WorldWideScience

Sample records for anti-her-2 engineering antibody

  1. Effects of an Engineered Anti-HER2 Antibody chA21 on Invasion of Human Ovarian Carcinoma Cell In Vitro

    Institute of Scientific and Technical Information of China (English)

    Yi Gao; Qiang Wu; Zheng-sheng Wu; Gui-hong Zhang; An-Li Zhang

    2011-01-01

    Objective: HER-2 plays an important role in the development and progression of ovarian carcinoma. A number of monoclonal antibodies (MAbs) and engineered antibody fragments (such as scFvs) against the subdomain Ⅱ or Ⅳ of HER-2 extracellular domain (ECD) have been developed. We investigated the effect of chA21, an engineered anti-HER-2 antibody that bind primarily to subdomain I, on ovarian carcinoma cell invasion in vitro, and explored its possible mechanisms. Methods: Growth inhibition of SK-OV-3 cells was assessed using a Methyl thiazolyl tetrazolium (MTT) assay. The invasion ability of SK-OV-3 was determined by a Transwell invasion assay. The expression of matrix metalloproteinase-2 (MMP-2) and its tissue inhibitors (TIMP-2) was detected by immunocytochemical staining, and the expression of p38 and the phosphorylation of p38 were assayed by both immunocytochemistry and Western blot. Results: After treatment with chA21, the invasion of human ovarian cancer SK-OV-3 cells was inhibited in doseand time-dependent manners. Simultaneously the expression of p38, phospho-p38, MMP-2 and the MMP-2/TIMP-2 ratio decreased, while TIMP-2 expression increased. Additionally, the decrease in phospho-p38 was much greater than that of p38. Conclusion: chA21 may inhibit SK-OV-3 cell invasion via the signal transduction pathway involving MMP-2,TIMP-2, p38 and the activation of p38MAPK.

  2. Production and Characterization of Anti-Her2 Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    A.S. Tabatabaei-Panah

    2008-01-01

    Full Text Available Objective: Breast cancer is the most common cancer among women in the world.Early diagnosis of this cancer is a key element for its treatment. One of the approachesfor diagnosis of breast cancer is detection of its tumour-associated markers. Hence,Her2 has been the main focus of the researches in the field.Materials and Methods: For diagnosis of Her2 overexpression, monoclonalantibodies (mAb reacting against Her2 were produced in this study. For thispurpose, two peptides from extracellular domain of Her2 were selected and themAbs reacting against them were produced by hybrodoma technology. Reactivityof these antibodies were then evaluated in different immunological assays includingELISA, Immunoflurescence (IF, western blot (WB and immunoprecipitation (IP.Results: Total of 5 clones were produced from two separate fusions, and antibodyisotyping revealed that all clones were IgM. These mAbs showed appropriatereactivities in the following assays: ELISA, immunofluresence by staining of breastcancer cell line (SKBR3, WB and IP by detecting the 185 KD band of Her2.Conclusion: In conclusion, it seems that the mAbs are useful diagnostic tools fordetection of Her2 expression in patients with breast cancer.

  3. Novel anti-HER2 monoclonal antibodies: synergy and antagonism with tumor necrosis factor-α

    Directory of Open Access Journals (Sweden)

    Ceran Ceyhan

    2012-10-01

    Full Text Available Abstract Background One-third of breast cancers display amplifications of the ERBB2 gene encoding the HER2 kinase receptor. Trastuzumab, a humanized antibody directed against an epitope on subdomain IV of the extracellular domain of HER2 is used for therapy of HER2-overexpressing mammary tumors. However, many tumors are either natively resistant or acquire resistance against Trastuzumab. Antibodies directed to different epitopes on the extracellular domain of HER2 are promising candidates for replacement or combinatorial therapy. For example, Pertuzumab that binds to subdomain II of HER2 extracellular domain and inhibits receptor dimerization is under clinical trial. Alternative antibodies directed to novel HER2 epitopes may serve as additional tools for breast cancer therapy. Our aim was to generate novel anti-HER2 monoclonal antibodies inhibiting the growth of breast cancer cells, either alone or in combination with tumor necrosis factor-α (TNF-α. Methods Mice were immunized against SK-BR-3 cells and recombinant HER2 extracellular domain protein to produce monoclonal antibodies. Anti-HER2 antibodies were characterized with breast cancer cell lines using immunofluorescence, flow cytometry, immunoprecipitation, western blot techniques. Antibody epitopes were localized using plasmids encoding recombinant HER2 protein variants. Antibodies, either alone or in combination with TNF-α, were tested for their effects on breast cancer cell proliferation. Results We produced five new anti-HER2 monoclonal antibodies, all directed against conformational epitope or epitopes restricted to the native form of the extracellular domain. When tested alone, some antibodies inhibited modestly but significantly the growth of SK-BR-3, BT-474 and MDA-MB-361 cells displaying ERBB2 amplification. They had no detectable effect on MCF-7 and T47D cells lacking ERBB2 amplification. When tested in combination with TNF-α, antibodies acted synergistically on SK-BR-3 cells

  4. Development and Characterization of a Humanized Anti-HER2 Antibody HuA21 with Potent Anti-Tumor Properties in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ruilin Li

    2016-04-01

    Full Text Available Human epidermal growth factor receptor 2 (HER2 is one of the most studied tumor-associated antigens for cancer immunotherapy. An engineered anti-HER-2 chimeric A21 antibody (chA21 is a chimeric antibody targeted to subdomain I of the HER2 extracellular domain. Here, we report the anti-tumor activity of the novel engineered monoclonal antibody humanized chA21 (HuA21 that targets HER2 on the basis of chA21, and we describe the underlying mechanisms. Our results reveal that HuA21 markedly inhibits the proliferation and migration of HER2-overexpressing breast cancer cells and causes enhanced antibody-dependent cell-mediated cytotoxicity potency against HER2-overexpressing tumor cells. In particular, HuA21, but not trastuzumab (Tra, markedly suppresses growth and enhances the internalization of the antibody in Tra-resistant BT-474 breast cancer cells. These characteristics are highly associated with the intrinsic ability of HuA21 to down-regulate HER2 activation and inhibit the extracellular signal-regulated kinase 1/2 (ERK1/2 and protein kinase B (Akt signaling pathways. Furthermore, the combination of HuA21 with Tra synergistically enhances the anti-tumor effects in vitro and in vivo and inhibits HER2 activation and the ERK1/2 and Akt signaling pathways. Altogether, our results suggest that HuA21 may represent a unique anti-HER2 antibody with potential as a therapeutic candidate alone or in combination with other anti-HER2 reagents in cancer therapy.

  5. Development and Characterization of a Humanized Anti-HER2 Antibody HuA21 with Potent Anti-Tumor Properties in Breast Cancer Cells.

    Science.gov (United States)

    Li, Ruilin; Hu, Siyi; Chang, Yan; Zhang, Zhihui; Zha, Zhao; Huang, Hui; Shen, Guodong; Liu, Jing; Song, Lihua; Wei, Wei

    2016-04-15

    Human epidermal growth factor receptor 2 (HER2) is one of the most studied tumor-associated antigens for cancer immunotherapy. An engineered anti-HER-2 chimeric A21 antibody (chA21) is a chimeric antibody targeted to subdomain I of the HER2 extracellular domain. Here, we report the anti-tumor activity of the novel engineered monoclonal antibody humanized chA21 (HuA21) that targets HER2 on the basis of chA21, and we describe the underlying mechanisms. Our results reveal that HuA21 markedly inhibits the proliferation and migration of HER2-overexpressing breast cancer cells and causes enhanced antibody-dependent cell-mediated cytotoxicity potency against HER2-overexpressing tumor cells. In particular, HuA21, but not trastuzumab (Tra), markedly suppresses growth and enhances the internalization of the antibody in Tra-resistant BT-474 breast cancer cells. These characteristics are highly associated with the intrinsic ability of HuA21 to down-regulate HER2 activation and inhibit the extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) signaling pathways. Furthermore, the combination of HuA21 with Tra synergistically enhances the anti-tumor effects in vitro and in vivo and inhibits HER2 activation and the ERK1/2 and Akt signaling pathways. Altogether, our results suggest that HuA21 may represent a unique anti-HER2 antibody with potential as a therapeutic candidate alone or in combination with other anti-HER2 reagents in cancer therapy.

  6. Bio-distribution and toxicity assessment of intravenously injected anti-HER2 antibody conjugated CdSe/ZnS quantum dots in Wistar rats

    Directory of Open Access Journals (Sweden)

    Dhermendra K Tiwari

    2011-02-01

    Full Text Available Dhermendra K Tiwari1, Takashi Jin2, Jitendra Behari11School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India; 2WPI-Immunology Frontier Research Center, Osaka University, Osaka, JapanAbstract: Anti-HER2 antibody conjugated with quantum dots (anti-HER2ab-QDs is a very recent fluorescent nanoprobe for HER2+ve breast cancer imaging. In this study we investigated in-vivo toxicity of anti-HER2ab conjugated CdSe/ZnS QDs in Wistar rats. For toxicity evaluation of injected QDs sample, body weight, organ coefficient, complete blood count (CBC, biochemistry panel assay (AST, ALT, ALP, and GGTP, comet assay, reactive oxygen species, histology, and apoptosis were determined. Wistar rat (8–10 weeks old were randomly divided into 4 treatment groups (n = 6. CBC and biochemistry panel assay showed nonsignificant changes in the anti-HER2ab-QDs treated group but these changes were significant (P < 0.05 in QDs treated group. No tissue damage, inflammation, lesions, and QDs deposition were found in histology and TEM images of the anti-HER2ab-QDs treated group. Apoptosis in liver and kidney was not found in the anti-HER2ab-QDs treated group. Animals treated with nonconjugated QDs showed comet formation and apoptosis. Cadmium deposition was confirmed in the QDs treated group compared with the anti-HER2ab-QDs treated group. The QDs concentration (500 nM used for this study is suitable for in-vivo imaging. The combine data of this study support the biocompatibility of anti-HER2ab-QDs for breast cancer imaging, suggesting that the antibody coating assists in controlling any possible adverse effect of quantum dots.Keywords: cancer bioimaging, HER2, anti-HER2 antibody, quantum dots, comet assay

  7. Arg9 facilitates the translocation and downstream signal inhibition of an anti-HER2 single chain antibody

    Directory of Open Access Journals (Sweden)

    Hu Yi

    2012-07-01

    Full Text Available Abstract Background HER2 plays a critical role in the pathogenesis of many cancers and is linked to poor prognosis or cancer metastases. Monoclonal antibodies, such as Herceptin against HER2-overexpressing cancers, have showed satisfactory clinical therapeutic effect. However, they have difficulty to surmount obstacles to enter cells or blood–brain barrier. Results In this study, a cell-penetrating peptide Arg9 was linked to the C-terminus of anti-HER2 single chain antibody (MIL5scFv. Flow cytometry, confocal microscopy and electron microscopy analysis all revealed that Arg9 peptide facilitated the penetration of MIL5scFv into HER2-negative cell line NIH3T3 and orientate in mitochondria. More interestingly, Western blot assay showed the potential enhanced bioactivity of MIL5scFv-Arg9 in HER2+ cell line SKOV3, indicating that Arg9 could help large molecules (e.g. antibody to penetrate into cells and therefore enhance its anti-neoplastic function. Conclusions Our work represented an attractive by preliminary strategy to enhance the therapeutic effect of existing antibodies by entering cells easier, or more desirable, surmounting the physical barriers, especially in hard-to-reach cancers such as brain metastases cases.

  8. Cancer Cell Targeting Using Folic Acid/Anti-HER2 Antibody Conjugated Fluorescent CdSe/CdS/ZnS-MPA and CdTe-MSA Quantum Dots.

    Science.gov (United States)

    Singh, Gurpal; Kumar, Manoj; Soni, Udit; Arora, Vikas; Bansal, Vivek; Gupta, Dikshi; Bhat, Madhusudan; Dinda, Amit K; Sapra, Sameer; Singh, Harpal

    2015-12-01

    CdSe/CdS/ZnS and CdTe quantum dots (QDs) were synthesized by successive ion layer adsorption and reaction (SILAR) technique and direct aqueous synthesis respectively using thiol stabilizers. Synthesized CdSe/CdS/ZnS and CdTe QDs stabilized with 3-mercaptopropionic acid (MPA) and mercaptosuccinic acid (MSA) were used as fluorescent labels after conjugation with folic acid (FA) and anti-HER2 antibodies. Photoluminescence quantum yield of folated CdSe/CdS/ZnS-MPA and CdTe-MSA QDs was 59% and 77% than that of non-folated hydrophilic QDs. The folate receptor-mediated delivery of folic acid-conjugated CdTe-MSA and CdSe/CdS/ZnS-MPA QDs showed higher cellular internalization as observed by confocal laser scanning microscopic studies. Folated and non-folated CdTe-MSA QDs were highly toxic and exhibited only 10% cell viability as compared to > 80% cell viability with CdSe/CdS/ZnS-MPA QDs over the concentration ranging from 3.38 to 50 pmoles. Immunohistochemistry (IHC) results of human breast cancer tissue samples showed positive results with anti-HER2 antibody conjugated CdSe/CdS/ZnS-MPA QDs with better sensitivity and specificity as compared to conventional IHC analysis using diaminobenzedene staining.

  9. Synthesis and Characterization of Anti-HER2 Antibody Conjugated CdSe/CdZnS Quantum Dots for Fluorescence Imaging of Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Takashi Jin

    2009-11-01

    Full Text Available The early detection of HER2 (human epidermal growth factor receptor 2 status in breast cancer patients is very important for the effective implementation of anti-HER2 antibody therapy. Recently, HER2 detections using antibody conjugated quantum dots (QDs have attracted much attention. QDs are a new class of fluorescent materials that have superior properties such as high brightness, high resistance to photo-bleaching, and multi-colored emission by a single-light source excitation. In this study, we synthesized three types of anti-HER2 antibody conjugated QDs (HER2Ab-QDs using different coupling agents (EDC/sulfo-NHS, iminothiolane/sulfo-SMCC, and sulfo-SMCC. As water-soluble QDs for the conjugation of antibody, we used glutathione coated CdSe/CdZnS QDs (GSH-QDs with fluorescence quantum yields of 0.23~0.39 in aqueous solution. Dispersibility, hydrodynamic size, and apparent molecular weights of the GSH-QDs and HER2Ab-QDs were characterized by using dynamic light scattering, fluorescence correlation spectroscopy, atomic force microscope, and size-exclusion HPLC. Fluorescence imaging of HER2 overexpressing cells (KPL-4 human breast cancer cell line was performed by using HER2Ab-QDs as fluorescent probes. We found that the HER2Ab-QD prepared by using SMCC coupling with partially reduced antibody is a most effective probe for the detection of HER2 expression in KPL-4 cells. We have also studied the size dependency of HER2Ab-QDs (with green, orange, and red emission on the fluorescence image of KPL-4 cells.

  10. Inhibitory Effect of Anti-HER-2 Anti-CD3 Bi-specific Antibody on the Growth of Gastric Carcinoma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To evaluate the effect of anti-HER-2 × anti-CD3 bi-specific antibody (BsAb) on the growth of HER-2/neu-expressing human gastric carcinoma in vitro and in vivo, an MTT assay was carried out to test the inhibitive rates of herceptin, anti-CD3 and BsAb antibodies on SGC-7901 gastric carcinoma cells. Immunocytochemistry methods were used to test the HER-2 level of SGC-7901. Nude mice models were employed to test the effect of HER-2 CD3 BsAb combined with effector cells( peripheral blood lymphatic cells of healthy human beings) on the growth of tumors in animals. Compared with that of the untreated control group, the tumor cell growth rates in vitro and in vivo will both be significantly inhibited when treated with effector cells combined with anti-CD3 McAb, herceptin or HER2 CD3 BsAb (p <0. 05), and the growth inhibition is the most remarkable in the group treated with HER2 CD3 BsAb combined with effector cells. The growth of tumor xenografts will also be significantly inhibited in the group treated with HER2CD3 BsAb combined with effector cells when compared with that in the group treated with anti-CD3 McAb or the group treated with herceptin combined with effector cells(p < 0. 05). We can conclude that HER-2/neu is possibly a useful target for immunotherapy of gastric carcinoma, and anti-HER2 × anti-CD3 BsAb has evident anti-tumor efficacy both, in vitro and in vivo.

  11. Optimization of an anti-HER2 monoclonal antibody targeted delivery system using PEGylated human serum albumin nanoparticles.

    Science.gov (United States)

    Kouchakzadeh, Hasan; Shojaosadati, Seyed Abbas; Tahmasebi, Fathollah; Shokri, Fazel

    2013-04-15

    Human serum albumin (HSA) nanoparticles represent an attractive strategy for active targeting of therapeutics into tumor cells due to the presence of superficial functional groups. HER2 is highly expressed in a significant proportion of cancers and monoclonal antibodies (mAbs) directed against HER2 hold great promise for effective therapy. Herein, covalent coupling of a novel mAb (1F2) directed against the extracellular domain of HER2 to the surface of HSA nanoparticles was evaluated to obtain nanoparticles with highest cellular uptake. HER2 reactivity of 1F2-conjugated nanoparticles produced under different conditions was screened by an indirect ELISA and flow cytometry techniques. Monoclonal antibody thiolation with 100-fold molar excess of 2-iminothiolane and the ratio of 10:1 for the thiolated 1F2 (μg) to PEGylated nanoparticles (mg), were optimum for the attachment process. Under this condition, 23±4% of 1F2 was conjugated to nanoparticles. The flow cytometry results show that 1F2-modified nanoparticles interact with nearly all HER2 receptors on the surface of BT474 cells. In addition, no cellular uptake was observed on MCF7 cells. In vitro analyses showed no significant cytotoxicity of produced system against BT474 cells. Therefore, 1F2-attached HSA nanoparticles represent a potential delivery system for targeted transport of therapeutic agents into HER2-positive tumor cells.

  12. Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer

    Directory of Open Access Journals (Sweden)

    Chen H

    2013-10-01

    Full Text Available Hongwei Chen,1,* Liya Wang,1,2,* Qiqi Yu,1,2 Weiping Qian,3 Diana Tiwari,1 Hong Yi,4 Andrew Y Wang,5 Jing Huang,1,2 Lily Yang,3 Hui Mao1,2 1Department of Radiology and Imaging Sciences, 2Center for Systems Imaging, 3Department of Surgery, Emory University School of Medicine, 4Robert Apkarian Electron Microscopy Core, Emory University, Atlanta, GA, 5Ocean NanoTech LLC, Springdale, AK, USA *These authors contributed equally to this work Abstract: Antifouling magnetic iron oxide nanoparticles (IONPs coated with block copolymer poly(ethylene oxide-block-poly(γ-methacryloxypropyltrimethoxysilane (PEO-b-PγMPS were investigated for improving cell targeting by reducing nonspecific uptake. Conjugation of a HER2 antibody, Herceptin®, or a single chain fragment (ScFv of antibody against epidermal growth factor receptor (ScFvEGFR to PEO-b-PγMPS-coated IONPs resulted in HER2-targeted or EGFR-targeted IONPs (anti-HER2-IONPs or ScFvEGFR-IONPs. The anti-HER2-IONPs bound specifically to SK-BR-3, a HER2-overexpressing breast cancer cell line, but not to MDA-MB-231, a HER2-underexpressing cell line. On the other hand, the ScFvEGFR-IONPs showed strong reactivity with MDA-MB-231, an EGFR-positive human breast cancer cell line, but not with MDA-MB-453, an EGFR-negative human breast cancer cell line. Transmission electron microscopy revealed internalization of the receptor-targeted nanoparticles by the targeted cancer cells. In addition, both antibody-conjugated and non-antibody-conjugated IONPs showed reduced nonspecific uptake by RAW264.7 mouse macrophages in vitro. The developed IONPs showed a long blood circulation time (serum half-life 11.6 hours in mice and low accumulation in both the liver and spleen. At 24 hours after systemic administration of ScFvEGFR-IONPs into mice bearing EGFR-positive breast cancer 4T1 mouse mammary tumors, magnetic resonance imaging revealed signal reduction in the tumor as a result of the accumulation of the targeted IONPs

  13. Orientation and density control of bispecific anti-HER2 antibody on functionalized carbon nanotubes for amplifying effective binding reactivity to cancer cells

    Science.gov (United States)

    Kim, Hye-In; Hwang, Dobeen; Jeon, Su-Ji; Lee, Sangyeop; Park, Jung Hyun; Yim, Dabin; Yang, Jin-Kyoung; Kang, Homan; Choo, Jaebum; Lee, Yoon-Sik; Chung, Junho; Kim, Jong-Ho

    2015-03-01

    Nanomaterial bioconjugates have gained unabated interest in the field of sensing, imaging and therapy. As a conjugation process significantly affects the biological functions of proteins, it is crucial to attach them to nanomaterials with control over their orientation and the nanomaterial-to-protein ratio in order to amplify the binding efficiency of nanomaterial bioconjugates to targets. Here, we describe a targeting nanomaterial platform utilizing carbon nanotubes functionalized with a cotinine-modified dextran polymer and a bispecific anti-HER2 × cotinine tandem antibody. This new approach provides an effective control over antibody orientation and density on the surface of carbon nanotubes through site-specific binding between the anti-cotinine domain of the bispecific tandem antibody and the cotinine group of the functionalized carbon nanotubes. The developed synthetic carbon nanotube/bispecific tandem antibody conjugates (denoted as SNAs) show an effective binding affinity against HER2 that is three orders of magnitude higher than that of the carbon nanotubes bearing a randomly conjugated tandem antibody prepared by carbodiimide chemistry. As the density of a tandem antibody on SNAs increases, their effective binding affinity to HER2 increases as well. SNAs exhibit strong resonance Raman signals for signal transduction, and are successfully applied to the selective detection of HER2-overexpressing cancer cells.Nanomaterial bioconjugates have gained unabated interest in the field of sensing, imaging and therapy. As a conjugation process significantly affects the biological functions of proteins, it is crucial to attach them to nanomaterials with control over their orientation and the nanomaterial-to-protein ratio in order to amplify the binding efficiency of nanomaterial bioconjugates to targets. Here, we describe a targeting nanomaterial platform utilizing carbon nanotubes functionalized with a cotinine-modified dextran polymer and a bispecific anti-HER2

  14. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells

    Directory of Open Access Journals (Sweden)

    Mitra Somenath

    2009-10-01

    Full Text Available Abstract Background Nanocarrier-based antibody targeting is a promising modality in therapeutic and diagnostic oncology. Single-walled carbon nanotubes (SWNTs exhibit two unique optical properties that can be exploited for these applications, strong Raman signal for cancer cell detection and near-infrared (NIR absorbance for selective photothermal ablation of tumors. In the present study, we constructed a HER2 IgY-SWNT complex and demonstrated its dual functionality for both detection and selective destruction of cancer cells in an in vitro model consisting of HER2-expressing SK-BR-3 cells and HER2-negative MCF-7 cells. Methods The complex was constructed by covalently conjugating carboxylated SWNTs with anti-HER2 chicken IgY antibody, which is more specific and sensitive than mammalian IgGs. Raman signals were recorded on Raman spectrometers with a laser excitation at 785 nm. NIR irradiation was performed using a diode laser system, and cells with or without nanotube treatment were irradiated by 808 nm laser at 5 W/cm2 for 2 min. Cell viability was examined by the calcein AM/ethidium homodimer-1 (EthD-1 staining. Results Using a Raman optical microscope, we found the Raman signal collected at single-cell level from the complex-treated SK-BR-3 cells was significantly greater than that from various control cells. NIR irradiation selectively destroyed the complex-targeted breast cancer cells without harming receptor-free cells. The cell death was effectuated without the need of internalization of SWNTs by the cancer cells, a finding that has not been reported previously. Conclusion We have demonstrated that the HER2 IgY-SWNT complex specifically targeted HER2-expressing SK-BR-3 cells but not receptor-negative MCF-7 cells. The complex can be potentially used for both detection and selective photothermal ablation of receptor-positive breast cancer cells without the need of internalization by the cells. Thus, the unique intrinsic properties of SWNTs

  15. Cancer Cell Targeting Using Folic Acid/Anti-HER2 Antibody Conjugated Fluorescent CdSe/CdS/ZnS-Mercaptopropionic Acid and CdTe-Mercaptosuccinic Acid Quantum Dots.

    Science.gov (United States)

    Singh, Gurpal; Kumar, Manoj; Soni, Udit; Arora, Vikas; Bansal, Vivek; Gupta, Dikshi; Bhat, Madhusudan; Dinda, Amit K; Sapra, Sameer; Singh, Harpal

    2016-01-01

    CdSe/CdS/ZnS and CdTe quantum dots (QDs) were synthesized by successive ion layer adsorption and reaction (SILAR) technique and direct aqueous synthesis respectively using thiol stabilizers. Synthesized CdSe/CdS/ZnS and CdTe QDs stabilized with 3-mercaptopropionic acid (MPA) and mercaptosuccinic acid (MSA) were used as fluorescent labels after conjugation with folic acid (FA) and anti-HER2 antibodies. Photoluminescence quantum yield of folated CdSe/CdS/ZnS-MPA and CdTe-MSA QDs was 59% and 77% than that of non-folated hydrophilic QDs. The folate receptor-mediated delivery of folic acid-conjugated CdTe-MSA and CdSe/CdS/ZnS-MPA QDs showed higher cellular internalization as observed by confocal laser scanning microscopic studies. Folated and non-folated CdTe-MSA QDs were highly toxic and exhibited only 10% cell viability as compared to > 80% cell viability with CdSe/CdS/ZnS-MPA QDs over the concentration ranging from 3.38 to 50 pmoles. Immunohistochemistry (IHC) results of human breast cancer tissue samples showed positive results with anti-HER2 antibody conjugated CdSe/CdS/ZnS-MPA QDs with better sensitivity and specificity as compared to conventional IHC analysis using diaminobenzedene staining.

  16. 甲醇-山梨醇混合碳源诱导提高抗HER2抗体在糖基工程毕赤酵母中的表达%Co-Feeding Strategy of Methanol and Sorbitol to Improve Produc-tion of Anti-HER2 Monoclonal Antibody in Glycoengineered Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    高爱荣; 刘波; 唱韶红; 巩新; 徐敏锐; 徐威; 吴军

    2013-01-01

    Objective: In this work, a study of the fermentation technique of engineered antibodies in glycosyl-ation engineered yeast using anti-HER2 monoclonal antibody(mAb) as model was presented. Methods: The opti-mal methanol induction concentration was confirmed by flask trial. The antigen binding affinity of anti-HER2 mAb was tested with the high HER2 expression breast cancer cell line SK-BR-3. The methanol/sorbitol co-feeding in-duction strategy for antibody production was carried out in a 5 L bioreactor on the basis of flask experiment. The medium was collected and subjected to purification with cation exchange chromatography. The molecular weight was analyzed by reducing and non-reducing SDS-PAGE. The antibody was identified by Western blotting and the purity was determined by Lowry method. Results: The highest expression level of anti-HER2 antibody was in-duced by 0.5% methanol in flask culture. Expressed antibody can bind to antigen on the cell surface of the SK-BR-3. The production of antibody in methanol/sorbitol co-feeding fermentation reached about 0.6 g/L, which was about ten times than in flask culture. The molecular weight of antibody was 1.5×105 in non-reducing SDS- PAGE which demonstrates that light chain and heavy chain could be assembled the right antibody structure. The final concentration of the antibody was 0.365 g/L after one step purification by cation exchange chromatography. Conclu-sion: Using the co-feeding strategy in 5 L bioreactor, the production of antibody expressed in glycoengineering Pi-chia pastoris was improved and this will be reference for a platform of large-scale antibody fermentation.%目的::以抗HER2抗体为模型,研究抗体在糖基工程酵母菌中的表达及工程菌发酵技术。方法:首先通过摇瓶试验分析诱导用甲醇浓度对抗体表达的影响,并用高表达HER2的SK-BR-3细胞分析抗HER2抗体的抗原结合活性。以此为基础,在5 L发酵罐中研究甲醇-山梨醇混

  17. Why man's best friend, the dog, could also benefit from an anti-HER-2 vaccine

    OpenAIRE

    Fazekas, Judit; Fürdös, Irene; Singer, Josef; Jensen-Jarolim, Erika

    2016-01-01

    Human epidermal growth factor receptor-2 (HER-2) is a well-established target for anticancer anticancerprecision medicine in humans. A HER-2 homologue with 92% amino acid identity has been described in canine mammary tumors, which whichis termed here as ‘dog epidermal growth factor receptor-2 (DER-2)’, with similar biological implications as those in human breast cancer. Both antigens can principally be immunologically targeted by anti-HER-2 antibodies, such as trastuzumab; however, the in vi...

  18. Changes in 2-fluoro-2-deoxy-D-glucose incorporation, hexokinase activity and lactate production by breast cancer cells responding to treatment with the anti-HER-2 antibody trastuzumab

    Energy Technology Data Exchange (ETDEWEB)

    Cheyne, Richard W. [School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD (United Kingdom); Trembleau, Laurent; McLaughlin, Abbie [School of Natural and Computing Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD (United Kingdom); Smith, Tim A.D., E-mail: t.smith@abdn.ac.u [School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD (United Kingdom)

    2011-04-15

    Introduction: Changes in 2-[{sup 18}F]-fluoro-2-deoxy-D-glucose (FDG) incorporation by tumors, detected using positron emission tomography, during response to chemotherapy are utilized clinically in patient management. Here, the effect of treatment with growth-inhibitory doses of the anti-human epidermal growth factor receptor-2 antibody trastuzumab (Herceptin) on the incorporation of FDG by breast tumor cells was measured along with hexokinase (HK) and glucose transport to determine the potential of FDG-positron emission tomography in predicting response to these biological anti-cancer therapies and their modulatory effects on the steps involved in FDG incorporation. Methods: The sensitivity to trastuzumab of three breast tumor cell lines, SKBr3, MDA-MB-453 and MDA-MB-468, expressing human epidermal growth factor receptor-2 at high, medium and low levels, respectively, was determined using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay over a 6-day period, and a clonogenic assay was carried out after 7- and 10-day exposures. FDG incorporation by cells treated with growth-inhibitory doses of trastuzumab was carried out after 4 h and 2, 4 and 6 days of treatment. Glucose transport (rate of uptake of the non-metabolizable analogue [{sup 3}H]O-methyl-D-glucose), HK activity and lactate production were measured on cells treated with inhibitory doses of trastuzumab for 6 days. Results: The IC{sub 50} doses for SKBr3 and MDA-MB-453 and the IC{sub 20} dose for MDA-MB-468 after 6 days of treatment with trastuzumab were 0.25, 1 and 170 {mu}g/ml, respectively. FDG incorporation by SKBr3 and MDA-MB-453 cells was found to be decreased using IC{sub 50} doses of trastuzumab for 6 days. At the IC{sub 50} doses, FDG incorporation was also decreased at 4 days and, in the case of MDA-MB-453, even after 4 h of treatment. Decreased FDG incorporation corresponded with decreased HK activity in these cells. Lactate production, previously suggested to be a

  19. A Conjugate Based on Anti-HER2 Diaffibody and Auristatin E Targets HER2-Positive Cancer Cells

    Science.gov (United States)

    Serwotka-Suszczak, Anna M.; Sochaj-Gregorczyk, Alicja M.; Pieczykolan, Jerzy; Krowarsch, Daniel; Jelen, Filip; Otlewski, Jacek

    2017-01-01

    Antibody-drug conjugates (ADCs) have recently emerged as efficient and selective cancer treatment therapeutics. Currently, alternative forms of drug carriers that can replace monoclonal antibodies are under intensive investigation. Here, a cytotoxic conjugate of an anti-HER2 (Human Epidermal Growth Factor Receptor 2) diaffibody with monomethyl-auristatin E (MMAE) is proposed as a potential anticancer therapeutic. The anti-HER2 diaffibody was based on the ZHER2:4 affibody amino acid sequence. The anti-HER2 diaffibody has been expressed as a His-tagged protein in E. coli and purified by Ni-nitrilotriacetyl (Ni-NTA) agarose chromatography. The molecule was properly folded, and the high affinity and specificity of its interaction with HER2 was confirmed by surface plasmon resonance (SPR) and flow cytometry, respectively. The (ZHER2:4)2DCS-MMAE conjugate was obtained by coupling the maleimide group linked with MMAE to cysteines, which were introduced in a drug conjugation sequence (DCS). Cytotoxicity of the conjugate was evaluated using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide MTT assay and the xCELLigence Real-Time Cell Analyzer. Our experiments demonstrated that the conjugate delivered auristatin E specifically to HER2-positive tumor cells, which finally led to their death. These results indicate that the cytotoxic diaffibody conjugate is a highly potent molecule for the treatment of various types of cancer overexpressing HER2 receptors. PMID:28216573

  20. Why man's best friend, the dog, could also benefit from an anti-HER-2 vaccine.

    Science.gov (United States)

    Fazekas, Judit; Fürdös, Irene; Singer, Josef; Jensen-Jarolim, Erika

    2016-10-01

    Human epidermal growth factor receptor-2 (HER-2) is a well-established target for anticancer anticancerprecision medicine in humans. A HER-2 homologue with 92% amino acid identity has been described in canine mammary tumors, which whichis termed here as 'dog epidermal growth factor receptor-2 (DER-2)', with similar biological implications as those in human breast cancer. Both antigens can principally be immunologically targeted by anti-HER-2 antibodies, such as trastuzumab; however, the in vivo application applicationof humanized antibodies to other species would lead to specific hypersensitivity reactions. Therefore, HER-2 mimotope vaccines that actively induce autologous trastuzumab-like immunoglobulins represent a novel and economic treatment option to overcome species-specific limitations. Thus, the present review proposes the implementation of clinical trials with HER-2 vaccines in canine cancer model modelpatients with spontaneous DER-2 positive mammary gland carcinomas in order to assess their safety and efficacy. This approach would not only pave the way into the veterinary oncology market, but would also similarly generate robust data for human trials and facilitate the testing of novel combinatorial treatments.

  1. The Study of the Targeting Selectivity and Binding the Surface of Breast Cancer Cells with the Fusion Protein Anti-HER2-ScFv-GFP in vitro Experiments%Anti-HER2-ScFv-GFP融合蛋白靶向结合体外乳腺癌细胞表面受体的研究

    Institute of Scientific and Technical Information of China (English)

    高国辉; 黄奇迪; 王金丹; 杨纪锋; 包兵兵; 胡孝渠

    2011-01-01

    . Consequently, apparent green fluorescence was detected in SKBR3 cells. Fusion proteins from eukaryotic expression system showed a higher binding efficiency than those from prokaryotic expression system. Incubation with high concentration fusion proteins induced shrinking in SKBR3 cell. In contrast, fusion proteins were readily eluted from the HER2 negative cell MCF7, without obvious fluorescence detected. The standard GFP was readily eluted from the HER2 positive cell SKBR3, too. Fusion protein (Anti-HER2-ScFv-GFP) from these two systems can all bind to the surface of SKBR3 cell, but proteins from eukaryotic system showed a higher binding capacity than those from prokaryotic system. This suggested that GFP can report the developing of the breast cancer cells SKBR3 with anti HER2 ScFv and engineer antibodies selected to co-target critical functional pairs of HER2 on the surface of SKBR3 in vitro.

  2. Assessment of the systemic distribution of a bioconjugated anti-Her2 magnetic nanoparticle in a breast cancer model by means of magnetic resonance imaging

    Science.gov (United States)

    Huerta-Núñez, L. F. E.; Villanueva-Lopez, G. Cleva; Morales-Guadarrama, A.; Soto, S.; López, J.; Silva, J. G.; Perez-Vielma, N.; Sacristán, E.; Gudiño-Zayas, Marco E.; González, C. A.

    2016-09-01

    The aim of this study was to determine the systemic distribution of magnetic nanoparticles of 100 nm diameter (MNPs) coupled to a specific monoclonal antibody anti-Her2 in an experimental breast cancer (BC) model. The study was performed in two groups of Sprague-Dawley rats: control ( n = 6) and BC chemically induced ( n = 3). Bioconjugated "anti-Her2-MNPs" were intravenously administered, and magnetic resonance imaging (MRI) monitored its systemic distribution at seven times after administration. Non-heme iron presence associated with the location of the bioconjugated anti-Her2-MNPs in splenic, hepatic, cardiac and tumor tissues was detected by Perl's Prussian blue (PPB) stain. Optical density measurements were used to semiquantitatively determine the iron presence in tissues on the basis of a grayscale values integration of T1 and T2 MRI sequence images. The results indicated a delayed systemic distribution of MNPs in cancer compared to healthy conditions with a maximum concentration of MNPs in cancer tissue at 24 h post-infusion.

  3. Treatment of oral squamous cell carcinoma using anti-HER2 immunonanoshells

    Directory of Open Access Journals (Sweden)

    Fekrazad R

    2011-11-01

    Full Text Available Reza Fekrazad2, Neda Hakimiha3, Enice Farokhi3, Mohammad Javad Rasaee4, Mehdi Shafiee Ardestani5, Katayoun AM Kalhori2, Farzaneh Sheikholeslami1 1Research & Development Department, Production and Research Division of the Pasteur Institute of Iran, Karaj, Iran; 2Dental Department, AJA University of Medical Sciences, Laser Research Center, Dental Faculty, Tehran University of Medical Sciences; 3Dentistry Department, Faculty of Dentistry, Shahed University, Tehran, Iran; 4Department of Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; 5Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran Background: Worldwide, oral squamous cell carcinoma (potentially mediated by HER2 is recognized as the most commonly occurring malignant neoplasm of the oral cavity. Anti-HER2 nanobodies conjugated to gold-silica nanoshells and used as photothermal treatment for oral squamous cell carcinoma may provide a novel therapeutic alternative to current treatment for this disease. Methods: KB epithelial or HeLaS3 cell cultures (controls were exposed to these immunonanoshells, and plasmon resonance electron initiation specific to gold was employed to burn the tumor cells. Results: Following this treatment, significant cell death occurred in the KB tumor cell cultures while there was no evidence of cellular damage or death in the HeLaS3 cell cultures. Conclusion: These findings suggest that photothermal treatment of oral squamous cell carcinoma has considerable advantages. Keywords: anti-HER2 immunonanoshells, gold-silica nanoshells, photothermal treatment, oral squamous cell carcinoma

  4. HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Rameshwer; Thomas, Thommey P; Desai, Ankur M; Kotlyar, Alina; Park, Steve J; Baker, James R Jr [Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, 9220 MSRB III, Box 0648, Ann Arbor, MI 48109 (United States)], E-mail: rameshwe@umich.edu, E-mail: jbakerjr@med.umich.edu

    2008-07-23

    Herceptin, a humanized monoclonal antibody that binds to human growth factor receptor-2 (HER2), was covalently attached to a fifth-generation (G5) polyamidoamine dendrimer containing the cytotoxic drug methotrexate. The specific binding and internalization of this conjugate labeled with FITC was clearly demonstrated in cell lines overexpressing HER2 by flow cytometry as well as confocal microscopic analysis. In addition, binding and uptake of antibody conjugated dendrimers was completely blocked by excess non-conjugated herceptin. The dendrimer conjugate was also shown to inhibit the dihydrofolate reductase with similar activity to methotrexate. Co-localization experiments with lysotracker red indicate that antibody conjugate, although internalized efficiently into cells, has an unusually long residence time in the lysosome. Somewhat lower cytotoxicity of the conjugate in comparison to free methotrexate was attributed to the slow release of methotrexate from the conjugate and its long retention in the lysosomal pocket.

  5. Long-term hazard of recurrence in HER2+ breast cancer patients untreated with anti-HER2 therapy

    DEFF Research Database (Denmark)

    Strasser-Weippl, Kathrin; Horick, Nora; Smith, Ian E

    2015-01-01

    INTRODUCTION: Worldwide, many patients with HER2+ (human epidermal growth factor receptor 2-positive) early breast cancer (BC) do not receive adjuvant trastuzumab. Hazards of recurrence of these patients with respect to hormone receptor status of the primary tumor have not been described. METHODS......: Using data from 1,260 patients randomized to placebo in the adjuvant TEACH trial, we report 10-year annual hazards of recurrence in HER2+ patients not treated with anti-HER2 therapy. RESULTS: Disease-free survival (DFS) was 75% after 5 and 61% after 10 years, respectively. Patients with HER2+ hormone...... to that seen in HER2+ HR+ patients in years 6 to 10 (hazard ratio 0.97, P=0.92 for years 6 to 10). CONCLUSIONS: Our results show that outcomes in HER2+ patients with early BC not receiving anti-HER2 therapy strongly depend on HR expression. The very high early risk of relapse seen in HER2+ HR- patients...

  6. HER2 phosphorylation is maintained by a PKB negative feedback loop in response to anti-HER2 herceptin in breast cancer.

    Science.gov (United States)

    Gijsen, Merel; King, Peter; Perera, Tim; Parker, Peter J; Harris, Adrian L; Larijani, Banafshé; Kong, Anthony

    2010-12-21

    Herceptin (trastuzumab) is used in patients with breast cancer who have HER2 (ErbB2)-positive tumours. However, its mechanisms of action and how acquired resistance to Herceptin occurs are still poorly understood. It was previously thought that the anti-HER2 monoclonal antibody Herceptin inhibits HER2 signalling, but recent studies have shown that Herceptin does not decrease HER2 phosphorylation. Its failure to abolish HER2 phosphorylation may be a key to why acquired resistance inevitably occurs for all responders if Herceptin is given as monotherapy. To date, no studies have explained why Herceptin does not abolish HER2 phosphorylation. The objective of this study was to investigate why Herceptin did not decrease HER2 phosphorylation despite being an anti-HER2 monoclonal antibody. We also investigated the effects of acute and chronic Herceptin treatment on HER3 and PKB phosphorylation in HER2-positive breast cancer cells. Using both Förster resonance energy transfer (FRET) methodology and conventional Western blot, we have found the molecular mechanisms whereby Herceptin fails to abolish HER2 phosphorylation. HER2 phosphorylation is maintained by ligand-mediated activation of EGFR, HER3, and HER4 receptors, resulting in their dimerisation with HER2. The release of HER ligands was mediated by ADAM17 through a PKB negative feedback loop. The feedback loop was activated because of the inhibition of PKB by Herceptin treatment since up-regulation of HER ligands and ADAM17 also occurred when PKB phosphorylation was inhibited by a PKB inhibitor (Akt inhibitor VIII, Akti-1/2). The combination of Herceptin with ADAM17 inhibitors or the panHER inhibitor JNJ-26483327 was able to abrogate the feedback loop and decrease HER2 phosphorylation. Furthermore, the combination of Herceptin with JNJ-26483327 was synergistic in tumour inhibition in a BT474 xenograft model. We have determined that a PKB negative feedback loop links ADAM17 and HER ligands in maintaining HER2

  7. HER2 phosphorylation is maintained by a PKB negative feedback loop in response to anti-HER2 herceptin in breast cancer.

    Directory of Open Access Journals (Sweden)

    Merel Gijsen

    Full Text Available Herceptin (trastuzumab is used in patients with breast cancer who have HER2 (ErbB2-positive tumours. However, its mechanisms of action and how acquired resistance to Herceptin occurs are still poorly understood. It was previously thought that the anti-HER2 monoclonal antibody Herceptin inhibits HER2 signalling, but recent studies have shown that Herceptin does not decrease HER2 phosphorylation. Its failure to abolish HER2 phosphorylation may be a key to why acquired resistance inevitably occurs for all responders if Herceptin is given as monotherapy. To date, no studies have explained why Herceptin does not abolish HER2 phosphorylation. The objective of this study was to investigate why Herceptin did not decrease HER2 phosphorylation despite being an anti-HER2 monoclonal antibody. We also investigated the effects of acute and chronic Herceptin treatment on HER3 and PKB phosphorylation in HER2-positive breast cancer cells. Using both Förster resonance energy transfer (FRET methodology and conventional Western blot, we have found the molecular mechanisms whereby Herceptin fails to abolish HER2 phosphorylation. HER2 phosphorylation is maintained by ligand-mediated activation of EGFR, HER3, and HER4 receptors, resulting in their dimerisation with HER2. The release of HER ligands was mediated by ADAM17 through a PKB negative feedback loop. The feedback loop was activated because of the inhibition of PKB by Herceptin treatment since up-regulation of HER ligands and ADAM17 also occurred when PKB phosphorylation was inhibited by a PKB inhibitor (Akt inhibitor VIII, Akti-1/2. The combination of Herceptin with ADAM17 inhibitors or the panHER inhibitor JNJ-26483327 was able to abrogate the feedback loop and decrease HER2 phosphorylation. Furthermore, the combination of Herceptin with JNJ-26483327 was synergistic in tumour inhibition in a BT474 xenograft model. We have determined that a PKB negative feedback loop links ADAM17 and HER ligands in maintaining

  8. Evaluation of anti-HER2 scFv-conjugated PLGA-PEG nanoparticles on 3D tumor spheroids of BT474 and HCT116 cancer cells

    Science.gov (United States)

    Thuy Duong Le, Thi; Pham, Thu Hong; Nghia Nguyen, Trong; Giang Ngo, Thi Hong; Nhung Hoang, Thi My; Huan Le, Quang

    2016-06-01

    Three-dimensional culture cells (spheroids) are one of the multicellular culture models that can be applied to anticancer chemotherapeutic development. Multicellular spheroids more closely mimic in vivo tumor-like patterns of physiologic environment and morphology. In previous research, we designed docetaxel-loaded pegylated poly(D, L-lactide-co-glycolide) nanoparticles conjugated with anti-HER2 single chain antibodies (scFv-Doc-PLGA-PEG) and evaluated them in 2D cell culture. In this study, we continuously evaluate the cellular uptake and cytotoxic effect of scFv-Doc-PLGA-PEG on a 3D tumor spheroid model of BT474 (HER2-overexpressing) and HCT116 (HER2-underexpressing) cancer cells. The results showed that the nanoparticle formulation conjugated with scFv had a significant internalization effect on the spheroids of HER2-overexpressing cancer cells as compared to the spheroids of HER2-underexpressing cancer cells. Therefore, cytotoxic effects of targeted nanoparticles decreased the size and increased necrotic score of HER2-overexpressing tumor spheroids. Thus, these scFv-Doc-PLGA-PEG nanoparticles have potential for active targeting for HER2-overexpressing cancer therapy. In addition, BT474 and HCT116 spheroids can be used as a tumor model for evaluation of targeting therapies.

  9. Engineering antibodies for cancer therapy.

    Science.gov (United States)

    Boder, Eric T; Jiang, Wei

    2011-01-01

    The advent of modern antibody engineering has led to numerous successes in the application of these proteins for cancer therapy in the 13 years since the first Food and Drug Administration approval, which has stimulated active interest in developing more and better drugs based on these molecules. A wide range of tools for discovering and engineering antibodies has been brought to bear on this challenge in the past two decades. Here, we summarize mechanisms of monoclonal antibody therapeutic activity, challenges to effective antibody-based treatment, existing technologies for antibody engineering, and current concepts for engineering new antibody formats and antibody alternatives as next generation biopharmaceuticals for cancer treatment.

  10. Engineering antibodies by yeast display.

    Science.gov (United States)

    Boder, Eric T; Raeeszadeh-Sarmazdeh, Maryam; Price, J Vincent

    2012-10-15

    Since its first application to antibody engineering 15 years ago, yeast display technology has been developed into a highly potent tool for both affinity maturing lead molecules and isolating novel antibodies and antibody-like species. Robust approaches to the creation of diversity, construction of yeast libraries, and library screening or selection have been elaborated, improving the quality of engineered molecules and certainty of success in an antibody engineering campaign and positioning yeast display as one of the premier antibody engineering technologies currently in use. Here, we summarize the history of antibody engineering by yeast surface display, approaches used in its application, and a number of examples highlighting the utility of this method for antibody engineering.

  11. Targeted delivery of doxorubicin-utilizing chitosan nanoparticles surface-functionalized with anti-Her2 trastuzumab

    Directory of Open Access Journals (Sweden)

    Yousefpour P

    2011-09-01

    Full Text Available Parisa Yousefpour1, Fatemeh Atyabi2, Ebrahim Vasheghani-Farahani3, Ali-Akbar Mousavi Movahedi1, Rassoul Dinarvand21Department of Biotechnology, Faculty of Science, University of Tehran, 2Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, 3Biotechnology Group, Department of Chemical Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, IranBackground: Targeting drugs to their sites of action to overcome the systemic side effects associated with most antineoplastic agents is still a major challenge in pharmaceutical research. In this study, the monoclonal antibody, trastuzumab, was used as a targeting agent in nanoparticles carrying the antitumor drug, doxorubicin, specifically to its site of action.Methods: Chitosan-doxorubicin conjugation was carried out using succinic anhydride as a crosslinker. Trastuzumab was conjugated to self-assembled chitosan-doxorubin conjugate (CS-DOX nanoparticles (particle size, 200 nm via thiolation of lysine residues and subsequent linking of the resulted thiols to chitosan. Conjugation was confirmed by gel permeation chromatography, differential scanning calorimetry, Fourier transform infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy studies. Dynamic light scattering, transmission electron microscopy, and zeta potential determination were used to characterize the nanoparticles.Results: CS-DOX conjugated nanoparticles had a spherical shape and smooth surface with a narrow size distribution and core-shell structure. Increasing the ratio of doxorubicin to chitosan in the conjugation reaction gave rise to a higher doxorubicin content but lower conjugation efficiency. Trastuzumab-decorated nanoparticles (CS-DOX-mAb contained 47 µg/mg doxorubicin and 33.5 µg/mg trastuzumab. Binding of trastuzumab to the nanoparticles was further probed thermodynamically by isothermal titration calorimetry. Fluorescence microscopy demonstrated enhanced and

  12. Antibody Engineering and Therapeutics Conference

    OpenAIRE

    Larrick, James W; Parren, Paul WHI; Huston, James S; Plückthun, Andreas; Bradbury, Andrew; Tomlinson, Ian M; Chester, Kerry A.; Burton, Dennis R.; Adams, Gregory P.; Weiner, Louis M.; Scott, Jamie K.; Alfenito, Mark R; Veldman, Trudi; Reichert, Janice M.

    2013-01-01

    The Antibody Engineering and Therapeutics conference, which serves as the annual meeting of The Antibody Society, will be held in Huntington Beach, CA from Sunday December 8 through Thursday December 12, 2013. The scientific program will cover the full spectrum of challenges in antibody research and development, and provide updates on recent progress in areas from basic science through approval of antibody therapeutics. Keynote presentations will be given by Leroy Hood (Institute of System Bi...

  13. New engineered antibodies against prions

    Science.gov (United States)

    Škrlj, Nives; Dolinar, Marko

    2014-01-01

    A number of recently developed and approved therapeutic agents based on highly specific and potent antibodies have shown the potential of antibody therapy. As the next step, antibody-based therapeutics will be bioengineered in a way that they not only bind pathogenic targets but also address other issues, including drug targeting and delivery. For antibodies that are expected to act within brain tissue, like those that are directed against the pathogenic prion protein isoform, one of the major obstacles is the blood-brain barrier which prevents efficient transfer of the antibody, even of the engineered single-chain variants. We recently demonstrated that a specific prion-specific antibody construct which was injected into the murine tail vein can be efficiently transported into brain tissue. The novelty of the work was in that the cell penetrating peptide was used as a linker connecting both specificity-determining domains of the antibody peptide, thus eliminating the need for the standard flexible linker, composed of an arrangement of three consecutive (Gly4Ser) repeats. This paves the road toward improved bioengineered antibody variants that target brain antigens. PMID:23941991

  14. Engineered single chain antibody fragments for radioimmunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Huhalov, A.; Chester, K. A. [Cancer Research UK Imaging and Targeting Group Royal Free, London (United Kingdom). Department of Oncology; University College Medical School Royal Free Campus, London (United Kingdom)

    2004-12-01

    An ideal molecule to deliver radioimmunotherapy (RIT) would be target specific and have prolonged residence time at high concentrations in the tumour with rapid clearance from normal tissues. It would also be non-immunogenic. These features can be rationally introduced into recombinant antibody-based proteins using antibody engineering techniques. This reviews focuses on the use of antibody engineering in the design and development of RIT molecules which have single chain Fv (scFv) antibody fragments as building blocks.

  15. Mutant PIK3CA accelerates HER2-driven transgenic mammary tumors and induces resistance to combinations of anti-HER2 therapies.

    Science.gov (United States)

    Hanker, Ariella B; Pfefferle, Adam D; Balko, Justin M; Kuba, María Gabriela; Young, Christian D; Sánchez, Violeta; Sutton, Cammie R; Cheng, Hailing; Perou, Charles M; Zhao, Jean J; Cook, Rebecca S; Arteaga, Carlos L

    2013-08-27

    Human epidermal growth factor receptor 2 (HER2; ERBB2) amplification and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutations often co-occur in breast cancer. Aberrant activation of the phosphatidylinositol 3-kinase (PI3K) pathway has been shown to correlate with a diminished response to HER2-directed therapies. We generated a mouse model of HER2-overexpressing (HER2(+)), PIK3CA(H1047R)-mutant breast cancer. Mice expressing both human HER2 and mutant PIK3CA in the mammary epithelium developed tumors with shorter latencies compared with mice expressing either oncogene alone. HER2 and mutant PIK3CA also cooperated to promote lung metastases. By microarray analysis, HER2-driven tumors clustered with luminal breast cancers, whereas mutant PIK3CA tumors were associated with claudin-low breast cancers. PIK3CA and HER2(+)/PIK3CA tumors expressed elevated transcripts encoding markers of epithelial-to-mesenchymal transition and stem cells. Cells from HER2(+)/PIK3CA tumors more efficiently formed mammospheres and lung metastases. Finally, HER2(+)/PIK3CA tumors were resistant to trastuzumab alone and in combination with lapatinib or pertuzumab. Both drug resistance and enhanced mammosphere formation were reversed by treatment with a PI3K inhibitor. In sum, PIK3CA(H1047R) accelerates HER2-mediated breast epithelial transformation and metastatic progression, alters the intrinsic phenotype of HER2-overexpressing cancers, and generates resistance to approved combinations of anti-HER2 therapies.

  16. Antibody Engineering for Pursuing a Healthier Future

    Science.gov (United States)

    Saeed, Abdullah F. U. H.; Wang, Rongzhi; Ling, Sumei; Wang, Shihua

    2017-01-01

    Since the development of antibody-production techniques, a number of immunoglobulins have been developed on a large scale using conventional methods. Hybridoma technology opened a new horizon in the production of antibodies against target antigens of infectious pathogens, malignant diseases including autoimmune disorders, and numerous potent toxins. However, these clinical humanized or chimeric murine antibodies have several limitations and complexities. Therefore, to overcome these difficulties, recent advances in genetic engineering techniques and phage display technique have allowed the production of highly specific recombinant antibodies. These engineered antibodies have been constructed in the hunt for novel therapeutic drugs equipped with enhanced immunoprotective abilities, such as engaging immune effector functions, effective development of fusion proteins, efficient tumor and tissue penetration, and high-affinity antibodies directed against conserved targets. Advanced antibody engineering techniques have extensive applications in the fields of immunology, biotechnology, diagnostics, and therapeutic medicines. However, there is limited knowledge regarding dynamic antibody development approaches. Therefore, this review extends beyond our understanding of conventional polyclonal and monoclonal antibodies. Furthermore, recent advances in antibody engineering techniques together with antibody fragments, display technologies, immunomodulation, and broad applications of antibodies are discussed to enhance innovative antibody production in pursuit of a healthier future for humans.

  17. tabAnti-HER2 (erbB-2 oncogene effects of phenolic compounds directly isolated from commercial Extra-Virgin Olive Oil (EVOO

    Directory of Open Access Journals (Sweden)

    Carrasco-Pancorbo Alegria

    2008-12-01

    Full Text Available Abstract Background The effects of the olive oil-rich Mediterranean diet on breast cancer risk might be underestimated when HER2 (ERBB2 oncogene-positive and HER2-negative breast carcinomas are considered together. We here investigated the anti-HER2 effects of phenolic fractions directly extracted from Extra Virgin Olive Oil (EVOO in cultured human breast cancer cell lines. Methods Solid phase extraction followed by semi-preparative high-performance liquid chromatography (HPLC was used to isolate phenolic fractions from commercial EVOO. Analytical capillary electrophoresis coupled to mass spectrometry was performed to check for the composition and to confirm the identity of the isolated fractions. EVOO polyphenolic fractions were tested on their tumoricidal ability against HER2-negative and HER2-positive breast cancer in vitro models using MTT, crystal violet staining, and Cell Death ELISA assays. The effects of EVOO polyphenolic fractions on the expression and activation status of HER2 oncoprotein were evaluated using HER2-specific ELISAs and immunoblotting procedures, respectively. Results Among the fractions mainly containing the single phenols hydroxytyrosol and tyrosol, the polyphenol acid elenolic acid, the lignans (+-pinoresinol and 1-(+-acetoxypinoresinol, and the secoiridoids deacetoxy oleuropein aglycone, ligstroside aglycone, and oleuropein aglycone, all the major EVOO polyphenols (i.e. secoiridoids and lignans were found to induce strong tumoricidal effects within a micromolar range by selectively triggering high levels of apoptotic cell death in HER2-overexpressors. Small interfering RNA-induced depletion of HER2 protein and lapatinib-induced blockade of HER2 tyrosine kinase activity both significantly prevented EVOO polyphenols-induced cytotoxicity. EVOO polyphenols drastically depleted HER2 protein and reduced HER2 tyrosine autophosphorylation in a dose- and time-dependent manner. EVOO polyphenols-induced HER2 downregulation

  18. Chemical engineering of cell penetrating antibodies.

    Science.gov (United States)

    Zhao, Y; Lou, D; Burkett, J; Kohler, H

    2001-08-01

    Antibodies, being exquisitely specific tools in biology, are routinely used to detect and identify intra-cellular structures. However, current intra-cellular application of antibodies requires that the membrane be rendered leaky, resulting in the death of cells. Here, we present a novel method to allow antibodies to penetrate the cellular membrane of living cells without affecting cell viability. A peptide (MTS, membrane transport sequence) that facilitates transport across membranes has been site-specifically attached to antibodies. MTS-antibodies enter the living cells in culture and can be detected by immunofluorescence and ELISA after extraction. Cellular structures are visualized in living cells using a specific MTS-antibody. Antibodies with membrane penetrating properties can become an important tool for the study of intra-cellular processes in living cells. Furthermore, such membrane penetrating antibodies can be used to selectively stimulate or suppress functions of the cellular machinery.

  19. Immunologically driven chemical engineering of antibodies for catalytic activity.

    Science.gov (United States)

    Dias, Sonia; Jovic, Florence; Renard, Pierre-Yves; Taran, Fréderic; Créminon, Christophe; Mioskowski, Charles; Grassi, Jacques

    2002-11-01

    We describe a new strategy for the preparation of catalytic antibodies based on a two-step procedure. Firstly, monoclonal antibodies are selected only if displaying the following binding features: binding both the substrate and a reactive group in such a way that the two groups are in a reactive position towards each other. Secondly, the selected monoclonal antibodies (mAbs) are chemically engineered by covalently binding the reactive group into the binding pocket of the antibody. Using previously isolated monoclonal antibodies, we have focused our studies on the control of this second step.

  20. Effects of genetic engineering on the pharmacokinetics of antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Colcher, D.; Goel, A.; Pavlinkova, G.; Beresford, G.; Booth, B.; Batra, S.K. [University of Nebraska Medical Center, Omaha NE (United States). Dept. of Pathology and Microbiology and Molecular Biology

    1999-06-01

    Monoclonal antibodies (MAbs) may be considered 'magic bullets' due to their ability to recognize and eradicate malignant cells. MAbs, however, have practical limitations for their rapid application in the clinics. The structure of the antibody molecules can be engineered to modify functional domains such as antigen-binding sites and/or effectors functions. Advanced in genetic engineering have provided rapid progress the development of new immunoglobulin constructs of MAbs with defined research and therapeutic application. Recombinant antibody constructs are being engineered, such as human mouse chimeric, domain-dispositioned, domain-deleted, humanized and single-chain Fv fragments. Genetically-engineered antibodies differ in size and rate of catabolism. Pharmacokinetics studies show that the intact IgG (150 kD), enzymatically derived fragments Fab' (50 kD) and single chain Fv (28 kD) have different clearance rates. These antibody forms clear 50% from the blood pool in 2.1 days, 30 minutes and 10 minutes, respectively. Genetically-engineered antibodies make a new class of immunotherapeutic tracers for cancer treatment.

  1. Antibody Engineering & Therapeutics, the annual meeting of The Antibody Society December 7-10, 2015, San Diego, CA, USA.

    Science.gov (United States)

    Pauthner, Matthias; Yeung, Jenny; Ullman, Chris; Bakker, Joost; Wurch, Thierry; Reichert, Janice M; Lund-Johansen, Fridtjof; Bradbury, Andrew R M; Carter, Paul J; Melis, Joost P M

    2016-01-01

    The 26th Antibody Engineering & Therapeutics meeting, the annual meeting of The Antibody Society united over 800 participants from all over the world in San Diego from 6-10 December 2015. The latest innovations and advances in antibody research and development were discussed, covering a myriad of antibody-related topics by more than 100 speakers, who were carefully selected by The Antibody Society. As a prelude, attendees could join the pre-conference training course focusing, among others, on the engineering and enhancement of antibodies and antibody-like scaffolds, bispecific antibody engineering and adaptation to generate chimeric antigen receptor constructs. The main event covered 4 d of scientific sessions that included antibody effector functions, reproducibility of research and diagnostic antibodies, new developments in antibody-drug conjugates (ADCs), preclinical and clinical ADC data, new technologies and applications for bispecific antibodies, antibody therapeutics for non-cancer and orphan indications, antibodies to harness the cellular immune system, building comprehensive IgVH-gene repertoires through discovering, confirming and cataloging new germline IgVH genes, and overcoming resistance to clinical immunotherapy. The Antibody Society's special session focused on "Antibodies to watch" in 2016. Another special session put the spotlight on the limitations of the new definitions for the assignment of antibody international nonproprietary names introduced by the World Health Organization. The convention concluded with workshops on computational antibody design and on the promise and challenges of using next-generation sequencing for antibody discovery and engineering from synthetic and in vivo libraries.

  2. Engineering broadly neutralizing antibodies for HIV prevention and therapy.

    Science.gov (United States)

    Hua, Casey K; Ackerman, Margaret E

    2016-08-01

    A combination of advances spanning from isolation to delivery of potent HIV-specific antibodies has begun to revolutionize understandings of antibody-mediated antiviral activity. As a result, the set of broadly neutralizing and highly protective antibodies has grown in number, diversity, potency, and breadth of viral recognition and neutralization. These antibodies are now being further enhanced by rational engineering of their anti-HIV activities and coupled to cutting edge gene delivery and strategies to optimize their pharmacokinetics and biodistribution. As a result, the prospects for clinical use of HIV-specific antibodies to treat, clear, and prevent HIV infection are gaining momentum. Here we discuss the diverse methods whereby antibodies are being optimized for neutralization potency and breadth, biodistribution, pharmacokinetics, and effector function with the aim of revolutionizing HIV treatment and prevention options.

  3. Antibody engineering: facing new challenges in cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Laura SANZ; (A)ngel M CUESTA; Marta COMPTE; Luis (A)LVAREZ-VALLINA

    2005-01-01

    Antibody-based therapeutics are beginning to realize the promise enclosed in their early denomination as "magic bullets". Initial disappointment has turned into clinical and commercial success, and engineered antibodies currently represent over 30% of biopharmaceuticals in clinical trials. Recent structural and functional data have allowed the design of a new generation of therapeutic antibodies, with strategies ranging from complement-mediated and antibody-dependant cellular cytotoxicity enhancement to improved cytotoxic payloads using toxins, drugs,radionucleids and viral delivery. This review considers the structure of different types of recombinant antibodies, their mechanism of action and how their efficacy has been increased using a broad array of approaches. We will also focus on the additional benefits offered by the use of gene therapy methods for the in vivo production of therapeutic antibodies.

  4. In vitro and in vivo evaluation of cysteine and site specific conjugated herceptin antibody-drug conjugates.

    Directory of Open Access Journals (Sweden)

    Dowdy Jackson

    Full Text Available Antibody drug conjugates (ADCs are monoclonal antibodies designed to deliver a cytotoxic drug selectively to antigen expressing cells. Several components of an ADC including the selection of the antibody, the linker, the cytotoxic drug payload and the site of attachment used to attach the drug to the antibody are critical to the activity and development of the ADC. The cytotoxic drugs or payloads used to make ADCs are typically conjugated to the antibody through cysteine or lysine residues. This results in ADCs that have a heterogeneous number of drugs per antibody. The number of drugs per antibody commonly referred to as the drug to antibody ratio (DAR, can vary between 0 and 8 drugs for a IgG1 antibody. Antibodies with 0 drugs are ineffective and compete with the ADC for binding to the antigen expressing cells. Antibodies with 8 drugs per antibody have reduced in vivo stability, which may contribute to non target related toxicities. In these studies we incorporated a non-natural amino acid, para acetyl phenylalanine, at two unique sites within an antibody against Her2/neu. We covalently attached a cytotoxic drug to these sites to form an ADC which contains two drugs per antibody. We report the results from the first direct preclinical comparison of a site specific non-natural amino acid anti-Her2 ADC and a cysteine conjugated anti-Her2 ADC. We report that the site specific non-natural amino acid anti-Her2 ADCs have superior in vitro serum stability and preclinical toxicology profile in rats as compared to the cysteine conjugated anti-Her2 ADCs. We also demonstrate that the site specific non-natural amino acid anti-Her2 ADCs maintain their in vitro potency and in vivo efficacy against Her2 expressing human tumor cell lines. Our data suggests that site specific non-natural amino acid ADCs may have a superior therapeutic window than cysteine conjugated ADCs.

  5. Antibody engineering and therapeutics, The Annual Meeting of the Antibody Society: December 8-12, 2013, Huntington Beach, CA.

    Science.gov (United States)

    Almagro, Juan Carlos; Gilliland, Gary L; Breden, Felix; Scott, Jamie K; Sok, Devin; Pauthner, Matthias; Reichert, Janice M; Helguera, Gustavo; Andrabi, Raiees; Mabry, Robert; Bléry, Mathieu; Voss, James E; Laurén, Juha; Abuqayyas, Lubna; Barghorn, Stefan; Ben-Jacob, Eshel; Crowe, James E; Huston, James S; Johnston, Stephen Albert; Krauland, Eric; Lund-Johansen, Fridtjof; Marasco, Wayne A; Parren, Paul W H I; Xu, Kai Y

    2014-01-01

    The 24th Antibody Engineering & Therapeutics meeting brought together a broad range of participants who were updated on the latest advances in antibody research and development. Organized by IBC Life Sciences, the gathering is the annual meeting of The Antibody Society, which serves as the scientific sponsor. Preconference workshops on 3D modeling and delineation of clonal lineages were featured, and the conference included sessions on a wide variety of topics relevant to researchers, including systems biology; antibody deep sequencing and repertoires; the effects of antibody gene variation and usage on antibody response; directed evolution; knowledge-based design; antibodies in a complex environment; polyreactive antibodies and polyspecificity; the interface between antibody therapy and cellular immunity in cancer; antibodies in cardiometabolic medicine; antibody pharmacokinetics, distribution and off-target toxicity; optimizing antibody formats for immunotherapy; polyclonals, oligoclonals and bispecifics; antibody discovery platforms; and antibody-drug conjugates.

  6. Antibody engineering using phage display with a coiled-coil heterodimeric Fv antibody fragment.

    Directory of Open Access Journals (Sweden)

    Xinwei Wang

    Full Text Available A Fab-like antibody binding unit, ccFv, in which a pair of heterodimeric coiled-coil domains was fused to V(H and V(L for Fv stabilization, was constructed for an anti-VEGF antibody. The anti-VEGF ccFv showed the same binding affinity as scFv but significantly improved stability and phage display level. Furthermore, phage display libraries in the ccFv format were constructed for humanization and affinity maturation of the anti-VEGF antibody. A panel of V(H frameworks and V(H-CDR3 variants, with a significant improvement in affinity and expressibility in both E. coli and yeast systems, was isolated from the ccFv phage libraries. These results demonstrate the potential application of the ccFv antibody format in antibody engineering.

  7. Single domain antibodies in tissue engineering

    NARCIS (Netherlands)

    Rodrigues, Emilie Dooms

    2014-01-01

    The aim of this thesis is to demonstrate the potential of VHH in tissue engineering applications, with a focus on bone and cartilage tissue regeneration. After a general introduction to this thesis in chapter 1, the selection of VHH targeting growth factors is described in chapter 2. VHH were select

  8. Engineered Antibodies for Monitoring of Polynuclear Aromatic Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Alexander E. Karu Ph.D; Victoria A. Roberts Ph.D.; Qing X. Li, Ph.D.

    2002-01-17

    This project was undertaken to fill needs in ODE's human and ecosystem health effects research, site remediation, rapid emergency response, and regulatory compliance monitoring programs. Doe has greatly stimulated development and validation of antibody-based, rapid, field-portable detection systems for small hazardous compounds. These range from simple dipsticks, microplate enzyme-linked immunosorbent assays (ELISAs), and hand-held colorimeters, to ultrasensitive microfluidic reactors, fiber-optic sensors and microarrays that can identify multiple analytes from patterns of cross-reactivity. Unfortunately, the technology to produce antibodies with the most desirable properties did not keep pace. Lack of antibodies remains a limiting factor in production and practical use of such devices. The goals of our project were to determine the chemical and structural bases for the antibody-analyte binding interactions using advanced computational chemistry, and to use this information to create useful new binding properties through in vitro genetic engineering and combinatorial library methods.

  9. Antibody engineering & therapeutics, the annual meeting of the antibody society December 7–10, 2015, San Diego, CA, USA

    Science.gov (United States)

    Pauthner, Matthias; Yeung, Jenny; Ullman, Chris; Bakker, Joost; Wurch, Thierry; Reichert, Janice M.; Lund-Johansen, Fridtjof; Bradbury, Andrew R.M.; Carter, Paul J.; Melis, Joost P.M.

    2016-01-01

    ABSTRACT The 26th Antibody Engineering & Therapeutics meeting, the annual meeting of The Antibody Society united over 800 participants from all over the world in San Diego from 6–10 December 2015. The latest innovations and advances in antibody research and development were discussed, covering a myriad of antibody-related topics by more than 100 speakers, who were carefully selected by The Antibody Society. As a prelude, attendees could join the pre-conference training course focusing, among others, on the engineering and enhancement of antibodies and antibody-like scaffolds, bispecific antibody engineering and adaptation to generate chimeric antigen receptor constructs. The main event covered 4 d of scientific sessions that included antibody effector functions, reproducibility of research and diagnostic antibodies, new developments in antibody-drug conjugates (ADCs), preclinical and clinical ADC data, new technologies and applications for bispecific antibodies, antibody therapeutics for non-cancer and orphan indications, antibodies to harness the cellular immune system, building comprehensive IgVH-gene repertoires through discovering, confirming and cataloging new germline IgVH genes, and overcoming resistance to clinical immunotherapy. The Antibody Society's special session focused on “Antibodies to watch” in 2016. Another special session put the spotlight on the limitations of the new definitions for the assignment of antibody international nonproprietary names introduced by the World Health Organization. The convention concluded with workshops on computational antibody design and on the promise and challenges of using next-generation sequencing for antibody discovery and engineering from synthetic and in vivo libraries. PMID:26909869

  10. Modular anti-EGFR and anti-Her2 targeting of SK-BR-3 and BT474 breast cancer cell lines in the presence of ErbB receptor-specific growth factors.

    Science.gov (United States)

    Diermeier-Daucher, Simone; Breindl, Stefanie; Buchholz, Stefan; Ortmann, Olaf; Brockhoff, Gero

    2011-09-01

    Over the last decade, a number of monoclonal antibodies and small molecule inhibitors emerged as potent therapeutic agents in the treatment of Her2/neu overexpressing breast cancer. Numerous patients, however, do not adequately respond to anti-epidermal growth factor receptor (EGFR)/Her2 receptor targeting. Receptor- and, in turn, growth-stimulating effects, which potentially hamper antiproliferative cell treatment, have barely been investigated. BT474 and SK-BR-3 breast cancer cell lines were treated with Trastuzumab, Pertuzumab, and Lapatinib alone using different combinations and concentrations. Moreover, epidermal growth factor (EGF) or heregulin (HRG) was added to reveal potential growth factor-mediated compensatory effects. Receptor and intracellular signaling were analyzed as a function of cell treatment. Read-out parameters were cell proliferation and apoptosis. BT474 cells were efficiently driven into quiescence by Trastuzumab, but not by Pertuzumab treatment. Simultaneous EGF or HRG administration, however, restored the BT474 cell proliferation capacity. In contrast, neither therapeutic antibody treatment caused a profound inhibition of SK-BR-3 cell-cycle progress. Lapatinib turned out to be the most potent cell-cycle inhibitor in both cell lines even though its impact was significantly abrogated in the presence of EGF and HRG. The compensatory effect of EGF on Lapatinib-induced cell-cycle inhibition was reversed by Trastuzumab as well as by Pertuzumab treatment. Most importantly, HRG-caused compensation of Lapatinib-induced cell-cycle exit was reversed by Pertuzumab but not by Trastuzumab. Apparently, multiple anti-EGFR/Her2 targeting by using Trastuzumab, Pertuzumab, and Lapatinib more efficiently affects receptor function (interaction and activation) and consequently enhances their antiproliferative capacity. Growth inhibition by anticancer drugs targeted to Her/ErbB receptors, however, can be significantly undermined in the presence of EGF and in

  11. [Progress of research on genetic engineering antibody and its application in prevention and control of parasitic diseases].

    Science.gov (United States)

    Yao, Yuan; Yu, Chuan-xin

    2013-08-01

    Antibody has extensive application prospects in the biomedical field. The inherent disadvantages of traditional polyclonal antibody and monoclonal antibody limit their application values. The humanized and fragmented antibody remodeling has given a rise to a series of genetic engineered antibody variant. This paper reviews the progress of research on genetic engineering antibody and its application in prevention and control of parasitic diseases.

  12. Genetically engineered multivalent single chain antibody constructs for cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Surinder Batra, Ph D

    2006-02-27

    its tumor: normal tissue ratio for improved therapeutic index, we engineered a variety antibody constructs. These constructs were evaluated using novel approaches like special radionuclides, pretargeting and optimization. Due to the smaller size, the engineered antibody molecules should penetrate better throughout a tumor mass, with less dose heterogeneity, than is the case with intact IgG. Multivalent scFvs with an appropriate radionuclide, therefore, hold promising prospects for cancer therapy and clinical imaging in MAb-based radiopharmaceuticals. In addition, the human anti-mouse antibodies (HAMA) responses in patients against antibody-based therapy are usually directed against the immunoglobulin constant regions; however, anti-idiotypic responses can also be detected. The HAMA responses reduce the efficacy of treatment by removing the circulating antibody molecules, fragments, and possibly scFvs by altering the pharmacokinetic properties of the antibody. HAMA responses against divalent IgG, divalent Ig fragments, and possibly multimeric scFvs could cause immune complex formation with hypersensitivity or allergic reactions that could be harmful to patients. The use of small molecules, such as scFvs (monomeric as well as multimeric), with their shorter biological half-lives and the lack of the constant regions and humanized variable (binding regions) performed in our studies should reduce the development of HAMA. The generation of humanized and fully human scFvs should further reduce the development of HAMA. Specific accomplishments on the project are the production of large amounts of recombinant antibodies as they are required in large amounts for cancer diagnosis and therapy. A variety of single-chain Fv (scFv) constructs were engineered for the desired pharmacokinetic properties. Tetrameric and dimeric scFvs showed a two-fold advantage: (1) there was a considerable gain in avidity as compared to smaller fragments, and (2) the biological half-life was more

  13. Engineering human cells for in vivo secretion of antibody and non-antibody therapeutic proteins.

    Science.gov (United States)

    Sánchez-Martín, David; Sanz, Laura; Álvarez-Vallina, Luis

    2011-12-01

    Purified proteins such as antibodies are widely used as therapeutic agents in clinical medicine. However, clinical-grade proteins for therapeutic use require sophisticated technologies and are extremely expensive to produce. In vivo secretion of therapeutic proteins by genetically engineered human cells may advantageously replace injection of highly purified proteins. The use of gene transfer methods circumvents problems related to large-scale production and purification and offers additional benefits by achieving sustained concentrations of therapeutic protein with a syngenic glycosylation pattern that make the protein potentially less immunogenic. The feasibility of the in vivo production of therapeutic proteins by diverse cells/tissues has now been demonstrated using different techniques, such as ex vivo genetically modified cells and in vivo gene transfer mediated by viral vectors.

  14. IBC's 23rd Antibody Engineering and 10th Antibody Therapeutics Conferences and the Annual Meeting of The Antibody Society: December 2-6, 2012, San Diego, CA.

    Science.gov (United States)

    Marquardt, John; Begent, Richard H J; Chester, Kerry; Huston, James S; Bradbury, Andrew; Scott, Jamie K; Thorpe, Philip E; Veldman, Trudi; Reichert, Janice M; Weiner, Louis M

    2012-01-01

    Now in its 23rd and 10th years, respectively, the Antibody Engineering and Antibody Therapeutics conferences are the Annual Meeting of The Antibody Society. The scientific program covers the full spectrum of challenges in antibody research and development from basic science through clinical development. In this preview of the conferences, the chairs provide their thoughts on sessions that will allow participants to track emerging trends in (1) the development of next-generation immunomodulatory antibodies; (2) the complexity of the environment in which antibodies must function; (3) antibody-targeted central nervous system (CNS) therapies that cross the blood brain barrier; (4) the extension of antibody half-life for improved efficacy and pharmacokinetics (PK)/pharmacodynamics (PD); and (5) the application of next generation DNA sequencing to accelerate antibody research. A pre-conference workshop on Sunday, December 2, 2012 will update participants on recent intellectual property (IP) law changes that affect antibody research, including biosimilar legislation, the America Invents Act and recent court cases. Keynote presentations will be given by Andreas Plückthun (University of Zürich), who will speak on engineering receptor ligands with powerful cellular responses; Gregory Friberg (Amgen Inc.), who will provide clinical updates of bispecific antibodies; James D. Marks (University of California, San Francisco), who will discuss a systems approach to generating tumor targeting antibodies; Dario Neri (Swiss Federal Institute of Technology Zürich), who will speak about delivering immune modulators at the sites of disease; William M. Pardridge (University of California, Los Angeles), who will discuss delivery across the blood-brain barrier; and Peter Senter (Seattle Genetics, Inc.), who will present his vision for the future of antibody-drug conjugates. For more information on these meetings or to register to attend, please visit www.IBCLifeSciences.com/Antibody

  15. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2 Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities.

    Directory of Open Access Journals (Sweden)

    Masaki Kurogochi

    Full Text Available Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain, and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC and complement dependent cytotoxicity (CDC. To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG'ases, one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2, high-mannose type (Man4-9GlcNAc2, and complex type (Man3GlcNAc3-4 N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL, the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1 were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q, and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2 was performed using SKBR-3 and BT-474 as target

  16. IBC's 22nd Annual Antibody Engineering and 9th Annual Antibody Therapeutics International Conferences and the 2011 Annual Meeting of The Antibody Society, December 5-8, 2011, San Diego, CA.

    Science.gov (United States)

    Nilvebrant, Johan; Dunlop, D Cameron; Sircar, Aroop; Wurch, Thierry; Falkowska, Emilia; Reichert, Janice M; Helguera, Gustavo; Piccione, Emily C; Brack, Simon; Berger, Sven

    2012-01-01

    The 22nd Annual Antibody Engineering and 9th Annual Antibody Therapeutics international conferences, and the 2011 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 5-8, 2011 in San Diego, CA. The meeting drew ~800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a preview to the main events, a pre-conference workshop held on December 4, 2011 focused on antibodies as probes of structure. The Antibody Engineering Conference comprised eight sessions: (1) structure and dynamics of antibodies and their membrane receptor targets; (2) model-guided generation of binding sites; (3) novel selection strategies; (4) antibodies in a complex environment: targeting intracellular and misfolded proteins; (5) rational vaccine design; (6) viral retargeting with engineered binding molecules; (7) the biology behind potential blockbuster antibodies and (8) antibodies as signaling modifiers: where did we go right, and can we learn from success? The Antibody Therapeutics session comprised five sessions: (1)Twenty-five years of therapeutic antibodies: lessons learned and future challenges; (2) preclinical and early stage development of antibody therapeutics; (3) next generation anti-angiogenics; (4) updates of clinical stage antibody therapeutics and (5) antibody drug conjugates and bispecific antibodies.

  17. IBC's 21st Annual Antibody Engineering and 8th Annual Antibody Therapeutics International Conferences and 2010 Annual Meeting of the Antibody Society. December 5-9, 2010, San Diego, CA USA.

    Science.gov (United States)

    Arnett, Samantha O; Teillaud, Jean-Luc; Wurch, Theirry; Reichert, Janice M; Dunlop, Cameron; Huber, Michael

    2011-01-01

    The 21st Annual Antibody Engineering and 8th Annual Antibody Therapeutics international conferences, and the 2010 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 5-9, 2010 in San Diego, CA. The conferences were organized with a focus on antibody engineering only on the first day and a joint engineering/therapeutics session on the last day. Delegates could select from presentations that occurred in two simultaneous sessions on days 2 and 3. Day 1 included presentations on neutralizing antibodies and the identification of vaccine targets, as well as a historical overview of 20 years of phage display utilization. Topics presented in the Antibody Engineering sessions on day 2 and 3 included antibody biosynthesis, structure and stability; antibodies in a complex environment; antibody half-life; and targeted nanoparticle therapeutics. In the Antibody Therapeutics sessions on days 2 and 3, preclinical and early stage development and clinical updates of antibody therapeutics, including TRX518, SYM004, MM111, PRO140, CVX-241, ASG-5ME, U3-1287 (AMG888), R1507 and trastuzumab emtansine, were discussed, and perspectives were provided on the development of biosimilar and biobetter antibodies, including coverage of regulatory and intellectual property issues. The joint engineering/therapeutics session on the last day focused on bispecific and next-generation antibodies.

  18. Metabolic engineering of monoclonal antibody carbohydrates for antibody-drug conjugation.

    Science.gov (United States)

    Okeley, Nicole M; Toki, Brian E; Zhang, Xinqun; Jeffrey, Scott C; Burke, Patrick J; Alley, Stephen C; Senter, Peter D

    2013-10-16

    The role that carbohydrates play in antibody function and pharmacokinetics has made them important targets for modification. The terminal fucose of the N-linked glycan structure, which has been shown to be involved in modulation of antibody-directed cellular cytotoxicity, is a particularly interesting location for potential modification through incorporation of alternative sugar structures. A library of fucose analogues was evaluated for their ability to incorporate into antibody carbohydrates in place of the native fucose. A number of efficiently incorporated molecules were identified, demonstrating the ability of fucosyltransferase VIII to utilize a variety of non-natural sugars as substrates. Among these structures was a thiolated analogue, 6-thiofucose, which was incorporated into the antibody carbohydrate with good efficiency. This unnatural thio-sugar could then be used for conjugation using maleimide chemistry to produce antibody-drug conjugates with pronounced cytotoxic activities and improved homogeneity compared to drug attachment through hinge disulfides.

  19. Amended Final Report - Antibodies to Radionuclides. Engineering by Surface Display for Immunosensors

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Diane A. [Tulane Univ., New Orleans, LA (United States)

    2013-06-14

    The relatively new techniques of antibody display, which permit molecular engineering of antibody structure and function, have the potential to revolutionize the way scientists generate binding proteins for specific applications. However, the skills required to efficiently use antibody display techniques have proven difficult for other laboratories to acquire without hands-on training and exchange of laboratory personnel. This research project is designed bring important expertise in antibody display to the State of Louisiana while pursuing a project with direct relevance to the DOE’s EM program.

  20. Recent Progress toward Engineering HIV-1-Specific Neutralizing Monoclonal Antibodies

    OpenAIRE

    Ming Sun; Yue Li; Huiwen Zheng; Yiming Shao

    2016-01-01

    The recent discoveries of broadly potent neutralizing human monoclonal antibodies represent a new generation of antiretrovirals for the treatment and prophylaxis. Antibodies are generally considered more effective and safer and have been proved to provide passive protection against mucosal challenge in humanized mice and macaques. Several neutralizing Abs could protect animals against HIV-1 but are not effective when used in an established infected model for therapy. In order to overcome the ...

  1. IBC's 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences and the 2012 Annual Meeting of The Antibody Society: December 3-6, 2012, San Diego, CA.

    Science.gov (United States)

    Klöhn, Peter-Christian; Wuellner, Ulrich; Zizlsperger, Nora; Zhou, Yu; Tavares, Daniel; Berger, Sven; Zettlitz, Kirstin A; Proetzel, Gabriele; Yong, May; Begent, Richard H J; Reichert, Janice M

    2013-01-01

    The 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences, and the 2012 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 3-6, 2012 in San Diego, CA. The meeting drew over 800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a prelude to the main events, a pre-conference workshop held on December 2, 2012 focused on intellectual property issues that impact antibody engineering. The Antibody Engineering Conference was composed of six sessions held December 3-5, 2012: (1) From Receptor Biology to Therapy; (2) Antibodies in a Complex Environment; (3) Antibody Targeted CNS Therapy: Beyond the Blood Brain Barrier; (4) Deep Sequencing in B Cell Biology and Antibody Libraries; (5) Systems Medicine in the Development of Antibody Therapies/Systematic Validation of Novel Antibody Targets; and (6) Antibody Activity and Animal Models. The Antibody Therapeutics conference comprised four sessions held December 4-5, 2012: (1) Clinical and Preclinical Updates of Antibody-Drug Conjugates; (2) Multifunctional Antibodies and Antibody Combinations: Clinical Focus; (3) Development Status of Immunomodulatory Therapeutic Antibodies; and (4) Modulating the Half-Life of Antibody Therapeutics. The Antibody Society's special session on applications for recording and sharing data based on GIATE was held on December 5, 2012, and the conferences concluded with two combined sessions on December 5-6, 2012: (1) Development Status of Early Stage Therapeutic Antibodies; and (2) Immunomodulatory Antibodies for Cancer Therapy.

  2. Man-made antibodies and immunoconjugates with desired properties: function optimization using structural engineering

    Science.gov (United States)

    Deyev, S. M.; Lebedenko, E. N.; Petrovskaya, L. E.; Dolgikh, D. A.; Gabibov, A. G.; Kirpichnikov, M. P.

    2015-01-01

    The review outlines progress and problems in the design of non-natural antibodies for clinical applications over the past 10-15 years. The modular structure of natural antibodies and approaches to its targeted modifications and combination with other structural elements and effector molecules are considered. The review covers modern methods for immunoglobulin engineering and promising strategies for the creation and applications of monoclonal antibodies, their derivatives and analogues, including abzymes and scaffolds, oriented to the use in the diagnosis and targeted therapy of cancer and other socially significant diseases. The bibliography includes 225 references.

  3. Engineering therapeutic antibodies targeting G-protein-coupled receptors.

    Science.gov (United States)

    Jo, Migyeong; Jung, Sang Taek

    2016-02-05

    G-protein-coupled receptors (GPCRs) are one of the most attractive therapeutic target classes because of their critical roles in intracellular signaling and their clinical relevance to a variety of diseases, including cancer, infection and inflammation. However, high conformational variability, the small exposed area of extracellular epitopes and difficulty in the preparation of GPCR antigens have delayed both the isolation of therapeutic anti-GPCR antibodies as well as studies on the structure, function and biochemical mechanisms of GPCRs. To overcome the challenges in generating highly specific anti-GPCR antibodies with enhanced efficacy and safety, various forms of antigens have been successfully designed and employed for screening with newly emerged systems based on laboratory animal immunization and high-throughput-directed evolution.

  4. Antibody

    Science.gov (United States)

    An antibody is a protein produced by the body's immune system when it detects harmful substances, called antigens. Examples ... microorganisms (bacteria, fungi, parasites, and viruses) and chemicals. Antibodies may be produced when the immune system mistakenly ...

  5. Antibody engineering and therapeutics conference. The annual meeting of the antibody society, Huntington Beach, CA, December 7-11, 2014.

    Science.gov (United States)

    Larrick, James W; Parren, Paul W H I; Huston, James S; Plückthun, Andreas; Bradbury, Andrew; Tomlinson, Ian M; Chester, Kerry A; Burton, Dennis R; Adams, Gregory P; Weiner, Louis M; Scott, Jamie K; Alfenito, Mark R; Veldman, Trudi; Reichert, Janice M

    2014-01-01

    The 25th anniversary of the Antibody Engineering & Therapeutics Conference, the Annual Meeting of The Antibody Society, will be held in Huntington Beach, CA, December 7-11, 2014. Organized by IBC Life Sciences, the event will celebrate past successes, educate participants on current activities and offer a vision of future progress in the field. Keynote addresses will be given by academic and industry experts Douglas Lauffenburger (Massachusetts Institute of Technology), Ira Pastan (National Cancer Institute), James Wells (University of California, San Francisco), Ian Tomlinson (GlaxoSmithKline) and Anthony Rees (Rees Consulting AB and Emeritus Professor, University of Bath). These speakers will provide updates of their work, placed in the context of the substantial growth of the industry over the past 25 years.

  6. Construction and characterization of VL-VH tail-parallel genetically engineered antibodies against staphylococcal enterotoxins.

    Science.gov (United States)

    He, Xianzhi; Zhang, Lei; Liu, Pengchong; Liu, Li; Deng, Hui; Huang, Jinhai

    2015-03-01

    Staphylococcal enterotoxins (SEs) produced by Staphylococcus aureus have increasingly given rise to human health and food safety. Genetically engineered small molecular antibody is a useful tool in immuno-detection and treatment for clinical illness caused by SEs. In this study, we constructed the V(L)-V(H) tail-parallel genetically engineered antibody against SEs by using the repertoire of rearranged germ-line immunoglobulin variable region genes. Total RNA were extracted from six hybridoma cell lines that stably express anti-SEs antibodies. The variable region genes of light chain (V(L)) and heavy chain (V(H)) were cloned by reverse transcription PCR, and their classical murine antibody structure and functional V(D)J gene rearrangement were analyzed. To construct the eukaryotic V(H)-V(L) tail-parallel co-expression vectors based on the "5'-V(H)-ivs-IRES-V(L)-3'" mode, the ivs-IRES fragment and V(L) genes were spliced by two-step overlap extension PCR, and then, the recombined gene fragment and V(H) genes were inserted into the pcDNA3.1(+) expression vector sequentially. And then the constructed eukaryotic expression clones termed as p2C2HILO and p5C12HILO were transfected into baby hamster kidney 21 cell line, respectively. Two clonal cell lines stably expressing V(L)-V(H) tail-parallel antibodies against SEs were obtained, and the antibodies that expressed intracytoplasma were evaluated by enzyme-linked immunosorbent assay, immunofluorescence assay, and flow cytometry. SEs can stimulate the expression of some chemokines and chemokine receptors in porcine IPEC-J2 cells; mRNA transcription level of four chemokines and chemokine receptors can be blocked by the recombinant SE antibody prepared in this study. Our results showed that it is possible to get functional V(L)-V(H) tail-parallel genetically engineered antibodies in same vector using eukaryotic expression system.

  7. Structural Insights for Engineering Binding Proteins Based on Non-Antibody Scaffolds

    OpenAIRE

    2012-01-01

    Engineered binding proteins derived from non-antibody scaffolds constitute an increasingly prominent class of reagents in both research and therapeutic applications. The growing number of crystal structures of these “alternative” scaffold-based binding proteins in complex with their targets illustrate the mechanisms of molecular recognition that are common among these systems and those unique to each. This information is useful for critically assessing and improving/expanding engineering stra...

  8. Quantification and imaging of HER2 protein using nanocrystals conjugated with single-domain antibodies

    Science.gov (United States)

    Glukhov, S.; Berestovoy, M.; Chames, P.; Baty, D.; Nabiev, I.; Sukhanova, A.

    2017-01-01

    This study dealt with quantification and imaging of human epidermal growth factor receptor 2 (HER2), an important prognostic marker for cancer diagnosis and treatment, using specific quantum-dot-based conjugates. Fluorescent inorganic nanocrystals or quantum dots (QDs) are extremely highly resistant to photobleaching and have a high emission quantum yield and a continuous range of emission spectra, from the ultraviolet to the infrared regions. Ultrasmall nanoprobes consisting of highly affine anti-HER2 single-domain antibodies (sdAbs or "nanobodies") conjugated with QDs in a strictly oriented manner have been designed. QDs with a fluorescence peak maxima at wavelengths of 562 nm, 569 nm, 570 nm or in the near-infrared region were used. Here, we present our results of ISA quantification of HER2 protein, in situ imaging of HER2 protein on the surface of HER2-positive SK-BR-3 cells in immunohistochemical experiments, and counting of stained with anti-HER2 conjugates HER2-positive SK-BR-3 cells in their mixture with unstained cells of the same culture in flow cytometry experiments. The data demonstrate that the anti-HER2 QD–sdAb conjugates obtained are highly specific and sensitive and could be used in numerous applications for advanced integrated diagnosis.

  9. Genetic engineering of cell lines using lentiviral vectors to achieve antibody secretion following encapsulated implantation.

    Science.gov (United States)

    Lathuilière, Aurélien; Bohrmann, Bernd; Kopetzki, Erhard; Schweitzer, Christoph; Jacobsen, Helmut; Moniatte, Marc; Aebischer, Patrick; Schneider, Bernard L

    2014-01-01

    The controlled delivery of antibodies by immunoisolated bioimplants containing genetically engineered cells is an attractive and safe approach for chronic treatments. To reach therapeutic antibody levels there is a need to generate renewable cell lines, which can long-term survive in macroencapsulation devices while maintaining high antibody specific productivity. Here we have developed a dual lentiviral vector strategy for the genetic engineering of cell lines compatible with macroencapsulation, using separate vectors encoding IgG light and heavy chains. We show that IgG expression level can be maximized as a function of vector dose and transgene ratio. This approach allows for the generation of stable populations of IgG-expressing C2C12 mouse myoblasts, and for the subsequent isolation of clones stably secreting high IgG levels. Moreover, we demonstrate that cell transduction using this lentiviral system leads to the production of a functional glycosylated antibody by myogenic cells. Subsequent implantation of antibody-secreting cells in a high-capacity macroencapsulation device enables continuous delivery of recombinant antibodies in the mouse subcutaneous tissue, leading to substantial levels of therapeutic IgG detectable in the plasma.

  10. A bioinformatics pipeline to build a knowledge database for in silico antibody engineering.

    Science.gov (United States)

    Zhao, Shanrong; Lu, Jin

    2011-04-01

    A challenge to antibody engineering is the large number of positions and nature of variation and opposing concerns of introducing unfavorable biochemical properties. While large libraries are quite successful in identifying antibodies with improved binding or activity, still only a fraction of possibilities can be explored and that would require considerable effort. The vast array of natural antibody sequences provides a potential wealth of information on (1) selecting hotspots for variation, and (2) designing mutants to mimic natural variations seen in hotspots. The human immune system can generate an enormous diversity of immunoglobulins against an almost unlimited range of antigens by gene rearrangement of a limited number of germline variable, diversity and joining genes followed by somatic hypermutation and antigen selection. All the antibody sequences in NCBI database can be assigned to different germline genes. As a result, a position specific scoring matrix for each germline gene can be constructed by aligning all its member sequences and calculating the amino acid frequencies for each position. The position specific scoring matrix for each germline gene characterizes "hotspots" and the nature of variations, and thus reduces the sequence space of exploration in antibody engineering. We have developed a bioinformatics pipeline to conduct analysis of human antibody sequences, and generated a comprehensive knowledge database for in silico antibody engineering. The pipeline is fully automatic and the knowledge database can be refreshed anytime by re-running the pipeline. The refresh process is fast, typically taking 1min on a Lenovo ThinkPad T60 laptop with 3G memory. Our knowledge database consists of (1) the individual germline gene usage in generation of natural antibodies; (2) the CDR length distributions; and (3) the position specific scoring matrix for each germline gene. The knowledge database provides comprehensive support for antibody engineering

  11. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines

    DEFF Research Database (Denmark)

    Fan, Li; Zhao, Liang; Sun, Yating;

    2009-01-01

    An animal component-free and chemically defined fed-batch process for GS-engineered cell lines producing recombinant antibodies has been developed. The fed-batch process relied on supplying sufficient nutrients to match their consumption, simultaneously minimizing the accumulation of byproducts....... This generic and high-yielding fed-batch process would shorten development time, and ensure process stability, thereby facilitating the manufacture of therapeutic antibodies by GS-engineered cell lines....

  12. Antibody-cytokine fusion proteins for treatment of cancer: engineering cytokines for improved efficacy and safety.

    Science.gov (United States)

    Young, Patricia A; Morrison, Sherie L; Timmerman, John M

    2014-10-01

    The true potential of cytokine therapies in cancer treatment is limited by the inability to deliver optimal concentrations into tumor sites due to dose-limiting systemic toxicities. To maximize the efficacy of cytokine therapy, recombinant antibody-cytokine fusion proteins have been constructed by a number of groups to harness the tumor-targeting ability of monoclonal antibodies. The aim is to guide cytokines specifically to tumor sites where they might stimulate more optimal anti-tumor immune responses while avoiding the systemic toxicities of free cytokine therapy. Antibody-cytokine fusion proteins containing interleukin (IL)-2, IL-12, IL-21, tumor necrosis factor (TNF)α, and interferons (IFNs) α, β, and γ have been constructed and have shown anti-tumor activity in preclinical and early-phase clinical studies. Future priorities for development of this technology include optimization of tumor targeting, bioactivity of the fused cytokine, and choice of appropriate agents for combination therapies. This review is intended to serve as a framework for engineering an ideal antibody-cytokine fusion protein, focusing on previously developed constructs and their clinical trial results.

  13. BRCAA1 antibody- and Her2 antibody-conjugated amphiphilic polymer engineered CdSe/ZnS quantum dots for targeted imaging of gastric cancer

    Science.gov (United States)

    Li, Chao; Ji, Yang; Wang, Can; Liang, Shujing; Pan, Fei; Zhang, Chunlei; Chen, Feng; Fu, Hualin; Wang, Kan; Cui, Daxiang

    2014-05-01

    Successful development of safe and highly effective nanoprobes for targeted imaging of in vivo early gastric cancer is a great challenge. Herein, we choose the CdSe/ZnS (core-shell) quantum dots (QDs) as prototypical materials, synthesized one kind of a new amphiphilic polymer including dentate-like alkyl chains and multiple carboxyl groups, and then used the prepared amphiphilic polymer to modify QDs. The resultant amphiphilic polymer engineered QDs (PQDs) were conjugated with BRCAA1 and Her2 monoclonal antibody, and prepared BRCAA1 antibody- and Her2 antibody-conjugated QDs were used for in vitro MGC803 cell labeling and in vivo targeted imaging of gastric cancer cells. Results showed that the PQDs exhibited good water solubility, strong photoluminescence (PL) intensity, and good biocompatibility. BRCAA1 antibody- and Her2 antibody-conjugated QD nanoprobes successfully realized targeted imaging of in vivo gastric cancer MGC803 cells. In conclusion, BRCAA1 antibody- and Her2 antibody-conjugated PQDs have great potential in applications such as single cell labeling and in vivo tracking, and targeted imaging and therapeutic effects' evaluation of in vivo early gastric cancer cells in the near future.

  14. Stabilizing the CH2 Domain of an Antibody by Engineering in an Enhanced Aromatic Sequon.

    Science.gov (United States)

    Chen, Wentao; Kong, Leopold; Connelly, Stephen; Dendle, Julia M; Liu, Yu; Wilson, Ian A; Powers, Evan T; Kelly, Jeffery W

    2016-07-15

    Monoclonal antibodies (mAbs) exhibiting highly selective binding to a protein target constitute a large and growing proportion of the therapeutics market. Aggregation of mAbs results in the loss of their therapeutic efficacy and can result in deleterious immune responses. The CH2 domain comprising part of the Fc portion of Immunoglobulin G (IgG) is typically the least stable domain in IgG-type antibodies and therefore influences their aggregation propensity. We stabilized the CH2 domain by engineering an enhanced aromatic sequon (EAS) into the N-glycosylated C'E loop and observed a 4.8 °C increase in the melting temperature of the purified IgG1 Fc fragment. This EAS-stabilized CH2 domain also conferred enhanced stability against thermal and low pH induced aggregation in the context of a full-length monoclonal IgG1 antibody. The crystal structure of the EAS-stabilized (Q295F/Y296A) IgG1 Fc fragment confirms the design principle, i.e., the importance of the GlcNAc1•F295 interaction, and surprisingly reveals that the core fucose attached to GlcNAc1 also engages in an interaction with F295. Inhibition of core fucosylation confirms the contribution of the fucose-Phe interaction to the stabilization. The Q295F/Y296A mutations also modulate the binding affinity of the full-length antibody to Fc receptors by decreasing the binding to low affinity Fc gamma receptors (FcγRIIa, FcγRIIIa, and FcγRIIIb), while maintaining wild-type binding affinity to FcRn and FcγRI. Our results demonstrate that engineering an EAS into the N-glycosylated reverse turn on the C'E loop leads to stabilizing N-glycan-protein interactions in antibodies and that this modification modulates antibody-Fc receptor binding.

  15. Aligning, analyzing, and visualizing sequences for antibody engineering: Automated recognition of immunoglobulin variable region features.

    Science.gov (United States)

    Jarasch, Alexander; Skerra, Arne

    2017-01-01

    The analysis and comparison of large numbers of immunoglobulin (Ig) sequences that arise during an antibody selection campaign can be time-consuming and tedious. Typically, the identification and annotation of framework as well as complementarity-determining regions (CDRs) is based on multiple sequence alignments using standardized numbering schemes, which allow identification of equivalent residues among different family members but often necessitate expert knowledge and manual intervention. Moreover, due to the enormous length variability of some CDRs the benefit of conventional Ig numbering schemes is limited and the calculation of correct sequence alignments can become challenging. Whereas, in principle, a well established set of rules permits the assignment of CDRs from the amino acid sequence alone, no currently available sequence alignment editor provides an algorithm to annotate new Ig sequences accordingly. Here we present a unique pattern matching method implemented into our recently developed ANTICALIgN editor that automatically identifies all hypervariable and framework regions in experimentally elucidated antibody sequences using so-called "regular expressions." By combination of this widely supported software syntax with the unique capabilities of real-time aligning, editing and analyzing extended sets of amino acid and/or nucleotide sequences simultaneously on a local workstation, ANTICALIgN provides a powerful utility for antibody engineering. Proteins 2016; 85:65-71. © 2016 Wiley Periodicals, Inc.

  16. Transfer of engineered biophysical properties between different antibody formats and expression systems.

    Science.gov (United States)

    Schaefer, Jonas V; Plückthun, Andreas

    2012-10-01

    Recombinant antibodies and their derivatives are receiving ever increasing attention for many applications. Nevertheless, they differ widely in biophysical properties, from stable monomers to metastable aggregation-prone mixtures of oligomers. Previous work from our laboratory presented the combination of structure-based analysis with family consensus alignments as being able to improve the properties of immunoglobulin variable domains. We had identified a series of mutations in the variable domains that greatly influenced both the stability and the expression level of single-chain Fv (scFv) fragments produced in the periplasm of Escherichia coli. We now investigated whether these effects are transferable to Fab fragments and immunoglobulin G (IgG) produced in bacteria, Pichia pastoris, and mammalian cells. Taken together, our data indicate that engineered mutations can increase functional expression levels only for periplasmic expression in prokaryotes. In contrast, stability against thermal and denaturant-induced unfolding is improved by the same mutations in all formats tested, including scFv, Fab and IgG, independent of the expression system. The mutations in V(H) also influenced the structural homogeneity of full-length IgG, and the reducibility of the distant C(H)1-C(L) inter-chain disulfide bond. These results confirm the potential of structure-based protein engineering in the context of full-length IgGs and the transferability of stability improvements discovered with smaller antibody fragments.

  17. Engineered antibody CH2 domains binding to nucleolin: Isolation, characterization and improvement of aggregation.

    Science.gov (United States)

    Li, De-Zhi; Gong, Rui; Zheng, Jun; Chen, Xi-Hai; Dimitrov, Dimiter S; Zhao, Qi

    2017-02-12

    Smaller recombinant antibody fragments are now emerging as alternatives of conventional antibodies. Especially, immunoglobulin (Ig) constant CH2 domain and engineered CH2 with improved stability are promising as scaffolds for selection of specific binders to various antigens. We constructed a yeast display library based on an engineered human IgG1 CH2 scaffold with diversified loop regions. A group of CH2 binders were isolated from this yeast display library by panning against nucleolin, which is a tumor-associated antigen involved in cell proliferation, tumor cell growth and angiogenesis. Out of 20 mutants, we selected 3 clones exhibiting relatively high affinities to nucleolin on yeasts. However, recombinant CH2 mutants aggregated when they were expressed. To find the mechanism of the aggregation, we employed computational prediction approaches through structural homology models of CH2 binders. The analysis of potential aggregation prone regions (APRs) and solvent accessible surface areas (ASAs) indicated two hydrophobic residues, Val264 and Leu309, in the β-sheet, in which replacement of both charged residues led to significantly decrease of the protein aggregation. The newly identified CH2 binders could be improved to use as candidate therapeutics or research reagents in the future.

  18. Engineered single-chain variable fragment antibody for immunodiagnosis of groundnut bud necrosis virus infection.

    Science.gov (United States)

    Maheshwari, Yogita; Vijayanandraj, S; Jain, R K; Mandal, Bikash

    2015-05-01

    Few studies have been done on engineered antibodies for diagnosis of tospovirus infections. The present study was undertaken to develop a single-chain variable fragment (scFv) for specific diagnosis of infection by groundnut bud necrosis virus (GBNV), the most prevalent serogroup IV tospovirus in India. Heavy chain (372 nucleotide [nt]) and light chain (363 nt) variable region clones obtained from a hybridoma were used to make an scFv construct that expressed a ~29-kDa protein in E. coli. The scFv specifically detected GBNV in field samples of cowpea, groundnut, mung bean, and tomato, and it did not recognize watermelon bud necrosis virus, a close relative of GBNV belonging to tospovirus serogroup IV. This study for the first time demonstrated the application of a functional scFv against a serogroup-IV tospovirus.

  19. Effects of protein engineering and rational mutagenesis on crystal lattice of single chain antibody fragments.

    Science.gov (United States)

    Kalyoncu, Sibel; Hyun, Jeongmin; Pai, Jennifer C; Johnson, Jennifer L; Entzminger, Kevin; Jain, Avni; Heaner, David P; Morales, Ivan A; Truskett, Thomas M; Maynard, Jennifer A; Lieberman, Raquel L

    2014-09-01

    Protein crystallization is dependent upon, and sensitive to, the intermolecular contacts that assist in ordering proteins into a three-dimensional lattice. Here we used protein engineering and mutagenesis to affect the crystallization of single chain antibody fragments (scFvs) that recognize the EE epitope (EYMPME) with high affinity. These hypercrystallizable scFvs are under development to assist difficult proteins, such as membrane proteins, in forming crystals, by acting as crystallization chaperones. Guided by analyses of intermolecular crystal lattice contacts, two second-generation anti-EE scFvs were produced, which bind to proteins with installed EE tags. Surprisingly, although noncomplementarity determining region (CDR) lattice residues from the parent scFv framework remained unchanged through the processes of protein engineering and rational design, crystal lattices of the derivative scFvs differ. Comparison of energy calculations and the experimentally-determined lattice interactions for this basis set provides insight into the complexity of the forces driving crystal lattice choice and demonstrates the availability of multiple well-ordered surface features in our scFvs capable of forming versatile crystal contacts.

  20. A single-domain antibody-linked Fab bispecific antibody Her2-S-Fab has potent cytotoxicity against Her2-expressing tumor cells.

    Science.gov (United States)

    Li, Aifen; Xing, Jieyu; Li, Li; Zhou, Changhua; Dong, Bin; He, Ping; Li, Qing; Wang, Zhong

    2016-12-01

    Her2, which is frequently overexpressed in breast cancer, is one of the most studied tumor-associated antigens for cancer therapy. Anti-HER2 monoclonal antibody, trastuzumab, has achieved significant clinical benefits in metastatic breast cancer. In this study, we describe a novel bispecific antibody Her2-S-Fab targeting Her2 by linking a single domain anti-CD16 VHH to the trastuzumab Fab. The Her2-S-Fab antibody can be efficiently expressed and purified from Escherichia coli, and drive potent cancer cell killing in HER2-overexpressing cancer cells. In xenograft model, the Her2-S-Fab suppresses tumor growth in the presence of human immune cells. Our results suggest that the bispecific Her2-S-Fab may provide a valid alternative to Her2 positive cancer therapy.

  1. Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents

    DEFF Research Database (Denmark)

    Sharifzadeh, Zahra; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad A

    2013-01-01

    Despite the preclinical success of adoptive therapy with T cells bearing chimeric nanoconstructed antigen receptors (CARs), certain limitations of this therapeutic approach such as the immunogenicity of the antigen binding domain, the emergence of tumor cell escape variants and the blocking...... capacity of soluble antigen still remain. Here, we address these issues using a novel CAR binding moiety based on the oligoclonal camelid single domain antibodies. A unique set of 13 single domain antibodies were selected from an immunized camel phage library based on their target specificity and binding...... to reverse multiple tumor immune evasion mechanisms, avoid CAR immunogenicity, and overcome problems in cancer gene therapy with engineered nanoconstructs....

  2. Biotechnology and genetic engineering in the new drug development. Part II. Monoclonal antibodies, modern vaccines and gene therapy.

    Science.gov (United States)

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław

    2013-01-01

    Monoclonal antibodies, modern vaccines and gene therapy have become a major field in modern biotechnology, especially in the area of human health and fascinating developments achieved in the past decades are impressive examples of an interdisciplinary interplay between medicine, biology and engineering. Among the classical products from cells one can find viral vaccines, monoclonal antibodies, and interferons, as well as recombinant therapeutic proteins. Gene therapy opens up challenging new areas. In this review, a definitions of these processes are given and fields of application and products, as well as the future prospects, are discussed.

  3. Engineering HIV envelope protein to activate germline B cell receptors of broadly neutralizing anti-CD4 binding site antibodies.

    Science.gov (United States)

    McGuire, Andrew T; Hoot, Sam; Dreyer, Anita M; Lippy, Adriana; Stuart, Andrew; Cohen, Kristen W; Jardine, Joseph; Menis, Sergey; Scheid, Johannes F; West, Anthony P; Schief, William R; Stamatatos, Leonidas

    2013-04-08

    Broadly neutralizing antibodies (bnAbs) against HIV are believed to be a critical component of the protective responses elicited by an effective HIV vaccine. Neutralizing antibodies against the evolutionarily conserved CD4-binding site (CD4-BS) on the HIV envelope glycoprotein (Env) are capable of inhibiting infection of diverse HIV strains, and have been isolated from HIV-infected individuals. Despite the presence of anti-CD4-BS broadly neutralizing antibody (bnAb) epitopes on recombinant Env, Env immunization has so far failed to elicit such antibodies. Here, we show that Env immunogens fail to engage the germline-reverted forms of known bnAbs that target the CD4-BS. However, we found that the elimination of a conserved glycosylation site located in Loop D and two glycosylation sites located in variable region 5 of Env allows Env-binding to, and activation of, B cells expressing the germline-reverted BCRs of two potent broadly neutralizing antibodies, VRC01 and NIH45-46. Our results offer a possible explanation as to why Env immunogens have been ineffective in stimulating the production of such bNAbs. Importantly, they provide key information as to how such immunogens can be engineered to initiate the process of antibody-affinity maturation against one of the most conserved Env regions.

  4. Species-Specific Chromosome Engineering Greatly Improves Fully Human Polyclonal Antibody Production Profile in Cattle.

    Directory of Open Access Journals (Sweden)

    Hiroaki Matsushita

    Full Text Available Large-scale production of fully human IgG (hIgG or human polyclonal antibodies (hpAbs by transgenic animals could be useful for human therapy. However, production level of hpAbs in transgenic animals is generally very low, probably due to the fact that evolutionarily unique interspecies-incompatible genomic sequences between human and non-human host species may impede high production of fully hIgG in the non-human environment. To address this issue, we performed species-specific human artificial chromosome (HAC engineering and tested these engineered HAC in cattle. Our previous study has demonstrated that site-specific genomic chimerization of pre-B cell receptor/B cell receptor (pre-BCR/BCR components on HAC vectors significantly improves human IgG expression in cattle where the endogenous bovine immunoglobulin genes were knocked out. In this report, hIgG1 class switch regulatory elements were subjected to site-specific genomic chimerization on HAC vectors to further enhance hIgG expression and improve hIgG subclass distribution in cattle. These species-specific modifications in a chromosome scale resulted in much higher production levels of fully hIgG of up to 15 g/L in sera or plasma, the highest ever reported for a transgenic animal system. Transchromosomic (Tc cattle containing engineered HAC vectors generated hpAbs with high titers against human-origin antigens following immunization. This study clearly demonstrates that species-specific sequence differences in pre-BCR/BCR components and IgG1 class switch regulatory elements between human and bovine are indeed functionally distinct across the two species, and therefore, are responsible for low production of fully hIgG in our early versions of Tc cattle. The high production levels of fully hIgG with hIgG1 subclass dominancy in a large farm animal species achieved here is an important milestone towards broad therapeutic applications of hpAbs.

  5. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orcutt, Kelly Davis; Slusarczyk, Adrian L. [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cieslewicz, Maryelise [Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ruiz-Yi, Benjamin [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bhushan, Kumar R. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Frangioni, John V. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Wittrup, K. Dane, E-mail: wittrup@mit.ed [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2011-02-15

    Introduction: In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. Methods: We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). Results: Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2{+-}1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a {sup 111}In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions: We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.

  6. Characterization of Tumor-Avid Antibody Fragments Genetically Engineered for Mono-Specific Radionuclide Chelation

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, T.P.

    2003-12-31

    The successful clinical application of targeted-radiopharmaceuticals depends on the development of molecules that optimize tumor specific radionuclide deposition and minimize non-specific organ irradiation. To this end, this proposal outlines a research effort to identify and evaluate novel antibodies and antibody fragments that bind breast tumors. The tumor-avid antibodies will be investigated for as imaging and therapeutic agents and to gain a better understanding of the pharmacokinetics and metabolism of radiolabeled tumor-avid antibody fragments through the use of site-specifically labeled molecules. Antibodies or antibody fragments, that bind breast carcinoma carbohydrate antigens, will be obtained from hybridoma or bacteriophage library screening. More specifically, antibody fragments that bind the carcinoma-associated Thomsen-Friedenreich (T) antigen will be radiolabeled with {sup 99m}Tc and {sup 188}Re at a natural amino acid chelation site and will be investigated in vivo for their abilities to target human breast tumors. In addition, site-specific radiolabeled antibody fragments will be biosynthesized using misacylated suppressor tRNAs. Homogeneously radiolabeled populations of antibody fragments will be used to investigate the effects of radionuclide location and chelation chemistries on their biodistribution and metabolism. It is hypothesized that site-specifically radiolabeled antibody fragments will possess enhanced tumor imaging and therapeutic properties due to optimal label location and conjugation chemistries. New insights into the factors that govern antibody metabolism in vivo are also expected from this work. Results from these studies should enhance our ability to design and synthesize radiolabeled antibody fragments that have improved pharmacokinetic properties. The studies in this proposal involve basic research into the development of antibody-based radiopharmaceuticals, with the ultimate goal of application in humans. This type of basic

  7. Selection of Arginine-Rich Anti-Gold Antibodies Engineered for Plasmonic Colloid Self-Assembly

    CERN Document Server

    Jain, Purvi; Narayanan, S Shankara; Sharma, Jadab; Girard, Christian; Dujardin, Erik; Nizak, Clément

    2014-01-01

    Antibodies are affinity proteins with a wide spectrum of applications in analytical and therapeutic biology. Proteins showing specific recognition for a chosen molecular target can be isolated and their encoding sequence identified in vitro from a large and diverse library by phage display selection. In this work, we show that this standard biochemical technique rapidly yields a collection of antibody protein binders for an inorganic target of major technological importance: crystalline metallic gold surfaces. 21 distinct anti-gold antibody proteins emerged from a large random library of antibodies and were sequenced. The systematic statistical analysis of all the protein sequences reveals a strong occurrence of arginine in anti-gold antibodies, which corroborates recent molecular dynamics predictions on the crucial role of arginine in protein/gold interactions. Once tethered to small gold nanoparticles using histidine tag chemistry, the selected antibodies could drive the self-assembly of the colloids onto t...

  8. Antithyroglobulin antibody

    Science.gov (United States)

    Thyroglobulin antibody; Thyroiditis - thyroglobulin antibody; Hypothyroidism - thyroglobulin antibody; Thyroiditis - thyroglobulin antibody; Graves disease - thyroglobulin antibody; Underactive thyroid - thyroglobulin antibody

  9. Engineering Venom’s Toxin-Neutralizing Antibody Fragments and Its Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Larissa M. Alvarenga

    2014-08-01

    Full Text Available Serum therapy remains the only specific treatment against envenoming, but anti-venoms are still prepared by fragmentation of polyclonal antibodies isolated from hyper-immunized horse serum. Most of these anti-venoms are considered to be efficient, but their production is tedious, and their use may be associated with adverse effects. Recombinant antibodies and smaller functional units are now emerging as credible alternatives and constitute a source of still unexploited biomolecules capable of neutralizing venoms. This review will be a walk through the technologies that have recently been applied leading to novel antibody formats with better properties in terms of homogeneity, specific activity and possible safety.

  10. Antibody-protein A conjugated quantum dots for multiplexed imaging of surface receptors in living cells.

    Science.gov (United States)

    Jin, Takashi; Tiwari, Dhermendra K; Tanaka, Shin-Ichi; Inouye, Yasushi; Yoshizawa, Keiko; Watanabe, Tomonobu M

    2010-11-01

    To use quantum dots (QDs) as fluorescent probes for receptor imaging, QD surface should be modified with biomolecules such as antibodies, peptides, carbohydrates, and small-molecule ligands for receptors. Among these QDs, antibody conjugated QDs are the most promising fluorescent probes. There are many kinds of coupling reactions that can be used for preparing antibody conjugated QDs. Most of the antibody coupling reactions, however, are non-selective and time-consuming. In this paper, we report a facile method for preparing antibody conjugated QDs for surface receptor imaging. We used ProteinA as an adaptor protein for binding of antibody to QDs. By using ProteinA conjugated QDs, various types of antibodies are easily attached to the surface of the QDs via non-covalent binding between the F(c) (fragment crystallization) region of antibody and ProteinA. To show the utility of ProteinA conjugated QDs, HER2 (anti-human epidermal growth factor receptor 2) in KPL-4 human breast cancer cells were stained by using anti-HER2 antibody conjugated ProteinA-QDs. In addition, multiplexed imaging of HER2 and CXCR4 (chemokine receptor) in the KPL-4 cells was performed. The result showed that CXCR4 receptors coexist with HER2 receptors in the membrane surface of KPL-4 cells. ProteinA mediated antibody conjugation to QDs is very useful to prepare fluorescent probes for multiplexed imaging of surface receptors in living cells.

  11. Immunotherapy of B-Cell Lymphoma with an Engineered Bispecific Antibody Targeting CD19 and CD5

    Directory of Open Access Journals (Sweden)

    Frank Breitling

    2013-05-01

    Full Text Available Using genetic engineering a humanized Fab fragment with specificity for CD19 was fused to a disulfide-stabilized single-chain antibody (dsFv recognizing CD5. This format should show reduced immunogenicity and improved tissue penetration. The specificity of bsAb FabCD19xdsFvCD5 binding to target cells was verified by flow cytometry on B and T lymphoma cell lines. Binding affinities of both arms were compared with the bivalent parental antibodies against CD19 and CD5 by binding competition assay. Redirected lysis of B lymphoma cells by preactivated PBMC from healthy donors was demonstrated in a chromium-release assay. A clear dose-response relationship could be established in the range from 1 ng/mL to 10 mg/mL bsAb. To evaluate the in vivo efficacy of bsAb FabCD19xdsFvCD5, NOD/SCID mice were intravenously injected with luciferase transfected Raji lymphoma cells together with pre-activated PBMC. Mice received five injections of therapeutic bsAb or control antibodies. While in the control groups all mice died within 40 to 50 days, 40% of bsAb treated animals survived longer than 60 days.

  12. An engineered diatom acting like a plasma cell secreting human IgG antibodies with high efficiency

    Directory of Open Access Journals (Sweden)

    Hempel Franziska

    2012-09-01

    Full Text Available Abstract Background Although there are many different expression systems for recombinant production of pharmaceutical proteins, many of these suffer from drawbacks such as yield, cost, complexity of purification, and possible contamination with human pathogens. Microalgae have enormous potential for diverse biotechnological applications and currently attract much attention in the biofuel sector. Still underestimated, though, is the idea of using microalgae as solar-fueled expression system for the production of recombinant proteins. Results In this study, we show for the first time that completely assembled and functional human IgG antibodies can not only be expressed to high levels in algal systems, but also secreted very efficiently into the culture medium. We engineered the diatom Phaeodactylum tricornutum to synthesize and secrete a human IgG antibody against the Hepatitis B Virus surface protein. As the diatom P. tricornutum is not known to naturally secrete many endogenous proteins, the secreted antibodies are already very pure making extensive purification steps redundant and production extremely cost efficient. Conclusions Microalgae combine rapid growth rates with all the advantages of eukaryotic expression systems, and offer great potential for solar-powered, low cost production of pharmaceutical proteins.

  13. Engineered Bovine Antibodies in the Development of Novel Therapeutics, Immunomodulators and Vaccines

    Directory of Open Access Journals (Sweden)

    Madhuri Koti

    2014-05-01

    Full Text Available Some bovine antibodies across all classes are unique, such as the CDR3 of the variable heavy-domain (VH CDR3, which is exceptionally long (up to 66 amino acids, unlike most conventional antibodies where the VH CDR3 loops range from 10 to 25 amino acids. The exceptionally long VH CDR3 is encoded by unusually long germline IGHD genes together with insertion of novel “a” nucleotide rich conserved short nucleotide sequence (CSNS specifically at the IGH V-D junction. Such an exceptionally long VH CDR3 confers unique “knob and stalk” structural architecture where the knob, formed by intra-VH CDR3 disulfide bridges, is separated by 20 Å solvent exposed stalk composed of anti-parallel beta strands. The substitution of the knob with cytokines, such as, erythropoietin and granulocyte colony stimulating factor 3 (granulocyte colony stimulating factor, results in expression of functional fusion proteins with enhanced pharmacokinetics. The beta stranded stalk can be substituted with other rigid structures, for example, repeat alpha helices to form coiled-coil that mimics the beta-stranded stalk and, thus, opens opportunities for insertion of this structure in the CDRs of antibodies across species. Given the versatility of such a structural platform in bovine antibody VH CDR3, it provides the opportunity for the development of new generation of diagnostics, therapeutics, vaccines and immunomodulating drugs.

  14. In vivo tumor targeting and imaging with engineered trivalent antibody fragments containing collagen-derived sequences.

    Directory of Open Access Journals (Sweden)

    Angel M Cuesta

    Full Text Available There is an urgent need to develop new and effective agents for cancer targeting. In this work, a multivalent antibody is characterized in vivo in living animals. The antibody, termed "trimerbody", comprises a single-chain antibody (scFv fragment connected to the N-terminal trimerization subdomain of collagen XVIII NC1 by a flexible linker. As indicated by computer graphic modeling, the trimerbody has a tripod-shaped structure with three highly flexible scFv heads radially outward oriented. Trimerbodies are trimeric in solution and exhibited multivalent binding, which provides them with at least a 100-fold increase in functional affinity than the monovalent scFv. Our results also demonstrate the feasibility of producing functional bispecific trimerbodies, which concurrently bind two different ligands. A trimerbody specific for the carcinoembryonic antigen (CEA, a classic tumor-associated antigen, showed efficient tumor targeting after systemic administration in mice bearing CEA-positive tumors. Importantly, a trimerbody that recognizes an angiogenesis-associated laminin epitope, showed excellent tumor localization in several cancer types, including fibrosarcomas and carcinomas. These results illustrate the potential of this new antibody format for imaging and therapeutic applications, and suggest that some laminin epitopes might be universal targets for cancer targeting.

  15. Engineering cholesterol-based fibers for antibody immobilization and cell capture

    Science.gov (United States)

    Cohn, Celine

    In 2015, the United States is expected to have nearly 600,000 deaths attributed to cancer. Of these 600,000 deaths, 90% will be a direct result of cancer metastasis, the spread of cancer throughout the body. During cancer metastasis, circulating tumor cells (CTCs) are shed from primary tumors and migrate through bodily fluids, establishing secondary cancer sites. As cancer metastasis is incredibly lethal, there is a growing emphasis on developing "liquid biopsies" that can screen peripheral blood, search for and identify CTCs. One popular method for capturing CTCs is the use of a detection platform with antibodies specifically suited to recognize and capture cancer cells. These antibodies are immobilized onto the platform and can then bind and capture cells of interest. However, current means to immobilize antibodies often leave them with drastically reduced function. The antibodies are left poorly suited for cell capture, resulting in low cell capture efficiencies. This body of work investigates the use of lipid-based fibers to immobilize proteins in a way that retains protein function, ultimately leading to increased cell capture efficiencies. The resulting increased efficiencies are thought to arise from the retained three-dimensional structure of the protein as well as having a complete coating of the material surface with antibodies that are capable of interacting with their antigens. It is possible to electrospin cholesterol-based fibers that are similar in design to the natural cell membrane, providing proteins a more natural setting during immobilization. Such fibers have been produced from cholesterol-based cholesteryl succinyl silane (CSS). These fibers have previously illustrated a keen aptitude for retaining protein function and increasing cell capture. Herein the work focuses on three key concepts. First, a model is developed to understand the immobilization mechanism used by electrospun CSS fibers. The antibody immobilization and cell capturing

  16. A two-in-one antibody engineered from a humanized interleukin 4 antibody through mutation in heavy chain complementarity-determining regions.

    Science.gov (United States)

    Lee, Chingwei V; Koenig, Patrick; Fuh, Germaine

    2014-01-01

    A mono-specific antibody may recruit a second antigen binding specificity, thus converting to a dual-specific Two-in-One antibody through mutation at the light chain complementarity-determining regions (CDRs). It is, however, unknown whether mutation at the heavy chain CDRs may evolve such dual specificity. Herein, we examined the CDRs of a humanized interleukin 4 (IL4) antibody using alanine scanning and structural modeling, designed libraries of mutants in regions that tolerate mutation, and isolated dual specific antibodies harboring mutation at the heavy chain CDRs only. We then affinity improved an IL4/IL5 dual specific antibody to variants with dissociation constants in the low nanomolar range for both antigens. The results demonstrate the full capacity of antibodies to evolve dual binding specificity.

  17. Engineering the vaccinia virus L1 protein for increased neutralizing antibody response after DNA immunization

    Directory of Open Access Journals (Sweden)

    Moss Bernard

    2009-03-01

    Full Text Available Abstract Background The licensed smallpox vaccine, comprised of infectious vaccinia virus, has associated adverse effects, particularly for immunocompromised individuals. Therefore, safer DNA and protein vaccines are being investigated. The L1 protein, a component of the mature virion membrane that is conserved in all sequenced poxviruses, is required for vaccinia virus entry into host cells and is a target for neutralizing antibody. When expressed by vaccinia virus, the unglycosylated, myristoylated L1 protein attaches to the viral membrane via a C-terminal transmembrane anchor without traversing the secretory pathway. The purpose of the present study was to investigate modifications of the gene expressing the L1 protein that would increase immunogenicity in mice when delivered by a gene gun. Results The L1 gene was codon modified for optimal expression in mammalian cells and potential N-glycosylation sites removed. Addition of a signal sequence to the N-terminus of L1 increased cell surface expression as shown by confocal microscopy and flow cytometry of transfected cells. Removal of the transmembrane domain led to secretion of L1 into the medium. Induction of binding and neutralizing antibodies in mice was enhanced by gene gun delivery of L1 containing the signal sequence with or without the transmembrane domain. Each L1 construct partially protected mice against weight loss caused by intranasal administration of vaccinia virus. Conclusion Modifications of the vaccinia virus L1 gene including codon optimization and addition of a signal sequence with or without deletion of the transmembrane domain can enhance the neutralizing antibody response of a DNA vaccine.

  18. Using engineered single-chain antibodies to correlate molecular binding properties and nanoparticle adhesion dynamics.

    Science.gov (United States)

    Haun, Jered B; Pepper, Lauren R; Boder, Eric T; Hammer, Daniel A

    2011-11-15

    Elucidation of the relationship between targeting molecule binding properties and the adhesive behavior of therapeutic or diagnostic nanocarriers would aid in the design of optimized vectors and lead to improved efficacy. We measured the adhesion of 200-nm-diameter particles under fluid flow that was mediated by a diverse array of molecular interactions, including recombinant single-chain antibodies (scFvs), full antibodies, and the avidin/biotin interaction. Within the panel of scFvs, we used a family of mutants that display a spectrum of binding kinetics, allowing us to compare nanoparticle adhesion to bond chemistry. In addition, we explored the effect of molecular size by inserting a protein linker into the scFv fusion construct and by employing scFvs that are specific for targets with vastly different sizes. Using computational models, we extracted multivalent kinetic rate constants for particle attachment and detachment from the adhesion data and correlated the results to molecular binding properties. Our results indicate that the factors that increase encounter probability, such as adhesion molecule valency and size, directly enhance the rate of nanoparticle attachment. Bond kinetics had no influence on scFv-mediated nanoparticle attachment within the kinetic range tested, however, but did appear to affect antibody/antigen and avidin/biotin mediated adhesion. We attribute this finding to a combination of multivalent binding and differences in bond mechanical strength between recombinant scFvs and the other adhesion molecules. Nanoparticle detachment probability correlated directly with adhesion molecule valency and size, as well as the logarithm of the affinity for all molecules tested. On the basis of this work, scFvs can serve as viable targeting receptors for nanoparticles, but improvements to their bond mechanical strength would likely be required to fully exploit their tunable kinetic properties and maximize the adhesion efficiency of nanoparticles that

  19. Model-directed engineering of "difficult-to-express" monoclonal antibody production by Chinese hamster ovary cells.

    Science.gov (United States)

    Pybus, Leon P; Dean, Greg; West, Nathan R; Smith, Andrew; Daramola, Olalekan; Field, Ray; Wilkinson, Stephen J; James, David C

    2014-02-01

    Despite improvements in volumetric titer for monoclonal antibody (MAb) production processes using Chinese hamster ovary (CHO) cells, some "difficult-to-express" (DTE) MAbs inexplicably reach much lower process titers. These DTE MAbs require intensive cell line and process development activity, rendering them more costly or even unsuitable to manufacture. To rapidly and rationally identify an optimal strategy to improve production of DTE MAbs, we have developed an engineering design platform combining high-yielding transient production, empirical modeling of MAb synthesis incorporating an unfolded protein response (UPR) regulatory loop with directed expression and cell engineering approaches. Utilizing a panel of eight IgG1 λ MAbs varying >4-fold in volumetric titer, we showed that MAb-specific limitations on folding and assembly rate functioned to induce a proportionate UPR in host CHO cells with a corresponding reduction in cell growth rate. Derived from comparative empirical modeling of cellular constraints on the production of each MAb we employed two strategies to increase production of DTE MAbs designed to avoid UPR induction through an improvement in the rate/cellular capacity for MAb folding and assembly reactions. Firstly, we altered the transfected LC:HC gene ratio and secondly, we co-expressed a variety of molecular chaperones, foldases or UPR transactivators (BiP, CypB, PDI, and active forms of ATF6 and XBP1) with recombinant MAbs. DTE MAb production was significantly improved by both strategies, although the mode of action was dependent upon the approach employed. Increased LC:HC ratio or CypB co-expression improved cell growth with no effect on qP. In contrast, BiP, ATF6c and XBP1s co-expression increased qP and reduced cell growth. This study demonstrates that expression-engineering strategies to improve production of DTE proteins in mammalian cells should be product specific, and based on rapid predictive tools to assess the relative impact of

  20. Homogeneous plate based antibody internalization assay using pH sensor fluorescent dye.

    Science.gov (United States)

    Nath, Nidhi; Godat, Becky; Zimprich, Chad; Dwight, Stephen J; Corona, Cesear; McDougall, Mark; Urh, Marjeta

    2016-04-01

    Receptor-mediated antibody internalization is a key mechanism underlying several anti-cancer antibody therapeutics. Delivering highly toxic drugs to cancer cells, as in the case of antibody drug conjugates (ADCs), efficient removal of surface receptors from cancer cells and changing the pharmacokinetics profile of the antibody drugs are some of key ways that internalization impacts the therapeutic efficacy of the antibodies. Over the years, several techniques have been used to study antibody internalization including radiolabels, fluorescent microscopy, flow cytometry and cellular toxicity assays. While these methods allow analysis of internalization, they have limitations including a multistep process and limited throughput and are generally endpoint assays. Here, we present a new homogeneous method that enables time and concentration dependent measurements of antibody internalization. The method uses a new hydrophilic and bright pH sensor dye (pHAb dye), which is not fluorescent at neutral pH but becomes highly fluorescent at acidic pH. For receptor mediated antibody internalization studies, antibodies against receptors are conjugated with the pHAb dye and incubated with the cells expressing the receptors. Upon binding to the receptor, the dyes conjugated to the antibody are not fluorescent because of the neutral pH of the media, but upon internalization and trafficking into endosomal and lysosomal vesicles the pH drops and dyes become fluorescent. The enabling attributes of the pHAb dyes are the hydrophilic nature to minimize antibody aggregation and bright fluorescence at acidic pH which allows development of simple plate based assays using a fluorescent reader. Using two different therapeutic antibodies--Trastuzumab (anti-HER2) and Cetuximab (anti-EGFR)--we show labeling with pHAb dye using amine and thiol chemistries and impact of chemistry and dye to antibody ration on internalization. We finally present two new approaches using the pHAb dye, which will be

  1. N-Glycosylation optimization of recombinant antibodies in CHO cell through process and metabolic engineering

    DEFF Research Database (Denmark)

    Fan, Yuzhou

    Thanks to the recent advances in Chinese hamster ovary (CHO) “omic” revolution, the development of recombinant therapeutic protein bioprocessing using CHO cell factory started to merge with the new biological mindset called systems biology. In order to produce a CHO-derived recombinant therapeutic...... monoclonal antibody (mAb) towards desired patterns, and at the same time try to understand the underlying mechanisms of that from a systems biology perspective. Two different strategies were used and achieved great success in glyco-optimization: 1) optimize media and culture process; 2) Genetically optimize...... part of the thesis, both literature reviews and experimental applications were provided to demonstrate how to use omics data and implement systems biology to understand biological activities, especially N-glycosylation in CHO cells. In the last part of the thesis, the second strategy that apply genetic...

  2. Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production.

    Science.gov (United States)

    Li, Jin; Stoddard, Thomas J; Demorest, Zachary L; Lavoie, Pierre-Olivier; Luo, Song; Clasen, Benjamin M; Cedrone, Frederic; Ray, Erin E; Coffman, Andrew P; Daulhac, Aurelie; Yabandith, Ann; Retterath, Adam J; Mathis, Luc; Voytas, Daniel F; D'Aoust, Marc-André; Zhang, Feng

    2016-02-01

    Biopharmaceutical glycoproteins produced in plants carry N-glycans with plant-specific residues core α(1,3)-fucose and β(1,2)-xylose, which can significantly impact the activity, stability and immunogenicity of biopharmaceuticals. In this study, we have employed sequence-specific transcription activator-like effector nucleases (TALENs) to knock out two α(1,3)-fucosyltransferase (FucT) and the two β(1,2)-xylosyltransferase (XylT) genes within Nicotiana benthamiana to generate plants with improved capacity to produce glycoproteins devoid of plant-specific residues. Among plants regenerated from N. benthamiana protoplasts transformed with TALENs targeting either the FucT or XylT genes, 50% (80 of 160) and 73% (94 of 129) had mutations in at least one FucT or XylT allele, respectively. Among plants regenerated from protoplasts transformed with both TALEN pairs, 17% (18 of 105) had mutations in all four gene targets, and 3% (3 of 105) plants had mutations in all eight alleles comprising both gene families; these mutations were transmitted to the next generation. Endogenous proteins expressed in the complete knockout line had N-glycans that lacked β(1,2)-xylose and had a significant reduction in core α(1,3)-fucose levels (40% of wild type). A similar phenotype was observed in the N-glycans of a recombinant rituximab antibody transiently expressed in the homozygous mutant plants. More importantly, the most desirable glycoform, one lacking both core α(1,3)-fucose and β(1,2)-xylose residues, increased in the antibody from 2% when produced in the wild-type line to 55% in the mutant line. These results demonstrate the power of TALENs for multiplexed gene editing. Furthermore, the mutant N. benthamiana lines provide a valuable platform for producing highly potent biopharmaceutical products.

  3. Prokaryotic expression and renaturation of engineering chimeric Fab antibody against human hepatoma

    Institute of Scientific and Technical Information of China (English)

    Jin-Liang Xing; Xiang-Min Yang; Xi-Ying Yao; Fei Song; Zhi-Nan Chen

    2004-01-01

    AIM: To express chimeric Fd (cFd) and chimeric light chain (cL) in E.coli respectively and refold them into chimeric Fab (cFab) antibody.METHODS: cFd and cL genes were respectively inserted into the prokaryotic expression vector pET32a to construct recombinant vectors pET32a/cFd and pET32a/cL. Then,the competent E. colicells were transformed by the recombinant vectors and induced by IPTG. Moreover, a large quantity of cFd and cL expression products were prepared and mixed with equal molar to refold into cFab by gradient dialysis. The refolded products were identified and analyzed by sodium SDS-PAGE, Western blotting,ELISA and HPLC.RESULTS: High efficient prokaryotic expressions of both cFd and cL in the form of non-fusion protein were obtained with the expression levels of 28.3% and 32.3% of total bacteria proteins, respectively. Their relative molecular masses were all 24 ku or so, and both of them mainly existed in the form of inclusion bodies. In addition, cFd and cL were successfully refolded into cFab by gradient dialysis, with about 59.45% of recovery when the starting total protein concentration was 100 μg/mL. The renatured cFab could specifically bind to related antigen with high affinity.CONCLUSION: The cFab antibody against human hepatoma was highly and efficiently expressed and refolded, which laid a solid foundation for studying its application in the treatment of hepatoma.

  4. Antibody with an engineered Fc region as a therapeutic agent against dengue virus infection.

    Science.gov (United States)

    Ramadhany, Ririn; Hirai, Itaru; Sasaki, Tadahiro; Ono, Ken-ichiro; Ramasoota, Pongrama; Ikuta, Kazuyoshi; Kurosu, Takeshi

    2015-12-01

    Antibody-dependent enhancement (ADE) of dengue virus (DENV) infectivity is thought to play a crucial role in severe dengue disease. It occurs when pre-existing sub-neutralizing anti-DENV antibody (Ab) produced from a primary infection encounters a DENV serotype different from that of the initial infection and forms immune complexes, which enable the efficient infection of Fcγ receptor-bearing cells. However, the exact role played by Abs during a secondary infection of patients remains unknown. We previously obtained a broadly cross-reactive neutralizing IgG1 human monoclonal anti-DENV envelope (E) Ab (HuMAb) D23-1G7C2-IgG1 from a DENV-infected patient; however, D23-1G7C2-IgG1 had ADE activity. With the aim of being able to reduce the ADE activity, we exchanged the Fc region of D23-1G7C2 to generate Abs bearing each of the three other IgG subclasses (IgG2-4). In addition, N297A, a mutation known to reduce the affinity of the IgG1 Fc region for Fcγ receptors, was introduced into D23-1G7C2-IgG1. Swapping D23-1G7C2-IgG1 to IgG2 or IgG4 subclasses reduced ADE activity in FcγRI and FcγRII-bearing THP-1 cells. By contrast, in FcγRII-bearing K562 cells, the change to IgG2 increased ADE activity. Introducing the N297A mutation into D23-1G7C2-IgG1 resulted in a marked reduction in ADE activity in both cell types. Compared to D23-1G7C2-IgG1, D23-1G7C2-IgG1-N297A was less protective in IFN-α/β/γ receptor knockout mice infected with a lethal dose of recombinant chimeric DENV, carrying prME of DENV-2 in Japanese encephalitis virus (80% vs. 40% survival, respectively). These observations provide valuable information regarding the use of recombinant Abs as therapeutics.

  5. Human IgG1 Cγ1 Domain Is Crucial for the Bioactivity of the Engineered Anti-CD20 Antibodies

    Institute of Scientific and Technical Information of China (English)

    Shusheng Geng; Jiannan Feng; Yan Li; Xianjiang Kang; Yingxun Sun; Xin Gu; Ying Huang; Hong Chang; Beifen Shen

    2007-01-01

    In this study, we discussed the necessity of human IgG1 Cγ1 domain for recombinant antibody using computeraided homology modeling method and experimental studies. The heavy (VH) and light (VL) chain variable regions of 1-28, a murine IgM-type anti-CD20 mAb, were ligated by linker peptide (Gly4Ser)3 to form the single-chain Fv fragment (scFv). Then, the engineered antibody (LH1-3) was generated by fusing scFv with the entire IgG1 heavy constant regions. The 3-D structure of LH1-3 was modeled using computer-aided homology modeling method and the binding activity of LH1-3 was evaluated theoretically. Compared to the 3-D structure of the Fv fragment of the parent antibody, the conformation of the active pocket of LH1-3 was remained because of the rigid support of Cγ1.Further experimental results of flow cytometry showed that the engineered anti-CD20 antibody possessed specifically binding activity to CD20-expressing target cells. The anti-CD20 antibody fragments could also mediate complement-dependent cytotoxicity (CDC) of human B-lymphoid cell lines. Our study highlights some interests and advantages of a methodology based on the homology modeling and analysis of molecular structural properties.

  6. Bispecific engineered antibody domains (nanoantibodies that interact noncompetitively with an HIV-1 neutralizing epitope and FcRn.

    Directory of Open Access Journals (Sweden)

    Rui Gong

    Full Text Available Libraries based on an isolated human immunoglobulin G1 (IgG1 constant domain 2 (CH2 have been previously diversified by random mutagenesis. However, native isolated CH2 is not very stable and the generation of many mutations could lead to an increase in immunogenicity. Recently, we demonstrated that engineering an additional disulfide bond and removing seven N-terminal residues results in an engineered antibody domain (eAd (m01s with highly increased stability and enhanced binding to human neonatal Fc receptor (FcRn (Gong et al, JBC, 2009 and 2011. We and others have also previously shown that grafting of the heavy chain complementarity region 3 (CDR-H3 (H3 onto cognate positions of the variable domain leads to highly diversified libraries from which a number of binders to various antigens have been selected. However, grafting of H3s to non-cognate positions in constant domains results in additional residues at the junctions of H3s and the CH2 framework. Here we describe a new method based on multi-step PCR that allows the precise replacement of loop FG (no changes in its flanking sequences by human H3s from another library. Using this method and limited mutagenesis of loops BC and DE we generated an eAd phage-displayed library. Panning of this library against an HIV-1 gp41 MPER peptide resulted in selection of a binder, m2a1, which neutralized HIV-1 isolates from different clades with modest activity and retained the m01s capability of binding to FcRn. This result provides a proof of concept that CH2-based antigen binders that also mimic to certain extent other functions of full-size antibodies (binding to FcRn can be generated; we have previously hypothesized that such binders can be made and coined the term nanoantibodies (nAbs. Further studies in animal models and in humans will show how useful nAbs could be as therapeutics and diagnostics.

  7. Affinity Maturation of Monoclonal Antibody 1E11 by Targeted Randomization in CDR3 Regions Optimizes Therapeutic Antibody Targeting of HER2-Positive Gastric Cancer.

    Science.gov (United States)

    Ko, Bong-Kook; Choi, Soyoung; Cui, Lei Guang; Lee, Young-Ha; Hwang, In-Sik; Kim, Kyu-Tae; Shim, Hyunbo; Lee, Jong-Seo

    2015-01-01

    Anti-HER2 murine monoclonal antibody 1E11 has strong and synergistic anti-tumor activity in HER2-overexpressing gastric cancer cells when used in combination with trastuzumab. We presently optimized this antibody for human therapeutics. First, the complementarity determining regions (CDRs) of the murine antibody were grafted onto human germline immunoglobulin variable genes. No difference in affinity and biological activity was observed between chimeric 1E11 (ch1E11) and humanized 1E11 (hz1E11). Next, affinity maturation of hz1E11 was performed by the randomization of CDR-L3 and H3 residues followed by stringent biopanning selection. Milder selection pressure favored the selection of more diverse clones, whereas higher selection stringency resulted in the convergence of the panning output to a smaller number of clones with improved affinity. Clone 1A12 had four amino acid substitutions in CDR-L3, and showed a 10-fold increase in affinity compared to the parental clone and increased potency in an in vitro anti-proliferative activity assay with HER2-overepxressing gastric cancer cells. Clone 1A12 inhibited tumor growth of NCI-N87 xenograft model with similar efficacy to trastuzumab alone, and the combination treatment of 1A12 and trastuzumab completely removed the established tumors. These results suggest that humanized and affinity matured monoclonal antibody 1A12 is a highly optimized molecule for future therapeutic development against HER2-positive tumors.

  8. Antibody engineering reveals the important role of J segments in the production efficiency of llama single-domain antibodies in Saccharomyces cerevisiae.

    NARCIS (Netherlands)

    Gorlani, A.; Hulsik, D.L.; Adams, H.; Vriend, G.; Hermans, P.; Verrips, T.

    2012-01-01

    Variable domains of llama heavy-chain antibodies (VHH) are becoming a potent tool for a wide range of biotechnological and medical applications. Because of structural features typical of their single-domain nature, they are relatively easy to produce in lower eukaryotes, but it is not uncommon that

  9. Neural stem cells as a novel platform for tumor-specific delivery of therapeutic antibodies.

    Directory of Open Access Journals (Sweden)

    Richard T Frank

    Full Text Available BACKGROUND: Recombinant monoclonal antibodies have emerged as important tools for cancer therapy. Despite the promise shown by antibody-based therapies, the large molecular size of antibodies limits their ability to efficiently penetrate solid tumors and precludes efficient crossing of the blood-brain-barrier into the central nervous system (CNS. Consequently, poorly vascularized solid tumors and CNS metastases cannot be effectively treated by intravenously-injected antibodies. The inherent tumor-tropic properties of human neural stem cells (NSCs can potentially be harnessed to overcome these obstacles and significantly improve cancer immunotherapy. Intravenously-delivered NSCs preferentially migrate to primary and metastatic tumor sites within and outside the CNS. Therefore, we hypothesized that NSCs could serve as an ideal cellular delivery platform for targeting antibodies to malignant tumors. METHODS AND FINDINGS: As proof-of-concept, we selected Herceptin (trastuzumab, a monoclonal antibody widely used to treat HER2-overexpressing breast cancer. HER2 overexpression in breast cancer is highly correlated with CNS metastases, which are inaccessible to trastuzumab therapy. Therefore, NSC-mediated delivery of trastuzumab may improve its therapeutic efficacy. Here we report, for the first time, that human NSCs can be genetically modified to secrete anti-HER2 immunoglobulin molecules. These NSC-secreted antibodies assemble properly, possess tumor cell-binding affinity and specificity, and can effectively inhibit the proliferation of HER2-overexpressing breast cancer cells in vitro. We also demonstrate that immunoglobulin-secreting NSCs exhibit preferential tropism to tumor cells in vivo, and can deliver antibodies to human breast cancer xenografts in mice. CONCLUSIONS: Taken together, these results suggest that NSCs modified to secrete HER2-targeting antibodies constitute a promising novel platform for targeted cancer immunotherapy. Specifically

  10. Selection of antibodies from synthetic antibody libraries.

    Science.gov (United States)

    Harel Inbar, Noa; Benhar, Itai

    2012-10-15

    More than 2 dozen years had passed since the field of antibody engineering was established, with the first reports of bacterial [1-3] and mammalian cells [4] expression of recombinant antibody fragments, and in that time a lot of effort was dedicated to the development of efficient technological means, intended to assist in the creation of therapeutic monoclonal antibodies (mAbs). Research focus was given to two intertwined technological aspects: the selection platform and the recombinant antibody repertoires. In accordance with these areas of interest, it is the goal of this chapter to describe the various selection tools and antibody libraries existing, with emphasis on the later, and their applications. This chapter gives a far from exhaustive, subjective "historic account" of the field, describing the selection platforms, the different formats of antibody repertoires and the applications of both for selecting recombinant antibodies. Several excellent books provide detailed protocols for constructing antibody libraries and selecting antibodies from those libraries [5-13]. Such books may guide a newcomer to the field in the fine details of antibody engineering. We would like to offer advice to the novice: although seemingly simple, effective library construction and antibody isolation provide best benefits in the hands of professionals. It is an art as much as it is science.

  11. Generation and antitumor effects of an engineered and energized fusion protein VL-LDP-AE composed of single-domain antibody and lidamycin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Type IV collagenase plays a pivotal role in invasion, metastasis and angiogenesis of tumor. Single domain antibodies are attractive as tumor-targeting vehicle because of their much smaller size com-pared with antibody molecules produced by conventional methods. Lidamycin (LDM) is a potent enediyne-containing antitumor antibiotic. In this study an engineered and energized fusion protein VL-LDP-AE composed of lidamycin and VL domain of mAb 3G11 directed against type IV collagenase was prepared using a novel two-step method. First a VL-LDP fusion protein was constructed by DNA recombination. Secondly VL-LDP-AE was obtained by molecular reconstitution. In MTT assay, VL-LDP-AE showed potent cytotoxicity to HT-1080 cells and KB cells with IC50 values of 8.55×10-12 and 1.70×10-11 mol/L, respectively. VL-LDP-AE showed antiangiogenic activity in chick chrorioallantoic membrane (CAM) assay and tube formation assay. In in vivo experiments, VL-LDP-AE was proved to be more effective than free LDM against the growth of subcutaneously transplanted hepatoma 22 in mice. Drugs were given intravenously on day 3 and 10 after tumor transplantation. Compared in terms of maximal tolerated doses, VL-LDP-AE at 0.25 mg/kg suppressed the tumor growth by 89.5%, LDM at 0.05 mg/kg by 69.9%, and mitomycin at 1 mg/kg by 35%. Having a molecular weight of 25.2 kDa, VL-LDP-AE was much smaller than other reported antibody-based drugs. The results suggested that VL-LDP-AE would be a promising candidate for tumor targeting therapy. And the 2-step approach could serve as a new technology platform for making a series of highly potent engineered antibody-based drugs for a variety of cancers.

  12. Generation and antitumor effects of an engineered and energized fusion protein VL-LDP-AE composed of single-domain antibody and lidamycin

    Institute of Scientific and Technical Information of China (English)

    MIAO QingFang; SHANG BoYang; OUYANG ZhiGang; LIU XiaoYun; ZHEN YongSu

    2007-01-01

    Type Ⅳ collagenase plays a pivotal role in invasion, metastasis and angiogenesis of tumor. Single domain antibodies are attractive as tumor-targeting vehicle because of their much smaller size compared with antibody molecules produced by conventional methods. Lidamycin (LDM) is a potent enediyne-containing antitumor antibiotic. In this study an engineered and energized fusion protein VL-LDP-AE composed of lidamycin and VL domain of mAb 3G11 directed against type Ⅳ collagenase was prepared using a novel two-step method. First a VL-LDP fusion protein was constructed by DNA recombination. Secondly VL-LDP-AE was obtained by molecular reconstitution. In MTT assay,VL-LDP-AE showed potent cytotoxicity to HT-1080 cells and KB cells with IC50 values of 8.55×10-12 and 1.70×10-11 mol/L, respectively. VL-LDP-AE showed antiangiogenic activity in chick chrorioallantoic membrane (CAM) assay and tube formation assay. In in vivo experiments, VL-LDP-AE was proved to be more effective than free LDM against the growth of subcutaneously transplanted hepatoma 22 in mice.Drugs were given intravenously on day 3 and 10 after tumor transplantation. Compared in terms of maximal tolerated doses, VL-LDP-AE at 0.25 mg/kg suppressed the tumor growth by 89.5%, LDM at 0.05mg/kg by 69.9%, and mitomycin at 1 mg/kg by 35%. Having a molecular weight of 25.2 kDa, VL-LDP-AE was much smaller than other reported antibody-based drugs. The results suggested that VL-LDP-AE would be a promising candidate for tumor targeting therapy. And the 2-step approach could serve as a new technology platform for making a series of highly potent engineered antibody-based drugs for a variety of cancers.

  13. Positron Emission Tomographic Imaging of Iodine 124 Anti–Prostate Stem Cell Antigen–Engineered Antibody Fragments in LAPC-9 Tumor–Bearing Severe Combined Immunodeficiency Mice

    Directory of Open Access Journals (Sweden)

    Jeffrey V. Leyton

    2013-05-01

    Full Text Available The humanized antibody (hu1G8 has been shown to localize to prostate stem cell antigen (PSCA and image PSCA-positive xenografts. We previously constructed hu1G8 anti-PSCA antibody fragments and tested them for tumor targeting and the ability to image prostate cancer at early and late time points postinjection by positron emission tomography (PET. We now then compare the PET imaging and the radioactivity accumulation properties in prostate cancer tumors and nontarget tissues to determine the superior 124I-labeled hu1G8 antibody format. 124I-labeled diabody, minibody, scFv-Fc, scFv-Fc double mutant (DM, and parental IgG were administered into severe combined immunodeficiency (SCID mice bearing LAPC-9 xenografts and followed by whole-body PET imaging of mice at preselected time points. Regions of interest were manually drawn around tumor and nontarget tissues and evaluated for radioactivity accumulation. The 124I-hu1G8 IgG has its best time point for tumor high-contrast imaging at 168 hours postinjection. The 124I-hu1G8 minibody at 44 hours postinjection results in superior tumor high-contrast imaging compared to the other antibody formats. The 124I-hu1G8 minibody at 44 hours postinjection also has comparable percent tumor radioactivity compared to 124I-hu1G8 IgG at 168 hours postinjection. The 124I-hu1G8 minibody is the best engineered hu1G8 antibody format for imaging prostate cancer.

  14. Generation and charaterization of HER2 anti-idiotypic monoclonal antibody%HER2抗独特型单克隆抗体的制备和初步研究

    Institute of Scientific and Technical Information of China (English)

    薛洋; 张星; 赵锋; 师建国

    2012-01-01

    Objective: To generate and characterize the HER2 anti - idiotypic monoclonal antibody, with the aim of further investigating the vaccine of breast cancer. Methods: To use the human HER2 protein to immunize rabbit for generating rabbit - anti - human HER2 antibodies, and immunize Balb/c mice with these rabbit - anti - human HER2 antibodies, the HER2 anti - idiotypic monoclonal antibody was generated by hybridoma technique. Results: ELISA results showed that the obtained rabbit anti - HER2 antibodies coald specific combine with the HER2 pro-teins , and the OD values had a positive linear relationship with the concentration of HER2. Through immunizing mice with rabbit anti - HER2 antibodies we obtained a stable hybridoma 1F5 that secreted HER2 anti - idiotypic mono-clonal antibodies, the antibodies could specifiely bind with rabbit anti HER2 polyclonal antibodies, and competitive with HER2. The anti - serum of 1F5 immunized rabbits could specific bind with HER2. The antibody subtype was IgG3 ,and the titer of the least concentrated ascites was 1:1. 02 × 10 . Conclusion: The anti - idiotypic monoclonal antibody 1F5 belongs to Ab2β, and IgG3 antibody, and confirmed that the 1F5 anti -idiotypic antibody is one mim-icking human HER2. 1F5 may be an anti - idiotypic monoclonal antibody vaccine of the breast cancer.%目的:研制HER2抗独特型单克隆抗体,为进一步深入研究乳腺癌抗独特型抗体疫苗奠定基础.方法:用人HER2蛋白免疫家兔,获得特异性兔抗HER2抗体.再用兔抗HER2抗体免疫Balb/c小鼠,采用杂交瘤技术制备HER2抗独特型单克隆抗体.并筛选出β型HER2抗独特型单克隆抗体.结果:ELISA检测结果表明,获得的兔抗HER2抗体能特异性地与HER2蛋白结合,其OD值随HER2的浓度呈正线性关系.用兔抗HER2抗体免疫小鼠获得一株稳定分泌HER2抗独特型单克隆抗体的杂交瘤细胞1F5,其分泌的单克隆抗体能特异性的和兔抗HER2多克隆抗体结合,并与HER2

  15. Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions.

    Science.gov (United States)

    Schlothauer, Tilman; Herter, Sylvia; Koller, Claudia Ferrara; Grau-Richards, Sandra; Steinhart, Virginie; Spick, Christian; Kubbies, Manfred; Klein, Christian; Umaña, Pablo; Mössner, Ekkehard

    2016-10-01

    Recombinant human IgG antibodies (hIgGs) completely devoid of binding to Fcγ receptors (FcγRs) and complement protein C1q, and thus with abolished immune effector functions, are of use for various therapeutic applications in order to reduce FcγR activation and Fc-mediated toxicity. Fc engineering approaches described to date only partially achieve this goal or employ a large number of mutations, which may increase the risk of anti-drug antibody generation. We describe here two new, engineered hIgG Fc domains, hIgG1-P329G LALA and hIgG4-P329G SPLE, with completely abolished FcγR and C1q interactions, containing a limited number of mutations and with unaffected FcRn interactions and Fc stability. Both 'effector-silent' Fc variants are based on a novel Fc mutation, P329G that disrupts the formation of a proline sandwich motif with the FcγRs. As this motif is present in the interface of all IgG Fc/FcγR complexes, its disruption can be applied to all human and most of the other mammalian IgG subclasses in order to create effector silent IgG molecules.

  16. Therapeutic Recombinant Monoclonal Antibodies

    Science.gov (United States)

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  17. Engineering of ultra-small diagnostic nanoprobes through oriented conjugation of single-domain antibodies and quantum dots

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Alyona Sukhanova, Klervi Even-Desrumeaux, Patrick Chames, Daniel Baty, Mikhail Artemyev, Vladimir Oleinikov & Igor Nabiev ### Abstract Nanoparticle-based biodetection commonly employs monoclonal antibodies (mAbs) for targeting. Although several types of conjugates have been used for biomarker labeling, the large size of mAbs limits the number of ligands per nanoparticle, impedes their intratumoral distribution, and limits intracellular penetration. Furthermore, the condi...

  18. Engineered antibodies for monitoring of polynuclear aromatic hydrocarbons. Annual progress report, October 1, 1996--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Karu, A.E. [Univ. of California, Berkeley, CA (US); Roberts, V.A. [Scripps Research Inst., La Jolla, CA (US); Li, Q.X. [Univ. of Hawaii, Honolulu, HI (US)

    1997-01-01

    'The objective of this multidisciplinary project is to use molecular biological techniques to derive a set of antibodies with useful affinities and selectivities for recovery and detection of polynuclear aromatic hydrocarbons (PAHs) in environmental and biological samples. The long-term goal is to develop immunodetection methods that will be useful in biomarker research and regulatory monitoring of PAHs. APPROACH The aims and approaches remain the same as in the original proposal. My laboratory cloned and characterized two PAL-I-specific recombinant Fab antibodies (rFabs). The authors are deriving new affinities and specificities for PAHs by mutagenesis of these rFabs, and by selection of new rFabs from combinatorial phage display libraries. Dr. Qing Li''s group designed and synthesized PAH haptens that were essential for my laboratory''s work. Dr. Victoria Roberts''s group developed molecular models that suggested the mechanism of PAH binding and predicted mutations to alter it. Dr. Li''s laboratory is using the recombinant antibodies they produce to develop immunoaffinity and immunoassay methods to quantify PAHs in environmental samples.'

  19. Inactivation of GDP-fucose transporter gene (Slc35c1) in CHO cells by ZFNs, TALENs and CRISPR-Cas9 for production of fucose-free antibodies.

    Science.gov (United States)

    Chan, Kah Fai; Shahreel, Wahyu; Wan, Corrine; Teo, Gavin; Hayati, Noor; Tay, Shi Jie; Tong, Wen Han; Yang, Yuansheng; Rudd, Pauline M; Zhang, Peiqing; Song, Zhiwei

    2016-03-01

    Removal of core fucose from N-glycans attached to human IgG1 significantly enhances its affinity for the receptor FcγRIII and thereby dramatically improves its antibody-dependent cellular cytotoxicity activity. While previous works have shown that inactivation of fucosyltransferase 8 results in mutants capable of producing fucose-free antibodies, we report here the use of genome editing techniques, namely ZFNs, TALENs and the CRISPR-Cas9, to inactivate the GDP-fucose transporter (SLC35C1) in Chinese hamster ovary (CHO) cells. A FACS approach coupled with a fucose-specific lectin was developed to rapidly isolate SLC35C1-deficient cells. Mass spectrometry analysis showed that both EPO-Fc produced in mutants arising from CHO-K1 and anti-Her2 antibody produced in mutants arising from a pre-existing antibody-producing CHO-HER line lacked core fucose. Lack of functional SLC35C1 in these cells does not affect cell growth or antibody productivity. Our data demonstrate that inactivating Slc35c1 gene represents an alternative approach to generate CHO cells for production of fucose-free antibodies.

  20. Engineering of a recombinant trivalent single-chain variable fragment antibody directed against rabies virus glycoprotein G with improved neutralizing potency.

    Science.gov (United States)

    Turki, Imène; Hammami, Akil; Kharmachi, Habib; Mousli, Mohamed

    2014-02-01

    Human and equine rabies immunoglobulins are currently available for passive immunization against rabies. However, these are hampered by the limited supply and some drawbacks. Advances in antibody engineering have led to overcome issues of clinical applications and to improve the protective efficacy. In the present study, we report the generation of a trivalent single-chain Fv (scFv50AD1-Fd), that recognizes the rabies virus glycoprotein, genetically fused to the trimerization domain of the bacteriophage T4 fibritin, termed 'foldon' (Fd). scFv50AD1-Fd was expressed as soluble recombinant protein in bacterial periplasmic space and purified through affinity chromatography. The molecular integrity and stability were analyzed by polyacrylamide gradient-gel electrophoresis, size-exclusion chromatography and incubation in human sera. The antigen-binding properties of the trimeric scFv were analyzed by direct and competitive-ELISA. Its apparent affinity constant was estimated at 1.4 ± 0.25 × 10(9)M(-1) and was 75-fold higher than its monovalent scFv (1.9 ± 0.68 × 10(7)M(-1)). The scFv50AD1-Fd neutralized rabies virus in a standard in vitro and in vivo neutralization assay. We showed a high neutralization activity up to 75-fold compared with monovalent format and the WHO standard serum. The gain in avidity resulting from multivalency along with an improved biological activity makes the trivalent scFv50AD1-Fd construct an important reagent for rabies protection. The antibody engineering approach presented here may serve as a strategy for designing a new generation of anti-rabies for passive immunotherapy.

  1. Engineering the surface properties of a human monoclonal antibody prevents self-association and rapid clearance in vivo

    Science.gov (United States)

    Dobson, Claire L.; Devine, Paul W. A.; Phillips, Jonathan J.; Higazi, Daniel R.; Lloyd, Christopher; Popovic, Bojana; Arnold, Joanne; Buchanan, Andrew; Lewis, Arthur; Goodman, Joanne; van der Walle, Christopher F.; Thornton, Peter; Vinall, Lisa; Lowne, David; Aagaard, Anna; Olsson, Lise-Lotte; Ridderstad Wollberg, Anna; Welsh, Fraser; Karamanos, Theodoros K.; Pashley, Clare L.; Iadanza, Matthew G.; Ranson, Neil A.; Ashcroft, Alison E.; Kippen, Alistair D.; Vaughan, Tristan J.; Radford, Sheena E.; Lowe, David C.

    2016-01-01

    Uncontrolled self-association is a major challenge in the exploitation of proteins as therapeutics. Here we describe the development of a structural proteomics approach to identify the amino acids responsible for aberrant self-association of monoclonal antibodies and the design of a variant with reduced aggregation and increased serum persistence in vivo. We show that the human monoclonal antibody, MEDI1912, selected against nerve growth factor binds with picomolar affinity, but undergoes reversible self-association and has a poor pharmacokinetic profile in both rat and cynomolgus monkeys. Using hydrogen/deuterium exchange and cross-linking-mass spectrometry we map the residues responsible for self-association of MEDI1912 and show that disruption of the self-interaction interface by three mutations enhances its biophysical properties and serum persistence, whilst maintaining high affinity and potency. Immunohistochemistry suggests that this is achieved via reduction of non-specific tissue binding. The strategy developed represents a powerful and generic approach to improve the properties of therapeutic proteins. PMID:27995962

  2. Antimitochondrial antibody

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003529.htm Antimitochondrial antibody To use the sharing features on this page, please enable JavaScript. Antimitochondrial antibodies (AMA) are substances ( antibodies ) that form against mitochondria. ...

  3. Enhanced tumor-targeting selectivity by modulating bispecific antibody binding affinity and format valence

    Science.gov (United States)

    Mazor, Yariv; Sachsenmeier, Kris F.; Yang, Chunning; Hansen, Anna; Filderman, Jessica; Mulgrew, Kathy; Wu, Herren; Dall’Acqua, William F.

    2017-01-01

    Bispecific antibodies are considered attractive bio-therapeutic agents owing to their ability to target two distinct disease mediators. Cross-arm avidity targeting of antigen double-positive cancer cells over single-positive normal tissue is believed to enhance the therapeutic efficacy, restrict major escape mechanisms and increase tumor-targeting selectivity, leading to reduced systemic toxicity and improved therapeutic index. However, the interplay of factors regulating target selectivity is not well understood and often overlooked when developing clinically relevant bispecific therapeutics. We show in vivo that dual targeting alone is not sufficient to endow selective tumor-targeting, and report the pivotal roles played by the affinity of the individual arms, overall avidity and format valence. Specifically, a series of monovalent and bivalent bispecific IgGs composed of the anti-HER2 trastuzumab moiety paired with affinity-modulated VH and VL regions of the anti-EGFR GA201 mAb were tested for selective targeting and eradication of double-positive human NCI-H358 non-small cell lung cancer target tumors over single-positive, non-target NCI-H358-HER2 CRISPR knock out tumors in nude mice bearing dual-flank tumor xenografts. Affinity-reduced monovalent bispecific variants, but not their bivalent bispecific counterparts, mediated a greater degree of tumor targeting selectivity, while the overall efficacy against the targeted tumor was not substantially affected. PMID:28067257

  4. Attachment of a Genetically Engineered Antibody to a Carbon Nanotube Transistor for Detection of Prostate Cancer Biomarkers

    Science.gov (United States)

    Lerner, Mitchell; Dailey, Jennifer; Goldsmith, Brett; Robinson, Matthew; Johnson, A. T. Charlie

    2011-03-01

    We have developed a novel detection method for osteopontin (OPN) by attaching an engineered single chain variable fragment (scFv) protein with high binding affinity for OPN to a carbon nanotube transistor. Osteopontin is a potential new biomarker for prostate cancer; its presence in humans is already associated with several forms of cancer, arthritis, osteoporosis and stress. Prostate cancer is the most commonly diagnosed cancer and second leading cause of cancer deaths among American men and as such represents a major public health issue. Detection of early-stage cancer often results in successful treatment, with long term disease-free survival in 60-90% of patients. Electronic transport measurements are used to detect the presence of OPN in solution at clinically relevant concentrations.

  5. Hybrids of a Genetically Engineered Antibody and a Carbon Nanotube Transistor for Detection of Prostate Cancer Biomarkers

    CERN Document Server

    Lerner, Mitchell B; Pazina, Tatiana; Dailey, Jennifer; Goldsmith, Brett R; Robinson, Matthew K; Johnson, A T Charlie

    2013-01-01

    We developed a novel detection method for osteopontin (OPN), a new biomarker for prostate cancer, by attaching a genetically engineered single chain variable fragment (scFv) protein with high binding affinity for OPN to a carbon nanotube field-effect transistor (NTFET). Chemical functionalization using diazonium salts is used to covalently attach scFv to NT-FETs, as confirmed by atomic force microscopy, while preserving the activity of the biological binding site for OPN. Electron transport measurements indicate that functionalized NT-FET may be used to detect the binding of OPN to the complementary scFv protein. A concentration-dependent increase in the source-drain current is observed in the regime of clinical significance, with a detection limit of approximately 30 fM. The scFv-NT hybrid devices exhibit selectivity for OPN over other control proteins. These devices respond to the presence of OPN in a background of concentrated bovine serum albumin, without loss of signal. Based on these observations, the d...

  6. A simplified procedure for antibody engineering by yeast surface display: Coupling display levels and target binding by ribosomal skipping.

    Science.gov (United States)

    Grzeschik, Julius; Hinz, Steffen C; Könning, Doreen; Pirzer, Thomas; Becker, Stefan; Zielonka, Stefan; Kolmar, Harald

    2017-02-01

    Yeast surface display is a valuable, widely used method for protein engineering. However, current yeast display applications rely on the staining of epitope tags in order to verify full-length presentation of the protein of interest on the cell surface. We aimed at developing a modified yeast display approach that relies on ribosomal skipping, thereby enabling the translation of two proteins from one open reading frame and, in that manner, generating an intracellular fluorescence signal. This improved setup is based on a 2A sequence that is encoded between the protein to be displayed and a gene for green fluorescent protein (GFP). The intracellular GFP fluorescence signal of yeast cells correlates with full-length protein presentation and omits the need for the immunofluorescence detection of epitope tags. For method validation, shark-derived IgNAR variable domains (vNAR) were subjected to affinity maturation using the 2A-GFP system. Yeast library screening of full-length vNAR variants which were detected via GFP expression yielded the same high-affinity binder that had previously been isolated by our group using the conventional epitope tag-based display format. The presented method obviates the need for additional immunofluorescence cell staining, offering an easy and cost-friendly alternative to conventional epitope tag detections.

  7. Expression of recombinant antibodies.

    Science.gov (United States)

    Frenzel, André; Hust, Michael; Schirrmann, Thomas

    2013-01-01

    Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with "human-like" post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.

  8. Dendritic cells engineered to secrete anti-DcR3 antibody augment cytotoxic T lymphocyte response against pancreatic cancer in vitro

    Science.gov (United States)

    Chen, Jiang; Guo, Xiao-Zhong; Li, Hong-Yu; Zhao, Jia-Jun; Xu, Wen-Da

    2017-01-01

    AIM To investigate the enhanced cytotoxic T lymphocyte responses against pancreatic cancer (PC) in vitro induced by dendritic cells (DCs) engineered to secrete anti-DcR3 monoclonal antibody (mAb). METHODS DCs, T lymphocytes and primary PC cells were obtained from PC patients. DCs were transfected with a designed humanized anti-DcR3 monoclonal antibody heavy and light chain mRNA and/or total tumor RNA (DC-tumor-anti-DcR3 RNA or DC-total tumor RNA) by using electroporation technology. The identification, concentration and function of anti-DcR3 mAb secreted by DC-tumor-anti-DcR3 RNA were determined by western blotting and enzyme-linked immunosorbent assay. After co-culturing of autologous isolated PC cells with target DCs, the effects of secreting anti-DcR3 mAb on RNA-DCs’ viability and apoptosis were assessed by MTT assay and flow cytometry. Analysis of enhanced antigen-specific immune response against PC induced by anti-DcR3 mAb secreting DCs was performed using a 51Cr releasing test. T cell responses induced by RNA-loaded DCs were analyzed by measuring cytokine levels, including IFN-γ, IL-10, IL4, TNF-α and IL-12. RESULTS The anti-DcR3 mAb secreted by DCs reacted with recombinant human DcR3 protein and generated a band with 35 kDa molecular weight. The secreting mAb was transient, peaking at 24 h and becoming undetectable after 72 h. After co-incubation with DC-tumor-anti-DcR3 RNA for designated times, the DcR3 level in the supernatant of autologous PC cells was significantly down-regulated (P < 0.05). DCs secreting anti-DcR3 mAb could improve cell viability and slow down the apoptosis of RNA-loaded DCs, compared with DC-total tumor RNA (P < 0.01). The anti-DcR3 mAb secreted by DC-tumor-anti-DcR3 RNA could enhance the induction of cytotoxic T lymphocytes (CTLs) activity toward RNA-transfected DCs, primary tumor cells, and PC cell lines, compared with CTLs stimulated by DC-total tumor RNA or control group (P < 0.05). Meanwhile, the antigen-specific CTL responses

  9. Tumor immunoscintigraphy by means of radiolabeled monoclonal antibodies: Multicenter studies of the Italian National Research Council--Special Project Biomedical Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Siccardi, A.G. (Universita di Milano (Italy))

    1990-02-01

    Four radioimmunopharmaceuticals ({sup 99m}Tc- and 111In-labeled anti-melanoma and {sup 111}In- and {sup 131}I-labeled anti-carcinoembryonic antigen F(ab')2 fragments derived from monoclonal antibodies 225.28S and F023C5) were developed by means of a collaborative effort coordinated by the Italian National Research Council, Special Project Biomedical Engineering. After appropriate pilot studies, the radioimmunopharmaceuticals, prepared by Sorin Biomedica (Saluggia, Italy), were distributed to 31 Nuclear Medicine departments in Italy and in 10 other European countries within the framework of three immunoscintigraphy multicenter studies. A total of 1245 patients were studied, 898 of whom carried 1725 documented tumor lesions; 1596 of 2193 tumor lesions (468 of which were previously unknown) were imaged by immunoscintigraphy in 785 of 990 lesion-bearing patients. Among the occult lesions, 173 were imaged in 92 patients admitted to the study as lesion-free patients. The results have been analyzed in terms of the reliability, reproducibility, and diagnostic usefulness of the method and of each immunoradiopharmaceutical.

  10. Engineered Lactobacillus rhamnosus GG expressing IgG-binding domains of protein G: Capture of hyperimmune bovine colostrum antibodies and protection against diarrhea in a mouse pup rotavirus infection model.

    Science.gov (United States)

    Günaydın, Gökçe; Zhang, Ran; Hammarström, Lennart; Marcotte, Harold

    2014-01-16

    Rotavirus-induced diarrhea causes more than 500,000 deaths annually in the world, and although vaccines are being made available, new effective treatment strategies should still be considered. Purified antibodies derived from hyperimmune bovine colostrum (HBC), from cows immunized with rotavirus, were previously used for treatment of rotavirus diarrhea in children. A combination of HBC antibodies and a probiotic strain of Lactobacillus (L. rhamnosus GG) was also found to be more effective than HBC alone in reducing diarrhea in a mouse model of rotavirus infection. In order to further improve this form of treatment, L. rhamnosus GG was engineered to display surface expressed IgG-binding domains of protein G (GB1, GB2, and GB3) which capture HBC-derived IgG antibodies (HBC-IgG) and thus target rotavirus. The expression of IgG-binding domains on the surface of the bacteria as well as their binding to HBC-IgG and to rotavirus (simian strain RRV) was demonstrated by Western blot, flow cytometry, and electron microscopy. The prophylactic effect of engineered L. rhamnosus GG and anti-rotaviral activity of HBC antibodies was evaluated in a mouse pup model of RRV infection. The combination therapy with engineered L. rhamnosus GG (PG3) and HBC was significantly more effective in reducing the prevalence, severity, and duration of diarrhea in comparison to HBC alone or a combination of wild-type L. rhamnosus GG and HBC. The new therapy reduces the effective dose of HBC between 10 to 100-fold and may thus decrease treatment costs. This antibody capturing platform, tested here for the first time in vivo, could potentially be used to target additional gastrointestinal pathogens.

  11. The new research and application progress in heavy chain antibody and its genetic engineering single domain antibody%重链抗体及其基因工程单域抗体的研究和应用进展

    Institute of Scientific and Technical Information of China (English)

    蔡家麟; 王颖; 潘欣(通讯作者)

    2013-01-01

      In recent years, researchers found unusual antibodies composed only of heavy chains from camelids and sharks. These peculiar heavy chain antibodies (hcAbs) lack light chains but stil remain dedicated variable domain with the antigen-binding site. Recombinant single-domain antibody is the smalest intact antigen-binding fragment derived from heavy-chain antibodies. The advantageous features of single domain antibody reagents derived from these hcAbs include their smal dimension, high apparent stability, high expression. As expectations, high-affinity, improved solubility without any sign of aggregation single-domain antibodies can be widely used in basic research and improved diagnostic field.%  近年来在骆驼和护士鲨等动物的体内发现了一种重链抗体。重链抗体和普通的抗体相比缺少轻链,仅有可变区,但依然保留了抗原结合能力。通过基因工程改造重链抗体形成的单域抗体不仅保留了分子量小、物理稳定性高、容易表达等特性优点,而且亲和力高、不易聚集,被广泛应用于科研和临床诊断。

  12. Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer

    Directory of Open Access Journals (Sweden)

    Emily S Day

    2010-06-01

    Full Text Available Emily S Day, Lissett R Bickford, John H Slater, Nicholas S Riggall, Rebekah A Drezek, Jennifer L WestDepartment of Bioengineering, Rice University, Houston, TX, USAAbstract: The goal of this study was to develop near-infrared (NIR resonant gold-gold sulfide nanoparticles (GGS-NPs as dual contrast and therapeutic agents for cancer management via multiphoton microscopy followed by higher intensity photoablation. We demonstrate that GGS-NPs exposed to a pulsed, NIR laser exhibit two-photon induced photoluminescence that can be utilized to visualize cancerous cells in vitro. When conjugated with anti-HER2 antibodies, these nanoparticles specifically bind SK-BR-3 breast carcinoma cells that overexpress the HER2 receptor, enabling the cells to be imaged via multiphoton microscopy with an incident laser power of 1 mW. Higher excitation power (50 mW could be employed to induce thermal damage to the cancerous cells, producing extensive membrane blebbing within seconds leading to cell death. GGS-NPs are ideal multifunctional agents for cancer management because they offer the ability to pinpoint precise treatment sites and perform subsequent thermal ablation in a single setting.Keywords: cancer, nanomedicine, multiphoton microscopy, photoluminescence, photothermal therapy, theranostics

  13. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity

    NARCIS (Netherlands)

    Moessner, Ekkehard; Bruenker, Peter; Moser, Samuel; Puentener, Ursula; Schmidt, Carla; Herter, Sylvia; Grau, Roger; Gerdes, Christian; Nopora, Adam; van Puijenbroek, Erwin; Ferrara, Claudia; Sondermann, Peter; Jaeger, Christiane; Strein, Pamela; Fertig, Georg; Friess, Thomas; Schuell, Christine; Bauer, Sabine; Dal Porto, Joseph; Del Nagro, Christopher; Dabbagh, Karim; Dyer, Martin J. S.; Poppema, Sibrand; Klein, Christian; Umana, Pablo

    2010-01-01

    CD20 is an important target for the treatment of B-cell malignancies, including non-Hodgkin lymphoma as well as autoimmune disorders. B-cell depletion therapy using monoclonal antibodies against CD20, such as rituximab, has revolutionized the treatment of these disorders, greatly improving overall s

  14. High concordance of SP3 rabbit monoclonal antibody with FISH to evaluate HER2 in breast carcinoma.

    Science.gov (United States)

    Wludarski, Sheila C L; Bacchi, Carlos E

    2008-10-01

    HER2 gene amplification or HER2 protein overexpression predicts a more aggressive clinical course in breast cancer, with a worse response to hormonal therapy, and determines eligibility for the use of the anti-HER2 antibody trastuzumab. For these reasons, the diagnostic assays that determine HER2 status in breast carcinoma have become increasingly important. Our goal was to evaluate the concordance, sensitivity, and specificity of a rabbit monoclonal antibody directed to the extracellular domain of the HER2 receptor (SP3) and compare it with fluorescence in situ hybridization and HercepTest in 179 invasive breast carcinomas. We found that SP3 was in agreement with fluorescence in situ hybridization results in 94.6% of cases. HercepTest and fluorescence in situ hybridization results were in agreement in 95.1% of the cases. Only 4.3% (4/93) of the cases that scored 0/1+ by SP3 were amplified by fluorescence in situ hybridization, and 8.3% (3/36) of cases that scored 3+ were not amplified by fluorescence in situ hybridization. Comparing SP3 with HercepTest, we observed that HercepTest demonstrated higher sensitivity (100.0% vs. 89.0%) but SP3 demonstrated higher specificity (97.0% vs. 89.0%). An important advantage of SP3 (in comparison with HercepTest) is its higher discrimination power (72.1% vs. 34.1%). For these reasons, this antibody could be helpful in the determination of HER2 status in a routine basis.

  15. Whole-body imaging of HER2/neu-overexpressing tumors using scFv-antibody conjugated quantum dots

    Science.gov (United States)

    Balalaeva, Irina V.; Zdobnova, Tatiana A.; Brilkina, Anna A.; Krutova, Irina M.; Stremovskiy, Oleg A.; Lebedenko, Elena N.; Vodeneev, Vladimir V.; Turchin, Ilya V.; Deyev, Sergey M.

    2010-02-01

    Semiconductor quantum dots (QDs) are widely used in different fields of bioscience and biotechnology due to their unique optical properties. QDs can be used as fluorescent markers for optical detection and monitoring of deeply located tumors in vivo after specific labeling achieved by conjugating of QDs with targeting molecules. In this work the possibilities of intravital tumor labeling with QDs and subsequent in vivo tumor imaging were estimated. The experiments were run on immunodeficient nu/nu mice bearing human breast carcinoma SKBR-3, overexpressing surface protein HER2/neu. We used quantum dots Qdot 705 ITK (Invitrogen, USA) linked to anti-HER2/neu 4D5 scFv antibody. Antibody scFv fragments as a targeting agent for directed delivery of fluorophores possess significant advantages over full-size antibodies due to their small size, lower cross-reactivity and immunogenicity. QDs were bound to 4D5 scFv by barnase-barstar system (bn-bst) analogous to the streptavidin-biotidin system. Whole-body images were obtained using diffuse fluorescence tomography (DFT) setup with low-frequency modulation and transilluminative configuration of scanning, created at the Institute of Applied Physics of RAS, Russia). DFT-results were confirmed ex vivo by confocal microscopy. We report the results of in vivo whole-body tumor imaging with QDs complexes as contrasting agents. Intravital images of QDs-labeled tumors were obtained using specific tumor cells targeting and fluorescence transilluminative imaging method, while "passive" QD-labeling failed to mark effectively the tumor.

  16. Re-engineering of the PAM1 phage display monoclonal antibody to produce a soluble, versatile anti-homogalacturonan scFv

    DEFF Research Database (Denmark)

    Manfield, I. W.; Bernal Giraldo, Adriana Jimena; Møller, I.;

    2006-01-01

    Antibody phage display is an increasingly important alternative method for the production of monoclonal antibodies (mAbs) and involves the expression of antibody fragments (scFvs) at the surface of bacteriophage particles. We have previously used this technique to generate a phage mAb (PAM1phage...... of the PAM1 mAb, we describe here the production of a phage-free, soluble scFv version of the PAM1 mAb (PAM1scFv). Using the new PAM1scFv probe, the occurrence of the HG epitope recognized can now be localized with high resolution within micro-domains of plant cell walls....

  17. Cytotoxic effect of the immunotoxin constructed of the ribosome-inactivating protein curcin and the monoclonal antibody against Her2 receptor on tumor cells.

    Science.gov (United States)

    Jaramillo-Quintero, Lidia Patricia; Contis Montes de Oca, Arturo; Romero Rojas, Andrés; Rojas-Hernández, Saúl; Campos-Rodríguez, Rafael; Martínez-Ayala, Alma Leticia

    2015-01-01

    The toxicity of the curcin on cancer cells allows to consider this protein as the toxic component of an immunotoxin directed to Her2, which is associated with cancer. Reductive amination was proposed to conjugate curcin and an anti-Her2; the binding was tested using Polyacrylamide gel electrophoresis, western blot, and immunocytochemistry. The in vitro cytotoxicity of curcin and the immunotoxin was assessed on breast cancer cell lines SK-BR-3 (Her2(+)) and MDA-MB-231 (Her2(-)). IC50 values for curcin were 15.5 ± 8.3 and 18.6 ± 2.4 μg/mL, respectively, statistically equivalent (p SK-BR-3 and 147.6 ± 2.5 μg/mL for MDA-MB-231. These values showed that the immunotoxin was seven times more toxic to the SK-BR-3 than curcin and eight times less toxic to the MDA-MB-231. The immunotoxin composed of curcin and an antibody against Her2 and constructed by reductive amination could be a therapeutic candidate against Her2(+) cancer.

  18. Combinatorial antibody libraries: new advances, new immunological insights.

    Science.gov (United States)

    Lerner, Richard A

    2016-08-01

    Immunochemists have become quite proficient in engineering existing antibody molecules to control their pharmacological properties. However, in terms of generating new antibodies, the combinatorial antibody library has become a central feature of modern immunochemistry. These libraries are essentially an immune system in a test tube and enable the selection of antibodies without the constraints of whole animal or cell-based systems. This Review provides an overview of how antibody libraries are constructed and discusses what can be learnt from these synthetic systems. In particular, the Review focuses on new biological insights from antibody libraries - such as the concept of 'SOS antibodies' - and the growing use of intracellular antibodies to perturb cellular functions.

  19. Single-domain antibodies for biomedical applications.

    Science.gov (United States)

    Krah, Simon; Schröter, Christian; Zielonka, Stefan; Empting, Martin; Valldorf, Bernhard; Kolmar, Harald

    2016-01-01

    Single-domain antibodies are the smallest antigen-binding units of antibodies, consisting either only of one variable domain or one engineered constant domain that solely facilitates target binding. This class of antibody derivatives comprises naturally occurring variable domains derived from camelids and sharks as well as engineered human variable or constant antibody domains of the heavy or light chain. Because of their high affinity and specificity as well as stability, small size and benefit of multiple re-formatting opportunities, those molecules emerged as promising candidates for biomedical applications and some of these entities have already proven to be successful in clinical development.

  20. Metrics for antibody therapeutics development.

    Science.gov (United States)

    Reichert, Janice M

    2010-01-01

    A wide variety of full-size monoclonal antibodies (mAbs) and therapeutics derived from alternative antibody formats can be produced through genetic and biological engineering techniques. These molecules are now filling the preclinical and clinical pipelines of every major pharmaceutical company and many biotechnology firms. Metrics for the development of antibody therapeutics, including averages for the number of candidates entering clinical study and development phase lengths for mAbs approved in the United States, were derived from analysis of a dataset of over 600 therapeutic mAbs that entered clinical study sponsored, at least in part, by commercial firms. The results presented provide an overview of the field and context for the evaluation of on-going and prospective mAb development programs. The expansion of therapeutic antibody use through supplemental marketing approvals and the increase in the study of therapeutics derived from alternative antibody formats are discussed.

  1. Thyroid Antibodies

    Science.gov (United States)

    ... e.g., at regular intervals after thyroid cancer treatment) Thyroid stimulating hormone receptor antibody, Thyroid Stimulating Immunoglobulin TRAb, TSHR Ab, TSI Graves disease When a person has symptoms of hyperthyroidism If a pregnant woman has a known autoimmune ...

  2. A constant threat for HIV: Fc-engineering to enhance broadly neutralizing antibody activity for immunotherapy of the acquired immunodeficiency syndrome.

    Science.gov (United States)

    Nimmerjahn, Falk

    2015-08-01

    Passive immunotherapy with polyclonal or hyperimmune serum immunoglobulin G (IgG) preparations provides an efficient means of protecting immunocompromised patients from microbial infections. More recently, the use of passive immunotherapy to prevent or to treat established infections with the human immunodeficiency virus (HIV) has gained much attention, due to promising preclinical data obtained in monkey and humanized mouse in vivo model systems, demonstrating that the transfer of HIV-specific antibodies can not only prevent HIV infection, but also diminish virus load during chronic infection. Furthermore, an array of broadly neutralizing HIV-specific antibodies has become available and the importance of the IgG constant region as a critical modulator of broadly neutralizing activity has been demonstrated. The aim of this review is to summarize the most recent findings with regard to the molecular and cellular mechanisms responsible for antibody-mediated clearance of HIV infection, and to discuss how this may help to improve HIV therapy via optimizing Fcγ-receptor-dependent activities of HIV-specific antibodies.

  3. Site-directed immobilization of a genetically engineered anti-methotrexate antibody via an enzymatically introduced biotin label significantly increases the binding capacity of immunoaffinity columns.

    Science.gov (United States)

    Davenport, Kaitlynn R; Smith, Christopher A; Hofstetter, Heike; Horn, James R; Hofstetter, Oliver

    2016-05-15

    In this study, the effect of random vs. site-directed immobilization techniques on the performance of antibody-based HPLC columns was investigated using a single-domain camelid antibody (VHH) directed against methotrexate (MTX) as a model system. First, the high flow-through support material POROS-OH was activated with disuccinimidyl carbonate (DSC), and the VHH was bound in a random manner via amines located on the protein's surface. The resulting column was characterized by Frontal Affinity Chromatography (FAC). Then, two site-directed techniques were explored to increase column efficiency by immobilizing the antibody via its C-terminus, i.e., away from the antigen-binding site. In one approach, a tetra-lysine tail was added, and the antibody was immobilized onto DSC-activated POROS. In the second site-directed approach, the VHH was modified with the AviTag peptide, and a biotin-residue was enzymatically incorporated at the C-terminus using the biotin ligase BirA. The biotinylated antibody was subsequently immobilized onto NeutrAvidin-derivatized POROS. A comparison of the FAC analyses, which for all three columns showed excellent linearity (R(2)>0.999), revealed that both site-directed approaches yield better results than the random immobilization; the by far highest efficiency, however, was determined for the immunoaffinity column based on AviTag-biotinylated antibody. As proof of concept, all three columns were evaluated for quantification of MTX dissolved in phosphate buffered saline (PBS). Validation using UV-detection showed excellent linearity in the range of 0.04-12μM (R(2)>0.993). The lower limit of detection (LOD) and lower limit of quantification (LLOQ) were found to be independent of the immobilization strategy and were 40nM and 132nM, respectively. The intra- and inter-day precision was below 11.6%, and accuracy was between 90.7% and 112%. To the best of our knowledge, this is the first report of the AviTag-system in chromatography, and the first

  4. Efficient In Vitro and In Vivo Activity of Glyco-Engineered Plant-Produced Rabies Monoclonal Antibodies E559 and 62-71-3.

    Directory of Open Access Journals (Sweden)

    Tsepo Lebiletsa Tsekoa

    Full Text Available Rabies is a neglected zoonotic disease that has no effective treatment after onset of illness. However the disease can be prevented effectively by prompt administration of post exposure prophylaxis which includes administration of passive immunizing antibodies (Rabies Immune Globulin, RIG. Currently, human RIG suffers from many restrictions including limited availability, batch-to batch inconsistencies and potential for contamination with blood-borne pathogens. Anti-rabies monoclonal antibodies (mAbs have been identified as a promising alternative to RIG. Here, we applied a plant-based transient expression system to achieve rapid, high level production and efficacy of the two highly potent anti-rabies mAbs E559 and 62-71-3. Expression levels of up to 490 mg/kg of recombinant mAbs were obtained in Nicotiana benthamiana glycosylation mutants by using a viral based transient expression system. The plant-made E559 and 62-71-3, carrying human-type fucose-free N-glycans, assembled properly and were structurally sound as determined by mass spectrometry and calorimetric density measurements. Both mAbs efficiently neutralised diverse rabies virus variants in vitro. Importantly, E559 and 62-71-3 exhibited enhanced protection against rabies virus compared to human RIG in a hamster model post-exposure challenge trial. Collectively, our results provide the basis for the development of a multi-mAb based alternative to RIG.

  5. Antiparietal cell antibody test

    Science.gov (United States)

    APCA; Anti-gastric parietal cell antibody; Atrophic gastritis - anti-gastric parietal cell antibody; Gastric ulcer - anti-gastric parietal cell antibody; Pernicious anemia - anti-gastric parietal cell antibody; ...

  6. Coming-of-Age of Antibodies in Cancer Therapeutics.

    Science.gov (United States)

    Ayyar, B Vijayalakshmi; Arora, Sushrut; O'Kennedy, Richard

    2016-12-01

    Antibody-based therapies have garnered considerable success in recent years. This is due to the availability of strategies to successfully engineer antibodies into humanized forms, better understanding of the biological processes involved in cancer development, the availability of novel recombinant antibody formats, better antibody selection platforms, and improved antibody conjugation methodologies. Such achievements have led to an explosion in the generation of antibodies and antibody-associated constructs for the treatment of cancer and other diseases. In this review, we critically assess recent trends in the development and applications of bispecific antibodies (bsAbs), antibody-drug conjugates (ADCs), and immune checkpoint inhibitors (ICIs) as cancer therapeutics. We also highlight recent US FDA approvals and clinical trials of antibody-based cancer therapies.

  7. [Advances in the study of natural small molecular antibody].

    Science.gov (United States)

    Zhu, Lei; Zhang, Da-peng

    2012-10-01

    Small molecule antibodies are naturally existed and well functioned but not structurally related to the conventional antibodies. They are only composed of heavy protein chains or light chains, much smaller than common antibody. The first small molecule antibody, called Nanobody was engineered from heavy-chain antibodies found in camelids. Cartilaginous fishes also have heavy-chain antibodies (IgNAR, "immunoglobulin new antigen receptor"), from which single-domain antibodies called Vnar fragments can be obtained. In addition, free light chain (FLC) antibodies in human bodies are being developed as therapeutic and diagnostic agents. Comparing to intact antibodies, common advantages of small molecule antibodies are with better solubility, tissue penetration, stability towards heat and enzymes, and comparatively low production costs. This article reviews the structural characteristics and mechanism of action of the Nanobody, IgNAR and FLC.

  8. Molecular aspects of antibody-antigen interactions : size reduction of a herpes simplex virus neutralizing antibody and its antigen

    NARCIS (Netherlands)

    Schellekens, Gerardus Antonius

    1996-01-01

    Antibody molecules, produced as a response against foreign substances, interact with their antigen in a very specific manner. Antibodies with a predetermined specificity (monoclonal antibodies) can be produced and are widely used in medicine and science as indicator molecules. Genetic engineering of

  9. Rabbit antibodies for hormone receptors and HER2 evaluation in breast cancer Anticorpos de coelho para avaliação de receptores hormonais e HER2 em câncer de mama

    Directory of Open Access Journals (Sweden)

    Rafael Malagoli Rocha

    2009-01-01

    Full Text Available BACKGROUND: Novel rabbit monoclonal antibodies (RabMab for estrogen (ER, progesterone (PR receptors and HER2 evaluation by immunohistochemistry have recently been commercially released. We compared the RabMab anti-ER, anti-PR and anti-HER2 to mouse monoclonal antibodies (Mab using tissue microarrays (TMA of breast carcinomas. METHODS: Two TMA containing breast carcinomas were built. Sections were immunostained using anti-ER and anti-PR, Mab and RabMab. The sections stained for ER and PR were evaluated considering positive those tumors in which more than 1% of the tumor cell nuclei stained moderate or strong. For HER2, the immunostained sections were evaluated using the ASCO/CAP guidelines for HER2. Chromogenic in situ hybridization (CISH was used as the gold standard for HER2 evaluation. CISH was evaluated using the Zymed HER2 CISH interpretation guidelines. RESULTS: RabMab against ER have similar staining patterns compared to the 6F11 (Mab, but stronger than 1D5 (Mab from three different suppliers. The RabMab against PR provide stronger and sharper immunohistochemical signals compared to Mab. The detection of HER2 protein overexpression was more prevalent with the polyclonal antibodies and RabMab than with the Mab. These were more specific than the RabMab, which were more sensitive when compared to CISH. CONCLUSION: The novel RabMab against ER and PR showed higher intensity of staining than the Mab. The RabMab against HER2 is more sensitive than Mab, however, Mab presented more specificity than RabMab when compared to CISH for HER2 evaluation of breast carcinomas.OBJETIVOS: Novos anticorpos monoclonais de coelho (RabMab para a avaliação imuno-histoquímica de receptores de estrógeno (RE, progesterona (RP e HER2 foram lançados comercialmente. Comparamos os RabMab anti-RE, anti-RP e anti-HER2 com os anticorpos monoclonais de camundongo (Mab utilizando tissue microarrays (TMA de carcinomas de mama. MÉTODOS: Foram construídos dois TMAs de

  10. Antibacterial application of engineered bacteriophage nanomedicines: antibody-targeted, chloramphenicol prodrug loaded bacteriophages for inhibiting the growth of Staphylococcus aureus bacteria.

    Science.gov (United States)

    Vaks, Lilach; Benhar, Itai

    2011-01-01

    The increasing development of bacterial resistance to traditional antibiotics has reached alarming levels, thus there is an urgent need to develop new antimicrobial agents. To be effective, these new antimicrobials should possess novel modes of action and/or different cellular targets compared with existing antibiotics. Bacteriophages (phages) have been used for over a century as tools for the treatment of bacterial infections, for nearly half a century as tools in genetic research, for about two decades as tools for the discovery of specific target-binding proteins and peptides, and for almost a decade as tools for vaccine development. We describe a new application in the area of antibacterial nanomedicines where filamentous phages can be formulated as targeted drug-delivery vehicles of nanometric dimensions (phage nanomedicines) and used for therapeutic purposes. This protocol involves both genetic and chemical engineering of these phages. The genetic engineering of the phage coat, which results in the display of a target-specificity-conferring peptide or protein on the phage coat, can be used to design the drug-release mechanism and is not described herein. However, the methods used to chemically conjugate cytotoxic drugs at high density on the phage coat are described. Further, assays to measure the drug load on the surface of the phage and the potency of the system in the inhibition of growth of target cells as well as assessment of the therapeutic potential of the phages in a mouse disease model are discussed.

  11. Stability engineering of anti-EGFR scFv antibodies by rational design of a lambda-to-kappa swap of the VL framework using a structure-guided approach.

    Science.gov (United States)

    Lehmann, Andreas; Wixted, Josephine H F; Shapovalov, Maxim V; Roder, Heinrich; Dunbrack, Roland L; Robinson, Matthew K

    2015-01-01

    Phage-display technology facilitates rapid selection of antigen-specific single-chain variable fragment (scFv) antibodies from large recombinant libraries. ScFv antibodies, composed of a VH and VL domain, are readily engineered into multimeric formats for the development of diagnostics and targeted therapies. However, the recombinant nature of the selection strategy can result in VH and VL domains with sub-optimal biophysical properties, such as reduced thermodynamic stability and enhanced aggregation propensity, which lead to poor production and limited application. We found that the C10 anti-epidermal growth factor receptor (EGFR) scFv, and its affinity mutant, P2224, exhibit weak production from E. coli. Interestingly, these scFv contain a fusion of lambda3 and lambda1 V-region (LV3 and LV1) genes, most likely the result of a PCR aberration during library construction. To enhance the biophysical properties of these scFvs, we utilized a structure-based approach to replace and redesign the pre-existing framework of the VL domain to one that best pairs with the existing VH. We describe a method to exchange lambda sequences with a more stable kappa3 framework (KV3) within the VL domain that incorporates the original lambda DE-loop. The resulting scFvs, C10KV3_LV1DE and P2224KV3_LV1DE, are more thermodynamically stable and easier to produce from bacterial culture. Additionally, C10KV3_LV1DE and P2224KV3_LV1DE retain binding affinity to EGFR, suggesting that such a dramatic framework swap does not significantly affect scFv binding. We provide here a novel strategy for redesigning the light chain of problematic scFvs to enhance their stability and therapeutic applicability.

  12. Antibody-based resistance to plant pathogens.

    Science.gov (United States)

    Schillberg, S; Zimmermann, S; Zhang, M Y; Fischer, R

    2001-01-01

    Plant diseases are a major threat to the world food supply, as up to 15% of production is lost to pathogens. In the past, disease control and the generation of resistant plant lines protected against viral, bacterial or fungal pathogens, was achieved using conventional breeding based on crossings, mutant screenings and backcrossing. Many approaches in this field have failed or the resistance obtained has been rapidly broken by the pathogens. Recent advances in molecular biotechnology have made it possible to obtain and to modify genes that are useful for generating disease resistant crops. Several strategies, including expression of pathogen-derived sequences or anti-pathogenic agents, have been developed to engineer improved pathogen resistance in transgenic plants. Antibody-based resistance is a novel strategy for generating transgenic plants resistant to pathogens. Decades ago it was shown that polyclonal and monoclonal antibodies can neutralize viruses, bacteria and selected fungi. This approach has been improved recently by the development of recombinant antibodies (rAbs). Crop resistance can be engineered by the expression of pathogen-specific antibodies, antibody fragments or antibody fusion proteins. The advantages of this approach are that rAbs can be engineered against almost any target molecule, and it has been demonstrated that expression of functional pathogen-specific rAbs in plants confers effective pathogen protection. The efficacy of antibody-based resistance was first shown for plant viruses and its application to other plant pathogens is becoming more established. However, successful use of antibodies to generate plant pathogen resistance relies on appropriate target selection, careful antibody design, efficient antibody expression, stability and targeting to appropriate cellular compartments.

  13. Rational Design of CXCR4 Specific Antibodies with Elongated CDRs

    Science.gov (United States)

    2015-01-01

    The bovine antibody (BLV1H12) which has an ultralong heavy chain complementarity determining region 3 (CDRH3) provides a novel scaffold for antibody engineering. By substituting the extended CDRH3 of BLV1H12 with modified CXCR4 binding peptides that adopt a β-hairpin conformation, we generated antibodies specifically targeting the ligand binding pocket of CXCR4 receptor. These engineered antibodies selectively bind to CXCR4 expressing cells with binding affinities in the low nanomolar range. In addition, they inhibit SDF-1-dependent signal transduction and cell migration in a transwell assay. Finally, we also demonstrate that a similar strategy can be applied to other CDRs and show that a CDRH2-peptide fusion binds CXCR4 with a Kd of 0.9 nM. This work illustrates the versatility of scaffold-based antibody engineering and could greatly expand the antibody functional repertoire in the future. PMID:25041362

  14. [Antinuclear antibodies].

    Science.gov (United States)

    Cabiedes, Javier; Núñez-Álvarez, Carlos A

    2010-01-01

    Anti-nuclear antibodies (ANA) are immunoglobulin directed against autologous cell nuclear and cytoplasmic components. Besides the autoimmune ANA there are other ANA that can be detected in circulation, like natural and infectious ANA. Because of its high sensibility, detection of the ANA must be done by indirect immunofluorescence (IIF) as screening test and all of those positive samples are convenient to confirm its specificity by ELISA, western blot or other techniques. Positive ANA detected by IIF must be evaluated taking in to account the pattern and titer. The following recommended step is the specificity characterization (reactivity against extractable nuclear antigens [ENA], dsDNA, etc.) which is useful for the diagnosis and follow up of patients with autoimmune diseases, and by such reasoning, its detection must be performed in an orderly and reasonable way using guides or strategies focused to the good use and interpretation of the autoantibodies. The objective of this review is to present a compilation of the literature and our experience in the detection and study of the ANA.

  15. Smart Cancer Cell Targeting Imaging and Drug Delivery System by Systematically Engineering Periodic Mesoporous Organosilica Nanoparticles.

    Science.gov (United States)

    Lu, Nan; Tian, Ying; Tian, Wei; Huang, Peng; Liu, Ying; Tang, Yuxia; Wang, Chunyan; Wang, Shouju; Su, Yunyan; Zhang, Yunlei; Pan, Jing; Teng, Zhaogang; Lu, Guangming

    2016-02-10

    The integration of diagnosis and therapy into one nanoplatform, known as theranostics, has attracted increasing attention in the biomedical areas. Herein, we first present a cancer cell targeting imaging and drug delivery system based on engineered thioether-bridged periodic mesoporous organosilica nanoparticles (PMOs). The PMOs are stably and selectively conjugated with near-infrared fluorescence (NIRF) dye Cyanine 5.5 (Cy5.5) and anti-Her2 affibody on the outer surfaces to endow them with excellent NIRF imaging and cancer targeting properties. Also, taking the advantage of the thioether-group-incorporated mesopores, the release of chemotherapy drug doxorubicin (DOX) loaded in the PMOs is responsive to the tumor-related molecule glutathione (GSH). The drug release percentage reaches 84.8% in 10 mM of GSH solution within 24 h, which is more than 2-fold higher than that without GSH. In addition, the drug release also exhibits pH-responsive, which reaches 53.6% at pH 5 and 31.7% at pH 7.4 within 24 h. Confocal laser scanning microscopy and flow cytometry analysis demonstrate that the PMOs-based theranostic platforms can efficiently target to and enter Her2 positive tumor cells. Thus, the smart imaging and drug delivery nanoplatforms induce high tumor cell growth inhibition. Meanwhile, the Cy5.5 conjugated PMOs perform great NIRF imaging ability, which could monitor the intracellular distribution, delivery and release of the chemotherapy drug. In addition, cell viability and histological assessments show the engineered PMOs have good biocompatibility, further encouraging the following biomedical applications. Over all, the systemically engineered PMOs can serve as a novel cancer cell targeting imaging and drug delivery platform with NIRF imaging, GSH and pH dual-responsive drug release, and high tumor cell targeting ability.

  16. Next generation of antibody therapy for cancer

    Institute of Scientific and Technical Information of China (English)

    Zhenping Zhu; Li Yan

    2011-01-01

    Monoclonal antibodies (mAbs) have become a major class of therapeutic agents providing effective altematives to treating various human diseases. To date, 15 mAbs have been approved by regulatory agencies in the world for clinical use in oncology indications. The selectivity and specificity, the unique pharmacokinetics, and the ability to engage and activate the host immune system differentiate these biologics from traditional small molecule anticancer drugs. mAb-basod regimens have brought clinical benefits, including improvements in overall survival, to patients with a variety of cancers. Many challenges still remain, however, to fully realize the potential of these new medicines. With our further understanding of cancer biology, mechanism of antibody action, and advancement of antibody engineering technologies, many novel antibody formats or antibody-derived molecules are emerging as promising new generation therapeutics. Carefully designed and engineered, they retain the advantage of specificity and selectivity of original antibodies, but in the meantime acquire additional special features such as improved pharmacokinetics, increased selectivity, and enhanced anticancer efficacy. Promising clinical results are being generated with these newly improved antibody-based therapeutics.

  17. Structural and genetic diversity in antibody repertoires from diverse species.

    Science.gov (United States)

    de los Rios, Miguel; Criscitiello, Michael F; Smider, Vaughn V

    2015-08-01

    The antibody repertoire is the fundamental unit that enables development of antigen specific adaptive immune responses against pathogens. Different species have developed diverse genetic and structural strategies to create their respective antibody repertoires. Here we review the shark, chicken, camel, and cow repertoires as unique examples of structural and genetic diversity. Given the enormous importance of antibodies in medicine and biological research, the novel properties of these antibody repertoires may enable discovery or engineering of antibodies from these non-human species against difficult or important epitopes.

  18. Investigation of HER2 expression in canine mammary tumors by antibody-based, transcriptomic and mass spectrometry analysis: is the dog a suitable animal model for human breast cancer?

    Science.gov (United States)

    Burrai, G P; Tanca, A; De Miglio, M R; Abbondio, M; Pisanu, S; Polinas, M; Pirino, S; Mohammed, S I; Uzzau, S; Addis, M F; Antuofermo, E

    2015-11-01

    Canine mammary tumors (CMTs) share many features with human breast cancer (HBC), specifically concerning cancer-related pathways. Although the human epidermal growth factor receptor 2 (HER2) plays a significant role as a therapeutic and prognostic biomarker in HBC, its relevance in the pathogenesis and prognosis of CMT is still controversial. The aim of this study was to investigate HER2 expression in canine mammary hyperplasic and neoplastic tissues as well as to evaluate the specificity of the most commonly used polyclonal anti HER2 antibody by multiple molecular approaches. HER2 protein and RNA expression were determined by immunohistochemistry (IHC) and by quantitative real-time (qRT) PCR. A strong cell membrane associated with non-specific cytoplasmic staining was observed in 22% of carcinomas by IHC. Adenomas and carcinomas exhibited a significantly higher HER2 mRNA expression when compared to normal mammary glands, although no significant difference between benign and malignant tumors was noticed by qRT-PCR. The IHC results suggest a lack of specificity of the FDA-approved antibody in CMT samples as further demonstrated by Western immunoblotting (WB) and reverse phase protein arrays (RPPA). Furthemore, HER2 was not detected by mass spectrometry (MS) in a protein-expressing carcinoma at the IHC investigation. This study highlights that caution needs to be used when trying to translate from human to veterinary medicine information concerning cancer-related biomarkers and pathways. Further investigations are necessary to carefully assess the diagnostic and biological role specifically exerted by HER2 in CMTs and the use of canine mammary tumors as a model of HER2 over-expressing breast cancer.

  19. 6th Annual European Antibody Congress 2010

    Science.gov (United States)

    2011-01-01

    The 6th European Antibody Congress (EAC), organized by Terrapinn Ltd., was held in Geneva, Switzerland, which was also the location of the 4th and 5th EAC.1,2 As was the case in 2008 and 2009, the EAC was again the largest antibody congress held in Europe, drawing nearly 250 delegates in 2010. Numerous pharmaceutical and biopharmaceutical companies active in the field of therapeutic antibody development were represented, as were start-up and academic organizations and representatives from the US Food and Drug Administration (FDA). The global trends in antibody research and development were discussed, including success stories of recent marketing authorizations of golimumab (Simponi®) and canakinumab (Ilaris®) by Johnson & Johnson and Novartis, respectively, updates on antibodies in late clinical development (obinutuzumab/GA101, farletuzumab/MORAb-003 and itolizumab/T1 h, by Glycart/Roche, Morphotek and Biocon, respectively) and success rates for this fast-expanding class of therapeutics (Tufts Center for the Study of Drug Development). Case studies covering clinical progress of girentuximab (Wilex), evaluation of panobacumab (Kenta Biotech), characterization of therapeutic antibody candidates by protein microarrays (Protagen), antibody-drug conjugates (sanofi-aventis, ImmunoGen, Seattle Genetics, Wyeth/Pfizer), radio-immunoconjugates (Bayer Schering Pharma, Université de Nantes) and new scaffolds (Ablynx, AdAlta, Domantis/GlaxoSmithKline, Fresenius, Molecular Partners, Pieris, Scil Proteins, Pfizer, University of Zurich) were presented. Major antibody structural improvements were showcased, including the latest selection engineering of the best isotypes (Abbott, Pfizer, Pierre Fabre), hinge domain (Pierre Fabre), dual antibodies (Abbott), IgG-like bispecific antibodies (Biogen Idec), antibody epitope mapping case studies (Eli Lilly), insights in FcγRII receptor (University of Cambridge), as well as novel tools for antibody fragmentation (Genovis). Improvements

  20. Acetylcholine receptor antibody

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003576.htm Acetylcholine receptor antibody To use the sharing features on this page, please enable JavaScript. Acetylcholine receptor antibody is a protein found in the blood ...

  1. Antinuclear antibody panel

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003535.htm Antinuclear antibody panel To use the sharing features on this page, please enable JavaScript. The antinuclear antibody panel is a blood test that looks at ...

  2. Lyme disease antibody

    Science.gov (United States)

    ... JavaScript. The Lyme disease blood test looks for antibodies in the blood to the bacteria that causes ... needed. A laboratory specialist looks for Lyme disease antibodies in the blood sample using the ELISA test . ...

  3. The antibody mining toolbox

    OpenAIRE

    D'Angelo, Sara; Glanville, Jacob; Ferrara, Fortunato; Naranjo, Leslie; Gleasner, Cheryl D.; Shen, Xiaohong; Bradbury, Andrew RM; Kiss, Csaba

    2013-01-01

    In vitro selection has been an essential tool in the development of recombinant antibodies against various antigen targets. Deep sequencing has recently been gaining ground as an alternative and valuable method to analyze such antibody selections. The analysis provides a novel and extremely detailed view of selected antibody populations, and allows the identification of specific antibodies using only sequencing data, potentially eliminating the need for expensive and laborious low-throughput ...

  4. Baculovirus display of functional antibody Fab fragments.

    Science.gov (United States)

    Takada, Shinya; Ogawa, Takafumi; Matsui, Kazusa; Suzuki, Tasuku; Katsuda, Tomohisa; Yamaji, Hideki

    2015-08-01

    The generation of a recombinant baculovirus that displays antibody Fab fragments on the surface was investigated. A recombinant baculovirus was engineered so that the heavy chain (Hc; Fd fragment) of a mouse Fab fragment was expressed as a fusion to the N-terminus of baculovirus gp64, while the light chain of the Fab fragment was simultaneously expressed as a secretory protein. Following infection of Sf9 insect cells with the recombinant baculovirus, the culture supernatant was analyzed by enzyme-linked immunosorbent assay using antigen-coated microplates and either an anti-mouse IgG or an anti-gp64 antibody. A relatively strong signal was obtained in each case, showing antigen-binding activity in the culture supernatant. In western blot analysis of the culture supernatant using the anti-gp64 antibody, specific protein bands were detected at an electrophoretic mobility that coincided with the molecular weight of the Hc-gp64 fusion protein as well as that of gp64. Flow cytometry using a fluorescein isothiocyanate-conjugated antibody specific to mouse IgG successfully detected the Fab fragments on the surface of the Sf9 cells. These results suggest that immunologically functional antibody Fab fragments can be displayed on the surface of baculovirus particles, and that a fluorescence-activated cell sorter with a fluorescence-labeled antigen can isolate baculoviruses displaying specific Fab fragments. This successful baculovirus display of antibody Fab fragments may offer a novel approach for the efficient selection of specific antibodies.

  5. [VGKC-complex antibodies].

    Science.gov (United States)

    Watanabe, Osamu

    2013-04-01

    Various antibodies are associated with voltage-gated potassium channels (VGKCs). Representative antibodies to VGKCs were first identified by radioimmunoassays using radioisotope-labeled alpha-dendrotoxin-VGKCs solubilized from rabbit brain. These antibodies were detected only in a proportion of patients with acquired neuromyotonia (Isaacs' syndrome). VGKC antibodies were also detected in patients with Morvan's syndrome and in those with a form of autoimmune limbic encephalitis. Recent studies indicated that the "VGKC" antibodies are mainly directed toward associated proteins (for example LGI-1 and CASPR-2) that complex with the VGKCs themselves. The "VGKC" antibodies are now commonly known as VGKC-complex antibodies. In general, LGI-1 antibodies are most commonly detected in patients with limbic encephalitis with syndrome of inappropriate secretion of antidiuretic hormone. CASPR-2 antibodies are present in the majority of patients with Morvan's syndrome. These patients develop combinations of CNS symptoms, autonomic dysfunction, and peripheral nerve hyperexcitability. Furthermore, VGKC-complex antibodies are tightly associated with chronic idiopathic pain. Hyperexcitability of nociceptive pathways has also been implicated. These antibodies may be detected in sera of some patients with neurodegenerative diseases (for example, amyotrophic lateral sclerosis and Creutzfeldt-Jakob disease).

  6. Thermodynamics of antibody-antigen interaction revealed by mutation analysis of antibody variable regions.

    Science.gov (United States)

    Akiba, Hiroki; Tsumoto, Kouhei

    2015-07-01

    Antibodies (immunoglobulins) bind specific molecules (i.e. antigens) with high affinity and specificity. In order to understand their mechanisms of recognition, interaction analysis based on thermodynamic and kinetic parameters, as well as structure determination is crucial. In this review, we focus on mutational analysis which gives information about the role of each amino acid residue in antibody-antigen interaction. Taking anti-hen egg lysozyme antibodies and several anti-small molecule antibodies, the energetic contribution of hot-spot and non-hot-spot residues is discussed in terms of thermodynamics. Here, thermodynamics of the contribution from aromatic, charged and hydrogen bond-forming amino acids are discussed, and their different characteristics have been elucidated. The information gives fundamental understanding of the antibody-antigen interaction. Furthermore, the consequences of antibody engineering are analysed from thermodynamic viewpoints: humanization to reduce immunogenicity and rational design to improve affinity. Amino acid residues outside hot-spots in the interface play important roles in these cases, and thus thermodynamic and kinetic parameters give much information about the antigen recognition. Thermodynamic analysis of mutant antibodies thus should lead to advanced strategies to design and select antibodies with high affinity.

  7. Bispecific antibody complex pre-targeting and targeted delivery of polymer drug conjugates for imaging and therapy in dual human mammary cancer xenografts. Targeted polymer drug conjugates for cancer diagnosis and therapy

    Energy Technology Data Exchange (ETDEWEB)

    Khaw, Ban-An; Gada, Keyur S.; Patil, Vishwesh; Panwar, Rajiv; Mandapati, Savitri [Northeastern University, Department of Pharmaceutical Sciences, Bouve College of Health Sciences, School of Pharmacy, Boston, MA (United States); Hatefi, Arash [Rutgers University, Department of Pharmaceutics, New Brunswick, NJ (United States); Majewski, Stan [West Virginia University, Department of Radiology, Morgantown, WV (United States); Weisenberger, Andrew [Thomas Jefferson National Accelerator Facility, Jefferson Lab, Newport News, VA (United States)

    2014-08-15

    Doxorubicin, a frontline chemotherapeutic agent, limited by its cardiotoxicity and other tissue toxicities, was conjugated to N-terminal DTPA-modified polyglutamic acid (D-Dox-PGA) to produce polymer pro-drug conjugates. D-Dox-PGA or Tc-99 m labeled DTPA-succinyl-polylysine polymers (DSPL) were targeted to HER2-positive human mammary carcinoma (BT-474) in a double xenografted SCID mouse model also hosting HER2-negative human mammary carcinoma (BT-20). After pretargeting with bispecific anti-HER2-affibody-anti-DTPA-Fab complexes (BAAC), anti-DTPA-Fab or only phosphate buffered saline, D-Dox-PGA or Tc-99 m DSPL were administered. Positive therapeutic control mice were injected with Dox alone at maximum tolerated dose (MTD). Only BT-474 lesions were visualized by gamma imaging with Tc-99 m-DSPL; BT-20 lesions were not. Therapeutic efficacy was equivalent in mice pretargeted with BAAC/targeted with D-Dox-PGA to mice treated only with doxorubicin. There was no total body weight (TBW) loss at three times the doxorubicin equivalent MTD with D-Dox-PGA, whereas mice treated with doxorubicin lost 10 % of TBW at 2 weeks and 16 % after the second MTD injection leading to death of all mice. Our cancer imaging and pretargeted therapeutic approaches are highly target specific, delivering very high specific activity reagents that may result in the development of a novel theranostic application. HER/2 neu specific affibody-anti-DTPA-Fab bispecific antibody pretargeting of HER2 positive human mammary xenografts enabled exquisite targeting of polymers loaded with radioisotopes for molecular imaging and doxorubicin for effective therapy without the associating non-tumor normal tissue toxicities. (orig.)

  8. Antibody-mediated resistance against plant pathogens.

    Science.gov (United States)

    Safarnejad, Mohammad Reza; Jouzani, Gholamreza Salehi; Tabatabaei, Meisam; Tabatabaie, Meisam; Twyman, Richard M; Schillberg, Stefan

    2011-01-01

    Plant diseases have a significant impact on the yield and quality of crops. Many strategies have been developed to combat plant diseases, including the transfer of resistance genes to crops by conventional breeding. However, resistance genes can only be introgressed from sexually-compatible species, so breeders need alternative measures to introduce resistance traits from more distant sources. In this context, genetic engineering provides an opportunity to exploit diverse and novel forms of resistance, e.g. the use of recombinant antibodies targeting plant pathogens. Native antibodies, as a part of the vertebrate adaptive immune system, can bind to foreign antigens and eliminate them from the body. The ectopic expression of antibodies in plants can also interfere with pathogen activity to confer disease resistance. With sufficient knowledge of the pathogen life cycle, it is possible to counter any disease by designing expression constructs so that pathogen-specific antibodies accumulate at high levels in appropriate sub-cellular compartments. Although first developed to tackle plant viruses and still used predominantly for this purpose, antibodies have been targeted against a diverse range of pathogens as well as proteins involved in plant-pathogen interactions. Here we comprehensively review the development and implementation of antibody-mediated disease resistance in plants.

  9. Recombinant renewable polyclonal antibodies.

    Science.gov (United States)

    Ferrara, Fortunato; D'Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew R M

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.

  10. Characterization of in vitro antibody-dependent cell-mediated cytotoxicity activity of therapeutic antibodies - impact of effector cells.

    Science.gov (United States)

    Chung, Shan; Lin, Yuwen L; Reed, Chae; Ng, Carl; Cheng, Zhijie Jey; Malavasi, Fabio; Yang, Jihong; Quarmby, Valerie; Song, An

    2014-05-01

    Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important mechanism of action implicated in the clinical efficacy of several therapeutic antibodies. In vitro ADCC assays employing effector cells capable of inducing lysis of target cells bound by antibodies are routinely performed to support the research and development of therapeutic antibodies. ADCC assays are commonly performed using peripheral blood mononuclear cells (PBMCs), natural killer (NK) cells or engineered cell lines as effector cells. In this study we evaluated the impact of different effector cell types including primary PBMCs, primary NK cells, engineered NK cell lines, and an engineered reporter cell line, on the in vitro ADCC activity of two glycoforms of a humanized IgG1 antibody. The results of this study show the differential effects on both the efficacy and potency of the antibodies by different effector cells and the finding that both the allotype and the expression level of CD16a affect the potency of effector cells in ADCC assays. Our results also show that engineered NK or reporter cell lines provide reduced variability compared to primary effector cells for in vitro ADCC assays.

  11. Anti-insulin antibody test

    Science.gov (United States)

    Insulin antibodies - serum; Insulin Ab test; Insulin resistance - insulin antibodies; Diabetes - insulin antibodies ... You appear to have an allergic response to insulin Insulin no longer seems to control your diabetes

  12. Antibody Fragments as Probe in Biosensor Development

    Directory of Open Access Journals (Sweden)

    Serge Muyldermans

    2008-08-01

    Full Text Available Today’s proteomic analyses are generating increasing numbers of biomarkers, making it essential to possess highly specific probes able to recognize those targets. Antibodies are considered to be the first choice as molecular recognition units due to their target specificity and affinity, which make them excellent probes in biosensor development. However several problems such as difficult directional immobilization, unstable behavior, loss of specificity and steric hindrance, may arise from using these large molecules. Luckily, protein engineering techniques offer designed antibody formats suitable for biomarker analysis. Minimization strategies of antibodies into Fab fragments, scFv or even single-domain antibody fragments like VH, VL or VHHs are reviewed. Not only the size of the probe but also other issues like choice of immobilization tag, type of solid support and probe stability are of critical importance in assay development for biosensing. In this respect, multiple approaches to specifically orient and couple antibody fragments in a generic one-step procedure directly on a biosensor substrate are discussed.

  13. Monoclonal antibody "gold rush".

    Science.gov (United States)

    Maggon, Krishan

    2007-01-01

    The market, sales and regulatory approval of new human medicines, during the past few years, indicates increasing number and share of new biologics and emergence of new multibillion dollar molecules. The global sale of monoclonal antibodies in 2006 were $20.6 billion. Remicade had annual sales gain of $1 billion during the past 3 years and five brands had similar increase in 2006. Rituxan with 2006 sales of $4.7 billion was the best selling monoclonal antibody and biological product and the 6th among the top selling medicinal brand. It may be the first biologic and monoclonal antibody to reach $10 billion annual sales in the near future. The strong demand from cancer and arthritis patients has surpassed almost all commercial market research reports and sales forecast. Seven monoclonal antibody brands in 2006 had sales exceeding $1 billion. Humanized or fully human monoclonal antibodies with low immunogenicity, enhanced antigen binding and reduced cellular toxicity provide better clinical efficacy. The higher technical and clinical success rate, overcoming of technical hurdles in large scale manufacturing, low cost of market entry and IND filing, use of fully human and humanized monoclonal antibodies has attracted funds and resources towards R&D. Review of industry research pipeline and sales data during the past 3 years indicate a real paradigm shift in industrial R&D from pharmaceutical to biologics and monoclonal antibodies. The antibody bandwagon has been joined by 200 companies with hundreds of new projects and targets and has attracted billions of dollars in R&D investment, acquisitions and licensing deals leading to the current Monoclonal Antibody Gold Rush.

  14. Antiphospholipid antibody syndrome.

    Science.gov (United States)

    Kutteh, William H; Hinote, Candace D

    2014-03-01

    Antiphospholipid antibodies (aPLs) are acquired antibodies directed against negatively charged phospholipids. Obstetric antiphospholipid antibody syndrome (APS) is diagnosed in the presence of certain clinical features in conjunction with positive laboratory findings. Obstetric APS is one of the most commonly identified causes of recurrent pregnancy loss. Thus, obstetric APS is distinguished from APS in other organ systems where the most common manifestation is thrombosis. Several pathophysiologic mechanisms of action of aPLs have been described. This article discusses the diagnostic and obstetric challenges of obstetric APS, proposed pathophysiologic mechanisms of APS during pregnancy, and the management of women during and after pregnancy.

  15. Phage display-derived human antibodies in clinical development and therapy.

    Science.gov (United States)

    Frenzel, André; Schirrmann, Thomas; Hust, Michael

    2016-10-01

    Over the last 3 decades, monoclonal antibodies have become the most important class of therapeutic biologicals on the market. Development of therapeutic antibodies was accelerated by recombinant DNA technologies, which allowed the humanization of murine monoclonal antibodies to make them more similar to those of the human body and suitable for a broad range of chronic diseases like cancer and autoimmune diseases. In the early 1990s in vitro antibody selection technologies were developed that enabled the discovery of "fully" human antibodies with potentially superior clinical efficacy and lowest immunogenicity. Antibody phage display is the first and most widely used of the in vitro selection technologies. It has proven to be a robust, versatile platform technology for the discovery of human antibodies and a powerful engineering tool to improve antibody properties. As of the beginning of 2016, 6 human antibodies discovered or further developed by phage display were approved for therapy. In 2002, adalimumab (Humira®) became the first phage display-derived antibody granted a marketing approval. Humira® was also the first approved human antibody, and it is currently the best-selling antibody drug on the market. Numerous phage display-derived antibodies are currently under advanced clinical investigation, and, despite the availability of other technologies such as human antibody-producing transgenic mice, phage display has not lost its importance for the discovery and engineering of therapeutic antibodies. Here, we provide a comprehensive overview about phage display-derived antibodies that are approved for therapy or in clinical development. A selection of these antibodies is described in more detail to demonstrate different aspects of the phage display technology and its development over the last 25 years.

  16. Bispecific antibodies and their use in applied research

    Directory of Open Access Journals (Sweden)

    Harshit Verma

    Full Text Available Bispecific antibodies (BsAb can, by virtue of combining two binding specificities, improve the selectivity and efficacy of antibody-based treatment of human disease. Antibodies with two distinct binding specificities have great potential for a wide range of clinical applications as targeting agents for in vitro and in vivo immunodiagnosis, therapy and for improving immunoassays. They have shown great promise for targeting cytotoxic effector cells, delivering radionuclides, toxins or cytotoxic drugs to specific targets, particularly tumour cells. The development of BsAb research goes through three main stages: chemical cross linking of murine-derived monoclonal antibody, hybrid hybridomas and engineered BsAb. This article is providing the potential applications of bispecific antibodies. [Vet World 2012; 5(12.000: 775-780

  17. Engineering Encounters: Engineering Adaptations

    Science.gov (United States)

    Gatling, Anne; Vaughn, Meredith Houle

    2015-01-01

    Engineering is not a subject that has historically been taught in elementary schools, but with the emphasis on engineering in the "Next Generation Science Standards," curricula are being developed to explicitly teach engineering content and design. However, many of the scientific investigations already conducted with students have…

  18. Anti-cartilage antibody.

    Science.gov (United States)

    Greenbury, C L; Skingle, J

    1979-08-01

    Antibody to cartilage has been demonstrated by indirect immunofluorescence on rat trachea in the serum of about 3% of 1126 patients with rheumatoid arthritis. Titres ranged from 1:20 to 1:640. The antibody was not found in 284 patients with primary or secondary osteoarthritis or in 1825 blood donors, nor, with the exception of two weak reactors, in 1314 paraplegic patients. In most cases the antibody appears to be specific for native type II collagen. Using this as an antigen in a haemagglutination test 94% of anti-cartilage sera were positive, whereas among 100 rheumatoid control sera there were only three weak positives. More than 80% of patients with antibody had some erosion of articular cartilage, but there was no correlation with age, sex, duration of disease, nor any recognisable clinical event or change.

  19. Antithyroid microsomal antibody

    Science.gov (United States)

    ... to confirm the cause of thyroid problems, including Hashimoto thyroiditis . The test is also used to find ... positive test may be due to: Granulomatous thyroiditis Hashimoto thyroiditis High levels of these antibodies have also ...

  20. Serum herpes simplex antibodies

    Science.gov (United States)

    ... 2. HSV-1 most often causes cold sores (oral herpes). HSV-2 causes genital herpes. How the Test ... whether a person has ever been infected with oral or genital herpes . It looks for antibodies to herpes simplex virus ...

  1. Fibrotic remodeling of the extracellular matrix through a novel (engineered, dual-function antibody reactive to a cryptic epitope on the N-terminal 30 kDa fragment of fibronectin.

    Directory of Open Access Journals (Sweden)

    Maryada Sharma

    Full Text Available Fibrosis is characterized by excessive accumulation of scar tissue as a result of exaggerated deposition of extracellular matrix (ECM, leading to tissue contraction and impaired function of the organ. Fibronectin (Fn is an essential component of the ECM, and plays an important role in fibrosis. One such fibrotic pathology is that of proliferative vitreoretinopathy (PVR, a sight-threatening complication which develops as a consequence of failure of surgical repair of retinal detachment. Such patients often require repeated surgeries for retinal re-attachment; therefore, a preventive measure for PVR is of utmost importance. The contractile membranes formed in PVR, are composed of various cell types including the retinal pigment epithelial cells (RPE; fibronectin is an important constituent of the ECM surrounding these cells. Together with the vitreous, fibronectin creates microenvironments in which RPE cells proliferate. We have successfully developed a dual-action, fully human, fibronectin-specific single chain variable fragment antibody (scFv termed Fn52RGDS, which acts in two ways: i binds to cryptic sites in fibronectin, and thereby prevents its self polymerization/fibrillogenesis, and ii interacts with the cell surface receptors, ie., integrins (through an attached "RGD" sequence tag, and thereby blocks the downstream cell signaling events. We demonstrate the ability of this antibody to effectively reduce some of the hallmark features of fibrosis--migration, adhesion, fibronectin polymerization, matrix metalloprotease (MMP expression, as well as reduction of collagen gel contraction (a model of fibrotic tissue remodeling. The data suggests that the antibody can be used as a rational, novel anti-fibrotic candidate.

  2. Heparin-Induced Thrombocytopenia Antibody Test

    Science.gov (United States)

    ... Global Sites Search Help? Heparin-induced Thrombocytopenia PF4 Antibody Share this page: Was this page helpful? Also known as: Heparin-PF4 Antibody; HIT Antibody; HIT PF4 Antibody; Heparin Induced Antibody; ...

  3. Sustained systemic delivery of monoclonal antibodies by genetically modified skin fibroblasts

    DEFF Research Database (Denmark)

    Noël, D; Pelegrin, M; Brockly, F;

    2000-01-01

    In vivo production and systemic delivery of therapeutic antibodies by engineered cells might advantageously replace injection of purified antibodies for treating a variety of life-threatening diseases, including cancer, acquired immunodeficiency syndrome, and autoimmune diseases. We report here...... that skin fibroblasts retrovirally transduced to express immunoglobulin genes can be used for sustained long-term systemic delivery of cloned antibodies in immunocompetent mice. Importantly, no anti- idiotypic response against the ectopically expressed model antibody used in this study was observed....... This supports the notion that skin fibroblasts can potentially be used in antibody-based gene/cell therapy protocols without inducing any adverse immune response in treated individuals....

  4.  De novo isolation of antibodies with pH-dependent binding properties

    OpenAIRE

    Bonvin, Pauline; Venet, Sophie; Fontaine, Gaëlle; Ravn, Ulla; Gueneau, Franck; Kosco-Vilbois, Marie; Proudfoot, Amanda; Fischer, Nicolas

    2015-01-01

    pH-dependent antibodies are engineered to release their target at a slightly acidic pH, a property making them suitable for clinical as well as biotechnological applications. Such antibodies were previously obtained by histidine scanning of pre-existing antibodies, a labor-intensive strategy resulting in antibodies that displayed residual binding to their target at pH 6.0. We report here the de novo isolation of pH-dependent antibodies selected by phage display from libraries enriched in hist...

  5. [New antibodies in cancer treatment].

    Science.gov (United States)

    Pestalozzi, B C; Knuth, A

    2004-09-22

    Since the development of hybridoma technology in 1975 monoclonal antibodies with pre-defined specificity can be produced. Only twenty years later did it become possible to make therapeutic use of monoclonal antibodies in oncology. To this end it was necessary to attach the antigen-binding site of a mouse antibody onto the scaffold of a human antibody molecule. Such chimeric or "humanized" antibodies may be used in passive immunotherapy without eliciting an immune response. Rituximab and trastuzumab are such humanized antibodies. They are used today routinely in the treatment of malignant lymphoma and breast cancer, respectively. These antibodies are usually used in combination with conventional cytostatic anticancer drugs.

  6. Natural and Man-made Antibody Repertories for Antibody Discovery

    Directory of Open Access Journals (Sweden)

    Juan C eAlmagro

    2012-11-01

    Full Text Available Antibodies are the fastest-growing segment of the biologics market. The success of antibody-based drugs resides in their exquisite specificity, high potency, stability, solubility, safety and relatively inexpensive manufacturing process in comparison with other biologics. We outline here the structural studies and fundamental principles that define how antibodies interact with diverse targets. We also describe the antibody repertoires and affinity maturation mechanisms of human, mice and chickens, plus the use of novel single-domain antibodies in camelids and sharks. These species all utilize diverse evolutionary solutions to generate specific and high affinity antibodies and illustrate the plasticity of natural antibody repertoires. In addition, we discuss the multiple variations of man-made antibody repertoires designed and validated in the last two decades, which have served as tools to explore how the size, diversity and composition of a repertoire impact the antibody discovery process.

  7. Cell-Free Synthesis Meets Antibody Production: A Review

    Directory of Open Access Journals (Sweden)

    Marlitt Stech

    2015-01-01

    Full Text Available Engineered antibodies are key players in therapy, diagnostics and research. In addition to full size immunoglobulin gamma (IgG molecules, smaller formats of recombinant antibodies, such as single-chain variable fragments (scFv and antigen binding fragments (Fab, have emerged as promising alternatives since they possess different advantageous properties. Cell-based production technologies of antibodies and antibody fragments are well-established, allowing researchers to design and manufacture highly specific molecular recognition tools. However, as these technologies are accompanied by the drawbacks of being rather time-consuming and cost-intensive, efficient and powerful cell-free protein synthesis systems have been developed over the last decade as alternatives. So far, prokaryotic cell-free systems have been the focus of interest. Recently, eukaryotic in vitro translation systems have enriched the antibody production pipeline, as these systems are able to mimic the natural pathway of antibody synthesis in eukaryotic cells. This review aims to overview and summarize the advances made in the production of antibodies and antibody fragments in cell-free systems.

  8. Challenges in Antibody Development against Tn and Sialyl-Tn Antigens

    Science.gov (United States)

    Loureiro, Liliana R.; Carrascal, Mylène A.; Barbas, Ana; Ramalho, José S.; Novo, Carlos; Delannoy, Philippe; Videira, Paula A.

    2015-01-01

    The carbohydrate antigens Tn and sialyl-Tn (STn) are expressed in most carcinomas and usually absent in healthy tissues. These antigens have been correlated with cancer progression and poor prognosis, and associated with immunosuppressive microenvironment. Presently they are used in clinical trials as therapeutic vaccination, but with limited success due to their low immunogenicity. Alternatively, anti-Tn and/or STn antibodies may be used to harness the immune system against tumor cells. Whilst the development of antibodies against these antigens had a boost two decades ago for diagnostic use, so far no such antibody entered into clinical trials. Possible limitations are the low specificity and efficiency of existing antibodies and that novel antibodies are still necessary. The vast array of methodologies available today will allow rapid antibody development and novel formats. Following the advent of hybridoma technology, the immortalization of human B cells became a methodology to obtain human monoclonal antibodies with better specificity. Advances in molecular biology including phage display technology for high throughput screening, transgenic mice and more recently molecularly engineered antibodies enhanced the field of antibody production. The development of novel antibodies against Tn and STn taking advantage of innovative technologies and engineering techniques may result in innovative therapeutic antibodies for cancer treatment. PMID:26270678

  9. Antibody affinity maturation

    DEFF Research Database (Denmark)

    Skjødt, Mette Louise

    surface expression of various antibody formats in the generated knockout strain. Functional scFv and scFab fragments were efficiently displayed on yeast whereas impaired chain assembly and heavy chain degradation was observed for display of full-length IgG molecules. To identify the optimal polypeptide...... linker for yeast surface display of scFv and scFab fragments, we compared a series of different Gly-Ser-based linkers in display and antigen binding proficiency. We show that these formats of the model antibody can accommodate linkers of different lengths and that introduction of alanine or glutamate...... fragments by in vivo homologous recombination large combinatorial antibody libraries can easily be generated. We have optimized ordered assembly of three CDR fragments into a gapped vector and observed increased transformation efficiency in a yeast strain carrying a deletion of the SGS1 helicase...

  10. Antibody informatics for drug discovery

    DEFF Research Database (Denmark)

    Shirai, Hiroki; Prades, Catherine; Vita, Randi;

    2014-01-01

    to the antibody science in every project in antibody drug discovery. Recent experimental technologies allow for the rapid generation of large-scale data on antibody sequences, affinity, potency, structures, and biological functions; this should accelerate drug discovery research. Therefore, a robust bioinformatic...... infrastructure for these large data sets has become necessary. In this article, we first identify and discuss the typical obstacles faced during the antibody drug discovery process. We then summarize the current status of three sub-fields of antibody informatics as follows: (i) recent progress in technologies...... for antibody rational design using computational approaches to affinity and stability improvement, as well as ab-initio and homology-based antibody modeling; (ii) resources for antibody sequences, structures, and immune epitopes and open drug discovery resources for development of antibody drugs; and (iii...

  11. Antithyroglobulin Antibodies and Antimicrosomal Antibodies in Various Thyroid Diseases

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gwon Jun; Hong, Key Sak; Choi, Kang Won; Lee, Kyu; Koh, Chang Soon; Lee, Mun Ho; Park, Sung Hoe; Chi, Je Geun; Lee, Sang Kook [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1979-03-15

    The authors investigated the incidence of antithyroglobulin antibodies and antibodies and antimicrosomal antibodies measured by tanned red cell hemagglutination method in subjects suffering from various thyroid disorders. 1) In 15 normal patients, neither suffering from any thyroid diseases nor from any other autoimmune disorders, the antithyroglobulin antibodies were all negative, but the antimicrosomal antibody was positive only in one patient (6.7%). 2) The antithyroglobulin antibodies were positive in 31.5% (34 patients) of 108 patients with various thyroid diseases, and the antimicrosomal antibodies were positive in 37.0% (40 patients). 3) of the 25 patients with Graves' diseases, 7 patients (28.0%) showed positive for the antithyroglobulin antibodies, and 9 (36.0%) for the antimicrosomal antibodies. There was no definite differences in clinical and thyroid functions between the groups with positive and negative results. 4) Both antibodies were positive in 16 (88.9%) and 17 (94.4%) patients respectively among 18 patients with Hashimoto's thyroiditis, all of them were diagnosed histologically. 5) Three out of 33 patients with thyroid adenoma showed positive antibodies, and 3 of 16 patients with thyroid carcinoma revealed positive antibodies. 6) TRCH antibodies demonstrated negative results in 2 patients with subacute thyroiditis, but positive in one patient with idiopathic primary myxedema. 7) The number of patients with high titers(>l:802) was 16 for antithyroglobulin antibody, and 62.5% (10 patients) of which was Hashimoto's thyroiditis. Thirteen (65.0) of 20 patients with high titers (>l:802) for antimicrosomal antibody was Hashimoto's thyroiditis. TRCH test is a simple, sensitive method, and has high reliability and reproducibility. The incidences and titers of antithyroglobulin antibody and antimicrosomal antibody are especially high in Hashimoto's thyroiditis.

  12. Prediction of Antibody Epitopes

    DEFF Research Database (Denmark)

    Nielsen, Morten; Marcatili, Paolo

    2015-01-01

    Antibodies recognize their cognate antigens in a precise and effective way. In order to do so, they target regions of the antigenic molecules that have specific features such as large exposed areas, presence of charged or polar atoms, specific secondary structure elements, and lack of similarity...... to self-proteins. Given the sequence or the structure of a protein of interest, several methods exploit such features to predict the residues that are more likely to be recognized by an immunoglobulin.Here, we present two methods (BepiPred and DiscoTope) to predict linear and discontinuous antibody...

  13. Fluorescent labeling of antibody fragments using split GFP.

    Directory of Open Access Journals (Sweden)

    Fortunato Ferrara

    Full Text Available Antibody fragments are easily isolated from in vitro selection systems, such as phage and yeast display. Lacking the Fc portion of the antibody, they are usually labeled using small peptide tags recognized by antibodies. In this paper we present an efficient method to fluorescently label single chain Fvs (scFvs using the split green fluorescent protein (GFP system. A 13 amino acid tag, derived from the last beta strand of GFP (termed GFP11, is fused to the C terminus of the scFv. This tag has been engineered to be non-perturbing, and we were able to show that it exerted no effect on scFv expression or functionality when compared to a scFv without the GFP11 tag. Effective functional fluorescent labeling is demonstrated in a number of different assays, including fluorescence linked immunosorbant assays, flow cytometry and yeast display. Furthermore, we were able to show that this split GFP system can be used to determine the concentration of scFv in crude samples, as well an estimate of antibody affinity, without the need for antibody purification. We anticipate this system will be of widespread interest in antibody engineering and in vitro display systems.

  14. Compositions, antibodies, asthma diagnosis methods, and methods for preparing antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hongjun; Zangar, Richard C.

    2017-01-17

    Methods for preparing an antibody are provided with the method including incorporating 3-bromo-4-hydroxy-benzoic acid into a protein to form an antigen, immunizing a mammalian host with the antigen, and recovering an antibody having an affinity for the antigen from the host. Antibodies having a binding affinity for a monohalotyrosine are provided as well as composition comprising an antibody bound with monohalotyrosine. Compositions comprising a protein having a 3-bromo-4-hydroxy-benzoic acid moiety are also provided. Methods for evaluating the severity of asthma are provide with the methods including analyzing sputum of a patient using an antibody having a binding affinity for monohalotyrosine, and measuring the amount of antibody bound to protein. Methods for determining eosinophil activity in bodily fluid are also provided with the methods including exposing bodily fluid to an antibody having a binding affinity for monohalotyrosine, and measuring the amount of bound antibody to determine the eosinophil activity.

  15. Generation of recombinant alpaca VHH antibody fragments for the detection of the mycotoxin ochratoxin A

    NARCIS (Netherlands)

    Houwelingen, van A.M.M.L.; Saeger, de T.; Rusanova, T.; Waalwijk, C.; Beekwilder, M.J.

    2008-01-01

    To develop sensor technologies based on genetically engineered recognition elements, recombinant antibodies characterised by high stability are a prerequisite. Here we describe the first successful isolation of recombinant alpaca single-domain antibody fragments with high affinity to the mycotoxin o

  16. Human germline antibody gene segments encode polyspecific antibodies.

    Science.gov (United States)

    Willis, Jordan R; Briney, Bryan S; DeLuca, Samuel L; Crowe, James E; Meiler, Jens

    2013-04-01

    Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.

  17. Prediction of antibody persistency from antibody titres to natalizumab

    DEFF Research Database (Denmark)

    Jensen, Poul Erik H; Koch-Henriksen, Nils; Sellebjerg, Finn Thorup;

    2012-01-01

    In a subgroup of patients with multiple sclerosis natalizumab therapy causes generation of anti-natalizumab antibodies that may be transient or persistent. It is recommended to discontinue natalizumab therapy in persistently antibody-positive patients.......In a subgroup of patients with multiple sclerosis natalizumab therapy causes generation of anti-natalizumab antibodies that may be transient or persistent. It is recommended to discontinue natalizumab therapy in persistently antibody-positive patients....

  18. Monoclonal antibodies in myeloma

    DEFF Research Database (Denmark)

    Sondergeld, P.; van de Donk, N. W. C. J.; Richardson, P. G.;

    2015-01-01

    The development of monoclonal antibodies (mAbs) for the treatment of disease goes back to the vision of Paul Ehrlich in the late 19th century; however, the first successful treatment with a mAb was not until 1982, in a lymphoma patient. In multiple myeloma, mAbs are a very recent and exciting add...

  19. Antibody Blood Tests

    Science.gov (United States)

    ... What do I do if I have a negative blood test (or panel) but I’m still having symptoms? While it is rare, it is possible for patients to have a negative antibody test results and still have celiac disease. ...

  20. RBC Antibody Screen

    Science.gov (United States)

    ... test also may be used to help diagnose autoimmune-related hemolytic anemia in conjunction with a DAT. This condition may be caused when a person produces antibodies against his or her own RBC antigens. This can happen with some autoimmune disorders , such as lupus , with diseases such as ...

  1. Human Monoclonal antibodies - A dual advantaged weapon to tackle cancer and viruses

    Directory of Open Access Journals (Sweden)

    Kurosawa G

    2014-11-01

    Full Text Available Human monoclonal antibodies (mAbs are powerful tools as pharmaceutical agents to tackle cancer and infectious diseases. Antibodies (Abs are present in blood at the concentration of 10 mg/ml and play a vital role in humoral immunity. Many therapeutic Abs have been reported since early 1980s. Human mAb technology was not available at that time and only the hybridoma technology for making mouse mAbs had been well established. In order to avoid various potential problems associated with use of mouse proteins, two different technologies to make human/mouse chimeric Ab as well as humanized Ab were developed crossing the various hurdles for almost twenty years and mAb based drugs such as rituximab, anti-CD20 Ab, and trastuzumab, anti-HER2 Ab, have been approved by the US Food and Drug Administration (FDA for treatment of non-Hodgkin's lymphoma and breast cancer in 1997 and 1998, respectively. These drugs are well recognized and accepted by clinicians for treatment of patients. The clinical outcome of the treatment with mAb has strongly encouraged the researchers to develop much more refined mAbs. In addition to chimeric Ab and humanized Ab, now human mAbs can be produced by two technologies. The first is transgenic mice that produce human Abs and the second is human Ab libraries using phage-display system. Until now, several hundreds of mAbs against several tens of antigens (Ags have been developed and subjected to clinical examinations. While many Abs have been approved as therapeutic agents against hematological malignancies, the successful mAbs against solid tumors are still limited. However, many researchers have suggested that developing potential mAbs agents should be possible and incurable cancers may become curable within another decade. Though it is hard to say explicitly that this prediction is correct, a passion for this development should be worth supporting to lead to a successful outcome which will lead to patient benefits. Our institute

  2. What Is Antiphospholipid Antibody Syndrome?

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Is Antiphospholipid Antibody Syndrome? Antiphospholipid (AN-te-fos-fo-LIP-id) antibody ... weeks or months. This condition is called catastrophic antiphospholipid syndrome (CAPS). People who have APS also are at ...

  3. Red Blood Cell Antibody Identification

    Science.gov (United States)

    ... ID, RBC; RBC Ab ID Formal name: Red Blood Cell Antibody Identification Related tests: Direct Antiglobulin Test ; RBC ... I should know? How is it used? Red blood cell (RBC) antibody identification is used as a follow- ...

  4. Lupus anticoagulants and antiphospholipid antibodies

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000547.htm Lupus anticoagulants and antiphospholipid antibodies To use the sharing features on this page, please enable JavaScript. Lupus anticoagulants are antibodies against substances in the lining ...

  5. Anti-smooth muscle antibody

    Science.gov (United States)

    ... gov/ency/article/003531.htm Anti-smooth muscle antibody To use the sharing features on this page, please enable JavaScript. Anti-smooth muscle antibody is a blood test that detects the presence ...

  6. Bispecific Antibodies as a Development Platform for New Concepts and Treatment Strategies

    Directory of Open Access Journals (Sweden)

    Fa Yang

    2016-12-01

    Full Text Available With the development of molecular cloning technology and the deep understanding of antibody engineering, there are diverse bispecific antibody formats from which to choose to pursue the optimal biological activity and clinical purpose. The single-chain-based bispecific antibodies usually bridge tumor cells with immune cells and form an immunological synapse because of their relatively small size. Bispecific antibodies in the IgG format include asymmetric bispecific antibodies and homodimerized bispecific antibodies, all of which have an extended blood half-life and their own crystalline fragment (Fc-mediated functions. Besides retargeting effector cells to the site of cancer, new applications were established for bispecific antibodies. Bispecific antibodies that can simultaneously bind to cell surface antigens and payloads are a very ideal delivery system for therapeutic use. Bispecific antibodies that can inhibit two correlated signaling molecules at the same time can be developed to overcome inherent or acquired resistance and to be more efficient angiogenesis inhibitors. Bispecific antibodies can also be used to treat hemophilia A by mimicking the function of factor VIII. Bispecific antibodies also have broad application prospects in bone disorders and infections and diseases of the central nervous system. The latest developments of the formats and application of bispecific antibodies will be reviewed. Furthermore, the challenges and perspectives are summarized in this review.

  7. Structural Characterization of Peptide Antibodies

    DEFF Research Database (Denmark)

    Chailyan, Anna; Marcatili, Paolo

    2015-01-01

    The role of proteins as very effective immunogens for the generation of antibodies is indisputable. Nevertheless, cases in which protein usage for antibody production is not feasible or convenient compelled the creation of a powerful alternative consisting of synthetic peptides. Synthetic peptides...... can be modified to obtain desired properties or conformation, tagged for purification, isotopically labeled for protein quantitation or conjugated to immunogens for antibody production. The antibodies that bind to these peptides represent an invaluable tool for biological research and discovery...

  8. Candidate antibody-based therapeutics against HIV-1.

    Science.gov (United States)

    Gong, Rui; Chen, Weizao; Dimitrov, Dimiter S

    2012-06-01

    Antibody-based therapeutics have been successfully used for the treatment of various diseases and as research tools. Several well characterized, broadly neutralizing monoclonal antibodies (bnmAbs) targeting HIV-1 envelope glycoproteins or related host cell surface proteins show sterilizing protection of animals, but they are not effective when used for therapy of an established infection in humans. Recently, a number of novel bnmAbs, engineered antibody domains (eAds), and multifunctional fusion proteins have been reported which exhibit exceptionally potent and broad neutralizing activity against a wide range of HIV-1 isolates from diverse genetic subtypes. eAds could be more effective in vivo than conventional full-size antibodies generated by the human immune system. Because of their small size (12∼15 kD), they can better access sterically restricted epitopes and penetrate densely packed tissue where HIV-1 replicates than the larger full-size antibodies. HIV-1 possesses a number of mechanisms to escape neutralization by full-size antibodies but could be less likely to develop resistance to eAds. Here, we review the in vitro and in vivo antiviral efficacies of existing HIV-1 bnmAbs, summarize the development of eAds and multispecific fusion proteins as novel types of HIV-1 inhibitors, and discuss possible strategies to generate more potent antibody-based candidate therapeutics against HIV-1, including some that could be used to eradicate the virus.

  9. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    Zegers, N.D.

    1995-01-01

    Synthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps that lead to the uni

  10. Layered Systems Engineering Engines

    Science.gov (United States)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  11. Engineer Ethics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae Sik; Kim, Yeong Pil; Kim, Yeong Jin

    2003-03-15

    This book tells of engineer ethics such as basic understanding of engineer ethics with history of engineering as a occupation, definition of engineering and specialized job and engineering, engineer ethics as professional ethics, general principles of ethics and its limitation, ethical theory and application, technique to solve the ethical problems, responsibility, safety and danger, information engineer ethics, biotechnological ethics like artificial insemination, life reproduction, gene therapy and environmental ethics.

  12. Antiphospholipid Antibody and Antiphospholipid Syndrome

    Institute of Scientific and Technical Information of China (English)

    吴竞生

    2008-01-01

    @@ Antiphospholipid antibodies (APA) APA is a big category for all kinds of negative charge phospholipid or lecithin - a protein complex autoantibodies or the same antibody, through its recognition of antigen (target protein) different, and phospholipids or lecithin - protein complex combination of various rely on the interference Phospholipid clotting and anti-coagulation factor, and promote endothelial cells, platelets, complement activation and play a role. APA including lupus anticoagulant(LA) and anticardiolipin antibody (ACA), In addition, there are anti-β2 glycoprotein-I (β2-GPI) antibody, anti-prothrombin (a- PT) antibody, anti-lysophosphatidic acid antibody and anti-phosphatidylserine antibody, and so on. APA as the main target of phospholipid-binding protein, including β2-GPI, prothrombin, annexin, protein C (PC) and protein S (PS), plasminogen, and so on.

  13. Four Engineers...

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    There are four engineers traveling in a car;a mechanical engineer,a chemical engi-neer,an electrical engineer and a comput-er engineer.The car breaks down.“Sounds to me as if the pistons have seized.We ll have to strip down the engine before we canget the car working again,”says the mechanical

  14. Efficient Expression of Antibody Fragments with the Brevibacillus Expression System

    Directory of Open Access Journals (Sweden)

    Hiroshi Hanagata

    2014-05-01

    Full Text Available Antibodies, owing to their capability to bind specifically to a target molecule, have been and will continue to be applied in various areas, including research, diagnosis and therapy. In particular, antibody fragments, which are size-reduced antibodies comprising functional variable domains, are suited for production in bacteria. They also are useful in applications requiring intracellular delivery and for further engineering toward molecules possessing multiple custom functions. An expression system based on Brevibacillus is characterized by high efficiency and simple genetic recombination for secretory production. The Brevibacillus expression system has been successfully utilized for the efficient production of antibody fragments, e.g., scFvs (single-chain antibody fragments comprising heavy-chain and light-chain variable domains, linked by a spacer sequence. Expression in fusion with a Halobacterium-derived secretory protein was shown to confer enhanced productivity. In the case of Fabs, productivity as high as 100 mg/L was accomplished in a simple system, i.e., shake flask cultures. The Brevibacillus expression system offers several advantages, shared by other bacterial systems, such as E. coli, in particular, for the ease in genetic engineering and culture production.

  15. Monoclonal Antibody-Based Therapeutics for Melioidosis and Glanders

    Directory of Open Access Journals (Sweden)

    Hyung-Yong Kim

    2011-01-01

    Full Text Available Problem statement: Burkholderia Pseudomallei (BP and B. Mallei (BM were two closely related pathogenic gram-negative bacteria. They were the causative agents of melioidosis and glanders, respectively and are recognized by CDC as category B select agents. Significant efforts had been devoted to developing the diagnostic and therapeutic measures against these two pathogens. Monoclonal antibody-based therapeutic was a promising targeted therapy to fight against melioidosis and glanders. Valuable findings have been reported by different groups in their attempt to identify vaccine targets against these two pathogens. Approach: Our group has generated neutralizing Monoclonal Antibodies (MAbs against BP and BM and characterized them by both in vitro and in vivo experiments. We present an overview of the MAb-based therapeutic approaches against BP and BM and demonstrate some of our efforts for developing chimeric and fully human MAbs using antibody engineering. Results: Throughout conventional mouse hybridoma technique and antibody engineering (chimerization and in vitro antibody library techniques, we generated 10 chimeric MAbs (3 stable MAbs and 7 transient MAbs and one fully human MAb against BP and BM. In addition, we present the reactive antigen profiles of these MAbs. Our approaches had potentials to accelerate the development of therapeutics for melioidosis and glanders in humans. Conclusion: Our experience and findings presented here will be valuable for choosing the best antigenic targets and ultimately for the production of effective vaccines for these two pathogens.

  16. How antibodies use complement to regulate antibody responses.

    Science.gov (United States)

    Sörman, Anna; Zhang, Lu; Ding, Zhoujie; Heyman, Birgitta

    2014-10-01

    Antibodies, forming immune complexes with their specific antigen, can cause complete suppression or several 100-fold enhancement of the antibody response. Immune complexes containing IgG and IgM may activate complement and in such situations also complement components will be part of the immune complex. Here, we review experimental data on how antibodies via the complement system upregulate specific antibody responses. Current data suggest that murine IgG1, IgG2a, and IgG2b upregulate antibody responses primarily via Fc-receptors and not via complement. In contrast, IgM and IgG3 act via complement and require the presence of complement receptors 1 and 2 (CR1/2) expressed on both B cells and follicular dendritic cells. Complement plays a crucial role for antibody responses not only to antigen complexed to antibodies, but also to antigen administered alone. Lack of C1q, but not of Factor B or MBL, severely impairs antibody responses suggesting involvement of the classical pathway. In spite of this, normal antibody responses are found in mice lacking several activators of the classical pathway (complement activating natural IgM, serum amyloid P component (SAP), specific intracellular adhesion molecule-grabbing non-integrin R1 (SIGN-R1) or C-reactive protein. Possible explanations to these observations will be discussed.

  17. The antibody Hijikata Tatsumi

    Directory of Open Access Journals (Sweden)

    Éden Peretta

    2012-11-01

    Full Text Available Considered one of the most influential modern dance representatives in Japan, Tatsumi Hijikata’s work was a milestone in the Japanese post-war experimental artistic scene. Heretic son of his time, he staged a fertile mix of artistic and cultural influences, overlapping subversive elements of European arts and philosophy with radical references from pre-modern Japanese culture. In this way he built the foundations of its unstable antibody, its political-artistic project of dissolution of a organism, both physical and social.

  18. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection.

    Directory of Open Access Journals (Sweden)

    Rami Sommerstein

    2015-11-01

    Full Text Available Arenaviruses such as Lassa virus (LASV can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein's globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy.

  19. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection.

    Science.gov (United States)

    Sommerstein, Rami; Flatz, Lukas; Remy, Melissa M; Malinge, Pauline; Magistrelli, Giovanni; Fischer, Nicolas; Sahin, Mehmet; Bergthaler, Andreas; Igonet, Sebastien; Ter Meulen, Jan; Rigo, Dorothée; Meda, Paolo; Rabah, Nadia; Coutard, Bruno; Bowden, Thomas A; Lambert, Paul-Henri; Siegrist, Claire-Anne; Pinschewer, Daniel D

    2015-11-01

    Arenaviruses such as Lassa virus (LASV) can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb) responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein's globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy.

  20. Engineering ceramics

    CERN Document Server

    Bengisu, Murat

    2001-01-01

    This is a comprehensive book applying especially to junior and senior engineering students pursuing Materials Science/ Engineering, Ceramic Engineering and Mechanical Engineering degrees. It is also a reference book for other disciplines such as Chemical Engineering, Biomedical Engineering, Nuclear Engineering and Environmental Engineering. Important properties of most engineering ceramics are given in detailed tables. Many current and possible applications of engineering ceramics are described, which can be used as a guide for materials selection and for potential future research. While covering all relevant information regarding raw materials, processing properties, characterization and applications of engineering ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  1. Engineering and Software Engineering

    Science.gov (United States)

    Jackson, Michael

    The phrase ‘software engineering' has many meanings. One central meaning is the reliable development of dependable computer-based systems, especially those for critical applications. This is not a solved problem. Failures in software development have played a large part in many fatalities and in huge economic losses. While some of these failures may be attributable to programming errors in the narrowest sense—a program's failure to satisfy a given formal specification—there is good reason to think that most of them have other roots. These roots are located in the problem of software engineering rather than in the problem of program correctness. The famous 1968 conference was motivated by the belief that software development should be based on “the types of theoretical foundations and practical disciplines that are traditional in the established branches of engineering.” Yet after forty years of currency the phrase ‘software engineering' still denotes no more than a vague and largely unfulfilled aspiration. Two major causes of this disappointment are immediately clear. First, too many areas of software development are inadequately specialised, and consequently have not developed the repertoires of normal designs that are the indispensable basis of reliable engineering success. Second, the relationship between structural design and formal analytical techniques for software has rarely been one of fruitful synergy: too often it has defined a boundary between competing dogmas, at which mutual distrust and incomprehension deprive both sides of advantages that should be within their grasp. This paper discusses these causes and their effects. Whether the common practice of software development will eventually satisfy the broad aspiration of 1968 is hard to predict; but an understanding of past failure is surely a prerequisite of future success.

  2. Cancer imaging with radiolabeled antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Goldenberg, D.M. (Center for Molecular Medicine and Immunology, Newark, NJ (US))

    1990-01-01

    This book presents a perspective of the use of antibodies to target diagnostic isotopes to tumors. Antibodies with reasonable specificity can be developed against almost any substance. If selective targeting to cancer cells can be achieved, the prospects for a selective therapy are equally intriguing. But the development of cancer detection, or imaging, with radiolabeled antibodies has depended upon advances in a number of different areas, including cancer immunology and immunochemistry for identifying suitable antigen targets and antibodies to these targets, tumor biology for model systems, radiochemistry for he attachment of radionuclides to antibodies, molecular biology for reengineering the antibodies for safer and more effective use in humans, and nuclear medicine for providing the best imaging protocols and instrumentation to detect minute amounts of elevated radioactivity against a background of considerable noise. Accordingly, this book has been organized to address the advances that are being made in many of these areas.

  3. VIRAL ANTIBODIES IN PRESCHOOL CHILDREN

    Directory of Open Access Journals (Sweden)

    S. Saidi

    1974-08-01

    Full Text Available One hundred sera from children 1 - 6 years of age, representative of a large serum collection, were tested for the prevalence of antibodies against different viruses. Hemagglutination-inhibition (HI antibodies were found in 68% for measles; 61 % for rubella; 75'% for influenza A2/Hong Kong/68, 16% for influenza B/Md./59, 0% for group A arboviruses, 10% for group B arboviruses, 3% for phlebotomus fever group and 4% for Congo-Crimean hemorrhagic fever (C-CHF group of arboviruses Poliomyelitis-neutralizing antibodies for type 1, 2 and 3 were 90%; 85% and 84%~ respectively. Antibody to EH virus was detected in 84% of the sera by immuno-fluorescence. None of the sera were positive for hepatitis-B antigen or antibody by immuno-precipitation test. The prevalence of some viral antibodies found in this survey are compared with results obtained from surveys in other parts of the country.

  4. Antibodies against antibodies: immunogenicity of adalimumab as a model

    NARCIS (Netherlands)

    van Schouwenburg, P.A.

    2012-01-01

    Upon repeated adalimumab exposure part of the patients start to produce ADA. The antibody response is polyclonal and consists mainly of antibodies of IgG1 and IgG4 isotype. In the majority of ADA positive patients ADA are already produced within the first 28 weeks of treatment and in part of the pat

  5. Mechanical engineering

    CERN Document Server

    Darbyshire, Alan

    2010-01-01

    Alan Darbyshire's best-selling text book provides five-star high quality content to a potential audience of 13,000 engineering students. It explains the most popular specialist units of the Mechanical Engineering, Manufacturing Engineering and Operations & Maintenance Engineering pathways of the new 2010 BTEC National Engineering syllabus. This challenging textbook also features contributions from specialist lecturers, ensuring that no stone is left unturned.

  6. 嵌合抗体研究进展%Research advances in chimeric antibodies

    Institute of Scientific and Technical Information of China (English)

    张雪

    2012-01-01

    单克隆抗体在疾病的诊断、治疗和预防中发挥着重要作用,但是在临床治疗中人抗鼠抗体反应的出现使鼠源性单克隆抗体的应用受到了很大限制.随着分子生物学、分子免疫学技术的飞速发展,抗体技术已发展到第三代抗体——基因工程抗体阶段,可利用基因工程技术对鼠源性抗体进行改造,保留或增强天然抗体的特异性和主要生物学活性,同时减少鼠源成分,以避免鼠源性单克隆抗体在临床应用方面的缺陷.此文就基因工程抗体中的重要组成部分嵌合抗体的研究进展做一综述.%Monoclonal antibodies play an important role in diagnosis,treatment and prevention of diseases,but the clinical utility of murine monoclonal antibodies has been greatly limited by human anti-mouse antibody responses.With the rapid development of molecular biology and molecular immunology,antibody techniques run to the third generation-genetic engineering antibody.Murine antibodies are reconstructed with genetic engineering techniques,which reserve or increase the specificity and biological activity of natural antibodies,decrease murine components,getting rid of defects of murine monoclonal antibody in clinical application.In this review,research advancement in chimeric antibody which is one of the important constituents of genetic engineering antibodies is described.

  7. Pathogenic role of antiphospholipid antibodies

    NARCIS (Netherlands)

    Salmon, J. E.; de Groot, P. G.

    2008-01-01

    The antiphospholipid antibody syndrome (APS) is characterized by recurrent arterial and venous thrombosis and/or pregnancy in association with antiphospholipid (aPL) antibodies. The pathogenic mechanisms in APS that lead to in vivo injury are incompletely understood. Recent evidence suggests that AP

  8. Educational paper: Primary antibody deficiencies

    NARCIS (Netherlands)

    G.J.A. Driessen (Gertjan); M. van der Burg (Mirjam)

    2011-01-01

    textabstractPrimary antibody deficiencies (PADs) are the most common primary immunodeficiencies and are characterized by a defect in the production of normal amounts of antigen-specific antibodies. PADs represent a heterogeneous spectrum of conditions, ranging from often asymptomatic selective IgA a

  9. Targeting of Antibodies using Aptamers

    OpenAIRE

    2003-01-01

    The chapter presents a methodology for the rapid selection of aptamers against antibody targets. It is a detailed account of the various methodological steps that describe the selection of aptamers, including PCR steps, buffers to be used, target immobilisation, partitioning and amplification of aptamers, clonning and sequencing, to results in high affinity and specificity ligands for the chosen target antibody.

  10. Intramolecular trimerization, a novel strategy for making multispecific antibodies with controlled orientation of the antigen binding domains

    DEFF Research Database (Denmark)

    Álvarez-Cienfuegos, Ana; Alanes, Natalia Nuñez del Prado; Compte, Marta

    2016-01-01

    Here, we describe a new strategy that allows the rapid and efficient engineering of mono and multispecific trivalent antibodies. By fusing single-domain antibodies from camelid heavy-chain-only immunoglobulins (VHHs) to the N-terminus of a human collagen XVIII trimerization domain (TIEXVIII) we p...

  11. Rationalization and design of the complementarity determining region sequences in an antibody-antigen recognition interface.

    Directory of Open Access Journals (Sweden)

    Chung-Ming Yu

    Full Text Available Protein-protein interactions are critical determinants in biological systems. Engineered proteins binding to specific areas on protein surfaces could lead to therapeutics or diagnostics for treating diseases in humans. But designing epitope-specific protein-protein interactions with computational atomistic interaction free energy remains a difficult challenge. Here we show that, with the antibody-VEGF (vascular endothelial growth factor interaction as a model system, the experimentally observed amino acid preferences in the antibody-antigen interface can be rationalized with 3-dimensional distributions of interacting atoms derived from the database of protein structures. Machine learning models established on the rationalization can be generalized to design amino acid preferences in antibody-antigen interfaces, for which the experimental validations are tractable with current high throughput synthetic antibody display technologies. Leave-one-out cross validation on the benchmark system yielded the accuracy, precision, recall (sensitivity and specificity of the overall binary predictions to be 0.69, 0.45, 0.63, and 0.71 respectively, and the overall Matthews correlation coefficient of the 20 amino acid types in the 24 interface CDR positions was 0.312. The structure-based computational antibody design methodology was further tested with other antibodies binding to VEGF. The results indicate that the methodology could provide alternatives to the current antibody technologies based on animal immune systems in engineering therapeutic and diagnostic antibodies against predetermined antigen epitopes.

  12. Improved Detection of Domoic Acid Using Covalently Immobilised Antibody Fragments

    Directory of Open Access Journals (Sweden)

    J. Gerard Wall

    2013-03-01

    Full Text Available Antibody molecules, and antibody fragments in particular, have enormous potential in the development of biosensors for marine monitoring. Conventional immobilisation approaches used in immunoassays typically yield unstable and mostly incorrectly oriented antibodies, however, resulting in reduced detection sensitivities for already low concentration analytes. The 2H12 anti-domoic acid scFv antibody fragment was engineered with cysteine-containing linkers of two different lengths, distal to the antigen binding pocket, for covalent and correctly oriented immobilisation of the scFvs on functionalised solid supports. The Escherichia coli-produced, cysteine-engineered scFvs dimerised in solution and demonstrated similar efficiencies of covalent immobilisation on maleimide-activated plates and minimal non-covalent attachment. The covalently attached scFvs exhibited negligible leaching from the support under acidic conditions that removed almost 50% of the adsorbed wildtype fragment, and IC50s for domoic acid of 270 and 297 ng/mL compared with 1126 and 1482 ng/mL, respectively, for their non-covalently adsorbed counterparts. The expression and immobilisation approach will facilitate the development of stable, reusable biosensors with increased stability and detection sensitivity for marine neurotoxins.

  13. Antibodies to Phospholipids and Liposomes: Binding of Antibodies to Cells

    Science.gov (United States)

    1987-01-01

    LIPOSOMES: BINDING OF ANTIBODIES TO CELLS 12. PERSONAL AUTHOR(S) W.E. FOGLER , G. M. SWARTZ, AND C.R. ALVING 13a TYPE OF REPORT 13b. TIME COVERED 14. DATE...Elsevier BBA 73693 Antibodies to phospholipids and liposomes: binding of antibodies to cells William E. Fogler *, Glenn M. Swartz, Jr. and Carl R. Alving...Immunol. 21. Research Associateship from the U.S. National 12863-86812Hall. T. and Esser, K. (1984) 3. Immunol. 132. 2059-2063 Research Council. 13 Fogler

  14. Simultaneous expression of displayed and secreted antibodies for antibody screen.

    Directory of Open Access Journals (Sweden)

    Yuanping Zhou

    Full Text Available The display of full-length antibody on the cell surface was achieved by fusing a transmembrane domain of the platelet-derived growth factor receptor (PDGFR to the C-terminus of the heavy chain constant region. We also incorporated a furin cleavage site between the constant region and PDGFR transmembrane domain to obtain secreted antibodies. As a result, antibodies can be expressed simultaneously on the cell surface in a membrane-anchored version for screening and selecting through fluorescence-activated cell sorting (FACS analysis, as well as in conditioned medium in a secreted version for function analysis.

  15. Prosthetic Engineering

    Science.gov (United States)

    ... Overview CoE for Limb Loss Prevention and Prosthetic Engineering Menu Menu VA Center of Excellence for Limb ... ZIP code here Enter ZIP code here Prosthetic Engineering - Overview Our aim is to improve prosthetic prescription ...

  16. Engineering Cartilage

    Science.gov (United States)

    ... Research Matters NIH Research Matters March 3, 2014 Engineering Cartilage Artistic rendering of human stem cells on ... situations has been a major goal in tissue engineering. Cartilage contains water, collagen, proteoglycans, and chondrocytes. Collagens ...

  17. Industrial Engineering

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    Industrial engineering is a discipline that is concerned with increasing the effectiveness of (primarily) manufacturing and (occasionally).......Industrial engineering is a discipline that is concerned with increasing the effectiveness of (primarily) manufacturing and (occasionally)....

  18. Governing Engineering

    DEFF Research Database (Denmark)

    Buch, Anders

    2012-01-01

    Most people agree that our world face daunting problems and, correctly or not, technological solutions are seen as an integral part of an overall solution. But what exactly are the problems and how does the engineering ‘mind set’ frame these problems? This chapter sets out to unravel dominant...... perspectives in challenge per-ception in engineering in the US and Denmark. Challenge perception and response strategies are closely linked through discursive practices. Challenge perceptions within the engineering community and the surrounding society are thus critical for the shaping of engineering education...... and the engineering profession. Through an analysis of influential reports and position papers on engineering and engineering education the chapter sets out to identify how engineering is problematized and eventually governed. Drawing on insights from governmentality studies the chapter strives to elicit the bodies...

  19. Governing Engineering

    DEFF Research Database (Denmark)

    Buch, Anders

    2011-01-01

    Abstract: Most people agree that our world faces daunting problems and, correctly or not, technological solutions are seen as an integral part of an overall solution. But what exactly are the problems and how does the engineering ‘mind set’ frame these problems? This chapter sets out to unravel...... dominant perspectives in challenge perception in engineering in the US and Denmark. Challenge perception and response strategies are closely linked through discursive practices. Challenge perceptions within the engineering community and the surrounding society are thus critical for the shaping...... of engineering education and the engineering profession. Through an analysis of influential reports and position papers on engineering and engineering education the chapter sets out to identify how engineering is problematized and eventually governed. Drawing on insights from governmentality studies the chapter...

  20. Monoclonal antibody-based candidate therapeutics against HIV type 1.

    Science.gov (United States)

    Chen, Weizao; Dimitrov, Dimiter S

    2012-05-01

    Treatment of HIV-1 infection has been highly successful with small molecule drugs. However, resistance still develops. In addition, long-term use can lead to toxicity with unpredictable effects on health. Finally, current drugs do not lead to HIV-1 eradication. The presence of the virus leads to chronic inflammation, which can result in increased morbidity and mortality after prolonged periods of infection. Monoclonal antibodies (mAbs) have been highly successful during the past two decades for therapy of many diseases, primarily cancers and immune disorders. They are relatively safe, especially human mAbs that have evolved in humans at high concentrations to fight diseases and long-term use may not lead to toxicities. Several broadly neutralizing mAbs (bnmAbs) against HIV-1 can protect animals but are not effective when used for therapy of an established infection. We have hypothesized that HIV-1 has evolved strategies to effectively escape neutralization by full-size antibodies in natural infections but not by smaller antibody fragments. Therefore, a promising direction of research is to discover and exploit antibody fragments as potential candidate therapeutics against HIV-1. Here we review several bnmAbs and engineered antibody domains (eAds), their in vitro and in vivo antiviral efficacy, mechanisms used by HIV-1 to escape them, and strategies that could be effective to develop more powerful mAb-based HIV-1 therapeutics.

  1. Neoadjuvant therapy for early-stage breast cancer: the clinical utility of pertuzumab

    Directory of Open Access Journals (Sweden)

    Gollamudi J

    2016-02-01

    Full Text Available Jahnavi Gollamudi,1,* Jenny G Parvani,2,* William P Schiemann,3 Shaveta Vinayak3,4 1Department of Internal Medicine, 2Department of Biomedical Engineering, 3Case Comprehensive Cancer Center, Case Western Reserve University, 4Department of Hematology and Oncology, University Hospitals Case Medical Center, Cleveland, OH, USA *These authors contributed equally to this work Abstract: Approximately 20% of breast cancer patients harbor tumors that overexpress human epidermal growth factor receptor 2 (HER2; also known as ErbB2, a receptor tyrosine kinase that belongs to the epidermal growth factor receptor family of receptor tyrosine kinases. HER2 amplification and hyperactivation drive the growth and survival of breast cancers through the aberrant activation of proto-oncogenic signaling systems, particularly the Ras/MAP kinase and PI3K/AKT pathways. Although HER2-positive (HER2+ breast cancer was originally considered to be a highly aggressive form of the disease, the clinical landscape of HER2+ breast cancers has literally been transformed by the approval of anti-HER2 agents for adjuvant and neoadjuvant settings. Indeed, pertuzumab is a novel monoclonal antibody that functions as an anti-HER2 agent by targeting the extracellular dimerization domain of the HER2 receptor; it is also the first drug to receive an accelerated approval by the US Food and Drug Administration for use in neoadjuvant settings in early-stage HER2+ breast cancer. Here, we review the molecular and cellular factors that contribute to the pathophysiology of HER2 in breast cancer, as well as summarize the landmark preclinical and clinical findings underlying the approval and use of pertuzumab in the neoadjuvant setting. Finally, the molecular mechanisms operant in mediating resistance to anti-HER2 agents, and perhaps to pertuzumab as well, will be discussed, as will the anticipated clinical impact and future directions of pertuzumab in breast cancer patients. Keywords: breast cancer

  2. Herbicide-resistance conferred by expression of a catalytic antibody in Arabidopsis thaliana.

    Science.gov (United States)

    Weiss, Yael; Shulman, Avidor; Ben Shir, Irina; Keinan, Ehud; Wolf, Shmuel

    2006-06-01

    Engineering herbicide resistance in crops facilitates control of weed species, particularly those that are closely related to the crop, and may be useful in selecting lines that have undergone multiple transformation events. Here we show that herbicide-resistant plants can be engineered by designing an herbicide and expressing a catalytic antibody that destroys the herbicide in planta. First, we developed a carbamate herbicide that can be catalytically destroyed by the aldolase antibody 38C2. This compound has herbicidal activity on all three plant species tested. Second, the light chain and half of the heavy chain (Fab) of the catalytic antibody were targeted to the endoplasmic reticulum in two classes of Arabidopsis thaliana transformants. Third, the two transgenic plants were crossed to produce an herbicide-resistant F1 hybrid. The in vitro catalytic activity of the protein from F1 hybrids corroborates that catalytic antibodies can be constitutively expressed in transgenic plants, and that they can confer a unique trait.

  3. Engineering Motion

    Science.gov (United States)

    Tuttle, Nicole; Stanley, Wendy; Bieniek, Tracy

    2016-01-01

    For many teachers, engineering can be intimidating; teachers receive little training in engineering, particularly those teaching early elementary students. In addition, the necessity of differentiating for students with special needs can make engineering more challenging to teach. This article describes a professional development program…

  4. Tabhu: tools for antibody humanization

    DEFF Research Database (Denmark)

    Olimpieri, Pier Paolo; Marcatili, Paolo; Tramontano, Anna

    2015-01-01

    Antibodies are rapidly becoming essential tools in the clinical practice, given their ability to recognize their cognate antigens with high specificity and affinity, and a high yield at reasonable costs in model animals. Unfortunately, when administered to human patients, xenogeneic antibodies can...... elicit unwanted and dangerous immunogenic responses. Antibody humanization methods are designed to produce molecules with a better safety profile still maintaining their ability to bind the antigen. This can be accomplished by grafting the non-human regions determining the antigen specificity...

  5. Computational engineering

    CERN Document Server

    2014-01-01

    The book presents state-of-the-art works in computational engineering. Focus is on mathematical modeling, numerical simulation, experimental validation and visualization in engineering sciences. In particular, the following topics are presented: constitutive models and their implementation into finite element codes, numerical models in nonlinear elasto-dynamics including seismic excitations, multiphase models in structural engineering and multiscale models of materials systems, sensitivity and reliability analysis of engineering structures, the application of scientific computing in urban water management and hydraulic engineering, and the application of genetic algorithms for the registration of laser scanner point clouds.

  6. Pharmacokinetics of Genetically Engineered Antibody Forms Using Positron Emission Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Steven M. Larson, M.D. Nai-Kong Cheung, M.D., Ph.D.

    2004-08-31

    In the last grant period we have focused on multi-step targeting methodologies (MST), as a method for delivery of high dose to the tumor, with low dose to the bone marrow. We have explored uptake in colorectal, pancreatic and prostate cancer, using an special preparation, developed in collaboration with NeoRex A high tumor/bone marrow ratio is clearly achieved with MST, but with a cost, namely the higher dose to normal kidney. For this reason, we have in particular, (a) looked dosimetry for both tumor and normal organ, and especially renal dosimetry, which appears to be the target organ, for Y-90. (b) In parallel with this we have explored the dosimetry of very high dose rate radionuclides, including Holmium-166. (c) In addition, with NaiKong Cheung, we have developed a new MST construct based on the anti-GD2 targeting 5F11; (d) we have successfully completed development of s-factor tables for mice. In summary, renal dosimetry is dominated by about 4-5% of the injected dose being held long-term in the renal cortex, probably in the proximal tubule, due to the universal uptake of small proteins. This appears to be a function of a biotynlated protein binding of the strept-avidin construct, to HSP70. This cortical uptake has caused us to reconsider renal dosimetry as a whole, with the smaller mass of the cortex, rather than the whole kidney, as the target organ. These insights into dosimetry will be of great importance as MST, becomes more common in clinical practice.

  7. DARPA Antibody Technology Program Standardized Test Bed for Antibody Characterization: Characterization of an MS2 ScFv Antibody

    Science.gov (United States)

    2016-03-01

    ECBC-TR-1356 DARPA ANTIBODY TECHNOLOGY PROGRAM STANDARDIZED TEST BED FOR ANTIBODY CHARACTERIZATION...From - To) Oct 2010 – Sep 2012 4. TITLE AND SUBTITLE DARPA Antibody Technology Program Standardized Test Bed for Antibody Characterization...Arlington, VA 22203-2114 10. SPONSOR/MONITOR’S ACRONYM(S) DARPA 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT

  8. Evolution of antiphospholipid antibody syndrome.

    Science.gov (United States)

    Baviskar, Rutuja R; Amonkar, Gayathri P; Chaudhary, Vinod A; Balasubramanian, Meenakshi; Mohite, Shailesh C; Puranik, Gururaj V

    2012-12-01

    Antiphospholipid antibody syndrome is a very important cause of cerebral infarction, myocardial infarction, and repeated pregnancy losses in women. We present an extremely rare case of a 44-year-old man with antiphospholipid syndrome who collapsed and died suddenly. At autopsy, he was found to have both cerebral and myocardial infarction. In all young patients with cerebral infarction, myocardial infarction, pulmonary embolism, recurrent miscarriages, and unexplained low platelet count, one must consider the strong possibility of antiphospholipid antibody syndrome.

  9. Antibodies to watch in 2016

    OpenAIRE

    Reichert, Janice M

    2015-01-01

    The number of novel antibody therapeutics that received first marketing approvals in 2015 met expectations, with 6 (alirocumab (Praluent®), evolocumab (Repatha®), daratumumab (Darzalex®), dinutuximab (Unituxin®), idarucizumab (Praxbind®), mepolizumab (Nucala®)) granted first approvals as of mid-November*. Seven novel antibody therapeutics (begelomab, brodalumab, elotuzumab, ixekizumab, necitumumab, obiltoxaximab, reslizumab) are in regulatory review, and thus a similar number, if not more, ar...

  10. Tabhu: tools for antibody humanization.

    KAUST Repository

    Olimpieri, Pier Paolo

    2014-10-09

    SUMMARY: Antibodies are rapidly becoming essential tools in the clinical practice, given their ability to recognize their cognate antigens with high specificity and affinity, and a high yield at reasonable costs in model animals. Unfortunately, when administered to human patients, xenogeneic antibodies can elicit unwanted and dangerous immunogenic responses. Antibody humanization methods are designed to produce molecules with a better safety profile still maintaining their ability to bind the antigen. This can be accomplished by grafting the non-human regions determining the antigen specificity into a suitable human template. Unfortunately, this procedure may results in a partial or complete loss of affinity of the grafted molecule that can be restored by back-mutating some of the residues of human origin to the corresponding murine ones. This trial-and-error procedure is hard and involves expensive and time-consuming experiments. Here we present tools for antibody humanization (Tabhu) a web server for antibody humanization. Tabhu includes tools for human template selection, grafting, back-mutation evaluation, antibody modelling and structural analysis, helping the user in all the critical steps of the humanization experiment protocol. AVAILABILITY: http://www.biocomputing.it/tabhu CONTACT: anna.tramontano@uniroma1.it, pierpaolo.olimpieri@uniroma1.it SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

  11. Avian Diagnostic and Therapeutic Antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, David Sherman [UND SMHS

    2012-12-31

    A number of infectious agents have the potential of causing significant clinical symptomology and even death, but dispite this, the number of incidence remain below the level that supports producing a vaccine. Therapeutic antibodies provide a viable treatment option for many of these diseases. We proposed that antibodies derived from West Nile Virus (WNV) immunized geese would be able to treat WNV infection in mammals and potential humans. We demonstrated that WNV specific goose antibodies are indeed successful in treating WNV infection both prophylactically and therapeutically in a golden hamster model. We demonstrated that the goose derived antibodies are non-reactogenic, i.e. do not cause an inflammatory response with multiple exposures in mammals. We also developed both a specific pathogen free facility to house the geese during the antibody production phase and a patent-pending purification process to purify the antibodies to greater than 99% purity. Therefore, the success of these study will allow a cost effective rapidly producible therapeutic toward clinical testing with the necessary infrastructure and processes developed and in place.

  12. Escherichia coli surface display of single-chain antibody VRC01 against HIV-1 infection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lin-Xu [Nebraska Center for Virology, Lincoln, NE (United States); School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, NE 68583 (United States); Mellon, Michael [Nebraska Center for Virology, Lincoln, NE (United States); School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE (United States); Bowder, Dane [Nebraska Center for Virology, Lincoln, NE (United States); School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, NE 68583 (United States); Quinn, Meghan [Nebraska Center for Virology, Lincoln, NE (United States); School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE (United States); Shea, Danielle; Wood, Charles [Nebraska Center for Virology, Lincoln, NE (United States); School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, NE 68583 (United States); Xiang, Shi-Hua, E-mail: sxiang2@unl.edu [Nebraska Center for Virology, Lincoln, NE (United States); School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE (United States)

    2015-01-15

    Human immunodeficiency virus type 1 (HIV-1) transmission and infection occur mainly via the mucosal surfaces. The commensal bacteria residing in these surfaces can potentially be employed as a vehicle for delivering inhibitors to prevent HIV-1 infection. In this study, we have employed a bacteria-based strategy to display a broadly neutralizing antibody VRC01, which could potentially be used to prevent HIV-1 infection. The VRC01 antibody mimics CD4-binding to gp120 and has broadly neutralization activities against HIV-1. We have designed a construct that can express the fusion peptide of the scFv-VRC01 antibody together with the autotransporter β-barrel domain of IgAP gene from Neisseria gonorrhoeae, which enabled surface display of the antibody molecule. Our results indicate that the scFv-VRC01 antibody molecule was displayed on the surface of the bacteria as demonstrated by flow cytometry and immunofluorescence microscopy. The engineered bacteria can capture HIV-1 particles via surface-binding and inhibit HIV-1 infection in cell culture. - Highlights: • Designed single-chain VRC01 antibody was demonstrated to bind HIV-1 envelope gp120. • Single-chain VRC01 antibody was successfully displayed on the surface of E. coli. • Engineered bacteria can absorb HIV-1 particles and prevent HIV-1 infection in cell culture.

  13. Mimicking the germinal center reaction in hybridoma cells to isolate temperature-selective anti-PEG antibodies.

    Science.gov (United States)

    Su, Yu-Cheng; Al-Qaisi, Talal S; Tung, Hsin-Yi; Cheng, Tian-Lu; Chuang, Kuo-Hsiang; Chen, Bing-Mae; Roffler, Steve R

    2014-01-01

    Modification of antibody class and binding properties typically requires cloning of antibody genes, antibody library construction, phage or yeast display and recombinant antibody expression. Here, we describe an alternative "cloning-free" approach to generate antibodies with altered antigen-binding and heavy chain isotype by mimicking the germinal center reaction in antibody-secreting hybridoma cells. This was accomplished by lentiviral transduction and controllable expression of activation-induced cytidine deaminase (AID) to generate somatic hypermutation and class switch recombination in antibody genes coupled with high-throughput fluorescence-activated cell sorting (FACS) of hybridoma cells to detect altered antibody binding properties. Starting from a single established hybridoma clone, we isolated mutated antibodies that bind to a low-temperature structure of polyethylene glycol (PEG), a polymer widely used in nanotechnology, biotechnology and pharmaceuticals. FACS of AID-infected hybridoma cells also facilitated rapid identification of class switched variants of monoclonal IgM to monoclonal IgG. Mimicking the germinal center reaction in hybridoma cells may offer a general method to identify and isolate antibodies with altered binding properties and class-switched heavy chains without the need to carry out DNA library construction, antibody engineering and recombinant protein expression.

  14. Cloning of a hamster anti-mouse CD79B antibody sequences and identification of a new hamster immunoglobulin lambda constant IGLC gene region.

    Science.gov (United States)

    Haggart, Ryan; Perera, Jason; Huang, Haochu

    2013-06-01

    Anti-CD79 antibodies have been effective at targeting B cell lymphoma cells and depleting B cells in animal models. In order to engineer recombinant antibodies with additional effector functions in mice, we cloned and sequenced the full-length cDNAs of the heavy and light chain of a hamster anti-mouse CD79B antibody. Although hamster antibodies represent a unique source of monoclonal antibodies against mouse, rat, and human antigens, sequence information of hamster immunoglobulins (IG) is sparse. Here, we report a new hamster (Cricetulus migratorius) IG lambda constant (IGLC) gene region that is most homologous to mouse IGLC2 and IGLC3.

  15. Validating Antibodies to the Cannabinoid CB2 Receptor: Antibody Sensitivity Is Not Evidence of Antibody Specificity.

    Science.gov (United States)

    Marchalant, Yannick; Brownjohn, Philip W; Bonnet, Amandine; Kleffmann, Torsten; Ashton, John C

    2014-06-01

    Antibody-based methods for the detection and quantification of membrane integral proteins, in particular, the G protein-coupled receptors (GPCRs), have been plagued with issues of primary antibody specificity. In this report, we investigate one of the most commonly utilized commercial antibodies for the cannabinoid CB2 receptor, a GPCR, using immunoblotting in combination with mass spectrometry. In this way, we were able to develop powerful negative and novel positive controls. By doing this, we are able to demonstrate that it is possible for an antibody to be sensitive for a protein of interest-in this case CB2-but still cross-react with other proteins and therefore lack specificity. Specifically, we were able to use western blotting combined with mass spectrometry to unequivocally identify CB2 protein in over-expressing cell lines. This shows that a common practice of validating antibodies with positive controls only is insufficient to ensure antibody reliability. In addition, our work is the first to develop a label-free method of protein detection using mass spectrometry that, with further refinement, could provide unequivocal identification of CB2 receptor protein in native tissues.

  16. Engineering mechanics

    CERN Document Server

    Gross, Dietmar; Schröder, Jörg; Wall, Wolfgang A; Rajapakse, Nimal

    Statics is the first volume of a three-volume textbook on Engineering Mechanics. The authors, using a time-honoured straightforward and flexible approach, present the basic concepts and principles of mechanics in the clearest and simplest form possible to advanced undergraduate engineering students of various disciplines and different educational backgrounds. An important objective of this book is to develop problem solving skills in a systematic manner. Another aim of this volume is to provide engineering students as well as practising engineers with a solid foundation to help them bridge the gap between undergraduate studies on the one hand and advanced courses on mechanics and/or practical engineering problems on the other. The book contains numerous examples, along with their complete solutions. Emphasis is placed upon student participation in problem solving. The contents of the book correspond to the topics normally covered in courses on basic engineering mechanics at universities and colleges. Now in i...

  17. Affinity maturation of a novel antagonistic human monoclonal antibody with a long VH CDR3 targeting the Class A GPCR formyl-peptide receptor 1.

    Science.gov (United States)

    Douthwaite, Julie A; Sridharan, Sudharsan; Huntington, Catherine; Hammersley, Jayne; Marwood, Rose; Hakulinen, Jonna K; Ek, Margareta; Sjögren, Tove; Rider, David; Privezentzev, Cyril; Seaman, Jonathan C; Cariuk, Peter; Knights, Vikki; Young, Joyce; Wilkinson, Trevor; Sleeman, Matthew; Finch, Donna K; Lowe, David C; Vaughan, Tristan J

    2015-01-01

    Therapeutic monoclonal antibodies targeting G-protein-coupled receptors (GPCRs) are desirable for intervention in a wide range of disease processes. The discovery of such antibodies is challenging due to a lack of stability of many GPCRs as purified proteins. We describe here the generation of Fpro0165, a human anti-formyl peptide receptor 1 (FPR1) antibody generated by variable domain engineering of an antibody derived by immunization of transgenic mice expressing human variable region genes. Antibody isolation and subsequent engineering of affinity, potency and species cross-reactivity using phage display were achieved using FPR1 expressed on HEK cells for immunization and selection, along with calcium release cellular assays for antibody screening. Fpro0165 shows full neutralization of formyl peptide-mediated activation of primary human neutrophils. A crystal structure of the Fpro0165 Fab shows a long, protruding VH CDR3 of 24 amino acids and in silico docking with a homology model of FPR1 suggests that this long VH CDR3 is critical to the predicted binding mode of the antibody. Antibody mutation studies identify the apex of the long VH CDR3 as key to mediating the species cross-reactivity profile of the antibody. This study illustrates an approach for antibody discovery and affinity engineering to typically intractable membrane proteins such as GPCRs.

  18. Production and Purification of Polyclonal Antibodies.

    Science.gov (United States)

    Nakazawa, Masami; Mukumoto, Mari; Miyatake, Kazutaka

    2016-01-01

    Polyclonal antibodies consist of a mixture of antibodies produced by multiple B-cell clones that have differentiated into antibody-producing plasma cells in response to an immunogen. Polyclonal antibodies raised against an antigen recognize multiple epitopes on a target molecule, which results in a signal amplification in indirect immunoassays including immune-electron microscopy. In this chapter, we present a basic procedure to generate polyclonal antibodies in rabbits.

  19. Software engineering

    CERN Document Server

    Sommerville, Ian

    2010-01-01

    The ninth edition of Software Engineering presents a broad perspective of software engineering, focusing on the processes and techniques fundamental to the creation of reliable, software systems. Increased coverage of agile methods and software reuse, along with coverage of 'traditional' plan-driven software engineering, gives readers the most up-to-date view of the field currently available. Practical case studies, a full set of easy-to-access supplements, and extensive web resources make teaching the course easier than ever.

  20. Information engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, D.N.

    1997-02-01

    The Information Engineering thrust area develops information technology to support the programmatic needs of Lawrence Livermore National Laboratory`s Engineering Directorate. Progress in five programmatic areas are described in separate reports contained herein. These are entitled Three-dimensional Object Creation, Manipulation, and Transport, Zephyr:A Secure Internet-Based Process to Streamline Engineering Procurements, Subcarrier Multiplexing: Optical Network Demonstrations, Parallel Optical Interconnect Technology Demonstration, and Intelligent Automation Architecture.

  1. Engineering tribology

    CERN Document Server

    Stachowiak, Gwidon; Batchelor, A W; Batchelor, Andrew W

    2005-01-01

    As with the previous edition, the third edition of Engineering Tribology provides a thorough understanding of friction and wear using technologies such as lubrication and special materials. Tribology is a complex topic with its own terminology and specialized concepts, yet is vitally important throughout all engineering disciplines, including mechanical design, aerodynamics, fluid dynamics and biomedical engineering. This edition includes updated material on the hydrodynamic aspects of tribology as well as new advances in the field of biotribology, with a focus throughout on the engineering ap

  2. 6th Annual European Antibody Congress 2010: November 29-December 1, 2010, Geneva, Switzerland.

    Science.gov (United States)

    Beck, Alain; Wurch, Thierry; Reichert, Janice M

    2011-01-01

    The 6th European Antibody Congress (EAC), organized by Terrapinn Ltd., was held in Geneva, Switzerland, which was also the location of the 4th and 5th EAC. As was the case in 2008 and 2009, the EAC was again the largest antibody congress held in Europe, drawing nearly 250 delegates in 2010. Numerous pharmaceutical and biopharmaceutical companies active in the field of therapeutic antibody development were represented, as were start-up and academic organizations and representatives from the US Food and Drug Administration FDA. The global trends in antibody research and development were discussed, including success stories of recent marketing authorizations of golimumab (Simponi®) and canakinumab (Ilaris®) by Johnson & Johnson and Novartis, respectively, updates on antibodies in late clinical development (obinutuzumab/GA101, farletuzumab/MORAb-003 and itolizumab/T1 h, by Glycart/Roche, Morphotek and Biocon, respectively) and success rates for this fast-expanding class of therapeutics (Tufts Center for the Study of Drug Development). Case studies covering clinical progress of girentuximab (Wilex), evaluation of panobacumab (Kenta Biotech), characterization of therapeutic antibody candidates by protein microarrays (Protagen), antibody-drug conjugates (sanofi-aventis, ImmunoGen, Seattle Genetics, Wyeth/Pfizer), radio-immunoconjugates (Bayer Schering Pharma, Université de Nantes) and new scaffolds (Ablynx, AdAlta, Domantis/GlaxoSmithKline, Fresenius, Molecular Partners, Pieris, Scil Proteins, Pfizer, University of Zurich) were presented. Major antibody structural improvements were showcased, including the latest selection engineering of the best isotypes (Abbott, Pfizer, Pierre Fabre), hinge domain (Pierre Fabre), dual antibodies (Abbott), IgG-like bispecific antibodies (Biogen Idec), antibody epitope mapping case studies (Eli Lilly), insights in FcγRII receptor (University of Cambridge), as well as novel tools for antibody fragmentation (Genovis). Improvements of

  3. Antibodies to watch in 2016.

    Science.gov (United States)

    Reichert, Janice M

    2016-01-01

    The number of novel antibody therapeutics that received first marketing approvals in 2015 met expectations, with 6 (alirocumab (Praluent®), evolocumab (Repatha®), daratumumab (Darzalex®), dinutuximab (Unituxin®), idarucizumab (Praxbind®), mepolizumab (Nucala®)) granted first approvals as of mid-November*. Seven novel antibody therapeutics (begelomab, brodalumab, elotuzumab, ixekizumab, necitumumab, obiltoxaximab, reslizumab) are in regulatory review, and thus a similar number, if not more, are projected to gain first approvals in 2016. Commercial late-stage antibody therapeutics development exceeded expectations by increasing from 39 candidates in Phase 3 studies as of late 2014 to 53 as of late 2015. Of the 53 candidates, transitions to regulatory review by the end of 2016 are projected for 8 (atezolizumab, benralizumab, bimagrumab, durvalumab, inotuzumab ozogamicin, lebrikizumab, ocrelizumab, tremelimumab). Other "antibodies to watch" include 15 candidates (bavituximab, bococizumab, dupilumab, fasinumab, fulranumab, gevokizumab, guselkumab, ibalizumab, LY2951742, onartuzumab, REGN2222, roledumab, romosozumab, sirukumab, Xilonix) undergoing evaluation in Phase 3 studies that have estimated primary completion dates in 2016. As evidenced by the antibody therapeutics discussed in this perspective, the biopharmaceutical industry has a highly active late-stage clinical pipeline that may deliver numerous new products to the global market in the near future. *See Note added in proof for updates through December 31, 2015.

  4. Genetic Engineering

    Science.gov (United States)

    Phillips, John

    1973-01-01

    Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)

  5. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  6. EXPLORATION ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20142564Chen Mingxing(Beijing Research Institute of Survey and Design,China Hydropower Engineering Consulting Group Co.,Beijing 100024,China);Chen Baoguo Application of Drilling Deviation Correcting and Deflecting Techniques in Geological Exploration at Songta Hydropower Station(Exploration Engineering,ISSN1672-7428,CN11-5063/TD,

  7. Corrosion Engineering.

    Science.gov (United States)

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  8. Systems Engineering

    Science.gov (United States)

    Pellerano, Fernando

    2015-01-01

    This short course provides information on what systems engineering is and how the systems engineer guides requirements, interfaces with the discipline leads, and resolves technical issues. There are many system-wide issues that either impact or are impacted by the thermal subsystem. This course will introduce these issues and illustrate them with real life examples.

  9. Antibodies to watch in 2013

    Science.gov (United States)

    Reichert, Janice M

    2013-01-01

    The transitions of antibody therapeutics to late-stage clinical development, regulatory review and the market are proceeding at a rapid pace in 2013. Since late 2012, two monoclonal antibody (mAb) therapeutics (itolizumab, trastuzumab emtansine) received their first approvals, first marketing applications for three mAbs (vedolizumab, ramucirumab, obinutuzumab) were submitted to regulatory agencies, and five mAbs (brodalumab, MABp1, moxetumomab pasudotox, tildrakizumab, rilotumumab) entered their first Phase 3 studies. The current total of commercially-sponsored antibody therapeutics undergoing evaluation in late-stage studies is 30. Recently announced study results for farletuzumab, naptumomab estafenatox, and tabalumab indicate that clinical endpoints were not met in some Phase 3 studies of these product candidates. PMID:23727858

  10. Epigenetics of the antibody response.

    Science.gov (United States)

    Li, Guideng; Zan, Hong; Xu, Zhenming; Casali, Paolo

    2013-09-01

    Epigenetic marks, such as DNA methylation, histone post-translational modifications and miRNAs, are induced in B cells by the same stimuli that drive the antibody response. They play major roles in regulating somatic hypermutation (SHM), class switch DNA recombination (CSR), and differentiation to plasma cells or long-lived memory B cells. Histone modifications target the CSR and, possibly, SHM machinery to the immunoglobulin locus; they together with DNA methylation and miRNAs modulate the expression of critical elements of that machinery, such as activation-induced cytidine deaminase (AID), as well as factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1 (Blimp-1). These inducible B cell-intrinsic epigenetic marks instruct the maturation of antibody responses. Their dysregulation plays an important role in aberrant antibody responses to foreign antigens, such as those of microbial pathogens, and self-antigens, such as those targeted in autoimmunity, and B cell neoplasia.

  11. Autologous antibodies that bind neuroblastoma cells.

    Science.gov (United States)

    Sun, Yujing; Sholler, Giselle S; Shukla, Girja S; Pero, Stephanie C; Carman, Chelsea L; Zhao, Ping; Krag, David N

    2015-11-01

    Antibody therapy of neuroblastoma is promising and our goal is to derive antibodies from patients with neuroblastoma for developing new therapeutic antibodies. The feasibility of using residual bone marrow obtained for clinical indications as a source of tumor cells and a source of antibodies was assessed. From marrow samples, neuroblastoma cells were recovered, grown in cell culture and also implanted into mice to create xenografts. Mononuclear cells from the marrow were used as a source to generate phage display antibody libraries and also hybridomas. Growth of neuroblastoma patient cells was possible both in vitro and as xenografts. Antibodies from the phage libraries and from the monoclonal hybridomas bound autologous neuroblastoma cells with some selectivity. It appears feasible to recover neuroblastoma cells from residual marrow specimens and to generate human antibodies that bind autologous neuroblastoma cells. Expansion of this approach is underway to collect more specimens, optimize methods to generate antibodies, and to evaluate the bioactivity of neuroblastoma-binding antibodies.

  12. Uses of monoclonal antibody 8H9

    Science.gov (United States)

    Cheung, Nai-Kong V.

    2013-04-09

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides different uses of the monoclonal antibody 8H9 or its derivative.

  13. Architectural Engineers

    DEFF Research Database (Denmark)

    Petersen, Rikke Premer

    engineering is addresses from two perspectives – as an educational response and an occupational constellation. Architecture and engineering are two of the traditional design professions and they frequently meet in the occupational setting, but at educational institutions they remain largely estranged......The design professions have always been an amorphous phenomena difficult to merge under one label. New constellations continually emerge, questioning, stretching, and reconfiguring the understanding of design and the professional practices linked to it. In this paper the idea of architectural....... The paper builds on a multi-sited study of an architectural engineering program at the Technical University of Denmark and an architectural engineering team within an international engineering consultancy based on Denmark. They are both responding to new tendencies within the building industry where...

  14. Engineering surveying

    CERN Document Server

    Schofield, W

    2001-01-01

    The aim of Engineering Surveying has always been to impart and develop a clear understanding of the basic topics of the subject. The author has fully revised the book to make it the most up-to-date and relevant textbook available on the subject.The book also contains the latest information on trigonometric levelling, total stations and one-person measuring systems. A new chapter on satellites ensures a firm grasp of this vitally important topic.The text covers engineering surveying modules for civil engineering students on degree courses and forms a reference for the engineering surveying module in land surveying courses. It will also prove to be a valuable reference for practitioners.* Simple clear introduction to surveying for engineers* Explains key techniques and methods* Details reading systems and satellite position fixing

  15. Emotional engineering

    CERN Document Server

    In an age of increasing complexity, diversification and change, customers expect services that cater to their needs and to their tastes. Emotional Engineering vol 2. describes how their expectations can be satisfied and managed throughout the product life cycle, if producers focus their attention more on emotion. Emotional engineering provides the means to integrate products to create a new social framework and develops services beyond product realization to create of value across a full lifetime.  14 chapters cover a wide range of topics that can be applied to product, process and industry development, with special attention paid to the increasing importance of sensing in the age of extensive and frequent changes, including: • Multisensory stimulation and user experience  • Physiological measurement • Tactile sensation • Emotional quality management • Mental model • Kansei engineering.   Emotional Engineering vol 2 builds on Dr Fukuda’s previous book, Emotional Engineering, and provides read...

  16. Antibody profiling sensitivity through increased reporter antibody layering

    Energy Technology Data Exchange (ETDEWEB)

    Apel, William A.; Thompson, Vicki S.

    2013-02-26

    A method for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method comprises attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to the antigens in the array to form immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, to form an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.

  17. Antibody profiling sensitivity through increased reporter antibody layering

    Energy Technology Data Exchange (ETDEWEB)

    Apel, William A; Thompson, Vicki S

    2013-02-26

    A method for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method comprises attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to the antigens in the array to form immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, to form an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.

  18. Antibody profiling sensitivity through increased reporter antibody layering

    Energy Technology Data Exchange (ETDEWEB)

    Apel, William A.; Thompson, Vicki S.

    2017-03-28

    A method for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method comprises attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to the antigens in the array to form immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, to form an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.

  19. Antibody profiling sensitivity through increased reporter antibody layering

    Energy Technology Data Exchange (ETDEWEB)

    Apel, William A.; Thompson, Vicki S

    2010-04-13

    A method for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method comprises attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to the antigens in the array to form immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, to form an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.

  20. Antiphospholipid antibody syndrome and autoimmune diseases.

    Science.gov (United States)

    Ostrowski, Rochella A; Robinson, John A

    2008-02-01

    The arbitrary division between antiphospholipid antibody syndrome and secondary antiphospholipid antibody syndrome has not proven useful. Antiphospholipid antibodies in the absence of antiphospholipid antibody syndrome often occur as epiphenomena in many autoimmune diseases. They are very common in systemic lupus erythematosus. Antiphospholipid antibody syndrome is a significant comorbidity in lupus but is uncommon in Sjögren's syndrome, rheumatoid arthritis, scleroderma, and systemic vasculitis. Evidence is growing that antiphospholipid antibodies may have a pathogenic role in pulmonary hypertension and accelerated atherosclerosis of autoimmune diseases.

  1. DARPA Antibody Technology Program Standardized Test Bed for Antibody Characterization: Characterization of an MS2 Human IgG Antibody Produced by AnaptysBio, Inc.

    Science.gov (United States)

    2016-02-01

    ECBC-TR-1339 DARPA ANTIBODY TECHNOLOGY PROGRAM STANDARDIZED TEST BED FOR ANTIBODY...CHARACTERIZATION: CHARACTERIZATION OF AN MS2 HUMAN IGG ANTIBODY PRODUCED BY ANAPTYSBIO, INC. DARPA ATP Standardized Test Bed for Antibody...Characterization: Characterization of an MS2 human IgG antibody produced by AnaptysBio DARPA ATP Standardized Test Bed for Antibody

  2. Engineering mathematics

    CERN Document Server

    Stroud, K A

    2013-01-01

    A groundbreaking and comprehensive reference that's been a bestseller since it first debuted in 1970, the new seventh edition of Engineering Mathematics has been thoroughly revised and expanded. Providing a broad mathematical survey, this innovative volume covers a full range of topics from the very basic to the advanced. Whether you're an engineer looking for a useful on-the-job reference or want to improve your mathematical skills, or you are a student who needs an in-depth self-study guide, Engineering Mathematics is sure to come in handy time and time again.

  3. Polyclonal and monoclonal antibodies in clinic.

    Science.gov (United States)

    Wootla, Bharath; Denic, Aleksandar; Rodriguez, Moses

    2014-01-01

    Immunoglobulins (Ig) or antibodies are heavy plasma proteins, with sugar chains added to amino-acid residues by N-linked glycosylation and occasionally by O-linked glycosylation. The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation with activation of complement and activation of effector cells. Naturally occurring antibodies protect the organism against harmful pathogens, viruses and infections. In addition, almost any organic chemical induces antibody production of antibodies that would bind specifically to the chemical. These antibodies are often produced from multiple B cell clones and referred to as polyclonal antibodies. In recent years, scientists have exploited the highly evolved machinery of the immune system to produce structurally and functionally complex molecules such as antibodies from a single B clone, heralding the era of monoclonal antibodies. Most of the antibodies currently in the clinic, target components of the immune system, are not curative and seek to alleviate symptoms rather than cure disease. Our group used a novel strategy to identify reparative human monoclonal antibodies distinct from conventional antibodies. In this chapter, we discuss the therapeutic relevance of both polyclonal and monoclonal antibodies in clinic.

  4. Pharmacokinetics interactions of monoclonal antibodies.

    Science.gov (United States)

    Ferri, Nicola; Bellosta, Stefano; Baldessin, Ludovico; Boccia, Donatella; Racagni, Giorgi; Corsini, Alberto

    2016-09-01

    The clearance of therapeutic monoclonal antibodies (mAbs) typically does not involve cytochrome P450 (CYP450)-mediated metabolism or interaction with cell membrane transporters, therefore the pharmacokinetics interactions of mAbs and small molecule drugs are limited. However, a drug may affect the clearance of mAbs through the modulation of immune response (e.g., methotrexate reduces the clearance of infliximab, adalimumab, and golimumab, possibly due to methotrexate's inhibitory effect on the formation of antibodies against the mAbs). In addition, mAbs that are cytokine modulators may modify the metabolism of drugs through their effects on P450 enzymes expression. For example, cytokine modulators such as tocilizumab (anti-IL-6 receptor antibody) may reverse the "inhibitory" effect of IL-6 on CYP substrates, resulting in a "normalization" of CYP activities. Finally, a drug may alter the clearance of mAbs by either increasing or reducing the levels of expression of targets of mAbs on the cell surface. For instance, statins and fibrates induce PCSK9 expression and therefore increase cellular uptake and clearance of alirocumab and evolocumab, anti-PCSK9 antibodies. In the present review, we will provide an overview on the pharmacokinetics properties of mAbs as related to the most relevant examples of mAbs-small molecule drug interaction.

  5. Monoclonal antibodies to Treponema Pallidum.

    NARCIS (Netherlands)

    H.J.M. van de Donk; J.D.A. van Embden; M.F. van Olderen; A.D.M.E. Osterhaus (Albert); J.C. de Jong (Jan)

    1984-01-01

    textabstractThree successive fusions of mouse myeloma cells and spleen lymphocytes of a mouse immunized with Treponema Pallidum resulted in one hybridoma producing anti T. pallidum antibodies for each fusion. The mice were immunized with live pallidum cells respectively 1, 3 and 5 months before fusi

  6. Antibody Isotype Switching in Vertebrates.

    Science.gov (United States)

    Senger, Kate; Hackney, Jason; Payandeh, Jian; Zarrin, Ali A

    2015-01-01

    The humoral or antibody-mediated immune response in vertebrates has evolved to respond to diverse antigenic challenges in various anatomical locations. Diversification of the immunoglobulin heavy chain (IgH) constant region via isotype switching allows for remarkable plasticity in the immune response, including versatile tissue distribution, Fc receptor binding, and complement fixation. This enables antibody molecules to exert various biological functions while maintaining antigen-binding specificity. Different immunoglobulin (Ig) classes include IgM, IgD, IgG, IgE, and IgA, which exist as surface-bound and secreted forms. High-affinity autoantibodies are associated with various autoimmune diseases such as lupus and arthritis, while defects in components of isotype switching are associated with infections. A major route of infection used by a large number of pathogens is invasion of mucosal surfaces within the respiratory, digestive, or urinary tract. Most infections of this nature are initially limited by effector mechanisms such as secretory IgA antibodies. Mucosal surfaces have been proposed as a major site for the genesis of adaptive immune responses, not just in fighting infections but also in tolerating commensals and constant dietary antigens. We will discuss the evolution of isotype switching in various species and provide an overview of the function of various isotypes with a focus on IgA, which is universally important in gut homeostasis as well as pathogen clearance. Finally, we will discuss the utility of antibodies as therapeutic modalities.

  7. Development of Antibody Against Sulfamethazine

    Institute of Scientific and Technical Information of China (English)

    LIZi-ying; XUWen-ge; LIUYi-bing; ZHANGLi-ling; GUOWei-zheng; HANShi-quan

    2003-01-01

    Polyclonal antibodies(PcAbs) against sulfamethazine(SMT) are obtained by immunizing rabbits with SMT-conjugated bovine serum albumin(BSA). The affinity constants (Ka) of the PcAbs are higher than 1×108 and the cross-reactivities with sulfadiazine(SD), sulfaquinoxaline (SQX) are lower than 0.05% (R/A).

  8. Enhanced neutralization of HIV by antibodies displayed on the S-layer of Caulobacter crescentus.

    Science.gov (United States)

    Duval, Mark; Lewis, Christopher J; Nomellini, John F; Horwitz, Marc S; Smit, John; Cavacini, Lisa A

    2011-12-01

    Innovative methods of prevention are needed to stop the more than two million new HIV-1 infections annually, particularly in women. Local application of anti-HIV antibodies has been shown to be effective at preventing infection in nonhuman primates; however, the concentrations needed are cost prohibitive. Display of antibodies on a particulate platform will likely prolong effectiveness of these anti-HIV agents and lower the cost of goods. Here, we demonstrate that the bacterium Caulobacter crescentus and its highly expressed surface-layer (S-layer) protein can provide this antibody display platform. Caulobacters displaying protein G, alone or with CD4 codisplay, successfully captured HIV-1-specific antibodies and demonstrated functional neutralization. Compared to soluble antibodies, a neutralizing anti-HIV antibody displayed on Caulobacter was as effective or more effective at neutralizing diverse HIV-1 isolates. Moreover, when an antibody reactive with an epitope induced by CD4 binding (CD4i) was codisplayed with CD4, there was significant enhancement in HIV-1 neutralization. These results suggest that caulobacters displaying anti-HIV antibodies offer a distinct improvement in the use of antibodies as microbicides. Furthermore, these reagents can specifically evaluate anti-HIV antibodies in concert with other HIV-1 blocking agents to assess the most suitable tools for conversion to scFvs, allowing for direct display within the S-layer protein and further reducing cost of goods. In summary, C. crescentus, which can be easily produced and chemically stabilized at low cost, is well suited for engineering as an effective platform, offering an inexpensive way to produce and deliver HIV-1-specific microbicides.

  9. Harmonic engine

    Science.gov (United States)

    Bennett, Charles L.

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  10. EXPLORATION ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20112760 Dai Guozhong (College of Civil Engineering,Changzhou Institute of Tech- nology,Changzhou 213002,China);Zhang Yaxing Study on Solid-Free Drilling Fluid of PVM Polymer and Its Application (Geology

  11. Coastal Engineering

    NARCIS (Netherlands)

    Van der Velden, E.T.J.M.

    1989-01-01

    Introduction, waves, sediment transport, littoral transport, lonshore sediment transport, onshore-offshore sediment transport, coastal changes, dune erosion and storm surges, sedimentation in channels and trenches, coastal engineering in practice.

  12. Green Engineering

    Science.gov (United States)

    Green Engineering is the design, commercialization and use of processes and products that are feasible and economical while reducing the generation of pollution at the source and minimizing the risk to human health and the environment.

  13. Software engineering

    CERN Document Server

    Sommerville, Ian

    2016-01-01

    For courses in computer science and software engineering The Fundamental Practice of Software Engineering Software Engineering introduces readers to the overwhelmingly important subject of software programming and development. In the past few years, computer systems have come to dominate not just our technological growth, but the foundations of our world's major industries. This text seeks to lay out the fundamental concepts of this huge and continually growing subject area in a clear and comprehensive manner. The Tenth Edition contains new information that highlights various technological updates of recent years, providing readers with highly relevant and current information. Sommerville's experience in system dependability and systems engineering guides the text through a traditional plan-based approach that incorporates some novel agile methods. The text strives to teach the innovators of tomorrow how to create software that will make our world a better, safer, and more advanced place to live.

  14. Detection of Campylobacter species using monoclonal antibodies

    Science.gov (United States)

    Young, Colin R.; Lee, Alice; Stanker, Larry H.

    1999-01-01

    A panel of species specific monoclonal antibodies were raised to Campylobacter coli, Campylobacter jejuni and Campylobacter lari. The isotypes, and cross-reactivity profiles of each monoclonal antibody against an extensive panel of micro- organisms, were determined.

  15. [Neuroimmunological diseases associated with VGKC complex antibodies].

    Science.gov (United States)

    Watanabe, Osamu

    2013-05-01

    Antibodies to voltage-gated potassium channels(VGKC) were first identified by radioimmunoassay of radioisotope labeled alpha-dendrotoxin-VGKCs solubilized from rabbit brain. These antibodies were found only in a proportion of patients with acquired neuromyotonia (Isaacs' syndrome). VGKC antibodies were also detected in Morvan's syndrome and in a form of autoimmune limbic encephalitis. Recent studies indicated that the "VGKC" antibodies are mainly directed toward associated proteins(for example LGI-1, Caspr-2) that complex with the VGKCs themselves. The "VGKC" antibodies are now usually known as VGKC-complex antibodies. In general, LGI-1 antibodies are most common in limbic encephalitis with SIADH. Caspr-2 antibodies are present in the majority of patients with Morvan's syndrome. These patients develop combinations of CNS symptoms, autonomic dysfunction, and peripheral nerve hyperexcitability.

  16. Platelet antigens and antibodies. Literature review

    Directory of Open Access Journals (Sweden)

    N. V. Mineeva

    2014-07-01

    Full Text Available Platelet antigens structure, role of platelet antibodies in the pathogenesis of various clinical conditions, characteristic of modern antibodies detection methods are presented in this article.

  17. Platelet antigens and antibodies. Literature review

    Directory of Open Access Journals (Sweden)

    N. V. Mineeva

    2013-01-01

    Full Text Available Platelet antigens structure, role of platelet antibodies in the pathogenesis of various clinical conditions, characteristic of modern antibodies detection methods are presented in this article.

  18. Rehabilitation Engineering: What is Rehabilitation Engineering?

    Science.gov (United States)

    ... Parents/Teachers Resource Links for Students Glossary Rehabilitation Engineering What is rehabilitation engineering? How can future rehabilitation ... the area of rehabilitation engineering? What is rehabilitation engineering? Powered prosthetic leg. Source : M. Goldfarb, Vanderbilt U. ...

  19. OptMAVEn--a new framework for the de novo design of antibody variable region models targeting specific antigen epitopes.

    Directory of Open Access Journals (Sweden)

    Tong Li

    Full Text Available Antibody-based therapeutics provides novel and efficacious treatments for a number of diseases. Traditional experimental approaches for designing therapeutic antibodies rely on raising antibodies against a target antigen in an immunized animal or directed evolution of antibodies with low affinity for the desired antigen. However, these methods remain time consuming, cannot target a specific epitope and do not lead to broad design principles informing other studies. Computational design methods can overcome some of these limitations by using biophysics models to rationally select antibody parts that maximize affinity for a target antigen epitope. This has been addressed to some extend by OptCDR for the design of complementary determining regions. Here, we extend this earlier contribution by addressing the de novo design of a model of the entire antibody variable region against a given antigen epitope while safeguarding for immunogenicity (Optimal Method for Antibody Variable region Engineering, OptMAVEn. OptMAVEn simulates in silico the in vivo steps of antibody generation and evolution, and is capable of capturing the critical structural features responsible for affinity maturation of antibodies. In addition, a humanization procedure was developed and incorporated into OptMAVEn to minimize the potential immunogenicity of the designed antibody models. As case studies, OptMAVEn was applied to design models of neutralizing antibodies targeting influenza hemagglutinin and HIV gp120. For both HA and gp120, novel computational antibody models with numerous interactions with their target epitopes were generated. The observed rates of mutations and types of amino acid changes during in silico affinity maturation are consistent with what has been observed during in vivo affinity maturation. The results demonstrate that OptMAVEn can efficiently generate diverse computational antibody models with both optimized binding affinity to antigens and reduced

  20. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  1. ABangle: characterising the VH-VL orientation in antibodies.

    Science.gov (United States)

    Dunbar, J; Fuchs, A; Shi, J; Deane, C M

    2013-10-01

    The binding site of an antibody is formed between the two variable domains, VH and VL, of its antigen binding fragment (Fab). Understanding how VH and VL orientate with respect to one another is important both for studying the mechanisms of antigen specificity and affinity and improving antibody modelling, docking and engineering. Different VH-VL orientations are commonly described using relative measures such as root-mean-square deviation. Recently, the orientation has also been characterised using the absolute measure of a VH-VL packing angle. However, a single angle cannot fully describe all modes of orientation. Here, we present a method which fully characterises VH-VL orientation in a consistent and absolute sense using five angles (HL, HC1, LC1, HC2 and LC2) and a distance (dc). Additionally, we provide a computational tool, ABangle, to allow the VH-VL orientation for any antibody to be automatically calculated and compared with all other known structures. We compare previous studies and show how the modes of orientation being identified relate to movements of different angles. Thus, we are able to explain why different studies identify different structural clusters and different residues as important. Given this result, we then identify those positions and their residue identities which influence each of the angular measures of orientation. Finally, by analysing VH-VL orientation in bound and unbound forms, we find that antibodies specific for protein antigens are significantly more flexible in their unbound form than antibodies specific for hapten antigens. ABangle is freely available at http://opig.stats.ox.ac.uk/webapps/abangle.

  2. Recombinant bispecific antibodies for cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Roland E KONTERMANN

    2005-01-01

    Bispecific antibodies can serve as mediators to retarget effector mechanisms to disease-associated sites. Studies over the past two decades have revealed the potentials but also the limitations of conventional bispecific antibodies. The development of recombinant antibody formats has opened up the possibility of generating bispecific molecules with improved properties. This review summarizes recent developments in the field of recombinant bispecific antibodies and discusses further requirements for clinical development.

  3. Production and Screening of Monoclonal Peptide Antibodies.

    Science.gov (United States)

    Trier, Nicole Hartwig; Mortensen, Anne; Schiolborg, Annette; Friis, Tina

    2015-01-01

    Hybridoma technology is a remarkable and indispensable tool for generating high-quality monoclonal antibodies. Hybridoma-derived monoclonal antibodies not only serve as powerful research and diagnostic reagents, but have also emerged as the most rapidly expanding class of therapeutic biologicals. In this chapter, an overview of hybridoma technology and the laboratory procedures used routinely for hybridoma production and antibody screening are presented, including characterization of peptide antibodies.

  4. Molecular Evolution of Antibody Cross-Reactivity for Two Subtypes of Type a Botulinum Neurotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Rodriguez, C.; Levy, R.; Arndt, J.W.; Forsyth, C.M.; Razai, A.; Lou, J.; Geren, I.; Stevens, R.C.; Marks, J.D.; /UC, San Francisco /Scripps Res. Inst.

    2007-07-09

    Broadening antibody specificity without compromising affinity should facilitate detection and neutralization of toxin and viral subtypes. We used yeast display and a co-selection strategy to increase cross-reactivity of a single chain (sc) Fv antibody to botulinum neurotoxin type A (BoNT/A). Starting with a scFv that binds the BoNT/A1 subtype with high affinity (136 pM) and the BoNT/A2 subtype with low affinity (109 nM), we increased its affinity for BoNT/A2 1,250-fold, to 87 pM, while maintaining high-affinity binding to BoNT/A1 (115 pM). To find the molecular basis for improved cross-reactivity, we determined the X-ray co-crystal structures of wild-type and cross-reactive antibodies complexed to BoNT/A1 at resolutions up to 2.6 A, and measured the thermodynamic contribution of BoNT/A1 and A2 amino acids to wild-type and cross-reactive antibody binding. The results show how an antibody can be engineered to bind two different antigens despite structural differences in the antigen-antibody interface and may provide a general strategy for tuning antibody specificity and cross-reactivity.

  5. Prediction of VH-VL domain orientation for antibody variable domain modeling.

    Science.gov (United States)

    Bujotzek, Alexander; Dunbar, James; Lipsmeier, Florian; Schäfer, Wolfgang; Antes, Iris; Deane, Charlotte M; Georges, Guy

    2015-04-01

    The antigen-binding site of antibodies forms at the interface of their two variable domains, VH and VL, making VH-VL domain orientation a factor that codetermines antibody specificity and affinity. Preserving VH-VL domain orientation in the process of antibody engineering is important in order to retain the original antibody properties, and predicting the correct VH-VL orientation has also been recognized as an important factor in antibody homology modeling. In this article, we present a fast sequence-based predictor that predicts VH-VL domain orientation with Q(2) values ranging from 0.54 to 0.73 on the evaluation set. We describe VH-VL orientation in terms of the six absolute ABangle parameters that have recently been proposed as a means to separate the different degrees of freedom of VH-VL domain orientation. In order to assess the impact of adjusting VH-VL orientation according to our predictions, we use the set of antibody structures of the recently published Antibody Modeling Assessment (AMA) II study. In comparison to the original AMAII homology models, we find an improvement in the accuracy of VH-VL orientation modeling, which also translates into an improvement in the average root-mean-square deviation with regard to the crystal structures.

  6. Anti-DNA antibodies in SLE

    Energy Technology Data Exchange (ETDEWEB)

    Voss, E.W.

    1988-01-01

    This book contains 8 chapters. Some of the titles are: Anti-DNA Antibodies in SLE: Historical Perspective; Specificity of Anti-DNA Antibodies in Systemic Lupus Erythematosus; Monoclonial Autoimmune Anti-DNA Antibodies; and Structure--Function Analyses of Anti-DNA Autoantibodies.

  7. Nanoparticles for the delivery of therapeutic antibodies

    DEFF Research Database (Denmark)

    Sousa, Flávia; Castro, Pedro; Fonte, Pedro;

    2016-01-01

    INTRODUCTION: Over the past two decades, therapeutic antibodies have demonstrated promising results in the treatment of a wide array of diseases. However, the application of antibody-based therapy implies multiple administrations and a high cost of antibody production, resulting in costly therapy...

  8. Antibodies to staphylococcal enterotoxin in laboratory personnel.

    OpenAIRE

    Jozefczyk, Z; Robbins, R N; Spitz, J M; Bergdoll, M S

    1980-01-01

    Eighty-five percent of laboratory personnel working with staphylococcal enterotoxin had antibodies to enterotoxin in their sera, whereas only 23% of the control group had antibodies specific for enterotoxin. Two persons who carried enterotoxin B-producing staphylococci in their noses, throats, or both, had antibodies to enterotoxin B in their sera.

  9. Phenotypic screening: the future of antibody discovery.

    Science.gov (United States)

    Gonzalez-Munoz, Andrea L; Minter, Ralph R; Rust, Steven J

    2016-01-01

    Most antibody therapeutics have been isolated from high throughput target-based screening. However, as the number of validated targets diminishes and the target space becomes increasingly competitive, alternative strategies, such as phenotypic screening, are gaining momentum. Here, we review successful phenotypic screens, including those used to isolate antibodies against cancer and infectious agents. We also consider exciting advances in the expression and phenotypic screening of antibody repertoires in single cell autocrine systems. As technologies continue to develop, we believe that antibody phenotypic screening will increase further in popularity and has the potential to provide the next generation of therapeutic antibodies.

  10. Affinity improvement of a therapeutic antibody by structure-based computational design: generation of electrostatic interactions in the transition state stabilizes the antibody-antigen complex.

    Directory of Open Access Journals (Sweden)

    Masato Kiyoshi

    Full Text Available The optimization of antibodies is a desirable goal towards the development of better therapeutic strategies. The antibody 11K2 was previously developed as a therapeutic tool for inflammatory diseases, and displays very high affinity (4.6 pM for its antigen the chemokine MCP-1 (monocyte chemo-attractant protein-1. We have employed a virtual library of mutations of 11K2 to identify antibody variants of potentially higher affinity, and to establish benchmarks in the engineering of a mature therapeutic antibody. The most promising candidates identified in the virtual screening were examined by surface plasmon resonance to validate the computational predictions, and to characterize their binding affinity and key thermodynamic properties in detail. Only mutations in the light-chain of the antibody are effective at enhancing its affinity for the antigen in vitro, suggesting that the interaction surface of the heavy-chain (dominated by the hot-spot residue Phe101 is not amenable to optimization. The single-mutation with the highest affinity is L-N31R (4.6-fold higher affinity than wild-type antibody. Importantly, all the single-mutations showing increase affinity incorporate a charged residue (Arg, Asp, or Glu. The characterization of the relevant thermodynamic parameters clarifies the energetic mechanism. Essentially, the formation of new electrostatic interactions early in the binding reaction coordinate (transition state or earlier benefits the durability of the antibody-antigen complex. The combination of in silico calculations and thermodynamic analysis is an effective strategy to improve the affinity of a matured therapeutic antibody.

  11. Serum Antibody Biomarkers for ASD

    Science.gov (United States)

    2015-10-01

    their mothers in many studies (e.g., Ashwood & Van deWater, 2004; Jyonouchi et al., 2005; Molloy et al., 2006; Braunschweig et al., 2013). Systemic...against brain and CNS proteins. For example, both abnormalities in serum antibody concentrations and T cells have been reported for ASD compared to...Accomplishments: - Nearly all serum samples have been obtained and processed. - Two unique peptoid libraries have been synthesized and validated. - The peptoid

  12. Bovine milk antibodies for health.

    Science.gov (United States)

    Korhonen, H; Marnila, P; Gill, H S

    2000-11-01

    The immunoglobulins of bovine colostrum provide the major antimicrobial protection against microbial infections and confer a passive immunity to the newborn calf until its own immune system matures. The concentration in colostrum of specific antibodies against pathogens can be raised by immunising cows with these pathogens or their antigens. Immune milk products are preparations made of such hyperimmune colostrum or antibodies enriched from it. These preparations can be used to give effective specific protection against different enteric diseases in calves and suckling pigs. Colostral immunoglobulin supplements designed for farm animals are commercially available in many countries. Also, some immune milk products containing specific antibodies against certain pathogens have been launched on the market. A number of clinical studies are currently in progress to evaluate the efficacy of immune milks in the prevention and treatment of various human infections, including those caused by antibiotic resistant bacteria. Bovine colostrum-based immune milk products have proven effective in prophylaxis against various infectious diseases in humans. Good results have been obtained with products targeted against rotavirus, Shigella flexneri, Escherichia coli, Clostridium difficile, Streptococcus mutans, Cryptosporidium parvum and Helicobacter pylori. Some successful attempts have been made to use immune milk in balancing gastrointestinal microbial flora. Immune milk products are promising examples of health-promoting functional foods, or nutraceuticals. This review summarises the recent progress in the development of these products and evaluates their potential as dietary supplements and in clinical nutrition.

  13. An alternative chemical redox method for the production of bispecific antibodies: implication in rapid detection of food borne pathogens.

    Directory of Open Access Journals (Sweden)

    Mohammad Owais

    Full Text Available Bi-functional antibodies with the ability to bind two unrelated epitopes have remarkable potential in diagnostic and bio-sensing applications. In the present study, bispecific antibodies that recognize human red blood cell (RBC and the food borne pathogen Listeria monocytogenes (L. monocytogenes were engineered. The procedure involves initial reduction of a mixture of anti-RBC and anti-Listeria antibodies followed by gradual re-oxidation of the reduced disulphides. This facilitates association of the separated antibody chains and formation of hybrid immunoglobulins with affinity for the L. monocytogenes and human RBC. The bispecific antibodies caused the agglutination of the RBCs only in the presence of L. monocytogenes cells. The agglutination process necessitated the specific presence of L. monocytogenes and the red colored clumps formed were readily visible with naked eyes. The RBC agglutination assay described here provides a remarkably simple approach for the rapid and highly specific screening of various pathogens in their biological niches.

  14. Cloning,expression and characterization of a single-chain antibody PS-9 targeted to pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    阎锡蕴; 田波; 李力; 袁玫

    1995-01-01

    Genes encoding single-chain antibodies have been first constructed,which consist of the heavyand light chain variable domains of antibody PS-9 joined together by a flexible peptide linker.The geneswere cloned into coat protein g3p genes of pCANTAB5 phagemids,and expressed as fusion proteins on thephage tips.Immunological assay demonstrated that the engineered antibodies specifically bound to cancer cellsLS-174-T as well as to pure bovine submaxillary gland mucin.Their specificity and affinity appeared the sameas their parent antibodies.Our results supposed that the single-chain antibodies will be a target for thediagnosis and treatment of cancer.

  15. ENGINEERING GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091943 Cao Zubao(Xi’an Branch of China Coal Research Institute,Xi’an 710054,China);Zhu Mingcheng Application of Pipe-Roof Curtain Grouting in Construction of Coal Mine Tunnel Crossing the Fractured Zone(Exploration Engineering,ISSN1672-7428,CN11-5063/TD,35(8),2008,p.79-81,3 illus.,4 refs.,with English abstract)Key words:curtain grouting20091944 Chen Changfu(Civil Engineering College,Hunan University,Changsha 410082,China);Xiao Shujun Application of Weighted Residual Method in Whole Internal Force Calculation of Anti-Slide Pile(Hydrogeology and Engineering Geology,ISSN1000-3665,CN11-2202/P,35(4),2008,p.75-79,3 illus.,9 refs.)Key words:slide-resistant

  16. Engineering surveying

    CERN Document Server

    Schofield, W

    2007-01-01

    Engineering surveying involves determining the position of natural and man-made features on or beneath the Earth's surface and utilizing these features in the planning, design and construction of works. It is a critical part of any engineering project. Without an accurate understanding of the size, shape and nature of the site the project risks expensive and time-consuming errors or even catastrophic failure.Engineering Surveying 6th edition covers all the basic principles and practice of this complex subject and the authors bring expertise and clarity. Previous editions of this classic text have given readers a clear understanding of fundamentals such as vertical control, distance, angles and position right through to the most modern technologies, and this fully updated edition continues that tradition.This sixth edition includes:* An introduction to geodesy to facilitate greater understanding of satellite systems* A fully updated chapter on GPS, GLONASS and GALILEO for satellite positioning in surveying* Al...

  17. Engineering physics

    CERN Document Server

    Mukherji, Uma

    2015-01-01

    ENGINEERING PHYSICS is designed as a textbook for first year engineering students of a two semester course in Applied Physics according to new revised syllabus. However the scope of this book is not only limited to undergraduate engineering students and science students, it can also serve as a reference book for practicing scientists.Advanced technological topics like LCD, Squid, Maglev system, Electron microscopes, MRI, Photonics - Photonic fibre, Nano-particles, CNT, Quantum computing etc., are explained with basic underlying principles of Physics.This text explained following topics with numerous solved, unsolved problems and questions from different angles. Part-I contains crystal structure, Liquid crystal, Thermo-electric effect, Thermionic emission, Ultrasonic, Acoustics, semiconductor and magnetic materials. Whereas Part-2 contains Optics, X-rays, Electron optics, Dielectric materials, Quantum Physics and Schrodinger wave equation, Laser, Fibre-optics and Holography, Radio-activity, Super-conductivity,...

  18. Engineering Optics

    CERN Document Server

    Iizuka, Keigo

    2008-01-01

    Engineering Optics is a book for students who want to apply their knowledge of optics to engineering problems, as well as for engineering students who want to acquire the basic principles of optics. It covers such important topics as optical signal processing, holography, tomography, holographic radars, fiber optical communication, electro- and acousto-optic devices, and integrated optics (including optical bistability). As a basis for understanding these topics, the first few chapters give easy-to-follow explanations of diffraction theory, Fourier transforms, and geometrical optics. Practical examples, such as the video disk, the Fresnel zone plate, and many more, appear throughout the text, together with numerous solved exercises. There is an entirely new section in this updated edition on 3-D imaging.

  19. Broadly Neutralizing Antibodies for HIV Eradication.

    Science.gov (United States)

    Stephenson, Kathryn E; Barouch, Dan H

    2016-02-01

    Passive transfer of antibodies has long been considered a potential treatment modality for infectious diseases, including HIV. Early efforts to use antibodies to suppress HIV replication, however, were largely unsuccessful, as the antibodies that were studied neutralized only a relatively narrow spectrum of viral strains and were not very potent. Recent advances have led to the discovery of a large portfolio of human monoclonal antibodies that are broadly neutralizing across many HIV-1 subtypes and are also substantially more potent. These antibodies target multiple different epitopes on the HIV envelope, thus allowing for the development of antibody combinations. In this review, we discuss the application of broadly neutralizing antibodies (bNAbs) for HIV treatment and HIV eradication strategies. We highlight bNAbs that target key epitopes, such as the CD4 binding site and the V2/V3-glycan-dependent sites, and we discuss several bNAbs that are currently in the clinical development pipeline.

  20. 9 CFR 113.452 - Erysipelothrix Rhusiopathiae Antibody.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Erysipelothrix Rhusiopathiae Antibody... REQUIREMENTS Antibody Products § 113.452 Erysipelothrix Rhusiopathiae Antibody. Erysipelothrix Rhusiopathiae Antibody is a specific antibody product containing antibodies directed against one or more somatic...

  1. Rational design, biophysical and biological characterization of site-specific antibody-tubulysin conjugates with improved stability, efficacy and pharmacokinetics.

    Science.gov (United States)

    Thompson, Pamela; Fleming, Ryan; Bezabeh, Binyam; Huang, Fengying; Mao, Shenlan; Chen, Cui; Harper, Jay; Zhong, Haihong; Gao, Xizhe; Yu, Xiang-Qing; Hinrichs, Mary Jane; Reed, Molly; Kamal, Adeela; Strout, Patrick; Cho, Song; Woods, Rob; Hollingsworth, Robert E; Dixit, Rakesh; Wu, Herren; Gao, Changshou; Dimasi, Nazzareno

    2016-08-28

    Antibody-drug conjugates (ADCs) are among the most promising empowered biologics for cancer treatment. ADCs are commonly prepared by chemical conjugation of small molecule cytotoxic anti-cancer drugs to antibodies through either lysine side chains or cysteine thiols generated by the reduction of interchain disulfide bonds. Both methods yield heterogeneous conjugates with complex biophysical properties and suboptimal serum stability, efficacy, and pharmacokinetics. To limit the complexity of cysteine-based ADCs, we have engineered and characterized in vitro and in vivo antibody cysteine variants that allow precise control of both site of conjugation and drug load per antibody molecule. We demonstrate that the chemically-defined cysteine-engineered antibody-tubulysin conjugates have improved ex vivo and in vivo stability, efficacy, and pharmacokinetics when compared to conventional cysteine-based ADCs with similar drug-to-antibody ratios. In addition, to limit the non-target FcγRs mediated uptake of the ADCs by cells of the innate immune system, which may result in off-target toxicities, the ADCs have been engineered to lack Fc-receptor binding. The strategies described herein are broadly applicable to any full-length IgG or Fc-based ADC and have been incorporated into an ADC that is in phase I clinical development.

  2. ENGINEERING GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140498An Shize(Sichuan Institute of Geological Engineering Investigation,Chengdu610072,China);Liu Zongxiang On the Failure Mechanism of a Bedding Landslide in Northeast Sichuan(Journal of Geological Hazards and Environment Preservation,ISSN1006-4362,CN51-1467/P,24(1),2013,p.14-19,2illus.,9refs.)Key words:bedding faults,landslides The landslide was caused by excavation engineering.The failure mechanism is explored for slopes with soft interlayer in the red

  3. Engineering tribology

    CERN Document Server

    Stachowiak, Gwidon

    2013-01-01

    Engineering Tribology, 4th Edition is an established introductory reference focusing on the key concepts and engineering implications of tribology. Taking an interdisciplinary view, the book brings together the relevant knowledge from different fields needed to achieve effective analysis and control of friction and wear. Updated to cover recent advances in tribology, this new edition includes new sections on ionic and mesogenic lubricants, surface texturing, and multiscale characterization of 3D surfaces and coatings. Current trends in nanotribology are discussed, such as those relating to

  4. Lightwave engineering

    CERN Document Server

    Kokubun, Yasuo

    2012-01-01

    Suitable as either a student text or professional reference, Lightwave Engineering addresses the behavior of electromagnetic waves and the propagation of light, which forms the basis of the wide-ranging field of optoelectronics. Divided into two parts, the book first gives a comprehensive introduction to lightwave engineering using plane wave and then offers an in-depth analysis of lightwave propagation in terms of electromagnetic theory. Using the language of mathematics to explain natural phenomena, the book includes numerous illustrative figures that help readers develop an intuitive unders

  5. Software engineering

    CERN Document Server

    Thorin, Marc

    1985-01-01

    Software Engineering describes the conceptual bases as well as the main methods and rules on computer programming. This book presents software engineering as a coherent and logically built synthesis and makes it possible to properly carry out an application of small or medium difficulty that can later be developed and adapted to more complex cases. This text is comprised of six chapters and begins by introducing the reader to the fundamental notions of entities, actions, and programming. The next two chapters elaborate on the concepts of information and consistency domains and show that a proc

  6. Advances in monoclonal antibody application in myocarditis

    Institute of Scientific and Technical Information of China (English)

    Li-na HAN; Shuang HE; Yu-tang WANG; Li-ming YANG; Si-yu LIU; Ting ZHANG

    2013-01-01

    Monoclonal antibodies have become a part of daily preparation technologies in many laboratories.Attempts have been made to apply monoclonal antibodies to open a new train of thought for clinical treatments of autoimmune diseases,inflammatory diseases,cancer,and other immune-associated diseases.This paper is a prospective review to anticipate that monoclonal antibody application in the treatment of myocarditis,an inflammatory disease of the heart,could be a novel approach in the future.In order to better understand the current state of the art in monoclonal antibody techniques and advance applications in myocarditis,we,through a significant amount of literature research both domestic and abroad,developed a systematic elaboration of monoclonal antibodies,pathogenesis of myocarditis,and application of monoclonal antibodies in myocarditis.This paper presents review of the literature of some therapeutic aspects of monoclonal antibodies in myocarditis and dilated cardiomyopathy to demonstrate the advance of monoclonal antibody application in myocarditis and a strong anticipation that monoclonal antibody application may supply an effective therapeutic approach to relieve the severity of myocarditis in the future.Under conventional therapy,myocarditis is typically associated with congestive heart failure as a progressive outcome,indicating the need for alternative therapeutic strategies to improve long-term results.Reviewing some therapeutic aspects of monoclonal antibodies in myocarditis,we recently found that monoclonal antibodies with high purity and strong specificity can accurately act on target and achieve definite progress in the treatment of viral myocarditis in rat model and may meet the need above.However,several issues remain.The technology on howto make a higher homologous and weak immunogenic humanized or human source antibody and the treatment mechanism of monoclonal antibodies may provide solutions for these open issues.If we are to further stimulate

  7. Monoclonal antibodies to intermediate filament proteins of human cells: unique and cross-reacting antibodies.

    Science.gov (United States)

    Gown, A M; Vogel, A M

    1982-11-01

    Monoclonal antibodies were generated against the intermediate filament proteins of different human cells. The reactivity of these antibodies with the different classes of intermediate filament proteins was determined by indirect immunofluorescence on cultured cells, immunologic indentification on SDS polyacrylamide gels ("wester blot" experiments), and immunoperoxidase assays on intact tissues. The following four antibodies are described: (a) an antivimentin antibody generated against human fibroblast cytoskeleton; (b), (c) two antibodies that recognize a 54-kdalton protein in human hepatocellular carcinoma cells; and (d) an antikeratin antibody made to stratum corneum that recognizes proteins of molecular weight 66 kdaltons and 57 kdaltons. The antivimentin antibody reacts with vimentin (58 kdaltons), glial fibrillary acidic protein (GFAP), and keratins from stratum corneum, but does not recognize hepatoma intermediate filaments. In immunofluorescence assays, the antibody reacts with mesenchymal cells and cultured epithelial cells that express vimentin. This antibody decorates the media of blood vessels in tissue sections. One antihepatoma filament antibody reacts only with the 54 kdalton protein of these cells and, in immunofluorescence and immunoperoxidase assays, only recognizes epithelial cells. It reacts with almost all nonsquamous epithelium. The other antihepatoma filament antibody is much less selective, reacting with vimentin, GFAP, and keratin from stratum corneum. This antibody decorates intermediate filaments of both mesenchymal and epithelial cells. The antikeratin antibody recognizes 66-kdalton and 57-kdalton proteins in extracts of stratum corneum and also identifies proteins of similar molecular weights in all cells tested. However, by immunofluorescence, this antibody decorates only the intermediate filaments of epidermoid carcinoma cells. When assayed on tissue sections, the antibody reacts with squamous epithelium and some, but not all

  8. Generation of monospecific antibodies based on affinity capture of polyclonal antibodies.

    Science.gov (United States)

    Hjelm, Barbara; Forsström, Björn; Igel, Ulrika; Johannesson, Henrik; Stadler, Charlotte; Lundberg, Emma; Ponten, Fredrik; Sjöberg, Anna; Rockberg, Johan; Schwenk, Jochen M; Nilsson, Peter; Johansson, Christine; Uhlén, Mathias

    2011-11-01

    A method is described to generate and validate antibodies based on mapping the linear epitopes of a polyclonal antibody followed by sequential epitope-specific capture using synthetic peptides. Polyclonal antibodies directed towards four proteins RBM3, SATB2, ANLN, and CNDP1, potentially involved in human cancers, were selected and antibodies to several non-overlapping epitopes were generated and subsequently validated by Western blot, immunohistochemistry, and immunofluorescence. For all four proteins, a dramatic difference in functionality could be observed for these monospecific antibodies directed to the different epitopes. In each case, at least one antibody was obtained with full functionality across all applications, while other epitope-specific fractions showed no or little functionality. These results present a path forward to use the mapped binding sites of polyclonal antibodies to generate epitope-specific antibodies, providing an attractive approach for large-scale efforts to characterize the human proteome by antibodies.

  9. Micro Engineering

    DEFF Research Database (Denmark)

    Alting, Leo; Kimura, F.; Hansen, Hans Nørgaard

    2003-01-01

    The paper addresses the questions of how micro products are designed and how they are manufactured. Definitions of micro products and micro engineering are discussed and the presentation is aimed at describing typical issues, possibilities and tools regarding design of micro products. The implica...

  10. EXPLORATION ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    <正>20051144 Gu Jun (Petroleum University, Beijing); Gao Deli Analysis of Mechanic Characterstics for Coal Bed and Drilling Countermeasure in Tuha Basin, Xinjiang, China (Exploration Engineering (Rock & Soil Drilling and Tunneling), ISSN 1672 - 7428, CN11-5063/TD, 31(5), 2004, p. 51-52, 55, 3 tables, 1 ref. , with English abstract) Key words: coal seams, drilling

  11. Photoreceptor engineering

    Directory of Open Access Journals (Sweden)

    Thea eZiegler

    2015-06-01

    Full Text Available Sensory photoreceptors not only control diverse adaptive responses in Nature, but as light-regulated actuators they also provide the foundation for optogenetics, the non-invasive and spatiotemporally precise manipulation of cellular events by light. Novel photoreceptors have been engineered that establish control by light over manifold biological processes previously inaccessible to optogenetic intervention. Recently, photoreceptor engineering has witnessed a rapid development, and light-regulated actuators for the perturbation of a plethora of cellular events are now available. Here, we review fundamental principles of photoreceptors and light-regulated allostery. Photoreceptors dichotomize into associating receptors that alter their oligomeric state as part of light-regulated allostery and non-associating receptors that do not. A survey of engineered photoreceptors pinpoints light-regulated association reactions and order-disorder transitions as particularly powerful and versatile design principles. Photochromic photoreceptors that are bidirectionally toggled by two light colors augur enhanced spatiotemporal resolution and use as photoactivatable fluorophores. By identifying desirable traits in engineered photoreceptors, we provide pointers for the design of future, light-regulated actuators.

  12. Concurrent engineering

    Science.gov (United States)

    Chamis, C. C.; Leger, L.; Hunter, D.; Jones, C.; Sprague, R.; Berke, L.; Newell, J.; Singhal, S.

    1991-01-01

    The following subject areas are covered: issues (liquid rocket propulsion - current development approach, current certification process, and costs of engineering changes); state of the art (DICE information management system, key government participants, project development strategy, quality management, and numerical propulsion system simulation); needs identified; and proposed program.

  13. Exhibit Engineering

    DEFF Research Database (Denmark)

    Mortensen, Marianne Foss

    ) a synthesis of the findings from the first two studies with findings from the literature to generate two types of results: a coherent series of suggestions for a design iteration of the studied exhibit as well as a more general normative model for exhibit engineering. Finally, another perspective...

  14. Engineering Ontologies

    NARCIS (Netherlands)

    Borst, Pim; Akkermans, Hans; Top, Jan

    1997-01-01

    We analyse the construction as well as the role of ontologies in knowledge sharing and reuse for complex industrial applications. In this article, the practical use of ontologies in large-scale applications not restricted to knowledge-based systems is demonstrated, for the domain of engineering syst

  15. EXPLORATION ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    20161419Cao Baomin(Shaanxi Binchang Xiaozhuang Mining Co.Ltd,Binxian 7135000,China);Zhang Jianghao Application of Rotary Drilling Combination to Pile Foundation Engineering in Xiaozhuang Mine,Shaanxi Province(Geology of Shaanxi,ISSN1001-6996,CN61

  16. Enhancing Engineering Education through Engineering Management

    Science.gov (United States)

    Pence, Kenneth R.; Rowe, Christopher J.

    2012-01-01

    Engineering Management courses are added to a traditional engineering curriculum to enhance the value of an undergraduate's engineering degree. A four-year engineering degree often leaves graduates lacking in business and management acumen. Engineering management education covers topics enhancing the value of new graduates by teaching management…

  17. Surface activity of a monoclonal antibody.

    Science.gov (United States)

    Mahler, Hanns-Christian; Senner, Frank; Maeder, Karsten; Mueller, Robert

    2009-12-01

    The development of high concentration antibody formulations presents a major challenge for the formulation scientist, as physical characteristics and stability behavior change compared to low concentration protein formulations. The aim of this study was to investigate the potential correlation between surface activity and shaking stress stability of a model antibody-polysorbate 20 formulation. The surface activities of pure antibody and polysorbate 20 were compared, followed by a study on the influence of a model antibody on the apparent critical micelle concentration (CMC) of polysorbate 20 over a protein concentration range from 10 to 150 mg/mL. In a shaking stress experiment, the stability of 10, 75, and 150 mg/mL antibody formulations was investigated containing different concentrations of polysorbate 20, both below and above the CMC. The antibody increased significantly the apparent CMC of antibody-polysorbate 20 mixtures in comparison to the protein-free buffer. However, the concentration of polysorbate required for stabilization of the model antibody in a shaking stress experiment did not show dependence on the CMC. A polysorbate 20 level of 0.005% was found sufficient to stabilize both at low and high antibody concentration against antibody aggregation and precipitation.

  18. Engineering Review Information System

    Science.gov (United States)

    Grems, III, Edward G. (Inventor); Henze, James E. (Inventor); Bixby, Jonathan A. (Inventor); Roberts, Mark (Inventor); Mann, Thomas (Inventor)

    2015-01-01

    A disciplinal engineering review computer information system and method by defining a database of disciplinal engineering review process entities for an enterprise engineering program, opening a computer supported engineering item based upon the defined disciplinal engineering review process entities, managing a review of the opened engineering item according to the defined disciplinal engineering review process entities, and closing the opened engineering item according to the opened engineering item review.

  19. Selection of gonadotrophin surge attenuating factor phage antibodies by bioassay

    Directory of Open Access Journals (Sweden)

    Mason Helen D

    2005-09-01

    Full Text Available Abstract Background We aimed to combine the generation of "artificial" antibodies with a rat pituitary bioassay as a new strategy to overcome 20 years of difficulties in the purification of gonadotrophin surge-attenuating factor (GnSAF. Methods A synthetic single-chain antibody (Tomlinson J phage display library was bio-panned with partially purified GnSAF produced by cultured human granulosa/luteal cells. The initial screening with a simple binding immunoassay resulted in 8 clones that were further screened using our in-vitro rat monolayer bioassay for GnSAF. Initially the antibodies were screened as pooled phage forms and subsequently as individual, soluble, single-chain antibody (scAbs forms. Then, in order to improve the stability of the scAbs for immunopurification purposes, and to widen the range of labelled secondary antibodies available, these were engineered into full-length human immunoglobulins. The immunoglobulin with the highest affinity for GnSAF and a previously described rat anti-GnSAF polyclonal antiserum was then used to immunopurify bioactive GnSAF protein. The two purified preparations were electrophoresed on 1-D gels and on 7 cm 2-D gels (pH 4–7. The candidate GnSAF protein bands and spots were then excised for peptide mass mapping. Results Three of the scAbs recognised GnSAF bioactivity and subsequently one clone of the purified scAb-derived immunoglobulin demonstrated high affinity for GnSAF bioactivity, also binding the molecule in such as way as to block its bioactivity. When used for repeated immunopurification cycles and then Western blot, this antibody enabled the isolation of a GnSAF-bioactive protein band at around 66 kDa. Similar results were achieved using the rat anti-GnSAF polyclonal antiserum. The main candidate molecules identified from the immunopurified material by excision of 2-D gel protein spots was human serum albumin precursor and variants. Conclusion This study demonstrates that the combination of

  20. Controlled delivery of antibodies from injectable hydrogels.

    Science.gov (United States)

    Fletcher, Nathan A; Babcock, Lyndsey R; Murray, Ellen A; Krebs, Melissa D

    2016-02-01

    Therapeutic antibodies are currently used for the treatment of various diseases, but large doses delivered systemically are typically required. Localized controlled delivery techniques would afford major benefits such as decreasing side effects and required doses. Injectable biopolymer systems are an attractive solution due to their minimally invasive potential for controlled release in a localized area. Here, alginate-chitosan hydrogels are demonstrated to provide controlled delivery of IgG model antibodies and also of Fab antibody fragments. Also, an alternate delivery system comprised of poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with antibodies and encapsulated in alginate was shown to successfully provide another level of control over release. These biopolymer systems that offer controlled delivery for antibodies and antibody fragments will be promising for many applications in drug delivery and regenerative medicine.

  1. On the Meaning of Affinity Limits in B-Cell Epitope Prediction for Antipeptide Antibody-Mediated Immunity

    Directory of Open Access Journals (Sweden)

    Salvador Eugenio C. Caoili

    2012-01-01

    Full Text Available B-cell epitope prediction aims to aid the design of peptide-based immunogens (e.g., vaccines for eliciting antipeptide antibodies that protect against disease, but such antibodies fail to confer protection and even promote disease if they bind with low affinity. Hence, the Immune Epitope Database (IEDB was searched to obtain published thermodynamic and kinetic data on binding interactions of antipeptide antibodies. The data suggest that the affinity of the antibodies for their immunizing peptides appears to be limited in a manner consistent with previously proposed kinetic constraints on affinity maturation in vivo and that cross-reaction of the antibodies with proteins tends to occur with lower affinity than the corresponding reaction of the antibodies with their immunizing peptides. These observations better inform B-cell epitope prediction to avoid overestimating the affinity for both active and passive immunization; whereas active immunization is subject to limitations of affinity maturation in vivo and of the capacity to accumulate endogenous antibodies, passive immunization may transcend such limitations, possibly with the aid of artificial affinity-selection processes and of protein engineering. Additionally, protein disorder warrants further investigation as a possible supplementary criterion for B-cell epitope prediction, where such disorder obviates thermodynamically unfavorable protein structural adjustments in cross-reactions between antipeptide antibodies and proteins.

  2. REAL-Select: full-length antibody display and library screening by surface capture on yeast cells.

    Science.gov (United States)

    Rhiel, Laura; Krah, Simon; Günther, Ralf; Becker, Stefan; Kolmar, Harald; Hock, Björn

    2014-01-01

    We describe a novel approach named REAL-Select for the non-covalent display of IgG-molecules on the surface of yeast cells for the purpose of antibody engineering and selection. It relies on the capture of secreted native full-length antibodies on the cell surface via binding to an externally immobilized ZZ domain, which tightly binds antibody Fc. It is beneficial for high-throughput screening of yeast-displayed IgG-libraries during antibody discovery and development. In a model experiment, antibody-displaying yeast cells were isolated from a 1:1,000,000 mixture with control cells confirming the maintenance of genotype-phenotype linkage. Antibodies with improved binding characteristics were obtained by affinity maturation using REAL-Select, demonstrating the ability of this system to display antibodies in their native form and to detect subtle changes in affinity by flow cytometry. The biotinylation of the cell surface followed by functionalization with a streptavidin-ZZ fusion protein is an approach that is independent of the genetic background of the antibody-producing host and therefore can be expected to be compatible with other eukaryotic expression hosts such as P. pastoris or mammalian cells.

  3. REAL-Select: full-length antibody display and library screening by surface capture on yeast cells.

    Directory of Open Access Journals (Sweden)

    Laura Rhiel

    Full Text Available We describe a novel approach named REAL-Select for the non-covalent display of IgG-molecules on the surface of yeast cells for the purpose of antibody engineering and selection. It relies on the capture of secreted native full-length antibodies on the cell surface via binding to an externally immobilized ZZ domain, which tightly binds antibody Fc. It is beneficial for high-throughput screening of yeast-displayed IgG-libraries during antibody discovery and development. In a model experiment, antibody-displaying yeast cells were isolated from a 1:1,000,000 mixture with control cells confirming the maintenance of genotype-phenotype linkage. Antibodies with improved binding characteristics were obtained by affinity maturation using REAL-Select, demonstrating the ability of this system to display antibodies in their native form and to detect subtle changes in affinity by flow cytometry. The biotinylation of the cell surface followed by functionalization with a streptavidin-ZZ fusion protein is an approach that is independent of the genetic background of the antibody-producing host and therefore can be expected to be compatible with other eukaryotic expression hosts such as P. pastoris or mammalian cells.

  4. EXPLORATION ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20092040 Chen Jing(College of Petroleum Engineering,Yangtze University,Jingzhou 434023,China);Xiong Qingshan Technology of Well Cementing with Expandable Tube and Its Application(Exploration Engineering,ISSN1672-7428,CN11-5063/TD,35(8),2008,p.19-21,4 illus.,2 tables,5 refs.)Key words:cementingExpandable tube is a new technology and has been developed oversea.It can be applied in well drilling and completion for deep water,deep well,extended reach well and multilateral well,as well as in oil extraction and workover.This paper briefly introduces the technology of well cementing with

  5. Antibody response to measles immunization in India*

    OpenAIRE

    Job, J. S.; John, T J; Joseph, A.

    1984-01-01

    Antibody response to measles vaccine was measured in 238 subjects aged 6-15 months. Seroconversion rates ranged from 74% at 6 months of age to 100% at 13-15 months; the differences in age-specific rates were not statistically significant. The postimmunization antibody titres increased with increasing age of the vaccinee. Seroconversion rates and antibody titres in 49 subjects with grades I and II malnutrition were not significantly different from those in the 189 normal subjects.

  6. EXPLORATION ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20090712 Ge Mingjun(General Institution of Mineral Exploration & Development in Qiqihaer of Heilongjiang Province,Qiqihaer 161006,China) Application of Emulsified Diesel Oil Drilling Fluid in Under-Balanced Drilling(Exploration Engineering(Rock & Soil Drilling and Tunneling),ISSN1672-7428,CN11-5063/TD,34(11),2007,p.43-45,1 illus.,2 tables,4 refs.)

  7. Heat engines

    Science.gov (United States)

    Rekos, N. F., Jr.; Parsons, E. L., Jr.

    1989-09-01

    For the past decade, the Department of Energy (DOE) has sponsored projects to develop diesel and gas turbine engines capable of operating on low-cost, coal-based fuels. Much of the current work addresses the use of coal-water fuel (CWF) in diesel and turbines, although there is some work with dry coal feed and other coal fuels. Both the diesel and gas turbine portions of the program include proof-of-concept and support projects. Specific highlights of the program include: engine tests and economic analyses have shown that CWF can replace 70 percent of the diesel oil used in the duty cycle of a typical main-line locomotive; A. D. Little and Cooper-Bessemer completed a system and economic study of coal-fueled diesel engines for modular power and industrial cogeneration markets. The coal-fueled diesel was found to be competitive at fuel oil prices of $5.50 per million British thermal units (MBtu); Over 200 hours of testing have been completed using CWF in full-scale, single-cylinder diesel engines. Combustion efficiencies have exceeded 99 percent; Both CWF and dry coal fuel forms can be burned in short residence time in-line combustors and in off-base combustors with a combustion efficiency of over 99 percent; Rich/lean combustion systems employed by the three major DOE contractors have demonstrated low NO(sub x) emissions levels; Contractors have also achieved promising results for controlling sulfur oxide (SO(sub x)) emissions using calcium-based sorbents; Slagging combustors have achieved between 65 and 95 percent slag capture, which will limit particulate loading on pre-turbine cleanup devices. For many of the gas turbine and diesel applications emission standards do not exist. Our goal is to develop coal-fueled diesels and gas turbines that not only meet all applicable emission standards that do exist, but also are capable of meeting possible future standards.

  8. Engineering Ontologies

    OpenAIRE

    Borst, Pim; Akkermans, Hans; Top, Jan

    1997-01-01

    We analyse the construction as well as the role of ontologies in knowledge sharing and reuse for complex industrial applications. In this article, the practical use of ontologies in large-scale applications not restricted to knowledge-based systems is demonstrated, for the domain of engineering systems modelling, simulation and design. A general and formal ontology, called PHYSSYS, for dynamic physical systems is presented and its structuring principles are discussed. We show how the PHYSSYS ...

  9. EXPLORATION ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20072985 Bai Mingzhou(Beijing Jiaotong University,Beijing 100044,China);Du Yongqiang Study on Application Technology of Geology Horizontal Drilling in Qiyueshan Tunnel at Yiwan Railway(Exploration Engineering(Rock & Soil Drilling and Tunneling),ISSN1672-7428,CN11-5063/TD,33(4),2006,p.59-61,1 table,3 refs.)Key words:tunnels,horizontal drilling

  10. Development of a Recombinant Antibody with Specificity for Chelated Uranyl Ions

    Energy Technology Data Exchange (ETDEWEB)

    X. Li; A.M. Kriegel; T.C. Bishop; R.C. Blake; E. Figueiredo; H. Yu; D.A. Blake

    2005-04-18

    The goal of our project is to continue the development of new techniques for rapid, automated identification of radionuclides, metals, and chelators that may contaminant sur face and groundwater at DOE sites. One of the four specific aims of the present project is to develop new technologies in antibody engineering that will enhance our immunosensor program. Recombinant antibodies have potential advantages over monoclonal antibodies produced by standard hybridoma technology. The cloned genes represent a stable, recoverable source for antibody production. In addition, the recombinant format offers opportunities for protein engineering that enhances antibody performance and for studies that relate antibody sequence to binding activity. In this study, a hybridoma that synthesized an antibody (12F6) that recognized a 1:1 complex between 2,9-dicarboxyl-1,10- phenanthroline (DCP) and UO{sub 2}{sup 2+} was used as a source of RNA for the development of a recombinant (Fab){sub 2} fragment. RNA was isolated from the 12F6 hybridoma and the cDNA encoding the entire {kappa} light chain and the linked VH and C1 portions of the heavy chain were amplified from total RNA. cDNA sequences were verified by comparison with the N-terminal amino acid sequences of the light and heavy chains of the native 12F6 monoclonal antibody. A leader sequence and appropriate restriction sites were added to each chain, and the fragments were ligated into a commercial dicistronic vector (pBudCE4.1, Invitrogen, Inc.). COS-1 cells were transfected with this vector and the culture supernatant was assayed for activity and the (Fab){sub 2} protein. Cells transfected with vector containing 12F6 cDNA synthesized and secreted recombinant (Fab){sub 2} fragments that bound to the UO{sub 2}{sup 2+}-DCP complex with an affinity indistinguishable from that of a (Fab){sub 2} fragment prepared from the native antibody. Molecular models of the heavy and light chain variable domains were constructed according to the

  11. Antiphospholipid Antibodies and Systemic Scleroderma

    Directory of Open Access Journals (Sweden)

    Awa Oumar Touré

    2013-03-01

    Full Text Available Objective: Antiphospholipid antibodies (APLs could be associated with an increased risk of vascular pathologies in systemic scleroderma. The aim of our study was to search for APLs in patients affected by systemic scleroderma and to evaluate their involvement in the clinical manifestations of this disease. Materials and Methods: We conducted a cross-sectional descriptive study, from January 2009 until August 2010, with patients received at the Department of Dermatology (Dakar, Senegal. Blood samples were taken at the hematology laboratory and were analyzed for the presence of APLs. Results: Forty patients were recruited. Various types of either isolated or associated APLs were found in 23 patients, i.e. 57.5% of the study population. The most frequently encountered antibody was IgG anti-β2 GPI (37.5% of the patients, followed by anticardiolipins (17.5% and lupus anticoagulants (5%. No statistically significant association of positive antiphospholipid-related tests to any of the scleroderma complications could be demonstrated. Conclusion: A high proportion of patients showing association of systemic scleroderma and APLs suggests the presence of a morbid correlation between these 2 pathologies. It would be useful to follow a cohort of patients affected by systemic scleroderma in order to monitor vascular complications following confirmation of the presence of antiphospholipid syndrome.

  12. Isoimmunization with anti-U antibody.

    Science.gov (United States)

    Turner, R J; Holder, W T; McCord, D L

    1984-03-01

    Isoimmunization with anti-U antibody is a rare but significant cause of hemolytic disease in black newborns. In this case report, an lgG antibody stimulated by fetomaternal transfusion produced a positive direct Coombs' test on cord blood but not neonatal hyperbilirubinemia. A review of the literature suggests the pathophysiology is similar to Rh isoimmunization. The anti-U antibody may develop as a result of pregnancy or blood transfusion in the 1.2 percent of American blacks who are at risk for developing the antibody. The principles of treatment employed in Rh isoimmunization can be successfully used in isoimmunization due to anti-U.

  13. Exceptional Antibodies Produced by Successive Immunizations.

    Directory of Open Access Journals (Sweden)

    Patricia J Gearhart

    2015-12-01

    Full Text Available Antibodies stand between us and pathogens. Viruses mutate quickly to avoid detection, and antibodies mutate at similar rates to hunt them down. This death spiral is fueled by specialized proteins and error-prone polymerases that change DNA sequences. Here, we explore how B lymphocytes stay in the race by expressing activation-induced deaminase, which unleashes a tsunami of mutations in the immunoglobulin loci. This produces random DNA substitutions, followed by selection for the highest affinity antibodies. We may be able to manipulate the process to produce better antibodies by expanding the repertoire of specific B cells through successive vaccinations.

  14. Progress of phage antibody library technique and its application prospect in aquaculture%噬菌体抗体库技术及其在水产养殖的应用前景

    Institute of Scientific and Technical Information of China (English)

    章晋勇; 吴英松; 汪建国

    2004-01-01

    Phage display antibody library has been proven to be a powerful technique used in development of antibodies. Since it was established in 1990, the technology has made enormous improvement and played more and more important role in basic research of biology, immunology, oncology, protein engineering, ligand-receptor studies and proteomics among others in last two decades while there is no report about the application of it in aquaculture so far. It is a success implication of phage display technique in antibody engineering in which antibodies or antibody fragments are displayed on the surface of filamentous bacteriophage by genetic fusion to a coat protein of phage. Cooperating with the effective screening technique, affinity panning, these form the principle of phage display antibody library. The most characteristic of it is a direct physical link between phenotype and genotype. So,the technology makes it practicable to improve characteristic of selected antibodies by genetic manipulation. In the present work, the background, principle and advantages of the powerful tool over traditional hybridroma technolgy are summarized. In addition, several key problems possible to face in the course of application of the technology,including improving the diversity of library, augmentation of library size, generation of high affinity antibody and effective screening of specific antibody were dissertated. At last the possible implication prospect of phage display antibody technique in aquaculture was discussed, especially in elucidating the immune system of fish and producing large amount antibodies with important diagnostic and therapeutic value in fish diseases.

  15. An efficient method for isolating antibody fragments against small peptides by antibody phage display

    DEFF Research Database (Denmark)

    Duan, Zhi; Siegumfeldt, Henrik

    2010-01-01

    We generated monoclonal scFv (single chain variable fragment) antibodies from an antibody phage display library towards three small synthetic peptides derived from the sequence of s1-casein. Key difficulties for selection of scFv-phages against small peptides were addressed. Small peptides do....... The scFvs were sequenced and characterized, and specificity was characterized by ELISA. The methods developed in this study are universally applicable for antibody phage display to efficiently produce antibody fragments against small peptides....

  16. The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi

    NARCIS (Netherlands)

    Joosten, V.; Lokman, C.; Hondel, C.A.M.J.J. van den; Punt, P.J.

    2003-01-01

    In this review we will focus on the current status and views concerning the production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. We will focus on single-chain antibody fragment production (scFv and VHH) by these lower eukaryotes and the possible applications

  17. Internet Search Engines

    OpenAIRE

    Fatmaa El Zahraa Mohamed Abdou

    2004-01-01

    A general study about the internet search engines, the study deals main 7 points; the differance between search engines and search directories, components of search engines, the percentage of sites covered by search engines, cataloging of sites, the needed time for sites appearance in search engines, search capabilities, and types of search engines.

  18. Internet Search Engines

    Directory of Open Access Journals (Sweden)

    Fatmaa El Zahraa Mohamed Abdou

    2004-09-01

    Full Text Available A general study about the internet search engines, the study deals main 7 points; the differance between search engines and search directories, components of search engines, the percentage of sites covered by search engines, cataloging of sites, the needed time for sites appearance in search engines, search capabilities, and types of search engines.

  19. Antibodies to watch in 2017.

    Science.gov (United States)

    Reichert, Janice M

    Over 50 investigational monoclonal antibody (mAb) therapeutics are currently undergoing evaluation in late-stage clinical studies, which is expected to drive a trend toward first marketing approvals of at least 6-9 mAbs per year in the near-term. In the United States (US), a total of 6 and 9 mAbs were granted first approvals during 2014 and 2015, respectively; all these products are also approved in the European Union (EU). As of December 1, 2016, 6 mAbs (atezolizumab, olaratumab, reslizumab, ixekizumab, bezlotoxumab, oblitoxaximab) had been granted first approvals during 2016 in either the EU or US. Brodalumab, was granted a first approval in Japan in July 2016. Regulatory actions on marketing applications for brodalumab in the EU and US are not expected until 2017. In 2017, first EU or US approvals may also be granted for at least nine mAbs (ocrelizumab, avelumab, Xilonix, inotuzumab ozogamicin, dupilumab, sirukumab, sarilumab, guselkumab, romosozumab) that are not yet approved in any country. Based on announcements of company plans for regulatory submissions and the estimated completion dates for late-stage clinical studies, and assuming the study results are positive, marketing applications for at least 6 antibody therapeutics (benralizumab, tildrakizumab, emicizumab, galcanezumab, ibalizumab, PRO-140) that are now being evaluated in late-stage clinical studies may be submitted during December 2016* or 2017. Other 'antibodies to watch' in 2017 include 20 mAbs are undergoing evaluation in pivotal studies that have estimated primary completion dates in late 2016 or during 2017. Of these, 5 mAbs are for cancer (durvalumab, JNJ-56022473, ublituximab, anetumab ravtansine, glembatumumab vedotin) and 15 mAbs are for non-cancer indications (caplacizumab, lanadelumab, roledumab, tralokinumab, risankizumab, SA237, emapalumab, suptavumab, erenumab, eptinezumab, fremanezumab, fasinumab, tanezumab, lampalizumab, brolucizumab). Positive results from these studies may

  20. 21 CFR 866.3290 - Gonococcal antibody test (GAT).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gonococcal antibody test (GAT). 866.3290 Section... antibody test (GAT). (a) Identification. A gonococcal antibody test (GAT) is an in vitro device that..., indirect fluorescent antibody, or radioimmunoassay, antibodies to Neisseria gonorrhoeae in sera...

  1. Use of bacteriophage particles displaying influenza virus hemagglutinin for the detection of hemagglutination-inhibition antibodies.

    Science.gov (United States)

    Domm, William; Brewer, Matthew; Baker, Steven F; Feng, Changyong; Martínez-Sobrido, Luis; Treanor, John; Dewhurst, Stephen

    2014-03-01

    Bacteriophage lambda capsids provide a flexible molecular scaffold that can be engineered to display a wide range of exogenous proteins, including full-length viral glycoproteins produced in eukaryotic cells. One application for such particles lies in the detection of virus-specific antibodies, since they may obviate the need to work with infectious stocks of highly pathogenic or emerging viruses that can pose significant biosafety and biocontainment challenges. Bacteriophage lambda capsids were produced that displayed an insect-cell derived, recombinant H5 influenza virus hemagglutinin (HA) on their surface. The particles agglutinated red blood cells efficiently, in a manner that could be blocked using H5 HA-specific monoclonal antibodies. The particles were then used to develop a modified hemagglutinination-inhibition (HAI) assay, which successfully identified human sera with H5 HA-specific HAI activity. These results demonstrate the utility of HA-displaying bacteriophage capsids for the detection of influenza virus-specific HAI antibodies.

  2. Application of histone modification-specific interaction domains as an alternative to antibodies

    Science.gov (United States)

    Kungulovski, Goran; Kycia, Ina; Tamas, Raluca; Jurkowska, Renata Z.; Kudithipudi, Srikanth; Henry, Chisato; Reinhardt, Richard; Labhart, Paul

    2014-01-01

    Post-translational modifications (PTMs) of histones constitute a major chromatin indexing mechanism, and their proper characterization is of highest biological importance. So far, PTM-specific antibodies have been the standard reagent for studying histone PTMs despite caveats such as lot-to-lot variability of specificity and binding affinity. Herein, we successfully employed naturally occurring and engineered histone modification interacting domains for detection and identification of histone PTMs and ChIP-like enrichment of different types of chromatin. Our results demonstrate that histone interacting domains are robust and highly specific reagents that can replace or complement histone modification antibodies. These domains can be produced recombinantly in Escherichia coli at low cost and constant quality. Protein design of reading domains allows for generation of novel specificities, addition of affinity tags, and preparation of PTM binding pocket variants as matching negative controls, which is not possible with antibodies. PMID:25301795

  3. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity.

    Science.gov (United States)

    Boder, E T; Midelfort, K S; Wittrup, K D

    2000-09-26

    Single-chain antibody mutants have been evolved in vitro with antigen-binding equilibrium dissociation constant K(d) = 48 fM and slower dissociation kinetics (half-time > 5 days) than those for the streptavidin-biotin complex. These mutants possess the highest monovalent ligand-binding affinity yet reported for an engineered protein by over two orders of magnitude. Optimal kinetic screening of randomly mutagenized libraries of 10(5)-10(7) yeast surface-displayed antibodies enabled a >1,000-fold decrease in the rate of dissociation after four cycles of affinity mutagenesis and screening. The consensus mutations are generally nonconservative by comparison with naturally occurring mouse Fv sequences and with residues that do not contact the fluorescein antigen in the wild-type complex. The existence of these mutants demonstrates that the antibody Fv architecture is not intrinsically responsible for an antigen-binding affinity ceiling during in vivo affinity maturation.

  4. EXPLORATION ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>20122758 Chen Huiming ( No.8 Geology Team of Fujian Province,Longyan 364000,China ) Application Research on Drilling Technology Process Combination for Deep Explora-tion in an Iron Mine of Fujian Province ( Exploration Engineering,ISSN1672-7428,CN11-5063 / TD,38 ( 9 ), 2011,p.6-9,8ta-bles,6refs. ) Key words:drilling in complicated formation According to the drilling technical problems in deep complex formations of the ironmine surrounding Makeng of Fujian Province ,

  5. Microprocessor engineering

    CERN Document Server

    Holdsworth, B

    2013-01-01

    Microprocessor Engineering provides an insight in the structures and operating techniques of a small computer. The book is comprised of 10 chapters that deal with the various aspects of computing. The first two chapters tackle the basic arithmetic and logic processes. The third chapter covers the various memory devices, both ROM and RWM. Next, the book deals with the general architecture of microprocessor. The succeeding three chapters discuss the software aspects of machine operation, while the last remaining three chapters talk about the relationship of the microprocessor with the outside wo

  6. Security Engineering

    Science.gov (United States)

    2012-01-31

    attacks cannot be completely addressed by traditional perimeter security solutions [ Wulf and Jones, 2009], as they have been in the past. A new...the mainstay of the current cyber security solution space [ Wulf and Jones, 2009]. This has enabled the system engineering and security communities...Number: H98230-08-D-0171 DO 002 TO 002 RT 028 Report No. SERC-2012-TR-028 January 31, 2012 UNCLASSIFIED 37 W. A. Wulf and A. K. Jones, Reflections on cyber security, Science Magazine, vol. 326, 2009, pp. 943-944.

  7. Photonic crystal fiber based antibody detection

    DEFF Research Database (Denmark)

    Duval, A; Lhoutellier, M; Jensen, J B

    2004-01-01

    An original approach for detecting labeled antibodies based on strong penetration photonic crystal fibers is introduced. The target antibody is immobilized inside the air-holes of a photonic crystal fiber and the detection is realized by the means of evanescent-wave fluorescence spectroscopy...

  8. Monoclonal antibodies reactive with hairy cell leukemia

    NARCIS (Netherlands)

    Visser, L; Shaw, A; Slupsky, J; Vos, H; Poppema, S

    1989-01-01

    Monoclonal antibodies reactive with hairy cell leukemia were developed to aid in the diagnosis of this subtype of B cell chronic lymphocytic leukemia and to gain better insight into the origin of hairy cells. Three antibodies were found to be of value in the diagnosis of hairy cell leukemia. Antibod

  9. Anti-influenza M2e antibody

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M.

    2013-04-16

    Humanized recombinant and monoclonal antibodies specific for the ectodomain of the influenza virus M2 ion channel protein are disclosed. The antibodies of the invention have anti-viral activity and may be useful as anti-viral therapeutics and/or prophylactic/vaccine agents for inhibiting influenza virus replication and for treating individuals infected with influenza.

  10. Methods for Selecting Phage Display Antibody Libraries.

    Science.gov (United States)

    Jara-Acevedo, Ricardo; Diez, Paula; Gonzalez-Gonzalez, Maria; Degano, Rosa Maria; Ibarrola, Nieves; Gongora, Rafael; Orfao, Alberto; Fuentes, Manuel

    2016-01-01

    The selection process aims sequential enrichment of phage antibody display library in clones that recognize the target of interest or antigen as the library undergoes successive rounds of selection. In this review, selection methods most commonly used for phage display antibody libraries have been comprehensively described.

  11. Receptor antibodies as novel therapeutics for diabetes

    DEFF Research Database (Denmark)

    Ussar, Siegfried; Vienberg, Sara Gry; Kahn, C Ronald

    2011-01-01

    Antibodies to receptors can block or mimic hormone action. Taking advantage of receptor isoforms, co-receptors, and other receptor modulating proteins, antibodies and other designer ligands can enhance tissue specificity and provide new approaches to the therapy of diabetes and other diseases....

  12. Antibody-drug conjugates: Intellectual property considerations.

    Science.gov (United States)

    Storz, Ulrich

    2015-01-01

    Antibody-drug conjugates are highly complex entities that combine an antibody, a linker and a toxin. This complexity makes them demanding both technically and from a regulatory point of view, and difficult to deal with in their patent aspects. This article discusses different issues of patent protection and freedom to operate with regard to this promising new class of drugs.

  13. Photonic crystal fiber based antibody detection

    OpenAIRE

    Duval, A.; Lhoutellier, M; Jensen, J. B.; Hoiby, P E; Missier, V; Pedersen, L. H.; Hansen, Theis Peter; Bjarklev, Anders Overgaard; Bang, Ole

    2004-01-01

    An original approach for detecting labeled antibodies based on strong penetration photonic crystal fibers is introduced. The target antibody is immobilized inside the air-holes of a photonic crystal fiber and the detection is realized by the means of evanescent-wave fluorescence spectroscopy and the use of a transversal illumination setup.

  14. Monoclonal Antibody Therapy for Advanced Neuroblastoma

    Science.gov (United States)

    NCI is sponsoring two clinical trials of a monoclonal antibody called ch14.18, in combination with other drugs, to see if the antibody may be helpful for children or young adults (up to age 21) with relapsed or refractory neuroblastoma.

  15. Anti-influenza M2e antibody

    Science.gov (United States)

    Bradbury, Andrew M.

    2011-12-20

    Humanized recombinant and monoclonal antibodies specific for the ectodomain of the influenza virus M2 ion channel protein are disclosed. The antibodies of the invention have anti-viral activity and may be useful as anti-viral therapeutics and/or prophylactic/vaccine agents for inhibiting influenza virus replication and for treating individuals infected with influenza.

  16. Bioconjugation of antibodies to horseradish peroxidase (hrp)

    Science.gov (United States)

    The bioconjugation of an antibody to an enzymatic reporter such as horseradish peroxidase (HRP) affords an effective mechanism by which immunoassay detection of a target antigen can be achieved. The use of heterobifunctional cross—linkers to covalently link antibodies to HRP provides a simple and c...

  17. "Unconventional" Neutralizing Activity of Antibodies Against HIV

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Neutralizing antibodies are recognized to be one of the essential elements of the adaptive immune response that must be induced by an effective vaccine against HIV. However, only a limited number of antibodies have been identified to neutralize a broad range of primary isolates of HIV-1 and attempts to induce such antibodies by immunization were unsuccessful. The difficulties to generate such antibodies are mainly due to intrinsic properties of HIV-1 envelope spikes, such as high sequence diversity, heavy glycosylation, and inducible and transient nature of certain epitopes. In vitro neutralizing antibodies are identified using "conventional" neutralization assay which uses phytohemagglutinin (PHA)-stimulated human PBMCs as target cells. Thus, in essence the assay evaluates HIV-1 replication in CD4+ T cells. Recently, several laboratories including us demonstrated that some monoclonal antibodies and HIV-1-specific polyclonal IgG purified from patient sera, although they do not have neutralizing activity when tested by the "conventional" neutralization assay, do exhibit potent and broad neutralizing activity in "unconventional" ways. The neutralizing activity of these antibodies and IgG fractions is acquired through post-translational modifications, through opsonization of virus particles into macrophages and immature dendritic cells (iDCs), or through expression of antibodies on the surface of HIV-1-susceptible cells. This review will focus on recent findings of this area and point out their potential applications in the development of preventive strategies against HIV.

  18. Anti-miroestrol polyclonal antibodies: a comparison of immunogen preparations used to obtain desired antibody properties.

    Science.gov (United States)

    Kitisripanya, Tharita; Jutathis, Kamonthip; Inyai, Chadathorn; Komaikul, Jukrapun; Udomsin, Orapin; Yusakul, Gorawit; Tanaka, Hiroyuki; Putalun, Waraporn

    2016-04-01

    Immunogen quality is one important factor that contributes to desirable antibody characteristics. Highly specific antibodies against miroestrol can be used to develop a quality control immunoassay for Pueraria candollei products. In this study, we investigated how various immunogen preparations affect antibody properties. The results show that immunogen prepared using the Mannich reaction provides antibodies with higher specificity and sensitivity against miroestrol than immunogen prepared with the periodate reaction. The results suggest the Mannich reaction maintains the original structure of miroestrol and generates useful antibodies for developing immunoassays.

  19. Monoclonal antibodies in chronic lymphocytic leukemia.

    Science.gov (United States)

    Ferrajoli, Alessandra; Faderl, Stefan; Keating, Michael J

    2006-09-01

    Multiple options are now available for the treatment of chronic lymphocytic leukemia. Over the last 10 years, monoclonal antibodies have become an integral part of the management of this disease. Alemtuzumab has received approval for use in patients with fludarabine-refractory chronic lymphocytic leukemia. Rituximab has been investigated extensively in chronic lymphocytic leukemia both as a single agent and in combination with chemotherapy and other monoclonal antibodies. Epratuzumab and lumiliximab are newer monoclonal antibodies in the early phase of clinical development. This article will review the monoclonal antibodies more commonly used to treat chronic lymphocytic leukemia, the results obtained with monoclonal antibodies as single agents and in combination with chemotherapy, and other biological agents and newer compounds undergoing clinical trials.

  20. Production and characterization of peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies...... are powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors...... such as structure, accessibility and amino acid composition are crucial. Since small peptides tend not to be immunogenic, it may be necessary to conjugate them to carrier proteins in order to enhance immune presentation. Several strategies for conjugation of peptide-carriers applied for immunization exist...

  1. Antiphospholipid antibody: laboratory, pathogenesis and clinical manifestations

    Directory of Open Access Journals (Sweden)

    T. Ziglioli

    2011-06-01

    Full Text Available Antiphospholipid antibodies (aPL represent a heterogeneous group of antibodies that recognize various antigenic targets including beta2 glycoprotein I (β2GPI, prothrombin (PT, activated protein C, tissue plasminogen activator, plasmin and annexin A2. The most commonly used tests to detect aPL are: lupus anticoagulant (LAC, a functional coagulation assay, anticardiolipin antibody (aCL and anti-β2GPI antibody (anti-β2GPI, which are enzyme-linked immunoassay (ELISA. Clinically aPL are associated with thrombosis and/or with pregnancy morbidity. Apparently aPL alone are unable to induce thrombotic manifestations, but they increase the risk of vascular events that can occur in the presence of another thrombophilic condition; on the other hand obstetrical manifestations were shown to be associated not only to thrombosis but mainly to a direct antibody effect on the trophoblast.

  2. Nano surface engineering and remanufacture engineering

    Institute of Scientific and Technical Information of China (English)

    XU Bin-shi

    2004-01-01

    Nano surface engineering and remanufacture engineering are introduced, and the relationship between them is set forth. It points out the superiority of nano surface engineering to the traditional one, and reveals the advantages of remanufacture engineering. Taking some nano surface techniques as samples, such as nano-materials brush electroplating, nano-materials thermal spraying and nano-materials self-repairing antifriction additive technology, it shows the applications of nano surface engineering technology to remanufacturing mechanical parts.

  3. Construction and selection of human Fab antibody phage display library of extracellular domain of HER 2%人源性抗HER2胞外段Fab噬菌体抗体库的构建及筛选

    Institute of Scientific and Technical Information of China (English)

    张为家; 刘孝荣; 李官成; 贺智敏

    2011-01-01

    .The humanized Fab phage antibody library against HEF2 ECD was constructed by infection of helper phage VCSM13.The libraries were enrich after panned three cycles by purification protein of recombinant HER2 ECD.Then random clones were tested by ELISA to select the positive ones, which were furher identified their antigen binding acticities by Western blot, and the strongest binding to HER2 ECD clone was sequenced.RESULTS: The Fab phage antibody library with 2.5 × 107 volume was constructed and four positive clones which specifically recognized the HER2 ECD were isolated and further demonstrated by Western blot.Sequence analysis of the positivest clone showed that the variable heavy domains(VH) and variable light domains(VL) were highly homologous with the human embryonal Ig heavy chain V region sequences and kappa light chain sequences, respectively.CONCLUSION: A fully humanized Fab phage antibody library is successfully constructed and specific antibodies against HER2 ECD are obtained, which provides an experimental foundation for new humanized anti-HER2 ECD monoclonal antibodies.

  4. Radiohalogenated half-antibodies and maleimide intermediate therefor

    Science.gov (United States)

    Kassis, A.I.; Khawli, L.A.

    1991-02-19

    N-(m-radiohalophenyl) maleimide can be conjugated with a reduced antibody having a mercapto group to provide a radiolabeled half-antibody having immunological specific binding characteristics of whole antibody. No Drawings

  5. Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface.

    Science.gov (United States)

    Lewis, Steven M; Wu, Xiufeng; Pustilnik, Anna; Sereno, Arlene; Huang, Flora; Rick, Heather L; Guntas, Gurkan; Leaver-Fay, Andrew; Smith, Eric M; Ho, Carolyn; Hansen-Estruch, Christophe; Chamberlain, Aaron K; Truhlar, Stephanie M; Conner, Elaine M; Atwell, Shane; Kuhlman, Brian; Demarest, Stephen J

    2014-02-01

    Robust generation of IgG bispecific antibodies has been a long-standing challenge. Existing methods require extensive engineering of each individual antibody, discovery of common light chains, or complex and laborious biochemical processing. Here we combine computational and rational design approaches with experimental structural validation to generate antibody heavy and light chains with orthogonal Fab interfaces. Parental monoclonal antibodies incorporating these interfaces, when simultaneously co-expressed, assemble into bispecific IgG with improved heavy chain-light chain pairing. Bispecific IgGs generated with this approach exhibit pharmacokinetic and other desirable properties of native IgG, but bind target antigens monovalently. As such, these bispecific reagents may be useful in many biotechnological applications.

  6. Regenerative engineering

    CERN Document Server

    Laurencin, Cato T

    2013-01-01

    Regenerative Engineering: The Future of Medicine Saadiq F. El-Amin III , MD , PhD; Joylene W.L. Thomas, MD ; Ugonna N. Ihekweazu, MD ; Mia D. Woods, MS; and Ashim Gupta, MSCell Biology Gloria Gronowicz, PhD and Karen Sagomonyants, DMDStem Cells and Tissue Regeneration Kristen Martins-Taylor, PhD; Xiaofang Wang, MD , PhD; Xue-Jun Li, PhD; and Ren-He Xu, MD , PhDIntroduction to Materials Science Sangamesh G. Kumbar, PhD and Cato T. Laurencin, MD , PhDBiomaterials A. Jon Goldberg, PhD and Liisa T. Kuhn, PhDIn Vitro Assessment of Cell-Biomaterial Interactions Yong Wang, PhDHost Response to Biomate

  7. Engineering viscoelasticity

    CERN Document Server

    Gutierrez-Lemini, Danton

    2014-01-01

    Engineering Viscoelasticity covers all aspects of the thermo- mechanical response of viscoelastic substances that a practitioner in the field of viscoelasticity would need to design experiments, interpret test data, develop stress-strain models, perform stress analyses, design structural components, and carry out research work. The material in each chapter is developed from the elementary to the advanced, providing the background in mathematics and mechanics that are central to understanding the subject matter being presented. The book examines how viscoelastic materials respond to the application of loads, and provides practical guidelines to use them in the design of commercial, military and industrial applications. This book also: ·         Facilitates conceptual understanding by progressing in each chapter from elementary to challenging material ·         Examines in detail both differential and integral constitutive equations, devoting full chapters to each type and using both forms in ...

  8. Engineering electromagnetics

    CERN Document Server

    Thomas, David T; Hartnett, James P; Hughes, William F

    1973-01-01

    The applications involving electromagnetic fields are so pervasive that it is difficult to estimate their contribution to the industrial output: generation of electricity, power transmission lines, electric motors, actuators, relays, radio, TV and microwave transmission and reception, magnetic storage, and even the mundane little magnet used to hold a paper note on the refrigerator are all electromagnetic in nature. One would be hard pressed to find a device that works without relaying on any electromagnetic principle or effect. This text provides a good theoretical understanding of the electromagnetic field equations but also treats a large number of applications. In fact, no topic is presented unless it is directly applicable to engineering design or unless it is needed for the understanding of another topic. In electrostatics, for example, the text includes discussions of photocopying, ink-jet printing, electrostatic separation and deposition, sandpaper production, paint spraying, and powder coating. In ma...

  9. Antiphospholipid Antibodies in Lupus Nephritis.

    Directory of Open Access Journals (Sweden)

    Ioannis Parodis

    Full Text Available Lupus nephritis (LN is a major manifestation of systemic lupus erythematosus (SLE. It remains unclear whether antiphospholipid antibodies (aPL alter the course of LN. We thus investigated the impact of aPL on short-term and long-term renal outcomes in patients with LN. We assessed levels of aPL cross-sectionally in SLE patients diagnosed with (n = 204 or without (n = 294 LN, and prospectively in 64 patients with active biopsy-proven LN (52 proliferative, 12 membranous, before and after induction treatment (short-term outcomes. Long-term renal outcome in the prospective LN cohort was determined by the estimated glomerular filtration rate (eGFR and the Chronic Kidney Disease (CKD stage, after a median follow-up of 11.3 years (range: 3.3-18.8. Cross-sectional analysis revealed no association between LN and IgG/IgM anticardiolipin or anti-β2-glycoprotein I antibodies, or lupus anticoagulant. Both aPL positivity and levels were similar in patients with active LN and non-renal SLE. Following induction treatment for LN, serum IgG/IgM aPL levels decreased in responders (p<0.005 for all, but not in non-responders. Both at active LN and post-treatment, patients with IgG, but not IgM, aPL had higher creatinine levels compared with patients without IgG aPL. Neither aPL positivity nor levels were associated with changes in eGFR from either baseline or post-treatment through long-term follow-up. Moreover, aPL positivity and levels both at baseline and post-treatment were similar in patients with a CKD stage ≥3 versus 1-2 at the last follow-up. In conclusion, neither aPL positivity nor levels were found to be associated with the occurrence of LN in SLE patients. However, IgG aPL positivity in LN patients was associated with a short-term impairment of the renal function while no effect on long-term renal outcome was observed. Furthermore, IgG and IgM aPL levels decreased following induction treatment only in responders, indicating that aPL levels are

  10. Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies.

    Science.gov (United States)

    Stöger, E; Vaquero, C; Torres, E; Sack, M; Nicholson, L; Drossard, J; Williams, S; Keen, D; Perrin, Y; Christou, P; Fischer, R

    2000-03-01

    This report describes the stable expression of a medically important antibody in the staple cereal crops rice and wheat. We successfully expressed a single-chain Fv antibody (ScFvT84.66) against carcinoembryonic antigen (CEA), a well characterized tumor-associated marker antigen. scFv constructs were engineered for recombinant antibody targeting to the plant cell apoplast and ER. Up to 30 microg/g of functional recombinant antibody was detected in the leaves and seeds of wheat and rice. We confirmed that transgenic dry seeds could be stored for at least five months at room temperature, without significant loss of the amount or activity of scFvT84.66. Our results represent the first transition from model plant expression systems, such as tobacco and Arabidopsis, to widely cultivated cereal crops, such as rice and wheat, for expression of an antibody molecule that has already shown efficacy in clinical applications. Thus, we have established that molecular pharming in cereals can be a viable production system for such high-value pharmaceutical macromolecules. Our findings provide a strong foundation for exploiting alternative uses of cereal crops both in industrialized and developing countries.

  11. Interactions between HIV-1 Neutralizing Antibodies and Model Lipid Membranes imaged with AFM

    Science.gov (United States)

    Zauscher, Stefan; Hardy, Gregory; Alam, Munir; Shapter, Joseph

    2012-02-01

    Lipid membrane interactions with rare, broadly neutralizing antibodies (NAbs), 2F5 and 4E10, play a critical role in HIV-1 neutralization. Our research is motivated by recent immunization studies that have shown that induction of antibodies that avidly bind the gp41-MPER antigen is not sufficient for neutralization. Rather, it is required that antigen designs induce polyreactive antibodies that recognize MPER antigens as well as the viral lipid membrane. However, the mechanistic details of how membrane properties influence NAb-lipid and NAb-antigen interactions remain unknown. Furthermore, it is well established that the native viral membrane is heterogeneous, representing a mosaic of lipid rafts and protein clustering. However, the size, physical properties, and dynamics of these regions are poorly characterized and their potential roles in HIV-1 neutralization are also unknown. To understand how membrane properties contribute to 2F5/4E10 membrane interactions, we have engineered biomimetic supported lipid bilayers (SLBs) and use atomic force microscopy to visualize membrane domains, antigen clustering, and antibody-membrane interactions at sub-nanometer z-resolution. Our results show that localized binding of HIV-1 antigens and NAbs occur preferentially with the most fluid membrane domain. This supports the theory that NAbs may interact with regions of low lateral lipid forces that allow antibody insertion into the bilayer.

  12. Functional characterization of a monoclonal antibody epitope using a lambda phage display-deep sequencing platform

    Science.gov (United States)

    Domina, Maria; Lanza Cariccio, Veronica; Benfatto, Salvatore; Venza, Mario; Venza, Isabella; Borgogni, Erica; Castellino, Flora; Midiri, Angelina; Galbo, Roberta; Romeo, Letizia; Biondo, Carmelo; Masignani, Vega; Teti, Giuseppe; Felici, Franco; Beninati, Concetta

    2016-01-01

    We have recently described a method, named PROFILER, for the identification of antigenic regions preferentially targeted by polyclonal antibody responses after vaccination. To test the ability of the technique to provide insights into the functional properties of monoclonal antibody (mAb) epitopes, we used here a well-characterized epitope of meningococcal factor H binding protein (fHbp), which is recognized by mAb 12C1. An fHbp library, engineered on a lambda phage vector enabling surface expression of polypeptides of widely different length, was subjected to massive parallel sequencing of the phage inserts after affinity selection with the 12C1 mAb. We detected dozens of unique antibody-selected sequences, the most enriched of which (designated as FrC) could largely recapitulate the ability of fHbp to bind mAb 12C1. Computational analysis of the cumulative enrichment of single amino acids in the antibody-selected fragments identified two overrepresented stretches of residues (H248-K254 and S140-G154), whose presence was subsequently found to be required for binding of FrC to mAb 12C1. Collectively, these results suggest that the PROFILER technology can rapidly and reliably identify, in the context of complex conformational epitopes, discrete “hot spots” with a crucial role in antigen-antibody interactions, thereby providing useful clues for the functional characterization of the epitope. PMID:27530334

  13. Affinity-based methodologies and ligands for antibody purification: advances and perspectives.

    Science.gov (United States)

    Roque, Ana C A; Silva, Cláudia S O; Taipa, M Angela

    2007-08-10

    Many successful, recent therapies for life-threatening diseases such as cancer and rheumatoid arthritis are based on the recognition between native or genetically engineered antibodies and cell-surface receptors. Although naturally produced by the immune system, the need for antibodies with unique specificities and designed for single application, has encouraged the search for novel antibody purification strategies. The availability of these products to the end-consumer is strictly related to manufacture costs, particularly those attributed to downstream processing. Over the last decades, academia and industry have developed different types of interactions and separation techniques for antibody purification, affinity-based strategies being the most common and efficient methodologies. The affinity ligands utilized range from biological to synthetic designed molecules with enhanced resistance and stability. Despite the successes achieved, the purification "paradigm" still moves interests and efforts in the continuous demand for improved separation performances. This review will focus on recent advances and perspectives in antibody purification by affinity interactions using different techniques, with particular emphasis on affinity chromatography.

  14. Structure Based Antibody-Like Peptidomimetics

    Directory of Open Access Journals (Sweden)

    Mark I. Greene

    2012-02-01

    Full Text Available Biologics such as monoclonal antibodies (mAb and soluble receptors represent new classes of therapeutic agents for treatment of several diseases. High affinity and high specificity biologics can be utilized for variety of clinical purposes. Monoclonal antibodies have been used as diagnostic agents when coupled with radionuclide, immune modulatory agents or in the treatment of cancers. Among other limitations of using large molecules for therapy the actual cost of biologics has become an issue. There is an effort among chemists and biologists to reduce the size of biologics which includes monoclonal antibodies and receptors without a reduction of biological efficacy. Single chain antibody, camel antibodies, Fv fragments are examples of this type of deconstructive process. Small high-affinity peptides have been identified using phage screening. Our laboratory used a structure-based approach to develop small-size peptidomimetics from the three-dimensional structure of proteins with immunoglobulin folds as exemplified by CD4 and antibodies. Peptides derived either from the receptor or their cognate ligand mimics the functions of the parental macromolecule. These constrained peptides not only provide a platform for developing small molecule drugs, but also provide insight into the atomic features of protein-protein interactions. A general overview of the reduction of monoclonal antibodies to small exocyclic peptide and its prospects as a useful diagnostic and as a drug in the treatment of cancer are discussed.

  15. Glycosylation profiles of therapeutic antibody pharmaceuticals.

    Science.gov (United States)

    Wacker, Christoph; Berger, Christoph N; Girard, Philippe; Meier, Roger

    2011-11-01

    Recombinant antibodies specific for human targets are often used as therapeutics and represent a major class of drug products. Their therapeutic efficacy depends on the formation of antibody complexes resulting in the elimination of a target molecule or the modulation of specific signalling pathways. The physiological effects of antibody therapeutics are known to depend on the structural characteristics of the antibody molecule, specifically on the glycosylation which is the result of posttranslational modifications. Hence, production of therapeutic antibodies with a defined and consistent glycoform profile is needed which still remains a considerable challenge to the biopharmaceutical industry. To provide an insight into the industries capability to control their manufacturing process and to provide antibodies of highest quality, we conducted a market surveillance study and compared major oligosaccharide profiles of a number of monoclonal antibody pharmaceuticals sampled on the Swiss market. Product lot-to-lot variability was found to be generally low, suggesting that a majority of manufacturers have implemented high quality standards in their production processes. However, proportions of G0, G1 and G2 core-fucosylated chains derived from different products varied considerably and showed a bias towards the immature agalactosidated G0 form. Interestingly, differences in glycosylation caused by the production cell type seem to be of less importance compared with process related parameters such as cell growth.

  16. The structural analysis of shark IgNAR antibodies reveals evolutionary principles of immunoglobulins.

    Science.gov (United States)

    Feige, Matthias J; Gräwert, Melissa A; Marcinowski, Moritz; Hennig, Janosch; Behnke, Julia; Ausländer, David; Herold, Eva M; Peschek, Jirka; Castro, Caitlin D; Flajnik, Martin; Hendershot, Linda M; Sattler, Michael; Groll, Michael; Buchner, Johannes

    2014-06-03

    Sharks and other cartilaginous fish are the phylogenetically oldest living organisms that rely on antibodies as part of their adaptive immune system. They produce the immunoglobulin new antigen receptor (IgNAR), a homodimeric heavy chain-only antibody, as a major part of their humoral adaptive immune response. Here, we report the atomic resolution structure of the IgNAR constant domains and a structural model of this heavy chain-only antibody. We find that despite low sequence conservation, the basic Ig fold of modern antibodies is already present in the evolutionary ancient shark IgNAR domains, highlighting key structural determinants of the ubiquitous Ig fold. In contrast, structural differences between human and shark antibody domains explain the high stability of several IgNAR domains and allowed us to engineer human antibodies for increased stability and secretion efficiency. We identified two constant domains, C1 and C3, that act as dimerization modules within IgNAR. Together with the individual domain structures and small-angle X-ray scattering, this allowed us to develop a structural model of the complete IgNAR molecule. Its constant region exhibits an elongated shape with flexibility and a characteristic kink in the middle. Despite the lack of a canonical hinge region, the variable domains are spaced appropriately wide for binding to multiple antigens. Thus, the shark IgNAR domains already display the well-known Ig fold, but apart from that, this heavy chain-only antibody employs unique ways for dimerization and positioning of functional modules.

  17. The responsibilities of engineers.

    Science.gov (United States)

    Smith, Justin; Gardoni, Paolo; Murphy, Colleen

    2014-06-01

    Knowledge of the responsibilities of engineers is the foundation for answering ethical questions about the work of engineers. This paper defines the responsibilities of engineers by considering what constitutes the nature of engineering as a particular form of activity. Specifically, this paper focuses on the ethical responsibilities of engineers qua engineers. Such responsibilities refer to the duties acquired in virtue of being a member of a group. We examine the practice of engineering, drawing on the idea of practices developed by philosopher Alasdair MacIntyre, and show how the idea of a practice is important for identifying and justifying the responsibilities of engineers. To demonstrate the contribution that knowledge of the responsibilities of engineers makes to engineering ethics, a case study from structural engineering is discussed. The discussion of the failure of the Sleipner A Platform off the coast of Norway in 1991 demonstrates how the responsibilities of engineers can be derived from knowledge of the nature of engineering and its context.

  18. Generation and applications of monoclonal antibodies for livestock production.

    Science.gov (United States)

    Van Der Lende, T

    1994-01-01

    Monoclonal antibodies (MCAs) have found widespread applications in livestock production. Although the generation of murine MCAs is at present a routine, the production of homologous MCAs, especially important for in vivo applications, is still hampered by the lack of efficient homologous fusion partners for immortalization of antibody producing lymphocytes of livestock species. At present, MCAs are used in immunodiagnostic tests e.g. to monitor livestock reproduction and quality of livestock products. In the future MCAs will also be used in immunosensors for real-time and on-site applications in the same areas. The commercial application of MCAs for the immunomodulation of (pharmacologically induced) physiological processes underlying important (re)production traits is at present limited to the use of anti-PMSG MCAs in PMSG-induced superovulation. However, many potentially interesting applications are under investigation (e.g. immunopotentiation of growth hormone to enhance growth; immunocytolysis of adipocytes to increase lean meat production; immunoneutralization of GnRH for immunocastration; immunoimitation of hormone activity with anti-idiotype antibodies). Attempts to use specific MCAs for the sexing of embryos have been disappointing, mainly because of the relatively low accuracy. In the future, MCAs against membrane proteins which are specific for X- or Y-chromosome bearing spermatozoa might be used for bulk separation of livestock sperm. In general, it is expected that engineered (homologous) recombinant MCAs will largely contribute to the development of a new generation of rapid immunodiagnostic tests and effective immunomodulation applications. They will further increase the use of MCAs in livestock production.

  19. Protein engineering to target complement evasion in cancer.

    Science.gov (United States)

    Carter, Darrick; Lieber, André

    2014-01-21

    The complement system is composed of soluble factors in plasma that enhance or "complement" immune-mediated killing through innate and adaptive mechanisms. Activation of complement causes recruitment of immune cells; opsonization of coated cells; and direct killing of affected cells through a membrane attack complex (MAC). Tumor cells up-regulate complement inhibitory factors - one of several strategies to evade the immune system. In many cases as the tumor progresses, dramatic increases in complement inhibitory factors are found on these cells. This review focuses on the classic complement pathway and the role of major complement inhibitory factors in cancer immune evasion as well as on how current protein engineering efforts are being employed to increase complement fixing or to reverse complement resistance leading to better therapeutic outcomes in oncology. Strategies discussed include engineering of antibodies to enhance complement fixation, antibodies that neutralize complement inhibitory proteins as well as engineered constructs that specifically target inhibition of the complement system.

  20. African trypanosomiasis and antibodies: implications for vaccination, therapy and diagnosis.

    Science.gov (United States)

    Magez, Stefan; Radwanska, Magdalena

    2009-10-01

    African trypanosomiasis causes devastating effects on human populations and livestock herds in large parts of sub-Saharan Africa. Control of the disease is hampered by the lack of any efficient vaccination results in a field setting, and the severe side effects of current drug therapies. In addition, with the exception of Trypanosoma brucei gambiense infections, the diagnosis of trypanosomiasis has to rely on microscopic analysis of blood samples, as other specific tools are nonexistent. However, new developments in biotechnology, which include loop-mediated isothermal amplification as an adaptation to conventional PCR, as well as the antibody engineering that has allowed the development of Nanobody technology, offer new perspectives in both the detection and treatment of trypanosomiasis. In addition, recent data on parasite-induced B-cell memory destruction offer new insights into mechanisms of vaccine failure, and should lead us towards new strategies to overcome trypanosome defenses operating against the host immune system.

  1. Metabolic Engineering X Conference

    Energy Technology Data Exchange (ETDEWEB)

    Flach, Evan [American Institute of Chemical Engineers

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  2. Anti-bacterial monoclonal antibodies: back to the future?

    Science.gov (United States)

    Oleksiewicz, Martin B; Nagy, Gábor; Nagy, Eszter

    2012-10-15

    Today's medicine has to deal with the emergence of multi-drug resistant bacteria, and is beginning to be confronted with pan-resistant microbes. This worsening inadequacy of the antibiotics concept, which has ruled infectious medicine in the last six decades creates an increasing unmet medical need that can be addressed by passive immunization. While past experience from the pre-antibiotic era with serum therapy was in many cases encouraging, antibacterial monoclonal antibodies have so far suffered high attrition rates in the clinic, generally from lack of efficacy. Yet, we believe that recent developments in a number of areas such as infectious disease pathogenesis research, translational medicine, mAb engineering, mAb manufacturing and rapid bedside diagnostics are converging to make the medium-term future permissive for antibacterial mAb development. Here, we review antibacterial mAb-based approaches that are or were in clinical development, and may potentially act as paradigms with regards to molecular targets, antibody formats and mode-of-action, pre-clinical validation and selection of most relevant patient populations, in order to increase the likelihood of successful product development in this field.

  3. HIV-1 envelope glycoprotein immunogens to induce broadly neutralizing antibodies.

    Science.gov (United States)

    Sliepen, Kwinten; Sanders, Rogier W

    2016-01-01

    The long pursuit for a vaccine against human immunodeficiency virus 1 (HIV-1) has recently been boosted by a number of exciting developments. An HIV-1 subunit vaccine ideally should elicit potent broadly neutralizing antibodies (bNAbs), but raising bNAbs by vaccination has proved extremely difficult because of the characteristics of the HIV-1 envelope glycoprotein complex (Env). However, the isolation of bNAbs from HIV-1-infected patients demonstrates that the human humoral immune system is capable of making such antibodies. Therefore, a focus of HIV-1 vaccinology is the elicitation of bNAbs by engineered immunogens and by using vaccination strategies aimed at mimicking the bNAb maturation pathways in HIV-infected patients. Important clues can also be taken from the successful subunit vaccines against hepatitis B virus and human papillomavirus. Here, we review the different types of HIV-1 immunogens and vaccination strategies that are being explored in the search for an HIV-1 vaccine that induces bNAbs.

  4. Recombinant approaches to IgG-like bispecific antibodies

    Institute of Scientific and Technical Information of China (English)

    Jonathan S MARVIN; Zhenping ZHU

    2005-01-01

    One of the major obstacles in the development of bispecific antibodies (BsAb)has been the difficulty of producing the materials in sufficient quality and quantity by traditional technologies, such as the hybrid hybridoma and chemical conjugation methods. In contrast to the rapid and significant progress in the development of recombinant BsAb fragments (such as diabody and tandem single chain Fv), the successful design and production of full length IgG-like BsAb has been limited. Compared to smaller fragments, IgG-like BsAb have long serum halflife and are capable of supporting secondary immune functions, such as antibody-dependent cellular cytotoxicity and complement-mediated cytotoxicity. The development of IgG-like BsAb as therapeutic agents will depend heavily on our research progress in the design of recombinant BsAb constructs (or formats) and production efficiency. This review will focus on recent advances in various recombinant approaches to the engineering and production of IgG-like BsAb.

  5. HIV-1 resistance to neutralizing antibodies: Determination of antibody concentrations leading to escape mutant evolution.

    Science.gov (United States)

    Magnus, Carsten; Reh, Lucia; Trkola, Alexandra

    2016-06-15

    Broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) are considered vital components of novel therapeutics and blueprints for vaccine research. Yet escape to even the most potent of these antibodies is imminent in natural infection. Measures to define antibody efficacy and prevent mutant selection are thus urgently needed. Here, we derive a mathematical framework to predict the concentration ranges for which antibody escape variants can outcompete their viral ancestors, referred to as mutant selection window (MSW). When determining the MSW, we focus on the differential efficacy of neutralizing antibodies against HIV-1 in two canonical infection routes, free-virus infection and cell-cell transmission. The latter has proven highly effective in vitro suggesting its importance for both in vivo spread as well as for escaping targeted intervention strategies. We observed a range of MSW patterns that highlight the potential of mutants to arise in both transmission pathways and over wide concentration ranges. Most importantly, we found that only when the arising mutant has both, residual sensitivity to the neutralizing antibody and reduced infectivity compared to the parental virus, antibody dosing outside of the MSW to restrict mutant selection is possible. Emergence of mutants that provide complete escape and have no considerable fitness loss cannot be prevented by adjusting antibody doses. The latter may in part explain the ubiquitous resistance to neutralizing antibodies observed in natural infection and antibody treatment. Based on our findings, combinations of antibodies targeting different epitopes should be favored for antibody-based interventions as this may render complete resistance less likely to occur and also increase chances that multiple escapes result in severe fitness loss of the virus making longer-term antibody treatment more feasible.

  6. Studies on Purification of Methamidophos Monoclonal Antibodies and Comoarative Immunoactivity of Purified Antibodies

    Institute of Scientific and Technical Information of China (English)

    SU-QING ZHAO; YUAN-MING SUN; CHUN-YAN ZHANG; XIAO-YU HUANG; HOU-RUI ZHANG; ZHEN-YU ZHU

    2003-01-01

    Objective To purify Methamidophos (Met) monoclonal antibodies with two methods andcompare immune activity of purified antibodies. Method Caprylic acid ammonium sulphateprecipition (CAASP) method and Sepharose protein-A (SPA) affinity chromatography method wereused to purify Met monoclonal antibodies, UV spectrum scanning was used to determine proteincontent and recovery of purified antibodies, sodium dodecylsulphate polyacrylamide gelelectrophoresis (SDS-PAGE) was used to analyze the purity of purified antibodies, and enzyme-linkedimmunosorbent assay (ELISA) was used to determine immune activity of purified antibodies.Results Antibody protein content and recovery rate with CAASP method were 7.62 mg/mL and8.05% respectively, antibody protein content and recovery rate with SPA method were 6.45 mg/mLand 5.52% respectively. Purity of antibodies purified by SPA method was higher than that by CAASPmethod. The half-maximal inhibition concentration (IC50) of antibodies purified by SPA to Met was181.26 μg/mL, and the linear working range and the limit of quantification (LOD) were 2.43-3896.01μg/mL and 1.03 μg/mL, respectively. The IC50 of antibodies purified by CAASP to Met was 352.82μg/mL, and the linear working range and LOD were 10.91-11412.29 ug/mL and 3.42 μg/mL,respectively. Conclusion Antibodies purified by SPA method are better than those by CAASPmethod, and Met monoclonal antibodies purified by SPA method can be used to prepare gold-labelledtesting paper for analyzing Met residue in vegetable and drink water.

  7. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1992-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are critically assessed and evaluated.

  8. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1991-01-01

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  9. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1991-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  10. Immunocytochemical and Immunohistochemical Staining with Peptide Antibodies.

    Science.gov (United States)

    Friis, Tina; Pedersen, Klaus Boberg; Hougaard, David; Houen, Gunnar

    2015-01-01

    Peptide antibodies are particularly useful for immunocytochemistry (ICC) and immunohistochemistry (IHC), where antigens may denature due to fixation of tissues and cells. Peptide antibodies can be made to any defined sequence, including unknown putative proteins and posttranslationally modified sequences. Moreover, the availability of large amounts of the antigen (peptide) allows inhibition/adsorption controls, which are important in ICC/IHC, due to the many possibilities for false-positive reactions caused by immunoglobulin Fc receptors, nonspecific reactions, and cross-reactivity of primary and secondary antibodies with other antigens and endogenous immunoglobulins, respectively. Here, simple protocols for ICC and IHC are described together with recommendations for appropriate controls.

  11. Preparation, Characterization, and Application of Antiharpinxoo Antibody

    Institute of Scientific and Technical Information of China (English)

    SHAO Min; LI Ming; PAN Xiao-mei; WANG Jin-sheng

    2006-01-01

    Polyclonal antiharpinxoo rabbit antibody has been prepared successfully using purified harpinxoo protein as an immunogen.The ELISA titer of the antiserum against harpinxoo was about 1:2 000. Western blot analysis showed that the antiserum could bind to the expression harpinxoo protein in particular. hrf1, encoding harpinxoo, is an expression in transgenic rice,detected by antiharpinxoo rabbit antibody. The rabbit antibody against harpinxoo can be used to study further about the biological function, harpinxoo localization, and hrf1 gene expression in other plants.

  12. Uses of monoclonial antibody 8H9

    Science.gov (United States)

    Cheung, Nai-Kong V.

    2015-06-23

    This invention provides an antibody that binds the same antigen as that of monoclonal antibody 8H9, wherein the heavy chain CDR (Complementary Determining Region)1 comprises NYDIN, heavy chain CDR2 comprises WIFPGDGSTQY, heavy chain CDR3 comprises QTTATWFAY, and the light chain CDR1 comprises RASQSISDYLH, light chain CDR2 comprises YASQSIS, and light chain CDR3 comprises QNGHSFPLT. In another embodiment, there is provided a polypeptide that binds the same antigen as that of monoclonal antibody 8H9, wherein the polypeptide comprises NYDIN, WIFPGDGSTQY, QTTATWFAY, RASQSISDYLH, YASQSIS, and QNGHSFPLT.

  13. Advances in recombinant antibody manufacturing.

    Science.gov (United States)

    Kunert, Renate; Reinhart, David

    2016-04-01

    Since the first use of Chinese hamster ovary (CHO) cells for recombinant protein expression, production processes have steadily improved through numerous advances. In this review, we have highlighted several key milestones that have contributed to the success of CHO cells from the beginning of their use for monoclonal antibody (mAb) expression until today. The main factors influencing the yield of a production process are the time to accumulate a desired amount of biomass, the process duration, and the specific productivity. By comparing maximum cell densities and specific growth rates of various expression systems, we have emphasized the limiting parameters of different cellular systems and comprehensively described scientific approaches and techniques to improve host cell lines. Besides the quantitative evaluation of current systems, the quality-determining properties of a host cell line, namely post-translational modifications, were analyzed and compared to naturally occurring polyclonal immunoglobulin fractions from human plasma. In summary, numerous different expression systems for mAbs are available and also under scientific investigation. However, CHO cells are the most frequently investigated cell lines and remain the workhorse for mAb production until today.

  14. Patient-Derived Antibody Targets Tumor Cells

    Science.gov (United States)

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  15. Synthesis of bifunctional antibodies for immunoassays.

    Science.gov (United States)

    DeSilva, B S; Wilson, G S

    2000-09-01

    The synthesis of bifunctional antibodies using the principle of solid-phase synthesis is described. Two Fab' fragments were chemically linked together via a bismaleimide crosslinking reagent. The F(ab')(2) fragments from intact immunoglobulin G (IgG) were prepared using an immobilized pepsin column. Goat, mouse, and human antibodies were digested completely within 4 h. The F(ab')(2) fragments thus produced did not contain any IgG impurities. Fab' fragments were produced by reducing the heavy interchain disulfide bonds using 2-mercaptoethylamine. Use of the solid-phase reactor in the preparation of the bifunctional antibodies eliminated many of the time-consuming separation steps between the fragmentation and conjugation steps. This procedure facilitates the automation of bifunctional antibody preparation and the rapid optimization of reaction conditions.

  16. Solid phase synthesis of bifunctional antibodies.

    Science.gov (United States)

    DeSilva, B S; Wilson, G S

    1995-12-15

    Bifunctional antibodies were prepared using the principle of solid-phase synthesis. The two Fab' fragments were chemically linked together via a bismaleimide crosslinking reagent. The F(ab')2 fragments from intact IgG were prepared using an immobilized pepsin column. Goat, mouse and human antibodies were digested completely within 4 h. The F(ab')2 fragments thus produced did not contain any IgG impurities. The Fab' fragments were produced by reducing the inter-heavy chain disulfide bonds using 2-mercaptoethylamine. The use of the solid-phase reactor in the preparation of the bifunctional antibodies eliminated many of the time-consuming separation steps between the fragmentation and conjugation steps. This procedure facilitates the automation of the bifunctional antibody preparation and the rapid optimization of reaction conditions.

  17. Characterization of methylsulfinylalkyl glucosinolate specific polyclonal antibodies

    DEFF Research Database (Denmark)

    Mirza, Nadia Muhammad Akram; Schulz, Alexander; Halkier, Barbara Ann

    2016-01-01

    Antibodies towards small molecules, like plant specialized metabolites, are valuable tools for developing quantitative and qualitative analytical techniques. Glucosinolates are the specialized metabolites characteristic of the Brassicales order. Here we describe the characterization of polyclonal...... rabbit antibodies raised against the 4-methylsulfinylbutyl glucosinolate, glucoraphanin that is one of the major glucosinolates in the model plant Arabidopsis thaliana (hereafter Arabidopsis). Analysis of the cross-reactivity of the antibodies against a number of glucosinolates demonstrated...... that it was highly selective for methionine-derived aliphatic glucosinolates with a methyl-sulfinyl group in the side chain. Use of crude plant extracts from Arabidopsis mutants with different glucosinolate profiles showed that the antibodies recognized aliphatic glucosinolates in a plant extract and did not cross...

  18. Software engineering as an engineering discipline

    Science.gov (United States)

    Freedman, Glenn B.

    1988-01-01

    The purpose of this panel is to explore the emerging field of software engineering from a variety of perspectives: university programs; industry training and definition; government development; and technology transfer. In doing this, the panel will address the issues of distinctions among software engineering, computer science, and computer hardware engineering as they relate to the challenges of large, complex systems.

  19. Engineering Encounters: Blasting off with Engineering

    Science.gov (United States)

    Dare, Emily A.; Childs, Gregory T.; Cannaday, E. Ashley; Roehrig, Gillian H

    2014-01-01

    What better way to engage young students in physical science concepts than to have them engineer flying toy rockets? The integration of engineering into science classrooms is advocated by the "Next Generation Science Standards" (NGSS) and researchers alike (Brophy et al. 2008), as engineering provides: (1) A "real-world…

  20. Environmental Engineering in Mining Engineering Education

    Science.gov (United States)

    Mahamud-Lopez, Manuel Maria; Menendez-Aguado, Juan Maria

    2005-01-01

    In this paper, the current profile of the environmental engineer and the programming of the subject "Environmental Engineering and Technology" corresponding to the studies of Mining Engineering at the University of Oviedo in Spain, is discussed. Professional profile, student knowledge prior to and following instruction as well as…

  1. Modular Engineering Concept at Novo Nordisk Engineering

    DEFF Research Database (Denmark)

    Moelgaard, Gert; Miller, Thomas Dedenroth

    1997-01-01

    This report describes the concept of a new engineering method at Novo Nordisk Engineering: Modular Engineering (ME). Three tools are designed to support project phases with different levels of detailing and abstraction. ME supports a standard, cross-functional breakdown of projects that facilitates...

  2. Primary Antiphospholipid Antibody Syndrome: A Case Report.

    Science.gov (United States)

    Kadeli, Deepak K; Hanjagi, Siddaraya Y

    2015-10-01

    Primary Antiphospholipid antibody syndrome is a rare disease associated with thromboembolic events which may affect either the arterial or the venous vasculature. It presents with an increased risk of thrombosis in pregnant woman leading to repeated fetal losses. We present here a case of primary antiphospholipid antibody syndrome in young women who had previous event of gangrene of toes leading to their amputation and repeated fetal losses.

  3. Neutralizing antibodies to Haemophilus ducreyi cytotoxin.

    OpenAIRE

    Lagergård, T; Purvén, M

    1993-01-01

    Neutralizing antibodies against cytotoxin produced by Haemophilus ducreyi bacteria were studied in rabbits by an assay employing HEp-2 cells and diluted crude cytotoxin preparations from the organism. Antisera to 12 different H. ducreyi strains were prepared by immunization of rabbits with bacterial sonicates combined with Freund's adjuvant. The antibody response during infection with H. ducreyi was studied in two groups of rabbits which were infected with five live strains by either single o...

  4. Mepanipyrim haptens and antibodies with nanomolar affinity

    OpenAIRE

    Esteve Turrillas, Francesc Albert; Mercader Badia, Josep Vicent; Agulló, Consuelo; Abad Somovilla, Antonio; Abad Fuentes, Antonio

    2013-01-01

    Mepanipyrim is an anilinopyrimidine fungicide used worldwide for crop protection. With the aim of developing useful immunoreagents for mepanipyrim immunoanalysis, two new functionalized derivatives were prepared and antibodies were generated. Affinity and specificity were assessed by direct and indirect competitive ELISA using homologous and heterologous conjugates. Although all antibodies were selective for the target analyte, the immunizing hapten structure was revealed as a determinant for...

  5. Autoimmune encephalitis: Clinical diagnosis versus antibody confirmation

    Directory of Open Access Journals (Sweden)

    Asha Caroline Cyril

    2015-01-01

    Full Text Available Context: Autoimmune encephalitis is a heterogeneous disorder which is being diagnosed with increasing frequency. The diagnosis of these disorders is based on the detection of autoantibodies and characteristic clinical profiles. Aims: We aimed to study the antibody profile in encephalitis patients with suspected autoimmune etiology presenting to a tertiary care center. Settings and Design: The subjects were selected by screening all patients with clinical profile suggesting autoimmune encephalitis admitted in the neuromedical intensive care unit (ICU of a tertiary care center in South India. Materials and Methods: Patients who fulfilled modified Zuliani et al.′s, criteria for autoimmune encephalitis were identified during the period December 2009-June 2013. Blood samples from these subjects were screened for six neuronal antibodies. Statistical analysis used: Chi-square test was applied to compare the antibody positive and negative patients. Results: Out of 1,227 patients screened, 39 subjects (14 males: 25 females were identified with a mean age of 15.95 years and 19 cases were assessed in the acute and 20 in the convalescent phase of the illness. Seizure (87.8 % was the most common presenting symptom; status epilepticus occurred in 23 (60.5% patients during the course of the illness. Fourteen (35.9% patients were N-methyl-D-aspartate receptor (NMDAR antibody-positive and all were negative for the other antibodies tested. Conclusions: One-third of patients presenting with acute noninfective encephalitis would be positive for NMDAR antibodies with the remaining two-thirds with clinically suspected autoimmune encephalitis being antibody-negative. There are few markers in the clinical and investigative profiles to distinguish antibody-positive and -negative patients.

  6. Structure and specificity of lamprey monoclonal antibodies

    OpenAIRE

    Herrin, Brantley R.; Alder, Matthew N; Roux, Kenneth H.; Sina, Christina; Ehrhardt, Götz R. A.; Boydston, Jeremy A.; Turnbough, Charles L.; Cooper, Max D.

    2008-01-01

    Adaptive immunity in jawless vertebrates (lamprey and hagfish) is mediated by lymphocytes that undergo combinatorial assembly of leucine-rich repeat (LRR) gene segments to create a diverse repertoire of variable lymphocyte receptor (VLR) genes. Immunization with particulate antigens induces VLR-B-bearing lymphocytes to secrete antigen-specific VLR-B antibodies. Here, we describe the production of recombinant VLR-B antibodies specific for BclA, a major coat protein of Bacillus anthracis spores...

  7. Therapeutic monoclonal antibody for Sporotrichosis

    Directory of Open Access Journals (Sweden)

    Sandro eAlmeida

    2012-11-01

    Full Text Available Sporotrichosis is a chronic subcutaneous mycosis that affects either humans or animals and occurs worldwide. This subcutaneous mycosis had been attributed to a single etiological agent, Sporothrix schenckii. S. schenckii exhibits a considerable genetic variability, where recently, was suggesting that this taxon consists of a complex of species. Sporotrichosis is caused by traumatic inoculation of the fungus, which is a ubiquitous environmental saprophyte that can be isolated from soil and plant debris. The infection is limited to the cutaneous forms but, recently, occurrences of more severe clinical forms of this mycosis were described, especially among immunocompromized individuals. The immunological mechanisms involved in prevention and control of sporotrichosis are still not very well understood. Some works suggest that cell-mediated immunity plays an important role in protecting the host against S. schenckii. In contrast, the role of the humoral immune response in protection against this fungus have not been studied in detail. In a previous study, we showed that antigens secreted by S. schenckii induce a specific humoral response in infected animals, mainly against the 70-kDa molecules, indicating a possible participation of specific antibodies to this molecule in infection control. In an other work of the our group, we produced a mAb against a 70-kDa glycoprotein of S. schenckii in order to better understand the effect of passive immunization of mice infected with S. schenckii. Results showed a significant reduction in the number of CFU in organs of mice when the mAb was injected before and during S. schenckii infection. Similar results were observed when T-cell deficient mice were used. Drugs of choice in the treatment of sporothrichosis require long periods and frequently relapses are observed, mainly in immunocompromized patients. The strong protection induced by mAb against a 70-kDa glycoprotein makes it a strong candidate for a

  8. erbB2 is required for G protein-coupled receptor signaling in the heart

    OpenAIRE

    Negro, Alejandra; Brar, Bhawanjit K.; Gu, Yusu; Peterson, Kirk L.; Vale, Wylie; Lee, Kuo-Fen

    2006-01-01

    erbB2/Her2, a ligandless receptor kinase, has pleiotropic effects on mammalian development and human disease. The absence of erbB2 signaling in cardiac myocytes results in dilated cardiomyopathy in mice, resembling the cardiotoxic effects observed in a subset of breast cancer patients treated with the anti-Her2 antibody herceptin. Emerging evidence suggests that erbB2 is pivotal for integrating signaling networks involving multiple classes of extracellular signals. However, its role in G prot...

  9. Contemporary engineering economics

    CERN Document Server

    Park, Chan S

    2011-01-01

    Contemporary Engineering Economics, 5/e, is intended for undergraduate engineering students taking introductory engineering economics while appealing to the full range of engineering disciplines for which this course is often required: industrial, civil, mechanical, electrical, computer, aerospace, chemical, and manufacturing engineering, as well as engineering technology. This edition has been thoroughly revised and updated while continuing to adopt a contemporary approach to the subject, and teaching, of engineering economics. This text aims not only to build a sound and comprehensive coverage of engineering economics, but also to address key educational challenges, such as student difficulty in developing the analytical skills required to make informed financial decisions.

  10. Advanced Metasearch Engine Technology

    CERN Document Server

    Meng, Weiyi

    2010-01-01

    Among the search tools currently on the Web, search engines are the most well known thanks to the popularity of major search engines such as Google and Yahoo!. While extremely successful, these major search engines do have serious limitations. This book introduces large-scale metasearch engine technology, which has the potential to overcome the limitations of the major search engines. Essentially, a metasearch engine is a search system that supports unified access to multiple existing search engines by passing the queries it receives to its component search engines and aggregating the returned

  11. Engine Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Air Force Arnold Engineering Development Center's Engine Test Facility (ETF) test cells are used for development and evaluation testing of propulsion systems for...

  12. IMPORTANCE OF RESEARCH HLA ANTIBODIES CLASS I AND II, AND MICA ANTIBODIES IN KIDNEY TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    M. Sh. Khubutia

    2011-01-01

    Full Text Available The purpose of this study was to investigate the occurrence of HLA and MICA antibodies in patients from the waiting list for kidney transplantation and their influence on the course of post-transplant period. Determination of HLA antibodies class I and II, and MICA antibodies was performed on a platform of Luminex (xMAP-tech- nology using sets LABScreen ONE LAMBDA (U.S.. A total of 156 patients from the waiting list for kidney transplantation. Revealed the presence of HLA and MICA antibodies in the serum of 31.4% of patients. Regraf- ted patients increased the content of antibodies to the antigens of HLA system was noted in 88.2% of cases, 47% met the combination of antibodies to the I, II classes and MICA. In patients awaiting first kidney transplantation, HLA and MICA antibodies were determined in 23.7% of cases. The presence of pretransplant HLA and MICA antibodies had a significant influence on the course of post-transplant period. Patients with the presence of HLA and MICA in 50% of cases delayed graft function. Sessions of plasmapheresis can reduce the concentration of HLA and MICA antibodies on average by 61.1%. 

  13. Construction of human antibody gene libraries and selection of antibodies by phage display.

    Science.gov (United States)

    Frenzel, André; Kügler, Jonas; Wilke, Sonja; Schirrmann, Thomas; Hust, Michael

    2014-01-01

    Antibody phage display is the most commonly used in vitro selection technology and has yielded thousands of useful antibodies for research, diagnostics, and therapy.The prerequisite for successful generation and development of human recombinant antibodies using phage display is the construction of a high-quality antibody gene library. Here, we describe the methods for the construction of human immune and naive scFv gene libraries.The success also depends on the panning strategy for the selection of binders from these libraries. In this article, we describe a panning strategy that is high-throughput compatible and allows parallel selection in microtiter plates.

  14. Generation of HER2 monoclonal antibodies using epitopes of a rabbit polyclonal antibody.

    Science.gov (United States)

    Hu, Francis Jingxin; Uhlen, Mathias; Rockberg, Johan

    2014-01-25

    One of the issues in using polyclonal antibodies is the limited amount of reagent available from an immunisation, leading to batch-to-batch variation and difficulties in obtaining the same antibody performance when the same antigen is re-immunised into several separate animals. This led to the development of hybridoma technology allowing, at least theoretically, for an unlimited production of a specific binder. Nevertheless, polyclonal antibodies are widely used in research and diagnostics and there exists a need for robust methods to convert a polyclonal antibody with good binding performance into a renewable monoclonal with identical or similar binding specificity. Here we have used precise information regarding the functional recognition sequence (epitope) of a rabbit polyclonal antibody with attractive binding characteristics as the basis for generation of a renewable mouse monoclonal antibody. First, the original protein fragment antigen was used for immunisation and generation of mouse hybridoma, without obtaining binders to the same epitope region. Instead a peptide designed using the functional epitope and structural information was synthesised and used for hybridoma production. Several of the monoclonal antibodies generated were found to have similar binding characteristics to those of the original polyclonal antibody. These monoclonal antibodies detected native HER2 on cell lines and were also able to stain HER2 in immunohistochemistry using xenografted mice, as well as human normal and cancer tissues.

  15. Standardization of anti-DNA antibody assays.

    Science.gov (United States)

    Pisetsky, David S

    2013-07-01

    Antibodies to DNA (anti-DNA) are the serological hallmark of systemic lupus erythematosus and represent important biomarkers for clinical and research purposes. These antibodies are part of a family of antibodies to nucleosomes and bind to conserved sites widely present on DNA. While the value of anti-DNA as a biomarker is well established, the assay for these antibodies has involved a variety of DNA sources and systems to detect DNA-anti-DNA interactions. The influence of these variations on antibody detection has complicated assay standardization. As an antigen, DNA has unique features since it is a highly charged polymer that has structural heterogeneity. This heterogeneity can affect antigenicity which can vary on the basis of DNA origin, size, conformation and mobility. In addition, as a polymer, DNA can promote patterns of antibody binding based on monogamous or bivalent interaction which require an extended polynucleotide structure. Understanding the nature of DNA as an antigen can facilitate interpretation of serological tests and underpin efforts at better standardization.

  16. Discovery of functional antibodies targeting ion channels.

    Science.gov (United States)

    Wilkinson, Trevor C I; Gardener, Matthew J; Williams, Wendy A

    2015-04-01

    Ion channels play critical roles in physiology and disease by modulation of cellular functions such as electrical excitability, secretion, cell migration, and gene transcription. Ion channels represent an important target class for drug discovery that has been largely addressed, to date, using small-molecule approaches. A significant opportunity exists to target these channels with antibodies and alternative formats of biologics. Antibodies display high specificity and affinity for their target antigen, and they have the potential to target ion channels very selectively. Nevertheless, isolating antibodies to this target class is challenging due to the difficulties in expression and purification of ion channels in a format suitable for antibody drug discovery in addition to the complexity of screening for function. In this article, we will review the current state of ion channel biologics discovery and the progress that has been made. We will also highlight the challenges in isolating functional antibodies to these targets and how these challenges may be addressed. Finally, we also illustrate successful approaches to isolating functional monoclonal antibodies targeting ion channels by way of a number of case studies drawn from recent publications.

  17. Antiphospholipid Antibody Syndrome Presenting with Unilateral Adrenal Hemmorhage.

    Science.gov (United States)

    Ullah, Kifayat; Butt, Ghias; Neopane, Sippy; Arshi, Shahana

    2016-06-01

    The antiphospholipid antibody syndrome presents with vascular thrombosis which involve both arterial and venous systems. The clinical presentation of antiphospholipid antibody syndrome includes obstetric complications leading to recurrent abortions, presence of circulating antibodies against phospholipids, and multi-organ thromboembolisms. We report a case of a patient who presented with unilateral adrenal hemorrhage and subsequently found to have antiphospholipid antibody syndrome and lupus nephritis.

  18. Avian Diagnostic and Therapeutic Antibodies to Viral Emerging Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    David Bradley

    2011-03-31

    During the current period the following key objectives were achieved: demonstration of high titer antibody production by geese following immunization with inactived H1N1 virus; completion of the epitope mapping of West Nile Virus-specific goose antibodies and initiation of epitope mapping of H1N1 flu-specific goose antibodies; advancement in scalable purification of goose antibodies.

  19. Using Collaborative Engineering to Inform Collaboration Engineering

    Science.gov (United States)

    Cooper, Lynne P.

    2012-01-01

    Collaboration is a critical competency for modern organizations as they struggle to compete in an increasingly complex, global environment. A large body of research on collaboration in the workplace focuses both on teams, investigating how groups use teamwork to perform their task work, and on the use of information systems to support team processes ("collaboration engineering"). This research essay presents collaboration from an engineering perspective ("collaborative engineering"). It uses examples from professional and student engineering teams to illustrate key differences in collaborative versus collaboration engineering and investigates how challenges in the former can inform opportunities for the latter.

  20. Genome scale engineering techniques for metabolic engineering.

    Science.gov (United States)

    Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T

    2015-11-01

    Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications.

  1. Identification and multidimensional optimization of an asymmetric bispecific IgG antibody mimicking the function of factor VIII cofactor activity.

    Directory of Open Access Journals (Sweden)

    Zenjiro Sampei

    Full Text Available In hemophilia A, routine prophylaxis with exogenous factor VIII (FVIII requires frequent intravenous injections and can lead to the development of anti-FVIII alloantibodies (FVIII inhibitors. To overcome these drawbacks, we screened asymmetric bispecific IgG antibodies to factor IXa (FIXa and factor X (FX, mimicking the FVIII cofactor function. Since the therapeutic potential of the lead bispecific antibody was marginal, FVIII-mimetic activity was improved by modifying its binding properties to FIXa and FX, and the pharmacokinetics was improved by engineering the charge properties of the variable region. Difficulties in manufacturing the bispecific antibody were overcome by identifying a common light chain for the anti-FIXa and anti-FX heavy chains through framework/complementarity determining region shuffling, and by pI engineering of the two heavy chains to facilitate ion exchange chromatographic purification of the bispecific antibody from the mixture of byproducts. Engineering to overcome low solubility and deamidation was also performed. The multidimensionally optimized bispecific antibody hBS910 exhibited potent FVIII-mimetic activity in human FVIII-deficient plasma, and had a half-life of 3 weeks and high subcutaneous bioavailability in cynomolgus monkeys. Importantly, the activity of hBS910 was not affected by FVIII inhibitors, while anti-hBS910 antibodies did not inhibit FVIII activity, allowing the use of hBS910 without considering the development or presence of FVIII inhibitors. Furthermore, hBS910 could be purified on a large manufacturing scale and formulated into a subcutaneously injectable liquid formulation for clinical use. These features of hBS910 enable routine prophylaxis by subcutaneous delivery at a long dosing interval without considering the development or presence of FVIII inhibitors. We expect that hBS910 (investigational drug name: ACE910 will provide significant benefit for severe hemophilia A patients.

  2. Functional characterization of an scFv-Fc antibody that immunotherapeutically targets the common cancer cell surface proteoglycan CSPG4.

    Science.gov (United States)

    Wang, Xinhui; Katayama, Akihiro; Wang, Yangyang; Yu, Ling; Favoino, Elvira; Sakakura, Koichi; Favole, Alessandra; Tsuchikawa, Takahiro; Silver, Susan; Watkins, Simon C; Kageshita, Toshiro; Ferrone, Soldano

    2011-12-15

    Cell surface chondroitin sulfate proteoglycan 4 (CSPG4) is an attractive target for antibody-based cancer immunotherapy because of its role in tumor cell biology, its high expression on malignant cells including cancer-initiating cells, and its restricted distribution in normal tissues. The clinical use of CSPG4 has been hampered by the lack of a CSPG4-specific chimeric, humanized, or fully human monoclonal antibody. To overcome this limitation, we generated a CSPG4-specific fully human single-chain antibody termed scFv-FcC21 and characterized its specificity and antitumor activity. Viable CSPG4(+) melanoma cells were used in a screen of a human scFv phage display library that included CDR3 engineered to optimize antibody binding sites. The scFv antibody isolated was then recombinantly engineered with a human immunoglobulin G1 Fc region to construct the fully human antibody scFv-FcC21, which recognized tumors of neuroectodermal origin, various types of carcinomas, mesotheliomas, and sarcomas as well as myeloid leukemias. scFv-FcC21 inhibited in vitro growth and migration of tumor cells and in vivo growth of human tumor xenografts. These effects were mediated by inhibition of the activation of extracellular signal-regulated kinase and focal adhesion kinase signaling pathways that are critical for tumor cell growth and migration, respectively. Our findings define the CSPG4-specific fully human scFv-FcC21 antibody as a candidate therapeutic agent to target the many types of tumors that express CSPG4.

  3. Genetic code expansion for multiprotein complex engineering.

    Science.gov (United States)

    Koehler, Christine; Sauter, Paul F; Wawryszyn, Mirella; Girona, Gemma Estrada; Gupta, Kapil; Landry, Jonathan J M; Fritz, Markus Hsi-Yang; Radic, Ksenija; Hoffmann, Jan-Erik; Chen, Zhuo A; Zou, Juan; Tan, Piau Siong; Galik, Bence; Junttila, Sini; Stolt-Bergner, Peggy; Pruneri, Giancarlo; Gyenesei, Attila; Schultz, Carsten; Biskup, Moritz Bosse; Besir, Hueseyin; Benes, Vladimir; Rappsilber, Juri; Jechlinger, Martin; Korbel, Jan O; Berger, Imre; Braese, Stefan; Lemke, Edward A

    2016-12-01

    We present a baculovirus-based protein engineering method that enables site-specific introduction of unique functionalities in a eukaryotic protein complex recombinantly produced in insect cells. We demonstrate the versatility of this efficient and robust protein production platform, 'MultiBacTAG', (i) for the fluorescent labeling of target proteins and biologics using click chemistries, (ii) for glycoengineering of antibodies, and (iii) for structure-function studies of novel eukaryotic complexes using single-molecule Förster resonance energy transfer as well as site-specific crosslinking strategies.

  4. Cross-reactive broadly neutralizing antibodies: timing is everything

    OpenAIRE

    Euler, Zelda; Schuitemaker, Hanneke

    2012-01-01

    The recent surge of research into new broadly neutralizing antibodies in HIV-1 infection has recharged the field of HIV-1 vaccinology. In this review we discuss the currently known broadly neutralizing antibodies and focus on factors that may shape these antibodies in natural infection. We further discuss the role of these antibodies in the clinical course of the infection and consider immunological obstacles in inducing broadly neutralizing antibodies with a vaccine.

  5. Cross-reactive broadly neutralizing antibodies: timing is everything.

    Science.gov (United States)

    Euler, Zelda; Schuitemaker, Hanneke

    2012-01-01

    The recent surge of research into new broadly neutralizing antibodies in HIV-1 infection has recharged the field of HIV-1 vaccinology. In this review we discuss the currently known broadly neutralizing antibodies and focus on factors that may shape these antibodies in natural infection. We further discuss the role of these antibodies in the clinical course of the infection and consider immunological obstacles in inducing broadly neutralizing antibodies with a vaccine.

  6. Relevance of anti-myelin antibodies in Multiple Sclerosis

    OpenAIRE

    2005-01-01

    Antibodies directed against myelin antigens have been described in multiple sclerosis (MS). Although anti-myelin antibodies have been implicated in central nervous system (CNS) demyelination, it is unclear to what extent anti-myelin antibodies contribute to MS pathogenesis. In this dissertation, the role of antibodies in MS and in the animal model experimental allergic encephalomyelitis (EAE) is addressed in eight chapters: Chapter 1: A review on antibodies, complement and Fc receptors in MS ...

  7. Plant pharming of a full-sized, tumour-targeting antibody using different expression strategies.

    Science.gov (United States)

    Villani, Maria Elena; Morgun, Bogdan; Brunetti, Patrizia; Marusic, Carla; Lombardi, Raffaele; Pisoni, Ivan; Bacci, Camilla; Desiderio, Angiola; Benvenuto, Eugenio; Donini, Marcello

    2009-01-01

    The aims of this work were to obtain a human antibody against the tumour-associated antigen tenascin-C (TNC) and to compare the yield and quality of plant-produced antibody in either stable transgenics or using a transient expression system. To this end, the characterization of a full-sized human immunoglobulin G (IgG) [monoclonal antibody H10 (mAb H10)], derived from a selected single-chain variable fragment (scFv) and produced in plants, is presented. The human mAb gene was engineered for plant expression, and Nicotiana tabacum transgenic lines expressing both heavy (HC) and light (LC) chain were obtained and evaluated for antibody expression levels, in vivo assembly and functionality. Affinity-purified H10 from transgenics (yield, 0.6-1.1 mg/kg fresh weight) revealed that more than 90% of HC was specifically degraded, leading to the formation of functional antigen-binding fragments (Fab). Consequently, H10 was transiently expressed in Nicotiana benthamiana plants through an Agrobacterium-mediated gene-transfer system. Moreover, the use of the p19 silencing suppressor gene from artichoke mottled crinkle virus raised antibody expression levels by an order of magnitude (yields of purified H10, 50-100 mg/kg fresh weight). Approximately 75% of purified protein consisted of full-sized antibody functionally binding to TNC (K(D) = 14 nm), and immunohistochemical analysis on tumour tissues revealed specific accumulation around tumour blood vessels. The data indicate that the purification yields of mAb H10, using a transient expression system boosted by the p19 silencing suppressor, are exceptionally high when compared with the results reported previously, providing a technique for the over-expression of anticancer mAbs by a rapid, cost-effective, molecular farming approach.

  8. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice.

    Science.gov (United States)

    Murphy, Andrew J; Macdonald, Lynn E; Stevens, Sean; Karow, Margaret; Dore, Anthony T; Pobursky, Kevin; Huang, Tammy T; Poueymirou, William T; Esau, Lakeisha; Meola, Melissa; Mikulka, Warren; Krueger, Pamela; Fairhurst, Jeanette; Valenzuela, David M; Papadopoulos, Nicholas; Yancopoulos, George D

    2014-04-01

    Mice genetically engineered to be humanized for their Ig genes allow for human antibody responses within a mouse background (HumAb mice), providing a valuable platform for the generation of fully human therapeutic antibodies. Unfortunately, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which their genetic humanization was carried out. Heretofore, HumAb mice have been generated by disrupting the endogenous mouse Ig genes and simultaneously introducing human Ig transgenes at a different and random location; KO-plus-transgenic humanization. As we describe in the companion paper, we attempted to make mice that more efficiently use human variable region segments in their humoral responses by precisely replacing 6 Mb of mouse Ig heavy and kappa light variable region germ-line gene segments with their human counterparts while leaving the mouse constant regions intact, using a unique in situ humanization approach. We reasoned the introduced human variable region gene segments would function indistinguishably in their new genetic location, whereas the retained mouse constant regions would allow for optimal interactions and selection of the resulting antibodies within the mouse environment. We show that these mice, termed VelocImmune mice because they were generated using VelociGene technology, efficiently produce human:mouse hybrid antibodies (that are rapidly convertible to fully human antibodies) and have fully functional humoral immune systems indistinguishable from those of WT mice. The efficiency of the VelocImmune approach is confirmed by the rapid progression of 10 different fully human antibodies into human clinical trials.

  9. Prediction of site-specific interactions in antibody-antigen complexes: the proABC method and server.

    KAUST Repository

    Olimpieri, Pier Paolo

    2013-06-26

    MOTIVATION: Antibodies or immunoglobulins are proteins of paramount importance in the immune system. They are extremely relevant as diagnostic, biotechnological and therapeutic tools. Their modular structure makes it easy to re-engineer them for specific purposes. Short of undergoing a trial and error process, these experiments, as well as others, need to rely on an understanding of the specific determinants of the antibody binding mode. RESULTS: In this article, we present a method to identify, on the basis of the antibody sequence alone, which residues of an antibody directly interact with its cognate antigen. The method, based on the random forest automatic learning techniques, reaches a recall and specificity as high as 80% and is implemented as a free and easy-to-use server, named prediction of Antibody Contacts. We believe that it can be of great help in re-design experiments as well as a guide for molecular docking experiments. The results that we obtained also allowed us to dissect which features of the antibody sequence contribute most to the involvement of specific residues in binding to the antigen. AVAILABILITY: http://www.biocomputing.it/proABC. CONTACT: anna.tramontano@uniroma1.it or paolo.marcatili@gmail.com SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

  10. A broad set of different llama antibodies specific for a 16 kDa heat shock protein of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Anke K Trilling

    Full Text Available BACKGROUND: Recombinant antibodies are powerful tools in engineering of novel diagnostics. Due to the small size and stable nature of llama antibody domains selected antibodies can serve as a detection reagent in multiplexed and sensitive assays for M. tuberculosis. METHODOLOGY/PRINCIPAL FINDINGS: Antibodies for Mycobacterium tuberculosis (M. tb recognition were raised in Alpaca, and, by phage display, recombinant variable domains of heavy-chain antibodies (VHH binding to M. tuberculosis antigens were isolated. Two phage display selection strategies were followed: one direct selection using semi-purified protein antigen, and a depletion strategy with lysates, aiming to avoid cross-reaction to other mycobacteria. Both panning methods selected a set of binders with widely differing complementarity determining regions. Selected recombinant VHHs were produced in E. coli and shown to bind immobilized lysate in direct Enzymelinked Immunosorbent Assay (ELISA tests and soluble antigen by surface plasmon resonance (SPR analysis. All tested VHHs were specific for tuberculosis-causing mycobacteria (M. tuberculosis, M. bovis and exclusively recognized an immunodominant 16 kDa heat shock protein (hsp. The highest affinity VHH had a dissociation constant (KD of 4 × 10(-10 M. CONCLUSIONS/SIGNIFICANCE: A broad set of different llama antibodies specific for 16 kDa heat shock protein of M. tuberculosis is available. This protein is highly stable and abundant in M. tuberculosis. The VHH that detect this protein are applied in a robust SPR sensor for identification of tuberculosis-causing mycobacteria.

  11. Quantitative characterization of the mechanism of action and impact of a ‘proteolysis-permitting’ anti-PCSK9 antibody

    Science.gov (United States)

    Hansen, Ryan J.; Berna, Michael J.; Sperry, Andrea E.; Schroeder, Krista M.; Eacho, Patrick I.

    2017-01-01

    ABSTRACT A recent report described a novel mechanism of action for an anti-proprotein convertase subtilisin-kexin type 9 (PCSK9) monoclonal antibody (LY3015014, or LY), wherein the antibody has improved potency and duration of action due to the PCSK9 epitope for LY binding. Unlike other antibodies, proteolysis of PCSK9 can occur when LY is bound to PCSK9. We hypothesized that this allowance of PCSK9 cleavage potentially improves LY efficiency through two pathways, namely lack of accumulation of intact PCSK9 and reduced clearance of LY. A quantitative modeling approach is necessary to further understand this novel mechanism of action. We developed a mechanism-based model to characterize the relationship between antibody pharmacokinetics, PCSK9 and LDL cholesterol levels in animals, and used the model to better understand the underlying drivers for the improved efficiency of LY. Simulations suggested that the allowance of cleavage of PCSK9 resulting in a lack of accumulation of intact PCSK9 is the major driver of the improved potency and durability of LY. The modeling reveals that this novel ‘proteolysis-permitting’ mechanism of LY is a means by which an efficient antibody can be developed with a total antibody dosing rate that is lower than the target production rate. We expect this engineering approach may be applicable to other targets and that the mathematical models presented herein will be useful in evaluating similar approaches. PMID:27981884

  12. Quantitative characterization of the mechanism of action and impact of a 'proteolysis-permitting' anti-PCSK9 antibody.

    Science.gov (United States)

    Hansen, Ryan J; Berna, Michael J; Sperry, Andrea E; Beyer, Thomas P; Wroblewski, Victor J; Schroeder, Krista M; Eacho, Patrick I

    A recent report described a novel mechanism of action for an anti-proprotein convertase subtilisin-kexin type 9 (PCSK9) monoclonal antibody (LY3015014, or LY), wherein the antibody has improved potency and duration of action due to the PCSK9 epitope for LY binding. Unlike other antibodies, proteolysis of PCSK9 can occur when LY is bound to PCSK9. We hypothesized that this allowance of PCSK9 cleavage potentially improves LY efficiency through two pathways, namely lack of accumulation of intact PCSK9 and reduced clearance of LY. A quantitative modeling approach is necessary to further understand this novel mechanism of action. We developed a mechanism-based model to characterize the relationship between antibody pharmacokinetics, PCSK9 and LDL cholesterol levels in animals, and used the model to better understand the underlying drivers for the improved efficiency of LY. Simulations suggested that the allowance of cleavage of PCSK9 resulting in a lack of accumulation of intact PCSK9 is the major driver of the improved potency and durability of LY. The modeling reveals that this novel 'proteolysis-permitting' mechanism of LY is a means by which an efficient antibody can be developed with a total antibody dosing rate that is lower than the target production rate. We expect this engineering approach may be applicable to other targets and that the mathematical models presented herein will be useful in evaluating similar approaches.

  13. Higher cytotoxicity of divalent antibody-toxins than monovalent antibody-toxins

    Energy Technology Data Exchange (ETDEWEB)

    Won, JaeSeon; Nam, PilWon; Lee, YongChan [College of Life Sciences and Graduate School of Biotechnology, Korea University, 5-ga Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of); Choe, MuHyeon, E-mail: choemh@korea.ac.kr [College of Life Sciences and Graduate School of Biotechnology, Korea University, 5-ga Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of)

    2009-04-24

    Recombinant antibody-toxins are constructed via the fusion of a 'carcinoma-specific' antibody fragment to a toxin. Due to the high affinity and high selectivity of the antibody fragments, antibody-toxins can bind to surface antigens on cancer cells and kill them without harming normal cells [L.H. Pai, J.K. Batra, D.J. FitzGerald, M.C. Willingham, I. Pastan, Anti-tumor activities of immunotoxins made of monoclonal antibody B3 and various forms of Pseudomonas exotoxin, Proc. Natl. Acad. Sci. USA 88 (1991) 3358-3362]. In this study, we constructed the antibody-toxin, Fab-SWn-PE38, with SWn (n = 3, 6, 9) sequences containing n-time repeated (G{sub 4}S) between the Fab fragment and PE38 (38 kDa truncated form of Pseudomonas exotoxin A). The SWn sequence also harbored one cysteine residue that could form a disulfide bridge between two Fab-SWn-PE38 monomers. We assessed the cytotoxicity of the monovalent (Fab-SWn-PE38), and divalent ([Fab-SWn-PE38]{sub 2}) antibody-toxins. The cytotoxicity of the dimer against the CRL1739 cell line was approximately 18.8-fold higher than that of the monomer on the ng/ml scale, which was approximately 37.6-fold higher on the pM scale. These results strongly indicate that divalency provides higher cytotoxicity for an antibody-toxin.

  14. Presence of non-maternal antibodies in newborns of mothers with antibody deficiencies.

    NARCIS (Netherlands)

    M. Hahn-Zoric; B. Carlsson; J. Bjö rkander; A.D.M.E. Osterhaus (Albert); L. Mellander; L.A. Hanson

    1992-01-01

    textabstractTo explain the mechanism for induction and production of specific antibodies found in the newborn already at birth, without previous known exposure to the antigen, we chose a model that presumably excluded the possibility of specific antibodies being transferred from the mother to the fe

  15. A recombinant, fully human monoclonal antibody with antitumor activity constructed from phage-displayed antibody fragments

    NARCIS (Netherlands)

    Huls, GA; Heijnen, IAFM; Cuomo, ME; Koningsberger, JC; Boel, E; de Vries, ARV; Loyson, SAJ; Helfrich, W; Henegouwen, GPV; van Meijer, M; de Kruif, J; Logtenberg, T

    1999-01-01

    A single-chain Fv antibody fragment specific for the tumor-associated Ep-CAM molecule was isolated from a semisynthetic phage display library and converted into an intact, fully human IgG1 monoclonal antibody (huMab), The purified huMab had an affinity of 5 nM and effectively mediated tumor cell kil

  16. Discovery of diverse and functional antibodies from large human repertoire antibody libraries.

    Science.gov (United States)

    Schwimmer, Lauren J; Huang, Betty; Giang, Hoa; Cotter, Robyn L; Chemla-Vogel, David S; Dy, Francis V; Tam, Eric M; Zhang, Fangjiu; Toy, Pamela; Bohmann, David J; Watson, Susan R; Beaber, John W; Reddy, Nithin; Kuan, Hua-Feng; Bedinger, Daniel H; Rondon, Isaac J

    2013-05-31

    Phage display antibody libraries have a proven track record for the discovery of therapeutic human antibodies, increasing the demand for large and diverse phage antibody libraries for the discovery of new therapeutics. We have constructed naïve antibody phage display libraries in both Fab and scFv formats, with each library having more than 250 billion clones that encompass the human antibody repertoire. These libraries show high fidelity in open reading frame and expression percentages, and their V-gene family distribution, VH-CDR3 length and amino acid usage mirror the natural diversity of human antibodies. Both the Fab and scFv libraries show robust sequence diversity in target-specific binders and differential V-gene usage for each target tested, supporting the use of libraries that utilize multiple display formats and V-gene utilization to maximize antibody-binding diversity. For each of the targets, clones with picomolar affinities were identified from at least one of the libraries and for the two targets assessed for activity, functional antibodies were identified from both libraries.

  17. A study on associations between antiprothrombin antibodies, antiplasminogen antibodies and thrombosis

    NARCIS (Netherlands)

    Simmelink, MJA; De Groot, PG; Derksen, RHWM

    2003-01-01

    Anti-prothrombin antibodies area frequent cause of lupus anticoagulant (LAC), a thrombotic risk factor. Prothrombin shares structural homology with plasminogen, a kringle protein with an important role in fibrinolysis. Cross-reactivity between antiprothrombin antibodies and plasminogen has been desc

  18. The antibody mining toolbox: an open source tool for the rapid analysis of antibody repertoires.

    Science.gov (United States)

    D'Angelo, Sara; Glanville, Jacob; Ferrara, Fortunato; Naranjo, Leslie; Gleasner, Cheryl D; Shen, Xiaohong; Bradbury, Andrew R M; Kiss, Csaba

    2014-01-01

    In vitro selection has been an essential tool in the development of recombinant antibodies against various antigen targets. Deep sequencing has recently been gaining ground as an alternative and valuable method to analyze such antibody selections. The analysis provides a novel and extremely detailed view of selected antibody populations, and allows the identification of specific antibodies using only sequencing data, potentially eliminating the need for expensive and laborious low-throughput screening methods such as enzyme-linked immunosorbant assay. The high cost and the need for bioinformatics experts and powerful computer clusters, however, have limited the general use of deep sequencing in antibody selections. Here, we describe the AbMining ToolBox, an open source software package for the straightforward analysis of antibody libraries sequenced by the three main next generation sequencing platforms (454, Ion Torrent, MiSeq). The ToolBox is able to identify heavy chain CDR3s as effectively as more computationally intense software, and can be easily adapted to analyze other portions of antibody variable genes, as well as the selection outputs of libraries based on different scaffolds. The software runs on all common operating systems (Microsoft Windows, Mac OS X, Linux), on standard personal computers, and sequence analysis of 1-2 million reads can be accomplished in 10-15 min, a fraction of the time of competing software. Use of the ToolBox will allow the average researcher to incorporate deep sequence analysis into routine selections from antibody display libraries.

  19. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  20. Studying Engineering Practice

    DEFF Research Database (Denmark)

    Buch, Anders

    2015-01-01

    The study of engineering practices has been the focus of Engineering Studies over the last three decades. Theses studies have used ethnographic and grounded methods in order to investigate engineering practices as they unfold in natural settings - in workplaces and engineering education. However......, engineering studies have not given much attention to conceptually clarifying what should be understood by 'engineering practices' and more precisely account for the composition and organization of the entities and phenomena that make up the practices. This chapter investigates and discusses how a 'practice...... will draw out some methodological consequences and discuss the ramifications of a practice theoretical approach for Engineering Studies....

  1. Fostering Creative Engineers

    DEFF Research Database (Denmark)

    Zhou, Chunfang

    2012-01-01

    Recent studies have argued a shift of thinking about engineering practice from a linear conception to a system understanding. The complexity of engineering practice has been thought of as the root of challenges for engineers. Moreover, creativity has been emphasised as one key capability...... that engineering students should master. This paper aims to illustrate deeply why engineering education needs to foster creative students to face the challenges of complex engineering work. So a literature review will be provided by focusing on the necessity of developing creativity in engineering education....... As the literature demonstrates, this paper reveals the understanding of complexity in engineering practice and the roles of creativity in engineering practice. In addition, the barriers to creativity in current engineering education and some implications of pedagogic strategies will be discussed. So this paper...

  2. Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses.

    Science.gov (United States)

    Tay, Matthew Zirui; Liu, Pinghuang; Williams, LaTonya D; McRaven, Michael D; Sawant, Sheetal; Gurley, Thaddeus C; Xu, Thomas T; Dennison, S Moses; Liao, Hua-Xin; Chenine, Agnès-Laurence; Alam, S Munir; Moody, M Anthony; Hope, Thomas J; Haynes, Barton F; Tomaras, Georgia D

    2016-08-01

    Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine

  3. CHO-S antibody titers >1 gram/liter using flow electroporation-mediated transient gene expression followed by rapid migration to high-yield stable cell lines.

    Science.gov (United States)

    Steger, Krista; Brady, James; Wang, Weili; Duskin, Meg; Donato, Karen; Peshwa, Madhusudan

    2015-04-01

    In recent years, researchers have turned to transient gene expression (TGE) as an alternative to CHO stable cell line generation for early-stage antibody development. Despite advances in transfection methods and culture optimization, the majority of CHO-based TGE systems produce insufficient antibody titers for extensive use within biotherapeutic development pipelines. Flow electroporation using the MaxCyte STX Scalable Transfection System is a highly efficient, scalable means of CHO-based TGE for gram-level production of antibodies without the need for specialized expression vectors or genetically engineered CHO cell lines. CHO cell flow electroporation is easily scaled from milligram to multigram quantities without protocol reoptimization while maintaining transfection performance and antibody productivity. In this article, data are presented that demonstrate the reproducibility, scalability, and antibody production capabilities of CHO-based TGE using the MaxCyte STX. Data show optimization of posttransfection parameters such as cell density, media composition, and feed strategy that result in secreted antibody titers >1 g/L and production of multiple grams of antibody within 2 weeks of a single CHO-S cell transfection. In addition, data are presented to demonstrate the application of scalable electroporation for the rapid generation of high-yield stable CHO cell lines to bridge the gap between early- and late-stage antibody development activities.

  4. Monoclonal antibody disulfide reduction during manufacturing

    Science.gov (United States)

    Hutterer, Katariina M.; Hong, Robert W.; Lull, Jonathon; Zhao, Xiaoyang; Wang, Tian; Pei, Rex; Le, M. Eleanor; Borisov, Oleg; Piper, Rob; Liu, Yaoqing Diana; Petty, Krista; Apostol, Izydor; Flynn, Gregory C.

    2013-01-01

    Manufacturing-induced disulfide reduction has recently been reported for monoclonal human immunoglobulin gamma (IgG) antibodies, a widely used modality in the biopharmaceutical industry. This effect has been tied to components of the intracellular thioredoxin reduction system that are released upon cell breakage. Here, we describe the effect of process parameters and intrinsic molecule properties on the extent of reduction. Material taken from cell cultures at the end of production displayed large variations in the extent of antibody reduction between different products, including no reduction, when subjected to the same reduction-promoting harvest conditions. Additionally, in a reconstituted model in which process variables could be isolated from product properties, we found that antibody reduction was dependent on the cell line (clone) and cell culture process. A bench-scale model using a thioredoxin/thioredoxin reductase regeneration system revealed that reduction susceptibility depended on not only antibody class but also light chain type; the model further demonstrates that the trend in reducibility was identical to DTT reduction sensitivity following the order IgG1λ > IgG1κ > IgG2λ > IgG2κ. Thus, both product attributes and process parameters contribute to the extent of antibody reduction during production. PMID:23751615

  5. Recombinant shark natural antibodies to thyroglobulin.

    Science.gov (United States)

    Schluter, Samuel F; Jensen, Ingvill; Ramsland, Paul A; Marchalonis, John J

    2005-01-01

    As cartilaginous fish are the vertebrates most distal from man to produce antibodies, fundamental information regarding conservation and variation of the antigen binding site should be gained by comparing the properties of antibodies directed against the same antigen from the two species. Since monoclonal cell lines cannot be generated using shark B cells, we isolated antigen binding recombinant single chain Fv antibodies (scFv) comprising of the complete variable regions from shark light and heavy chains. Thyroglobulin was used as the selecting antigen as both sharks and humans express natural antibodies to mammalian thyroglobulin in the absence of purposeful immunization. We report that recombinant sandbar shark (Carcharhinus plumbeus) scFvs that bind bovine thyroglobulin consist of heavy chain variable regions (VH) homologous to those of the human VHIII subset and light chain variable regions (VL) homologous to those of the human Vlambda6 subgroup. The homology within the frameworks is sufficient to enable the building of three-dimensional models of the shark VH/VL structure using established human structures as templates. In natural antibodies of both species, the major variability lies in the third complementarity determining region (CDR3) of both VH and VL.

  6. Engine Cold Start

    Science.gov (United States)

    2015-09-01

    14. ABSTRACT These fuels were used for testing a GEP 6.5L turbocharged V-8 diesel engine operation in a cold box. This engine architecture is... engines . The U.S. military currently uses petroleum-based jet fuels in diesel engine -powered ground vehicles and is studying the use of alternative jet...to identify a window, or range, of cetane number which would be acceptable to ensure the reliable operation of diesel engine -powered military ground

  7. Mechanical engineer's handbook

    CERN Document Server

    Marghitu, Dan B

    2001-01-01

    The Mechanical Engineer's Handbook was developed and written specifically to fill a need for mechanical engineers and mechanical engineering students throughout the world. With over 1000 pages, 550 illustrations, and 26 tables the Mechanical Engineer's Handbook is very comprehensive, yet affordable, compact, and durable. The Handbook covers all major areas of mechanical engineering with succinct coverage of the definitions, formulas, examples, theory, proofs, and explanations of all principle subject areas. The Handbook is an essential, practical companion for all mechanic

  8. Software Engineering Guidebook

    Science.gov (United States)

    Connell, John; Wenneson, Greg

    1993-01-01

    The Software Engineering Guidebook describes SEPG (Software Engineering Process Group) supported processes and techniques for engineering quality software in NASA environments. Three process models are supported: structured, object-oriented, and evolutionary rapid-prototyping. The guidebook covers software life-cycles, engineering, assurance, and configuration management. The guidebook is written for managers and engineers who manage, develop, enhance, and/or maintain software under the Computer Software Services Contract.

  9. Knowledge Service Engineering Handbook

    CERN Document Server

    Kantola, Jussi

    2012-01-01

    Covering the emerging field of knowledge service engineering, this groundbreaking handbook outlines how to acquire and utilize knowledge in the 21st century. Drawn on the expertise of the founding faculty member of the world's first university knowledge engineering service department, this book describes what knowledge services engineering means and how it is different from service engineering and service production. Presenting multiple cultural aspects including US, Finnish, and Korean, this handbook provides engineering, systemic, industry, and consumer use viewpoints to knowledge service sy

  10. RL-10 Engines

    Science.gov (United States)

    1963-01-01

    The RL-10 engines were developed by Pratt Whitney and tested by the Marshall Space Flight Center (MSFC). Pictured are MSFC engineers working on the mechanics of the RL-10 engines. Originally developed in 1963 as the first liquid hydrogen-fueled engine to operate successfully in space, the RL-10 engines were used on the second stage (S-IV stage) of the Saturn I launch vehicle.

  11. Biotin-conjugated anti-CD44 antibody-avidin binding system for the improvement of chondrocyte adhesion to scaffolds.

    Science.gov (United States)

    Lin, Hong; Zhou, Jian; Shen, Longxiang; Ruan, Yuhui; Dong, Jian; Guo, Changan; Chen, Zhengrong

    2014-04-01

    The clinical need for improved treatment options for patients with cartilage injuries has motivated tissue-engineering studies aimed at the in vitro generation of cell-based implants with functional properties. The success of tissue-engineered repair of cartilage may depend on the rapid and efficient adhesion of transplanted cells to the scaffold. In the present study, chondrocyte-scaffold constructs were engineered by planting porcine chondrocytes into nonporous chitosan membranes and 3D porous chitosan scaffolds that were treated with or without biotin-conjugated anti-CD44 antibody-avidin binding system and avidin-biotin binding system. The spreading area, cell exfoliation rates, cell proliferation rates, histological analysis, DNA and glycosaminoglycan (GAG) content, and mRNA expression were investigated to evaluate the efficiency of biotin-conjugated anti-CD44 antibody-avidin binding system for the improvement of cell adhesion to scaffolds in the cartilage tissue. The results showed that the biotin-conjugated anti-CD44 antibody-avidin binding system improved cell adhesion to scaffolds effectively. These studies suggest that this binding system has the potential to provide improved tissue-engineered cartilage for clinical applications.

  12. Handbook of diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Tschoeke, Helmut (eds.) [Magdeburg Univ. (Germany). Inst. of Mobile Systems; Mollenhauer, Klaus

    2010-07-01

    The diesel engine continues to be the most cost effective internal combustion engine for motor vehicles as well as mobile and stationary machines. Given the discussion of CO2, the diesel engine is superior to all other drive engines in terms of flexibility, performance, emissions and ruggedness. The intensive search for alternative drive concepts, e. g. hybrid or purely electric drives, has revealed the advantages of the diesel engine for cost effective long distance use wherever high energy densities of energy carriers are indispensible, i. e. storage capacities are low. This English edition of the Handbook of Diesel Engines provides a comprehensive overview of diesel engines of every size from small single cylinder engines up through large two-stroke marine engines. Fifty-eight well-known experts from industry and academia collaborated on this handbook. In addition to the fundamentals and design of diesel engines, it specifically treats in detail the increasingly important subjects of energy efficiency, exhaust emission, exhaust gas aftertreatment, injection systems, electronic engine management and conventional and alternative fuels. This handbook is an indispensable companion in the field of diesel engines. It is geared toward both experts working in research and development and the industry and students studying engineering, mechatronics, electrical engineering or electronics. Anyone interested in learning more about technology and understanding the function and interaction of the complex system of the diesel engine will also find their questions answered. (orig.)

  13. Effects of interlinker sequences on the biological properties of bispecific single-chain antibodies

    Institute of Scientific and Technical Information of China (English)

    FANG Min; JIANG Xin; YANG Zhi; YIN Changcheng; LI Hua; ZHAO Rui; ZHANG Zhong; LIN Qing; HUANG Hualiang

    2003-01-01

    Single-chain bispecific antibody (scBsAb) is one of the promising genetic engineering antibody formats for clinical application. But the effects of interlinker sequences on the biological properties of bispecific single-chain antibodies have not been studied in detail. Three interlinker sequences were designed and synthesized, and denominated as Fc, HSA, 205C′, respectively. Universal vectors with these different interlinker sequences for scBsAb expression in E. coli were constructed. A model scBsAb based on a reshaped single-chain antibody (scFv) against human CD3 and a scFv directed against human ovarian carcinoma were generated and expressed in E. coli. The results of SDS-PAGE and Western blot showed that the different interlinker sequences did not affect the expression levelof scBsAb. However, as demonstrated by ELISA and pharmacokinetics studies performed in mice, scBsAbs with different interlinker sequences had difference in the antigen-binding activities and terminal half-life time (T1/2β) in vivo, the interlinker HSA could remarkably prolong the retention time of scBsAb in blood. These results indicated that the peptide sequence of interlinker could affect important biological properties of scBsAb, such as antigen-binding properties and stability in vivo. So, selection of an appropriate interlinker sequence is very important for scBsAb construction. Optimal interlinker can bring scBsAb biologicalproperties more suitable for clinical application.

  14. Combining intracellular antibodies to restore function of mutated p53 in cancer.

    Science.gov (United States)

    Chan, Grace; Jordaan, Gwen; Nishimura, Robert N; Weisbart, Richard H

    2016-01-01

    TP53 is a tumor suppressor gene that is mutated in 50% of cancers, and its function is tightly regulated by the E3 ligase, Mdm2. Both p53 and Mdm2 are localized in the cell nucleus, a site that is impervious to therapeutic regulation by most antibodies. We identified a cell-penetrating lupus monoclonal anti-DNA antibody, mAb 3E10, that targets the nucleus, and we engineered mAb 3E10 to function as an intranuclear transport system to deliver therapeutic antibodies into the nucleus as bispecific single chain Fv (scFv) fragments. Bispecific scFvs composed of 3E10 include PAb421 (3E10-PAb421) that binds p53 and restores the function of mutated p53, and 3G5 (3E10-3G5) that binds Mdm2 and prevents destruction of p53 by Mdm2. We documented the therapeutic efficacy of these bispecific scFvs separately in previous studies. In this study, we show that combination therapy with 3E10-PAb421 and 3E10-3G5 augments growth inhibition of cells with p53 mutations compared to the effect of either antibody alone. By contrast, no enhanced response was observed in cells with wild-type p53 or in cells homozygous null for p53.

  15. DARPA Antibody Technology Program. Standardized Test Bed for Antibody Characterization: Characterization of an MS2 ScFv Antibody Produced by Illumina

    Science.gov (United States)

    2016-08-01

    ECBC-TR-1395 DARPA ANTIBODY TECHNOLOGY PROGRAM STANDARDIZED TEST BED FOR...Thompson James Carney RESEARCH AND TECHNOLOGY DIRECTORATE Candice Warner Melody Zacharko EXCET, INC. Springfield, VA 22151-2110...4. TITLE AND SUBTITLE DARPA Antibody Technology Program Standardized Test Bed for Antibody Characterization: Characterization of an MS2 ScFv

  16. Limbic encephalitis associated with elevated antithyroid antibodies.

    Science.gov (United States)

    Hacohen, Yael; Joseph, Sonia; Kneen, Rachel; Eunson, Paul; Lin, Jean-Pierre; Vincent, Angela; Lim, Ming

    2014-06-01

    Immune-mediated limbic encephalitis affects both adults and children. Patients typically present with seizures, memory problems, and imaging changes in the medial temporal lobes. Both paraneoplastic and nonparaneoplastic forms have been described in which the antibody to the voltage-gated potassium channel-complex associated protein, leucine-rich glioma-inactivated 1, is most commonly reported. Elevated antithyroid antibodies have also been reported in a range of neurological syndromes with encephalopathy, such as limbic encephalitis, often collectively termed Hashimoto encephalopathy, a condition whereby corticosteroids responsiveness with a complete recovery is commonly observed. Here we describe 3 children presenting with limbic encephalitis with elevated thyroid antibodies that did not respond to corticosteroids alone and required more aggressive immunotherapy, mirroring the slower treatment response that is more frequently seen in other immune-mediated forms of limbic encephalitis.

  17. Calciphylaxis in catastrophic antiphospholipid antibody syndrome.

    Science.gov (United States)

    Shah, Surbhi; Larson, Andrew; Datta, Yvonne

    2015-06-01

    Antiphospholipid antibody syndrome (APS) is a multisystem disorder characterized by vascular thrombosis and presence of circulating autoantibodies. The presence of APS can predispose to macrovascular as well as microvascular thrombotic events. Renal involvement is a common occurrence especially in the background of systemic lupus erythematosus. Skin appears to be another frequent target organ and a significant proportion of patients may present with skin lesions at the time of diagnosis. We present the case of a patient who presented with skin necrosis secondary to antiphospholipid antibody syndrome despite being on therapeutic anticoagulation and then developed dystrophic calcification secondary to her renal insufficiency. This complex skin condition eventually leads to her demise, as she was not a candidate for surgical management of these lesions. Why is this important? This case brings to our attention the need to consider calciphylaxis as a cause of ecchymotic-appearing skin lesions in dialysis patients on warfarin in patients with antiphospholipid antibody syndrome.

  18. Origin and pathogenesis of antiphospholipid antibodies

    Directory of Open Access Journals (Sweden)

    C.M. Celli

    1998-06-01

    Full Text Available Antiphospholipid antibodies (aPL are a heterogeneous group of antibodies that are detected in the serum of patients with a variety of conditions, including autoimmune (systemic lupus erythematosus, infectious (syphilis, AIDS and lymphoproliferative disorders (paraproteinemia, myeloma, lymphocytic leukemias. Thrombosis, thrombocytopenia, recurrent fetal loss and other clinical complications are currently associated with a subgroup of aPL designating the antiphospholipid syndrome. In contrast, aPL from patients with infectious disorders are not associated with any clinical manifestation. These findings led to increased interest in the origin and pathogenesis of aPL. Here we present the clinical features of the antiphospholipid syndrome and review the origin of aPL, the characteristics of experimentally induced aPL and their historical background. Within this context, we discuss the most probable pathogenic mechanisms induced by these antibodies.

  19. Adsorption of monoclonal antibodies to glass microparticles.

    Science.gov (United States)

    Hoehne, Matthew; Samuel, Fauna; Dong, Aichun; Wurth, Christine; Mahler, Hanns-Christian; Carpenter, John F; Randolph, Theodore W

    2011-01-01

    Microparticulate glass represents a potential contamination to protein formulations that may occur as a result of processing conditions or glass types. The effect of added microparticulate glass to formulations of three humanized antibodies was tested. Under the three formulation conditions tested, all three antibodies adsorbed irreversibly at near monolayer surface coverages to the glass microparticles. Analysis of the secondary structure of the adsorbed antibodies by infrared spectroscopy reveal only minor perturbations as a result of adsorption. Likewise, front-face fluorescence quenching measurements reflected minimal tertiary structural changes upon adsorption. In contrast to the minimal effects on protein structure, adsorption of protein to suspensions of glass microparticles induced significant colloidal destabilization and flocculation of the suspension.

  20. Imaging spectrum of primary antiphospholipid antibody syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kwon Ha; Won, Jong Jin [Wonkwang University Hospital, Iksan (Korea, Republic of); Ha, Hyun Kwon; Kim, Jung Hoon; Kim, Jeong Gon; Ki, Won Woo; Kim, Pyo Nyun; Lee, Moon Gyu; Auh, Yong Ho [Asan Medical Center, Seoul (Korea, Republic of)

    1998-04-01

    Antiphospholipid antibody syndrome is recognized as one of the most important causes of hypercoagulability. It can be clinically diagnosed if patients have experienced unexplained recurrent venous or arterial thrombosis, recurrent fetal loss, or thrombocytopenia in the presence of circulating autoantibodies to phospholipids, such as anticardiolipin antibody or lupus anticoagulant. Approximately half of all patients with this syndrome do not have associated systemic disease, and their condition is described as primary antiphospholipid antibody syndrome (PAPS). In the remainder, the syndrome is accompanied by systemic lupus erythematosus or other connective tissue diseases, and is known as secondary antiphospholipid syndrome (1). The purpose of this paper is to illustrate the systemic manifestation of PAPS, focusing on the radiological findings of CT, MR and angiography in clinically proven patients. (author). 8 refs., 10 figs.

  1. Non-antibody protein-based biosensors

    Science.gov (United States)

    2016-01-01

    Biosensors that depend on a physical or chemical measurement can be adversely affected by non-specific interactions. For example, a biosensor designed to measure specifically the levels of a rare analyte can give false positive results if there is even a small amount of interaction with a highly abundant but irrelevant molecule. To overcome this limitation, the biosensor community has frequently turned to antibody molecules as recognition elements because they are renowned for their exquisite specificity. Unfortunately antibodies can often fail when immobilised on inorganic surfaces, and alternative biological recognition elements are needed. This article reviews the available non-antibody-binding proteins that have been successfully used in electrical and micro-mechanical biosensor platforms. PMID:27365032

  2. Sensitive neutralization test for rubella antibody.

    Science.gov (United States)

    Sato, H; Albrecht, P; Krugman, S; Ennis, F A

    1979-01-01

    A modified rubella virus plaque neutralization test for measuring rubella antibody was developed based on the potentiation of the virus-antibody complex by heterologous anti-immunoglobulin. The test is highly sensitive, yielding titers on the average 50 to 100 times higher than the haemagglutination inhibition test or the conventional plaque neutralization test. The sensitivity of this enhanced neutralization test is somewhat limited by the existence of a prozone phenomenon which precludes testing of low-titered sera below a dilution of 1:16. No prozone effect was observed with cerebrospinal fluids. The specificity of the enhanced neutralization test was determined by seroconversion of individuals receiving rubella vaccine. Although the rubella hemagglutination inhibition test remains the test of choice in routine diagnostic and surveillance work, the enhanced rubella neutralization test is particularly useful in monitoring low-level antibody in the cerebrospinal fluid in patients with neurological disorders and in certain instances of vaccine failure. PMID:107192

  3. Antibody-based biological toxin detection

    Energy Technology Data Exchange (ETDEWEB)

    Menking, D.E.; Goode, M.T. [Army Edgewood Research, Development and Engineering Center, Aberdeen Proving Ground, MD (United States)

    1995-12-01

    Fiber optic evanescent fluorosensors are under investigation in our laboratory for the study of drug-receptor interactions for detection of threat agents and antibody-antigen interactions for detection of biological toxins. In a direct competition assay, antibodies against Cholera toxin, Staphylococcus Enterotoxin B or ricin were noncovalently immobilized on quartz fibers and probed with fluorescein isothiocyanate (FITC) - labeled toxins. In the indirect competition assay, Cholera toxin or Botulinum toxoid A was immobilized onto the fiber, followed by incubation in an antiserum or partially purified anti-toxin IgG. These were then probed with FITC-anti-IgG antibodies. Unlabeled toxins competed with labeled toxins or anti-toxin IgG in a dose dependent manner and the detection of the toxins was in the nanomolar range.

  4. Handbook of Software Engineering and Knowledge Engineering

    CERN Document Server

    2001-01-01

    This is the first handbook to cover comprehensively both software engineering and knowledge engineering - two important fields that have become interwoven in recent years. Over 60 international experts have contributed to the book. Each chapter has been written in such a way that a practitioner of software engineering and knowledge engineering can easily understand and obtain useful information. Each chapter covers one topic and can be read independently of other chapters, providing both a general survey of the topic and an in-depth exposition of the state of the art.

  5. Site systems engineering: Systems engineering management plan

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-05-03

    The Site Systems Engineering Management Plan (SEMP) is the Westinghouse Hanford Company (WHC) implementation document for the Hanford Site Systems Engineering Policy, (RLPD 430.1) and Systems Engineering Criteria Document and Implementing Directive, (RLID 430.1). These documents define the US Department of Energy (DOE), Richland Operations Office (RL) processes and products to be used at Hanford to implement the systems engineering process at the site level. This SEMP describes the products being provided by the site systems engineering activity in fiscal year (FY) 1996 and the associated schedule. It also includes the procedural approach being taken by the site level systems engineering activity in the development of these products and the intended uses for the products in the integrated planning process in response to the DOE policy and implementing directives. The scope of the systems engineering process is to define a set of activities and products to be used at the site level during FY 1996 or until the successful Project Hanford Management Contractor (PHMC) is onsite as a result of contract award from Request For Proposal DE-RP06-96RL13200. Following installation of the new contractor, a long-term set of systems engineering procedures and products will be defined for management of the Hanford Project. The extent to which each project applies the systems engineering process and the specific tools used are determined by the project`s management.

  6. Biomedical engineering education through global engineering teams.

    Science.gov (United States)

    Scheffer, C; Blanckenberg, M; Garth-Davis, B; Eisenberg, M

    2012-01-01

    Most industrial projects require a team of engineers from a variety of disciplines. The team members are often culturally diverse and geographically dispersed. Many students do not acquire sufficient skills from typical university courses to function efficiently in such an environment. The Global Engineering Teams (GET) programme was designed to prepare students such a scenario in industry. This paper discusses five biomedical engineering themed projects completed by GET students. The benefits and success of the programme in educating students in the field of biomedical engineering are discussed.

  7. Anti-DNA antibodies--quintessential biomarkers of SLE.

    Science.gov (United States)

    Pisetsky, David S

    2016-02-01

    Antibodies that recognize and bind to DNA (anti-DNA antibodies) are serological hallmarks of systemic lupus erythematosus (SLE) and key markers for diagnosis and disease activity. In addition to common use in the clinic, anti-DNA antibody testing now also determines eligibility for clinical trials, raising important questions about the nature of the antibody-antigen interaction. At present, no 'gold standard' for serological assessment exists, and anti-DNA antibody binding can be measured with a variety of assay formats, which differ in the nature of the DNA substrates and in the conditions for binding and detection of antibodies. A mechanism called monogamous bivalency--in which high avidity results from simultaneous interaction of IgG Fab sites with a single polynucleotide chain--determines anti-DNA antibody binding; this mechanism might affect antibody detection in different assay formats. Although anti-DNA antibodies can promote pathogenesis by depositing in the kidney or driving cytokine production, they are not all alike, pathologically, and anti-DNA antibody expression does not necessarily correlate with active disease. Levels of anti-DNA antibodies in patients with SLE can vary over time, distinguishing anti-DNA antibodies from other pathogenic antinuclear antibodies. Elucidation of the binding specificities and the pathogenic roles of anti-DNA antibodies in SLE should enable improvements in the design of informative assays for both clinical and research purposes.

  8. Reliability and safety engineering

    CERN Document Server

    Verma, Ajit Kumar; Karanki, Durga Rao

    2016-01-01

    Reliability and safety are core issues that must be addressed throughout the life cycle of engineering systems. Reliability and Safety Engineering presents an overview of the basic concepts, together with simple and practical illustrations. The authors present reliability terminology in various engineering fields, viz.,electronics engineering, software engineering, mechanical engineering, structural engineering and power systems engineering. The book describes the latest applications in the area of probabilistic safety assessment, such as technical specification optimization, risk monitoring and risk informed in-service inspection. Reliability and safety studies must, inevitably, deal with uncertainty, so the book includes uncertainty propagation methods: Monte Carlo simulation, fuzzy arithmetic, Dempster-Shafer theory and probability bounds. Reliability and Safety Engineering also highlights advances in system reliability and safety assessment including dynamic system modeling and uncertainty management. Cas...

  9. Investigation of Antiphosphatidyl-Serine Antibody and Antiphosphatidyl-Inositol Antibody in Ischemic Stroke Patients

    Directory of Open Access Journals (Sweden)

    Hirohisa Okuma

    2010-01-01

    Full Text Available Antiphospholipid syndrome is characterized by arterial or venous thrombosis and the presence of antiphospholipid antibodies (aPL. We measured β2-GPI aCL, IgGaCL, LA, antiphosphatidyl-serine antibody (PS, and antiphosphatidyl-inositol antibody (PI in each patient at one month after the onset of stroke. In addition, carotid artery echography was performed in patients positive for PI or PS. Among the 250 patients, 13.6% (34/250 were positive for either PI or PS, and 6.8% (17/250 were positive for both. Carotid artery echography performed on these 34 patients showed that the frequencies of increased intimal-medial thickness (IMT of 1.1 mm or more, plaque, and carotid artery stenosis of 50% or more were all significantly higher in patients positive for antinuclear antibody than those negative for the antibody (P<.05. PI and PS are associated with antinuclear antibody and precipitation of atherosclerosis. Ischemic stroke patients with SLE frequently showed a variety of antiphospholipid-protein antibodies.

  10. Humanitarian engineering in the engineering curriculum

    Science.gov (United States)

    Vandersteen, Jonathan Daniel James

    There are many opportunities to use engineering skills to improve the conditions for marginalized communities, but our current engineering education praxis does not instruct on how engineering can be a force for human development. In a time of great inequality and exploitation, the desire to work with the impoverished is prevalent, and it has been proposed to adjust the engineering curriculum to include a larger focus on human needs. This proposed curriculum philosophy is called humanitarian engineering. Professional engineers have played an important role in the modern history of power, wealth, economic development, war, and industrialization; they have also contributed to infrastructure, sanitation, and energy sources necessary to meet human need. Engineers are currently at an important point in time when they must look back on their history in order to be more clear about how to move forward. The changing role of the engineer in history puts into context the call for a more balanced, community-centred engineering curriculum. Qualitative, phenomenographic research was conducted in order to understand the need, opportunity, benefits, and limitations of a proposed humanitarian engineering curriculum. The potential role of the engineer in marginalized communities and details regarding what a humanitarian engineering program could look like were also investigated. Thirty-two semi-structured research interviews were conducted in Canada and Ghana in order to collect a pool of understanding before a phenomenographic analysis resulted in five distinct outcome spaces. The data suggests that an effective curriculum design will include teaching technical skills in conjunction with instructing about issues of social justice, social location, cultural awareness, root causes of marginalization, a broader understanding of technology, and unlearning many elements about the role of the engineer and the dominant economic/political ideology. Cross-cultural engineering development

  11. Targeted drug delivery using genetically engineered diatom biosilica.

    Science.gov (United States)

    Delalat, Bahman; Sheppard, Vonda C; Rasi Ghaemi, Soraya; Rao, Shasha; Prestidge, Clive A; McPhee, Gordon; Rogers, Mary-Louise; Donoghue, Jacqueline F; Pillay, Vinochani; Johns, Terrance G; Kröger, Nils; Voelcker, Nicolas H

    2015-11-10

    The ability to selectively kill cancerous cell populations while leaving healthy cells unaffected is a key goal in anticancer therapeutics. The use of nanoporous silica-based materials as drug-delivery vehicles has recently proven successful, yet production of these materials requires costly and toxic chemicals. Here we use diatom microalgae-derived nanoporous biosilica to deliver chemotherapeutic drugs to cancer cells. The diatom Thalassiosira pseudonana is genetically engineered to display an IgG-binding domain of protein G on the biosilica surface, enabling attachment of cell-targeting antibodies. Neuroblastoma and B-lymphoma cells are selectively targeted and killed by biosilica displaying specific antibodies sorbed with drug-loaded nanoparticles. Treatment with the same biosilica leads to tumour growth regression in a subcutaneous mouse xenograft model of neuroblastoma. These data indicate that genetically engineered biosilica frustules may be used as versatile 'backpacks' for the targeted delivery of poorly water-soluble anticancer drugs to tumour sites.

  12. Mouse x pig chimeric antibodies expressed in Baculovirus retain the same properties of their parent antibodies.

    Science.gov (United States)

    Jar, Ana M; Osorio, Fernando A; López, Osvaldo J

    2009-01-01

    The development of hybridoma and recombinant DNA technologies has made it possible to use antibodies against cancer, autoimmune disorders, and infectious diseases in humans. These advances in therapy, as well as immunoprophylaxis, could also make it possible to use these technologies in agricultural species of economic importance such as pigs. Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus causing very important economic losses to the industry. Passive transfer of antibodies obtained by biotechnology could be used in the future to complement or replace vaccination against this and other pig pathogens. To this end, we constructed and studied the properties of chimeric mouse x pig anti-PRRSV antibodies. We cloned the constant regions of gamma-1 and gamma-2 heavy chains and the lambda light chain of pig antibodies in frame with the variable regions of heavy and light chains of mouse monoclonal antibody ISU25C1, which has neutralizing activity against PRRSV. The coding regions for chimeric IgG1 and IgG2 were expressed in a baculovirus expression system. Both chimeric antibodies recognized PRRSV in ELISA as well as in a Western-blot format and, more importantly, were able to neutralize PRRSV in the same fashion as the parent mouse monoclonal antibody ISU25C1. In addition, we show that both pig IgG1 and IgG2 antibodies could bind complement component C1q, with IgG2 being more efficient than IgG1 in binding C1q. Expressing chimeric pig antibodies with protective capabilities offers a new alternative strategy for infectious disease control in domestic pigs.

  13. Service Cart For Engines

    Science.gov (United States)

    Ng, Gim Shek

    1995-01-01

    Cart supports rear-mounted air-cooled engine from Volkswagen or Porsche automobile. One person removes, repairs, tests, and reinstalls engine of car, van, or home-built airplane. Consists of framework of wood, steel, and aluminum components supported by four wheels. Engine lifted from vehicle by hydraulic jack and gently lowered onto waiting cart. Jack removed from under engine. Rear of vehicle raised just enough that engine can be rolled out from under it. Cart easily supports 200-lb engine. Also used to hold transmission. With removable sheet-metal top, cart used as portable seat.

  14. Comparison of the immunoreactivity of rituximab antibody labeled with either I-125 or Re-188 for radioimmunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Tae Hyun; Chung, Hye Kyung; Lee, Tae Sup; Chung, Wee Sup; Woo, Kwang Sun; Lee, Myung Jin; Kim, So Yeon; Chung, Jae Ho; CHoi, Chang Woon; Lim, Sang Moo [KIRAMS, Seoul (Korea, Republic of); Darwati, Siti [National Nuclear Energy Agency, Tangerang (Indonesia)

    2004-07-01

    Monoclonal antibodies against tumor-associated antigens can be applied as delivery vehicles for radionuclides to treat tumors. The specificity of MAbs for tumor-associated antigens can be exploited to direct radionuclides selectively to tumor cells after systemic administration. In radioimmunotherapy, therapeutic efficacy depends on the choice of the radionuclide. The chemical characteristics of radioiodine and radiometals (Re-188) differ significantly with respect to labeling procedure and consequently the specificity of monoclonal antibody can be affected due to discrepancy of labeling condition. Rituximab is a genetically engineered, chimeric anti-CD20 monoclonal antibody with mouse variable and human constant region. The CD-20 itself plays an important role in human B-cell proliferation and is an effective target for immunotherapy. In the present study, we compared the immunoreactivity of I-125-labeled Rituximab with Re-188-labeled Rituximab according to radionuclide-optimized labeling condition in cell binding assay of Lindmo method.

  15. Aptamers, antibody scFv, and antibody Fab' fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements.

    Science.gov (United States)

    Crivianu-Gaita, Victor; Thompson, Michael

    2016-11-15

    The choice of biosensing elements is crucial for the development of the optimal biosensor. Three of the most versatile biosensing elements are antibody single-chain Fv fragments (scFv), antibody fragment-antigen binding (Fab') units, and aptamers. This article provides an overview of these three biorecognition elements with respects to their synthesis/engineering, various immobilization techniques, and examples of their use in biosensors. Furthermore, the final section of the review compares and contrasts their characteristics (time/cost of development, ease and variability of immobilization, affinity, stability) illustrating their advantages and disadvantages. Overall, scFv fragments are found to display the highest customizability (i.e. addition of functional groups, immobilizing peptides, etc.) due to recombinant synthesis techniques. If time and cost are an issue in the development of the biosensor, Fab' fragments should be chosen as they are relatively cheap and can be developed quickly from whole antibodies (several days). However, if there are sufficient funds and time is not a factor, aptamers should be utilized as they display the greatest affinity towards their target analytes and are extremely stable (excellent biosensor regenerability).

  16. Antiphospholipid antibody syndrome presenting with hemichorea.

    Science.gov (United States)

    Ayalew, Yezenash; Khattak, Fazlihakim

    2012-01-01

    A 25-year-old Bangladeshi lady presented to neurology with a three-month history of involuntary movements of her right arm, associated with loss of power. There was progression to the right leg, and she subsequently developed episodes of slurred speech and blurred vision. At the time of presentation, she was 12 weeks pregnant and the symptoms were reported to have started at conception. Past medical history was unremarkable apart from one first trimester miscarriage and there was no significant family history suggestive of a hereditary neurological condition. MRI of the head revealed no abnormalities but serology showed positive antinuclear antibodies (ANAs) at a titre of 1/400. Further investigations revealed strongly positive anticardiolipin antibodies (>120) and positive lupus anticoagulant antibodies. The patient had a second miscarriage at 19 weeks gestation strengthening the possibility that the chorea was related to antiphospholipid antibody syndrome and she was started on a reducing dose of Prednisolone 40 mg daily and aspirin 300 mg daily. Six months later, she had complete resolution of neurological symptoms. There are several reports of chorea as a feature of antiphospholipid syndrome, but no clear consensus on underlying pathophysiology.

  17. Pulmonary manifestations of the antiphospholipid antibody syndrome.

    Science.gov (United States)

    Ford, H James; Roubey, Robert A S

    2010-09-01

    A broad spectrum of pulmonary disease may occur in antiphospholipid antibody syndrome. The most common pulmonary manifestations are pulmonary thromboembolism and pulmonary hypertension. In this article the authors review these manifestations, as well as less common findings including acute respiratory distress syndrome, alveolar hemorrhage, and pulmonary capillaritis.

  18. The antiphospholipid antibody syndrome: a case report.

    Science.gov (United States)

    Luma, Henry Namme; Doualla, Marie-Solange; Temfack, Elvis; Bagnaka, Servais Albert Fiacre Eloumou; Mankaa, Emmanuella Wankie; Fofung, Dobgima

    2012-01-01

    Antiphospholipid antibody syndrome is defined by the presence of thromboembolic complications and/or pregnancy morbidity in the presence of persistently increased titers of antiphospholipid antibodies. Its clinical presentation can be diverse and any organ can be involved, with a current impact in most surgical and medical specialties. The authors present the case of a 43-year-old man who, over a 13-year period of follow-up, presented with thrombosis of the mesenteric vein, inferior vena cava, and axillary and subclavian veins in a setting where diagnostic and therapeutic options are limited and costly. Through this case report, the authors aim to describe the evolution of this complex pathology, which to date has not been described in the authors' milieu - probably because of its challenging diagnosis and the limited treatment options available. The authors conclude that clinicians need to have a high index of suspicion of APS in patients who present with a thrombotic episode - clinicians should investigate for the presence of antiphospholipid antibodies, as early diagnosis may influence the course of the disease. Furthermore, resources for the detection of antiphospholipid antibodies should be made readily available in resource-limited settings. Finally, patient education on the importance of drug compliance, periodic monitoring, and prevention of thrombosis is indispensable, especially as mortality could be associated with the effects of vascular thrombosis and/or the effects of bleeding due to anticoagulants.

  19. Pathophysiology of the antiphospholipid antibody syndrome.

    Science.gov (United States)

    Willis, Rohan; Pierangeli, Silvia S

    2011-11-01

    Antiphospholipid antibodies (aPL) are associated with the recurrent pregnancy loss and thrombosis that characterizes the antiphospholipid antibody syndrome (APS). Although the ontogeny of these pathogenic antibodies has not been fully elucidated, there is evidence that indicates the involvement of both genetic and environmental factors. The ability of aPL to induce a procoagulant phenotype in APS patients plays a central role in the development of arterial and venous thrombotic manifestations typical of the disease. Inflammation serves as a necessary link between this procoagulant phenotype and actual thrombus development and is an important mediator of the placental injury seen in APS patients with obstetric complications. Recent evidence has indicated a role for abnormal cellular proliferation and differentiation in the pathophysiology of APS, especially in those patients with pregnancy morbidity and other more atypical manifestations that have no identifiable thrombotic cause. The interplay of genetic and environmental factors responsible for aPL development and the mechanisms by which these antibodies produce disease in APS patients is the focus of this review.

  20. Antigen/Antibody Analyses in Leishmaniasis.

    Science.gov (United States)

    1983-09-01

    antibodies in human sera with antigens of protozoan parasites . It was found that enzyme substrate reactions had distinct advantages over typical...autoradiographic procedures. Analyses of various sera identified a number of antigens of protozoan parasites which may be useful in discriminating infections