Available Abstract Background At present, there is no effective vaccine or other approved product for the prevention of sexually transmitted human immunodeficiency virus type 1 (HIV-1 infection. It has been reported that women in resource-poor communities use vaginally applied citrus juices as topical microbicides. These easily accessible food products have historically been applied to prevent pregnancy and sexually transmitted diseases. The aim of this study was to evaluate the efficacy and cytotoxicity of these substances using an established topical microbicide testing algorithm. Freshly squeezed lemon and lime juice and household vinegar were tested in their original state or in pH neutralized form for efficacy and cytotoxicity in the CCR5-tropic cell-free entry and cell-associated transmission assays, CXCR4-tropic entry and fusion assays, and in a human PBMC-based anti-HIV-1 assay. These products were also tested for their effect on viability of cervico-vaginal cell lines, human cervical explant tissues, and beneficial Lactobacillus species. Results Natural lime and lemon juice and household vinegar demonstrated anti-HIV-1 activity and cytotoxicity in transformed cell lines. Neutralization of the products reduced both anti-HIV-1 activity and cytotoxicity, resulting in a low therapeutic window for both acidic and neutralized formulations. For the natural juices and vinegar, the IC50 was ≤ 3.5 (0.8-3.5% and the TC50 ≤ 6.3 (1.0-6.3%. All three liquid products inhibited viability of beneficial Lactobacillus species associated with vaginal health. Comparison of three different toxicity endpoints in the cervical HeLa cell line revealed that all three products affected membrane integrity, cytosolic enzyme release, and dehydrogenase enzyme activity in living cells. The juices and vinegar also exerted strong cytotoxicity in cervico-vaginal cell lines, mainly due to their acidic pH. In human cervical explant tissues, treatment with 5% lemon or lime juice

  11. Influenza vaccine strategies for solid organ transplant recipients.

    Science.gov (United States)

    Hirzel, Cédric; Kumar, Deepali

    2018-05-15

    The aim of this study was to highlight recent evidence on important aspects of influenza vaccination in solid organ transplant recipients. Influenza vaccine is the most evaluated vaccine in transplant recipients. The immunogenicity of the vaccine is suboptimal after transplantation. Newer formulations such as inactivated unadjuvanted high-dose influenza vaccine and the administration of a booster dose within the same season have shown to increase response rates. Intradermal vaccination and adjuvanted vaccines did not show clear benefit over standard influenza vaccines. Recent studies in transplant recipients do not suggest a higher risk for allograft rejection, neither after vaccination with a standard influenza vaccine nor after the administration of nonstandard formulation (high-dose, adjuvanted vaccines), routes (intradermally) or a booster dose. Nevertheless, influenza vaccine coverage in transplant recipients is still unsatisfactory low, potentially due to misinterpretation of risks and benefits. Annual influenza vaccination is well tolerated and is an important part of long-term care of solid organ transplant recipients.

  12. Homeostatic properties of Lactobacillus jensenii engineered as a live vaginal anti-HIV microbicide.

    Science.gov (United States)

    Yamamoto, Hidemi S; Xu, Qiang; Fichorova, Raina N

    2013-01-08

    moderately increased (SLPI). Similarly to MALP-2, colonization by L. jensenii WT activated NF-κB; however, unlike the synthetic TLR2/6 ligand, the live microorganisms did not induce significant changes in the secreted levels across all inflammation-associated proteins. The mCV-N production and function were confirmed by western blot and a HIV-1 gp120 binding assay, respectively. The bioengineered lactobacilli expressed mCV-N with anti-HIV activity preserved in the epithelial cell context and caused no significant immunoinflammatory changes as compared to the WT L. jensenii. These results highlight the translational value of the colonization model and justify further clinical investigation of the homeostatic and anti-HIV effectiveness of the L. jensenii derivates.

  13. Anti-HIV therapy with AZT prodrugs: AZT phosphonate derivatives, current state and prospects.

    Science.gov (United States)

    Khandazhinskaya, Anastasiya; Matyugina, Elena; Shirokova, Elena

    2010-06-01

    AIDS, a disease caused by human immunodeficiency virus, was called 'plague of the twentieth century'. 3'-Azido-3'-deoxythymidine (AZT), the first compound approved for the treatment of HIV, is still a mandatory component of treatment schemes. However, its toxicity stimulated a search for new agents. This review presents the history and current state of the design of AZT prodrugs based on its phosphonate derivatives. Although every effort was made to include as many AZT structures bearing phosphonate residues and demonstrate the variety they offer, we also concentrated on the studies performed in our laboratory. Special attention was also paid to AZT 5'-H-phosphonate (phosphazide, Nikavir) approved in the Russian Federation as a drug for the prevention and treatment of HIV infection. The prodrug strategy applied to AZT phosphonate derivatives enriched chemistry, biology and medicine not only with new knowledge, methods and structures, but also with a new anti-HIV drug Nikavir. Currently, study of another phosphonate, AZT 5'-aminocarbonylphosphonate, is underway. Slow release of AZT following oral administration and penetration into cells, decreased toxicity and the lack of cumulative properties make the compounds of this group promising as extended-release forms of AZT.

  14. Parental regret regarding children's vaccines-The correlation between anticipated regret, altruism, coping strategies and attitudes toward vaccines.

    Science.gov (United States)

    Hamama-Raz, Yaira; Ginossar-David, Eyal; Ben-Ezra, Menachem

    2016-01-01

    Parental hesitancy for recommended childhood vaccines is a growing public health concern influenced by various factors. This study aimed to explore regret regarding parental decisions to vaccinate their children via possible correlations between anticipated regret, altruism, coping strategies, and parents' attitudes toward the vaccination of their children. The study was conducted during 2014 in Israel. Data were collected via snowballing methodology (i.e., Internet forums, Facebook and e- mails). 314 parents of children ages 0-6 years participated in the study. Questionnaires were distributed and completed on-line including attitudes toward vaccines, altruism, coping strategies, regret and anticipated regret. Pearson analysis revealed a moderate negative association between attitudes toward vaccinations and regret. In addition, weak but significant positive associations emerged between anticipated regret and regret as well as between gender and regret. Performing hierarchical regression analysis revealed contribution of 35.9 % to the explained variance of regret suggesting that coping strategy of instrumental support, attitudes toward vaccinations and anticipated regret are linked significantly to regret. Parental attitudes toward vaccines and anticipated regret have a salient role when deciding whether or not to vaccinate children and contribute to the prediction of regret regarding vaccination. In order to increase parental consent to vaccination of their children, it is important to minimize possible regret through the strength of the recommendation and/or knowledge base about risk/benefit (perceived, heuristic) of vaccines that might influence parental attitudes and lessen their anticipated regret. N/A. This is not a clinical trial and thus does not require registration. Ethics approval was received from Ariel University School of Social Work Ethics committee (18/02/14). This was an attitude survey. The Ariel University School of Social Work Ethics committee

  15. Understanding HIV infection for the design of a therapeutic vaccine. Part II: Vaccination strategies for HIV.

    Science.gov (United States)

    de Goede, A L; Vulto, A G; Osterhaus, A D M E; Gruters, R A

    2015-05-01

    HIV infection leads to a gradual loss CD4(+) T lymphocytes comprising immune competence and progression to AIDS. Effective treatment with combined antiretroviral drugs (cART) decreases viral load below detectable levels but is not able to eliminate the virus from the body. The success of cART is frustrated by the requirement of expensive lifelong adherence, accumulating drug toxicities and chronic immune activation resulting in increased risk of several non-AIDS disorders, even when viral replication is suppressed. Therefore, there is a strong need for therapeutic strategies as an alternative to cART. Immunotherapy, or therapeutic vaccination, aims to increase existing immune responses against HIV or induce de novo immune responses. These immune responses should provide a functional cure by controlling viral replication and preventing disease progression in the absence of cART. The key difficulty in the development of an HIV vaccine is our ignorance of the immune responses that control of viral replication, and thus how these responses can be elicited and how they can be monitored. Part one of this review provides an extensive overview of the (patho-) physiology of HIV infection. It describes the structure and replication cycle of HIV, the epidemiology and pathogenesis of HIV infection and the innate and adaptive immune responses against HIV. Part two of this review discusses therapeutic options for HIV. Prevention modalities and antiretroviral therapy are briefly touched upon, after which an extensive overview on vaccination strategies for HIV is provided, including the choice of immunogens and delivery strategies. Copyright © 2014. Published by Elsevier Masson SAS.

  16. Comparative effectiveness of different strategies of oral cholera vaccination in bangladesh: a modeling study.

    Directory of Open Access Journals (Sweden)

    Dobromir T Dimitrov

    2014-12-01

    Full Text Available Killed, oral cholera vaccines have proven safe and effective, and several large-scale mass cholera vaccination efforts have demonstrated the feasibility of widespread deployment. This study uses a mathematical model of cholera transmission in Bangladesh to examine the effectiveness of potential vaccination strategies.We developed an age-structured mathematical model of cholera transmission and calibrated it to reproduce the dynamics of cholera in Matlab, Bangladesh. We used the model to predict the effectiveness of different cholera vaccination strategies over a period of 20 years. We explored vaccination programs that targeted one of three increasingly focused age groups (the entire vaccine-eligible population of age one year and older, children of ages 1 to 14 years, or preschoolers of ages 1 to 4 years and that could occur either as campaigns recurring every five years or as continuous ongoing vaccination efforts. Our modeling results suggest that vaccinating 70% of the population would avert 90% of cholera cases in the first year but that campaign and continuous vaccination strategies differ in effectiveness over 20 years. Maintaining 70% coverage of the population would be sufficient to prevent sustained transmission of endemic cholera in Matlab, while vaccinating periodically every five years is less effective. Selectively vaccinating children 1-14 years old would prevent the most cholera cases per vaccine administered in both campaign and continuous strategies.We conclude that continuous mass vaccination would be more effective against endemic cholera than periodic campaigns. Vaccinating children averts more cases per dose than vaccinating all age groups, although vaccinating only children is unlikely to control endemic cholera in Bangladesh. Careful consideration must be made before generalizing these results to other regions.

  17. Comparative effectiveness of different strategies of oral cholera vaccination in bangladesh: a modeling study.

    Science.gov (United States)

    Dimitrov, Dobromir T; Troeger, Christopher; Halloran, M Elizabeth; Longini, Ira M; Chao, Dennis L

    2014-12-01

    Killed, oral cholera vaccines have proven safe and effective, and several large-scale mass cholera vaccination efforts have demonstrated the feasibility of widespread deployment. This study uses a mathematical model of cholera transmission in Bangladesh to examine the effectiveness of potential vaccination strategies. We developed an age-structured mathematical model of cholera transmission and calibrated it to reproduce the dynamics of cholera in Matlab, Bangladesh. We used the model to predict the effectiveness of different cholera vaccination strategies over a period of 20 years. We explored vaccination programs that targeted one of three increasingly focused age groups (the entire vaccine-eligible population of age one year and older, children of ages 1 to 14 years, or preschoolers of ages 1 to 4 years) and that could occur either as campaigns recurring every five years or as continuous ongoing vaccination efforts. Our modeling results suggest that vaccinating 70% of the population would avert 90% of cholera cases in the first year but that campaign and continuous vaccination strategies differ in effectiveness over 20 years. Maintaining 70% coverage of the population would be sufficient to prevent sustained transmission of endemic cholera in Matlab, while vaccinating periodically every five years is less effective. Selectively vaccinating children 1-14 years old would prevent the most cholera cases per vaccine administered in both campaign and continuous strategies. We conclude that continuous mass vaccination would be more effective against endemic cholera than periodic campaigns. Vaccinating children averts more cases per dose than vaccinating all age groups, although vaccinating only children is unlikely to control endemic cholera in Bangladesh. Careful consideration must be made before generalizing these results to other regions.

  18. Strategies for Pandemic and Seasonal Influenza Vaccination of Schoolchildren in the United States

    OpenAIRE

    Basta, Nicole E.; Chao, Dennis L.; Halloran, M. Elizabeth; Matrajt, Laura; Longini, Ira M.

    2009-01-01

    Vaccinating school-aged children against influenza can reduce age-specific and population-level illness attack rates. Using a stochastic simulation model of influenza transmission, the authors assessed strategies for vaccinating children in the United States, varying the vaccine type, coverage level, and reproductive number R (average number of secondary cases produced by a typical primary case). Results indicated that vaccinating children can substantially reduce population-level illness att...

  19. Age groups and spread of influenza: implications for vaccination strategy

    Directory of Open Access Journals (Sweden)

    Hsieh Ying-Hen

    2010-04-01

    of any other age group, perhaps highlighting the vulnerability of the elderly due to close contacts with their caretakers from other age groups. The relative impact of targeting the very young and the very old for vaccination was weakened by their relative inactivity, thus giving evidence of the lack of impact of vaccinating these two groups on the overall transmissibility of the disease in the community. This further underscores the need for morbidity-based strategy to prevent elderly mortality.

  20. Is vaccination good value for money? A review of cost-utility analyses of vaccination strategies in eight European countries

    Directory of Open Access Journals (Sweden)

    Marco Barbieri

    2016-12-01

    Full Text Available Objective: The objective of this study is to review published cost-utility analyses of vaccination strategies in eight European countries and to assess whether there are differences in cost-effectiveness terms among countries and vaccinations. Methods: A systematic search of the literature was conducted using the National Health Service Economic Evaluation Database and the PubMed database. Cost-utility analyses of any type of vaccination that used quality-adjusted life years (QALYs as measure of benefit and conducted in Belgium, France, Germany, Italy, Spain, Sweden, the Netherlands or the UK were included. Results: A total of 94 studies were identified. As a result of our search methodology, the vast majority of studies were conducted in the Netherlands or UK (33 and 30 studies, respectively. The most frequent vaccination types were against Human papillomavirus (HPV with 23 studies, followed by vaccination against pneumococcal infections (19 studies. The analysed vaccinations were generally cost-effective but with high variability. Considering an incremental cost effectiveness ratio (ICER of 40,000€/QALY, we noticed that the following vaccinations studies are below this threshold, i.e. all varicella and influenza (with one outlier studies, 90% of the studies for HPV and 75% of the studies for pneumococcal vaccinations. Rotavirus vaccination was considered as not cost-effective, with only 30% of studies below the threshold of 40,000€/QALY. There was no clear trend for vaccinations being more cost-effective in some countries. Conclusions: The published literature has shown that vaccination strategies are generally cost-effective in European countries. High heterogeneity in the results among studies and countries was found.

  1. Novel anti-HIV peptides containing multiple copies of artificially designed heptad repeat motifs

    International Nuclear Information System (INIS)

    Shi Weiguo; Qi Zhi; Pan Chungen; Xue Na; Debnath, Asim K.; Qie Jiankun; Jiang Shibo; Liu Keliang

    2008-01-01

    The peptidic anti-HIV drug T20 (Fuzeon) and its analog C34 share a common heptad repeat (HR) sequence, but they have different functional domains, i.e., pocket- and lipid-binding domains (PBD and LBD, respectively). We hypothesize that novel anti-HIV peptides may be designed by using artificial sequences containing multiple copies of HR motifs plus zero, one or two functional domains. Surprisingly, we found that the peptides containing only the non-natural HR sequences could significantly inhibit HIV-1 infection, while addition of PBD and/or LBD to the peptides resulted in significant improvement of anti-HIV-1 activity. These results suggest that these artificial HR sequences, which may serve as structural domains, could be used as templates for the design of novel antiviral peptides against HIV and other viruses with class I fusion proteins

  2. Accuracy of different thresholds for the anti-HIV avidity index

    Directory of Open Access Journals (Sweden)

    Claudio Galli

    2008-03-01

    Full Text Available Surveillance programs for human immunodeficiency virus (HIV infection are based on the reporting of newly diagnosed cases. In order to guarantee a more accurate estimate of the trends and behaviours of infected people, simple and reliable methods aimed at identifying recent (< 6 months HIV infections are needed. We evaluated the accuracy of the avidity index (AI of anti-HIV antibodies on 357 serum samples obtained from 127 subjects for whom an estimated date of seroconversion was calculated on the basis of the interval between the last negative and first positive anti-HIV test result.The ROC curve analysis performed at different thresholds of the AI showed that a cutoff of 0.80 (93.0% sensitivity and 98.5% specificity yields the best overall accuracy (95.8% and should be employed for surveillance purposes, whereas the application of the anti-HIV AI on individual cases is not recommended.

  3. Thiazoline peptides and a tris-phenethyl urea from Didemnum molle with anti-HIV activity.

    Science.gov (United States)

    Lu, Zhenyu; Harper, Mary Kay; Pond, Christopher D; Barrows, Louis R; Ireland, Chris M; Van Wagoner, Ryan M

    2012-08-24

    As part of our screening for anti-HIV agents from marine invertebrates, the MeOH extract of Didemnum molle was tested and showed moderate in vitro anti-HIV activity. Bioassay-guided fractionation of a large-scale extract allowed the identification of two new cyclopeptides, mollamides E and F (1 and 2), and one new tris-phenethyl urea, molleurea A (3). The absolute configurations were established using the advanced Marfey's method. The three compounds were evaluated for anti-HIV activity in both an HIV integrase inhibition assay and a cytoprotective cell-based assay. Compound 2 was active in both assays with IC(50) values of 39 and 78 μM, respectively. Compound 3 was active only in the cytoprotective cell-based assay, with an IC(50) value of 60 μM.

  4. Stimuli-sensitive nanoparticles for multiple anti-HIV microbicides

    Energy Technology Data Exchange (ETDEWEB)

    Giri, Namita; Oh, Byeongtaek; Lee, Chi H., E-mail: leech@umkc.edu [University of Missouri at Kansas City, Division of Pharmaceutical Sciences (United States)

    2016-05-15

    This study is aimed to develop and evaluate an advanced intravaginal formulation for the delivery of multiple anti-HIV microbicides. Novel stimuli-sensitive nanoparticles (NPs) which protected the encapsulated drugs from being degraded in acidic pH conditions were made of Eudragit S-100{sup ®} (ES100{sup ®}), a pH-sensitive polymer. ES100{sup ®} NPs were prepared using the quasi-emulsion solvent diffusion technique and loaded with two microbicides namely Tenofovir (TNF) and Etravirine (ETV). The effects of various fabrication parameters on the formulation properties were evaluated for the optimization of ES100{sup ®} NPs. The morphology of the ES100{sup ®} NPs was examined by scanning electron microscopy. The cytotoxicity of NPs containing microbicides individually or in a combination was assessed using cell viability and trans-epithelial electrical resistance (TEER) measurements. The cellular uptake rates of the model microbicides by human vaginal epithelial cells, VK2 E6/E7 cells, were evaluated using confocal microscopy and florescence-assisted cell sorting technique. ES100{sup ®} NPs had a spherical shape, smooth surface, and uniform texture with a little aggregation. The average particle size for NPs loaded with TNF ranged from 125 to 230 nm, whereas those for ETV-loaded NPs ranged from 160 to 280 nm. ES100{sup ®} NPs had zeta potential in the range of −5 to −10 mV. In-vitro release studies displayed the potential benefits of ES100{sup ®} NPs in retaining and protecting the loaded microbicides at vaginal pH (acidic), but immediately releasing them as the pH changes to neutral or 7.4 (physiological pH). Cell viability studies demonstrated that ES100{sup ®} NPs did not exert any cytotoxicity individually or in a combination of both microbicides. TEER measurements confirmed that ES100{sup ®} NPs loaded with TNF and ETV did not cause any changes in the barrier integrity of VK2 E6/E7 cell monolayer. The cellular uptake study revealed that ES100{sup

  5. Stimuli-sensitive nanoparticles for multiple anti-HIV microbicides

    International Nuclear Information System (INIS)

    Giri, Namita; Oh, Byeongtaek; Lee, Chi H.

    2016-01-01

    This study is aimed to develop and evaluate an advanced intravaginal formulation for the delivery of multiple anti-HIV microbicides. Novel stimuli-sensitive nanoparticles (NPs) which protected the encapsulated drugs from being degraded in acidic pH conditions were made of Eudragit S-100"® (ES100"®), a pH-sensitive polymer. ES100"® NPs were prepared using the quasi-emulsion solvent diffusion technique and loaded with two microbicides namely Tenofovir (TNF) and Etravirine (ETV). The effects of various fabrication parameters on the formulation properties were evaluated for the optimization of ES100"® NPs. The morphology of the ES100"® NPs was examined by scanning electron microscopy. The cytotoxicity of NPs containing microbicides individually or in a combination was assessed using cell viability and trans-epithelial electrical resistance (TEER) measurements. The cellular uptake rates of the model microbicides by human vaginal epithelial cells, VK2 E6/E7 cells, were evaluated using confocal microscopy and florescence-assisted cell sorting technique. ES100"® NPs had a spherical shape, smooth surface, and uniform texture with a little aggregation. The average particle size for NPs loaded with TNF ranged from 125 to 230 nm, whereas those for ETV-loaded NPs ranged from 160 to 280 nm. ES100"® NPs had zeta potential in the range of −5 to −10 mV. In-vitro release studies displayed the potential benefits of ES100"® NPs in retaining and protecting the loaded microbicides at vaginal pH (acidic), but immediately releasing them as the pH changes to neutral or 7.4 (physiological pH). Cell viability studies demonstrated that ES100"® NPs did not exert any cytotoxicity individually or in a combination of both microbicides. TEER measurements confirmed that ES100"® NPs loaded with TNF and ETV did not cause any changes in the barrier integrity of VK2 E6/E7 cell monolayer. The cellular uptake study revealed that ES100"® NPs were taken by vaginal epithelial cells through

  6. Development of an epitope-based HIV-1 vaccine strategy from HIV-1 lipopeptide to dendritic-based vaccines.

    Science.gov (United States)

    Surenaud, Mathieu; Lacabaratz, Christine; Zurawski, Gérard; Lévy, Yves; Lelièvre, Jean-Daniel

    2017-10-01

    Development of a safe, effective and globally affordable Human Immunodeficiency Virus strain 1 (HIV-1) vaccine offers the best hope for future control of the HIV-1 pandemic. However, with the exception of the recent RV144 trial, which elicited a modest level of protection against infection, no vaccine candidate has shown efficacy in preventing HIV-1 infection or in controlling virus replication in humans. There is also a great need for a successful immunotherapeutic vaccine since combination antiretroviral therapy (cART) does not eliminate the reservoir of HIV-infected cells. But to date, no vaccine candidate has proven to significantly alter the natural history of an individual with HIV-1 infection. Areas covered: For over 25 years, the ANRS (France Recherche Nord&Sud Sida-HIV hépatites) has been committed to an original program combining basic science and clinical research developing an epitope-based vaccine strategy to induce a multiepitopic cellular response against HIV-1. This review describes the evolution of concepts, based on strategies using HIV-1 lipopeptides towards the use of dendritic cell (DC) manipulation. Expert commentary: Understanding the crucial role of DCs in immune responses allowed moving from the non-specific administration of HIV-1 sequences with lipopeptides to DC-based vaccines. These DC-targeting strategies should improve HIV-1 vaccine efficacy.

  7. Next-Generation Dengue Vaccines: Novel Strategies Currently Under Development

    OpenAIRE

    Anna P. Durbin; Stephen S. Whitehead

    2011-01-01

    Dengue has become the most important arboviral infection worldwide with more than 30 million cases of dengue fever estimated to occur each year. The need for a dengue vaccine is great and several live attenuated dengue candidate vaccines are proceeding through clinical evaluation. The need to induce a balanced immune response against all four DENV serotypes with a single vaccine has been a challenge for dengue vaccine developers. A live attenuated DENV chimeric vaccine produced by Sanofi Past...

  8. Limitations of the BCG vaccine and new prophylaxis strategies against human tuberculosis

    Directory of Open Access Journals (Sweden)

    Arioldo Carvalho Vasconcelos-Junior

    2009-09-01

    Full Text Available BCG (Bacille Calmette Guérin, an attenuated vaccine derived from Mycobacterium bovis, is the current vaccine against tuberculosis. Notwithstanding its protection of children, BCG has failed to protect adults against active pulmonary tuberculosis, especially in countries where the disease is endemic. Any new tuberculosis vaccine should protect several categories of people, including children, adults, the elderly and immunodeppressed patients. An important feature is immunization safety for all of these classes. The aim of this review is to describe new vaccination strategies, such as subunit vaccines, DNA vaccines, vaccines with live microorganisms and vectors, and to discuss the application of these new strategies for the control and eradication of tuberculosis.

  9. Prolonged expression of an anti-HIV-1 gp120 minibody to the female rhesus macaque lower genital tract by AAV gene transfer.

    Science.gov (United States)

    Abdel-Motal, U M; Harbison, C; Han, T; Pudney, J; Anderson, D J; Zhu, Q; Westmoreland, S; Marasco, W A

    2014-09-01

    Topical microbicides are a leading strategy for prevention of HIV mucosal infection to women; however, numerous pharmacokinetic limitations associated with coitally related dosing strategy have contributed to their limited success. Here we test the hypothesis that adeno-associated virus (AAV) mediated delivery of the b12 human anti-HIV-1 gp120 minibody gene to the lower genital tract of female rhesus macaques (Rh) can provide prolonged expression of b12 minibodies in the cervical-vaginal secretions. Gene transfer studies demonstrated that, of various green fluorescent protein (GFP)-expressing AAV serotypes, AAV-6 most efficiently transduced freshly immortalized and primary genital epithelial cells (PGECs) of female Rh in vitro. In addition, AAV-6-b12 minibody transduction of Rh PGECs led to inhibition of SHIV162p4 transmigration and virus infectivity in vitro. AAV-6-GFP could also successfully transduce vaginal epithelial cells of Rh when applied intravaginally, including p63+ epithelial stem cells. Moreover, intravaginal application of AAV-6-b12 to female Rh resulted in prolonged minibody detection in their vaginal secretions throughout the 79-day study period. These data provide proof of principle that AAV-6-mediated delivery of anti-HIV broadly neutralizing antibody (BnAb) genes to the lower genital tract of female Rh results in persistent minibody detection for several months. This strategy offers promise that an anti-HIV-1 genetic microbicide strategy may be possible in which topical application of AAV vector, with periodic reapplication as needed, may provide sustained local BnAb expression and protection.

  10. Jabs and barbs: ways to address misleading vaccination and immunisation information using currently available strategies.

    Science.gov (United States)

    Wardle, Jon; Stewart, Cameron; Parker, Malcolm

    2013-09-01

    Misleading vaccination information undermines confidence in vaccination and may lead to reductions in the effectiveness of vaccination programs. A number of regulatory techniques can be employed to challenge the spread of false information, including health care complaints, therapeutic goods laws, consumer protection laws and professional discipline. This article examines three case studies involving the publication of anti-vaccination information by non-professionally aligned organisations, by non-registered health professionals, and by registered health professionals under the National Law. The article examines the effectiveness of different regulatory responses and makes suggestions for future strategies to deal with the publication of demonstrably false information regarding vaccination.

  11. Use of vaccines as a key antimicrobial stewardship strategy

    African Journals Online (AJOL)

    organism is resistant to specific antimicrobials or not. • Vaccines may inhibit carriage by decreasing acquisition and colonisation by bacteria, specifically those targeted by the vaccine. • Vaccines further reduce overall antibiotic consumption owing to indirect protection. This relates to the prevention of or reduction.

  12. Is an HIV vaccine possible?

    OpenAIRE

    Wilson,Nancy A.; Watkins,David I.

    2009-01-01

    The road to the discovery of a vaccine for HIV has been arduous and will continue to be difficult over the ensuing twenty years. Most vaccines are developed by inducing neutralizing antibodies against the target pathogen or by using attenuated strains of the particular pathogen to engender a variety of protective immune responses. Unfortunately, simple methods of generating anti-HIV antibodies have already failed in a phase III clinical trial. While attenuated SIV variants work well against h...

  13. A Survey of Plants with Anti-HIV Active Compounds and their Modes ...

    African Journals Online (AJOL)

    Background: Several limitations of current antiretroviral therapy (ART) programmes will continue to push patients towards the use of plants to manage HIV/AIDS. However, evidence about the use of anti-HIV plants is anecdotal. Objectives: Search the literature for research articles that document plants with anti-HIV ...

  14. Photo-translocation of anti-HIV-1 drugs into TZM-bl cells

    CSIR Research Space (South Africa)

    Khanyile, T

    2013-04-01

    Full Text Available Targeted drug delivery into HIV-1 infected cells offers a reduction in toxicity and side effect. Using a femtosecond (fs) laser of different beam shapes anti-HIV-1 drugs are efficiently delivered into TZM-bl cells....

  15. Mechanism of anti-HIV activity of succinylated human serum albumin

    NARCIS (Netherlands)

    Kuipers, ME; Berg, HVD; Swart, PJ; Laman, Jon; Meijer, DKF; Kopelman, MHGM; Huisman, H

    1999-01-01

    In the present study, we described the interaction of succinylated human serum albumin (Suc-HSA), a negatively charged anti-HIV-1 active protein, with HIV-1 gp120 and in detail with the third variable domain of gp120 (V3 loop). To this end, different assay formats were tested in which gp120- and

  16. New anti-HIV-1, antimalarial, and antifungal compounds from Terminalia bellerica

    DEFF Research Database (Denmark)

    Valsaraj, R; Pushpangadan, P; Smitt, U W

    1997-01-01

    A bioactivity-guided fractionation of an extract of Terminalia bellerica fruit rind led to the isolation of two new lignans named termilignan (1) and thannilignan (2), together with 7-hydroxy-3',4'-(methylenedioxy)flavan (3) and anolignan B (4). All four compounds possessed demonstrable anti-HIV-......, antimalarial, and antifungal activity in vitro....

  17. Estimation of Anti-HIV Activity of HEPT Analogues Using MLR, ANN, and SVM Techniques

    Directory of Open Access Journals (Sweden)

    Basheerulla Shaik

    2013-01-01

    value than those of MLR and SVM techniques. Rm2= metrics and ridge regression analysis indicated that the proposed four-variable model MATS5e, RDF080u, T(O⋯O, and MATS5m as correlating descriptors is the best for estimating the anti-HIV activity (log 1/C present set of compounds.

  18. Occurrence and severity of lung lesions in slaughter pigs vaccinated against Mycoplasma hyopneumoniae with different strategies.

    Science.gov (United States)

    Hillen, Sonja; von Berg, Stephan; Köhler, Kernt; Reinacher, Manfred; Willems, Hermann; Reiner, Gerald

    2014-03-01

    Different vaccination strategies against Mycoplasma hyopneumoniae have been adopted worldwide. Reports from the field indicate varying levels of protection among currently available vaccines. The goal of the present study was to compare the efficacies of three widespread commercial vaccination strategies against M. hyopneumoniae under field conditions. 20 farms were included. 14 farms used different single dose vaccines (vaccine 1 [V1], 8 herds; vaccine 2 [V2], 6 herds); another 6 farms (V3) used a two dose vaccination strategy. Gross lesions of 854 lungs and histopathology from 140 lungs were quantified, and a quantitative PCR was applied to detect M. hyopneumoniae and porcine circovirus 2 (PCV2) DNA in lung tissue (n=140). In addition, porcine reproductive and respiratory disease virus (PRRSV), swine influenza virus (SIV), Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida were tested by qualitative PCR. 53% of lungs were positive for M. hyopneumoniae. 55.9% of lungs showed macroscopic enzootic pneumonia (EP)-like lesions. Lung lesion scores (Phyopneumoniae-loads (Phyopneumoniae indicating that the applied diagnostic tools are valuable in confirming the prevalence and severity of M. hyopneumoniae infections. Comparing different vaccination strategies against M. hyopneumoniae indicates varying levels of protection. M. hyopneumoniae is still a major problem despite the widely applied vaccination. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Next-Generation Dengue Vaccines: Novel Strategies Currently Under Development

    Directory of Open Access Journals (Sweden)

    Anna P. Durbin

    2011-09-01

    Full Text Available Dengue has become the most important arboviral infection worldwide with more than 30 million cases of dengue fever estimated to occur each year. The need for a dengue vaccine is great and several live attenuated dengue candidate vaccines are proceeding through clinical evaluation. The need to induce a balanced immune response against all four DENV serotypes with a single vaccine has been a challenge for dengue vaccine developers. A live attenuated DENV chimeric vaccine produced by Sanofi Pasteur has recently entered Phase III evaluation in numerous dengue-endemic regions of the world. Viral interference between serotypes contained in live vaccines has required up to three doses of the vaccine be given over a 12-month period of time. For this reason, novel DENV candidate vaccines are being developed with the goal of achieving a protective immune response with an immunization schedule that can be given over the course of a few months. These next-generation candidates include DNA vaccines, recombinant adenovirus vectored vaccines, alphavirus replicons, and sub-unit protein vaccines. Several of these novel candidates will be discussed.

  20. Next-generation dengue vaccines: novel strategies currently under development.

    Science.gov (United States)

    Durbin, Anna P; Whitehead, Stephen S

    2011-10-01

    Dengue has become the most important arboviral infection worldwide with more than 30 million cases of dengue fever estimated to occur each year. The need for a dengue vaccine is great and several live attenuated dengue candidate vaccines are proceeding through clinical evaluation. The need to induce a balanced immune response against all four DENV serotypes with a single vaccine has been a challenge for dengue vaccine developers. A live attenuated DENV chimeric vaccine produced by Sanofi Pasteur has recently entered Phase III evaluation in numerous dengue-endemic regions of the world. Viral interference between serotypes contained in live vaccines has required up to three doses of the vaccine be given over a 12-month period of time. For this reason, novel DENV candidate vaccines are being developed with the goal of achieving a protective immune response with an immunization schedule that can be given over the course of a few months. These next-generation candidates include DNA vaccines, recombinant adenovirus vectored vaccines, alphavirus replicons, and sub-unit protein vaccines. Several of these novel candidates will be discussed.

  1. CURRENT DEVELOPMENT STRATEGIES FOR VACCINES AND THE ROLE OF REVERSE VACCINOLOGY

    OpenAIRE

    RAJU.S , UMA MAHESHWARA RAO.V

    2013-01-01

    The concept of vaccination has been around forcenturies .Vaccines constitutes cost-effective measures forpreventing disease. Advances in biotechnology and anunderstanding of the inductive and effector components ofimmune responses have ushered in a „golden age‟ ofvaccine development and implementation. Many licensedvaccines have one or more ideal characteristics, but nonemanifests them all. Of the generic vaccine technologies andvaccination strategies in different stages of development,some h...

  2. Vaccine instability in the cold chain: mechanisms, analysis and formulation strategies.

    Science.gov (United States)

    Kumru, Ozan S; Joshi, Sangeeta B; Smith, Dawn E; Middaugh, C Russell; Prusik, Ted; Volkin, David B

    2014-09-01

    Instability of vaccines often emerges as a key challenge during clinical development (lab to clinic) as well as commercial distribution (factory to patient). To yield stable, efficacious vaccine dosage forms for human use, successful formulation strategies must address a combination of interrelated topics including stabilization of antigens, selection of appropriate adjuvants, and development of stability-indicating analytical methods. This review covers key concepts in understanding the causes and mechanisms of vaccine instability including (1) the complex and delicate nature of antigen structures (e.g., viruses, proteins, carbohydrates, protein-carbohydrate conjugates, etc.), (2) use of adjuvants to further enhance immune responses, (3) development of physicochemical and biological assays to assess vaccine integrity and potency, and (4) stabilization strategies to protect vaccine antigens and adjuvants (and their interactions) during storage. Despite these challenges, vaccines can usually be sufficiently stabilized for use as medicines through a combination of formulation approaches combined with maintenance of an efficient cold chain (manufacturing, distribution, storage and administration). Several illustrative case studies are described regarding mechanisms of vaccine instability along with formulation approaches for stabilization within the vaccine cold chain. These include live, attenuated (measles, polio) and inactivated (influenza, polio) viral vaccines as well as recombinant protein (hepatitis B) vaccines. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity

    Directory of Open Access Journals (Sweden)

    Ulrich E. Schaible

    2017-12-01

    Full Text Available The global tuberculosis epidemic is the most common cause of death after infectious disease worldwide. Increasing numbers of infections with multi- and extensively drug-resistant variants of the Mycobacterium tuberculosis complex, resistant even to newly discovered and last resort antibiotics, highlight the urgent need for an efficient vaccine. The protective efficacy to pulmonary tuberculosis in adults of the only currently available vaccine, M. bovis BCG, is unsatisfactory and geographically diverse. More importantly, recent clinical studies on new vaccine candidates did not prove to be better than BCG, yet. Here, we propose and discuss novel strategies to improve efficacy of existing anti-tuberculosis vaccines. Modulation of innate immune responses upon vaccination already provided promising results in animal models of tuberculosis. For instance, neutrophils have been shown to influence vaccine efficacy, both, positively and negatively, and stimulate specific antibody secretion. Modulating immune regulatory properties after vaccination such as induction of different types of innate immune cell death, myeloid-derived suppressor or regulatory T cells, production of anti-inflammatory cytokines such as IL-10 may have beneficial effects on protection efficacy. Incorporation of lipid antigens presented via CD1 molecules to T cells have been discussed as a way to enhance vaccine efficacy. Finally, concepts of dendritic cell-based immunotherapies or training the innate immune memory may be exploitable for future vaccination strategies against tuberculosis. In this review, we put a spotlight on host immune networks as potential targets to boost protection by old and new tuberculosis vaccines.

  4. Finding optimal vaccination strategies for pandemic influenza using genetic algorithms.

    Science.gov (United States)

    Patel, Rajan; Longini, Ira M; Halloran, M Elizabeth

    2005-05-21

    In the event of pandemic influenza, only limited supplies of vaccine may be available. We use stochastic epidemic simulations, genetic algorithms (GA), and random mutation hill climbing (RMHC) to find optimal vaccine distributions to minimize the number of illnesses or deaths in the population, given limited quantities of vaccine. Due to the non-linearity, complexity and stochasticity of the epidemic process, it is not possible to solve for optimal vaccine distributions mathematically. However, we use GA and RMHC to find near optimal vaccine distributions. We model an influenza pandemic that has age-specific illness attack rates similar to the Asian pandemic in 1957-1958 caused by influenza A(H2N2), as well as a distribution similar to the Hong Kong pandemic in 1968-1969 caused by influenza A(H3N2). We find the optimal vaccine distributions given that the number of doses is limited over the range of 10-90% of the population. While GA and RMHC work well in finding optimal vaccine distributions, GA is significantly more efficient than RMHC. We show that the optimal vaccine distribution found by GA and RMHC is up to 84% more effective than random mass vaccination in the mid range of vaccine availability. GA is generalizable to the optimization of stochastic model parameters for other infectious diseases and population structures.

  5. Strategy for distribution of influenza vaccine to high-risk groups and children.

    Science.gov (United States)

    Longini, Ira M; Halloran, M Elizabeth

    2005-02-15

    Despite evidence that vaccinating schoolchildren against influenza is effective in limiting community-level transmission, the United States has had a long-standing government strategy of recommending that vaccine be concentrated primarily in high-risk groups and distributed to those people who keep the health system and social infrastructure operating. Because of this year's influenza vaccine shortage, a plan was enacted to distribute the limited vaccine stock to these groups first. This vaccination strategy, based on direct protection of those most at risk, has not been very effective in reducing influenza morbidity and mortality. Although it is too late to make changes this year, the current influenza vaccine crisis affords the opportunity to examine an alternative for future years. The alternative plan, supported by mathematical models and influenza field studies, would be to concentrate vaccine in schoolchildren, the population group most responsible for transmission, while also covering the reachable high-risk groups, who would also receive considerable indirect protection. In conjunction with a plan to ensure an adequate vaccine supply, this alternative influenza vaccination strategy would help control interpandemic influenza and be instrumental in preparing for pandemic influenza. The effectiveness of the alternative plan could be assessed through nationwide community studies.

  6. Schistosomiasis elimination strategies and potential role of a vaccine in achieving global health goals.

    Science.gov (United States)

    Mo, Annie X; Agosti, Jan M; Walson, Judd L; Hall, B Fenton; Gordon, Lance

    2014-01-01

    In March 2013, the National Institute of Allergy and Infectious Diseases and the Bill and Melinda Gates Foundation co-sponsored a meeting entitled "Schistosomiasis Elimination Strategy and Potential Role of a Vaccine in Achieving Global Health Goals" to discuss the potential role of schistosomiasis vaccines and other tools in the context of schistosomiasis control and elimination strategies. It was concluded that although schistosomiasis elimination in some focal areas may be achievable through current mass drug administration programs, global control and elimination will face several significant scientific and operational challenges, and will require an integrated approach with other, additional interventions. These challenges include vector (snail) control; environmental modification; water, sanitation, and hygiene; and other future innovative tools such as vaccines. Defining a clear product development plan that reflects a vaccine strategy as complementary to the existing control programs to combat different forms of schistosomiasis will be important to develop a vaccine effectively.

  7. The introduction of new vaccines into developing countries. IV: Global Access Strategies.

    Science.gov (United States)

    Mahoney, Richard T; Krattiger, Anatole; Clemens, John D; Curtiss, Roy

    2007-05-16

    This paper offers a framework for managing a comprehensive Global Access Strategy for new vaccines in developing countries. It is aimed at strengthening the ability of public-sector entities to reach their goals. The Bill and Melinda Gates Foundation and The Rockefeller Foundation have been leaders in stimulating the creation of new organizations - public/private product development partnerships (PDPs) - that seek to accelerate vaccine development and distribution to meet the health needs of the world's poor. Case studies of two of these PDPs - the Salmonella Anti-pneumococcal Vaccine Program and the Pediatric Dengue Vaccine Initiative - examine development of such strategies. Relying on the application of innovation theory, the strategy leads to the identification of six Components of Innovation which cover all aspects of the vaccine innovation process. Appropriately modified, the proposed framework can be applied to the development and introduction of other products in developing countries including drugs, and nutritional and agricultural products.

  8. Formative research to shape HPV vaccine introduction strategies in Peru.

    Science.gov (United States)

    Bartolini, Rosario M; Drake, Jennifer Kidwell; Creed-Kanashiro, Hilary M; Díaz-Otoya, Margarita M; Mosqueira-Lovón, Nelly Rocío; Penny, Mary E; Winkler, Jennifer L; LaMontagne, D Scott; Bingham, Allison

    2010-01-01

    To understand the sociocultural environment, health systems' capacities, and policy processes related to cervical cancer and HPV vaccines in order to inform HPV vaccine introduction. Mixed-method formative research using qualitative and quantitative data collection techniques. Participants included girls, parents, community leaders, health and education officials, and policymakers. Respondents, including policymakers, generally supported HPV vaccine introduction, due partly to appreciation for the benefits of vaccination and the desire to prevent cancer. Community-level concerns regarding safety and quality of services will need to be addressed. The immunization system in Peru is strong and has capacity for including the HPV vaccine. Formative research provides key insights to help shape an effective program for HPV vaccine introduction.

  9. Robustness of networks against propagating attacks under vaccination strategies

    International Nuclear Information System (INIS)

    Hasegawa, Takehisa; Masuda, Naoki

    2011-01-01

    We study the effect of vaccination on the robustness of networks against propagating attacks that obey the susceptible–infected–removed model. By extending the generating function formalism developed by Newman (2005 Phys. Rev. Lett. 95 108701), we analytically determine the robustness of networks that depends on the vaccination parameters. We consider the random defense where nodes are vaccinated randomly and the degree-based defense where hubs are preferentially vaccinated. We show that, when vaccines are inefficient, the random graph is more robust against propagating attacks than the scale-free network. When vaccines are relatively efficient, the scale-free network with the degree-based defense is more robust than the random graph with the random defense and the scale-free network with the random defense

  10. Parental decisional strategies regarding HPV vaccination before media debates: a focus group study

    NARCIS (Netherlands)

    Hofman, R.; Empelen, P. van; Vogel, I.; Raat, H.; Ballegooijen, M. van; Korfage, I.J.

    2013-01-01

    Before the introduction of the human papillomavirus (HPV) vaccine, decisional strategies and factors that could guide HPV vaccination intentions were explored. The authors conducted 4 focus group discussions with 36 parents of children 8-15 years of age. Three groups consisted primarily of Dutch

  11. Strategies to advance vaccine technologies for resource-poor settings.

    Science.gov (United States)

    Kristensen, Debra; Chen, Dexiang

    2013-04-18

    New vaccine platform and delivery technologies that can have significant positive impacts on the effectiveness, acceptability, and safety of immunizations in developing countries are increasingly available. Although donor support for vaccine technology development is strong, the uptake of proven technologies by the vaccine industry and demand for them by purchasers continues to lag. This article explains the challenges and opportunities associated with accelerating the availability of innovative and beneficial vaccine technologies to meet critical needs in resource-poor settings over the next decade. Progress will require increased dialog between the public and private sectors around vaccine product attributes; establishment of specifications for vaccines that mirror programmatic needs; stronger encouragement of vaccine developers to consider novel technologies early in the product development process; broader facilitation of research and access to technologies through the formation of centers of excellence; the basing of vaccine purchase decisions on immunization systems costs rather than price per dose alone; possible subsidization of early technology adoption costs for vaccine producers that take on the risks of new technologies of importance to the public sector; and the provision of data to purchasers, better enabling them to make informed decisions that take into account the value of specific product attributes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Identification Of Protein Vaccine Candidates Using Comprehensive Proteomic Analysis Strategies

    National Research Council Canada - National Science Library

    Rohrbough, James G

    2007-01-01

    Presented in this dissertation are proteomic analysis studies focused on identifying proteins to be used as vaccine candidates against Coccidioidomycosis, a potentially fatal human pulmonary disease...

  13. Serogroup C Neisseria meningitidis invasive infection: analysis of the possible vaccination strategies for a mass campaign.

    Science.gov (United States)

    Chiappini, Elena; Venturini, Elisabetta; Bonsignori, Francesca; Galli, Luisa; de Martino, Maurizio

    2010-11-01

    The serogroup C meningococcal conjugate vaccine is available since 1999. In the absence of randomized controlled trials that support a specific schedule, each country has adopted different vaccination programmes. Hereby, we analyse positive and negative aspects of the different vaccination strategies. While waiting for the introduction of other antimeningococcal vaccines, covering also for the Group B meningococci, further studies on effectiveness of an optimal schedule to be adopted in European countries are needed. © 2010 The Author(s)/Journal Compilation © 2010 Foundation Acta Paediatrica.

  14. The cost-effectiveness of alternative vaccination strategies for polyvalent meningococcal vaccines in Burkina Faso: A transmission dynamic modeling study.

    Science.gov (United States)

    Yaesoubi, Reza; Trotter, Caroline; Colijn, Caroline; Yaesoubi, Maziar; Colombini, Anaïs; Resch, Stephen; Kristiansen, Paul A; LaForce, F Marc; Cohen, Ted

    2018-01-01

    The introduction of a conjugate vaccine for serogroup A Neisseria meningitidis has dramatically reduced disease in the African meningitis belt. In this context, important questions remain about the performance of different vaccine policies that target remaining serogroups. Here, we estimate the health impact and cost associated with several alternative vaccination policies in Burkina Faso. We developed and calibrated a mathematical model of meningococcal transmission to project the disability-adjusted life years (DALYs) averted and costs associated with the current Base policy (serogroup A conjugate vaccination at 9 months, as part of the Expanded Program on Immunization [EPI], plus district-specific reactive vaccination campaigns using polyvalent meningococcal polysaccharide [PMP] vaccine in response to outbreaks) and three alternative policies: (1) Base Prime: novel polyvalent meningococcal conjugate (PMC) vaccine replaces the serogroup A conjugate in EPI and is also used in reactive campaigns; (2) Prevention 1: PMC used in EPI and in a nationwide catch-up campaign for 1-18-year-olds; and (3) Prevention 2: Prevention 1, except the nationwide campaign includes individuals up to 29 years old. Over a 30-year simulation period, Prevention 2 would avert 78% of the meningococcal cases (95% prediction interval: 63%-90%) expected under the Base policy if serogroup A is not replaced by remaining serogroups after elimination, and would avert 87% (77%-93%) of meningococcal cases if complete strain replacement occurs. Compared to the Base policy and at the PMC vaccine price of US$4 per dose, strategies that use PMC vaccine (i.e., Base Prime and Preventions 1 and 2) are expected to be cost saving if strain replacement occurs, and would cost US$51 (-US$236, US$490), US$188 (-US$97, US$626), and US$246 (-US$53, US$703) per DALY averted, respectively, if strain replacement does not occur. An important potential limitation of our study is the simplifying assumption that all

  15. Multiserotype protection elicited by a combinatorial prime-boost vaccination strategy against bluetongue virus.

    Directory of Open Access Journals (Sweden)

    Eva Calvo-Pinilla

    Full Text Available Bluetongue virus (BTV belongs to the genus Orbivirus within the family Reoviridae. The development of vector-based vaccines expressing conserved protective antigens results in increased immune activation and could reduce the number of multiserotype vaccinations required, therefore providing a cost-effective product. Recent recombinant DNA technology has allowed the development of novel strategies to develop marker and safe vaccines against BTV. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA expressing VP2, VP7 and NS1 proteins from BTV-4. IFNAR((-/- mice inoculated with DNA/rMVA-VP2,-VP7-NS1 in an heterologous prime boost vaccination strategy generated significant levels of antibodies specific of VP2, VP7, and NS1, including those with neutralizing activity against BTV-4. In addition, vaccination stimulated specific CD8(+ T cell responses against these three BTV proteins. Importantly, the vaccine combination expressing NS1, VP2 and VP7 proteins of BTV-4, elicited sterile protection against a lethal dose of homologous BTV-4 infection. Remarkably, the vaccine induced cross-protection against lethal doses of heterologous BTV-8 and BTV-1 suggesting that the DNA/rMVA-VP2,-VP7,-NS1 marker vaccine is a promising multiserotype vaccine against BTV.

  16. Dissecting antigen processing and presentation routes in dermal vaccination strategies

    NARCIS (Netherlands)

    Platteel, Anouk C M; Henri, Sandrine; Zaiss, Dietmar M; Sijts, Alice J A M

    2017-01-01

    The skin is an attractive site for vaccination due to its accessibility and presence of immune cells surveilling this barrier. However, knowledge of antigen processing and presentation upon dermal vaccination is sparse. In this study we determined antigen processing routes that lead to CD8(+) T cell

  17. Considerations of strategies to provide influenza vaccine year round

    NARCIS (Netherlands)

    Lambach, Philipp; Alvarez, Alba Maria Ropero; Hirve, Siddhivinayak; Ortiz, Justin R.; Hombach, Joachim; Verweij, Marcel; Hendriks, Jan; Palkonyay, Laszlo; Pfleiderer, Michael

    2015-01-01

    There is potential for influenza vaccine programmes to make a substantial impact on severe disease in low-resource settings, however questions around vaccine composition and programmatic issues will require special attention. Some countries may benefit from immunization programmes that provide

  18. Vaccine Adjuvant Incorporation Strategy Dictates Peptide Amphiphile Micelle Immunostimulatory Capacity.

    Science.gov (United States)

    Zhang, Rui; Kramer, Jake S; Smith, Josiah D; Allen, Brittany N; Leeper, Caitlin N; Li, Xiaolei; Morton, Logan D; Gallazzi, Fabio; Ulery, Bret D

    2018-06-01

    Current vaccine research has shifted from traditional vaccines (i.e., whole-killed or live-attenuated) to subunit vaccines (i.e., protein, peptide, or DNA) as the latter is much safer due to delivering only the bioactive components necessary to produce a desirable immune response. Unfortunately, subunit vaccines are very weak immunogens requiring delivery vehicles and the addition of immunostimulatory molecules termed adjuvants to convey protective immunity. An interesting type of delivery vehicle is peptide amphiphile micelles (PAMs), unique biomaterials where the vaccine is part of the nanomaterial itself. Due to the modularity of PAMs, they can be readily modified to deliver both vaccine antigens and adjuvants within a singular construct. Through the co-delivery of a model antigenic epitope (Ovalbumin 319-340 -OVA BT ) and a known molecular adjuvant (e.g., 2,3-dipalmitoyl-S-glyceryl cysteine-Pam 2 C), greater insight into the mechanisms by which PAMs can exert immunostimulatory effects was gained. It was found that specific combinations of antigen and adjuvant can significantly alter vaccine immunogenicity both in vitro and in vivo. These results inform fundamental design rules that can be leveraged to fabricate optimal PAM-based vaccine formulations for future disease-specific applications. Graphical Abstract.

  19. Anti-HIV-1 B cell responses are dependent on B cell precursor frequency and antigen-binding affinity.

    Science.gov (United States)

    Dosenovic, Pia; Kara, Ervin E; Pettersson, Anna-Klara; McGuire, Andrew T; Gray, Matthew; Hartweger, Harald; Thientosapol, Eddy S; Stamatatos, Leonidas; Nussenzweig, Michel C

    2018-04-16

    The discovery that humans can produce potent broadly neutralizing antibodies (bNAbs) to several different epitopes on the HIV-1 spike has reinvigorated efforts to develop an antibody-based HIV-1 vaccine. Antibody cloning from single cells revealed that nearly all bNAbs show unusual features that could help explain why it has not been possible to elicit them by traditional vaccination and instead would require a sequence of different immunogens. This idea is supported by experiments with genetically modified immunoglobulin (Ig) knock-in mice. Sequential immunization with a series of specifically designed immunogens was required to shepherd the development of bNAbs. However, knock-in mice contain superphysiologic numbers of bNAb precursor-expressing B cells, and therefore how these results can be translated to a more physiologic setting remains to be determined. Here we make use of adoptive transfer experiments using knock-in B cells that carry a synthetic intermediate in the pathway to anti-HIV-1 bNAb development to examine how the relationship between B cell receptor affinity and precursor frequency affects germinal center (GC) B cell recruitment and clonal expansion. Immunization with soluble HIV-1 antigens can recruit bNAb precursor B cells to the GC when there are as few as 10 such cells per mouse. However, at low precursor frequencies, the extent of clonal expansion is directly proportional to the affinity of the antigen for the B cell receptor, and recruitment to GCs is variable and dependent on recirculation.

  20. 7,8-secolignans from Schisandra neglecta and their anti-HIV-1 activities

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xuemei; Mu, Huaixue; Hu, Qiufen, E-mail: huqiufena@yahoo.com.cn [Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan University of Nationalities (China); Wang, Ruirui; Yang, Liumeng; Zheng, Yongtang [Kunming Institute of Zoology, Chinese Academy of Sciences (China); Sun, Handong; Xiao, Weilie, E-mail: xwl@mail.kib.ac.cn [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming (China)

    2012-10-15

    Four new 7,8-secolignans (neglectahenols A-D), together with two known 7,8-secolignans, were isolated from leaves and stems of Schisandra neglecta. The structures were elucidated by spectroscopic methods, including extensive one and two dimension NMR (nuclear magnetic resonance) techniques. 7,8-Secolignans and neglectahenols A-D were also tested for their anti-HIV-1 (human immunodeficiency virus type 1) activities, and all of them showed modest activities. (author)

  1. Farmers' perception of the role of veterinary surgeons in vaccination strategies on British dairy farms.

    Science.gov (United States)

    Richens, I F; Hobson-West, P; Brennan, M L; Lowton, R; Kaler, J; Wapenaar, W

    2015-11-07

    There is limited research investigating the motivators and barriers to vaccinating dairy cattle. Veterinary surgeons have been identified as important sources of information for farmers making vaccination and disease control decisions, as well as being farmers' preferred vaccine suppliers. Vets' perception of their own role and communication style can be at odds with farmers' reported preferences. The objective of this study was to investigate how dairy farmers perceived the role of vets in implementing vaccination strategies on their farm. Semi-structured interviews were conducted with 24 dairy farmers from across Britain. The data were analysed using thematic analysis. Analysis revealed that farmers perceive vets to have an important role in facilitating decision-making in all aspects of vaccination, including the aspects of vaccine distribution and advice on implementation. This important role is acknowledged by farmers who have regular veterinary contact, but also farmers with solely emergency veterinary contact. Given this finding, future work should investigate the attitudes of vets towards vaccination and how they perceive their role. Combining this knowledge will enable optimisation of vaccination strategies on British dairy farms. British Veterinary Association.

  2. Use of vaccines as a key antimicrobial stewardship strategy

    African Journals Online (AJOL)

    The efficacy of both bacterial and viral vaccines in the reduction of antimicrobial ... mucosal trio' of nasopharyngeal carriage, subsequent acute otitis media (AOM) .... results of the Community Acquired Pneumonia Immunization Trial in Adults ...

  3. Strategies & recent development of transmission-blocking vaccines against Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Neha Chaturvedi

    2016-01-01

    Full Text Available Transmission blocking malaria vaccines are aimed to block the development and maturity of sexual stages of parasite within mosquitoes. The vaccine candidate antigens (Pfs25, Pfs48/45, Pfs230 that have shown transmission blocking immunity in model systems are in different stages of development. These antigens are immunogenic with limited genetic diversity. Pfs25 is a leading candidate and currently in phase I clinical trial. Efforts are now focused on the cost-effective production of potent antigens using safe adjuvants and optimization of vaccine delivery system that are capable of inducing strong immune responses. This review addresses the potential usefulness, development strategies, challenges, clinical trials and current status of Plasmodium falciparum sexual stage malaria vaccine candidate antigens for the development of transmission-blocking vaccines.

  4. Pricing strategies for combination pediatric vaccines based on the lowest overall cost formulary.

    Science.gov (United States)

    Behzad, Banafsheh; Jacobson, Sheldon H; Sewell, Edward C

    2012-10-01

    This paper analyzes pricing strategies for US pediatric combination vaccines by comparing the lowest overall cost formularies (i.e., formularies that have the lowest overall cost). Three pharmaceutical companies compete pairwise over the sale of monovalent and combination vaccines. Particular emphasis is placed on examining the price of Sanofi Pasteur's DTaP-IPV/HIb under different conditions. The main contribution of the paper is to provide the lowest overall cost formularies for different prices of DTaP-IPV/HIb and other Sanofi Pasteur vaccines. The resulting analysis shows that DTaP-IPV/HIb could have been more competitively priced compared with the combination vaccine DTaP-HepB-IPV, for federal contract prices in 2009, 2010 and 2011. This study also proposes the lowest overall cost formularies when shortages of monovalent vaccines occur.

  5. The HPV Vaccination Strategy: Could Male Vaccination Have a Significant Impact?

    Directory of Open Access Journals (Sweden)

    V. Brown

    2010-01-01

    Full Text Available We investigate the potential success of the human papilloma virus (HPV vaccine, taking into consideration possible waning immunity and the influence of behavioural parameters. We use a compartmental, population-level ordinary differential equation (ODE model. We find the effective reproductive value for HPV, R0e, which measures the threshold for infection outbreak in a population that is not entirely susceptible, together with infection prevalence. We study the effects of different parameters on both of these quantities. Results show that waning immunity plays a large part in allowing infection to persist. The proportion of the population not sexually active when vaccination occurs affects R0e, as does the rate at which individuals become sexually active. In several cases, infection persists as a result of an infection reservoir in the male cohort. To explore this further, we introduce male vaccination and find the conditions for which vaccination of males could be considered appropriate.

  6. From individual to herd protection with pneumococcal vaccines: the contribution of the Cuban pneumococcal conjugate vaccine implementation strategy

    Directory of Open Access Journals (Sweden)

    Nivaldo Linares-Pérez

    2017-07-01

    Full Text Available A new pneumococcal conjugate vaccine is currently undergoing advanced clinical evaluation prior to its planned introduction in Cuba. The implementation of the pneumococcal vaccination strategy has been designed with consideration of the need to maximize both its direct and indirect effects. A novel approach is suggested, which addresses preschool children as the first-line target group to generate herd immunity in infants and to have an impact on transmission at the community level. The clinical evaluation pipeline is described herein, including evaluations of effectiveness, cost-effectiveness, and impact. The scientific contribution of the Cuban strategy could support a paradigm shift from individual protection to a population effect based on a rigorous body of scientific evidence.

  7. The most effective and promising population health strategies to advance human papillomavirus vaccination.

    Science.gov (United States)

    Jacobson, Robert M; Agunwamba, Amenah A; St Sauver, Jennifer L; Finney Rutten, Lila J

    2016-01-01

    The US is failing to make substantive progress toward improving rates of human papillomavirus vaccine uptake. While the Healthy People 2020 goal for human papillomavirus (HPV) vaccination is 80%, the three-dose completion rate in the US in 2014 for 13- to 17-year-old females is less than 40%, and the rate for males is just above 20%. Experts point to a number of reasons for the poor HPV vaccination rates including parental concerns about safety, necessity, and timing. However, the evidence refuting these concerns is substantial. Efforts focusing on education and communication have not shown promise, but several population health strategies have reminder/recall systems; practice-focused strategies targeting staff, clinicians, and parents; assessment and feedback activities; and school-based HPV vaccination programs.

  8. HIV/AIDS vaccines for Africa: scientific opportunities, challenges and strategies

    Science.gov (United States)

    Chin'ombe, Nyasha; Ruhanya, Vurayai

    2015-01-01

    More than decades have already elapsed since human immunodeficiency virus (HIV) was identified as the causative agent of acquired immunodeficiency syndrome (AIDS). The HIV has since spread to all parts of the world with devastating effects. In sub-saharan Africa, the HIV/AIDS epidemic has reached unprecedented proportions. Safe, effective and affordable HIV/AIDS vaccines for Africans are therefore urgently needed to contain this public health problem. Although, there are challenges, there are also scientific opportunities and strategies that can be exploited in the development of HIV/AIDS vaccines for Africa. The recent RV144 Phase III trial in Thailand has demonstrated that it is possible to develop a vaccine that can potentially elicit modest protective immunity against HIV infection. The main objective of this review is to outline the key scientific opportunities, challenges and strategies in HIV/AIDS vaccine development in Africa. PMID:26185576

  9. Vaccination strategies for future influenza pandemics: a severity-based cost effectiveness analysis.

    Science.gov (United States)

    Kelso, Joel K; Halder, Nilimesh; Milne, George J

    2013-02-11

    A critical issue in planning pandemic influenza mitigation strategies is the delay between the arrival of the pandemic in a community and the availability of an effective vaccine. The likely scenario, born out in the 2009 pandemic, is that a newly emerged influenza pandemic will have spread to most parts of the world before a vaccine matched to the pandemic strain is produced. For a severe pandemic, additional rapidly activated intervention measures will be required if high mortality rates are to be avoided. A simulation modelling study was conducted to examine the effectiveness and cost effectiveness of plausible combinations of social distancing, antiviral and vaccination interventions, assuming a delay of 6-months between arrival of an influenza pandemic and first availability of a vaccine. Three different pandemic scenarios were examined; mild, moderate and extreme, based on estimates of transmissibility and pathogenicity of the 2009, 1957 and 1918 influenza pandemics respectively. A range of different durations of social distancing were examined, and the sensitivity of the results to variation in the vaccination delay, ranging from 2 to 6 months, was analysed. Vaccination-only strategies were not cost effective for any pandemic scenario, saving few lives and incurring substantial vaccination costs. Vaccination coupled with long duration social distancing, antiviral treatment and antiviral prophylaxis was cost effective for moderate pandemics and extreme pandemics, where it saved lives while simultaneously reducing the total pandemic cost. Combined social distancing and antiviral interventions without vaccination were significantly less effective, since without vaccination a resurgence in case numbers occurred as soon as social distancing interventions were relaxed. When social distancing interventions were continued until at least the start of the vaccination campaign, attack rates and total costs were significantly lower, and increased rates of vaccination

  10. Exosomes Enter Vaccine Development: Strategies Meeting Global Challenges of Emerging Infections.

    Science.gov (United States)

    Jungbauer, Alois

    2018-04-01

    New approaches for vaccination must be developed in order to meet the grand challenges for emerging infectious diseases. Exosomes now enter vaccine development and these are strategies are meeting these global challenges, as demonstrated by Anticoli et al., in this issue of Biotechnology Journal. Using exosome vaccines has been now been demonstrated in vivo for several viruses such as Ebola Virus VP24, VP40, and NP, Influenza Virus NP, Crimean-Congo Hemorrhagic Fever NP, West Nile Virus NS3, and Hepatitis C Virus NS3. Now this technology must be tested in clinics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Vaccination against Alzheimer disease: an update on future strategies.

    Science.gov (United States)

    Fettelschoss, Antonia; Zabel, Franziska; Bachmann, Martin F

    2014-01-01

    Alzheimer disease is a devastating chronic disease without adequate therapy. More than 10 years ago, it was demonstrated in transgenic mouse models that vaccination may be a novel, disease-modifying therapy for Alzheimer. Subsequent clinical development has been a roller-coaster with some positive and many negative news. Here, we would like to summarize evidence that next generation vaccines optimized for old people and focusing on patients with mild disease stand a good chance to proof efficacious for the treatment of Alzheimer.

  12. Tailoring DNA vaccines: designing strategies against HER2 positive cancers

    Directory of Open Access Journals (Sweden)

    Cristina eMarchini

    2013-05-01

    Full Text Available The crucial role of HER2 in epithelial transformation and its selective overexpression on cancer tissues makes it an ideal target for cancer immunotherapies such as passive immunotherapy with Trastuzumab. There are, however, a number of concerns regarding the use of monoclonal antibodies which include resistance, repeated treatments, considerable costs and side effects that make active immunotherapies against HER2 desirable alternative approaches. The efficacy of anti-HER2 DNA vaccination has been widely demonstrated in transgenic cancer-prone mice, which recapitulate several features of human breast cancers. Nonetheless, the rational design of a cancer vaccine able to trigger a long lasting immunity, and thus prevent tumor recurrence in patients, would require the understanding of how tolerance and immunosuppression regulate antitumor immune responses and, at the same time, the identification of the most immunogenic portions of the target protein. We herein retrace the findings that led to our most promising DNA vaccines that, by encoding human/rat chimeric forms of HER2, are able to circumvent peripheral tolerance. Preclinical data obtained with these chimeric DNA vaccines have provided the rationale for their use in an ongoing phase I clinical trial (EudraCT 2011-001104-34.

  13. Development of novel vaccines using DNA shuffling and screening strategies.

    Science.gov (United States)

    Locher, Christopher P; Soong, Nay Wei; Whalen, Robert G; Punnonen, Juha

    2004-02-01

    DNA shuffling and screening technologies recombine and evolve genes in vitro to rapidly obtain molecules with improved biological activity and fitness. In this way, genes from related strains are bred like plants or livestock and their successive progeny are selected. These technologies have also been called molecular breeding-directed molecular evolution. Recent developments in bioinformatics-assisted computer programs have facilitated the design, synthesis and analysis of DNA shuffled libraries of chimeric molecules. New applications in vaccine development are among the key features of DNA shuffling and screening technologies because genes from several strains or antigenic variants of pathogens can be recombined to create novel molecules capable of inducing immune responses that protect against infections by multiple strains of pathogens. In addition, molecules such as co-stimulatory molecules and cytokines have been evolved to have improved T-cell proliferation and cytokine production compared with the wild-type human molecules. These molecules can be used to immunomodulate vaccine responsiveness and have multiple applications in infectious diseases, cancer, allergy and autoimmunity. Moreover, DNA shuffling and screening technologies can facilitate process development of vaccine manufacturing through increased expression of recombinant polypeptides and viruses. Therefore, DNA shuffling and screening technologies can overcome some of the challenges that vaccine development currently faces.

  14. Short communication: Anti-HIV-1 envelope immunoglobulin Gs in blood and cervicovaginal samples of Beninese commercial sex workers.

    Science.gov (United States)

    Batraville, Laurie-Anne; Richard, Jonathan; Veillette, Maxime; Labbé, Annie-Claude; Alary, Michel; Guédou, Fernand; Kaufmann, Daniel E; Poudrier, Johanne; Finzi, Andrés; Roger, Michel

    2014-11-01

    Characterization of the immune correlates of protection against HIV infection is crucial for the development of preventive strategies. This study examined HIV-1 envelope (Env) glycoproteins, specifically immunoglobulin G (IgG), in systemic and mucosal compartments of female Beninese commercial sex workers (CSWs). Samples of 23 HIV-1-positive and 20 highly exposed HIV-1-seronegative (HESN) CSWs were studied. HIV-1 Env-specific IgG detection in sera and cervicovaginal lavages (CVLs) from the study population was done by cell-based ELISA. The HIV neutralizing activity was evaluated with a neutralization assay. The HIV-1-specific antibody-dependent cellular cytotoxicity (ADCC) response of the cohort was measured with a FACS-based assay evaluating the ADCC-mediated elimination of gp120-coated target cells. No anti-HIV-1 Env-specific IgG neutralizing or ADCC activities were detected in samples from HESN CSWs. Samples from HIV-1-infected CSWs presented ADCC activity in both sera and CVLs. Anti-Env IgG from sera and CVLs from HIV-1-infected CSWs preferentially recognized Env in its CD4-bound conformation. HIV-1-infected CSWs have ADCC-mediating IgG that preferentially recognizes Env in its CD4-bound conformation at the mucosal site.

  15. In vitro profiling of the vaginal permeation potential of anti-HIV microbicides and the influence of formulation excipients.

    Science.gov (United States)

    Grammen, Carolien; Augustijns, Patrick; Brouwers, Joachim

    2012-11-01

    In the search for an effective anti-HIV microbicidal gel, limited drug penetration into the vaginal submucosa is a possible reason for failed protection against HIV transmission. To address this issue in early development, we here describe a simple in vitro strategy to predict the tissue permeation potential of vaginally applied drugs, based on solubility, permeability and flux assessment. We demonstrated this approach for four model microbicides (tenofovir, darunavir, saquinavir mesylate and dapivirine) and additionally examined the influence of formulation excipients on the permeation potential. When formulated in an aqueous-based HEC gel, high flux values across an HEC-1A cell layer were reached by tenofovir, as a result of its high aqueous solubility. In contrast, saquinavir and dapivirine fluxes remained low due to poor permeability and solubility, respectively. These low fluxes suggest limited in vivo tissue penetration, possibly leading to lack of efficacy. Dapivirine fluxes, however, could be enhanced up to 30-fold, by including formulation excipients such as polyethylene glycol 1000 (20%) or cyclodextrins (5%) in the HEC gels. Alternative formulations, i.e. emulsions or silicone elastomer gels, were less effective in flux enhancement compared to cyclodextrin-HEC gels. In conclusion, implementing the proposed solubility and permeability profiling in early microbicide development may contribute to the successful selection of promising microbicide candidates and appropriate formulations. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Strategies for implementing school-located influenza vaccination of children: a systematic literature review.

    Science.gov (United States)

    Cawley, John; Hull, Harry F; Rousculp, Matthew D

    2010-04-01

    The Advisory Committee on Immunization Practices (ACIP) recommends influenza vaccinations for all children 6 months to 18 years of age, which includes school-aged children. Influenza immunization programs may benefit schools by reducing absenteeism. A systematic literature review of PubMed, PsychLit, and Dissertation Abstracts available as of January 7, 2008, was conducted for school-located vaccinations, using search words "School Health Services" and "Immunization Programs"; limited to "Child" (6-12 years) and "Adolescent" (13-18 years) for PubMed and "mass or universal" and (immuniz(*) or immunis(*) or vaccin(*)) and (school or Child or Adolescen(*)) for PsychLit and Dissertation Abstracts. Fifty-nine studies met the criteria for review. Strategies such as incentives, education, the design of the consent form, and follow-up can increase parental consent and number of returned forms. Minimizing out-of-pocket cost, offering both the intramuscular (shot) and intranasal (nasal spray) vaccination, and using reminders can increase vaccination coverage among those whose parents consented. Finally, organization, communication, and planning can minimize the logistical challenges. Schools-based vaccination programs are a promising option for achieving the expanded ACIP recommendation; school-located vaccination programs are feasible and effective. Adhering to lessons from the peer-reviewed scientific literature may help public health officials and schools implement the expanded recommendation to provide the greatest benefit for the lowest cost. Given the potential benefits of the expanded recommendation, both directly to the vaccinated children and indirectly to the community, prospective, well-controlled trials to establish the cost-effectiveness of specific vaccination strategies should be high priorities for future research.

  17. Experiences of operational costs of HPV vaccine delivery strategies in Gavi-supported demonstration projects

    Science.gov (United States)

    Holroyd, Taylor; Nanda, Shreya; Bloem, Paul; Griffiths, Ulla K.; Sidibe, Anissa; Hutubessy, Raymond C. W.

    2017-01-01

    From 2012 to 2016, Gavi, the Vaccine Alliance, provided support for countries to conduct small-scale demonstration projects for the introduction of the human papillomavirus vaccine, with the aim of determining which human papillomavirus vaccine delivery strategies might be effective and sustainable upon national scale-up. This study reports on the operational costs and cost determinants of different vaccination delivery strategies within these projects across twelve countries using a standardized micro-costing tool. The World Health Organization Cervical Cancer Prevention and Control Costing Tool was used to collect costing data, which were then aggregated and analyzed to assess the costs and cost determinants of vaccination. Across the one-year demonstration projects, the average economic and financial costs per dose amounted to US$19.98 (standard deviation ±12.5) and US$8.74 (standard deviation ±5.8), respectively. The greatest activities representing the greatest share of financial costs were social mobilization at approximately 30% (range, 6–67%) and service delivery at about 25% (range, 3–46%). Districts implemented varying combinations of school-based, facility-based, or outreach delivery strategies and experienced wide variation in vaccine coverage, drop-out rates, and service delivery costs, including transportation costs and per diems. Size of target population, number of students per school, and average length of time to reach an outreach post influenced cost per dose. Although the operational costs from demonstration projects are much higher than those of other routine vaccine immunization programs, findings from our analysis suggest that HPV vaccination operational costs will decrease substantially for national introduction. Vaccination costs may be decreased further by annual vaccination, high initial investment in social mobilization, or introducing/strengthening school health programs. Our analysis shows that drivers of cost are dependent on

  18. Innate immunity in the vagina (Part II): Anti-HIV activity and antiviral content of human vaginal secretions.

    Science.gov (United States)

    Patel, Mickey V; Ghosh, Mimi; Fahey, John V; Ochsenbauer, Christina; Rossoll, Richard M; Wira, Charles R

    2014-07-01

    Whether the concentrations of antiviral proteins, and anti-HIV activity, within human vaginal secretions change across the menstrual cycle is unknown. Using a menstrual cup, vaginal secretions from pre-menopausal women were recovered at the proliferative (d6-8), mid-cycle (d13-15), and secretory (d21-23) stages of the menstrual cycle. Antiviral protein concentration was determined by ELISA, and anti-HIV activity assessed using the TZM-bl reporter cell line. CCL20, RANTES, elafin, HBD2, SDF-1α, and IL-8 levels were detectable in the secretions. Vaginal secretions had anti-HIV activity against specific clade B strains of HIV, with significant inhibition of IIIB and increased infectivity of transmitted/founder CH077.t. No significant differences in either antiviral protein concentration or anti-HIV activity with respect to menstrual cycle stage were measured, but marked differences were observed in both parameters over the course of the cycle between different women and in consecutive cycles from the same woman. The vagina contains a complement of antiviral proteins. The variation in anti-HIV activity demonstrates that immune protection in the vagina is not constant. Intra- and interindividual variations suggest that factors in addition to sex hormones influence antiviral protection. Lastly, the menstrual cup is a new model for recovering undiluted vaginal secretions from women throughout their reproductive life. © 2014 John Wiley & Sons Ltd.

  19. Immunity in the Vagina (Part II): Anti-HIV Activity and Antiviral Content of Human Vaginal Secretions

    Science.gov (United States)

    Patel, Mickey V.; Ghosh, Mimi; Fahey, John V.; Ochsenbauer, Christina; Rossoll, Richard M.; Wira, Charles R.

    2015-01-01

    Problem Whether the concentrations of antiviral proteins, and anti-HIV activity, within human vaginal secretions changes across the menstrual cycle is unknown. Method of Study Using a menstrual cup, vaginal secretions from premenopausal women were recovered at the proliferative (d6–8), mid-cycle (d13–15) and secretory (d21–23) stages of the menstrual cycle. Antiviral protein concentration was determined by ELISA, and anti-HIV activity assessed using the TZM-bl reporter cell line. Results CCL20, RANTES, elafin, HBD2, SDF-1α and IL-8 levels were detectable in the secretions. Vaginal secretions had anti-HIV activity against specific clade B strains of HIV, with significant inhibition of IIIB and increased infectivity of transmitted/founder CH077.t. No significant differences in either antiviral protein concentration or anti-HIV activity with respect to menstrual cycle stage were measured, but marked differences were observed in both parameters over the course of the cycle between different women, and in consecutive cycles from the same woman. Conclusion The vagina contains a complement of antiviral proteins. The variation in anti-HIV activity demonstrates that immune protection in the vagina is not constant. Intra- and inter-individual variations suggest that factors in addition to sex hormones influence antiviral protection. Lastly, the menstrual cup is a new model for recovering undiluted vaginal secretions from women throughout their reproductive life. PMID:24806967

  20. Novel Strategies to Enhance Vaccine Immunity against Coccidioidomycosis

    Science.gov (United States)

    2013-12-19

    Mexico and Central and South America [1]. Coccidioides is a dimorphic ascomycetous fungus with distinct saprobic and parasitic phases and is classified in...lethal spore inoculum. However, sterile immunity was not achieved and pulmonary tissue damage associated with a persistent host inflammatory response...observation will translate to humans. A recent vector-based vaccine against tuberculosis intended to protect by eliciting strong CMI failed in humans despite

  1. Developmental strategy fora new Group A meningococcal conjugate vaccine (MenAfriVacR).

    Science.gov (United States)

    Kulkarni, Prasad S; Jadhav, Suresh S; LaForce, F Marc

    2017-10-19

    Until recently, periodic Group A meningococcal meningitis outbreaks were a major public health problem in the sub-Saharan Africa. In 2001, the Meningitis Vaccine Project (MVP), a partnership between the World Health Organization (WHO) and PATH, a Seattle-based NGO, and the Serum Institute of India Pvt Ltd (SIIPL) initiated discussions aimed at establishing a collaboration to develop a Group A meningococcal conjugate vaccine for this unmet medical need. Over the next 8 years the partnership made countless strategic decisions about product characteristics, raw materials, potential target populations, geographic prioritization and affordability of the vaccine to name a few. These decisions evolved into detailed plans for preclinical development, extensive field trials in Africa and India and a focused regulatory strategy specific for the Men A conjugate vaccine. Important characteristics of the process included, flexibility, transparency andeffective partnerships that included public agencies as well as private companies in Africa, Europe, the United States and India.

  2. Perspective on Global Measles Epidemiology and Control and the Role of Novel Vaccination Strategies

    Directory of Open Access Journals (Sweden)

    Melissa M. Coughlin

    2017-01-01

    Full Text Available Measles is a highly contagious, vaccine preventable disease. Measles results in a systemic illness which causes profound immunosuppression often leading to severe complications. In 2010, the World Health Assembly declared that measles can and should be eradicated. Measles has been eliminated in the Region of the Americas, and the remaining five regions of the World Health Organization (WHO have adopted measles elimination goals. Significant progress has been made through increased global coverage of first and second doses of measles-containing vaccine, leading to a decrease in global incidence of measles, and through improved case based surveillance supported by the WHO Global Measles and Rubella Laboratory Network. Improved vaccine delivery methods will likely play an important role in achieving measles elimination goals as these delivery methods circumvent many of the logistic issues associated with subcutaneous injection. This review highlights the status of global measles epidemiology, novel measles vaccination strategies, and describes the pathway toward measles elimination.

  3. Communication strategies to promote the uptake of childhood vaccination in Nigeria: a systematic map.

    Science.gov (United States)

    Oku, Afiong; Oyo-Ita, Angela; Glenton, Claire; Fretheim, Atle; Ames, Heather; Muloliwa, Artur; Kaufman, Jessica; Hill, Sophie; Cliff, Julie; Cartier, Yuri; Bosch-Capblanch, Xavier; Rada, Gabriel; Lewin, Simon

    2016-01-01

    Effective communication is a critical component in ensuring that children are fully vaccinated. Although numerous communication interventions have been proposed and implemented in various parts of Nigeria, the range of communication strategies used has not yet been mapped systematically. This study forms part of the 'Communicate to vaccinate' (COMMVAC) project, an initiative aimed at building research evidence for improving communication with parents and communities about childhood vaccinations in low- and middle-income countries. This study aims to: 1) identify the communication strategies used in two states in Nigeria; 2) map these strategies against the existing COMMVAC taxonomy, a global taxonomy of vaccination communication interventions; 3) create a specific Nigerian country map of interventions organised by purpose and target; and 4) analyse gaps between the COMMVAC taxonomy and the Nigerian map. We conducted the study in two Nigerian states: Bauchi State in Northern Nigeria and Cross River State in Southern Nigeria. We identified vaccination communication interventions through interviews carried out among purposively selected stakeholders in the health services and relevant agencies involved in vaccination information delivery; through observations and through relevant documents. We used the COMMVAC taxonomy to organise the interventions we identified based on the intended purpose of the communication and the group to which the intervention was targeted. The Nigerian map revealed that most of the communication strategies identified aimed to inform and educate and remind or recall. Few aimed to teach skills, enhance community ownership, and enable communication. We did not identify any intervention that aimed to provide support or facilitate decision-making. Many interventions had more than one purpose. The main targets for most interventions were caregivers and community members, with few interventions directed at health workers. Most interventions

  4. Pneumococcal vaccine targeting strategy for older adults: customized risk profiling.

    Science.gov (United States)

    Balicer, Ran D; Cohen, Chandra J; Leibowitz, Morton; Feldman, Becca S; Brufman, Ilan; Roberts, Craig; Hoshen, Moshe

    2014-02-12

    Current pneumococcal vaccine campaigns take a broad, primarily age-based approach to immunization targeting, overlooking many clinical and administrative considerations necessary in disease prevention and resource planning for specific patient populations. We aim to demonstrate the utility of a population-specific predictive model for hospital-treated pneumonia to direct effective vaccine targeting. Data was extracted for 1,053,435 members of an Israeli HMO, age 50 and older, during the study period 2008-2010. We developed and validated a logistic regression model to predict hospital-treated pneumonia using training and test samples, including a set of standard and population-specific risk factors. The model's predictive value was tested for prospectively identifying cases of pneumonia and invasive pneumococcal disease (IPD), and was compared to the existing international paradigm for patient immunization targeting. In a multivariate regression, age, co-morbidity burden and previous pneumonia events were most strongly positively associated with hospital-treated pneumonia. The model predicting hospital-treated pneumonia yielded a c-statistic of 0.80. Utilizing the predictive model, the top 17% highest-risk within the study validation population were targeted to detect 54% of those members who were subsequently treated for hospitalized pneumonia in the follow up period. The high-risk population identified through this model included 46% of the follow-up year's IPD cases, and 27% of community-treated pneumonia cases. These outcomes were compared with international guidelines for risk for pneumococcal diseases that accurately identified only 35% of hospitalized pneumonia, 41% of IPD cases and 21% of community-treated pneumonia. We demonstrate that a customized model for vaccine targeting performs better than international guidelines, and therefore, risk modeling may allow for more precise vaccine targeting and resource allocation than current national and international

  5. Directed antigen delivery as a vaccine strategy for an intracellular bacterial pathogen

    Science.gov (United States)

    Bouwer, H. G. Archie; Alberti-Segui, Christine; Montfort, Megan J.; Berkowitz, Nathan D.; Higgins, Darren E.

    2006-03-01

    We have developed a vaccine strategy for generating an attenuated strain of an intracellular bacterial pathogen that, after uptake by professional antigen-presenting cells, does not replicate intracellularly and is readily killed. However, after degradation of the vaccine strain within the phagolysosome, target antigens are released into the cytosol for endogenous processing and presentation for stimulation of CD8+ effector T cells. Applying this strategy to the model intracellular pathogen Listeria monocytogenes, we show that an intracellular replication-deficient vaccine strain is cleared rapidly in normal and immunocompromised animals, yet antigen-specific CD8+ effector T cells are stimulated after immunization. Furthermore, animals immunized with the intracellular replication-deficient vaccine strain are resistant to lethal challenge with a virulent WT strain of L. monocytogenes. These studies suggest a general strategy for developing safe and effective, attenuated intracellular replication-deficient vaccine strains for stimulation of protective immune responses against intracellular bacterial pathogens. CD8+ T cell | replication-deficient | Listeria monocytogenes

  6. The projected effectiveness of Clostridium difficile vaccination as part of an integrated infection control strategy.

    Science.gov (United States)

    van Kleef, Esther; Deeny, Sarah R; Jit, Mark; Cookson, Barry; Goldenberg, Simon D; Edmunds, W John; Robotham, Julie V

    2016-11-04

    Early clinical trials of a Clostridium difficile toxoid vaccine show efficacy in preventing C. difficile infection (CDI). The optimal patient group to target for vaccination programmes remains unexplored. This study performed a model-based evaluation of the effectiveness of different CDI vaccination strategies, within the context of existing infection prevention and control strategies such as antimicrobial stewardship. An individual-based transmission model of CDI in a high-risk hospital setting was developed. The model incorporated data on patient movements between the hospital, and catchment populations from the community and long-term care facilities (LTCF), using English national and local level data for model-parameterisation. We evaluated vaccination of: (1) discharged patients who had an CDI-occurrence in the ward; (2) LTCF-residents; (3) Planned elective surgical admissions and (4) All three strategies combined. Without vaccination, 10.9 [Interquartile range: 10.0-11.8] patients per 1000 ward admissions developed CDI, of which 31% were ward-acquired. Immunising all three patient groups resulted in a 43% [42-44], reduction of ward-onset CDI on average. Among the strategies restricting vaccination to one target group, vaccinating elective surgical patients proved most effective (35% [34-36] reduction), but least efficient, requiring 146 [133-162] courses to prevent one ICU-onset case. Immunising LTCF residents was most efficient, requiring just 13 [11-16] courses to prevent one case, but considering this only comprised a small group of our hospital population, it only reduced ICU-onset CDI by 9% [8-11]. Vaccination proved most efficient when ward-based transmission rates and antimicrobial consumption were high. Strategy success depends on the interaction between hospital and catchment populations, and importantly, consideration of importations of CDI from outside the hospital which we found to substantially impact hospital dynamics. Vaccination may be most

  7. Possible global strategies for stopping polio vaccination and how they could be harmonized.

    Science.gov (United States)

    Cochi, S L; Sutter, R W; Aylward, R B

    2001-01-01

    One of the challenges of the polio eradication initiative over the next few years will be the formulation of an optimal strategy for stopping poliovirus vaccination after global certification of polio eradication has been accomplished. This strategy must maximize the benefits and minimize the risks. A number of strategies are currently under consideration, including: (i) synchronized global discontinuation of use of oral poliovirus vaccine (OPV); (ii) regional or subregional coordinated OPV discontinuation; and (iii) moving from trivalent to bivalent or monovalent OPV. Other options include moving from OPV to global use of IPV for an interim period before cessation of IPV use (to eliminate circulation of vaccine-derived poliovirus, if necessary) or development of new OPV strains that are not transmissible. Each of these strategies is associated with specific advantages (financial benefits for OPV discontinuation) and disadvantages (cost of switch to IPV) and inherent uncertainties (risk of continued poliovirus circulation in certain populations or prolonged virus replication in immunodeficient persons). An ambitious research agenda addresses the remaining questions and issues. Nevertheless, several generalities are already clear. Unprecedented collaboration between countries, regions, and indeed the entire world will be required to implement a global OPV discontinuation strategy Regulatory approval will be needed for an interim bivalent OPV or for monovalent OPV in many countries. Manufacturers will need sufficient lead time to produce sufficient quantities of IPV Finally, the financial implications for any of these strategies need to be considered. Whatever strategy is followed it will be necessary to stockpile supplies of a poliovirus-containing vaccine (most probably all three types of monovalent OPV), and to develop contingency plans to respond should an outbreak of polio occur after stopping vaccination.

  8. Enhanced anti-HIV-1 activity of G-quadruplexes comprising locked nucleic acids and intercalating nucleic acids

    DEFF Research Database (Denmark)

    Pedersen, Erik Bjerregaard; Nielsen, Jakob Toudahl; Nielsen, Claus

    2011-01-01

    Two G-quadruplex forming sequences, 50-TGGGAG and the 17-mer sequence T30177, which exhibit anti-HIV-1 activity on cell lines, were modified using either locked nucleic acids (LNA) or via insertions of (R)-1-O-(pyren-1-ylmethyl)glycerol (intercalating nucleic acid, INA) or (R)-1-O-[4-(1......-pyrenylethynyl)phenylmethyl]glycerol (twisted intercalating nucleic acid, TINA). Incorporation of LNA or INA/TINA monomers provide as much as 8-fold improvement of anti-HIV-1 activity. We demonstrate for the first time a detailed analysis of the effect the incorporation of INA/TINA monomers in quadruplex forming...

  9. Sulfated Polysaccharides in Marine Sponges: Extraction Methods and Anti-HIV Activity

    Directory of Open Access Journals (Sweden)

    Ana I. S. Esteves

    2011-01-01

    Full Text Available The extraction, fractionation and HIV-1 inhibition potential of polysaccharides extracted from three species of marine sponges, Erylus discophorus, Cliona celata and Stelletta sp., collected in the Northeastern Atlantic, is presented in this work. The anti-HIV activity of 23 polysaccharide pellets and three crude extracts was tested. Crude extracts prepared from Erylus discophorus specimens were all highly active against HIV-1 (90 to 95% inhibition. Cliona celata pellets showed low polysaccharide content (bellow 38.5% and almost no anti-HIV activity (<10% inhibition. Stelletta sp. pellets, although quite rich in polysaccharide (up to 97.3%, showed only modest bioactivity (<36% HIV-1 inhibition. Erylus discophorus pellets were among the richest in terms of polysaccharide content (up to 98% and the most active against HIV-1 (up to 95% inhibition. Chromatographic fractionation of the polysaccharide pellet obtained from a specimen of Erylus discophorus (B161 yielded only modestly active fractions. However, we could infer that the active molecule is most probably a high molecular weight sulfated polysaccharide (>2000 kDa, whose mechanism is possibly preventing viral attachment and entry (fusion inhibitor.

  10. Characterization of Nanodiamond-based anti-HIV drug Delivery to the Brain.

    Science.gov (United States)

    Roy, Upal; Drozd, Vadym; Durygin, Andriy; Rodriguez, Jesse; Barber, Paul; Atluri, Venkata; Liu, Xiaohua; Voss, Thomas G; Saxena, Surendra; Nair, Madhavan

    2018-01-25

    Human Immunodeficiency Virus Type 1 (HIV-1) remains one of the leading causes of death worldwide. Present combination antiretroviral therapy has substantially improved HIV-1 related pathology. However, delivery of therapeutic agents to the HIV reservoir organ like Central nervous system (CNS) remains a major challenge primarily due to the ineffective transmigration of drugs through Blood Brain Barrier (BBB). The recent advent of nanomedicine-based drug delivery has stimulated the development of innovative systems for drug delivery. In this regard, particular focus has been given to nanodiamond due to its natural biocompatibility and non-toxic nature-making it a more efficient drug carrier than other carbon-based materials. Considering its potential and importance, we have characterized unmodified and surface-modified (-COOH and -NH 2 ) nanodiamond for its capacity to load the anti-HIV-1 drug efavirenz and cytotoxicity, in vitro. Overall, our study has established that unmodified nanodiamond conjugated drug formulation has significantly higher drug loading capacity than surface-modified nanodiamond with minimum toxicity. Further, this nanodrug formulation was characterized by its drug dissolution profile, transmigration through the BBB, and its therapeutic efficacy. The present biological characterizations provide a foundation for further study of in-vivo pharmacokinetics and pharmacodynamics of nanodiamond-based anti-HIV drugs.

  11. Communication strategies to promote the uptake of childhood vaccination in Nigeria: a systematic map

    Science.gov (United States)

    Oku, Afiong; Oyo-Ita, Angela; Glenton, Claire; Fretheim, Atle; Ames, Heather; Muloliwa, Artur; Kaufman, Jessica; Hill, Sophie; Cliff, Julie; Cartier, Yuri; Bosch-Capblanch, Xavier; Rada, Gabriel; Lewin, Simon

    2016-01-01

    Background Effective communication is a critical component in ensuring that children are fully vaccinated. Although numerous communication interventions have been proposed and implemented in various parts of Nigeria, the range of communication strategies used has not yet been mapped systematically. This study forms part of the ‘Communicate to vaccinate’ (COMMVAC) project, an initiative aimed at building research evidence for improving communication with parents and communities about childhood vaccinations in low- and middle-income countries. Objective This study aims to: 1) identify the communication strategies used in two states in Nigeria; 2) map these strategies against the existing COMMVAC taxonomy, a global taxonomy of vaccination communication interventions; 3) create a specific Nigerian country map of interventions organised by purpose and target; and 4) analyse gaps between the COMMVAC taxonomy and the Nigerian map. Design We conducted the study in two Nigerian states: Bauchi State in Northern Nigeria and Cross River State in Southern Nigeria. We identified vaccination communication interventions through interviews carried out among purposively selected stakeholders in the health services and relevant agencies involved in vaccination information delivery; through observations and through relevant documents. We used the COMMVAC taxonomy to organise the interventions we identified based on the intended purpose of the communication and the group to which the intervention was targeted. Results The Nigerian map revealed that most of the communication strategies identified aimed to inform and educate and remind or recall. Few aimed to teach skills, enhance community ownership, and enable communication. We did not identify any intervention that aimed to provide support or facilitate decision-making. Many interventions had more than one purpose. The main targets for most interventions were caregivers and community members, with few interventions directed at

  12. Communication strategies to promote the uptake of childhood vaccination in Nigeria: a systematic map

    Directory of Open Access Journals (Sweden)

    Afiong Oku

    2016-02-01

    Full Text Available Background: Effective communication is a critical component in ensuring that children are fully vaccinated. Although numerous communication interventions have been proposed and implemented in various parts of Nigeria, the range of communication strategies used has not yet been mapped systematically. This study forms part of the ‘Communicate to vaccinate’ (COMMVAC project, an initiative aimed at building research evidence for improving communication with parents and communities about childhood vaccinations in low- and middle-income countries. Objective: This study aims to: 1 identify the communication strategies used in two states in Nigeria; 2 map these strategies against the existing COMMVAC taxonomy, a global taxonomy of vaccination communication interventions; 3 create a specific Nigerian country map of interventions organised by purpose and target; and 4 analyse gaps between the COMMVAC taxonomy and the Nigerian map. Design: We conducted the study in two Nigerian states: Bauchi State in Northern Nigeria and Cross River State in Southern Nigeria. We identified vaccination communication interventions through interviews carried out among purposively selected stakeholders in the health services and relevant agencies involved in vaccination information delivery; through observations and through relevant documents. We used the COMMVAC taxonomy to organise the interventions we identified based on the intended purpose of the communication and the group to which the intervention was targeted. Results: The Nigerian map revealed that most of the communication strategies identified aimed to inform and educate and remind or recall. Few aimed to teach skills, enhance community ownership, and enable communication. We did not identify any intervention that aimed to provide support or facilitate decision-making. Many interventions had more than one purpose. The main targets for most interventions were caregivers and community members, with few

  13. Recombinant Alpha, Beta, and Epsilon Toxins of Clostridium perfringens: Production Strategies and Applications as Veterinary Vaccines

    Directory of Open Access Journals (Sweden)

    Marcos Roberto A. Ferreira

    2016-11-01

    Full Text Available Clostridium perfringens is a spore-forming, commensal, ubiquitous bacterium that is present in the gastrointestinal tract of healthy humans and animals. This bacterium produces up to 18 toxins. The species is classified into five toxinotypes (A–E according to the toxins that the bacterium produces: alpha, beta, epsilon, or iota. Each of these toxinotypes is associated with myriad different, frequently fatal, illnesses that affect a range of farm animals and humans. Alpha, beta, and epsilon toxins are the main causes of disease. Vaccinations that generate neutralizing antibodies are the most common prophylactic measures that are currently in use. These vaccines consist of toxoids that are obtained from C. perfringens cultures. Recombinant vaccines offer several advantages over conventional toxoids, especially in terms of the production process. As such, they are steadily gaining ground as a promising vaccination solution. This review discusses the main strategies that are currently used to produce recombinant vaccines containing alpha, beta, and epsilon toxins of C. perfringens, as well as the potential application of these molecules as vaccines for mammalian livestock animals.

  14. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    Directory of Open Access Journals (Sweden)

    Signe Tandrup Schmidt

    2016-03-01

    Full Text Available The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI. Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs, which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the

  15. Strategies and actions of multi-purpose health communication on vaccine preventable infectious diseases in order to increase vaccination coverage in the population: The ESCULAPIO project.

    Science.gov (United States)

    Bechini, Angela; Bonanni, Paolo; Lauri, Sara; Tiscione, Emilia; Levi, Miriam; Prato, Rosa; Fortunato, Francesca; Martinelli, Domenico; Gasparini, Roberto; Panatto, Donatella; Amicizia, Daniela; Coppola, Rosa Cristina; Pellizzari, Barbara; Tabacchi, Garden; Costantino, Claudio; Vitale, Francesco; Iannazzo, Stefania; Boccalini, Sara

    2017-02-01

    The ESCULAPIO Project aims at increasing awareness on vaccine preventable infectious diseases (VPID) and vaccinations in different target populations and to spread the culture of prevention. Information/training interventions on VPID have been developed and health promotion activities for the general population, students and their parents, teachers and health care workers (HCWs) were set up. In Tuscany, educational courses on VPID in high schools were organized and students were stimulated to prepare informative materials on VPID for lower grade school pupils. In Liguria, an educational card game (named 'Vaccine at the Fair') was presented to children of primary schools. Stands in shopping centers were used in Palermo to distribute the regional vaccination schedule and gadgets, also providing indications on reliable websites where to find correct information on vaccinations. A music video played by health care workers (HCWs) was created and used in the University Hospital of Cagliari to promote the anti-flu vaccination campaign in HCWs. In Apulia, meetings with the general population were organized to collect controversial issues about vaccinations and a national call center was launched to create a direct line from the general population to experts in vaccines and vaccination strategies. In Veneto, meetings in the birth centers and home visits for subjects refusing vaccination have been organized. All activities are useful and effective tools to increase knowledge about VPID and confidence in vaccination, which are crucial aspects in order to increase vaccine uptake. The project was funded by the Italian Ministry of Health, Center for Disease Prevention and Control (CCM) in 2013.

  16. A multi-country study of dengue vaccination strategies with Dengvaxia and a future vaccine candidate in three dengue-endemic countries: Vietnam, Thailand, and Colombia.

    Science.gov (United States)

    Lee, Jung-Seok; Lourenço, José; Gupta, Sunetra; Farlow, Andrew

    2018-04-19

    The dengue vaccination era began when Dengvaxia (CYD-TDV) became available in 2016. In addition, several second-generation vaccine candidates are currently in phase 3 trials, suggesting that a broader availability of dengue vaccines may be possible in the near future. Advancing on the recent WHO-SAGE recommendations for the safe and effective use of CYD-TDV at the regional level on average, this study investigates the vaccination impacts and cost-effectiveness of CYD-TDV and of a hypothetical new vaccine candidate (NVC) in a country-specific manner for three endemic countries: Vietnam, Thailand, and Colombia. The vaccination impacts of CYD-TDV and NVC were derived by fitting the empirical seroprevalence rates of 9 year olds into an individual-based meta-population transmission model, previously used for the WHO-SAGE working group. The disability-adjusted life years were estimated by applying country-specific parametric values. The cost-effectiveness analyses of four intervention strategies in combination with routine and catch-up campaigns were compared for both vaccines to inform decision makers regarding the most suitable immunization program in each of the three countries. Both CYD-TDV and NVC could be cost-effective at the DALY threshold cost of $2000 depending upon vaccination costs. With CYD-TDV, targeting 9 year olds in routine vaccination programs and 10-29 year olds as a one-off catch-up campaign was the most cost-effective strategy in all three countries. With NVC, while the most cost-effective strategy was to vaccinate 9-29 and 9-18 year olds in Vietnam and Thailand respectively, vaccinating younger age cohorts between 1 and 5 years old in Colombia was more cost-effective than other strategies. Given that three countries will soon face decisions regarding whether and how to incorporate CYD-TDV or future dengue vaccines into their budget-constrained national immunization programs, the current study outcomes can be used to help decision makers

  17. [VACCINES].

    Science.gov (United States)

    Bellver Capella, Vincente

    2015-10-01

    Vaccines are an extraordinary instrument of immunization of the population against infectious diseases. Around them there are many ethical issues. One of the most debated is what to do with certain groups opposition to vaccination of their children. States have managed in different ways the conflict between the duty of vaccination and the refusal to use vaccines: some impose the vaccination and others simply promote it. In this article we deal with which of these two approaches is the most suitable from an ethical and legal point of view. We stand up for the second option, which is the current one in Spain, and we propose some measures which should be kept in mind to improve immunization programs.

  18. Comparative pharmacokinetic, immunologic and hematologic studies on the anti-HIV-1/2 compounds aconitylated and succinylated HSA

    NARCIS (Netherlands)

    Swart, P J; Beljaars, E; Smit, C; Pasma, A; Schuitemaker, H; Meijer, D K

    1996-01-01

    Charge modification by succinylation or cis-aconitylation of the terminal epsilon NH2 functions of the amino acid lysine in human serum albumin, resulted in polyanionic compounds with an anti-HIV-1 activity in the low nanomolar concentration range. After iv injections in rats of the negatively

  19. Characterization of the anti-HIV effects of native lactoferrin and other milk proteins and protein-derived peptides

    NARCIS (Netherlands)

    Berkhout, Ben; van Wamel, Jeroen L. B.; Beljaars, Leonie; Meijer, Dirk K. F.; Visser, Servaas; Floris, René

    2002-01-01

    In a search for natural proteins with anti-HIV activity, we screened a large set of purified proteins from bovine milk and peptide fragments thereof. Because several charged proteins and peptides are known to inhibit the process of virus entry, we selected proteins with an unusual charge composition

  20. Characterization of the anti-HIV effects of native lactoferrin and other milk proteins and protein-derived peptides

    NARCIS (Netherlands)

    Berkhout, B; van Wamel, JLB; Beljaars, L; Meijer, DKF; Visser, Servaas; Floris, R

    In a search for natural proteins with anti-HIV activity, we screened a large set of purified proteins from bovine milk and peptide fragments thereof. Because several charged proteins and peptides are known to inhibit the process of virus entry, we selected proteins with an unusual charge composition

  1. New strategies to improve the efficacy of colorectal cancer vaccines: from bench to bedside.

    Science.gov (United States)

    Mocellin, Simone

    2006-12-01

    By exploiting a naturally occurring defense system, anticancer vaccination embodies an ideal non-toxic treatment capable of evoking tumor-specific immune responses that can ultimately recognize and kill colorectal cancer (CRC) cells. Despite the enormous theoretical potential of active specific immunotherapy, no vaccination regimen has achieved sufficient therapeutic efficacy necessary for clinical implementation. Nevertheless, several immunological advances have opened new avenues of research to decipher the biological code governing tumor immune responsiveness, and this is leading to the design of potentially more effective immunotherapeutic protocols. This review briefly summarizes the principles behind anti-CRC vaccination and describes the most promising immunological strategies that have been developed, which are expected to renew interest in this molecularly targeted anticancer approach.

  2. Fowl adenovirus serotype 4: Epidemiology, pathogenesis, diagnostic detection, and vaccine strategies.

    Science.gov (United States)

    Li, P H; Zheng, P P; Zhang, T F; Wen, G Y; Shao, H B; Luo, Q P

    2017-08-01

    Fowl adenovirus (FAdV) serotype-4 is highly pathogenic for chickens, especially for broilers aged 3 to 5 wk, and it has emerged as one of the foremost causes of economic losses to the poultry industry in the last 30 years. The liver is a major target organ of FAdV-4 infections, and virus-infected chickens usually show symptoms of hydropericardium syndrome. The virus is very contagious, and it is spread both vertically and horizontally. It can be isolated from infected liver homogenates and detected by several laboratory diagnostic methods (including an agar gel immunodiffusion test, indirect immunofluorescence assays, counterimmunoelectrophoresis, enzyme-linked immunosorbent assays, restriction endonuclease analyses, polymerase chain reaction (PCR), real-time PCR, and high-resolution melting-curve analyses). Although inactivated vaccines have been deployed widely to control the disease, attenuated live vaccines and subunit vaccines also have been developed, and they are more attractive vaccine candidates. This article provides a comprehensive review of FAdV-4, including its epidemiology, pathogenesis, diagnostic detection, and vaccine strategies. © 2017 Poultry Science Association Inc.

  3. Identification of anti-HIV active dicaffeoylquinic- and tricaffeoylquinic acids in Helichrysum populifolium by NMR-based metabolomic guided fractionation.

    Science.gov (United States)

    Heyman, Heino Martin; Senejoux, François; Seibert, Isabell; Klimkait, Thomas; Maharaj, Vinesh Jaichand; Meyer, Jacobus Johannes Marion

    2015-06-01

    South Africa being home to more than 35% of the world's Helichrysum species (c.a. 244) of which many are used in traditional medicine, is seen potentially as a significant resource in the search of new anti-HIV chemical entities. It was established that five of the 30 Helichrysum species selected for this study had significant anti-HIV activity ranging between 12 and 21 μg/mL (IC50) by using an in-house developed DeCIPhR method on a full virus model. Subsequent toxicity tests also revealed little or no toxicity for these active extracts. With the use of NMR-based metabolomics, the search for common chemical characteristics within the plant extract was conducted, which resulted in specific chemical shift areas identified that could be linked to the anti-HIV activity of the extracts. The NMR chemical shifts associated with the activity were identified to be 2.56-3.08 ppm, 5.24-6.28 ppm, 6.44-7.04 ppm and 7.24-8.04 ppm. This activity profile was then used to guide the fractionation process by narrowing down and focusing the fractionation and purification processes to speed up the putative identification of five compounds with anti-HIV activity in the most active species, Helichrysum populifolium. The anti-HIV compounds identified for the first time from H. populifolium were three dicaffeoylquinic acid derivatives, i.e. 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid as well as two tricaffeoylquinic acid derivatives i.e. 1,3,5-tricaffeoylquinic acid and either 5-malonyl-1,3,4-tricaffeoylquinic or 3-malonyl-1,4,5-tricaffeoylquinic acid, with the latter being identified for the first time in the genus. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A Novel Method for Determining the Inhibitory Potential of Anti-HIV Drugs

    Science.gov (United States)

    Shen, Lin; Rabi, S. Alireza; Siliciano, Robert F.

    2009-01-01

    In the absence of a cure, most HIV-1-infected individuals will require life-long treatment. It is therefore essential to optimize highly active antiretroviral therapy. Recent research has shown that the slope parameter or Hill coefficient, which describes the steepness of a dose-response curve, is a critical missing dimension in the evaluation of antiviral drug activity. Based on this finding, the instantaneous inhibitory potential (IIP) has been derived as a new measure of antiviral drug activity. IIP incorporates the slope parameter and thus is a more accurate pharmacodynamic measure of antiviral activity than current measures such as IC50 and inhibitory quotient. However, it remains important to determine how to use IIP to predict the in vivo efficacy of anti-HIV-1 drugs. This article discusses recent advances in in vitro measures of antiviral activity and the therapeutic implications of the dose-response curve slope and IIP. PMID:19837466

  5. [Asymmetry in international relations, industrial property rights and anti-HIV medication].

    Science.gov (United States)

    Costa-Couto, Maria Helena; Nascimento, Alvaro César

    2008-01-01

    This paper analyzes the asymmetry in the international relations as refers to the recognition of industrial property rights in the pharmaceutical industry. It focuses on the impact of such relations upon the access to ARV medication, an issue of worldwide interest due to its connection with the development of the nations. Clashing interests and the position taken by some countries in their patent laws point to a scenario less favorable for the access of peripheral countries to anti-HIV/AIDS medication. On the other hand, it seems that the success of the Brazilian STD/AIDS program in negotiating ARV prices will open new possibilities. The solution may be the internal strengthening of the National States and the active role played by the Agencies of the United Nations System in defense of the collective human interests.

  6. Meta-analysis of vaccine effectiveness of mumps-containing vaccine under different immunization strategies in China.

    Science.gov (United States)

    Wang, Huaqing; Hu, Yongmei; Zhang, Guomin; Zheng, Jingshan; Li, Li; An, Zhijie

    2014-08-20

    To evaluate vaccine effectiveness (VE) of mumps-containing vaccine (MuV) under different immunization strategies. We conducted Medline, Embase, China National Knowledge Internet (CNKI), and Wan Fang Database (WF) searches for Chinese and English language articles describing studies of mumps VE in a Chinese population. Evaluated articles were scored on quality using the Newcastle-Ottawa Scale. Meta-analysis was conducted using random effects models. Sensitivity analysis, subgroup analysis and meta-regression were conducted to explore heterogeneity. A total of 32 studies in 19 papers were included; 14 were case-control studies, and 18 were cohort studies. Half of the studies were of high quality; 41% were of moderate quality. The overall VE for mumps containing vaccine (either one dose or two doses) was 85% (95% CI 76-90%) for cohort studies and 88% (95% CI 82-92%) for case-control studies. Using random effects meta-regression we found significant differences in some study covariates; for instance, VE varied by population (VE=88% in day care versus 69% in pupil, p=0.008) and emergency versus routine immunization (VE=80% for routine immunization versus 95% for emergency immunization, p=0.041). However, these results must be interpreted with caution due to the low number of studies in subgroups, with the permutation test giving non-significant results that indicated that the results may be due to chance. MuV provides good protection from mumps infection. Further studies of mumps VE with larger sample sizes enabling subgroup analyses will be needed to confirm our findings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Flazinamide, a novel β-carboline compound with anti-HIV actions

    International Nuclear Information System (INIS)

    Wang Yunhua; Tang Jianguo; Wang Ruirui; Yang Liumeng; Dong Zejun; Du Li; Shen Xu; Liu Jikai; Zheng Yongtang

    2007-01-01

    A β-carboline compound, flazin isolated from Suillus granulatus has been shown weak anti-HIV-1 activity. Based on the structure of flazin, flazinamide [1-(5'- hydromethyl-2'-furyl)-β-carboline-3-carboxamide] was synthesized and its anti-HIV activities were evaluated in the present study. The cytotoxicity of flazinamide was about 4.1-fold lower than that of flazin. Flazinamide potently reduced syncytium formation induced by HIV-1IIIB with EC50 value of 0.38 μM, the EC50 of flazinamide was about 6.2-fold lower than that of flazin. Flazinamide also inhibited HIV-2ROD and HIV-2CBL-20 infection with EC50 values of 0.57 and 0.89 μM, respectively. Flazinamide reduced p24 antigen expression in HIV-1IIIB acute infected C8166 and in clinical isolated strain HIV-1KM018 infected PBMC, with EC50 values of 1.45 and 0.77 μM, respectively. Flazinamide did not suppress HIV-1 replication in chronically infected H9 cells. Flazinamide blocked the fusion between normal cells and HIV-1 or HIV-2 chronically infected cells. It weakly inhibited activities of recombinant HIV-1 reverse transcriptase, protease or integrase at higher concentrations. In conclusion, the conversion of the carboxyl group in 3 position of flazin markedly enhanced the anti-viral activity (TI value increased from 12.1 to 312.2) and flazinamide might interfere in the early stage of HIV life cycle

  8. Role of seminal plasma in the anti-HIV-1 activity of candidate microbicides

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2006-10-01

    Full Text Available Abstract Background Evaluation of microbicides for prevention of HIV-1 infection in macaque models for vaginal infection has indicated that the concentrations of active compounds needed for protection by far exceed levels sufficient for complete inhibition of infection in vitro. These experiments were done in the absence of seminal plasma (SP, a vehicle for sexual transmission of the virus. To gain insight into the possible effect of SP on the performance of selected microbicides, their anti-HIV-1 activity in the presence, and absence of SP, was determined. Methods The inhibitory activity of compounds against the X4 virus, HIV-1 IIIB, and the R5 virus, HIV-1 BaL was determined using TZM-bl indicator cells and quantitated by measuring β-galactosidase induced by infection. The virucidal properties of cellulose acetate 1,2-benzene-dicarboxylate (CAP, the only microbicide provided in water insoluble, micronized form, in the presence of SP was measured. Results The HIV-1 inhibitory activity of the polymeric microbicides, poly(naphthalene sulfonate, cellulose sulfate, carrageenan, CAP (in soluble form and polystyrene sulfonate, respectively, was considerably (range ≈ 4 to ≈ 73-fold diminished in the presence of SP (33.3%. Formulations of micronized CAP, providing an acidic buffering system even in the presence of an SP volume excess, effectively inactivated HIV-1 infectivity. Conclusion The data presented here suggest that the in vivo efficacy of polymeric microbicides, acting as HIV-1 entry inhibitors, might become at least partly compromised by the inevitable presence of SP. These possible disadvantages could be overcome by combining the respective polymers with acidic pH buffering systems (built-in for formulations of micronized CAP or with other anti-HIV-1 compounds, the activity of which is not affected by SP, e.g. reverse transcriptase and zinc finger inhibitors.

  9. Natural Immunity to HIV: A Template for Vaccine Strategies.

    Science.gov (United States)

    Fourcade, Lyvia; Poudrier, Johanne; Roger, Michel

    2018-04-23

    Africa accounts for the majority of global human immunodeficiency virus (HIV) infections, most of which affect women through heterosexual intercourse. Currently, there is no cure for HIV and the development of vaccines and microbicides remains the best solution to eradicate the pandemic. We and others have identified HIV highly-exposed seronegative (HESN) individuals among African female commercial sex workers (CSWs). Analyses of genital samples from HESNs have demonstrated potent innate and anti-inflammatory conditions, HIV-specific CD4⁺ and CD8⁺ T-cells as well as immunoglobulins (Igs), and increased regulatory cell populations, all of which support a delicate balance between strength and control against HIV intrusion. Moreover, we have recently shown that frequencies of innate marginal zone (MZ) B-cells are decreased in the blood of HESNs when compared to HIV-uninfected non-CSW women, suggesting their recruitment to peripheral sites. This coincides with the fact that levels of B lymphocyte stimulator (BLyS/BAFF), known to shape the MZ pool and whose overexpression leads to MZ deregulation in HIV-infected progressors, are significantly lower in the blood of HESNs when compared to both HIV-infected CSWs and HIV-uninfected non-CSW women. Interestingly, MZ B-cells can bind HIV gp120 and produce specific IgG and IgA, and have a propensity for B regulatory potential, which could help both the fight against HIV and maintenance of low inflammatory conditions in HESNs. HESN individuals provide an exceptional opportunity to identify important clues for the development of protective devices, and efforts should aim at soliciting immune responses observed in the context of their natural immunity to HIV.

  10. Natural Immunity to HIV: A Template for Vaccine Strategies

    Directory of Open Access Journals (Sweden)

    Lyvia Fourcade

    2018-04-01

    Full Text Available Africa accounts for the majority of global human immunodeficiency virus (HIV infections, most of which affect women through heterosexual intercourse. Currently, there is no cure for HIV and the development of vaccines and microbicides remains the best solution to eradicate the pandemic. We and others have identified HIV highly-exposed seronegative (HESN individuals among African female commercial sex workers (CSWs. Analyses of genital samples from HESNs have demonstrated potent innate and anti-inflammatory conditions, HIV-specific CD4+ and CD8+ T-cells as well as immunoglobulins (Igs, and increased regulatory cell populations, all of which support a delicate balance between strength and control against HIV intrusion. Moreover, we have recently shown that frequencies of innate marginal zone (MZ B-cells are decreased in the blood of HESNs when compared to HIV-uninfected non-CSW women, suggesting their recruitment to peripheral sites. This coincides with the fact that levels of B lymphocyte stimulator (BLyS/BAFF, known to shape the MZ pool and whose overexpression leads to MZ deregulation in HIV-infected progressors, are significantly lower in the blood of HESNs when compared to both HIV-infected CSWs and HIV-uninfected non-CSW women. Interestingly, MZ B-cells can bind HIV gp120 and produce specific IgG and IgA, and have a propensity for B regulatory potential, which could help both the fight against HIV and maintenance of low inflammatory conditions in HESNs. HESN individuals provide an exceptional opportunity to identify important clues for the development of protective devices, and efforts should aim at soliciting immune responses observed in the context of their natural immunity to HIV.

  11. Adult vaccination strategies for the control of pertussis in the United States: an economic evaluation including the dynamic population effects.

    Directory of Open Access Journals (Sweden)

    Laurent Coudeville

    Full Text Available BACKGROUND: Prior economic evaluations of adult and adolescent vaccination strategies against pertussis have reached disparate conclusions. Using static approaches only, previous studies failed to analytically include the indirect benefits derived from herd immunity as well as the impact of vaccination on the evolution of disease incidence over time. METHODS: We assessed the impact of different pertussis vaccination strategies using a dynamic compartmental model able to consider pertussis transmission. We then combined the results with economic data to estimate the relative cost-effectiveness of pertussis immunization strategies for adolescents and adults in the US. The analysis compares combinations of programs targeting adolescents, parents of newborns (i.e. cocoon strategy, or adults of various ages. RESULTS: In the absence of adolescent or adult vaccination, pertussis incidence among adults is predicted to more than double in 20 years. Implementing an adult program in addition to childhood and adolescent vaccination either based on 1 a cocoon strategy and a single booster dose or 2 a decennial routine vaccination would maintain a low level of pertussis incidence in the long run for all age groups (respectively 30 and 20 cases per 100,000 person years. These strategies would also result in significant reductions of pertussis costs (between -77% and -80% including additional vaccination costs. The cocoon strategy complemented by a single booster dose is the most cost-effective one, whereas the decennial adult vaccination is slightly more effective in the long run. CONCLUSIONS: By providing a high level of disease control, the implementation of an adult vaccination program against pertussis appears to be highly cost-effective and often cost-saving.

  12. Financial evaluation of different vaccination strategies for controlling the bluetongue virus serotype 8 epidemic in The Netherlands in 2008.

    Directory of Open Access Journals (Sweden)

    Annet G J Velthuis

    Full Text Available BACKGROUND: Bluetongue (BT is a vector-borne disease of ruminants caused by bluetongue virus that is transmitted by biting midges (Culicoides spp.. In 2006, the introduction of BTV serotype 8 (BTV-8 caused a severe epidemic in Western and Central Europe. The principal effective veterinary measure in response to BT was believed to be vaccination accompanied by other measures such as movement restrictions and surveillance. As the number of vaccine doses available at the start of the vaccination campaign was rather uncertain, the Dutch Ministry of Agriculture, Nature and Food Quality and the Dutch agricultural industry wanted to evaluate several different vaccination strategies. This study aimed to rank eight vaccination strategies based on their efficiency (i.e. net costs in relation to prevented losses or benefits for controlling the bluetongue virus serotype 8 epidemic in 2008. METHODOLOGY/PRINCIPAL FINDINGS: An economic model was developed that included the Dutch professional cattle, sheep and goat sectors together with the hobby farms. Strategies were evaluated based on the least cost - highest benefit frontier, the benefit-cost ratio and the total net returns. Strategy F, where all adult sheep at professional farms in The Netherlands would be vaccinated was very efficient at lowest costs, whereas strategy D, where additional to all adult sheep at professional farms also all adult cattle in the four Northern provinces would be vaccinated, was also very efficient but at a little higher costs. Strategy C, where all adult sheep and cattle at professional farms in the whole of The Netherlands would be vaccinated was also efficient but again at higher costs. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that a financial analysis differentiates between vaccination strategies and indicates important decision rules based on efficiency.

  13. Financial evaluation of different vaccination strategies for controlling the bluetongue virus serotype 8 epidemic in The Netherlands in 2008.

    Science.gov (United States)

    Velthuis, Annet G J; Mourits, Monique C M; Saatkamp, Helmut W; de Koeijer, Aline A; Elbers, Armin R W

    2011-05-04

    Bluetongue (BT) is a vector-borne disease of ruminants caused by bluetongue virus that is transmitted by biting midges (Culicoides spp.). In 2006, the introduction of BTV serotype 8 (BTV-8) caused a severe epidemic in Western and Central Europe. The principal effective veterinary measure in response to BT was believed to be vaccination accompanied by other measures such as movement restrictions and surveillance. As the number of vaccine doses available at the start of the vaccination campaign was rather uncertain, the Dutch Ministry of Agriculture, Nature and Food Quality and the Dutch agricultural industry wanted to evaluate several different vaccination strategies. This study aimed to rank eight vaccination strategies based on their efficiency (i.e. net costs in relation to prevented losses or benefits) for controlling the bluetongue virus serotype 8 epidemic in 2008. An economic model was developed that included the Dutch professional cattle, sheep and goat sectors together with the hobby farms. Strategies were evaluated based on the least cost - highest benefit frontier, the benefit-cost ratio and the total net returns. Strategy F, where all adult sheep at professional farms in The Netherlands would be vaccinated was very efficient at lowest costs, whereas strategy D, where additional to all adult sheep at professional farms also all adult cattle in the four Northern provinces would be vaccinated, was also very efficient but at a little higher costs. Strategy C, where all adult sheep and cattle at professional farms in the whole of The Netherlands would be vaccinated was also efficient but again at higher costs. This study demonstrates that a financial analysis differentiates between vaccination strategies and indicates important decision rules based on efficiency.

  14. A novel cancer vaccine strategy based on HLA-A*0201 matched allogeneic plasmacytoid dendritic cells.

    Directory of Open Access Journals (Sweden)

    Caroline Aspord

    Full Text Available BACKGROUND: The development of effective cancer vaccines still remains a challenge. Despite the crucial role of plasmacytoid dendritic cells (pDCs in anti-tumor responses, their therapeutic potential has not yet been worked out. We explored the relevance of HLA-A*0201 matched allogeneic pDCs as vectors for immunotherapy. METHODS AND FINDINGS: Stimulation of PBMC from HLA-A*0201(+ donors by HLA-A*0201 matched allogeneic pDCs pulsed with tumor-derived peptides triggered high levels of antigen-specific and functional cytotoxic T cell responses (up to 98% tetramer(+ CD8 T cells. The pDC vaccine demonstrated strong anti-tumor therapeutic in vivo efficacy as shown by the inhibition of tumor growth in a humanized mouse model. It also elicited highly functional tumor-specific T cells ex-vivo from PBMC and TIL of stage I-IV melanoma patients. Responses against MelA, GP100, tyrosinase and MAGE-3 antigens reached tetramer levels up to 62%, 24%, 85% and 4.3% respectively. pDC vaccine-primed T cells specifically killed patients' own autologous melanoma tumor cells. This semi-allogeneic pDC vaccine was more effective than conventional myeloid DC-based vaccines. Furthermore, the pDC vaccine design endows it with a strong potential for clinical application in cancer treatment. CONCLUSIONS: These findings highlight HLA-A*0201 matched allogeneic pDCs as potent inducers of tumor immunity and provide a promising immunotherapeutic strategy to fight cancer.

  15. A retrospective and prospective look at strategies to increase adolescent HPV vaccine uptake in the United States.

    Science.gov (United States)

    Head, Katharine J; Biederman, Erika; Sturm, Lynne A; Zimet, Gregory D

    2018-01-23

    The HPV vaccine debuted more than ten years ago in the United States and many strategies have been evaluated to increase HPV vaccination rates, which include not only improving current vaccination behaviors but also sustaining these behaviors. Researchers and practitioners from a variety of backgrounds have engaged in this work, which has included efforts directed at public health and government policies, health education and health promotion programs, and clinical and patient-provider approaches, as well as work aimed to respond to and combat anti-HPV vaccination movements in society. Using a previously developed conceptual model to organize and summarize each of these areas, this paper also highlights the need for future HPV vaccine promotion work to adopt a multi-level and, when possible, integrated approach in order to maximize impact on vaccination rates.

  16. Polyclonal immune responses to antigens associated with cancer signaling pathways and new strategies to enhance cancer vaccines.

    Science.gov (United States)

    Clay, Timothy M; Osada, Takuya; Hartman, Zachary C; Hobeika, Amy; Devi, Gayathri; Morse, Michael A; Lyerly, H Kim

    2011-04-01

    Aberrant signaling pathways are a hallmark of cancer. A variety of strategies for inhibiting signaling pathways have been developed, but monoclonal antibodies against receptor tyrosine kinases have been among the most successful. A challenge for these therapies is therapeutic unresponsiveness and acquired resistance due to mutations in the receptors, upregulation of alternate growth and survival pathways, or inadequate function of the monoclonal antibodies. Vaccines are able to induce polyclonal responses that can have a multitude of affects against the target molecule. We began to explore therapeutic vaccine development to antigens associated with these signaling pathways. We provide an illustrative example in developing therapeutic cancer vaccines inducing polyclonal adaptive immune responses targeting the ErbB family member HER2. Further, we will discuss new strategies to augment the clinical efficacy of cancer vaccines by enhancing vaccine immunogenicity and reversing the immunosuppressive tumor microenvironment.

  17. Perceptions and experiences of childhood vaccination communication strategies among caregivers and health workers in Nigeria: A qualitative study.

    Science.gov (United States)

    Oku, Afiong; Oyo-Ita, Angela; Glenton, Claire; Fretheim, Atle; Ames, Heather; Muloliwa, Artur; Kaufman, Jessica; Hill, Sophie; Cliff, Julie; Cartier, Yuri; Owoaje, Eme; Bosch-Capblanch, Xavier; Rada, Gabriel; Lewin, Simon

    2017-01-01

    Effective vaccination communication with parents is critical in efforts to overcome barriers to childhood vaccination, tackle vaccine hesitancy and improve vaccination coverage. Health workers should be able to provide information to parents and other caregivers and support them in reaching decisions about vaccinating their children. Limited information exists regarding the perceptions of caregivers and health workers on the vaccination communication strategies employed in Nigeria. This study, which forms part of the 'Communicate to vaccinate' (COMMVAC) project, aims to explore the perceptions and experiences of caregivers and health workers in Nigeria on vaccination communication strategies implemented in their settings. We conducted the study in two States: Bauchi in Northern Nigeria and Cross River in the south. We carried out observations (n = 40), in-depth interviews (n = 14) and focus group discussions (FGDs) (n = 12) amongst 14 purposively selected health workers, two community leaders and 84 caregivers in the two states. We transcribed data verbatim and analysed the data using a framework analysis approach. Caregivers were informed about vaccination activities through three main sources: health facilities (during health education sessions conducted at antenatal or immunization clinics); media outlets; and announcements (in churches/mosques, communities and markets). Caregivers reported that the information received was very useful. Their preferred sources of information included phone text messages, town announcers, media and church/mosque announcements. Some caregivers perceived the clinic environment, long waiting times and health worker attitudes as barriers to receiving vaccination information.When delivering communication interventions, health workers described issues tied to poor communication skills; poor motivation; and attitudes of community members, including vaccine resistance. Communication about vaccination involves more than the message but is

  18. Perceptions and experiences of childhood vaccination communication strategies among caregivers and health workers in Nigeria: A qualitative study.

    Directory of Open Access Journals (Sweden)

    Afiong Oku

    Full Text Available Effective vaccination communication with parents is critical in efforts to overcome barriers to childhood vaccination, tackle vaccine hesitancy and improve vaccination coverage. Health workers should be able to provide information to parents and other caregivers and support them in reaching decisions about vaccinating their children. Limited information exists regarding the perceptions of caregivers and health workers on the vaccination communication strategies employed in Nigeria. This study, which forms part of the 'Communicate to vaccinate' (COMMVAC project, aims to explore the perceptions and experiences of caregivers and health workers in Nigeria on vaccination communication strategies implemented in their settings.We conducted the study in two States: Bauchi in Northern Nigeria and Cross River in the south. We carried out observations (n = 40, in-depth interviews (n = 14 and focus group discussions (FGDs (n = 12 amongst 14 purposively selected health workers, two community leaders and 84 caregivers in the two states. We transcribed data verbatim and analysed the data using a framework analysis approach.Caregivers were informed about vaccination activities through three main sources: health facilities (during health education sessions conducted at antenatal or immunization clinics; media outlets; and announcements (in churches/mosques, communities and markets. Caregivers reported that the information received was very useful. Their preferred sources of information included phone text messages, town announcers, media and church/mosque announcements. Some caregivers perceived the clinic environment, long waiting times and health worker attitudes as barriers to receiving vaccination information.When delivering communication interventions, health workers described issues tied to poor communication skills; poor motivation; and attitudes of community members, including vaccine resistance.Communication about vaccination involves more than the

  19. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy.

    Science.gov (United States)

    Jiang, Dong-Bo; Zhang, Jin-Peng; Cheng, Lin-Feng; Zhang, Guan-Wen; Li, Yun; Li, Zi-Chao; Lu, Zhen-Hua; Zhang, Zi-Xin; Lu, Yu-Chen; Zheng, Lian-He; Zhang, Fang-Lin; Yang, Kun

    2018-02-01

    Hemorrhagic fever with renal syndrome (HFRS) occurs widely throughout Eurasia. Unfortunately, there is no effective treatment, and prophylaxis remains the best option against the major pathogenic agent, hantaan virus (HTNV), which is an Old World hantavirus. However, the absence of cellular immune responses and immunological memory hampers acceptance of the current inactivated HFRS vaccine. Previous studies revealed that a lysosome-associated membrane protein 1 (LAMP1)-targeting strategy involving a DNA vaccine based on the HTNV glycoprotein Gn successfully conferred long-term immunity, and indicated that further research on Gc, another HTNV antigen, was warranted. Plasmids encoding Gc and lysosome-targeted Gc, designated pVAX-Gc and pVAX-LAMP/Gc, respectively, were constructed. Proteins of interest were identified by fluorescence microscopy following cell line transfection. Five groups of 20 female BALB/c mice were subjected to the following inoculations: inactivated HTNV vaccine, pVAX-LAMP/Gc, pVAX-Gc, and, as the negative controls, pVAX-LAMP or the blank vector pVAX1. Humoral and cellular immunity were assessed by enzyme-linked immunosorbent assays (ELISAs) and 15-mer peptide enzyme-linked immunospot (ELISpot) epitope mapping assays. Repeated immunization with pVAX-LAMP/Gc enhanced adaptive immune responses, as demonstrated by the specific and neutralizing antibody titers and increased IFN-γ production. The inactivated vaccine induced a comparable humoral reaction, but the negative controls only elicited insignificant responses. Using a mouse model of HTNV challenge, the in vivo protection conferred by the inactivated vaccine and Gc-based constructs (with/without LAMP recombination) was confirmed. Evidence of pan-epitope reactions highlighted the long-term cellular response to the LAMP-targeting strategy, and histological observations indicated the safety of the LAMP-targeting vaccines. The long-term protective immune responses induced by pVAX-LAMP/Gc may be

  20. Storytelling in the context of vaccine refusal: a strategy to improve communication and immunisation.

    Science.gov (United States)

    Cawkwell, Philip B; Oshinsky, David

    2016-03-01

    The December 2014 outbreak of measles in California impacted over 100 children and served as a reminder that this disease still plagues the USA, even 50 years following the first licensed vaccine. Refusal of vaccination is a complicated and multifaceted issue, one that clearly demands a closer look by paediatricians and public health officials alike. While medical doctors and scientists are trained to practice 'evidence-based medicine', and studies of vaccine safety and efficacy speak the language of statistics, there is reason to believe that this is not the most effective strategy for communicating with all groups of parents. Herein, we consider other methods such as narrative practices that employ stories and appeal more directly to parents. We also examine how doctors are trained to disseminate information and whether there are reasonable supplementary methods that could be used to improve vaccine communication and ultimately immunisation rates. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. Current therapeutic vaccination and immunotherapy strategies for HPV-related diseases.

    Science.gov (United States)

    Skeate, Joseph G; Woodham, Andrew W; Einstein, Mark H; Da Silva, Diane M; Kast, W Martin

    2016-06-02

    Carcinomas of the anogenital tract, in particular cervical cancer, remains one of the most common cancers in women, and represent the most frequent gynecological malignancies and the fourth leading cause of cancer death in women worldwide. Human papillomavirus (HPV)-induced lesions are immunologically distinct in that they express viral antigens, which are necessary to maintain the cancerous phenotype. The causal relationship between HPV infection and anogenital cancer has prompted substantial interest in the development of therapeutic vaccines against high-risk HPV types targeting the viral oncoproteins E6 and E7. This review will focus on the most recent clinical trials for immunotherapies for mucosal HPV-induced lesions as well as emerging therapeutic strategies that have been tested in pre-clinical models for HPV-induced diseases. Progress in peptide- and protein-based vaccines, DNA-based vaccines, viral/bacterial vector-based vaccines, immune checkpoint inhibition, immune response modifiers, and adoptive cell therapy for HPV will be discussed.

  2. [Vaccinal strategies in response to new epidemiological challenges in 2010. Reasonable hope for a "B" meningococcal vaccine].

    Science.gov (United States)

    Nicolas, P

    2010-08-01

    In 2010, vaccines have achieved good effectiveness against invasive meningococcal infection. Development of monovalent and bivalent polysaccharide (PS) vaccines in the 70s and later of tetravalent PS vaccine (ACWY) was followed by development in 2003 of a trivalent ACW vaccine in response to the W135 or mixed A/W135 epidemics that appeared in Africa. More recently PS-conjugated vaccines have shown numerous advantages in comparison with PS vaccines. Mass vaccination campaigns with the C-conjugated vaccine have almost completely eradicated group C meningitis in the UK. It is hoped that introduction of the A-conjugated vaccine MenAfriVac in Africa at the end of year 2010 will end group A meningococcal epidemics in the meningitis belt. The problem of group B meningococcal meningitis has not been completely resolved. For the B strain that has been implicated in hyperendemic waves, a protein vaccine has been produced from outer membrane vesicles (OMV). Use of OMV vaccines achieved good results in Norway and recently in New Zealand. The Norwegian vaccine was also used in Normandy since the strain responsible for the Norman epidemic showed the same PorA as the Norwegian strain. In this regard, a major limitation for OMV vaccines is that they are effective only against the immuno-dominant porin A protein. Current efforts to develop a vaccine against group B meningococci causing sporadic cases are promising. Research is being focused on a blend of surface proteins targeting most of circulating isolates. Field tests will be carried out in the next years, but it is probable that the efficacy of these vaccines will be short-lived since meningococcal antigens vary over time.

  3. Evolving T-cell vaccine strategies for HIV, the virus with a thousand faces

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory

    2009-01-01

    HIV's rapid global spread and the human suffering it has left in its wake have made AIDS a global heath priority for the 25 years since its discovery. Yet its capacity to rapidly evolve has made combating this virus a tremendous challenge. The obstacles to creating an effective HIV vaccine are formidable, but there are advances in the field on many fronts, in terms of novel vectors, adjuvants, and antigen design strategies. SIV live attenuated vaccine models are able to confer protection against heterologous challenge, and this continues to provide opportunities to explore the biological underpinnings of a protective effect (9). More indirect, but equally important, is new understanding regarding the biology of acute infection (43), the role of immune response in long-term non-progression (6,62, 81), and defining characteristics of broadly neutralizing antibodies (4). In this review we will focus on summarizing strategies directed towards a single issue, that of contending with HIV variation in terms of designing aT-cell vaccine. The strategies that prove most effective in this area can ultimately be combined with the best strategies under development in other areas, with the hope of ultimately converging on a viable vaccine candidate. Only two large HIV vaccine efficacy trials have been completed and both have failed to prevent infection or confer a benefit to infected individual (23,34), but there is ample reason to continue our efforts. A historic breakthrough came in 1996, when it was realized that although the virus could escape from a single antiretroviral (ARV) therapy, it could be thwarted by a combination of medications that simultaneously targeted different parts of the virus (HAART) (38). This revelation came after 15 years of research, thought, and clinical testing; to enable that vital progress the research and clinical communities had to first define and understand, then develop a strategy to counter, the remarkable evolutionary potential of the

  4. A Randomized Controlled Trial to Evaluate a Potential Hepatitis B Booster Vaccination Strategy Using Combined Hepatitis A and B Vaccine.

    Science.gov (United States)

    Li, Fangjun; Hu, Yuansheng; Zhou, Youming; Chen, Lixin; Xia, Wei; Song, Yufei; Tan, Zhengliang; Gao, Lidong; Yang, Zhong; Zeng, Gang; Han, Xing; Li, Junhua; Li, Jing

    2017-05-01

    Booster doses could play a major role in no responders or low responders to primary hepatitis B (HB) vaccine. Planed time point for hepatitis A vaccination in China provides a good opportunity to carry out HB booster dose by using combined hepatitis A and B vaccine. A randomized, double-blinded clinical trial was conducted to compare the immunogenicity and safety of toddlers 18-24 months of age receiving 3 different vaccination regimens: 2 doses of inactivated hepatitis A vaccine (group 1), 1 dose of inactivated hepatitis A vaccine plus 1 dose of combined hepatitis A and B vaccine (group 2) or 2 doses of combined hepatitis A and B vaccine (group 3). All 3 groups showed 100% seroprotection for antihepatitis A virus antibody after vaccination. Seroprotection rate for anti-HB antibody before vaccination ranged from 79.5% to 92.9% in the 3 groups. After second inoculation, anti-HBs seroprotection increased from 92.9% to 100% in group 2 with postvaccination geometric mean concentration (GMC) of 2258.3 mIU/mL and from 79.5% to 98.9% in group 3 with postvaccination GMC of 2055.3 mIU/mL. The adverse events were not statistically different among groups (P = 0.345). Combined hepatitis A and B vaccine could stimulate high level of both antihepatitis A virus and anti-HBs antibodies and not increase adverse events, providing a new choice for HB booster.

  5. Aaptamine Derivatives with Antifungal and Anti-HIV-1 Activities from the South China Sea Sponge Aaptos aaptos

    Directory of Open Access Journals (Sweden)

    Hao-Bing Yu

    2014-12-01

    Full Text Available Five new alkaloids of aaptamine family, compounds (1–5 and three known derivatives (6–8, have been isolated from the South China Sea sponge Aaptos aaptos. The structures of all compounds were unambiguously elucidated by spectroscopic analyses, as well as by comparison with the literature data. Compounds 1–2 are characterized with triazapyrene lactam skeleton, whereas compounds 4–5 share an imidazole-fused aaptamine moiety. These compounds were evaluated in antifungal and anti-HIV-1 assays. Compounds 3, 7, and 8 showed antifungal activity against six fungi, with MIC values in the range of 4 to 64 μg/mL. Compounds 7–8 exhibited anti-HIV-1 activity, with inhibitory rates of 88.0% and 72.3%, respectively, at a concentration of 10 μM.

  6. Photochemical Internalization of Peptide Antigens Provides a Novel Strategy to Realize Therapeutic Cancer Vaccination

    Directory of Open Access Journals (Sweden)

    Markus Haug

    2018-04-01

    Full Text Available Effective priming and activation of tumor-specific CD8+ cytotoxic T lymphocytes (CTLs is crucial for realizing the potential of therapeutic cancer vaccination. This requires cytosolic antigens that feed into the MHC class I presentation pathway, which is not efficiently achieved with most current vaccination technologies. Photochemical internalization (PCI provides an emerging technology to route endocytosed material to the cytosol of cells, based on light-induced disruption of endosomal membranes using a photosensitizing compound. Here, we investigated the potential of PCI as a novel, minimally invasive, and well-tolerated vaccination technology to induce priming of cancer-specific CTL responses to peptide antigens. We show that PCI effectively promotes delivery of peptide antigens to the cytosol of antigen-presenting cells (APCs in vitro. This resulted in a 30-fold increase in MHC class I/peptide complex formation and surface presentation, and a subsequent 30- to 100-fold more efficient activation of antigen-specific CTLs compared to using the peptide alone. The effect was found to be highly dependent on the dose of the PCI treatment, where optimal doses promoted maturation of immature dendritic cells, thus also providing an adjuvant effect. The effect of PCI was confirmed in vivo by the successful induction of antigen-specific CTL responses to cancer antigens in C57BL/6 mice following intradermal peptide vaccination using PCI technology. We thus show new and strong evidence that PCI technology holds great potential as a novel strategy for improving the outcome of peptide vaccines aimed at triggering cancer-specific CD8+ CTL responses.

  7. A novel simple QSAR model for the prediction of anti-HIV activity using multiple linear regression analysis.

    Science.gov (United States)

    Afantitis, Antreas; Melagraki, Georgia; Sarimveis, Haralambos; Koutentis, Panayiotis A; Markopoulos, John; Igglessi-Markopoulou, Olga

    2006-08-01

    A quantitative-structure activity relationship was obtained by applying Multiple Linear Regression Analysis to a series of 80 1-[2-hydroxyethoxy-methyl]-6-(phenylthio) thymine (HEPT) derivatives with significant anti-HIV activity. For the selection of the best among 37 different descriptors, the Elimination Selection Stepwise Regression Method (ES-SWR) was utilized. The resulting QSAR model (R (2) (CV) = 0.8160; S (PRESS) = 0.5680) proved to be very accurate both in training and predictive stages.

  8. Comparison of Strategies and Incidence Thresholds for Vi Conjugate Vaccines Against Typhoid Fever: A Cost-effectiveness Modeling Study.

    Science.gov (United States)

    Lo, Nathan C; Gupta, Ribhav; Stanaway, Jeffrey D; Garrett, Denise O; Bogoch, Isaac I; Luby, Stephen P; Andrews, Jason R

    2018-02-12

    Typhoid fever remains a major public health problem globally. While new Vi conjugate vaccines hold promise for averting disease, the optimal programmatic delivery remains unclear. We aimed to identify the strategies and associated epidemiologic conditions under which Vi conjugate vaccines would be cost-effective. We developed a dynamic, age-structured transmission and cost-effectiveness model that simulated multiple vaccination strategies with a typhoid Vi conjugate vaccine from a societal perspective. We simulated 10-year vaccination programs with (1) routine immunization of infants (aged typhoid fever and defined strategies as highly cost-effective by using the definition of a low-income country (defined as a country with a gross domestic product of $1045 per capita). We defined incidence as the true number of clinically symptomatic people in the population per year. Vi conjugate typhoid vaccines were highly cost-effective when administered by routine immunization activities through the EPI in settings with an annual incidence of >50 cases/100000 (95% uncertainty interval, 40-75 cases) and when administered through the EPI plus a catch-up campaign in settings with an annual incidence of >130 cases/100000 (95% uncertainty interval, 50-395 cases). The incidence threshold was sensitive to the typhoid-related case-fatality rate, carrier contribution to transmission, vaccine characteristics, and country-specific economic threshold for cost-effectiveness. Typhoid Vi conjugate vaccines would be highly cost-effective in low-income countries in settings of moderate typhoid incidence (50 cases/100000 annually). These results were sensitive to case-fatality rates, underscoring the need to consider factors contributing to typhoid mortality (eg, healthcare access and antimicrobial resistance) in the global vaccination strategy. © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America.

  9. Fluorine Substituted 1,2,4-Triazinones as Potential Anti-HIV-1 and CDK2 Inhibitors

    Directory of Open Access Journals (Sweden)

    Mohammed S. I. Makki

    2014-01-01

    Full Text Available Fluorine substituted 1,2,4-triazinones have been synthesized via alkylation, amination, and/or oxidation of 6-(2-amino-5-fluorophenyl-3-thioxo-3,4-dihydro-1,2,4-triazin-5(2H-one 1 and 4-fluoro-N-(4-fluoro-2-(5-oxo-3-thioxo-2,3,4,5-tetrahydro-1,2,4-triazin-6-ylphenylbenzamide 5 as possible anti-HIV-1 and CDK2 inhibitors. Alkylation on positions 2 and 4 in 1,2,4-triazinone gave compounds 6–8. Further modification was performed by selective alkylation and amination on position 3 to form compounds 9–15. However oxidation of 5 yielded compounds 16–18. Structures of the target compounds have been established by spectral analysis data. Five compounds (5, 11, 14, 16, and 17 have shown very good anti-HIV activity in MT-4 cells. Similarly, five compounds (1, 3, and 14–16 have exhibited very significant CDK2 inhibition activity. Compounds 14 and 16 were found to have dual anti-HIV and anticancer activities.

  10. Strategies for continuous evaluation of the benefit-risk profile of HPV-16/18-AS04-adjuvanted vaccine.

    Science.gov (United States)

    Angelo, Maria-Genalin; Taylor, Sylvia; Struyf, Frank; Tavares Da Silva, Fernanda; Arellano, Felix; David, Marie-Pierre; Dubin, Gary; Rosillon, Dominique; Baril, Laurence

    2014-11-01

    The HPV types 16/18-AS04-adjuvanted cervical cancer vaccine, Cervarix(®) (HPV-16/18-vaccine, GlaxoSmithKline, Belgium) was first approved in 2007 and is licensed in 134 countries for the prevention of persistent infection, premalignant cervical lesions and cervical cancer caused by oncogenic HPV. Benefit-risk status requires continual re-evaluation as vaccine uptake increases, as the epidemiology of the disease evolves and as new information becomes available. This paper provides an example of benefit-risk considerations and risk-management planning. Evaluation of the benefit-risk of HPV-16/18-vaccine post-licensure includes studies with a range of designs in many countries and in collaboration with national public agencies and regulatory authorities. The strategy to assess benefit versus risk will continue to evolve and adapt to the changing HPV-16/18-vaccine market.

  11. Exploiting the anti-HIV 6-desfluoroquinolones to design multiple ligands.

    Science.gov (United States)

    Sancineto, Luca; Iraci, Nunzio; Barreca, Maria Letizia; Massari, Serena; Manfroni, Giuseppe; Corazza, Gianmarco; Cecchetti, Violetta; Marcello, Alessandro; Daelemans, Dirk; Pannecouque, Christophe; Tabarrini, Oriana

    2014-09-01

    It is getting clearer that many drugs effective in different therapeutic areas act on multiple rather than single targets. The application of polypharmacology concepts might have numerous advantages especially for disease such as HIV/AIDS, where the rapid emergence of resistance requires a complex combination of more than one drug. In this paper, we have designed three hybrid molecules combining WM5, a quinolone derivative we previously identified as HIV Tat-mediated transcription (TMT) inhibitor, with the tricyclic core of nevirapine and BILR 355BS (BILR) non-nucleoside reverse transcriptase inhibitors (NNRTIs) to investigate whether it could be possible to obtain molecules acting on both transcription steps of the HIV replicative cycle. One among the three designed multiple ligands, reached this goal. Indeed, compound 1 inhibited both TMT and reverse transcriptase (RT) activity. Unexpectedly, while the anti-TMT activity exerted by compound 1 resulted into a selective inhibition of HIV-1 reactivation from latently infected OM10.1 cells, the anti-RT properties shown by all of the synthesized compounds did not translate into an anti-HIV activity in acutely infected cells. Thus, we have herein produced the proof of concept that the design of dual TMT-RT inhibitors is indeed possible, but optimization efforts are needed to obtain more potent derivatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Structural insights into the anti-HIV activity of the Oscillatoria agardhii agglutinin homolog lectin family.

    Science.gov (United States)

    Koharudin, Leonardus M I; Kollipara, Sireesha; Aiken, Christopher; Gronenborn, Angela M

    2012-09-28

    Oscillatoria agardhii agglutinin homolog (OAAH) proteins belong to a recently discovered lectin family. All members contain a sequence repeat of ~66 amino acids, with the number of repeats varying among different family members. Apart from data for the founding member OAA, neither three-dimensional structures, information about carbohydrate binding specificities, nor antiviral activity data have been available up to now for any other members of the OAAH family. To elucidate the structural basis for the antiviral mechanism of OAAHs, we determined the crystal structures of Pseudomonas fluorescens and Myxococcus xanthus lectins. Both proteins exhibit the same fold, resembling the founding family member, OAA, with minor differences in loop conformations. Carbohydrate binding studies by NMR and x-ray structures of glycan-lectin complexes reveal that the number of sugar binding sites corresponds to the number of sequence repeats in each protein. As for OAA, tight and specific binding to α3,α6-mannopentaose was observed. All the OAAH proteins described here exhibit potent anti-HIV activity at comparable levels. Altogether, our results provide structural details of the protein-carbohydrate interaction for this novel lectin family and insights into the molecular basis of their HIV inactivation properties.

  13. Cost-effectiveness and public health impact of alternative influenza vaccination strategies in high-risk adults.

    Science.gov (United States)

    Raviotta, Jonathan M; Smith, Kenneth J; DePasse, Jay; Brown, Shawn T; Shim, Eunha; Nowalk, Mary Patricia; Wateska, Angela; France, Glenson S; Zimmerman, Richard K

    2017-10-09

    High-dose trivalent inactivated influenza vaccine (HD-IIV3) or recombinant trivalent influenza vaccine (RIV) may increase influenza vaccine effectiveness (VE) in adults with conditions that place them at high risk for influenza complications. This analysis models the public health impact and cost-effectiveness (CE) of these vaccines for 50-64year-olds. Markov model CE analysis compared 5 strategies in 50-64year-olds: no vaccination; only standard-dose IIV3 offered (SD-IIV3 only), only quadrivalent influenza vaccine offered (SD-IIV4 only); high-risk patients receiving HD-IIV3, others receiving SD-IIV3 (HD-IIV3 & SD-IIV3); and high-risk patients receiving HD-IIV3, others receiving SD-IIV4 (HD-IIV3 & SD-IIV4). In a secondary analysis, RIV replaced HD-IIV3. Parameters were obtained from U.S. databases, the medical literature and extrapolations from VE estimates. Effectiveness was measured as 3%/year discounted quality adjusted life year (QALY) losses avoided. The least expensive strategy was SD-IIV3 only, with total costs of $99.84/person. The SD-IIV4 only strategy cost an additional $0.91/person, or $37,700/QALY gained. The HD-IIV3 & SD-IIV4 strategy cost $1.06 more than SD-IIV4 only, or $71,500/QALY gained. No vaccination and HD-IIV3 & SD-IIV3 strategies were dominated. Results were sensitive to influenza incidence, vaccine cost, standard-dose VE in the entire population and high-dose VE in high-risk patients. The CE of RIV for high-risk patients was dependent on as yet unknown parameter values. Based on available data, using high-dose influenza vaccine or RIV in middle-aged, high-risk patients may be an economically favorable vaccination strategy with public health benefits. Clinical trials of these vaccines in this population may be warranted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis.

    Directory of Open Access Journals (Sweden)

    Visesato Mor

    Full Text Available Cryptococcus neoformans is an opportunistic fungal pathogen and the causative agent of the disease cryptococcosis. Cryptococcosis is initiated as a pulmonary infection and in conditions of immune deficiency disseminates to the blood stream and central nervous system, resulting in life-threatening meningoencephalitis. A number of studies have focused on the development of a vaccine against Cryptococcus, primarily utilizing protein-conjugated components of the Cryptococcus polysaccharide capsule as antigen. However, there is currently no vaccine against Cryptococcus in the clinic. Previous studies have shown that the glycosphingolipid, glucosylceramide (GlcCer, is a virulence factor in C. neoformans and antibodies against this lipid inhibit fungal growth and cell division. In the present study, we have investigated the possibility of using GlcCer as a therapeutic agent against C. neoformans infections in mouse models of cryptococcosis. GlcCer purified from a non-pathogenic fungus, Candida utilis, was administered intraperitoneally, prior to infecting mice with a lethal dose of C. neoformans. GlcCer administration prevented the dissemination of C. neoformans from the lungs to the brain and led to 60% mouse survival. GlcCer administration did not cause hepatic injury and elicited an anti-GlcCer antibody response, which was observed independent of the route of administration and the strains of mouse. Taken together, our results suggest that fungal GlcCer can protect mice against lethal doses of C. neoformans infection and can provide a viable vaccination strategy against Cryptococcus.

  15. Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis.

    Science.gov (United States)

    Mor, Visesato; Farnoud, Amir M; Singh, Ashutosh; Rella, Antonella; Tanno, Hiromasa; Ishii, Keiko; Kawakami, Kazuyoshi; Sato, Toshiya; Del Poeta, Maurizio

    2016-01-01

    Cryptococcus neoformans is an opportunistic fungal pathogen and the causative agent of the disease cryptococcosis. Cryptococcosis is initiated as a pulmonary infection and in conditions of immune deficiency disseminates to the blood stream and central nervous system, resulting in life-threatening meningoencephalitis. A number of studies have focused on the development of a vaccine against Cryptococcus, primarily utilizing protein-conjugated components of the Cryptococcus polysaccharide capsule as antigen. However, there is currently no vaccine against Cryptococcus in the clinic. Previous studies have shown that the glycosphingolipid, glucosylceramide (GlcCer), is a virulence factor in C. neoformans and antibodies against this lipid inhibit fungal growth and cell division. In the present study, we have investigated the possibility of using GlcCer as a therapeutic agent against C. neoformans infections in mouse models of cryptococcosis. GlcCer purified from a non-pathogenic fungus, Candida utilis, was administered intraperitoneally, prior to infecting mice with a lethal dose of C. neoformans. GlcCer administration prevented the dissemination of C. neoformans from the lungs to the brain and led to 60% mouse survival. GlcCer administration did not cause hepatic injury and elicited an anti-GlcCer antibody response, which was observed independent of the route of administration and the strains of mouse. Taken together, our results suggest that fungal GlcCer can protect mice against lethal doses of C. neoformans infection and can provide a viable vaccination strategy against Cryptococcus.

  16. A multivalent and cross-protective vaccine strategy against arenaviruses associated with human disease.

    Directory of Open Access Journals (Sweden)

    Maya F Kotturi

    2009-12-01

    Full Text Available Arenaviruses are the causative pathogens of severe hemorrhagic fever and aseptic meningitis in humans, for which no licensed vaccines are currently available. Pathogen heterogeneity within the Arenaviridae family poses a significant challenge for vaccine development. The main hypothesis we tested in the present study was whether it is possible to design a universal vaccine strategy capable of inducing simultaneous HLA-restricted CD8+ T cell responses against 7 pathogenic arenaviruses (including the lymphocytic choriomeningitis, Lassa, Guanarito, Junin, Machupo, Sabia, and Whitewater Arroyo viruses, either through the identification of widely conserved epitopes, or by the identification of a collection of epitopes derived from multiple arenavirus species. By inoculating HLA transgenic mice with a panel of recombinant vaccinia viruses (rVACVs expressing the different arenavirus proteins, we identified 10 HLA-A02 and 10 HLA-A03-restricted epitopes that are naturally processed in human antigen-presenting cells. For some of these epitopes we were able to demonstrate cross-reactive CD8+ T cell responses, further increasing the coverage afforded by the epitope set against each different arenavirus species. Importantly, we showed that immunization of HLA transgenic mice with an epitope cocktail generated simultaneous CD8+ T cell responses against all 7 arenaviruses, and protected mice against challenge with rVACVs expressing either Old or New World arenavirus glycoproteins. In conclusion, the set of identified epitopes allows broad, non-ethnically biased coverage of all 7 viral species targeted by our studies.

  17. Assessing the cost-effectiveness of different measles vaccination strategies for children in the Democratic Republic of Congo.

    Science.gov (United States)

    Doshi, Reena H; Eckhoff, Philip; Cheng, Alvan; Hoff, Nicole A; Mukadi, Patrick; Shidi, Calixte; Gerber, Sue; Wemakoy, Emile Okitolonda; Muyembe-Tafum, Jean-Jacques; Kominski, Gerald F; Rimoin, Anne W

    2017-10-27

    One of the goals of the Global Measles and Rubella Strategic Plan is the reduction in global measles mortality, with high measles vaccination coverage as one of its core components. While measles mortality has been reduced more than 79%, the disease remains a major cause of childhood vaccine preventable disease burden globally. Measles immunization requires a two-dose schedule and only countries with strong, stable immunization programs can rely on routine services to deliver the second dose. In the Democratic Republic of Congo (DRC), weak health infrastructure and lack of provision of the second dose of measles vaccine necessitates the use of supplementary immunization activities (SIAs) to administer the second dose. We modeled three vaccination strategies using an age-structured SIR (Susceptible-Infectious-Recovered) model to simulate natural measles dynamics along with the effect of immunization. We compared the cost-effectiveness of two different strategies for the second dose of Measles Containing Vaccine (MCV) to one dose of MCV through routine immunization services over a 15-year time period for a hypothetical birth cohort of 3 million children. Compared to strategy 1 (MCV1 only), strategy 2 (MCV2 by SIA) would prevent a total of 5,808,750 measles cases, 156,836 measles-related deaths and save U.S. $199 million. Compared to strategy 1, strategy 3 (MCV2 by RI) would prevent a total of 13,232,250 measles cases, 166,475 measles-related deaths and save U.S. $408 million. Vaccination recommendations should be tailored to each country, offering a framework where countries can adapt to local epidemiological and economical circumstances in the context of other health priorities. Our results reflect the synergistic effect of two doses of MCV and demonstrate that the most cost-effective approach to measles vaccination in DRC is to incorporate the second dose of MCV in the RI schedule provided that high enough coverage can be achieved. Published by Elsevier Ltd.

  18. Acute hepatitis B caused by a vaccine-escape HBV strain in vaccinated subject: sequence analysis and therapeutic strategy.

    Science.gov (United States)

    Luongo, Monica; Critelli, Rosina; Grottola, Antonella; Gitto, Stefano; Bernabucci, Veronica; Bevini, Mirco; Vecchi, Chiara; Montagnani, Giuliano; Villa, Erica

    2015-01-01

    HBV vaccine contains the 'a' determinant region, the major immune-target of antibodies (anti-HBs). Failure of immunization may be caused by vaccine-induced or spontaneous 'a' determinant surface gene mutants. Here, we evaluate the possible lack of protection by HBV vaccine, describing the case of an acute hepatitis B diagnosed in a 55-year-old Caucasian male unpaid blood donor, vaccinated against HBV. Sequencing data for preS-S region revealed multiple point mutations. Of all the substitutions found, Q129H, located in the "a" determinant region of HBsAg, can alter antigenicity, leading to mutants. This mutant may cause vaccine failure especially when associated with high viremia of infecting source. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A randomized trial to assess anti-HIV activity in female genital tract secretions and soluble mucosal immunity following application of 1% tenofovir gel.

    Directory of Open Access Journals (Sweden)

    Marla J Keller

    2011-01-01

    Full Text Available Preclinical and early phase clinical microbicide studies have not consistently predicted the outcome of efficacy trials. To address this gap, candidate biomarkers of microbicide pharmacodynamics and safety were evaluated in a double-blind, placebo-controlled trial of tenofovir gel, the first microbicide to demonstrate significant protection against HIV acquisition.30 women were randomized to apply a single daily dose of tenofovir or placebo gel for 14 consecutive days. Anti-HIV activity was measured in cervicovaginal lavage (CVL on Days 0, 3, 7, 14 and 21 by luciferase assay as a surrogate marker of pharmacodynamics. Endogenous activity against E. coli and HSV-2 and concentrations of immune mediators were quantified in CVL as candidate biomarkers of safety. Tenofovir levels were measured in CVL and blood.A significant increase in anti-HIV activity was detected in CVL from women who applied tenofovir gel compared to their endogenous anti-HIV activity in genital tract secretions on Day 0 and compared to activity in CVL from women in the placebo group. The activity correlated significantly with CVL concentration of tenofovir (r = 0.6, p<0.001 and fit a sigmoid E(max pharmacodynamic model. Anti-HIV activity in CVL from women who applied tenofovir persisted when virus was introduced in semen, whereas endogenous anti-HIV activity decreased. Tenofovir did not trigger an inflammatory response or induce sustained loss in endogenous antimicrobial activity or immune mediators.Tenofovir gel had no deleterious impact on soluble mucosal immunity. The increased anti-HIV activity in CVL, which persisted in the presence of semen and correlated with tenofovir concentration, is consistent with the efficacy observed in a recent clinical trial. These results promote quantified CVL anti-HIV activity as a surrogate of tissue pharmacodynamics and as a potential biomarker of adherence to product. This simple, feasible and inexpensive bioassay may promote the development

  20. A vaccine strategy with multiple prostatic acid phosphatase-fused cytokines for prostate cancer treatment.

    Science.gov (United States)

    Fujio, Kei; Watanabe, Masami; Ueki, Hideo; Li, Shun-Ai; Kinoshita, Rie; Ochiai, Kazuhiko; Futami, Junichiro; Watanabe, Toyohiko; Nasu, Yasutomo; Kumon, Hiromi

    2015-04-01

    Immunotherapy is one of the attractive treatment strategies for advanced prostate cancer. The US Food and Drug Administration (FDA) previously approved the therapeutic vaccine, sipuleucel-T, which is composed of autologous antigen-presenting cells cultured with a fusion protein [prostatic acid phosphatase (PAP) and granulocyte-macrophage colony-stimulating factor (GMCSF)]. Although sipuleucel-T has been shown to prolong the median survival of patients for 4.1 months, more robust therapeutic effects may be expected by modifying the vaccination protocol. In the present study, we aimed to develop and validate a novel vaccination strategy using multiple PAP-fused cytokines for prostate cancer treatment. Using a super gene expression (SGE) system that we previously established to amplify the production of a recombinant protein, significant amounts of PAP-fused cytokines [human GMCSF, interleukin-2 (IL2), IL4, IL7 and mouse GMCSF and IL4] were obtained. We examined the activity of the fusion proteins in vitro to validate their cytokine functions. A significant upregulation of dendritic cell differentiation from monocytes was achieved by PAP-GMCSF when used with the other PAP-fused cytokines. The PAP-fused human IL2 significantly increased the proliferation of lymphocytes, as determined by flow cytometry. We also investigated the in vivo therapeutic effects of multiple PAP-fused cytokines in a mouse prostate cancer model bearing prostate-specific antigen (PSA)- and PAP-expressing tumors. The simultaneous intraperitoneal administration of PAP-GMCSF, -IL2, -IL4 and -IL7 significantly prevented tumor induction and inhibited the tumor growth in the PAP-expressing tumors, yet not in the PSA-expressing tumors. The in vivo therapeutic effects with the multiple PAP-fused cytokines were superior to the effects of PAP-GMCSF alone. We thus demonstrated the advantages of the combined use of multiple PAP-fused cytokines including PAP-GMCSF, and propose a promising prostatic

  1. Mycobacterium tuberculosis: approach to development of improved strategies for disease control through vaccination and immunodiagnosis.

    Science.gov (United States)

    Mirlekar, B; Pathak, S; Pathade, G

    2013-01-01

    Tuberculosis is a major health problem throughout the world causing large number of deaths, more than that from any other single infectious disease. Estimates till date ascertain the fact that Tuberculosis (TB) is continuing to be the leading cause of death worldwide. The infection from single infectious agent Mycobacterium tuberculosis is killing about 3 million individuals every year and accounts for around 18.5% of all deaths in adults between the age group of 15 and 65. An average of 1.79 billion people, which constitutes roughly one-third of the world's population, is infected with the causative agent M. tuberculosis and is at risk of developing the disease. This situation highlights the relative shortcomings of the current treatment and diagnosis strategies for TB and the limited effectiveness of public health systems, particularly in resource-poor countries where the main TB burden lies. The timely identification of persons infected with Mycobacterium tuberculosis and rapid laboratory confirmation of tuberculosis are two key factors for the treatment and prevention of the disease. Novel molecular assays for diagnosis and drug susceptibility testing offer several potential advantages over the above methods including faster turnaround times, very sensitive and specific detection of nucleic acids, and minimal, or possibly no, prior culture. The need for new technologies for rapid diagnosis of tuberculosis is clear. Most studies of mycobacterial immunity attributes focus on proliferation of T cells, production of cytokines and cytolytic activity. A proper vaccine for tuberculosis can be developed by using a combination of antigens and adjuvants capable of inducing appropriate and long-lasting T cell immunity. Development of new vaccines against TB should include some important aspects learned from BCG use such as mucosal routes of immunization; revaccination of BCG immunized subjects, booster immunization and prime-boost strategy with wild-type BCG, and other

  2. A generic RNA-pulsed dendritic cell vaccine strategy for renal cell carcinoma

    Science.gov (United States)

    Geiger, Christiane; Regn, Sybille; Weinzierl, Andreas; Noessner, Elfriede; Schendel, Dolores J

    2005-01-01

    We present a generic dendritic cell (DC) vaccine strategy for patients with renal cell carcinoma (RCC) based on the use of RNA as a source of multiplex tumor-associated antigens (TAAs). Instead of preparing RNA from tumor tissue of each individual RCC patient, we propose to substitute RNA prepared from a well characterized highly immunogenic RCC cell line (RCC-26 tumor cells) as a generic source of TAAs for loading of DCs. We demonstrate here that efficient RNA transfer can be achieved using lipofection of immature DCs, which are subsequently matured with a cytokine cocktail to express high levels of MHC and costimulatory molecules as well as the chemokine receptor CCR7. Neither RNA itself nor the lipid component impacted on the phenotype or the cytokine secretion of mature DCs. Following RNA loading, DCs derived from HLA-A2-positive donors were able to activate effector-memory cytotoxic T lymphocytes (CTLs) specific for a TAA ligand expressed by the RCC-26 cell line. CTL responses to RNA-loaded DCs reached levels comparable to those stimulated directly by the RCC-26 tumor cells. Furthermore, DCs expressing tumor cell RNA primed naïve T cells, yielding T cell lines with cytotoxicity and cytokine secretion after contact with RCC tumor cells. RCC-26 cell lines are available as good manufacturing practice (GMP)-certified reagents enabling this source of RNA to be easily standardized and adapted for clinical testing. In addition, well defined immune monitoring tools, including the use of RNA expressing B cell lines, are available. Thus, this DC vaccine strategy can be directly compared with an ongoing gene therapy trial using genetically-engineered variants of the RCC-26 cell line as vaccines for RCC patients with metastatic disease. PMID:16045799

  3. A generic RNA-pulsed dendritic cell vaccine strategy for renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Noessner Elfriede

    2005-07-01

    Full Text Available Abstract We present a generic dendritic cell (DC vaccine strategy for patients with renal cell carcinoma (RCC based on the use of RNA as a source of multiplex tumor-associated antigens (TAAs. Instead of preparing RNA from tumor tissue of each individual RCC patient, we propose to substitute RNA prepared from a well characterized highly immunogenic RCC cell line (RCC-26 tumor cells as a generic source of TAAs for loading of DCs. We demonstrate here that efficient RNA transfer can be achieved using lipofection of immature DCs, which are subsequently matured with a cytokine cocktail to express high levels of MHC and costimulatory molecules as well as the chemokine receptor CCR7. Neither RNA itself nor the lipid component impacted on the phenotype or the cytokine secretion of mature DCs. Following RNA loading, DCs derived from HLA-A2-positive donors were able to activate effector-memory cytotoxic T lymphocytes (CTLs specific for a TAA ligand expressed by the RCC-26 cell line. CTL responses to RNA-loaded DCs reached levels comparable to those stimulated directly by the RCC-26 tumor cells. Furthermore, DCs expressing tumor cell RNA primed naïve T cells, yielding T cell lines with cytotoxicity and cytokine secretion after contact with RCC tumor cells. RCC-26 cell lines are available as good manufacturing practice (GMP-certified reagents enabling this source of RNA to be easily standardized and adapted for clinical testing. In addition, well defined immune monitoring tools, including the use of RNA expressing B cell lines, are available. Thus, this DC vaccine strategy can be directly compared with an ongoing gene therapy trial using genetically-engineered variants of the RCC-26 cell line as vaccines for RCC patients with metastatic disease.

  4. A therapeutic HIV vaccine using coxsackie-HIV recombinants: a possible new strategy.

    Science.gov (United States)

    Halim, S S; Collins, D N; Ramsingh, A I

    2000-10-10

    The ultimate goal in the treatment of HIV-infected persons is to prevent disease progression. A strategy to accomplish this goal is to use chemotherapy to reduce viral load followed by immunotherapy to stimulate HIV-specific immune responses that are observed in long-term asymptomatic individuals. An effective, live, recombinant virus, expressing HIV sequences, would be capable of inducing both CTL and CD4(+) helper T cell responses. To accomplish these goals, the viral vector must be immunogenic yet retain its avirulent phenotype in a T cell-deficient host. We have identified a coxsackievirus variant, CB4-P, that can induce protective immunity against a virulent variant. In addition, the CB4-P variant remains avirulent in mice lacking CD4(+) helper T cells, suggesting that CB4-P may be uniquely suited as a viral vector for a therapeutic HIV vaccine. Two strategies designed to elicit CTL and CD4(+) helper T cell responses were used to construct CB4-P/HIV recombinants. Recombinant viruses were viable, genetically stable, and retained the avirulent phenotype of the parental virus. In designing a viral vector for vaccine development, an issue that must be addressed is whether preexisting immunity to the vector would affect subsequent administration of the recombinant virus. Using a test recombinant, we showed that prior exposure to the parental CB4-P virus did not affect the ability of the recombinant to induce a CD4(+) T cell response against the foreign sequence. The results suggest that a "cocktail" of coxsackie/HIV recombinants may be useful as a therapeutic HIV vaccine.

  5. Rotavirus vaccines

    Directory of Open Access Journals (Sweden)

    Kang G

    2006-01-01

    Full Text Available Rotavirus, the most common cause of severe diarrhea and a leading cause of mortality in children, has been a priority target for vaccine development for the past several years. The first rotavirus vaccine licensed in the United States was withdrawn because of an association of the vaccine with intussusception. However, the need for a vaccine is greatest in the developing world, because the benefits of preventing deaths due to rotavirus disease are substantially greater than the risk of intussusception. Early vaccines were based on animal strains. More recently developed and licenced vaccines are either animal-human reassortants or are based on human strains. In India, two candidate vaccines are in the development process, but have not yet reached efficacy trials. Many challenges regarding vaccine efficacy and safety remain. In addition to completing clinical evaluations of vaccines in development in settings with the highest disease burden and virus diversity, there is also a need to consider alternative vaccine development strategies.

  6. Anti-HIV and immunomodulation activities of cacao mass lignin-carbohydrate complex.

    Science.gov (United States)

    Sakagami, Hiroshi; Kawano, Michiyo; Thet, May Maw; Hashimoto, Ken; Satoh, Kazue; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Haishima, Yuji; Maeda, Yuuichi; Sakurai, Koji

    2011-01-01

    Recently, a prominent antiviral and macrophage stimulatory activity of cacao lignin-carbohydrate complex (LCC) has been reported. However, the solubility and sterility of LCC have not been considered yet. In the present study, complete solubilisation and sterilisation was achieved by autoclaving under mild alkaline conditions and the previously reported biological activities were re-examined. LCCs were obtained by 1% NaOH extraction and acid precipitation, and a repeated extraction-precipitation cycle. Nitric oxide (NO) and cytokine productions were assayed by the Griess method and ELISA, respectively. Inducible NO synthase (iNOS) expression was determined by Western blot analysis. Superoxide anion, hydroxyl radical and nitric oxide radical-scavenging activity was determined by ESR spectroscopy. Cacao mass LCC showed reproducibly higher anti-HIV activity than cacao husk LCC. Cacao mass LCC, up to 62.5 μg/ml, did not stimulate mouse macrophage-like cells (RAW264.7 and J774.1) to produce NO, nor did it induce iNOS protein, in contrast to lipopolysaccharide (LPS). Cacao mass LCC and LPS synergistically stimulated iNOS protein expression, suggesting a different point of action. Cacao mass LCC induced tumour necrosis factor-α production markedly less than LPS, and did not induce interleukin-1β, interferon-α or interferon-γ. ESR spectroscopy showed that cacao mass LCC, but not LPS, scavenged NO produced from NOC-7. This study demonstrated several new biological activities of LCCs distinct from LPS and further confirmed the promising antiviral and immunomodulating activities of LCCs.

  7. Precise engineering of dapivirine-loaded nanoparticles for the development of anti-HIV vaginal microbicides.

    Science.gov (United States)

    das Neves, José; Sarmento, Bruno

    2015-05-01

    Polymeric nanoparticles (NPs) have the potential to provide effective and safe delivery of antiretroviral drugs in the context of prophylactic anti-HIV vaginal microbicides. Dapivirine-loaded poly(d,l-lactic-co-glycolic acid) (PLGA) NPs were produced by an emulsion-solvent evaporation method, optimized for colloidal properties using a 3-factor, 3-level Box-Behnken experimental design, and characterized for drug loading, production yield, morphology, thermal behavior, drug release, in vitro cellular uptake, cytotoxicity and pro-inflammatory potential. Also, drug permeability/membrane retention in well-established HEC-1-A and CaSki cell monolayer models as mediated by NPs was assessed in the absence or presence of mucin. Box-Behnken design allowed optimizing monodisperse 170nm drug-loaded NPs. Drug release experiments showed an initial burst effect up to 4h, followed by sustained 24h release at pH 4.2 and 7.4. NPs were readily taken up by different genital and macrophage cell lines as assessed by fluorescence microscopy. Drug-loaded NPs presented lower or at least similar cytotoxicity as compared to the free drug, with up to around one-log increase in half-maximal cytotoxic concentration values. In all cases, no relevant changes in cell pro-inflammatory cytokine/chemokine production were observed. Dapivirine transport across cell monolayers was significantly decreased when mucin was present at the donor side with either NPs or the free drug, thus evidencing the influence of this natural glycoprotein in membrane permeability. Moreover, drug retention in cell monolayers was significantly higher for NPs in comparison with the free drug. Overall, obtained dapivirine-loaded PLGA NPs possess interesting technological and biological features that may contribute to their use as novel safe and effective vaginal microbicides. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. 3D printed, controlled release, tritherapeutic tablet matrix for advanced anti-HIV-1 drug delivery.

    Science.gov (United States)

    Siyawamwaya, Margaret; du Toit, Lisa C; Kumar, Pradeep; Choonara, Yahya E; Kondiah, Pierre P P D; Pillay, Viness

    2018-04-12

    A 3D-Bioplotter® was employed to 3D print (3DP) a humic acid-polyquaternium 10 (HA-PQ10) controlled release fixed dose combination (FDC) tablet comprising of the anti-HIV-1 drugs, efavirenz (EFV), tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC). Chemical interactions, surface morphology and mechanical strength of the FDC were ascertained. In vitro drug release studies were conducted in biorelevant media followed by in vivo study in the large white pigs, in comparison with a market formulation, Atripla®. In vitro-in vivo correlation of results was undertaken. EFV, TDF and FTC were successfully entrapped in the 24-layered rectangular prism-shaped 3DP FDC with a loading of ∼12.5 mg/6.3 mg/4 mg of EFV/TDF/FTC respectively per printed layer. Hydrogen bonding between the EFV/TDF/FTC and HA-PQ10 was detected which was indicative of possible drug solubility enhancement. The overall surface of the tablet exhibited a fibrilla structure and the 90° inner pattern was determined to be optimal for 3DP of the FDC. In vitro and in vivo drug release profiles from the 3DP FDC demonstrated that intestinal-targeted and controlled drug release was achieved. A 3DP FDC was successfully manufactured with the aid of a 3D-Bioplotter in a single step process. The versatile HA-PQ10 entrapped all drugs and achieved an enhanced relative bioavailability of EFV, TDF, and FTC compared to the market formulation for potentially enhanced HIV treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Weak anti-HIV CD8+ T-cell effector activity in HIV primary infection

    Science.gov (United States)

    Dalod, Marc; Dupuis, Marion; Deschemin, Jean-Christophe; Goujard, Cécile; Deveau, Christiane; Meyer, Laurence; Ngo, Nicole; Rouzioux, Christine; Guillet, Jean-Gérard; Delfraissy, Jean-François; Sinet, Martine; Venet, Alain

    1999-01-01

    HIV-specific CD8+ T cells play a major role in the control of virus during HIV primary infection (PI) but do not completely prevent viral replication. We used IFN-γ enzyme-linked immunospot assay and intracellular staining to characterize the ex vivo CD8+ T-cell responses to a large variety of HIV epitopic peptides in 24 subjects with early HIV PI. We observed HIV-specific responses in 71% of subjects. Gag and Nef peptides were more frequently recognized than Env and Pol peptides. The number of peptides recognized was low (median 2, range 0–6). In contrast, a much broader response was observed in 30 asymptomatic subjects with chronic infection: all were responders with a median of 5 peptides recognized (range 1–13). The frequency of HIV-specific CD8+ T cells among PBMC for a given peptide was of the same order of magnitude in both groups. The proportion of HIV-specific CD8+CD28– terminally differentiated T cells was much lower in PI than at the chronic stage of infection. The weakness of the immune response during HIV PI could partially account for the failure to control HIV. These findings have potential importance for defining immunotherapeutic strategies and establishing the goals for effective vaccination. J. Clin. Invest. 104:1431–1439 (1999). PMID:10562305

  10. The biography of the immune system and the control of cancer: from St Peregrine to contemporary vaccination strategies.

    Science.gov (United States)

    Krone, Bernd; Kölmel, Klaus F; Grange, John M

    2014-08-16

    The historical basis and contemporary evidence for the use of immune strategies for prevention of malignancies are reviewed. Emphasis is focussed on the Febrile Infections and Melanoma (FEBIM) study on melanoma and on malignancies that seem to be related to an overexpression of human endogenous retrovirus K (HERV-K). It is claimed that, as a result of recent observational studies, measures for prevention of some malignancies such as melanoma and certain forms of leukaemia are already at hand: vaccination with Bacille Calmette-Guérin (BCG) of new-borns and vaccination with the yellow fever 17D (YFV) vaccine of adults. While the evidence of their benefit for prevention of malignancies requires substantiation, the observations that vaccinations with BCG and/or vaccinia early in life improved the outcome of patients after surgical therapy of melanoma are of practical relevance as the survival advantage conferred by prior vaccination is greater than any contemporary adjuvant therapy. The reviewed findings open a debate as to whether controlled vaccination studies should be conducted in patients and/or regions for whom/where they are needed most urgently. A study proposal is made and discussed. If protection is confirmed, the development of novel recombinant vaccines with wider ranges of protection based, most likely, on BCG, YFV or vaccinia, could be attempted.

  11. Design of different strategies of multivalent DNA-based vaccination against rabies and canine distemper in mice and dogs

    Directory of Open Access Journals (Sweden)

    Touihri Leila

    2012-12-01

    Full Text Available Abstract Background During the vaccination campaigns, puppies younger than 3 months old are not targeted and remain unvaccinated for at least the first year of their lives. Almost half of the reported rabid dogs are 6 months or younger. Hence, we should recommend the vaccination against rabies of young puppies. Unfortunately, owing to the exposure of puppies to infections with either canine parvovirus (CPV or distemper virus (CDV after the intervention of the vaccinators, owners are reluctant to vaccinate puppies against rabies. Therefore, it is necessary to include the CPV and CDV valences in the vaccine against rabies. Multivalent DNA-based vaccination in dogs, including rabies and distemper valences, could help in raising vaccine coverage. Methods We have designed monovalent and multivalent DNA-based vaccine candidates for in vitro and in vivo assays. These plasmids encode to the rabies virus glycoprotein and/or the canine distemper virus hemagglutinin. The first strategy of multivalent DNA-based vaccination is by mixing plasmids encoding to a single antigen each. The second is by simply fusing the genes of the antigens together. The third is by adding the foot and mouth disease virus (FMDV 2A oligopeptide gene into the antigen genes. The last strategy is by the design and use of a bicistronic plasmid with an “Internal Ribosome Entry Site” (IRES domain. Results The monovalent construct against canine distemper was efficiently validated by inducing higher humoral immune responses compared to cell-culture-derived vaccine both in mice and dogs. All multivalent plasmids efficiently expressed both valences after in vitro transfection of BHK-21 cells. In BALB/c mice, the bicistronic IRES-dependant construct was the most efficient inducer of virus-neutralizing antibodies against both valences. It was able to induce better humoral immune responses compared to the administration of either cell-culture-derived vaccines or monovalent plasmids. The

  12. Design of different strategies of multivalent DNA-based vaccination against rabies and canine distemper in mice and dogs.

    Science.gov (United States)

    Touihri, Leila; Ahmed, Sami Belhaj; Chtourou, Yacine; Daoud, Rahma; Bahloul, Chokri

    2012-12-27

    During the vaccination campaigns, puppies younger than 3 months old are not targeted and remain unvaccinated for at least the first year of their lives. Almost half of the reported rabid dogs are 6 months or younger. Hence, we should recommend the vaccination against rabies of young puppies. Unfortunately, owing to the exposure of puppies to infections with either canine parvovirus (CPV) or distemper virus (CDV) after the intervention of the vaccinators, owners are reluctant to vaccinate puppies against rabies. Therefore, it is necessary to include the CPV and CDV valences in the vaccine against rabies. Multivalent DNA-based vaccination in dogs, including rabies and distemper valences, could help in raising vaccine coverage. We have designed monovalent and multivalent DNA-based vaccine candidates for in vitro and in vivo assays. These plasmids encode to the rabies virus glycoprotein and/or the canine distemper virus hemagglutinin. The first strategy of multivalent DNA-based vaccination is by mixing plasmids encoding to a single antigen each. The second is by simply fusing the genes of the antigens together. The third is by adding the foot and mouth disease virus (FMDV) 2A oligopeptide gene into the antigen genes. The last strategy is by the design and use of a bicistronic plasmid with an "Internal Ribosome Entry Site" (IRES) domain. The monovalent construct against canine distemper was efficiently validated by inducing higher humoral immune responses compared to cell-culture-derived vaccine both in mice and dogs. All multivalent plasmids efficiently expressed both valences after in vitro transfection of BHK-21 cells. In BALB/c mice, the bicistronic IRES-dependant construct was the most efficient inducer of virus-neutralizing antibodies against both valences. It was able to induce better humoral immune responses compared to the administration of either cell-culture-derived vaccines or monovalent plasmids. The FMDV 2A was also efficient in the design of multivalent

  13. A genetically engineered prime-boost vaccination strategy for oculonasal delivery with poly(D,L-lactic-co-glycolic acid) microparticles against infection of turkeys with avian Metapneumovirus.

    Science.gov (United States)

    Liman, Martin; Peiser, Lieselotte; Zimmer, Gert; Pröpsting, Marcus; Naim, Hassan Y; Rautenschlein, Silke

    2007-11-14

    In this study we demonstrated the use of an oculonasally delivered poly(D,L-lactic-co-glycolic acid) microparticle (PLGA-MP)-based and genetically engineered vaccination strategy in the avian system. An avian Metapneumovirus (aMPV) fusion (F) protein-encoding plasmid vaccine and the corresponding recombinant protein vaccine were produced and bound to or encapsulated by PLGA-MP, respectively. The PLGA-MP as the controlled release system was shown in vitro to not induce any cytopathic effects and to efficiently deliver the F protein-based aMPV-vaccines to avian cells for further processing. Vaccination of turkeys was carried out by priming with an MP-bound F protein-encoding plasmid vaccine and a booster-vaccination with an MP-encapsulated recombinant F protein. Besides the prime-boost F-specific vaccinated birds, negative control birds inoculated with a mock-MP prime-boost regimen as well as non-vaccinated birds and live vaccinated positive control birds were included in the study. The MP-based immunization of turkeys via the oculonasal route induced systemic humoral immune reactions as well as local and systemic cellular immune reactions, and had no adverse effects on the upper respiratory tract. The F protein-specific prime-boost strategy induced partial protection. After challenge the F protein-specific MP-vaccinated birds showed less clinical signs and histopathological lesions than control birds of mock MP-vaccinated and non-vaccinated groups did. The vaccination improved viral clearance and induced accumulation of local and systemic CD4+ T cells when compared to the mock MP-vaccination. It also induced systemic aMPV-neutralizing antibodies. The comparison of mock- and F protein-specific MP-vaccinated birds to non-vaccinated control birds suggests that aMPV-specific effects as well as adjuvant effects mediated by MP may have contributed to the overall protective effect.

  14. Synthesis of single- and double-chain fluorocarbon and hydrocarbon galactosyl amphiphiles and their anti-HIV-1 activity.

    Science.gov (United States)

    Faroux-Corlay, B; Clary, L; Gadras, C; Hammache, D; Greiner, J; Santaella, C; Aubertin, A M; Vierling, P; Fantini, J

    2000-07-24

    Galactosylceramide (GalCer) is an alternative receptor allowing HIV-1 entry into CD4(-)/GalCer(+) cells. This glycosphingolipid recognizes the V3 loop of HIV gp120, which plays a key role in the fusion of the HIV envelope and cellular membrane. To inhibit HIV uptake and infection, we designed and synthesized analogs of GalCer. These amphiphiles and bolaamphiphiles consist of single and double hydrocarbon and/or fluorocarbon chain beta-linked to galactose and galactosamine. They derive from serine (GalSer), cysteine (GalCys), and ethanolamine (GalAE). The anti-HIV activity and cytotoxicity of these galactolipids were evaluated in vitro on CEM-SS (a CD4(+) cell line), HT-29, a CD4(-) cell line expressing high levels of GalCer receptor, and/or HT29 genetically modified to express CD4. GalSer and GalAE derivatives, tested in aqueous medium or as part of liposome preparation, showed moderate anti-HIV-1 activities (IC50 in the 20-220 microM range), whereas none of the GalCys derivatives was found to be active. Moreover, only some of these anti-HIV active analogs inhibited the binding of [3H]suramin (a polysulfonyl compound which displays a high affinity for the V3 loop) to SPC3, a synthetic peptide which contains the conserved GPGRAF region of the V3 loop. Our results most likely indicate that the neutralization of the virion through masking of this conserved V3 loop region is not the only mechanism involved in the HIV-1 antiviral activity of our GalCer analogs.

  15. Evaluation of mucosal and systemic immune responses elicited by GPI-0100- adjuvanted influenza vaccine delivered by different immunization strategies.

    Directory of Open Access Journals (Sweden)

    Heng Liu

    Full Text Available Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN or the intrapulmonary (IPL route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses.

  16. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    Science.gov (United States)

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066

  17. Diarylpyrimidine-dihydrobenzyloxopyrimidine hybrids: new, wide-spectrum anti-HIV-1 agents active at (sub)-nanomolar level.

    Science.gov (United States)

    Rotili, Dante; Tarantino, Domenico; Artico, Marino; Nawrozkij, Maxim B; Gonzalez-Ortega, Emmanuel; Clotet, Bonaventura; Samuele, Alberta; Esté, José A; Maga, Giovanni; Mai, Antonello

    2011-04-28

    Here, we describe a novel small series of non-nucleoside reverse transcriptase inhibitors (NNRTIs) that combine peculiar structural features of diarylpyrimidines (DAPYs) and dihydro-alkoxy-benzyl-oxopyrimidines (DABOs). These DAPY-DABO hybrids (1-4) showed a characteristic SAR profile and a nanomolar anti-HIV-1 activity at both enzymatic and cellular level. In particular, the two compounds 4d and 2d, with a (sub)nanomolar activity against wild-type and clinically relevant HIV-1 mutant strains, were selected as lead compounds for next optimization studies.

  18. Altertoxins with potent anti-HIV activity from Alternaria tenuissima QUE1Se, a fungal endophyte of Quercus emoryi

    OpenAIRE

    Bashyal, Bharat P.; Wellensiek, Brian P.; Ramakrishnan, Rajesh; Faeth, Stanley H.; Ahmad, Nafees; Leslie Gunatilaka, A. A.

    2014-01-01

    Screening of a small library of natural product extracts derived from endophytic fungi of the Sonoran desert plants in a cell-based anti-HIV assay involving T-cells infected with the HIV-1 virus identified the EtOAc extract of a fermentation broth of Alternaria tenuissima QUE1Se inhabiting the stem tissue of Quercus emoryi as a promising candidate for further investigation. Bioactivity-guided fractionation of this extract led to the isolation and identification of two new metabolites, alterto...

  19. Defining a strategy to evaluate cervical cancer prevention and early detection in the era of HPV vaccination.

    Science.gov (United States)

    Howlett, Roberta I; Miller, Anthony B; Pasut, George; Mai, Verna

    2009-05-01

    The purpose of this paper is to outline the short-, medium- and long-term requirements of a strategy to evaluate the impact of HPV immunization and to define a framework to facilitate planning and evaluation. This strategy was developed in Ontario from January to August 2008. Literature review was completed to assess existing material relevant to vaccine evaluation, and HPV vaccine specifically. Scientists and epidemiologists within our organization attended meetings to brainstorm and identify key requirements for vaccine evaluation. Other selected internal and external experts were consulted to review preliminary lists of potential indicators and questions for inclusion in an evaluation strategy. Results are reported in three sections--literature review, proposed evaluation framework and data requirements. The first vaccine evaluation strategy that integrates primary and secondary prevention of cervical cancer is presented. Among women who are neither screened nor immunized, customized interventions will be required to ensure that they are aware of potential risks and benefits. This evaluation strategy may serve as a useful outline for jurisdictions in Canada and elsewhere. This new paradigm of combined primary and secondary intervention will encourage cooperation for effective evaluation of an integrated approach for control of cervical cancer and other HPV-related disease.

  20. New vaccine strategies against enterotoxigenic Escherichia coli: II: Enhanced systemic and secreted antibody responses against the CFA/I fimbriae by priming with DNA and boosting with a live recombinant Salmonella vaccine

    Directory of Open Access Journals (Sweden)

    M.O. Lásaro

    1999-02-01

    Full Text Available The induction of systemic (IgG and mucosal (IgA antibody responses against the colonization factor I antigen (CFA/I of enterotoxigenic Escherichia coli (ETEC was evaluated in mice primed with an intramuscularly delivered CFA/I-encoding DNA vaccine followed by two oral immunizations with a live recombinant Salmonella typhimurium vaccine strain expressing the ETEC antigen. The booster effect induced by the oral immunization was detected two weeks and one year after the administration of the DNA vaccine. The DNA-primed/Salmonella-boosted vaccination regime showed a synergistic effect on the induced CFA/I-specific systemic and secreted antibody levels which could not be attained by either immunization strategy alone. These results suggest that the combined use of DNA vaccines and recombinant Salmonella vaccine strains can be a useful immunization strategy against enteric pathogens.

  1. An optimal control strategies using vaccination and fogging in dengue fever transmission model

    Science.gov (United States)

    Fitria, Irma; Winarni, Pancahayani, Sigit; Subchan

    2017-08-01

    This paper discussed regarding a model and an optimal control problem of dengue fever transmission. We classified the model as human and vector (mosquito) population classes. For the human population, there are three subclasses, such as susceptible, infected, and resistant classes. Then, for the vector population, we divided it into wiggler, susceptible, and infected vector classes. Thus, the model consists of six dynamic equations. To minimize the number of dengue fever cases, we designed two optimal control variables in the model, the giving of fogging and vaccination. The objective function of this optimal control problem is to minimize the number of infected human population, the number of vector, and the cost of the controlling efforts. By giving the fogging optimally, the number of vector can be minimized. In this case, we considered the giving of vaccination as a control variable because it is one of the efforts that are being developed to reduce the spreading of dengue fever. We used Pontryagin Minimum Principle to solve the optimal control problem. Furthermore, the numerical simulation results are given to show the effect of the optimal control strategies in order to minimize the epidemic of dengue fever.

  2. Rotavirus vaccines

    Science.gov (United States)

    Yen, Catherine; Tate, Jacqueline E; Hyde, Terri B; Cortese, Margaret M; Lopman, Benjamin A; Jiang, Baoming; Glass, Roger I; Parashar, Umesh D

    2014-01-01

    Rotavirus is the leading cause of severe diarrhea among children rotavirus vaccines have been efficacious and effective, with many countries reporting substantial declines in diarrheal and rotavirus-specific morbidity and mortality. However, the full public health impact of these vaccines has not been realized. Most countries, including those with the highest disease burden, have not yet introduced rotavirus vaccines into their national immunization programs. Research activities that may help inform vaccine introduction decisions include (1) establishing effectiveness, impact, and safety for rotavirus vaccines in low-income settings; (2) identifying potential strategies to improve performance of oral rotavirus vaccines in developing countries, such as zinc supplementation; and (3) pursuing alternate approaches to oral vaccines, such as parenteral immunization. Policy- and program-level barriers, such as financial implications of new vaccine introductions, should be addressed to ensure that countries are able to make informed decisions regarding rotavirus vaccine introduction. PMID:24755452

  3. Broad anti-HIV activity of the Oscillatoria agardhii agglutinin homologue lectin family.

    Science.gov (United States)

    Férir, Geoffrey; Huskens, Dana; Noppen, Sam; Koharudin, Leonardus M I; Gronenborn, Angela M; Schols, Dominique

    2014-10-01

    Oscillatoria agardhii agglutinin homologue (OAAH) proteins belong to a recently discovered lectin family. The founding member OAA and a designed hybrid OAAH (OPA) recognize similar but unique carbohydrate structures of Man-9, compared with other antiviral carbohydrate-binding agents (CBAs). These two newly described CBAs were evaluated for their inactivating properties on HIV replication and transmission and for their potential as microbicides. Various cellular assays were used to determine antiviral activity against wild-type and certain CBA-resistant HIV-1 strains: (i) free HIV virion infection in human T lymphoma cell lines and PBMCs; (ii) syncytium formation assay using persistently HIV-infected T cells and non-infected CD4+ T cells; (iii) DC-SIGN-mediated viral capture; and (iv) transmission to uninfected CD4+ T cells. OAA and OPA were also evaluated for their mitogenic properties and potential synergistic effects using other CBAs. OAA and OPA inhibit HIV replication, syncytium formation between HIV-1-infected and uninfected T cells, DC-SIGN-mediated HIV-1 capture and transmission to CD4+ target T cells, thereby rendering a variety of HIV-1 and HIV-2 clinical isolates non-infectious, independent of their coreceptor use. Both CBAs competitively inhibit the binding of the Manα(1-2)Man-specific 2G12 monoclonal antibody (mAb) as shown by flow cytometry and surface plasmon resonance analysis. The HIV-1 NL4.3(2G12res), NL4.3(MVNres) and IIIB(GRFTres) strains were equally inhibited as the wild-type HIV-1 strains by these CBAs. Combination studies indicate that OAA and OPA act synergistically with Hippeastrum hybrid agglutinin, 2G12 mAb and griffithsin (GRFT), with the exception of OPA/GRFT. OAA and OPA are unique CBAs with broad-spectrum anti-HIV activity; however, further optimization will be necessary for microbicidal application. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights

  4. Molecular cloning and anti-HIV-1 activities of APOBEC3s from northern pig-tailed macaques (Macaca leonina

    Directory of Open Access Journals (Sweden)

    Xiao-Liang ZHANG

    2016-07-01

    Full Text Available Northern pig-tailed macaques (NPMs, Macaca leonina are susceptible to HIV-1 infection largely due to the loss of HIV-1-restricting factor TRIM5α. However, great impediments still exist in the persistent replication of HIV-1 in vivo, suggesting some viral restriction factors are reserved in this host. The APOBEC3 proteins have demonstrated a capacity to restrict HIV-1 replication, but their inhibitory effects in NPMs remain elusive. In this study, we cloned the NPM A3A-A3H genes, and determined by BLAST searching that their coding sequences (CDSs showed 99% identity to the corresponding counterparts from rhesus and southern pig-tailed macaques. We further analyzed the anti-HIV-1 activities of the A3A-A3H genes, and found that A3G and A3F had the greatest anti-HIV-1 activity compared with that of other members. The results of this study indicate that A3G and A3F might play critical roles in limiting HIV-1 replication in NPMs in vivo. Furthermore, this research provides valuable information for the optimization of monkey models of HIV-1 infection.

  5. Altertoxins with potent anti-HIV activity from Alternaria tenuissima QUE1Se, a fungal endophyte of Quercus emoryi.

    Science.gov (United States)

    Bashyal, Bharat P; Wellensiek, Brian P; Ramakrishnan, Rajesh; Faeth, Stanley H; Ahmad, Nafees; Gunatilaka, A A Leslie

    2014-11-01

    Screening of a small library of natural product extracts derived from endophytic fungi of the Sonoran desert plants in a cell-based anti-HIV assay involving T-cells infected with the HIV-1 virus identified the EtOAc extract of a fermentation broth of Alternaria tenuissima QUE1Se inhabiting the stem tissue of Quercus emoryi as a promising candidate for further investigation. Bioactivity-guided fractionation of this extract led to the isolation and identification of two new metabolites, altertoxins V (1) and VI (2) together with the known compounds, altertoxins I (3), II (4), and III (5). The structures of 1 and 2 were determined by detailed spectroscopic analysis and those of 3-5 were established by comparison with reported data. When tested in our cell-based assay at concentrations insignificantly toxic to T-cells, altertoxins V (1), I (3), II (4), and III (5) completely inhibited replication of the HIV-1 virus at concentrations of 0.50, 2.20, 0.30, and 1.50 μM, respectively. Our findings suggest that the epoxyperylene structural scaffold in altertoxins may be manipulated to produce potent anti-HIV therapeutics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. [Isolation, idetification and anti-HIV-1 integrase activity of culturable endophytic fungi from Tibetan medicinal plant Phlomis younghusbandii Mukerjee].

    Science.gov (United States)

    Zhang, Da-Wei; Zhao, Ming-Ming; Chen, Juan; Li, Chao; Guo, Shun-Xing

    2013-05-01

    A total of 52 endophytic fungi were isolated from roots and stems of Tibetan medicinal plant Phlomis younghusbandii Mukerjee. These fungal isolates were molecularly identified based on ITS sequnces and 28S sequences distributed to 12 genera, including Phoma, Chaetosphaeronema, Fusarium and Leptosphaeria, etc. Among them, the dominant genus was Phoma. Extracts of all strains were evaluated for anti-HIV-1 integrase activity by using soluable integrase expressed in E. coli BL21 (DE3). The results showed that seven samples from five fungal endophytes PHY-24, PHY-38, PHY-40, PHY-51, PHY-53, which belonged to genus Chaetosphaeronema, inhibited strand transfer reaction catalyzed by HIV-1 integrase with IC50 values, of 6.60, 5.20, 2.86, 7.86, 4.47, 4.56 and 3.23 microg x mL(-1) respectively. In conclusion, the endophytic fungi of Phlomis younghusbandii Mukerjee are valuable for further screening anti-HIV-1 integrase agents.

  7. An effective strategy for influenza vaccination of healthcare workers in Australia: experience at a large health service without a mandatory policy.

    Science.gov (United States)

    Heinrich-Morrison, Kristina; McLellan, Sue; McGinnes, Ursula; Carroll, Brendan; Watson, Kerrie; Bass, Pauline; Worth, Leon J; Cheng, Allen C

    2015-02-06

    Annual influenza vaccination of healthcare workers (HCWs) is recommended in Australia, but uptake in healthcare facilities has historically been low (approximately 50%). The objective of this study was to develop and implement a dedicated campaign to improve uptake of staff influenza annual vaccination at a large Australian health service. A quality improvement program was developed at Alfred Health, a tertiary metropolitan health service spanning 3 campuses. Pre-campaign evaluation was performed by questionnaire in 2013 to plan a multimodal vaccination strategy. Reasons for and against vaccination were captured. A campaign targeting clinical and non-clinical healthcare workers was then implemented between March 31 and July 31 2014. Proportional uptake of influenza vaccination was determined by campus and staff category. Pre-campaign questionnaire responses were received from 1328/6879 HCWs (response rate 20.4%), of which 76% were vaccinated. Common beliefs held by unvaccinated staff included vaccine ineffectiveness (37.1%), that vaccination makes staff unwell (21.0%), or that vaccination is not required because staff are at low risk for acquiring influenza (20.2%). In 2014, 6009/7480 (80.3%) staff were vaccinated, with significant improvement in uptake across all campuses and amongst nursing, medical and allied health staff categories from 2013 to 2014 (p strategy utilising social marketing and a customised staff database was successful in increasing influenza vaccination uptake by all staff categories. The sustainability of dedicated campaigns must be evaluated.

  8. Protecting health workers from nosocomial Hepatitis B infections: A review of strategies and challenges for implementation of Hepatitis B vaccination among health workers in Sub-Saharan Africa.

    Science.gov (United States)

    Malewezi, Bridget; Omer, Saad B; Mwagomba, Beatrice; Araru, Trish

    2016-12-01

    The Sub-Saharan region has the highest Hepatitis B virus (HBV) rates, and health workers are at an increased risk of contracting nosocomial HBV infection. Vaccination of health workers plays a critical role in protecting them from sequelae of HBV; however, health-worker vaccination remains a challenge for many countries. This study was conducted to review practices/measures and challenges in the Sub-Saharan region relating to vaccination of health workers against HBV. We performed a literature review of articles addressing any aspect of HBV vaccination of health workers in the Sub-Saharan region sourced from PubMed, Embase, and Web of Science, including a case study of Malawi policies and strategies in training institutions and facilities. Our findings indicated that HBV awareness and vaccination were relatively high, but vaccination rates were lower, with 4.6-64.4% of those "ever vaccinated" completing the vaccination regimen. There was also great variation in the proportion of health workers exhibiting natural immunity from previous exposure (positive for anti-Hepatitis B core antibodies; 41-92%). Commonly cited reasons for non-uptake of vaccine included cost, lack of awareness of vaccine availability, and inadequate information concerning the vaccine. Countries in this region will require locally relevant data to develop cost-effective strategies that maximize the benefit to their health workers due to the great diversity of HBV epidemiology in the region. Copyright © 2016 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  9. An update of cost-effectiveness of rotavirus vaccination in indonesia: Takinga birth-dose vaccination strategy into account

    NARCIS (Netherlands)

    Suwantika, A.A.; Setiawan, D.; Atthobari, J.; Postma, M.J.

    2014-01-01

    Objectives: Rotavirus infection was reported as the major cause of severe diarrhea in children under 5-years-old in Indonesia. A low cost rotavirus vaccine to protect infants from birth has been developed for developing countries, such as Indonesia. This study aims to update our initial analysis on

  10. Optimized oral cholera vaccine distribution strategies to minimize disease incidence: A mixed integer programming model and analysis of a Bangladesh scenario.

    Science.gov (United States)

    Smalley, Hannah K; Keskinocak, Pinar; Swann, Julie; Hinman, Alan

    2015-11-17

    In addition to improved sanitation, hygiene, and better access to safe water, oral cholera vaccines can help to control the spread of cholera in the short term. However, there is currently no systematic method for determining the best allocation of oral cholera vaccines to minimize disease incidence in a population where the disease is endemic and resources are limited. We present a mathematical model for optimally allocating vaccines in a region under varying levels of demographic and incidence data availability. The model addresses the questions of where, when, and how many doses of vaccines to send. Considering vaccine efficacies (which may vary based on age and the number of years since vaccination), we analyze distribution strategies which allocate vaccines over multiple years. Results indicate that, given appropriate surveillance data, targeting age groups and regions with the highest disease incidence should be the first priority, followed by other groups primarily in order of disease incidence, as this approach is the most life-saving and cost-effective. A lack of detailed incidence data results in distribution strategies which are not cost-effective and can lead to thousands more deaths from the disease. The mathematical model allows for what-if analysis for various vaccine distribution strategies by providing the ability to easily vary parameters such as numbers and sizes of regions and age groups, risk levels, vaccine price, vaccine efficacy, production capacity and budget. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. What is the best hepatitis B vaccination strategy for South Africa?

    African Journals Online (AJOL)

    Expanded Programme on Immunisation (EPI) infrastructure and clinic visits. In South Africa, high vaccination coverage is achieved through routine services, e.g. 80.6% for the third diphtheria, tetanus and pertussis (DTP) vaccination! Some countries have selected adolescents as the target age cohort for vaccination, with the ...

  12. Vaccination strategies against myxomavirus infections: are we really doing the best?

    Science.gov (United States)

    Marlier, D

    2010-03-01

    Vaccination is the best way to control myxomatosis in both pet and production rabbits. Two types of myxomatosis vaccines are commercially available, namely, a vaccine prepared from the Shope fibroma virus (SFV) and one prepared from an attenuated myxoma virus (MV) strain, e.g., SG33. The first one is weakly immunogenic and provides only short-term protection whereas atypical reactions have been described with the second one. This short review describes the vaccine strains and provides some data on the host-virus relationship, resistance, and immunity in myxomatosis. In the last section, recommended myxomatosis vaccination schemes for production and pet animals are presented.

  13. Vaccine Hesitancy.

    Science.gov (United States)

    Jacobson, Robert M; St Sauver, Jennifer L; Finney Rutten, Lila J

    2015-11-01

    Vaccine refusal received a lot of press with the 2015 Disneyland measles outbreak, but vaccine refusal is only a fraction of a much larger problem of vaccine delay and hesitancy. Opposition to vaccination dates back to the 1800 s, Edward Jenner, and the first vaccine ever. It has never gone away despite the public's growing scientific sophistication. A variety of factors contribute to modern vaccine hesitancy, including the layperson's heuristic thinking when it comes to balancing risks and benefits as well as a number of other features of vaccination, including falling victim to its own success. Vaccine hesitancy is pervasive, affecting a quarter to a third of US parents. Clinicians report that they routinely receive requests to delay vaccines and that they routinely acquiesce. Vaccine rates vary by state and locale and by specific vaccine, and vaccine hesitancy results in personal risk and in the failure to achieve or sustain herd immunity to protect others who have contraindications to the vaccine or fail to generate immunity to the vaccine. Clinicians should adopt a variety of practices to combat vaccine hesitancy, including a variety of population health management approaches that go beyond the usual call to educate patients, clinicians, and the public. Strategies include using every visit to vaccinate, the creation of standing orders or nursing protocols to provide vaccination without clinical encounters, and adopting the practice of stating clear recommendations. Up-to-date, trusted resources exist to support clinicians' efforts in adopting these approaches to reduce vaccine hesitancy and its impact. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  14. Strategies to obtain multiple recombinant modified vaccinia Ankara vectors. Applications to influenza vaccines.

    Science.gov (United States)

    Barbieri, Andrea; Panigada, Maddalena; Soprana, Elisa; Di Mario, Giuseppina; Gubinelli, Francesco; Bernasconi, Valentina; Recagni, Marta; Donatelli, Isabella; Castrucci, Maria R; Siccardi, Antonio G

    2018-01-01

    As a vaccination vector, MVA has been widely investigated both in animal models and humans. The construction of recombinant MVA (rMVA) relies on homologous recombination between an acceptor virus and a donor plasmid in infected/transfected permissive cells. Our construction strategy "Red-to-Green gene swapping" - based on the exchange of two fluorescent markers within the flanking regions of MVA deletion ΔIII, coupled to fluorescence activated cell sorting - is here extended to a second insertion site, within the flanking regions of MVA deletion ΔVI. Exploiting this strategy, both double and triple rMVA were constructed, expressing as transgenes the influenza A proteins HA, NP, M1, and PB1. Upon validation of the harbored transgenes co-expression, double and triple recombinants rMVA(ΔIII)-NP-P2A-M1 and rMVA(ΔIII)-NP-P2A-M1-(ΔVI)-PB1 were assayed for in vivo immunogenicity and protection against lethal challenge. In vivo responses were identical to those obtained with the reported combinations of single recombinants, supporting the feasibility and reliability of the present improvement and the extension of Red-to-Green gene swapping to insertion sites other than ΔIII. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Comprehensive screening for immunodeficiency-associated vaccine-derived poliovirus: an essential oral poliovirus vaccine cessation risk management strategy.

    Science.gov (United States)

    Duintjer Tebbens, R J; Thompson, K M

    2017-01-01

    If the world can successfully control all outbreaks of circulating vaccine-derived poliovirus that may occur soon after global oral poliovirus vaccine (OPV) cessation, then immunodeficiency-associated vaccine-derived polioviruses (iVDPVs) from rare and mostly asymptomatic long-term excretors (defined as ⩾6 months of excretion) will become the main source of potential poliovirus outbreaks for as long as iVDPV excretion continues. Using existing models of global iVDPV prevalence and global long-term poliovirus risk management, we explore the implications of uncertainties related to iVDPV risks, including the ability to identify asymptomatic iVDPV excretors to treat with polio antiviral drugs (PAVDs) and the transmissibility of iVDPVs. The expected benefits of expanded screening to identify and treat long-term iVDPV excretors with PAVDs range from US$0.7 to 1.5 billion with the identification of 25-90% of asymptomatic long-term iVDPV excretors, respectively. However, these estimates depend strongly on assumptions about the transmissibility of iVDPVs and model inputs affecting the global iVDPV prevalence. For example, the expected benefits may decrease to as low as US$260 million with the identification of 90% of asymptomatic iVDPV excretors if iVDPVs behave and transmit like partially reverted viruses instead of fully reverted viruses. Comprehensive screening for iVDPVs will reduce uncertainties and maximize the expected benefits of PAVD use.

  16. Field experience with two different vaccination strategies aiming to control infections with Actinobacillus pleuropneumoniae in a fattening pig herd

    Directory of Open Access Journals (Sweden)

    Sjölund Marie

    2010-03-01

    Full Text Available Abstract Background The prevalence of pleurisies recorded at slaughter is increasing in Sweden, and acute outbreaks of actinobacillosis that require antimicrobial treatments have become more frequent. As an increased use of antimicrobials may result in the development of antimicrobial resistance it is essential to develop alternative measures to control the disease. Vaccinations present an appealing alternative to antimicrobial treatments. The aim of this work was to evaluate the potential of two different vaccination strategies in a specialized fattening herd affected by actinobacillosis. Methods The study was conducted in a specialized fattening herd employing age segregated rearing in eight units. The herd suffered from infections caused by Actinobacillus pleuropneumoniae serotype 2, confirmed by necropsy and serology. The study included 54 batches of pigs grouped into five periods. Batches of pigs of the second period were vaccinated against actinobacillosis twice, and pigs in the fourth period were vaccinated three times. Batches of pigs of the first, third and fifth period were not vaccinated. Concentrations of serum antibodies to A. pleuropneumoniae and serum amyloid A (SAA were analysed and production data were recorded. Results Despite vaccinating, medical treatments were required to reduce the impact of the disease. The mean incidence of individual treatments for respiratory diseases during the rearing period ranged from 0 to 4.7 ± 1.8%, and was greatest during the triple vaccination period (period IV; p A. pleuropneumoniae serotype 2 in the absence of a SAA-response. The prevalence of pleuritis decreased from 25.4 ± 6.5% in the first period to 5.0 ± 3.7% in the fifth period (p Conclusions The vaccine did not effectively prevent clinical expression of A. pleuropneumoniae infections, but seroconversion to A. pleuropneumoniae in the absence of a SAA-response in a large number pigs indicated that the vaccine had activated the immune

  17. Saporin-conjugated tetramers identify efficacious anti-HIV CD8+ T-cell specificities

    DEFF Research Database (Denmark)

    Leitman, Ellen M.; Palmer, Christine D.; Buus, Søren

    2017-01-01

    Antigen-specific T-cells are highly variable, spanning potent antiviral efficacy and damaging auto-reactivity. In virus infections, identifying the most efficacious responses is critical to vaccine design. However, current methods depend on indirect measures or on ex vivo expanded CTL clones. We...

  18. Chimeric rhinoviruses displaying MPER epitopes elicit anti-HIV neutralizing responses.

    Directory of Open Access Journals (Sweden)

    Guohua Yi

    Full Text Available The development of an effective AIDS vaccine has been a formidable task, but remains a critical necessity. The well conserved membrane-proximal external region (MPER of the HIV-1 gp41 glycoprotein is one of the crucial targets for AIDS vaccine development, as it has the necessary attribute of being able to elicit antibodies capable of neutralizing diverse isolates of HIV.Guided by X-ray crystallography, molecular modeling, combinatorial chemistry, and powerful selection techniques, we designed and produced six combinatorial libraries of chimeric human rhinoviruses (HRV displaying the MPER epitopes corresponding to mAbs 2F5, 4E10, and/or Z13e1, connected to an immunogenic surface loop of HRV via linkers of varying lengths and sequences. Not all libraries led to viable chimeric viruses with the desired sequences, but the combinatorial approach allowed us to examine large numbers of MPER-displaying chimeras. Among the chimeras were five that elicited antibodies capable of significantly neutralizing HIV-1 pseudoviruses from at least three subtypes, in one case leading to neutralization of 10 pseudoviruses from all six subtypes tested.Optimization of these chimeras or closely related chimeras could conceivably lead to useful components of an effective AIDS vaccine. While the MPER of HIV may not be immunodominant in natural infection by HIV-1, its presence in a vaccine cocktail could provide critical breadth of protection.

  19. Herd Immunity to Ebolaviruses Is Not a Realistic Target for Current Vaccination Strategies

    Directory of Open Access Journals (Sweden)

    Stuart G. Masterson

    2018-05-01

    Full Text Available The recent West African Ebola virus pandemic, which affected >28,000 individuals increased interest in anti-Ebolavirus vaccination programs. Here, we systematically analyzed the requirements for a prophylactic vaccination program based on the basic reproductive number (R0, i.e., the number of secondary cases that result from an individual infection. Published R0 values were determined by systematic literature research and ranged from 0.37 to 20. R0s ≥ 4 realistically reflected the critical early outbreak phases and superspreading events. Based on the R0, the herd immunity threshold (Ic was calculated using the equation Ic = 1 − (1/R0. The critical vaccination coverage (Vc needed to provide herd immunity was determined by including the vaccine effectiveness (E using the equation Vc = Ic/E. At an R0 of 4, the Ic is 75% and at an E of 90%, more than 80% of a population need to be vaccinated to establish herd immunity. Such vaccination rates are currently unrealistic because of resistance against vaccinations, financial/logistical challenges, and a lack of vaccines that provide long-term protection against all human-pathogenic Ebolaviruses. Hence, outbreak management will for the foreseeable future depend on surveillance and case isolation. Clinical vaccine candidates are only available for Ebola viruses. Their use will need to be focused on health-care workers, potentially in combination with ring vaccination approaches.

  20. Novel Synthesis and Anti-HIV-1 Activity of 2-Arylthio-6-benzyl-2,3-dihydro-1H-pyrimidin-4-ones (Aryl S-DABOs)

    DEFF Research Database (Denmark)

    Aly, Youssef L.; Pedersen, Erik Bjerreg.; La Colla, Paolo

    2007-01-01

    The synthesis and the anti-HIV-1 activity of a series of 2-arylthio-6-benzyl-2,3-dihydro-1H-pyrimidin-4-ones (aryl S-DABOs) are reported. These compounds were synthesized via a coupling reaction of the corresponding 6-benzyl-2-thiouracils with aryl iodides in the presence of neocuproine hydrate...

  1. Clinical and economic impact of various strategies for varicella immunity screening and vaccination of health care personnel.

    Science.gov (United States)

    Baracco, G J; Eisert, S; Saavedra, S; Hirsch, P; Marin, M; Ortega-Sanchez, I R

    2015-10-01

    Exposure to patients with varicella or herpes zoster causes considerable disruption to a health care facility's operations and has a significant health and economic impact. However, practices related to screening for immunity and immunization of health care personnel (HCP) for varicella vary widely. A decision tree model was built to evaluate the cost-effectiveness of 8 different strategies of screening and vaccinating HCP for varicella. The outcomes are presented as probability of acquiring varicella, economic impact of varicella per employee per year, and cost to prevent additional cases of varicella. Monte Carlo simulations and 1-way sensitivity analyses were performed to address the uncertainties inherent to the model. Alternative epidemiologic and technologic scenarios were also analyzed. Performing a clinical screening followed by serologic testing of HCP with negative history diminished the cost impact of varicella by >99% compared with not having a program. Vaccinating HCP with negative screen cost approximately $50,000 per case of varicella prevented at the current level of U.S. population immunity, but was projected to be cost-saving at 92% or lower immunity prevalence. Improving vaccine acceptance rates and using highly sensitive assays also optimize cost-effectiveness. Strategies relying on screening and vaccinating HCP for varicella on employment were shown to be cost-effective for health care facilities and are consistent with current national guidelines for varicella prevention. Published by Elsevier Inc.

  2. A successful strategy for increasing the influenza vaccination rate of healthcare workers without a mandatory policy outside of the United States: a multifaceted intervention in a Japanese tertiary care center.

    Science.gov (United States)

    Honda, Hitoshi; Sato, Yumiko; Yamazaki, Akinori; Padival, Simi; Kumagai, Akira; Babcock, Hilary

    2013-11-01

    Although mandatory vaccination programs have been effective in improving the vaccination rate among healthcare workers, implementing this type of program can be challenging because of varied reasons for vaccine refusal. The purpose of our study is to measure improvement in the influenza vaccination rate from a multifaceted intervention at a Japanese tertiary care center where implementing a mandatory vaccination program is difficult. Before-and-after trial. Healthcare workers at a 550-bed, tertiary care, academic medical center in Sapporo, Japan. We performed a multifaceted intervention including (1) use of a declination form, (2) free vaccination, (3) hospital-wide announcements during the vaccination period, (4) prospective audit and real-time telephone interview for healthcare workers who did not receive the vaccine, (5) medical interview with the hospital executive for noncompliant (no vaccine, no declination form) healthcare workers during the vaccination period, and (6) mandatory submission of a vaccination document if vaccinated outside of the study institution. With the new multifaceted intervention, the vaccination rate in the 2012-2013 season increased substantially, up to 97%. This rate is similar to that reported in studies with a mandatory vaccination program. Improved vaccination acceptance, particularly among physicians, likely contributed to the overall increase in the vaccination rate reported in the study. Implementation of comprehensive strategies with strong leadership can lead to substantial improvements in vaccine uptake among healthcare workers even without a mandatory vaccination policy. The concept is especially important for institutions where implementing mandatory vaccination programs is challenging.

  3. Anti-HIV activity in cervical-vaginal secretions from HIV-positive and -negative women correlate with innate antimicrobial levels and IgG antibodies.

    Directory of Open Access Journals (Sweden)

    Mimi Ghosh

    2010-06-01

    Full Text Available We investigated the impact of antimicrobials in cervicovaginal lavage (CVL from HIV(+ and HIV(- women on target cell infection with HIV. Since female reproductive tract (FRT secretions contain a spectrum of antimicrobials, we hypothesized that CVL from healthy HIV(+ and (- women inhibit HIV infection.CVL from 32 HIV(+ healthy women with high CD4 counts and 15 healthy HIV(- women were collected by gently washing the cervicovaginal area with 10 ml of sterile normal saline. Following centrifugation, anti-HIV activity in CVL was determined by incubating CVL with HIV prior to addition to TZM-bl cells. Antimicrobials and anti-gp160 HIV IgG antibodies were measured by ELISA. When CXCR4 and CCR5 tropic HIV-1 were incubated with CVL from HIV(+ women prior to addition to TZM-bl cells, anti-HIV activity in CVL ranged from none to 100% inhibition depending on the viral strains used. CVL from HIV(- controls showed comparable anti-HIV activity. Analysis of CH077.c (clone of an R5-tropic, mucosally-transmitted founder virus viral inhibition by CVL was comparable to laboratory strains. Measurement of CVL for antimicrobials HBD2, trappin-2/elafin, SLPI and MIP3alpha indicated that each was present in CVL from HIV(+ and HIV(- women. HBD2 and MIP3alpha correlated with anti-HIV activity as did anti-gp160 HIV IgG antibodies in CVL from HIV(+ women.These findings indicate that CVL from healthy HIV(+ and HIV(- women contain innate and adaptive defense mechanisms that inhibit HIV infection. Our data suggest that innate endogenous antimicrobials and HIV-specific IgG in the FRT can act in concert to contribute toward the anti-HIV activity of the CVL and may play a role in inhibition of HIV transmission to women.

  4. A novel method to value real options in health care: the case of a multicohort human papillomavirus vaccination strategy.

    Science.gov (United States)

    Favato, Giampiero; Baio, Gianluca; Capone, Alessandro; Marcellusi, Andrea; Saverio Mennini, Francesco

    2013-07-01

    A large number of economic evaluations have already confirmed the cost-effectiveness of different human papillomavirus (HPV) vaccination strategies. Standard analyses might not capture the full economic value of novel vaccination programs because the cost-effectiveness paradigm fails to take into account the value of active management. Management decisions can be seen as real options, a term used to refer to the application of option pricing theory to the valuation of investments in nonfinancial assets in which much of the value is attributable to flexibility and learning over time. The aim of this article was to discuss the potential advantages shown by using the payoff method in the valuation of the cost-effectiveness of competing HPV immunization programs. This was the first study, to the best of our knowledge, to use the payoff method to determine the real option values of 4 different HPV vaccination strategies targeting female subjects aged 12, 15, 18, and 25 years. The payoff method derives the real option value from the triangular payoff distribution of the project's net present value, which is treated as a triangular fuzzy number. To inform the real option model, cost-effectiveness data were derived from an empirically calibrated Bayesian model designed to assess the cost-effectiveness of a multicohort HPV vaccination strategy in the context of the current cervical cancer screening program in Italy. A net health benefit approach was used to calculate the expected fuzzy net present value for each of the 4 vaccination strategies evaluated. Costs per quality-adjusted life-year gained seemed to be related to the number of cohorts targeted: a single cohort of girls aged 12 years (€10,955 [95% CI, -1,021 to 28,212]) revealed the lowest cost among the 4 alternative strategies evaluated. The real option valuation challenged the cost-effectiveness dominance of a single cohort of 12-year-old girls. The simultaneous vaccination of 2 cohorts of girls aged 12 and 15

  5. Detection of anti-HIV-1 IgG antibodies in whole saliva by GACELISA and Western blot assays.

    Science.gov (United States)

    Matee, M I; Lyamuya, E F; Simon, E; Mbena, E C; Kagoma, C; Samaranayake, L P; Scheutz, F

    1996-05-01

    The present study, based on 158 HIV seropositives and 167 HIV seronegatives, demonstrates that saliva collected with the Omni-SAL device and tested with GACELISA (an IgG antibody capture ELISA) is an effective non-invasive alternative to serum for anti-HIV IgG antibody screening. The study also shows that a conventional serum Western blot kit can be used, with slight modifications, for confirmatory testing of saliva specimens. Collecting saliva with the Omni-SAL device had a very good acceptance rate among Tanzanian subjects, and although this diagnostic method is not yet known by the general public, 65% of the study participants preferred to give saliva instead of blood for HIV testing.

  6. Screening of anti-HIV-1 inophyllums by HPLC-DAD of Calophyllum inophyllum leaf extracts from French Polynesia Islands.

    Science.gov (United States)

    Laure, Frédéric; Raharivelomanana, Phila; Butaud, Jean-François; Bianchini, Jean-Pierre; Gaydou, Emile M

    2008-08-22

    Various pyranocoumarins, calophyllolide, inophyllums B, C, G(1), G(2) and P, from Calophyllum inophyllum (Clusiaceae) leaves of French Polynesia (Austral, Marquesas, Society and Tuamotu archipelagos) have been determined in 136 leaf extracts using a high pressure liquid chromatography-UV-diode array detection (HPLC-UV-DAD) technique. Results show a wide range in chemical composition within trees growing on eighteen islands. The use of multivariate statistical analyses (PCA) shows geographical distribution of inophyllums and indicate those rich in HIV-1 active (+)-inophyllums. Inophyllum B and P contents (0.0-39.0 and 0.0-21.8 mg kg(-1), respectively) confirm the chemodiversity of this species within the large area of French Polynesia. The study suggests the presence of interesting chemotypes which could be used as plant source for anti-HIV-1 drugs.

  7. Methamphetamine inhibits HIV-1 replication in CD4+ T cells by modulating anti-HIV-1 miRNA expression.

    Science.gov (United States)

    Mantri, Chinmay K; Mantri, Jyoti V; Pandhare, Jui; Dash, Chandravanu

    2014-01-01

    Methamphetamine is the second most frequently used illicit drug in the United States. Methamphetamine abuse is associated with increased risk of HIV-1 acquisition, higher viral loads, and enhanced HIV-1 pathogenesis. Although a direct link between methamphetamine abuse and HIV-1 pathogenesis remains to be established in patients, methamphetamine has been shown to increase HIV-1 replication in macrophages, dendritic cells, and cells of HIV transgenic mice. Intriguingly, the effects of methamphetamine on HIV-1 replication in human CD4(+) T cells that serve as the primary targets of infection in vivo are not clearly understood. Therefore, we examined HIV-1 replication in primary CD4(+) T cells in the presence of methamphetamine in a dose-dependent manner. Our results demonstrate that methamphetamine had a minimal effect on HIV-1 replication at concentrations of 1 to 50 μmol/L. However, at concentrations >100 μmol/L, it inhibited HIV-1 replication in a dose-dependent manner. We also discovered that methamphetamine up-regulated the cellular anti-HIV-1 microRNAs (miR-125b, miR-150, and miR-28-5p) in CD4(+) T cells. Knockdown experiments illustrated that up-regulation of the anti-HIV miRNAs inhibited HIV-1 replication. These results are contrary to the paradigm that methamphetamine accentuates HIV-1 pathogenesis by increasing HIV-1 replication. Therefore, our findings underline the complex interaction between drug use and HIV-1 and necessitate comprehensive understanding of the effects of methamphetamine on HIV-1 pathogenesis. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Preparation and characterization of anti-HIV nanodrug targeted to microfold cell of gut-associated lymphoid tissue.

    Science.gov (United States)

    Roy, Upal; Ding, Hong; Pilakka-Kanthikeel, Sudheesh; Raymond, Andrea D; Atluri, Venkata; Yndart, Adriana; Kaftanovskaya, Elena M; Batrakova, Elena; Agudelo, Marisela; Nair, Madhavan

    2015-01-01

    The human immunodeficiency virus 1 (HIV-1) still remains one of the leading life-threatening diseases in the world. The introduction of highly active antiretroviral therapy has significantly reduced disease morbidity and mortality. However, most of the drugs have variable penetrance into viral reservoir sites, including gut-associated lymphoid tissue (GALT). Being the largest lymphoid organ, GALT plays a key role in early HIV infection and host-pathogen interaction. Many different treatment options have been proposed to eradicate the virus from GALT. However, it becomes difficult to deliver traditional drugs to the GALT because of its complex physiology. In this regard, we developed a polymer-based Pluronic nanocarrier containing anti-HIV drug called efavirenz (EFV) targeting Microfold cells (M-cells) in the GALT. M-cells are specialized epithelial cells that are predominantly present in the GALT. In this work, we have exploited this paracellular transport property of M-cells for targeted delivery of Pluronic nanocarrier tagged EFV, bioconjugated with anti-M-cell-specific antibodies to the GALT (nanodrug). Preliminary characterization showed that the nanodrug (EFV-F12-COOH) is of 140 nm size with 0.3 polydispersion index, and the zeta potential of the particles was -19.38±2.2 mV. Further, drug dissolution study has shown a significantly improved sustained release over free drugs. Binding potential of nanodrug with M-cell was also confirmed with fluorescence microscopy and in vitro uptake and release studies. The anti-HIV activity of the nanodrug was also significantly higher compared to that of free drug. This novel formulation was able to show sustained release of EFV and inhibit the HIV-1 infection in the GALT compared to the free drug. The present study has potential for our in vivo targeted nanodrug delivery system by combining traditional enteric-coated capsule technique via oral administration.

  9. Measles cases among adolescents in southern Pakistan 2012-2015: The case for revisiting vaccination strategies.

    Science.gov (United States)

    Shakoor, Sadia; Khan, Erum; Rajput, Muhammad Imran; Rahimoon, Wali Muhammad

    2017-07-03

    Surveillance of adult measles in Pakistan is a challenge as it does not enjoy the status of a reportable disease unlike childhood cases and therefore cases remain undetected and unreported or misdiagnosed. Consequently no data or estimates of young adult cases, seroprevalence, or estimates of susceptible preadolescent or young adult population exist. We have presented both laboratory conformed and clinically suspected cases of measles occurring in adolescents and adults in the southern province of Sindh in Pakistan. Through an examination of 2 independent databases, i.e. a laboratory database of measles IgM positive cases and clinically detected cases on surveillance performed by the Disease Early Warning System, we have analyzed and reported age-specific positivity rates from 2012 to 2015 in Sindh, Pakistan. High rates of laboratory confirmed measles were observed in those aged 9 y and younger. Among adolescents and adults, significantly higher positivity rates were observed among those aged 10-19 y. Clinically detected cases from Sindh showed similar distribution of cases. High burden of cases among children <9 y of age confirm that supplementary immunization activities (SIAs) among this age group are inadequate and need to be strengthened. Cases among those 10-19 y further demonstrate the need for consolidating SIAs with an additional strategy to vaccinate those who remain non-immune at college entry and in institutions where outbreaks can be prevented. Such measures are essential to achieving the goal of measles elimination in the country and region.

  10. Strategies to enhance immunogenicity of cDNA vaccine encoded antigens by modulation of antigen processing

    NARCIS (Netherlands)

    Platteel, Anouk C M; Marit de Groot, A; Andersen, Peter; Ovaa, Huib; Kloetzel, Peter M; Mishto, Michele; Sijts, Alice J A M

    2016-01-01

    Most vaccines are based on protective humoral responses while for intracellular pathogens CD8(+) T cells are regularly needed to provide protection. However, poor processing efficiency of antigens is often a limiting factor in CD8(+) T cell priming, hampering vaccine efficacy. The multistage cDNA

  11. Anamnestic responses in pigs to the Taenia solium TSOL18 vaccine and implications for control strategies.

    Science.gov (United States)

    Lightowlers, Marshall W; Donadeu, Meritxell; Elaiyaraja, M; Maithal, Kapil; Kumar, K Anand; Gauci, Charles G; Firestone, Simon M; Sarasola, Patxi; Rowan, Tim G

    2016-04-01

    Specific antibody responses were assessed in pigs immunized with the Taenia solium vaccine TSOL18. Anti-TSOL18 responses were compared 2 weeks after secondary immunization, where the interval between primary and secondary immunization was 4, 8, 12, 16 or 20 weeks. All animals responded to the vaccine and there was no diminution in antibody responses in animals receiving their second injection after an interval up to 20 weeks. Pigs receiving vaccinations at an interval of 12 weeks developed significantly increased antibody responses compared with animals receiving immunizations 4 weeks apart (P = 0.046). The ability to deliver TSOL18 vaccination effectively where the revaccination schedule can be delayed for up to 12-16 weeks in pigs increases the options available for designing T. solium control interventions that incorporate TSOL18 vaccination.

  12. Combinatorial synthetic peptide vaccine strategy protects against hypervirulent CovR/S mutant streptococci

    DEFF Research Database (Denmark)

    Pandey, Manisha; Mortensen, Rasmus; Calcutt, Ainslie

    2016-01-01

    -mediated killing and enabling ingress of bacteria from a superficial wound to deep tissue.We previously showed that a combination vaccine incorporating J8-DT (conserved peptide vaccine from theM protein) and a recombinant SpyCEP fragment protects against CovR/S mutants. To enhance the vaccine's safety profile, we......), and it would be to the organism's advantage if the host did not induce a strong Ab response against it. However, S2 conjugated to diphtheria toxoid is highly immunogenic and induces Abs that recognize and neutralize SpyCEP. Hence, we describe a two-component peptide vaccine that induces Abs (anti-S2....... This protection correlated with a significant influx of neutrophils to the infection site. The data strongly suggest that the lack of natural immunity to hypervirulent GAS strains in humans could be rectified by this combination vaccine....

  13. Cost-effectiveness of alternate strategies for childhood immunization against meningococcal disease with monovalent and quadrivalent conjugate vaccines in Canada.

    Directory of Open Access Journals (Sweden)

    Thomas E Delea

    Full Text Available Public health programs to prevent invasive meningococcal disease (IMD with monovalent serogroup C meningococcal conjugate vaccine (MCV-C and quadrivalent meningococcal conjugate vaccines (MCV-4 in infancy and adolescence vary across Canadian provinces. This study evaluated the cost-effectiveness of various vaccination strategies against IMD using current and anticipated future pricing and recent epidemiology.A cohort model was developed to estimate the clinical burden and costs (CAN$2014 of IMD in the Canadian population over a 100-year time horizon for three strategies: (1 MCV-C in infants and adolescents (MCV-C/C; (2 MCV-C in infants and MCV-4 in adolescents (MCV-C/4; and (3 MCV-4 in infants (2 doses and adolescents (MCV-4/4. The source for IMD incidence was Canadian surveillance data. The effectiveness of MCV-C was based on published literature. The effectiveness of MCV-4 against all vaccination regimens was assumed to be the same as for MCV-C regimens against serogroup C. Herd effects were estimated by calibration to estimates reported in prior analyses. Costs were from published sources. Vaccines prices were projected to decline over time reflecting historical procurement trends.Over the modeling horizon there are a projected 11,438 IMD cases and 1,195 IMD deaths with MCV-C/C; expected total costs are $597.5 million. MCV-C/4 is projected to reduce cases of IMD by 1,826 (16% and IMD deaths by 161 (13%. Vaccination costs are increased by $32 million but direct and indirect IMD costs are projected to be reduced by $46 million. MCV-C/4 is therefore dominant vs. MCV-C/C in the base case. Cost-effectiveness of MCV-4/4 was $111,286 per QALY gained versus MCV-C/4 (2575/206 IMD cases/deaths prevented; incremental costs $68 million.If historical trends in Canadian vaccines prices continue, use of MCV-4 instead of MCV-C in adolescents may be cost-effective. From an economic perspective, switching to MCV-4 as the adolescent booster should be considered.

  14. Cost-effectiveness of alternate strategies for childhood immunization against meningococcal disease with monovalent and quadrivalent conjugate vaccines in Canada.

    Science.gov (United States)

    Delea, Thomas E; Weycker, Derek; Atwood, Mark; Neame, Dion; Alvarez, Fabián P; Forget, Evelyn; Langley, Joanne M; Chit, Ayman

    2017-01-01

    Public health programs to prevent invasive meningococcal disease (IMD) with monovalent serogroup C meningococcal conjugate vaccine (MCV-C) and quadrivalent meningococcal conjugate vaccines (MCV-4) in infancy and adolescence vary across Canadian provinces. This study evaluated the cost-effectiveness of various vaccination strategies against IMD using current and anticipated future pricing and recent epidemiology. A cohort model was developed to estimate the clinical burden and costs (CAN$2014) of IMD in the Canadian population over a 100-year time horizon for three strategies: (1) MCV-C in infants and adolescents (MCV-C/C); (2) MCV-C in infants and MCV-4 in adolescents (MCV-C/4); and (3) MCV-4 in infants (2 doses) and adolescents (MCV-4/4). The source for IMD incidence was Canadian surveillance data. The effectiveness of MCV-C was based on published literature. The effectiveness of MCV-4 against all vaccination regimens was assumed to be the same as for MCV-C regimens against serogroup C. Herd effects were estimated by calibration to estimates reported in prior analyses. Costs were from published sources. Vaccines prices were projected to decline over time reflecting historical procurement trends. Over the modeling horizon there are a projected 11,438 IMD cases and 1,195 IMD deaths with MCV-C/C; expected total costs are $597.5 million. MCV-C/4 is projected to reduce cases of IMD by 1,826 (16%) and IMD deaths by 161 (13%). Vaccination costs are increased by $32 million but direct and indirect IMD costs are projected to be reduced by $46 million. MCV-C/4 is therefore dominant vs. MCV-C/C in the base case. Cost-effectiveness of MCV-4/4 was $111,286 per QALY gained versus MCV-C/4 (2575/206 IMD cases/deaths prevented; incremental costs $68 million). If historical trends in Canadian vaccines prices continue, use of MCV-4 instead of MCV-C in adolescents may be cost-effective. From an economic perspective, switching to MCV-4 as the adolescent booster should be considered.

  15. The Immunity Community: A Community Engagement Strategy for Reducing Vaccine Hesitancy.

    Science.gov (United States)

    Schoeppe, Jennie; Cheadle, Allen; Melton, Mackenzie; Faubion, Todd; Miller, Creagh; Matthys, Juno; Hsu, Clarissa

    2017-09-01

    Parental concerns about vaccine safety have grown in the United States and abroad, resulting in delayed or skipped immunizations (often called "vaccine hesitancy"). To address vaccine hesitancy in Washington State, a public-private partnership of health organizations implemented and evaluated a 3-year community intervention, called the "Immunity Community." The intervention mobilized parents who value immunization and provided them with tools to engage in positive dialogue about immunizations in their communities. The evaluation used qualitative and quantitative methods, including focus groups, interviews, and pre and post online surveys of parents, to assess perceptions about and reactions to the intervention, assess facilitators and barriers to success, and track outcomes including parental knowledge and attitudes. The program successfully engaged parent volunteers to be immunization advocates. Surveys of parents in the intervention communities showed statistically significant improvements in vaccine-related attitudes: The percentage concerned about other parents not vaccinating their children increased from 81.2% to 88.6%, and the percentage reporting themselves as "vaccine-hesitant" decreased from 22.6% to 14.0%. There were not statistically significant changes in parental behaviors. This study demonstrates the promise of using parent advocates as part of a community-based approach to reduce vaccine hesitancy.

  16. The cost-effectiveness of two strategies for vaccinating US veterans with hepatitis C virus infection against hepatitis A and hepatitis B viruses.

    Science.gov (United States)

    Jakiche, Rita; Borrego, Matthew E; Raisch, Dennis W; Gupchup, Gireesh V; Pai, Manjunath A; Jakiche, Antoine

    2007-01-01

    Although hepatitis A and B vaccinations are recommended for patients with chronic hepatitis C virus (HCV), the ideal vaccination strategy has not been determined. Our objective was to model the cost-effectiveness of two strategies for vaccinating patients with HCV infection against hepatitis A (HAV) and hepatitis B (HBV) viruses. The strategies evaluated were: universal vaccination with the combined HAV and HBV vaccine, and selective vaccination based on immunity determined by blood testing. A decision tree model was constructed to compare the cost-effectiveness of the two vaccination strategies from the New Mexico Veterans Affairs Health Care System (NMVAHCS) perspective. A retrospective review of all HCV patients (2517 subjects) at the NMVAHCS was performed to extract prevalence of immunity to HAV and HBV, and prevalence of decompensated liver disease. Literature review was performed to obtain other probabilities for the model. Only direct medical costs were considered; the effectiveness measure was the number of patients immune to both HAV and HBV. Sensitivity analyses were performed to test robustness of the results to changes in input variables. All costs were in 2004 US dollars. The selective strategy was less costly but less effective, with a cost-effectiveness ratio of 105 dollars per patient immune to HAV and HBV. The universal strategy was more effective but more expensive with a cost-effectiveness ratio of 112 dollars per patient immune to HAV and HBV. Compared with the selective strategy, universal strategy was associated with an incremental cost-effectiveness (ICE) ratio of 154 dollars per additional patient immune to HAV and HBV. The universal strategy would become more cost-effective if 1) the cost of combined vaccine was reduced to less than 30.75 dollars (9.7% reduction), 2) the cost of HBV vaccine increased to greater than 34.50 dollars (25% increase), 3) the cost of blood tests for immunity increased to more than 25.25 dollars (23% increase), or

  17. Formative research and development of an evidence-based communication strategy: the introduction of Vi typhoid fever vaccine among school-aged children in Karachi, Pakistan.

    Science.gov (United States)

    Pach, Alfred; Tabbusam, Ghurnata; Khan, M Imran; Suhag, Zamir; Hussain, Imtiaz; Hussain, Ejaz; Mumtaz, Uzma; Haq, Inam Ul; Tahir, Rehman; Mirani, Amjad; Yousafzai, Aisha; Sahastrabuddhe, Sushant; Ochiai, R Leon; Soofi, Sajid; Clemens, John D; Favorov, Michael O; Bhutta, Zulfiqar A

    2013-01-01

    The authors conducted formative research (a) to identify stakeholders' concerns related to typhoid fever and the need for disease information and (b) to develop a communication strategy to inform stakeholders and address their concerns and motivate for support of a school-based vaccination program in Pakistan. Data were collected during interactive and semi-structured focus group discussions and interviews, followed by a qualitative analysis and multidisciplinary consultative process to identify an effective social mobilization strategy comprised of relevant media channels and messages. The authors conducted 14 focus group discussions with the parents of school-aged children and their teachers, and 13 individual interviews with school, religious, and political leaders. Parents thought that typhoid fever was a dangerous disease, but were unsure of their children's risk. They were interested in vaccination and were comfortable with a school-based vaccination if conducted under the supervision of trained and qualified staff. Teachers and leaders needed information on typhoid fever, the vaccine, procedures, and sponsors of the vaccination program. Meetings were considered the best form of information dissemination, followed by printed materials and mass media. This study shows how qualitative research findings can be translated into an effective social mobilization and communication approach. The findings of the research indicated the importance of increasing awareness of typhoid fever and the benefits of vaccination against the disease. Identification and dissemination of relevant, community-based disease and vaccination information will increase demand and use of vaccination.

  18. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    DEFF Research Database (Denmark)

    Schmidt, Signe Tandrup; Foged, Camilla; Korsholm, Karen Smith

    2016-01-01

    be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode......The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens...... of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the specific PRR expression profile of the target APCs. Here, we review state-of-the-art formulation approaches employed for the inclusion of immunostimulators and subunit...

  19. Factors affecting the implementation of childhood vaccination communication strategies in Nigeria: a qualitative study.

    Science.gov (United States)

    Oku, Afiong; Oyo-Ita, Angela; Glenton, Claire; Fretheim, Atle; Eteng, Glory; Ames, Heather; Muloliwa, Artur; Kaufman, Jessica; Hill, Sophie; Cliff, Julie; Cartier, Yuri; Bosch-Capblanch, Xavier; Rada, Gabriel; Lewin, Simon

    2017-02-15

    The role of health communication in vaccination programmes cannot be overemphasized: it has contributed significantly to creating and sustaining demand for vaccination services and improving vaccination coverage. In Nigeria, numerous communication approaches have been deployed but these interventions are not without challenges. We therefore aimed to explore factors affecting the delivery of vaccination communication in Nigeria. We used a qualitative approach and conducted the study in two states: Bauchi and Cross River States in northern and southern Nigeria respectively. We identified factors affecting the implementation of communication interventions through interviews with relevant stakeholders involved in vaccination communication in the health services. We also reviewed relevant documents. Data generated were transcribed verbatim and analysed using thematic analysis. We used the SURE framework to organise the identified factors (barriers and facilitators) affecting vaccination communication delivery. We then grouped these into health systems and community level factors. Some of the commonly reported health system barriers amongst stakeholders interviewed included: funding constraints, human resource factors (health worker shortages, training deficiencies, poor attitude of health workers and vaccination teams), inadequate infrastructure and equipment and weak political will. Community level factors included the attitudes of community stakeholders and of parents and caregivers. We also identified factors that appeared to facilitate communication activities. These included political support, engagement of traditional and religious institutions and the use of organised communication committees. Communication activities are a crucial element of immunization programmes. It is therefore important for policy makers and programme managers to understand the barriers and facilitators affecting the delivery of vaccination communication so as to be able to implement

  20. Strategies for vaccination of family poultry against Newcastle disease in Africa

    International Nuclear Information System (INIS)

    Alders, R.G.

    2002-01-01

    Criteria for the selection of vaccines against Newcastle disease (ND) appropriate for use in village chickens are discussed. Emphasis is given to the need to ensure that the selected vaccine is used successfully in the field. Those implementing ND control activities are encouraged to collaborate with all stakeholders and to develop comprehensive training and extension programs for field workers and farmers. Issues of cost-recovery and cost-minimisation are also discussed. (author)

  1. The Italian alliance for vaccination strategies: Facebook as a learning tool for preventive medicine and public health.

    Science.gov (United States)

    La Torre, Giuseppe; Miccoli, Silvia; Ricciardi, Walter

    2014-01-01

    The Italian Alliance of vaccination strategies project was born with the aim of informing healthcare workers and the general population about vaccination through Facebook. The evaluation of the account has been carried out using 3 indicators: friend membership, numbers of "I like," and amount of "share" of contents for type of news and for day of the week. The survey was performed on 743 users. Institutional events were the most popular type of news; the day of the week in which users were most likely to be attracted by links was Friday. Press releases were the communication form most shared by users. Social media marketing carries the advantages of low cost, rapid transmission and user interaction.

  2. HPV.edu study protocol: a cluster randomised controlled evaluation of education, decisional support and logistical strategies in school-based human papillomavirus (HPV) vaccination of adolescents.

    Science.gov (United States)

    Skinner, S Rachel; Davies, Cristyn; Cooper, Spring; Stoney, Tanya; Marshall, Helen; Jones, Jane; Collins, Joanne; Hutton, Heidi; Parrella, Adriana; Zimet, Gregory; Regan, David G; Whyte, Patti; Brotherton, Julia M L; Richmond, Peter; McCaffrey, Kirsten; Garland, Suzanne M; Leask, Julie; Kang, Melissa; Braunack-Mayer, Annette; Kaldor, John; McGeechan, Kevin

    2015-09-15

    The National Human Papillomavirus (HPV) Vaccination Program in Australia commenced in 2007 for females and in 2013 for males, using the quadrivalent HPV vaccine (HPV 6,11,16,18). Thus far, we have demonstrated very substantial reductions in genital warts and in the prevalence of HPV among young Australian women, providing early evidence for the success of this public health initiative. Australia has a long history of school-based vaccination programs for adolescents, with comparatively high coverage. However, it is not clear what factors promote success in a school vaccination program. The HPV.edu study aims to examine: 1) student knowledge about HPV vaccination; 2) psycho-social outcomes and 3) vaccination uptake. HPV.edu is a cluster randomised trial of a complex intervention in schools aiming to recruit 40 schools with year-8 enrolments above 100 students (approximately 4400 students). The schools will be stratified by Government, Catholic, and Independent sectors and geographical location, with up to 20 schools recruited in each of two states, Western Australia (WA) and South Australia (SA), and randomly allocated to intervention or control (usual practice). Intervention schools will receive the complex intervention which includes an adolescent intervention (education and distraction); a decisional support tool for parents and adolescents and logistical strategies (consent form returns strategies, in-school mop-up vaccination and vaccination-day guidelines). Careful process evaluation including an embedded qualitative evaluation will be undertaken to explore in depth possible mechanisms for any observed effect of the intervention on primary and secondary outcomes. This study is the first to evaluate the relative effectiveness of various strategies to promote best practice in school-based vaccination against HPV. The study aims to improve vaccination-related psychosocial outcomes, including adolescent knowledge and attitudes, decision-making involvement, self

  3. Assessing vaccination as a control strategy in an ongoing epidemic: Bovine tuberculosis in African buffalo

    Science.gov (United States)

    Cross, Paul C.; Getz, W.M.

    2006-01-01

    Bovine tuberculosis (BTB) is an exotic disease invading the buffalo population (Syncerus caffer) of the Kruger National Park (KNP), South Africa. We used a sex and age-structured epidemiological model to assess the effectiveness of a vaccination program and define important research directions. The model allows for dispersal between a focal herd and background population and was parameterized with a combination of published data and analyses of over 130 radio-collared buffalo in the central region of the KNP. Radio-tracking data indicated that all sex and age categories move between mixed herds, and males over 8 years old had higher mortality and dispersal rates than any other sex or age category. In part due to the high dispersal rates of buffalo, sensitivity analyses indicate that disease prevalence in the background population accounts for the most variability in the BTB prevalence and quasi-eradication within the focal herd. Vaccination rate and the transmission coefficient were the second and third most important parameters of the sensitivity analyses. Further analyses of the model without dispersal suggest that the amount of vaccination necessary for quasi-eradication (i.e. prevalence 70% of the calf population would have to be vaccinated every year to reduce the prevalence to less than 1%. If the half-life of the vaccine is less than 5 years, even vaccinating every calf for 50 years may not eradicate BTB. Thus, although vaccination provides a means of controlling BTB prevalence it should be combined with other control measures if eradication is the objective.

  4. ANN multiscale model of anti-HIV drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks.

    Science.gov (United States)

    González-Díaz, Humberto; Herrera-Ibatá, Diana María; Duardo-Sánchez, Aliuska; Munteanu, Cristian R; Orbegozo-Medina, Ricardo Alfredo; Pazos, Alejandro

    2014-03-24

    This work is aimed at describing the workflow for a methodology that combines chemoinformatics and pharmacoepidemiology methods and at reporting the first predictive model developed with this methodology. The new model is able to predict complex networks of AIDS prevalence in the US counties, taking into consideration the social determinants and activity/structure of anti-HIV drugs in preclinical assays. We trained different Artificial Neural Networks (ANNs) using as input information indices of social networks and molecular graphs. We used a Shannon information index based on the Gini coefficient to quantify the effect of income inequality in the social network. We obtained the data on AIDS prevalence and the Gini coefficient from the AIDSVu database of Emory University. We also used the Balaban information indices to quantify changes in the chemical structure of anti-HIV drugs. We obtained the data on anti-HIV drug activity and structure (SMILE codes) from the ChEMBL database. Last, we used Box-Jenkins moving average operators to quantify information about the deviations of drugs with respect to data subsets of reference (targets, organisms, experimental parameters, protocols). The best model found was a Linear Neural Network (LNN) with values of Accuracy, Specificity, and Sensitivity above 0.76 and AUROC > 0.80 in training and external validation series. This model generates a complex network of AIDS prevalence in the US at county level with respect to the preclinical activity of anti-HIV drugs in preclinical assays. To train/validate the model and predict the complex network we needed to analyze 43,249 data points including values of AIDS prevalence in 2,310 counties in the US vs ChEMBL results for 21,582 unique drugs, 9 viral or human protein targets, 4,856 protocols, and 10 possible experimental measures.

  5. Two-dimensional IR spectroscopy of the anti-HIV agent KP1212 reveals protonated and neutral tautomers that influence pH-dependent mutagenicity

    OpenAIRE

    Peng, Chunte Sam; Fedeles, Bogdan I.; Singh, Vipender; Li, Deyu; Amariuta, Tiffany; Essigmann, John M.; Tokmakoff, Andrei

    2015-01-01

    The anti-HIV drug KP1212 was designed to intentionally increase the mutation rate of HIV, thereby causing viral population collapse. Its mutagenicity and thus antiviral activity was proposed to be the result of tautomerization. We used 2D IR spectroscopy to identify rapidly interconverting tautomers under physiological conditions. The traditionally rare enol–imino tautomer for nucleobases was found to be the major species for KP1212, providing a structural support for the tautomer hypothesis....

  6. Challenges in integrating component level technology and system level information from Ayurveda: Insights from NMR phytometabolomics and anti-HIV potential of select Ayurvedic medicinal plants.

    Science.gov (United States)

    Jayasundar, Rama; Ghatak, Somenath; Makhdoomi, Muzamil Ashraf; Luthra, Kalpana; Singh, Aruna; Velpandian, Thirumurthy

    2018-01-03

    Information from Ayurveda meeting the analytical challenges of modern technology is an area of immense relevance. Apart from the cerebral task of bringing together two different viewpoints, the question at the pragmatic level remains 'who benefits whom'. The aim is to highlight the challenges in integration of information (Ayurvedic) and technology using test examples of Nuclear Magnetic Resonance (NMR) metabolomics and anti-HIV-1 potential of select Ayurvedic medicinal plants. The other value added objective is implications and relevance of such work for Ayurveda. Six medicinal plants (Azadirachta indica, Tinospora cordifolia, Swertia chirata, Terminalia bellerica, Zingiber officinale and Symplocos racemosa) were studied using high resolution proton NMR spectroscopy based metabolomics and also evaluated for anti-HIV-1 activity on three pseudoviruses (ZM53 M.PB12, ZM109F.PB4, RHPA 4259.7). Of the six plants, T.bellerica and Z.officinale showed minimum cell cytotoxicity and maximum anti-HIV-1 potential. T.bellerica was effective against all the three HIV-1 pseudoviruses. Untargeted NMR profiling and multivariate analyses demonstrated that the six plants, all of which had different Ayurvedic pharmacological properties, showed maximum differences in the aromatic region of the spectra. The work adds onto the list of potential plants for anti-HIV-1 drug molecules. At the same time, it has drawn attention to the different perspectives of Ayurveda and Western medicine underscoring the inherent limitations of conceptual bilinguism between the two systems, especially in the context of medicinal plants. The study has also highlighted the potential of NMR metabolomics in study of plant extracts as used in Ayurveda. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  7. Attitudes toward Shock Advertising of Western-European and Serbian University Students With Regard To Public Health Context (Anti-Smoking and Anti-HIV/AIDS Campaigns)

    OpenAIRE

    Krstic, Tamara

    2007-01-01

    The main objective of this dissertation is to examine attitudes toward shock advertising of western-European and Serbian university students with regard to public health context (anti-smoking and anti-HIV/AIDS campaigns). Although the use of shock advertising is widely adopted in practice, there has not been extensive research with regard to this topic. Public health context is of special interest in this dissertation as there is an urge for social marketing on Serbian market. The results of ...

  8. Genetically Thermo-Stabilised, Immunogenic Poliovirus Empty Capsids; a Strategy for Non-replicating Vaccines.

    Directory of Open Access Journals (Sweden)

    Helen Fox

    2017-01-01

    Full Text Available While wild type polio has been nearly eradicated there will be a need to continue immunisation programmes for some time because of the possibility of re-emergence and the existence of long term excreters of poliovirus. All vaccines in current use depend on growth of virus and most of the non-replicating (inactivated vaccines involve wild type viruses known to cause poliomyelitis. The attenuated vaccine strains involved in the eradication programme have been used to develop new inactivated vaccines as production is thought safer. However it is known that the Sabin vaccine strains are genetically unstable and can revert to a virulent transmissible form. A possible solution to the need for virus growth would be to generate empty viral capsids by recombinant technology, but hitherto such particles are so unstable as to be unusable. We report here the genetic manipulation of the virus to generate stable empty capsids for all three serotypes. The particles are shown to be extremely stable and to generate high levels of protective antibodies in animal models.

  9. Key issues for estimating the impact and cost-effectiveness of seasonal influenza vaccination strategies.

    Science.gov (United States)

    Jit, Mark; Newall, Anthony T; Beutels, Philippe

    2013-04-01

    Many countries have considered or are considering modifying their seasonal influenza immunization policies. Estimating the impact of such changes requires understanding the existing clinical and economic burden of influenza, as well as the potential impact of different vaccination options. Previous studies suggest that vaccinating clinical risk groups, health care workers, children and the elderly may be cost-effective. However, challenges in such estimation include: (1) potential cases are not usually virologically tested; (2) cases have non-specific symptoms and are rarely reported to surveillance systems; (3) endpoints for influenza proxies (such as influenza-like illness) need to be matched to case definitions for treatment costs, (4) disease burden estimates vary from year to year with strain transmissibility, virulence and prior immunity, (5) methods to estimate productivity losses due to influenza vary, (6) vaccine efficacy estimates from trials differ due to variation in subtype prevalence, vaccine match and case ascertainment, and (7) indirect (herd) protection from vaccination depends on setting-specific variables that are difficult to directly measure. Given the importance of knowing the impact of changes to influenza policy, such complexities need careful treatment using tools such as population-based trial designs, meta-analyses, time-series analyses and transmission dynamic models.

  10. The green vaccine: A global strategy to combat infectious and autoimmune diseases

    Science.gov (United States)

    Davoodi-Semiromi, Abdoreza; Samson, Nalapalli; Daniell, Henry

    2009-01-01

    Plant derived oral green vaccines eliminate expenses associated with fermenters, purification, cold storage/transportation and sterile delivery. Green vaccines are expressed via the plant nuclear or chloroplast genomes. Chloroplast expression has advantages of hyper-expression of therapeutic proteins (10,000 copies of trans-gene per cell), efficient oral delivery and transgene containment via maternal inheritance. To date, 23 vaccine antigens against 16 different bacterial, viral or protozoan pathogens have been expressed in chloroplasts. Mice subcutaneously immunized with the chloroplast derived anthrax protective antigen conferred 100% protection against lethal doses of the anthrax toxin. Oral immunization (ORV) of F1-V antigens without adjuvant conferred greater protection (88%) against 50-fold lethal dose of aerosolized plague (Yersinia pestis) than subcutaneous (SQV) immunization (33%). Oral immunization of malarial vaccine antigens fused to the cholera antigen (CTB-AMA1/CTB-Msp1) conferred prolonged immunity (50% life span), 100% protection against cholera toxin challenge and inhibited proliferation of the malarial parasite. Protection was correlated with antigen-specific titers of intestinal, serum IgA & IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. High level expression in edible plant chloroplasts ideal for oral delivery and long-term immunity observed should facilitate development of low cost human vaccines for large populations, at times of outbreak. PMID:19430198

  11. Synergistic activity profile of carbosilane dendrimer G2-STE16 in combination with other dendrimers and antiretrovirals as topical anti-HIV-1 microbicide.

    Science.gov (United States)

    Sepúlveda-Crespo, Daniel; Lorente, Raquel; Leal, Manuel; Gómez, Rafael; De la Mata, Francisco J; Jiménez, José Luis; Muñoz-Fernández, M Ángeles

    2014-04-01

    Polyanionic carbosilane dendrimers represent opportunities to develop new anti-HIV microbicides. Dendrimers and antiretrovirals (ARVs) acting at different stages of HIV replication have been proposed as compounds to decrease new HIV infections. Thus, we determined the potential use of our G2-STE16 carbosilane dendrimer in combination with other carbosilane dendrimers and ARVs for the use as topical microbicide against HIV-1. We showed that these combinations obtained 100% inhibition and displayed a synergistic profile against different HIV-1 isolates in our model of TZM.bl cells. Our results also showed their potent activity in the presence of an acidic vaginal or seminal fluid environment and did not activate an inflammatory response. This study is the first step toward exploring the use of different anionic carbosilane dendrimers in combination and toward making a safe microbicide. Therefore, our results support further studies on dendrimer/dendrimer or dendrimer/ARV combinations as topical anti-HIV-1 microbicide. This paper describes the first steps toward the use of anionic carbosilane dendrimers in combination with antivirals to address HIV-1, paving the way to further studies on dendrimer/dendrimer or dendrimer/ARV combinations as topical anti-HIV-1 microbicides. © 2014.

  12. Innovative vaccine delivery strategies in response to a cholera outbreak in the challenging context of Lake Chilwa. A rapid qualitative assessment.

    Science.gov (United States)

    Heyerdahl, Leonard W; Ngwira, Bagrey; Demolis, Rachel; Nyirenda, Gabriel; Mwesawina, Maurice; Rafael, Florentina; Cavailler, Philippe; Bernard Le Gargasson, Jean; Mengel, Martin A; Gessner, Bradford D; Guillermet, Elise

    2017-11-07

    A reactive campaign using two doses of Shanchol Oral Cholera Vaccine (OCV) was implemented in 2016 in the Lake Chilwa Region (Malawi) targeting fish dependent communities. Three strategies for the second vaccine dose delivery (including delivery by a community leader and self-administration) were used to facilitate vaccine access. This assessment collected vaccine perceptions and opinions about the OCV campaign of 313 study participants, including: fishermen, fish traders, farmers, community leaders, and one health and one NGO officer. Socio-demographic surveys were conducted, In Depth Interviews and Focus Group Discussions were conducted before and during the campaign. Some fishermen perceived the traditional delivery strategy as reliable but less practical. Delivery by traditional leaders was acceptable for some participants while others worried about traditional leaders not being trained to deliver vaccines or beneficiaries taking doses on their own. A slight majority of beneficiaries considered the self-administration strategy practical while some beneficiaries worried about storing vials outside of the cold chain or losing vials. During the campaign, a majority of participants preferred receiving oral vaccines instead of injections given ease of intake and lack of pain. OCV was perceived as efficacious and safe. However, a lack of information on how sero-protection may be delayed and the degree of sero-protection led to loss of trust in vaccine potency among some participants who witnessed cholera cases among vaccinated individuals. OCV campaign implementation requires accompanying communication on protective levels, less than 100% vaccine efficacy, delays in onset of sero-protection, and out of cold chain storage. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine.

    Directory of Open Access Journals (Sweden)

    Babu Ramanathan

    Full Text Available Dengue virus (DENV is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine.

  14. Prevention of foot-and-mouth disease in cattle using a prime-boot-vaccination strategy

    DEFF Research Database (Denmark)

    Gullberg, Maria; Lohse, Louise; Bøtner, Anette

    Foot-and-mouth disease (FMD) is one of the most economically important infectious diseases of production animals globally. Vaccination can help to control this disease, however, current vaccines are imperfect. They are made using chemically inactivated FMD virus (FMDV) that is produced in mammalian...... cell culture under high containment. Here, we have expressed the FMDV capsid protein precursor (P1-2A) of strain O1 Manisa alone or with the FMDV 3C protease (3Cpro) using a “single cycle” packaged alphavirus self-replicating RNA based on Semliki Forest virus (SFV). When the FMDV P1-2A was expressed...... with 3Cpro then processing of the FMDV capsid precursor protein is observed within cells and the proteins assemble into empty capsid particles. In cattle vaccinated once with these rSFV-FMDV vectors alone, anti-FMDV antibodies were elicited but the immune response was insufficient to give protection...

  15. The immune response to parasitic helminths of veterinary importance and its potential manipulation for future vaccine control strategies.

    Science.gov (United States)

    Foster, Neil; Elsheikha, Hany M

    2012-05-01

    Despite the increasing knowledge of the immunobiology and epidemiology of parasitic helminths of the gastrointestinal system and the cardiorespiratory system, complications arising from infections of animals and humans with these parasites are a major clinical and economic problem. This has been attributed to the high incidence of these parasites, the widespread emergence of multi-drug resistant parasite strains and the lack of effective vaccines. Efforts to develop and produce vaccines against virtually all helminths (with the exception of Dictyocaulus viviparus and some cestode species) have been hindered by the complexity of the host-parasite relationship, and incomplete understanding of the molecular and immune regulatory pathways associated with the development of protective immunity against helminths. Novel genomic and proteomic technologies have provided opportunities for the discovery and characterisation of effector mechanisms and molecules that govern the host-parasite interactions in these two body systems. Such knowledge provided clues on how appropriate and protective responses are elicited against helminths and, thus, may lead to the development of effective therapeutic strategies. Here, we review advances in the immune response to selected helminths of animal health significance, and subsequent vaccine potential. The topics addressed are important for understanding how helminths interact with host immune defences and also are relevant for understanding the pathogenesis of diseases caused by helminths.

  16. Stimuli-sensitive thiolated hyaluronic acid based nanofibers: synthesis, preclinical safety and in vitro anti-HIV activity.

    Science.gov (United States)

    Agrahari, Vivek; Meng, Jianing; Ezoulin, Miezan Jm; Youm, Ibrahima; Dim, Daniel C; Molteni, Agostino; Hung, Wei-Ting; Christenson, Lane K; Youan, Bi-Botti C

    2016-11-01

    To develop a seminal enzyme bioresponsive, mucoadhesive nanofibers (NFs) as safe and effective nanocarriers for the prevention of HIV vaginal transmission. A novel thiolated hyaluronic acid (HA-SH) polymer was synthesized to fabricate tenofovir (TFV)-loaded electrospun NFs (HA-SH-NFs) and characterized in vitro/in vivo. A triggered drug release (87% w/w) from the engineered HA-SH-NFs (mean diameter ∼75 nm) occured within 1 h under the influence of seminal hyaluronidase enzyme. HA-SH-NFs were noncytotoxic, induced no damage on the C57BL/6 mice genital-tract and other organs. No significant CD45 cell-infiltration and changes in cytokines level in cervicovaginal tissues were observed. HA-SH-NFs significantly enhanced both TFV retention and bioavailability in vaginal tissue compared with the 1% TFV-gel. The anti-HIV activity of TFV (on pseudotyped virus followed by luciferase assay) was not adversely affected by the electrospinning process. HA-SH-NFs developed in this study could potentially serve as a safe nanotemplate for topical intravaginal delivery of HIV/AIDS microbicides.

  17. Amperometric sensing of anti-HIV drug zidovudine on Ag nanofilm-multiwalled carbon nanotubes modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir; Afraz, Ahmadreza

    2014-06-01

    The zidovudine (ZDV) is the first drug approved for the treatment of HIV virus infection. The detection and determination of this drug are very importance in human serum because of its undesirable effects. A new ZDV sensor was fabricated on the basis of nanocomposite of silver nanofilm (Ag-NF) and multiwalled carbon nanotubes (MWCNTs) immobilized on glassy carbon electrode (GCE). The modified electrodes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), cyclic voltammetry (CV), and linear sweep voltammetry (LSV) techniques. Results showed that the electrodeposited silver has a nanofilm structure and further electrochemical studies showed that the prepared nanocomposite has high electrocatalytic activity and is appropriate for using in sensors. The amperometric technique under optimal conditions is used for the determination of ZDV ranging from 0.1 to 400 ppm (0.37 μM–1.5 mM) with a low detection limit of 0.04 ppm (0.15 μM) (S/N = 3) and good sensitivity. The prepared sensor possessed accurate and rapid response to ZDV and shows an average recovery of 98.6% in real samples. - Highlights: • New anti-HIV drug sensor was fabricated on the basis of nanomaterials composite. • The GCE modified by prepared hydrophilic MWCNT silver nanoparticles. • Silver nanofilm electrodeposited on MWCNT/GCE and characterized by SEM, EDX, CV and LSV • Response of electrode to ZDV was thoroughly investigated by electrochemical techniques.

  18. Electrochemical studies of nevirapine, an anti-HIV drug, and its assay in tablets and biological samples

    Directory of Open Access Journals (Sweden)

    JALDAPPAGARI SEETHARAMAPPA

    2012-06-01

    Full Text Available The electrochemical oxidation of nevirapine, an anti-HIV drug, at a glassy carbon electrode has been studied by voltammetric techniques. Nevirapine showed one well defined irreversible oxidation peak with a potential of 0.749 V in phosphate buffer at pH 10. The effects of different electrolytes, pH and scan rate on the electrochemical behaviour of nevira¬pine were examined to determine the optimum reaction conditions. The oxidation peak current was found to vary linearly with the concentration of nevirapine in the range of 5.0 – 350 µM. The limit of detection and limit of quantification values were calculated and found to be 1.026 µM and 3.420 µM, respectively. The low relative standard deviation values of inter-day and intra-day assays highlighted the good reproducibility of the proposed m¬ethod for assay of nevirapine. Further, a sensitive and accurate differential pulse voltammetric method was developed for the determination of nevirapine concentrations in pharma¬ceutical formulations.

  19. Nullbasic, a potent anti-HIV tat mutant, induces CRM1-dependent disruption of HIV rev trafficking.

    Directory of Open Access Journals (Sweden)

    Min-Hsuan Lin

    Full Text Available Nullbasic, a mutant of the HIV-1 Tat protein, has anti-HIV-1 activity through mechanisms that include inhibition of Rev function and redistribution of the HIV-1 Rev protein from the nucleolus to the nucleoplasm and cytoplasm. Here we investigate the mechanism of this effect for the first time, establishing that redistribution of Rev by Nullbasic is not due to direct interaction between the two proteins. Rather, Nullbasic affects subcellular localization of cellular proteins that regulate Rev trafficking. In particular, Nullbasic induced redistribution of exportin 1 (CRM1, nucleophosmin (B23 and nucleolin (C23 from the nucleolus to the nucleus when Rev was coexpressed, but never in its absence. Inhibition of the Rev:CRM1 interaction by leptomycin B or a non-interacting RevM10 mutant completely blocked redistribution of Rev by Nullbasic. Finally, Nullbasic did not inhibit importin β- or transportin 1-mediated nuclear import, suggesting that cytoplasmic accumulation of Rev was due to increased export by CRM1. Overall, our data support the conclusion that CRM1-dependent subcellular redistribution of Rev from the nucleolus by Nullbasic is not through general perturbation of either nuclear import or export. Rather, Nullbasic appears to interact with and disrupt specific components of a Rev trafficking complex required for its nucleocytoplasmic shuttling and, in particular, its nucleolar accumulation.

  20. Qualitative and quantitative intravaginal targeting: key to anti-HIV-1 microbicide delivery from test tube to in vivo success.

    Science.gov (United States)

    Pillay, Viness; Mashingaidze, Felix; Choonara, Yahya E; Du Toit, Lisa C; Buchmann, Eckhart; Maharaj, Vinesh; Ndesendo, Valence M K; Kumar, Pradeep

    2012-06-01

    The past decade has seen several effective anti-HIV-1 agent discoveries, yet microbicides continue to disappoint clinically. Our review expounds the view that unsatisfactory microbicide failures may be a result of inefficient delivery systems employed. We hereby propose a thorough scientific qualitative and quantitative investigation of important aspects involved in HIV-1 transmission as a prerequisite for microbicide delivery. Intravaginal targeting of HIV-1 increases the chances of microbicide success, wherein vaginal microenvironmental factors including pH should be maintained at HIV-1 prohibitive acidic levels simultaneously to ward off other sexually transmitted diseases, which compromise vaginal epithelial barrier properties. Furthermore, choice of receptors to target both on HIV-1 and on target cells is vital in deterring transmission. Appropriate modeling of virus-target cell interactions as well as targeting early stages of the HIV-1 infection accompanied by computation and delivery of appropriate microbicide quantities could revolutionize microbicide research, ultimately delivering a female-controlled HIV-1 prevention modality appropriately. Copyright © 2012 Wiley Periodicals, Inc.

  1. A new strategy based on SmRho protein loaded chitosan nanoparticles as a candidate oral vaccine against schistosomiasis.

    Directory of Open Access Journals (Sweden)

    Carolina R Oliveira

    Full Text Available BACKGROUND: Schistosomiasis is one of the most important neglected tropical diseases and an effective control is unlikely in the absence of improved sanitation and vaccination. A new approach of oral vaccination with alginate coated chitosan nanoparticles appears interesting because their great stability and the ease of target accessibility, besides of chitosan and alginate immunostimulatory properties. Here we propose a candidate vaccine based on the combination of chitosan-based nanoparticles containing the antigen SmRho and coated with sodium alginate. METHODS AND FINDINGS: Our results showed an efficient performance of protein loading of nanoparticles before and after coating with alginate. Characterization of the resulting nanoparticles reported a size around 430 nm and a negative zeta potential. In vitro release studies of protein showed great stability of coated nanoparticles in simulated gastric fluid (SGF and simulated intestinal fluid (SIF. Further in vivo studies was performed with different formulations of chitosan nanoparticles and it showed that oral immunization was not able to induce high levels of antibodies, otherwise intramuscular immunization induced high levels of both subtypes IgG1 and IgG2a SmRho specific antibodies. Mice immunized with nanoparticles associated to CpG showed significant modulation of granuloma reaction. Mice from all groups immunized orally with nanoparticles presented significant levels of protection against infection challenge with S. mansoni worms, suggesting an important role of chitosan in inducing a protective immune response. Finally, mice immunized with nanoparticles associated with the antigen SmRho plus CpG had 38% of the granuloma area reduced and also presented 48% of protection against of S. mansoni infection. CONCLUSIONS: Taken together, this results support this new strategy as an efficient delivery system and a potential vaccine against schistosomiasis.

  2. Is an HIV vaccine possible?

    Directory of Open Access Journals (Sweden)

    Nancy A. Wilson

    Full Text Available The road to the discovery of a vaccine for HIV has been arduous and will continue to be difficult over the ensuing twenty years. Most vaccines are developed by inducing neutralizing antibodies against the target pathogen or by using attenuated strains of the particular pathogen to engender a variety of protective immune responses. Unfortunately, simple methods of generating anti-HIV antibodies have already failed in a phase III clinical trial. While attenuated SIV variants work well against homologous challenges in non-human primates, the potential for reversion to a more pathogenic virus and recombination with challenge viruses will preclude the use of attenuated HIV in the field. It has been exceedingly frustrating to vaccinate for HIV-specific neutralizing antibodies given the enormous diversity of the Envelope (Env glycoprotein and its well-developed glycan shield. However, there are several antibodies that will neutralize many different strains of HIV and inducing these types of antibodies in vaccinees remains the goal of a vigorous effort to develop a vaccine for HIV based on neutralizing antibodies. Given the difficulty in generating broadly reactive neutralizing antibodies, the HIV vaccine field has turned its attention to inducing T cell responses against the virus using a variety of vectors. Unfortunately, the results from Merck's phase IIb STEP trial proved to be disappointing. Vaccinees received Adenovirus type 5 (Ad5 expressing Gag, Pol, and Nef of HIV. This vaccine regimen failed to either prevent infection or reduce the level of HIV replication after challenge. These results mirrored those in non-human primate testing of Ad5 using rigorous SIV challenge models. This review will focus on recent developments in HIV vaccine development. We will deal largely with attempts to develop a T cell-based vaccine using the non-human primate SIV challenge model.

  3. A novel adjuvanted capsule based strategy for oral vaccination against infectious diarrhoeal pathogens.

    Science.gov (United States)

    Davitt, Christopher J H; McNeela, Edel A; Longet, Stephanie; Tobias, Joshua; Aversa, Vincenzo; McEntee, Craig P; Rosa, Monica; Coulter, Ivan S; Holmgren, Jan; Lavelle, Ed C

    2016-07-10

    Diarrhoeal infections are a major cause of morbidity and mortality with enterotoxigenic Escherichia coli (ETEC) and cholera imposing a significant global burden. There is currently no licensed vaccine for ETEC. Development of new nonliving oral vaccines has proven difficult due to the physicochemical and immunological challenges associated with the oral route. This demands innovative delivery solutions to protect antigens, control their release and build in immune-stimulatory activity. We describe the Single Multiple Pill® (SmPill®) vaccine formulation which combines the benefits of enteric polymer coating to protect against low gastric pH, a dispersed phase to control release and aid the solubility of non-polar components and an optimized combination of adjuvant and antigen to promote mucosal immunity. We demonstrate the effectiveness of this system with whole cell killed E. coli overexpressing colonization factor antigen I (CFA/I), JT-49. Alpha-galactosylceramide was identified as a potent adjuvant within SmPill® that enhanced the immunogenicity of JT-49. The bacteria associated with the dispersed phase were retained within the capsules at gastric pH but released at intestinal pH. Vaccination with an optimized SmPill® formulation promoted CFA/I-specific immunoglobulin A (IgA) responses in the intestinal mucosa in addition to serum IgG and a solubilized adjuvant was indispensable for efficacy. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Strategies for new and improved vaccines against ticks and tick-borne diseases

    Czech Academy of Sciences Publication Activity Database

    de la Fuente, J.; Kopáček, Petr; Lew-Tabor, A.; Maritz-Olivier, C.

    2016-01-01

    Roč. 38, č. 12 (2016), s. 754-769 ISSN 0141-9838 R&D Projects: GA ČR GA13-11043S EU Projects: European Commission(XE) 278976 - ANTIGONE Institutional support: RVO:60077344 Keywords : interactomics * reverse genetics * systems biology * tick * vaccine * vaccinology Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.493, year: 2016

  5. Human Papilloma Virus associated with oral cancer and preventive strategies: the role of vaccines.

    Science.gov (United States)

    Ottria, L; Candotto, V; Cura, F; Baggi, L; Arcuri, C; Nardone, M; Gaudio, R M; Gatto, R; Spadari, F; Carinci, F

    2018-01-01

    The aim of this paper is to describe the efficacy of Human Papilloma Virus (HPV) vaccines for preventing oral cancer. A systematic review of the literature was conducted to describe the state of the art about HPV vaccines for preventing oral cancer. The aspects of prevention and control of infection by administering vaccines and the diffusion of sexual education campaigns are discussed also. In recent years there has been a growing interest in HPV in dentistry, suggesting a role of such a family of viruses in the development of oral cancers as well as of the uterine cervix. Even if the mass media have increasingly faced the problem, causing frequent alarming among patients, the dentist therefore needs a complete and up-to-date knowledge of this infectious condition that is one of the most common causes of sexually transmitted mucous membrane infections (eg genital, anal and oral). Recent studies about HPV infection are a basic requirement in order to promote the HPV vaccinations and patient’s health.

  6. Swine influenza virus: zoonotic potential and vaccination strategies for the control of avian and swine influenzas.

    Science.gov (United States)

    Thacker, Eileen; Janke, Bruce

    2008-02-15

    Influenza viruses are able to infect humans, swine, and avian species, and swine have long been considered a potential source of new influenza viruses that can infect humans. Swine have receptors to which both avian and mammalian influenza viruses bind, which increases the potential for viruses to exchange genetic sequences and produce new reassortant viruses in swine. A number of genetically diverse viruses are circulating in swine herds throughout the world and are a major cause of concern to the swine industry. Control of swine influenza is primarily through the vaccination of sows, to protect young pigs through maternally derived antibodies. However, influenza viruses continue to circulate in pigs after the decay of maternal antibodies, providing a continuing source of virus on a herd basis. Measures to control avian influenza in commercial poultry operations are dictated by the virulence of the virus. Detection of a highly pathogenic avian influenza (HPAI) virus results in immediate elimination of the flock. Low-pathogenic avian influenza viruses are controlled through vaccination, which is done primarily in turkey flocks. Maintenance of the current HPAI virus-free status of poultry in the United States is through constant surveillance of poultry flocks. Although current influenza vaccines for poultry and swine are inactivated and adjuvanted, ongoing research into the development of newer vaccines, such as DNA, live-virus, or vectored vaccines, is being done. Control of influenza virus infection in poultry and swine is critical to the reduction of potential cross-species adaptation and spread of influenza viruses, which will minimize the risk of animals being the source of the next pandemic.

  7. Comparing control strategies against foot-and-mouth disease: Will vaccination be cost-effective in Denmark?

    DEFF Research Database (Denmark)

    Boklund, Anette; Hisham Beshara Halasa, Tariq; Christiansen, Lasse Engbo

    2013-01-01

    Recent outbreaks of foot-and-mouth disease (FMD) in Europe have highlighted the need for assessment of control strategies to optimise control of the spread of FMD. Our objectives were to assess the epidemiological and financial impact of simulated FMD outbreaks in Denmark and the effect of using...... ring depopulation or emergency vaccination to control these outbreaks. Two stochastic simulation models (InterSpreadPlus (ISP) and the modified Davis Animal Disease Simulation model (DTU-DADS)) were used to simulate the spread of FMD in Denmark using different control strategies.Each epidemic...... animal movements, medium-risk contacts (veterinarians, artificial inseminators or milk controllers), low-risk contacts (animal feed and rendering trucks, technicians or visitors), market contacts, abattoir trucks, milk tanks, or local spread.The two simulation models showed different results in terms...

  8. Oral Delivery of Probiotics Expressing Dendritic Cell-Targeting Peptide Fused with Porcine Epidemic Diarrhea Virus COE Antigen: A Promising Vaccine Strategy against PEDV.

    Science.gov (United States)

    Wang, Xiaona; Wang, Li; Huang, Xuewei; Ma, Sunting; Yu, Meiling; Shi, Wen; Qiao, Xinyuan; Tang, Lijie; Xu, Yigang; Li, Yijing

    2017-10-25

    Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, is the causative agent of porcine epidemic diarrhea (PED) that damages intestinal epithelial cells and results in severe diarrhea and dehydration in neonatal suckling pigs with up to 100% mortality. The oral vaccine route is reported as a promising approach for inducing protective immunity against PEDV invasion. Furthermore, dendritic cells (DCs), professional antigen-presenting cells, link humoral and cellular immune responses for homeostasis of the intestinal immune environment. In this study, in order to explore an efficient oral vaccine against PEDV infection, a mucosal DC-targeting oral vaccine was developed using Lactobacillus casei to deliver the DC-targeting peptide (DCpep) fused with the PEDV core neutralizing epitope (COE) antigen. This probiotic vaccine could efficiently elicit secretory immunoglobulin A (SIgA)-based mucosal and immunoglobulin G (IgG)-based humoral immune responses via oral vaccination in vivo. Significant differences ( p targeting peptide fused with PEDV COE antigen. This mucosal DC-targeting oral vaccine delivery effectively enhances vaccine antigen delivery efficiency, providing a useful strategy to induce efficient immune responses against PEDV infection.

  9. On pulse vaccine strategy in a periodic stochastic SIR epidemic model

    International Nuclear Information System (INIS)

    Wang, Fengyan; Wang, Xiaoyi; Zhang, Shuwen; Ding, Changming

    2014-01-01

    A periodic stochastic SIR epidemic model with pulse vaccination is studied. The system has global positive solutions and under some conditions it admits a unique positive periodic disease-free solution, which is globally exponentially stable in mean square. The mathematical expectation and variance of the positive periodic solution are obtained. Two threshold parameters R 1 and R 2 (R 1 >R 2 ) are identified; if R 1 <1, the susceptible will be persistent in the mean and the disease will go to extinction; if R 2 >1, the susceptible and the disease will be weakly persistent in the mean. We show that by repeatedly vaccinating the susceptible population in series of pulses, it is possible to eradicate the infective from the entire model population in the random environment

  10. A two-dose heterologous prime-boost vaccine regimen eliciting sustained immune responses to Ebola Zaire could support a preventive strategy for future outbreaks.

    Science.gov (United States)

    Shukarev, Georgi; Callendret, Benoit; Luhn, Kerstin; Douoguih, Macaya

    2017-02-01

    The consequences of the 2013-16 Ebola Zaire virus disease epidemic in West Africa were grave. The economies, healthcare systems and communities of Guinea, Sierra Leone and Liberia were devastated by over 18 months of active Ebola virus transmission, followed by sporadic resurgences potentially related to sexual transmission by survivors with viral persistence in body fluids following recovery. The need to develop and implement strategies to prevent and mitigate future outbreaks is now beyond dispute. The potential for unpredictable outbreaks of indeterminate duration, and control challenges posed by the possibility of sporadic re-emergence, mean that implementation of an effective vaccination program for outbreak containment necessitates a vaccine providing durable immunity. Heterologous prime-boost vaccine regimens deliver the same or similar antigens through different vaccine types, the first to prime and the second to boost the immune system. Ad26.ZEBOV/MVA-BN-Filo is an investigational Ebola Zaire vaccine regimen that uses this heterologous prime-boost approach. Preliminary Phase 1 data suggest that Ad26.ZEBOV/MVA-BN-Filo confers durable immunity for at least 240 d and is well-tolerated with a good safety profile. This regimen may therefore be suitable for prophylactic use in a regional or targeted population vaccination strategy, and could potentially aid prevention and control of future Ebola outbreaks.

  11. Strategies to increase immunization coverage of tetanus vaccine among women in Sub Saharan Africa: a systematic review.

    Science.gov (United States)

    Vouking, Marius Zambou; Tadenfok, Carine Nouboudem; Ekani, Jean Marie Edengue

    2017-01-01

    World Health Organization (WHO) estimated in 2013 that 49,000 deaths all over the world were caused by neonatal tetanus. Only as recently as the year 2000, neonatal tetanus was a public health problem in 59 countries, but since then it has been eliminated in 36 of the countries concerned. The objective of this piece of work, therefore, was to investigate which strategies intended to increase demand for vaccination are effective in increasing anti-tetanus vaccination coverage of women in Sub Saharan Africa. We searched the following electronic databases from January 1989 to July 2016: Medline, EMBASE (Excerpta Medica Database), The Cochrane Library, Google Scholar, CINAHL (Cumulative Index to Nursing and Allied Health Literature), WHOLIS (World Health Organization Library Database), LILACS (Latin American and Caribbean Literature on Health Sciences) and contacted experts in the field. There were no restrictions to language or publication status. All study designs that could provide the information we sought were eligible, provided the studies were conducted in sub-Saharan Africa. Critical appraisal of all identified citations was done independently by two authors to establish the possible relevance of the articles for inclusion in the review. Our search strategy yielded 191 records and after assessment for eligibility, 6 papers met the criteria for inclusion. In Ivory Coast, after reorganization, health workers said they were satisfied with the work environment and the care provided in 91% and 96% of cases, respectively. In Kenya, the main factors contributing to having sufficiently immunized part of the population against tetanus are lower birth order, higher household wealth index, women's employment, making joint health-related decisions with a partner, and higher number of antenatal care visits. Particularly in Ethiopia, compared with other member countries, the size of the unimmunized population, reporting quality, fragileness of the health system, resource

  12. Rapid strategy for screening by pyrosequencing of influenza virus reassortants--candidates for live attenuated vaccines.

    Science.gov (United States)

    Shcherbik, Svetlana V; Pearce, Nicholas C; Levine, Marnie L; Klimov, Alexander I; Villanueva, Julie M; Bousse, Tatiana L

    2014-01-01

    Live attenuated influenza vaccine viruses (LAIVs) can be generated by classical reassortment of gene segments between a cold adapted, temperature sensitive and attenuated Master Donor Virus (MDV) and a seasonal wild-type (wt) virus. The vaccine candidates contain hemagglutinin (HA) and neuraminidase (NA) genes derived from the circulating wt viruses and the remaining six genes derived from the MDV strains. Rapid, efficient selection of the viruses with 6∶2 genome compositions from the large number of genetically different viruses generated during reassortment is essential for the biannual production schedule of vaccine viruses. This manuscript describes a new approach for the genotypic analysis of LAIV reassortant virus clones based on pyrosequencing. LAIV candidate viruses were created by classical reassortment of seasonal influenza A (H3N2) (A/Victoria/361/2011, A/Ohio/02/2012, A/Texas/50/2012) or influenza A (H7N9) (A/Anhui/1/2013) wt viruses with the MDV A/Leningrad/134/17/57(H2N2). Using strain-specific pyrosequencing assays, mixed gene variations were detected in the allantoic progenies during the cloning procedure. The pyrosequencing analysis also allowed for estimation of the relative abundance of segment variants in mixed populations. This semi-quantitative approach was used for selecting specific clones for the subsequent cloning procedures. The present study demonstrates that pyrosequencing analysis is a useful technique for rapid and reliable genotyping of reassortants and intermediate clones during the preparation of LAIV candidates, and can expedite the selection of vaccine virus candidates.

  13. Rapid strategy for screening by pyrosequencing of influenza virus reassortants--candidates for live attenuated vaccines.

    Directory of Open Access Journals (Sweden)

    Svetlana V Shcherbik

    Full Text Available BACKGROUND: Live attenuated influenza vaccine viruses (LAIVs can be generated by classical reassortment of gene segments between a cold adapted, temperature sensitive and attenuated Master Donor Virus (MDV and a seasonal wild-type (wt virus. The vaccine candidates contain hemagglutinin (HA and neuraminidase (NA genes derived from the circulating wt viruses and the remaining six genes derived from the MDV strains. Rapid, efficient selection of the viruses with 6∶2 genome compositions from the large number of genetically different viruses generated during reassortment is essential for the biannual production schedule of vaccine viruses. METHODOLOGY/PRINCIPAL FINDINGS: This manuscript describes a new approach for the genotypic analysis of LAIV reassortant virus clones based on pyrosequencing. LAIV candidate viruses were created by classical reassortment of seasonal influenza A (H3N2 (A/Victoria/361/2011, A/Ohio/02/2012, A/Texas/50/2012 or influenza A (H7N9 (A/Anhui/1/2013 wt viruses with the MDV A/Leningrad/134/17/57(H2N2. Using strain-specific pyrosequencing assays, mixed gene variations were detected in the allantoic progenies during the cloning procedure. The pyrosequencing analysis also allowed for estimation of the relative abundance of segment variants in mixed populations. This semi-quantitative approach was used for selecting specific clones for the subsequent cloning procedures. CONCLUSIONS/SIGNIFICANCE: The present study demonstrates that pyrosequencing analysis is a useful technique for rapid and reliable genotyping of reassortants and intermediate clones during the preparation of LAIV candidates, and can expedite the selection of vaccine virus candidates.

  14. Progress and novel strategies in vaccine development and treatment of anthrax.

    Science.gov (United States)

    Chitlaru, Theodor; Altboum, Zeev; Reuveny, Shaul; Shafferman, Avigdor

    2011-01-01

    The lethal anthrax disease is caused by spores of the gram-positive Bacillus anthracis, a member of the cereus group of bacilli. Although the disease is very rare in the Western world, development of anthrax countermeasures gains increasing attention due to the potential use of B. anthracis spores as a bio-terror weapon. Protective antigen (PA), the non-toxic subunit of the bacterial secreted exotoxin, fulfills the role of recognizing a specific receptor and mediating the entry of the toxin into the host target cells. PA elicits a protective immune response and represents the basis for all current anthrax vaccines. Anti-PA neutralizing antibodies are useful correlates for protection and for vaccine efficacy evaluation. Post exposure anti-toxemic and anti-bacteremic prophylactic treatment of anthrax requires prolonged antibiotic administration. Shorter efficient postexposure treatments may require active or passive immunization, in addition to antibiotics. Although anthrax is acknowledged as a toxinogenic disease, additional factors, other than the bacterial toxin, may be involved in the virulence of B. anthracis and may be needed for the long-lasting protection conferred by PA immunization. The search for such novel factors is the focus of several high throughput genomic and proteomic studies that are already leading to identification of novel targets for therapeutics, for vaccine candidates, as well as biomarkers for detection and diagnosis. © 2010 John Wiley & Sons A/S.

  15. Association of chitosan and aluminium as a new adjuvant strategy for improved vaccination.

    Science.gov (United States)

    Lebre, F; Bento, D; Ribeiro, J; Colaço, M; Borchard, G; de Lima, M C Pedroso; Borges, O

    2017-07-15

    The use of particulate adjuvants offers an interesting possibility to enhance and modulate the immune responses elicited by vaccines. Aluminium salts have been extensively used as vaccine adjuvants, but they lack the capacity to induce a strong cellular and mucosal immune response. Taking this into consideration, in this study we designed a new antigen delivery system combining aluminium salts with chitosan. Chitosan-aluminium nanoparticles (CH-Al NPs) exhibited a mean diameter of 280nm and a positive surface charge. The newly developed CH-Al NPs are more stable at physiological environment than classical CH NPs, showing no cytotoxic effects and revealing potential as a delivery system for a wide range of model antigens. In vivo studies showed that mice immunized with hepatitis B surface antigen (HBsAg)-containing CH NPs display high anti-HBsAg IgG titers in the serum, as well as the highest antigen-specific IgG on vaginal washes. Furthermore, in contrast to mice receiving antigen alone, mice immunized with the particulate adjuvant were able to elicit IgG2c antibody titers and exhibited higher antigen-specific IFN-γ levels in splenocytes. In conclusion, we established that CH-Al NPs, combining two immunostimulants to enhance both humoral and cellular immune responses, are a safe and promising system for antigen delivery. Our findings point towards their potential in future vaccination approaches. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Opportunities and strategies to further reduce animal use for Leptospira vaccine potency testing.

    Science.gov (United States)

    Walker, A; Srinivas, G B

    2013-09-01

    Hamsters are routinely infected with virulent Leptospira for two purposes in the regulation of biologics: the performance of Codified potency tests and maintenance of challenge culture for the Codified potency tests. Options for reducing animal use in these processes were explored in a plenary lecture at the "International Workshop on Alternative Methods for Leptospira Vaccine Potency Testing: State of the Science and the Way Forward" held at the Center for Veterinary Biologics in September 2012. The use of validated in vitro potency assays such as those developed by the U.S. Department of Agriculture for Leptospira (L.) canicola, Leptospira grippotyphosa, Leptospira pomona, and Leptospira icterohaemorrhagiae rather than the Codified hamster vaccination-challenge assay was encouraged. Alternatives such as reduced animal numbers in the hamster vaccination-challenge testing were considered for problematic situations. Specifically, the merits of sharing challenge controls, reducing group sizes, and eliminating animals for concurrent challenge dose titration were assessed. Options for maintaining virulent, stable cultures without serial passage through hamsters or with decreased hamster use were also discussed. The maintenance of virulent Leptospira without the use of live animals is especially difficult since a reliable means to maintain virulence after multiple in vitro passages has not yet been identified. Published by Elsevier Ltd.

  17. The future of HIV prevention: prospects for an effective anti-HIV microbicide.

    Science.gov (United States)

    Nuttall, Jeremy; Romano, Joseph; Douville, Karen; Galbreath, Caroline; Nel, Annaléne; Heyward, William; Mitchnick, Mark; Walker, Saul; Rosenberg, Zeda

    2007-03-01

    Topical microbicides are self-administered products for prevention of HIV transmission, and they present one of the most promising strategies for combating the HIV-AIDS epidemic. The development of microbicides is a long and complicated process, with many hurdles that are unique to this class of product, including challenges in product design, in the conduct and design of clinical trials, and in obtaining licensure of a new class of products intended for use almost exclusively in developing countries. Once they have been registered, there are additional challenges to the marketing and distribution of microbicides. An overview of the types of microbicide currently in development, and a summary of the issues and the approaches being taken to address them, are provided.

  18. Regulated production and anti-HIV type 1 activities of cytidine deaminases APOBEC3B, 3F, and 3G.

    Science.gov (United States)

    Rose, Kristine M; Marin, Mariana; Kozak, Susan L; Kabat, David

    2005-07-01

    APOBEC3G and 3F (A3G and A3F) cytidine deaminases incorporate into retroviral cores where they lethally hypermutate nascent DNA reverse transcripts. As substantiated here, the viral infectivity factor (Vif) encoded by human immunodeficiency virus type-1 (HIV-1) binds A3G and A3F and induces their degradation, thereby precluding their incorporation into viral progeny. Previous evidence suggested that A3G is expressed in H9 and other nonpermissive cells that contain this antiviral defense but not in several permissive cells, and that overexpression of A3G or A3F makes permissive cells nonpermissive. Using a broader panel of cell lines, we confirmed a correlation between A3G and cellular abilities to inactivate HIV-1(Deltavif). However, there was a quantitative discrepancy because several cells with weak antiviral activities had similar amounts of wild-type A3G mRNA and protein compared to H9 cells. Antiviral activity of H9 cells was also attenuated in some conditions. These quantitative discrepancies could not be explained by the presence of A3F or other A3G paralogs in some of the cell lines. Thus, A3A, A3B, and A3C had weak but significant anti-HIV-1 activities and did not dominantly interfere with A3G or A3F antiviral functions. Control of A3G synthesis by the protein kinase C/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway was also similar in permissive and nonpermissive cells. A3G in highly permissive cells is degraded by Vif, suggesting that it is not in a sequestered site, and is specifically incorporated in low amounts into HIV-1(Deltavif). Although A3G and/or A3F inactivate HIV-1(Deltavif) and are neutralized by Vif, the antiviral properties of cell lines are also influenced by other cellular and viral factors.

  19. Anti-HIV drugs nevirapine and efavirenz affect anxiety-related behavior and cognitive performance in mice.

    Science.gov (United States)

    Romão, Pedro R T; Lemos, Joelson C; Moreira, Jeverson; de Chaves, Gisele; Moretti, Morgana; Castro, Adalberto A; Andrade, Vanessa M; Boeck, Carina R; Quevedo, João; Gavioli, Elaine C

    2011-01-01

    Nevirapine (NVP) and efavirenz (EFV) belong to the class of anti-HIV drugs called non-nucleoside reverse transcriptase inhibitors (NNRTIs), commonly used as part of highly active antiretroviral therapy (HAART). Although the HAART is able to bring down viral load to undetectable levels and restore immune function, their prolonged use causes several adverse effects. It has been demonstrated that both NVP and EFV are able to cross the blood-brain barrier, causing important central nervous system-related side effects. Thus, this study investigated the effects of chronic administration of EFV (10 mg/kg) and NVP (3.3 mg/kg) in mice submitted to two distinct series of experiments, which aimed to evaluate: (1) the emotional behavior (elevated plus-maze, forced swimming, and open-field test) and (2) the cognitive performance (object recognition and inhibitory avoidance test) of mice. Our results demonstrated that EFV, but not NVP, reduced the exploration to open arms in the elevated plus-maze test. Neither NVP nor EFV altered mouse behavior in the forced swimming and open-field tests. Both drugs reduced the recognition index in the object recognition test, but only EFV significantly impaired the aversive memory assessed in the inhibitory avoidance test 24 h after training. In conclusion, our findings point to a genuine anxiogenic-like effect to EFV, since it reduced exploration to open arms of elevated plus-maze test without affecting spontaneous locomotion. Additionally, both drugs impaired recognition memory, while only the treatment with EFV impaired significantly aversive memory.

  20. Dynamic features of apo and bound HIV-Nef protein reveal the anti-HIV dimerization inhibition mechanism.

    Science.gov (United States)

    Moonsamy, Suri; Bhakat, Soumendranath; Soliman, Mahmoud E S

    2015-01-01

    The first account on the dynamic features of Nef or negative factor, a small myristoylated protein located in the cytoplasm believes to increase HIV-1 viral titer level, is reported herein. Due to its major role in HIV-1 pathogenicity, Nef protein is considered an emerging target in anti-HIV drug design and discovery process. In this study, comparative long-range all-atom molecular dynamics simulations were employed for apo and bound protein to unveil molecular mechanism of HIV-Nef dimerization and inhibition. Results clearly revealed that B9, a newly discovered Nef inhibitor, binds at the dimeric interface of Nef protein and caused significant separation between orthogonally opposed residues, namely Asp108, Leu112 and Gln104. Large differences in magnitudes were observed in the radius of gyration (∼1.5 Å), per-residue fluctuation (∼2 Å), C-alpha deviations (∼2 Å) which confirm a comparatively more flexible nature of apo conformation due to rapid dimeric association. Compared to the bound conformer, a more globally correlated motion in case of apo structure of HIV-Nef confirms the process of dimeric association. This clearly highlights the process of inhibition as a result of ligand binding. The difference in principal component analysis (PCA) scatter plot and per-residue mobility plot across first two normal modes further justifies the same findings. The in-depth dynamic analyses of Nef protein presented in this report would serve crucial in understanding its function and inhibition mechanisms. Information on inhibitor binding mode would also assist in designing of potential inhibitors against this important HIV target.

  1. Rapid transient production in plants by replicating and non-replicating vectors yields high quality functional anti-HIV antibody.

    Directory of Open Access Journals (Sweden)

    Frank Sainsbury

    2010-11-01

    Full Text Available The capacity of plants and plant cells to produce large amounts of recombinant protein has been well established. Due to advantages in terms of speed and yield, attention has recently turned towards the use of transient expression systems, including viral vectors, to produce proteins of pharmaceutical interest in plants. However, the effects of such high level expression from viral vectors and concomitant effects on host cells may affect the quality of the recombinant product.To assess the quality of antibodies transiently expressed to high levels in plants, we have expressed and characterised the human anti-HIV monoclonal antibody, 2G12, using both replicating and non-replicating systems based on deleted versions of Cowpea mosaic virus (CPMV RNA-2. The highest yield (approximately 100 mg/kg wet weight leaf tissue of affinity purified 2G12 was obtained when the non-replicating CPMV-HT system was used and the antibody was retained in the endoplasmic reticulum (ER. Glycan analysis by mass-spectrometry showed that the glycosylation pattern was determined exclusively by whether the antibody was retained in the ER and did not depend on whether a replicating or non-replicating system was used. Characterisation of the binding and neutralisation properties of all the purified 2G12 variants from plants showed that these were generally similar to those of the Chinese hamster ovary (CHO cell-produced 2G12.Overall, the results demonstrate that replicating and non-replicating CPMV-based vectors are able to direct the production of a recombinant IgG similar in activity to the CHO-produced control. Thus, a complex recombinant protein was produced with no apparent effect on its biochemical properties using either high-level expression or viral replication. The speed with which a recombinant pharmaceutical with excellent biochemical characteristics can be produced transiently in plants makes CPMV-based expression vectors an attractive option for

  2. Selection and Neutral Mutations Drive Pervasive Mutability Losses in Long-Lived Anti-HIV B-Cell Lineages

    Science.gov (United States)

    Vieira, Marcos C; Zinder, Daniel; Cobey, Sarah

    2018-01-01

    Abstract High-affinity antibodies arise within weeks of infection from the evolution of B-cell receptors under selection to improve antigen recognition. This rapid adaptation is enabled by the distribution of highly mutable “hotspot” motifs in B-cell receptor genes. High mutability in antigen-binding regions (complementarity determining regions [CDRs]) creates variation in binding affinity, whereas low mutability in structurally important regions (framework regions [FRs]) may reduce the frequency of destabilizing mutations. During the response, loss of mutational hotspots and changes in their distribution across CDRs and FRs are predicted to compromise the adaptability of B-cell receptors, yet the contributions of different mechanisms to gains and losses of hotspots remain unclear. We reconstructed changes in anti-HIV B-cell receptor sequences and show that mutability losses were ∼56% more frequent than gains in both CDRs and FRs, with the higher relative mutability of CDRs maintained throughout the response. At least 21% of the total mutability loss was caused by synonymous mutations. However, nonsynonymous substitutions caused most (79%) of the mutability loss in CDRs. Because CDRs also show strong positive selection, this result suggests that selection for mutations that increase binding affinity contributed to loss of mutability in antigen-binding regions. Although recurrent adaptation to evolving viruses could indirectly select for high mutation rates, we found no evidence of indirect selection to increase or retain hotspots. Our results suggest mutability losses are intrinsic to both the neutral and adaptive evolution of B-cell populations and might constrain their adaptation to rapidly evolving pathogens such as HIV and influenza. PMID:29688540

  3. [Strategies, actors, promises and fears in the smallpox vaccinations campaigns in Mexico: from the Porfiriato to the Post-revolution (1880-1940)].

    Science.gov (United States)

    Agostoni, Claudia

    2011-02-01

    The article examines some of the strategies employed by the Mexican health authorities that led to the organization of massive and obligatory smallpox vaccination campaigns from the late 1880s to the 1940s, a period of Mexican history that corresponds to the Porfirio Díaz regime (1877-1911), to the armed phase of the Mexican Revolution (1910-1920), and to the first two decades of the Post-revolutionary governments (1920-1940). Attention will be placed of the vaccination programs in the main urban settings, notably in Mexico City, as well as the gradual but decisive organization and regulation of vaccination campaigns in the heterogeneous rural milieu. Furthermore, the importance that hygienic education acquired will be explored, as well as the divergent and contested responses that emerged due to the obligatory vaccination campaigns, responses that included resistance, fear, uncertainty and widespread acceptance.

  4. Development and evaluation of an avian influenza, neuraminidase subtype 1, indirect enzyme-linked immunosorbent assay for poultry using the differentiation of infected from vaccinated animals control strategy.

    Science.gov (United States)

    Liu, Y; Mundt, E; Mundt, A; Sylte, M; Suarez, D L; Swayne, D E; García, M

    2010-03-01

    An indirect enzyme-linked immunosorbent assay (ELISA) was developed using baculovirus, purified, recombinant N1 protein from A/chicken/Indonesia/PA7/2003 (H5N1) virus. The N1-ELISA showed high selectivity for detection of N1 antibodies, with no cross-reactivity with other neuraminidase subtypes, and broad reactivity with sera to N1 subtype isolates from North American and Eurasian lineages. Sensitivity of the N1-ELISA to detect N1 antibodies in turkey sera, collected 3 wk after H1N1 vaccination, was comparable to detection of avian influenza antibodies by the commercial, indirect ELISAs ProFLOK AIV Plus ELISA Kit (Synbiotics, Kansas City, MO) and Avian Influenza Virus Antibody Test Kit (IDEXX, Westbrook, ME). However, 6 wk after vaccination, the Synbiotics ELISA kit performed better than the N1-ELISA and the IDEXX ELISA kit. An evaluation was made of the ability of the N1-ELISA to discriminate vaccinated chickens from subsequently challenged chickens. Two experiments were conducted, chickens were vaccinated with inactivated H5N2 and H5N9 viruses and challenged with highly pathogenic H5N1 virus, and chickens were vaccinated with recombinant poxvirus vaccine encoding H7 and challenged with highly pathogenic H7N1 virus. Serum samples were collected at 14 days postchallenge and tested by hemagglutination inhibition (HI), quantitative neuraminidase inhibition (NI), and N1-ELISA. At 2 days postchallenge, oropharyngeal swabs were collected for virus isolation (VI) to confirm infection. The N1-ELISA was in fair agreement with VI and HI results. Although the N1-ELISA showed a lower sensitivity than the NI assay, it was demonstrated that detection of N1 antibodies by ELISA was an effective and rapid assay to identify exposure to the challenge virus in vaccinated chickens. Therefore, N1-ELISA can facilitate a vaccination strategy with differentiation of infected from vaccinated animals using a neuraminidase heterologous approach.

  5. Assessing the effectiveness of a community-based sensitization strategy in creating awareness about HPV, cervical cancer and HPV vaccine among parents in North West Cameroon.

    Science.gov (United States)

    Wamai, Richard G; Ayissi, Claudine Akono; Oduwo, Geofrey O; Perlman, Stacey; Welty, Edith; Manga, Simon; Ogembo, Javier Gordon

    2012-10-01

    In 2010, the Cameroon Baptist Convention Health Services (CBCHS) received a donation of HPV vaccine (Gardasil®) to immunize girls of ages 9-13 years in the North West Region of Cameroon. We evaluated the effectiveness of the CBCHS campaign program in sensitizing parents/guardians to encourage HPV vaccine uptake, identified factors that influence parents' decisions to vaccinate girls, and examined the uptake of cervical cancer screening among mothers. We conducted a cross-sectional survey in four healthcare facilities run by CBCHS, churches and other social settings. A total of 350 questionnaires were distributed and 317 were used for the analysis. There were high levels of awareness about cervical cancer, HPV and HPV vaccine. 75.5% understood HPV is sexually transmitted and 90.3% were aware of the use of vaccine as a preventive measure. Effectiveness of the vaccine (31.8%) and side effects/safety (18.4%) were the major barriers for parents to vaccinate their daughters. Bivariate analysis further revealed that the level of education (p = 0.0006), income level (p = 0.0044) and perceived risks (p = 0.0044) are additional factors influencing parents' decisions to vaccinate girls. 35.3% of women had sought a cervical cancer screening, significantly higher than the general estimated rate of screening (<10%) in other parts of Cameroon and sub-Saharan Africa. These results support the viability of a community-tailored sensitization strategy to increase awareness among the targeted audience of parents/guardians, who are critical decision-makers for vaccine delivery to children.

  6. Overcoming the Constraints of Anti-HIV/CD89 Bispecific Antibodies That Limit Viral Inhibition

    Directory of Open Access Journals (Sweden)

    Xiaocong Yu

    2016-01-01

    Full Text Available Innovative strategies are necessary to maximize the clinical application of HIV neutralizing antibodies. To this end, bispecific constructs of human antibody F240, reactive with well-conserved gp41 epitope and antibody 14A8, reactive with the IgA receptor (CD89 on effector cells, were constructed. A F240 × 14A8 bispecific single chain variable region (scFv molecule was constructed by linking two scFvs using a conventional GGGGS linker. Despite immunoreactivity with HIV gp41 and neutrophils, this bispecific scFv failed to inhibit HIV infection. This is in sharp contrast to viral inhibition using a chemical conjugate of the Fab of these two antibodies. Therefore, we constructed two novel Fab-like bispecific antibody molecules centered on fusion of the IgG1 CH1 domain or CH1-hinge domain to the C-terminus of F240scFv and fusion of the kappa chain CL domain to the C-terminus of 14A8scFv. Both Bi-Fab antibodies showed significant ADCVI activity for multiple clade B and clade C isolates by arming the neutrophils to inhibit HIV infection. The approach presented in this study is unique for HIV immunotherapy in that the impetus of neutralization is to arm and mobilize PMN to destroy HIV and HIV infected cells.

  7. Development of behaviour change communication strategy for a vaccination-linked malaria control tool in southern Tanzania

    Directory of Open Access Journals (Sweden)

    Mshinda Hassan

    2008-09-01

    Full Text Available Abstract Background Intermittent preventive treatment of malaria in infants (IPTi using sulphadoxine-pyrimethamine and linked to the expanded programme on immunization (EPI is a promising strategy for malaria control in young children. As evidence grows on the efficacy of IPTi as public health strategy, information is needed so that this novel control tool can be put into practice promptly, once a policy recommendation is made to implement it. This paper describes the development of a behaviour change communication strategy to support implementation of IPTi by the routine health services in southern Tanzania, in the context of a five-year research programme evaluating the community effectiveness of IPTi. Methods Mixed methods including a rapid qualitative assessment and quantitative health facility survey were used to investigate communities' and providers' knowledge and practices relating to malaria, EPI, sulphadoxine-pyrimethamine and existing health posters. Results were applied to develop an appropriate behaviour change communication strategy for IPTi involving personal communication between mothers and health staff, supported by a brand name and two posters. Results Malaria in young children was considered to be a nuisance because it causes sleepless nights. Vaccination services were well accepted and their use was considered the mother's responsibility. Babies were generally taken for vaccination despite complaints about fevers and swellings after the injections. Sulphadoxine-pyrimethamine was widely used for malaria treatment and intermittent preventive treatment of malaria in pregnancy, despite widespread rumours of adverse reactions based on hearsay and newspaper reports. Almost all health providers said that they or their spouse were ready to take SP in pregnancy (96%, 223/242. A brand name, key messages and images were developed and pre-tested as behaviour change communication materials. The posters contained public health messages

  8. Synthesis of highly anti-HIV active sulfated poly- and oligo-saccharides and analysis of their action mechanisms by NMR [nuclear magnetic resonance] spectroscopy

    International Nuclear Information System (INIS)

    Uryu, Toshiyuki

    1998-01-01

    We have been synthesizing sulfated polysaccharides and oligosaccharides with highly anti-HIV (human immunodeficiency virus) activities. It has been known that sulfated polysaccharides such as dextran sulfate and pentosan polysulfate have biological activities such as anticoagulant activity and recently anti-HIV activity. Curdlan sulfate having 1,3-β-linked glucan backbone had high anti-HIV activity but low anticoagulant activity. Phase I/II test for the curdlan sulfate as an AIDS (acquired immunodeficiency syndrome) drug was carried out in the United States. In this study, regioselectivity sulfatec curdlan sulfates were prepared in order to study effects of sulfate groups and conformation of curdlan sulfates. In addition, action mechanisms of curdlan sulfate as anti-AIDS drug and of heparin as an anticoagulant were examined by means of NMR spectroscopy. 1. Structure dependence of anti-HIV and anticoagulant activities of sulfated polysaccharides. Curdlan with M n 9000 was regioselectively sulfated on its hydroxyl groups at 6, 4, and 2 positions. Those were a curdlan sulfate 62S in which 100% of 6-OH, and about 50% of 2-OH was sulfated, a curdlan sulfate 42S in which 4- and 2-OH's were sulfated, and a curdlan sulfate in which 6, 4, and 2-OH's were partially sulfated. All curdlan sulfates had very high anti-HIV activities exhibited by the drug concentration of 50% inhibition of infection, i.e., EC 50 of 0.04 - 0.25 μg/mL. However, there was almost no difference in the activity among the samples. Therefore, it was revealed that the degree of sulfation and putative conformation of the curdlan sulfates but not the position of sulfate groups have large effects on the anti-HIV activity. On the other hand, the anticoagulant activity increased with increasing molecular weight of the curdlan sulfates. As a result, it is assumed that the size of reaction sites of the virus protein reacting with curdlan sulfate is different from that of the proteins related to anticoagulant

  9. Isotype Diversification of IgG Antibodies to HIV Gag Proteins as a Therapeutic Vaccination Strategy for HIV Infection.

    Science.gov (United States)

    French, Martyn A; Abudulai, Laila N; Fernandez, Sonia

    2013-08-09

    The development of vaccines to treat and prevent human immunodeficiency virus (HIV) infection has been hampered by an incomplete understanding of "protective" immune responses against HIV. Natural control of HIV-1 infection is associated with T-cell responses against HIV-1 Gag proteins, particularly CD8⁺ T-cell responses restricted by "protective" HLA-B alleles, but other immune responses also contribute to immune control. These immune responses appear to include IgG antibodies to HIV-1 Gag proteins, interferon-a-dependant natural killer (NK) cell responses and plasmacytoid dendritic cell (pDC) responses. Here, it is proposed that isotype diversification of IgG antibodies against HIV-1 Gag proteins, to include IgG2, as well as IgG3 and IgG1 antibodies, will broaden the function of the antibody response and facilitate accessory cell responses against HIV-1 by NK cells and pDCs. We suggest that this should be investigated as a vaccination strategy for HIV-1 infection.

  10. Isotype Diversification of IgG Antibodies to HIV Gag Proteins as a Therapeutic Vaccination Strategy for HIV Infection

    Directory of Open Access Journals (Sweden)

    Sonia Fernandez

    2013-08-01

    Full Text Available The development of vaccines to treat and prevent human immunodeficiency virus (HIV infection has been hampered by an incomplete understanding of “protective” immune responses against HIV. Natural control of HIV-1 infection is associated with T-cell responses against HIV-1 Gag proteins, particularly CD8+ T-cell responses restricted by “protective” HLA-B alleles, but other immune responses also contribute to immune control. These immune responses appear to include IgG antibodies to HIV-1 Gag proteins, interferon-a-dependant natural killer (NK cell responses and plasmacytoid dendritic cell (pDC responses. Here, it is proposed that isotype diversification of IgG antibodies against HIV-1 Gag proteins, to include IgG2, as well as IgG3 and IgG1 antibodies, will broaden the function of the antibody response and facilitate accessory cell responses against HIV-1 by NK cells and pDCs. We suggest that this should be investigated as a vaccination strategy for HIV-1 infection.

  11. Fatores associados à submissão ao teste rápido anti-HIV na assistência ao parto

    Directory of Open Access Journals (Sweden)

    Maria Inês Couto de Oliveira

    Full Text Available Resumo Os testes rápidos anti-HIV vêm sendo empregados nas maternidades com vistas à prevenção da transmissão vertical. O objetivo do estudo foi analisar os fatores associados à submissão ao teste rápido anti-HIV (desfecho. Estudo transversal, conduzido em 2009, em 15 hospitais do SUS do Rio de Janeiro/RJ, mediante entrevista a amostra representativa de 835 parturientes internadas e consulta a prontuários. Razões de prevalência ajustadas foram obtidas por regressão de Poisson, segundo modelo hierarquizado, permanecendo no modelo final as variáveis associadas ao desfecho (p ≤ 0,05. Segundo os prontuários (SP, 79,6% das mães foram submetidas ao teste rápido anti-HIV e, segundo as entrevistas (SE, 55,7%. No nível distal, a ausência de companheiro (SP, ter ≥ 6 moradores na residência (SP e a cor da pele não branca (SE se associaram a uma maior prevalência do desfecho. No nível intermediário, não dispor de sorologia negativa para o HIV do pré-natal (SP e SE se associou a uma maior prevalência do desfecho, bem como a realização de pré-natal na rede básica (SP e a não realização de pré-natal (SE. No nível proximal, o parto em hospital não certificado como amigo da criança se associou a uma maior prevalência do desfecho (SP e SE.

  12. A realização do teste anti-hiv no pré-natal: os significados para a gestante

    OpenAIRE

    Silva, Roberta Maria de Oliveira; Araújo, Carla Luzia França; Paz, Fatima Maria Trigo da

    2008-01-01

    O estudo teve por objetivo conhecer e analisar o significado da realização do teste anti-HIV no pré-natal para as gestantes. Trata-se de uma pesquisa com abordagem qualitativa e foi realizada em um Hospital Escola e em uma Maternidade do município do Rio de Janeiro. Como recurso técnico-metodológico utilizou-se o discurso do sujeito coletivo (DSC). Após a análise dos discursos verificamos que para as gestantes a realização do teste significa a possibilidade de prevenir a transmissão vertical ...

  13. Two-dose strategies for human papillomavirus vaccination: how well do they need to protect?

    Science.gov (United States)

    Jit, Mark; Choi, Yoon Hong; Laprise, Jean-François; Boily, Marie-Claude; Drolet, Mélanie; Brisson, Marc

    2014-05-30

    Two-dose human papillomavirus (HPV) vaccine schedules may provide short-term protection but their long-term population impact is unknown. Two models of HPV transmission and associated cervical disease (squamous and glandular, neoplasia and cancer) were fitted to data from England and Canada on HPV epidemiology, sexual behaviour, cervical screening outcomes and cervical cancer incidence. Models suggest that at 40-80% coverage, if two-dose schedules protect vaccinees for 20 years, then the benefits of the third dose are small. If two doses protect for 10 years, then the third dose may prevent as many cancers as the first two. At 80% coverage, numbers needed to receive a third dose to prevent an additional cancer are 5900-110,000 (England), 3000-5100 (Canada) with 20 years two-dose protection, and 2000-5300 (England), 760-950 (Canada) with 10 years two-dose protection. Results enable decision makers to quantify risks associated with two-dose schedules despite remaining uncertainties in vaccine duration and cross-protection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. [Modification of pertussis vaccination schedule in Chile, immunization of special groups and control strategies: Commentary from the Consultive Committee of Immunizations of The Chilean Society of Infectious Diseases].

    Science.gov (United States)

    Potin, Marcela; Cerda, Jaime; Contreras, Lily; Muñoz, Alma; Ripoll, Erna; Vergara, Rodrigo

    2012-06-01

    In Chile, an increased number of notifications of cases of whooping cough was detected at the beginning of October 2010, and maintained through 2012. Accumulated cases during 2011 were 2,581 (15.0 per 100,000), which is greater than the number of cases registered during the period 2008-2010 (2,460 cases). On the other hand, the local sanitary authority introduced a modification of pertussis vaccination schedule (starting 2012), which consists in the replacement of the second booster of pertussis vaccine (DTwP, administered to 4-year-old children) as well as diphtheria-tetanus toxoid (dT, administered to second grade scholars) for an acellular pertussis vaccine with reduced antigenic content (dTpa), which will be administrated to first grade scholars. The Consultive Committee of Immunizations considers that the modification is adequate, since it extends the age of protection, reducing at least in theory the infection in older scholars and adolescents -who are significant sources of transmission of Bordetella pertussis to infants- using an adequate vaccine formulation (acellular pertussis vaccine). The available evidence regarding vaccination in special groups (adolescents and adults, health-care workers and pregnant women) and cocooning strategy are commented.

  15. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100-Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    NARCIS (Netherlands)

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery

  16. Histo-blood group antigens as receptors for rotavirus, new understanding on rotavirus epidemiology and vaccine strategy

    Science.gov (United States)

    Jiang, Xi; Liu, Yang; Tan, Ming

    2017-01-01

    The success of the two rotavirus (RV) vaccines (Rotarix and RotaTeq) in many countries endorses a live attenuated vaccine approach against RVs. However, the lower efficacies of both vaccines in many low- and middle-income countries indicate a need to improve the current RV vaccines. The recent discovery that RVs recognize histo-blood group antigens (HBGAs) as potential receptors has significantly advanced our understanding of RV diversity, evolution and epidemiology, providing important new insights into the performances of current RV vaccines in different populations and emphasizing a P-type-based vaccine approach. New understanding of RV diversity and evolution also raises a fundamental question about the ‘Jennerian' approach, which needs to be addressed for future development of live attenuated RV vaccines. Alternative approaches to develop safer and more cost-effective subunit vaccines against RVs are also discussed. PMID:28400594

  17. Anti-HIV double variable domain immunoglobulins binding both gp41 and gp120 for targeted delivery of immunoconjugates.

    Directory of Open Access Journals (Sweden)

    Ryan B Craig

    Full Text Available BACKGROUND: Anti-HIV immunoconjugates targeted to the HIV envelope protein may be used to eradicate the latent reservoir of HIV infection using activate-and-purge protocols. Previous studies have identified the two target epitopes most effective for the delivery of cytotoxic immunoconjugates the CD4-binding site of gp120, and the hairpin loop of gp41. Here we construct and test tetravalent double variable domain immunoglobulin molecules (DVD-Igs that bind to both epitopes. METHODS: Synthetic genes that encode DVD-Igs utilizing V-domains derived from human anti-gp120 and anti-gp41 Abs were designed and expressed in 293F cells. A series of constructs tested different inter-V-linker domains and orientations of the two V domains. Antibodies were tested for binding to recombinant Ag and native Env expressed on infected cells, for neutralization of infectious HIV, and for their ability to deliver cytotoxic immunoconjugates to infected cells. FINDINGS: The outer V-domain was the major determinant of binding and functional activity of the DVD-Ig. Function of the inner V-domain and bifunctional binding required at least 15 AA in the inter-V-domain linker. A molecular model showing the spatial orientation of the two epitopes is consistent with this observation. Linkers that incorporated helical domains (A[EAAAK](nA resulted in more effective DVD-Igs than those based solely on flexible domains ([GGGGS](n. In general, the DVD-Igs outperformed the less effective parental antibody and equaled the activity of the more effective. The ability of the DVD-Igs to deliver cytotoxic immunoconjugates in the absence of soluble CD4 was improved over that of either parent. CONCLUSIONS: DVD-Igs can be designed that bind to both gp120 and gp41 on the HIV envelope. DVD-Igs are effective in delivering cytotoxic immunoconjugates. The optimal design of these DVD-Igs, in which both domains are fully functional, has not yet been achieved.

  18. A heterologous prime-boosting strategy with replicating Vaccinia virus vectors and plant-produced HIV-1 Gag/dgp41 virus-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Meador, Lydia R. [Ira A. Fulton School of Engineering, Arizona State University, Tempe, AZ (United States); Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); Kessans, Sarah A. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Kilbourne, Jacquelyn; Kibler, Karen V. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); Pantaleo, Giuseppe [Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne (Switzerland); Swiss Vaccine Research Institute, Lausanne (Switzerland); Roderiguez, Mariano Esteban [Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia – CSIC, Madrid (Spain); Blattman, Joseph N. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Jacobs, Bertram L., E-mail: bjacobs@asu.edu [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Mor, Tsafrir S., E-mail: tsafrir.mor@asu.edu [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States)

    2017-07-15

    Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viral vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1. - Highlights: • We devised a prime/boost anti HIV-1 vaccination strategy modeled after RV144. • We used plant-derived virus-like particles (VLPs) consisting of Gag and dgp41. • We used attenuated, replicating vaccinia virus vectors expressing the same antigens. • The immunogens elicited strong cellular and humoral immune responses.

  19. Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates

    OpenAIRE

    Qian, Feng; Wu, Yimin; Muratova, Olga; Zhou, Hong; Dobrescu, Gelu; Duggan, Peter; Lynn, Lambert; Song, Guanhong; Zhang, Yanling; Reiter, Karine; MacDonald, Nicholas; Narum, David L.; Long, Carole A.; Miller, Louis H.; Saul, Allan

    2007-01-01

    Conjugation of polysaccharides to carrier proteins has been a successful approach for producing safe and effective vaccines. In an attempt to increase the immunogenicity of two malarial vaccine candidate proteins of Plasmodium falciparum, apical membrane antigen 1 (AMA1) for blood stage vaccines and surface protein 25 (Pfs25) for mosquito stage vaccines, each was chemically conjugated to the mutant, nontoxic Pseudomonas aeruginosa ExoProtein A (rEPA). AMA1 is a large (66 kD) relatively good i...

  20. Vaccines and Immunization Practice.

    Science.gov (United States)

    Hogue, Michael D; Meador, Anna E

    2016-03-01

    Vaccines are among most cost-effective public health strategies. Despite effective vaccines for many bacterial and viral illnesses, tens of thousands of adults and hundreds of children die each year in the United States from vaccine-preventable diseases. Underutilization of vaccines requires rethinking the approach to incorporating vaccines into practice. Arguably, immunizations could be a part all health care encounters. Shared responsibility is paramount if deaths are to be reduced. This article reviews the available vaccines in the US market, as well as practice recommendations of the Centers for Disease Control and Prevention's Advisory Committee on Immunization Practices. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Neutralizing Activity of Broadly Neutralizing Anti-HIV-1 Antibodies against Clade B Clinical Isolates Produced in Peripheral Blood Mononuclear Cells.

    Science.gov (United States)

    Cohen, Yehuda Z; Lorenzi, Julio C C; Seaman, Michael S; Nogueira, Lilian; Schoofs, Till; Krassnig, Lisa; Butler, Allison; Millard, Katrina; Fitzsimons, Tomas; Daniell, Xiaoju; Dizon, Juan P; Shimeliovich, Irina; Montefiori, David C; Caskey, Marina; Nussenzweig, Michel C

    2018-03-01

    HIV-1 epidemic. Antibodies with exceptional neutralizing activity against HIV-1 may provide several advantages to traditional HIV drugs, including an improved side-effect profile, a reduced dosing frequency, and immune enhancement. The activity of these antibodies has been established in vitro by utilizing HIV-1 Env-pseudotyped viruses derived from circulating viruses but produced in 293T cells by pairing Env proteins with a backbone vector. We tested PBMC-produced circulating viruses against five anti-HIV-1 antibodies currently in clinical development. We found that the activity of these antibodies against PBMC isolates is significantly less than that against 293T Env-pseudotyped viruses. This decline varied among the antibodies tested, with some demonstrating moderate reductions in activity and others showing an almost 100-fold reduction. As the development of these antibodies progresses, it will be critical to determine how the results of different in vitro tests correspond to performance in the clinic. Copyright © 2018 Cohen et al.

  2. Synthesis and anti-HIV activity of novel 3-substituted phenyl-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]isoxazole analogues.

    Science.gov (United States)

    Ali, Mohamed A; Ismail, Rusli; Choon, Tan S; Yoon, Yeong K; Wei, Ang C; Pandian, Suresh; Samy, Jeyabalan G; De Clercq, Eric; Pannecouque, Christophe

    2011-01-01

    A series of novel 3-(substituted phenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]isoxazole analogues were synthesized by the reaction of 5,6-dimethoxy-2-[(E)-1-phenylmethylidene]-1-indanone with hydroxylamine hydrochloride. The title compounds were tested for their in vitro anti-HIV activity. Among the compounds, (4g) showed a promising anti-HIV activity in the in vitro testing against IIIB and ROD strains. The IC50 of both IIIB and ROD were found to be 9.05 microM and > 125 microM, respectively.

  3. The offer of the anti-HIV test to the users of the health basic net units: different aproaches of professionals

    Directory of Open Access Journals (Sweden)

    Sergio Corrêa Marques

    2015-01-01

    Full Text Available Objetivos: identificar e descrever as condutas dos profissionais de saúde na oferta do teste anti-HIV; analisar as práticas dos profissionais a partir dos relatos das usuárias dos serviços da rede básica de saúde. Método: é um estudo descritivo, qualitativo, com 40 mulheres assistidas em 08 Centros Municipais de Saúde. Resultados: a produção discursiva das entrevistas foi submetida ao programa Alceste, constituindo duas categorias de análise. A primeira contempla as abordagens no atendimento individual na rede de CMS do Rio de Janeiro descrevendo os três modos de conduta dos profissionais de saúde durante a oferta de teste anti-HIV. A segunda categoria refere-se às abordagens no atendimento coletivo, onde se observa que as atividades de aconselhamento não ocorrem de maneira uniforme. Conclusão: que os resultados apontam para uma prática que se desvirtua do que vem sendo preconizado pelos Programas oficiais em relação ao Aconselhamento.

  4. FT-IR spectra of the anti-HIV nucleoside analogue d4T (Stavudine). Solid state simulation by DFT methods and scaling by different procedures

    Science.gov (United States)

    Alcolea Palafox, M.; Kattan, D.; Afseth, N. K.

    2018-04-01

    A theoretical and experimental vibrational study of the anti-HIV d4T (stavudine or Zerit) nucleoside analogue was carried out. The predicted spectra in the three most stable conformers in the biological active anti-form of the isolated state were compared. Comparison of the conformers with those of the natural nucleoside thymidine was carried out. The calculated spectra were scaled by using different scaling procedures and three DFT methods. The TLSE procedure leads to the lowest error and is thus recommended for scaling. With the population of these conformers the IR gas-phase spectra were predicted. The crystal unit cell of the different polymorphism forms of d4T were simulated through dimer forms by using DFT methods. The scaled spectra of these dimer forms were compared. The FT-IR spectrum was recorded in the solid state in the 400-4000 cm-1 range. The respective vibrational bands were analyzed and assigned to different normal modes of vibration by comparison with the scaled vibrational values of the different dimer forms. Through this comparison, the polymorphous form of the solid state sample was identified. The study indicates that d4T exist only in the ketonic form in the solid state. The results obtained were in agreement with those determined in related anti-HIV nucleoside analogues.

  5. Zirconium phosphatidylcholine-based nanocapsules as an in vivo degradable drug delivery system of MAP30, a momordica anti-HIV protein.

    Science.gov (United States)

    Caizhen, Guo; Yan, Gao; Ronron, Chang; Lirong, Yang; Panpan, Chu; Xuemei, Hu; Yuanbiao, Qiao; Qingshan, Li

    2015-04-10

    An essential in vivo drug delivery system of a momordica anti-HIV protein, MAP30, was developed through encapsulating in chemically synthesized matrices of zirconium egg- and soy-phosphatidylcholines, abbreviated to Zr/EPC and Zr/SPC, respectively. Matrices were characterized by transmission electron microscopy and powder X-ray diffractometry studies. Zr/EPC granule at an approximate diameter of 69.43±7.78 nm was a less efficient encapsulator than the granule of Zr/SPC. Interlayer spacing of the matrices encapsulating MAP30 increased from 8.8 and 9.7 Å to 7.4 and 7.9 nm, respectively. In vivo kinetics on degradation and protein release was performed by analyzing the serum sampling of intravenously injected SPF chickens. The first order and biphasic variations were obtained for in vivo kinetics using equilibrium dialysis. Antimicrobial and anti-HIV assays yielded greatly decreased MIC50 and EC50 values of nanoformulated MAP30. An acute toxicity of MAP30 encapsulated in Zr/EPC occurred at a single intravenous dose above 14.24 mg/kg bw in NIH/KM/ICR mice. The folding of MAP30 from Zr/EPC sustained in vivo chickens for more than 8 days in high performance liquid chromatography assays. These matrices could protect MAP30 efficiently with strong structure retention, lowered toxicity and prolonged in vivo life. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. One-by-one imprinting in two eccentric layers of hollow core-shells: Sequential electroanalysis of anti-HIV drugs.

    Science.gov (United States)

    Singh, Kislay; Jaiswal, Swadha; Singh, Richa; Fatma, Sana; Prasad, Bhim Bali

    2018-07-15

    Double layered one-by-one imprinted hollow core-shells@ pencil graphite electrode was fabricated for sequential sensing of anti-HIV drugs. For this, two eccentric layers were developed on the surface of vinylated silica nanospheres to obtain double layered one-by-one imprinted solid core-shells. This yielded hollow core-shells on treatment with hydrofluoric acid. The modified hollow core-shells (single layered dual imprinted) evolved competitive diffusion of probe/analyte molecules. However, the corresponding double layered one-by-one imprinted hollow core-shells (outer layer imprinted with Zidovudine, and inner layer with Lamivudine) were found relatively better owing to their bilateral diffusions into molecular cavities, without any competition. The entire work is based on differential pulse anodic stripping voltammetry at double layered one-by-one imprinted hollow core-shells. This resulted in indirect detection of electro inactive targets with limits of detection as low as 0.91 and 0.12 (aqueous sample), 0.94 and 0.13 (blood serum), and 0.99 and 0.20 ng mL -1 (pharmaceutics) for lamivudine and zidovudine, respectively in anti-HIV drug combination. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75

    International Nuclear Information System (INIS)

    Du Li; Zhao Yaxue; Chen, Jing; Yang Liumeng; Zheng Yongtang; Tang Yun; Shen Xu; Jiang Hualiang

    2008-01-01

    Integration of viral-DNA into host chromosome mediated by the viral protein HIV-1 integrase (IN) is an essential step in the HIV-1 life cycle. In this process, Lens epithelium-derived growth factor (LEDGF/p75) is discovered to function as a cellular co-factor for integration. Since LEDGF/p75 plays an important role in HIV integration, disruption of the LEDGF/p75 interaction with IN has provided a special interest for anti-HIV agent discovery. In this work, we reported that a benzoic acid derivative, 4-[(5-bromo-4-{[2,4-dioxo-3-(2-oxo-2-phenylethyl) -1,3-thiazolidin-5-ylidene]methyl}-2-ethoxyphenoxy)methyl]benzoic acid (D77) could potently inhibit the IN-LEDGF/p75 interaction and affect the HIV-1 IN nuclear distribution thus exhibiting antiretroviral activity. Molecular docking with site-directed mutagenesis analysis and surface plasmon resonance (SPR) binding assays has clarified possible binding mode of D77 against HIV-1 integrase. As the firstly discovered small molecular compound targeting HIV-1 integrase interaction with LEDGF/p75, D77 might supply useful structural information for further anti-HIV agent discovery

  8. Characterization of regional influenza seasonality patterns in China and implications for vaccination strategies: spatio-temporal modeling of surveillance data.

    Directory of Open Access Journals (Sweden)

    Hongjie Yu

    2013-11-01

    Full Text Available The complexity of influenza seasonal patterns in the inter-tropical zone impedes the establishment of effective routine immunization programs. China is a climatologically and economically diverse country, which has yet to establish a national influenza vaccination program. Here we characterize the diversity of influenza seasonality in China and make recommendations to guide future vaccination programs.We compiled weekly reports of laboratory-confirmed influenza A and B infections from sentinel hospitals in cities representing 30 Chinese provinces, 2005-2011, and data on population demographics, mobility patterns, socio-economic, and climate factors. We applied linear regression models with harmonic terms to estimate influenza seasonal characteristics, including the amplitude of annual and semi-annual periodicities, their ratio, and peak timing. Hierarchical Bayesian modeling and hierarchical clustering were used to identify predictors of influenza seasonal characteristics and define epidemiologically-relevant regions. The annual periodicity of influenza A epidemics increased with latitude (mean amplitude of annual cycle standardized by mean incidence, 140% [95% CI 128%-151%] in the north versus 37% [95% CI 27%-47%] in the south, p0.6 in provinces located within 27.4°N-31.3°N, slope of latitudinal gradient with latitude -0.016 [95% CI -0.025 to -0.008], p<0.001. In contrast, influenza B activity predominated in colder months throughout most of China. Climate factors were the strongest predictors of influenza seasonality, including minimum temperature, hours of sunshine, and maximum rainfall. Our main study limitations include a short surveillance period and sparse influenza sampling in some of the southern provinces.Regional-specific influenza vaccination strategies would be optimal in China; in particular, annual campaigns should be initiated 4-6 months apart in Northern and Southern China. Influenza surveillance should be strengthened in mid

  9. Potential for Controlling Cholera Using a Ring Vaccination Strategy: Re-analysis of Data from a Cluster-Randomized Clinical Trial.

    Directory of Open Access Journals (Sweden)

    Mohammad Ali

    2016-09-01

    Full Text Available Vaccinating a buffer of individuals around a case (ring vaccination has the potential to target those who are at highest risk of infection, reducing the number of doses needed to control a disease. We explored the potential vaccine effectiveness (VE of oral cholera vaccines (OCVs for such a strategy.This analysis uses existing data from a cluster-randomized clinical trial in which OCV or placebo was given to 71,900 participants in Kolkata, India, from 27 July to 10 September 2006. Cholera surveillance was then conducted on 144,106 individuals living in the study area, including trial participants, for 5 y following vaccination. First, we explored the risk of cholera among contacts of cholera patients, and, second, we measured VE among individuals living within 25 m of cholera cases between 8 and 28 d after onset of the index case. For the first analysis, individuals living around each index case identified during the 5-y period were assembled using a ring to define cohorts of individuals exposed to cholera index cases. An index control without cholera was randomly selected for each index case from the same population, matched by age group, and individuals living around each index control were assembled using a ring to define cohorts not exposed to cholera cases. Cholera attack rates among the exposed and non-exposed cohorts were compared using different distances from the index case/control to define the rings and different time frames to define the period at risk. For the VE analysis, the exposed cohorts were further stratified according to the level of vaccine coverage into high and low coverage strata. Overall VE was assessed by comparing the attack rates between high and low vaccine coverage strata irrespective of individuals' vaccination status, and indirect VE was assessed by comparing the attack rates among unvaccinated members between high and low vaccine coverage strata. Cholera risk among the cohort exposed to cholera cases was 5

  10. Strategy to better select HIV-infected individuals for latent TB treatment in BCG-vaccinated population.

    Directory of Open Access Journals (Sweden)

    Chin-Hui Yang

    Full Text Available OBJECTIVE: To evaluate the T-SPOT.TB interferon-γ releasing assay and the tuberculin skin test (TST, for the diagnosis of latent tuberculosis infection(LTBI and the development of subsequent active tuberculosis, in BCG-vaccinated HIV-infected individuals. METHODS: HIV-infected individuals without clinical suspicion of active TB or a past history of TB were enrolled from 1 January 2008 to 30 November 2010. Both T-SPOT.TB test and TST were offered to the participants whom were followed up prospectively until April 30, 2012 for development of TB. RESULTS: Among the 909 participants, 25% had positive TST reactions with cut-off point of 5 mm and 15% had positive T-SPOT.TB results. After a median follow-up of 2.97 years, there were 5 cases developed culture-confirmed active TB (all had dual positive TST and T-SPOT.TB results, and the incidence was 0.17 per 100 person-years. The relative risks (RRs for subsequent active TB in HIV-infected individuals with positive TST results, positive T-SPOT.TB results and dual positive results compared with the risk for individuals with negative results were 40.6 (95% CI 2.1-767.9, 73.9 (95% CI 3.9-1397.7 and 226.5 (95% CI 12.0-4284, respectively. The number needed to treat to prevent one subsequent TB case among patients with a positive TST, a positive T-SPOT.TB and dual positive results was 35, 22 and 8 respectively. CONCLUSIONS: Adopting positive results of the TST and T-SPOT.TB to screen LTBI among BCG-vaccinated HIV-infected individuals might be feasible. Number needed to treat for isoniazid preventive therapy could be reduced significantly by using dual positive strategy.

  11. Optimization Strategies for a Portable Thermoelectric Vaccine Refrigeration System in Developing Communities

    Science.gov (United States)

    Ohara, B.; Sitar, R.; Soares, J.; Novisoff, P.; Nunez-Perez, A.; Lee, H.

    2015-06-01

    The traditional approach to determine an optimum current for thermoelectric cooling assumes that a refrigeration chamber is insulated and has no thermal resistance to a thermoelectric module. As a result, minimum temperature occurs when Peltier cooling matches with parasitic heat transfer and Joule heating. In practical application, minimum temperature happens when heat addition from the environment is matched with heat extracted by a thermoelectric module, and the optimum current differs from that anticipated by the traditional approach. Hence, consideration for insulation and thermal resistances via thermoelectric module should be made to achieve desirable cooling performance/refrigeration temperature. This paper presents a modeling approach to determine the optimum current as well as the optimum geometry to power a small thermoelectric vaccine delivery system for developing communities under the World Health Organization requirements. The model is derived from three energy conservation equations for temperatures at both ends of the thermoelectric materials within a module, as well as the refrigeration chamber temperature. A prototype was built and demonstrated a minimum temperature of 3.4°C. With optimized module geometry, the system is estimated to reduce power consumption by over 50% while achieving twice the temperature difference.

  12. Global burden of Shigella infections : implications for vaccine development and implementation of control strategies

    NARCIS (Netherlands)

    Kotloff, KL; Winickoff, JP; Ivanoff, B; Clemens, JD; Swerdlow, DL; Sansonetti, PJ; Adak, GK; Levine, MM

    1999-01-01

    Few studies provide data on the global morbidity and mortality caused by infection with Shigella spp.; such estimates are needed, however, to plan strategies of prevention and treatment. Here we report the results of a review of the literature published between 1966 and 1997 on Shigella infection.

  13. M cell-targeting strategy facilitates mucosal immune response and enhances protection against CVB3-induced viral myocarditis elicited by chitosan-DNA vaccine.

    Science.gov (United States)

    Ye, Ting; Yue, Yan; Fan, Xiangmei; Dong, Chunsheng; Xu, Wei; Xiong, Sidong

    2014-07-31

    Efficient delivery of antigen to mucosal associated lymphoid tissue is a first and critical step for successful induction of mucosal immunity by vaccines. Considering its potential transcytotic capability, M cell has become a more and more attractive target for mucosal vaccines. In this research, we designed an M cell-targeting strategy by which mucosal delivery system chitosan (CS) was endowed with M cell-targeting ability via conjugating with a CPE30 peptide, C terminal 30 amino acids of clostridium perfringens enterotoxin (CPE), and then evaluated its immune-enhancing ability in the context of coxsackievirus B3 (CVB3)-specific mucosal vaccine consisting of CS and a plasmid encoding CVB3 predominant antigen VP1. It had shown that similar to CS-pVP1, M cell-targeting CPE30-CS-pVP1 vaccine appeared a uniform spherical shape with about 300 nm diameter and +22 mV zeta potential, and could efficiently protect DNA from DNase I digestion. Mice were orally immunized with 4 doses of CPE30-CS-pVP1 containing 50 μg pVP1 at 2-week intervals and challenged with CVB3 4 weeks after the last immunization. Compared with CS-pVP1 vaccine, CPE30-CS-pVP1 vaccine had no obvious impact on CVB3-specific serum IgG level and splenic T cell immune responses, but significantly increased specific fecal SIgA level and augmented mucosal T cell immune responses. Consequently, much milder myocarditis and lower viral load were witnessed in CPE30-CS-pVP1 immunized group. The enhanced immunogenicity and immunoprotection were associated with the M cell-targeting ability of CPE30-CS-pVP1 which improved its mucosal uptake and transcytosis. Our findings indicated that CPE30-CS-pVP1 may represent a novel prophylactic vaccine against CVB3-induced myocarditis, and this M cell-targeting strategy indeed could be applied as a promising and universal platform for mucosal vaccine development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Vaccines against poverty

    Science.gov (United States)

    MacLennan, Calman A.; Saul, Allan

    2014-01-01

    With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vaccines for neglected infectious diseases. However, the majority of this went to three diseases: HIV/AIDS, malaria, and tuberculosis, and not neglected diseases. Much of it went to basic research rather than development, with an ongoing decline in funding for product development partnerships. Further investment in vaccines against diarrheal diseases, hepatitis C, and group A Streptococcus could lead to a major health impact in LMICs, along with vaccines to prevent sepsis, particularly among mothers and neonates. The Advanced Market Commitment strategy of the Global Alliance for Vaccines and Immunisation (GAVI) Alliance is helping to implement vaccines against rotavirus and pneumococcus in LMICs, and the roll out of the MenAfriVac meningococcal A vaccine in the African Meningitis Belt represents a paradigm shift in vaccines against poverty: the development of a vaccine primarily targeted at LMICs. Global health vaccine institutes and increasing capacity of vaccine manufacturers in emerging economies are helping drive forward new vaccines for LMICs. Above all, partnership is needed between those developing and manufacturing LMIC vaccines and the scientists, health care professionals, and policy makers in LMICs where such vaccines will be implemented. PMID:25136089

  15. A Cinnamon-Derived Procyanidin Compound Displays Anti-HIV-1 Activity by Blocking Heparan Sulfate- and Co-Receptor- Binding Sites on gp120 and Reverses T Cell Exhaustion via Impeding Tim-3 and PD-1 Upregulation.

    Directory of Open Access Journals (Sweden)

    Bridgette Janine Connell

    Full Text Available Amongst the many strategies aiming at inhibiting HIV-1 infection, blocking viral entry has been recently recognized as a very promising approach. Using diverse in vitro models and a broad range of HIV-1 primary patient isolates, we report here that IND02, a type A procyanidin polyphenol extracted from cinnamon, that features trimeric and pentameric forms displays an anti-HIV-1 activity against CXCR4 and CCR5 viruses with 1-7 μM ED50 for the trimer. Competition experiments, using a surface plasmon resonance-based binding assay, revealed that IND02 inhibited envelope binding to CD4 and heparan sulphate (HS as well as to an antibody (mAb 17b directed against the gp120 co-receptor binding site with an IC50 in the low μM range. IND02 has thus the remarkable property of simultaneously blocking gp120 binding to its major host cell surface counterparts. Additionally, the IND02-trimer impeded up-regulation of the inhibitory receptors Tim-3 and PD-1 on CD4+ and CD8+ cells, thereby demonstrating its beneficial effect by limiting T cell exhaustion. Among naturally derived products significantly inhibiting HIV-1, the IND02-trimer is the first component demonstrating an entry inhibition property through binding to the viral envelope glycoprotein. These data suggest that cinnamon, a widely consumed spice, could represent a novel and promising candidate for a cost-effective, natural entry inhibitor for HIV-1 which can also down-modulate T cell exhaustion markers Tim-3 and PD-1.

  16. Economic Evaluation of Screening Strategies Combined with HPV Vaccination of Preadolescent Girls for the Prevention of Cervical Cancer in Vientiane, Lao PDR.

    Directory of Open Access Journals (Sweden)

    Phetsavanh Chanthavilay

    Full Text Available Several approaches to reduce the incidence of invasive cervical cancers exist. The approach adopted should take into account contextual factors that influence the cost-effectiveness of the available options.To determine the cost-effectiveness of screening strategies combined with a vaccination program for 10-year old girls for cervical cancer prevention in Vientiane, Lao PDR.A population-based dynamic compartment model was constructed. The interventions consisted of a 10-year old girl vaccination program only, or this program combined with screening strategies, i.e., visual inspection with acetic acid (VIA, cytology-based screening, rapid human papillomavirus (HPV DNA testing, or combined VIA and cytology testing. Simulations were run over 100 years. In base-case scenario analyses, we assumed a 70% vaccination coverage with lifelong protection and a 50% screening coverage. The outcome of interest was the incremental cost per Disability-Adjusted Life Year (DALY averted.In base-case scenarios, compared to the next best strategy, the model predicted that VIA screening of women aged 30-65 years old every three years, combined with vaccination, was the most attractive option, costing 2 544 international dollars (I$ per DALY averted. Meanwhile, rapid HPV DNA testing was predicted to be more attractive than cytology-based screening or its combination with VIA. Among cytology-based screening options, combined VIA with conventional cytology testing was predicted to be the most attractive option. Multi-way sensitivity analyses did not change the results. Compared to rapid HPV DNA testing, VIA had a probability of cost-effectiveness of 73%. Compared to the vaccination only option, the probability that a program consisting of screening women every five years would be cost-effective was around 60% and 80% if the willingness-to-pay threshold is fixed at one and three GDP per capita, respectively.A VIA screening program in addition to a girl vaccination

  17. Vaccines in Multiple Sclerosis.

    Science.gov (United States)

    Williamson, Eric M L; Chahin, Salim; Berger, Joseph R

    2016-04-01

    Vaccinations help prevent communicable disease. To be valuable, a vaccine's ability to prevent disease must exceed the risk of adverse effects from administration. Many vaccines present no risk of infection as they are comprised of killed or non-infectious components while other vaccines consist of live attenuated microorganisms which carry a potential risk of infection-particularly, in patients with compromised immunity. There are several unique considerations with respect to vaccination in the multiple sclerosis (MS) population. First, there has been concern that vaccination may trigger or aggravate the disease. Second, disease-modifying therapies (DMTs) employed in the treatment of MS may increase the risk of infectious complications from vaccines or alter their efficacy. Lastly, in some cases, vaccination strategies may be part of the treatment paradigm in attempts to avoid complications of therapy.

  18. Sterile protection against Plasmodium knowlesi in rhesus monkeys from a malaria vaccine: comparison of heterologous prime boost strategies.

    Directory of Open Access Journals (Sweden)

    George Jiang

    Full Text Available Using newer vaccine platforms which have been effective against malaria in rodent models, we tested five immunization regimens against Plasmodium knowlesi in rhesus monkeys. All vaccines included the same four P. knowlesi antigens: the pre-erythrocytic antigens CSP, SSP2, and erythrocytic antigens AMA1, MSP1. We used four vaccine platforms for prime or boost vaccinations: plasmids (DNA, alphavirus replicons (VRP, attenuated adenovirus serotype 5 (Ad, or attenuated poxvirus (Pox. These four platforms combined to produce five different prime/boost vaccine regimens: Pox alone, VRP/Pox, VRP/Ad, Ad/Pox, and DNA/Pox. Five rhesus monkeys were immunized with each regimen, and five Control monkeys received a mock vaccination. The time to complete vaccinations was 420 days. All monkeys were challenged twice with 100 P. knowlesi sporozoites given IV. The first challenge was given 12 days after the last vaccination, and the monkeys receiving the DNA/Pox vaccine were the best protected, with 3/5 monkeys sterilely protected and 1/5 monkeys that self-cured its parasitemia. There was no protection in monkeys that received Pox malaria vaccine alone without previous priming. The second sporozoite challenge was given 4 months after the first. All 4 monkeys that were protected in the first challenge developed malaria in the second challenge. DNA, VRP and Ad5 vaccines all primed monkeys for strong immune responses after the Pox boost. We discuss the high level but short duration of protection in this experiment and the possible benefits of the long interval between prime and boost.

  19. The Impact of Breakthrough Therapy Designation on Development Strategies and Timelines for Nononcology Drugs and Vaccines.

    Science.gov (United States)

    Poirier, A F; Murphy, W R

    2016-12-01

    The US Food and Drug Administration (FDA) Safety and Innovation Act (FDASIA, 2012) introduced the Breakthrough Therapy Designation (BTD), a new tool to expedite development of medicines to treat serious or life-threatening diseases. The majority of BTDs have gone to oncology drugs, and a recent publication by Shea et al. 1 reviewed the impact of BTD on oncology drug development. This article reviews the impact of BTD on development strategies and timelines for nononcology drugs. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  20. Immune modulations during chemoimmunotherapy & novel vaccine strategies - In metastatic melanoma and non small-cell lung cancer

    DEFF Research Database (Denmark)

    Iversen, Trine Zeeberg

    2013-01-01

    . Based on the promising clinical results achieved in the vaccine trial for NSCLC patients, we launched a new clinical trial for MM patients (ongoing patient recruitment) in June 2012. In order to enhance the immune response the vaccine comprises IDO plus Survivin peptide as well as the adjuvants...

  1. The use of probabilistic graphical models (PGMs) to develop a cost-effective vaccination strategy against Campylobacter in poultry

    DEFF Research Database (Denmark)

    Garcia Clavero, Ana Belén; Madsen, A.; Vigre, Håkan

    2012-01-01

    ’ exposure to Campylobacter.In this presentation we focus on the development of a computerized decision support system to aid management decisions on Campylobacter vaccination of commercial broilers. Broilers should be vaccinated against Campylobacter in the first 2 weeks of age. Therefore, the decision...... about vaccination needs to be made usually before Campylobacter is introduced in the flock. In fact, there is uncertainty regarding the introduction of Campylobacter into the flock that needs to be taken into account in the decision making process. Probabilistic Graphical Models (PGMs) integrate......, epidemiological and economic factors (cost-reward functions) have been included in the models. The final outcome of the models is presented in probabilities of expected level of Campylobacter and financial terms influenced by the decision on vaccination. For example, if the best decision seems to be to vaccinate...

  2. A new activity of anti-HIV and anti-tumor protein GAP31: DNA adenosine glycosidase - Structural and modeling insight into its functions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui-Guang [Department of Biochemistry, New York University School of Medicine, New York, NY 10016 (United States); Huang, Philip L. [American Biosciences, Boston, MA 02114 (United States); Zhang, Dawei; Sun, Yongtao [Department of Biochemistry, New York University School of Medicine, New York, NY 10016 (United States); Chen, Hao-Chia [Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892 (United States); Zhang, John [Department of Chemistry, New York University, New York, NY 10003 (United States); Huang, Paul L. [Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114 (United States); Kong, Xiang-Peng, E-mail: xiangpeng.kong@med.nyu.edu [Department of Biochemistry, New York University School of Medicine, New York, NY 10016 (United States); Lee-Huang, Sylvia, E-mail: sylvia.lee-huang@med.nyu.edu [Department of Biochemistry, New York University School of Medicine, New York, NY 10016 (United States)

    2010-01-01

    We report here the high-resolution atomic structures of GAP31 crystallized in the presence of HIV-LTR DNA oligonucleotides systematically designed to examine the adenosine glycosidase activity of this anti-HIV and anti-tumor plant protein. Structural analysis and molecular modeling lead to several novel findings. First, adenine is bound at the active site in the crystal structures of GAP31 to HIV-LTR duplex DNA with 5' overhanging adenosine ends, such as the 3'-processed HIV-LTR DNA but not to DNA duplex with blunt ends. Second, the active site pocket of GAP31 is ideally suited to accommodate the 5' overhanging adenosine of the 3'-processed HIV-LTR DNA and the active site residues are positioned to perform the adenosine glycosidase activity. Third, GAP31 also removes the 5'-end adenine from single-stranded HIV-LTR DNA oligonucleotide as well as any exposed adenosine, including that of single nucleotide dAMP but not from AMP. Fourth, GAP31 does not de-purinate guanosine from di-nucleotide GT. These results suggest that GAP31 has DNA adenosine glycosidase activity against accessible adenosine. This activity is distinct from the generally known RNA N-glycosidase activity toward the 28S rRNA. It may be an alternative function that contributes to the antiviral and anti-tumor activities of GAP31. These results provide molecular insights consistent with the anti-HIV mechanisms of GAP31 in its inhibition on the integration of viral DNA into the host genome by HIV-integrase as well as irreversible topological relaxation of the supercoiled viral DNA.

  3. Design and cellular kinetics of dansyl-labeled CADA derivatives with anti-HIV and CD4 receptor down-modulating activity.

    Science.gov (United States)

    Vermeire, Kurt; Lisco, Andrea; Grivel, Jean-Charles; Scarbrough, Emily; Dey, Kaka; Duffy, Noah; Margolis, Leonid; Bell, Thomas W; Schols, Dominique

    2007-08-15

    A new class of anti-retrovirals, cyclotriazadisulfonamide (CADA) and its derivatives, specifically down-regulate CD4, the main receptor of HIV, and prevent HIV infection in vitro. In this work, several CADA derivatives, chemically labeled with a fluorescent dansyl group, were evaluated for their biological features and cellular uptake kinetics. We identified a derivative KKD-016 with antiviral and CD4 down-modulating capabilities similar to those of the parental compound CADA. By using flow cytometry, we demonstrated that the dose-dependent cellular uptake of this derivative correlated with CD4 down-modulation. The uptake and activity of the dansyl-labeled compounds were not dependent on the level of expression of CD4 at the cell surface. Removal of the CADA compounds from the cell culture medium resulted in their release from the cells followed by a complete restoration of CD4 expression. The inability of several fluorescent CADA derivatives to down-modulate CD4 was not associated with their lower cellular uptake and was not reversed by facilitating their cell penetration by a surfactant. These results prove the successful integration of the dansyl fluorophore into the chemical structure of a CD4 down-modulating anti-HIV compound, and show the feasibility of tracking a receptor and its down-modulator simultaneously. These fluorescent CADA analogs with reversible CD4 down-regulating potency can now be applied in further studies on receptor modulation, and in the exploration of their potentials as preventive and therapeutic anti-HIV drugs.

  4. In vivo evaluation of a mucoadhesive polymeric caplet for intravaginal anti-HIV-1 delivery and development of a molecular mechanistic model for thermochemical characterization.

    Science.gov (United States)

    Ndesendo, Valence M K; Choonara, Yahya E; Meyer, Leith C R; Kumar, Pradeep; Tomar, Lomas K; Tyagi, Charu; du Toit, Lisa C; Pillay, Viness

    2015-01-01

    The aim of this study was to develop, characterize and evaluate a mucoadhesive caplet resulting from a polymeric blend (polymeric caplet) for intravaginal anti-HIV-1 delivery. Poly(lactic-co-glycolic) acid, ethylcellulose, poly(vinylalcohol), polyacrylic acid and modified polyamide 6, 10 polymers were blended and compressed to a caplet-shaped device, with and without two model drugs 3'-azido-3'-deoxythymidine (AZT) and polystyrene sulfonate (PSS). Thermal analysis, infrared spectroscopy and microscopic analysis were carried out on the caplets employing temperature-modulated DSC (TMDSC), Fourier transform infra-red (FTIR) spectrometer and scanning electron microscope, respectively. In vitro and in vivo drug release analyses as well as the histopathological toxicity studies were carried out on the drug-loaded caplets. Furthermore, molecular mechanics (MM) simulations were carried out on the drug-loaded caplets to corroborate the experimental findings. There was a big deviation between the Tg of the polymeric caplet from the Tg's of the constituent polymers indicating a strong interaction between constituent polymers. FTIR spectroscopy confirmed the presence of specific ionic and non-ionic interactions within the caplet. A controlled near zero-order drug release was obtained for AZT (20 d) and PSS (28 d). In vivo results, i.e. the drug concentration in plasma ranged between 0.012-0.332 mg/mL and 0.009-0.256 mg/mL for AZT and PSS over 1-28 d. The obtained results, which were corroborated by MM simulations, attested that the developed system has the potential for effective delivery of anti-HIV-agents.

  5. Genome-wide expression profiling analysis to identify key genes in the anti-HIV mechanism of CD4+ and CD8+ T cells.

    Science.gov (United States)

    Gao, Lijie; Wang, Yunqi; Li, Yi; Dong, Ya; Yang, Aimin; Zhang, Jie; Li, Fengying; Zhang, Rongqiang

    2018-07-01

    Comprehensive bioinformatics analyses were performed to explore the key biomarkers in response to HIV infection of CD4 + and CD8 + T cells. The numbers of CD4 + and CD8 + T cells of HIV infected individuals were analyzed and the GEO database (GSE6740) was screened for differentially expressed genes (DEGs) in HIV infected CD4 + and CD8 + T cells. Gene Ontology enrichment, KEGG pathway analyses, and protein-protein interaction (PPI) network were performed to identify the key pathway and core proteins in anti-HIV virus process of CD4 + and CD8 + T cells. Finally, we analyzed the expressions of key proteins in HIV-infected T cells (GSE6740 dataset) and peripheral blood mononuclear cells(PBMCs) (GSE511 dataset). 1) CD4 + T cells counts and ratio of CD4 + /CD8 + T cells decreased while CD8 + T cells counts increased in HIV positive individuals; 2) 517 DEGs were found in HIV infected CD4 + and CD8 + T cells at acute and chronic stage with the criterial of P-value T cells. The main biological processes of the DEGs were response to virus and defense response to virus. At chronic stage, ISG15 protein, in conjunction with IFN-1 pathway might play key roles in anti-HIV responses of CD4 + T cells; and 4) The expression of ISG15 increased in both T cells and PBMCs after HIV infection. Gene expression profile of CD4 + and CD8 + T cells changed significantly in HIV infection, in which ISG15 gene may play a central role in activating the natural antiviral process of immune cells. © 2018 Wiley Periodicals, Inc.

  6. Immunotherapeutic strategies for cancer treatment: a novel protein transfer approach for cancer vaccine development.

    Science.gov (United States)

    Shashidharamurthy, Rangaiah; Bozeman, Erica N; Patel, Jaina; Kaur, Ramneet; Meganathan, Jeyandra; Selvaraj, Periasamy

    2012-11-01

    Cancer cells have developed numerous ways to escape immune surveillance and gain unlimited proliferative capacity. Currently, several chemotherapeutic agents and radiotherapy, either alone or in combination, are being used to treat malignancies. However, both of these therapies are associated with several limitations and detrimental side effects. Therefore, recent scientific investigations suggest that immunotherapy is among the most promising new approaches in modern cancer therapy. The focus of cancer immunotherapy is to boost both acquired and innate immunity against malignancies by specifically targeting tumor cells, and leaving healthy cells and tissues unharmed. Cellular, cytokine, gene, and monoclonal antibody therapies have progressively become promising immunotherapeutic approaches that are being tested for several cancers in preclinical models as well as in the clinic. In this review, we discuss recent advances in these immunotherapeutic approaches, focusing on new strategies that allow the expression of specific immunostimulatory molecules on the surface of tumor cells to induce robust antitumor immunity. © 2011 Wiley Periodicals, Inc.

  7. Technical Transformation of Biodefense Vaccines

    Science.gov (United States)

    Lu, Shan; Wang, Shixia

    2013-01-01

    Biodefense vaccines are developed against a diverse group of pathogens. Vaccines were developed for some of these pathogens a long time ago but they are facing new challenges to move beyond the old manufacturing technologies. New vaccines to be developed against other pathogens have to determine whether to follow traditional vaccination strategies or to seek new approaches. Advances in basic immunology and recombinant DNA technology have fundamentally transformed the process of formulating a vaccine concept, optimizing protective antigens, and selecting the most effective vaccine delivery approach for candidate biodefense vaccines. PMID:19837293

  8. Pandemic vaccination strategies and influenza severe outcomes during the influenza A(H1N1)pdm09 pandemic and the post-pandemic influenza season

    DEFF Research Database (Denmark)

    Gil Cuesta, Julita; Aavitsland, Preben; Englund, Hélène

    2016-01-01

    During the 2009/10 influenza A(H1N1)pdm09 pandemic, the five Nordic countries adopted different approaches to pandemic vaccination. We compared pandemic vaccination strategies and severe influenza outcomes, in seasons 2009/10 and 2010/11 in these countries with similar influenza surveillance...... systems. We calculated the cumulative pandemic vaccination coverage in 2009/10 and cumulative incidence rates of laboratory confirmed A(H1N1)pdm09 infections, intensive care unit (ICU) admissions and deaths in 2009/10 and 2010/11. We estimated incidence risk ratios (IRR) in a Poisson regression model...... with the other countries. In 2010/11 Denmark had a significantly higher cumulative incidence of A(H1N1)pdm09 ICU admissions (IRR: 2.4; 95% confidence interval (CI): 1.9-3.0) and deaths (IRR: 8.3; 95% CI: 5.1-13.5). Compared with Denmark, the other countries had higher pandemic vaccination coverage...

  9. Different levels of immunogenicity of two strains of Fowlpox virus as recombinant vaccine vectors eliciting T-cell responses in heterologous prime-boost vaccination strategies.

    Science.gov (United States)

    Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T; Anderson, Richard J; Howard, M Keith; Schneider, Jörg; Skinner, Michael A

    2006-07-01

    The FP9 strain of F has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recombinant modified V Ankara expressing the same antigen were evaluated for their ability to elicit T-cell responses against recombinant antigens from Plasmodium berghei (circumsporozoite protein) or human immunodeficiency virus type 1 (a Gag-Pol-Nef fusion protein). Gamma interferon enzyme-linked immunospot assay and fluorescence-activated cell sorting assays of the responses to specific epitopes confirmed the approximately twofold-greater cellular immunogenicity of FP9 compared to FPW, when given as the priming or boosting immunization. Equality of transgene expression in mouse cells infected with the two strains in vitro was verified by Western blotting. Directed partial sequence analysis and PCR analysis of FPW and comparison to available whole-genome sequences revealed that many loci that are mutated in the highly attenuated and culture-adapted FP9 strain are wild type in FPW, including the seven multikilobase deletions. These "passage-specific" alterations are hypothesized to be involved in determining the immunogenicity of fowlpox virus as a recombinant vaccine vector.

  10. A prime-boost vaccination strategy using attenuated Salmonella typhimurium and a replication-deficient recombinant adenovirus vector elicits protective immunity against human respiratory syncytial virus.

    Science.gov (United States)

    Fu, Yuan-Hui; He, Jin-Sheng; Wang, Xiao-Bo; Zheng, Xian-Xian; Wu, Qiang; Xie, Can; Zhang, Mei; Wei, Wei; Tang, Qian; Song, Jing-Dong; Qu, Jian-Guo; Hong, Tao

    2010-04-23

    Human respiratory syncytial virus (RSV), for which no clinically approved vaccine is available yet, is globally a serious pediatric pathogen of the lower respiratory tract. Several approaches have been used to develop vaccines against RSV, but none of these have been approved for use in humans. An efficient vaccine-enhancing strategy for RSV is still urgently needed. We found previously that oral SL7207/pcDNA3.1/F and intranasal FGAd/F were able to induce an effective protective immune response against RSV. The heterologous prime-boost immunization regime has been reported recently to be an efficient vaccine-enhancing strategy. Therefore, we investigated the ability of an oral SL7207/pcDNA3.1/F prime and intranasal (i.n.) FGAd/F boost regimen to generate immune responses to RSV. The SL7207/pcDNA3.1/F prime-FGAd/F boost regimen generated stronger RSV-specific humoral and mucosal immune responses in BALB/c mice than the oral SL7207/pcDNA3.1/F regimen alone, and stronger specific cellular immune responses than the i.n. FGAd/F regimen alone. Histopathological analysis showed an increased efficacy against RSV challenge by the heterologous prime-boost regimen. These results suggest that such a heterologous prime-boost strategy can enhance the efficacy of either the SL7207 or the FGAd vector regimen in generating immune responses in BALB/c mice. 2010 Elsevier Inc. All rights reserved.

  11. Lactococcus garvieae outbreaks in Brazilian farms Lactococcosis in Pseudoplatystoma sp. - development of an autogenous vaccine as a control strategy.

    Science.gov (United States)

    Fukushima, H C S; Leal, C A G; Cavalcante, R B; Figueiredo, H C P; Arijo, S; Moriñigo, M A; Ishikawa, M; Borra, R C; Ranzani-Paiva, M J T

    2017-02-01

    This study evaluated the control of streptococcosis outbreaks in Brazil, isolated from diseased sorubim and identified as Lactococcus garvieae by genetic sequencing. This report determined the potential for lactococcosis control in sorubim Pseudoplatystoma sp. with two vaccines: an aqueous-based, whole-cell inactivated vaccine (bacterin) and an oil-adjuvanted bacterin. Their efficacy was evaluated at 30 days post-vaccination (d.p.v.) by challenge with L. garvieae, and the antibody production response at 15, 30 and 60 d.p.v. and the non-specific immune response were compared amongst treatments. High protection levels (P oil-adjuvanted vaccine with a relative percentage survival value of 81.7% at 30 d.p.v. Additionally, the oil-adjuvanted vaccine increased the immunogenicity of the bacterin as indicated by greater agglutination antibody titres from 15 until 60 d.p.v. This is the first report of a positive effect of vaccine administration on the specific immunity of sorubim, and the study showed that a specific antibody plays an important role in sorubim defence against lactococcosis because the innate immune responses were similar in all of the studied animals. These results demonstrated that oil-adjuvanted vaccine can be an effective alternative for the protection of sorubim from L. garvieae disease. © 2016 John Wiley & Sons Ltd.

  12. Communication and mass vaccination strategies after pertussis outbreak in rural Amish communities-Illinois, 2009-2010.

    Science.gov (United States)

    Medina-Marino, Andrew; Reynolds, Debra; Finley, Carol; Hays, Susan; Jones, Jane; Soyemi, Kenneth

    2013-01-01

    During January 2010, 2 infants from an Amish community in east-central Illinois were hospitalized with pertussis. The local health department (LDH) intervened to control disease transmission, identify contributing factors, and determine best communications methods to improve vaccination coverage. A retrospective cohort study was conducted using public health surveillance data to determine the extent of the outbreak; the standard Centers for Disease Control and Prevention and Council of State and Territorial Epidemiologists case definition for pertussis was used. The standardized Illinois Department of Public Health pertussis patient interview form was used to collect demographic, symptom, vaccination history, and treatment history information. To control disease transmission, LDH staff worked with the Amish community to promote a vaccination campaign during February 6-April 30, 2010. Forty-seven cases were identified, with onsets during December 2009-March 2010. Median age was 7 (interquartile range 1-12) years. Nineteen (40%) patients were male; 39 (83%) were aged communication and outreach resulted in a successful vaccine campaign and long-running monthly vaccination clinic. Amish do not universally reject vaccines, and their practices regarding vaccination are not static. No claim to original US government works.

  13. Innovative approaches for understanding seasonal influenza vaccine declination in healthcare personnel support development of new campaign strategies.

    Science.gov (United States)

    Schult, Tamara M; Awosika, Ebi R; Hodgson, Michael J; Hirsch, Pamela R; Nichol, Kristin L; Dyrenforth, Sue R; Moore, Scott C

    2012-09-01

    The main objectives of our study were to explore reasons for seasonal influenza vaccine acceptance and declination in employees of a large integrated healthcare system and to identify underlying constructs that influence acceptance versus declination. Secondary objectives were to determine whether vaccine acceptance varied by hospital location and to identify facility-level measures that explained variability. A national health promotion survey of employees was conducted that included items on vaccination in the 2009-2010 influenza season. The survey was administered with two other institutional surveys in a stratified fashion: approximately 40% of participating employees were randomly assigned to complete the health promotion survey. National single-payer healthcare system with 152 hospitals. Employees of the healthcare system in 2010 who responded to the survey. Factor analysis was used to identify underlying constructs that influenced vaccine acceptance versus declination. Mean factor scores were examined in relation to demographic characteristics and occupation. Multilevel logistic regression models were used to determine whether vaccine acceptance varied by location and to identify facility-level measures that explained variability. Four factors were identified related to vaccine declination and were labeled as (1) "don't care," (2) "don't want," (3) "don't believe," and (4) "don't know." Significant differences in mean factor scores existed by demographic characteristics and occupation. Vaccine acceptance varied by location, and vaccination rates in the previous year were an important facility-level predictor. Results should guide interventions that tailor messages on the basis of particular reasons for declination. Occupation-specific and culturally appropriate messaging should be considered. Continued efforts will be taken to better understand how workplace context influences vaccine acceptance.

  14. Stable malaria incidence despite scaling up control strategies in a malaria vaccine-testing site in Mali.

    Science.gov (United States)

    Coulibaly, Drissa; Travassos, Mark A; Kone, Abdoulaye K; Tolo, Youssouf; Laurens, Matthew B; Traore, Karim; Diarra, Issa; Niangaly, Amadou; Daou, Modibo; Dembele, Ahmadou; Sissoko, Mody; Guindo, Bouréima; Douyon, Raymond; Guindo, Aldiouma; Kouriba, Bourema; Sissoko, Mahamadou S; Sagara, Issaka; Plowe, Christopher V; Doumbo, Ogobara K; Thera, Mahamadou A

    2014-09-19

    The recent decline in malaria incidence in many African countries has been attributed to the provision of prompt and effective anti-malarial treatment using artemisinin-based combination therapy (ACT) and to the widespread distribution of long-lasting, insecticide-treated bed nets (LLINs). At a malaria vaccine-testing site in Bandiagara, Mali, ACT was introduced in 2004, and LLINs have been distributed free of charge since 2007 to infants after they complete the Expanded Programme of Immunization (EPI) schedule and to pregnant women receiving antenatal care. These strategies may have an impact on malaria incidence. To document malaria incidence, a cohort of 400 children aged 0 to 14 years was followed for three to four years up to July 2013. Monthly cross-sectional surveys were done to measure the prevalence of malaria infection and anaemia. Clinical disease was measured both actively and passively through continuous availability of primary medical care. Measured outcomes included asymptomatic Plasmodium infection, anaemia and clinical malaria episodes. The incidence rate of clinical malaria varied significantly from June 2009 to July 2013 without a clear downward trend. A sharp seasonality in malaria illness incidence was observed with higher clinical malaria incidence rates during the rainy season. Parasite and anaemia point prevalence also showed seasonal variation with much higher prevalence rates during rainy seasons compared to dry seasons. Despite the scaling up of malaria prevention and treatment, including the widespread use of bed nets, better diagnosis and wider availability of ACT, malaria incidence did not decrease in Bandiagara during the study period.

  15. Targeting of non-dominant antigens as a vaccine strategy to broaden T-cell responses during chronic viral infection

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Jensen, Benjamin Anderschou Holbech; Ragonnaud, Emeline

    2015-01-01

    In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes facilita......In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes...... was lost over time in T cells specific for the dominant T cell epitopes, and these cells were fully capable of expanding in response to a new viral challenge. Overall, our data suggests a potential for broadening of the antiviral CD8+ T-cell response by selecting non-dominant antigens to be targeted...

  16. Reducing AD-like pathology in 3xTg-AD mouse model by DNA epitope vaccine - a novel immunotherapeutic strategy.

    Directory of Open Access Journals (Sweden)

    Nina Movsesyan

    Full Text Available BACKGROUND: The development of a safe and effective AD vaccine requires a delicate balance between providing an adequate anti-Abeta antibody response sufficient to provide therapeutic benefit, while eliminating an adverse T cell-mediated proinflammatory autoimmune response. To achieve this goal we have designed a prototype chemokine-based DNA epitope vaccine expressing a fusion protein that consists of 3 copies of the self-B cell epitope of Abeta(42 (Abeta(1-11 , a non-self T helper cell epitope (PADRE, and macrophage-derived chemokine (MDC/CCL22 as a molecular adjuvant to promote a strong anti-inflammatory Th2 phenotype. METHODS AND FINDINGS: We generated pMDC-3Abeta(1-11-PADRE construct and immunized 3xTg-AD mouse model starting at age of 3-4 months old. We demonstrated that prophylactic immunizations with the DNA epitope vaccine generated a robust Th2 immune response that induced high titers of anti-Abeta antibody, which in turn inhibited accumulation of Abeta pathology in the brains of older mice. Importantly, vaccination reduced glial activation and prevented the development of behavioral deficits in aged animals without increasing the incidence of microhemorrhages. CONCLUSIONS: Data from this transitional pre-clinical study suggest that our DNA epitope vaccine could be used as a safe and effective strategy for AD therapy. Future safety and immunology studies in large animals with the goal to achieve effective humoral immunity without adverse effects should help to translate this study to human clinical trials.

  17. Progress towards a Leishmania vaccine.

    Science.gov (United States)

    Tabbara, Khaled S

    2006-07-01

    Leishmaniasis is a vector-born protozoan disease. Approximately 12 million individuals are affected worldwide with an estimated annual incidence of 1.5-2 million. Two clinical manifestations are recognized, cutaneous, and visceral, both of which are common in the Middle East. In both forms, infection is chronic, with potential deformities, persistence following cure, and lifelong risk of reactivation. Attempts to develop an effective human Leishmania vaccine have not yet succeeded. Leishmanization, a crude form of live vaccination historically originated in this part of the world. Experimental vaccination has been extensively studied in model animals in the past 2 decades. In this review, major human killed vaccine trials are surveyed, and modern trends in Leishmania vaccine development, including subunit vaccines, naked DNA vaccines, and transmission blocking vaccines are explored. Recent findings of a link between persistence of live parasites, and maintenance of long-term immunity suggest live vaccination with attenuated strains, as a future vaccination strategy.

  18. Immunization strategies against Piscirickettsia salmonis infections. Review of vaccination approaches and modalities and their associated immune response profiles.

    Directory of Open Access Journals (Sweden)

    Oystein Evensen

    2016-11-01

    Full Text Available Salmonid rickettsial septicemia is a serious, infectious disease in Chilean salmon farming caused by Piscirickettsia salmonis, causing heavy losses to the salmonid industry. P. salmonis belongs to the Gammaproteobacteria, order Thiotrichales. SRS was first described in Chile in 1989, and infection with P. salmonis has since been described from a high number of fish species and in several geographic regions globally. P. salmonis infection of salmonids causes multifocal, necrotic areas of internal organs like liver, kidney and spleen. Histologically and immunologically the tissue response is formation of granulomas, often with central suppuration. The exact sequence of infection is not known but bacteria likely gain access to internal organs through mucosal surfaces and when infected, fish carry bacteria in macrophages. It has not been fully determined if the bacterium resides in the cytosol or hide within vesicular structures intracellularly, although there are indications that in vitro infection results in actin reorganization and formation of actin-coated vesicle within which the bacterium resides. Protection against lethal challenge is well documented in lab scale experiments but protection from vaccination has proven more difficult to attain long term under field conditions. Current vaccination protocols include whole cell, inactivated and adjuvanted vaccines for injection for primary immunization followed by oral boost where timing of boost delivery is followed by measuring circulating antibody levels against the pathogen. Documentation also exist that there is correlation between antibody titers and protection against mortality. Future vaccination regimes will likely also include live, attenuated vaccines or other technologies such as DNA vaccination. So far there is no documentation available for live vaccines and for DNA vaccines, studies have been unsuccessful under laboratory conditions.

  19. Evaluating the most effective distribution strategies to assure administration of pandemic H1N1 influenza vaccine to New York State children and adolescents: evaluation using the New York State Immunization Information System.

    Science.gov (United States)

    Bednarczyk, Robert A; DuVall, Sarah; Meldrum, Megan D; Flynn, Michael K; Santilli, Loretta A; Easton, Delia E; Sharma, Priya; Blog, Debra S; Zansky, Shelley M; McNutt, Louise-Anne; Birkhead, Guthrie S

    2013-01-01

    To examine differences in H1N1 influenza vaccine distribution strategies that may impact the ability to rapidly administer vaccine during a pandemic or public health emergency. Retrospective evaluation of immunization data in the New York State Immunization Information System (NYSIIS). Analysis of existing NYSIIS data. Children and adolescents younger than 19 years for whom information on at least 1 H1N1 influenza vaccine was present in NYSIIS. Median time to administer vaccines to children and adolescents younger than 19 years by December 31, 2009, by county; venue of H1N1 vaccine administration (local health department [LHD] or private medical provider); comparison of immunization-seeking behavior for routine childhood vaccinations and H1N1 vaccine. A total of 459 189 first or only doses of H1N1 influenza vaccine were recorded in NYSIIS as being administered to New York State, outside of New York City, children aged less than 19 years, between October 2, 2009, and December 31, 2009. Overall, LHD administered 31% of H1N1 vaccine doses; in counties having population less than 100,000, LHD administered 63% of H1N1 doses compared with 23% in counties having population more than 100,000. Time to median administration was faster for LHD in smaller counties and similar for LHD and private medical providers in larger counties. Children who always received routine childhood immunizations either within or outside of their county of residence often had the same practice for H1N1 vaccine, with 85% of children following these patterns. Children who did not follow these patterns were more likely to receive H1N1 influenza vaccine through LHD. Local health departments were able to rapidly administer large quantities of H1N1 influenza vaccine, and patterns of health care seeking relying on increased use of LHD needs to be further studied for future public health emergency planning.

  20. Understanding how different recruitment strategies impact parent engagement with an iPad-based intervention to provide personalized information about adolescent vaccines.

    Science.gov (United States)

    Dempsey, Amanda F; Maertens, Julie; Beaty, Brenda L; O'Leary, Sean T

    2015-05-01

    Inadequate provider time for addressing parents' questions and concerns about adolescent vaccines is a barrier to vaccine utilization. We sought to determine how different recruitment strategies impact the degree of engagement with an intervention that provided this information via an iPad placed in a clinical setting. We provided to three pediatric practices in the Denver area the "Teen VaxScene" web site that generates individually customized information for parents about adolescent vaccines. Three recruitment strategies were assessed for their impact on parental use of the intervention as follows: passive recruitment using posters to advertise a "kiosk" version of the intervention; posters plus a $10 incentive for using the kiosk; and posters plus a $10 incentive plus decoupling the iPad from the kiosks to enable "roving." We assessed the engagement with the intervention at multiple levels including log in, consent, and completion of a baseline survey and viewing individually tailored web pages. Surveys were used to assess barriers to using the intervention. During the 14-month study period, 693 people had contact with the iPad, 199 consented, and 48 completed the survey to enable creation of tailored content; and 42 used the tailored site. Five times as many parents (n = 40) consented to participation during the 2 months when the intervention was "roving" than during the 10-month "passive" recruitment period. Engagement with the tailored material was low, with most users viewing only the "table of contents" pages. Utilizers and nonutilizers of the intervention had similar demographic characteristics. Enabling the iPad to "rove" in the clinic greatly increased the proportion of parents consenting to use the intervention. However, meaningful engagement with the material was low. Further research is needed to understand the most effective and time efficient ways to provide vaccine-related educational information to parents of adolescents. Copyright © 2015 Society

  1. Pricing of new vaccines

    OpenAIRE

    Lee, Bruce Y; McGlone, Sarah M

    2010-01-01

    New vaccine pricing is a complicated process that could have substantial long-standing scientific, medical and public health ramifications. Pricing can have a considerable impact on new vaccine adoption and, thereby, either culminate or thwart years of research and development and public health efforts. Typically, pricing strategy consists of the following eleven components: (1) Conduct a target population analysis; (2) Map potential competitors and alternatives; (3) Construct a vaccine targe...

  2. Manipulating Google's Knowledge Graph Box to Counter Biased Information Processing During an Online Search on Vaccination: Application of a Technological Debiasing Strategy.

    Science.gov (United States)

    Ludolph, Ramona; Allam, Ahmed; Schulz, Peter J

    2016-06-02

    One of people's major motives for going online is the search for health-related information. Most consumers start their search with a general search engine but are unaware of the fact that its sorting and ranking criteria do not mirror information quality. This misconception can lead to distorted search outcomes, especially when the information processing is characterized by heuristic principles and resulting cognitive biases instead of a systematic elaboration. As vaccination opponents are vocal on the Web, the chance of encountering their non‒evidence-based views on immunization is high. Therefore, biased information processing in this context can cause subsequent impaired judgment and decision making. A technological debiasing strategy could counter this by changing people's search environment. This study aims at testing a technological debiasing strategy to reduce the negative effects of biased information processing when using a general search engine on people's vaccination-related knowledge and attitudes. This strategy is to manipulate the content of Google's knowledge graph box, which is integrated in the search interface and provides basic information about the search topic. A full 3x2 factorial, posttest-only design was employed with availability of basic factual information (comprehensible vs hardly comprehensible vs not present) as the first factor and a warning message as the second factor of experimental manipulation. Outcome variables were the evaluation of the knowledge graph box, vaccination-related knowledge, as well as beliefs and attitudes toward vaccination, as represented by three latent variables emerged from an exploratory factor analysis. Two-way analysis of variance revealed a significant main effect of availability of basic information in the knowledge graph box on participants' vaccination knowledge scores (F2,273=4.86, P=.01), skepticism/fear of vaccination side effects (F2,273=3.5, P=.03), and perceived information quality (F2

  3. Manipulating Google’s Knowledge Graph Box to Counter Biased Information Processing During an Online Search on Vaccination: Application of a Technological Debiasing Strategy

    Science.gov (United States)

    Allam, Ahmed; Schulz, Peter J

    2016-01-01

    Background One of people’s major motives for going online is the search for health-related information. Most consumers start their search with a general search engine but are unaware of the fact that its sorting and ranking criteria do not mirror information quality. This misconception can lead to distorted search outcomes, especially when the information processing is characterized by heuristic principles and resulting cognitive biases instead of a systematic elaboration. As vaccination opponents are vocal on the Web, the chance of encountering their non‒evidence-based views on immunization is high. Therefore, biased information processing in this context can cause subsequent impaired judgment and decision making. A technological debiasing strategy could counter this by changing people’s search environment. Objective This study aims at testing a technological debiasing strategy to reduce the negative effects of biased information processing when using a general search engine on people’s vaccination-related knowledge and attitudes. This strategy is to manipulate the content of Google’s knowledge graph box, which is integrated in the search interface and provides basic information about the search topic. Methods A full 3x2 factorial, posttest-only design was employed with availability of basic factual information (comprehensible vs hardly comprehensible vs not present) as the first factor and a warning message as the second factor of experimental manipulation. Outcome variables were the evaluation of the knowledge graph box, vaccination-related knowledge, as well as beliefs and attitudes toward vaccination, as represented by three latent variables emerged from an exploratory factor analysis. Results Two-way analysis of variance revealed a significant main effect of availability of basic information in the knowledge graph box on participants’ vaccination knowledge scores (F2,273=4.86, P=.01), skepticism/fear of vaccination side effects (F2,273=3.5, P=.03

  4. Peptide Vaccines for Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Rory C. F. De Brito

    2018-05-01

    Full Text Available Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  5. Peptide Vaccines for Leishmaniasis.

    Science.gov (United States)

    De Brito, Rory C F; Cardoso, Jamille M De O; Reis, Levi E S; Vieira, Joao F; Mathias, Fernando A S; Roatt, Bruno M; Aguiar-Soares, Rodrigo Dian D O; Ruiz, Jeronimo C; Resende, Daniela de M; Reis, Alexandre B

    2018-01-01

    Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  6. Risk of myocardial infarction in patients with HIV infection exposed to specific individual antiretroviral drugs from the 3 major drug classes: the data collection on adverse events of anti-HIV drugs (D:A:D) study

    DEFF Research Database (Denmark)

    Worm, Signe Westring; Sabin, Caroline; Weber, Rainer

    2010-01-01

    BACKGROUND. The risk of myocardial infarction (MI) in patients with human immunodeficiency virus (HIV) infection has been assessed in 13 anti-HIV drugs in the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study. METHODS. Poisson regression models were adjusted for cardiovascular risk...... factors, cohort, calendar year, and use of other antiretroviral drugs and assessed the association between MI risk and cumulative (per year) or recent (current or in the past 6 months) use of antiretroviral drugs, with >30,000 person-years of exposure. RESULTS. Over 178,835 person-years, 580 patients......% CI, 1.01-1.17], respectively) after adjustment for lipids but were not altered further after adjustment for other metabolic parameters. CONCLUSIONS. Of the drugs considered, only indinavir, lopinavir-ritonavir, didanosine, and abacavir were associated with a significantly increased risk of MI...

  7. Anti-staphylococcal, anti-HIV and cytotoxicity studies of four South African medicinal plants and isolation of bioactive compounds from Cassine transvaalensis (Burtt. Davy) codd.

    Science.gov (United States)

    Mthethwa, Ningy S; Oyedeji, Bola A O; Obi, Larry C; Aiyegoro, Olayinka A

    2014-12-18

    Medicinal plants represent an important opportunity to rural communities in Africa, as a source of affordable medicine and as a source of income. Increased patient awareness about safe usage is important as well as more training with regards to traditional medicine. The aim of this study was to evaluate the ethnomedicinal prowess of some indigenous South African plants commonly used in Eastern Cape Province of South Africa for the treatment of skin and respiratory tract infections, HIV and their toxicity potential. Cassine transvaalensis, Vangueria infausta, Croton gratissimus and Vitex ferruginea were tested for antibacterial activities against Staphylococcus aureus and Staphylococcus epidermidis using Kirby-Bauer disk diffusion and minimum inhibition concentration (MIC). Cytotoxic and anti-HIV-1 activities of plants were tested using MTT Assay (3- (Dimethylthiozole-2-yl-2,5-diphenyltetrazolium bromide)) and anti- HIV-1iib assay. In search of bioactive lead compounds, Cassine transvaalensis which was found to be the most active plant extract against the two Staphylocoous bacteria was subjected to various chromatographic. Thin layer chromatography, Column chromatography and Nuclear Magnetic Resonance (NMR), (1H-1H, 13C-13C, in DMSO_d6, Bruker 600 MHz) were used to isolate and characterize 3-Oxo-28-hydroxylbetuli-20(29)-ene and 3,28-dihydroxylbetuli-20(29)-ene bioactive compounds from C. transvaalensis. The four plants studied exhibited bioactive properties against the test isolates. The zones of inhibition ranged between 16 mm to 31 mm for multi-drug resistant staphylococci species. MIC values varied between 0.6 and 0.02 μg/ml. C. gratissimus and C. transvaalensis exhibited the abilities to inhibit HIV-1iib. Two bioactive compounds were isolated from C. transvaalensis. Data from this study reveals the use of these plant by traditional healers in the Eastern Cape. Furthermore, C. transvaalensis and C. gratissimus were found to be more active as against HIV-1iib

  8. Sexual behavior, use of contraceptive methods and risk factors for HPV infections of students living in central Italy: implications for vaccination strategies.

    Science.gov (United States)

    Boccalini, S; Tiscione, E; Bechini, A; Levi, M; Mencacci, M; Petrucci, F; Bani Assad, G; Santini, M G; Bonanni, P

    2012-03-01

    The most frequent risk factors related to the infection/persistence of HPV in the population are an early start of sexual activity, the number of sexual partners, smoking, and the utilization of some contraceptive methods. In Italy, HPV vaccine is offered free of charge to all 12-year-old female adolescents, with a possible extension to other age groups according to Regional policies. In order to value the suitability of the current HPV vaccination strategies in Italy, an epidemiological study on sexual habits in adolescents and young adults was organized. An anonymous questionnaire on sexual behavior and risk factors for HPV infection was administered to 2300 students aged 13-24 years attending secondary schools and universities in Tuscany during 2008-09. About 12% of the sample declared to be foreign citizen. The results highlight the early start of sexual activity among young students. Particularly, more than half of the interviewed students declared to be already sexually active. The mean and the median age of the first sexual intercourse was 15.4 +/- 1.4 years and 15 years (25th and 75th percentiles = 14-16), respectively. More than 77% of students at age 16 years declared they already had the first sexual intercourse, compared with 0.3% of those sexually active, had sexual contacts with a single partner. Most students declared to know common contraceptive methods (male condom and contraceptive pill). However, only half of them declared a regular use of male condom. These data confirm the importance of vaccination against HPV for young females before their sexual debut. In addition, the current multi-cohort strategy of HPV vaccination in Tuscany (free of charge in the age range 12-16 years) allows also to catch up those girls that have not yet had their first sexual experiences before 16 years (21.5% according to our study) but also to those girls already sexually active, who very rarely are already infected by all vaccine types at 16 years. Our results also

  9. Vaccines (immunizations) - overview

    Science.gov (United States)

    Vaccinations; Immunizations; Immunize; Vaccine shots; Prevention - vaccine ... of the vaccine. VACCINE SCHEDULE The recommended vaccination (immunization) schedule is updated every 12 months by the ...

  10. Adolescent Attitudes toward Influenza Vaccination and Vaccine Uptake in a School-Based Influenza Vaccination Intervention: A Mediation Analysis

    Science.gov (United States)

    Painter, Julia E.; Sales, Jessica M.; Pazol, Karen; Wingood, Gina M.; Windle, Michael; Orenstein, Walter A.; DiClemente, Ralph J.

    2011-01-01

    Background: School-based vaccination programs may provide an effective strategy to immunize adolescents against influenza. This study examined whether adolescent attitudes toward influenza vaccination mediated the relationship between receipt of a school-based influenza vaccination intervention and vaccine uptake. Methods: Participants were…

  11. Sustainable vaccine development: a vaccine manufacturer's perspective.

    Science.gov (United States)

    Rappuoli, Rino; Hanon, Emmanuel

    2018-05-08

    Vaccination remains the most cost-effective public health intervention after clean water, and the benefits impressively outweigh the costs. The efforts needed to fulfill the steadily growing demands for next-generation and novel vaccines designed for emerging pathogens and new indications are only realizable in a sustainable business model. Vaccine development can be fast-tracked through strengthening international collaborations, and the continuous innovation of technologies to accelerate their design, development, and manufacturing. However, these processes should be supported by a balanced project portfolio, and by managing sustainable vaccine procurement strategies for different types of markets. Collectively this will allow a gradual shift to a more streamlined and profitable vaccine production, which can significantly contribute to the worldwide effort to shape global health. Copyright © 2018 GlaxoSmithKine Biologicals SA. Published by Elsevier Ltd.. All rights reserved.

  12. A realização do teste anti-hiv no pré-natal: os significados para a gestante El establecimiento de la lucha contra la prueba del vih en pre-navidad: significados para el embarazo The establishment of anti-hiv test in pre-natal: meanings for pregnancy

    Directory of Open Access Journals (Sweden)

    Roberta Maria de Oliveira Silva

    2008-12-01

    Full Text Available O estudo teve por objetivo conhecer e analisar o significado da realização do teste anti-HIV no pré-natal para as gestantes. Trata-se de uma pesquisa com abordagem qualitativa e foi realizada em um Hospital Escola e em uma Maternidade do município do Rio de Janeiro. Como recurso técnico-metodológico utilizou-se o discurso do sujeito coletivo (DSC. Após a análise dos discursos verificamos que para as gestantes a realização do teste significa a possibilidade de prevenir a transmissão vertical do HIV e como parte da assistência pré-natal. O pré-natal foi considerado pelas gestantes uma excelente oportunidade para a realização do teste anti HIV, para o conhecimento da condição sorológica e início precoce do tratamento. Conclui-se que o teste, para a maioria das gestantes, representa a possibilidade de proteger o filho do HIV, além de fazer parte da construção do papel materno a partir de um cuidado concreto com a saúde do bebê.El estudio que tenía para que el objetivo sepa y analice el significado de la realización del anti-VIH de la prueba en el prenatal para las mujeres embarazadas. Uno está sobre una investigación con acercamiento cualitativo y fue ejecutado en una escuela del hospital y una maternidad de la ciudad de Rio de Janeiro. Como recurso técnico-metodológico el discurso del ciudadano colectivo fue utilizado (DSC. Después de que el análisis de los discursos, nosotros verificamos que para las mujeres embarazadas la realización de la prueba significa la posibilidad para prevenir la transmisión vertical del VIH y como parte de la ayuda prenatal. El prenatal era considerado por las mujeres embarazadas una ocasión excelente para la realización del anti VIH de la prueba, para el conocimiento de la condición sorological y del principio precoz del tratamiento. Se concluye que la prueba, para la mayoría de las mujeres embarazadas, representa la posibilidad para proteger al hijo del VIH, más allá de ser

  13. Expression of a Recombinant Anti-HIV and Anti-Tumor Protein, MAP30, in Nicotiana tobacum Hairy Roots: A pH-Stable and Thermophilic Antimicrobial Protein.

    Directory of Open Access Journals (Sweden)

    Ali Moghadam

    Full Text Available In contrast to conventional antibiotics, which microorganisms can readily evade, it is nearly impossible for a microbial strain that is sensitive to antimicrobial proteins to convert to a resistant strain. Therefore, antimicrobial proteins and peptides that are promising alternative candidates for the control of bacterial infections are under investigation. The MAP30 protein of Momordica charantia is a valuable type I ribosome-inactivating protein (RIP with anti-HIV and anti-tumor activities. Whereas the antimicrobial activity of some type I RIPs has been confirmed, less attention has been paid to the antimicrobial activity of MAP30 produced in a stable, easily handled, and extremely cost-effective protein-expression system. rMAP30-KDEL was expressed in Nicotiana tobacum hairy roots, and its effect on different microorganisms was investigated. Analysis of the extracted total proteins of transgenic hairy roots showed that rMAP30-KDEL was expressed effectively and that this protein exhibited significant antibacterial activity in a dose-dependent manner. rMAP30-KDEL also possessed thermal and pH stability. Bioinformatic analysis of MAP30 and other RIPs regarding their conserved motifs, amino-acid contents, charge, aliphatic index, GRAVY value, and secondary structures demonstrated that these factors accounted for their thermophilicity. Therefore, RIPs such as MAP30 and its derived peptides might have promising applications as food preservatives, and their analysis might provide useful insights into designing clinically applicable antibiotic agents.

  14. An anti-HIV-1 compound that increases steady-state expression of apoplipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G.

    Science.gov (United States)

    Ejima, Tomohiko; Hirota, Mayuko; Mizukami, Tamio; Otsuka, Masami; Fujita, Mikako

    2011-10-01

    Human apoplipoprotein B mRNA-editing enzyme-catalytic polypeptide-like (APOBEC) 3G (A3G) is an antiviral protein that blocks HIV-1 replication. However, the antiviral activity of A3G is overcome by the HIV-1 protein Vif. This inhibitory function of Vif is related to its ability to degrade A3G in the proteasome. This finding prompted us to examine the activities of 4-(dimethylamino)-2,6-bis[(N-(2-[(2-nitrophenyl)dithio]ethyl)amino)methyl]pyridine (SN-2) and SN-3. We found that 5 µM SN-2 increases the expression of A3G to a level much higher than that observed in the absence of Vif, without affecting the level of Vif expression. The proteasome inhibitor MG-132 increased the level of both A3G and Vif expression. These results demonstrate that A3G is ubiquitinated and degraded in the proteasome by a factor other than Vif, and that SN-2 selectively inhibits these processes. Furthermore, 5 µM SN-2 significantly inhibited the MAGI cell infectivity of wild-type HIV-1. These findings may contribute to the development of a novel anti-HIV-1 drug.

  15. Synthesis and anti-HIV activity of novel N-1 side chain-modified analogs of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT).

    Science.gov (United States)

    Pontikis, R; Benhida, R; Aubertin, A M; Grierson, D S; Monneret, C

    1997-06-06

    A series of 33 N-1 side chain-modified analogs of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (1, HEPT) were synthesized and evaluated for their anti-HIV-1 activity. In particular, the influence of substitution of the terminal hydroxy group of the acyclic structure of HEPT and the structural rigidity of this side chain were investigated. Halo (7, 8), azido (9), and amino (10-15) derivatives were synthesized from HEPT via the p-tosylate derivative 6. Acylation of the primary amine 15 afforded the amido analogs 16-20. The diaryl derivatives 26-29 were prepared by reaction of HEPT, or of the 6-(2-pyridylthio) analog 23, with diaryl disulfides in the presence of tri-n-butylphosphine. Compounds 39-41, in which the N-1 side chain is rigidified by incorporation of an E-configured double bond, were obtained by palladium(0)-catalyzed coupling of several different 6-(arylthio)uracil derivatives (37, 38) with allyl acetates 33. Compounds 13, 40a,c,d,f, and 41, incorporating an aromatic ring at the end of the acyclic side chain, were found to be more potent than the known diphenyl-substituted HEPT analog BPT (2), two of them, 40c,d, being 10-fold more active.

  16. Formação, práticas e trajetórias de aconselhadores de centros de testagem anti-HIV do Rio de Janeiro, Brasil

    Directory of Open Access Journals (Sweden)

    Claudia Mora

    2015-12-01

    Full Text Available Perante a importância do aconselhamento na testagem anti-HIV, analisamos as diretrizes institucionais, as competências privilegiadas no treinamento profissional e os saberes/práticas de aconselhadores. Trata-se de estudo qualitativo centrado na análise documental, observação e entrevista com aconselhadores de Centros de Testagem e Aconselhamento (CTA do estado do Rio de Janeiro. A análise foi orientada pela teoria de Pierre Bourdieu. Foi evidenciado que o habitus profissional dos aconselhadores resulta da articulação dos treinamentos, da graduação e de experiências e interesses pessoais. A operacionalização de competências, como a escuta ativa, é limitada pela rotina dos serviços e escassez de espaços de reflexão. Para incrementar a prática do aconselhamento, é importante desenvolver competências no treinamento, manter a educação continuada e fazer adequações na rotina do serviço. Tais ajustes podem fortalecer a passagem das diretrizes à ação e o aprimoramento da organização e gestão dos CTA.

  17. High throughput virtual screening and in silico ADMET analysis for rapid and efficient identification of potential PAP248-286 aggregation inhibitors as anti-HIV agents

    Science.gov (United States)

    Malik, Ruchi; Bunkar, Devendra; Choudhary, Bhanwar Singh; Srivastava, Shubham; Mehta, Pakhuri; Sharma, Manish

    2016-10-01

    Human semen is principal vehicle for transmission of HIV-1 and other enveloped viruses. Several endogenous peptides present in semen, including a 39-amino acid fragments of prostatic acid phosphatase (PAP248-286) assemble into amyloid fibrils named as semen-derived enhancer of viral infection (SEVI) that promote virion attachment to target cells which dramatically enhance HIV virus infection by up to 105-fold. Epigallocatechin-3-gallate (EGCG), a polyphenolic compound, is the major catechin found in green tea which disaggregates existing SEVI fibers, and inhibits the formation of SEVI fibers. The aim of this study was to screen a number of relevant polyphenols to develop a rational approach for designing PAP248-286 aggregation inhibitors as potential anti-HIV agents. The molecular docking based virtual screening results showed that polyphenolic compounds 2-6 possessed good docking score and interacted well with the active site residues of PAP248-286. Amino acid residues of binding site namely; Lys255, Ser256, Leu258 and Asn265 are involved in binding of these compounds. In silico ADMET prediction studies on these hits were also found to be promising. Polyphenolic compounds 2-6 identified as hits may act as novel leads for inhibiting aggregation of PAP248-286 into SEVI.

  18. Cost-Effectiveness Analysis of Various Pertussis Vaccination Strategies Primarily Aimed at Protecting Infants in the Netherlands

    NARCIS (Netherlands)

    Westra, Tjalke A.; de Vries, Robin; Tamminga, Johannes J.; Sauboin, Christophe J.; Postma, Maarten J.

    Background: Pertussis is a highly contagious respiratory disease. Despite a high rate of vaccine coverage through the Dutch national immunization program, the incidence of pertussis remains high in the Netherlands and the risk of infection continues. Because pertussis is most severe in unimmunized

  19. The Meningitis Vaccine Project.

    Science.gov (United States)

    LaForce, F Marc; Konde, Kader; Viviani, Simonetta; Préziosi, Marie-Pierre

    2007-09-03

    Epidemic meningococcal meningitis is an important public health problem in sub-Saharan Africa. Current control measures rely on reactive immunizations with polysaccharide (PS) vaccines that do not induce herd immunity and are of limited effectiveness in those under 2 years of age. Conversely, polysaccharide conjugate vaccines are effective in infants and have consistently shown an important effect on decreasing carriage, two characteristics that facilitate disease control. In 2001 the Meningitis Vaccine Project (MVP) was created as a partnership between PATH and the World Health Organization (WHO) with the goal of eliminating meningococcal epidemics in Africa through the development, licensure, introduction, and widespread use of conjugate meningococcal vaccines. Since group A Neisseria meningitidis (N. meningitidis) is the dominant pathogen causing epidemic meningitis in Africa MVP is developing an affordable (US$ 0.40 per dose) meningococcal A (Men A) conjugate vaccine through an innovative international partnership that saw transfer of a conjugation and fermentation technology to a developing country vaccine manufacturer. A Phase 1 study of the vaccine in India has shown that the product is safe and immunogenic. Phase 2 studies have begun in Africa, and a large demonstration study of the conjugate vaccine is envisioned for 2008-2009. After extensive consultations with African public health officials a vaccine introduction plan has been developed that includes introduction of the Men A conjugate vaccine into standard Expanded Programme on Immunization (EPI) schedules but also emphasizes mass vaccination of 1-29 years old to induce herd immunity, a strategy that has been shown to be highly effective when the meningococcal C (Men C) conjugate vaccine was introduced in several European countries. The MVP model is a clear example of the usefulness of a "push mechanism" to finance the development of a needed vaccine for the developing world.

  20. Fc receptor-targeting of immunogen as a strategy for enhanced antigen loading, vaccination, and protection using intranasally administered antigen-pulsed dendritic cells.

    Science.gov (United States)

    Pham, Giang H; Iglesias, Bibiana V; Gosselin, Edmund J

    2014-09-08

    Dendritic cells (DCs) play a critical role in the generation of adaptive immunity via the efficient capture, processing, and presentation of antigen (Ag) to naïve T cells. Administration of Ag-pulsed DCs is also an effective strategy for enhancing immunity to tumors and infectious disease organisms. Studies have also demonstrated that targeting Ags to Fcγ receptors (FcγR) on Ag presenting cells can enhance humoral and cellular immunity in vitro and in vivo. Specifically, our studies using a Francisella tularensis (Ft) infectious disease vaccine model have demonstrated that targeting immunogens to FcγR via intranasal (i.n.) administration of monoclonal antibody (mAb)-inactivated Ft (iFt) immune complexes (ICs) enhances protection against Ft challenge. Ft is the causative agent of tularemia, a debilitating disease of humans and other mammals and a category A biothreat agent for which there is no approved vaccine. Therefore, using iFt Ag as a model immunogen, we sought to determine if ex vivo targeting of iFt to FcγR on DCs would enhance the potency of i.n. administered iFt-pulsed DCs. In this study, bone marrow-derived DCs (BMDCs) were pulsed ex vivo with iFt or mAb-iFt ICs. Intranasal administration of mAb-iFt-pulsed BMDCs enhanced humoral and cellular immune responses, as well as protection against Ft live vaccine strain (LVS) challenge. Increased protection correlated with increased iFt loading on the BMDC surface as a consequence of FcγR-targeting. However, the inhibitory FcγRIIB had no impact on this enhancement. In conclusion, targeting Ag ex vivo to FcγR on DCs provides a method for enhanced Ag loading of DCs ex vivo, thereby reducing the amount of Ag required, while also avoiding the inhibitory impact of FcγRIIB. Thus, this represents a simple and less invasive strategy for increasing the potency of ex vivo-pulsed DC vaccines against chronic infectious diseases and cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Fc Receptor-Targeting of Immunogen as a Strategy for Enhanced Antigen Loading, Vaccination, and Protection Using Intranasally-Administered Antigen-Pulsed Dendritic Cells

    Science.gov (United States)

    Pham, Giang H.; Iglesias, Bibiana V.; Gosselin, Edmund J.

    2014-01-01

    Dendritic cells (DCs) play a critical role in the generation of adaptive immunity via the efficient capture, processing, and presentation of antigen (Ag) to naïve T cells. Administration of Ag-pulsed DCs is also an effective strategy for enhancing immunity to tumors and infectious disease organisms. Studies have also demonstrated that targeting Ags to Fcγ receptors (FcγR) on Ag presenting cells can enhance humoral and cellular immunity in vitro and in vivo. Specifically, our studies using an F. tularensis (Ft) infectious disease vaccine model have demonstrated that targeting immunogens to FcγR via intranasal (i.n.) administration of monoclonal antibody (mAb)-inactivated Ft (iFt) immune complexes (ICs) enhances protection against Ft challenge. Ft is the causative agent of tularemia, a debilitating disease of humans and other mammals and a category A biothreat agent for which there is no approved vaccine. Therefore, using iFt Ag as a model immunogen, we sought to determine if ex vivo targeting of iFt to FcγR on DCs would enhance the potency of i.n. administered iFt-pulsed DCs. In this study, bone marrow-derived DCs (BMDCs) were pulsed ex vivo with iFt or mAb-iFt ICs. Intranasal administration of mAb-iFt-pulsed BMDCs enhanced humoral and cellular immune responses, as well as protection against Ft live vaccine strain (LVS) challenge. Increased protection correlated with increased iFt loading on the BMDC surface as a consequence of FcγR targeting. However, the inhibitory FcγRIIB had no impact on this enhancement. In conclusion, targeting Ag ex vivo to FcγR on DCs provides a method for enhanced Ag loading of DCs ex vivo, thereby reducing the amount of Ag required, while also avoiding the inhibitory impact of FcγRIIB. Thus, this represents a simple and less invasive strategy for increasing the potency of ex vivo-pulsed DC vaccines against chronic infectious diseases and cancer. PMID:25068496

  2. Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates.

    Science.gov (United States)

    Qian, Feng; Wu, Yimin; Muratova, Olga; Zhou, Hong; Dobrescu, Gelu; Duggan, Peter; Lynn, Lambert; Song, Guanhong; Zhang, Yanling; Reiter, Karine; MacDonald, Nicholas; Narum, David L; Long, Carole A; Miller, Louis H; Saul, Allan; Mullen, Gregory E D

    2007-05-16

    Conjugation of polysaccharides to carrier proteins has been a successful approach for producing safe and effective vaccines. In an attempt to increase the immunogenicity of two malarial vaccine candidate proteins of Plasmodium falciparum, apical membrane antigen 1 (AMA1) to a blood stage vaccine candidate and surface protein 25 (Pfs25) a mosquito stage vaccine candidate, were each independently chemically conjugated to the mutant, nontoxic Pseudomonas aeruginosa ExoProtein A (rEPA). AMA1 is a large (66kD) relatively good immunogen in mice; Pfs25 is a poorly immunogenic protein when presented on alum to mice. Mice were immunized on days 0 and 28 with AMA1- or Pfs25-rEPA conjugates or unconjugated AMA1 or Pfs25, all formulated on Alhydrogel. Remarkably, sera from mice 14 days after the second immunization with Pfs25-rEPA conjugates displayed over a 1000-fold higher antibody titers as compared to unconjugated Pfs25. In contrast, AMA1 conjugated under the same conditions induced only a three-fold increase in antibody titers. When tested for functional activity, antibodies elicited by the AMA1-rEPA inhibited invasion of erythrocytes by blood-stage parasites and antibodies elicited by the Pfs25-rEPA conjugates blocked the development of the sexual stage parasites in the mosquito midgut. These results demonstrate that conjugation to rEPA induces a marked improvement in the antibody titer in mice for the poor immunogen (Pfs25) and for the larger protein (AMA1). These conjugates now need to be tested in humans to determine if mice are predictive of the response in humans.

  3. Aconselhamento pós-teste anti-HIV: análise à luz de uma teoria humanística de Enfermagem Consejería pós test Anti-HIV: análisis a luz de una teoría humanistica de enfermería Anti-HIV after-test counselling: analysis at a light of a Nursing humanistic theory

    Directory of Open Access Journals (Sweden)

    Maria Alix Leite Araújo

    2006-12-01

    Full Text Available Este trabalho analisa o aconselhamento pós-teste anti-HIV em Unidades Básicas de Saúde. Trata-se de um estudo qualitativo desenvolvido em Unidades Básicas de Saúde da Família de Fortaleza (UBASF. O trabalho de campo ocorreu pela observação do atendimento de 12 enfermeiros em consultas de pré-natal. O referencial teórico de análise foi a Teoria Humanística de Enfermagem de Paterson e Zderad visto que a Enfermagem, segundo a teoria, implica um tipo especial de encontro entre seres humanos. A análise baseou-se no conceito de diálogo, tendo como variáveis seus elementos estruturais: o encontro, o relacionamento, a presença e o chamado, e a resposta. Observou-se que a assistência às gestantes não atingiu o relacionamento EU-TU, ou seja, o relacionamento sujeito-sujeito, com a presença do diálogo genuíno. Prevaleceu o relacionamento EU-ISSO, sujeito-objeto. As consultas eram rápidas e puramente mecânicas, levando esses profissionais, em certos momentos, a fugirem de uma assistência humanizada.Este trabajo analiza el pos test de consejería anti-HIV en las Unidades Básicas de Salud. Es un estudio cualitativo desarrollado en las Unidades Básicas de Salud de la Familia en la ciudad de Fortaleza (UBASF. El trabajo de campo sucedió por la observación de la asistencia de 12 enfermeros en las consultas de pré-natal. El referencial teórico de análisis fué la Teoría Humanistica de Paterson y Zderad de Enfermería, visto en la enfermería, según la teoría, implica en un tipo especial de encuentro entre los seres humanos. El análisis era basado en el concepto de diálogo, teniendo como las variables sus elementos estructurales: el encuentro, la relación, la presencia y el llamamiento y la respuesta. Fue observado que la ayuda a la embarazada no alcanzó la relación YO-USTED, en otros términos, el sujeto-sujeto de la relación, con la presencia del diálogo auténtico. La relación que prevaleció era el YO-AQUEL, sujeto

  4. Epidemic model with vaccinated age that exhibits backward bifurcation

    International Nuclear Information System (INIS)

    Yang Junyuan; Zhang Fengqin; Li Xuezhi

    2009-01-01

    Vaccination of susceptibilities is included in a transmission model for a disease that confers immunity. In this paper, interplay of vaccination strategy together with vaccine efficacy and the vaccinated age is studied. In particular, vaccine efficacy can lead to a backward bifurcation. At the same time, we also discuss an abstract formulation of the problem, and establish the well-posedness of the model.

  5. Green revolution vaccines, edible vaccines

    African Journals Online (AJOL)

    Admin

    of development. Food vaccines may also help to suppress autoimmunity disorders such as Type-1. Diabetes. Key words: Edible vaccines, oral vaccines, antigen expression, food vaccines. INTRODUCTION. Vaccination involves the stimulation of the immune system to prepare it for the event of an invasion from a particular ...

  6. Vaccine Safety

    Science.gov (United States)

    ... During Pregnancy Frequently Asked Questions about Vaccine Recalls Historical Vaccine Safety Concerns FAQs about GBS and Menactra ... CISA Resources for Healthcare Professionals Evaluation Current Studies Historical Background 2001-12 Publications Technical Reports Vaccine Safety ...

  7. Discovery of non-peptide small molecular CXCR4 antagonists as anti-HIV agents: Recent advances and future opportunities.

    Science.gov (United States)

    Zhang, Heng; Kang, Dongwei; Huang, Boshi; Liu, Na; Zhao, Fabao; Zhan, Peng; Liu, Xinyong

    2016-05-23

    CXCR4 plays vital roles in HIV-1 life cycle for it's essential in mediating the interaction of host and virus and completing the entry process in the lifecycle of HIV-1 infection. Compared with some traditional targets, CXCR4 provides a novel and less mutated drug target in the battle against AIDS. Its antagonists have no cross resistance with other antagonists. Great achievements have been made recent years and a number of small molecular CXCR4 antagonists with diversity scaffolds have been discovered. In this review, recent advances in the discovery of CXCR4 antagonists with special attentions on their evolution and structure-activity relationships of representative CXCR4 antagonists are described. Moreover, some classical medicinal chemistry strategies and novel methodologies are also introduced. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Developing a community-level anti-HIV/AIDS stigma and homophobia intervention in new York city: The project CHHANGE model.

    Science.gov (United States)

    Frye, Victoria; Paige, Mark Q; Gordon, Steven; Matthews, David; Musgrave, Geneva; Kornegay, Mark; Greene, Emily; Phelan, Jo C; Koblin, Beryl A; Taylor-Akutagawa, Vaughn

    2017-08-01

    HIV/AIDS stigma and homophobia are associated with significant negative health and social outcomes among people living with HIV/AIDS (PLWHA) and those at risk of infection. Interventions to decrease HIV stigma have focused on providing information and education, changing attitudes and values, and increasing contact with people living with HIV/AIDS (PLWHA), activities that act to reduce stereotyped beliefs and prejudice, as well as acts of discrimination. Most anti-homophobia interventions have focused on bullying reduction and have been implemented at the secondary and post-secondary education levels. Few interventions address HIV stigma and homophobia and operate at the community level. Project CHHANGE, Challenge HIV Stigma and Homophobia and Gain Empowerment, was a community-level, multi-component anti-HIV/AIDS stigma and homophobia intervention designed to reduce HIV stigma and homophobia thus increasing access to HIV prevention and treatment access. The theory-based intervention included three primary components: workshops and trainings with local residents, businesses and community-based organizations (CBO); space-based events at a CBO-partner drop-in storefront and "pop-up" street-based events and outreach; and a bus shelter ad campaign. This paper describes the intervention design process, resultant intervention and the study team's experiences working with the community. We conclude that CHHANGE was feasible and acceptable to the community. Promoting the labeling of gay and/or HIV-related "space" as a non-stigmatized, community resource, as well as providing opportunities for residents to have contact with targeted groups and to understand how HIV stigma and homophobia relate to HIV/AIDS prevalence in their neighborhood may be crucial components of successful anti-stigma and discrimination programming. Copyright © 2017. Published by Elsevier Ltd.

  9. An improved protocol for efficient engraftment in NOD/LTSZ-SCIDIL-2Rγnull mice allows HIV replication and development of anti-HIV immune responses.

    Directory of Open Access Journals (Sweden)

    Maneesh Singh

    Full Text Available Cord blood hematopoietic progenitor cells (CB-HPCs transplanted immunodeficient NOD/LtsZ-scidIL2Rγ(null (NSG and NOD/SCID/IL2Rγ(null (NOG mice need efficient human cell engraftment for long-term HIV-1 replication studies. Total body irradiation (TBI is a classical myeloablation regimen used to improve engraftment levels of human cells in these humanized mice. Some recent reports suggest the use of busulfan as a myeloablation regimen to transplant HPCs in neonatal and adult NSG mice. In the present study, we further ameliorated the busulfan myeloablation regimen with fresh CB-CD34+cell transplantation in 3-4 week old NSG mice. In this CB-CD34+transplanted NSG mice engraftment efficiency of human CD45+cell is over 90% in peripheral blood. Optimal engraftment promoted early and increased CD3+T cell levels, with better lymphoid tissue development and prolonged human cell chimerism over 300 days. These humanized NSG mice have shown long-lasting viremia after HIV-1JRCSF and HIV-1Bal inoculation through intravenous and rectal routes. We also saw a gradual decline of the CD4+T cell count, widespread immune activation, up-regulation of inflammation marker and microbial translocation after HIV-1 infection. Humanized NSG mice reconstituted according to our new protocol produced, moderate cellular and humoral immune responses to HIV-1 postinfection. We believe that NSG mice reconstituted according to our easy to use protocol will provide a better in vivo model for HIV-1 replication and anti-HIV-1 therapy trials.

  10. Underutilization of Influenza Vaccine

    Directory of Open Access Journals (Sweden)

    Marshall K. Cheney

    2013-04-01

    Full Text Available Yearly influenza vaccination continues to be underutilized by those who would most benefit from it. The Health Belief Model was used to explain differences in beliefs about influenza vaccination among at-risk individuals resistant to influenza vaccination. Survey data were collected from 74 members of at-risk groups who were not vaccinated for influenza during the previous flu season. Accepting individuals were more likely to perceive flu as a threat to health and perceive access barriers, and cues to action were the most important influence on whether they plan to get vaccinated. In comparison, resistant individuals did not feel threatened by the flu, access barriers were not a problem, and they did not respond favorably to cues to action. Perceived threat, perceived access barriers, and cues to action were significantly associated with plans to be vaccinated for influenza in the next flu season. Participants who saw influenza as a threat to their health had 5.4 times the odds of planning to be vaccinated than those who did not. Participants reporting barriers to accessing influenza vaccination had 7.5 times the odds of reporting plans to be vaccinated. Those responding positively to cues to action had 12.2 times the odds of planning to be vaccinated in the next flu season than those who did not. Accepting and resistant individuals have significant differences in their beliefs, which require different intervention strategies to increase vaccination rates. These findings provide important information to researchers and practitioners working to increase influenza vaccination rates.

  11. Preformulation and stability in biological fluids of the retrocyclin RC-101, a potential anti-HIV topical microbicide

    Directory of Open Access Journals (Sweden)

    Conrads Thomas P

    2011-07-01

    Full Text Available Abstract Background RC-101, a cationic peptide retrocyclin analog, has in vitro activity against HIV-1. Peptide drugs are commonly prone to conformational changes, oxidation and hydrolysis when exposed to excipients in a formulation or biological fluids in the body, this can affect product efficacy. We aimed to investigate RC-101 stability under several conditions including the presence of human vaginal fluids (HVF, enabling the efficient design of a safe and effective microbicide product. Stability studies (temperature, pH, and oxidation were performed by HPLC, Circular Dichroism, and Mass Spectrometry (LC-MS/MS. Additionally, the effect of HVF on formulated RC-101 was evaluated with fluids collected from healthy volunteers, or from subjects with bacterial vaginosis (BV. RC-101 was monitored by LC-MS/MS for up to 72 h. Results RC-101 was stable at pH 3, 4, and 7, at 25 and 37°C. High concentrations of hydrogen peroxide resulted in less than 10% RC-101 reduction over 24 h. RC-101 was detected 48 h after incubation with normal HVF; however, not following incubation with HVF from BV subjects. Conclusions Our results emphasize the importance of preformulation evaluations and highlight the impact of HVF on microbicide product stability and efficacy. RC-101 was stable in normal HVF for at least 48 h, indicating that it is a promising candidate for microbicide product development. However, RC-101 stability appears compromised in individuals with BV, requiring more advanced formulation strategies for stabilization in this environment.

  12. Cancer chemoprevention and cancer preventive vaccines--a call to action: leaders of diverse stakeholder groups present strategies for overcoming multiple barriers to meet an urgent need.

    Science.gov (United States)

    Herberman, Ronald B; Pearce, Homer L; Lippman, Scott M; Pyenson, Bruce S; Alberts, David S

    2006-12-15

    experts, the following recommended actions were outlined: define policy solutions to patent, intellectual property, and liability law barriers; create an advisory document about the approval process for cancer chemopreventive agents and vaccines for the FDA; develop new design models for cancer chemopreventive clinical trials; outline the business case for chemopreventive agents and vaccines for federal research agencies, payors and investors; and implement a communications strategy to increase public awareness about the importance of chemoprevention and cancer preventive vaccines.

  13. Vaccines.gov

    Science.gov (United States)

    ... Vaccine Safety Vaccines Work Vaccine Types Vaccine Ingredients Vaccines by Disease Chickenpox ... Typhoid Fever Whooping Cough (Pertussis) Yellow Fever Who and When Infants, Children, and Teens ...

  14. Recent Perspectives on Genome, Transmission, Clinical Manifestation, Diagnosis, Therapeutic Strategies, Vaccine Developments, and Challenges of Zika Virus Research

    Directory of Open Access Journals (Sweden)

    Apoorva Shankar

    2017-09-01

    Full Text Available One of the potential threats to public health microbiology in 21st century is the increased mortality rate caused by Zika virus (ZIKV, a mosquito-borne flavivirus. The severity of ZIKV infection urged World Health Organization (WHO to declare this virus as a global concern. The limited knowledge on the structure, virulent factors, and replication mechanism of the virus posed as hindrance for vaccine development. Several vector and non-vector-borne mode of transmission are observed for spreading the disease. The similarities of the virus with other flaviviruses such as dengue and West Nile virus are worrisome; hence, there is high scope to undertake ZIKV research that probably provide insight for novel therapeutic intervention. Thus, this review focuses on the recent aspect of ZIKV research which includes the outbreak, genome structure, multiplication and propagation of the virus, current animal models, clinical manifestations, available treatment options (probable vaccines and therapeutics, and the recent advancements in computational drug discovery pipelines, challenges and limitation to undertake ZIKV research. The review suggests that the infection due to ZIKV became one of the universal concerns and an interdisciplinary environment of in vitro cellular assays, genomics, proteomics, and computational biology approaches probably contribute insights for screening of novel molecular targets for drug design. The review tried to provide cutting edge knowledge in ZIKV research with future insights required for the development of novel therapeutic remedies to curtail ZIKV infection.

  15. Clinical and economic assessment of different general population strategies of pertussis vaccine booster regarding number of doses and age of application for reducing whooping cough disease burden: a systematic review.

    Science.gov (United States)

    Rodríguez-Cobo, Iria; Chen, Yen-Fu; Olowokure, Babatunde; Litchfield, Ian

    2008-12-09

    Pertussis continues to be an important cause of morbidity and mortality in children too young to be fully protected despite high vaccination coverage. This has been attributed to waning immunity in older people, leading to the development of strategies to increase levels of immunity. A systematic review was conducted to assess the clinical and cost effectiveness of four population-based strategies for pertussis booster vaccination: single booster at 12-24 months old, single pre-school booster, single adolescent booster and multiple boosters in adulthood every 10 years. Electronic databases and Internet resources were searched to June 2006. Nine observational studies, four mathematical models and eight economic evaluations were included, evaluating four different strategies. Strong evidence to recommend any of these strategies was not found.

  16. Incidence and risk factors for new-onset diabetes in HIV-infected patients: the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study

    DEFF Research Database (Denmark)

    De Wit, Stephane; Sabin, Caroline A; Weber, Rainer

    2008-01-01

    OBJECTIVE: The aims of this study were to determine the incidence of diabetes among HIV-infected patients in the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) cohort, to identify demographic, HIV-related, and combination antiretroviral therapy (cART)-related factors associated...... with the onset of diabetes, and to identify possible mechanisms for any relationships found. RESEARCH DESIGN AND METHODS: D:A:D is a prospective observational study of 33,389 HIV-infected patients; diabetes is a study end point. Poisson regression models were used to assess the relation between diabetes...

  17. Pricing of new vaccines.

    Science.gov (United States)

    Lee, Bruce Y; McGlone, Sarah M

    2010-08-01

    New vaccine pricing is a complicated process that could have substantial long-standing scientific, medical, and public health ramifications. Pricing can have a considerable impact on new vaccine adoption and, thereby, either culminate or thwart years of research and development and public health efforts. Typically, pricing strategy consists of the following ten components: 1. Conduct a target population analysis; 2. Map potential competitors and alternatives; 3. Construct a vaccine target product profile (TPP) and compare it to projected or actual TPPs of competing vaccines; 4. Quantify the incremental value of the new vaccine's characteristics; 5. Determine vaccine positioning in the marketplace; 6. Estimate the vaccine price-demand curve; 7. Calculate vaccine costs (including those of manufacturing, distribution, and research and development); 8. Account for various legal, regulatory, third party payer, and competitor factors; 9. Consider the overall product portfolio; 10. Set pricing objectives; 11. Select pricing and pricing structure. While the biomedical literature contains some studies that have addressed these components, there is still considerable room for more extensive evaluation of this important area.

  18. Pricing of new vaccines

    Science.gov (United States)

    McGlone, Sarah M

    2010-01-01

    New vaccine pricing is a complicated process that could have substantial long-standing scientific, medical and public health ramifications. Pricing can have a considerable impact on new vaccine adoption and, thereby, either culminate or thwart years of research and development and public health efforts. Typically, pricing strategy consists of the following eleven components: (1) Conduct a target population analysis; (2) Map potential competitors and alternatives; (3) Construct a vaccine target product profile (TPP) and compare it to projected or actual TPPs of competing vaccines; (4) Quantify the incremental value of the new vaccine's characteristics; (5) Determine vaccine positioning in the marketplace; (6) Estimate the vaccine price-demand curve; (7) Calculate vaccine costs (including those of manufacturing, distribution, and research and development); (8) Account for various legal, regulatory, third party payer and competitor factors; (9) Consider the overall product portfolio; (10) Set pricing objectives; (11) Select pricing and pricing structure. While the biomedical literature contains some studies that have addressed these components, there is still considerable room for more extensive evaluation of this important area. PMID:20861678

  19. Application of radiation technology in vaccines development.

    Science.gov (United States)

    Seo, Ho Seong

    2015-07-01

    One of the earliest methods used in the manufacture of stable and safe vaccines is the use of chemical and physical treatments to produce inactivated forms of pathogens. Although these types of vaccines have been successful in eliciting specific humoral immune responses to pathogen-associated immunogens, there is a large demand for the development of fast, safe, and effective vaccine manufacturing strategies. Radiation sterilization has been used to develop a variety of vaccine types, because it can eradicate chemical contaminants and penetrate pathogens to destroy nucleic acids without damaging the pathogen surface antigens. Nevertheless, irradiated vaccines have not widely been used at an industrial level because of difficulties obtaining the necessary equipment. Recent successful clinical trials of irradiated vaccines against pathogens and tumors have led to a reevaluation of radiation technology as an alternative method to produce vaccines. In the present article, we review the challenges associated with creating irradiated vaccines and discuss potential strategies for developing vaccines using radiation technology.

  20. Rational design of gene-based vaccines.

    Science.gov (United States)

    Barouch, Dan H

    2006-01-01

    Vaccine development has traditionally been an empirical discipline. Classical vaccine strategies include the development of attenuated organisms, whole killed organisms, and protein subunits, followed by empirical optimization and iterative improvements. While these strategies have been remarkably successful for a wide variety of viruses and bacteria, these approaches have proven more limited for pathogens that require cellular immune responses for their control. In this review, current strategies to develop and optimize gene-based vaccines are described, with an emphasis on novel approaches to improve plasmid DNA vaccines and recombinant adenovirus vector-based vaccines. Copyright 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  1. [From new vaccine to new target: revisiting influenza vaccination].

    Science.gov (United States)

    Gérard, M

    2011-09-01

    Annual vaccination is since many years the corner stone of Influenza control strategy. Because conventional vaccine are needle-based, are less immunogenic in old people and induce only systemic IgG production, intranasal and intradermal vaccines that are recently or will be soon available in Belgium will offer distinct advantages. Intradermal vaccination is on the Belgian market since 2010. A stronger immune response that allows an antigen sparing strategy is elicited because antigens are delivered near the dermal dendritic cells. Local side effects are more pronounced than after intramuscular injection. The needle-free intranasal vaccine that has been approved for use in people less than 18 years old by the EMEA in October 2010 induces also a mucosal IgA response. Improved clinical results than with intramuscular vaccine has been documented in several studies in children. Several conditions are contraindication to nasal vaccination because of patterns of side effects and because the vaccine is an live-attenuated vaccine. Pregnant women has become a top priority for Influenza vaccination in the recommendations of the High Council of Health in Belgium since the 2009 H1N1 pandemic. Several studies has since then documented the increased risk for Influenza-related morbidity in pregnant women especially during the third trimester and independently of the presence of other comorbidities. Reduced incidence of documented Influenza and of Influenza-related hospitalizations are observed in the new born of vaccinated women until 6 months of age. Availability of new vaccines for Influenza and better knowledge of the benefit of vaccination in target populations are important tools to optimize vaccine coverage of the population.

  2. Vaccines for preventing Japanese encephalitis

    DEFF Research Database (Denmark)

    Schiøler, Karin Linda; Samuel, Miny; Wai, Kim Lay

    2007-01-01

    BACKGROUND: Vaccination is recognized as the only practical measure for preventing Japanese encephalitis. Production shortage, costs, and issues of licensure impair vaccination programmes in many affected countries. Concerns over vaccine effectiveness and safety also have a negative impact...... on acceptance and uptake. OBJECTIVES: To evaluate vaccines for preventing Japanese encephalitis in terms of effectiveness, adverse events, and immunogenicity. SEARCH STRATEGY: In March 2007, we searched the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (The Cochrane Library 2007, Issue 1......), MEDLINE, EMBASE, LILACS, BIOSIS, and reference lists. We also attempted to contact corresponding authors and vaccine companies. SELECTION CRITERIA: Randomized controlled trials (RCTs), including cluster-RCTs, comparing Japanese encephalitis vaccines with placebo (inert agent or unrelated vaccine...

  3. Hepatitis Vaccines

    OpenAIRE

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B ...

  4. Novel dual small-molecule HIV inhibitors: scaffolds and discovery strategies.

    Science.gov (United States)

    Song, Anran; Yu, Haiqing; Wang, Changyuan; Zhu, Xingqi; Liu, Kexin; Ma, Xiaodong

    2015-01-01

    Searching for safe and effective treatments for HIV infection is still a great challenge worldwide in spite of the 27 marketed anti-HIV drugs and the powerful highly active antiretroviral therapy (HAART). As a promising prospect for generation of new HIV therapy drugs, multiple ligands (MDLs) were greatly focused on recently due to their lower toxicity, simplified dosing and patient adherence than single-target drugs. Till now, by disrupting two active sites or steps of HIV replications, a number of HIV dual inhibitors, such as CD4-gssucap120 inhibitors, CXCR4-gp20 inhibitors, RT-CXCR4 inhibitors, RT-protease inhibitors, RT-integrase inhibitors, and RTassociated functions inhibitors have been identified. Generally, these dual inhibitors were discovered mainly through screening approaches and design strategies. Of these compounds, the molecules bearing small skeletons exhibited strong anti-HIV activity and aroused great attention recently. Reviewing the progress of the dual small-molecule HIV inhibitors from the point of view of their scaffolds and discovery strategies will provide valuable information for producing more effective anti-HIV drugs. In this regard, novel dual small-molecule HIV inhibitors were illustrated, and their discovery paradigms as the major contents were also summarized in this manuscript.

  5. Strategies and ethical considerations for the recruitment of young men who have sex with men: challenges of a vaccination trial in Mexico.

    Science.gov (United States)

    Gutiérrez-Luna, Arturo; Angeles-Llerenas, Angelica; Wirtz, Veronika J; Del Río, Asunción Alvarez; Zamilpa-Mejía, Laura; Aranda-Flores, Carlos; Viramontes, Jose Luis; Lazcano-Ponce, Eduardo

    2009-08-01

    The importance of recruiting and retaining study participants from minority groups is well recognized; however, there are no established rules for recruitment as its success depends on the setting and population. To describe and analyze recruitment strategies, ethical considerations, and recruitment outcomes from a study to evaluate the efficacy the Human Papilloma Virus vaccine in young men who have sex with men (MSM). The recruitment settings were university and community sites in the state of Morelos, Mexico. Eligibility requirement were men between 18 and 23 years old, who were free of anal-genital lesions as confirmed by clinical exploration, HIV negative, with no history of sexual relations with female partners and with fewer than five male lifetime sexual partners. Recruitment goals were 25 study participants in a four and a half month period. In addition to traditional recruitment strategies (flyers and media advertising, specific training of the recruitment team and adequate choice of recruitment sites)-engagement of local leaders in the MSM community formed a crucial part of the strategy. Special consideration was given to confidentiality and respect for study participants and a Bill of Participant Rights was developed as an explicit commitment to respect and acceptance. In total 723 MSM were initially contacted, 243 filled out the recruitment questionnaire, of which 151 met the criteria to be invited to the clinical examination. After clinical examination and interviews with the recruitment team, 131 fulfilled the inclusion criteria, of whom 73 were enrolled in the study - nearly triple the recruitment goal. Among the initial recruitment strategies (application of the screening questionnaire) attending meetings with MSM activist organizations was the most successful (326), followed by recruitment at bars and dance clubs (107). The recruitment strategies should be formally evaluated for their effectiveness to identify those which are most successful. In

  6. Current Peptide and Protein Candidates Challenging HIV Therapy beyond the Vaccine Era

    Directory of Open Access Journals (Sweden)

    Koollawat Chupradit

    2017-09-01

    Full Text Available Human immunodeficiency virus (HIV is a causative agent of acquired immune deficiency syndrome (AIDS. Highly active antiretroviral therapy (HAART can slow down the replication of HIV-1, leading to an improvement in the survival of HIV-1-infected patients. However, drug toxicities and poor drug administration has led to the emergence of a drug-resistant strain. HIV-1 immunotherapy has been continuously developed, but antibody therapy and HIV vaccines take time to improve its efficiency and have limitations. HIV-1-specific chimeric antigen receptor (CAR-based immunotherapy founded on neutralizing antibodies is now being developed. In HIV-1 therapy, anti-HIV chimeric antigen receptors showed promising data in the suppression of HIV-1 replication; however, autologous transfusion is still a problem. This has led to the development of effective peptides and proteins for an alternative HIV-1 treatment. In this paper, we provide a comprehensive review of potent anti-HIV-1 peptides and proteins that reveal promising therapeutic activities. The inhibitory mechanisms of each therapeutic molecule in the different stages of the HIV-1 life cycle will be discussed herein.

  7. Anti-infective Vaccination Strategies in Patients with Hematologic Malignancies or Solid Tumors - Guideline of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Medical Oncology (DGHO).

    Science.gov (United States)

    Rieger, C T; Liss, B; Mellinghoff, S; Buchheidt, D; Cornely, O A; Egerer, G; Heinz, W J; Hentrich, M; Maschmeyer, G; Mayer, K; Sandherr, M; Silling, G; Ullmann, A; Vehreschild, M J G T; von Lilienfeld-Toal, M; Wolf, H H; Lehners, N

    2018-04-24

    Infectious complications are a significant cause of morbidity and mortality in patients with malignancies specifically when receiving anticancer treatments. Prevention of infection through vaccines is an important aspect of clinical care of cancer patients. Immunocompromising effects of the underlying disease as well as of antineoplastic therapies need to be considered when devising vaccination strategies. This guideline provides clinical recommendations on vaccine use in cancer patients including autologous stem cell transplant recipients, while allogeneic stem cell transplantation is subject of a separate guideline. The document was prepared by the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Medical Oncology (DGHO) by reviewing currently available data and applying evidence-based medicine criteria.

  8. Aconselhamento em DST/Aids às gestantes que realizaram o teste anti-HIV na admissão para o parto: os sentidos de uma prática

    Directory of Open Access Journals (Sweden)

    Patrícia de Lima Fonseca

    Full Text Available Foram analisadas as práticas e os sentidos do aconselhamento para gestantes submetidas ao teste anti-HIV na admissão para o parto, e para profissionais de saúde que atuam na assistência à maternidade em Salvador, Brasil. Foi realizado um estudo qualitativo em uma maternidade, com observação participante e entrevistas semiestruturadas com 13 puérperas sem diagnóstico prévio para o HIV e sete profissionais de saúde. Observou-se que o exame anti-HIV é realizado de forma compulsória, sem considerar a autonomia da gestante, e que o aconselhamento se limita a informar o diagnóstico e dar orientações no pós-teste somente àquelas cujos resultados foram positivos. Os sentidos que permeiam o exame, assim como o entendimento da experiência e os significados construídos pelas puérperas, sobretudo quando se descobrem positivas para o HIV, não são abordados pelos profissionais, que não se sentem capacitados para acolherem a subjetividade das pacientes.

  9. Aconselhamento em DST/Aids às gestantes que realizaram o teste anti-HIV na admissão para o parto: os sentidos de uma prática

    Directory of Open Access Journals (Sweden)

    Patrícia de Lima Fonseca

    2012-06-01

    Full Text Available Foram analisadas as práticas e os sentidos do aconselhamento para gestantes submetidas ao teste anti-HIV na admissão para o parto, e para profissionais de saúde que atuam na assistência à maternidade em Salvador, Brasil. Foi realizado um estudo qualitativo em uma maternidade, com observação participante e entrevistas semiestruturadas com 13 puérperas sem diagnóstico prévio para o HIV e sete profissionais de saúde. Observou-se que o exame anti-HIV é realizado de forma compulsória, sem considerar a autonomia da gestante, e que o aconselhamento se limita a informar o diagnóstico e dar orientações no pós-teste somente àquelas cujos resultados foram positivos. Os sentidos que permeiam o exame, assim como o entendimento da experiência e os significados construídos pelas puérperas, sobretudo quando se descobrem positivas para o HIV, não são abordados pelos profissionais, que não se sentem capacitados para acolherem a subjetividade das pacientes.

  10. 1,4-Bis(5-(naphthalen-1-yl)thiophen-2-yl)naphthalene, a small molecule, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular Lens epithelium-derived growth factor.

    Science.gov (United States)

    Gu, Wan-gang; Ip, Denis Tsz-Ming; Liu, Si-jie; Chan, Joseph H; Wang, Yan; Zhang, Xuan; Zheng, Yong-tang; Wan, David Chi-Cheong

    2014-04-25

    Translocation of viral integrase (IN) into the nucleus is a critical precondition of integration during the life cycle of HIV, a causative agent of Acquired Immunodeficiency Syndromes (AIDS). As the first discovered cellular factor to interact with IN, Lens epithelium-derived growth factor (LEDGF/p75) plays an important role in the process of integration. Disruption of the LEDGF/p75-IN interaction has provided a great interest for anti-HIV agent discovery. In this work, we reported that one small molecular compound, 1,4-bis(5-(naphthalen-1-yl)thiophen-2-yl)naphthalene(Compound 15), potently inhibit the IN-LEDGF/p75 interaction and affect the HIV-1 IN nuclear distribution at 1 μM. The putative binding mode of Compound 15 was constructed by a molecular docking simulation to provide structural insights into the ligand-binding mechanism. Compound 15 suppressed viral replication by measuring p24 antigen production in HIV-1IIIB acute infected C8166 cells with EC50 value of 11.19 μM. Compound 15 might supply useful structural information for further anti-HIV agent discovery. Copyright © 2014. Published by Elsevier Ireland Ltd.

  11. A G-protein-coupled chemokine receptor: A putative insertion site for a multi-pathogen recombinant capripoxvirus vaccine strategy.

    Science.gov (United States)

    Cêtre-Sossah, Catherine; Dickmu, Simon; Kwiatek, Olivier; Albina, Emmanuel

    2017-09-01

    Capripoxviruses (CaPVs) have been shown to be ideal viral vectors for the development of recombinant multivalent vaccines to enable delivery of immunogenic genes from ruminant pathogens. So far, the viral thymidine kinase (TK) gene is the only gene used to generate recombinants. A putative non-essential gene encoding a G-protein-coupled chemokine receptor subfamily homologue (GPCR) was targeted as an additional insertion site. Peste des petits ruminants (PPR) was chosen as a disease model. A new recombinant CaPV expressing the viral attachment hemagglutinin (H) of the PPR virus (PPRV) in the GPCR insertion site (rKS1-HPPR-GPCR) was generated in the backbone North African isolate KS1 strain of lumpy skin disease virus (LSDV). Comparison with the recombinant CaPV expressing the H of PPRV in the TK gene (rKS1-HPPR-TK) shown to induce protection against both PPR and LSD in both sheep and goats was assessed. The suitability of the GPCR gene to be a putative additional insertion site in the CaPV genome is evaluated and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Strategies for differentiating infection in vaccinated animals (DIVA) for foot-and-mouth disease, classical swine fever and avian influenza

    DEFF Research Database (Denmark)

    Uttenthal, Åse; Parida, Satya; Rasmussen, Thomas Bruun

    2010-01-01

    for the presence of infection. This literature review describes the current knowledge on the use of DIVA diagnostic strategies for three important transboundary animal diseases: foot-and-mouth disease in cloven-hoofed animals, classical swine fever in pigs and avian influenza in poultry....

  13. Economic value of dengue vaccine in Thailand.

    Science.gov (United States)

    Lee, Bruce Y; Connor, Diana L; Kitchen, Sarah B; Bacon, Kristina M; Shah, Mirat; Brown, Shawn T; Bailey, Rachel R; Laosiritaworn, Yongjua; Burke, Donald S; Cummings, Derek A T

    2011-05-01

    With several candidate dengue vaccines under development, this is an important time to help stakeholders (e.g., policy makers, scientists, clinicians, and manufacturers) better understand the potential economic value (cost-effectiveness) of a dengue vaccine, especially while vaccine characteristics and strategies might be readily altered. We developed a decision analytic Markov simulation model to evaluate the potential health and economic value of administering a dengue vaccine to an individual (≤ 1 year of age) in Thailand from the societal perspective. Sensitivity analyses evaluated the effects of ranging various vaccine (e.g., cost, efficacy, side effect), epidemiological (dengue risk), and disease (treatment-seeking behavior) characteristics. A ≥ 50% efficacious vaccine was highly cost-effective [GDP) ($4,289)] up to a total vaccination cost of $60 and cost-effective [GDP ($12,868)] up to a total vaccination cost of $200. When the total vaccine series was $1.50, many scenarios were cost saving.

  14. HIV vaccines: new frontiers in vaccine development.

    Science.gov (United States)

    Duerr, Ann; Wasserheit, Judith N; Corey, Lawrence

    2006-08-15

    A human immunodeficiency virus (HIV) vaccine is the most promising and feasible strategy to prevent the events during acute infection that simultaneously set the course of the epidemic in the community and the course of the disease for the individual. Because safety concerns limit the use of live, attenuated HIV and inactivated HIV, a variety of alternate approaches is being investigated. Traditional antibody-mediated approaches using recombinant HIV envelope proteins have shown no efficacy in 2 phase III trials. Current HIV vaccine trials are focusing primarily on cytotoxic T lymphocyte-mediated products that use viral vectors, either alone or as boosts to DNA plasmids that contain viral genes. The most immunogenic of these products appear to be the recombinant adenovirus vector vaccines, 2 of which are now in advanced clinical development.

  15. Canine distemper virus (CDV) infection of ferrets as a model for testing Morbillivirus vaccine strategies: NYVAC- and ALVAC-based CDV recombinants protect against symptomatic infection.

    Science.gov (United States)

    Stephensen, C B; Welter, J; Thaker, S R; Taylor, J; Tartaglia, J; Paoletti, E

    1997-02-01

    Canine distemper virus (CDV) infection of ferrets causes an acute systemic disease involving multiple organ systems, including the respiratory tract, lymphoid system, and central nervous system (CNS). We have tested candidate CDV vaccines incorporating the fusion (F) and hemagglutinin (HA) proteins in the highly attenuated NYVAC strain of vaccinia virus and in the ALVAC strain of canarypox virus, which does not productively replicate in mammalian hosts. Juvenile ferrets were vaccinated twice with these constructs, or with an attenuated live-virus vaccine, while controls received saline or the NYVAC and ALVAC vectors expressing rabies virus glycoprotein. Control animals did not develop neutralizing antibody and succumbed to distemper after developing fever, weight loss, leukocytopenia, decreased activity, conjunctivitis, an erythematous rash typical of distemper, CNS signs, and viremia in peripheral blood mononuclear cells (as measured by reverse transcription-PCR). All three CDV vaccines elicited neutralizing titers of at least 1:96. All vaccinated ferrets survived, and none developed viremia. Both recombinant vaccines also protected against the development of symptomatic distemper. However, ferrets receiving the live-virus vaccine lost weight, became lymphocytopenic, and developed the erythematous rash typical of CDV. These data show that ferrets are an excellent model for evaluating the ability of CDV vaccines to protect against symptomatic infection. Because the pathogenesis and clinical course of CDV infection of ferrets is quite similar to that of other Morbillivirus infections, including measles, this model will be useful in testing new candidate Morbillivirus vaccines.

  16. Improving Multi-Epitope Long Peptide Vaccine Potency by Using a Strategy that Enhances CD4+ T Help in BALB/c Mice.

    Directory of Open Access Journals (Sweden)

    Haniyeh Ghaffari-Nazari

    Full Text Available Peptide-based vaccines are attractive approaches for cancer immunotherapy; but the success of these vaccines in clinical trials have been limited. Our goal is to improve immune responses and anti-tumor effects against a synthetic, multi-epitope, long peptide from rat Her2/neu (rHer2/neu using the help of CD4+ T cells and appropriate adjuvant in a mouse tumor model. Female BALB/c mice were vaccinated with P5+435 multi-epitope long peptide that presents epitopes for cytotoxic T lymphocytes (CTL in combination with a universal Pan DR epitope (PADRE or CpG-oligodeoxynucleotides (CpG-ODNs as a Toll-like receptor agonist adjuvant. The results show that vaccination with the multi-epitope long peptide in combination with the PADRE peptide and CpG-ODN induced expansion of subpopulations of CD4+ and CD8+ cells producing IFN-γ, the average tumor size in the vaccinated mice was less than that of the other groups, and tumor growth was inhibited in 40% of the mice in the vaccinated group. The mean survival time was 82.6 ± 1.25 days in mice vaccinated with P5+435 + CpG+ PADRE. Our results demonstrate that inclusion of PADRE and CpG with the peptide vaccine enhanced significant tumor specific-immune responses in vaccinated mice.

  17. DHEC: Vaccinations

    Science.gov (United States)

    Data, Maps - SC Public Health Diseases and Conditions Flu Tuberculosis STD/HIV and Viral Hepatitis Zika Illnesses E. coli Listeriosis Salmonella Hepatitis A Shellfish Monitoring and Regulation Certified Shippers Vaccines Teen and Preteen Vaccines Vaccines Needed for School Admission Related Topics Perinatal Hepatitis

  18. Recommendations pertaining to the use of influenza vaccines and ...

    African Journals Online (AJOL)

    Vaccination is the most effective strategy to prevent influenza. It is recommended that influenza vaccine be administered each year before the influenza season, i.e. from March to June, although for individuals at increased risk of severe influenza in whom vaccination was missed, vaccine may be administered later.

  19. Current status of flavivirus vaccines.

    Science.gov (United States)

    Barrett, A D

    2001-12-01

    Although there are approximately 68 flaviviruses recognized, vaccines have been developed to control very few human flavivirus diseases. Licensed live attenuated vaccines have been developed for yellow fever (strain 17D) and Japanese encephalitis (strain SA14-14-2) viruses, and inactivated vaccines have been developed for Japanese encephalitis and tick-borne encephalitis viruses. The yellow fever live attenuated 17D vaccine is one of the most efficacious and safe vaccines developed to date and has been used to immunize more than 300 million people. A number of experimental vaccines are being developed, most notably for dengue. Candidate tetravalent live attenuated dengue vaccines are undergoing clinical trials. Other vaccines are being developed using reverse genetics, DNA vaccines, and recombinant immunogens. In addition, the yellow fever 17D vaccine has been used as a backbone to generate chimeric viruses containing the premembrane and envelope protein genes from other flaviviruses. The "Chimerivax" platform has been used to construct chimeric Japanese encephalitis and dengue viruses that are in different phases of development. Similar strategies are being used by other laboratories.

  20. Buccal and sublingual vaccine delivery.

    Science.gov (United States)

    Kraan, Heleen; Vrieling, Hilde; Czerkinsky, Cecil; Jiskoot, Wim; Kersten, Gideon; Amorij, Jean-Pierre

    2014-09-28

    Because of their large surface area and immunological competence, mucosal tissues are attractive administration and target sites for vaccination. An important characteristic of mucosal vaccination is its ability to elicit local immune responses, which act against infection at the site of pathogen entry. However, mucosal surfaces are endowed with potent and sophisticated tolerance mechanisms to prevent the immune system from overreacting to the many environmental antigens. Hence, mucosal vaccination may suppress the immune system instead of induce a protective immune response. Therefore, mucosal adjuvants and/or special antigen delivery systems as well as appropriate dosage forms are required in order to develop potent mucosal vaccines. Whereas oral, nasal and pulmonary vaccine delivery strategies have been described extensively, the sublingual and buccal routes have received considerably less attention. In this review, the characteristics of and approaches for sublingual and buccal vaccine delivery are described and compared with other mucosal vaccine delivery sites. We discuss recent progress and highlight promising developments in the search for vaccine formulations, including adjuvants and suitable dosage forms, which are likely critical for designing a successful sublingual or buccal vaccine. Finally, we outline the challenges, hurdles to overcome and formulation issues relevant for sublingual or buccal vaccine delivery. Copyright © 2014. Published by Elsevier B.V.

  1. A literature review of Foot-and-Mouth Disease emergency vaccination strategies and their implementation in contingency planning

    DEFF Research Database (Denmark)

    Willeberg, Preben

    2012-01-01

    with stamping-out (suppressive EV), but protective EV may even be more costly overall, due to long-term trade implications. • EV in ring-zones can be as effective as stamping-out strategies in preventing further spread, if the time needed for immunity to develop is not critical, e.g. if the infection...... would be tackled initially by stamping-out of affected and in-contact herds, which in some situations may be sufficient to stop the spread; if not, EV should be considered, but if the spread has already been considerable due to late detection, wind-borne spread, long-distance spread by trade, etc...

  2. Ectopic expression of anti-HIV-1 shRNAs protects CD8{sup +} T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, Masakazu, E-mail: masa3k@ucla.edu [Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Kim, Patrick Y. [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Ng, Hwee L. [Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Ringpis, Gene-Errol E.; Kranz, Emiko; Chan, Joshua; O' Connor, Sean [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Yang, Otto O. [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); UCLA AIDS Institute, Los Angeles, CA (United States); AIDS Healthcare Foundation, Los Angeles, CA (United States); Chen, Irvin S.Y. [Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); UCLA AIDS Institute, Los Angeles, CA (United States)

    2015-07-31

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8{sup +} T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8{sup +} T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8{sup +} T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24{sup Gag} in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8{sup +} T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8{sup +} T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8{sup +} T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8{sup +} T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection suppresses its cytopathic effect.

  3. Ectopic expression of anti-HIV-1 shRNAs protects CD8+ T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    International Nuclear Information System (INIS)

    Kamata, Masakazu; Kim, Patrick Y.; Ng, Hwee L.; Ringpis, Gene-Errol E.; Kranz, Emiko; Chan, Joshua; O'Connor, Sean; Yang, Otto O.; Chen, Irvin S.Y.

    2015-01-01

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8 + T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8 + T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8 + T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24 Gag in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8 + T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8 + T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8 + T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8 + T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8 + T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8 + T cells from HIV-1 infection suppresses its cytopathic effect

  4. LIVE ATTENUATED VACCINES FOR THE IMMUNOPROPHYLAXIS

    Directory of Open Access Journals (Sweden)

    O. A. Shamsutdinova

    2017-01-01

    Full Text Available The review focuses on the history of the production of live antiviral vaccines and their use for the prevention of infectious diseases. It was noted that before the beginning of the 20th century, only three live vaccines were developed and put into practice — against smallpox, rabies, plague. The discovery of D. Enders, T.H. Weller and F.Ch. Robins of the ability of the polio virus, and then of a number of other viruses, to reproduce in vitro in cell cultures of various types, greatly expanded the studies on the production of attenuated strains of viruses for live vaccines. The historical stages of obtaining and introducing live vaccines for the prevention of smallpox, poliomyelitis, measles, rubella, and mumps are highlighted. Arguments in favor of the use of associated vaccine preparations for the prevention of viral infections are presented. Various variants of the strategy and tactics of using live vaccines, which are used for specific prevention of viral infections in different countries, are described. The review provides information on technological methods for obtaining antiviral vaccines. The publications testifying to the development of specific reactions in immunized vaccine strains of measles, mumps, poliomyelitis and rubella viruses, such as aseptic meningitis (vaccine strains of mumps virus, acute arthritis (vaccine rubella virus strains, temperature reactions, rash (vaccine strains of the virus Measles, vaccine-associated paralytic poliomyelitis (VAPP vaccine vaccine poliovirus. It is particularly noted that the long experience of vaccine prevention both in Russia and abroad convincingly shows that the risk of developing post-vaccination complications is incommensurably lower than the risk of causing harm to health from the corresponding infections. It is concluded that despite introduction of new third and fourth generation vaccines into practice, live attenuated vaccines do not lose their significance and are used in vaccine

  5. A prime/boost strategy using DNA/fowlpox recombinants expressing the genetically attenuated E6 protein as a putative vaccine against HPV-16-associated cancers.

    Science.gov (United States)

    Bissa, Massimiliano; Illiano, Elena; Pacchioni, Sole; Paolini, Francesca; Zanotto, Carlo; De Giuli Morghen, Carlo; Massa, Silvia; Franconi, Rosella; Radaelli, Antonia; Venuti, Aldo

    2015-03-05

    Considering the high number of new cases of cervical cancer each year that are caused by human papilloma viruses (HPVs), the development of an effective vaccine for prevention and therapy of HPV-associated cancers, and in particular against the high-risk HPV-16 genotype, remains a priority. Vaccines expressing the E6 and E7 proteins that are detectable in all HPV-positive pre-cancerous and cancer cells might support the treatment of HPV-related lesions and clear already established tumors. In this study, DNA and fowlpox virus recombinants expressing the E6F47R mutant of the HPV-16 E6 oncoprotein were generated, and their correct expression verified by RT-PCR, Western blotting and immunofluorescence. Immunization protocols were tested in a preventive or therapeutic pre-clinical mouse model of HPV-16 tumorigenicity using heterologous (DNA/FP) or homologous (DNA/DNA and FP/FP) prime/boost regimens. The immune responses and therapeutic efficacy were evaluated by ELISA, ELISPOT assays, and challenge with TC-1* cells. In the preventive protocol, while an anti-E6-specific humoral response was just detectable, a specific CD8(+) cytotoxic T-cell response was elicited in immunized mice. After the challenge, there was a delay in cancer appearance and a significant reduction of tumor volume in the two groups of E6-immunized mice, thus confirming the pivotal role of the CD8(+) T-cell response in the control of tumor growth in the absence of E6-specific antibodies. In the therapeutic protocol, in-vivo experiments resulted in a higher number of tumor-free mice after the homologous DNA/DNA or heterologous DNA/FP immunization. These data establish a preliminary indication for the prevention and treatment of HPV-related tumors by the use of DNA and avipox constructs as safe and effective immunogens following a prime/boost strategy. The combined use of recombinants expressing both E6 and E7 proteins might improve the antitumor efficacy, and should represent an important approach to

  6. What Is the Predictive Value of Animal Models for Vaccine Efficacy in Humans? Consideration of Strategies to Improve the Value of Animal Models.

    Science.gov (United States)

    Herati, Ramin Sedaghat; Wherry, E John

    2018-04-02

    Animal models are an essential feature of the vaccine design toolkit. Although animal models have been invaluable in delineating the mechanisms of immune function, their precision in predicting how well specific vaccines work in humans is often suboptimal. There are, of course, many obvious species differences that may limit animal models from predicting all details of how a vaccine works in humans. However, careful consideration of which animal models may have limitations should also allow more accurate interpretations of animal model data and more accurate predictions of what is to be expected in clinical trials. In this article, we examine some of the considerations that might be relevant to cross-species extrapolation of vaccine-related immune responses for the prediction of how vaccines will perform in humans. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  7. FLU VACCINATION

    CERN Multimedia

    2007-01-01

    People working on the CERN site who wish to be vaccinated may go to the Infirmary (ground-floor, bldg. 57), with their vaccine, without a prior appointment. The vaccine can be reimbursed directly by Uniqa providing you attach the receipt and the prescription that you will receive from the Medical Service the day of your injection at the infirmary. Ideally, the vaccination should take place between 1st October and 30th November 2007 (preferably between 14:00 and 16:00). CERN staff aged 50 or over are recommended to have influenza vaccinations. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and those convalescing from serious medical problems or after serious surgical operations. The Medical Service will not administer vaccines for family members or retired staff members, who must contact their normal family doctor. Medical Service

  8. Vaccines, inspiring innovation in health.

    Science.gov (United States)

    Pagliusi, Sonia; Dennehy, Maureen; Kim, Hun

    2018-05-19

    This report covers the topics of pandemics, epidemics and partnerships, including regulatory convergence initiatives, new technologies and novel vaccines, discussed by leading public and private sector stakeholders at the 18th Annual General Meeting (AGM) of the Developing Countries Vaccine Manufacturers' Network (DCVMN). Contributions of Gavi and the vaccine industry from emerging countries to the growing global vaccine market, by improving the supply base from manufacturers in developing countries and contributing to 58% of doses, were highlighted. The Coalition for Epidemic Preparedness Innovations (CEPI), the International Vaccine Institute (IVI) and others reported on new strategies to ensure speedy progress in preclinical and clinical development of innovative vaccines for future MERS, Zika or other outbreak response. Priorities for vaccine stockpiling, to assure readiness during emergencies and to prevent outbreaks due to re-emerging diseases such as yellow fever, cholera and poliomyelitis, were outlined. The role of partnerships in improving global vaccine access, procurement and immunization coverage, and shared concerns were reviewed. The World Health Organization (WHO) and other international collaborating partners provided updates on the Product, Price and Procurement database, the prequalification of vaccines, the control of neglected tropical diseases, particularly the new rabies elimination initiative, and regulatory convergence proposals to accelerate vaccine registration in developing countries. Updates on supply chain innovations and novel vaccine platforms were presented. The discussions enabled members and partners to reflect on efficiency of research & development, supply chain tools and trends in packaging technologies improving delivery of existing vaccines, and allowing a deeper understanding of the current public-health objectives, industry financing, and global policies, required to ensure optimal investments, alignment and stability of

  9. Diabetes mellitus, preexisting coronary heart disease, and the risk of subsequent coronary heart disease events in patients infected with human immunodeficiency virus: the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D Study)

    DEFF Research Database (Denmark)

    Worm, Signe W; De Wit, Stephane; Weber, Rainer

    2009-01-01

    of DM and preexisting CHD on the development of a new CHD episode among 33,347 HIV-infected individuals in the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D Study). METHODS AND RESULTS: Over 159,971 person-years, 698 CHD events occurred. After adjustment for gender, age, cohort, HIV...... transmission, ethnicity, family history of CHD, smoking, and calendar year, the rate of a CHD episode was 7.52 times higher (Poisson regression, 95% CI 6.02 to 9.39, P=0.0001) in those with preexisting CHD than in those without preexisting CHD, but it was only 2.41 times higher (95% CI 1.91 to 3.05, P=0...

  10. Comparison of 3 vaccination strategies against porcine reproductive and respiratory syndrome virus, Mycoplasma hyopneumoniae, and porcine circovirus type 2 on a 3 pathogen challenge model.

    Science.gov (United States)

    Jeong, Jiwoon; Kang, Ikjae; Kim, Seeun; Park, Kee Hwan; Park, Changhoon; Chae, Chanhee

    2018-01-01

    The objective of this study was to compare clinical, microbiologic, immunologic, and pathologic parameters in pigs each concurrently administered porcine reproductive and respiratory syndrome virus (PRRSV), Mycoplasma hyopneumoniae, and porcine circovirus type 2 (PCV2) vaccine from 1 of 2 commercial sources at 21 days of age and challenged with field strains of each of the 3 pathogens. Pigs were challenged with PRRSV and M. hyopneumoniae at 42 days of age (-14 days post-challenge, dpc) followed by a challenge with PCV2 at 56 days of age (0 dpc). Significant differences were observed between vaccinated challenged and unvaccinated challenged groups in clinical (average daily gain and clinical signs), microbiologic (viremia and nasal shedding), immunologic (antibodies and interferon-γ secreting cells), and pathologic (lesions) outcomes. Significant differences were observed among the 3 vaccinated challenged groups in microbiologic (nasal shedding of M. hyopneumoniae and viremia of PCV2) and immunologic ( M. hyopneumoniae - and PCV2-specific interferon-γ secreting cells) outcomes. The vaccination regimen for PRRSV vaccine, M. hyopneumoniae vaccine, and PCV2 vaccine is efficacious for controlling triple challenge with PRRSV, M. hyopneumoniae, and PCV2 from weaning to finishing period.

  11. Hepatitis Vaccines

    Directory of Open Access Journals (Sweden)

    Sina Ogholikhan

    2016-03-01

    Full Text Available Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver.

  12. Hepatitis Vaccines

    Science.gov (United States)

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver. PMID:26978406

  13. Physician communication about adolescent vaccination: How is human papillomavirus vaccine different?

    Science.gov (United States)

    Gilkey, Melissa B; Moss, Jennifer L; Coyne-Beasley, Tamera; Hall, Megan E; Shah, Parth D; Brewer, Noel T

    2015-08-01

    Low human papillomavirus (HPV) vaccination coverage stands in stark contrast to our success in delivering other adolescent vaccines. To identify opportunities for improving physicians' recommendations for HPV vaccination, we sought to understand how the communication context surrounding adolescent vaccination varies by vaccine type. A national sample of 776 U.S. physicians (53% pediatricians, 47% family medicine physicians) completed our online survey in 2014. We assessed physicians' perceptions and communication practices related to recommending adolescent vaccines for 11- and 12-year-old patients. About three-quarters of physicians (73%) reported recommending HPV vaccine as highly important for patients, ages 11-12. More physicians recommended tetanus, diphtheria, and acellular pertussis (Tdap) (95%) and meningococcal vaccines (87%, both pCommunication strategies are needed to support physicians in recommending HPV vaccine with greater confidence and efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Flu Vaccination

    CERN Multimedia

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical Service

  15. Flu vaccination

    CERN Multimedia

    CERN Medical Service

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor.CERN Medical Service

  16. FLU VACCINATION

    CERN Multimedia

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical Service

  17. Flu Vaccination

    CERN Multimedia

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical service

  18. Peptide Vaccine: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Weidang Li

    2014-07-01

    Full Text Available Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines.

  19. Long-term changes of serum chemokine levels in vaccinated military personnel

    Directory of Open Access Journals (Sweden)

    Brichacek Beda

    2006-09-01

    Full Text Available Abstract Background Members of the United States Armed Forces receive a series of vaccinations during their course of service. To investigate the influence of multiple vaccinations on innate immunity, we measured concentrations of a panel of immunomodulatory and pro-inflammatory cytokines in serum samples from a group of such individuals. Results Significantly increased levels of macrophage inflammatory protein 1α (MIP-1α, MIP-1β and interleukin 8 (IL-8 were detected. Since these cytokines are known to have anti-human immunodeficiency virus (HIV activity, we tested the effect of serum from these individuals on HIV-1 infectivity and susceptibility of their peripheral blood mononuclear cells (PBMCs to HIV-1 infection in vitro. Sera from vaccinated military personnel inhibited, and their PBMCs were partially resistant to, infection by HIV-1 strains tropic to CCR5 (R5, but not to CXCR4 (X4, chemokine receptor. Conclusion These findings demonstrate that increased anti-HIV chemokines can be detected in vaccine recipients up to 68 weeks following immunization.

  20. [Role of vaccination in animal health].

    Science.gov (United States)

    Pastoret, Paul-Pierre

    2012-03-01

    According to the IFAH, veterinary vaccines currently account for 26% of the global market in veterinary medicines, reflecting the importance of vaccines in animal health, as well as the number of wild and domesticated target species, and the monospecific nature of most vaccines. Multispecies vaccines include tetanus and rabies. In 2010, the number of food-producing animals was estimated to be roughly 20 billion and is rising gradually. Fowl currently represent the main food species. Veterinary vaccination has allowed the eradication of rinderpest, as officially declared last year (2011), jointly by the World Organisation for Animal Health (OIE) and the Food and Agriculture Organisation of the United Nations (FAO). Rinderpest was a real scourge, and was only the second viral disease to be totally eradicated (after human smallpox). One characteristic of veterinary vaccination is the DIVA approach, "differentiating infected from vaccinated animals". The DIVA strategy is especially interesting for regulated control of diseases like foot-and-mouth disease, infectious bovine rhinotracheitis, pseudorabies, and classical swine fever. DIVA vaccination requires prior serological testing. Vaccination is also used for wild animals such as foxes (rabies) and wild boars (classical swine fever). "In ovo" vaccination of fowl on day 18 of the incubation period is used to prevent Marek's disease for instance, and double vaccination (vector and insert) to prevent both Marek's disease and Gumboro's disease in fowl. Animal vaccination can also help to protect human health, as illustrated by fowl vaccination against salmonellosis.

  1. Vaccines and IP Rights: A Multifaceted Relationship.

    Science.gov (United States)

    Durell, Karen

    2016-01-01

    Just as there are many forms of vaccines and components to vaccines-particular compositions, delivery systems, components, and distribution networks-there are a variety of intellectual property (IP) protections applicable for vaccines. IP rights such as patent, copyright, trademarks, plant breeders' rights, and trade secrets may all be applicable to vaccines. Thus, discussion of IP rights and vaccines should not begin and end with the application of one IP right to a vaccine. The discussion should engage considerations of multiple IP rights applicable to a vaccine and how these can be utilized in an integrated manner in a strategy aimed at supporting the development and distribution of the vaccine. Such an approach to IP rights to vaccines allows for the integrated rights to be considered in light of the justifications for protecting vaccines with IP rights, as well as the issues relating to specific IP rights for vaccines, such as compulsory license regimes, available humanitarian purpose IP credits, etc. To view vaccines as the subject of multiple IP protections involves a refocusing, but the outcome can provide significant benefits for vaccine development and distribution.

  2. Instruments for oral disease-intervention strategies : recombinant Lactobacillus casei expressing tetanus toxin fragment C for vaccination or myelin proteins for oral tolerance induction in multiple sclerosis

    NARCIS (Netherlands)

    Maassen, C.B.M.; Laman, J.D.; Heijne den Bak-Glashouwer, M.J.; Tielen, F.J.; Holten-Neelen, J.C.P.A. van; Hoogteijling, L.; Antonissen, C.; Leer, R.J.; Pouwels, P.H.; Boersma, W.J.A.; Shaw, D.M.

    1999-01-01

    Lactobacillus strains possess properties that make them attractive candidates as vehicles for oral administration of therapeutics. In this report we describe the construction and analysis of recombinant Lactobacillus casei applicable in oral vaccination against an infectious disease (tetanus) and in

  3. An Overview of the 2009 A(H1N1 Pandemic in Europe: Efficiency of the Vaccination and Healthcare Strategies

    Directory of Open Access Journals (Sweden)

    Funda Samanlioglu

    2016-01-01

    Full Text Available 2009 A(H1N1 data for 13 European countries obtained from the weekly influenza surveillance overview (WISO reports of European Centre for Disease Prevention and Control (ECDC in the form of weekly cumulative fatalities are analyzed. The variability of relative fatalities is explained by the health index of analyzed countries. Vaccination and healthcare practices as reported in the literature are used to explain the departures from this model. The timing of the vaccination with respect to the peak of the epidemic and its role in the efficiency of the vaccination is discussed. Simulations are used to show that on-time vaccination reduces considerably the final value of R(t, Rf, but it has little effect on the shape of normalized curve R(t/Rf.

  4. QA prime-boost vaccination strategy in prevent serotype O FMDV infection using a "single-cycle" alphavirus vector and empty capsid particles

    DEFF Research Database (Denmark)

    Gullberg, Maria; Lohse, Louise; Bøtner, Anette

    Introduction Foot-and-mouth disease (FMD) remains one of the most economically important infectious diseases of production animals globally. Vaccination can help to control this disease, however, current vaccines based on chemically inactivated FMDV, are imperfect and there is a need for new, safe...... and effective vaccines to control FMD. There is no cross protection between the 7 serotypes but serotype O is the most abundant globally. Material and methods The FMDV capsid protein precursor (P1-2A) of strain O1 Manisa has been expressed with the FMDV 3C protease (3Cpro) using a “single cycle” packaged...... alphavirus self-replicating RNA based on Semliki Forest virus (SFV). Purified O1 Manisa empty capsid particles (ECs) have been prepared using a recombinant vaccinia virus expression system. Cattle have been vaccinated with the SFV-FMDV vectors and boosted subsequently with the ECs and then challenged...

  5. Canine distemper virus (CDV) infection of ferrets as a model for testing Morbillivirus vaccine strategies: NYVAC- and ALVAC-based CDV recombinants protect against symptomatic infection.

    OpenAIRE

    Stephensen, C B; Welter, J; Thaker, S R; Taylor, J; Tartaglia, J; Paoletti, E

    1997-01-01

    Canine distemper virus (CDV) infection of ferrets causes an acute systemic disease involving multiple organ systems, including the respiratory tract, lymphoid system, and central nervous system (CNS). We have tested candidate CDV vaccines incorporating the fusion (F) and hemagglutinin (HA) proteins in the highly attenuated NYVAC strain of vaccinia virus and in the ALVAC strain of canarypox virus, which does not productively replicate in mammalian hosts. Juvenile ferrets were vaccinated twice ...

  6. Healthcare worker influenza immunization vaccinate or mask policy: strategies for cost effective implementation and subsequent reductions in staff absenteeism due to illness.

    Science.gov (United States)

    Van Buynder, P G; Konrad, S; Kersteins, F; Preston, E; Brown, P D; Keen, D; Murray, N J

    2015-03-24

    A new policy requiring staff in clinical areas to vaccinate or wear a mask was implemented in British Columbia (BC) in the 2012/13 winter. This review assessed the impact of the policy on absenteeism in health care workers. A retrospective cohort study of full-time HCW that worked prior to and during the 2012/13 influenza season in a health authority in BC. The rate of absenteeism due to all cause illness was compared between vaccinated and unvaccinated staff controlling for behaviors outside influenza season. Of the 10079 HCW, 77% were vaccinated. By comparison to absenteeism rates in the pre-influenza season, unvaccinated staff in winter had twice the increase in absenteeism due to all-cause illness than vaccinated staff. After controlling for baseline differences between those vaccinated and unvaccinated, influenza vaccination was associated with reduced absenteeism, saving the Health Authority substantial money. Having regular staff in attendance increases the quality of care. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. HIV-1 vaccines

    Science.gov (United States)

    Excler, Jean-Louis; Robb, Merlin L; Kim, Jerome H

    2014-01-01

    The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure. PMID:24637946

  8. Vaccination against tuberculosis.

    Science.gov (United States)

    Martin, Carlos; Aguilo, Nacho; Gonzalo-Asensio, Jesús

    2018-04-04

    BCG (Bacille Calmette-Guérin) vaccination is included in the immunization schedule for tuberculosis endemic countries with a global coverage at birth close to 90% worldwide. BCG was attenuated from Mycobacterium bovis almost a century ago, and provides a strong protection against disseminated forms of the disease, though very limited against pulmonary forms of tuberculosis, responsible for transmission. Novel prophylactic tuberculosis vaccines are in clinical development either to replace BCG or to improve its protection against respiratory forms of the disease. There are limitations understanding the immunological responses involved and the precise type of long-lived immunity that new vaccines need to induce. MTBVAC is the first and only tuberculosis vaccine candidate based on live-attenuated Mycobacterium tuberculosis in clinical evaluation. MTBVAC clinical development plans to target tuberculosis prevention in newborns, as a BCG replacement strategy, and as secondary objective to be tested in adolescents and adults previous vaccinated with BCG. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  9. DNA Vaccines

    Indian Academy of Sciences (India)

    diseases. Keywords. DNA vaccine, immune response, antibodies, infectious diseases. GENERAL .... tein vaccines require expensive virus/protein purification tech- niques as ... sphere continue to remain major health hazards in developing nations. ... significance since it can be produced at a very low cost and can be stored ...

  10. Vaccination Policies

    NARCIS (Netherlands)

    Verweij, M.F.

    2013-01-01

    Vaccination involves priming the immune system with an antigenic agent that mimics a virus or bacterium, which results in immunity against the “real” microorganism. Collective vaccination policies have played an important role in the control of infectious disease worldwide. They can serve the

  11. TUMOUR VACCINE

    NARCIS (Netherlands)

    Wagner, Ernst; Kircheis, Ralf; Crommelin, D.; Van Slooten, Maaike; Storm, Gert

    1999-01-01

    The invention relates to a tumour vaccine with a tumour antigen base. In addition to a source of tumour antigens, the vaccine contains a release system for the delayed release of the active agent IFN- gamma , the active dose of IFN- gamma being 50 ng to 5 mu g. The IFN- gamma is released over a

  12. Rotavirus Vaccine

    Science.gov (United States)

    Why get vaccinated?Rotavirus is a virus that causes diarrhea, mostly in babies and young children. The diarrhea can be severe, and lead ... and fever are also common in babies with rotavirus.Before rotavirus vaccine, rotavirus disease was a common ...

  13. Prolonging herd immunity to cholera via vaccination: Accounting for human mobility and waning vaccine effects.

    Directory of Open Access Journals (Sweden)

    Corey M Peak

    2018-02-01

    Full Text Available Oral cholera vaccination is an approach to preventing outbreaks in at-risk settings and controlling cholera in endemic settings. However, vaccine-derived herd immunity may be short-lived due to interactions between human mobility and imperfect or waning vaccine efficacy. As the supply and utilization of oral cholera vaccines grows, critical questions related to herd immunity are emerging, including: who should be targeted; when should revaccination be performed; and why have cholera outbreaks occurred in recently vaccinated populations?We use mathematical models to simulate routine and mass oral cholera vaccination in populations with varying degrees of migration, transmission intensity, and vaccine coverage. We show that migration and waning vaccine efficacy strongly influence the duration of herd immunity while birth and death rates have relatively minimal impacts. As compared to either periodic mass vaccination or routine vaccination alone, a community could be protected longer by a blended "Mass and Maintain" strategy. We show that vaccination may be best targeted at populations with intermediate degrees of mobility as compared to communities with very high or very low population turnover. Using a case study of an internally displaced person camp in South Sudan which underwent high-coverage mass vaccination in 2014 and 2015, we show that waning vaccine direct effects and high population turnover rendered the camp over 80% susceptible at the time of the cholera outbreak beginning in October 2016.Oral cholera vaccines can be powerful tools for quickly protecting a population for a period of time that depends critically on vaccine coverage, vaccine efficacy over time, and the rate of population turnover through human mobility. Due to waning herd immunity, epidemics in vaccinated communities are possible but become less likely through complementary interventions or data-driven revaccination strategies.

  14. NOD/scid IL-2Rgnull mice: a preclinical model system to evaluate human dendritic cell-based vaccine strategies in vivo

    Directory of Open Access Journals (Sweden)

    Spranger Stefani

    2012-02-01

    Full Text Available Abstract Background To date very few systems have been described for preclinical investigations of human cellular therapeutics in vivo. However, the ability to carry out comparisons of new cellular vaccines in vivo would be of substantial interest for design of clinical studies. Here we describe a humanized mouse model to assess the efficacy of various human dendritic cell (DC preparations. Two reconstitution regimes of NOD/scid IL2Rgnull (NSG mice with adult human peripheral blood mononuclear cells (PBMC were evaluated for engraftment using 4-week and 9-week schedules. This led to selection of a simple and rapid protocol for engraftment and vaccine evaluation that encompassed 4 weeks. Methods NSG recipients of human PBMC were engrafted over 14 days and then vaccinated twice with autologous DC via intravenous injection. Three DC vaccine formulations were compared that varied generation time in vitro (3 days versus 7 days and signals for maturation (with or without Toll-like receptor (TLR3 and TLR7/8 agonists using MART-1 as a surrogate antigen, by electroporating mature DC with in vitro transcribed RNA encoding full length protein. After two weekly vaccinations, the splenocyte populations containing human lymphocytes were recovered 7 days later and assessed for MART-1-specific immune responses using MHC-multimer-binding assays and functional assessment of specific killing of melanoma tumor cell lines. Results Human monocyte-derived DC generated in vitro in 3 days induced better MART-1-specific immune responses in the autologous donor T cells present in the humanized NSG mice. Moreover, consistent with our in vitro observations, vaccination using mature DC activated with TLR3 and TLR7/8 agonists resulted in enhanced immune responses in vivo. These findings led to a ranking of the DC vaccine effects in vivo that reflected the hierarchy previously found for these mature DC variations in vitro. Conclusions This humanized mouse model system enables

  15. Trichomonas vaginalis infection induces vaginal CD4+ T-cell infiltration in a mouse model: a vaccine strategy to reduce vaginal infection and HIV transmission.

    Science.gov (United States)

    Smith, Jeffrey D; Garber, Gary E

    2015-07-15

    Complications related to the diagnosis and treatment of Trichomonas vaginalis infection, as well as the association between T. vaginalis infection and increased transmission of and susceptibility to human immunodeficiency virus, highlight the need for alternative interventions. We tested a human-safe, aluminum hydroxide-adjuvanted whole-cell T. vaginalis vaccine for efficacy in a BALB/c mouse model of vaginal infection. A whole-cell T. vaginalis vaccine was administered subcutaneously to BALB/c mice, using a prime-boost vaccination schedule. CD4(+) T-cell infiltration in the murine vaginal tissue and local and systemic levels of immunoglobulins were measured at time points up to 4 weeks following infection. Vaccination reduced the incidence and increased the clearance of T. vaginalis infection and induced both systemic and local humoral immune responses. CD4(+) T cells were detected in vaginal tissues following intravaginal infection with T. vaginalis but were not seen in uninfected mice. The presence of CD4(+) T cells following T. vaginalis infection can potentially increase susceptibility to and transmission of human immunodeficiency virus. The vaccine induces local and systemic immune responses and confers significantly greater protection against vaginal infection than seen in unvaccinated mice (P infection that could also influence the incidence of human immunodeficiency virus infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Tomorrow's vector vaccines for small ruminants.

    Science.gov (United States)

    Kyriakis, C S

    2015-12-14

    Inactivated and attenuated vaccines have contributed to the control or even the eradication of significant animal pathogens. However, these traditional vaccine technologies have limitations and disadvantages. Inactivated vaccines lack efficacy against certain pathogens, while attenuated vaccines are not always as safe. New technology vaccines, namely DNA and recombinant viral vector vaccines, are being developed and tested against pathogens of small ruminants. These vaccines induce both humoral and cellular immune responses, are safe to manufacture and use and can be utilized in strategies for differentiation of infected from vaccinated animals. Although there are more strict regulatory requirements for the safety standards of these vaccines, once a vaccine platform is evaluated and established, effective vaccines can be rapidly produced and deployed in the field to prevent spread of emerging pathogens. The present article offers an introduction to these next generation technologies and examples of vaccines that have been tested against important diseases of sheep and goats. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Equity and vaccine uptake: a cross-sectional study of measles vaccination in Lasbela District, Pakistan

    Directory of Open Access Journals (Sweden)

    Soberanis José

    2009-10-01

    strategy, there seems to be reason to expect an intervention increasing knowledge and discussion about vaccination in this district might increase uptake.

  18. Budget impact of polio immunization strategy for India: introduction of one dose of inactivated poliomyelitis vaccine and reductions in supplemental polio immunization.

    Science.gov (United States)

    Khan, M M; Sharma, S; Tripathi, B; Alvarez, F P

    2017-01-01

    To conduct a budget impact analysis (BIA) of introducing the immunization recommendations of India Expert Advisory Group (IEAG) for the years 2015-2017. The recommendations include introduction of one inactivated poliomyelitis vaccine (IPV) dose in the regular child immunization programme along with reductions in oral polio vaccine (OPV) doses in supplemental programmes. This is a national level analysis of budget impact of new polio immunization recommendations. Since the states of India vary widely in terms of size, vaccine coverage and supplemental vaccine needs, the study estimated the budget impact for each of the states of India separately to derive the national level budget impact. Based on the recommendations of IEAG, the BIA assumes that all children in India will get an IPV dose at 14 weeks of age in addition to the OPV and DPT (or Pentavalent-3) doses. Cost of introducing the IPV dose was estimated by considering vaccine price and vaccine delivery and administration costs. The cost savings associated with the reduction in number of doses of OPV in supplemental immunization were also estimated. The analysis used India-specific or international cost parameters to estimate the budget impact. Introduction of one IPV dose will increase the cost of vaccines in the regular immunization programme from $20 million to $47 million. Since IEAG recommends lower intensity of supplemental OPV vaccination, polio vaccine cost of supplemental programme is expected to decline from $72 million to $53 million. Cost of administering polio vaccines will also decline from $124 million to $105 million mainly due to the significantly lower intensity of supplemental polio vaccination. The net effect of adopting IEAG's recommendations on polio immunization turns out to be cost saving for India, reducing total polio immunization cost by $6 million. Additional savings could be achieved if India adopts the new policy regarding the handling of multi-dose vials after opening

  19. Single-cycle immunodeficiency viruses provide strategies for uncoupling in vivo expression levels from viral replicative capacity and for mimicking live-attenuated SIV vaccines

    International Nuclear Information System (INIS)

    Kuate, Seraphin; Stahl-Hennig, Christiane; Haaft, Peter ten; Heeney, Jonathan; Ueberla, Klaus

    2003-01-01

    To reduce the risks associated with live-attenuated immunodeficiency virus vaccines, single-cycle immunodeficiency viruses (SCIVs) were developed by primer complementation and production of the vaccine in the absence of vif in a vif-independent cell line. After a single intravenous injection of SCIVs into rhesus monkeys, peak viral RNA levels of 10 3 to 10 4 copies/ml plasma were observed, indicating efficient expression of SCIV in the vaccinee. After booster immunizations with SCIVs, SIV-specific humoral and cellular immune responses were observed. Although the vaccine doses used in this pilot study could not protect vaccinees from subsequent intravenous challenge with pathogenic SIVmac239, our results demonstrate that the novel SCIV approach allows us to uncouple in vivo expression levels from the viral replicative capacity facilitating the analysis of the relationship between viral expression levels or viral genes and immune responses induced by SIV

  20. International Dengue Vaccine Communication and Advocacy: Challenges and Way Forward.

    Science.gov (United States)

    Carvalho, Ana; Van Roy, Rebecca; Andrus, Jon

    2016-01-01

    Dengue vaccine introduction will likely occur soon. However, little has been published on international dengue vaccine communication and advocacy. More effort at the international level is required to review, unify and strategically disseminate dengue vaccine knowledge to endemic countries' decision makers and potential donors. Waiting to plan for the introduction of new vaccines until licensure may delay access in developing countries. Concerted efforts to communicate and advocate for vaccines prior to licensure are likely challenged by unknowns of the use of dengue vaccines and the disease, including uncertainties of vaccine impact, vaccine access and dengue's complex pathogenesis and epidemiology. Nevertheless, the international community has the opportunity to apply previous best practices for vaccine communication and advocacy. The following key strategies will strengthen international dengue vaccine communication and advocacy: consolidating existing coalitions under one strategic umbrella, urgently convening stakeholders to formulate the roadmap for integrated dengue prevention and control, and improving the dissemination of dengue scientific knowledge.

  1. Strategies to eradicate minimal residual disease in small cell lung cancer: high-dose chemotherapy with autologous bone marrow transplantation, matrix metalloproteinase inhibitors, and BEC2 plus BCG vaccination.

    Science.gov (United States)

    Krug, L M; Grant, S C; Miller, V A; Ng, K K; Kris, M G

    1999-10-01

    In the last 25 years, treatment for small cell lung cancer (SCLC) has improved with advances in chemotherapy and radiotherapy. Standard chemotherapy regimens can yield 80% to 90% response rates and some cures when combined with thoracic irradiation in limited-stage patients. Nonetheless, small cell lung cancer has a high relapse rate due to drug resistance; this has resulted in poor survival for most patients. Attacking this problem requires a unique approach to eliminate resistant disease remaining after induction therapy. This review will focus on three potential strategies: high-dose chemotherapy with autologous bone marrow transplantation, matrix metalloproteinase inhibitors, and BEC2 plus BCG vaccination.

  2. Tetanus Toxoid carrier protein induced T-helper cell responses upon vaccination of middle-aged adults

    NARCIS (Netherlands)

    van der Heiden, Marieke; Duizendstra, Aafke; Berbers, Guy A M; Boots, Annemieke M H; Buisman, Anne-Marie

    2017-01-01

    INTRODUCTION: Vaccines frequently induce suboptimal immune responses in the elderly, due to immunological ageing. Timely vaccination may be a strategy to overcome this problem, which classifies middle-aged adults asan interesting target group for future vaccine interventions. However, the

  3. Classical swine fever vaccines-State-of-the-art.

    Science.gov (United States)

    Blome, Sandra; Moß, Claudia; Reimann, Ilona; König, Patricia; Beer, Martin

    2017-07-01

    Due to its impact on animal health and pig industry, classical swine fever (CSF) is still one of the most important viral diseases of pigs. To control the disease, safe and highly efficacious live attenuated vaccines exist for decades. These vaccines have usually outstanding efficacy and safety but lack differentiability of infected from vaccinated animals (DIVA or marker strategy). In contrast, the first generation of E2 subunit marker vaccines shows constraints in efficacy, application, and production. To overcome these limitations, new generations of marker vaccines are developed. A wide range of approaches have been tried including recombinant vaccines, recombinant inactivated vaccines or subunit vaccines, vector vaccines, and DNA/RNA vaccines. During the last years, especially attenuated deletion vaccines or chimeric constructs have shown potential. At present, especially two new constructs have been intensively tested, the adenovirus-delivered, Semliki Forest virus replicon-vectored marker vaccine candidate "rAdV-SFV-E2" and the pestivirus chimera "CP7_E2alf". The later was recently licensed by the European Medicines Agency. Under field conditions, all marker vaccines have to be accompanied by a potent test system. Particularly this point shows still weaknesses and it is important to embed vaccination in a well-established vaccination strategy and a suitable diagnostic workflow. In summary, conventional vaccines are a standard in terms of efficacy. However, only vaccines with DIVA will allow improved eradication strategies e.g. also under emergency vaccination conditions in free regions. To answer this demand, new generations of marker vaccines have been developed and add now to the tool box of CSF control. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Whither vaccines?

    Science.gov (United States)

    Rodrigues, Charlene M C; Pinto, Marta V; Sadarangani, Manish; Plotkin, Stanley A

    2017-06-01

    Currently used vaccines have had major effects on eliminating common infections, largely by duplicating the immune responses induced by natural infections. Now vaccinology faces more complex problems, such as waning antibody, immunosenescence, evasion of immunity by the pathogen, deviation of immunity by the microbiome, induction of inhibitory responses, and complexity of the antigens required for protection. Fortunately, vaccine development is now incorporating knowledge from immunology, structural biology, systems biology and synthetic chemistry to meet these challenges. In addition, international organisations are developing new funding and licensing pathways for vaccines aimed at pathogens with epidemic potential that emerge from tropical areas. © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  5. Oral vaccination of wildlife against rabies: Differences among host species in vaccine uptake efficiency.

    Science.gov (United States)

    Vos, Ad; Freuling, Conrad M; Hundt, Boris; Kaiser, Christiane; Nemitz, Sabine; Neubert, Andreas; Nolden, Tobias; Teifke, Jens P; Te Kamp, Verena; Ulrich, Reiner; Finke, Stefan; Müller, Thomas

    2017-07-13

    Oral vaccination using attenuated and recombinant rabies vaccines has been proven a powerful tool to combat rabies in wildlife. However, clear differences have been observed in vaccine titers needed to induce a protective immune response against rabies after oral vaccination in different reservoir species. The mechanisms contributing to the observed resistance against oral rabies vaccination in some species are not completely understood. Hence, the immunogenicity of the vaccine virus strain, SPBN GASGAS, was investigated in a species considered to be susceptible to oral rabies vaccination (red fox) and a species refractory to this route of administration (striped skunk). Additionally, the dissemination of the vaccine virus in the oral cavity was analyzed for these two species. It was shown that the palatine tonsils play a critical role in vaccine virus uptake. Main differences could be observed in palatine tonsil infection between both species, revealing a locally restricted dissemination of infected cells in foxes. The absence of virus infected cells in palatine tonsils of skunks suggests a less efficient uptake of or infection by vaccine virus which may lead to a reduced response to oral vaccination. Understanding the mechanisms of oral resistance to rabies virus vaccine absorption and primary replication may lead to the development of novel strategies to enhance vaccine efficacy in problematic species like the striped skunk. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Midwives' influenza vaccine uptake and their views on vaccination of pregnant women.

    Science.gov (United States)

    Ishola, D A; Permalloo, N; Cordery, R J; Anderson, S R

    2013-12-01

    Pregnant women in England are now offered seasonal influenza vaccine. Midwives could be influential in promoting this, but specific information on their views on the policy and their role in its implementation is lacking. London midwives were surveyed for their views on the new policy and their own vaccine uptake, using an anonymously self-completed semi-structured online survey via a convenience sampling approach. In total, 266 midwives responded. Sixty-nine percent agreed with the policy of vaccinating all pregnant women. Seventy-six percent agreed that midwives should routinely advise pregnant women on vaccination, but only 25% felt adequately prepared for this role. Just 28% wished to be vaccinators, due to concerns about increased workload and inadequate training. Forty-three percent received seasonal influenza vaccine themselves. Major reasons for non-uptake were doubts about vaccine necessity (34%), safety (25%) and effectiveness (10%); and poor arrangements for vaccination (11%). Suggested strategies for improving their own uptake included better access to evidence of effectiveness (67%) and improved work-based vaccination (45%). London midwives support influenza vaccination of pregnant women, but are more willing to give advice on, than to administer, the vaccine. Midwives' own influenza vaccine uptake could improve with more information and easier access to vaccination in their workplace.

  7. Targeted vaccination in healthy school children - Can primary school vaccination alone control influenza?

    Science.gov (United States)

    Thorrington, Dominic; Jit, Mark; Eames, Ken

    2015-10-05

    The UK commenced an extension to the seasonal influenza vaccination policy in autumn 2014 that will eventually see all healthy children between the ages of 2-16 years offered annual influenza vaccination. Models suggest that the new policy will be both highly effective at reducing the burden of influenza as well as cost-effective. We explore whether targeting vaccination at either primary or secondary schools would be more effective and/or cost-effective than the current strategy. An age-structured deterministic transmission dynamic SEIR-type mathematical model was used to simulate a national influenza outbreak in England. Costs including GP consultations, hospitalisations due to influenza and vaccinations were compared to potential gains in quality-adjusted life years achieved through vaccinating healthy children. Costs and benefits of the new JCVI vaccination policy were estimated over a single season, and compared to the hypothesised new policies of targeted and heterogeneous vaccination. All potential vaccination policies were highly cost-effective. Influenza transmission can be eliminated for a particular season by vaccinating both primary and secondary school children, but not by vaccinating only one group. The most cost-effective policy overall is heterogeneous vaccination coverage with 48% uptake in primary schools and 34% in secondary schools. The Joint Committee on Vaccination and Immunisation can consider a modification to their policy of offering seasonal influenza vaccinations to all healthy children of ages 2-16 years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Development of Mycoplasma hyopneumoniae Recombinant Vaccines.

    Science.gov (United States)

    Marchioro, Silvana Beutinger; Simionatto, Simone; Dellagostin, Odir

    2016-01-01

    Mycoplasma hyopneumoniae is the etiological agent of swine enzootic pneumonia (EP), a disease that affects swine production worldwide. Vaccination is the most cost-effective strategy for the control and prevention of the disease. Research using genome-based approach has the potential to elucidate the biology and pathogenesis of M. hyopneumoniae and contribute to the development of more effective vaccines. Here, we describe the protocol for developing M. hyopneumoniae recombinant vaccines using reverse vaccinology approaches.

  9. Melanoma Vaccines: Mixed Past, Promising Future

    Science.gov (United States)

    Ozao-Choy, Junko; Lee, Delphine J.; Faries, Mark B.

    2014-01-01

    Synopsis Cancer vaccines were one of the earliest forms of immunotherapy to be investigated. Past attempts to vaccinate against cancer, including melanoma, have mixed results, revealing the complexity of what was thought to be a simple concept. However, several recent successes and the combination of improved knowledge of tumor immunology and the advent of new immunomodulators make vaccination a promising strategy for the future. PMID:25245965

  10. Casting off vaccine supply charity -- the pace quickens. CVI goal: quality vaccines for all children.

    Science.gov (United States)

    1995-10-01

    suggested for UNICEF's new targeting strategy and global vaccine fund for well-defined and specific needs. UNICEF is the main distributor of vaccines to developing countries and aims for program sustainability and distribution of the new vaccines.

  11. Increasing Vaccination: Putting Psychological Science Into Action.

    Science.gov (United States)

    Brewer, Noel T; Chapman, Gretchen B; Rothman, Alexander J; Leask, Julie; Kempe, Allison

    2017-12-01

    Vaccination is one of the great achievements of the 20th century, yet persistent public-health problems include inadequate, delayed, and unstable vaccination uptake. Psychology offers three general propositions for understanding and intervening to increase uptake where vaccines are available and affordable. The first proposition is that thoughts and feelings can motivate getting vaccinated. Hundreds of studies have shown that risk beliefs and anticipated regret about infectious disease correlate reliably with getting vaccinated; low confidence in vaccine effectiveness and concern about safety correlate reliably with not getting vaccinated. We were surprised to find that few randomized trials have successfully changed what people think and feel about vaccines, and those few that succeeded were minimally effective in increasing uptake. The second proposition is that social processes can motivate getting vaccinated. Substantial research has shown that social norms are associated with vaccination, but few interventions examined whether normative messages increase vaccination uptake. Many experimental studies have relied on hypothetical scenarios to demonstrate that altruism and free riding (i.e., taking advantage of the protection provided by others) can affect intended behavior, but few randomized trials have tested strategies to change social processes to increase vaccination uptake. The third proposition is that interventions can facilitate vaccination directly by leveraging, but not trying to change, what people think and feel. These interventions are by far the most plentiful and effective in the literature. To increase vaccine uptake, these interventions build on existing favorable intentions by facilitating action (through reminders, prompts, and primes) and reducing barriers (through logistics and healthy defaults); these interventions also shape behavior (through incentives, sanctions, and requirements). Although identification of principles for changing

  12. Influenza vaccination

    DEFF Research Database (Denmark)

    Østerhus, Sven Frederick

    2015-01-01

    The Cochrane Library was systematically searched for meta-analyses regarding influenza vaccination of various populations, both healthy and sick. An effect in reducing the number of cases of influenza, influenza-like illness or complications to influenza was found in some studies, but, generally......, the quality of the studies was low, and several studies lacked hard clinical endpoints. Data on adverse effects were scarce. More randomised controlled trials investigating the effects of influenza vaccination are warranted....

  13. Panel discussion on vaccine development to meet U.S. and international needs. Strategies for reducing the disincentives to HIV vaccine development: description of a successful public-private sector international collaboration.

    Science.gov (United States)

    Bronnenkant, L

    1994-01-01

    A representative of Finishing Enterprises, the world's largest manufacturer of intrauterine contraceptive devices (IUDs), discusses how to alter the balance of incentives-disincentives to expedite the development of HIV vaccines for international evaluation. Three main disincentives exist for private manufacturers in the United States to develop a new HIV vaccine to be used in developing countries, outside the profitable North American and western European markets: 1) low profit margin because of limited money, time, and resources. Medium and large-sized corporations are more concerned with a high return on their investment owing to stockholder pressure than with the human benefit of that investment. 2) Lengthy regulatory approval process. The current regulatory process in the US is tedious, time-consuming, and costly. 3) Liability risk. The United States is the most litigious society in the world. Suits filed against US corporations involved in drug manufacture incur legal defence costs, which make an already low profit margin HIV vaccine even lower. Finishing Enterprises' IUD program aimed at providing the safest and most effective IUD at an affordable price in a socially responsible way. The Population Council developed the Copper T and retained the patent rights. They and other international health authorities, such as the World Health Organization, conducted or monitored international clinical trials to determine safety and efficacy. Private foundations and public donor agencies funded these activities. When donor agencies committed to volume purchases for their commodity programs, Finishing Enterprises could commit to volume pricing. Whenever high-margin private sector sales occur, Population Council receives a royalty payment. Thus, the disincentives were overcome: 1) Low profit margin was less an issue for a small, private company created specifically to manufacture IUDs and guaranteed volume orders. 2) Lengthy regulatory approval processes were avoided by

  14. Flu Vaccine Safety Information

    Science.gov (United States)

    ... Influenza Types Seasonal Avian Swine Variant Pandemic Other Flu Vaccine Safety Information Questions & Answers Language: English (US) ... safety of flu vaccines monitored? Egg Allergy Are flu vaccines safe? Flu vaccines have good safety record. ...

  15. Thimerosal in Flu Vaccine

    Science.gov (United States)

    ... Seasonal Avian Swine Variant Pandemic Other Thimerosal in Flu Vaccine Questions & Answers Language: English (US) Español Recommend ... and/or fungi from contaminating the vaccine. Do flu vaccines contain thimerosal? Flu vaccines in multi-dose ...

  16. Ear Infection and Vaccines

    Science.gov (United States)

    ... an ENT Doctor Near You Ear Infection and Vaccines Ear Infection and Vaccines Patient Health Information News ... or may need reinsertion over time. What about vaccines? A vaccine is a preparation administered to stimulate ...

  17. Antipneumococcal vaccination

    Directory of Open Access Journals (Sweden)

    Gian Vincenzo Zuccotti

    2013-06-01

    Full Text Available Streptococcus pneumoniae (SP is a gram-positive bacterium with more than 90 known serotypes causing around 11% of all deaths worldwide in children aged 1-59 months. A new era in prevention of SP-related diseases started in at the beginning of 2000s when a 7-valent pneumococcal conjugate vaccine (PCV7 was recommended as the vaccine of choice in pediatric age. PCV7 dramatically reduced invasive pneumococcal diseases (IPD among children with indirect effects noted among other age groups as well. However, thanks to a strict surveillance network, an increase in non-vaccine serotypes (NVTs causing IPD was noted worldwide and in late 2000s a new second generation vaccine (13-valent pneumococcal conjugate vaccine-PCV13 with an expanded serotype coverage was licensed. Due to the lack of solid effectiveness data, up to know it is difficult to predict how the composition of NVTs will change after the large-scale introduction of PCV13 or whether the characteristics of the serotypes will change. Long-term surveillance of both IPD, pneumonia, acute otitis media and carriage will be crucial to ascertain whether these second generation vaccines are having the desired effect of reducing the incidence of diseases in the long term. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  18. 'Hesitant compliers': Qualitative analysis of concerned fully-vaccinating parents.

    Science.gov (United States)

    Enkel, Stephanie L; Attwell, Katie; Snelling, Thomas L; Christian, Hayley E

    2017-10-11

    Some parents are hesitant about vaccines and yet still vaccinate their children. Vaccine behaviours are not fixed and parents who are concerned but nonetheless adherent to standard schedules could switch to an unconventional schedule, delaying or cherry-picking vaccines. There is a need to better understand vaccine hesitancy in specific contexts, acknowledging cultural and geographical variation, to ensure interventions targeting hesitancy are well directed and received. To identify the behaviours, knowledge and attitudes of 'hesitant compliers' in Perth, Western Australia, nine one-on-one in-depth interviews were conducted with vaccinating parents of children (vaccination as important for themselves and their community, despite their limited knowledge of vaccine preventable diseases. Parents reported concerns about potential side effects, and worried about the safety of the measles-mumps-rubella (MMR) and seasonal influenza vaccines. Concerned about the role of anti-vaccination information in the community, some sought to isolate themselves from parents who did not vaccinate, although others were concerned that this could entrench non-vaccinators' behaviours. Parents' views were all underlaid by two pivotal 'vaccine-related events' that had occurred in the community: the severe injury of a baby from seasonal influenza vaccination in 2010, and the death of a baby from whooping cough in 2015. Parents interpreted pivotal vaccine-related events in the community as requiring them to take personal responsibility for vaccine decisions. Their reports of continued vaccine fears (evident in international studies in recent decades) demonstrate that vaccine scares have long lasting effects. With vaccine rates high and stable, current strategies appear to be have little impact on addressing parental vaccine concerns. Further research is required to determine the prevalence of hesitancy amongst vaccinating parents and identify critical points for intervention. Copyright © 2017

  19. Introducing dengue vaccine: Implications for diagnosis in dengue vaccinated subjects.

    Science.gov (United States)

    Alagarasu, Kalichamy

    2016-05-27

    Diagnosis of dengue virus infections is complicated by preference for different diagnostic tests in different post onset days of illness and the presence of multiple serotypes leading to secondary and tertiary infections. The sensitivity of the most commonly employed diagnostic assays such as anti dengue IgM capture (MAC) ELISA and non structural protein (NS) 1 capture ELISA are lower in secondary and subsequent infections. Introduction of dengue vaccine in endemic regions will affect the way how dengue is diagnosed in vaccinated subjects. This viewpoint article discusses implications of introduction of dengue vaccine on the diagnosis of dengue infections in vaccinated subjects and the strategies that are needed to tackle the issue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Cost Effectiveness of Influenza Vaccine for U.S. Children: Live Attenuated and Inactivated Influenza Vaccine.

    Science.gov (United States)

    Shim, Eunha; Brown, Shawn T; DePasse, Jay; Nowalk, Mary Patricia; Raviotta, Jonathan M; Smith, Kenneth J; Zimmerman, Richard K

    2016-09-01

    Prior studies showed that live attenuated influenza vaccine (LAIV) is more effective than inactivated influenza vaccine (IIV) in children aged 2-8 years, supporting the Centers for Disease Control and Prevention (CDC) recommendations in 2014 for preferential LAIV use in this age group. However, 2014-2015 U.S. effectiveness data indicated relatively poor effectiveness of both vaccines, leading CDC in 2015 to no longer prefer LAIV. An age-structured model of influenza transmission and vaccination was developed, which incorporated both direct and indirect protection induced by vaccination. Based on this model, the cost effectiveness of influenza vaccination strategies in children aged 2-8 years in the U.S. was estimated. The base case assumed a mixed vaccination strategy where 33.3% and 66.7% of vaccinated children aged 2-8 years receive LAIV and IIV, respectively. Analyses were performed in 2014-2015. Using published meta-analysis vaccine effectiveness data (83% LAIV and 64% IIV), exclusive LAIV use would be a cost-effective strategy when vaccinating children aged 2-8 years, whereas IIV would not be preferred. However, when 2014-2015 U.S. effectiveness data (0% LAIV and 15% IIV) were used, IIV was likely to be preferred. The cost effectiveness of influenza vaccination in children aged 2-8 years is highly dependent on vaccine effectiveness; the vaccine type with higher effectiveness is preferred. In general, exclusive IIV use is preferred over LAIV use, as long as vaccine effectiveness is higher for IIV than for LAIV. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Formulation and delivery of dermal DNA vaccines

    NARCIS (Netherlands)

    van den Berg, J.H.

    2009-01-01

    DNA vaccination is an appealing strategy of active vaccination, leading to the intracellular production of the encoding antigen which results in an efficient activation of an antigen specific immune response. Intradermal DNA tattooing was recently developed as a simple and robust method to induce

  2. Common Perceptions of Parents Requesting Personal Exemption from Vaccination

    Science.gov (United States)

    Luthy, Karlen E.; Beckstrand, Renea L.; Meyers, Carly J. H.

    2013-01-01

    School nurses, as vaccination advocates, need to be aware of parents' common concerns regarding vaccines, so the nurse can develop strategies to communicate with parents. The purpose of this cross sectional, descriptive study was to identify common reasons parents in Utah seek exempting rather than vaccinating their children. Data were collected…

  3. Targeting vaccines to dendritic cells

    DEFF Research Database (Denmark)

    Foged, Camilla; Sundblad, Anne; Hovgaard, Lars

    2002-01-01

    delivery systems (DDS) with adjuvant effect that target DC directly and induce optimal immune responses. This paper will review the current knowledge of DC physiology as well as the progress in the field of novel vaccination strategies that directly or indirectly aim at targeting DC....... to be far superior to that of B-cells and macrophages. DC are localized at strategic places in the body at sites used by pathogens to enter the organism, and are thereby in an optimal position to capture antigens. In general, vaccination strategies try to mimic the invasiveness of the pathogens. DC...

  4. Vaccination of carp against SVCV with an oral DNA vaccine or an insect cells-based subunit vaccine.

    Science.gov (United States)

    Embregts, C W E; Rigaudeau, D; Tacchi, L; Pijlman, G P; Kampers, L; Veselý, T; Pokorová, D; Boudinot, P; Wiegertjes, G F; Forlenza, M

    2018-03-19

    We recently reported on a successful vaccine for carp against SVCV based on the intramuscular injection of a DNA plasmid encoding the SVCV glycoprotein (SVCV-G). This shows that the intramuscular (i.m.) route of vaccination is suitable to trigger protective responses against SVCV, and that the SVCV G-protein is a suitable vaccine antigen. Yet, despite the general success of DNA vaccines, especially against fish rhabdoviruses, their practical implementation still faces legislative as well as consumer's acceptance concerns. Furthermore, the i.m. route of plasmid administration is not easily combined with most of the current vaccination regimes largely based on intraperitoneal or immersion vaccination. For this reason, in the current study we evaluated possible alternatives to a DNA-based i.m. injectable vaccine using the SVCV-G protein as the vaccine antigen. To this end, we tested two parallel approaches: the first based on the optimization of an alginate encapsulation method for oral delivery of DNA and protein antigens; the second based on the baculovirus recombinant expression of transmembrane SVCV-G protein in insect cells, administered as whole-cell subunit vaccine through the oral and injection route. In addition, in the case of the oral DNA vaccine, we also investigated the potential benefits of the mucosal adjuvants Escherichia coli lymphotoxin subunit B (LTB). Despite the use of various vaccine types, doses, regimes, and administration routes, no protection was observed, contrary to the full protection obtained with our reference i.m. DNA vaccine. The limited protection observed under the various conditions used in this study, the nature of the host, of the pathogen, the type of vaccine and encapsulation method, will therefore be discussed in details to provide an outlook for future vaccination strategies against SVCV. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Veterinary vaccines against Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Elisabeth A Innes

    2009-03-01

    Full Text Available Toxoplasma gondii has a very wide intermediate host range and is thought to be able to infect all warm blooded animals. The parasite causes a spectrum of different diseases and clinical symptoms within the intermediate hosts and following infection most animals develop adaptive humoral and cell-mediated immune responses. The development of protective immunity to T. gondii following natural infection in many host species has led researchers to look at vaccination as a strategy to control disease, parasite multiplication and establishment in animal hosts. A range of different veterinary vaccines are required to help control T. gondii infection which include vaccines to prevent congenital toxoplasmosis, reduce or eliminate tissue cysts in meat producing animals and to prevent oocyst shedding in cats. In this paper we will discuss some of the history, challenges and progress in the development of veterinary vaccines against T. gondii.

  6. Negative attitude of highly educated parents and health care workers towards future vaccinations in the Dutch childhood vaccination program

    NARCIS (Netherlands)

    Hak, E; Schönbeck, Y; De Melker, H; Van Essen, G A; Sanders, E A M

    2005-01-01

    BACKGROUND: It is unknown whether further expansion of the Dutch childhood vaccination program with other vaccines will be accepted and whom should be targeted in educational strategies. AIM: To determine attitudes of parents towards possible future vaccinations for their children and the

  7. A Prime-Boost Vaccination Strategy in Cattle to Prevent Foot-and-Mouth Disease Using a "Single-Cycle" Alphavirus Vector and Empty Capsid Particles

    DEFF Research Database (Denmark)

    Gullberg, Maria; Lohse, Louise; Bøtner, Anette

    2016-01-01

    Foot-and-mouth disease (FMD) remains one of the most economically important infectious diseases of production animals globally. Vaccination can successfully control this disease, however, current vaccines are imperfect. They are made using chemically inactivated FMD virus (FMDV) that is produced...... in large-scale mammalian cell culture under high containment conditions. Here, we have expressed the FMDV capsid protein precursor (P1-2A) of strain O1 Manisa alone or with the FMDV 3C protease (3Cpro) using a "single cycle" packaged alphavirus self-replicating RNA based on Semliki Forest virus (SFV). When...... the FMDV P1-2A was expressed with 3Cpro then processing of the FMDV capsid precursor protein is observed within cells and the proteins assemble into empty capsid particles. The products interact with anti-FMDV antibodies in an ELISA and bind to the integrin αvβ6 (a cellular receptor for FMDV). In cattle...

  8. Italian field survey reveals a high diffusion of avian metapneumovirus subtype B in layers and weaknesses in the vaccination strategy applied.

    Science.gov (United States)

    Cecchinato, Mattia; Lupini, Caterina; Ricchizzi, Enrico; Falchieri, Marco; Meini, Amelio; Jones, Richard C; Catelli, Elena

    2012-12-01

    The current information on the prevalence of avian metapneumovirus (aMPV) infection in layers is fragmentary and its true impact on egg production often remains unknown or unclear. In order to draw an epidemiologic picture of aMPV presence in layer flocks in Italy, a survey was performed on 19 flocks of pullets and layers based on longitudinal studies or sporadic samplings. aMPV was detected by reverse transcription (RT)-PCR, and blood samples were collected for serology by aMPV ELISA. Occurrences of respiratory signs and a drop in egg production were recorded. Possible involvement of infectious bronchitis (IB) and egg drop syndrome (EDS) viruses that could have caused loss of egg production we ruled out for IB virus by RT-PCR, and EDS virus was ruled out by hemagglutination-inhibition (HI). Only subtype B of aMPV was found in both pullet and layer farms. Surveys of pullets showed that most groups became infected prior to the onset of lay without showing clear respiratory signs. At the point of lay, these groups were serologically positive to aMPV. In two layer flocks, egg drops were observed and could be strongly linked to the presence of aMPV infection. Results were correlated with aMPV vaccination programs applied to the birds in three flocks on the same farm. Only a vaccination program which included two live and one killed vaccines gave complete protection from aMPV infection to the birds, while a single live vaccine application was not efficacious. The current study gives an inside view of field aMPV diffusion in Italy and its control in layers.

  9. Progress and pitfalls in Shigella vaccine research

    Science.gov (United States)

    Barry, Eileen M.; Pasetti, Marcela F.; Sztein, Marcelo B.; Fasano, Alessio; Kotloff, Karen L.; Levine, Myron M.

    2013-01-01

    Renewed awareness of the significant morbidity and mortality that Shigella causes among young children in developing countries combined with technological innovations in vaccinology has led to the development of novel vaccine strategies in the past five years. Along with advancement of classical vaccines in clinical trials and new sophisticated measurements of immunological responses, much new data has been produced lending promise to the potential for production of safe and effective Shigella vaccines. Herein we review the recent progress in Shigella vaccine development within the framework of persistent obstacles. PMID:23419287

  10. Mandatory and recommended vaccination in the EU, Iceland and Norway: results of the VENICE 2010 survey on the ways of implementing national vaccination programmes.

    Science.gov (United States)

    Haverkate, M; D'Ancona, F; Giambi, C; Johansen, K; Lopalco, P L; Cozza, V; Appelgren, E

    2012-05-31

    This report provides an updated overview of recommended and mandatory vaccinations in the European Union (EU), Iceland and Norway, considering the differences in vaccine programme implementation between countries. In 2010, the Vaccine European New Integrated Collaboration Effort (VENICE) network, conducted a survey among the VENICE project gatekeepers to learn more about how national vaccination programmes are implemented, whether recommended or mandatory. Information was collected from all 27 EU Member States, Iceland and Norway. In total 15 countries do not have any mandatory vaccinations; the remaining 14 have at least one mandatory vaccination included in their programme. Vaccination against polio is mandatory for both children and adults in 12 countries; diphtheria and tetanus vaccination in 11 countries and hepatitis B vaccination in 10 countries. For eight of the 15 vaccines considered, some countries have a mixed strategy of recommended and mandatory vaccinations. Mandatory vaccination may be considered as a way of improving compliance to vaccination programmes. However, compliance with many programmes in Europe is high, using only recommendations. More information about the diversity in vaccine offer at European level may help countries to adapt vaccination strategies based on the experience of other countries. However, any proposal on vaccine strategies should be developed taking into consideration the local context habits.

  11. Development of novel prime-boost strategies based on a tri-gene fusion recombinant L. tarentolae vaccine against experimental murine visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Noushin Saljoughian

    Full Text Available Visceral leishmaniasis (VL is a vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem in many countries. Although many antigens have been examined so far as protein- or DNA-based vaccines, none of them conferred complete long-term protection. The use of the lizard non-pathogenic to humans Leishmania (L. tarentolae species as a live vaccine vector to deliver specific Leishmania antigens is a recent approach that needs to be explored further. In this study,